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    Foreword 

This book is a compilation of the presentations given at the Fourth International 
Symposium on Fractals in Biology and Medicine held in Ascona, Switzerland on 10-
13 March 2004 and was dedicated to Professor Benoît  Mandelbrot in honour of his 80th

birthday.The Symposium was the fourth of a series that originated back in 1993, always 
in Ascona.  
  The fourth volume consists of 29 contributions organized under four sections: 

Fractal structures in biological systems 
Fractal structures in neurosciences 
Fractal structures in tumours and diseases 
The fractal paradigm 

  Mandelbrot’s concepts such as scale invariance, self-similarity, irregularity and 
iterative processes as tackled by fractal geometry have prompted innovative ways to 
promote a real progress in biomedical sciences, namely by understanding and 
analytically describing complex hierarchical scaling processes, chaotic disordered 
systems, non-linear dynamic phenomena, standard and anomalous transport diffusion 
events through membrane surfaces, morphological structures and biological shapes 
either in physiological or in diseased states. While most of biologic processes could be 
described by models based on power law behaviour and quantified by a single 
characteristic parameter [the fractal dimension D], other models were devised for 
describing fractional time dynamics and fractional space behaviour or both (bi-
fractional mechanisms), that allow to combine the interaction between spatial and 
functional effects by introducing two fractional parameters. Diverse aspects that were 
addressed by all bio-medical subjects discussed during the symposium.  
 We are especially grateful to Professor Benoît Mandelbrot for his public 
presentation on < Fractales, Hasard et Aléas de la Bourse > held in the Palazzo 
Corporazione Borghese at Locarno and for his active and critical participation during all 
the Symposium as well.  
 We are particularly indebted to the following institutions for their support:  
International Society for Stereology, Swiss National Science Foundation, Italian Society 
for Microscopic Sciences, Institute for Scientific Interdisciplinary Studies, Research 
Center  for Mathematics and Physics, Rete Due of the Swiss Italian Broadcasting, and 
Department of Education Culture and Sport of the Republic of Cantone Ticino, who 
accepted to confer their scientific and cultural patronage and also to the sponsors, 
Department of Education Culture and Sport of the Republic of Cantone Ticino, Swiss 
National Science Foundation, the Majors of Ascona, Bellinzona and Locarno, Rete Due 
of the Swiss Italian Broadcasting, UBS SA Locarno,  and Cagi Cantina Giubiasco. 
 Our thanks are also due  to Professor  Mauro Martinoni, head of the Ufficio  Studi  
Universitari  of the Cantone Ticino for his kind collaboration and precious support.  

Monte Verità, Ascona 2004               The Editors 



Fractal Structures in Biological Systems 



Mandelbrot's Fractals and the Geometry of Life: 
A Tribute to Benoît Mandelbrot on his 80th Birthday 
Ewald R. Weibel 

Department of Anatomy, University of Berne, Bühlstrasse 26, CH-3000 Bern 9, Switzerland 

Summary. The concept of fractal geometry advanced by Mandelbrot since 1977 has brought new insight 
into the design of biological structures. Two fundamental geometrical forms abound: interfaces between 
different compartments with a very large surface within finite space, and branched trees that distribute 
blood and air into the tissue space. These structures show a level of complexity that is best described by 
fractal geometry. Thus, the surface area of cellular membranes as well as the gas exchange surface of the 
lung have a fractal dimension which is larger than 2. The design of the airway tree is described in quanti-
tative terms and the functional consequences are discussed, both with respect to airflow in the bronchi and 
gas exchange in the acini. Similar conditions are described with respect to the blood vascular network. It 
is finally discussed whether fractal geometry plays a role in designing animals of greatly different body 
size from 2 g in a shrew to 500 kg in horses and steers. The scaling exponent of 3/4 for metabolic rate has 
been explained on a basis of two fractal models, but it is shown that this does not hold for maximal meta-
bolic rate which is directly proportional to the surface of inner mitochondrial membrane that in turn has 
fractal properties. The concept of fractal geometry is valuable in understanding the design of biological 
structures at all levels of organization.  

1 Introduction 

I first met Benoît Mandelbrot in 1977 in Paris at a symposium on "Geometric 
probability and biological structures" organized to commemorate 200 years of the Buf-
fon needle problem, the first exercise in geometrical statistics [1]. Mandelbrot was one 
of the keynote speakers (Fig. 1). It was the year in which he published his book "Frac-
tals: Form, Chance and Dimension" [2] which marked the beginning of a new way of 
describing the structure of natural objects. It turned out that Mandelbrot's concept of 
fractal geometry gained significant influence on the way we now describe the geometric 
design of living systems, of what forms the geometry of life. But it also had a signifi-
cant impact on the further development of a quantitative approach to the study of inter-
nal life forms with the methods of stereology. The Buffon symposium was related to the 
theoretical foundations of stereology, but it was somehow akin to the concept of frac-
tals. In 1777, the great naturalist Buffon asked the French Academy of Sciences: what is 
the probability P that a randomly tossed needle of length l intersects a set of parallel 
lines spaced at an equal distance d, e.g. the seam lines of a parquet floor? Buffon solved 
the problem himself: considering the chances to have the needle at different orientations 
(angles) and different distances from the lines he derived P = (2/ )·(l/d). The further 
developments of this principle have led to stereological methods by which, for example, 
the surface area of membranes is estimated by probing the tissue with needles [4]. The 
Buffon needle problem thus was perhaps the first realization of "Form, Chance and Di-
mension". 
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Figure 1. Benoît Mandelbrot and participants of the Buffon symposium of 1977 beneath the statue of 
Georges-Louis Leclerc Comte de Buffon at the Jardin des Plantes in Paris.  

At the Buffon symposium Mandelbrot talked about "the fractal geometry of 
trees and other natural phenomena" [5] among which were the structure of natural 
boundaries which are never simple, and the systematic structure of trees that abound in 
nature, in animals for example in the form of blood vessels and airways. By presenting 
these fundamental concepts Mandelbrot opened the eyes of biological morphologists for 
unpredicted complexities in the structure of internal organs. I will, in the following give 
but a few indications to how the concept of fractal geometry has changed our views of 
biological design.  

2 A Fractal Look at Biological Surfaces 

Many biological processes such as the exchange of substances or chemical reac-
tions, take place at interfaces between different compartments of the cell or the body 
and this is why cellular membranes are such a prevalent and important structural entity. 
The quantitative description of structure-function relationships therefore often depends 
on the measurement of the surface area of such membranes. This is for example the case 
in the lung where oxygen is transferred from the air to the blood across a large surface 
area, or in the liver cells where an extended membrane system hosts complex metabolic 
reactions [6]. In 1977, morphometric studies on liver cells presented controversial re-
sults because the surface area of the endoplasmic reticulum membrane, the site of drug 
metabolism and of protein synthesis, had been estimated at 6 m2/cm3 by Loud [7] 
whereas we had obtained a value of 11 m2/cm3 [6]. And yet, the methods used were the 
same, with one exception: we obtained our measurements at 90'000 X magnification of 
the electron microscope whereas the other group had used a lower magnification.  

When, at the Buffon symposium, Mandelbrot showed on the example of 
Richardson's problem of the indeterminate length of the coast of Britain, that the length 
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of a boundary depends on the yardstick used to obtain the measurement and that this 
was related to its fractal dimension [2] this pointed the way on how to resolve the para-
doxical results on cell membranes. In a systematic study of liver cell structure by 
stereology using different electron microscopic magnifications (Fig. 2) Paumgartner et 
al. [8] found the estimates of the surface of cellular membranes to increase with increas-
ing magnification or decreasing resolution scale (Fig. 3) concluding that the fractal di-
mension of the endoplasmic reticulum of liver cells was about 2.7 which fully explained 
the differences in surface measurement obtained at different microscopic resolutions, 
i.e.  

Figure 2. Membrane system of liver cells at two different magnifications with grids for measuring sur-
face area by intersection counts. From [8]. 

Figure 3. Measured surface density of endoplasmic reticulum and inner mitochondrial membranes in-
crease with increasing magnification. The slope of the log-log regressions are related to the fractal dimen-
sion [8]. 

with yardsticks of different length. Similar results were obtained for other membranes 
such that the fractal dimension of inner mitochondrial membranes was estimated at 2.54 
(Fig. 3).  

A very similar problem could then also be solved the same way. When human 
lungs were studied morphometrically by light microscopy we had measured the internal 
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surface area of an adult human lung at about 60 - 80 m2 [9] whereas later, using the 
electron microscope with its higher resolving power, this estimate increased to 130 m2,
the value now taken as real [10]. This too is related to the fact that the lung's internal 
surface is a space-filling fractal surface whose dimension is estimated at 2.2. We will 
return to this later. 

3 The Lung's Airway Tree 

One of the most influential fractal models has been the Koch tree model (Fig. 
4a), a self-similar space-filling fractal based on dichotomous branching whereby the 
size of the daughter-branches is reduced by the same factor from one generation to the 
next. Even though the airway tree of the human lung shows considerable irregularity the 
principle of a systematic reduction of airway size seems to apply (Fig. 4b). In introduc-
ing this model in 1977 Mandelbrot remarked that "the lung can be self-similar and it is". 
On that basis it was later demonstrated by a systematic analysis that the airway tree in 
different species shows a common fractal structure, in spite of some gross differences in 
airway morphology [11].  

The reduction of airway diameter and length by a constant factor is of func-
tional significance, both in blood vessels and in airways. It was proposed on theoretical 
grounds by W.R. Hess [12] and C.D. Murray [13] that the dissipation of energy due to 
the flow of blood or air in a branched tube system can be minimized if the diameter of 
the two daughter-branches d1 and d2 are related to the diameter of the parent branch do
as do

3 = d1
3 + d2

3. If we consider a simplified symmetric branching tree, where the two 
daughter-branches have equal diameter and length, then the diameter of the daughter 
branch is reduced with respect to do by a factor 2-1/3. In the context of fractal geometry 
the reduction factor depends on the fractal dimension of the branching tree so  

       

Figure 4. (a) Koch tree model of the airways (from [2]) compared to (b) cast of human airway tree.  

that the correct formula is: d1 = do
.2-1/D. In the case of the Hess-Murray law D = 3 be-

cause the tree is considered to be space-filling.  
Does this law apply in the airways of the human lung? In 1962 Domingo Go-

mez and I had analyzed the dimensions of the human bronchial tree [14]. We found that 
it branches over 23 dichotomous generations (note that the Koch tree in Fig. 4a has 12 
generations). When the average diameters of the airways were plotted semi-
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logarithmically against the generations (Fig. 5) we observed that the data points lie 
closely around a straight line down to generation 14, the last generation of so-called 
conducting airways, and the slope of this line was 2-z/3. The average diameter of airways 
in each generation can thus be predicted from the Hess-Murray law.  

This then allowed us to conclude that the conducting airways of the human lung 
are designed as a self-similar and space-filling fractal tree. This way the airways reach 
into all corners of the lung's space with similar distances of all tips from the origin of 
the airways in the trachea – the Koch tree of Fig. 4a is a reasonable scheme of airway 
morphology. Furthermore, we found that the airways are designed for efficient ventila-
tion because they abide to the Hess-Murray law.  

Figure 5. Semi-log plot of average airway diameter in human lungs against generations of branching. 
After [14].  

But precisely because of the optimisation conditions defined by the Hess-
Murray law it has been suggested that "an optimal bronchial tree may be dangerous" 
[15]. The reason is that the reduction factor 2-1/3 = 0.79 is critical with respect to defin-
ing the airway resistance that varies inversely with the fourth power of the airway di-
ameter. Thus, a very small reduction of this factor would cause the airway resistance to 
increase very dramatically in the smaller peripheral bronchioles. This could lead to 
catastrophic situations, for example in asthma a pathological condition characterized by 
progressive narrowing of small airways. Fig. 6 shows that a small reduction in this fac-
tor causes the airway resistance to increase drastically. It turns out, however, that the 
bronchial tree is built with a certain safety factor in that respect. A closer analysis of the 
data in Fig. 5 shows that the homothety factor corresponds about to the critical value of 
0.79 in generation 6 but then slowly increases to about 0.9 in the 16th generation [15]. 
The average factor for small airways is therefore about 0.85 (Fig. 6) and this means that 
(1) the flow resistance decreases in the small airways and (2) that a small reduction in 
the homothety factor does not have a serious effect on lung function [15].  

This larger than optimal factor of diameter reduction has as a consequence that 
the fractal dimension of the conducting airway tree must be larger than 3 (see equation 
above). This "unrealistic" proposition is only possible because the bronchial tree is trun-
cated at about generation 17 beyond which we find six generations of airways with a 
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completely different structure in that they are surrounded by gas exchanging surface 
(Fig. 7a).  

Figure 6. Dependence of resistance and volume of the airway tree on the reduction factor or homothety 
ratio h. The mean homothety ratio of small human airways is larger than the critical value. From [15]. 

4 Designing the Peripheral Airways for Gas Exchange 

The acinar airways are designed to serve two functions: they must allow oxygen 
to be transferred from the air to the capillary blood which requires a large contact sur-
face, and they must ensure that oxygen-rich fresh air can reach into the deepest corners 
of the lung. The first function requires a very large surface to be wrapped around the 
airways (Fig. 7b), a surface which has fractal properties [16]. This surface is densely 

Figure 7. The structure of airways and blood vessels leading into the gas exchange region of the lung. a: 
The last branches of the conducting bronchioles lead into the acinar ducts which are surrounded by alve-
oli. b: Cross section of an acinar duct with its surrounding alveolar chambers. c: Terminal blood vessel 
leading into the capillary networks in the walls of alveoli. 
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perfused with blood through a dense capillary network (Fig. 7c), and a very thin air-
blood barrier affords this surface a high permeability for oxygen. The second function is 
promoted by arranging the alveoli around a system of branching channels whose diame-
ter decreases very gently towards the periphery (Fig. 5). The problem is, however, to 
make sure that oxygen can reach to the last alveoli and this depends on an adequate bal-
ance between permeability of the alveolar surface and diffusivity of oxygen within the 
air channels, and finally on the size of the acini. Efficient conditions are achieved if the 
size of the acinus, i.e. the length of the channels along which oxygen must diffuse in air, 
is matched to the ratio of permeability and diffusivity [17]. The rule is: "Smaller is bet-
ter – but not too small" and it turns out that the size of acini in mammalian lungs is such 
as to ensure efficient gas exchange [17]. Acini are fractal structures, and they have just 
the right size.  

5 Fractal Design of the Blood Vascular Network 

It has long been realized that vascular trees should be designed on fractal prin-
ciples in order to be efficient functional systems [2,18]. The blood vessel system must 
distribute the blood pumped by the heart into every corner of the body; they are there-
fore an exquisite example of a space-filling structure. It is also well-known that arteries 
branch gradually thus increasing the number of paths along blood flows to the cells, and 
at the same time the diameter of the vessels becomes smaller and smaller. This is a 
situation similar to a Koch tree shown in Fig. 4a. The blood then flows through capillary 
networks that lie adjacent to the cells they supply, and finally it is collected in the ve-
nous blood vessels which also form a tree similar to that of arteries (Fig. 8).  

Figure 8. a: Cast of peripheral branches of an arterial tree from the heart. b: Capillary network between 
muscle fibers connected to an artery (left) and a vein (right). c: Peano network similating the structure of 
the arterial and venous vascular networks. c from [2].   

Mandelbrot has suggested a fractal model for the vascular network in form of 
the Peano network [2, 18], a structure of two interlaced branching "rivers" which fills 
the plane and where the terminals are associated with "cells". Fig. 9c shows a fragment 
of such a model combined with a sequence of arteries that lead into the muscle capillary 
network.  
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A similar situation occurs in the lung where the arteries follow the bronchial 
tree and penetrate into the acini along the airways whereas the veins collect the blood 
from the periphery of the acini (Fig. 9).  

Figure 9. Cast of airways and blood vessels in 
human lung. The bronchial tree (white) is accom-
panied by arteries (a) whereas the veins (v) lie in 
between the broncho-arterial units.  

Figure 10. Total diameter of arteries and veins 
plotted against their mean diameters in the 
analysis of pulmonary vasculature as Strahler 
trees. The regression slope is related to the 
fractal dimension. From [19].

There have been a large number of studies attempting to characterize the fractal 
geometry of the blood vascular system. One of them looked in great details at the pul-
monary arteries [19]. They analysed the pulmonary arterial trees according to a Strahler 
ordering system where they derived a branching ratio of 3.36. They also estimated the 
fractal dimension of the arterial tree by observing the changes in the diameter of arteries 
with successive orders (Fig. 10). They obtained the fractal dimension from the ratio of 
the log of the total cross section to the log of the average cross section at each order and 
obtained a fractal dimension of 2.71 for pulmonary arteries and 2.64 for pulmonary 
veins. This is interesting because Mandelbrot predicted already in 1977 [2, 18] that the 
fractal dimension of an arterial tree should be smaller than 3 and he gave the figure of 
2.7 as a characteristic value.  

This has important consequences on the functional effects of arterial dimen-
sions. With respect to the bronchial tree we have discussed the importance of the size 
reduction factor h(d) which in a dichotomous tree we have seen to be h = 2-z/3. In a di-
chotomous tree 2 is the branching ratio (by definition) and the diameter decreases with 
increasing generation z so that the exponent is negative. With a Strahler ordering system 
as used by Huang et al. the smallest branches are numbered 1; higher order branches 
have an increasingly larger diameter. The ratio of the number of branches in one genera-
tion to that in the next is called the branching ratio that is estimated to be 3.36 in this 
study. Accordingly, the homothety factor h is the ratio of the mean diameter in order n
to that in order n-1. When one then introduces the value of R into the Hess-Murray law 
h = R1/D we obtain h = 0.77 which is smaller than the ideal value of 0.79, this in con-
trast to the condition in the airways. This now means that vascular resistance increases 
progressively towards the smaller branches of the arterial tree, a well-known fact since 
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the largest resistance is found in arterioles, the last branches of the arterial tree before 
the capillaries.  

The analysis of vascular networks leads to the conclusion that arteries and veins 
form fractal trees of fractal dimension 2.7. They are designed for efficient perfusion of 
the tissues, and also for efficient regulation of the distribution of blood flow.  

6 Design of Animals and Biological Diversity 

We should finally ask the question whether fractal geometry plays a role in de-
signing animals in their great diversity. A simple but yet important case of biodiversity 
is that mammals come in all sizes from about 2 g in a shrew to 500 kg in horses and 
steers and up to 5 t in elephants. But all these animals are built on the same blueprint 
(Fig. 11): same organs, same bones, same heart and blood. However, small animals run 
with a higher stride frequency, their heart operates at a faster rate, and they have a 
higher energy budget, but their lifespan is shorter than that of larger animals. In other 
words, they live faster and shorter. Thus, body size does have an impact on many of the 
major bodily functions and it is therefore important to ask how these functions scale 
with body mass [20].  

Figure 11. African mammals of different size. From [30]. 

One of the most prominent cases in that regard is mass-specific metabolic rate 
which systematically decreases with increasing body mass. It was first thought that, in 
warm-blooded animals, metabolic rate is determined by heat dissipation at the body 
surface so that it is scaled with the 2/3 power of body mass that characterizes body sur-
face area. It was later found, however, that what is called standard metabolic rate, the 
energy expended by a resting animal, scales with M3/4 [21]. This power law relationship 
between body mass and metabolic rate has been largely confirmed for mammals and 
other warm-blooded species [20], but there was no convincing mechanistic explanation 
of the 3/4 exponent.  
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Figure 12. Allometric plot of maximal oxygen consumption against body mass in 37 species of mammals 
scales with M0,872. From [27]. 

Recently it was recognized that power law scaling could be related to fractal 
properties of the organism. West, Brown and Enquist [22] proposed a first model which 
considers the design of the distribution network for oxygen and nutrients to the tissues 
of the body. They consider the fractal design of the arterial tree, as described above, 
which ends in terminal units, the capillaries, of invariant size. They take the network to 
be space-filling and consider the conditions that would be required to minimize the en-
ergy dissipation due to blood viscosity and pulsatile flow and then predict that the scal-
ing exponent for metabolic rate must be 3/4.  

The same authors also proposed a second fractal model which now considers 
the structure of the metabolically effective surface a which they take to be represented 
by mitochondrial membranes, where oxidative phosphorylation takes place, or the capil-
laries from which oxygen is delivered to the cells. They then make a number of assump-
tions on the fractal nature of these surfaces and find that a is proportional to M3/4 and 
thus proportional to metabolic rate if the surface is maximized and distances minimized.  

So by two different fractal concepts, considering the vascular trees or the cellu-
lar membranes, respectively, these authors conclude that the 3/4 exponent of metabolic 
rate scaling is explained by the fractal design properties of organisms of different body 
size. Since these theories were derived from first principles they also claim that these 
models represent an universal scaling law that applies from large to small mammals, 
birds, cells, down to molecules [23].  

Even though in the context of a discussion of the importance of fractals in the 
design of animals this is an exciting result, the universality it purports appears "too good 
to be true" [24]. Besides different critiques that were brought to the models themselves 
[25 a.o.] the universality of the scaling law for different metabolic conditions must be 
questioned. For example one of the premises of the model is that it optimizes the econ-
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omy of design "such that the magnitudes of structures and functions tend to just meet 
maximal demands [26]. Maximal energetic demands are, however, not realized at stan-
dard or resting metabolic rate but rather at what is called maximal metabolic rate of a 
running animal when the rate of oxygen consumption is increased by 10 – 30 fold over 
resting rate. The model therefore predicts that maximal metabolic rate scales with M3/4,
but this is not what we find. Fig. 3 shows that in mammals ranging from a pigmy mouse 
of 7 g up to horse and steer of 500 kg the maximal rate of oxygen consumption scales 
with M0,872 — or M7/8 — which is significantly different from the exponent 3/4 [27]. 
Why is that?  

Because maximal metabolic rate is still scaling with a power law function of 
body mass we may suspect that a fractal property lies at the basis of this relationship. 
Let us look at the second model of West, Brown and Enquist [28], namely that meta-
bolic rate should be proportional to the effective metabolic surface, i.e. the mitochondria 
or the capillaries. In a recent study [27] we have found, on a subset of the species repre-
sented in Fig. 12, that the quantity of mitochondria and of capillaries contained in the 
organs active at maximal metabolic rate, namely the locomotor muscles, shows the 
same scaling relationship to body mass as maximal oxygen consumption. As a conse-
quence we find that the maximal rate of oxidative metabolism is directly and linearly 
proportional to the total volume of mitochondria in muscle cells (Fig. 13).  

Figure 13. Maximal oxygen consumption is linearly related to the total volume of mitochondria (circles) 
and capillaries (squares) in mammals of body mass varying between 20 g and 500 kg. From [29].

This is now interesting because it tells us that metabolic rate is also proportional 
to the surface area of the inner mitochondrial membranes (Fig. 14) because it is estab-
lished that the concentration of inner membrane surface within the mitochondrial vol-
ume does not vary with body size. Similarly we found, in the same study, that the capil-
lary volume in total locomotor muscle also scales with the same exponent as maximal 
oxygen consumption or mitochondrial volume so that capillary volume is also linearly 
proportional to maximal metabolic rate (Fig. 14). And since capillary diameter varies 
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very little from large to small animals we also find that total capillary surface area 
scales as maximal metabolic rate.  

Figure 14. Mitochondrion of skeletal muscle cell shows densely packed inner mitochondrial membrane. 

We thus conclude that the variation of maximal metabolic rate in mammals of 
different body size is very tightly associated with the variation of structural parameters 
of mitochondria and capillaries, all scaling with M0.87. This therefore confirms the con-
jecture of the second fractal model of West et al. [28] that metabolic rate is proportional 
to the effective metabolic surface, but the scaling derived from the model does not agree  
with the empirical findings [27]. It will be interesting to find why metabolic rate and the 
effective surfaces scale with the 7/8 power of body mass rather than with 3/4 as pre-
dicted by the model. Could it perhaps be that the fractal dimension of the inner mito-
chondrial membranes is not 3 as predicted by the model but rather 2.7 as estimated by 
Paumgartner et al. [8]? We thus conclude that the maximal metabolic rate of an animal 
is not simply determined by its body size but rather by its energy needs and that this is 
related to the variation of the quantity of mitochondria and capillaries that serve the tis-
sue. The fractal design of the vascular network certainly ensures efficient supply of 
oxygen to the working cells, also in muscle, but its scaling features may be the result 
rather than the cause of the evolution of metabolic rate scaling [29].  

7 Fractals are Everywhere 

In summary, we have seen that the compact design of a well-functioning organ-
ism with all its complexity depends on a high density of internal membrane systems, the 
structures on which chemical reactions or transfer processes take place in an orderly 
fashion. Such membrane systems constitute "space-filling" geometries and are thus 
amenable to a fractal analysis. In turn, substances must be shuttled back and forth be-
tween different organs and cells and this requires a distribution network of blood vessels 
or airways that also must be "space-filling" as it must reach every corner of the organ-
ism, and here again fractal concepts allow us to understand the underlying construction 
principles. 
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Summary.  We investigate oxygen transport to and across alveolar membranes in the human lung, the 
last step in the chain of events that takes oxygen through the bronchial airways to the peripheral, acinar 
airways.  This step occurs by diffusion. We carry out analytic and numerical computations of the oxygen 
current for fractal, space-filling models of the acinus, based on morphological data of the acinus and 
appropriate values for the transport constants, without adjustable parameters.  The computations address 
the question whether incoming oxygen reaches the entire available membrane surface (reaction-limited, 
unscreened oxygen current), a large part of the surface (mixed reaction/diffusion-limited, partly screened 
current), or only the surface near the entrance of the acinus (diffusion-limited, completely screened 
current).  The analytic treatment identifies the three cases as sharply delineated screening regimes and 
finds that the lung operates in the partial-screening regime, close to the transition to no screening, for 
respiration at rest; and in the no-screening regime for respiration at exercise.  The resulting currents agree 
well with experimental values.  We test the analytic treatment by comparing it with numerical results for 
two-dimensional acinus models and find very good agreement.  The results provide quantitative support 
for the conclusion, obtained in other work, that the space-filling fractal architecture of the lung is optimal 
with respect to active membrane surface area and minimum power dissipation.  At the level of the bron-
chial tree, we show that the space-filling architecture provides optimal slowing down of the airflow from 
convection in the bronchial airways to diffusion in the acinar airways. 

1 Introduction 

One of the great promises of fractals in nature [1] is that they offer a powerful platform 
to study structure-function relationships of complex systems in science and engineering 
[2, 3, 4].  On the structural side, fractal geometry provides the simplest possible model 
of a complex system: the fractal dimension specifies the degree of irregularity or 
complexity, the inner cutoff specifies the size of the elementary building blocks, and the 
outer cutoff specifies the overall system size.  These specifications are the necessary 
minimum for any meaningful parametrization.  Remarkably, they are also sufficient in 
many instances: the functional properties of the system—the answer to the question, 
how does the system function?—often do not depend, in leading order, on how the 
system is constructed, as long as the fractal dimension, the inner and outer cutoff, and 
the composition are the same [5].  Thus fractal systems can predict functional properties 
with a high degree of universality and a minimum number of parameters.  A case study 
of such universality for a whole series of structure-function relations is described in 
Refs. [6, 7].  A single surface in that class can be tailored to perform multiple functions, 
each meeting a separate, preset performance target.  Such opportunities for multiply 
optimized design, by appropriate design of a surface’s geometry, are of outstanding 
interest in engineering [8, 9, 10]. 
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Figure 1. Space-filling system of alveoli in the human lung (from [11], with permission).  The average 
diameter of an alveolus is 187 µm, and the number of alveoli is about 300 million.  On scales 
larger than 187 µm, the walls between adjacent alveoli span a surface with fractal dimension 3.

In this paper, we investigate structure-function relationships of the human lung 
and explore to what extent its fractal structure optimizes one or several functions of 
biological interest.  Our focus is on oxygen transport, expressed as current across the 
cumulative membrane surface that separates alveoli and capillaries (air-blood barrier).  
The airways in the lung branch dichotomously over 23 generations, the first 14 of which 
are the bronchial airways, transporting air in and out by convection; the last 9 are the 
acinar airways, transporting air predominantly by diffusion [12, 13].  Both the bronchial 
airways and the acinar airways have a well-defined, although slightly different, fractal 
structure.  The bronchial airways form a tree whose “canopy” is space-filling [1, p. 157] 
and thus has fractal dimension 3.  We show that this structure is optimal for efficient 
slowing down of the convective flow, preconditioning the air for diffusive transport in 
the acinar airways (Sect. 2).  The acinar airways form a tree that is space-filling as a 
whole, the alveoli being the elementary building blocks and manifestly spanning a 3-
dimensional surface (Fig. 1).  In Sects. 3-4, we compute the diffusion current of oxygen 
to and across the space-filling alveolar membrane system, based on an analytic treat-
ment called rope-walk approximation (RWA), and complemented by finite-element-
method (FEM) computations.  We show that the current—and the answer to how deep 
the oxygen enters the alveolar system—depends critically on the competition between 
diffusion through the air space and transfer across alveolar walls.  The competition 
unfolds into four rivaling length scales and power laws, controlled by the fractal dimen-
sion of the alveolar system, for the current as a function of the transport parameters.  In 
Sects. 5-6, we discuss the results in terms of the multifaceted question whether the lung 
is an optimally designed gas exchanger.  The results offer new perspectives for artificial 
lung technologies [14]. 

Previous studies of biological function in terms of the fractal structure of the 
bronchial airways include Mandelbrot [1], Weibel [12, 13, 15], West [16], Shlesinger 
and West [17], West et al. [18], and Mauroy et al. [19].  Studies in terms of the fractal 
structure of the acinar airways include Sapoval et al. [20, 21] and Felici et al. [22, 23]. 
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To understand function of a biological system is a problem in reverse engineer-
ing.  An approach to this problem has been formulated by Frauenfelder: “All present 
electronic devices work at room temperature, but the understanding of the solid-sate 
components required experiments over a wide range of temperatures.  Biomolecules 
also work at ambient temperatures, but a full understanding of their dynamics and 
function also calls for experiments over a wide range temperatures [24].”  Similarly, we 
investigate the function of the alveolar system by analyzing the oxygen current, in the 
RWA, over membrane permeabilities far beyond the physiological range.  Indeed, the 
principal purpose of the RWA is: (a) to provide a practical formula that predicts the 
current at arbitrary values of the structural and transport parameters and thus serves as a 
laboratory to conduct ‘in vitro experiments’ over a wide range of variables; and (b) to 
provide a practical map, with clear-cut boundaries, of the regions in parameter space 
that correspond to currents controlled by diffusion through the air space, transfer across 
alveolar walls, or both.  No such formula and map has been developed before. 

2 Slowing Down of Air in the Bronchial Tree 

In order for air to supply oxygen to the alveolar walls by diffusion, the flow velocity of 
air in the bronchial tree must be reduced to match the diffusion velocity in the acinar 
airways.  As air moves through successive bifurcations of the bronchial tree into ducts 
of decreasing diameter, it slows down by virtue of the increasing cumulative cross-
sectional area of ducts.  If the duct diameters before and after a bifurcation, d, d1, and d2
(Fig. 2), satisfy the relation 

d d1 d2 ,                     (1) 

where  is the tree diameter exponent [1], then the flow velocities before and after the 
bifurcation, v, v1, and v2, are given by 

v d1
2v1 d2

2v2

(d1 d2 )2 / ,                    (2) 

by mass conservation (equation of continuity at constant fluid density).  For symmetric 
branching, d1 d2 db and v1 v2 vb , the diameter and velocity after the bifurcation, 
db and vb, are related to the diameter and velocity before the bifurcation by db 2 1/ d
and vb 2 ( 2) / v  from (1) and (2).  In the bronchial tree, the bifurcations follow 
Murray’s law, db 2 1/ 3 d , for branching generation 0 (trachea) through 14 (transitional 
bronchioles) [1, 12, 13, 25, 26].  So the diameter exponent of the tree is 3, which 
makes the canopy (collection of all branch tips) space-filling and have fractal dimension 
3 [1].  This constitutes the first part of the fractal landscape of the lung. 
 The expressions for db and vb describe the diameter and velocity after one bifur-
cation. The diameter and velocity after n bifurcations, db

(n) and vb
(n) , in terms of the 

initial data d and v (branching generation 0) are given by 

db
(n) 2 n / d ,                     (3) 

vb
(n) 2 n( 2) / v .                    (4) 
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Figure 2. Bifurcation of ducts in the bronchial tree (schematic).  Air flows with velocity v through the 
parent duct of diameter d and is split into flows of velocity v1 and v2 in the daughter branches 
with diameter d1 and d2.

If we ask that the velocity drop over n bifurcations be maximum, so as to slow down the 
air to a prescribed value vb

(n)  over a minimum number of bifurcations, it follows from 
(4) that the maximum is attained when 1 (2 / ) is maximum, i.e., when 3.  A dia-
meter exponent larger than three would lead to branch tips that overlap after a finite 
number of bifurcations [1], leaving no room for acinar airways at the periphery of the 
bronchial airways.  For 3 and n 14, the velocity drop from (4) is vb

(n) / v 0.039,
and the diameter drop from (3) is db

(n) / d 0.039.
 Why should an optimal design reduce the flow velocity in the airways, and seek 
to achieve the reduction through a minimum number of bifurcations?  If the flow velo-
city vb

(n)  is larger than the diffusion velocity, D / db
(n)  (duct diameter divided by the time 

it takes oxygen to diffuse across the duct, with D the diffusion coefficient of oxygen in 
air), i.e., if the Peclet number vb

(n)db
(n) / D  is larger than one, then significant oxygen 

concentration gradients exist and oxygen transport to the duct wall is suboptimal.  Re-
duction of the flow velocity via a minimum number of bifurcations is optimal because 
the “hardware” required to build n bifurcations, such as the surface area of the walls 
needed to form 1 2 2n 2n 1 ducts, grows exponentially with n.  An alternative 
view of the Peclet number compares the time to move a distance db

(n)  by convection, 
tconv db

(n) / vb
(n) ,  with the time to move the same distance by diffusion, tdiff (db

(n) )2 / D.
If the Peclet number is less than one, tdiff / tconv 1,  transport by diffusion is faster than 
transport by convection.  So a Peclet number less than one after n bifurcations is not 
only necessary for efficient transport, but also sufficient. 
 Thus, while Murray’s work and that of others has found the space-filling design 
of the bronchial airways, with 3, to be optimal with respect to energy costs (mini-
mum energy dissipation) [1, 12, 13, 19, 25, 26], here we see that 3 also generates an 
optimal chemical reactor—gradient-free, well-stirred, at minimum hardware costs—as 
the starting point for diffusion of oxygen through the acinar airways. 
 The condition that the Peclet number should be less than one for a gradient-free 
reservoir translates into 

vb
(n)db

(n)

D
2 n( 1) / vd

D
1                 (5) 

by Eqs. (3) and (4).  This shows that the Peclet number decreases most rapidly over n
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bifurcations if 1 (1/ ) is maximum, i.e., if 3, in agreement with the result from the 
maximum velocity drop over n bifurcations.  The volume flow rate of air (total 
ventilation) in the human lung is 1.3 102 cm3/s  [12, p. 283]; the diameter of the trachea 
is d 1.8 cm [12, p. 278], resulting in a flow velocity in the trachea of v 51 cm/s; and 
the diffusion coefficient of oxygen in air is D 0.24 cm2/s (Sect. 4).  From these data 
and 3, Eq. (5) predicts n 13 (rounded to the nearest integer) for the number of 
bifurcations necessary for the bronchial airways to generate a gradient-free oxygen 
reservoir.  This is remarkably close to the observed number of bifurcations, n 14, for 
the observed exponent 3.  It is a strong example of symmorphosis [13], mediated by 
fractal geometry: the exponent 3 and the 14 bifurcations are perfectly matched to 
slow down the air—under the given ventilation rate, diameter of the trachea, oxygen 
diffusivity, and minimal manufacturing (hardware) and maintenance (energy) costs—to 
the point where it forms a well equilibrated reservoir for oxygen diffusion. 
 Estimates of the Peclet number and the convection-diffusion transition, n 18 
for respiration at rest and n 21 for respiration at exercise, based on data that includes 
the structure of the acinar airways, can be found in Ref. [21]. 

3 Designing an Efficient Oxygen Receptor 

With a well-equilibrated oxygen reservoir at hand, how should the subsequent ducts and 
membrane system (acini, alveoli) be structured for efficient oxygen diffusion to and 
across the membrane?  Should the ducts be long and thin, as suggested by Adam and 
Delbrück’s celebrated result that diffusing molecules find a given receptor most rapidly 
if the diffusion space is one-dimensional [27]?  Should the alveoli span a large cumula-
tive perimeter, as suggested by Kac’s result that a three-dimensional diffusion space is 
depleted most rapidly by a large number of spherical absorbers when their cumulative 
perimeter diverges [28, 29]?  Or should the alveoli simply span a large cumulative 
surface area? 
 There exists a rich body of work on structure-function relations for diffusion of 
molecules to biological receptors and capture thereat, with unexpectedly varied con-
clusions (Table 1).  Some of these relations are unexpected because they predict capture 
rates proportional to the receptor perimeter instead of area (Entries 3-5); others, 
comparing capture in diffusion spaces of different dimensionality, depend on whether 
the diameter or volume of the space is kept constant in the comparison (Entries 1, 2).  
So there is no simple one-size-fits-all design of an optimal receptor.  The reason, illu-
strated in the table, is that capture rates depend sensitively on what structural parameters 
(nature of the source, distance between source and receptor, shape of the receptor) are 
allowed to vary in the optimization.  The sensitivity arises because capture depends on 
the probability p that the molecule’s trajectory hits the receptor surface.  For a spherical 
receptor of radius R in 3 dimensions, p scales as p R2 D f, int , where Df,int  is the fractal 
dimension of the intersection of the trajectory and the surface.  If the molecule arrives 
from a distant source, its trajectory is a Brownian path and has fractal dimension 2, 
which gives Df, int 1 and p R.  If the molecule arrives from a close source, such as a 
gradient-free reservoir in contact with the surface, the trajectory is effectively 1-dimen-
sional, which gives Df, int 0 and p R2 .  The two cases correspond to the capture rates 
proportional to receptor perimeter and surface area, respectively, in Table 1. 
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Table 1.  Models for diffusion to biological receptors.  The diffusion space is a large d-dimensional 
sphere.  The permeability, W, is the number of molecules crossing the membrane per unit time, 
surface area, and concentration difference between the two sides of the membrane. 

 Diffusion 
space 

Source Receptor Optimal design 

1. Adam-Delbrück 
model [27, 8] 

Fixed diame-
ter; d 1, 2, 3

Diffusion space Small sphere; 
W

Mean diffusion time to reach 
receptor is minimum if d 1

2. Inverse Adam-
Delbrück model [8] 

Fixed volume; 
d 1, 2, 3

Diffusion space Small sphere; 
W

Mean diffusion time to reach 
receptor is minimum if d 3

3. Kac’ theorem [28, 
29] 

Fixed diame-
ter; d 3

Diffusion space Many small 
spheres; W

Diffusion space is depleted 
most rapidly if cumulative 
perimeter of spheres diverges 

4. Berg-Purcell 
chemoreceptor [30] 

Fixed diame-
ter; d 3

Boundary of 
diffusion space 

Many small 
disks on host 
sphere; W

Capture probability is  1 if 
cumulative perimeter of disks 
is >> perimeter of host sphere 

5. Diffusion-limited 
receptor; Eq. (6a) 

Fixed diame-
ter; d 3

Boundary of 
diffusion space 

Small sphere; 
W

Capture rate is proportional to 
perimeter of sphere 

6. Reaction-limited 
receptor; Eq. (6b) 

Fixed diame-
ter; d 3

Boundary of 
diffusion space 

Small sphere; 
W 0

Capture rate is proportional to 
surface area of sphere 

7. Makarov’s 
theorem [31, 32, 33] 

Fixed diame-
ter; d 2

Boundary of 
diffusion space 

Large irregular 
surface; W

Capture rate is proportional to 
diameter of receptor 

 We treat oxygen transport in the acinar airways as a stationary diffusion-reaction 
process.  The oxygen concentration c(x) obeys Laplace’s equation, 2c(x) 0, at posi-
tion x in the diffusion space; c(x) c0  for x at the entrance to the diffusion space, with 
c0  the concentration in the gradient-free reservoir; and D c(x) n(x) W (c(x) c1)  for 
x at the alveolar membrane surface, where n(x) is the surface normal pointing into the 
diffusion space, c1 is the oxygen concentration in the blood, and D and W have been 
introduced earlier.  The boundary condition at the membrane equates the bulk diffusion 
flux to the transmembrane flux.  The oxygen current, I, across the alveolar surface is 
obtained from I surface W (c(x) c1)dS  where S is surface area. 
 If the diffusion space and membrane are spherical and concentric with radius 
R a  and R, respectively, and the source with concentration c0  (gradient-free reservoir) 
is at R a , the diffusion-reaction problem has the elementary solution 

I 4 RD(c0 c1) D
WR

a
a R

1

~
a 4 RD(c0 c1) for W ,      (6a)

4 R2W (c0 c1) for W 0.      (6b)

This structure-function relation, pedagogical and nonfractal as it is, illustrates the main 
features of oxygen diffusion in the acinus, if we equate R to the size of a given alveolar 
region, and a to the path length from the entrance of the diffusion space to the region in 
question.  The exploration length, D /W ,  is a measure of the size of the surface region 
an incoming molecule explores before it crosses the membrane.  Regions within path 
length D /W  from the entrance act like a reaction-limited receptor [Eq. (6b), valid 
whenever D /W max{a, R}], contributing a current proportional to R2W ,  i.e., to 
surface area and permeability.  Such a region is unscreened because it is accessible to 
incoming oxygen without significant concentration drop, c(x) c0.  Regions more 
distant from the entrance act like a diffusion-limited receptor [Eq. (6a), valid whenever 
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D /W min{a, R}], contributing a current that is negligible by virtue of RD R2W .
Such a region is screened because it is reached only by few molecules, resulting in a 
large concentration drop, c(x) c0.
 If we vary the permeability from large to small, the exploration length changes 
from small to large, taking the surface from complete to partial to no screening, accord-
ing to whether all, some, or no regions are screened.  Thus an efficient oxygen receptor, 
“wasting” no alveolar surface area, should be in the no-screening regime. 

4 Oxygen Current Across the Space-Filling System of Alveoli 

We model the membrane as a self-similar surface with fractal dimension Df ,  surface 
area S, and cubic elementary units of side length .  The source is taken as a surface 
segment, with area Ss ,  of the smallest cube circumscribing the membrane.  The cubic 
shape is merely for visualization and mathematical simplicity. 
 In previous work [32, 33], we have computed the current for the case where the 
source is the entire circumscribing cube, in the rope-walk approximation (RWA).  In the 
RWA, one takes a surface profile in d 2,  considers the surface sites that contribute to 
the current if the exploration length is zero (exposed sites; active zone at W ), walks 
along the profile from any such site and “rolls out a rope” of length D /W  (active zone 
at W ), and determines the length of the profile so covered by ropes.  This length, 
when multiplied by W and the concentration difference c0 c1, gives the current.  The 
result can be lifted to d 3, giving 

I W (c0 c1)
Ss if D /W , (7a)
Ss[D /(W )](D f 2) /(D f 1) if D /W (S / Ss )(D f 1) /(D f 2) , (7b)
S if (S / Ss )(D f 1) /(D f 2) D /W , (7c)

for 2 Df 3.  The areas S and Ss  scale with L, the side length of the circumscribing 
cube, as (L / )D f 2  and L2, showing that (7) is well-behaved in the limit Df 2.  The 
power laws for the current are the asymptotic expressions far from the crossover points, 
extended all the way to where the expressions intersect.  This approximates the gradual 
crossover from one power law to another by an abrupt crossover. 
 The ropes of length D /W  stake out the surface regions a molecule explores be-
fore it crosses the membrane; the bracket in (7) is the correspondingly active, effective 
surface area.  The ropes decompose the surface into regions accessible to the molecule, 
and regions inaccessible.  The decomposition creates a map with sharp boundaries, 
which are determined by how the rope length compares with other lengths:  In (7a), the 
rope length is smaller than an elementary building block of the surface, and only regions 
facing the source, with area Ss ,  contribute to the current.  This is the case of complete 
screening.  In (7b), the rope is long enough that incoming molecules enter the hierarchy 
of small and large fjords of the fractal surface, but not long enough for the molecules to 
visit the entire surface.  This is the partial screening regime.  In (7c), the rope length 
exceeds the perimeter of the surface profile, and the molecules visit the entire surface 
before they cross the membrane.  This is the case of no screening.  As we progress 
through (7a-c) for decreasing W, the effective surface area stays constant [(7a, c)] or
increases [(7b)]; but the current decreases, linearly [(7a, c)] or nonlinearly [(7b)]. 
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Figure 3. Oxygen concentration, (c(x) c1) /(c0 c1),  from FEM calculations, in two models of the aci-
nar airways.  Sierpinski’s space-filling curve with 4 (left) and 3 (right) branching generations 
models planar cuts of the diffusion space for respiration at rest and exercise, respectively.  The 
model and transport parameters are described in Table 2. 

The increase in effective surface area does not offset the decrease in current due to the 
decrease in permeability. 
 The RWA has been tested extensively and agrees well with finite-element-
method (FEM) solutions of Laplace’s equation subject to the stated boundary conditions 
[34, 35].  Because FEM solutions in d 3 are computationally intensive, most tests 
have been performed in d 2.  No studies have been performed, however, for situations 
where the source is small compared to the circumscribing cube. 
 We present such a study in Figs. 3 and 4, for oxygen currents from FEM and 
RWA computations for two planar models of the space-filling alveolar system.  The 
models represent the membrane surface by Sierpinski’s space-filling curve [36] (Fig. 3) 
and treat the case of respiration at rest and at exercise, for which the diffusion space is 
1/8 and 1/128 of an acinus, respectively [21]. 
 The RWA, for d 2,  1 Df 2, surface perimeter S , source perimeter Ss ,  and 
small source—corresponding to a planar model, with arbitrary fractal dimension and 
narrow entrance, of the alveolar system—gives the current 

I W (c0 c1)

Ss if D /W ,                  (8a)
Ss[D /(W )](D f 1) / D f if D /W (Ss / )D f ,                  (8b)
D /W if (Ss / )D f D /W S ,                  (8c)
S if S D /W.                  (8d)

To appreciate the difference between (8) and (7), we first note that here S  and Ss  are 
lengths instead of areas, and concentrations are per area instead of volume.  Second, the 
source no longer surrounds the entire membrane, but only a small part of it.  Because 
the source is small, we now have four independent length scales: the rope length D /W ,
inner cutoff ,  outer cutoff L, and source perimeter Ss.   This gives rise to four screening 
regimes: complete screening, partial screening I, partial screening II, and no screening 
[(8a-d)]. The new regime, partial screening II, occurs when a single rope can cover a
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Figure 4. Oxygen currents from FEM and RWA computations, as a function of the permeability, for the 
models in Fig. 3.  Left: respiration at rest.  Right: respiration at exercise.  The regimes of no 
screening (n.s.), partial screening (p.s.) I and II, and complete screening (c.s.) are explained in 
the text.  The dots mark the currents at the physiological value of the permeability.

surface region larger than the source, (D /W )1/ D f Ss ,  but not the whole surface, 
D /W S .  In this case, the active zone consists of the few surface points facing the 
source (active zone at W ), from each of which a rope of length D /W  is rolled out, 
and the active zone has length proportional to D /W ,  Eq. (8c).  This creates the plateau, 
I const,  at intermediate values of W in Fig. 4.  Specifically, the active zone in the 
Sierpinski subacinus at partial screening II consists of two ropes, starting at the upper 
and lower point of the entrance and tracing out the upper and lower periphery of the 
subacinus.  Clearly, partial screening II and the associated plateau in the I vs. W curve 
exists only if the source is small.  It is a characteristic of diffusion-reaction processes 
driven by a small source that has not been identified before.

Table 2.  Structural and transport parameters for the models in Fig. 3, and resulting currents.  The exper-
imental values for  and L are 4Va / Sa  and L (Va / 8)1/ 3 ,  (Va /128)1/ 3 ,  with Va  and Sa
the acinus volume and surface area [21].  In the models,  is the experimental value; the num-
ber of branching generations, m (unrelated to n in Sect. 2), is chosen so that L best matches the 
experimental value; and the ducts are tapered so that Ss  matches the experimental side length of 
the subacinus entrance [37].  The values for c0 c1 are from partial pressure differences [12, p. 
361].  The values for D and the physiological permeability Wp, calculated from appropriate 
physical and biological data, are close to those in Ref. [21]. 

 At rest, 
experimental 

At rest, 
Sierpinski model 

At exercise, 
experimental 

At exercise, 
Sierpinski model 

Diffusion space 1/8 acinus m 4 1/128 acinus m 3
Side length of alveolus,  0.0108 cm 
Side length of subacinus, L 0.286 cm 0.244 cm 0.114 cm 0.122 cm 
Subacinus perimeter, S  – 8.69 cm – 2.17 cm 
Source perimeter, Ss 0.0283 cm 0.0219 cm 
Concentration, c0 c1 0.466 µmol/cm3 0.466 µmol/cm2 1.24 µmol/cm3 1.24 µmol/cm2

Diffusion coefficient, D 0.243 cm2/s 
Permeability, Wp 0.00807 cm/s 
FEM current at W = Wp – 0.0121 µmol/s – 0.0173 µmol/s 
RWA current at W = Wp – 0.0327 µmol/s – 0.0218 µmol/s 
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5 Results 

We have computed the currents in Fig. 4 from the input data in Table 2.  Both the FEM 
and RWA currents are absolute, without adjustable parameters.  The currents agree 
within a factor of order one over 5 orders of magnitude of the permeability and nearly 3 
orders of magnitude of the current.  This is a remarkable agreement considering the fact 
that the FEM is exact, and the RWA is based solely on the evaluation of (8) with Df 2
and the listed values for , S , and Ss —without structural input, such as shape-
dependent prefactors, that would distinguish the Sierpinski model from any other space-
filling surface with the same , S , and Ss .  It makes (8) a strong example for a fractal 
structure-function relation predicting a functional property, here the current, with a high 
degree of universality and a minimum number of parameters. 
 At the physiological permeability, W 0.00807 cm/s,  the ratio of RWA to FEM 
current is 2.7 and 1.3 at rest and exercise, respectively (Table 2), and both RWA cur-
rents are in the no-screening regime (Fig. 4).  Equivalently, the FEM current is 37% and 
79% of the maximum value, Imax W (c0 c1)S , at rest and exercise, respectively; and 
the RWA current is 100% of the maximum value in both cases.  The ratio I / Imax
represents the respiratory efficiency and is compared in Table 3 with results from other 
investigations.  The table shows that FEM results from different models may differ by 
as much as a factor of 1.6 (Sierpinski vs. Hilbert model), which sets a lower bound for 
how closely the RWA can be expected to agree with exact results. 
 Thus in the framework of the RWA and the Sierpinski models, the oxygen enters 
the alveolar system completely, or 8.69 cm and 2.17 cm deep (S ) at rest and exercise.  
These depths are small fractions of the exploration length, D /W 30.1 cm,  which im-
plies that the oxygen visits even remote alveoli multiple times before it crosses the 
membrane.  In contrast, at a permeability of, say, 0.200 cm/s, the RWA current would 
lie in the regime of partial screening II and the oxygen would enter the alveolar system 
to a depth of D /W 1.22 cm in both models (Fig. 4).  In this way, the FEM and RWA 
provide complementary information.  The FEM states that oxygen enters the alveolar 
system to 37% and 79% at W 0.00807 cm/s,  and 5% and 20% at W 0.200 cm/s.
The RWA translates these fractions into path lengths that describe how deep the oxygen 
enters the subacinus, compares the path lengths to other lengths in the problem, and 
elaborates the effect on the current.  At partial screening II, the path length is larger than 
the length along a surface segment equal in size to the entrance and gives a constant 
current; at partial screening I, the path length is shorter and gives a rising current; at 
complete screening the path length is less than the size of a single alveolus and gives a 
current limited to the immediate vicinity of the entrance. 
 The decomposition of the current into disjoint screening regimes provides a map 
to explore how alternative structures would perform at the given permeability, or how 
the given structure would perform at different permeabilities.  E.g., in the model for the 
1/8 acinus, W ~ 0.03 cm/s marks the onset of “waste of acinar area”, and W ~ 2 cm/s
marks the onset of “waste of alveolar area”.  The current in this regime is at or near the 
value for partial screening II, I D(c0 c1),  which is completely independent of the 
structure of the subacinus.  This suggests that the subacinus is designed to operate at 
low permeability and high surface perimeter, rather than high permeability and low 
perimeter: for a perimeter less than 8.69 cm, the line of no screening in Fig. 4 would be 
shifted to the right while the line of partial screening II stays put, allowing the target 
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Table 3.  Respiratory efficiency, , for various models of the acinar airways and D, W values identical or 
close to those in Table 2.  The currents in the last two entries are discussed in the text. 

At rest 
(1/8 acinus) 

At exercise 
(1/128 acinus) 

d = 2 , Hilbert model; FEM [21] 
, Kitaoka model; FEM [22] 
, Sierpinski model; FEM 
, Sierpinski model; RWA 

23% 
~ 25% 
37% 
100% (n.s.) 

64% 
~ 65% 
79% 
100% (n.s.) 

d = 3 , Kitaoka model; random walk simulation [23]
, morphological data for S, Ss, ;  RWA 

Ilung, morphological data for S, Ss, ;  RWA 
Ilung; experimental [12] 

33% 
10% (p.s. II) 
0.743 mmol/s 
0.208 mmol/s 

~ 100% 
100% (n.s.) 
20.1 mmol/s 
1.80 mmol/s 

current of 0.0327 µmol/s to be recovered at a higher permeability, all other conditions 
being the same.  The fact that nature has not chosen this option suggests that it is more 
important to keep the permeability low than to save “hardware”. 
 The outcome that the RWA current in the 1/8 acinus is nearly constant, at the 
value D(c0 c1),  over almost 3 orders of magnitude of the permeability, explains why 
the FEM current varies by barely more than 1 order of magnitude.  It highlights the non-
linear I-W characteristic of the space-filling membrane.  The value D(c0 c1)  reveals 
that the constant current along the plateau in Fig. 4 is diffusion-limited; it is the planar 
version of the diffusion-limited current (6a).  The emergence of a diffusion-limited 
current flanked by a reaction-limited current on the left, I (c0 c1)S W ,  and a mixed 
reaction/diffusion-limited current on the right, I (c0 c1)Ss (DW )1/ 2 ,  is unusual.  The 
usual order, as W increases, is: reaction-limited, reaction/diffusion-limited, diffusion-
limited [Eq. (6)].  The current is diffusion-limited whenever the source is far from the 
receptor: in (6a) the source is distant by virtue of D /W min{a, R}; in (8c) the source 
is distant because the incoming oxygen explores surface regions large compared to the 
size of the source, but not the entire surface.  This shows that the diffusion-limited 
current in Fig. 4 is a consequence of the narrow entrance of the subacinus. 
 As a result of the values for , S , Ss ,  the power laws for partial screening I in 
the models extend over permeability intervals less than a decade, short of meeting the 
rule of thumb that a well-defined fractal power law should extend over length scales of 
a decade or more.  Also, the ratio L /  of 11 and 22 for the 1/128 and 1/8 acinus model, 
respectively, is on the low side to support several consecutive fractal power laws.  
Therefore, the RWA currents for partial screening I and complete screening in Fig. 4 
should be regarded as idealizations that may be subject to corrections.  But they agree 
extraordinarily well with the FEM currents, as the figure shows. 
 How do these results translate to d 3?  We have extended the RWA for the 
case where the source is small to d 3.  The remarkable performance of the RWA for 
the Sierpinski models suggests that the extension should be a good predictor of the 
oxygen current across the space-filling membrane in three dimensions.  The results, 
calculated from the morphological data for S, Ss,  quoted in Table 2, validate this 
expectation (Table 3): the respiratory efficiency agrees within a factor of order one with 
recent simulations of oxygen transport in acinar models in d 3 [23].  In fact, the com-
parison with the efficiencies from simulations suggests that the accuracy of the RWA 
gets better as we go from two to three dimensions.  A notable surprise is that the RWA 
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current for the 1/8 acinus switches from no screening to partial screening II as we go 
from two to three dimensions.  The origin and significance of this result will be dis-
cussed elsewhere.  Operation of the lung at partial screening II implies that the oxygen 
enters deep into the alveolar system—exploring surface regions much larger than the 
entrance to the subacinus, but not the entire surface—at rest. 
 Finally, we have used the RWA to calculate the oxygen currents for the whole 
lung and compare them with experimental values (Table 3).  The calculated and experi-
mental values agree within a factor of 4 and 11 at rest and exercise, respectively.  While 
this is less than impressive on an absolute scale, it is impressive from the perspective of 
fractal scaling, based on only three structural parameters (S, Ss, ), three transport 
parameters (D, W, c0 c1),  and prefactors in which shape-dependent constants of order 
one have been set equal to one.  Uncertainties in any of these can easily add up to an 
uncertainty of one order of magnitude in the current.  For instance, our value 
W 0.00807 cm/s is the permeability of the membrane, for oxygen crossing the tissue 
barrier and blood plasma; it does not include the barrier for binding of oxygen in the red 
blood cells.  No permeability values including the barrier for binding are known.  So our 
permeability and currents are necessarily larger than the actual permeability and 
currents, and further work is needed to get more accurate estimates. 

6 Discussion 

We have shown how the space-filling structure of the bronchial airways sets up an opti-
mal, well equilibrated reservoir for oxygen diffusion through the acinar airways, and 
how the space-filling structure of the acinar airways provides a network for efficient 
oxygen diffusion across the alveolar membranes, with almost all membrane area partici-
pating in the transfer.  Both analyses provide examples for multiply optimized designs 
(symmorphosis): the bronchial tree generates an optimal oxygen reservoir at minimum 
energy dissipation; the acinar tree generates a near-optimal oxygen receptor at near-
minimum energy dissipation.  The dissipation results are a consequence of the uniform 
pressure drop across all bronchial ducts, and uniform concentration drop across almost 
all alveolar membranes (equipartition of thermodynamic forces), created by the space-
filling bronchial and acinar tree, respectively [26]. 
 An equivalent formulation of efficient diffusion is: the lung operates near the 
transition from partial screening to no screening of the diffusion field, at which the 
diffusivity, permeability, and acinus structure match so that each oxygen molecule visits 
each membrane site essentially once, and only once, before crossing the membrane.  We 
obtain this result by computing the oxygen current across the lung analytically, from a 
set of fractal power laws, based on minimal morphological and physicochemical input.  
We have validated the results by comparing them with numerically computed currents 
for two models of the acinar airways, and with experiment. 
 For respiration at rest, we find that the oxygen explores surface regions large 
compared to the subacinus entrance, but not the entire surface (partial screening II; 
oxygen enters deep into the alveolar system), while at exercise the oxygen visits the 
entire surface, possibly multiple times (no screening; oxygen enters the alveolar system 
completely).  Thus, at rest and exercise, the lung operates on opposite sides of the 
screening transition.  As the oxygen reservoir moves deeper into the acinar tree and 
feeds smaller diffusion spaces (1/8 and 1/128 acini, respectively) as we go from rest to 
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exercise, but the current is to remain as close to the screening transition as possible— 
the hallmark of an optimal gas-exchange design, the two diffusion spaces must operate 
on opposite sides of the screening transition.  The switch from partial to no screening 
has previously been interpreted as a natural progression toward maximum respiratory 
efficiency, ~ 100% [21]; here we establish that the switch is necessary and sufficient 
for optimal gas exchange—an exchange in which all membrane sites participate and no 
oxygen molecule has to wait for transfer across the membrane. 
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Summary. We investigate gas transport and exchange in a model of the mammalian lung, from the 
perspective of thermodynamic optimization (second law energy efficiency). This approach to modeling 
the structure-function relation of the lung exploits the analogy between the respiratory organs and a 
chemical membrane reactor, and reveals that the design of the lung may be optimal for its function. We 
use methods from irreversible thermodynamics to give approximate expressions for the entropy 
production rate in the lung, and a variational approach to minimize the rate under meaningful functional 
constraints. The large-scale bronchial tree and small-scale alveolar sponge are modeled separately, to 
account for the different nature of mass-transport at the two scales (pressure-driven flow and diffusion, 
respectively). We prove that maximum energy efficiency requires equipartition of thermodynamic forces: 
pressure drop must be uniformly distributed across all the branches of the bronchial tree, and oxygen 
concentration drop must be uniformly distributed over the lung membrane. We show that the fractal-like 
architecture of the lung, the particular size of the gas-exchange units, and the subtle interplay between the 
airway tree and its vascular network are highly compatible with these requirements of equipartition.  

1 Introduction 

The mammalian lung is an impressive feat of bioengineering. Its branching, highly 
organized hierarchical structure bridges 3-5 orders of magnitude in scale, from the sub-
millimeter size of individual alveoli to the macroscopic size of the whole lung. Three 
similar interdigitating trees (airways, arteries and veins) are closely packed together, to 
ensure that gas transfer between air and blood occurs with high efficiency. This striking 
architecture distributes a huge number of gas-exchange units (3 x 108 alveoli in a typical 
human lung [1]), uniformly within the thoracic cavity. While the biochemistry of gas 
exchange occurs exclusively at the microscopic level of the alveolar membrane, the 
efficient accessibility of the alveoli to incoming oxygen is equally important for the 
performance of the lung, a fact which is often overlooked. Therefore, the large and 
small scales of the lung are functionally connected. 
 The highly non-trivial design of the lung raises an important question: what are 
the evolutionary advantages that such a gas-exchanger would give its owner? Is it 
maximal gas exchange rate, robustness, stability, minimal maintenance cost, minimal 
energy expenditure? In this article, we address the issue of optimality of the lung 
architecture from the perspective of energy efficiency, as measured by the second law of 
thermodynamics. By modeling the lung as a chemical membrane reactor, we derive 
optimality conditions for operation of a gas-exchange unit, and show that the actual 
design of the lung is highly compatible with these requirements for optimality.  

The issue of optimality of biological structures is a complex one, subject to 
considerable controversy [2]. Murray [3] showed early on that the geometry of blood 
vessels seems to be optimized, in the sense that it minimizes resistance to flow. 
Mandelbrot ([4], p. 158) proposed an alternative explanation for the fractal-like 
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structure of trees, vascular networks, and lung airways, as the outcome of one of the 
simplest possible growth mechanisms: self-similar, recursive development from bud to 
tree. Any comprehensive approach to the question of structural vs. functional 
optimization has to consider the typically multifunctional nature of living organs. The 
lung has to accomplish several (sometimes contradictory) tasks: maximize transport of 
gases in and out, maximize air/blood contacting while limiting the exposure to chemical 
or biological hazards, and minimize water and heat loss through the membrane. The 
problem is further complicated by the time-dependent nature of respiration, and by the 
variable demands for oxygen corresponding to the states of rest versus exercise. It is not 
clear which requirement takes precedence in the optimization, or whether one design 
can successfully accommodate all functional requirements. Additionally, there is the 
complex question of symmorphosis [5], i.e., whether the different components of the 
respiratory system are optimized together for a common task. 
 The design of nature has fascinated scientists for centuries. Thompson [6] 
provided the first modern framework to study structure-function relationships in 
biology. Recently, there is a renewed interest in optimization studies of biological 
systems. West et al. [7] showed that the minimal resistance to flow associated with self-
similar vascular networks is the key to explaining the allometric scaling law that relates 
metabolic rate to body size. Bejan [8] proposed a general approach to structural 
optimization of systems with heat and mass flow, and extended its predictions to trees 
and blood vessel networks.  Several numerical optimization studies [9-11] proved that 
energetic efficiency is only one of several optimization criteria which lead to realistic 
blood vessel networks.  Focusing on the lung, Sapoval et al. [12] showed that the size of 
the functional units (acini) seems to maximize the rate of gas exchange, and Mauroy et
al. [13] argued that the architecture of the bronchial airways is quasi-optimal for the 
flow of air, while providing a certain degree of fault tolerance.  
   

2 Energetic Optimization of Processes by Equipartition 

Our current approach to studying the energetic efficiency of lung design is based on 
Onsager’s formalism of irreversible thermodynamics, a powerful tool in the study of 
chemical processes. This framework allows for a systematic treatment of (possibly 
coupled) transport processes of mass, heat, and charge, while providing a powerful and 
unambiguous means to assess the energetic efficiency of systems based on the second 
law of thermodynamics.    
 The work that is lost in maintaining the function of lung is given by the Gouy-
Stodola theorem [14]: 

lost 0
dSW T t
dt

,  (1) 

where T0 stands for the surrounding temperature and (dS/dt) t is the average entropy 
production in the lung during time interval t. According to the second law of 
thermodynamics, the most energy-efficient systems are those for which the total entropy 
production rate is minimal.

Irreversible thermodynamics hinges on calculating the entropy production rate of 
a system. In stationary state operation, the average entropy production rate can be 
written as: 
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3

lung

( )dS x d x
dt

, (2) 

in which (x) denotes the local entropy production per unit time and unit volume of the 
lung [J/m3sK]. Entropy is always produced during the transport of heat, mass, or charge, 
as well as in chemical reactions. Following Onsager, the rate x  at a spatial position x
inside the lung defines the independent thermodynamic fluxes Ji and forces Xi in the 
system:  

 ( ) ( ) ( )i i
i

x J x X x  (3) 

 (e.g., if J is the flux of oxygen, then its conjugate force X is minus the gradient of 
chemical potential of oxygen divided by the temperature). Every flux depends linearly 
on the forces,  

( ) ( ) ( )i ij j
j

J x L x X x  (4) 

where Lij=Lji are known as the Onsager coefficients of the problem.  
An interesting optimization problem can now be formulated: if the fluxes and 

forces can be distributed at will within the system, how should they be distributed so the 
total entropy production rate is a minimum, while the total flows of the problem are 
fixed? This situation corresponds to a system that performs a predetermined task (e.g.,
delivers a given amount of a substance to a receptor, per unit time) with minimal work 
input. Recently, several authors [15-18] showed that, under specific transport 
conditions, such energetically optimal systems are characterized by a uniform spatial 
distribution of either entropy production (x) or thermodynamic force X(x).

These “equipartition” principles for optimal energetic efficiency open a 
promising new path to the structure-function relationships of the lung. The architecture 
of the airways directly influences the efficiency and spatial distribution of gas transfer, 
so we can formulate a geometric optimization problem as follows: which structure of 
the bronchi and the alveoli will deliver a specific amount of oxygen to the blood, with 
minimal entropy production rate (minimum energy dissipation)? The rationale for this 
formulation is that, while the oxygen intake is fixed by the metabolic rate, most of the 
energy generated by respiration should be available for useful work and not for 
maintenance. This means that the energy dissipated for respiration should be as small as 
possible. This idea was pioneered by Wilson [19], who obtained the correct geometric 
parameters of the bronchial tubes based on minimization of entropy production alone. 
Here, we will take this approach one step further, and show that minimization of 
entropy production implies some remarkable equipartition requirements on the part of 
the lung components. 

The morphology of the lung is well known, thanks to the monumental effort of 
Weibel and collaborators. These studies (e.g., [20],[21]) have shown that the structure 
of the lung is slightly different at large and small scales. The bronchial tree branches 
dichotomously for an average of 23 generations. The bronchi decrease in diameter by a 
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factor of 21/3 (Murray’s law) from one generation to the next, for the first 15 generations 
of branching. Beyond that, at the scale of the acinus (the gas exchange unit of the lung), 
the diameter of bronchioles varies very little between consecutive generations of 
branching. This morphometric observation is consistent with the fact that the two scales 
of the lung have essentially distinct functions. The main purpose of the trachea and 
bronchi is to transport air in and out of the lung, and to slow its motion down in order to 
enhance gas transfer at the small scale (see also [22]). At the millimeter scale of the 
acinus, the transport of gases occurs primarily through diffusion, which is optimal for 
gas exchange through the permeable membrane.     

This natural separation of scales suggests that the entropy production rate inside 
the lung is divided between the flow region (the bronchial tree) and the diffusion region 
(the acinar level). At the large scale, energy is being lost mainly by viscous dissipation, 
while at the small scale, diffusional transfer of the respiratory gases across the lung 
membrane dominates the entropy production. In the following, we will neglect the other 
sources of entropy (heat exchange, water, etc.). 

3 Optimization at the Bronchial Level 

Under rest conditions, the flow of air during inspiration and expiration can be 
approximated as laminar (Reynolds number around 1200 in the trachea, decreasing 
rapidly from one generation of branching to the next). Then, in tube i of branching 
generation j, viscous dissipation gives an entropy production rate of the form: 

,
, ,

i j
i j i j

p
v

T
, (5) 

where vi,j is the air velocity [m/s] averaged over the cross-section of the tube, pi,j is the 
pressure gradient [Pa/m], and T the local temperature [K]. Rewriting the gradient in 
terms of the pressure drop pi,j across the tube, the entropy production becomes: 

,
,

,

i j
i j

i j

pdS V
dt T

, (6) 

where 2
, , ,i j i j i jV r v  is the volume flow rate in the tube [m3/s], and ri,j is the tube radius. 

In laminar flow, the flow rate is proportional to the pressure drop (Poiseuille law),  
, , ,i j i j i jV L p , with an Onsager coefficient given by  

4
,

,
,8

i j
i j

i j

r
L

l
, (7) 

where li,j is the tube length and  is the viscosity of air [Ns/m2].
In our optimization approach, the total entropy production rate of the bronchial 

tree needs to be minimized while keeping the total flow of air constant, ,
,

i j
i j

V V . We 
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choose the individual flow rates ,i jV to be the independent optimization parameters. 
Then, optimization amounts to solving the variational equation: 

2
,

,
, ,, ,

0i j
i j

i j i ji j i j

V
V

V TL
, (8) 

where  is the Lagrange parameter which enforces the constraint of constant total flow. 
The solution is straightforward:  

, ,

, 2
i j i j

i j

V p
TL T

, (9) 

where is the same for all tubes. Hence, the condition for minimal entropy production 
is that the pressure drop must be the same across every tube of the bronchial tree 
(equipartition of thermodynamic forces). The same result follows if one takes the length 
and diameter of individual tubes as the optimization parameters. 
  The result above is strikingly simple, but it explicitly assumes that all individual 
flow rates ,i jV  can be varied independently. When tubes are connected in a network, the 
independence is lost since the flow rate in any parent branch must equal the sum of the 
flow rates in its daughter branches. Such additional optimization constraints can only 
increase the total entropy production, so equipartition of pressure drops provides the 
absolute lower bound for the entropy production over all possible flow configurations, a 
governing design principle for efficient distribution networks. 
 A truly remarkable fact is that the architecture of the lung actually implements 
the equipartition design principle. Morphometric data from mammalian bronchial trees 
[21] shows that at every branch point, both the length and diameter of a typical branch 
are reduced by a factor 21/3 (the length-to-diameter ratio is constant in branch 
generations 5-15). In an ideal dichotomous tree with this self-similar property, the total 
flow at level j can be written as 

4 44 / 32
0 0

, , , , ,/ 3
1 0 0

22 2 =
8 2 8

j j
j j

j i j i j i j i j i jj
i

r rV V L p p p
l l

 (10) 

(subscript 0 refers to the trachea). Since all branches at one level are identical, and since 
the total flow at one level of branching is the same as the total flow at any other level by 
virtue of mass conservation ( /jV V N  for all j, where N is the number of branch 
generations), it follows that the pressure drop pi,j is the same across every branch of 
the tree!  
 The novelty of this result is not the confirmation of the fact that branching 
according to Murray’s law leads to the most energy-efficient structure. This has already 
been shown by similar variational methods [7, 13]. While the previous analyses 
produced geometric optimization principles (optimal diameter ratio or length-to-
diameter ratio), the present study reveals a governing physical principle (equipartition of 
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thermodynamic forces). The geometric design principle (Murray’s law) can be seen as 
just the manifestation of the more general, thermodynamic one. 

A second remarkable fact is that the equipartition result defines a natural 
“distance” or measure for flow distribution networks, which can be used for design 
purposes (see also [8]). For the bronchial tree, if every tube in every generation provides 
the same pressure drop, it follows that the pressure drop between the entrance to the 
trachea and the entrance to each acinus must be the same. Therefore, the complicated 
structure of the bronchial tree in Euclidean space has a very simple representation in the 
state space of pressure drops. 

Equipartition of pressure drop alone is not enough to specify the tube diameter, 
aspect ratio, or spatial distribution of tubes, and hence may be compatible with many 
flow configurations. Nature’s particular choice of a self-similar bronchial tree may be 
fulfilling a second optimality condition: it may be the easiest to grow [4], may occupy 
the least volume [13], or may be uniformly space-filling, therefore utilizing the 
available space in an optimal way [7]. The design flexibility provided by the 
equipartition principle may also explain the degree of variability seen in the lung and 
other natural tree-shaped structures (non-identical daughter branches may be made to 
have the same pressure drop across). 
 The local nature of the equipartition requirement is also noteworthy. Having the 
same pressure drop across all tubes, irrespective of their spatial position and 
connectivity, is relatively easy to enforce by local feedback mechanisms. One may 
speculate that this kind of control mechanism could be driving the growth and 
development of the lung during childhood. A similar control mechanism using local 
pressure sensors and feedback via muscles lining the blood vessels could be actively 
regulating blood pressure. The even distribution of pressure drop may also provide an 
elementary example of symmorphosis: in the case of the lung, every tube of the 
bronchial tree is optimized separately to ensure the optimal performance of the whole 
organ. 
 Finally, it is interesting to note that hints of an equipartition principle for 
pressure drop can already be seen in the seminal work of Murray: “In capillaries the 
pressure gradient is larger than elsewhere, but the capillaries being very short, the loss 
of pressure in these is only a fraction of the total blood pressure” ([3], p.209).  

4 Optimization at the Alveolar Level 

In contrast to the bronchial tree, which is dominated by laminar flow, the acinar and 
sub-acinar scale has diffusion as the dominating transport mechanism for the respiratory 
gases. Oxygen diffuses from the entrance of the acinus through the labyrinth of 
bronchioles, to one of several thousands of alveoli where it may cross the lung 
membrane driven by a difference in chemical potential between the air and the blood 
side. The process is reversed for carbon dioxide, which must cross the membrane and 
diffuse out of the acinus.   

The entropy production in this region has therefore two parts: for diffusive 
transport along the airways, and for transport across the membrane. Physiological data 
[1] show that the partial pressure of respiratory gases varies very little between the 
entrance to the acini and the alveolar sacs where gas exchange is actually taking place 
(for O2, the total change is approximately 10mm Hg, or roughly 10% of the partial 
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pressure of inhaled O2). The small magnitude of the gradient of partial pressure along 
the airways suggests that the first contribution to entropy production can be neglected in 
a simplified model.      

To model the entropy production upon crossing the membrane, we consider a 
cylindrical section of an acinar airway (Figure 1).  

Figure 1: Simple model of an acinar tube. The membrane lining the tube has a thickness .
J(x) denotes the local flux of respiratory gases across the membrane.   

The local entropy production of respiratory gases can be expressed as  

2 2

2 2

O CO
O CO

( , ) ( , )1 1( , ) ( ) ( )
x r x r

x r J x J x
T r T r

, (11) 

where  denotes the chemical potential [J/mol], and J stands for the flux of the 
transported species [mol/m2s].  

In the following, we will only discuss the transport of oxygen, so we will drop 
the indices on J and . The analysis can be extended to CO2 in a straightforward way. It 
is important to realize that the transport of oxygen is driven by gradients of both oxygen 
and carbon dioxide (see Eq. 4), and therefore the concentration profile of carbon dioxide 
on the blood side is also relevant for the entropy production. Still, this cross coupling of 
O2 and CO2 is not considered explicitly here, due to a lack of physiological data on the 
matter. The linear flux-force law for diffusion across the membrane can now be written 
as: 

( ) ( )J x L x
T

, (12) 

where L(x) is the position-dependent Onsager coefficient, and  the membrane 
thickness. This relation is phenomenological, encoding all the details of the actual 
mechanism of transport across the membrane into one single parameter L. Although the 
transport of O2 from air to blood involves a number of consecutive processes, the rate-
limiting step is actually diffusion through the lung membrane and blood plasma. 
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Physiologists and biophysicists agree that transport of respiratory gases across the lung 
membrane is mostly passive (unmediated). Under this assumption, Katchalsky [23] 
gave the expression for diffusive membrane transport: 

( )( ) ( )m
c xJ x D x , (13) 

where c(x) is the change in O2 concentration within the membrane, between the air and 
blood side. Since the concentration of oxygen varies along the tube on both sides of the 
membrane, the concentration drop is position-dependent. Dm is an equivalent diffusion 
coefficient [m2/s], possibly also position-dependent: 

2 2O O( )m wD x RT D , (14) 

where w is the volume fraction of water in the membrane, O2 is Henry’s law 
coefficient for oxygen (the ratio of the concentration of oxygen dissolved in the 
membrane to the partial pressure of oxygen in air at temperature T [mol/m3Pa]), and 
DO2 is the diffusion coefficient of oxygen in the membrane [m2/s]. In good 
approximation, the membrane-plasma system can be considered as just a water barrier, 
so w 1.0, and the diffusivity and Henry’s law coefficient are calculated for oxygen in 
water.  

Under physiological conditions (low solute concentration and partial pressure), 
O2 is not dependent on oxygen concentration, so Dm(x) in reality does not depend on 

position and will be relabeled as Dm. By contrast, equations (12) and (13) show that the 
Onsager coefficient L(x) does depend on position via the local concentration of oxygen 
on the air side, 

air ( )( ) mD c xL x
R

. (15) 

A useful alternative formulation of transfer across the membrane is in terms of the 
membrane permeability W. Equation (13) can be rewritten as: 

( ) ( )J x W c x , (16) 

which gives W = Dm/ = RT O2DO2/ m/s]  also position-independent. This expression 
allows for an interpretation of gas transport and exchange in the alveolar sponge as a 
reaction-diffusion problem [12], in which oxygen diffuses in the airways and “reacts” at 
the walls with a probability proportional to the local concentration drop across the 
membrane (1st order reaction). 

By substituting equation (16) into the formula for entropy production, we find: 

2

air

( ) ( )
( )

WRx c x
c x

. (17) 
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As previously stated, the concentration of oxygen on the air side of the membrane is 
reasonably constant, especially in the deep layers of the lung. The total entropy 
production rate in the alveolar region is then the integral of the local rate  over the 
volume of gas exchange, 

2 3

acini air acini

( )dS WR c x d x
dt c

, (18) 

whereas the total oxygen current across the membrane is  

3

acini

( )I W c x d x . (19) 

We can now take advantage of the observed small variation in the oxygen 
concentration along the alveolar surface. Given this property we can assume, as a first 
approximation, that transport through the membrane at one location is independent of 
similar transport at another location (i.e., the transport paths are parallel) [16-17]. A 
simple variational argument, similar to that leading to equation (9), then shows that gas 
exchange is optimal (in the sense of minimal entropy production) if the concentration 
drop of oxygen across the membrane is the same everywhere in the lung. Therefore, at 
the scale of the acinus, we can argue that the principle of equipartition of 
thermodynamic forces, c(x)=constant, should apply. A more realistic problem 
formulation must consider the mechanism by which oxygen diffuses from the entrance 
of the acinus to every point on the membrane. However, this mass conservation 
restriction acts as an additional optimization constraint, and shifts the entropy 
production to a higher value. The “equipartition of forces” principle is therefore a lower 
bound for entropy production, i.e., the ideal situation.  

A uniformly distributed thermodynamic force is frequently encountered in 
chemical engineering in so-called “counterflow” reactors. This configuration is also the 
solution of choice for heat exchangers, where the hot and cold streams run in opposite 
directions, so as to have a more uniform temperature difference along the contact 
surfaces [18]. Remarkably, Nature also provides such examples, which are strong 
evidence that evolution is driven by optimization. Respiration in fish is an instance of 
applicability of the equipartition principle: along the surface of each gill, water and 
blood run in counterflow ([1], p. 17).  In entering the gill chambers, oxygen-rich water 
meets blood which is already oxygen-rich, while upon exiting, it contacts blood that is 
poor in oxygen. In this manner, the difference in concentration of oxygen between water 
and blood is almost uniform along the gill membrane, ensuring an energetically-optimal 
exchange. 

Unlike gills, bird lungs operate as cross-current systems. In the mammalian lung, 
the configuration is less clear; cross-current situations do occur because there is a 
gradient of oxygen concentration within the acinus. Remarkably, even in this 
configuration, the unique architecture of the lung provides an alternative way of 
operating close to the equipartition ideal. As shown by Sapoval et al. [12], the size of 
the acini is not arbitrary, but chosen precisely to maximize the rate of gas exchange. 
Here we propose that this high rate also corresponds to high energetic efficiency.   
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To gauge the applicability of the principle of equipartition of forces to the case 
of the lung, an independent calculation of the oxygen concentration was performed on a 
two-dimensional model of a human acinus, consisting of a space-filling fractal curve. 
The dimensions of the model were tuned to actual morphometric data, and accurate 
physiological values were input for the diffusion coefficient of oxygen in air (D = 0.243 
cm2/s at 37º C) and for the permeability of the lung membrane to oxygen (W= 8.07 x 10-

3 cm/s). The problem was modeled as reaction-diffusion for oxygen, with the flux 
through the membrane given by equation (16). For details of the geometry and problem 
formulation, see [22]. The equation for c(x) was solved using finite element software, 
and the results are shown in Figure 3 of Ref. [22] (C. Hou et al., present volume). The 
left pane of the figure shows the gas exchange unit corresponding to the state of rest 
(1/8 of an acinus); the right pane represents the gas exchange unit in heavy exercise 
(one quarter of the rest gas exchange unit). Oxygen diffuses from the entrance of the 
unit (leftmost end of the structures) to the membrane, where it crosses into the blood 
stream with a probability given by the membrane permeability W. The grayscale shows 
the local concentration difference c(x) between the air and the blood side of the 
membrane, as a fraction of the concentration difference at the entrance of the unit. 

During respiration at rest, convective flow gives way to diffusional transport 
approximately at the entrance to 1/8 of an acinus [12], so this can be considered as the 
typical gas exchange unit.  Calculation shows that the concentration drop c varies 
significantly with position (nonuniform gray in Figure 3 of Ref [22], left), and only the 
equivalent of 40% of the total alveolar surface is actively involved in gas exchange. 
This suggests that the assumptions that led to the equipartition result are probably too 
simplistic for the rest case. The study can be improved by involving the mass 
conservation equations explicitly in the determination of the entropy production rate. 

During heavy breathing, air penetrates deeper into the alveolar sponge, so the 
typical gas exchange unit is now 1/64 of an acinus (1/32 of an acinus in our 2d model). 
In this case, computations reveal that approximately 80% of the lung membrane is 
exchanging oxygen at maximum rate. This means that c is practically constant almost 
everywhere along the membrane surface (uniform gray in Figure 3 of Ref. [22], right), 
which is precisely what the equipartition principle requires. Therefore, during heavy 
exercise the lung is not only using practically all the available surface for gas exchange, 
but also does it with very good energy efficiency! The fact that the energy efficiency of 
the lung is higher during heavy exercise is remarkable, and shows that the complex 
architecture of the lung also provides a vital degree of functional redundancy. Operation 
at rest is suboptimal, so that the organism can face the real physical challenges with 
optimal efficiency.   

5 Conclusion 

The human lung and its blood network were modeled as a chemical membrane reactor, 
using methods from irreversible thermodynamics. Taking the transport pathways as 
being parallel, we showed that such a gas exchange unit operates close to maximal 
energy efficiency if the thermodynamic forces characterizing the system have a uniform 
spatial distribution (“equipartition of forces”).   

We found that the design of the mammalian lung is compatible with this 
optimization principle. At a macroscopic scale, the pressure drop was found to be the 
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same across every individual bronchus. At the microscopic scale of the alveolar sponge, 
the concentration difference between the air side and the blood side was found to be 
almost uniform along the whole membrane of the lung (at heavy exercise). These 
remarkable facts strongly suggest that the design of the lung is optimized for energy 
efficiency.    
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Summary. Uniform flow distribution in a symmetric volume can be realized through a symmetric 
branched tree. It is shown however, by 3D numerical simulation of the Navier-Stokes equations, that the 
flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. 
The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given 
Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching 
elements as well as their angular arrangement. Our results indicate that physiological variability should be 
severely restricted in order to ensure adequate fluid distribution through a tree. Time-dependant 
simulations have also been performed and have shown that inspiration and expiration flows are both 
subject to inertial effects but with completely different velocities structures. 

1 Introduction 

The purpose of the bronchial tree is to bring air from outside into the gas exchange 
units, the acini. Its structure can be approximately described by a dichotomical tree of 
seventeen generations, each seventeenth generation branch being connected to an 
acinus. Moreover, this geometry is not passive and air is brought into and out of the tree 
by dilatation and contraction of the acini, which act like little pumps. This phenomenon 
is called ventilation. Even though the acini are very small, their large number implies 
that air velocity reaches, at rest, around 1 m.s-1 in the trachea [1] (the Reynolds number 
is close to 1200). This shows that inertial effects exist, even at rest, in the first 
generations of the lung and that they can play a non negligible role in flow repartition. 
Hence, the goal of this work was to understand how important these effects are. Because 
lung is ventilated, it has been also interesting to check inertia consequences during each 
ventilation regimes, i.e. during inspiration and during expiration. 

To answer these questions, numerical simulations have been performed in 
different lung models. Theoretical models, with remarkable symmetric properties, have 
first been used, for they are easier to interpret. Stationary simulations of inspiratory state 
have been performed in three generations trees with varying parameters [2]. The 
parameters are the length to diameter ratio of branches, the angle between the two 
successive branching planes and the Reynolds number. The stationary results have then 
been confirmed with time-dependant simulations (which need much larger simulation 
time). These calculations have shown that, because of inertia, flow properties are 
dependant of geometry, even if the tree is built to fill symmetric volumes at low flow 
rates. Hence, the well known M-shape [3] appears during inspiration. It creates a 
sensitive difference in flow or pressure repartition at exits and, without an active 
regulation, variability could lead to high inhomogeneities in the lung. The time 
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dependant simulations have also shown that tree response is completely different in 
terms of flow profiles whether the tree inspires or whether it expires. In our simulations, 
expiratory inertial effects are observed to be more adapted to the symmetry properties of 
the tree than inspiratory ones. 

These results have then been confirmed in a more realistic model based on H. 
Kitaoka bronchial tree model [4]. Moreover, the lower parts of the lung, which are the 
most demanding in terms of flow, are favoured by inertial effects. This indicates a 
probable adaptation of lung geometry to inspiratory inertial effects. 

2 Models and Methods 

2.1 Geometries 

The models consist in dichotomical trees, each branch being cylindrical. Each branching 
is symmetric, i.e. daughter branches are identical. Moreover, a mother branch and its 
daughter branches are always in the same plane, as observed in the real lung. See Fig. 1 
for tree examples. For time dependant simulations, enlarged pistons have been added to 
each exit to simulate a pumping coming from the base of the tree, like in real lungs, see 
right tree on Fig. 1. 

Figure 1: Examples of geometrical models used in numerical simulations. Left: a tree for stationary      
simulations. Right: a tree for time dependant simulations, with piston structures at each exit.

The models are discretized with meshes consisted in around 300 000 tetraedra. Most of 
the simulations use three generations trees, for this is a reasonable choice in term of 
elements size and calculation times. Note that meshes are built with the software 
SIMAIL from Simulog. 

2.2 Equations 

Air fluid mechanics taking place in the lung are modelized with full Navier-Stokes 
equations, the non linear term being the source of inertial effects. These equations can 
be written, with u and p respectively representing air velocity and pressure: 
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 represents air density ( =1.18 kg.m-3) and  is air viscosity ( =1.785 . 10-5kg.m-1.s-1).
 Boundary conditions must also be defined to complete the mathematical 
problem. Non slip conditions (u=0) have been put everywhere, except at entry (A on 
Fig. 1) and at exits (B, C, D and E on Fig. 1). The choice of boundary type for these last 
surfaces is not easy, for real conditions in lungs are unknown. Hence, there is always an 
ambiguity between imposing velocity or pressure (or even mixed conditions). 
Comparison between both types of conditions has been done in the stationary case. It 
has shown that there exists a duality between velocity and pressure relatively to the tree 
response to inertia [5]. 
 Numerical simulations of Navier-Stokes equations have been performed with the 
software N3S from Simulog. 

3 Stationary Simulations (Inspiration) 

The following results have been published in [2] and [5] in collaboration with B. 
Sapoval, M. Filoche and J.S. Andrade Jr. 

3.1 Dependence on Geometry 

An example of the models used in this section is shown on the left part of Fig. 1. Two 
geometrical parameters have been checked: the length to diameter ratio (L/D with 
values 2.5, 3, 3.5 and 4) and the angle between the two branching planes (  ranging 
from 0° to 180° with steps of 15°, the reference angle =0° corresponds to a coplanar 
tree). In the real lung, L/D mean is close to 3 and  mean to 90°. See reference [2] for 
more details. 
 The first set of simulations uses a parabolic velocity profile at inlet (A in Fig. 1) 
and an imposed pressure P0 with homogenous Neumann conditions at outlets (B, C, D
and E on Fig. 1). Note the symmetry of the exit boundary conditions. We are interested 
in the flow difference at outlets. Firstly, the problem symmetry leads to B = E and 

C = D. The flow asymmetry F can then be defined relatively to one side of the 
geometry: 
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In the case where inertia can be neglected, the asymmetry F will always be 0 in the 
conditions of this section. Hence, this number is a representation of inertial effects in 
the trees. 
 The results are given on Fig. 2. First, increasing L/D leads to a reduction of flow 
asymmetry because the flow breaking created by branching has more length to recover 
an homogenous profile. For  angle, it is interesting to see that there exists a point 
( =90°) leading to a perfect repartition of the flow into the outlets ( F=0), this is a 



B. Mauroy 46

consequence of symmetrical properties of the geometry for this particular .  However, 
a small change of  around this value leads to a quick increase of asymmetry. Hence, if 
such structures are stacked together, some outlets will receive a large quantity of flow 
while others will receive very little flow [2]. At the limit, this could lead to a 
multifractal repartition of the flow [6]. This type of phenomena cannot exist in the lung 
and a flow regulation should prevent such inhomogeneities. 

Figure 2: Dependence of the flow asymmetry F relative to the angle . The different curves represent               
different values of L/D. Note that =90° is surrounded with steep variations of F, and that 
increasing L/D decreases the flow asymmetry.

 The sensibility of angle variation around =90° is a consequence of the typical 
velocity profile created by inertial effects after the first bifurcation: the M-shape [3], as 
shown on the right of Fig. 3. On this figure, velocity is represented in grey levels and is 
decreasing from dark to white. Flow repartition at outlets is the result of how the second 
bifurcation is splitting the M-shape. Hence, bifurcating with =90° leads to capture the 
flow according to the axial symmetry of the M-shape, see Fig. 3. Because of the 
velocity repartition, a small change from 90° corresponds to remove a large quantity of 
flow from one side and to add it to the other side. This explains the sensitivity of F
around =90° [2]. 

Figure 3: The sensitivity around =90° is a consequence of the typical velocity profile called M-shape 
(right). This is a result of the way outlets (D and E) are capturing the flow from the M-shape.
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 The second set of simulations has been performed with pressure imposed 
condition at entry and flow imposed conditions at exits [5]. Now, consequences of 
inertia are measured through pressure differences between outlets. Pressure asymmetry 
is defined by: 
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Results for angle dependence (with L/D=3) are shown on Fig. 4. As for the previous 
boundary conditions type, there exists a sensitivity relatively to angle variations around 
90°. Differences between the two cases are noticeable only for angles close to 0° and 
180°, however such angle values are not present in human lungs. Hence, like in the first 
simulations set, a phenomena leading to inhomogeneities in term of pressure repartition 
can be deduced from these simulations. Thus, an active regulation is needed to obtain 
homogenous properties of the flow. 

Figure 4: Dependence of pressure asymmetry relative to the angle . The sensitivity around =90° is 
always present for this second type of boundary conditions. 

3.2 Dependence on Reynolds Number 

The dependence of asymmetry relative to Reynolds number will give an approximate 
generation from which inertial effects can be neglected. Simulations have been 
performed on two different geometries for different Reynolds (from 120 to 1200 with 
steps of 120). Results are shown on the curve on Fig. 5. The asymmetry increased 
quickly until reaching a Reynolds number of around 360. Then its variations are small 
and a plateau appears. These effects are visible through the M-shape: it becomes much 
more homogenous as the Reynolds number is decreasing, see right part of Fig. 5. To 
very low Reynolds numbers, the M-shape is a set of concentric circles corresponding to 
a Poiseuille profile. If we assume that inertial effects are negligible when flow 
asymmetry is smaller than 2%, then we can obtain an approximate generation below 
which inertia can be neglected. At rest, this generation is the sixth one. 
 Hence, flow equations in the lower bronchial tree can be simplified, authorizing 
analytic studies, see [6].  
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Figure 5: Left: Dependence of flow asymmetry relative to Reynolds number for two geometries: L/D=3,
=75° (squares) and =60° (circles). The asymmetry is first increasing quickly, and then it 

reaches a plateau. Right: M-shape for different Reynolds numbers. When the Reynolds is low, 
the M-shape becomes more homogenous.

4 Time Dependant Simulations 

In the preceding section, time influence has been neglected. It has been shown 
that inertia has important consequence on a stationary inspiratory flow. It will be shown 
here that its influence will be different whether the tree is inspiring or expiring. During 
the inspiratory phase, inertial effects are similar to those observed in stationary mode 
with the typical M-shape profile. During the expiratory phase, the flow structure is 
better adapted to geometry. This work is the result of collaborations with B. Sapoval, 
M. Filoche, T. Similowski and C. Straus. 

4.1 Two Generations Trees 

First, a simple two generations model has been used to highlight the consequences of 
inertia on flow structure, see Fig. 6. As for all time-dependent simulations, piston-like 
structures have been added at each exit to simulate lung pumping. The ventilation cycle 
has been modelised with sinusoidal oscillations of pistons (with a 5 seconds period). 
This is an approximation of the real lung ventilation which has an inspiration time of 
around 2 seconds and an expiration time of around 3 seconds. At entry, the pressure has 
been imposed.  

Figure 6: Two generations geometry used in this section. The piston-like structures at exits simulate lung 
pumping.
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 Velocity profiles in both generations and during both inspiratory and expiratory 
phases are shown on Fig. 7 (highest speed time for a 600 Reynolds number). As 
expected, a M-shape is present at inspiration in the second generation. It is also 
interesting to note that although pressure has been imposed at entry, its velocity profile 
is a Poiseuille profile. During expiration, however, inertial effects are mostly present in 
the first generation, where two high velocities peaks appear. First, it is remarkable that 
velocity level lines are symmetrical relatively to the centre of the section. Secondly, 
measurements have shown that [7] 

1- inspiration dissipates 10% more energy through viscous effects than expiration 
(data for a 1200 Reynolds number at entry, close to rest regime). 

2- expiration flow profile in the first generation is much closer to Poiseuille profile 
than inspiration flow in the second generation. 

Hence in our model, expiration leads to more homogenous flow than expiration. Such 
results could have important consequences in term of lung design understanding [7]. 

Figure 7: Velocity profiles in both generations of a two generations tree. Top: cuts during inspiration. 
Bottom: cuts during expiration. The dissymmetry between the two ventilation regimes is 
noteworthy. 

4.2 Three Generations Tree 

M-shape existence in time-dependant simulations shows that the structure of the flow is 
still the consequence of inertial effects. Thus, asymmetry in flow properties also exists 
and it is interesting to study its repartition during ventilation. In this section, air velocity 
is calculated in a three generations tree, with structures at outlets acting as pistons 
(oscillating in a sinusoidal way with 5 seconds period), see Fig. 8. Because flow is 
imposed at exists, pressure asymmetry has been chosen to represent inertia (in the same 
way than section 3).
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Figure 8: Three generations tree used in this section. Outlet structures act as pistons to ventilate the 
geometry. 

Figure 9 shows the pressure asymmetry evolution during a respiratory cycle. Pressures 
are measured at piston’s top. The differences between inspiration (0 – 2.5 seconds) and 
expiration (2.5 – 5 seconds) are remarkable. The pressures in the different pistons need 
to be different to compensate inertia only during high velocity inspiration times. Note 
that for low velocity times, there is very little inertia and hence there is nothing to 
compensate. However during expiration, the piston’s pressures are exactly the same for 
the four tree-ends. Thus, inertia leads to non homogenous flow properties only during 
inspiration. This fact is coherent with the preceding remarks on flow structure in the 
section 4.1. Hence our models show that inspiring in a tree is more complex than 
expiring. 

Figure 9: Pressure asymmetry during one ventilation cycle. High asymmetry exists during inspiration. 
During expiration, pressures are identical at each tree-end. 

4.3 Three Generations Lung Model 

All preceding simulations use theoretical models of lung geometry. Now that flow 
structure in a tree is better understood, it is interesting to work with a more realistic 
modelisation of the lung. The geometrical model used in this section is a part of the 
numerical lung built by H. Kitaoka [4]. Only the three first generations are used here 
and piston structures are added at each outlets, see the tree on Fig. 10. The tree has no 
more symmetry properties and pistons now pump quantity of air corresponding to the 
volume they must feed. They are synchronously oscillating in time, with more realistic 
ventilation: inspiration time is 2 seconds long and expiration time is 3 seconds long. The 
normalized amplitude of the pistons is shown on the right part of Fig. 10. 
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Figure 10: Left: tree used in this section, it is completely asymmetric. Right: normalized pistons 
amplitude, with 2 seconds inspiration and 3 seconds expiration. 

 Velocity amplitudes at maximum inspiration rate are shown on Fig. 11. The left 
part corresponds to inspiration. M-shapes are visible as before. However, these shapes 
are now linked to two effects which are working together to create this typical flow 
profile. Firstly, according to the observations in the preceding theoretical models, we 
know that inertia creates a M-shape in the second generation. Its high velocity region is 
oriented towards the branch which is better aligned with the trachea. Moreover, this last 
type of branch is, in the case of the lung, the most flow demanding branches. Hence, its 
piston will pump more and will create a deformation of the velocity profile to fit this 
demand. What is remarkable is that inertial effects and flow demand are in some way 
coordinated in real lung. This coordination implies lower pressure gradients in all four 
pistons than in any other configuration and hence lower energy costs. This could be the 
result of natural selection, which could have favoured lungs inspiring in a way that takes 
into account inertial effects, in order to minimize ventilation costs. 
 On the right part of Fig. 11 are represented expiratory velocity amplitudes at 
maximum expiration rate. Maximum velocity during expiration is lower than maximum 
velocity during inspiration because of the longest expiration time. This implies that 
inertial effects will always be smaller during expiration than during inspiration. This 
observation associated with the property that expiratory flow is more homogenous, 
leads to the conclusion that expiration seems easier to activate. This could be a part of 
the explanation to why inspiration is always active (muscles create the movement) 
while expiration could be passive (at rest, elastic forces are sufficient to create the 
movement). 
 Hence, inspiration and expiration are completely different phenomena. This 
difference is also visible in the way lung is functioning. Natural selection has probably 
favoured lungs which are adapted to inspiratory inertial effects. Moreover, our 
calculations have lead to a better understanding to why expiration can be passive while 
inspiration is always active. 
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Figure 11:  Left: velocities amplitude during inspiration (maximum velocities time). Profile in the second 
generation is the consequence of two effects: inertia and asymmetric pumping of the pistons. 
Right: velocities amplitude during expiration (maximum velocities time), flow is more 
homogenous than during inspiration. 

5 Discussion 

Although the lung is a very complicated system, numerical simulation can help us better 
understanding it through simplified theoretical models. Hence, it has been shown that 
inertial effects have great influence on flow in the lung, even at rest. The first 
observation is that inertial effects, and consequently flow profiles, are different during 
inspiration and expiration. Hence, during inspiration and without regulation, inertia 
prevents flow properties to be homogenous, in fact it leads to very few flow in some 
part of the structure while others are too much fed. This fact must have been taken into 
account by natural selection. For instance, evolution has probably favoured lungs which 
are pumping more flow towards its base, because of inspiratory inertial effects. On the 
contrary, inertial effects have less consequence on flow homogeneity during expiration. 
These differences have consequences on the mechanism of ventilation. Hence, 
inspiration, which is most inertia sensitive and should be more regulated, is always an 
active movement (muscles driven). On the contrary, expiration, leading to relatively 
homogenous flow, can be passive at low ventilation regime (elasticity forces). 

There are many other applications of those calculations. For instance, particles 
tracing can be easily obtained and deposition sites can be predicted. Moreover, 
quantitative measures of Reynolds numbers along the tree have led to a generation 
threshold from where Poiseuille regime is sufficient to represent air circulation, problem 
which has been studied in [6]. With acinus and diffusion models like in [8], it will be 
then possible to stack the different levels of modelisation to obtain what can be called a 
“numerical lung”. Such a tool could be a great advantage for understanding lung 
structure or tracking lung disease. 
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Summary.  We study various properties of constructive optimization in 3D vascular systems. After some 
remarks on existing approaches to vascular modeling and on the theory of vascular optimality, we briefly 
describe an algorithm called Global Constructive Optimization (GCO). Twenty-one vascular systems are 
modeled in three different groups: planar, spherical, and liver shaped. Based on the Strahler ordering 
scheme, these models are characterized and compared to data from liver corrosion casts. A good 
correspondence could be observed between modeled and real portal venous systems. The branching 
characteristics of the hepatic vein still pose open questions. Finally, a concept for the modeling of 
vascular interdigitation based on optimality principles is suggested. 

1 Introduction 

The significance of fractal geometry as a biological design principle has been pro-
nounced by E.R. Weibel [1]. Vascular systems in humans and animals are likely to 
contain fractal structures due to both their hierarchical nature and volume supplying 
properties. They are often found to exhibit a statistical invariance regarding their local 
geometry over a wide range of scales. For example, we have previously described 
branching patterns in the human liver from corrosion casts covering portal and hepatic 
venous systems [2]. To this end, a group of scaling parameters based on the Strahler-
Horton ordering scheme [3][4] was introduced, namely Strahler branching ratio, 
Strahler radius ratio, and Strahler length ratio. Here, we aim to characterize and 
compare “in-silico” vascular models created by constructive optimization, using the 
same scaling parameters.  

Figure 1: Resection planning for a multi-focal metastatic liver case based on the patient’s individual 
portal vein anatomy. For a specific tumor free margin, respective resection proposals are 
indicated by different gray values. (courtesy of M. Oudkerk, Groningen, and A. Schenk, 
Bremen) 

Our motivation for investigating the modeling of vascular systems is to learn 
more about those parts of vascular systems that can not easily be assessed in-vivo. For 
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example, modern CT images contain the first generations of the different hepatic vascu-
lar systems, but due to limited resolution and signal-to-noise the exact boundaries 
between vascular territories cannot be discerned. 

Detailed knowledge of vascular perfusion and drainage territories of paren-
chymal organs is crucial for providing resection proposals as well as for preoperatively 
estimating resection volumes and patient outcome [5][6]. Prominent applications are 
tumor resection and living donor liver transplant (LDLT) surgery (cf. Figures 1 and 2). 
A commonly used segmental definition for the liver was given by Couinaud in 1986 [7]. 
However, it has been shown recently that individual anatomical segments, in general, do 
not correspond well to Couinaud's definition. Therefore, surgical planning would 
directly benefit from an accurate model of a patient’s individual vasculature [8].  

An additional asset in monitoring patient recovery would be the simulation of 
vascular remodeling and growth after surgery. A compelling example is provided by 
LDLT, where complete recovery of liver function and volume can be observed for both 
graft and remnant within one year [9]. A valid three-dimensional model of this 
regeneration and remodeling process would support both risk assessment and outcome 
prediction. 

Figure 2: Preoperative planning of optimal resection plane for living donor liver transplant surgery based 
on the patient’s individual portal vein (left) and hepatic vein anatomy (right). The light gray 
segment in the right image (remnant liver part) corresponds to tissue at risk with respect to a 
secondary hepatic vein. (courtesy of K. Tanaka, Kyoto, and H. Bourquain, Bremen) 

1.1 Modeling of Vasculature 

There are two standard approaches to modeling vascular structures: 

(a) simulation of angiogenesis and  

(b) construction of a stationary vascular configuration.  

While the former comprises the modeling of physiological growth factors, the 
latter usually relies on optimality considerations that build upon basic physiological 
principles. 

In particular, the former is typically associated with the creation of a capillary 
plexus in response to angiogenetic growth factors, which has the potential of yielding 
insight into the process of neoangiogenesis, mainly on the microscopic scale. Famous 
results are given by H. Meinhard, who derived complex structures, such as trees or 
networks, from basic cellular mechanisms, i.e., activation, inhibition, and elongation 
[10]. F. Nekka uses a similar approach, which is more specifically dedicated to 
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angiogenesis, based on the processes of growth, branching, and anastomosis [11]. Both 
works yield tree structures that exhibit fundamental properties of vascular systems but 
with only limited similarity to real systems on the macroscopic level. 

The second group of approaches is aimed toward a direct construction of viable 
vascular systems, often through the use of optimality principles, and has shown poten-
tial on the macroscopic scale [12][13]. B. Mandelbrot can be regarded as an early 
advocate of this group for constructing stationary configurations of vascular systems. 
He described a family of deterministic generators for the so-called lung model [14]. By 
definition, these structures are area or space filling and fractal with a residuum.  

In the early 1990s, W. Schreiner introduced a framework called Constrained 
Constructive Optimization (CCO) [12]. There, random terminal segments are sequen-
tially added to a vascular tree in order to subsequently fill a given organ shape. After 
each addition, the newly created bifurcation is locally remodeled and all tree radii are 
adjusted, while constraints are derived from optimality criteria and prior knowledge. In 
contrast, H. Kitaoka has developed an explicit and fully deterministic algorithm, which 
produces a highly realistic model of the human bronchial tree [13]. Starting from the 
initial bifurcations, she iteratively subdivides lung parenchyma cells. Each cell is split 
into two cells by creating a new bronchial bifurcation and two new branches. This 
technique is repeated until a lower cutoff cell size is reached.  

1.2 Optimality of Vascular Systems 

After investigating existing approaches to vascular modeling, a second line of investiga-
tion leads us to vascular design principles of living organisms as described by theoreti-
cal biology and physiology. Optimality in the context of a teleonomical principle was 
discussed in the seminal work by R. Rosen [15]. 

Since the work of C.D. Murray in the 1920s [16][17], different scale-invariant 
optimality principles of vascular trees have been motivated. Murray's considers the 
work required to produce and maintain physiological systems. Twelve years earlier in 
1914, the principle of minimum work in the context of hemodynamic research—as 
refined later by Murray—was already published by W.R. Hess [18].  

Hess and Murray follow a similar line of reasoning in order to arrive at the 
power-3 law for the optimal bifurcation radius relationship. The work corresponding to 
a vessel segment can be considered as consisting of a viscous resistance term (PQ)
according to Hagen-Poiseuille’s law plus a blood maintenance term proportional to the 
blood volume V:
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with some constants b, c1, and c2, viscosity , flow Q, and P being the pressure drop 
over the vessel segment of length l and radius R. For constant length, flow, and viscos-
ity, we arrive at the remarkable power-3 relationship between R and Q:
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By inserting Q2 into (1), we get a specific work—i.e., work over vessel length—
which is proportional to the cross-sectional area: 
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l
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Half a century later, Kamiya and Togawa analyzed and extended the Hess-
Murray law. They referred to Murray’s result without being aware of Hess’ work: „One 
of the most successful... applications of the optimal principle to biology... may be the 
analysis of the branching structure of the vascular system treated as the duct system of 
minimum work.“ [19] As a specific result, they derived the minimization of intravascu-
lar volume, which is equivalent to (3), as a general design principle of vascular systems. 
They further propose to iteratively minimize the local work for multiple nodes of a 
vascular tree in order to arrive at a globally optimal configuration. The below described 
optimization algorithm follows their proposition; we however argue that this can only 
be successful once the topology of the vascular tree is already in an optimal state. 

Zamir [20] and later Roy and Woldenberg [21] motivated four different cost 
principles from theoretical physiology, namely the minimization of (corresponding 
term, to be set proportional to E/l, given in braces): 

(a) surface (R),

(b) lumen volume (R2),

(c) surface forces (QR-2), or 

(d) work (Q2R-4).

Accordingly, as a generalization of (3), we propose to define the cost E, which is 
subject to minimization, as a function of flows Q and radii R on a vascular tree T

T
E dsQRfE ),( , (4) 

with fE (R,Q) > 0 and where the integral is over a linear measure following all branches 
of the tree T.

An allometric power law (cf. [22]) for branch radii  

i
irR  (5) 

can be regarded as complementary to these optimality principles; B. Mandelbrot is 
referring to  as diameter exponent [14]. Based on flow conservation, we can derive 
from (5) a popular choice of radius-flow relationship that is also consistent with the 
Hess-Murray law (2): 
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However, this is only one of an infinite number of possibilities to comply with 
the allometric law (5). We argue that the deterministic choice (6) is naive in the sense 
that it will be typically not found in real vascular trees, which are known to be 
asymmetric. The reason for the asymmetry of blood vessels can be understood by a 
simple argument. Blood vessels have to be effective, their sole purpose being the 
transport of blood—detours of the vascular branches are not necessary as long as 
efficiency criteria are met. In an asymmetric tree, where total path lengths to different 
terminal segments vary, sufficient blood flow to more distant segments can only be 
maintained if longer paths exhibit larger branch radii than shorter paths on average for a 
given flow and total hemodynamic pressure drop. This is in contradiction to (2) and (6). 
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Figure 3: Process of Global Constructive Optimization (GCO). One thousand leaf nodes are randomly 
positioned inside a 3D cube shape and the root node is chosen near one of the corners. 
Optimization starts with every edge connecting a leaf node to the root node (a). Relaxation 
brings the large initial branching into the middle of the model (b). Splitting creates smaller 
nodes, which then relax to their own respective optimal positions (c). Many iterations of local 
optimization—relaxation, splitting, and merging—lead to a tree mainly consisting of 
bifurcations (d). To resolve global deficiencies (compare arrows with straight line), 
hierarchical global pruning (e) and reconnection (f) is performed, with successive iterative 
local optimization (g). 

2 Constructive Optimization—A Global Approach 

A major advantage of H. Kitaoka’s work is its determinism and computational effi-
ciency. A very similar technique was later published by M.H. Tahwai [23]. In both 
approaches, only local changes are made to the evolving tree at each volume division; 
existing branches do not need to be remodeled at later stages. Furthermore, optimality 
criteria and radius relationships can be explicitly introduced. An associated drawback, 
however, is that early volume divisions create unrealistic planar lobe boundaries, which 
persist until the final result. 
 This problem is avoided by W. Schreiner’s CCO method [12][24], where termi-
nal branches are added to the evolving tree at random positions throughout the whole 
construction process. A drawback of CCO can be seen in the fact that the final result 
sensitively depends on the order of added leaves—i.e. the employed random number 
generator—despite identical boundary conditions. 
 By introducing a global constructive optimization scheme, we opted to circum-
vent both problems [25]. This method is illustrated by Figure 3 and can be seen as an 
extension of Schreiner’s work in that it 
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(a) is fully deterministic at given boundary conditions, 

(b) allows for topological changes during optimization, and 

(c) integrates global multi-scale optimization strategies. 

Topological changes are effected by the splitting and merging of neighboring 
nodes, while global optimization is performed by iterative pruning of the tree. Boundary 
conditions are given by the organ shape, the position of the root, and by a set of leaves, 
corresponding to macro cells, which must be supplied by the vascular system.  

Ingredients of the algorithm are scale invariance and optimality as a generaliza-
tion of Murray’s law; the optimality principle is expressed by a cost function in analogy 
to (4), which might correspond to the minimization of intravascular volume. Blood flow 
is related to pressure drop by Hagen-Poiseuille’s law under the assumption of laminar 
flow of a perfect fluid. Finally, the relative vessel radii are initialized by using a 
generalization of Murray’s law. In more elaborate versions of the algorithm, the radii 
might further be adjusted to meet local or global hemodynamic conditions. 

The optimization scheme is referred to as Global Constructive Optimization 
(GCO) and has been described in detail by M. Georg et al. [25]. It consists of an initiali-
zation plus an optimization strategy iteratively performing local and global changes. 
More specifically, local cost minimization consists of three geometrical operations, 
namely positional changes (node relaxation) and topological changes (node merging and 
splitting). For global optimization, we propose an iterative pruning from coarse to fine 
with successive local optimization steps. After each pruning step, all leaves are recon-
nected to the remaining tree according to a nearest neighbor rule.  

For relaxation, the partial work derivative E/ l on edges is interpreted as force 
that pulls the respective node towards shortening the edge. Since according to (4) these 
forces are constant for given flow and radius, the work as a local function of the three-
dimensional position xn of node n can be written as sum of M convex and positive 
wedge shaped distance functions: 
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where the distance is measured in Euclidean space between neighbor nodes, M is the 
number of neighbors of node n, the double index m/n indicates the m-th neighbor edge 
of node n, and E0 is the tree cost without taking into account the neighbor edges of n.
 Since any sum of convex functions is convex, there can only be a single mini-
mum of (7). This minimum is either: 

(A) a single point or  

(B) a restricted connected set of points.  

One can show that the latter only can occur in situations when all neighbor 
nodes including the node n are positioned on a straight line; this case can be ignored in 
all practical configurations. The former case (A), i.e., the unique solution in xn for mini-
mizing (7), can be either: 

(A1)  identical to the position of one of the neighbor nodes or  

(A2)  a position somewhere in between the neighbor nodes. 
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Case A2 leads to an updated position for node n, which we call the result of a 
single relaxation step. Case A1, however, requires the merging of node n with the re-
spective neighbor, and thus results in a topological change of the current tree structure. 
When evaluating the GCO method, we found that such topological changes are crucial 
for the global optimization of a tree. As opposed to merging, in situations where multi-
furcations occur, i.e., nodes with four or more neighbors, node splitting is mandatory. In 
our case, splitting is always performed in two parts such that the highest cost is gained 
compared to the pre-split configuration. Only in rare cases, splitting of a multifurcation 
does not result in a cost reduction.  

In order to complete this methodological sketch, we should briefly discuss the 
initialization step. In contrast to CCO, where one edge is added at a time, the GCO 
scheme starts with a fully connected tree, where the leaves can either be defined on a 
regular grid or randomly positioned within the organ hull. It is this initialization step 
alone, where GCO allows for some randomness. Initially, each leaf is connected directly 
to the root. Even if unrealistic, this provides a good starting point for the above de-
scribed successive local and global optimization steps.  

It is important to note that the final optimization result does not depend on the 
order of leaf generation. Furthermore, apart from the terminal segments, no significant 
geometrical differences were observed between regular and random leaf positioning. 
Since only one tree is modeled so far, pressure-flow boundary conditions cannot be 
realistically imposed to the model. We therefore kept the Hess-Murray law (2) as rela-
tion between radii and flow, while each terminal segment was assumed to receive equal 
flow. 

3 Fractal Aspects of GCO 

3.1 Fractal Properties of Vascular Trees based on Strahler Ordering 

Several authors, including our own work, have reported fractal properties in different 
vascular subsystems both in humans and animals [1][2][26][27]. We use the results 
obtained from liver corrosion casts [2] both as motivation for our work and for 
validation of the above described vascular model. 

Natural trees are most often asymmetric in nature. To achieve an ordering of 
asymmetric trees, it is not a good idea to count branch generations starting from the root 
node, since tiny side branches would receive the same order as elongated main 
branches. In [2], we used the (Horton-) Strahler scheme to assign branch orders to given 
vascular structures. This ordering scheme has proven very useful in creating sensible 
hierarchical groups of branches, even for highly asymmetric trees, and served as a basis 
for inter-specimen comparison.  

As opposed to the concept of top-down generations, the Strahler scheme is very 
robust to side branching, even though it is based only on topology. It first assigns an 
order of one to all terminal segments. Then, it iteratively assigns orders to each segment 
of a tree by ascending towards the root node. The Strahler order for a tree segment is 
only incremented if two or more child segments exist with the same Strahler order. 
After ordering all branch segments, three features were plotted as a function of Strahler 
number for each tree: 
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(a) the number of branch segments in each order, 

(b) the median branch radius within each order, and 

(c) the median branch length within each order. 

Note that a Strahler branch is defined as all subsequent tree branches of identical 
Strahler order. For each of these three plots, if done semi-logarithmically, the slopes of 
the lines fitted to the data points represent significant descriptive scale-invariant pa-
rameters: Strahler branching ratio , Strahler length ratio , and Strahler radius ratio 
[2]. Stated otherwise,  is the ratio of branch numbers between subsequent Strahler 
orders,  is the ratio between subsequent median Strahler branch lengths, and  is the 
ratio between subsequent median Strahler branch radii. For example, a larger  gener-
ally means that larger detours have to be taken by the branches in order to reach their 
goal. The results from corrosion casts and from tree models created by GCO are 
summarized in Table 1. 

Figure 4: Four different tree classes represented by three examples each. Three different classes were 
generated using the GCO method by minimizing intravascular volume: planar, spherical, and 
liver shaped (liver hulls obtained from CT in-vivo imaging). Note that despite symmetric 
boundary conditions, optimal configurations evolved to be asymmetric (1st and 2nd rows). 
Boxes indicate examples for which numerical data is provided by Figure 5. For comparison, 
the 4th object class is derived from in vitro portal vein corrosion casts [2]. 
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3.2 Comparison of GCO to Real Data 

In Figure 4, vascular trees are depicted that were modeled according to intravascular 
volume minimization (3), while optimization was carried out using the GCO scheme. 
Three classes of object shapes were used: 

(a) planar, i.e. very thin volume slabs (circle, rectangle), 

(b) spherical, and 

(c) liver shaped. 

Leaves were either defined on a regular isotropic orthogonal grid or randomly 
distributed within the object shape. Vascular entry points (root / hilum) were chosen 
manually; this could serve, for example, to approximate the boundary conditions for a 
portal or hepatic venous system. Note the two GCO results in the 3rd row of Figure 4 
(left and right), which were modeled using identical optimization parameters and the 
same liver shape obtained from in-vivo imaging, with the only differences being the 
initial root position and a slightly different viewpoint. 

Much as it was done for the liver corrosion casts, we measured Strahler branch-
ing ratio , length ratio , and radius ratio  for 21 modeled trees (Table 1). For three of 
them (cf. boxes in Figure 4), quantitative Strahler characteristics (branch number and 
radius) are plotted in Figure 5. 

By definition, our generated vascular trees are volume filling in a fractal sense. 
Moreover, once globally optimized, they are expected and observed to exhibit scale-
invariant branching relationships with regard to all three parameters. These relationships 
are found to depend on both the organ shape and the cost function used. When com-
pared to data from human liver corrosion casts, a good correspondence is observed. 
Differences can be attributed to the degree of optimization or the lack of a parameter in 
the model. 
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Figure 5: Strahler branch number and radius characteristics for three examples (sphere, disc, liver; cf. 
boxes in Figure 4) modeled by GCO using intravascular volume minimization. The approxi-
mate scale-invariant scaling factors and  are derived from the data through least square fit-
ting as indicated by straight lines. 
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Even though for the trees in the 3rd line of Figure 4 the draining system was 
completely ignored, the similarity of the liver shapes to the real portal vein is remark-
able, both through visual inspection as well as regarding the Strahler parameters. This 
similarity is not observed for the real hepatic veins, whose Strahler parameters rather 
approximate the values modeled for optimal 2D shapes (cf. Table 1). 

A possible explanation thereof is given by the following hypothesis: For any 
Strahler order the hepatic vein must mainly find its way around the portal veins of that 
order. Meaning, the hepatic vein must take detours compared to the portal vein, in order 
to supply the same structures. The hepatic vein is somehow pushed aside and restricted 
to a two-dimensional subspace. 

branching ratio length ratio radius ratio

spherical (N=5): 3.32 (0.16) 1.42 (0.05) 1.48 (0.01) 
planar (N=8):  3.97 (0.15) 1.86 (0.10) 1.55 (0.02) 
liver shape (N=8): 3.22 (0.25) 1.37 (0.10) 1.47 (0.03) 

real PV (N=6): 3.56 (0.32) 1.63 (0.14) 1.49 (0.04) 
real HV (N=2):  4.01 (0.63) 1.95 (0.15) 1.67 (0.14) 

Table 1: Strahler characteristics (mean and SD) for 21 modeled vascular trees and eight vascular 
systems as derived from corrosion casts (PV: portal veins, HV: hepatic veins). Note that the 
correspondence with the modeled livers is much stronger for the PV than for the HV. The latter 
rather seem to correspond to modeled planar objects (cf. body text). 

4 Perspectives 

4.1 GCO of Two and More Trees 

Vascular systems require more than one tree. The above hypothesis must remain purely 
speculative until we can simultaneously model a complete vascular system, consisting 
of at least one perfusing and one draining tree. The first algorithmic and implementa-
tional steps towards this goal have already been undertaken. 
 What has been described above by comparing quantitative scaling parameters 
might also be regarded from a more geometric point of view. In addition to topology 
and branching relationships, the three-dimensional configuration of a vascular system 
has to be considered. In actual organs, a strong interdependence of two or more vascular 
systems can be noticed. In many cases, these systems exhibit a pronounced interdigita-
tion, meaning that opposing vessels of similar order seem to maximize their mutual 
distance (cf. Figure 6 top-right).  

In vascular modeling, we finally propose the idea that interdigitation occurs im-
plicitly as a consequence of flow homogeneity, pressure-flow consistency, and optimi-
zation. This can be reformulated by the theorem that interdigitation is the result of 
effectiveness and optimality. However, in our current model for two vascular systems, 
this effect is observed only to a limited extent. The topics of mutual dependency and 
interdigitation of vascular systems thus require further investigations. In any case, we 
hope to overcome the need for explicit rules to avoid vessel crossing and other non-
realistic vascular patterns. 
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4.2 Open Issues 

We wish to close this brief report by posing a couple of open questions. When measur-
ing the length and branching ratios, why is the space filling relation D =  not met? If 
GCO produces realistic vascular patterns for the liver, can it also model cerebral or 
renal vessels? How can we in a similar manner model the bronchial tree, where Hess-
Murray does not hold? Will the modeling of interdigitation yield even more realistic 
Strahler scaling characteristics? And finally, following Mauroy’s line of thought [28], 
how much energetic non-optimality should we expect in our blood vessels? Or stated 
otherwise, which further criteria have to be introduced? 

Figure 6: Three vessel systems, shaped as a square, a disc, and a human liver, were generated by mini-
mizing intravascular volume and adhering to Murray’s law. To the top right, the actual portal 
and hepatic veins of an individual human liver are rendered. This reconstruction is based on a 
computer tomographic image of a corrosion cast. 
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Summary.  Data analysis in general and image analysis in particular require multi-scale approaches when 
dealing with complex structures. Relational information between structures on different scales needs to be 
taken into account. In many application fields, automated image interpretation still is a significant 
bottleneck due to the lack of appropriate image analysis technology. A new approach, Cognition Network 
Technology, is presented that was developed to handle and analyze complex data. This contribution 
focuses on how it handles and analyzes image data based on an object oriented, hierarchical and 
networked data model. A specific programming language allows building a semantic knowledge base that 
is used to interpreting image data by creating and processing instances of this data model. In many 
operational analysis tasks the approach has proven to produce reliable results fully automatically. It 
especially extracts structures of interest even in challenging cases such as low signal to noise ratio images, 
heterogeneous or variable structures of interest or tasks which include a complex semantic.

1      Introduction 

Microscopy, imaging and image analysis is a powerful combination which allows the 
researcher to gather objective, quantitative and reproducible information, thereby 
obtaining stronger statistical evidence faster and with fewer experiments. Today the 
bottleneck in this workflow is the quantitative analysis of images. Current processes – 
pixel-based or thresholding procedures - have considerable difficulties with the noise 
typical of biomedical image data, the heterogeneity and variability of relevant structures 
and the fact that the colour and the colour intensity can vary both within and between 
images. Today there is no approach that transfers these images in high throughput into 
valuable knowledge automatically. 

Structure in the world and therefore also in images appears on many scales 
simultaneously. Embedding hierarchy is an ubiquitous phenomenon. Similar to the 
human eye, image analysis requires multi-scale and relational approaches when dealing 
with complex structures. For most image analysis tasks it is essential to consider at least 
those different scales that are relevant for a specific problem. By describing meaningful 
relations between structure within and between different scales a lot of relational  
information can be accessed and be used for analysis or knowledge extraction.  

Within and between different scales structure show redundancy/similarity/self- 
similarity on the one hand and novelty/dissimilarity on the other. An automated 
procedure that extracts knowledge out of images can make usage of the self-similarity 
in order to reduce complexity. It however has also to handle the dissimilarities in order 
describe the semantics in images properly. The structures of interest will most likely be 
embedded in or will themselves represent hierarchical structures. Even in non-
hierarchical situations it may not be possible to extract the relevant objects 
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(segmentation) in a straight forward manner. Instead, a stepwise generation of the 
intermediate object on different scales may lead to the desired result.  

2       Cognition Network Technology 

Cognition Networks were developed for representation, knowledge extraction and 
simulation of complex systems and data. The approach comprises following 
components: 1) domain knowledge / ontology 2) categories which use that knowledge 
to automatically extract new knowledge from unstructured information sources 3) 
means to integrate the newly extracted knowledge into the existing domain knowledge 
4) adequate internal representation of knowledge: object-orientation, relational 
dependencies, scales and 5) adequate addressing of knowledge complexity [1].  

This new dynamic object model combines methods from many other well known 
approaches for handling complexity like semantic networks, Bayesian networks, 
cellular automata, neuronal networks, expert systems and programming languages 
together with new aspects like self-similarity and local adaptive computing.  

A Cognition Network is able to store, represent and extract knowledge from a complex 
input like images or texts. The knowledge stored in a Cognition Network is represented 
by the network structure of all objects and the contained data. A large and valuable part 
of that information is contained by link objects and by sub networks. 

2.1. Self-Similarity 

For the purpose of complexity reduction and for the purpose of an appropriate 
representation of the structure and the semantics of the original input data, Cognition 
Networks are self similar in the following aspects: 1) basic properties and data 
structures are similar for all objects; 2) the network has a hierarchical structure, i.e. an 
object can be linked to a sub network in order to represent structure on different scales 
(fig.1, fig 2); 3) object links themselves can be linked and 4) procedures and methods 
are applied in the same manner to all objects, explicitly to objects on different scales. 
Points 2) and 3) produce the fractal topology of the Cognition Network (fig. 1).  
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Figure 1:  Cognition Network. Fractal topology of the hierarchical object network with link objects and  
                  procedural attachments.

2.2. Image Object Hierarchy 

A Cognition Network is built by objects. All objects may carry various kinds of data 
and may be linked by (link) objects. Links are objects themselves, and therefore carry 
data and further links. In addition to this, any object may carry semantic meanings and 
procedural attachments (fig. 1)..  

Each image object represents a connected region of the image. The pixels of the 
associated region are linked to the image object with a “is-part-of” link object. The 
neighborhood relation between two image objects is represented by a special neighbor 
link object. The image is partitioned by image objects; all image objects of such a 
partition are called an image object level. Image object levels are structured in an image 
object hierarchy. Each object is connected over links to its direct neighbor, sub and 
super objects. Operating over this structure a lot of relational information can be 
addressed (fig. 2a). The image object hierarchy together with the image forms the 
instance cognition network that is generated from the input data. Starting with a 
network of image object primitives that are produced by rather elementary segmentation 
procedures those object primitives will be altered through various processing steps 
involving more and more domain knowledge in order to come up with a final network 
of objects of interest (fig. 2b). 

2.3. Classes and Classification 

Class objects describe the semantic meaning of objects in the instance network. Classes 
can be linked into a class hierarchy by inheritance links to inherit class descriptions and 
group links to group different child classes together to a parent class of common  
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a) b)

Figure 2:   Hierarchical network of image objects. a) general or instance form. b) after processing and 
                   classification. Based on this representation, the structure, composition and context can be 
                   described for each object. 

semantic meaning. Class descriptions are created via a fuzzy logic based system. The 
classes form a structured sub network called the class hierarchy [3,4].  
Image objects are linked to class objects by classification link objects. Each 
classification link stores the fuzzy membership value of the image object to the linked 
class. An image object may have an arbitrary number of classification links. The class 
with the highest membership value for the image object is called the current class of the 
image object.  

2.4. Properties 

Properties are arbitrary numbers, which can be computed by a well defined algorithm 
from the current network situation. There are two major types of properties: image 
object features, which are linked to an image object, and meta data, which can be any 
kind of other information and may be linked to some other object in the entire network.  

Since regions provide much more information than single pixels, there is a large 
number of different image object features for measuring color, shape and texture of the 
associated regions. Even more information may be extracted by taking the network 
structure and the classification of the image objects into account. Important examples 
for this type of features are the “relative border to neighboring objects of a given class” 
and “the number of sub objects of a given class”.  

Meta data properties can describe the current network situation in general. 
Examples are the “mean value of a given image channel”, the “number of levels in the 
image object hierarchy” or the “number of objects classified as a given class”. Meta 
data may also come as an additional part of the input data.  

2.5. Procedures 

The network situation is modified by procedures. A procedure is the combination of an 
algorithm that works on a specified image object domain. Procedures may have an  
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a) b)

Figure 3:   Computation of the proliferation index of crypts in the small intestine of mice. Example from a 
                   high-throughput screening. The procedure has extracted a crypt with a longitudinal cross-cut 
                   section and the contained mitotic and non-mitotic nuclei b) from BrDU stained tissue a). The 
                   procedure works despite the strong structural variety in which crypts occur.  
                   Image data courtesy Novartis, Basel 

arbitrary number of sub procedures. The algorithm describes what the procedures will 
do. Examples for algorithms are classification, i.e. linking the instance objects with 
class objects, image object segmentation or image objects modifications like merging, 
splitting or rearranging sub objects of an image object. Other important algorithms are 
computing and modifying attributes (see 2.6) and exporting results. 

The image object domain describes where the algorithm and the sub procedures 
of the procedures will be executed. Image object domains are any subset of the image 
object hierarchy. They are defined by a structural description of the subset.  Examples 
for domains are a specific image object level or all image objects of a given class.  

Applying algorithms to specific object domains allows to process image 
information locally and highly specifically. From the moment that an image object is 
classified as a nucleus, for instance, everything that happens from now with this object 
and its networked neighborhood can be done using highly specific nucleus logic. 

2.6. Rule Base and Image Processing 

A high level computer language designed for modelling complex cognition processes 
must offer a limited number of generic building blocks which can be combined into a 
program for a specific analysis case. Because of the multi-scale aspect, those building 
blocks have to be reusable for very different procedures as well as for those on very 
different scales. Data analysis within a Cognition Network is therefore a dynamic 
process controlled by a so-called rule base. The rule base contains the domain 
knowledge necessary to address a specific problem and is created using a specific 
graphical meta language. It describes the semantics and the procedures for a given 
analysis task. Starting with the initial input data like pixels in an image, the constantly 
alternating application between classification and locally adaptive procedures results in 
a self-creation and self-organisation of the instance network. The final state of the 
network then represents the structures of interest with all relevant parameter extracted 
from the data. 



M. Baatz et al. 72 

Figure 4:   Extraction of cells, nuclei  and golgii in a cell based assay. Despite the heterogeneous 
                   information concerning the cell body in the image the procedure has extracted and separated  
                   the cell units and the cell substructures properly. Image data courtesy EMBL, Heidelberg.

3   Discussion

The object oriented approach provides significant advantages for applications in image 
analysis: an object composed by a cluster of adjacent pixels carries far more information 
than a single pixel. This aspect is supported by appropriate segmentation procedures [2]. 
The hierarchical structure of image objects in the Cognition Network allows the 
simultaneous representation of structures in images on different scales. When operating 
over this network a considerable amount of structural and relational information can 
also be accessed  [3]. The additional information accessible and the improvement of the 
signal to noise ratio concerning the information provided by objects result in more  

Figure 5:   Extraction of nuclei and mitochondria in electron microscopic images. Although spectral 
                   information exists only in one dimension (black/white) the procedure finds objects using the 
                   spectral and the relational  information in the image.  Image data courtesy ICF LMU Munich
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detailed and more robust classification results [4]. In many operational analysis tasks in 
the fields of histopathology (fig 3), cell based screening (fig. 4) and electron microscopy 
(fig 5), the Cognition Network approach proved to produce reliable results fully 
automatically even in high throughput conditions. It especially extracts structures of 
interest even in challenging cases such as low signal to noise ratio images, 
heterogeneous or variable structures of interest or tasks which include a complex 
semantic [4]. 
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Summary. The present study aimed at verifying whether immature cat oocytes  with  morphologic 
irregular cytoplasm display self-similar features to be analytically described by fractal analysis. Original 
images of oocytes collected by ovariectomy were acquired at a final magnification of 400 X with a CCD 
video camera connected to an optic microscope. After grey thresholding segmentation of cytoplasm,  
image profiles were submitted to fractal analysis by three different methods which yielded divergent 
fractal dimension (FD) values. The highest FD of 1.91 was measured on grey-dark cytoplasm  
characterized by highly connected  network of  lipid droplets and intracellular membranes. The fractal 
analysis provided an effective quantitative descriptor of the real  cytoplasm morphology, without 
introducing any bias or shape approximation, which could contribute to an objective and reliable 
classification of  feline oocytes.

1        Introduction  

In recent years, spontaneous and experimental animals of various species have been 
produced by in vitro oocyte maturation (IVM) and in vitro fertilisation (IVF) 
techniques. In this context, among the factors affecting the acquirement of in vitro 
developmental competence, oocyte cytoplasm morphology at the age of collection 
appears to be of great importance in some animal species. Based on microscopic 
appearance of their cytoplasm, oocytes are usually categorised in several subgroups, 
each displaying greater or lesser developmental capability [1,2,3,4,5,6,].     
          Thus, morphologic structural information relevant for diagnosis or useful for 
assessing oocyte developmental capability are mostly acquired by means of a subjective 
visual inspection. This invariably lead to results which are difficult to reproduce, a 
problem which generally occurs whenever one is dealing with a complex system of 
cells and tissues. Even at conventional microscopic examination, ex vivo cat oocytes 
revealed a  very complex cytoplasm appearance, due to a great amount of lipid droplets 
distributed within an intracellular framework of highly connected membranes and 
organelles of irregular morphology [4,5,7]. In this context, it is likely that almost all 
conventional morphometric tools and computer-assisted image analysis will provide 
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rather ambiguous and poorly comparable data on morphologic dimensional properties 
because these methods are inadequate to quantitatively describe irregular cell 
components that cannot be assessed with a unique Euclidean scale of measure chosen a
priori [8,9]. In contrast, the fractal geometry recently discovered by Mandelbrot (1983) 
[10] may offer an appropriate way to quantitatively unravel contour length, surface area 
and other dimensional parameters of almost all irregular and morphologically complex 
biological tissues [9]. The present  study  aims  to  verify  (1) whether  feline  oocytes  
could be recognised as self-similar fractal elements, (2) to evaluate the fractal 
dimension (FD) on a series of distinct cytoplasm features revealed in oocytes with or 
without the cumulus oophorus  (COC), and finally to provide a reproducible method for 
the morphologic characterisation and the objective classification of immature feline 
oocyte cytoplasm.  

2       Materials and Methods 

2.1 Ovary Collection  and Oocyte Recovery  

Ovaries from two healthy female cats, 8 months and  6 years old respectively, obtained 
by ovariectomy were stored at room temperature in phosphate-buffered saline (PBS) 
supplemented with 100 IU /ml-1 penicillin-G potassium salt and 100 g /ml-1  sulphated 
streptomycin (Sigma Chemical co St. Louis MO, USA) for 30-120 min. Eight (8) 
oocytes were collected from each animal by repeatedly puncturing the ovaries with a 
22-gauge needle. Oocytes with an intact corona radiata, attached cumulus oophorus 
cells (COC) and medium to dark pigmented cytoplasm were pooled and washed twice 
with PBS containing antibiotics and 0.1% (w/v) polyvinyl alcohol (Sigma Chemical co 
St. Louis MO, USA). 

2.2      Assessment of Oocyte Cytoplasm Morphology 

Selected oocytes with intact COC and successively denuded of COC using finely-
drawn glass capillary pipette (Fig.1: A-A1) were submitted to fractal analysis. Original 
images of each oocyte were acquired using a 40x objective lens and a CCD video 
camera connected to an optic microscope. Three different picture profiles of the oocyte 
cytoplasm were segmented using a computer assisted image analysis system (Sistema 
MONO, Immagini e Computer, Milano, Italy). A binary image was obtained by first 
grey tresholding the area occupied by the grey-dark cytoplasm (Fig1: B-B1); thereafter, 
two different outlines were extracted from this binary image by applying a Roberts 
filter: one pertained to the internal texture of the grey-dark cytoplasm area as well as to 
the scattered grey-dark particles within the cytoplasm, while the other referred to the 
external profile only of the grey-dark cytoplasm (Fig.1: C-C1 and Fig.1: D-D1).

2.3      Fractal Analysis and Fractal Dimension Evaluation 

The fractal analysis of segmented cytoplasm profiles was performed by means of three 
different methods. The FANAL++, a program run on a work station equipped with 
Linux S.U.S.E.8.2, which enabled us to identify the true fractal domain within the bi-
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asymptotic curve achieved by the box counting method [11]. It corresponded to the 
middle part of the curve precisely defined by upper [ 2] and lower [ 1] limits which 
appears as a straight line on a double log-log plot (Fig.2). From the slope of this 
straight line it was possible to estimate the corrected fractal dimension (FD).All images 
were successively analysed using  BENOIT 1.3 (TruSoft Int’l Inc., 204 37th Ave. N # 
133, St. Petersburg, FL 33704), a commercially available program which, however, did  
not  include  the  principle  of  the  fractal  interval  within  the bi- asymptotic curve and  

                

Figure 1: A-A;  Oocytes  with  intact  COC  and  successively denuded of COC using finely-drawn glass  
                 Capillary  pipette.  A  binary image was obtained by grey tresholding the area occupied by the  
                 grey-dark  oocyte  cytoplasm.  B-B1;  two  different  outlines  were  extracted  from this binary  
                 image  by  applying  a  Roberts  filter:  one  pertained  to  the  internal texture of the grey-dark 
                 cytoplasm  area  as  well  as to the scattered grey-dark particles within the cytoplasm while the   
                 other. D-D1;   referred  to  the  external profile only of the grey-dark cytoplasm. Original image   
                 of each oocyte were acquired using a 40x objective lens.  

A B DC

  A1 B1 C1 D1 
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therefore was not equipped for  FD calculation based on <fractal window > recognition 
[8]. The external contour profile of oocyte cytoplasm was finally also analysed using 
Image-pro plus 4.1 program (Media Cybernetics, Springfield, USA), which performed 
modification of the hand and divider method (yardstick method) introduced for the first 
time by Richardson (1967)[12]. In the present study the FANAL++ program was 
adopted as the reference method, to which FD values were compared to those obtained 
with the other methods. 

Figure 2:  FANAL ++    calculation  of    the   fractal   dimension.  The   fractal   region   is   defined   by   
                  upper  and  lower  limits (vertical lines) on the straight middle part of the bi-asymptotic curve.  
                  The scale is in pixels  (1pixel = 0,63 m).   

                     

2.4      Statistics 

Data were found to be normally distributed and analysed by parametric statistics 
(ANOVA and T-test). 

3       Results

All the examined profiles of feline immature oocyte cytoplasms displayed a self-similar 
pattern with fractal properties defined by peculiar FD values which were assessed by 
three different approaches (Table 1). For each set of oocyte images, either with intact 
COC or without COC as depicted in Fig.1: B-B1, C-C1, D-D1, FD mean values 
appeared comparable between the two categories, i.e. with or without COC, when 
estimated using the same program and whatever the method used for the fractal analysis 
of these morphological traits (Table 1). However, by measuring the more complex 
profiles of both oocyte categories, i.e. when the entire cytoplasm of oocytes with or 
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without COC was analysed by means of  FANAL ++  and Benoit 1.3  [Fig.1: B-B1], FD 
absolute mean values were found to be extremely elevated and statistically different 
from each other at P< 0.001, namely FD 1.91 ± 0.02 vs.1.80 ± 0.02  and 1.91 ± 0.03 vs. 
1.78 ± 0.01 respectively (Table 1). Mean FD values of images reported in Fig.1:C-C1
were also found to be statistically different, even at P <0.05.  Unexpectedly, the mean 
FD values of external profiles of oocytes with COC and without COC (Fig.1:D-D1)
obtained by Benoit 1.3, were found to be consistently lower, but statistically not 
different from those obtained with FANAL ++ and  Image-pro plus 4.1 programs. 

Oocytes with intact COC Oocytes without COC 

Image profiles Fanal ++ Benoît  1.3 image-pro Fanal ++ Benoit  1.3 image-pro 

Fig.1:D-D1 1,27 ± 0,08 1,19 ± 0,05 1,25 ± 0,09 1,27 ± 0,06 1,19 ±  0,04 1,23 ± 0,05 

Fig.1:C-C1 1,54 ± 0,08 
**

1,44 ± 0,09 n.m. 1,55 ± 0,11 
**

1,43 ± 0,08 n.m.

Fig.1:B-B1 1,91 ± 0,02 
*

1,80 ± 0,02 n.m. 1,91 ± 0,03 
*

1,78 ± 0,01 n.m.

Table 1:  Fractal  dimension of  cytoplasm profiles  segmented  from  oocytes  with  and  without  COC.    
                Results  are  means  ±  one  SD  of  48  examined images. Fig.1: B-B1, * FD values significant  
                different at  P<0,001;  Fig.1: C-C1, ** FD  values  significant different at P<0,05; Fig.1: D-D1,   
                statistically  not  different.  n.m. =  not   measurable  with  Image-pro.  Images  of  Figure 1 are     
                adequately  explained in the Material and Methods section. 

4       Discussion 

We have developed a new morphometric strategy that uses grey level thresholding 
segmentation and fractal methodology to 1) verify the theoretical assumption that the 
oocyte cytoplasm morphology possesses a self-similar fractal behaviour, 2) 
quantitatively describe segmented features of immature feline oocytes by fractal 
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analysis and assess the respective fractal dimension [FD], and 3) provide a critical 
comparison of data obtained by three different methods. In this context, the FANAL++ 
program was considered the method of reference because it enabled us to calculate the 
fractal interval also called <scaling window>, in which real fractal behaviour of a 
biological structure exists, i.e. where the data can be represented adequately by a 
straight line [11]. Specific fractal dimensions obtained with the FANAL ++ program 
showed that immature feline oocyte cytoplasms shared self-similar properties within a 
scaling domain covering a factor [ 2 / 1] of two orders of magnitude, which is a 
conventional requisite for defining fractal structures [13, 14]). For all the distinct 
cytoplasm profiles examined, the data obtained with the other methods appeared 
different from those obtained with FANAL++. The reason is that Benoit 1.3 and Image 
pro plus 4.1 programs, unlike FANAL ++, both lack the theoretical foundation focusing 
on scaling behaviour which  prevents the real fractality of cells and tissues, namely self-
similarity and scale invariance for a defined region, being taken into account [8]. Two 
other important observations deserve to be mentioned here: first, the analysis of 
different cytoplasm profiles revealed increasing FD values in relation to  the increasing 
complexity of their features, which actually occurred by  passing from the simplest 
external outline (Fig. 1: D-D1) to the most complex grey-dark profile of the oocyte 
cytoplasm (Fig 1:B-B1). Second, the data obtained  with FANAL ++  about cytoplasm 
features  of increasing complexity showed a higher statistical significance with respect 
to the data obtained with the other two methods (table 1). Therefore, high FD values 
underlined the reliability of FANAL ++ for measuring highly complex and irregular 
cell structures, such as grey dark cytoplasm profiles of feline oocytes, without 
introducing any morphologic approximation or simplification, which is  unavoidable 
when Euclidean morphometric methods are used. Cytoplasm profiles of feline oocytes 
are curve lengths related to the surfaces from which they were obtained by binary 
segmentation of microscopic views from ex vivo preparations, rather than from 
histological sectioning. Their relative FD findings, however, could not be critically 
compared, because of the absence of experimental results for feline oocytes and, 
therefore, should be qualified in the light of those FDs obtained in other biological 
systems. Actually, the fractal dimensions reported in this study were much higher than 
those found for natural coast lines [15] but compatible with fractal dimensions 
pertaining to most cell organelles and cell tissues, either in normal physiologic [16], 
pathologic or tumour conditions  [8, 17, 18, 19, 21, 22]. In general, membranes and 
cytoplasm organelles in a metabolic active state, such as feline oocytes, breast cancer 
cells triggered by estrogens [23] and in several other neoplastic tissues [24, 25]), with 
the exclusion of leukemic cells [17], shared FDs higher than those found in subcellular 
components of differentiated or quiescent elements, in non neoplastic tissues or in cells 
prone to apoptosis [26]. Taken together, our findings further confirmed previous  
results,  namely,  that  fractal  structures observed in human and animals are self-similar  
only  within  a  limited  range  of  scale  lengths  to  be  experimentally defined. 
          On the bases of  these premises the fractal analysis performed with the FANAL 
++ program has enabled us to unravel the morphologic richness and the structural 
irregularity of immature oocyte cytoplasm. It has also provided quantitative information 
useful for an albeit partial description of the real morphology and for an objective 
method allowing a reliable oocyte classification. Furthermore, the observation that 
oocytes with or without COC collected ex vivo after ovariectomy displayed close FD 
values could be heuristically relevant. It might be of particular value in the case of 
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domestic cats, whose oocytes are currently used as a model to set up experimental 
methods aimed at non-domestic Felidae and at preventing the extinction of endangered 
species through the selection of oocytes for further  IVM/IVF development [3].   
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Summary. Fractal analysis has become a popular method in all branches of scientific investigation 
including ecology, physics and medicine. The method is often used to determine effects such as impact of 
cattle grazing, the distribution of stars within a galaxy or whether tissue is pathological. However several 
aspects of fractal analysis are not often considered when interpreting results communicated in the 
literature. These include the concept that no presentation of any pattern on a computer, even for an ideal 
fractal, is truly fractal. Pre-processing that is also required, such as scanning of images and resizing play a 
role in the variation of the final fractal dimension. In addition D is also a function of the fractal analysis 
method used and how the final fractal dimension is determined. To obtain a better overview of the effects 
of the steps involved in fractal analysis and the utility of this method, this chapter describes, using 
biological material from neuroscience, a non fractal based method, Sholl analysis and continues by 
discussing various processing options and the results obtained using fractal analysis. The effect of 
different fractal analysis methods, different computer applications of the same method, scale and 
resolution as well as regression analysis, which is for most methods the final step in determining D are 
discussed. This provides a platform for a better understanding of fractal analysis in research fields other 
than physics and mathematics and a more meaningful interpretation of results.

1 Introduction 

What is a fractal? A simple definition provided by Mandelbrot states that a fractal 
structure is one where the structure is invariant under a number of transformations and 
the structure has no characteristic length.[1] The seemingly simple procedures involved 
in fractal analysis combined with the suggestion that the fractal dimension (D) describes 
the natural world 'better' than any other parameter, has led to its popularity in analysing 
natural objects but has also led to some misconceptions that require clarification. The 
problems in the field of fractal analysis lie in the fact that many experts, being confined 
within a specific linguistic boundary referred here as fractal literacy, communicate 
within this domain and therefore do not always provide the necessary information to 
researchers in different research fields with different subject literacy. This has led to 
misinterpretations of results due to the apparent lack of a sound description of fractal 
theory and its relationship to the associated analysis procedures.[2] As an example 
consider the question ”Are biological forms fractal?”.[3] Strictly speaking, the term 
fractal can apply only to forms that are strictly self-similar and infinite. Natural objects, 
are thus better described as prefractals.[4] 

Can we then use fractal analysis to discuss forms in nature? As the magnitude of 
published literature indicates, many seem to think this is possible. Several practical 
methods based on the mathematics of complex geometry are now in use, including the 
calliper, box-counting, dilation and mass-radius methods.[5] Descriptions of these 
methodologies can be found in the literature.[6-8] Of interest here are practical 
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considerations when applying fractal analysis such as differences in results due to 
different applications of the same method and determination of the final fractal 
dimension.[9]  

2 Fractal Dimension in Neuroscience 

Sholl analysis is a commonly used method to analyse dendritic branching patterns of 
neurons or certain types of neuron support tissue. [10-12] Fractal analysis however can 
provide additional data not obtainable by Sholl analysis. Figure 1 illustrates using two 
hypothetical cells, one with simple and one with a complex branching pattern how 
fractal analysis differentiated between the two cells, whereas Sholl analysis did not.  

Figure 1: Simple and complex branching pattern analysed using dilation method. 

Elston and co-workers have shown using Sholl analysis that the dendritic arbours of 
layer III pyramidal cells in the primate visual processing pathways increases from low 
level visual processing areas such as V1 to higher more complex processing areas such 



Fractal Analysis: Pitfalls and Revelations in Neuroscience 87

as mediotemporal (MT) area.[13, 14]  Figure 2 shows a simplified diagram of the visual 
processing pathways.[15] 

Figure 2: Simplified visual processing pathways. Abbreviations from [15].

Sholl analysis provided the first important insights into differences in dendritic 
branching patterns from low level to higher level processing in the macaque visual 
cortex.[12] A summary of the findings for both pathways is shown in Table 1. 

a) b) 

 V1i V1b V2 V4 
V1b *    
2 * *   
V4 * * *  
TEO * * * * 

V1 V2 MT LIPv 
V2 n.s.    
MT * *   
LIPv * * n.s.  
7a * * n.s. n.s. 

 n.s. non-significant difference, * significant difference p < 0.05

Table 1: Sholl analysis of a) occipitotemporal pathway, b) occipitoparietal pathway. 

As shown in Table 1 not all differences between areas were statistically significant. 
These results prompted fractal analysis to ascertain whether there were differences in 
the branching patterns not identifiable through Sholl analysis.  
Implementing fractal analysis for cortical layer III pyramidal cells, fractal analysis 
differentiated between V1 and V2 and showed a trend for increasing D except for area 
7a in the occipitoparietal pathway. It also differentiated between cells in different 
sublamina of V1 and between functional subregions in V2 (thin and thick cytochrome 
oxidase-rich bands). The occipitotemporal pathway showed a systematic increase in D
corresponding to the position of the cells with lowest D in V1, the lowest station in 
visual processing to TEO/TE, a higher station in the visual processing pathway 
(Figure2, Table 2).[14, 16]  
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Area Mean   sd 
V1 (1) 1.23  0.9 
V1 (2) 1.31  0.4 
V2 (3) 1.27  0.9 
V2 (4) 1.31  0.9 
V4 1.29  0.8 
TEO 1.39  0.7 
TE 1.42  0.7 
MT 1.4  0.5 
LIPv 1.42  0.5 
7a 1.34  0.9 
STP 1.44  0.5 
(1) middle and upper layer III 
(2) layer IIIc 
(3) cytchrome oxidase-rich thin bands 
(4) cytochrome oxidase-rich thick bands 

Table 2: Fractal dimension of cells in occipitoparietal and occipitotemporal visual pathways. 

However, despite these findings and other interesting results reported in the 
literature, comparison of fractal data from diverse studies that utilize different 
methodologies remains difficult unless the methodologies are clearly outlined. Sources 
of variation can occur at several steps when applying fractal analysis, including image 
collection (resolution, image manipulation and scale), choice of fractal method (box-
counting, dilation) and determination of the final fractal dimension. The following 
section discusses these issues using results from neuroscience. 

3 Methodological Considerations 

Strictly, if it is assumed that the image does not reflect an ideal fractal in a statistical 
sense (this is the case for biological images), then interpreting the image using D is 
meaningless. The fractal dimension may still be useful though by using it as a 
quantitative parameter like the dendritic field diameter or surface area that indicates 
complexity or the scale dependence of a pattern (Kenkel and Walker, 1996). D can be 
used for categorizing images representing morphologically complex objects such as 
neurons and thus D is not intended to indicate that the object is fractal.[3, 17, 18] This 
fundamental controversy has led to limited but important research into the utility of 
fractal analysis. Results of this research has suggested that variations in sampling and 
preparing images for analysis and the analysis procedure can have non-trivial effects on 
the estimation and interpretation of D.

3.1 Scaling 

Theoretically images of identical objects at different sizes should not influence the 
magnitude of D. However drawings of the same sample of neurons from V1 of the owl 
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monkey at two different sizes but at the same resolution of 72 dpi influenced their 
fractal values. 22 cells were scanned at a standardised absolute scale of 100µm = 3cm 
on the page and saved at 100%. These images were compared to D obtained from 
images scanned into the computer from their original drawing size on A4 paper and then 
resized to either 400 x 400 pixels or 600 x 600 pixels. The D values returned for the 
very same cells differed as a result of scaling introduced during image capture and 
preparation (Figure 3).  
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Figure 3: Fractal values of owl monkey V1 pyramidal cells scanned at 72 dpi and analysed at different 
scales. 

An ANOVA indicated a significant difference between the groups (p < 0.0001) with 
cells with the standardised absolute scale (100µm = 3cm) having higher D values (mean 
+ S.D.: 1.32  0.04) compared to the 400 x 400 pixels group (1.29  0.06) or 600 x 600 
pixels group (1.2  0.07). The standardised absolute scale also had the smallest 
variance. In Elston and Jelinek’s early work they indicated differences observed 
between visual areas in the macaque when cells that were too large were rescaled to fit 
the computer screen at a width of 400 pixels.[14, 16]  In later work these cells were 
reanalysed using the standardised absolute scale. Ds for the cell sample previously 
analysed differed for some cells more than others, however identical conclusions were 
drawn in terms of significant differences observed between visual areas.[19] This latter 
result indicates that, provided the methodology is consistent meaningful conclusions can 
be drawn. In addition it needs to be noted that the effect on D associated with the 
resizing may not be related to the size per se but rather to the computer processing. As 
such, increasing the size of an image leads to insertion of interpolated (Euclidean) 
information along the boundaries and therefore changes the value of D.

3.2 Resolution 

Scanning the same cells at different resolutions (72 dpi and 150 dpi) returned different 
D values, even when all other parameters are kept constant as shown for cells from area 
V1 (Figure 4). Scanning the drawings with standardized scale at 72 dpi resulted in less 
variance in D. Cells scanned at 72 dpi had, with one exception, higher D values than 
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those obtained at 150 dpi. A student t-test showed a significant difference between the 
groups (p < 0.01). The mean and standard deviation of the 72 dpi and 150 dpi group 
were 1.31  0.04 and 1.27  0.06 respectively. An ANOVA comparing V1, V2, ITc, ITr 
and PFC indicated that the p value for the 72 dpi was lower than for the 150 dpi 
showing a greater likelihood of identifying a difference when using the 72 dpi scanning 
resolution. 
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Figure 4: Fractal dimensions of cells from V1 of the owl monkey scanned at 72 and 150 dpi. 

3.3 Comparison of Binary, Outlined and Skeletonised Images 

Digitised images can be presented as binary, skeletonised or outlines of images. All the 
work with primate pyramidal cells involved skeletonised images, as we were primarily 
interested in the branching pattern. However many researchers use different processed 
images including binary silhouettes or the outline of the images.[20, 21] Jelinek and 
Fernandez investigated the effect of image presentation as a pre-processing step using 
more than 200 neurons from cat retina.[18] Binary images, independently of the method 
used to compute D, showed higher fractal values than outlined and skeletonised images. 
An analysis of the variance showed statistically significant differences (p < 0.001) in 
their fractal values, which was associated with the much smaller D values of the 
skeletonised images. When calculating D using complete binary images there may be a 
space filling effect that can lead to a higher D or a D of 2, depending on the relationship 
between the internal area and the contour.[22] However, previous results from our 
laboratory, have demonstrated no significant difference between the estimated D of 
binary images, binary images with cell body and axon removed or border only images 
of cat retinal ganglion cells as long as the dendrites are thin with respect to the cell 
body.  

3.4 Fractal Method 

It is well known that different fractal methods may return different fractal values for a 
given object.[6] The dilation method that is discussed here is based on the Minkowski-
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Bouligand dimension.[23] A common form of this algorithm, was devised by Flook has 
been implemented in various laboratories.[24] This approximate dilation method 
replaces each pixel of the border by a circle/square whose diameter varies within a 
selected range. Applying a convolution procedure (see NIH macros) structures smaller 
than the current diameter of the circle/square can be filtered out. The length of the 
border for each respective diameter is then determined by dividing the area of the 
outline by the diameter. D is estimated from the slope of the log-log plot of length/area 
against diameter. An alternative dilation method introduced by Costa is the exact 
distance method. The exact distance method considers for dilation only those distances 
allowed in the orthogonal lattice underlying digital images.[25]  

Here we re-examined the issue of how different applications of the same basic 
dimension analysis, the Minkowski-Bouligand dimension differ in their estimates of D
using our samples of cortical pyramidal cells. Drawings of seventy-five neurons 
sampled from owl monkey V2 and IT cortex were scanned at a standardized scale (3cm 
= 100µm) and resolution of 72 dpi and analysed using the approximate method and 2) 
exact distance methods. Our results indicated (means  s.d; p > 0.001) a significant 
difference between the exact distance (1.361  0.07) and approximate methods (1.429 
0.07). A more inclusive analysis of the effect of fractal analysis methods involving 8 
different methods and using 192 cat retinal ganglion cells (five box-counting, two mass 
radius, approximate dilation and one cumulative-intersection) has also indicated 
significant differences between methods.[18] Even methods that in theory are 
measuring the same type of dimension (i.e. the box counting procedures from NIH, or 
from the University of Otago) showed statistical differences in their measured D values 
(p < 0.001). However all the results were consistent in that the cells with the highest 
fractal values had always higher values, and the cells with intermediate or lowest 
average values independently of the method used, always had intermediate or the lowest 
average values. These results showed that it is important to distinguish between the 
precision or reproducibility of the measurement and the absolute accuracy. They also 
indicate the importance of using the same methodology in order to compare different 
data sets.  

3.5 Regression Analysis 

Different authors have used different methods to determine D from log-log values 
because of the limited scale-invariance of neurons. The simplest method of obtaining D
is to fit a regression line to all data points and determine the slope of this line. The linear 
region can also be calculated by determining the local slopes. One method for this, 
described by Caserta for the mass-radius method, is to calculate the n-point local slopes, 
as the difference in log N(r) divided by log (r) for every n successive points. The region 
in which the local slopes are constant is then taken as the linear region.[26] An 
extension of this method uses wavelets and the derivative to determine the linear portion 
of the graph.[27] The use of a hierarchical cluster analysis to compute particular subsets 
of the log-log values that achieve the best linear fittings has also been reported.[28] This 
technique allows the detection of changes in D at different scales of measurement and 
compensates for the finite size effects induced by the limited resolution of the images. 
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When this method results in multiple values of D, it is suggested to use the value with 
the longest linear range.  

Using the results obtained from the approximate and exact dilation methods 
discussed above, we determined the final fractal dimension by either 1) removing small 
disks until a predetermined cut-off is reached (r2 value of 0.996 or greater), 2) find the 
range of best fit based on minimising the error in y of the regression analysis to 0.0086 
or less and 3) a derivative method applied over a polynomial interpolation of the log-log 
graph of area.[25] The derivative method, known as multiscale fractal dimension, 
generated data for three parameters: 3a) maximum fractal dimension, 3b) mean fractal 
dimension and 3c) median fractal dimension. Thus fractal dimension values were 
generated using five different applications of determining the line of best fit, providing 
35 pair wise comparisons. Of all 35 possible pair wise comparisons, a Bonferroni post 
hoc analysis obtained a significant difference between 33 of these (p > 0.001). 
Restricting the pair wise comparisons to within each of the two methods, we found that 
eight were significantly different within the exact distance method and six within the 
approximate method (p > 0.001). Table 3 shows the probability values obtained from 
the student t-tests for each alternative with respect to the two dilation methods. 

Determination 
of D

Exact Dilation 
Method

Approximate Dilation 
Method

Maximum 2.7  10-5 1.8  10-7 

Subtract 8.1  10-5 5.8  10-7

Median 0.00019 3.6  10-5

Best fit 0.00023 2.2  10-5

Mean 0.0013 0.00058

Table 3: P values obtained from student t-test for the 2 dilation methods and 5 regression methods. 

The subtract and best fit methods to determine the final D based on a simple rejection 
rule each perform very well combined with either of the two dilation methods. The 
maximum method performed optimal but requires some subjective decisions associated 
with the polynomial fit required as part of determining the derivative. This makes this 
method not very suitable for use by different investigators. However all methods 
differentiate between the two groups suggesting that even though absolute values differ 
between methods the outcome and more importantly the conclusions that can be drawn 
from the results do not.  

4 Conclusion 

A fractal analysis is an ideal method for quantification of the branching patterns of 
dendritic trees, returning data not available by other methods that are based on 
Euclidean geometry. Fractal analysis can have three separate goals.  1. determination 
whether or not neurons are fractal, 2. classification of cells, 3. identification of 
biological meaning associated with D other than inherent in the notion of fractality. 
However, how these methods are implemented determines the final estimate of the 
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fractal dimension, D.[29] Several methodological criteria need to be considered when 
applying fractal analysis to avoid unexplainable sources of variation.  

Notwithstanding the limitations outlined in this paper, it remains that in many 
situations a single number, the fractal dimension, summarises concisely the amount of 
detail and complexity of neurons. More importantly the relative differences observed 
between cell groups are in most instances identical for different applications of the same 
method. However differences between methods may be observed as a linear-based 
method such as dilation measures different attributes of the image compared to a mass-
based method such as mass-radius. Thus our results show that different algorithms, and 
even the same algorithm performed by different computer programs and/or 
experimenters may give different but consistent numerical values. All described 
methods demonstrated their suitability for classifying neurons into distinct groups. Our 
results reinforce the idea that comparison of measurements of different profiles using 
the same measurement method may be useful and valid even if an exact numeric value 
of the dimension is not realised in practice. 
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Summary. The patterns of background or ongoing in vivo activity, even in the absence of any external 
stimulus, are quite irregular showing no clear structure or repetitiveness in the neuronal firing sequences. 
Consequently, the ongoing firing pattern of a neuron is mostly considered as a neuronal noise which is 
traditionally modeled as a stochastic Point process, i.e., renewal process which is devoid of any 
correlation between successive inter-spike-interval (ISI). But a recently emerging alternative view is that 
the ongoing activity may possess sptaio-temporally coherent patterns, a feature of fractal process with 
long-range correlation. Here, we investigated the nature of irregular fluctuations of ongoing neuronal 
firing pattern of neurons located in human hippocampus by the following methods: (i) detrended 
fluctuation analysis (DFA) , (ii) multiscale entropy (MSE) analysis, and (iii) convergence of the statistical 
moment analysis (CMA). Neuronal activity was recorded in the absence of any explicit cognitive task 
while the subjects were awake. Both the DFA and MSE analysis clearly show that the ongoing firing 
patterns are not well described by a renewal process, rather they show long-range power-law correlations, 
representing ongoing memory effects, which possibly arises from a fractal process. Further, these neurons 
showed slow convergence of statistical moments.  Such long-range correlations are also corroborated by 
statistical control sequences. Neurons which exhibit long-range correlations also exhibit statistically non-
significant correlations with other neighboring neurons. The presence of long-range correlations is a 
characteristic of fractal-like dynamics, representing memory or history in the firing patterns. We propose 
that this type of spatio-temporal correlations may be used to optimize information transfer and storage at 
hippocampal synapses. The presence of correlation in the ongoing pattern also suggests the influence of 
pre-stimulus sequence on shaping the post-stimulus responses. Further, these findings call for the 
modification of the existing neural modeling approaches.  

1 Introduction 

Spontaneous electrical activity, the neuronal activity which is observed in the absence 
of obvious external stimuli, is a prominent characteristic of the electrical activity of the 
central nervous system. Such ongoing or background activity is found from the 
microscopic level, recorded in the form of action potentials of a single neuron, to the 
macroscopic level, recorded in the form of global cortical oscillations. The principal 
feature of spontaneous activity is its extremely irregular fluctuations, i.e. lack of 
repetitiveness. The spontaneous activity is traditionally assumed as merely ‘noise’ in the 
nervous system which does not carry any meaningful information [1,2]. The obvious 
consequence of this assumption is that the post-stimulus response is uncorrelated to the 
pre-stimulus or ongoing responses. While analyzing single unit (i.e. neuron) data, the 
mean firing rate is proposed to possess the relevant stimulus-related information, while 
the temporal dependencies between successive action potentials (i.e. spikes) are 
completely ignored. In this framework, the inter-spike-interval (ISI) sequence of a 
single in vivo neuron is theoretically considered as a realization of a homogenous 
Poisson point process (HPP), i.e. renewal process (RP) [3]. The HPP is memoryless: the 
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occurrence of a spike at any time t1 is independent of the presence or absence of spikes 
at other times t t1. Hence, both the spike intervals and the spike counts form the 
sequences of independent, identically distributed random variables: there is no 
significant correlation present in the spike train generated by a HPP process, and the 
HPP interval process is completely described by the inter-spike-interval distribution 
function, which is a static measure.  
  Contrary to this assumption, recent findings [4-9] show that there are 
long-term correlations among ISIs. This long-range correlation is indicative of a fractal 
point process, which is statistically self-similar or scale-invariant. For a renewal 
process, higher-order interval and count distributions can be computed knowing only 
the first-order ISI distribution, but for fractal process, correlations and memory effects 
in the ISI sequence cannot be explained by the first-order ISI distribution. However, 
detection of the long-range correlation in ISI sequence with finite number of spikes is 
not a trivial task since it is shown [10-11] that certain signals may appear as a long-
range correlated process according to one method but not necessarily according to 
another method. Thus, instead of emphasizing the results of one method, we 
recommend to perform multiple and complementary tests of correlation and compare 
the results to exclude the spurious findings of long-range correlation.  

In this current study, we analyze the variability of spontaneous activity of in vivo
single neuron recorded from human hippocampus. Our main aim is to investigate which 
process, renewal process or a fractal like process, better characterizes the fluctuations of 
the ISI patterns? A battery of methods was adopted. We observed that majority of the 
neurons showed long-range power-law correlations in their firing patterns and these 
neurons presented statistically significant inter-neuronal correlations. The presence of 
such long-range correlations is a strong signature of the fractal like process governing 
the neuronal dynamics.  

2 Materials and Methods 

2.1 Subjects & Data Recording 

In this study, we analyzed the data recorded from a single subject (32 yr. male) who had 
pharmacologically intractable medial temporal lobe epilepsy. At the time of recording, 
the subject was in the hospital and had hybrid depth electrodes implanted for the precise 
localization of the epileptic focus. The surgery was performed by a neurosurgeon 
(A.M.); the electrode placement was solely guided by the clinical requirement. The 
complete clinical recording period lasted for 2 weeks and the research recordings were 
obtained using microwire bundles implanted within the depth electrodes. The microwire 
electrodes consisted of 8 identical Pt/Ir wires, which were insulated along the entire 
length, and protruded into the tissue approximately 5 mm beyond the tip of the depth 
electrode. The electrode locations were verified by post-implantation MRI. The research 
protocol was approved by the Institutional Review Boards; the patient provided written 
consent before the recording started.   
 Single unit data were sampled, at the rate of 32 kHz, and stored by the 
CheetahTM data acquisition system (Neuralynx Inc., Arizona, USA). In order to separate 
the ISI sequences of individual neuron, standard cluster cutting (using MClust version 
2.0) computation was conducted. After carefully removing the ISI sequences which 



Fractal Nature of Neuronal Firing Pattern 97

were noise-corrupted, 9 data sequences were selected for further processing. All 
recorded neurons were located in the left hippocampus. The subject was awake during 
the considered segment of recording and no external stimulus was presented to him.    

2.2 Data Analysis  

As stated earlier, the present study emphasized the importance of simultaneous usages 
of complimentary methods of fractal time series analysis. Briefly, the methods are 
sketched as follows.  

2.2.1 Detrended Fluctuation Analysis (DFA) 
This method was introduced by Peng et al. [12] and consisted of the following steps: 
(a) For any ISI sequence {I(t), t=1,2,…, N}, calculate the integrated sequence: 

k
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where I  is the mean of the whole ISI sequence.  
(b) Cut the sequence Y(k) into [N/n] nonoverlapping segments or boxes of size n. Since 
the record length N may not be a integer multiple of n, a short part at the end of the 
integrated sequence will remain. In order to take care of this remaining part, the same 
procedure of segmentation is repeated starting from the other end of the sequence. Thus, 
2[N/n] boxes are produced.  

Figure 1: Illustration of the DFA method to investigate the scale-invariance and long-range correlations. 
Upper: Inter-spike-interval (ISI) time series, I(n) of a hippocampal neuron. Middle: The solid 
profile indicates the integrated time series, y(k), which is then divided into equal boxes of size 
n=100 spikes. The vertical lines show the boundaries between different boxes. The straight lines 
are the trends estimated in each box by a linear least-squares fit. It is to be noted that the 
ntegrated profile fluctuates around these trends. Lower: The root-mean-square deviations of 
these fluctuations, F(n), are plotted against box size, n, on a log-log scale. If a straight line is 
found to be the best fit, the presence of power-law scaling is confirmed. The slope of the line 
provides the scaling exponent, .    
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(c) Calculate the local trend within each box by a least-square fit. Then, detrend the 
sequence against the estimated linear fit. It is to be noted that higher order detrending 
can also be employed instead of linear one [13]. 
(d) For each of the 2[N/n] boxes, calculate the variance of the detrended sequence which 
was then averaged and the square root was taken to obtain the fluctuation function F(n).
(e) Finally, calculate the fluctuation function for all possible box sizes (in this study, we 
vary n=3 to N/3].  

For long-range power-law correlations in the ISI sequence, F(n) n . The 
scaling exponent, , can be estimated by plotting F(n) on a double-logarithmic scale. 
Fig. 1 shows the different steps involved in the computation of .
For uncorrelated sequence and short-range correlations, = 0.5, while 0.5 <  1 
indicates long-range correlations or power-law distributed values. Thus,  is an 
important measure to investigate the statistical correlation properties of a sequence.   

2.2.2 Multi-Scale-Entropy (MSE) Analysis 
A fractal process essentially represents a scale-invariant dynamics showing structures 
on multiple spatio-temporal scales. Because of that, the complexity (or entropy) of a 
long-range correlated ISI sequence should not depend on the resolution of the time scale 
of measurement. Here, we applied the measure of multi-scale-entropy (MSE) as 
introduced by Costa et al. [14]. First, the ISI sequence was coarse-grained by averaging 
a successively increasing number of data points in nonoverlapping windows. Each data 
point of the coarse-grained sequence, )( jI CG , was calculated as follows: 
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)(1)(  where  is the scale factor and 1 j N/ . The sample entropy [15] 

of the coarse grained sequence was calculated. The profile of sample entropy against the 
scale factor is called the multi-scale-entropy, Z. Sample entropy reflects the conditional 
probability that the two pattern sequences of m consecutive data points which are in 
close resemblance to each other will also be similar when the pattern length increases by 
one point.   
 The multi-scale-entropy, Z, for uncorrelated or short-range correlated ISI 
sequence will monotonically decrease with  whereas Z will remain approximately 
constant for a long-range correlated or a fractal sequence.  

2.2.3 Cumulative Moment Analysis 
If a data sequence is long-range correlated, there does not exist any single average or 
mean value which can completely characterize the data. It indicates that as we collect 
more data points, the mean value continues to increase/decrease and the sample mean 
does not converge to population mean. But for nonfractal sequences, sample means 
exhibit quick convergence towards population mean. Here, we calculated the profile of 
cumulative mean for ISI sequence and qualitatively studied the convergent property. 
Although slow convergence of mean is not a definite proof of a fractal process, it 
provides complimentary, and often corroboratory, information to that obtained by the 
earlier methods.  

2.2.4 Inter-neuronal Correlation Analysis 
Earlier methods investigate history effects by analyzing the temporal correlation. 
However, it must be noted that history or memory in the firing pattern of a neuron needs  
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Figure 2: Applications of the battery of adopted methods to two simulated ISI sequences: (a) 
uncorrelated, random ISI, and (e) scale-invariant fractal ISI. The two sequences have identical 
mean, and amplitude histogram. The results based on DFA, MSE and CMA for the random ISI 
sequence are shown in (b)-(d) respectively. Similar for the fractal ISI are shown in (f)-(h).   

to be stored somewhere but time is not a suitable substrate for the information storage. 
An immediate alternative medium of storage can be space, in the formation of a 
neuronal network. The possibilities of modification of the strengths of synapses and of 
the network architecture render the substrate medium to be dynamic. Our hypothesis 
was that those ISI sequences which were   long-range correlated would present stronger 
coupling with one another than the other neurons showing renewal dynamics. The 
degree of inter-neuronal coupling was measured by calculating the correlation 
coefficient between two ISIs.  

2.2.5 Statistical Control 
Our null hypothesis was that the spike patterns were generated by HPP interval process. 
For this purpose, the original ISI sequences were randomly shuffled. Shuffling 
preserves the original mean, variance, and distribution information but destroys any 
correlation present in the original sequence. All of the earlier methods were also applied 
for a set of shuffled ISI sequences, which we termed as surrogate data set (we used 20 
surrogates for each ISI sequence). To quantify the differences between the original and 
surrogate data set, the following score was computed: shuffshuff RstdRRQ /

where R is the value of any measure (e.g., , Z) for the original sequence, {Rshuff} is the 
set of values for same measure for the set of surrogates, and and std are the mean and 
standard deviation operator, respectively. If Q >1.96, the null hypothesis of HPP or 
renewal process can be rejected with 95% statistical confidence. 
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3 Results 

The battery of methods was first evaluated on simulated ISI sequences, random and 
fractal ISIs, and the results are shown in Fig. 2. Although these two sequences have 
same mean, variance and interval distribution function, their scaling and correlation 
properties differ from each other in a clear and convincing fashion. Further, mean of the 
randomly distributed ISI sequence quickly achieves a steady value (Fig. 2(d)), whereas 
mean of the fractal sequence does not show (Fig. 2(h)) any clear sign of convergence. 
Thus, these three methods offer confirmatory and conclusive evidences about the 
underlying correlated structure in the data sequence.   
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Figure 3: Detrended Fluctation Analysis. (a) ISI sequence of a single neuron. (b) Log-log plot of DFA 
method. The asterisks represent the original ISI sequence and the open circles are for the 
shuffled ISI sequence. (c) The scaling exponents for all nine neurons (‘*’). The errorbars 
(mean std) were calculated on the basis of 20 shuffled ISI sequences.         

Next, we present the results of each analysis method of the true ISI sequences. 
Fig. 3(a) shows a segment of an ISI sequence of a typical neuron; a clear straight line fit 
was found in the log-log DFA plot (Fig. 3(b)) with  = 0.687. When the ISI sequence 
was randomly shuffled,  is changed to 0.52 indicating the presence of long-range 
correlation in the original sequence. Fig. 3(c) summarizes the results of all 9 ISI 
sequences corresponding to 9 neurons. Seven ISI sequences showed significantly higher 
(Q > 3)  than their surrogate counterpart. Only one ISI sequence (neuron #6) could not 
be distinguished from its surrogates, and the remaining other neuron (#7) was found to 
be marginally significant. 
 Fig. 4 shows the MSE analysis. Like fractal process, many ISI sequences 
(Neurons #1,2,4,5,8) presented steady state entropy values at higher scale factor, while 
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Figure 4: Multi-scale-entropy (MSE) analysis. Results are presented for each original ISIs (‘*’) and their 
surrogates. Error bars indicate the mean std of Z values for the set of surrogates.     

their surrogates showed primarily drooping entropy profiles against scale factor. 
Interestingly, some ISI sequences (Neurons #3,9) also showed gradually decreasing 
profiles but their entropy values at higher scale factor were still higher than that of the 
shuffled ISIs, thus rejecting the null hypothesis of renewal process.  

Next the profiles of the running mean are shown (Fig. 5) for all ISI sequences 
along with their surrogates. Almost no neuron showed any sign of quick convergence to 
a steady average value but their surrogates, unequivocally, showed a fast convergence. 
Except neuron #6, a clear consistency was achieved among the first three methods of 
analysis.  

We must point out an observation that the ISI sequences of neurons #6,7 were 
closest to the null hypothesis of renewal process and at the same time their firing rate 
was the lowest among all neurons. We firmly believe that these neurons also are fractal 
in nature but due to limited number of spikes in the considered ISI sequences (965 and 
978 spikes, respectively), we could not conclusively prove the underlying long-range 
correlations. 

Fig. 5 shows the results of spatio-temporal correlation analysis. Neurons which 
earlier rejected, with Q > 1.96, the null hypothesis of renewal process showed higher 
degree of correlated firing. Interestingly, there is a close match between the values of Q
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Figure 5:  Cumulative moment analysis. The profiles of running or cumulative mean for ISIs (solid). The 
confidence levels (dotted) were estimated on the basis of shuffled sequences. Note the slow 
convergence of mean values for original sequences. Initial fluctuations and final matches are 
mainly due to boundary effects and should be ignored.  

and the strength of correlated firing, possibly a signature of the formation of tightly 
coupled neuronal network composed of fractal neurons.    

4 Discussion 

Long-range power-law correlations has been observed in diverse kind of complex 
systems (See [16,17] for review) including brain. Here, we briefly mention the studies 
of long-range correlation phenomenon in the human brain spanning from extreme 
global, behavioral performances, to the extreme local, firing of a single neuron.   

In the behavioral domain, memory effects, in the formation of long-range 
correlation, are reported in a human sensorimotor coordination experiment [18] in 
which a subject synchronizes his finger tapping with an external periodic stimulus. 
While investigating the patterns of eye movements in a visual search experiment, 
significant scaling properties emerge in difference across eye positions and their relative 
dispersion [19].  Such memory across eye movements may facilitate our ability to select 
our ability to emphasize certain useful information from the noisy environment [19]. 
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It is recently demonstrated [20] that envelope of the amplitude fluctuations of 10 
and 20 Hz oscillations recorded from the scalp of human brain are correlated over 
thousands of cycles and these fluctuations obey power-law scaling behavior; scaling 
exponents are found to be subject-invariant. The power-law behavior of the global 
cortical oscillations is undisturbed by the presentation of sensory stimulus but the 
scaling exponents are decreased [11]. In addition, it is found that scaling exponents are 
consistent and reproducible for subjects over a span of days [21]. The temporal 
variability of human brain activity as measured by functional-MRI also shows power-
law scaling behavior, which is, further, related with underlying neural activity [22]. 
Mentally active zones with larger haemodynamic responses, an indicator of activations, 
are described by highly temporally correlated processes, whereas mentally inactive 
zones are described by a random walk process. The degrees of long-range correlations 
in the global oscillations are found to be affected by the alertness [21], sensory 
perturbations [11], sleep stages [23].  
 Power-law scaling phenomenon is also observed in the spontaneous activities of 
intracortical field potential recordings from epileptic subjects [24]. Moreover, the 
degree of temporal correlations differ between epileptogenic and non-epileptogonic 
hippocampus [25]. 
 However, in neurophysiology, it is the spontaneous firing pattern of neuron 
which was first investigated for the presence of spatio-temporal correlation [26-28]. By 
using methods derived from fractal time series analysis, long-range correlations have 
been shown in the rate of neurotransmitter secretion at Xenopus neuromuscular 
junctions [29], in medullary sympathetic neurons in cats [5,7,30], in auditory neurons 
[6] or in visual neurons [4] in cats (See [31] for review), in red nucleus of rostral 
midbrain in rats [32], in cultured neuronal networks [33] etc.   
 This paper shows for the first time that in vivo neurons of human hippocampus 
presented spike patterns which were correlated over long time scales. The presence of 
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such long-range temporal correlations has been verified by the simultaneous application 
of different methods. It as also shown that the power-law scaling behavior was not due 
to the inter event interval distribution function. Further, it was shown that temporal 
correlations have been transformed into spatial correlations which may provide the 
substrate for information storage. 
All these findings clearly point out that the power-law long-range correlation is an 
inherent characteristic of the neuronal dynamics present across many spatial and 
temporal scales. Immediately, two important questions arise: (i) What are the 
advantages of the long-range temporal correlations? (ii) What are the neural 
mechanisms based on which the long-range correlation emerges? Unfortunately, there 
has been no clear information available on the benefits of long-range correlation in the 
neuronal firing sequences. It has been proposed that many natural images are fractal [4], 
thus the underlying fractal dynamics might help in improving matched-filter 
performance of neuronal networks. Presence of temporal correlation can also facilitate 
the detection of weak sensory signals in noisy and changing environments [8,34,35]. 
Recently, it was shown [36] that activity of basal ganglia neurons in rats present long-
range fractal dynamics, whose disruption would be related to the basal ganglia 
pathologies like Parkinsonian disease, which might support the relationship between 
fractality and the formation of active neuronal networks [37]. There has also been no 
consensus on the neurophysiological mechanisms which cause the fractal or long-range 
correlated firing pattern. Several candidate models, such as self organized criticality 
[38], fractal-rate point process [39,40], correlated noise driven integrate-and-fire model 
with time varying threshold [41] etc. have been proposed to reproduce the long memory 
in the spiking sequences. However more studies are needed to establish a direct 
relationship between the neuronal coding and the fractal firing pattern. 
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Summary. The hypothesis is presented that psychosocial processes of any dimension have a common 
fractal structure, generated by self-similar interactions between emotion and cognition in both mental and 
social processes. According to the meta-theory of affect-logic, basic affects such as interest/curiosity, 
fear, rage, pleasure/joy and sadness represent specific patterns of energy dissipation, selected by evolution 
for their survival value. Omnipresent so-called operator effects of emotions on thought and behaviour 
appear as self-similar on any mental and social level, thus generating the postulated fractal structures. 
Empirical evidence from the following three domains of observation supporting this hypothesis is 
presented and discussed: Everyday mental and social phenomenology, preliminary results from a 
computer-simulation of elementary affect-like behaviour, and short-term and long-term evolution in 
schizophrenia.  

1  Introduction  

The meaning of fractality, or fractal geometry, can be understood in two different ways, 
a narrow and a broad one. In the narrow sense, fractality is restricted to artificial figures 
of rigorously self-similar morphology in infinite dimensions, small or large. They are 
produced by the endless recurring application of the same precise algorithm on a certain 
geometric or mathematical operation. The so-called Koch island, the Mandelbrot set or 
the fractal figures of Peitgen and Richter are well-known examples [1,2]. Fractality in a 
broader sense, in opposition, is a less precise, but more naturalistic phenomenon. It has 
been detected in a great number of natural phenomena, such as the morphology of 
clouds, of rocks, of plants or of animal forms [3]. Fractal structures were also supposed 
to be present in cultural phenomena such as urban growth processes or stock-exchange 
dynamics. Fractality in this broader sense is characterised by mathematically less 
rigorous self-similarities and algorithms. In fact, both are often not precisely known. In 
addition, the number of self-similar dimensions is usually not infinite in nature, but 
restricted to a few ranges, as for instance in the often quoted fractality of a fern leaf. 
Furthermore, several fractal processes may interact or fractal symmetries may be broken 
in natural phenomena, thus creating more complex structures (e.g. of clouds or of 
rocks). Fractal morphology in this broad sense seems to be an almost ubiquitous 
phenomenon in nature and culture, presumably because it represents one of the most 
economic methods for producing an enormous richness of forms by a minimal number 
of algorithms. 

In this paper, we only deal with fractality in the second sense. We present the 
hypothesis, first formulated by Ciompi in 1988 [4] and further differentiated since [5-8], 
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that mental and social processes of any dimension have an underlying fractal structure. 
This hypothesis is based on the concept of affect-logic, a meta-theory of the 
mechanisms of interaction between emotion and cognition that provides a heuristically 
useful synthesis of current notions on emotions from different fields of science (mainly 
psychology, psychopathology and neurobiology) based on an innovative evolution-
energetic and system-theoretical approach. According to this theory, basic affects such 
as interest/curiosity, fear, rage, pleasure/joy and sadness represent specific patterns of 
energy dissipation, selected by evolution for their survival value. Both theoretic 
considerations and a great number of empirical observations speak for the assumption 
that omnipresent interactions of affects with cognitive functions such as attention, 
perception, memory and combinatory thought are self-similar on all possible mental and 
social levels, thus generating the postulated fractal structures.  

In the following, we firstly summarize some basic theses of the theory of affect-
logic related to the question of fractality. In the second section, we present converging 
empirical evidence from three different fields of observation that support the fractal 
hypothesis – firstly the affective-cognitive structure of numerous everyday phenomena, 
secondly preliminary results of a computer-simulation of elementary emotion-cognition 
interactions, and thirdly empirical data on short-term and long-term dynamics of 
schizophrenia. In the concluding section, we discuss the strengths and weaknesses of the 
presented theses, and reflect on their potential practical and theoretical implications.  

2  Basic Theses of Affect-Logic

2.1 General Notions and Definitions  

The interdisciplinary meta-theory of affect-logic is based on a phenomenological and 
system-theoretical approach of mental and social processes which includes current 
concepts on self-organisation, autopoïesis and non-linear dynamics of complex systems 
[4-8]. Its central point of departure is the postulate, suggested by converging findings 
from neurobiology, psychology, psychoanalysis and evolutionary science, that feeling 
and thinking are obligatorily interacting in all kind of mental and interpersonal 
processes. Fractal structures appear as a result, as we will see, of these omnipresent 
interactions. 

A major difficulty for the study of interactions between thinking and feeling (or 
emotion and cognition) consists, however, in the fact that generally accepted definitions 
for overlapping notions like feelings, emotions, affects or moods are still lacking [8-10]. 
The term of affect, in particular, is differently used by different authors, oscillating 
between a very narrow notion that is restricted to intense conscious feelings, and a very 
general notion that includes all kind of emotion-like phenomena. It is, therefore, of 
crucial importance to clarify what is exactly meant. In accordance with an increasing 
number of authors, in the framework of affect-logic, the notion of “affect” is 
systematically used as an "umbrella-notion" that covers all above mentioned 
phenomena. On the base of their common denominator, we define an affect as a global 
psycho-physical state of variable quality, duration, intensity and degree of 
consciousness [5]. Affects in this sense are eminently psychosomatic phenomena that 
always "affect" the whole organism. Under the form of sympathetic arousal related to 
activities like flight or fight on the one hand, and parasympathetic dominance associated 
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with food intake, socialisation and care for offspring on the other hand, affect-like 
phenomena are already present in quite primitive organisms.  

Of particular importance for the question of fractality is, in addition, the 
energetic understanding of affects proposed by affect-logic [5,8], "energy" not being 
meant in a metaphorical, but in its straight-forward naturalistic sense of a matter-based 
potential for action which is incorporated with food and utilized in affect-specific ways 
both in body and brain. Each basic affect corresponds, in fact, to an evolution-selected 
pattern of energy consumption linked to specific cognitions and behaviours: The 
perception of an enemy, for instance, arouses fear or rage related to high emotional 
tension and psychosomatic preparation for flight or flight, while meeting a friend goes 
with pleasant feelings and relaxed socialisation. The energetic approach leads to a 
deeper understanding of the dynamic forces that organise mental and social processes. It 
also permits the consistent transposition of modern energy-based notions on bifurcations 
and other non-linear phenomena from general dynamic systems theory to the specific 
domain of affective-cognitive interactions (see below). In addition, it may open 
interesting new possibilities for quantifying affective processes [8]. 

Most authors assume that a restricted number of so-called basic affects were 
selected by evolution for their survival value [10-13,15], the meaning of “basic 
emotions” and their exact number remaining, however,  controversial. Affect-logic 
focuses on the five affects most commonly admitted as “basic”, namely 
interest/curiosity/stimulus-hunger; anxiety/fear/panic; anger/aggressivity; 
pleasure/lust/joy and sadness/depression. Other often named candidates are disgust, 
surprise, shame, guilt and envy. The infinite number of additional nuances are generally 
interpreted as mixtures and/or as socio-cultural modulations of basic emotions [14,15]. 

The exact signification of the notion of cognition, too, is often not clear in the 
literature. We propose to define it as the capacity of distinguishing and further 
processing sensory differences [5]. This understanding, too, is deeply rooted in 
evolution. It applies both to elementary and differentiated forms of cognition. It is also 
closely related to the central notion of a “bit” (the smallest distinguishable difference) in 
information theory and cybernetics. In addition, distinguishing between differences 
(variances) and non-differences (invariances) is one of the most basic performances 
both of natural and of artificial neuronal networks.  

The notion of logic, too, is understood in its most general sense, defined as the 
way how cognitions are linked and combined for constructing cognitive entities of 
higher order. This definition covers not only the formal Aristotelian logic, but also the 
common everyday-logic and related phenomena like, for instance, the so-called “logic 
of war” or “logic of peace”, and other types of affect-selected logics that will be 
described below. Contemporary mathematics and philosophy of science, too, admit the 
existence of different types of logic.

2.2 Functionally Integrated Feeling-Thinking-Behaving-Programs as Essential 
Building-Blocks of the Psyche 

Another aspect of affect-logic which is closely related to the postulated fractal 
properties of mental and social processes is the fact, long established in science since 
Pavlov’s canonical discoveries on conditioned reflexes and countless subsequent 
findings on learning and memory, that simultaneously experienced cognitions, emotions 
and behaviours tend to be memorized as functional units that are eventually reactivated 
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and further differentiated in similar contexts. The more often they are experienced, the 
more stable they are associated [16]. They function, hence, as "feeling-thinking-
behaving programs" (FTB-programs) which must be considered as the essential 
building-blocks of the psyche. By combining a few basic affects with a virtually infinite 
number of cognitions, both in the above mentioned sense, potentially unlimited 
variations of culture-specific or personality-specific affective-cognitive “Eigenworlds” 
can be constructed. Current neurobiological research has not only confirmed that 
simultaneously activated brain areas become functionally linked [17], but also that 
incoming cognitive stimuli are systematically associated with simultaneously 
experienced emotions [18]. Fractal structures are generated because underlying affects 
are constantly influencing all thought and behaviour through their so-called operator-
effects, as explained in the next section. 

2.3  Omnipresent Operator-Effects of Affects on Cognition 

It is generally admitted that interactions between emotions and cognitions are mostly 
circular [18-22]. Thanks to their energetic properties, affects play an essential role in 
mobilising, organising and integrating cognition. They regulate not only form and speed 
of thinking, but continually also exert so-called general and specific operator-effects on 
all thinking and behaviour (an operator is a variable which influences another variable). 
The following general operator effects are of particular interest for the fractal 
hypothesis:  

Affects are the essential "energisers" or "motors" of cognitive activity. They 
mobilise, stimulate, accelerate or inhibit thinking in affect-specific ways[5,23]. 
Affects focus attention on affect-specific contents and thus establish an affect-
specific cognitive hierarchy [4, 24]. 
Affects store and mobilise cognitive contents in affect-specific ways (state-
dependent information processing [25,26]). 
Affects function as a “binding glue” that tends to link and combine cognitions of 
similar emotional value [27-29], thus creating personality-specific, culture-specific 
or group-specific (e.g. sectarian) "Eigenworlds" characterized by their own logics in 
the above defined sense. 

In addition, the mentioned basic affects are characterised by the following specific 
operator-effects on cognition and behaviour:  
Interest, curiosity and “stimulus hunger” go along with a general cognitive arousal 
and an (often ambivalent) approach to specific cognitive objects. 
Fear provokes increase of distance from selected cognitive objects. 
Rage provokes diminution of distance, reinforcement of boundaries to and/or 
invasion of selected cognitive objects. 
Pleasant feelings like joy, love etc. provoke diminution of distance and 
establishment of functional bonds with selected cognitive objects. 
Sad feelings loosen and eliminate dysfunctional bonds with lost cognitive objects 
(mourning). 

Both general and specific operator-effects of emotions on cognition have the 
crucial survival-relevant function of reducing the infinite complexity of the surrounding 
cognitive world. Simultaneously, they provide it with meaning and value. In analogy to 
the already mentioned “logic of peace” or “logic of war”, they may lead to a context-
dependent "logic of fear", "logic of hate", "logic of love" or "logic of mourning" which 
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is not necessarily in contradiction with formal Aristotelian logic. Again, such processes 
happen self-similarly on all possible individual and/or social levels. They also function 
as social signals for "emotional contagion" [30], that is for spreading out emotions on 
different social levels, thus generating collective modes of feeling and thinking.  

Both ordinary social dynamics and extraordinary phenomena like mass-panic, 
mass-enthusiasm or mass-rage show that affects are regulating attention, memory and 
comprehensive thinking of small or large groups up to whole nations in similar ways as 
they are “affecting” individual cognitive functions. Affective-cognitive interactions 
appear, in fact, as self-similar on all kind of “microscopic” and “macroscopic”, 
individual and collective, short-term and long-term levels. These observations strongly 
support the hypothesis of a dimension-independent fractal structure of mental and social 
processes. 

2.4  The Affect-Energetic Approach of Mental and Social Processes 

In the view of affect-logic, affects are the essential energizing forces, whereas 
cognitions are the essential structural (that is energy-channelling) elements in all kinds 
of mental and social processes. Context-related affective-cognitive-behavioural patterns 
(or FDB-programs, see above) can, hence, be understood as self-organising energy 
dissipating structures (or so-called "strange" or "chaotic" attractors) in the sense of 
dynamic systems theory [31,32]. Given that recurrent trajectories within a chaotic 
attractor are always self-similar, this understanding, too, speaks in favour of the fractal 
hypothesis of mental and social processes. Additional support is provided by the well 
known fact that increasing energy input in any kind of dynamic system regularly 
provokes a sudden non-linear bifurcation of its organisation toward a new global 
pattern, when a critical point far from equilibrium is reached [31-34]. Strikingly similar 
phenomena occur when emotional tensions (that is energy) in a given feeling-thinking-
behaving system critically increase: For instance, a formerly predominating feeling-
thinking-behaving pattern corresponding to a "logic of peace" may suddenly shift 
toward a "logic of war", a "logic of love" toward a "logic of hate", a "logic of fear" 
toward a "logic of rage", etc. Again, these processes happen self-similarly on all 
possible individual or social levels. In addition, typical so-called butterfly effects (very 
small causes may provoke very large effects in critically desequilibrated systems) can 
also be observed on any mental or social level [5,8].  

2.5  Neurobiological Bases  

Virtually all above mentioned postulates of affect-logic are supported by basic 
neurobiological findings The biological substratum of the assumed "feeling-thinking-
behaving programs" are functionally integrated neuronal networks generated through 
action by neuronal plasticity (repeated stimulation of the same synaptic connections 
facilitates stimulus transmission and dendritic growth) and synchronicity (simultaneous 
activation of remote neuronal areas creates preferential patterns of higher complexity; 
[17]). Recently detected rich ascending and descending connections between limbic 
system, neocortex, thalamus and hypothalamus provide the neuronal basis for close 
continual interactions between emotions, cognitions, sensori-motor activity and 
hormonal tuning of the whole body [19]. Limbic and paralimbic brain structures which 
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regulate emotions are also closely connected with those involved in memorisation. Of 
particular interest is, furthermore, the discovery of direct connections between thalamus 
and amygdala, allowing for emotional emergency reactions to sensory inputs without 
previous high-level cognitive processing [20,21]. Different affect-specific neuronal 
systems with integrated cognitive, affective, sensory-motor and vegetative components 
have been identified during the last 10-15 years; among them a seeking-system, a care-
system and a play-system characterized by so-called positive feelings like pleasure and 
joy, and an anger-aggression system, a fear-rage and a panic system characterized by 
negative feelings [8,18,20,21,35].These same structures are richly innervated by major 
neurotransmitter systems related to specific affective states (e.g. noradrenaline to 
aggression, dopamine to anxiety and fear, serotonine to depression, and endorphins to 
pleasant feelings). Their projections toward distant brain areas provide the functional 
basis for the postulated far-reaching effects of emotions. At least five global cerebral 
states corresponding to the mentioned basic emotions have also been identified by 
spectral electroencephalographic methods [36]. Other EEG-research confirms the 
phenomenon of state-dependent information processing in different functional states of 
the brain [37]. 

In summary, the model of affect-logic postulates that affects and cognitions are 
always closely interacting in mental and social processes. These interactions are 
essentially circular, specific cognitions mobilising und modifying specific affects, and 
specific affects mobilising and modifying specific cognitions. Cognition and affects are 
characterized by clearly different but complementary evolution-rooted properties and 
functions: Cognitions, defined by the capacity of distinguishing and further processing 
sensory differences, are the essential structuring components of mental and social 
processes, whereas affects (seemingly neutral everyday states included) are the essential 
energising forces which mobilise and organise both body and mind in context-specific 
ways [5,8]. The affective component is more body-related, global and slow, whereas the 
cognitive component is more abstract (or “mental"), more “digital” and quick. Affects 
exert numerous general and specific operator-effects on cognition and behaviour. They 
function as the essential “switchers” from one type of thinking (or logic in a broad 
sense) to another. Under increasing emotional tensions (the critical control-parameter), 
sudden non-linear shifts (bifurcations) and so-called butterfly-effects can occur in the 
general patterns of thinking and behaving. All these interactions are basically self-
similar on any individual, micro-social and macro-social level. This speaks for the 
assumption of a dimension-independent fractal structure of all kind of mental and social 
processes.  

3 Empirical Evidence for the Fractal Hypothesis of Mental and 
Social Processes 

3.1  Mental and Social Everyday Phenomena  

The above described interactions between emotion, cognition and behaviour can be 
observed in countless everyday phenomena, especially in all kinds of interpersonal 
communications, from simple small-talk to complex social activities such as teaching, 
selling, advertising, personal and institutional management [38,39]. In all such 
processes, attention, memory and comprehensive thought are continually mobilised by 
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the prevailing affective state. Context-dependent interest/curiosity vs. apathy, fear, rage, 
anger, pleasure/love or sadness determine how thought and behaviour are further 
organised and directed (e.g. towards flight or fight, bonding or mourning, etc.). Such 
organising effects of affects are also present in seemingly neutral semi-automatic 
everyday activities such as reading or writing, moving in traffic, car-driving, dealing 
with technical devices, etc.. All everyday behaviour is conditioned by pre-established 
FTB-programs in which initially intense emotions became largely unconscious by 
habituation: Initial intense fear is transformed in prudent defiance, initial enthusiasm in 
moderately pleasant feelings, initial hot hate in "cool" avoidance. Hidden operator-
effects of initially intense emotions also underlay all personality-specific, group-specific 
or culture-specific value-systems, belief-systems. and ideologies. Apparently lacking 
emotional components return, however, immediately to the surface as soon as such 
apparent "self-evidences" are violated. In advertising, automatic links between certain 
cognitive objects and certain affects (mainly pleasure, joy, erotic attraction, sometimes 
also envy or fear, hate or shame) are artificially generated by sophisticated "affect-
logical" techniques. The same occurs on all levels of politic action and propaganda. All 
these affective-cognitive effects, too, are typically scale-independent. 

Another illustration of virtually all above described affective-cognitive 
interactions is child and personality development. What we call personal (or cultural) 
style is a comprehensive system of feeling-thinking-behaving patterns characterized by 
underlying self-similarities. They develop on the base of a few elementary FTB-
programs such as the inherited sucking and grasping reflexes which are rapidly 
expanded, differentiated and coordinated with other sensory-motor “schemes” [40] 
under the influence of the described organising effects of context-dependent basic 
affects. According to converging behavioural and psychoanalytic studies [5,27,41], 
early "all-good" or "all-bad-worlds" centred on parental figures and immediate 
environment are constructed and integrated by contrasting positive and negative 
feelings. Eventually, these structures develop in tree-like processes that determine all 
further thought and behaviour, in particular all personality-specific so-called 
transference-reactions and repetition-compulsions in the sense of psychoanalysis [43]. 
In later stages, many of these FDB-programs are further differentiated through 
language. Frequently activated FTB-programs become stable personality traits by social 
and other feedback mechanisms. Both personality-specific and/or group-specific 
affective-cognitive structures form self-stabilizing (autopoïetic) "Eigenworlds" 
characterized by the described semi-automatic patterns of habitual thought and 
behaviour. Even well established global FTB-systems can, however, be suddenly 
"bifurcated" towards other global patterns under the destabilizing influence of critically 
increasing emotional tensions, as particularly evident in the phenomenology of crises, 
conversions and so-called brain-washing techniques [42,44,45]. 

3.2 Computer Simulation of Elementary Emotion-Cognition Interactions  

In an ongoing computer simulation based on the concept of affect-logic and the theory 
of evolution, the evolution of elementary affect-like behaviours and their interaction 
with cognition was simulated. Randomly moving and perceiving agents (“individuals”) 
evoluate in an environment which is provided with randomly distributed energy 
resources ("food") and predators ("enemies", cf. figure 1). Each individual has an initial 
amount of "energy" which is eventually consumed and/or increased according to its 
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activity: Standing around, moving slowly or quickly, perceiving over shorter or longer 
distances consumes less or more energy. Matching (”eating”) food increases its energy 
by an amount depending on the size of the food. Being matched (”eaten”) by an enemy 
or not finding enough food leads to death. After a life-time determined by a certain 
number of action-steps, individuals charged with more than the initial energy multiply 
in the next generation into one or several similar individuals according to the 
accumulated energy, whereas individuals with less than the initial energy dye out. In 
addition, initial perceiving and moving capacities of a certain fraction of individuals are 
randomly mutated in each new generation.  

These few "genetic rules” are sufficient for generating complex evolution-like 
processes through mutation and selection which can be quantitatively studied over 
thousands of generations. Changes in about 50 parameters such as population size, 
number of dying out individuals, direction and speed of movement, focus and range of 
perception ("attention"), patterns of energy intake and consumption, group formation, 
group size and stability etc. are continually monitored. Patterns of energy consumption 
related to the perception of food, enemies or other individuals are interpreted as 
elementary affects conformingly to the theory of affect logic, moving towards ("being 
attracted by") corresponding to a "positive affect" and moving away ("flying from") 
corresponding to a "negative affect" (Figure 2).  

By changing genetic and environmental conditions (mutation rate, number of 
initial individuals and enemies, size of food and space etc.), astonishingly complex 
evolutionary variations appear. Individuals which by chance behave in more economic 
ways (e.g. by waiting or running for food, by flying away from enemies, or by 
approaching or avoiding other individuals) survive, while others dye out. When food or 
enemies become too big to deal with by one single individual, individuals survive only 
if they agglomerate in groups (“positive affect”), which act together instead of 
competing by avoiding each other ("negative affect"). 

Figure 1: Individual agents (grey) with randomly distributed 
movements and lengths of perception dissipate their energy in 
different ways, when interacting with randomly distributed 
"food" (small white) and “enemies” (black). 

Figure 2: Emerging patterns of energy dissipation ("affect") 
depend of perceived objects: Most individuals (medium grey, 
medium size) rush towards food (small white), while other 
individuals (dark grey) fly away from enemies (black) or 
move away (light grey) from other individuals. Remaining 
individuals perceive nothing and move randomly.

Both differences and similarities of behaviour on different individual and group 
levels are of interest for the question of fractality. Scale-independent self-similarities 
that can be interpreted as indicators of fractality emerge in most of the above mentioned 
parameters under comparable environmental conditions. This is selectively illustrated 
for the evolution of individuals, small groups (3-5 individuals) and larger groups (8-15 
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individuals) for the two particularly important parameters of movement in relation to 
food and movement in relation to enemies. Both evoluate similarly (rushing towards 
food and flying away from enemies) on all three explored levels (Figure 3 and 4). The 
so far available results confirm that the basic assumptions of affect-logic are able to 
generate a great variety of realistic evolution-like processes. In addition, numerous 
indicators support the hypothesis of self-similarity and fractality of affective-cognitive 
interactions on three elementary levels of complexity. The next steps will include the 
exploration of the behaviour of even larger groups which are, however, difficult to keep 
stable over the needed several hundred generations. 
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Figure 3: Evolution of the movement toward food over 1300 
generations of single or grouped individuals. Independent of the 
grouping-scale a similar pattern of behaviour is evolving. 

Figure 4: Evolution of the movement away from enemies 
over 1300 generations of single or grouped individuals. 
Independent of the grouping-scale a similar pattern of 
behaviour is evolving.

3.3  Evolutionary Dynamics of Psychopathologic Processes  

Formal research on fractal dynamics of mental and social processes is still in its infancy 
[46-47]. "Chaotic" non-linear attractors have, however, been detected in the dynamics 
of daily life interactions between individuals and their environment [48], in clinical 
psychology [49] and in certain psychopathological processes such as the electric brain 
activity of epileptics and schizophrenics [37,48]. Brain dopamine metabolism of 
schizophrenics, too, can develop non-linear dynamics [50]. Former collaborators of the 
first author have detected deterministic-chaotic dynamics of short-term daily 
fluctuations of schizophrenic symptoms over several hundred days (Figure 5) [51,52]. 
Striking similarity with evolutionary dynamics of the same psychosis over several 
decades speaks for scale-independent properties of the underlying pathological 
processes (Figure 6). 



L. Ciompi and M. Baatz 116

0

1

2

3

4

5

6

7

8

1 26 51 76 10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

52
6

55
1

days

sy
m

pt
om

 s
ev

er
ity

Fig. 5.: Daily fluctuations of schizophrenic symptoms with determinstic chaotic dynamics ( Tschacher 

Figure 5: Chaotic short-term dynamics over 751 days of  daily 
fluctuations of symptom severity in a case of schizophrenia [51] 

Figure 6: Possible chaotic dynamics of long-term evolution 
of symptom severity over several decades in 24 cases of 
schizophrenia (black = periods of hospitalisation) [Ambühl, 
unpublished]

4  Discussion  

In summary, the hypothesis of an inherent fractal structure of mental and social 
processes is mainly supported, so far, by numerous everyday observations, by certain 
psychopathological phenomena, and by ongoing computer-simulations of the 
evolutionary dynamics of affective-cognitive interactions based on the concept of 
affect-logic. They are all compatible with the assumption that the postulated fractal 
structures are generated by omnipresent effects of emotions on cognition which operate 
self-similarly on all explored individual, micro-social and macro-social levels. 
However, both direct observations and computer simulations are not yet sufficiently 
consolidated by formal research. Obviously, they are still far from the degree of 
precision needed for a mathematical confirmation of fractality in the initially evoked 
narrow sense. 

There are, however, also arguments of a more general character which speak for 
the postulated hypothesis. Fractality is, as mentioned before, one of the most economic 
principles for constructing a virtually unlimited number of variations by one basic 
algorithm. It is an almost ubiquitous phenomenon in nature. Given that an invariant 
evolutionary-based algorithm – namely the described operator-effects of basic affects on 
cognition and behaviour – has, in fact, been identified which organises and regulates all 
cognition and behaviour, it is very likely that both the infinite variety and the underlying 
uniformity of mental and social phenomena are based on a common fractal structure. 
Both fractal symmetries and innovation-generating asymmetries and/or combinations of 
several fractal attractors may, however, be present in complex mental and social 
structures.  

If further consolidated by future research, these assumptions will have numerous 
theoretical and practical implications. Explaining a great number of seemingly 
heterogeneous processes by a few basic mechanisms signifies an enormous reduction of 
complexity which may deepen and clarify our comprehension for many complicated 
and apparently contradictory mental and social phenomena. All mental and social 
structures can be understood as the result of specific associations between a few basic 
affects and a virtually unlimited number of cognitive differences and structures. With its 
emphasis on fractal affective-cognitive (and not only cognitive) dynamics, the theory of 
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fractal affect-logic leads to numerous new research questions, such as for example: 
Which are the fractality-generating dominant affects in a given conflict or crisis 
situation, in an individual or collective political ideology, in a sectarian movement, in a 
psychopathologic process? What are its specific operator-effects and dynamics? Under 
which conditions are they stable or unstable? Or, more precisely and heuristically more 
useful: How can such processes be influenced? What are the specific control parameters 
and order parameters at work in a given mental or social process? At which point of 
tension are non-linear bifurcations to be expected, and in which direction could they go? 
- It is obvious that all answers to such (and additional) questions may lead to interesting 
practical applications, be it in pedagogy and psychotherapy, or in politics, in 
management or advertising. In addition, fractality provides a consistent theoretical basis 
for the transfer of knowledge from the individual to the collective, and from short-term 
to long-term levels, and vice versa. In conclusion, the fractal hypothesis of mental and 
social processes not only appears as a theoretically seducing concept, but also as a 
practically promising field for further systematic exploration. 
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Summary. Cerebral autoregulation (CA) is a vital protective mechanism that maintains relatively stable 
cerebral blood flow despite variations in systemic pressure as large as 100 Torr. It is commonly perceived 
to operate as a high-pass filter which transmits rapid changes in blood pressure but strongly attenuates 
 and delays low-frequency perturbations.  The ongoing search for clinically significant measures of CA 
integrity fuels the study of relations between the statistical properties of arterial blood pressure 
fluctuations (ABP) and those of blood flow velocity in major cerebral arteries, for example in middle 
cerebral artery (MCA). Using the method of averaged wavelet coefficients (AWC) we find that in the 
healthy subjects the scaling properties of both time series may be characterized by two exponents. The 
short time scaling exponent determines the statistical properties of fluctuations in short-time intervals 
while the Hurst  exponent H describes the long-term fractal properties. Surprisingly, the group-averaged 
Hurst exponents coincide: 1H HABP MCA . To explain this effect, we employ complex continuous 
wavelet transforms to characterize autoregulation in terms of the wavelet gain and instantaneous phase 
difference between the arterial blood pressure and cerebral flow velocity.  In the very low frequency 
(0.02-0.07 Hz) part of the spectrum, where autoregulation is most strongly pronounced, the damping of 
ABP slow oscillations weakly depends on frequency. In this frequency range phase difference evolves 
slowly over time and has an almost uniform distribution.  Thus, CA not only dampens low frequency 
oscillations but also randomizes their phases. However, phase randomization of fractional Brownian 
motion does not affect its scaling properties. Consequently, fractal dynamics of  arterial pressure  is 
essentially carried over to cerebral blood flow .   

1 Introduction 

One of the more significant influences  the concept of fractals has had on science in the 
past twenty years has to do with its twofold impact on physiology. First of all, it 
influenced the description of anatomical structure such as the bronchial tree in the 
mamalian lung [1], the His-Purkinje conduction system in the human heart [2], the 
urinary collecting tubes, and the folds of the surface of the brain [3], to name a few. 
Each of these anatomical structures was shown to lack a characteristic scale over a 
significant distance domain and to be well described by geometrical fractals. A fractal 
object is one in which the parts resemble the whole in some well-defined way, usually 
referred to as self-similarity or scaling. Complementing the change in anatomical 
perspective was a  reexamination of time series generated by a number of physiological 



M. Latka et al. 122

phenomena whose fluctuations lack a characteristic scale over a significant time domain 
and are well described by statistical fractals. A statistical fractal defines a process that is 
described by a probability distribution whose variate scales in time. For example, if 

( )X t  is a stochastic function of time, then if the process scales, such that for a constant 
 we obtain ( ) ( )X t X t   where  is a constant, the process is fractal. Fractal 

statistical phenomena include the cardiac rhythm of a beating heart [4], cerebral blood 
flow [5], the respiratory rhythm of breathing [6] and the motorcontrol rhythm of 
walking [7,8], to name a few. The fractal nature of the fluctuations in time intervals 
between events, whether the event is a heart beat, a breath or a stride, has been shown to 
have clinical implications and to lead to scaling of the moments of the distribution. 
These and other such phenomena motivated the coining of the term fractal physiology 
[9], which explicitly acknowledges the ubiquitous nature of fractal scaling in 
physiological time series and anatomical structures.  

A healthy human brain is perfused with blood flowing laminarly through 
cerebral vessels, providing brain tissue with substrates such as oxygen and glucose. 
Cerebral blood  flow (CBF) is relatively stable, with typical values between 45 and 65 
ml/100g of brain tissue per second, despite variations in systemic pressure as large as 
100 Torr. This phenomenon, known as cerebral autoregulation (CA) is mainly 
associated with changes in cerebrovascular resistance of small precapillary brain arteries 
[10]. Strong susceptibility of brain tissue  to even short periods of ischemia underlies 
the physiological significance of these intricate control mechanism.   

Cerebral autoregulation is commonly perceived  to operate as  a high-pass filter 
which transmits  rapid changes in blood pressure but attenuates  and delays low-
frequency perturbations. Variations of blood pressure are the filter’s input and cerebral 
velocities are its output. Thus, the  question arises as to whether and to what extent  the 
statistical properties of arterial blood pressure fluctuations (ABP) influence  those of 
axial blood flow velocity in major cerebral arteries. In this paper we focus on the  
physiological relation between the fractal  properties of arterial blood pressure  and the 
fractal properties of blood flow velocity in middle cerebral artery (MCAfv).  This  
research has been strongly motivated by the ongoing search for  the clinically relevant 
measures of CA integrity which do not involve manipulations of ABP, but  instead 
exploit  its spontaneous fluctuations.  

2 Materials and Methods 

2.1 Patients 

Ten students (5 men and 5 women, mean age of 24±3 years) of the Technical University 
of Wroclaw voluntarily participated in the study, the results of which are reported 
herein. The subjects were free of cardiovascular, pulmonary, and cerebrovascular 
disorders.  Measurements of arterial blood pressure and blood flow velocity of 45-
minute duration were preceded by 20 minutes of supine rest. Data were recorded during 
spontaneous, uncontrolled respiration. CBF velocity in the middle cerebral artery was 
monitored using a transcranial Doppler ultrasonograph (DWL MultiDop with  2 MHz 
probes  placed over the temporal windows and fixed at a constant angle and position 
relative to the head). ABP was noninvasively measured by finger photopletysmography 
(Finapres, Ohmeda). Beat-to-beat average values of pressure and velocity were 
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calculated  via waveform integration of the corresponding signals sampled at 100 Hz 
and digitized at 12 bits. In numerical calculations non-uniformly spaced time series 
were resampled at 2 Hz with the help of cubic spline interpolation.  

2.2 Average wavelet coefficient method (AWC) 

The wavelet transform is an integral transform which employs basis functions, known 
as wavelets, which are localized both in time and frequency [11], unlike the infinitely 
long wavetrains required for Fourier transforms. Such wavelets are constructed from a 
single mother wavelet t  by means of translations and dilations.  The instantaneous 
phase t  of a signal ts  can be readily determined by calculating  the signal’s 
wavelet transform sW

dtts
a

tt
a

taWs
0*

0
1,

where ( )t  denotes the complex conjugate of ( )t .   Let us consider a fractal data 
function ( )s t :

s t s t( ) ( ) .
Calculating the wavelet transform of both sides of the above equation we obtain   

1/ 2
0 0( , ) ( , )s sW a t W a t .

After averaging out the dependence on the translational time parameter 0t  the scaling 
relation for the wavelet transform becomes   

1/ 2( ) ( )s sW a W a ,
where 

00( ) ( , )s s tW a W a t . Thus, it is apparent that the scaling exponent  may be 
derived from the slope of the linear part in a plot of  ( )sW a  versus a  on a log-log scale. 
This approach is known as the averaged wavelet coefficient (AWC) and can provide 
reliable estimates of scaling exponents for even very short time series [12]. 

2.3 Synchronization analysis 

Given our interest in the interdependence of physiological systems, let us consider two 
signals  1( )s t and 2 ( )s t  and their corresponding instantaneous phases 1( )t  and 2 ( )t .
The phase synchronization takes place when: 1 2n m const , where n, m are integers 
indicating the ratios of possible frequency locking. Herein we consider only the simplest 
case 1n m . Furthermore, as with most biological signals apparently contaminated 
by uncorrelated random fluctuations, we are forced to search for approximate rather 
than exact phase synchrony, that is, 1 2( ) ( )t t const . Thus, the studies of 
synchronization involve not only the determination of instantaneous phases of signals, 
but also the introduction of some statistical measure of phase locking.  

The instantaneous phase ( )t  of a signal ( )s t  can be readily extracted by 
calculating its wavelet transform  with   a complex mother function  to obtain 
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0

0
0 ,

,log,
taW
taWita

s

s .

The dual localization of wavelets enables to associate a pseudo-frequency af  with the 
scale a :

c
a

ff
a t

where cf  is  the center frequency and t  is the sampling period [11]. In instantaneous 
phase calculations we employ the complex Morlet wavelet:  

22 /1( ) c bif t t f

b

t e e
f

and set both the center frequency  cf  and the bandwith parameter bf  to 1.  
The distribution  ( )P  of phase difference  1 2 can be used to 

characterize the synchronization between the two time series of interest. A uniform 
distribution corresponds to the absence of synchronization, whereas a well-pronounced 
peak in the distribution ( )P  is a manifestation of phase locking. We quantify the 
stability of the degree of phase difference  with the index: 

2 2sin cos .
The synchronization index lies in the interval 0 1 and varies with the scaling 
parameter a. A vanishing index 0  corresponds to a uniform distribution of the phase 
differences (no synchronization) while 1corresponds to perfect (phase locking of the 
two processes).  

2.4 Wavelet gain 

In traditional spectral analysis the interdependence of two signals 1( )s t  and 2 ( )s t  is 
characterized by the frequency dependent phase difference and gain. To provide the 
analogous information we introduce  the wavelet gain 

0
1

0
2

2

1 ),(

),(
)(

0

0

ts

ts
s
s

taW

taW
a

defined as the scale dependent ratio of the time-averaged wavelet power of two signals. 

3 Results 

In Fig. 1 we plot the group-averaged )(aWs  versus a  for arterial blood pressure and 
cerebral flow velocity. Averaging was done using 10 measurements for ABP and  due to 
bilateral TCD monitoring, 20 measurements for flow velocity. It is apparent that the 
scaling properties of  both time series may be characterized by two exponents. The short 
time scaling exponent  determines the statistical properties of fluctuations in short-time 
intervals, while the Hurst exponent H describes the long-time fractal properties. In this 
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work we focus on the fractal properties. Surprisingly, the group-averaged Hurst 
exponents coincide:  

1H HABP MCA
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Figure 1: AWC analysis of fluctuations of arterial blood pressure (circles) and flow velocity in middle  
cerebral artery (boxes). The asymptotic slopes of two lines yield the value of the Hurst exponents.

Fig. 2 displays the analysis of phase synchronization between fluctuations of 
ABP and CBF velocity time series in the middle cerebral artery for a healthy subject. 
The color map (Fig. 2d) represents the time evolution of the normalized phase 
difference for 100 integer values of the wavelet scale a . The colorbar reveals the 
assignment of colors to the various synchronization levels. To facilitate interpretation of 
phase dynamics, Fig. 2e displays the variation of the normalized phase difference 

/ 2  for the scale 50a ( 0.04af Hz). We can see that  in the very low frequency 
(0.02-0.07 Hz) part of the spectrum the phase difference slowly evolves over time and 
has an almost uniform distribution as unambiguously indicated by the low value of the 
synchronization parameter  for 30a  (cf. Fig. 2c).  

The conclusions derived from the  case study  are corroborated by the analysis 
of the group averaged synchronization index depicted in Fig. 3. The value of 
synchronization parameter averaged over scales 30 to 100: 30:100 0.13 0.03  indicates 
the physiological absence of phase locking in the very low-frequency region of the 
spectrum. The polar density plot in Fig. 4b shows that for large scales the group-
averaged distribution of phase difference is almost uniform.  However, for smaller 
scales (higher frequencies) the entrainment of arterial blood pressure and cerebral blood 
flow velocities is much stronger. In particular, group-averaged index  has two distinct 
peaks, one at 0.11 Hz ( 0.59 0.09 )  and another at  0.33 Hz ( 0.55 0.17 ).

Fig. 5 displays the wavelet gain MCA
ABP as a function of scale (pseudofrequency). 

We can see that  in the very low frequency  part of the spectrum (0.02-0.07 Hz), where  
autoregulation is most strongly pronounced, the damping of ABP slow oscillation 
weakly depends on frequency.   
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Figure 2:  Analysis of phase synchronization between fluctuations of (a) arterial blood pressure and (b) 
blood flow velocity in middle cerebral artery for a healthy subject. Figure (c) shows the value of  strength 
of synchronization   as a function of scale a, contour map (d) displays normalized phase difference, (e) is 
the  plot of normalized phase difference for a=50. Absence of synchronization for a>30 is a signature  of 
adequate cerebral auto-regulation.  
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Figure 3:  Synchronization parameter  as a function of scale a  (bottom x-axis) or pseudo frequency 

fa  (top x-axis). Solid line is the average for the group. The dashed lines correspond to the standard error 
(SE) bracketing the average 



Scaling Properties of Cerebral Hemodynamics 127 

Figure 4:  Group-averaged phase difference distribution function.  In the left  polar density plot the inner 
rim  corresponds to scale a=5 and the outer rim to scale a=30. In the right plot the  inner rim  corresponds 
to scale a=30 and the outer rim to scale a=100. 
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Figure 5:  Group-averaged wavelet gain MCA
ABP as a function of  scale a  (bottom x-axis)  or  pseudo-

frequency fa  (top x-axis).

4 Discussion 

The traditional spectral methods have to date dominated the studies of cerebral 
hemodynamics, see  [13,14,15] and references therein.  However, the most recent works 
emphasized the nonlinear and nonstationary aspects of dynamical autoregulation 
[16,17,18,19,20]. Herein we presented a novel, wavelet-based  mathematical framework 
which overcomes the restrictions of the previous approaches.  We demonstrated that in 
the very low frequency part of the spectrum, where  autoregulation is most strongly 
pronounced: 

the damping of ABP slow oscillation weakly depends on frequency 
instantaneous phase difference between the arterial blood pressure  and cerebral 
flow velocity slowly evolves over time and has an almost uniform distribution. 
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Thus, CA  not only dampens  low frequency oscillations but  also randomizes their 
phases.  

In order to understand the influence of CA on the statistical properties of arterial 
blood pressure let us recall that it is possible to define a fractal time series with Hurst 
exponent H as a process whose  power spectrum is given by 

2 1

1( ) .HS f
f

This definition does not involve phase and consequently phase-randomization of a time 
series described by fractional  Brownian motion does not affect its scaling properties.  
Under physiological conditions, the attenuation of slow ABP fluctuations depends 
weakly on frequency. Thus, this type of damping  preserves the power-law structure of 
the ABP spectrum which explains why the fractal dynamics of  arterial pressure  is  
essentially carried over to cerebral blood flow.  Future studies should show whether the 
scaling  properties of  fluctuations of cerebral blood flow velocity or intracranial 
pressure change in pathological conditions associated, for example, with traumatic brain 
injury. 
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Summary: Walking is regulated through the motorcontrol system (MCS). The MCS consists of a 
network of neurons from the central nervous system (CNS) and the intraspinal nervous system (INS), 
which is capable of producing a syncopated output. The coupling of the latter two systems produces a 
complex stride interval time series that is characterized by fractal and multifractal properties that depend 
upon several biological and stress constraints. It has been shown that: (i) the gait phenomenon is 
essentially a rhythmic cycle that obeys particular phase symmetries in the synchronized movement of the 
limbs; (ii) the fractal and multifractal nature of the stride interval fluctuations become slightly more 
pronounced under faster or slower paced frequencies relative to the normal paced frequency of a subject; 
(iii) the randomness of the fluctuations increases if subjects are asked to synchronize their gait with the 
frequency of a metronome or if the subjects are elderly or suffering from neurodegenerative disease. Here 
we present a new model, called the super central pattern generator, able to reproduce these known 
properties of walking and discuss the physiological and psychological interpretations of the model 
parameters.  

1  Introduction 
The past decade or so has witnessed the development of an area of medicine that can 
best be described as fractal physiology [1-3]. It has been known for a long time that 
biophysical time series are stochastic, but it is only more recently that these time series 
have been identified as fractal and as being generated by scaling phenomena. An 
example of such time series consists of the beat-to-beat intervals of the human heart, 
called the heart rate variability (HRV) time series. Peng et al. [4] were the first to show 
that by a judicious processing of the time series the scaling of the central moments yield 
the fractal dimension of the cardiovascular control system. It was shown in a number of 
subsequent studies [5] that the HRV time series, rather than being monofractal, are in 
fact multifractal. Multifractality means that the fractal dimension of the cardiovascular 
control system is not constant in time, but changes from instant to instant to more 
efficiently respond to anticipated changes in the environment. Walking is another 
phenomenon that is described by scaling time series when looked at properly. Hausdorff 
et al. [6] were the first to show that the stride-to-stride interval time series, called stride 
rate variability (SRV), manifest scaling in a way similar to HRV time series. The SRV 
time series were subsequently shown to also be multifractal rather than monofractal [7]. 
It is this latter behavior that is of concern to us and today we present a nonlinear 
dynamical model [8] able to reproduce the known scaling properties of the SRV time 
series. The new model has a number of parameters for which we provide physiological 
and psychological interpretations. 

Walking is a complex process that we have only recently begun to understand 
through the application of nonlinear data processing techniques to stride interval time 
series [6-13]. Walking consists of a sequence of steps partitioned into two phases: a 
stance phase and a swing phase. The stance phase is initiated when a foot strikes the 
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ground and ends when it is lifted. The swing phase is initiated when the foot is lifted 
and ends when it strikes the ground again. The stride interval is the time to complete 
each cycle. Typical stride interval time series [14] for an adult subject in both free and 
metronome constrained walking at normal, fast and slow regimes are shown in Fig. 1.   

Figure 1: Typical stride interval time series in the free and metronome-paced conditions for      
    normal, slow and fast paces (data taken from PhysioNet [14]).  

It is evident from Figure 1 that the stride interval of humans fluctuates in time. 
In fact, it has been known for over a century that there is a variation in the stride interval 
of humans during walking of approximately 3-4%. Moreover, the random variability of 
the gait has been shown [6,7] to exhibit long-time correlations, and suggests that the 
phenomenon of walking is a self-similar, fractal, activity. The fractal and multifractal 
properties of the stride interval time series were studied using the distribution of the 
local Hölder exponents via wavelet transforms [15,16], as shown recently by Scafetta et 
al. [7]. The data were collected and analyzed by Hausdorff et al. [9,11] to determine the 
dependence of the fractal dimension of the time series on changes of the average rate of 
walking. These data contain the stride interval time series for ten healthy young men 
walking at a slow, normal and fast pace, for a period of one hour. The same individuals, 
at a later time, were requested to walk at a pace determined by a metronome set at the 
average slow, normal and fast paces for thirty minutes to generate a second data set. 
Other data were collected from five healthy elderly subjects as they walked for fifteen 
minutes each, and from five subjects with Parkinson's disease as they walked for six 
minutes [14] each. All of these time series are multifractal, as we show below. 
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2 Methods 
 An example of the histograms of Hölder exponents for experimental data is 
shown in Fig 2. The histograms are fit with Gaussian functions centered on h0 and with 
a standard deviation  We recall that the Hölder exponent h is related to the Hurst 
exponent [17] H for a monofractal noise by h=H-1 for an infinitely long time series. 
According to this definition, the autocorrelation function [18] of fractal noise is related 
to the Hurst exponent H and to the Hölder exponent h as follows 

C(r)  r -2H-2 = r -2h                

(1)

where r is the distance between two points  in the sequence. An equivalent 
representation is provided by the power spectrum, the Fourier transform of the 
autocorrelation function,  

S(f)  f 1-2H = f -1-2h ,               

(2)

and f is the frequency. Consequently, h = 0 corresponds to pink or 1/f-noise; and a 
Hölder exponent in the interval -1 < h < -0.5 can be interpreted as antipersistent noise; 
h = -0.5 corresponds to uncorrelated Gaussian noise; -0.5 < h < 0 corresponds to 
persistent noise; h = 0.5 corresponds to Brownian motion and h = 1 corresponds to 
black noise. As explained in Ref [7], the fractal properties may be approximately 
estimated through the mean value h0 of the Gaussian fitting functions, and the 
multifractal properties are estimated through the  ratio S F,  where F  is the width 
of a monofractal computer-generated sequence of the same length  as the data sequence 
and having the same Hurst exponent H=1+h0 as the data. A ratio value S indicates 
monofractality, whereas a value S  indicates multifractality. 

2.1. Results 

By estimating the distribution of Hölder exponents, it has been shown [7] that 
the stride interval time series for normal gait shows fractal properties similar to 1/f-noise 
and is weakly multifractal. The time series may be non-stationary and its fractal 
variability changes in different gait mode regimes. In particular, the persistence, as well 
as the multifractality of the stride interval time series, tends to increase slightly for both 
slow and fast paces, above that of the normal pace. By averaging the results for 10 
subjects [6,13], we obtain h0,n = -0.09 , h0,s = 0.035 , h0,f = -0.045  and 
the corresponding ratios Sn =1.04  Ss =1.08 and  Sf =1.05 for free 
normal, slow and fast paces, respectively [7]. If the pace is constrained by a metronome, 
beating at the average rate of the cohort of walkers, the stochastic properties of the 
stride interval time series change significantly in a wide range, spanning both persistent 
and antipersistent stochastic processes. In general, in each case there is a reduction in 
the long-term memory and an increase in randomness as the shift of the Hölder 
exponent histogram in Fig. 2 shows. By averaging the results for 10 subjects [7,13], we 
obtain for the average Hölder exponents, in the metronome-constrained case, h0,n = -
0.26 , h0,s = -0.48 , h0,f = -0.36  and for the ratio of standard deviations Sn
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=1.04  Ss =1.06 and  Sf =1.09 for metronome normal, slow and fast 
paces, respectively [7]. By repeating the Hölder exponent distribution analysis for 5 
elderly subjects [13] and a different 5 subjects with Parkinson’s disease [14], we find on 
average h0,eld= -0.28 , h0,pd= -0.23  and Seld=0.95  Spd=
1.03 Consequently, for the elderly or those with neurodegenerative diseases the 
Hölder exponents of the stride interval time series decrease  on average from the values 
for young healthy individuals. The Hölder exponents are all close to the fractal value 
h=-0.25 and the multifractality has substantially more variability from person to person 
than for healthy youth. 

Figure 2:  Typical Hölder exponent histograms for the stride interval series in the freely walking and 
 metronome conditions for normal, slow and fast paces and for elderly and for a subject with 
 Parkinson's disease. In the data are reported using the average over the subjects. The average 
 histograms are fitted with Gaussian functions. 

3  The Model 
Even though walking is a voluntary action, the typical patterns shown by the 

stride interval time series suggest particular neural mechanisms that can be 
mathematically modeled.  Traditionally the legged locomotion of animals is understood 
through the use of an intraspinal network of neurons capable of producing a syncopated 
output [19-23]. Collins and Richmond [19] modeled this intraspinal network as a hard-
wired central pattern generator (CPG) with the coupling of forced nonlinear oscillators, 
for example, the van der Pol oscillator. These nonlinear oscillators are able to produce 
limit cycles, simulating the stride interval and when coupled together are sufficiently 
robust to mimic the phase symmetries of the locomotion observed in the movements in 
quadrupeds [19-21] such as the switching among the multiple gait patterns of walking, 
trotting, cantering and galloping.  
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 The fractal nature of the stride interval time series for humans was incorporated 
into a dynamic model by Hausdorff et al.[9], using a stochastic version of a CPG. This 
stochastic model was later extended by Ashkenazy et al.  [11,24] so as to describe the 
changing of gait dynamics during maturation, that is, as humans develop from 
childhood to adulthood. The model is essentially a random walk on a Markov or short-
range correlated chain, where each node of the chain is a neural center that fires an 
action potential with a particular intensity when visited by the random walker. This 
mechanism is found to generate a fractal process, with a multifractal width that depends 
parametrically on the range of the random walker's step size.  

3.1  Super Central Pattern Generator 

 The hard-wired CPG and the stochastic CPG capture complementary aspects of 
the gait phenomenon. Herein we propose that the gait phenomenon be described by a 
super CPG [8] which is a combination of the above two models. The SCPG is intended 
to describe the activity of the entire MCS. The SCPG consists of a stochastic CPG that 
simulates the correlated firing activity of the CNS, coupled to a hard-wired CPG 
simulating the INS that generates the rhythm of gait. In the SCPG two parameters, the 
mean gait frequency f0 and the intensity A of the forcing component of the nonlinear 
oscillator, are sufficient to determine both the fractal and multifractal variability of 
human gait under normal, stressed and metronome-stressed conditions. Moreover, the 
decrease of a third parameter, the correlation length, r0,n , in the normal pace regime, 
measures the correlation between the nodes of the CNS, and is sufficient to recover the 
change of the fractal properties of the stride interval in the elderly and those suffering 
from neurodegenerative diseases. Finally, even if here we focus on the biped gait, the 
switching among multiple gait patterns like walking, trotting, cantering and galloping of 
the quadrupeds are expected to be recovered with the appropriate coupling of several 
nonlinear oscillators as done by Collins et al [19,20]. 
 The physiological interpretation of the SCPG is that the CNS fires a correlated 
sequence of action potentials that activate the INS initiating gait. Experiments with cats 
having spinal cord transactions show that the rate of stride is determined by the intensity 
of the electrical stimulation, not by its frequency [25]. Consequently the more intense 
the action potential, the faster the legs move. In this way the CNS is assumed to induce 
only a sequence of virtual initial frequencies of the gait. The stride interval in gait is 
given by the time interval that the INS needs to conclude an actual cycle. At the 
conclusion of each cycle a new pulse is fired by the CNS and a new cycle is initiated. 
This mechanism is modeled assuming that a stochastic CPG modeling of the CNS 
produces a correlated sequences of pulses {Xj} that generate a sequence of inner virtual 
frequencies {fj}. These virtual frequencies are progressively used in a forced van der Pol 
oscillator that simulates the cycle of the INS 

( ) ( ) sin[ ]Z Z p Z f Z A f tj
2 2 2

02 2 ,                 

(3)

where over-dots denote derivatives with respect to time. The stride interval is the actual 
period of each cycle completed by the van der Pol oscillator; a period that depends on 
the inner frequency fj of the oscillator, the amplitude A and the frequency f0 of the 
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forcing function. The parameter p controls the amplitude of the oscillations and 
controls the degree of nonlinearity of the oscillator. These latter two parameters can 

be assumed constant in the first approximation of the model to actual walking.  

3.2  Parameter Values 

 The statistics of the stochastic CPG are incorporated into the SCPG model by 
assuming the frequency fj of the van der Pol oscillator is given by 

fj = f0 + Xj,                            

(4)

where the values Xj are generated by a random walk on a network of neurons. We 
suppose that the network of neurons is exponentially correlated and, for simplicity, we 
assume that it is given by a Markov chain, as done in Hausdorff et al. [11,24]. The nodes 
of this Markov chain are progressively activated by a random walker. The sequence 
{Xj} are the values of the action potential at the nodes of the Markov chain 
progressively activated at the times j = 1,2,..,N. The exponential correlation length of 
the Markov chain is given by r0. The autocorrelation function for the time sequence {Xj
} is not exponential but is calculated to be [7] 

]2/[]2/exp[ YerfcYXXJC jJjX

(5)

where the brackets denote an average over the random walk statistics, erfc[x] is the 
complementary error function and Y = J ( /r0)2, where J is the shift in time. The 
quantity  is the mean length of a jump made by the random walker and, as we 
mentioned, r0 is the correlation length of the network of neurons.  Fig. 3 shows that the 
autocorrelation function CX(J)  converges to 1 with zero slope, for small J, and 
asymptotically converges to a inverse power law with Hölder exponent h = -0.25, for 
large J. The inverse power-law character of the correlation function (5) suggests the 
interpretation that asymptotically the series {Xj}, generated by the SCPG, is a fractal 
stochastic process.  

The correlation length of the stochastic CPG can be changed to account for 
different modes of locomotion. The normal gait velocity, for a relaxed individual, with a 
mean frequency f0 = f0,n, has minimum correlation between the nodes of the CNS. An 
abnormal gait velocity, faster or slower than the normal one, with mean frequencies f0,f 
and f0,s  respectively, increases the stress on the MCS with an increase of the correlation 
between the nodes of the CNS. We model this effect by assuming that r0 is a function of 
gait frequency:  

  r0 = r0,n [ 1 + B (f0 - f0,n )2 ] ,

(6)

where r0,n is the correlation length among the nodes of the CNS at normal gait velocity 
and B is a positive constant that determines the degree of influence of frequency change 
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on the correlation length. When the mean gait frequency f0 is larger or smaller than the 
normal mean frequency f0,n, the correlation length r0 increases. The increase of the 
parameter r0 with the gait frequency according to Eq. (6) leads to a decrease of the 
scaled variable Y used in Eq. (5). 

Figure 3: Autocorrelation function of the stochastic CPG, Eq. (5), with Y = J ( /r0)2.

4  Model Calculations 
  We determine the fractal exponents by using a fixed number of steps J [5],
consequently a decrease in Y leads to a shift of the fitting range of the J steps towards a 
region where the curve of the autocorrelation function Eq.(5) shown in Fig. 3, is 
characterized by a higher slope coefficient and a higher curvature. A higher slope 
coefficient may be interpreted as a higher fractal dimension and a higher curvature of 
the autocorrelation function may be interpreted as an increase of the multifractal 
properties of the signal. Therefore, we expect that the SCPG model predicts a slight 
increase of the Hölder exponents, as well as a slight increase of the multifractal 
properties, when the gait frequency deviates from normal. This change in the Hölder 
exponent mimics the behavior observed in the data. Moreover, a decrease of the 
parameter r0,n among the nodes of the central nervous system in the normal-relaxed 
condition implies an increase of the variable Y. More importantly, neurodegeneration 
may be interpreted as a  decrease of the parameter r0,n. According to the asymptotic 
behavior of the autocorrelation function CX(J) of Eq. (5), an increase of the variable Y
yields to a more monofractal sequence with a Hölder exponent h = -0.25, that is what 
we find on average for empirical data for the elderly or those with neurodegenerative 
diseases. 
 Figure 4 shows that the computer-generated stride interval time series produced 
by the SCPG model in different situations are similar to the phenomenological data 
shown in Fig 1. We assume in the calculation that the average periods of the normal, 
slow and fast gaits are 1.1, 1.45 and 0.95 seconds, respectively. These gait periods are 
compatible with the experimentally realized normal, slow and fast human gaits shown 
in Fig. 1. The other parameters used in the model are = 25, r0,n = 25, B = 50 and =
0.02 in the appropriate units. For the natural normal gait we use A = 1 and for both 
slower and faster gait, we use A = 2. For periodically triggered gait, we increase the 
intensity A of the driver of the van der Pol oscillator to simulate the increase in stress on 
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the MCS produced by the metronome. We use A = 4 for normal velocity and A = 8 for 
both slower and faster gait. The driver therefore models the conscious control of 
walking. 

Figure 4: Typical computer-generated stride interval time series using the SCPG model in the freely 
 walking and metronome paced conditions for normal, slow and fast pace. 

Figure 5: Typical Hölder exponent histograms for computer-generated stride interval series using  the 
SCPG model in the freely walking and metronome-paced conditions for normal, slow and fast 
paces. The parameters of the SCPG model were chosen in such a way to approximately 
reproduce the average behavior of the fractal and multifractal properties of the 
phenomenological data. The histograms are well-fitted with Gaussian functions. 

Figure 5 shows histograms of distributions of the Hölder exponents for the computer-simulated 
gaits using the SCPG model depicted in Fig. 4. The parameters of the SCPG model were chosen in such a 
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way that the model approximates the average behavior of the fractal and multifractal properties of the 
phenomenological data [5,14], cf. Fig 2. These properties were summarized above. Note the change in 
order along the exponent axis of the three modes of walking in the unconstrained and metronome 
synchronized cases, in both the data and the simulation.

5  Discussion

In summary, the stride interval of human gait presents a complex behavior that 
depends on many factors. Walking is a strongly correlated neuronal and biomechanical 
phenomenon which may be significantly influenced by two different stress mechanisms: 
(i) a natural stress that increases the correlation of the nervous system and regulates the 
motion at the changing of the gait regime from a normal relaxed condition, to a 
consciously forced slower or faster gait regime; (ii) a psychological stress due to the 
constraint of following a fixed external cadence such as a metronome. A psychological 
control, like that induced by a metronome, breaks the long-time correlation of the 
natural pace and generates a large fractal variability of the gait regime.  
 The SCPG model is able to mimic the complexity of the stride interval 
sequences of human gait under the several conditions of slow, normal and fast regimes 
for both walking freely and keeping the beat of a metronome. The model is based on the 
assumptions that human locomotion is regulated by both the CNS and by the INS. A 
network of neurons produces a fractal output that is correlated according to the level of 
physiologic stress and this network is coupled to the INS that generates the rhythmic 
process of the pace. The combination of the two systems, CNS and INS, controls 
walking and the variability of the gait cycle. It is the period of the gait cycle that is 
measured in the data sets and the SCPG model faithfully reproduces the stochastic and 
fractal characteristics of the phenomenological data. The correlation length in the SCPG 
determines the natural stress discussed in (a), whereas the amplitude of the driver 
models the psychological stress of the metronome in (b).
 Finally, the SCPG correctly prognosticates that the decrease in average of the 
long-time correlation and of the multifractality of the stride interval time series for the 
elderly or for those with neurodegenerative diseases can be understood as a decrease of 
the correlation length among the  neurons of the MCS due to neurodegeneration.   
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Summary. Although the phenomenon of 1/f noise in heart rate has been known for more than two 
decades, ours has been the first systematic study showing the importance of antagonistic dynamics 
between the two branches of the autonomic nervous system [1]. We now confirm a previously posed but 
unproven conjecture that 1/f scaling in heart rate is caused by the intricate balance between antagonistic 
activity of the sympathetic (SNS) and the parasympathetic (PNS) nervous system. Further, we elaborate 
on the requirement for dual antagonistic control and present systematic evidence for the corresponding 
emergence and breakdown of 1/f scaling in human heart rate. We demonstrate that modifying the relative 
importance of either of the two branches of the autonomic nervous system leads to a substantial decrease 
in 1/f scaling. In particular, the relative PNS suppression, both by congestive heart failure (CHF) and by 
the parasympathetic blocker atropine, results in a substantial increase in the Hurst exponent H and a shift 
of the multifractal spectrum f(a) from 1/f towards random walk scaling 1/f. Surprisingly, we observe a 
similar breakdown in the case of relative and neurogenic SNS suppression by primary autonomic failure 
(PAF). The observation is further confirmed, not only by group comparison, but also by precise matching 
of subjects.

1 Introduction 

Although the phenomenon of 1/f noise in heart rate has been known for more than two 
decades [2-5] and has recently also been attributed multifractal scaling properties [6], 
there has been no successful verification of the importance of antagonistic dynamics 
between the two branches of the autonomic nervous system.  
  One conjecture previously posed is that 1/f (global) scaling and local multifractal 
scaling in heart rate is caused by the interaction between the activity of sympathetic 
(SNS) and parasympathetic (PNS) nervous systems [3], leading respectively to an 
increase and a decrease in heart rate. However, the evidence for this is scarce.  
  A recent attempt to provide such evidence [7] through a drug-induced suppression 
study has not been fully successful and is rather difficult to interpret because the 
suppression of only one branch of the autonomic regulatory system at the effector level 
(i.e. the heart) would lead to compensatory dynamics through the other intact branch.  
  In [1] we presented the first systematic evidence for the requirement of the dual
antagonistic control for the emergence of 1/f scaling in human heart rate. Here, we 
further elaborate on the duality requirement of the control system arrangement for the 
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origins of 1/f scaling and multifractality in human heart rate. We demonstrate that 
modifying the relative importance of either of the two branches of the autonomic 
nervous system leads to a substantial decrease in 1/f scaling, showing that 1/f scaling in 
healthy heart rate requires the existence and the intricate balance between antagonistic 
activity of PNS and SNS.  
  This supports the view, recently established in [8], of the cardiac neuroregulation 
as a system in a critical state [9], and permanently out of equilibrium, in which 
concerted interplay of the SNS and PNS is required for preserving momentary 'balance'. 
This view of cardiac neuroregulation is consistent with a broad class of models of 
phenomena which, to a large extent, has been established using the implicit or explicit 
concept of the balance of competing agents or scenarios.  
  Further, we observe an intriguing interaction between the multifractality of the 
heart rate and the absolute variability. While it is generally believed that lower absolute 
variability results in monofractal behaviour, as has been demonstrated in relative PNS 
suppression both by congestive heart failure (CHF) [6] and by the parasympathetic 
blocker atropine [7], we observe conservation of multifractal properties in relative and 
neurogenic SNS suppression by primary autonomic failure (PAF) at substantially 
reduced absolute variability to levels closer to CHF. This suggests the relevance of the 
intrinsic PNS dynamics for multifractality.  
  We believe these findings to be important in putting forward the dual antagonistic 
scenario for complex (multi-)fractal dynamics that has now been observed in a wide 
variety of real-world signals [10], and also in helping diagnose a range of patients with 
abnormality in their autonomic regulatory system.  

2 Methods 

We analyse four groups of subjects, of whom long-term heart rate data were measured 
as sequential heart inter-beat intervals. The first group consists of 115 healthy subjects 
(26 women and 89 men; ages 16 - 84 yrs) without any known disease affecting the 
autonomic controls of heart rate, who underwent ambulatory monitoring during normal 
daily life [Figure 1(a)]. The total number of whole-day data sets is 181, as some of the 
subjects were examined for two consecutive days, with each data set containing on 
average 105 heartbeats. Details of the recruitment of the subjects, screening for medical 
problems, protocols and the data collection are described in Ref. [11]. We analysed both 
whole-day data, containing periods asleep and awake, and daytime only data, with 
essentially identical results. In this paper, we therefore present daytime results only.  
  The second group is of healthy, young males (21 - 26 yrs), who underwent 
laboratory testing during the administration of the parasympathetic blocker atropine,
which reduces parasympathetic control by blocking the action of a parasympathetic 
neurotransmitter at the heart. Each data set contains > 6,000 heartbeats. Details of the 
subjects, protocols and data collection are described in Amaral et al. [7].  
  The third group of subjects are 12 patients with CHF, of whom whole-day 
ambulatory data [Figure 1(c)] are available from Physionet [14]. This severe heart 
failure is known to be associated with both increased SNS [15, 16] and decreased PNS 
[15, 17] activity. Thus, this data set contains information on how heart rate is (multi-) 
scaled during relative PNS suppression.  
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  As the last group, we examined the 24-hour ambulatory heart rate dynamics of 10 
PAF patients aged 54 - 77 years [18], containing on average 105 heartbeats. (The data 
were recorded by Holter ECG monitors FM100 or FM300 (Fukuda Denshi, Tokyo) 
[Figure 1(b)].) Eight of the patients had multiple system atrophy [18] with varying 
degrees of Parkinsonism, ataxia and pyramidal signs. The other two had pure autonomic 
failure [18] with no other neurological symptoms; other possible causes of their 
autonomic dysfunction were excluded by extensive laboratory studies. All of them 
performed daily activities independently. Patients did not take vasoactive medicines, 
potentially causing alterations in heart rate dynamics, on the day they were tested. The 
study was reviewed and approved by the ethics committee of The University of Tokyo 
Hospital.  
  PAF is clinically characterised as autonomic dysfunction, including orthostatic 
hypotension, impotence, bladder and bowel dysfunction and sweating defects, which are 
primarily the result of progressive neuronal degeneration of unknown cause. The main 
pathological finding related to autonomic dysfunction in PAF is severe loss of 
preganglionic and/or postganglionic sympathetic neurons [19]. In contrast to the severe 
degeneration of the efferent SNS, PNS is believed to remain relatively intact in PAF; we 
will confirm this below by showing a similar level of high frequency fluctuations of 
heart rate, known as a robust indicator of PNS activity [20, 21], in our PAF patients to 
that of healthy subjects. Thus, it is highly possible that this group serves as an example 
of relative and neurogenic SNS suppression. 

Figure 1: Typical traces of daytime heartbeat intervals for (a) a healthy subject, (b) a PAF patient and (c) 
a CHF patient.  
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3 SNS/PNS Balance - Results 

With regard to the methodology used, we have explicitly used standard methods in 
order to avoid any misinterpretation of our results and to ensure complete compatibility 
with published results. (This is also why we have repeated the study of CHF patients.) 
Indeed, the methods of analysis (DFA and multifractal analysis using WTMM) have 
been used in a wide spectrum of papers. 

3.1 Group Mean DFA 

The mean global scaling exponent has been evaluated by using (first order) detrended 
fluctuation analysis (DFA) [22]. We have analysed the scaling behaviour of the mean 
quantity (group mean) 
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Pk (s) denotes the local least-squares linear fit in each DFA window k, and K(l)(s) is the 
number of windows per scale s. Integration of the input heart rate intervals is performed 
according to standard DFA practice, and the norm used is the elapsed time 
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)( . The normalization applied allows us to compute group averages of 
records of different duration, and to compare the mean absolute levels of variability per 
resolution s; for each resolution s, the quantity )(sM DFA  measures the (logarithmic) 
scalewise mean of the normalized DFA — the sum of the logarithm of detrended 
fluctuations for each group of time series at this resolution. The Hurst exponent was 
computed from the log-log fit to the group averaged DFA values over the selected range 
of scales (20 - 4,000 beats).  
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Figure 2: Scale dependency of the mean detrended fluctuation )(sM DFA for healthy subjects with and 
without atropine, PAF patients and CHF patients. Detrended fluctuations have been calculated 
with first order DFA, i.e. linear trend removal [22]. Vertical bars represent the standard 
deviations from the group means. 

  In Figure 2, we show the scaling behaviour of the )(sM DFA  versus log (s) for 
healthy subjects with and without atropine, PAF patients, and CHF patients, with the 
slopes corresponding to the Hurst exponent H.  
  We have found a substantial difference in the scalewise variability levels between 
controls and PAF and CHF patients. This holds for the entire compared resolution range 
of 4 - 4,000 beats, as measured by the DFA window size s. However, PAF variability 
reaches normal levels asymptotically for the lowest resolutions (and beat numbers), 
most likely reflecting the preservation of high frequency fluctuations of heart rate 
indicative of the intact PNS activity [20, 21] in our PAF patients. CHF variability, on 
the contrary, remains at low levels at all resolutions.  
  In addition, we have found that the relative PNS suppression, both by CHF and 
atropine administration, results in a substantial increase in the Hurst exponent from 1/f
range (H  0.09 for healthy controls) to H > 0.2, i.e. towards random walk scaling 1/f 2

(H = 0.5) [Figure 2]. This effect has been observed for the entire range of resolutions 
with almost consistent scaling, which for three groups, except for the group with 
atropine, due to the limited length of data, stretches from about 20 beats up to the 
maximum resolution used of 4,000 beats (DFA window size). The slope within the 
scaling range obtained for PAF is close to that obtained for CHF and considerably 
higher than that for the control group. Thus, surprisingly, we observe a similar 
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breakdown in the case of relative and neurogenic SNS suppression by PAF. This is 
particularly interesting in the context of the recognized effect that ß-adrenergic blockers, 
only affecting the heart and leaving the vascular branch of sympathetic neuroregulation 
intact, do not result in a breakdown of 1/f scaling in heart rate [5, 7].  

3.2 Group Mean WTMM

Further, we have also tested the multifractal properties of the data using the wavelet-
based WTMM multifractal methodology [23]. We apply the 2nd derivative of the 
Gaussian to the data as the mother wavelet before calculating the partition function 
Zq(s), defined as the sum of the q-th powers of the local maxima of the modulus of the 
wavelet transform coefficients at scale a. The power law scaling of Zq(s) for 13 < s < 
850 then yields the scaling exponents (q) - the multifractal spectrum [Figure 3]. The 
multifractal spectrum is related to the singularity spectrum D(h), where D(h0) is the 
fractal dimension of the subset of the original time series characterised by a local Hurst 
exponent h = h0 [24], through a Legendre transform D(h)= qh (q) with h = d (q) /dq
[Figure 3, inset].  
  In order to provide group mean values, we have analysed the scaling behaviour of 
the mean quantity,  
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  Similarly to the case of the mean DFA analysis, the normalization applied allows 
us to compute group averages of records of different duration; for each resolution s, the 
quantity )(sM WTMM  measures the (logarithmic) scalewise mean of the normalized 
partition function Z(q,s) parameterised with the moment q. (q) is thus obtained by 
linear fit to the mean quantity )(sM WTMM  versus log (s). The Legendre transform, is 
implemented by a linear fit in the (q) domain; from 100 samples of q in the range from 

15  q  15, one quarter, i.e. 25, of the available points are used to obtain h(q) as a 
function of q, as the best local linear fit to (q), centred at q. D(h(q)) is then calculated 
in a straightforward way. Note that only the useful sub-range 5  q  5 is shown in the 
plots in Figure 3.  
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Figure 3: Multifractal ( (q)) spectra for healthy subjects, PAF patients, and CHF patients. Vertical bars 
represent the standard deviations from the group means. (Inset) Singularity (D(h)) spectra 
derived from the average (q) curves.  

  For both PAF patients and control subjects, we obtained comparable curvature of 
the (q). However, this curvature is nearly lost in the case of CHF patients [Figure 3]. 
These results imply wider singularity spectra D(h) for both PAF patients and control 
subjects, indicative of preserved multifractality [Figure 3, inset], that can also be 
observed in non-uniform distributions of the local Hurst exponents h [Figure 1]. In 
addition, we also observe an intriguing relation between the conserved multifractality of 
the heart rate for the PAF case and the profoundly low absolute variability as measured 
by normalized DFA [Figure 2]. While it is generally believed that lower absolute 
variability [8] results in monofractal behaviour, as has been demonstrated in relative 
PNS suppression both by CHF [6] and the parasympathetic blocker atropine [7], in PAF 
patients we observe conservation of multifractal properties at substantially reduced 
absolute variability to levels closer to CHF. This suggests the relevance of the intrinsic 
PNS dynamics for the multifractality of heart rate. 

4 Discussion 

The fact that congestive heart failure (CHF) leads to a breakdown in the multifractality 
of heart rate has been known for some time, and it has been a strong indication that the 
multifractality is mediated by PNS. However, the novelty of our paper comes from 
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using the PAF-group of patients and showing thereby that the SNS control of 
vasculature is important for the emergence of the H  0 (i.e. 1/f ) law, but not needed for 
multifractality.  
  Concerning the previously published results on CHF, the paper by Ivanov et al. [6] 
indeed showed the breakdown of multifractality in CHF patients. However, CHF 
patients are usually characterised by both increased SNS and decreased PNS activity. 
Whether the multifractality is mediated mainly by PNS cannot, in our opinion, be 
determined solely from the study of CHF.  
  An attempt to provide more systematic evidence for the role for PNS has been 
published by Amaral et al. [7], where the decreased multifractality by drug-induced 
suppression of PNS influence on the heart is established. Similarly, in the same Ref. [7], 
it is shown that the drug-induced suppression of SNS influence on the heart results in a 
slight but significant decrease in heart rate multifractality.  
  However, we would like to stress that neither of these papers provides definitive or 
systematic evidence for the role of PNS in either 1/f scaling or multifractality of heart 
rate. In Ref. [6], Ivanov et al. only study the central or neurogenic shift in the autonomic 
activity to a direction of increased SNS by using the CHF model, but do not examine 
the opposite direction. The drug-induced suppression study by Amaral et al. [7] is rather 
difficult to interpret due to the fact that the suppression of only one branch of the 
autonomic regulatory system at the effector level (i.e. the heart) would lead to 
compensatory dynamics through the other intact branch. For example, if we assume that 
the multifractality of heart rate is mediated mainly by PNS, as 'hinted' at by the CHF 
result, the SNS suppression would lead to an almost unchanged multifractality, which is 
not the case in the Amaral et al. study [7].  
  Thus, we believe that the systematic comparison between CHF and PAF for the 
evaluation of the effect of neurogenic autonomic shifts in both directions on the 
multifractality and 1/f scaling of heart rate is unique and the results show the importance 
of PNS activity in a technically sound and novel manner. The neurogenic SNS 
suppression in PAF indeed results in almost unchanged multifractality.  
  A relevant question would be why 'nature' has implemented an antagonistic control 
system in one of, if not the, most important instruments in maintaining human life, i.e. 
the heart. One possible explanation, recently supported by [8], is that the antagonistic 
control prevents mode locking by ensuring permanent far-from-equilibrium-like, critical 
state-like operation [25], and thus enhances error tolerance of the system [26]. The 
importance of this invariant 'response' - mode-free operation - may be the result of the 
optimisation of the heart rate control system by evolutionary processes; physiologically 
the antagonistic cardiac control is observed in a wide range of vertebrates [27]. A flat, 
mode-free response may be important for rapid change in the operating point of the 
system according to dynamically changing internal and/or external environmental 
conditions. 
  In some sense this argument suggests a departure from self-organised criticality 
(SOC)-like models for the explanation of the complexity of autonomous control towards 
the recently introduced highly optimised tolerance (HOT) models [28]. In many ways 
the postulates of HOT closely match biological evidence: 1/f behaviour and robustness 
to environmental change achieved by system optimisation through evolutionary 
refinement. At the same time, high susceptibility to a departure from 'design' criteria 
may help in understanding phenomena such as sudden cardiac death. However, the 
current HOT formulation, similar to that of SOC, covers exclusively spatially 
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interacting phenomena, leaving the dynamical temporal complexity of design control 
systems unexplored. We suggest that this direction of temporal, dynamical complexity 
[27] requires attention in order to understand phenomena involving an explicit temporal 
axis. Here, for the first time, we experimentally perform alterations of the operating 
point of such an explicitly temporal biological complex system. 
  Historically, measurements of fluctuations of heart rate have been widely used for 
monitoring human autonomic controls in health and disease [20, 21]. In particular, the 
heart rate can easily be measure during normal daily life by ambulatory monitoring 
devices, enabling us to probe various autonomic pathologies in a natural setting. 
However, one drawback of this method using short-term fluctuations of heart rate such 
as spectral analyses [20, 21] is that statistical properties of heart rate may be affected by 
behaviour (e.g. exercise, diet, postural changes, etc.) as well as by the nature of a 
pathological change in the autonomic nervous system; it is usually very difficult to 
monitor patients' behaviour during normal daily life. By contrast, the long-term (multi-) 
scaling properties of ambulatory heart rate have recently been shown to be highly 
independent of behavioural modifiers [7, 12]. This study further shows that the scaling 
properties do depend on the autonomic pathologies of patients, i.e. one may be able to 
derive a behaviour-independent marker for PNS suppression by the increased global 
scaling exponent and the decreased multifractality of heart rate, and for SNS 
suppression by the increased global exponent, but with preserved multifractality. Thus, 
our findings could also be important in helping diagnose a range of patients with 
abnormality in their autonomic regulations. 

5 Acknowledgments 

We thank Dr. K. Kiyono, Prof. K. Nakahara, and Dr. S. Murayama for their help and 
discussion. This study was in part supported by Japan Science and Technology Agency. 

References 

[1] Struzik ZR, Hayano J, Sakata S, Kwak S, Yamamoto Y. 1/f scaling in heart rate 
requires antagonistic autonomic control. Phys Rev Rapid Communication 2004; 
E70: 050901(R). 

[2] Kobayashi M, Musha T. 1/f Fluctuation of heartbeat period. IEEE Trans Biomed 
Eng BME 1982; 29: 456-457. 

[3] Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL. Long-
range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 
1993; 70: 1343-1346. 

[4] Saul JP, Albrecht P, Berger RD, Cohen RJ. Analysis of long term heart rate 
variability: methods, 1/f scaling and implications. Comp Cardiol 1987; 14: 419-
422.

[5] Yamamoto Y, Hughson RL. On the fractal nature of heart rate variability in 
humans: effects of data length and ß-adrenergic blockade. Am J Physiol 
(Regulatory Integrative Comp Physiol 35) 1994; 266: R40-R49. 



Z. Struzik et al. 150 

[6] Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, 
Stanley HE. Multifractality in human heart rate dynamics. Nature 1999; 399: 461-
465.

[7]  Amaral LAN, Ivanov PC, Aoyagi N, Hidaka I, Tomono S, Goldberger AL, Stanley 
HE, Yamamoto Y. Behavioral-independent features of complex heartbeat 
dynamics. Phys Rev Lett 2001; 86: 6026-6029. 

[8]  Kiyono K, Struzik ZR, Aoyagi N, Sakata S, Hayano J, Yamamoto Y. Critical scale 
invariance in healthy human heart rate. Phys Rev Lett 2004; 93: 178103. 

[9]  Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of 1/f 
noise. Phys Rev Lett 1987; 59: 381-384. 

[10] Struzik ZR, Taking the pulse of the economy. Quantitative Finance 2003; 3(4): 
C78-C82.  

[11] Sakata S, Hayano J, Mukai S, Okada A, Fujinami T. Aging and spectral 
characteristics of the nonharmonic component of 24-h heart rate variability. Am J 
Physiol 1999; 276: R1724-R1731. 

[12] Goldberger AL, Amaral LAN, Glass L, Havlin S, Hausdorff JM, Ivanov PC, Mark 
RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, 
and PhysioNet: components of a new research resource for complex physiologic 
signals. Circulation 2000; 101: e215-e220. 

[13] Kienzle MG, Ferguson DW, Birkett CL, Myers GA, Berg WJ, Mariano DJ. 
Clinical, hemodynamic and sympathetic neural correlates of heart rate variability in 
congestive heart failure. Am J Cardiol 1992; 69: 761-767. 

[14] Elam M, Sverrisdottir YB, Rundqvist DMB, Wallin BG, Macefield VG. 
Pathological sympathoexcitation: how is it achieved? Acta Physiol Scand 2003; 
177: 405-411. 

[15] Saul JP, Arai Y, Berger RD, Lilly LS, Colucci WS, Cohen RJ. Assessment of 
autonomic regulation in chronic congestive heart failure by heart rate spectral 
analysis. Am J Cardiol 1988; 61: 1292-1299. 

[16] Oppenheimer DR. Lateral horn cells in progressive autonomic failure. J Neurol Sci 
1980; 46: 393-404. 

[17] Matthew MR. Autonomic ganglia and preganglionic neurons in autonomic failure. 
in Autonomic Failure, C. J. Mathias and R. Bannister, eds, Oxford University Press 
4 ed, 1999; 329-339. 

[18] Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation 
explored in the frequency domain. Circulation 84 1991; 482-492. 

[19] Saul JP, Beat-to-beat variations of heart rate reflect modulation of cardiac 
autonomic outflow. News Physiol Sci 1990; 5: 32-37. 

[20] Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling 
exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 
1995; 5: 82-87. 

[21] Muzy JF, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets. 
Int J Bifurc Chaos 1994; 4: 245-302. 

[22] Vicsek T. Fractal Growth Phenomena. World Scientific Singapore 1993; 2 ed. 
[23] Peng CK, Buldyrev SV, Hausdorff JM, Havlin S, Mietus JE, Simons M, Stanley 

HE, Goldberger AL. Non-equilibrium dynamics as an indispensable characteristic 
of a healthy biological system. Integrative Physiol Behav Sci 1994; 29: 2830293.  



Dual Antagonistic Autonomic Control Necessary for 1/f Scaling in Heart Rate 151 

[24] West BJ. Physiology in fractal dimensions: error tolerance. Ann Biomed Eng 1990; 
18: 135-149. 

[25] Taylor EW, Jordan D, Coote JH. Central control of the cardiovascular and 
respiratory systems and their interactions in vertebrates. Physiol Rev 1999; 79: 
855-916. 

[26] Carlson JM, Doyle J. Highly optimized tolerance: A mechanism for power laws in 
designed systems. Phys Rev 1999; E60: 1412-1427. 

[27] Ivanov PC, Amaral LAN, Goldberger AL, Stanley HE. Stochastic feedback and the 
regulation of biological rhythms. Europhys Lett 1998; 43: 363-368. 

[28] Aoyagi N, Ohashi K, Yamamoto Y. Frequency characteristics of long-term heart 
rate variability during constant routine protocol. Am J Physiol 2003; 285: R171-
R176.



Fractal Structures in Tumours and Diseases 



Tissue Architecture and Cell Morphology of 
Squamous Cell Carcinomas Compared to Granular 
Cell Tumours' Pseudo-epitheliomatous Hyperplasia 
and to Normal Oral Mucosae  
R. Abu-Eid and G. Landini 

Oral pathology Unit, School of Dentistry, The University of Birmingham, St. Chad’s Queensway, B4 
6NN, Birmingham, United Kingdom. 

Summary: Squamous cell carcinoma (SCC) is the most common malignant lesion of the oral cavity. One 
important diagnostic problem involves differentiating histopathologically between SCC and pseudo-
epitheliomatous hyperplasia (PEH) of the covering epithelium present in granular cell tumour (GCT) (a 
benign tumour), mimicking the invasive patterns of SCC. The complexity of the epithelial connective 
tissue interface (ECTI) in 84 profiles from normal oral mucosa, SCC and GCT-PEH cases was analyzed 
using both global and local fractal dimensions. Segmentation of the epithelial compartments into 
theoretical cell areas was performed using a space partition procedure and the morphological properties of 
these “cells” were analyzed. The complexity of the GCT-PEH ECTI profiles was marginally but 
significantly higher than that of SCC, which was significantly higher than normal ECTI profiles. The 
combined fractal and cell morphology data allowed up to 100%, and 96% correct discrimination between 
SCC and normal oral mucosa and between SCC and GCT-PEH respectively.  In conclusion, we found 
that the architectural features of SCC, normal oral mucosa and GCT-PEH show differences that, when 
quantified, could be used for aiding in the diagnostic process.  

1 Introduction 

Squamous cell carcinoma (SCC) is the most common malignant lesion in the oral 
cavity. It represents about 90% of all intraoral cancers [1, 2]. The diagnosis of SCC 
however, still depends at least in part, on observational subjective histopathologic 
criteria, leading to some degree of uncertainty when characterising these lesions. 
Therefore, objective parameters are needed to quantify the diagnosis of SCC as well as 
other oral lesions. Granular cell tumour (GCT) is a benign neoplasm that can occur in 
any part of the body and is common in the head and neck area, particularly in the 
tongue. Multiple intra-oral lesions have been reported [3-5]. In 7 to 41% [6-9] of intra-
oral GCTs, a pseudo-epitheliomatous hyperplasia (PEH) of the associated mucosal 
epithelium is induced. This PEH mimics SCC invasion patterns and several 
misdiagnosed GCT cases have been reported in the literature [10-15]. PEH is also 
thought to be a reactive feature to some neoplasms, infections and inflammatory 
processes and has been reported in association with: GCT, melanoma, cutaneous T-cell 
lymphoma, fungal infections, mycobacterium infections and Spitz nevus.  
The importance of distinguishing PEH from SCC arises from the possibility of the 
presence of a true malignant lesion in the presence of granular cells, and the possibility 
of misdiagnosing a benign lesion as a malignant lesion. 
In this study, we investigated the architectural and morphological differences between 
A) SCC and normal oral mucosa and B) between GCT-PEH and SCC. The comparison 
was carried out at 2 different levels: 1) at the tissue level we investigated the complexity 
of the epithelial connective tissue interface (ECTI) profiles using fractal geometry and 
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2) at the tissue component level we investigated the morphological and optical 
properties of the cells.  

2 Materials and Methods 

2.1 Histological Sections 

Haematoxylin and Eosin-stained histological sections from 29 biopsies and resections 
were obtained from the Oral Pathology archives of the School of Dentistry, The 
University of Birmingham. The samples included 12 GCTs with PEH, 9 SCC cases and 
8 normal oral mucosae samples.  

2.2 Images 

Images were captured using an Olympus BX50 Microscope (Olympus Optical Co. Ltd. 
Tokyo, Japan) connected to a KY-F55B 3-CCD colour camera (JVC, Tokyo, Japan) and 
a 700 MHz Pentium III personal computer where the image signal was digitised using 
an IT-IC-PCI 24 bit colour frame grabber (Imaging technology Bedford, MA, USA). 
Optimas version 6.51 (Media Cybernetics, Silver Spring, MD, USA) was used for 
image capturing and processing. A x4 microscope objective was used (n.a. 0.13, 
resolution 2.5 m) and the images were digitised at 768 x 572 pixels (the pixel size was 
3.113 m giving a field width of 2391 m). In total, eighty-four non-overlapping images 
of the tissues (29 for GCT, 28 for SCC and 27 for normal oral mucosa). 
Later on, a x20 microscope objective (n.a. 0.30, resolution 0.67 m) was used to 
quantify at the cellular features (at this resolution, pixel size was 0.624 m giving a field 
width of 479 m).  

2.3 Image Analysis 

The first step was to segment the epithelial profiles from the underlying connective 
tissue and the background. This was achieved using an automated multi level 
thresholding procedure [16] applied to the green channel of the colour images. A 
Laplacian edge detector filter was then applied to the resulting epithelium to extract the 
ECTI profiles (Figure 1). The details of the segmentation procedures used here have 
been published elsewhere [17]. 
To investigate the contribution of the invasive islands to the complexity of the pattern of 
invasion, two sets of GCT-PEH and SCC images were analysed; one set including, and 
another excluding the invasive epithelial islands.  

2.4 Fractal Analysis 

The box counting method was used to estimate the global complexity of the ECTI 
profiles.  Seventy one different box sizes were used (all from 1 to 28 pixels, in 
increments of 2 from 30 to 56 pixels, in increments of 4 from 60 to 112 pixels and in 
increments of 8 from 120 to 256 pixels (this corresponded to scale sizes between 3 to 
797µm). The minimum number of boxes needed to cover the object (ECTI) was 
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counted in 32 randomly positioned grids for each box size to reduce the effect of the 
arbitrary positioning of the grids. 

The mass radius relation was used to estimate two versions of the local
complexity known as the local and local connected fractal dimensions [18, 19]. Local 
fractal dimensions (LFD) were estimated inside small (local) windows of side sizes W = 
15, 31, 61, 91, 121, 151 and 179 pixels (corresponding to 47, 96, 190, 283, 377, 470 and 
557µm respectively) For every ECTI image, the mean local fractal dimension, standard 
deviation, median, mode, minimum, maximum and Shannon’s entropy [20] (a measure 
of the uncertainty of the measurement of random variables)[19] were calculated.  
As a further complexity estimator, the local connected fractal dimensions (LCFD) were 
also estimated for all images using the same window sizes as for the LFD analysis. The 
analysis is similar to the local dimension, but calculated the total number of pixels that 
were “locally connected to the centre pixel P within the window W” instead of  “any 
pixel within the window W” as in the previous procedure. This variation of the analysis 
allows the estimation of the complexity of the object without the interference of other 
parts of the same object that are not locally related (full details of the implementation of 
this technique in the context of tumour complexity have been published elsewhere [19]). 
The analysis was performed using software developed by one of us (GL). 

2.5 Cellular Analysis 

Based on the LCFD analysis results, we identified the most complex 10% fraction in 
common between local window sizes 15 and 121 (these scales achieved the highest 
discrimination rate between normal and SCC profiles in a previous study [17]). Images 
of the whole thickness of the epithelium at these locations were captured using a x20 
objective and assembled to obtain a single image of the whole thickness of the 
epithelium. The cells in the epithelial compartment were segmented using the method 
described by Landini and Othman [21]. Briefly, in haematoxylin & eosin stained 
sections the epithelial cell borders cannot be identified accurately, therefore, theoretical 
cell extents were estimated using a space partition procedure. The procedure involved 
localization of nuclei based on the optical density of the nuclear stain. A colour 
deconvolution algorithm [22] was applied to extract the optical density of the 
haematoxylin stain alone, thus the spatial localization of nucleic acids and consequently 
the nuclear locations were determined. A watershed transform [23] was used to divide 
the epithelial compartment into areas of influence relative to each nucleus (Figure 1).  
The morphological properties of the epithelial cells in each diagnostic entity were 
compared using cell area, perimeter, circularity, length, breadth and grey value statistics 
(mean, standard deviation, skewness, kurtosis, median, mode, minimum and 
maximum). 

2.6 Statistical Analysis 

The statistical analysis of the data was performed using SPSS version 10 (SPSS Inc., 
Chicago, USA). One-way ANOVA was used to compare the means of the 
morphological parameters across the different groups. Hierarchical discriminant 
analysis (with leave one out classification) was performed cell-wise to disclose the 
discriminatory power of the data to assign cell types into the a priori diagnostic classes 
(SCC versus normal oral mucosa and GCT-PEH versus SCC). 
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Figure 1: A) x4 H&E image of a GCT-PEH case. B) The isolated epithelium from A. C) The ECTI 
profile extracted from A. D) x20 H&E image of the epithelium at the most complex decile in the ECTI 
profile in C. E) The segmented epithelial compartment after applying the watershed transform. F) The 
segmented epithelial compartment after adding E to D. 

3 Results 

3.1 Squamous Cell Carcinoma versus Normal Oral Mucosa 

3.1.1 Fractal Analysis 
The mean box fractal dimension of ECTI profiles was significantly higher in SCC (1.22 
+ 0.057 and 1.28 + 0.093 without and with the invasive islands respectively) than in 
normal oral mucosa (1.06 + 0.078) (p <0.001 ANOVA).  
A total of 2,166,136 local and local connected fractal dimensions were calculated. 
Figure 2 shows the histograms of the LFD distribution for both normal oral mucosa and 
SCC (with the invasive islands) ECTI profiles at the 7 window sizes used. For both 
normal and SCC, at smaller window sizes (where few cells are responsible for the 
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pattern of complexity) the histograms were unimodal with a value approaching 1 (i.e. 
close to one-dimensional). The histogram modes tended to shift to the right (become 
more complex) with increasing local window sizes. A similar distribution was found for 
LCFD. 
The complexity of ECTI represented by the fractal descriptors (global and local) 
allowed up to 93% correct discrimination of normal and SCC profiles (at window size 
283µm), and up to 94% of normal and SCC profiles with epithelial islands (at window 
size 47µm) (Table 1). 

3.1.2 Cellular Analysis 
The automated epithelial segmentation was rather accurate and any cells that were not 
properly identified were manually adjusted. A total of 63,235 cells were analysed. The 
correct discrimination between normal and SCC using all the parameters of the 
epithelial cellular morphology was 79%. Principal component analysis (PCA) showed 
that the mean cellular area, mean of the maximum grey value, standard deviation of the 
grey value variability, standard deviation of the circularity and mean skewness of the 
grey value were the 5 most variable parameters accounting for 91% of the variance in 
the data. When the means of all the parameters were calculated and the case-wise 
discriminant analysis was performed, 98% of the cases were correctly classified. 
Although on their own, the cellular features were not always statistically significant 
between the 2 tissue types (Table 2), there is a clear association between variables as 
demonstrated by the high discrimination rates of the discriminant analysis. 

3.1.3 Combined Analysis of Fractal and Cellular Features 
When the mean cellular features for each case were combined with the fractal data 
(main ECTI profile) in the case-wise discriminant analysis, 100% discrimination rate 
was achieved (at window sizes 283µm and 557µm). 100% correct discrimination was 
also achieved when the ECTI profiles with the epithelial islands were included in the 
analysis (at window size 47µm). 

Fractal features Fractal + all cellular features  Window 
size (µm) Normal vs. SCC SCC vs. GCT-PEH Normal vs. SCC SCC vs. GCT-PEH 

47 94.5 78.6 100.0 91.1 
96 92.7 85.7 98.1 92.9 

190 90.9 75.0 98.1 96.4 
283 90.9 66.1 98.1 96.4 
377 90.9 82.1 98.1 91.1 
470 92.7 80.4 98.1 87.5 
557 90.9 82.1 98.1 91.1 

Table 1: Percentage of correct discrimination between normal oral epithelium and SCC, and between 
SCC and GCT-PEH (Linear Discriminant Analysis cross validated with leave-one-out classification). 
Values are for ECTI profiles + islands. 

3.2 Squamous Cell Carcinoma versus Pseudoepitheliomatous Hyperplasia 

3.2.1 Fractal Analysis
The mean box fractal dimension of the ECTI profiles (without invasive islands) was 
1.22 + 0.057 for SCC and 1.28 + 0.062 for GCT-PEH. With the epithelial islands 
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Figure 2: Histograms of the local connected fractal dimension distribution at the different window 
sizes for A) Normal oral mucosa. B) SCC + invasive islands. C) GCT-PEH + pseudo-invasive islands 
ECTI profiles. (The highest peaks were truncated off scale for display purposes; the numbers in 
square brackets indicate the original value at the peak).
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included, the mean values were 1.28 + 0.093 for SCC and 1.34 + 0.068 for GCT-PEH. 
The differences in complexity between SCC and GCT-PEH were significant (p<0.01, 
ANOVA).  
A total of 5,505,345 local fractal dimensions were calculated. Figure 2 shows the 
histograms of the LFD distribution for both GCT and SCC ECTI profiles (with the 
invasive islands) at the 7 window sizes used. Again, at smaller window sizes the 
histograms were unimodal. The histogram peaks tended to shift to the right with 
increasing local window sizes.  
The discriminant analysis results using the fractal descriptors (global and local) are 
shown in Table 1. The highest correct classification percentage was 86% when 
epithelial islands were included in the analysis (window size 96µm). 

3.2.2 Cellular Analysis  
The total number of cells analysed was 79,615. Cell-wise discrimination into SCC and 
GCT-PEH using all cellular parameters was 76%.  The means of the morphological 
parameter were calculated case-wise. PCA showed that 5 parameters explained 91% of 
the total variance: the mean cellular breadth, standard deviation of the mean grey value, 
mean of the maximum grey value, standard deviation of the grey value skewness and 
mean cell circularity. These 5 factors alone allowed 77% case-wise correct 
discrimination, while using all the parameters allowed 91% correct discrimination. 

3.2.3 Combined Analysis of Cellular and Fractal Features  
The mean morphological parameters together with the fractal properties were subjected 
to case-wise discriminant analysis and allowed up to 96% correct discrimination 
between SCC and GCT (Table 1). 

Cell property (mean) Normal  SCC PEH 
Area 334.38 388.76 419.16 
Perimeter 75.90 81.65 85.36 
Circularity 21.16 21.25 20.38 
Length 27.34 29.59 30.54 
Breadth 18.58 19.65 21.04 
Grey value 183.78 164.47 186.15 
SD grey value 23.55 19.40 14.35 
Skewness grey value - 0.16 0.14 - 0.28 
Kurtosis grey value 0.28 0.39 0.49 
Median grey value 183.76 163.48 186.25 
Mode grey value 183.52 160.67 185.80 
Minimum grey value 120.56 120.92 149.59 
Maximum grey value 238.06 214.98 219.50 

Table 2: Mean epithelial cellular properties for normal, SCC and PEH (ANOVA). (Bold italics show 
significant differences at the 0.05 level.) Area is in pixel2 (1pixel2 = 0.389µm2). Perimeter, length and 
breadth are in pixels (1pixel = 0.624µm). 

4 Discussion 

The aim of this research was to study some aspects of the epithelial architecture of SCC 
and normal oral mucosa in order to establish quantitative morphological markers of oral 
malignancy. Such markers could eventually help in automating histopathological 
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diagnosis and avoid misdiagnosis those lesions that mimic SCC, therefore, this work 
also investigated the epithelial architecture in GCT-PEH in comparison to SCC cases. 
The tissue architecture was investigated at two levels, 1) at the tissue level by 
quantifying the irregularity of ECTI in terms of fractal dimensions, and 2) at the tissue 
component level by using the morphological properties of the theoretically segmented 
epithelial cells.  
The results showed that ECTI profiles are significantly more complex in SCC than in 
normal mucosa confirming previous studies [17-19]. Basement membrane defects [24] 
and loss of intercellular adhesion [25] are some of the factors that have been proposed 
to contribute to stromal invasion in SCC and might therefore be responsible for 
increasing ECTI irregularity.  The results also showed that GCT-PEH ECTI profiles are 
more irregular than those of SCC.  This may be due to two factors: active epithelial 
growth towards the underlying stroma and a simultaneous growth of granular cells 
(tumour expansion) towards the epithelium. Mixing of actively proliferating cells (both 
epithelial and non-epithelial) at the ECTI in GCT-PEH may induce different mechanical 
dynamics from what is observed in SCC, producing a more irregular ECTI. This cell 
interaction may lead to unusual elongation and thinning of the rete pegs, which could 
give the false impression of epithelial invasion.  
The local complexity of ECTI profiles is described by the LFD and LCFD at small 
window sizes and possibly the irregularity of normal oral mucosa, SCC and GCT-PEH 
profiles was found to be minimal because at such small scales, few cells are responsible 
for the pattern of complexity. At larger window sizes, larger scale irregularity becomes 
detectable.  

The epithelial cells were shown to be significantly darker in SCC in comparison 
to normal mucosa and to GCT-PEH (p <0.001 ANOVA). This is likely to be a 
consequence of nuclear hyperchromatism of SCC cells due to the increased DNA 
content and increased cell mitosis. The DNA content could be further investigated using 
stoichiometric methods such as Feulgen stain. 
In this work, we analysed the morphometrical characteristics of all the theoretical cell 
extents, while van der Waal et al only analysed cells with the largest nuclei [26]. Their 
analysis concluded that the mean area, perimeter and diameter of SCC nuclei were 
larger than those in GCT-PEH. They also found that the shape factor and the mitotic 
activity index were not significantly different.  

Many steps in this work were, at least in part, automated: multiple thresholding 
for segmenting the epithelium in H&E images [16, 17], fractal analysis for describing 
ECTI complexity and space partition procedures for interactive tissue segmentation into 
theoretical cells [21]. These reproducible and systematic procedures can replace 
traditional approaches: separation of epithelium in H&E images manually [27], 
description of tumour advancing fronts subjectively (raising concerns regarding 
reproducibility and consistency [19, 28]), and estimation of cell boundaries visually. 

This work presents innovative quantitative methods to study tissue architecture. 
The epithelial features of normal mucosa, SCC and GCT-PEH show distinct differences 
that allow discriminating between SCC and the other two diagnostic classes on a formal 
and reproducible basis. This provides a new potential to characterise cancerous growth 
quantitatively and to automate various aspects of histopathological diagnosis.  

It is hoped that quantification of the morphological and architectural features in 
different diagnostic criteria, jointly with the study of cell adhesion molecules would 
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facilitate understanding some of the mechanisms involved in local tumour infiltration, 
tissue invasion and distant metastasis. 
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Recognition of Tumor Cells 
A.Micheletti1)

1)    Dept. of Mathematics, Università degli Studi di Milano,Via Saldini 50, 20133 Milano, Italy 

Summary. Here some basic concepts of Statistical Shape Analysis are introduced and applied to a 
specific problem: automatic recognition and classification of cells coming from tumor tissues, from their 
nuclear profiles. The technique here described, which is commonly used for the description of the mean 
geometrical characteristics of  families of random objects and their statistical analysis, is proposed as an 
alternative (or in addition) to the study of  an asymptotic fractal model for the contour of nuclei.

1 Introduction 

As  D'Arcy Thompson  pointed out  in his pioneering book on "Growth and Form" [1], 
“There is an important relationship between the form or shape of a biological structure 
and his function". First of all let us introduce the current  terminology in this 
framework. 
By  shape we mean  the set of all geometrical information of an object which are 
invariant under translations, rotations, and  scaling. 
By   shape-and-size  we mean the set of all geometrical informations of an object which 
are invariant under translations, and  rotations (sometimes also called form; see [2]). 
The  Statistical Shape Analysis deals with the statistical analysis of a family of "objects"  
in presence of stochastic fluctuations (usually in order to solve classification problems) 
[2] and is strictly linked with Stochastic Geometry, which deals with the analysis of 
geometric aspects of these "objects" (which is used to solve both direct and inverse 
problems) [3,4]. 

2   Statistical Shape Analysis 

In Statistical Shape Analysis the relevant problem is to describe the geometrical mean 
"aspect" of an object and analyze its stochastic fluctuations. For the Mathematical 
Theory of Statistical Shape Analysis we refer in the following to [2]. 

2.1 Landmarks 

The shape or form of an object is in general described by elements of an infinite 
dimensional space (e.g. the contour of the object; the color of its interior parts; etc.). 
Since infinite dimensional objects are usually mathematically non-treatable, we try to 
reduce the problem to the study of elements of a finite dimensional space, via the use of  
landmarks.
Landmarks are a finite number of elements (points, angles, distances, ...) which are 
sufficient to characterize completely a typical object of the sample. Usually we can 
distinguish the landmarks into two main classes 
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anatomical landmarks, which are landmarks, usually assigned by an expert, 
having a biological relevance (e.g. the angle of an eye, a special point of the 
skull, etc.) 
mathematical landmarks, which are landmarks having a mathematical or 
geometrical relevance (points of maximum curvature, discontinuity points of the 
boundary, etc.) (see Fig. 1) 

Figure 1: 6 mathematical landmarks (+) along the contour of a T2 vertebra of a mouse, chosen as the 6 
points of maximum (positive or negative) curvature. 

A specific object is represented by an element of the space of configurations km )(R  if  
m  is the dimension of the Euclidean space to which each   landmark  belongs and k is 
the number of landmarks. So the shape of a sample of objects singled out of a 
population of similar objects is represented by a cluster of points in such km
dimensional space of configurations.    Every object of the sample will be represented 

by a matrix X in kmR , called configuration matrix, containing the cartesian 
coordinates of its k  landmarks. 
Because of the randomness of the studied objects, we introduce a probability space 

),,( PF  and assume that the studied sample comes from a random variable 
),(),,(: BF PX

where kmR  is the set of all possible configurations of landmarks and B  is the 
Borel  -algebra on it. 
If we are interested in the form of the objects, i.e. in their shape and size, we have to 
introduce also a measure for the size. 

Definition 2.1 A  size measure g(X) is any positive real valued function of the 
configuration matrix such that 

g(aX)=ag(X) 

for any positive scalar a.

A commonly used measure of size is the centroid size.

Definition 2.2. The centroid size is given by 
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dimension of the landmarks. 

2.2 Bookstein Coordinates for Planar Landmarks 

Let ,,...,1),,( kjyx jj 3k  be landmarks in a plane (i.e. we work in m=2 spatial 
dimensions). Bookstein [5,6] suggests removing the similarity transformations by 
translating, rotating and rescaling such that landmarks 1 and 2 are sent to a fixed 
position. If landmark 1 is sent to (0,0) and landmark 2 is sent to (1,0), then suitable 
shape variables are the coordinates of the remaining k-2 landmarks, after these 
operations. To preserve symmetry, we consider the coordinate system where landmarks 
1 and 2 are sent in the points (-1\2,0), (1\2,0), respectively. We say that landmarks 1 and 
2 form the baseline of the object. 

Definition 2.3. Bookstein coordinates ,,...,3,),( kjvu TB
j

B
j  are the remaining 

coordinates of an object after translating, rotating and rescaling the baseline to (-1\ 2,0) 
and (1\2,0). 

It is easy to show that 
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have been used widely in shape analysis for planar data and are the most 
straightforward to use for a newcomer to shape analysis or for the first stages of an 
analysis.  
Another widely used system of coordinates is given by Kendall coordinates, in which 
translations are removed by moving landmark 1 in the center of mass of all the 
landmarks, while rotation and scale are removed by dividing by the “size” of the first 
landmark. For further details see [2].

2.3   Distances in the Shape Space and Mean Shape 

In order to define the concepts of mean shape and of its variance a distance in the shape 
space must be introduced, to measure the differences between various objects. 
Let us consider two configuration matrices 1X  and 2X  of k points in m dimensions, 
and let 1Z  and 2Z  be the configurations after the elimination of translations (e.g. by 
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centering the configurations with respect to the center of mass of the landmarks). The 
matrices 1Z  and 2Z  are also called pre-shapes.

Definition 2.4 The  complete Procrustean distance between 1X  and 2X  is given by 
||||inf),( 12

,
21 ZZXXd

scalingsrotations
F .

Suppose that the landmarks are 2-dimensional and we use the complex notation, by 
which every landmark is represented by a complex number; suppose w,y are the 
complex vectors of the landmarks of the 2 objects that we are comparing. Then their 
complete procrustean distance is given by 
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Let nww ,...,1 be the configurations of the  landmarks of n centered objects, that is we 
translate the configurations so that the center of mass of the landmarks of each object 
coincides with the origin of the coordinate system. 

Definition 2.5 The complete procrustean estimate of the mean shape, or complete 
procrustean mean shape ][  is obtained by minimizing with respect to   the sum of   
squares of the complete Procrustean distances of every iw from a mean unknown 
configuration    having unit size, i.e. 
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An estimate of the variability of the shape is provided by the square root of the sum of 
the deviates of the distances of every configuration from the mean shape, that is the 
quantity 
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i
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2.4   Tangent Space Coordinates 

Usually, after the filtering of rigid motions and scaling, the shape of an object is 
represented by a point in a non-euclidean space (e.g. when Kendall Coordinates are 
used, a shape is represented by a point on a projective unit ipersphere). This means that 
the usual (multivariate) statistical techniques cannot be applied to a family of sample 
shapes. If the shape variability of the family of objects which are investigated is not too 
big, it is possible to approximate locally the shape space with a linear space, called 
tangent space. The tangent space is thus the linearized version of the shape space, in the 
neighborhood of a particular point (called the pole of the tangent projection), which is 
usually chosen as the mean shape obtained from the dataset of interest. In this space the 
usual propagation of gaussian distributions over linear transformations is preserved. 
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In case of planar data, one of the most used tangent coordinates system is given by the 
Kent’s partial Procrustes tangent coordinates, which are defined in the following way: 
suppose again to represent the landmark coordinates with complex numbers. Let  be a 
complex pole in the shape space. For any other shape z in a neighborhood of , let us 
rotate its configuration by an angle  to be as close as possible to the pole, and then 
project it onto the plane tangent to the shape space passing through , which will be 
denoted by T( .

Definition 2.6  The Kent’s partial Procrustes tangent coordinates for a planar shape 
are given by 

)(,][ *
1 TvzIev k

i

where )arg(ˆ *z  is the estimate of 

2.5   Hypothesis Testing

Due to the linearity of the tangent space,  tangent coordinates can be used to test 
hypotheses on the mean shape ][ of a family of object, like 

][][: 00H
where ][ 0  is a particular known mean shape, or to compare the mean shapes ][ 1  and 

][ 2 of two samples,  
][][: 210H .

These tests could be used to compare the mean shapes resulting from experiments 
performed with different physical/chemical/environmental parameters. 
Let’s consider the comparison of two independent samples, having configuration 
matrices 

1
,...,1 nXX , and 

2
,...,1 nYY  and mean shapes ][ 1  and ][ 2 , respectively. 

Let  
1

,...,1 nvv   and  
2

,...,1 nww  be the correspondent partial tangent Procrustean 

coordinates, and assume that 2121 ,...,1,,...,1),,(~),,(~ njniNwNv ji  with 

iv    and   jw   mutually independent, with common covariance matrix .

Under the null hypothesis ][][: 210H  ,  the statistics 

2
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)1( D
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has an  1, 21 MnnMF    distribution, where D  is the Mahalanobis distance between 
the sample means of the two samples, and M is the dimension of the tangent space. 
Then the statistics F can be used to test the given hypothesis. 

3   Discriminant Analysis 

Suppose to have a group of data that have to be classified into 2 different classes 0C
and 1C . Suppose also to have a subgroup (training set) of data of which we know the 
correct classification. The Discriminant Analysis is based on a discriminant function  
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}1,0{: pRg
that assigns the unclassified observation x to the class iC  if

ixg )( ,     i=0,1.
The choice of the discriminant function is obviously crucial in the definition of the 
method of classification.  

3.1 Classification Methods

Let  0C  and 1C  be the two groups to which the data should be assigned and let  
},...,1,1,0|{ iij njiT x

be the traning set, where in  is the number of elements of the group iC  which belong to 
the training set. We build a discriminant function which assigns a new unclassified 
observation x to the group which includes the majority of the data of the training set 
which are “closer” to x (chosen by using a suitable distance). 
Let NK be a positive integer and RRR ppd :),(  a distance, where p is the 

dimension of the observed random variables. Then for any 0,...,1 ni  and 1,...,1 nj ,
compute the distances ),( xxijd  and let KC  be the set of the K elements of the training 
set which are closer to x, according to the distance ),(d . Define now  

)(#:
)(#:

11

00
TCCK
TCCK

K

K

(where # denotes the cardinality of the set),  that is 0K is the number of the K elements 
of the training set closer to x which belong to 0C  and  1K  is the number of the K
elements of the training set closer to x which belong to 1C . We will assign x to 0C  if 
the proportion of elements of T closer to x which belong to 0C  is greater than the 
proportion of data which belong to 1C  , i.e. 

otherwise
n
K

n
K

if
xg

,1

,0
)( 1

1

0

0

This method is due to Fix and Hodges and is called method of the nearest neighbour 
[7].
Methods called kernel classification differ from the method of the nearest neighbour 
only in the different weights which are assigned to the data of the training set, according 
to their distance from x, via a kernel function RR p: , which usually is chosen 
nonnegative and monotone decreasing along the radius of a  p-dimensional ipersphere 
centered at the origin (which means that the elements of the training set which have a 
bigger distance from x will have smaller weights). Two types of kernel classifications 
will be used here: the kernel classification with fixed neighborhood and the kernel 
classification with moving neighborhood.
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Let x be the new observation which should be classified. Consider a positive real 
number h and let hC  be a spherical neighborhood of x of radius h. The discriminant 
function for the kernel classification with fixed neighborhood is defined by 
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Examples of the most commonly used kernel functions are plotted in Figure 2. 

Figure 2: Typical 1-dimensional kernel functions (p=1), drawn on the interval [0,1]. From left to right: 
Gaussian Kernel, Cauchy Kernel, Epanechnikov Kernel, Uniform Kernel. 

In the kernel classification with moving neighborhood, the radius h of the 
neighborhood of the new observation x is a function of x, defined in the following way: 
let again K be a positive integer and let KC be the set of the K elements of the training 
set which are closer to x. Define ||}.{||max:)( ijCx Kij

h xxx The discriminant 

function for the kernel classification with moving neighborhood is then defined as 
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Note that in all these methods the results of the classification depend on the choice of a 
parameter (the integer K for the method of the nearest neighbor and the kernel 
classification with moving neighborhood, and the radius h for the kernel classification 
with fixed neighborhood), which, together with the choice of the kernel function, 
determines the “range of interaction” of a new observation x with the data that have 
already been classified. The choice of small values for K or h is equivalent to assume a 
small long range correlation between the data, so that data of the training set which are 
far(according to ) from the new observation x bring only very few information for the 
classification and can be disregarded; viceversa, the choice of large values for K or h
turns out in assuming a strong long range correlation. 

4   Application to the Classification of Tumor and Normal Cells  

The methods of Shape Analysis and the Discriminant Analysis described in the previous 
sections have been applied to the automatic recognition of tumor and normal cells, by 
analyzing the shape of their nuclear profiles [8]. Usually the pathologist classifies the 
cells by direct visual analysis of the nuclear profile, according to the symmetry, 
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smoothness, and regularity of the contour, which are significantly different between the 
majority of the elements of the two classes, tumor and normal.  In order to describe 
these particular features of the shape of every nucleus, we used 30 landmarks, located 
on the 15 points of the contour having bigger positive curvature, and the 15 points 
having bigger negative curvature. The landmarks have been labeled clockwise from 1 to 
30, starting from the landmark located on the point of maximum positive curvature. 

Figure 3: 30 mathematical landmarks (*) along the contour of the nuclei of a normal cell (left) and tumor 
cell (right) , chosen as the  points of maximum (positive or negative) curvature. 

We used a data set provided by Prof. G. Landini, University of Birmingham (see also 
his contribution in this volume), formed by 1337 images of nuclear profiles of cells 
coming from histological samples of tissues of the mouth; 637 out of the analyzed 
images came from normal tissues, while 700 came from tissues which already had or 
later developed a tumor. Via the use of the 2-dimensional 30 landmark, every nucleus 
can be described equivalently by a 30x2 configuration matrix, or by a complex vector of 
dimension 30, where the real parts of the components represent the abscissas of the 
landmarks and the imaginary parts represent the ordinates. In both cases the shape of 
every object in the sample is represented by 60 variables, which is a rather big number. 
In order to reduce the dimension of the problem, a Principal Component Analysis was 
then also performed, in order to select only the variables which explain the bigger 
amount of  variance of the data.  
In Figure 4 variability of the first 4 principal components are reported. From the picture 
we observe that the first two components are related to the size of the image (note also 
the changes in the axis scaling), the first component is related also to the inclination of 
the image, while the last 3 components are more related to the asymmetries and 
irregularities on the contour. 
The test described in Section 2.5 was applied to the data to compare the mean shapes of  
nuclear profiles coming from tumor and normal cells. The test was applied to the chosen 
landmarks and revealed a significant difference (at the 95% level) between the mean 
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shapes of the two groups. This confirms that these landmarks seem to be good 
descriptors of the shapes of the nuclei, and, in particular, of the differences between the 
two classes. 

Figure 4: Variability of the first 4 principal components: first row = component 1,… , fourth 
row=component 4. The central image in every row is the mean shape, the others are obtained 
from the mean by adding or subtracting 1,2,3 standard deviations, respectively. The continuous 
contours have been obtained from the normal cells, the dashed ones from the tumor cells. 

The data set has then been divided into the groups shapeN, shapeN1, formed, 
respectively, by 235 and 402 normal cells and the groups shapeT, shapeT1, formed, 
respectively, by 269 and 431 tumor cells. The groups shapeN and shapeT have been 
used as training set, while the other two groups have been used to test the effectiveness 
of the classification methods. The size of the training set has been settled to the over 
mentioned numbers since even increasing it we did not observe significant changes in 
the percentages of correct recognition. 
In Table 1 the percentages of errors are reported which have been obtained by applying 
the kernel classification to the coordinates of all the 30 landmarks, or only to the first 
principal components, from 1 to 9. 
We note that starting from the 6th principal component, we have a decrease of the 
erroneous recognition, to values comparable with the results found by G. Landini using  
an asymptotic fractal model to describe the shape of the border of the nuclei [8]. 
Increasing the number of PC’s over the 9th does not affect significantly the results.  
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Table 1: percentages of wrong recognition with the kernel classification applied to all the variables, only 
the first PC, the first two PC’s, …, the first nine PC’s: B=fixed neighbour with r=300 and 
Cauchy Kernel; C=fixed neighbour with r=300 and Gaussian Kernel; D=mobile neighbour 
with k=30 and Cauchy Kernel; E=mobile neighbour with k=30 and Gaussian Kernel. 
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Summary. Most women undergoing treatment for early ovarian cancer have a good prognosis, but about
20% will eventually die of the disease. Identifying patients with increased risk of relapse is important,
as it could be used to select patients in need for adjuvant treatment after surgery. The aim of the present
study has been to analyze the prognostic value of nuclear fractal features in early ovarian cancer, and to
study the complex relation between nuclear area, nuclear DNA content, nuclear gray level distribution and
nuclear fractal features. We found that the monolayer nuclei from a given lesion differed widely in fractal
dimension. The fractal dimension in the peripheral part of the nuclei was higher than the fractal dimension
in the central part of the nuclei. The intra-patient variability of fractal dimension was larger than the inter-
patient variability of the mean fractal dimension. Fractal dimension was insufficient for classification. The
cell nuclei were grouped into area bins according to nuclear area. Lacunarity class distance and class
difference matrices were extracted from the nuclei within each area bin. Some few area intervals contained
most of the class distance information between the two prognostic classes of early ovarian cancer. The
Mahalanobis values contained in the class distance matrices computed from these area bins were about
four times higher than the Mahalanobis values contained in the area independent class distance matrices
computed from all the nuclei. However, the lacunarity features were not sufficient to discriminate the two
classes of early ovarian cancer.

1 Introduction

Most women undergoing treatment for early ovarian cancer have a good prognosis. Re-
ported 5-year survival rates for International Federation of Gynecology and Obstetrics
(FIGO) stage I are about 80 % [1-3]. Patients with ovarian cancer FIGO stage I who
suffer a relapse after surgery do so because of sub-clinical metastases at time of surgery.
Identification of patients with such micro-metastases is crucial in order to be able to offer
additional treatment after surgery [4]. We have previously shown that the relative DNA
content of tumour nuclei (DNA ploidy) is a strong indicator of prognosis in early ovarian
cancer [4].

Many disordered systems as well as complex deterministic systems may be de-
scribed by fractal geometry [5]. A few fractal features may quantify an immense com-
plexity, describing structures at all scales in the same way. A fractal description seems
appropriate when describing a system where a maximization of structure area or length
per volume is taking place, as in the chromatin structures of cell nuclei.

Several methods exist for estimating fractal parameters describing the gray level
texture of 2D images. For 1D signals, similar algorithms are applicable to the problem
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of measuring the length of an irregular curve. Constant-deviation variable-step methods
(e.g. [6, 7]) generally give better results than constant-length divider-step methods.

In several studies, we have developed a tool to obtain a radial differentiation in
the parameters that describe the microscopic visual texture in the chromatin of cell nu-
clei. This includes a peel-off scanning technique [8], fractal dimension and lacunarity
estimation by polygonization [7-9], and the use of fractal signature vectors and lacunar-
ity matrices to describe class differences and class distances in order to obtain very low
dimensional adaptive features for classification [10, 11].

In order to study the prognostic value of quantifying the chromatin structure of
cell nuclei from patients with early ovarian cancer, we have earlier [10, 12] extracted nu-
clear adaptive textural features from a pilot material of 40 cases (patients). Class distance
and class difference matrices clearly illustrated the difference in chromatin texture be-
tween the two different prognostic classes. In the present study, we have extracted fractal
features from a more complete material of 134 cases of early ovarian cancer.

Nuclear size and shape is used in routine histopathology as a marker of malig-
nancy. However, the monolayer nuclei from a given lesion (patient) differ widely in size,
gray level distribution, and in their DNA content. The aim of the present study has been
to analyze the prognostic value of fractal features in early ovarian cancer, and to study the
complex relation between nuclear area, nuclear DNA content, nuclear gray level distribu-
tion and nuclear fractal features.

2 Materials and Methods

2.1 Ovarian Cancer Cell Nuclei

134 cases of ovarian cancer classified as International Federation of Gynecology and Ob-
stetrics (FIGO) stage I were included in the analysis [4]. 94 cases had a good prognosis,
which means that they survived the follow-up period without a relapse. The minimum
length of follow-up for patients alive without a relapse was ten years. The 40 cases in-
cluded in the poor prognosis group died of a cancer-related disease or relapsed during the
follow-up period.

Paraffin-embedded tissue samples fixed in 4% buffered formalin were sectioned
(2 × 50µm) and enzymatically digested (SIGMA protease, type XXIV, Sigma Chemical
C., St. Louis, Missouri, USA) for the preparation of isolated nuclei (monolayers) [13].
The nuclei were Feulgen-Schiff stained according to an established protocol [14]. The
tumour tissue to be used for the preparation were selected by a pathologist [4].

The Fairfield DNA Ploidy System (Fairfield Imaging LTD, Kent, England), which
consisted of a Zeiss Axioplan microscope equipped with a 40/0.75 objective lens (Zeiss),
a 546 nm green filter and a black and white high-resolution digital camera (C4742-95,
Hamamatsu Photonics K.K., Hamamatsu, Japan) was used. A shade correction was per-
formed for each image field and the image was stored in 1024 × 1024 pixels with a
gray level resolution of 10 bits/pixel. The pixel resolution was 166 nm/pixel on the cell
specimen. Trained personnel performed a screening of the nuclei at the microscope and
selected tumour nuclei for the analysis. Stromal nuclei, necrotic nuclei, doublets or cut
nuclei were disregarded. The nuclei were segmented from the background by using a
global threshold and stored in galleries in each case. After segmentation the cell nucleus
pixels kept their gray level values i (0-1022) while the background pixel value b was set
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72 × 84 pixels

Figure 1: Two monolayer cell nuclei from a good prognosis case (left) and two nuclei from a poor prognosis
case (right).

to 1023. The mean number of measured tumour nuclei/case was 281, ranging from 220
to 314 nuclei. Fig. 1 shows examples of nuclei from each of the two groups.

2.2 Nuclear Integrated Optical Density

The integrated optical density (IOD) which is a measure of relative nuclear DNA content
was computed for each nuclear image. The IOD is given by a summation over the whole
image

IOD = −∑

x,y

log10

i(x, y)

b
(1)

so that background pixels (i(x, y) = b) do not contribute to the IOD. Fig. 2 illustrates the
relation between nuclear mean gray level, nuclear area and nuclear DNA content for two
cases (patients).

2.3 Standardization of Mean Value and Standard Deviation

A linear gray level mapping of each nuclear image was performed in order to standardize
the mean value and standard deviation without standardizing other first-order statistical
measures such as kurtosis and skewness (as in [10, 12]).

2.4 Peel-off Scanning

In order to extract separate estimates of fractal features in the periphery and center of the
nucleus, the 2D gray level nuclear image was transformed into a 1D gray level signal by
scanning the nucleus in a spiral-like fashion called “peel-off scanning” [8, 10, 12]. The
1D gray level signal resulting from the “peel-off scanning” of each nuclear image was
divided into a peripheral (representing 30% of the total area of the nucleus) and a central
(representing 70% of the area) segment. Separate fractal features were extracted from
these segments (as in [10, 12]).

2.5 Fractal Dimension by Polygonization

Our method for estimation of fractal dimension of 1D curves [7, 8, 11] is based on the
polygonization method of Wall and Danielsson [15]. Wall-Danielsson’s method steps
from point to point through an ordered sequence of points (xj, ij), and outputs the previ-
ous point as a new breakpoint if the area deviation Aj per unit length of the approximating
line segment sj exceeds a prespecified tolerance, T . If | Aj | /sj < T , j is incremented
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Figure 2: Data from a patient from the good prognosis group (top) and the poor prognosis group (bottom)
showing average nuclear gray level µi versus nuclear area (pixels, resolution 166nm) (left) and
integrated optical density IOD (arbitrary units) (right).

and (Aj, sj) is recomputed. Otherwise, the previous point is a new breakpoint and the
previous value of sj is stored. This method is purely sequential and very fast, particularly
when the x-values are assumed equidistant (∆x = 1).

We approximate the 1D gray level signal by polygonization with several values
of the tolerance, T . For each tolerance value the total length of the line segments that
approximate the curve is summed up by ST =

∑
j sj . The set of tolerance values is

computed from a Fibonacci sequence, and the upper and lower limits of the useful range
of T values are found by simply assuming that there is an upper and a lower limit to the
number of line segments in a useful approximation of a curve consisting of M points
[7, 8].

Given a set of m remaining points in the {log(T ), log(ST )}-domain, we find the
coefficients of a least-squares fitted linear relation,

log(ST ) = â + b̂ log(T ), b̂ = ĤT − 1 = 1 − D̂T (2)

as well as the uncertainty in the linear slope coefficient, and the linear correlation coeffi-
cient, rT,S .
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2.6 Lacunarity by Polygonization

For each 1D gray level curve, we estimate the probability distribution p(s) of the length,
sj , of the line segments approximating the curve, for each tolerance parameter T . We
store these into a lacunarity matrix, Λ(s, T ), covering the whole range of the tolerance
parameter T . The line lengths were grouped into ranges, 1-10, 11-20, ..., 41-50 [10, 11].

2.6.1 Class Distance and Class Difference Matrices
Class distance matrices and class difference matrices [10-12] were computed from the
lacunarity matrices. We compute the probability lacunarity matrices Λn(s, T |ωc), n =
1, 2, ..., N(ωc) from the N(ωc) training set images of class ωc. For each element (s, T )
in the matrix we then estimate the class conditional probability distribution of the nor-
malized matrix value. Based on these class conditional distributions, we compute the
average matrix Λ(s, T |ωc) for each class ωc, the class variance matrix σ2

Λ(s, T |ωc), the
class difference matrix ∆(s, T |ω1, ω2), and finally the Mahalanobis class distance matrix
J(s, T |ω1, ω2) between the two classes ω1 and ω2 [12]

Λ(s, T |ωc) =
1

N(ωc)

N(ωc)∑

n=1

Λn(s, T |ωc) (3)

σ2
Λ(s, T |ωc) =

1

N(ωc)

N(ωc)∑

n=1

(Λn(s, T |ωc) − Λ(s, T |ωc))
2 (4)

∆(s, T |ω1, ω2) = Λ(s, T |ω1) − Λ(s, T |ω2) (5)

J(s, T |ω1, ω2) = 2
(Λ(s, T |ω1) − Λ(s, T |ω2))

2

σ2
Λ(s, T |ω1) + σ2

Λ(s, T |ω2)
(6)

2.6.2 Adaptive Lacunarity Features
Now the Mahalanobis class distance matrix and the class difference matrix form the ba-
sis upon which we construct only two adaptive features from the lacunarity matrix. Our
low dimensionality adaptive feature extraction is based on a priori information about the
existence of large areas of consistently high values within the class distance and class dif-
ference matrices. For each texture image, we combine those probability matrix elements
that contribute the most to the class separability into two adaptive features, simply by
using the squared class distance matrix values as summation weights. We utilize the fact
that in the two-class problem, the class difference has a sign, depending on whether the
first or the second class matrix element contains the highest average probability. We use
the two disjoint positive/negative parts of the class difference matrix as the domains of
the weighted summation. Thus, an image having a probability matrix Λk(s, T ) will give
two adaptive feature values [12]

F+ =
∑

∆(s,T |ω1,ω2)>0

Λk(s, T |ωc) [J(s, T |ω1, ω2)]
2

F− =
∑

∆(s,T |ω1,ω2)<0

Λk(s, T |ωc) [J(s, T |ω1, ω2)]
2 (7)

This guarantees that the highest weight is put on the most discriminatory parts
of the matrix. Class distance and class difference matrices and adaptive features were
extracted separately from the peripheral and central part of each nucleus.
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2.6.3 Nuclear Area Independent Lacunarity Matrices
The class difference and distance matrices described above (Eqs. (5) and (6)) and the
corresponding adaptive features (Eq. (7)) [10, 12] will in the present study be described
as nuclear area independent matrices and features.

2.6.4 Nuclear Area Dependent Lacunarity Matrices
The nuclear images were grouped into area bins according to the number of pixels in
the nucleus (A0: < 1000 pixels, A1: 1000-1999 pixels, A2: 2000-2999 pixels, ..., A10:
> 10000 pixels). The number of nuclei within each area bin (in %) was (A0: 0.1, A1:
8.5, A2: 24.0, A3: 29.7, A4: 18.7, A5: 9.5, A6: 5.0, A7: 2.2, A8: 1.0, A9: 0.5, A10: 0.9).
Separate class distance and class difference matrices JAa , ∆Aa were computed from all
nuclei within each area bin, a=1,2,...,10.

Area dependent adaptive features were computed by selecting the matrices ∆Aa

and JAa according to the nuclear area of each nucleus

F+ =
∑

∆Aa (s,T |ω1,ω2)>0

Λk(s, T |ωc) [JAa(s, T |ω1, ω2)]
2

F− =
∑

∆Aa (s,T |ω1,ω2)<0

Λk(s, T |ωc) [JAa(s, T |ω1, ω2)]
2 (8)

In the present study, area dependent adaptive features were extracted from all
nuclei within area bins Aa, a=3,4 (which contained 48.4 % of the nuclei). Matrices com-
puted from area bins A1 and A2 contained almost no class distance information and nuclei
within these area bins were therefore excluded from the analysis. With increasing nuclear
area, the area dependent class distance and difference matrices were based on a decreas-
ing number of nuclei, resulting in more noise in the matrices. Nuclei within area bins Aa,
a > 4 were therefore also excluded from the analysis.

2.7 Classification and Feature Evaluation

Bayesian classification with equal prior probabilities for each class was used as the rule for
classification [16]. The feature distribution within each class was verified to be multivari-
ate normal and the within-class covariance matrices were assumed equal. The Bayesian
classification rule then becomes a linear discriminant function.

In the area independent texture analysis, each case (patient) of the ovarian data
set was represented by the mean value of the distribution of feature values extracted from
about 280 nuclei per case. In the case of area dependent texture analysis, the (scalar)
mean feature value of each case was computed from the features of the nuclei within area
bins Aa, a=3,4 (about 135 nuclei).

The two prognosis classes were randomly divided into two data sets D1 and D2,
each set containing 47 good prognosis and 20 poor prognosis cases. In the first exper-
iment, D1 was used as a training set and D2 as an independent test set. Class distance
and difference matrices were computed from all nuclei in D1. Based on these matrices,
adaptive features were then extracted from all nuclei in D1. Classificators based on single
features (fractal dimension) or combinations of two features (lacunarity) were constructed
and the correct classification rate (CCR) was used to evaluate the features. In the second
experiment, D2 was used as a training set and D1 as a test set.
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Figure 3: Data from a patient from the good prognosis group (top) and the poor prognosis group (bottom)
showing nuclear fractal dimension FD versus integrated optical density IOD (arbitrary units).
The fractal dimension was here extracted from the central (c) and peripheral (p) parts of the
original nuclear images, i.e. a standardization of the mean value and standard deviation was not
performed.

The mean training set CCR of each feature (fractal dimension) or each feature pair
(lacunarity) was computed from the two CCRs obtained from the training sets D1 and D2.
The best classificators (with highest mean training set CCR) was tested on the test sets
D2 (experiment 1) and D1 (experiment 2). From these two experiments, the mean test set
CCR was computed.

3 Results

3.1 Fractal Dimension

The monolayer nuclei from a given lesion differed widely in fractal dimension (see Fig.
3). The fractal dimension in the peripheral part of the nuclei was higher than the fractal
dimension in the central part of the nuclei. The intra-patient variability of fractal di-
mension was larger than the inter-patient variability of the mean fractal dimension (see
Fig. 4). Fractal dimension was insufficient for classification. The mean test set correct
classification rate was 62.7%.
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Figure 4: The standard deviation of the fractal dimension FD is plotted versus the average fractal dimension
for 40 good prognosis (o) and 40 poor prognosis (*) patients. The fractal dimension was here
extracted from the central (c) and peripheral (p) parts of the standardized nuclear images, i.e. a
standardization of the mean value and standard deviation was performed.

3.2 Lacunarity

By extracting separate lacunarity class distance and class difference matrices from the
different area bins, the class distance information between the two prognostic classes
of early ovarian cancer was greatly increased. Class distance matrices computed from
area bins A3 and A4 contained most of the class distance information. The Mahalanobis
values contained in JA4(s, T ) were about four times higher than the Mahalanobis values
contained in the area independent matrix J(s, T ) (see Fig. 5). However, area dependent
adaptive features extracted from area bins A3 and A4 were not sufficient to discriminate
between the two classes of early ovarian cancer. The mean test set correct classification
rate for the best combination of two lacunarity features (with highest mean training set
correct classification rate) was 62.7%.

4 Discussion

There is a complex relation between nuclear size, DNA content, gray level distribution
and fractal features, see Figs. 2, 3 and 6. Even diploid nuclei from a given patient vary
greatly in size, in first order gray level moments as well as in fractal dimension. For
nuclei with approximately the same DNA content, the mean gray level increases and the
standard deviation decreases with increasing nuclear area. For nuclei with approximately
the same nuclear area, the mean gray level decreases and the standard deviation increases
with increasing nuclear DNA content. Some of the area variation may be caused by the
monolayer cell preparation. The cases of the poor prognosis group had a lower fractal
dimension, a lower mean gray level value and a higher gray level standard deviation com-
pared to the good prognosis cases. However, the overlap between the two groups was
considerable.

There are also differences in the fractal dimension between the central and the
peripheral parts of the cell nuclei (see Fig. 6). For the central parts of the cell nuclei,
the range of mean fractal dimension per patient, averaged over more than 200 cell nuclei,
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Figure 5: Lacunarity Mahalanobis class distance matrices (a) and lacunarity class difference matrices (b)
between the two prognostic classes of early ovarian cancer. The matrices were computed from
all 37690 nuclei (left), all nuclei within area bin A1 (1000 ≤ area < 2000 pixels) (middle) and
all nuclei within area bin A4 (4000 ≤ area < 5000 pixels) (right).

is larger in the good prognosis class than in the poor prognosis, but this is not true for
the peripheral parts of the nuclei. The intra-patient variability of the fractal dimension is
larger than the inter-patient variability for both prognosis classes and both the central and
peripheral parts of the cell nuclei.

Nuclear first-order gray level statistics may be influenced by variations in staining
and illumination or other variations in the monolayer preparation and imaging process.
We have therefore performed a linear gray level mapping in order to standardize the nu-
clear gray level mean value and standard deviation. However, the average fractal dimen-
sion of each case computed from the standardized images was highly correlated with the
average fractal dimension computed from the original images (see Fig. 7).

The elemental values of the lacunarity class distance and class difference matrices
varied with area bin Aa, a=1,2,...,10. Nuclei with area between 3000-5000 pixels con-
tained most of the lacunarity class distance information. Nuclei within area bin Aa, a > 4
(with area between 5000-30000 pixels) were excluded when extracting area dependent
adaptive lacunarity features. However, these large nuclei may contain prognostic infor-
mation. The prognostic information contained in these large nuclei is utilized in DNA
ploidy analysis.

In conclusion, the ovarian cancer monolayer nuclei differed widely in size, DNA
content, gray level distribution and fractal features. By grouping the cell nuclei into area
bins according to nuclear area and computing separate lacunarity class distance and class
difference matrices from each area bin, we found that some few area bins contained most
of the prognostic information between the two classes of early ovarian cancer. We believe
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Figure 6: The average fractal dimension mean(FD) is plotted versus average nuclear area (top), average
nuclear gray level mean mean(µi) (middle) and average nuclear gray level standard deviation
mean(σ) (bottom) for 40 good prognosis (o) and 40 poor prognosis (*) patients. The fractal
dimension was here extracted from the central (c) and peripheral (p) parts of the original nuclear
images, i.e. a standardization of the mean value and standard deviation was not performed.
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Figure 7: The average fractal dimension FD computed from the standardized nuclear images plotted versus
average fractal dimension computed from the original nuclear images for 40 good prognosis (o)
and 40 poor prognosis (*) patients. The fractal dimension was here extracted from the central (c)
part of the nuclei.

that it is important to include this in the fractal analysis of monolayer cell nuclei, and
also to consider the complex relations between fractal features and positions within the
nucleus, DNA content, and gray level distribution parameters.
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Summary. The lower gengival and vestibular oral mucosa was photographed and analyzed to determine 
the complexity of the vascular network. Patients with hereditary non-polyposis colorectal cancer 
syndrome (HNPCC), newborns with true umbilical cord knots, patients with a history of infantile 
hypertrophic pyloric stenosis (IHPS), patients with  mixed connective tissue disease (MCTD) and age- 
and sex-matched controls were enrolled in the study.  The fractal dimensions for two regions of different 
box lengths ( < 740 µm and < 140 µm), the fractal dimension of the minimum path (Dmin) and the 
relative Lempel-Ziv complexity were calculated. The findings of this study indicate the presence of an 
increased vascular network complexity of the patients' oral mucosa, giving us previously unrecognized 
phenotypical markers for these diseases. The increased oral vascular complexity observed may be linked 
to a a systemic abnormality of the extracellular matrix.  

1  Introduction 

We are testing the hypothesis of the presence of a  vascularization abnormality in 
several diseases, in order to provide phenotypical markers to identify affected subjects, 
and, when possibile, to identify couples potentially at risk of having an affected 
offspring. The oral vascular networks were characterised by analyzing their complexity 
(fractal dimension, D, on two scales), tortuosity (fractal dimension of the minimum 
path, Dmin), and randomness (relative Lempel-Ziv, or LZ, complexity) of the vascular 
loops. 

2  Materials and Methods 

2.1  Patients 

In this paper we present data  obtained from the study of oral vascular network in 
humans:  

a) Adult patients with hereditary non-polyposis colorectal cancer syndrome 
(HNPCC, gene carriers, n = 6), 

b) Newborns with true umbilical cord knots (n = 5) 

We also present here images of the oral vascular network in adult human subjects 
with: 

c) a history of surgically treated infantile hypertrophic pyloric stenosis (IHPS)  
d) mixed connective tissue disease (MCTD) 
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Age- and sex-matched controls were included in the study. 

2.2  Oral Vascular Network Analysis 

The lower gengival and vestibular oral mucosa was chosen as the study-area, due to the 
visibility of the vascular pattern and oral accessibility. The lower gingival and vestibular 
oral mucosa was photographed for each subject. A manual outline of the trajectories of 
the two-dimensional vascular networks was performed, processed to threshold the 
vessel network without background interference and converted into an outline of single 
pixels (Image Pro-Plus, Media Cybernetics Inc., Silver Spring, USA) (Fig.1).  

Figure 1: Top. Oral vascular network   in  a  healthy  subject. Nikon   coolpix  4500  digital camera with 
                 macro cool-light SL-1 and  Nikor zoom  objective lens  ( 22.5 mm focal lenght). Bottom (left)     
                 a  small  portion  of  the  oral   mucosa   image  is  enlarged  (x 30).  Bottom  (right)  from  the   
                 previous image, the trajectories  of the vascular network are traced.  

Fractal dimensions of the 2-D images were measured using the box-counting 
algorithm [1,2]  for two regions of box lengths <740  µm (pixels 1-46) and <140 µm 
(pixels 1-15). The fractal dimension of the minimum path, Dmin, was computed for 
each vascular cluster, where Dmin is the exponent that governs the dependence of the 
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minimum path length between two points on the Pythagorean distance between them. D 
min was measured using an automated procedure to calculate half perimeter (xi) and the 
maximum diameter (yi) of the vessel loops. The slope of the Log/Log plot xi/yi 
represents Dmin. Our method was validated with the original one by Herrmann & 
Stanley [3], with a maximum shift of ± 3%. Relative Lempel-Ziv complexity was 
calculated according to the Kaspar and Schuster algorithm [4] using the Chaos Data 
Analyzer  software package. Our method consisted in transforming the vascular network 
lattices (251 by 251 pixel window) into one-dimensional vectors containing 16,732 
points, and each datum point was converted into a single binary digit according to 
whether the outline is present (=1) or not (=0). Relative LZ values range from near 0 for 
a deterministic equation to around 1.0 for totally destructured random phenomena 
(white noise). The vascular network analysis was reproducible, with mean intra- and 
inter-observer coefficients  varying < 5.0% and < 10%, respectively. 

Differences between means were analyzed  by the t-test, while  differences 
between multiple groups were analyzed by one-way ANOVA . Mean values ± SD  are 
reported. 

3  Results 

HNPCC gene mutation carriers exhibited vascular networks with a high overall 
complexity (high value of fractal dimension at both larger (D[1-46] ) and smaller (D[1-
15]) scales), increased randomness (LZ) and decreased vessel tortuosity (Dmin) 
compared to control vascular networks (see Tab.1, Fig.2 and our reference, [5]).  

               D[1-46]  D[1-15]               LZ                 Dmin 
HNPCC, n = 6 1.83 ± 0.07 1.58 ± 0.11 0.84 ± 0.10 0.99 ± 0.02 
Controls, n = 20 1.66 ± 0.08 1.17 ± 0.07 0.55 ± 0.03 1.08 ± 0.03 
P 0.001 0.001 0.001 0.001 

Table 1: Oral vascular network indexes in age- and sex-matched controls and higher  indexes in  HNPCC  
               (hereditary non-polyposis colorectal  cancer syndrome) adult patients.  

Differences were significant (HNPCC gene carriers vs. controls): D[1-46], 
p<0.001; D[1-15], p<0.001; LZ, p<0.001; Dmin, p<0.001. 

Figure 2: Control  oral  vascular  network  (left)   and  increased   oral  vascular   network  complexity   in  
                 hereditary non-polyposis colorectal cancer, HNPCC (right). x 20.
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Newborns with true umbilical cord knots, a condition in which abnormality in 
the extracellular matrix together with a significantly increased risk of stillbirth and a 
low Apgar score and [6], exhibited a high  increase of vascular network complexity, 
compared with sex-, gestational age- and weight-matched controls (very high values of 
fractal dimension  at both larger (D[1-46]) and smaller (D[1-15]) scales), an almost 
completely destructured randomness (LZ) and unchanged vessel tortuosity (Dmin) (see 
Tab.2, Fig.3 and our reference, [7]). 

               D[1-46]  D[1-15]               LZ                 Dmin 
Cord knots, n = 5 1.98 ± 0.01 1.64 ± 0.07 0.96 ± 0.03 0.96 ± 0.01 
Controls,    n = 30 1.79 ± 0.06 1.45 ± 0.03 0.72 ± 0.03 0.97 ± 0.02 
P 0.001 0.001 0.001 n.s. 

Table 2: Oral vascular network indexes in gestational age-, sex- and weight-matched controls and higher  
               indexes (D, LZ) in newborns with true umbilical cord knots. 

D[1-46], D[1-15] and LZ differences were significant (newborns with true 
umbilical cord knots vs. controls): D[1-46], p<0.001; D[1-15], p<0.001; LZ, p<0.001. 
Dmin differences were not significant, p > 0.05. 

Figure 3: Oral  vascular  network   in a  control   newborn  (left)   and   increased oral  vascular   network  
                 complexity in a newborn with true umbilical cord knot (right). x 20. 

In our study patients with other diseases showed an increased oral vascular 
network complexity and randomness. Here we show  images of the oral vascular pattern 
in a individual with a history of surgically treated infantile hypertrophic pyloric stenosis 
(IHPS) and  in a patient with mixed connective tissue disease (MCTD). In these 
individuals an increased vascular network complexity  and randomness are present, 
compared with sex- and age-matched controls (see for example, Fig. 4 and our 
reference,  [8]). In these patients we also observed an increased presence of  mandibular 
frenulum hypoplasia. (Fig.5) 
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Figure 4: Oral vascular network  in a healthy  controls  subject  (left), in a  patient  with MCTD  (middle)  
                and  in a  subject  with  a  history of surgically  treated  infantile  hypertrophic  pyloric  stenosis, 
                IHPS (right). x 20. 

Figure 5: Inferior labial  frenulum in a healthy control subject (left) , in a  patient with  mixed connective  
                 tissue disease, MCTD (middle) and in a subject with a history  of IHPS (right). The patient and  
                 the subject with a history of IHPS  present hypoplasia of the mandibular frenulum, evidence  of  
                 extracellular matrix abnormality. 

4 Discussion 

The findings of this study indicate the presence of an increased vascular network 
complexity in  the oral mucosa of HNPCC patients, of newborns with true umbilical 
cord knots, of individuals with a history of surgically treated IHPS and of patients with 
the autoimmune rheumatic disease MCTD. 
       The mechanism underlying the increased vascular complexity we observed remain 
unclear. However, concerning the HNPCC patients, an abnormal complexity of tumour 
vascular network may be related to changes in the extracellular matrix properties [9] 
and a close relationship between blood vessel geometry and extracellular matrix is 
described [10,11]. Likewise, abnormalities of extracellular matrix are also present in 
newborns with true umbilical cord knots, as revealed by the high frequency of inferior 
labial frenulum agenesis of these subjects [7], and in one third of patients with infantile 
hypertrophic pyloric stenosis [12], as also shown here. Hypoplasia of the mandibular 
frenulum has also been observed by us in MCTD patients, as reported here. Moreover, 
the data presented here are also statistically similar to those observed by us in an 
heriditary disorder of the connective tissue such as the Ehlers-Danlos II/III syndrome 
previously observed by us [De Felice et al.,  unpublished results]. Although further 
studies are required to elucidate underlying mechanisms of the increased complexity 
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and destructured randomness of the oral vascular network we observed, we speculate 
the existence of a possible association with an abnormality in the microarchitecture of 
the extracellular matrix.  
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Summary.  In an attempt to evaluate local architectural changes in oral epithelial premalignancy and 
malignancy, a quantitative method to analyse spatial cell arrangement as observed in 2D histological 
sections was developed based on mathematical morphology and graph theory. In total, 441 images (x20) 
of oral epithelium belonging to three diagnostic classes of interest (normal, dysplastic and neoplastic 
lesions) were assembled into collages for analysis. Epithelial cell nuclei markers were created from 
Haematoxylin and Eosin stained sections using colour deconvolution and morphological greyscale 
reconstructions. The epithelial tissue compartment was partitioned (using a digital watershed algorithm) 
into exclusive domains according to nuclei positions to approach the theoretical cell extents. The spatial 
arrangement of these “cells” was then analysed in circular neighbourhoods of two sizes where four types 
of constrained graph networks (minimal spanning tree, relative neighbour graph, Gabriel graph and 
Delaunay triangulation) were constructed over the cell centroids. From these networks a total of 29 
statistical properties were recorded. The statistical analysis of the network data indicated that unbiased 
and reproducible quantification of tissue architectural features is feasible and may provide valuable 
morphological information for diagnostic purposes and tissue characterization. 

1 Introduction 

Oral squamous cell carcinoma (SCC) has a variable incidence rate throughout the 
world. While in most Western countries this figure ranges from 2 to 4% of all diagnosed 
tumours, in certain regions of the world it is much more common (e.g. ~40% in parts of 
India). Globally SCC is one of the 10 most common cancers and about 270,000 new 
cases are diagnosed each year. With regards to the prognosis, the 5-year survival after 
treatment is only 50% [1]. A fraction of oral cancers is preceded by the so-called 
premalignant lesions (where there is an increased probability of malignant 
transformation) so their early and accurate diagnosis could help improve prognosis by 
allowing treatment before malignant transformation takes place (although not all 
premalignant lesions progress to malignancy).  

Accurate histopathological diagnosis (i.e. determination of the nature of a 
disease by means of microscopic examination) is useful at several levels. For instance it 
is important to be able to differentiate a) normal from abnormal tissues, b) between 
premalignant and malignant, c) between those premalignant lesions that are likely to 
transform and those which are not so, and d) to differentiate the malignant lesions that 
are likely to have a good response to a particular treatment from those which are not. 
It is therefore essential to be able to accurately and reproducibly quantify those 
histological changes for the diagnostic process. Furthermore, if the quantitative 
methodology allows for automation of the tasks, it would also enable examination of 
more histological material than with current standards. 
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Some of these quantitative markers of oral epithelial morphology and 
organization have been formulated using principles from fractal geometry [2-5] and 
reported elsewhere in this volume (Abu Eid & Landini). Here we will present other 
possible approaches that provide statistical characterization of the epithelial tissue 
spatial architecture. 

While cells are embedded in a 3 dimensional (3-D) space, only a truly 3-D 
analysis would be able to reveal their spatial relationships. However, since 
histopathological diagnosis of tissues is performed on 2-D images it is obvious that 
certain characteristics of cell spatial relations in the 3-D space are still preserved and 
recognisable in 2-D sections [6,7]. Based on this assumption we investigated a number 
of geometrical constructs to characterise cell arrangements in small local 
neighbourhoods. 

2 Materials and Methods 

2.1 Histological Material 

The histological material consisted of 5µm thick histological sections stained with 
Haematoxylin and Eosin (H&E) from the archives of the Oral Pathology Unit at our 
institution from 21 cases: 9 normal tissues from surgical margins of non-epithelial 
disease samples, 7 premalignant oral lesions with epithelial dysplasia (3 of these 
reported as mild, 3 as moderate and one as severe dysplasia) and 5 well differentiated 
oral squamous cell carcinoma. The average age of the individuals was 36, 60 and 66 
years for the normal, dysplastic and carcinoma classes, respectively. 

2. 2 Imaging Technique  

Slide images were digitised using an Olympus BX50 microscope with x20 objective 
(resolution power 0.67µm) and a frame buffer. The image was captured with a JVC 
KY-55B 3-CCD colour camera attached to a 24 bit RGB frame grabber (Imaging 
Technologies IT4PCI, Bedford, USA) controlled by a software package (Optimas 
version 6.51, Media Cybernetics, Silver Spring, MD, USA) running on a Pentium III 
personal computer. Images were 768 x 572 pixel files (inter-pixel distance 0.62µm) and 
they were corrected for camera noise, CCD electronic bias, uneven background 
illumination and filament colour temperature. A total of 441 non-overlapping images 
were digitised: 126 from normal oral mucosa, 61 from epithelial dysplasia lesions and 
254 from malignant tumours (squamous cell carcinoma). These images were semi-
automatically assembled in larger collages to provide spatial continuity of the dataset. 

2. 3 Cell Segmentation 

The epithelial tissue compartment was segmented into theoretical constitutional units 
(epithelial cells) using a two step procedure described elsewhere [8] which consisted of: 
a) nuclear localisation based on the optical density of the Haematoxylin stain followed 
by b) spatial partitioning of the compartment into exclusive areas of influence of each 
nucleus. Nuclear localisation was achieved using Ruifrok & Johnston's colour 
deconvolution method  [9] to extract the optical density of the Haematoxylin stain 
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alone. As epithelial cells are also relatively rich in RNA, the cytoplasms retain some 
Haematoxylin and the whole epithelial compartment can be extracted by means of 
optical density thresholding after histogram equalisation.  
 The partition of this epithelial compartment using the nuclear extents involved 
the division of the epithelium into the areas of influence of each nucleus using the so-
called watershed transform [10]. This procedure classifies the space surrounding the 
nuclei into exclusive areas called catchment basins belonging to each nucleus. Here we 
considered that the catchment basins approximate, in theory, the individual epithelial 
cell profile extents and these will be referred to as “V-cells”. The of pixels that cannot 
be uniquely assigned to a catchment basin form a set called “watershed lines” and 
represent the boundaries between V-cells (Figure 1).   

Figure 1. Epithelial compartment segmentation. Top left shows the deconvolved Haematoxylin image of 
a premalignant epithelial dysplasia sample. Top right shows the result of the watershed transform with 
the segmented theoretical V-cells. Bottom left shows the determination of a local neighbourhood: the V-
cells that intersect the pale grey disc (radius=60 pixels) form the local neighbourhood. Bottom right 
shows the isolated local neighbourhood.; the procedure is then repeated for every cell. 

2. 4 Graph Theory Networks 

Graph theory [11-12] provides powerful tools for constructing models (graphs or 
networks) as well as solving problems concerning discrete arrangements of objects in 
space [13]. Some of these tools rely on geometrical constructs called "graphs".  Briefly, 
a graph consists of a set of points (called "nodes" or "vertices") and a set of lines (or 
"edges") linking the nodes. These graphs can be measured and characterised using 
standard statistical tools. Furthermore, different graphs can be obtained by applying 
constrains during their construction. This allows the creation of different but consistent 
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algorithmic constructs that characterise the node set. In this context, we propose that 
some spatial inter-relations between cells (i.e. their architecture) as retained in 2-D 
sections could become suitably characterised using these graphs. This idea was 
investigated by constructing 4 types of networks of interest (using nodes defined by the 
centroids of the V-cells). These graphs were: the minimal spanning tree, the Gabriel 
graph, the relative neighbour graph and the Delaunay triangulation graph (Table 1 and 
Figure 2).  

Graph name Description 

Minimal Spanning Tree A non-unique shortest path that connects all the nodes in the set. 

Relative Neighbour Graph Two points A and B are considered relative neighbours, if for all other 

nodes X in the set: distance(A,B) <  max{distance(A,X), distance(B,X)}. 

Gabriel Graph In 2-D space, two nodes A and B are said to be Gabriel-neighbours if their 

diametral circle (i.e. the circle such that AB is its diameter) does not contain 

any other nodes. The algorithm consists in searching whether for every 

potential pair of nodes A and B, another node X is contained in their 

diametral circle: distance2(A,X) + distance2(B,X) < distance2(A,B).   

Delaunay Triangulation 

Graph 

A graph created by searching sets of 3 nodes for which the osculating circle 

(the circle that passes through the 3 nodes) contains no other node inside. 

Table 1. Graphs used to characterise the local cell neighbourhoods. 

Figure 2. Example of graphs used to characterise the local cell neighbourhoods (in this example the 
centroids of the V-cells in the local neighbourhood shown in figure 1 were used as nodes: 1) minimal 
spanning tree, 2) relative neighbour graph, 3) Gabriel graph and 4) Delaunay triangulation graph. 
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2. 5 Local Neighbourhoods 

An original feature of our analysis was the introduction of the concept of local cell 
neighbourhood. For every V-cell, C, in the image with centroid at C(x,y), we defined a 
circular neighbourhood, N, of radius R, centred on C. The neighbourhoods N(C,R) were 
constructed only on those positions where they were completely populated (to avoid 
partially empty neighbourhoods centred in V-cells at the tissue borders and image 
edges). Since the neighbourhood size is arbitrary, two radii R were investigated: R=30 
pixels and R=60 pixels, (corresponding to diameters of 37.5 and 75 µm respectively). 
Smaller or larger R sizes produced neighbourhoods with too few V-cells, or resulted in 
large areas of the epithelium remaining not sampled due to the border effect described 
above. 
 For each neighbourhood the graph networks described earlier were constructed 
and their statistical properties stored together with the coordinates of C (the cell at 
which the neighbourhood is centred). Note that although a cell can be part of several 
neighbourhoods, it is only associated to the information of the neighbourhood networks 
for which it was the central cell. This feature is useful for mapping the data back into 
the images for visualisation purposes.  
A total of 29 statistical parameters derived from the 4 networks and from the V-cell 
were collected. These were: total number of nodes in the neighbourhood, mean, 
standard deviation, skewness and kurtosis of the distribution of cell areas, and for each 
of the 4 networks: number of edges, total length of the graph, mean edge length, 
standard deviation, skewness and kurtosis of the distribution of edge lengths. The image 
number, type of lesion (normal, premalignant or malignant) and the spatial coordinates 
of the neighbourhood (i.e. the centroid of its central cell) were also recorded for each 
neighbourhood. The differences between the parameters across the diagnostic classes 
were investigated using a general linear model and stepwise hierarchical discriminant 
analysis (SPSS v10, SPSS Inc. Chicago, USA). 

3 Results 

The analysis processed 104,627 neighbourhoods of size R=30 and 67,590 of size R=60.  
The analysis of the parameter means using a general linear model analysis with post-
hoc multiple comparisons (Tukey's test) showed that most graph parameters were 
statistically different (p<0.01) across the 3 diagnostic classes. The mean values of the 
parameters for the 3 diagnostic classes are shown in Table 2. 

The discrimination power of the parameters was assessed using stepwise 
discriminant analysis (using the “leave one out” scheme for cross validation). This 
approach classified more neighbourhoods correctly in the original classes than a random 
choice (50% for 2 classes: normal & malignant, 33% for 3 classes, and so on) Table 3.  
The best discrimination scores were achieved for neighbourhoods with radius R=60 
(compared to R=30 neighbourhoods).  Case wise, the discrimination was 67%, 100% 
and 80% for normal, premalignant and malignant respectively. When only 2 classes 
were considered, correct discrimination rates were 89 % (normal) and 100% (malignant) 
with 71% of the premalignant cases assigned to the malignant class. 
The natural clustering of the data did not produce 3 clusters as originally expected, but 2 
clusters with all the malignant cases allocated to the same group but not exclusively 
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(shown in Figure 3). Although the data set was very large, the data originated from a 
small number of cases, so the case-wise results cannot be considered definitive. Further 
analysis of more samples may clarify this issue. 

Normal Premalignant Malignant 
Minimal Spanning  Edges 35.28* 31.11* 27.42* 
Tree Total length 670.76* 634.84* 600.49* 

Mean length 19.64* 20.85* 22.86* 
Std. Deviation 3.18* 3.63* 4.19* 
Skewness 0.15 0.14 0.20* 
Kurtosis -0.16* -0.23 -0.24 

Relative Neighbour  Edges 48.24* 41.79* 36.45* 
Graph Total length 984.91* 918.49* 857.99* 

Mean length 21.13* 22.47* 24.61* 
Std. Deviation 4.04* 4.59* 5.23* 
Skewness 0.34 0.34 0.36* 
Kurtosis  -0.06* -0.11 -0.13 

Gabriel Graph Edges 76.73* 65.98* 57.18* 
Total length 1734.43* 1609.50* 1495.18* 
Mean length 23.43* 24.97* 27.40* 
Std. Deviation 5.10* 5.73* 6.52* 
Skewness  0.34 0.34 0.36* 
Kurtosis  -0.18 -0.17 -0.20 

Delaunay Triangulation Edges 94.62* 82.62* 72.13* 
Graph Total length 2390.22* 2262.31* 2120.86* 

Mean length 26.17* 28.02* 30.78* 
Std. Deviation 8.79* 9.57* 10.51* 
Skewness 1.86* 1.68* 1.54* 
Kurtosis 5.55* 4.56* 3.87* 

Cell Areas Mean area 411.82* 474.68* 598.73* 
Std. Deviation 175.39* 216.63* 286.20* 
Skewness  0.62 0.63 0.76* 
Kurtosis 0.49 0.16* 0.49 

Table 2: Mean graph parameters in the 3 diagnostic classes. The asterisk (*) indicates a statistically 
significant difference of a particular class compared with the other classes  (p<0.05, General Linear 
Model with post-hoc Tukey tests).     
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Original groups % classified as  Total correct
 Normal Premalignant  

Normal 62 38  66 
Premalignant 28 72   

 Premalignant Malignant   
Premalignant 72 28  63 

Malignant 41 59   
 Normal Premalignant Malignant  

Normal 58 30 13 55
Premalignant 24 53 23

Malignant 14 33 53

Table 3: Hierarchical Stepwise Discriminant Analysis of architectural features. Neighbourhood radius 60 
pixels (75 µm diameter). Data reduced from 29 parameters to 18, using Principal Component Analysis.

Figure 3: Dendrogram based on the average and standard deviation of the architectural parameters in 
each case using average linkage within group. Note that one of the two early clusters contains all the 
carcinoma cases ( ) , while the other contains all the normal cases ( )  but one. There was no definite 
tendency to group the premalignant cases ( ) into a particular cluster: 4 were clustered in the first group, 
and 3 in the second group.

4 Discussion 

The diagnosis of cancer and precancer relies on a variety of tissue markers and grading 
standards which are based, to some extent, on subjective observational criteria. This 
issue has been raised many times [14-16] yet no easy solutions have been found. Digital 
imaging is an area with potential for providing those much needed quantitative markers 
as it can translate morphological data into numerical results that can be subject to 
evaluation using statistical techniques [17]. Unfortunately it is problematic to develop 
new diagnostic markers when the only gold standard available is the histopathological 
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diagnosis itself [18,19].  This is particularly difficult regarding the characterisation of 
premalignant lesions. While the histomorphological changes observed in epithelial 
dysplasia lesions show a departure from normal tissue morphology, these changes 
appear to overlap with a number of other lesions and conditions of different aetiology 
(e.g. inflammatory or autoimmune). Furthermore, there have been suggestions that such 
ill-defined pathological entities could be some kind of tautology [18] implying that, 
strictly, the histopathological diagnosis of epithelial dysplasia would not be possible. 
This idea seems to be supported by the wide inter- and intra- observer variation in their 
diagnosis and the difficulties in finding appropriate and unified diagnostic criteria to 
characterise these lesions [14]. It has been even suggested that instead of using classes 
(like those used for grading dysplasia into 3 degrees of severity), it could be 
advantageous to use a continuum within well-defined boundaries (such as invasive 
squamous cell carcinoma and normal tissues) [19]. Using multivariate quantitative 
markers then the natural grouping of the less well-defined categories could be 
investigated using techniques such as hierarchical clustering to provide a metric for 
evaluating the position of unclassified cases in the multivariate space. Therefore it could 
be possible to reach diagnosis in terms of probability values rather than classification.  
 Previous use of graphs to characterise cell arrangement in tumours [7] has 
concentrated on global rather than the local, point-wise analysis of the architectural 
features. Our local analysis, however, seems to be appropriate to address issues such as 
which parts of a sample are abnormal, what is the degree of spatial heterogeneity of the 
tissues and where do most extreme morphological deviations from normality take place.  
It may not be surprising that the architectural differences (and consequently the 
discrimination rates) were large between the extreme classes: normal vs. malignant 
classes, less markedly for normal vs. premalignant and between premalignant vs. 
malignant classes but the differences and discrimination rates were poor between the 
three grades of epithelial dysplasia. As already mentioned above, this may be due to the 
fact that “epithelial dysplasia” is an ill-defined category likely to involve various 
unrelated cellular changes that exhibit similar morphological characteristics at the tissue 
level. 
 In this work, we introduced a further quantitative and unbiased approach to 
describe the local spatial arrangement characteristics of cells in the epithelial 
compartment. The method can be applied automatically to routine Haematoxylin and 
Eosin stained sections and it is possible to apply it retrospectively to archival material, 
to provide further means for the investigation of features that cannot be quantified 
accurately using visual observation. 
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Summary. Trichoblastoma, is a “benign tumour derived from or reduplicating the primitive hair germ 
of embrionic follicular development”. Among the different subtypes of canine trichoblastoma, Ribbon 
type Trichoblastoma  subjectively display a very complex structure, sometimes suggestive of a self-
similar design, which is a well known characteristic of fractal structures. In this study, we performed a 
fractal analysis of twelve (12) canine trichoblastoma in order to test the use of the fractal approach to 
characterise and describe the architecture of the epithelial growth of this very peculiar spontaneous 
canine tumour.For each case, the fractal analysis was basically performed by a FANAL ++ software, 
which determines the slope of the possible fractal region of a bi-asymptotic curve. The FANAL++ 
results were also compared with the fractal dimension (FD) calculated on the same images with the box 
counting method performed by a further commercially available fractal software (Benoit 1.3) which 
doesn’t extrapolate the fractal windows of the tumour. In the cases examined our data confirm that the 
subjective self-similarity sometimes observed in the growth of the epithelial component of canine 
trichoblastoma, reflect a true fractal pattern. Furthermore,  the values of the FD calculated by FANAL 
++ and Benoit 1.3 on the same images are in general comparable from a statistical point of view, 
although numerically different, and depending closely by the Benoit 1.3 settings. Finally, available data 
demonstrated a difference in the FD of the same tumour when calculated on images captured at different 
magnification. In particular the FD increased when the magnification decreased. The authors suggest 
that these findings should be considered for a standardised approach to fractal based analysis and 
classification of canine trichoblastoma. 

1 Introduction 

During the past two decades, a large amount of experimental evidence has 
accumulated showing that  the fractal geometry, discovered by Mandelbrot (1983) [1],  
may offer an appropriate way to quantitatively unravel contour length, surface area and 
other dimensional parameters of almost all irregular and morphologically complex 
biological tissues [2, 3]. In this context the fractal analysis has been also recognised as 
a more appropriate tool, unlike the conventional Euclidean geometry developed for 
describing regular and ideal geometric shapes practically unknown in nature, to 
characterise irregular boundaries of  tumours  and some morphologic peculiarity of  
neoplastic cells [2, 3, 4, 5, 6, 7, 8]. Unfortunately, the potential use of the fractal 
approach in comparative oncology has only recently been suggested [9]. 
        In this study, we performed a fractal analysis of twelve canine trichoblastoma in 
order (1) to test the use of the fractal geometry to characterise and describe the 
architecture of this very singular spontaneous canine tumour; and (2) to compare the 
differences in the fractal dimension of the neoplasm calculated using two different 
fractal programmes. 
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2      Materials and Methods 

2.1    Tissue Processing   

The specimens were fixed in 10% formalin and processed for paraffin embedding. 
Four-micrometer sections were mounted on poly-L-Lysine coated glass slides and 
incubated at 37° C overnight  to optimize tissue adhesion to the slide. The sections 
were dewaxed in xylene, dehydrated  in  graded alcohols  and  stained  with 
hematoxylin  and  eosin (H-E). For immunohistochemical analysis, some sections were 
washed 3 5 min in 0.01 M phospate-buffered saline (PBS), PH 7.2-7.4. Endogenous  
peroxidase activity was blocked with hydrogen peroxide 0.3% in absolute methanol for 
30 min. Before the immunohistochemical procedure (a streptavidin-biotin peroxidase 
method) with a commercial Kit  (LSAB Kit, Dako, Milan, Italy), sections were 
incubated twice for 5 min at 700W in citrate buffer (PH 6.0) in a microwave oven for 
detection of Cytokeratin, (clone MNF 116 ; Dako, Milan,Italy), diluted 1 in 200 in  
antibody diluent (Dako). Then the sections were  incubated overnight with the above 
antibody at 4°C.  The reaction was developed with diaminobenzidine (Dako) and 
haematoxylin was used as counterstain. Control slides were incubated in PBS instead 
of primary antibody. 

2.2    Fractal Analysis  

Multiple images were acquired at 4 and 10 magnification respectively and the mask and 
the outline of the epithelial component of each case successively segmented  as shown 
in figs 1A, 1B and 1C. The fractal analysis of all profiles was performed using 
FANAL++, a software which enabled us to identify the fractal region within the bi-
asymptotic curve achieved by the box counting method  [10]. The slope of the straight 
line yielded the true fractal dimension (FD). The FANAL++ results were compared with 
those obtained from the same images using of a commercially available software, 
Benoit 1.3, not used at present for the “fractal window”  recognition  [9]. 

Figure 1:  A) Canine Trichoblastoma: the epithelial component is positive for Cytokeratin.     
Magnification  4x. B)  Binary  Image  obtained  by  grey  thresholding  the  area occupied  by  the     
epithelial  component   and  C)  outline of  the  area occupied by the neoplastic  epithelium.

B C A
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3       Results 

All the cases of canine trichoblastoma examined showed self-similarity and revealed a 
true fractal pattern of the epithelial component, as documented by the experimental data 
of some examples. (Table 1 ; Fig 2). FD values calculated by FANAL++ and Benoit 1.3 
were comparable only when setting Benoit 1.3  at  the maximum number of grids and 
grid rotations. However, when the number of grids and grid rotations were lower or 
automatically chosen, this led to statistically different FD values (p< 0.01). Furthermore, 
different FD values were noticed for the same tumour at different magnifications and 
with both softwares: unexpectedly, the FD increased when the magnification decreased. 

             
Table 1: Fractal  Dimension  of  five out of twelve canine trichoblastoma examined, obtained with two  
               fractal  softwares  (FANAL ++  and  Benoit 1.3, the latter with two different settings). 
               FD = Fractal Dimension.  SD= Standard Deviation 

Figure 2: FANAL ++  calculation  of   the  fractal  dimension.  The  fractal  region  is  defined by upper  
and  lower  limits (vertical lines) on the straight middle part of the by-asymptotic curve.   

CASE 
N. 

FANAL++

Mean FD ± SD 

Benoit 1.3 with 
automatic setting 
(n=19 grids)
Mean FD ± SD

Benoit 1.3 with 
maximal setting 
(n=25 grids)
Mean FD ± SD 

1 1,41±0,05 1,29±0,02 1,38±0,06 
2 1,45±0,04 1,39±0,03 1,47±0,02 
3 1,33±0,03 1,29±0,02 1,39±0,03 
4 1,56±0,02 1,48±0,01 1,52±0,01 
5 1,32±0,06 1,26±0,03 1,34±0,03 
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4      Discussion    

Trichoblastoma is a “benign tumour derived from or reduplicating the primitive hair 
germ of embrionic follicular development” [11]. It represents about 25% of all canine 
epithelial skin tumours (Abramo et al., 1999). Several subtypes of canine trichoblastoma 
are known, such as Ribbon type, Trabecular type, Granular cell type, and spindle cell 
type. Among these, Ribbon type trichoblastoma occurs as a dermal and subcutaneous 
tumour consisting of long cords of cells, often only two cells thick, with nuclei arranged 
in a palisade perpendicular to the long axis of the column. The cell cords grow into an 
extensive surrounding collagenous matrix, usually branching and joining together. A 
variation of  the  above pattern, consisting of cords of cells radiating from a central 
island of densely packed cells is frequently observed (so-called medusoid pattern) [11]. 
This kind of neoplastic growth mostly displays a very complex structure suggestive of a 
self-similar design, which is a well-known characteristic of fractal structures. In this 
study, we performed a fractal analysis of twelve canine trichoblastoma in order to test 
the effectiveness of the fractal approach for describing the epithelial architecture of this 
peculiar spontaneous canine tumour. Our findings indicate that all the cases of canine 
trichoblastoma examined showed self-similarity and revealed a true fractal pattern of the 
epithelial component. In this regard, it is known that fractal images can be generated by 
multiple iterations of relatively simple equations, and there have been several studies 
which have sought to model biological and pathological processes using this method. 
Sedivy (1999) [6]  has also suggested that artificial simulation of tumours could be 
useful in understanding the dynamic complexity of the tumour growth patterns by 
recognition of their underlying regulatory laws. It should be noted that among canine 
trichoblastomas, only the Ribbon type display  such a  great amount of collagenous 
matrix surrounding the epithelial proliferation. It is known that epithelial-stromal 
interaction is very important in determining tumour shape and growth [4]. Thus 
trichoblastoma could be an  interesting model for studying the influences of surrounding 
tissue on the development of  different tumour growth patterns. 
      Our findings also indicate that a fractal analysis based on a rigorous approach may 
be useful for the histological classification of canine trichoblastoma. For a rigorous 
fractal analysis of histological tissue sections it should be born in mind that: biological 
fractals   show scaling properties only between limits which have to be established each 
time experimentally [4]. Thus, the calculation of this “scaling window” should be 
considered a very critical factor in evaluating the fractal characteristics of a tumour or 
any other biological structure showing a fractal pattern [2, 10]. In fact, employing 
methods of fractal quantification which do not take into account this peculiar property 
of biological fractals (like those performed by Benoit 1.3), could affect comparison of 
the results. 
         Furthermore the FD may change when the magnification is changed; thus when a 
fractal analysis is performed, this should be related to specific image enlargement  in 
order to prevent misdiagnoses and conflicting results. We suggest that fractal analysis  
be performed at a very low magnification (2X or 4X) in order to allow a view of  the 
largest possible area of neoplastic tissue. 
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Summary. The objective of this pilot study was to find out whether urodynamic curves possess fractal 
structure, and how this structure changes along with changes of detrusor function in patients with long-
lasting outflow obstruction? We analyzed 25 multichannel urodynamic curves representing normal 
function of urinary bladder (n=10 curves) and dysfunction of detrusor muscle (n=15 curves). The curves 
were analyzed by Size-Frequency algorithm, R/S algorithm or Power-Spectral algorithm. All curves 
analyzed possess fractal structure. This structure is defined by Size-Frequency dimension, fractal 
dimension, and Hurst coefficient. The latter one was found to be much lower than 0.5 for all urodynamic 
curves representing normal filling and voiding function of the urinary bladder. The long-lasting outflow 
obstruction caused increment of the Hurst coefficient close up to 0.8. Long-lasting outflow obstruction 
changes the regular contractions of detrusor muscle into the deterministic chaotic contractions. We 
hypothesize that the Hurst coefficient equal to 0.5 is a limit value which allows to distinguish between 
cases of benign prostatic hyperplasia which can be treated pharmacologically and those which should be 
treated surgically.  

1 Introduction 

Function of the lower urinary tract, (i.e., storage and voiding) can be evaluated 
in the clinical laboratory by a biophysical approach known as urodynamics. There is a 
number of electronic devises designed specifically for the purpose of such a study. The 
most important part of the device is a set of sensors. The first sensor measures pressure 
in the urinary bladder. The second sensor placed in the rectum measures abdominal 
pressure. The third sensor placed at the thigh measures electromyographic activity. The 
empty urinary bladder is filled up in a controlled manner at a slow, constant rate with a 
liquid, such as saline solution to avoid any contraction of detrusor muscle. This is a 
filling phase. At certain volume pressure in the bladder exceeds pressure generated by 
external sphincter and spontaneous voiding follows. This is a voiding phase. A system 
of electronic sensors detects changes of both vesical and abdominal pressure during 
those phases. Pressure exerted by detrusor muscle (Pdet) is the critical pressure to 
measure. It is calculated electronically by subtracting the abdominal pressure caused by 
the extravesical sources, such as abdominal straining from the vesical pressure, and 
plotted as a curve. In addition, there is a number of parameters, such as maximal bladder 
capacity, total voiding volume, maximal flow rate, or average flow rate to describe 
function of the urinary bladder.  

Benign prostatic hyperplasia (BPH) is the most important cause for infravesical 
obstruction in male patients and has profound effects on bladder contractility [1]. The 
alteration can be so significant that bladder contractility does not have to return to the 
norm even after a successful surgical resection of the prostate. Treatment of BPH 
depends on the volume of the prostate. If this volume is lower than 50 ml, then the 
patient can be treated pharmacologically with -blockers. If the volume is between 50 
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ml and 100 ml, then transurethral resection of the gland is recommended. If the volume 
is greater than 100 ml, then  opened adenomectomy must be performed. However, the 
volume of the prostate and detrusor function are not well-correlated. A relatively small 
prostata can produce significant alterations of detrusor function, reduce outflow, and 
damage detrusor irreversibly.  

Could the advanced mathematical methods of fractal analysis solve the clinical 
problem how long BPH can be treated pharmacologically, and when surgical treatment 
must be undertaken to avoid a risk of a permanent damage to detrusor muscle? This 
pilot study has been undertaken to answer the following specific questions: 1. do 
urodynamic curves representing pressure of detrusor muscle possess fractal structure?; 
2. which parameters define such fractal structure?; 3. how those parameters change 
along with changes of detrusor function in patients with long-lasting outflow 
obstruction caused by BPH? 

2 Materials and Methods 

2.1 Urodynamic Curves 

We analyzed 25 multichannel urodynamic curves. Among those curves 10 represented 
the normal function of urinary bladder. Fifteen urodynamic curves represented 
dysfunction of detrusor muscle, such as dyssynergy (n=4 curves), detrusor instability 
(n=6 curves), obstruction caused by long-lasting benign prostatic hyperplasia (n=5 
curves). The urodynamic curves studied were obtained in a digitalized form from the 
patients treated in the Department of Urology, Diakonissenkrankenhaus in Dessau, 
Germany or in the Department of Urology, University Medical School in Wroc aw, 
Poland (a kind gift from Professor Jerzy Lorenz). The other urodynamic curves were 
published in the Internet by the Institute of Urology and Nephrology in London, United 
Kingdom.  

2.2 Fractal Analysis 

2.2.1 General Remarks 
The fragment of the urodynamic curve representing filling phase was analyzed 
separately from the fragment of the curve representing voiding phase. In all cases, one 
measures some characteristic of the data set that should be related through a power law 
to a length scale. The results are plotted in log-log space, and, if the set is fractal, they 
should follow a straight line. The fractal dimension is a simple function of the exponent 
of the power law, i.e., of the slope of the straight line in log-log space.  The slope is 
estimated by fitting a line using the method of least squares.

2.2.2 Size-Frequency Algorithm
First, all urodynamic curves were analyzed by Size-Frequency algorithm (Benoit 1.3, 
True Soft Int'l Inc., USA). Briefly, this algorithm takes a collection of objects of linear 
size x, and defines as n(x) the number of objects whose linear size is greater than x. If 
the set is distributed according to a power-law, it is fractal, and the size-frequency 
(fragmentation) dimension is defined as the exponent d in the following equation (1) 
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d
x)x(n                                                (1) 

In practice, all the values taken by the variable x are sorted. For each value in the set xi
one defines n(xi) as the number of elements whose x is greater than xi. If the set is 
fractal, a plot of the logarithm of n(xi) versus the logarithm of xi will be a straight line 
with a negative slope equal to d. In addition, each urodynamic curve is a time series. 
That time series has two principal properties, its statistical distribution and its 
persistence. Their distribution can be evaluated using a plot of the raw size-frequency 
values and arithmetic axes [2]. 

2.2.3 R/S Algorithm 
R/S algorithm analyzes an interval of length x in a time series (Benoit 1.3, True Soft 
Int'l Inc., USA). Briefly, the algorithm defines the range taken by the values of y in the 
interval x, R(x). The range R(x) is defined as the line connecting the first and the last 
point within the interval x. S(x) denotes the standard deviation of the first differences 

y of the values y within the interval x. The first differences y are defined as the 
differences between the values of y at some location x and y at the previous location on 
the x axis (equation 2): 

)xx(y)x(yy (2)

where x is the sampling interval between two consecutive values of x. The rescaled 
range R/S(x) is defined as: 

)x(S
)x(R)x(S/R                                                (3) 

where the angled brackets denote the average of a number of values of R(x). Owing to 
self-affinity, one expects the range taken by the values of y in an interval of length x to 
be proportional to the interval length to a power equal to the Hurst exponent H:

Hx)x(S/R                                                  (4) 

If the time series is self-affine, the plot of logarithms of R/S(x) versus the logarithms of 
x should follow a straight line whose slope equals the Hurst coefficient H [2]. 

2.2.4 Power-Spectral Analysis 
Power-Spectral Analysis uses the properties of power spectra of self-affine time 

series (Benoit 1.3, True Soft Int'l Inc., USA). Briefly, fractal dimension is calculated 
from the power spectrum P(k) where k is the wavenumber at a given wavelength. If the 
time series is self-affine, the plot of the logarithms of P(k) versus the logarithms of k is 
a straight line with a negative slope –b. Fractal dimension D is related to the exponent b
by the following equation (5):  
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2
5 bD                                                        (5) 

The amplitude of the time series can be estimated as P(k0) at some wavenumber k0. This 
is an amplitude parameter used in comparing different data sets. If the long-wavelength 
components have greater power than the short-wavelength ones, spectral leaking 
occcurs. Then, points that fall far from the fitted line derive from the spectral leaking 
frequencies [2].

3 Results 

3.1 Fractal Features of the Urodynamic Curves 

3.1.1 Size-Frequency Analysis 
All curves analyzed revealed a similar fractal distribution of frequency versus size. It 
also has been described by the equations of the same algebraic shape as the equation (1). 
Figure 1 (left plot) shows fractal distribution of frequency versus size for the normal 
urodynamic curve obtained from the patient without any outflow obstruction. For 
comparison, Figure 1 (right plot) shows fractal distribution of frequency versus size for 
the urodynamic curve obtained from the patient with long-lasting outflow obstruction in 
the course of benign prostatic hyperplasia. 

3.1.2 R/S Analysis 
The same curves were analyzed by R/S Algorithm. All curves produced a similar 
pattern described by the equations of the same algebraic form (4). Table 1 summarizes 
the mean values of the Hurst coefficient obtained for the urodynamic curves analyzed. 
Since the number of curves is not large enough to reach the limit of the statistical 
significance (n=100 curves per a statistical group), we resigned from a classical 
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statistical analysis of those data. Such the analysis will be performed at the end of the 
study, when we collect enough data to be able to provide statistically reliable results. 

Filling Phase Voiding Phase
Normal Curves (n=10) 0.178 (72) 0.219 (92) 
Dyssynergy (n=4) 0.190 (58) 0.281 (51) 
Detrusor Instability (n=6) 0.235 (57) 0.603 (86) 
BPH Obstruction (n=5) 0.363 (65) 0.800 (29) 

Table 1:  The mean values of the Hurst coefficient for all four groups of urodynamic curves analyzed by 
the R/S Algorithm. The curves were divided into two fragments. The first one represented the 
filling phase. The second one represented the voiding phase. The values of the Hurst coefficient 
for the voiding phase in all cases of long-lasting benign prostatic hyperplasia (BPH) is much 
greater than in the other cases. In particular, the R/S Algorithm allows to distinguish detrusor 
instability from the long-lasting outflow obstruction caused by BPH. 

3.1.3  Power-Spectral Analysis 
Power-Spectral Algorithm reveals that there is a difference in the value of the mean 
fractal dimension defined by the equation (5).  

4 Discussion 

Fractal regularity of the ureter contractions registered by the electronic device 
has been demonstrated for the first time in sixties [3]. Results of that study suggested 
that a similar regularity can take place in the case of contractions of the urinary bladder. 
Indeed, the urinary bladder can be treated as a simple hydrodynamic system. This 
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Figure 2: The Power-Spectral Algorithm reveals that normal urodynamic cases possess a 
common value of the mean fractal dimension calculated according to the equation (5) 

(white squares, D=2.18). This dimension is different in the case of long-lasting outflow 
obstruction caused by BPH (black diamonds, D=2.09) and in the case of detrusor 
instability (black stars, D=2.17). This means that the normal urinary bladder contracts 
with a single frequency. This frequency changes along alterations of detrusor function 
owing to long-lasting outflow obstruction such as BPH. 
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system is best described by the periodic changes of detrusor pressure. This pilot study 
evaluates urodynamic curves for the first time and systematically by the methods of 
fractal analysis. On the basis of those findings, we can formulate a clinical hypothesis, 
and design a novel study with the appropriate statistical power and a well-defined 
groups of patients to obtain clinically relevant answers.  

All curves analyzed possess fractal structure. This structure can be described by 
the size-frequency (fragmentation) fractal dimension, by the Hurst coefficient or by the 
power-spectral fractal dimension. Consistemtly, the size-frequency fractal dimension 
was lower for the BPH cases than for the normal urodynamic curves. The results of the 
power-spectral analysis indicate that contractions of the normal urinary bladder occur 
with a single frequency (see Figure 2). All ten normal urodynamic curves possess the 
identical distribution of frequencies (see Figure 2, white squares) and fractal dimension 
D = 2.18. That frequency changes along with alterations of detrusor function owing to 
long-lasting outflow obstruction such as BPH. Long-lasting outflow obstruction caused 
by BPH leads to a different distribution. The fractal dimension D=2.09 is close to the 
integer value. That finding coincides with the values of the Hurst co-efficient close to 
the integer value 1 for those cases. This means that long-lasting outflow obstruction 
changes fractal structure of the hydrodynamic system such as the urinary bladder. Since 
the most recent experimental results suggest that contractility of detrusor muscle 
depends on neurogenic stimulation rather than on myogenic activity, it is possible that 
long-lasting outflow obstruction alters not only detrusor function, but also neurogenic 
activity. 

We conclude that long-lasting outflow obstruction changes the co-ordinated, 
regular contractions of detrusor muscle into the deterministic chaotic contractions. 
Moreover, we  hypothesize that the Hurst coefficient equal at least to 0.5 is a limit value 
to distinguish between cases of BPH which can be treated pharmacologically from those 
cases which should already be treated surgically. The future study must involve more 
urodynamic curves. Also, groups of patients must be better defined. 
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Summary. Analysis of the uterine contractility in non-pregnant women provides information about 
physiological changes during menstrual cycle. Spontaneous uterine activity was recorded directly by a 
micro-tip catheter (Millar Instruments, Inc. USA). The sensor produced an electrical signal, which varied 
in direct proportion to the magnitude of measured pressure. The study was approved by the regional 
ethics committee. We used the techniques of surrogate data analysis to testing for nonlinearity in the 
uterine contraction signals. Approximate entropy was the test statistic. For this analysis a healthy patient 
with normal contractions, a patient with dysmenorrhea and a patient with fibromyomas in the follicular 
phase were selected. The results showed that the spontaneous uterine contractions are considered to 
contain nonlinear features. 

1 Introduction 

The analysis of the uterine contractility in non-pregnant states has provided information 
about physiological changes during the menstrual cycle. Contractility of uterine smooth 
muscles is essential for the cyclic shedding of the endometrial lining and also for the 
expulsion of the fetus during parturition. There is need to develop methods of recording 
uterine activity as well as mathematical interpretation of recorded time series [1,2]. In 
recent years the physiological signals obtained from the brain and the heart, have been 
investigated for possible deterministic chaotic behavior. [3]. The human uterus is 
undoubtedly a complex system, like the brain or the heart [4]. 

The uterus belongs to that group of smooth muscles which are spontaneously 
active. This means that, without any nervous or hormonal stimulation, a piece of 
isolated pregnant or non-pregnant, uterus will produce spontaneous contractions.  

Smooth muscles comprising the myometrium interact in a complex manner. 
Myometrium fibers contraction occurs in response to a wave of electrical excitation. In 
the uterus, the contractions begin in areas called pacemakers. The pacemaker cells 
synchronize the activity of the whole uterus. The other cells are excited by impulses 
from the neighboring cells – these are the pacefollower cells. But unlike the cardiac 
cells the myometrial cells can play the roles of pacemaker cells and pacefollower cells 
alternately. 
The aim of the study was to test for possible nonlinearity in the uterine contraction 
activity signals.  
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2 Material 

Spontaneous uterine activity was recorded directly by a dual micro-tip catheter (Millar 
Instruments, Inc. USA). The device consisted of two ultra-miniature pressure sensors. 
The sensors produced electrical signals, which varied in direct proportion to the 
magnitude of measured pressure. One sensor was placed in the fundus, the other one in 
the cervix. After amplification analogue signals were passed to a PC computer for 
conversion to digital form by means of an analogue-to-digital (A/D) converter. 
Converted signals were recorded on a computer hard disk with a frequency of 2Hz. The 
sampling frequency may be changed in the acquisition procedures. For our analysis we 
used the contractions from the fundus of the uterus – the fundal signals. In this invasive 
method the global pressure as the results of uterine activity is recorded. Signals are 
often very noisy and there are problems to determine the contractions correctly. Figure 1 
shows the scheme of the signal processing system for investigation of the uterine 
contractions. 

Figure 1: The scheme of the signal processing system. 

Three pairs of time series representing the uterine contraction activity are shown 
in Figure 2. Figure 2 (panel a) shows contractions during the first day of menstruation in 
a healthy patient A. Figure 2 (panel b) shows contractions during the first day of 
menstruation in the patient B with dysmenorrhea. Figure 2 (panel c) represents the 
contractions in the patient C with fibromyomas in the follicular phase. The amplitude is 
in mmHg.  

In this study the measured time series were filtered only with low-pass moving 
average FIR (finite-impulse-response) filter to remove the high frequency band. Thus 
the nonlinear features of the investigated signals were not removed or distorted by 
filtering procedure [5].  
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Figure 2: The uterine spontaneous activity: the normal contractions (panel a), contractions in the patient 
with dysmenorrhea (panel b), the contractions in the patients with fibromyomas in the 
follicular phase (panel c). 

3 Methods 

We used the techniques of surrogate data analysis to test nonlinearity in the uterine 
contraction signals. Approximate entropy was the test statistic. 

3. 1 Approximate Entropy 

Approximate entropy first proposed by Pincus [6,7] is a parameter that describes the 
complexity and irregularity of the signals. ApEn is low in regular time series and high in 
complex, irregular ones. 
The algorithm of computing the ApEn for the time series 

})N(x,),(x),(x{X 21 follows. 
1. Calculate the standard deviation SD of the data. Define a filter parameter r

as SD.r 20 . That is a common choice of r.
2. Construct the vectors in pseudo-phase space 

}mixixix(i) ))1((,),(),({u ,

where m is the embedding dimension and  is the time lag. 

Patient A

Patient B

Patient C

time (s)

time (s)

time (s)

m
m

H
g

m
m

H
g

m
m

H
g

a)

b)

c)



E. Oczeretko et al. 218 

3. Define the “correlation sum” )r(C m
i as 
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4. Approximate entropy is represented as 
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The value of the estimate depends on N, m and r. In our calculations: N = 4096 – 
number of data points, m = 2 – embedding dimension, r = 0.2SD – tolerance limit to 
reduce the effects of noise and the time lag  was assessed from the autocorrelation 
function. 
In order to facilitate the interpretation of the ApEn values of the uterine contraction 
signals, the approximate entropy values of a sine wave, uniformly distributed random 
numbers and a chaotic time series from a logistic equation were estimated (Tab. 1): 

Signal ApEn 
Sine wave  0.036

Uniformly distributed random numbers 2.118
Logistic equation )x(xx ttt 11

for x0 = 0.11 and  = 4.00 0.659

Table 1: The values of approximate entropy for three typical well-known signals (sine wave, uniformly 
distributed random numbers and a time series from a logistic equation. 

3.2 Surrogate Data Techniques 

The method of using surrogate techniques to test nonlinearity in the investigated time 
series was introduced by Theiler et al. [8]. There are several algorithms to generate 
surrogate data. We used random shuffled surrogates, phase randomized surrogates and 
iterated amplitude adjusted Fourier transform surrogates (IAAFT surrogates) [9,10]. 
Shuffling of the data generates random shuffle surrogates. In this case the amplitude is 
retained. Phase randomized surrogates retain the power spectrum and therefore the auto-
correlation function of the investigated time series. IAAFT surrogates have been 
projected to retain both the distribution and the power spectrum as close to the original 
data sets as possible. Each type of surrogates is consistent with the specific null 
hypothesis that is shown in Table 2.  
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Surrogates Null hypotheses Rejecting the null 
hypotheses indicates 

that: 

Random shuffle 
surrogates 

Data are generated by 
uncorrelated random 

noise 

Correlations in 
measured time series 

are possible 

Phase randomized 
surrogates 

Data are generated by 
linearly correlated noise

Nonlinear correlations 
are possible 

Iterated amplitude 
adjusted Fourier 

transform surrogates – 
IAAFT surrogates 

Data are generated by a 
static nonlinear 

transform of a linearly 
correlated noise 

Dynamical 
nonlinearity is possible 

Table 2: Types of surrogates and the null hypotheses addressed by them. 

If the nonlinear processes generate the uterine contraction all of three null hypotheses 
should be rejected [11]. In order to test the null hypotheses we used the significance S 
defined as [8]: 

SURR

SURRM
S 0 ,

where: M0 – is the discriminant statistics computed on the original time series, SURR

and SURR are the mean and standard deviation of the values of the statistics computed 
on the surrogate realizations. 
We generated fifty surrogates of each type and used a Student t test with 49 degrees of 
freedom. For  = 0.05 the critical value of t is 2.010, and when S is > 2.010 the null 
hypothesis is rejected at the 5% significance level. 

Figure 3 shows the scheme of the surrogate data techniques. 
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Figure 3: The scheme of surrogate data method (modified from Nagarajan et al. [12]). 

4 Results 

Table 3 shows the results of application of approximate entropy as a test statistics. The 
significance S is greater than 2.010 for patients A, B and C. We have statistically 
significant differences between the approximate entropy of the data and that of the 
surrogates for all the patients and for all the types of surrogates (  = 0.05). All null 
hypotheses were rejected for each patient. The surrogate data tests were also performed 
for uniformly distributed random numbers and a chaotic time series. For the random 
signal we failed to reject the hypothesis – S < 2.010 for all types of the surrogates. 
Figure 4 shows the results of the three surrogate tests for the spontaneous uterine 
contraction signal of the patient B with dysmenorrhea. The values of the approximate 
entropy of the data are marked with the X on the x-axis. The values of the ApEn for 
fifty surrogates are drawn as a histogram. There are clear differences between the 
approximate entropy of the data and that of the surrogates. 

Data

Surrogate realizationsApEn

SURR

))i(ApEn(SD

))i(ApEn(meanApEn
S

ApEn(i), i = 1, 2, 3,..., N

Significance calculations
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Time 
Series 

Random shuffle 
Significance S 

Phase randomized 
Significance S 

IAAFT 
Significance 

S
Patient A 117.56 6.86 6.25 

Patient B 91.04 4.31 2.58 

Patient C 114.85 6.15 2.87 

Chaotic data 247.84 175.42 229.21 

Uniformly 
distributed random 

numbers 

0.08 0.85 0.12 

Table 3: The values of the significance S obtained for our five investigated time series and for the three 
surrogate tests.

Figure 4: The results of the three surrogate tests for the spontaneous uterine contraction signal of the 
patient B with dysmenorrhea. The values of the approximate entropy of the data are marked 
with the X on the x-axis. The values of the ApEn for fifty surrogates are drawn as a 
histogram.  
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5 Conclusion 

We found statistically significant differences between the approximate entropy of the 
data and that of the surrogates with all the patients and for all the types of surrogates. 
This suggests that non-linear processes probably generate spontaneous uterine 
contractions.  
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Summary. Despite the fact that all anatomical forms are characterised by non-polyhedral volumes, rough 
surfaces and irregular outlines, it has been suggested that sophisticated computer-aided analytical 
systems based on the Euclidean principles of regularity, smoothness and linearity can be used in human 
quantitative anatomy. However, the new fractal geometry is a more powerful means of quantifying the 
spatial complexity of real objects. The present study introduces the surface fractal dimension as a 
numerical index of the complex architecture of the corneal stroma, and investigates its behaviour during 
computer-simulated changes in keratocyte density and distribution, and in the heterogeneous 
composition of the extracellular matrix. We found that the surface fractal dimension depends on 
keratocyte density and distribution, as well as on the different concentrations of the constituents making 
up the extracellular matrix. Our results show that the surface fractal dimension could be widely used in 
ophthalmology not only because of its ability to quantify drug-correlated architectural changes, but also 
because it can stage corneal stroma alterations and predict disease evolution. 

1 Introduction 

Like other anatomical entities, the human cornea is a complex system consisting of 
various interconnected parts (epithelium, Bowman's layer, stroma, Descemet's 
membrane, and endothelium). These anatomical subsystems are morphologically and 
functionally continuous, and form a whole anatomical system that has a complex 
structure and behaviour [1]. It is known that the cells in the cornea define a network 
that is critical during development, homeostasis and wound healing; it has also been 
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established that disordered cell communications contribute to various corneal diseases 
[2, 3]. 

The physical definition of the measure of complexity as “the number of species or 
connections in the interaction environment” designates the cornea as the first level of 
anatomical complexity and the stroma as the second level [4, 5].  

The complexity of any anatomical system can be geometrical when it regards the 
architecture of the system, or behavioural when it concerns the intricate relationships of 
the system’s components. A quantitative index of geometrical complexity can be 
abstracted from the theory of fractal geometry originally introduced by the French 
physicist Benoit Mandelbrot in 1975 as a powerful method of comparing the highly 
irregular configurations belonging to real non-Euclidean objects [5-8].  

Here we introduce the surface fractal dimension (DS) as a quantitative index of the 
complex architecture of the corneal stroma. We also investigated the behaviour of DS
during computer-simulated changes in keratocyte density and distribution, and in the 
composition of the ECM.

2 Materials and Methods 

2.1 Human Subjects

The study was conducted in accordance with the guidelines of the Ethics Committee of 
the hospital treating the patients (Istituto Clinico Humanitas, Rozzano, Milan, Italy), all 
of whom were fully informed of the possible discomfort and risks of the investigative 
approach. Images of the corneal stroma (Figure 1A) were taken from volunteers free of 
eye and systemic diseases (n = 3) and patients awaiting cataract surgery (n = 8). All of 
the patients were examined by means of confocal microscopy using the Confoscan 3.0 
(Nidek, Gamagori, Japan), with images of the corneal stroma being taken using 
sequential scans at regular spatial intervals.

2.2 Image Analysis and Estimates of the Surface Fractal Dimension

The Confoscan 3.0 automatically digitises the microscopy images in a standard 
computer graphic format. The images were then analysed using a computer-aided image 
analysis system consisting of an Intel dual-Pentium III 666 MHz (Intel Corporation, 
Santa Clara, CA, USA) and ad hoc image analysis software designed to: a) filter out any 
noise or isolated points biasing the mathematical analysis; b) generate an (x, y) matrix 
with z values derived from the grey-intensity values of the filtered image, which is used 
to create a three-dimensional surface representing the spatial complexity of the stroma 
at a particular depth level (Figure 1B); and c) estimate DS using the equation: 

)/1log(
)(NloglimD

0

where DS is the box counting fractal dimension [7, 8] of the object calculated in three-
dimensions,  the side length of the three-dimensional box, and N( ) the smallest 
number of contiguous and non-overlapping boxes of side e required to completely 



Computer-aided Estimate and Modelling of the Geometrical Complexity of the Corneal Stroma 225

contain the irregular surface of the object. As the zero limit cannot be applied to 
biological images, DS was estimated by means of the equation: 

DS = d 

where d is the slope of the graph of log [N( )] against log (1/ ).

Fig. 1  Computer-aided procedures used to estimate the surface fractal dimension of a two-
dimensional image of the corneal stroma. A) Prototypical digitised confocal microscopy 
image of the corneal stroma. B) The generation of an (x, y) matrix with z values derived from 
the grey-intensity values of the filtered image. The matrix is used to create a three-
dimensional surface representing the spatial complexity of the stroma at a particular depth 
level. 

2.3 Computer-Aided Simulation of Two-Dimensional Corneal Stroma Sections 

A computer model was developed to simulate the geometrical complexity of a two-
dimensional section of the corneal stroma that automatically generates an unlimited 
number of images with a variable density of cells randomly distributed on a planar 
surface and separated from each other by a heterogeneous extra-cellular matrix (ECM). 
In order to simplify the real complexity of two-dimensional confocal images of the 
corneal stroma, the computer-aided model considered all of the keratocytes as rounded 
unconnected objects of equal magnitude, and the ECM as consisting of the four 
components water (W), proteoglycans (P), glycosaminoglycans (G) and collagens (C).  

As the parameters of a model must be as few as possible [9-12], we included three 
variables in the computer-aided model: a) the number of cells; b) the concentration of 
the four components of the ECM; and c) the distribution of the cells and the four 
components (the distribution patterns were randomly generated using different time-
dependent seeds for random number function generation).  
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One thousand images were automatically generated for each cell density (from 
five to 50 cells, with the number of cells being increased by five for each group), and 
their DS were estimated.  

Four simulated ECM compositions were defined using different concentrations of 
the four components (W, P, G, and C). One hundred images were automatically 
generated for each composition, and their DS were estimated. As each of the 
components has distinctive chemico-physical properties [13], they were idealized in the 
computer-aided model by means of different grey levels. A further 500 images were 
automatically generated in order to evaluate whether the distribution pattern of the ECM 
influences the estimate of DS.

2.4 Statistical Analysis 

All of the data were expressed as mean values ± standard deviation. The results were 
analysed by means of Student’s t-test, using the Statistica software package (StatSoft 
Inc. Tulsa, USA): p values of less than 0.05 were considered statistically significant. 

3 Results 

3. 1. The Surface Fractal Dimension of Corneal Stroma Images 

The mean DS of images of sequential corneal stroma sections obtained from all of the 
three subjects free of diseases was 2.622±0.022 (range: 2.576-2.687); the mean DS
obtained from all of the frames examined of eight patients awaiting cataract surgery was 
2.585±0.024 (range: 2.543-2.745). The difference was statistically significant (p <0.05), 
thus suggesting that DS may be a valid index of structural changes in the architecture of 
the corneal stroma. 

3. 2.  The Surface Fractal Dimension of Simulated Images of the Corneal Stroma  

The computer-aided simulations showed that different DS values can be obtained for 
images having an equal cell density. As the only variable in these images was their 
distribution pattern, DS depends on the irregular arrangement of the cells in the 
surrounding environment (Figure 2).  

DS also significantly increased (p <0.05) as higher cell densities were considered 
in the system; this is due to the greater space filled by the cell component.  

The simulation also shows that changing the concentrations of the four ECM 
components without changing the number of cells or their distribution patterns leads to 
statistically different DS (p < 0.005). On the contrary, much smaller and not statistically 
significant differences were obtained when different ECM distributions patterns of the 
same composition were analysed, as demonstrated by the standard deviation shown in 
Figure 3. 
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Fig. 2  The behaviour of the surface fractal dimension during a simulated increase in cell density. The 
graph shows that different Ds values can be obtained for images having an equal cell density. 
As the only variable in these images was their distribution pattern, Ds depends on the irregular 
disposition of the cells in the surrounding environment (note the standard deviation of each 
cell density group). Ds also increased significantly when a higher cell density was introduced 
into the system because of the growing space filled by the cellular component. The increase in 
cell density reduces the variability of their space-filling property, thus leading to a decrease in 
the standard deviation. 

4 Discussion 
Complexity is a real quality of organised biological matter, and is manifested in the 
living world as diversity and organisation. No two anatomical systems are exactly alike 
because there is a vast diversity not only between members of a population, but also 
between the component parts of an organism [5]. Complexity can reside in the structure 
of a system (e.g. the existence of many different component parts with varying 
interactions or an intricate architecture) or its non-linear functions (e.g. physiological 
rhythms are rarely strictly periodic but fluctuate irregularly over time). 

The human cornea is a complex system made up of different anatomical entities 
that are morphologically and functionally continuous [14]. The stroma, which 
constitutes 90% of corneal thickness, consists of intercalated layers of collagens and 
other ECM components, and keratocytes that are known to maintain the stroma by 
aiding its repair and probably in other critical roles [3]. Although a number of 
morphological approaches have been proposed as a means of investigating the 
microanatomy of the corneal stroma [15-17], no quantitative methods for measuring its 
geometrical complexity have yet been introduced. 

The introduction of quantitative methods suitable for measuring the geometrical 
complexity of the corneal stroma require the replacement of subjective qualitative and 
semi-quantitative evaluations that are insufficient for statistical purposes by real scalar 
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numbers (pure quantitative methods) that are statistically effective and appropriate for 
comparing its multifarious architecture under physiological and diseased conditions.  

We studied the use of DS as a quantitative estimator of the spatial complexity of 
the corneal stroma. Comparative analyses of the data obtained from the eight patients 
revealed an inter-subject variability, thus indicating that DS makes it possible to detect 
smaller differences in the spatial complexity of the corneal stroma. This statistical 
significance suggests a different complex morphology of the corneal stroma in two 
evaluated groups. 

The theoretical concepts underlying DS were abstracted from the theory of the 
Geometry of Irregularity (also called fractal geometry), which was developed by the 
French physicist Benoit Mandelbrot on the basis of previous studies by Poincarè, Cantor 
and others, and has recently been applied to quantitative pathology [5, 18-22] and 
ophthalmology [23]. 

The concept of spatial conformation has assumed a fundamental role in the study 
of biological macromolecules in chemistry (particularly biochemistry) since the early 
1950s. However, in the science of morphology, it has only been introduced in theoretical 
morphology, which studies extant organismal forms (complex structures of 
interdependent and subordinate elements whose relationships and properties are largely 
determined by their function in the whole) as a subset of the range of theoretically 
possible morphologies [12].   

As the corneal stroma consists of different but interconnected anatomical parts 
(cells and the components of the ECM) whose relationship and properties are largely 
determined by their function in the whole, its geometrical complexity can be defined on 
the basis of its whole spatial architecture. The significance of DS also comes from the 
fact that, like any other complex system, the microanatomy of the corneal stroma cannot 
be correctly quantified by measuring its individual components (i.e. cell density). DS is a 
parameter that depends on the spatial relationships between the cellular component 
itself and the surrounding heterogeneous ECM.  

It is interesting to note that analysis of the images of corneal stroma sections taken 
by means of in vivo confocal microscopy revealed differences in DS that can be ascribed 
not only to cell density, but also to the spatial distribution of the cellular component. 

As computer models are crucial for scientific procedures and the modelling 
process itself represents the hypothetic-deductive approach in science, we have 
demonstrated this by developing a computer-aided model capable of generating an 
unlimited number of two-dimensional images of corneal stroma sections.  

A total of 10,000 images showing a variable number of unconnected cells 
randomly distributed on a planar surface and separated from each other by a 
heterogeneous ECM were automatically generated and, interestingly, the model shows 
that DS increases in accordance with the number of cells making up the system. 
Furthermore, its value changed when an equal number of cells were distributed 
differently in the surrounding ECM. These results confirm that a primary role in the 
quantitative evaluation of the microanatomy of the corneal stroma is played by its whole 
architecture. In other words, it is plausible that an equal number of cells have different 
space-filling properties depending on their distribution pattern. This may have important 
implications for the quantification of all of the biological processes that involve 
keratocytes, their interrelationships and their relationships with the surrounding ECM.  

In conclusion, we have introduced a new index for quantifying the architecture of 
the corneal stroma and shown that: a) DS measures the geometric complexity arising 
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from the intricate relationships of the components of the corneal stroma; b) DS not only 
depends on the number of cells and their different degrees of contiguity and continuity 
(the two characteristics determining the so-called connectivity of the cellular 
component: i.e. from unconnected cells to the continuous cell network), but also on 
differences in the composition of the ECM; and c) DS might help to quantify 
morphological attributes over the entire anterior-posterior stromal thickness. The 
differences in spatial complexity at different depths of the corneal stroma may not only 
be related to dissimilarities in cell density, but also to dissimilarities in the cell 
distribution pattern and type of ECM environment. It is important to point out that these 
differences can be recognised by DS estimates and that they may be related to a specific 
pathological state. Two further findings are that DS is suitable for recognising variations 
in spatial structure in both the normal and diseased corneal stroma, and assessing drug-
related changes in keratocyte density [24], and that it can be usefully evaluated by 
means of computer-aided simulations in which the parameter values of a geometrical 
model of form are systematically varied. 
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Summary. Complex-dynamical fractal is a hierarchy of permanently, chaotically changing versions of 
system structure, obtained as the unreduced, causally probabilistic general solution to an arbitrary 
interaction problem. Intrinsic creativity of this extension of usual fractality determines its exponentially 
high operation efficiency, which underlies many specific functions of living systems, such as autonomous 
adaptability, “purposeful” development, intelligence and consciousness (at higher complexity levels). We 
outline in more detail genetic applications of complex-dynamic fractality, demonstrate the dominating 
role of genome interactions, and show that further progressive development of genetic research, as well as 
other life-science applications, should be based on the dynamically fractal structure analysis of interaction 
processes involved. We finally summarise the obtained extension of mathematical concepts and 
approaches closely related to their biological applications. 

1 Introduction 

The success of fractal paradigm in bio-system structure analysis, as presented in this 
series of conferences [1-3], reflects high efficiency of fractal geometry in life function 
realisation conceived and used by nature itself. In a broader sense, fractal structure 
efficiency appears inevitably and naturally in a wide variety of real processes, from 
physico-chemical structures to economic system evolution [4-8], driven by unreduced 
interaction processes and often referred to as systems with complex dynamics. Using 
the universally nonperturbative analysis of a generic interaction process, we have 
rigorously specified the connection between fractality and dynamic complexity [9,10], 
where the extended, complex-dynamic fractality has been derived as inevitably 
emerging structure of any real interaction process. In that way, the dynamic complexity 
as such acquires a rigorous and universally applicable definition, while the fractal 
structure of a real interaction is obtained as the truly complete, dynamically multivalued 
(probabilistic) general solution of a problem, replacing its reduced, dynamically single-
valued (regular) version. The dynamically probabilistic, permanently changing fractal of 
real system dynamics is a natural extension of the canonical, “geometric” fractality 
possessing an involved, but basically predictable (regular) and fixed structure. 
Complex-dynamic fractality is not a “model” any more, but the unreduced version of 
any real, “nonintegrable” and “nonseparable” system structure and dynamics, which is 
especially interesting for fractality involvement with living systems because it provides 
rigorously derived versions of those essential life properties — such as intrinsic 
adaptability, self-development and “reasonable” behaviour — that determine its specific 
efficiency and remain largely “mysterious” within usual, perturbative theory. 

In this report, after recalling the mathematical framework of complex-dynamic 
fractality (section 2), we proceed to further exploration of its properties important for 
life-science applications. We show that due to the hierarchy of unceasing probabilistic 
change of the living fractal structure, its power to perform useful functions grows 



A.P. Kirilyuk 234

exponentially with the number of elements, contrary to power-law dependence in usual, 
dynamically single-valued models (section 3). Being applied to various important cases 
of interaction development in living organisms, such as genome dynamics or brain 
operation, this result explains their huge, qualitative advantages with respect to any 
conventional simulation that underlie all the “miracles of life” (self-reproduction, 
adaptable evolution, intelligence, consciousness, etc.). Important practical conclusions 
for genetic research strategy are derived from the unreduced fractal structure of genome 
interaction dynamics (section 4). In that way we substantiate and specify the necessary 
change in life sciences and related fields, which can uniquely solve the growing 
“difficult” (e.g. “ethical”) problems of the modern blind, purely empirical technology 
development and provide the basis for the truly sustainable future. The latter involves 
genuine, causally complete understanding and control of living form emergence and 
dynamics, at any level of interest, giving rise to new possibilities in both fundamental 
(e.g. mathematical) and applied aspects of knowledge, including such directions as 
constructive genetics and integral medicine [9,10]. 

2 Probabilistic Fractal Structure of a Generic Interaction Process 

We start from interaction problem between arbitrary (but known) system components, 
such as brain neurons, cell elements, or genes. It can be expressed by the existence 
equation that generalises many particular, model dynamic equations [9-13]: 
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, ,                          (1) 

where k kh q  is the “generalised Hamiltonian” of the k-th component in the absence of 
interaction with the degrees of freedom kq , ,kl k lV q q  is the “interaction potential” 
between the k-th and l-th components, Q  is the system state-function depending on 
all degrees of freedom, 0 1{ , ,..., }NQ q q q , E is the generalised Hamiltonian eigenvalue, 
and summations are performed over all (N) system components. The “Hamiltonian” 
equation form does not involve any real limitation and can be rigorously derived, in a 
self-consistent way, as a universal expression of real system dynamics [9,11,12], where 
generalised Hamiltonians express suitable measures of complexity defined below. One 
can present eq. (1) in another form, where one of the degrees of freedom, for example 

0q , is separated because it represents an extended, common system component or 
measure (such as position of other, localised degrees of freedom and components): 
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where from now on 1{ ,..., }NQ q q  and , 1k l .
 The most suitable problem expression is obtained in terms of eigenfunctions 
{ ( )}kkn kq  and eigenvalues { }kn  of non-interacting components: 
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where NNnnnn qqqQ
N

...2211 21
 and 1 2, ,..., Nn n n n  runs through all 

possible eigenstate combinations. Inserting eq. (4) into eq. (2) and performing the 
standard eigenfunction separation (e.g. by taking a scalar product), we obtain the system 
of equations for n , which is equivalent to the starting existence equation: 
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and we have separated the equation for 0( )  describing the generalised “ground state” 
of system elements, i. e. the state with minimum energy and complexity. 
 Now we try to “solve” eqs. (5) by expressing n  through 0  from eqs. 
(5b) with the help of the standard Green function and substituting the result into eq. 
(5a), which gives the effective existence equation for 0  [9-13]: 

0000 ;effVh ,                                 (8) 

where the effective (interaction) potential (EP), ;effV , is obtained as 
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and { 0
ni }, { 0

ni } are complete sets of eigenfunctions and eigenvalues, respectively, 
for a truncated system of equations obtained as “homogeneous” parts of eqs. (5b): 
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 The eigenfunctions { i0 } and eigenvalues { i } found from eq. (8) are used 
to obtain other state-function components: 
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after which the total system state-function ,Q , eq. (4), is obtained as 
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where coefficients ic  should be found by state-function matching at the boundary where 
effective interaction vanishes. The observed (generalised) density, ,Q , is obtained 
as state-function squared modulus, 2, | , |Q Q  (for “wave-like” complexity 
levels), or as state-function itself, , ,Q Q  (for “particle-like” levels) [9]. 
 Although the EP expression of a problem, eqs. (8)-(12), is formally equivalent to 
its initial version, eqs. (1), (2), (5), only the former reveals, due to its “dynamically rich” 
structure, the essential features designated as dynamic multivaluedness (or redundance) 
and entanglement and remaining hidden in the conventional formalism and especially 
its perturbative form of “exact” (or closed) solutions. Dynamic multivaluedness appears 
as redundant number of locally complete, and therefore incompatible, but equally real
problem solutions, called realisations, while dynamic entanglement describes the 
related “cohesion” between interacting components within each realisation, expressing 
system “nonseparability”. Because of equal reality and incompatibility of realisations, 
the system is forced, by the driving interaction itself, to permanently change them in a 
causally random order, forming each time a new version of component entanglement. 
The total number of eigen-solutions can be estimated by the maximum power of the 
characteristic equation for eq. (8). If N and QN are the numbers of terms in the sums 
over i and n in eq. (9b), equal to the numbers of system components (N) and their 
internal states, then the eigenvalue number is max ( 1)QN N N N 2( ) QN N N ,
which gives the N -fold redundance of usual “complete” set of QN N  eigen-solutions 
of eqs. (5) plus an additional, “incomplete” set of N  eigen-solutions. The number of 
“regular” realisations is N N N , whereas the truncated set of solutions forms a 
specific, “intermediate” realisation that plays the role of transitional state during chaotic 
system jumps between “regular” realisations and provides thus the universal, causally 
complete extension of the quantum wavefunction and classical distribution function [9-
13]. Note that dynamic multivaluedness is obtained only in the unreduced EP version 
(starting from the genuine quantum chaos description [14,15]), whereas practically all 
scholar applications of this well-known approach (see e.g. [16]) resort to its perturbative 
reduction that kills inevitably all manifestations of complex (chaotic) dynamics and is 
equivalent to the dynamically single-valued, effectively zero-dimensional (point-like) 
model of reality, containing only one, “averaged” system realisation (or projection). 
 The discovered multivaluedness of the unreduced solution and the ensuing 
chaoticity of unceasing realisation change are expressed by the truly complete general 
solution of a problem presenting the observed density ( , )Q  (or a similar quantity) as 
the causally probabilistic sum of individual realisation densities, { ( , )}r Q :
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N
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where summation over r includes all observed realisations, while the sign  designates 
the causally probabilistic sum. The dynamically probabilistic general solution of eq. 
(13) is accompanied by the dynamically derived values of realisation probabilities r :

   1,..., ; ,   1r
r r r r

r r

N N N N N
N

 ,                   (14) 

where rN  is the number of elementary realisations grouped in the r-th “compound” 
realisation, but remaining unresolved in a general case. It is important that eqs. (13), 
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(14) contain not only the ordinary “expectation” value for a large series of events, but 
remain also valid for any single event observation and even before it, providing a priori 
probability and its universal dynamic origin. A practically useful probability definition 
is given also by the generalised Born rule [9,11,12], derived by dynamic matching and 
presenting the wavefunction in a physically transparent form of probability distribution 
density (or its amplitude, for the “wave-like” levels of complexity): 

2
r rX  ,                                                     (15) 

where rX  is the r-th realisation configuration, while the wavefunction can be found 
from the universal, causally derived Schrödinger equation [9,11,12]. 

Dynamic complexity, C, can be universally defined now as any growing function 
of system realisation number, or rate of their change, equal to zero for only one system 
realisation: C C N , 0dC dN , 1 0C . It is the latter case of zero unreduced 
complexity that is invariably considered in the canonical, dynamically single-valued, or 
unitary, theory, which explains all its old and new difficulties at various levels of world 
dynamics [9-13]. The unreduced dynamic complexity is presented by the majority of 
actually measured quantities, such as energy, mass, momentum, action, and entropy, 
now provided with a universal and essentially nonlinear interpretation in terms of the 
underlying interaction processes. Space and time are two universal, physically real 
forms of complexity, causally derived as tangible quality of dynamically entangled
structure and immaterial rate (frequency) of realisation change events, respectively. 
Complex dynamics is a structure emergence process (dynamically multivalued self-
organisation) and can be described by the universal Hamilton-Jacobi equation for the 
generalised action, which is dualistically related to the universal Schrödinger equation 
mentioned above through the causal quantization condition (it reflects realisation 
change by transition through the intermediate realisation of the wavefunction) [9,11,12]. 
Note finally that dynamic complexity thus defined represents at the same time universal 
measure of genuine and omnipresent chaoticity and (generalised) entropy.
 The complex-dynamic, intrinsically probabilistic fractality represents the 
inevitable development and internal content of dynamic entanglement (nonseparability), 
complexity and chaoticity. It is related to problem nonintegrability as it appears in EP 
dependence on the unknown solutions of the auxiliary system of equations, eqs. (10). 
After we have revealed dynamic system splitting into chaotically changing realisations 
at the first level of nonperturbative dynamics, we should now proceed with further 
analysis of the auxiliary system solutions, which introduce additional structure in the 
general solution. Due to the unrestricted universality of the generalised EP method, it 
can be applied to the truncated system (10), transforming it into a single effective 
equation, quite similar to the first-level EP result of eq. (8): 

0 eff ;n
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where the second-level EP action is analogous to the combined version of eqs. (9): 
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and 0 0{ , }n i n i
n n  is the eigen-solution set for the second-level truncated system: 

0 n n n n n n

n n

h V , n n ,  , 0n n .           (18) 

The same mechanism of dynamic multivaluedness due to the essentially nonlinear EP 
dependence on the eigen-solutions to be found in eqs. (16)-(17) leads to the second level 
of splitting, this time of auxiliary system solutions entering the first-level expressions 
(8)-(12), into many mutually incompatible realisations (numbered by index r ): 

0 0 0 0, ,r r
ni ni ni ni  .                                     (19) 

We can continue to trace this hierarchy of dynamical splitting by applying the 
same EP method to ever more truncated systems of equations, such as eqs. (18), and 
obtaining corresponding levels of dynamically multivalued structures with the attached 
intrinsic space and time, until we obtain a directly integrable equation for one unknown 
function. The maximum number of levels in this dynamically multivalued hierarchy is 
equal to the number of component states (excitations) QN , although in practice each of 
them need not be resolved. We can now specify the detailed, probabilistically fractal
structure of the complete general solution to the interaction problem, eq. (13): 

...

, , ...

, ,rr r

r r r

N

Q Q  ,                                     (20) 

with indexes , , ,...r r r  enumerating permanently, chaotically changing realisations of 
consecutive levels of dynamic (probabilistic) fractality, naturally emerging thus as the 
unreduced, truly exact solution to any real many-body problem, eqs. (1), (2), (5). The 
time-averaged expectation value for the dynamically fractal density is given by 

... ...

, , ...

, ,rr r rr r

r r r

N

Q Q  ,                                 (21) 

where the dynamically determined probabilities of the respective fractality levels are 
obtained in a form analogous to eq. (14) 

...
... ...

...

 ,     1rr r
rr r rr r

rr r

N
N

 .                                  (22) 

Multivalued fractal solution of eqs. (20)-(22) can be obtained in a number of 
versions, but with the same essential result of probabilistically adapting hierarchy of 
realisations. Consecutive level emergence of unreduced dynamic fractality should be 
distinguished from perturbative series expansion: the latter provides a qualitatively 
incorrect, generically “diverging” (because of dynamic single-valuedness [9]) 
approximation for a single level of structure, while the series of levels of dynamic 
fractality corresponds to really emerging structures, where each level is obtained in its 
unreduced, dynamically multivalued and entangled version. In fact, the ultimately 
complete, dynamically fractal version of the general solution demonstrates the genuine, 
physically transparent origin of a generic problem “nonintegrability” (absence of a 
“closed”, unitary solution) and related “nonseparability” (now being clearly due to the 
physical, fractally structured and chaotically changing component entanglement). 
 The dynamically probabilistic fractal thus obtained is a natural extension of the 
ordinary, dynamically single-valued (basically regular) fractality, which is especially 
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important for life-science applications because it possesses the essential living system 
properties absent in any unitary model, including autonomous dynamic adaptability, 
“purposeful” self-development, intrinsic mixture of omnipresent randomness with often 
implicit but strong order, and the resulting qualitatively superior dynamic efficiency. 
These properties are unified within the universal dynamic symmetry, or conservation, of 
complexity [9,11,12] providing the general framework for the described process of 
interaction development into a probabilistically fractal structure. The initial interaction 
configuration, as described by the starting equations (1), (2), (5), is characterised by the 
latent, “potential” complexity form of dynamic information, universally measured by 
generalised action. System structure emergence in the form of unreduced dynamical 
fractal, eqs. (8)-(22), is described by unceasing transformation of dynamic information 
into a dual complexity form, dynamic entropy, generalising the usual entropy to any real 
system dynamics and reflecting the fully developed structure. Symmetry of complexity 
means that the sum of dynamic information and entropy, or total complexity, remains 
unchanged for any given system or process, which gives rise to the universal Hamilton-
Schrödinger formalism mentioned above and extended, causally complete versions of 
all other (correct) laws and principles. Due to the intrinsic randomness of the unreduced 
fractality and contrary to any unitary symmetry, the universal symmetry of complexity 
relates irregular, configurationally “asymmetric” structures and elements, while 
remaining always exact (unbroken), which is especially important for description of 
biological, explicitly irregular, but internally ordered structures. Constituting thus the 
unreduced symmetry of natural structures, the symmetry of complexity extends 
somewhat too regular symmetry of usual fractals and approaches the fractal paradigm to 
the unreduced complexity of living organism structure and dynamics. 

3 Exponentially High Efficiency of Unreduced Fractal Dynamics 

 The probabilistic dynamical fractal, eqs. (8)-(22), emerges as a single whole,
which means that the fractal hierarchy of realisations appears and adapts its structure in 
a “real-time” period, comparable with the time of structure formation of the first level of 
fractality. This is the complex-dynamical, multivalued, genuine parallelism of real 
system dynamics absent in unitary models that try to imitate it by artificial division of 
sequential thread of events between simultaneously working multiple units of 
interaction, which can be useful, but does not provide any true gain in power. By 
contrast, the real, exponential power increase is obtained in natural systems with many 
interacting units at the expense of irreducible dynamic randomness, which constitutes 
the necessary, but actually quite advantageous “payment” for the huge power growth of 
creative interaction processes (whereas any unitary, regular dynamics is strictly 
deprived of genuine creativity). 

System operation power P is proportional to the number of realisations emerging 
within a given time interval, i.e. to the unreduced dynamic complexity: 0P P C N ,
where 0P  is a coefficient conveniently taken to be equal to the corresponding unitary 
power value (dynamically single-valued, sequential operation model, or “generalised 
Turing machine”). Then the relative growth of complex-dynamical fractal power with 
respect to unitary model, P , is given by the unreduced system complexity, which can 
be estimated by the fractal realisation number: 0 1P P P C N N N .

According to the analysis of section 2, we have the complex-dynamical 
fractal hierarchy of system realisations with QN  levels, each of them producing a new 
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split into N N  realisations (where N is the number of system components and QN  is 
the number of their operative states). So the total (maximum) realisation number N  of 
the dynamical fractal, and thus also P , grows exponentially with QN :

QNP N N .                                                  (23) 
Truly complicated systems from superior complexity levels, such as genome, cell, or 
brain dynamics, have high values of N and QN , so that their exponential combination of 
eq. (23) produces not only quantitative, but also qualitative effects appearing as various 
“miracles” of “living” and “intelligent” behaviour that cannot be convincingly imitated 
by unitary models (and now we know the exact, fundamental reason for that). 
 The estimate of eq. (23) refers, however, to a single interaction “run” at a given 
level of complexity describing the emergence of one “compound”, fractally structured 
realisation of the first level. System structure formation in the process of its operation 
does not stop there and involves a hierarchy of interactions at superior levels, where the 
above fractal structure within a given level plays the role of distributed “interaction 
transmitter” between harder, first-level parts of fractality. This means that the dynamic 
fractal grows, starting from a given interaction level, not only “in depth” (to generally 
smaller scales and lower complexity sublevels), but also to higher complexity levels. In 
order to estimate the total relative efficiency of such systems of “biologically high” 
complexity, consider a many-body interaction system consisting of unitN  operative units 
(such as neurons, or genes, or relevant cell components) each of them connected by 

linkn  effective links to other units, so that the total number of interaction links in the 
system is unit linkN N n . The number of system realisations N , and thus P , is of the 
order of the number of all possible combinations of links, which is the 
distinctive feature of the unreduced, dynamically multivalued fractality [11]: 

(24)

where we have used the well-known Stirling formula valid for large N (which is greater 
than 1210  for both brain and genome interaction structure, see section 4). For the case of 

the estimate of eq. (24) gives which is a practical 
infinity demonstrating the qualitatively huge efficiency of complex-dynamic fractality 
and its causal origin. Note that any unitary (basically regular and sequential) model of 
the same system dynamics would give the operation power growing only as 
and remaining negligible with respect to exponentially big efficiency of unreduced 
complex dynamics (including its unique adaptability and creativity). 

4 Causally Complete Genetics, Integral Medicine, and Other 
Applications of the Unreduced Complex-dynamic Fractality

Causally complete understanding of complex-dynamical fractal structure development 
in real biological and bio-inspired systems leads to a number of promising applications 
in life sciences, where modification and control of bio-system dynamics deal with its 
realistic, unreduced version and are comparable with natural creation processes. The 
relevant examples include (see also [9-11]) (1) causally complete understanding and use 
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of the natural biological evolution dynamics, involving both relative permanence and 
sudden “reasonable” change of species; (2) causally complete genetics taking into 
account the whole picture of real genome interactions and thus providing the desirable 
and reliable modifications; (3) unreduced understanding of the brain dynamics and 
emergent, dynamic properties of intelligence and consciousness; (4) integral medicine
based on the causally complete understanding and creative control of each individual 
organism dynamics; (5) genuine paradigm of nanotechnology based on the irreducibly 
complex (multivalued) dynamics of nano-scale structures approaching them to the 
natural, biological nano-machines; and (6) ecological and social applications of the 
unreduced (multivalued) fractality and complexity characterised by the intrinsically 
holistic analysis of the multi-level systems involved and providing provably efficient
solutions to the “global” problems (that cannot be solved within the unitary approach, 
irrespective of the quantity of efforts [9]). Only such unreduced understanding of real 
system dynamics can solve the growing “ethical” problems in practical research. 
 We shall consider here a more detailed outline of genetic applications, as they 
become especially important because of the growing conceptually blind, but technically 
powerful empirical experimentation with genomes of various organisms. The key result, 
strongly supported by both experimental knowledge and the above theory, is that the 
genome structure, operation, evolution, and related organism phenotype are mainly
determined by fractally structured genome interactions and not by sequential 
“programme reading” à la Turing machine, as it is assumed by the current theory and 
applications. Such understanding of genome dynamics is supported by the ensuing 
unified solution to the well-known problem of “noncoding DNA”, relatively large in 
quantity, but apparently “useless”, in the framework of unitary genetic paradigm. We 
can see now that the existence of those relatively large DNA sections is necessary as 
fractally structured gene interaction space and transmitter, similar to any real 
interaction process and in agreement with experimentally observed correlation between 
organism complexity and relative volume of those noncoding DNA parts [17]. 

As follows from sections 2 and 3, a unitary genetic programme cannot provide 
“reasonable” development and would actually halt in any realistic operation mode. Its 
efficiency is smaller than that of a real, dynamically multivalued, fractal interaction 
process by a practically infinite quantity given by eq. (24). Unfortunately, this does not 
exclude a possibility of purely empirical genome modification whose immediate
consequences, considered only within severely reduced unitary model, cover only a 
negligibly small part of actually introduced change in the whole system dynamics,
remaining delayed in time and therefore “hidden” in mechanistic experimentation. 

As has been shown in section 3, the huge dynamic complexity of brain or 
genome operation is determined by the number of links between the system elements. 
The number of synaptic links in human brain can be estimated as brainN neuron synN n

10 4 1410 10 10 , where 10
neuron 10N  is the number of cells and 4

syn 10n  is the 
number of links per cell. As follows from the universal symmetry of complexity 
(section 2), the number of interaction links in the genome genomeN , determining the 
emerging brain complexity, cannot be smaller than brainN , genome brainN N . Since 

genome gene effN N n , where geneN  is the number of genes and effn  is the number of 
interaction links per gene, we have 9

eff brain gene 3 10n N N  for human genome 
( 4

gene 3 10N ). It is remarkable that not only effn  is quite large, supporting the key 
role of gene interaction (both direct and indirect one), but in fact eff basen N , where 
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9
base 3 10N  is the experimentally determined number of smallest chemical elements 

(“bases”) in the human genome. This strongly supports the above idea that the main part 
of genome is playing the role of effective “interaction space” and only its smaller part 
appears as relatively “condensed”, stable, coding gene sequences (also contributing to 
omnipresent interaction links through various transmitting agents). The fact that 

genome gene baseN N N  shows that interactions of each (average) gene involve, in one way 
or another, any individual base and the reverse, any (average) base participates in every 
gene operation. Such incredible wholeness of the huge system of genome interactions 
can be realised only through the probabilistic fractal hierarchy of emerging system 
realisations, in agreement with the detailed analysis of sections 2, 3. It is interesting that 
for human genome and brain we have 14

brain neuron syn gene base 10N N n N N , which 
confirms the symmetry of complexity [9-12] unifying the probabilistically developing
fractal of human organism dynamics into a single whole, from genome information 
unfolding to the brain operation. We can apply the same, universal understanding of 
fractal interaction dynamics and its exponentially high efficiency to other biological and 
bio-inspired systems of particular interest today, such as neuron system dynamics and 
its “higher” properties known as intelligence and consciousness [9,11], various aspects 
of cell dynamics, artificial nanosystems [11], ecological and social systems, etc. 
 The probabilistically changing, fractal hierarchy of genome dynamics provides 
also the necessary combination of relative stability of a species genome and its capacity 
for rare evolutionary changes. The latter can now be causally understood as the largest, 
most “coarse-grained” level of probabilistic realisation change at the level of whole 
genome and organism dynamics. Such “global” changes are prepared by hidden 
potentialities accumulated from all interactions in the genome-organism-environment 
system and particularly “activated” in a “period of change” characterised by especially 
heavy pressure of the environment and critically dominating defects of genome 
dynamics. Those real potentialities for a future “big” change cannot appear as such 
before the change and remain hidden somewhere in the exponentially large, fractally 
involved space of genome interactions, thus ensuring the necessary (but always limited)
stability of species genome in a period between those big, evolutionary changes. 
Therefore it becomes evident that empirically based artificial modifications of any 
organism genome (related by a fractal interaction network to other organisms) will 
produce absolutely unknown and unpredictable (but typically destructive) effect on 
higher-level interactions that will appear in their explicitly observable form only during 
the next period of “big” change, remaining until then hidden behind superficially 
smooth “everyday” level of organism dynamics. That the “big change” will come 
inevitably in an evolutionary short period of time follows from the same symmetry of 
complexity, which leads to the causally substantiated conclusion about the 
fundamentally limited life cycle of any system, including a biological species and its 
ecological niche. It is determined by the complete transformation of system interaction 
complexity from “potentialities” (dynamic information) to “reality” (dynamic entropy), 
where characteristic, observable signs of approaching “bifurcation” can be predicted [9] 
and correlate with a number of currently growing “criticality” features. The technically 
powerful, but conceptually blind genetic experimentation of today can be compared in 
this sense to charging of delayed-action “genetic bomb”, or G-bomb, another potential 
weapons of mass destruction (though remaining unpredictable in details), where the 
“charging” process has a transparent physical meaning of introducing additional, 
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“unnatural” tensions in the “infinitely” large network of fractal interactions (eq. (24)), 
among which only some part will explicitly appear in the observed properties of 
organism dynamics. It is also evident that the problem can be solved only by essential 
extension of unitary approaches to the unreduced, multivalued and fractal interaction 
dynamics, taking into account all participating elements, as it is demonstrated by the 
above analysis, which can uniquely transform the empirical, potentially destructive 
unitary genetics into provably constructive complex-dynamical genetics.
 Note finally the essential extension of mathematical concepts and approaches
involved with that urgently needed progress in applications, as the development of 
fundamental science tools represents also its own interest, especially evident on the 
background of persisting stagnation [9,11,18] and “loss of certainty” in fundamental 
knowledge (cf. [19]). (i) First of all, one should mention the nonuniqueness of any real
problem solution, taking the form of its dynamic multivaluedness (section 2), and 
related complex-dynamic existence of any system that replace the usual “uniqueness and 
existence theorems” valid only for reduced, unitary models [9]. (ii) It follows that the 
related unitary concept of “exact” (closed) solutions and its perturbative versions are 
basically insufficient and fundamentally incorrect with respect to real world structures. 
The true, dynamical meaning of the notions of “(non)integrability”, “(non)separability”, 
“(non)computability”, “uncertainty”, “randomness”, and “probability” becomes clear: 
we obtain now the nonintegrable and nonseparable, but solvable dynamics of a generic 
many-body system (see eqs. (8)-(22)), while real world mathematics regains its 
certainty and unification, but contains a well-defined, dynamic indeterminacy and 
fractally structured diversity (i.e. it cannot be reduced to number properties and 
geometry, contrary to unitary hopes). (iii) The property of dynamic entanglement and its 
fractal extension (section 2) provides the rigorous mathematical definition of the 
tangible quality of a structure, applicable at any level of dynamics, which contributes to 
the truly exact mathematical representation of real objects, especially important for 
biological applications. (iv) The irreducible dynamic discreteness, or quantization, of 
real interaction dynamics expresses its holistic character and introduces essential 
modification in standard calculus applications and their formally discrete versions, 
including “evolution operators”, “Lyapunov exponents”, “path integrals”, etc. [9,11]. 
(v) The unceasing, probabilistic change of system realisations provides the dynamic 
origin of time, absent in any version of unitary theory: in the new mathematics and in 
the real world one always has a a  for any measurable, realistically expressed quantity 
or structure a , while one of the basic, often implicit postulates of the canonical 
mathematics is “self-identity”, a a  (related to “computability”). It has a direct bio-
inspired implication: every real structure a  is “alive” and “noncomputable”, in the 
sense that it always probabilistically moves and changes internally. In fact, any
realistically conceived a  represents a part of a single, unified structure of the new 
mathematics introduced above as dynamically multivalued (probabilistic) fractal (of the 
world structure) and obtained as the truly exact, unreduced solution of a real interaction 
problem (section 2). We can see in that way that such recently invented terms as 
“biofractals” and “biomathematics” can have much deeper meaning and importance 
than usually implied “(extensive) use of mathematics in biological object studies”. 
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Summary: We carried out measurements on serial sections through dinosaur eggshells found in the 
Hateg basin of Romania. The pore structure of these eggshells exhibits peculiar hierarchical self-
similarity, from millimeter scale to nanoscale. At optical scale, the eggshell is built up by packing bundles 
of calcite carrots, well aligned with their axis perpendicular to the eggshell surface, with “gaps” (macro 
pores) in between. Each calcite carrot is about 0.5 mm in diameter and has the length equal to the eggshell 
thickness. Scanning electron microscopy (SEM) reveals that these carrots are in turn micro porous spongy 
calcite structure, with m average pore diameter. The structure on an even smaller scale is studied by 
transmission electron microscopy (TEM) on thin sections prepared by ion milling, using methods from 
material science, revealing yet another layer of complexity.  
 The observed features lead us to the conclusion that calcite crystallization leading to the carrot 
morphology is controlled from the nano- to micro-scale by the structure of the collagen net developed in 
the eggshell cells. 

1 Introduction 

The egg is a single cell produced by the female, with the capacity to develop into a new 
individual. Development may take place inside the mother's body (as in most mammals) 
or outside, in which case the egg has a protective covering such as a shell. Egg yolk 
nourishes the growing young. Eggs developing inside the mother generally have little 
yolk, because the young is nourished from her body. The shelled eggs of birds and 
reptiles contain enough yolk to sustain the young until it hatches into a juvenile version 
of the adult. 
 The biochemistry of the egg is supposed to be the same for all type of unborn 
chick, bird, reptiles or dinosaurs. So, many conclusions about dinosaur eggs can be 
inferred from the known properties of the chicken eggs characteristics. 
The eggshell is a protective medium and has to facilitate all kinds of exchange between 
inner and outer part of the egg, in order to optimize the biological functions of the 
unborn chick [1]. It was considered the concept that avian eggshells can adapt to fit eggs 
to different nesting environments [2], and this adaptation can be seen in the eggshell 
characteristics we tried to find. 
 In the following, we present our results and a model of pore formation that 
reflects the self similar aspects present during the egg shell formation. 

2  Results 

We carried out extensive measurements on the dinosaur egg geometry and shell 
characteristics as well as optical transparency and reflectance, and thermodynamic 
properties, in order to understand the physics of the eggshell. Typical values of some of 
the characteristics of the chicken egg, compiled from [1], and for the dinosaur eggs 
found in Hateg basin, Romania [11] are given in the table 1. Part of the results of the 
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optical reflectance/transparence and thermodynamic measurements were reported in 
[14]. A more complete report on these aspects will be published. 

Table 1. Typical values of some eggs characteristics.
Chicken egg [1] Dinosaur egg  [11] 

Volume 53 cm3 1500 cm3

Surface area 68 cm2 700 cm2

Weight 58 g 1800 g 
Shell thickness 0.25 mm 2.3 mm 
Mean pore diameter 0.04 mm 0.1 mm 
Number of pores per cm2  110 - 120 150 – 200 

 These values are highly variable on the type of egg and on his weight, and 
variability in time for the same animal is reported.  
 As a rule, the dinosaur eggs are much larger then the chicken eggs or other birds, 
and they have all kinds of geometry, starting from almost spherical to highly elongated 
ellipsoidal form. Some of our preliminary measurements and results on dinosaur 
eggshells, where described in [10], [11].  
 The actual size of a freshly discovered dinosaur egg from Hateg basin (half egg) 
can be seen in figure 1. An example of how the outside surface of a dinosaur egg shell 
(fragment) looks like is given in figure 2 showing some of the structure that can be seen 
on the surface (low magnification).  

Figure 1. A freshly discovered dinosaur egg fragment 
(professor D. Grigorescu).

Figure 2. An image of a fragment from a 
dinosaur eggshell.

Figure 3a. Transversal section through eggshell – 
optical microscopy. 

Figure 3b. Longitudinal section through 
eggshell, first layer – optical 
microscopy. 



Fractal-like Features of Dinosaur Eggshells 247

 Transversal section (figure 3a) and longitudinal section (figure 3b) through 
eggshell – optical microscopy – reveals that the eggshell is built up by packing bundles 
of calcite “carrots” aligned with their axis perpendicular to eggshell surface.  

2.1  Pores Geometry and Statistics 

The shape of shell pores exhibits different morphologies. In the vast majority of species, 
the pores are funnel-shaped, with wider orifice outermost. Two other pore 
arrangements, however, have been recognized:  
- branched pores (large eggs), and  
- complex, reticulate pore system [3]. 
 We determined the porosity by direct counting of pores observed using an 
optical microscope. In order to examine a large number of specimens we produced a 
computer code for automatic counting and recognition of pores. 
 The geometry of the pore opening for Hateg dinosaur egg shells is a type of 
conical one, which narrows into a cylindrical tube of a few micrometers in diameter. 
However, the pore geometry for Hateg eggshells is highly tortuous, as can be seen from 
figure 5. Tortuosity of the pores was reconstructed from two transversal sections. 
Variation of diameter and of form of a pore through the entire 2.3 mm thickness of 
eggshell has been followed at least for twelve levels of successive serial section [11], 
[14].

 1  2  3  4 

 5  6  7  8 

Figure 4. Pores revealed by serial sections – Hateg, dinosaur eggshell. 
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Figure 5. Hateg typical dinosaur eggshell pore. 
Tortuosity reconstructed from two 
transversal sections. Variation of 
diameter and of form of a pore through 
the entire 2.3 mm thickness of 
eggshell. 2 – 12 represent the level of 
successive serial section [11], [14]. 

Figure 6. Pore diameter statistics for Hateg typical 
dinosaur eggshells [11], [14]. 

 In order to evaluate some characteristics for the gas exchange through pores, it is 
necessary to compute the total area of the pores. Usually this is done measuring the 
mean diameter of the pores, for a unit area of the egg shell surface. But the procedure 
could be a good estimate if the pore diameter distribution is a normal one (i.e. 
Gaussian).  
 From figure 6, that gives the pore diameter statistics for Hateg typical dinosaur 
eggshells, we see that the distribution is far from normal; it exhibits a power law 
feature. So, a simple arithmetic mean is not an adequate measure of the total pores area. 
This suggests that fractal-like features could be typical for the pores statistics. Using this 
finding, a much reliable measure of the pores area could be obtained.  

2.2  Self Similar Properties 

Measurements of the fractal dimension of the pore distribution for different eggshells 
and different serial sections give us values (for box fractal dimension) between 1.24 and 
1.31. In the figure 7, un example is presented; measurements were done using our code 
for box counting fractal dimension evaluation. Using the autocorrelation function 
method for fractal dimension estimation, we obtained values centered to 1.3, close to 
that obtained using box counting method. So, self similar properties are present in the 
pores distribution. 
 Further investigations, that used electron microscopy techniques (SEM, and 
TEM), figure 8, revealed a surprising result: i.e. the self-similar feature extends up to 
nano-scale structure, figure 9 [15]. 



Fractal-like Features of Dinosaur Eggshells 249

Figure 7. Example of fractal dimension computation using box counting method applied directly to the 
image. 

 The overall characteristics could be estimated as a power law distribution, with a 
mean dimension lower, but near 2. Further measurements on a much larger number of 
specimens must be done in order to refine the distribution. We expect to have at least 
two regions with different fractal dimension: near 1.4 for large pores and near 2 for the 
nano-scale region.  
 Clearly, these are surprising results that need to be clarified in the conjunction of 
mechanisms of pore formation. The analysis could give some results also in the detail of 
the Nature’s designs, such as trees and the vascular and respiratory systems of living 
organisms, to be based on scaling symmetry. A self-similar, hierarchical, fractal-like 
network of channels interpolates over several orders of magnitude in size, between the 
micro scale (e.g., lung alveoli, capillaries) and the macro scale (e.g., plant, animal). 

a) b) c) 

Figure 8. Electron microscopy at different magnifications (a) shows presence of the pores at different 
scales. The structure of the shell is a columnar packing of almost mono-crystalline calcite (b) as 
revealed by electron diffraction images (c) [15].  
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 The ubiquity of such shapes in Nature supports the conjecture that hierarchical 
self-similar shapes may provide an evolutionary advantage, such as optimal efficiency, 
or minimal energy cost, or both [17]. 

Figure 9.  Power law of pores diameter distribution could be found up to nano-scale. 

2.3  Allometric Relations 

Many studies and observations conducted to interesting facts, namely there are plenty of 
allometric properties between quantities describing the egg characteristics. Some of 
them are summarized in the figure 10, from [3], [4], and [6]. 

 Deviation from the above rules, namely unusually long incubation period or 
species for which the egg is adapted to an unusual nesting environment, has been 
observed.  
 These allometric dependences for egg properties also suggest presence of some 
self-similar mechanisms that govern the embryo development. More than that, some of 
the values of the power from the above relations could be related to more general 
aspects of growth and diffusion mechanisms. 
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Figure 10. Some allometric properties of different eggs from different species, versus their mass 

3  The Eggshell Porosity 

3.1  The Role of the Egg Shell and its Porosity 

Atmospheric oxygen enters the egg and metabolic CO2 leaves it, by passive diffusion 
through many similar pores distributed over the egg surface. 
 Oxygen consumption is vital in the biology of the embryo during the incubation 
period, which for chicken is about 20 days. The oxygen uptake is a diffusive gas 
exchange through the chorioallantoise (the respiratory organ of the embryo) till the day 
19th, and switch to an active breathing through lungs after.  
 The gas exchange is facilitated by the presence of the pores that traverse the 
eggshell. The pressure gradient between inner and outer part of the eggshell and the 
various layers of the shell and the geometry of the pores determine the conductance and 
hence the gas exchanges (oxygen, carbon dioxide and water vapors). The fine tuning of 
these are vital for the success of the embryo.  
 Changes in pore number, pore area and pore length have all been observed in 
eggs adapted to unusual nesting regimes. The nature of such adaptations and particular 
the ways in which shell porosity can be regulated by the laying bird are of interest for 
this work. 
 Eggshell porosity, in a standard treatment, is determined by three factors: 
- the number of pores 
- their individual cross-sectional area 
- their length. 
Another important factor is the morphology of the pores. Our research led us to the 
conclusion that also the statistical distribution over the pore size is also important for the 
dynamics of gas exchange. 
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 Early proposed mechanisms for the control of shell porosity, as considered till 
now, may lie in the [12]: 

• The seeding sites upon which shell calcification is initiated. These sites 
determine the number of crystal columns in the shell, which in turn are 
positively correlated with the number of pores  

• The number of columns in a unit area is inversely proportional to shell thickness 
(i.e. pore length) and may also determine the individual cross-sectional area of 
the pores 

• Thus, the distributions of the oviduct cells, which secrete the initial seeding 
sites, ultimately, determine the overall porosity of the eggshell and that 
evolutionary pressure operates at this cellular level. Tullet [12] suggested that 
the volume of “plumping fluid” moving through the shell during its formation 
may also play a role in determining the cross-sectional area of the pores. 

3.2  The Gas Exchange through Pores  

Many studies were done on the problem of the gas exchange through pores [4], [6]. The 
gas exchange is determined mainly by the diffusive properties of the gases across the 
resistance offered by the shell, the entire barrier to diffusion between inner part of the 
egg and the external part, the environment. We considered in this work just the 
contribution of the eggshell pores to the diffusion process. General physical description 
of the gas exchange through pores could be found in [8] and its application to some 
living systems that we followed, could be found in [4], [7], and [9]. 
 The gas exchange through eggshell pores is an isothermal process. Diffusion 
through the pore system is governed by the pressure difference of gases between inner 
and outer part of the eggshell. In a general treatment, a thermal diffusion could be also 
considered but it could be neglected in comparison to the pressure diffusion. 
 Eggshells are porous because developing embryos require to breath, i.e. to take 
oxygen and to eliminate the carbon dioxide produced. The presence of pores in the 
eggshell, however, means that eggs lose weight continuously after lay because water 
can escape from the egg. A simple treatment used by Ar & all [6] considers that gaseous 
exchange across the eggshell takes place by diffusion through the pores. Using a 
simplified version of Fick’s first law of diffusion the loss of water (mass) from the egg 
can be defined by equation: 

www PAKV

where wV  denote the diffusive rate of water loss from egg (where w is an index for 
water), Kw permeability constant of the shell, A the surface area of the shell and P the 
difference in water vapor pressure across the eggshell in torr. Defining the water vapor 
conductance by the product Gw = Kw A, and expressing the relation in mass unit: 
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where wM  is the water mass loss (usually taken in mg per day) and G – water vapor 
conductance of the eggshell expressed as mg water lost per torr difference in water 
vapor pressure across the eggshell per day. Water vapor conductance is an expression of 
the number and size of the pores in the eggshell.  
 The equivalent equation for oxygen and carbon dioxide could be written as: 

where conductance is expressed as cm3/torr/day, P is the “effective” partial pressure 
difference in the nest (or incubator) and the environment in torr and specific volume 
variation of oxygen is considered as the oxygen consumption of the embryo.  
 As a simple and direct use of above relations it was estimated the humidity of 
nesting zone for dinosaur eggs found in Hateg basin (Romania) and eggshell pores data 
[10], [11] using the formula: 

Hu=100 Pext/Psat

where Pext represent the water vapor pressure from the atmosphere and the saturation 
pressure Psat at the temperature t = 27°C considered as a real situation. Pext was 
estimated using the formula discussed by Seymour [13] from the conductance computed 
from the experimental data (total pores area and the thickness of the shell). The values 
estimated are between Hu=85% - 97% for a conductance value between 2,782 and 
1,391 mg/day/torr [12]. 

4  Conclusions 

Our data for eggshell porosity and direct examination of numerous pieces of eggshell 
contributed to a change in the view of computing the porosity of the eggshell and also to 
propose a different mechanism of pore formation, based mainly of chemical-physics 
processes that could be at the origin of pore formation. 
 One of the most important findings is that the distribution of the pore areas 
(diameters) is not a Gaussian one, as a priori expected in usual calculations. 
Considering a roughly circular pore section, and measuring the pore diameters, we can 
compute a simple mean value for pore section area. Doing the statistical distribution of 
the pore areas (or diameters) for a large number of dinosaur eggshells from Hateg basin, 
we found a power law distribution. This is not simple a counter-intuitive fact but 
implies also an operational aspect: the computation of the mean pore area is not a 
simply arithmetic manipulation but a mean obtained using a special kind of statistical 
distribution. On the other hand, a power law distribution suggests some kind of 
statistical correlation that exists in the mechanisms of pore formation [14]. 
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 We found also that the pores diameter exhibit a power-law trend over 
approximately 5 orders of magnitude: from 10 nm to a fraction of a millimeter, as was 
found using optical and also electron microscopy investigations [15]. So, the function of 
gas conductance is extended probably to meso- and nano- scale structure and regulates 
the physiology of the embryo inside the egg. How it contributes on such a large scale of 
magnitudes to the gas exchange has to be examined more careful.  
 In order to increase the data, we made new measurements on pore distribution 
using special computer codes for pore recognition and data processing  
 From all these investigations, we propose a new model for the mechanisms of 
pore formation. This model is based on the phenomena that could be expected to show 
self similar features, like particle or cluster – cluster aggregation, filaments formation, 
DLA diffusion, and crystal growth in a colloidal media and so on. The proposed 
sequences are:

• The egg without shell is maintained in the middle of uterus by some organic 
fibers (collagen); 

• The calcite crystals are deposited at a special moment, triggered by some signals 
(pH of the blood, enzymatic mechanism, etc); 

• Columnar structures are formed starting from the mammillary knobs, that acts as 
the nucleation sites; 

• The fibers continuously increase in section through a cluster-cluster aggregation 
process;  

Figure 11. Sketch of the proposed mechanism of the pore formation involving the space between the 
uterus membrane and the calcite shell deposition on the albumen. 

• The fibers will be the future pores, and their section increase in time, due to 
collagen deposition, during the egg shell formation, gives the funnel type form; 
in fresh air, the collagen fibers loss water quickly and give rise to the pore 
openings; 

• The distribution of pore diameters reflect the cluster-cluster aggregation process 
that is most likely described by a power-law, found in many cases. 

• Allometric relations could be a direct result of the correlation between shell 
thickness and cross-section of the pore (fiber). 

• The distribution of the pore diameter is likely to be a power-law type. 
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Summary. The analysis of metabolic processes, gene expression patterns, and protein–protein 
interactions in different organisms indicates that cellular metabolic networks have a scale-free and 
hierarchical topology described by power laws. The dynamics of these networks might be produced by a 
fractal organization of an autoregulatory loop, named metabolic hypercycle, between opposite redox 
processes of anabolic and catabolic types. This fractal architecture allows the formation of a long range 
correlated state of cellular networks which is globally regulated by a critical hub sensitive to the redox 
state. In prokaryotic cells this fundamental regulator is generally a two-component kinase system while 
in eukaryotic cells it is likely that casein kinase-2 and glycogen synthase kinase-3 play a central role in 
metabolism control. Both prokaryotes and eukaryotes share the same conserved sequence signatures, the 
PAS domain, in the main sensors of the changes in redox potential. Many experimental data support the 
hypothesis that the developmental pathways of cells and complex organisms are the results of conserved 
biological clocks based on metabolic hypercycles organized in fractal networks. 

1   Introduction 

Scale-invariance and long-range power-law correlations are features not only of 
physical and biological structures but also of many dynamic processes [1].

The recent advances in biotechnological techniques have produced an impressive 
amount of information, but the meaning of the mass of accumulated data is only 
beginning to be unravelled. There is a clear need to understand the fundamental 
mechanisms determining the functional interactions between biological molecules. A 
major challenge of contemporary biology is the development of an integrated theoretical 
programme to model the topological and dynamical properties of the different processes 
that control the behaviour of complex living systems. 

A possible unitary explanation of both physical and biological complex systems 
was suggested by the “Binary Theory of Everything” which is based on several theories 
and models developed in particular by the Italian scientists V. Volterra, L. Fantappiè, 
and G. and S. Arcidiacono [1-5].  An important prediction of this theory is that an 
universal mechanism, named metabolic hypercycle, “might be the basic mechanism of 
self-organization phenomena, morphogenesis and biological evolution” and “leads to 
the formation of fractal patterns which increase their complexity during phylogenetic 
and ontogenetic development” [1]. The metabolic hypercycle is an auto-regulatory 
feedback loop between opposite autocatalytic activities of a catabolic and anabolic type, 
described by the Lotka-Volterra prey-predator equation. A simple relation of negative 
feedback between two complementary entities may generate steady state equilibrium, 
while the metabolic hypercycle produces a dynamic equilibrium based on oscillating 
rhythms. Many different mathematical models of cyclic systems exist but in any case at 
least a forward “pull in” and a backward “pull out” coupling are needed in order to 
obtain an oscillating behaviour. The Lotka-Volterra model is the simplest oscillating 
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system. Therefore, we used the metabolic hypercycle as a schematic general 
representation of many different systems with similar dynamics even if sometimes the 
“real” mechanisms are more complex. Spatial and temporal developmental pathways of 
living organisms might be the results of maps and clocks based on metabolic 
hypercycles organized in scale-free networks (Figure 1). 

Fig. 1 Schematic drawing of the metabolic hypercycle (on the left) and of a fractal network of 
metabolic hypercycles (on the right). 

Recent experimental data, in particular on the regulation of metabolic processes 
and biological clocks, strongly support the scenario suggested by the “Binary Theory”. 
The flux distribution in the metabolism of Escherichia coli follows power laws [6]. The 
analysis of the metabolic networks of 43 different organisms from all three domains of 
life (eukaryotes, bacteria, and archaea) indicates that cellular metabolism is governed by 
universal power laws [7]. The protein–protein interactions and protein domain networks 
in diverse eukaryotic species also have the features of a scale-free and hierarchical 
network [8]. Further examples of scale-free organization include genetic regulatory 
networks, in which the nodes are individual genes and the links are derived from the 
expression correlations that are based on microarray data [9]. The gene expression 
dynamics follows the same and surprisingly simple principle from Escherichia coli to 
Homo sapiens, where gene expression changes are proportional to their expression 
levels. This ‘‘proportional’’ dynamics or ‘‘rich-travel-more’’ mechanism can regenerate 
the observed complex and dynamic organization of the transcriptome. In conclusion, 
most of the cellular networks studied so far display a high hierarchical fractal clustering. 

2 The Metabolic Code and the Origin of Life 

In this scenario, the origin and evolution of life on Earth is not a “very improbable” 
event, as suggested by  Boltzman and Monod, but is the unavoidable “consequence of a 
more general natural law” as hypothesized by Darwin in 1881 [1].

In 1972, R. M. May showed that random ecological networks based on the Lotka-
Volterra dynamics decrease in stability as they increase in complexity [10, 11]. If this 
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conclusion is true, than the metabolic hypercycle model can not be useful in explaining 
the nature of biological networks. The theoretical and experimental work of P. Yodzis 
[12], K. McCann [13,14] and many others demonstrated that the model of May is an 
over simplification of nature: the “real” ecological networks are not random but fractal 
and their stability is related mainly to the dynamics of a few “critical hubs”. The flow of 
energy-information and matter in both ecological and cellular networks might be 
organized in “fractal patterns which increase their complexity during the phylogenetic 
and ontogenetic development” [1] (Figure 2). 

Fig.  2 Schematic drawing of the proposed fractal structure of the cellular networks in living organisms. 

A fractal network tolerates fluctuations over a vast range of size and has a 
coherent behaviour near its critical points. “Most of the chemical reactions and 
physiological processes of living organisms work near their critical and instable 
equilibrium points, which define the borderline between deterministic order and 
unpredictable chaos” [1]. The identification of the critical hubs is of fundamental 
importance for the understanding of the networks regulation. Some useful indications 
for the identification of these critical hubs came from the analysis of the network 
evolution. The cellular network has developed its processes gradually, building over 
what has already taken place. “As a result, the cell resembles the site of an 
archaeological excavation with the successive strata on top of one another, the oldest 
one the deepest. The older a process, the more basic a role it plays and the stronger it 
will be anchored, the newest processes being dispensed with most easily.” [15]. 

R. Morchio and S. Traverso suggested that the first biological molecules were 
generated in the hydrophobic layer of the primitive sea [16]. According to the 
thermosynthesis theory of A.W.J. Muller and the metabolic hypercycle model, these 
primitive biological molecules probably cycled between a thermal and light induced 
electrostatically charged catabolic diurnal phase and a non-charged anabolic nocturnal 
phase (http://www.geocities.com/ResearchTriangle/Node/5345/) [17]. “The driven force 
of life is the energy of solar radiation which is conserved by being used to separate the 
elements of water, H and O, or by taking a water molecule from between two phosphate 
molecules (catabolic phase). The energy thus stored can later be utilized by reversing 
these processes and allowing the H and O to unite again or by putting the water 
molecule back between the phosphates (anabolic phase).” [15]. 
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A system composed of only two membrane proteins, a bacteriorhodopsin proton 
pump and an ATP synthase, is present in some bacteria, as the Halobacterium halobium,
and is the simplest biological device known for the energy production (Figure 3).

Fig.  3 The simple energy producing system of Halobacterium halobium is composed by two membrane 
proteins: a proton pump and an ATP synthase. In the light the excitation of the proton pump 
produces a dipole potential that drives ATP synthesis. In the dark the ATP degradation is 
coupled to the anabolic synthesis of complex biological molecules. 

 It is likely that the primitive synthases were able not only to synthesize a 
phosphate bond, but a peptide bond as well. Just like a phosphate bond, a peptide bond 
is produced by a dehydration reaction that does not require free energy in an enzymatic 
cleft. Moreover, the earliest enzymes were probably constituted by protein-nucleic-acids 
(PNA) molecules and their autocatalytic replication was driven by a direct template 
interaction between aminoacids and nucleotide [16]. The direct physicochemical 
interactions between charged molecules (such as polar aminoacids and purinic bases) in 
the catabolic phase and between non-charged molecules (such as non-polar aminoacids 
and the pyrimidinic bases) in the anabolic phase would have presumably brought on the 
birth of a “metabolic” code, based on the electric charges of the biological molecules. 
The metabolic code was probably the starting point for the evolution of the genetic 
code. This hypothesis explains most of the regularities of the genetic code (Figure 4). 

Fig.  4 A Dayhoff diagram showing the functional relations between the different aminoacids (on the 
left) and a graphic representation of the genetic code starting from the coding nucleotide in the 
second position (on the right). 
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3   The Cellular Network 

The activation of a cell from the anabolic to the catabolic phase is an example of a 
phase transition phenomenon induced by the amplification of small signals [4]. 

According to the metabolic hypercycle model, many photosynthetic bacteria are able to 
switch between photosynthesis and respiration, merely by replacing the components to 
which the same cytochrome bc1 complex donates or accepts electrons. The regulation 
of the switch between the two main metabolic phases is attributed to sensor molecules 
which are able to sense the changes in the cellular redox state. Among a diverse set of 
photosynthetic bacteria two main regulatory systems are known. For example, in the 
presence of oxygen the CrtJ regulative protein of the Rhodobacter capsulatus responds 
to the oxidizing conditions by forming an intramolecular disulphide bond. The presence 
of this disulphide bond stimulates the DNA binding activity of the CrtJ which represses 
the expression of the photosynthetic genes. CrtJ and other similar regulative proteins act 
as both sensor and effector and are constituted by an input and an output domain. The 
other mechanism that couples the redox state with gene expression in Rhodobacter 
capsulatus is the RegB and RegA two-component signal transduction system [18]. 
Under reducing conditions, the phosphate on a positively charged histidine residue of 
RegB is transferred to a negatively charged aspartate residue of RegA, which then 
activates genes involved in photosynthesis, nitrogen fixation, carbon fixation, 
respiration and electron transport. 

Signaling through two-component systems is widespread in both prokaryotes 
and eukaryotes. The two elements of the system are a sensor and an effector. The 
sensor is a histidine kinase constituted by an input domain and a phosphate transmitter 
module. The effector consists of a phosphate receiver domain and an output module. 
The sensor histidine kinase is activated by an auto-phosphorylation event if, and only 
if, a specific precondition is met. The sensor detects a change in redox potential that is 
initiated by altered light intensity or quality, or by a change in the availability of a 
respiratory substrate or a terminal electron acceptor. The effector is activated by the 
sensor only in response to specific changes in the environmental and intracellular 
conditions. Therefore, it is possible that the behaviour of the sensor-effector interaction 
in many two-component systems follow a prey-predator dynamics regulated by redox 
signals. 

After the evolution from simple sensor-effector molecules to the two-
component system with separated sensor and effector elements, the signal transduction 
mechanisms evolved towards very complex networks in the cells of Metazoa. The 
cycle of phosphorylation and dephosphorylation mediated by a kinase and an opposing 
phosphatase is the most common motif found in complex signaling networks. The 
phosphorylation/dephosphorylation cycles often follow oscillating dynamics. The 
cycles are often linked forming fractal layers of cycles, the so-called cascades, which 
are able to amplify the starting signal. The cascades, particularly in eukaryotic systems, 
will often cross-link with other cascades forming a complex web of inter-connections. 
In addition to the layers of phosphorylation/dephosphorylation cycles, there are also 
positive and negative feedback loops, that criss-cross, within and between the layers 
further complicating the system [19]. 



G. Damiani 262 

Traditionally, researchers have tended to study signal transduction systems, 
metabolic regulation, and gene network regulation as separate control systems; 
however, these networks are integrated into a much larger network, the global cellular 
network (Figure 5). 

Fig.  5 Schematic drawing of the global network in the anabolic phase (on the left) and in the catabolic 
phase (on the right) of an eukaryotic cell. 

The cell acts as one integrated entity during its life. For example, the activation 
of an eukaryotic cell, often induced by the amplification of small signals, is generally a 
phase transition from the anabolic to the catabolic phase. It is likely that the control of 
signaling, metabolic, and gene expression networks by redox state is an ever-present 
requirement of biological systems. Accordingly, several conserved behaviours and 
sequences motifs can be found in the regulative systems of different organisms. A 
redox sensitive cysteine or a PAS module are often present in the input domain of the 
sensors proteins while a DNA-binding sequences is often present in the output domain 
of the effector proteins. The PAS module is able to sense changes in redox potential, 
proton motive force, light, oxygen, CO, and other small ligands as a way of monitoring 
the overall cellular redox status. 
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Most of the anabolic cascades (as for example the Notch pathway) activate the 
glycogen synthase kinase-3 (GSK3) which phosphorylates hundreds of proteins 
involved in cell stasis and apoptotic death [20]. Most of the opposite catabolic cascades 
(as for example the Wnt pathway) activate the casein kinase-2 (CK2) which 
phosphorylates hundreds of proteins involved in cell survival and proliferation [21]. The 
catalytic subunits of GSK3 and CK2 are activated by a tyrosine auto-phosphorylation 
event under specific conditions and are deactivated by a serine phosphorylation. 
Moreover, the positively charged Lithium is a selective inhibitor of GSK3 while CK2 is 
activated by small positively charged molecule, such as the polyamines, and is inhibited 
by small negatively charged molecules. The unusual features of GSK3 and CK2 suggest 
that these enzymes are critical hubs of the global network in eukaryotic cells. 

4   The Biological Clocks 

The ordered spatial-temporal developmental pathways of living organisms may be the 
results of maps and clocks based on metabolic hypercycles [1]. 

A fundamental feature of many physiological processes is their circadian rhythmicity 
shaped by the day–night cycle during evolution Circadian rhythms are based on 
molecular clocks, constituted by clock proteins able to feed back and inhibit their own 
expression. A clear evidence of the importance of the metabolic hypercycle in the 
metabolism regulation came from the analysis of the molecular mechanism of circadian 
clocks [22]. The basic constituent of these clocks is a feedback loop between opposite 
proteins and RNAs of the diurnal and the nocturnal stage with sinusoidal cycles which 
are different for a quarter of the phase, according to the Lotka-Volterra equation.

Fig.  6 Lotka-Volterra variations of opposite clock proteins in a circadian clock.

 Most of the clock proteins have PAS domains, phosphorylation sites and DNA-
binding sequences. CK2 and GSK3B kinases regulate the circadian clock in an 
opposing fashion. Moreover, the redox state of the cell can act directly on the clock 
rhythmic oscillation. 

 Some elements of the circadian clock are present in the mechanism regulating 
the cell cycle [23]. The two clocks operating within an individual cell are interlocked by 
sharing some critical elements. Both systems rely on sequential phases of transcription–
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translation, protein modification and degradation, influenced by the CK2 and GSK3B in 
an opposing fashion. Cell division of some unicellular organisms is controlled by a 
circadian mechanism although uncoupling between the two cyclic processes is evident 
in multicellular organisms. Indeed, adult neurons that constitute the suprachiasmatic 
nucleus (SCN), the centre of the mammalian clock, do not divide and yet display 
circadian oscillations. However, most eukaryotic cells in culture undergo mitosis with a 
periodicity of about one day.

 The regulation of proliferative and apoptotic processes are of fundamental 
importance during the morphogenetic development of multicellular organisms. In most 
animal species, the anteroposterior body axis is regulated by repeated structures called 
segments. Formation of these segments is a rhythmic process that involves an oscillator 
driven by Notch and Wnt signalling called the segmentation clock [24]. The activation 
or inhibition of Notch and Wnt pathways and of the corresponding GSK3 and CK2 
pathways have opposite effects on the morphogenesis of the anteroposterior body axis.

Fig. 7 The iperactivation of Notch (on the left) or Wnt pathways (on the right) and of the corresponding 
GSK3 and CK2 pathways regulate the axial morphogenesis of Xenopus embryos in an opposing 
fashion. 

The Notch and Wnt pathways regulate many other morphogenetic processes according 
to the simple rule that the first inhibit and the second increase the cell proliferation and 
the formation of branching patterns. For example, Notch4 and Wnt-1 proteins regulate 
branching morphogenesis of mammary epithelial cells in an opposing fashion [25]. In 
conclusion, experimental evidences indicate that the circadian, the cell-cycle, and the 
segmentation clocks are regulated by CK2 and GSK3 in an opposing fashion. 

5   The Metabolic Code and the Adaptive Evolution 

Evolution searches for a balanced compromise between alternative and alternating 
needs. An example of this process is the optimization between specialization and 
plasticity [1].

According to the metabolic hypercycle model, a functional classification of metabolic 
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processes, genes and proteins in the catabolic and anabolic type is possible. In complex 
animals, the functional classification of regulative molecules at the organism level 
might be based on their circadian variations in biological fluids. Several conserved 
motifs are present in the aminoacidic sequences of the most important regulative 
proteins that regulate the activity of these molecules. These sequences interact with heat 
shock proteins and are presented on the cell surface by the proteins of the Major 
Histocompatibility Complex (MHC). The “charged” peptides are the main autoantigens 
involved in the progression of a wide range of autoimmune diseases. The immunization 
against these endogenous regulative peptides is involved with positive and negative 
selection processes of the proliferating cells of maternal tissues or of an embryo [5]. 

 In the “immunotrophic” case the maternal immune system stimulates the growth 
of active maternal cells or embryos endowed with MHC alleles presenting the 
immunoreactive peptides. These alleles are linked with variants of important regulative 
genes (as the complement proteins, HSP70, CYP21, AGER, CSNK2B, TNF, NFKBIL1, 
NOTCH4, TNXA-B, and PBX2). These proteins have functions that are distinct from 
their well-established inflammatory role: they modulate cell–cell interactions and the 
cellular networks which are crucial to early development and cell differentiation. 
Moreover, many heat shock and MHC proteins are involved in the regulation of 
epigenetic processes due to methylation and of endogenous mutagenic processes due to 
retrotranscription, and Chi-dependent micro-recombination. The final results of this 
mechanism is that in stressing conditions the maternal physiological adaptation might 
be transformed into Lamarckian adaptive changes of the newborns in only one 
generation. Moreover, in optimal condition this mechanism counteracts the negative 
aspects of Darwinian natural selection and maintains the biodiversity of animal 
populations (Figure 8). 

Fig. 8 Darwinian (below) and anti-Darwinian (above) evolution: catabolic individuals are favoured 
during stressing environmental changes while the anabolic ones are advantaged in stable 
conditions.
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A functional classification of the human MHC alleles confirms the importance 
of the metabolic code in the physiological and evolutive processes. Grouping the DQ 
and DR alleles into functional categories was proven to be useful for developing new 
insights on their role in autoimmune diseases. For example, several groups of DR alleles 
have been identified based on the physicochemical polymorphisms of the DR-beta chain 
(DRB) and in particular on the electric charge of the aminoacids in position 70, 71, and 
74 [26]. These residues are located in pocket 4 of the binding groove which exert a 
major influence on the binding of an antigenic peptide and its subsequent recognition by 
T-cells. Hundreds of DRB alleles may be classified into only three main types: the 
positively and negatively charged catabolic type, and the neutral anabolic type. An 
extensive comparison between DRB alleles in different species demonstrates that they 
often have in pocket 4 the same aminoacidic sequences produced independently. The 
convergent evolution of these genes in mammals as diverse as rodents, ungulates, and 
primates suggests that they evolved the same antigen-recognition cleft that binds the 
same self-antigenic peptides of a conserved regulative protein. 

Moreover, we found fractal distributions of MHC polymorphism in different 
populations [5], and similar functional associations exist between MHC alleles and 
metabolic and immune characteristics in different species and populations [27]. For 
example, human populations living in cold climates, such as the Eskimo, have many 
positively charged DRB alleles (60%) and few alleles negatively charged (0-2%). On 
the contrary, populations living in hot climates, such as the Fulani of the Burkina Faso, 
have many negatively charged DRB alleles (70%) and few positively charged alleles (0-
5%).

6   Discussion 

A "cosmic metabolism", produced by coupling and competition between the anabolic 
processes of binary association and the catabolic processes of binary dissociation, 
controls the evolution of all physical systems, both organic and inorganic [1]. 

The proposed model is highly speculative but is self-consistent and can explain many 
features of biological systems by means of a few simple laws. Biological systems far 
from thermodynamic equilibrium spontaneously evolve towards critical points where 
they display power-law correlations and fractal patterns. Many experimental data 
indicate that biological systems are governed by universal laws. In spite of many 
technical and mathematical aspects, which remain to be developed, the metabolic 
hypercycle model might have many different applications in different scientific areas. 
For example, a functional classification of biological molecules and processes based on 
the metabolic hypercycle might be used to highlight the dynamics of the 
neuroendocrineimmune network and of many other physiological, evolutionary and 
ecological processes. This developing framework will significantly alter our 
understanding of biology and will have important implications for the practice of 
medicine. For example, Lithium, a selective inhibitor of GSK3 used to treat bipolar 
disease, may prove useful in a number of other neurodegenerative diseases, such as 
Alzheimer's and Parkinson's. 

The most important application, however, may be pedagogical. Analogical 
reasoning plays an essential role in problem solving, scientific learning, and instruction. 
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Science teaching at school and science popularisation by media is difficult for the loss 
of simple and unitary scientific knowledge. The concepts of metabolic hypercycle and 
of binary processes would greatly facilitate people’s intuition about the dynamics of 
physical and biological systems. 

A surprising aspect of the proposed model is its similarity with ancient ideas of 
Hermetic, Hinduist and Taoist philosophers. The main concepts of Taoist medicine are 
described in detail in the Nei Ching Su Wen (The Yellow Emperor’s Medicine Classic): 
the human life is thought to be a balance between two opposing forces, Yin and Yang. 
Like day and night they are interdependent, and the existence of one presupposes the 
existence of the other. Yin is necessary for Yang to exist, and vice versa. The Taoist 
concept of health can best be defined as a normal dynamic balance between Yin and 
Yang. If Yin or Yang is deficient or in gross excess, the balance between them is 
distorted and disease results. At first the idea of Yin and Yang seems very simplicistic; it 
is not, it describes the basic changing balance of nature: the metabolic hypercycle. 
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Summary. The possibility being discussed is that the cytoskeleton, the intricate polymeric meshwork 
which spans the cytoplasm, may be regarded as a percolation system and that at the edge of the 
percolation transition mechanotransduction may be enhanced. Since calcium ion can be considered the 
main factor controlling the state of the cytoskeletal network, it is hypothesized that the increase of free 
intracellular calcium which follows a mechanical stimulus may serve to “loosen” the cytoskeletal network 
into a fractal percolation cluster, a partial sol state at which mechanotransduction is most efficient. It is 
also suggested that such a critical state represents an optimal condition for generation of mechanical 
forces. 

1 Cytoskeleton and Mechanotransduction    

Mechanical signals applied to the cellular membrane can be transmitted to the nucleus 
and elicit a genetic response. It has been shown that mechanical stress applied to 
different kinds of cells results in specific gene expression [1,2], and that changing the 
cell shape affects DNA synthesis [3]. Such responses are widely acknowledged to be 
mediated by the cytoskeleton, which, due to its network of actin, microtubules and 
intermediate filaments interconnected by cross-link molecules, provides mechanical 
continuity from the external membrane to the nucleus. Indeed, it has been shown that 
when mechanical tension is applied to the surface membrane (by pulling it) a 
corresponding distortion of the nucleus is observed [4]. Such a mechanical continuum 
includes the nuclear interior: the cytoskeleton and the nuclear scaffold would in fact 
constitute a functional unit [5,6], DNA and histones being mechanically connected to 
the cytoskeleton via direct interaction with intermediate filaments [7]. 

It is expected that such mechanical continuity is necessary for 
mechanotransduction to occur: in fact, the condition for a mechanical signal to be 
transferred to the nucleus is that the cytoskeleton network provides a continuous path 
from the external membrane to the nucleus. If the cytoplasm completely solates, such 
continuity is lost and no transmission can occur.  

As discussed below, the transition from a sol cytoplasmic state in which no 
connection exists between the external membrane and the nucleus to a cytoskeletal 
network in which such connection occurs may be regarded as a “percolation transition”.   

2 Cytoskeleton as a Percolation System 

The “percolation theory” is a general mathematical theory which has been used to 
model different interconnected systems, from telephone networks to the spread of 
infectious diseases. In brief: given a system composed of elements capable of 
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connecting to their neighbours according to a given probability p (which may depend, 
for instance, on the concentration of elements), a critical probability pc exists at which 
the elements give rise to an interconnected cluster, the so-called percolation cluster,
which spans the entire system from one side to the other. This probability is called the 
percolation threshold (in the example it corresponds to a critical concentration of 
elements). 

At percolation transition the system exhibits a fractal structure. For a square 
lattice, the mass of the percolation cluster, M, scales with the size of the lattice, L, 
according to the following power law: 

M(L) LDf

with a characteristic fractal dimension (Df) equal to 1.896. For three-dimensional 
percolation clusters, Df is approximately equal to 2.5. 

Near the percolation threshold, the system follows scaling laws with universal 
critical exponents (where “universal” means that the exponents do not depend on the 
details of the system). For instance, the fraction (F) of elements pertaining to the cluster 
obeys, near the threshold, the following power law: 

F ~ (p-pc)

where is the critical exponent. 
Based on quantification of the fractal dimensions of macromolecular 

associations in vitro and of the cytoskeleton of different cells, Rabouille et al. [8] and 
Aon and Cortassa [9] suggested that the cytoskeleton may be described as a fractal 
percolation cluster. For instance, the fractal dimension of the cytoskeleton in the 
axoplasm in crayfish peripheral nerve axon has been found, by means of the box 
counting method, to be about 1.91, which is close to the typical fractal dimension of 
percolation clusters (1.896) [10]. 

The hypothesis that the cytoskeleton is a percolation system is further 
supported by the observation that in vitro actin networks do behave like percolation 
systems [11,12]. 

In percolation models of the cytoskeleton, the elements of the percolation 
system are the cytoskeletal filaments, which, above the critical probability (which may 
be given by a certain concentration of filaments), interconnect with each other, giving 
rise to a continuous path from the cellular membrane (one side of the system) to the 
nucleus (the other side of the system). 

The percolation theory has been effectively used to model biological signaling 
through the cytoskeleton [13, 14], including mechanotransduction [15].  

3 Is a Fractal Cytoskeletal Network in an Optimal State for 
Transmitting Mechanical Signals?  

In the transmission of mechanical signals through the cytoskeleton, the state of the 
network (particularly its connectivity) is expected to affect the transmission itself.  

In fact, a densely interconnected network may be too rigid to efficiently 
transmit weak mechanical deformations. Indeed, mechanical stresses are hardly 
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transmitted in a completely gelled actin network [16]. In a computer simulation of 
mechanotransduction, in which cytoskeletal filaments were modelled by rigid rods and 
cross-linking molecules by elastic springs, it was reported that the amount of 
mechanical energy transferred from the membrane to the nucleus was low if the 
stiffness of the cytoskeletal cross-linkers was high [15]. In such a simulation, when the 
frequencies of the mechanical stimulation were high the model cytoskeleton allowed 
only a small amount of energy to arrive at the nucleus, because – in the words of the 
authors – “at very high stimulation frequencies, the springs effectively froze and 
behaved as rigid objects” and thus “very little energy was transmitted through the 
network”. This is consistent with experimental data. In an experimental study on 
mechanotransduction, it has been shown that cells were more responsive to low 
frequency mechanical load (0.2 Hz), because – the authors suggested – at lower loading 
rates “cells may be less stiff and more deformable” and thus “the mechano-transducing 
machinery is more likely to be activated” [17].  

Significantly, in their paper demonstrating that mechanical stress applied by 
micromanipulation to the cell surface is transmitted through the cytoskeleton to the 
nucleus, Maniotis et al. [4] excluded from the experiments “highly extended cells” 
because they are “much stiffer and, thus, less amenable to micromanipulation”. 

Moreover, it has been suggested that the cell’s response to mechanical stress 
requires global cytoskeletal rearrangements [18], which are quite difficult to occur if too 
many crosslinks stiffen the network.  

It should also be noted that endogenous contractile stress developed by the 
actomyosin machinery is likely to contribute to long-range transmission of mechanical 
signals, and that cytoskeletal pre-stress seems to be a requisite for mechanotransduction 
[18, 19]:  as we will see later, however, actomyosin complexes can hardly form in a 
completely gelled network. 

Furthermore, it can be noted that in a random three-dimensional prestressed 
actin network a mechanical signal typically propagates as a transverse signal, its speed 
being inversely proportional to the number of actin filaments, according to the 
following relationship: 

)T/(Tv
        
where vT is the speed of propagation, T is the intracellular tension,  is the linear density 
of a single actin filament and N is the number of filaments crossing the cross-sectional 
area of the cell [13]. 

Considered collectively, the above considerations suggest that if the number of 
crosslinked cytoskeletal filaments is too high and the meshwork is too stiff, 
mechanotransduction cannot be very efficient (at least for weak mechanical signals).  

On the other hand, a network below the percolation threshold is not able to 
transmit the signal to the nucleus, because no continuous path exists from the external 
membrane to the nucleus.  

It is then reasonable to hypothesize that a network which is above the 
percolation threshold but not too far from the percolation transition would be in an 
optimal state for the transmission of weak mechanical signals.

In such a case, the following question arises: how close to the percolation 
threshold should the system be in order to exhibit the maximal efficiency in the signal 
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transmission? Is such a maximum reached at the fractal percolation cluster? The 
question is open. 

Since mechanical signals are easily degraded because of rapid energy 
dissipation, amplifying mechanisms are probably also required in order for weak signals 
to be transmitted. On the edge of the percolation transition some kind of signal 
amplification (possibly including “stochastic resonance”) might occur. Such a 
possibility is currently under investigation.  

Finally, it can be incidentally noted that the hypothesis that mechanotransduction 
is optimized or even amplified at the percolation transition would be, in very general 
terms, in tune with the recent suggestion that enzymatic activity is amplified if the 
cytoskeleton is at the percolation threshold [20]. 

4 Does Calcium Control the Percolation Transition?  

If the cytoskeleton is to be regarded as a percolation system, what in the cell would play 
the role of the probabilility p, which controls the transition in percolation theory? 

In the percolation models of the cytoskeleton, the probability p is usually linked 
to polymer concentration [13]. However, as discussed below, percolation transition 
seems to depend to a large extent on the concentration of calcium. In fact, calcium ion 
(Ca++) may be considered the main factor controlling the physical state of the 
cytoplasm, being chiefly responsible for the transition from gel to sol [16]: calcium ion 
activates gelsolin, one of the main solating factors, which determines a disruption of the 
cytoskeletal network. Recently, the physiological importance of calcium regulation of 
actin cross-linking for cell structure and growth has been experimentally shown [21]. 

On the basis of the prominent role of calcium in the rearrangements of the 
cytoskeleton, it may be suggested that in percolation models of the cytoskeleton the 
probability p be directly linked to the inverse of calcium concentration: in fact, as the 
calcium concentration increases the concentration of actin filaments and the probability 
of interconnection correspondingly decrease. 

If calcium is assumed to control percolation transition, a quantitative estimate of 
the threshold value can be tentatively advanced.  

Physiological Ca++ concentration in the cell is about 100 nM. It is 
phenomenologically observed that when free calcium levels rise to micromolar values 
the cytogel commences to solate [16], mainly because of gelsolin activation. Although 
alfa-actinin and other bundling proteins start dissociating from actin when calcium 
concentrations rise above 100 nM, it is only at values over 1000 nM that, due to 
massive gelsolin intervention, a dramatic phase transition occurs, and cytoplasm 
undergoes evident solation. 

Therefore, it may be hypothesized that a calcium concentration of around 1000 
nM corresponds to the percolation threshold and that at concentration below such a 
critical value (but above the resting value), i.e., approximately, between 100 and 1000 
nM, only partial local solation occurs. (Incidentally, such a partial solation may 
resemble the local formation of actin clusters – a state termed “microgel” – observed in 
vitro in proximity to a temperature-induced gel-sol transition [12].) 

If, as suggested, mechanotransduction requires the cytoskeleton to be close to 
the percolation threshold, so that the network shows continuous paths from the 



Cytoskeleton as a Fractal Percolation Cluster: Some Biological Remarks 273 

membrane to the nucleus while not being too interconnected, an efficient cytoskeletal 
state is expected at calcium concentrations over 100nM and below 1000nM.

In fact, at physiological conditions (100 nM) the cytoskeleton is very far from 
the percolation transition [14]: the stiffness of the intricate meshwork is expected to be 
high (and the efficiency in mechanical signal transmission correspondingly low). On the 
other hand, calcium concentrations over 1000nM determine the solation of the 
cytoplasm, and the consequent loss of any connection between the external membrane 
and the nucleus. 

Should mechanotransduction actually require the cytoskeleton to be close to the 
percolation transition, it would be extremely useful, from a physiological point of view, 
if mechanical stimuli applied to the external membrane could induce the cytoskeleton 
towards an optimal state by raising intracellular calcium concentration to values 
between 100nM and 1000nM. This could actually happen in the cell. In fact, mechanical 
stimuli, by activating stretch-sensitive calcium channels, can cause calcium elevation 
within such a range. It has been experimentally shown that controlled mechanical forces 
(30-150 pN) applied to intercellular adherens junctions induce robust intracellular 
calcium transients of 65 9.4 nM above base line [22]. Moreover, elementary  Ca++

intracellular signals (“puffs” and “sparks”) following an external stimulus produce an 
elevation of the cytosolic calcium levels of 50-600 nM.  

5 Mechanical Force Generation near the Percolation Transition 

In addition to efficiently transmitting mechanical signals, a fractal cytoskeleton state 
close to the percolation transition might also represent an optimal condition for 
generating mechanical forces. In fact, the actomyosin machinery reaches its maximal 
efficiency in a partially solated network [16], since the filaments must be free to reorient 
themselves in order for the sliding configurations to be created. Therefore, a completely 
gelled actin network can hardly generate mechanical forces, whereas in a completely 
solated actin solution tension can neither be generated nor transmitted at all.  

The formalism of the percolation theory is also commonly used to model sol/gel 
transition: in a system made of interconnected polymers, the condition for gelation is 
that an interconnected cluster of cross-linked polymers arise which forms a continuous 
path from one side of the system to the other. Then, in the framework of the percolation 
theory, the empirical observation that the generation of mechanical forces requires 
incompletely gelled actin-myosin networks [16] could be expressed as follows: a
(fractal?) cytoskeletal network close to the percolation threshold is in an optimal state 
for the generation and transmission of mechanical forces.

Establishing a link between the fractal structure of the cytoskeleton and the 
generation of mechanical forces might turn out to be useful in the study of cell motility. 
Significantly enough, the fractal dimension of microtubule-actin network at the leading 
edge of migrating lung epithelial cells calculated through the box counting method has 
been found to be equal to 1.85, close to that of percolation clusters at the threshold 
(1.89)[20].

Let me conclude with a further speculation. Increased cell motility of malignant 
cancer cells has been shown to be linked to actin reorganization [23]. The cytoskeleton 
of cancer cells must be able to continuously generate and transmit mechanical forces: a 
cancer cell might be considered to be somehow trapped in a mechanically active state 
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near the percolation transition. It may be speculated that, in contrast to the densely 
interconnected cytoskeletal meshworks of normal resting cells, the cytoskeleton of 
malignant cancer cells may exhibit a fractal structure, with a fractal dimension close to 
that of a percolation cluster. A lower fractal dimension in cancer cells with respect to 
normal ones would be consistent with the significantly smaller fractal dimension of 
plasma membrane measured in cancer cells with respect to normal ones [24]. Although 
still highly speculative, the suggestion that cancer cells may exhibit fractal cytoskeletal 
networks seems worthy of further investigation. 
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Summary. The Gompertz function describes global dynamics of many natural processes including 
growth of normal and malignant tissues. On one hand, the Gompertz function defines a fractal. The fractal 
structure of time-space is a prerequisite condition for the coupling and Gompertzian growth. On the other 
hand, the Gompertz function is a probability function. Its derivative is a probability density function. 
Gompertzian dynamics emerges as a result of the co-existence of at least two antagonistic processes with 
the complex coupling of their probabilities. This dynamics implicates a coupling between time and space 
through a linear function of their logarithms. The spatial fractal dimension is a function of both scalar 
time and the temporal fractal dimension. The Gompertz function reflects the equilibrium between regular 
states with predictable dynamics and chaotic states with unpredictable dynamics; a fact important for 
cancer chemoprevention. We conclude that the fractal-stochastic dualism is a universal natural law of 
biological complexity. 

1 Introduction 

Dynamics of a variety of natural phenomena, such as magnetic hysteresis [1], 
kinetics of enzymatic reactions, (e.g.,  PCR), oxygenation of hemoglobin, intensity of 
photosynthesis as a function of CO2 concentration (reviewed in [2]), drug dose-response 
curve [3], dynamics of growth, (e.g., bacteria, normal eukaryotic organisms, and cancer) 
[3-8] is described by the universal sigmoidal function of time known as the Gompertz 
function (see equation 1). A similar function describes a rate of differentiation of the 
aggregated cancer cells as a function of retinoid concentration [3]. 

The Gompertz function is a solution of the mathematical model which describes 
dynamics of tumor growth [4]. The best fit of experimental data reflecting growth of 
normal cells or tissue structures as well as transformed cells or tumor tissues can also be 
done with that function [9]. Owing to the high accuracy of the fit, the Gompertz model 
rather than the logistic model, the von Bertalanffy model, or the Bertalanffy-Richards 
model has been used to investigate details of growth; a basic biological phenomenon. 

 Stability of that curve in the course of morphogenesis or tumorigenesis indicates 
two important facts. First, forces driving growth and self-organization of cellular system 
remain insensitive to the increasing number of molecular cellular defects. Second, a 
principle underlying both growth and self-organization of cells is a universal natural 
law. A question arises as to what kind of a relationship exists between various specific 
intra- and intercellular factors to yield such a highly recurrent dynamics? Despite of 
multiple attempts to derive Gompertzian dynamics from some basic principles, such as 
cell fractal kinetics, senescence in biological hierarchies, entropy change, or cellular 
heterogeneity (reviewed in [9]), a search for a simple, justifiable explanation for the 
Gompertzian pattern of growth continues.  

For the purpose of this study, space is defined by a system of the geometrical co-
ordinates. Those co-ordinates build up a volume, in which the non-linear process with 
Gompertzian dynamics occurs. Time is a scalar with the same features as in any other 
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dynamic equation. Owing to the relationship with the system of co-ordinates, time is a 
parameter and takes the sense of the evolutional co-ordinate.

2 Mathematical Features of the Gompertz Function 

2.1 General 

Dynamics of growth of normal or malignant cells is described by the Gompertz function 

)bte(ae)t(f 1                                               (1)   

in which f(t) stands for a number of cells or their weight after time t, a and b are 
experimental coefficients determining slope of the curve ([4-5], reviewed in [9]).  

To compare dynamics of tumor growth in various host organisms, Anna K. Laird 
defined the normalized Gompertz curve, in which the growth data for all malignant 
tumors analyzed have been superimposed after adjustment of the units on the two axes 
with the inflection point of the Gompertz curve as the point of reference [4]. To 
normalize the function given by equation (1), growth scale to give the asymptote the 
value unity, and set zero on the time scale at the point of inflection, one must apply the 
following transformation on equation (1) 

b
a

e)t(f

)t(f)t(Nf
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                                                             (2)

b
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0                                                        (3)

in which fN(t) stands for the normalized Gompertz function (a normalized cell number), 
f(t0) is the absolute initial cell number at the time-point t0. Then, by substitution 
equation (1) becomes equation (4) 

      ))bt(e(e)t(Nf                                        (4)

2.2 Fractal 

The normalized Gompertz function (4) is a contractable mapping of the Banach space of 
the real numbers R. This mapping holds the Banach theorem about the fix point because 
its derivative (5) is lower than 1 for any b > 0 and t > 0. The mapping with the above-
mentioned features generates a fractal curve. 

     1)t(Nf))bt(e(e)bt(be)t('Nf                   (5)
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2.3       Probability Function 

By definition, a function f(t) is a probability function if it holds the following four 
conditions (6 a-d): 
a.                                         )t(f)t(ftt 2121
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lim                   

d.                                        )t(f)t(f
tt
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0

                

The normalized Gompertz function holds all four conditions. Indeed, (a) the normalized 
Gompertz function is a monotonic function; (b) and (c): the corresponding limits are 0 
and 1, respectively for any b > 0; (d) the limit on the left of the time-point t0 exists 
becuase the normalized function is a continuous function. Since the normalized 
Gompertz  curve represents features of the entire class of the Gompertz functions, all of 
them are probability functions. Similarly, the normalized Gompertz derivative is a 
probability density function. The entire class of the Gompertz derivatives possesses the 
same feature. Thus, the normalized Gompertz probability function can be defined for 
any b > 0 as follows:

1dt))bt(e(e)bt(bedt)t('Nf)t(Nf                 (7)

2.4 Non-linear Coupling of Probabilities Determines Gompertzian Dynamics 

It was suggested that at least two different dynamic processes determine dynamics of 
tumor growth [3, 4, 8, 9]. If so, a combination of two such processes should generate the 
sigmoid Gompertz curve. Let us consider a basic model of growth when there is a limit 
to growth given by the logistic equation (8):  

           np)np(nrpnp 11                                  (8)

with initial value p0, in which r is a parameter, time t is measured in discrete steps like 
1, 2, 3,..., a natural number n, n+1,... pn+1 stands for a number of cells in the n+1th

generation, pn  is a number (or fraction, or probability) of cells undergoing divisions in 
the nth generation, 1-pn  is a number (or fraction, or probability) of cells among the 
population of the nth generation which do not divide. 

First, that map describes the co-existence of two antagonistic processes. They occur 
with probabilities pn and 1-pn. Indeed, the variables pn and (1-pn) can be treated as 
probabilities of two events in the nth iteration step. A sum of those probabilities is equal 
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to 1. Second, it is well known that the map (8) generates dynamics described by the 
sigmoid curve. However, this is not the Gompertz curve. Indeed, the logistic equation 
(8) can be transformed to the algebraic form of a differential equation, if time is a 
continuous entity given by equation (9): 

          ))t(p)(t(rp)t('p 1                                 (9)

This transformed differential equation possesses a solution which is not the Gompertz 
function. It is a logistic function. Indeed, differential equation (10) can be solved 
analytically by introducing a novel variable: 

1)t(p)t(z                                            (10) 

The corresponding derivative z'(t) can be calculated from the classic pattern for the 
derivative of the quotient of two functions and expressed as a function of z(t):

))t(z(r
)t(p

)t('p)t('z 12                                    (11)

Third, the algebraic form of equation (8) or equation (9) indicates that coupling of the 
probability p(t) of an event and the probability (1-p(t)) of the antievent is a necessary 
condition for the emergence of the sigmoid dynamics. However, equation (9) produces 
a symmetric bell-shaped curve only. The asymmetry typical of the plot of the Gompertz 
derivative emerges only if more complex coupling takes place in the logistic equation. 
For example, one of the probabilities in the logistic equation (8) or in the differential 
equation (9) must possess power exponents. Apparently, simple coupling of 
probabilities for two dynamic processes opposite to each other is not sufficient to 
generate Gompertzian dynamics. The analysis of the linear differential equation of the 
first order, which generates the Gompertz function as a solution, confirms that coupling 
of the probabilities possesses complex and non-linear algebraic form.  

)t(fbtabe)t('f                                             (12) 

possesses as a solution the Gompertz function f(t) given by equation (1) at the initial 
condition f(0)=f0. Equation (12) possesses a similar algebraic structure as equation (9). 
Indeed, if r = b, p(t) = fN(t) (compare equation 4 and 7), then 

))t(pln)(t(rp)t('p)t('Nf                             (13) 

The corresponding iterative normalized Gompertz function 

np)npln(nrpnp 1                               (14)

generates Feigenbaum-like diagram shown in Figure 1.  
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Figure 1: Feigenbaum-like diagram generated by the normalized iterative Gompertz function given by 
equation (14). The Gompertz function (equation 4) reflects equilibrium between regular and chaotic states 
existing in system with Gompertzian dynamics. Consecutive bifurcations lead that system towards 
deterministic chaos. 

Fourth, a derivative of the Gompertz function plays a role of the probability density 
function (see equations (6 a-d)). The Gompertzian distribution of probability is not a 
Gaussian distribution, nor a logistic distribution. The Gaussian distribution represents 
the ideal distribution of probability for the uncoupled events. The Gompertzian 
distribution represents a distribution of the coupled probabilities [8].

2.5 A Coupling of Time and Space 

Let us consider a dynamic system of interacting cells. That system occupies a given 
volume of space. It grows in both time and space. It is known from experimental data 
that the number of cells changes in time t according to the Gompertz function given by 
the equation 1 [4, 9]. A volume V of a multicellular spheroid is given by equation 15:

kV)t(fV                                                            (15) 
         
in which Vk is a mean volume of a single cell in the spheroid, f(t) is a Gompertz function 
describing dynamics of cellular proliferation. 

From equation 1 and equation 15, and from the fact that the Gompertz function is a 
fractal [3, 8], we get equation 16: 

batVbatkV)t(fkV)
te(e)t(fkV)t(fV 00

1
0       (16) 

The volume V of the spheroid can also be expressed as a function of scalar geometrical 
variable x, (i.e., a radius of a family of the concentric spheres covering the entire 
spheroid) by equation (17) [7, 10]: 
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in which a1 stands for a scaling coefficient, bs is a spatial fractal dimension after scalar 
time t1, x is a scalar, geometrical variable, which locates an effect in space. 

If the initial value of the temporal fractal dimension bt0 for cellular population 
expanding in space is different from the fractal dimension bt during the other stages of 
the process (t = tn), then, from (16) and (17), we get (18) 

tbatsb
xatbatVVsbxa 0001                            (18) 

in which a, a0, and a1 stand for the scaling coefficients, bt is the temporal fractal 
dimension, bs0 and bs are the spatial fractal dimensions after time t0 and t, respectively, x
is the geometrical variable.  

Hence, we get an equation which relates space and time 
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                          (19) 

in which t stands for scalar time, x is the geometrical variable, bs is the spatial fractal 
dimension, bt is the temporal fractal dimension. Equation 19 defines the geometrical 
variable x as a function of scalar time t. According to equation 19, both variables, 
spatial, x, and temporal, t, are coupled to each other through the temporal or spatial 
fractal dimension. The ratio of the temporal and spatial fractal dimension defines the 
appropriate tangent function for two stationary states with two different spatial fractal 
dimensions bs and bs0 (equation 20), 

0sbsb
tb

tg                                                      (20) 

From (19), it can be seen that for 0 < t < 1  or 0 < x <1, a difference bs - bs0 decreases 
in time. The difference increases in time for t >1 or x > 1.

Finally, we get a relationship between the temporal dimension bt, and the spatial fractal 
dimension bs (equation 21), in which bs is a function of scalar time t:
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If  bt/ln x > 0, then the spatial fractal dimension bs(t) increases in scalar time t. In other 
words, the value of the temporal fractal dimension, bt, determines dynamics of a change 
of the spatial fractal dimension, bs(t). Since bs is also a linear function of bt, we can see 
that bs is constant if the ratio of ln t/ln x is constant. This leads to a very important 
conclusion. Space occupied by growing cellular system expands in the proportional way 
with the increment of scalar time t, (i.e., x = kt; k stands for a scaling coefficient, x is the 
geometrical variable). 

2.6         The Gompertz Function vs Regular and Chaotic States 

To describe the spatial expansion of cancer cells and to analyze how population of those 
cells conquer the available Euclidean space, we defined a novel parameter called a 
coefficient of cellular expansion [10]. This parameter is a ratio of spatial fractal 
dimension bs of self-space occupied by a population of cells to integer dimension w of 
the classical, complementary Euclidean space (equation 22).  

1
w
sb

s                                                           (22) 

The coefficient of cellular expansion s is a measure of both connectivity, (i.e., 
interconnectedness which denotes the existence of complex, synergistic relationships in 
a population of cells leading to the emergence of global features in the system that 
would never appear in a single cell existing out of the system) and collectivity, (i.e., 
capability of cells to interact in a common mode). This coefficient equals to zero for 
classical, non-interactive, non-connective, and non-collective dynamic systems, (i.e., bs
= w), such as a set of molecules of neutral gas. It is close to one for the interactive, 
connective, and collective dynamic systems, (i.e., bs < w). Analysis of experimental 
data confirms that the proliferation or differentiation of cells occur in both time and 
space with fractal structure; a feature eventually lost in the course of tumor progression 
[10].

Let us consider a non-linear process with Gompertzian dynamics, such as cellular 
proliferation. Cellular dynamic network of genes and their regulatory protein elements 
is of quasi-deterministic nature, (i.e., deterministic and non-deterministic events co-
exist) [11]. Cellular growth can be described by the temporal or spatial fractal 
dimension. Hence, there are regular states (processes), that is, states with dynamics that 
are predictable for any time-point or chaotic metabolic states, that is, states with 
dynamics that are unpredictable in time, but are characterized by certain regularities, 
(e.g., the existence of strange attractor for any biochemical reaction) involved in that 
phenomenon. Those metabolic processes occupy a given volume of Euclidean space V.
Let us define a ratio q between the volume of space occupied by the chaotic states Vc
and the volume of Euclidean space V which also comprises the volume occupied by the 
regular states Vr (23): 

rVcV
cV

q                                                       (23) 
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From (22), volume of the chaotic states Vc in the dynamic system and volume of 
Euclidean space V are related each other by the following equation (24): 

)s(Vw
sb

VcV 1                                              (24)                            

Hence and from equation (23), we get a relationship between the coefficient q, volume 
of  Euclidean space V, and the coefficient of cellular expansion s:

1sV

sVq                                                            (25) 

Hence, for 0 < q < 1 
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From the equation (16), we get that the volume of the chaotic states Vc in the interactive 
dynamic system changes in time according to the Gompertz function. 
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in which Vc
i denotes volume of a single chaotic state i, Vc0 stands for the initial volume 

of all chaotic states in the dynamic system, f(t) is the Gompertz function, f(t0) is the 
value of the Gompertz function in time-point t0. From equations (24), (25) and (27), we 
get the relationships between temporal fractal dimension, bt, coefficient of cellular 
expansion, s, coefficient of the equilibrium between the chaotic and regular states in the 
dynamic system, q, the volume of Euclidean space V, and the initial volume of the 
chaotic states, Vc0
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4 Discussion 

 The Gompertz function is a contractable mapping, and generates a fractal curve 
[8]. The fractal curve describes global Gompertzian dynamics. Neither that fractal 
dynamics results from randomness in the system, nor from the interplay of some extra-
systemic forces. Results of that study indicate that the stochastic model also describes 
the emergence of global Gompertzian dynamics. This dynamics is determined by the 
non-linear coupling of probabilities of at least two antagonistic processes. Thus, the 
fractal-stochastic dualism is a universal natural law of biological complexity. This 
dualism underlies global, highly reliable, and recurrent Gompertzian dynamics. This 
dynamics emerges as a result of non-random coupling between elements of dynamic 
system in fractal time-space. In particular, Gomperztian dynamics leads to coupling of 
time and space. 
 In general, time or space are local features of a set of elements. Both temporal 
and spatial sets are complementary to each other. They compose a novel space, in which 
all events occur. This time-space possesses more dimensions than a simple sum of the 
temporal or the spatial subspace. It also possesses a geometric structure. Equation (19) 
indicates that there exists a coupling between time and space. This relationship is 
defined by a linear function of the logarithms of those categories. We have assumed that 
time is an evolutional parameter only. However, Gompertzian dynamics implicates that 
time is more than just the evolutional parameter. Time becomes a variable, which is 
related to the spatial co-ordinate. Both time and space are coupled through Gompertzian 
dynamics of the non-linear process.   

Cells exist in time and space. Their growth or self-organization changes the 
dimensions of both time and space. Either time in which cells grow or space occupied 
by those objects are coupled, and change along the non-linear process. Chaotic 
deterministic events play a crucial role maintaining this dynamic system flexible enough 
to adopt to the novel conditions and to facilitate its evolution by breaking the existing 
internal couplings. Hence, the equilibrium between chaotic and regular states is so 
important for a non-linear process with Gompertzian dynamics. This equilibrium is 
represented by the Gompertz curve. Indeed, we found a relationship between volume of 
regular dynamic states, volume of chaotic states, and the coefficient of cellular 
expansion s (equations 28 and 29).  For s < 0, dynamic system self-regulates, (i.e., 
chaotic states are quenched and replaced by the dominating regular ones). This 
phenomenon takes place if a ratio of the volume of space occupied by chaotic states to 
the volume of  regular states is lower than 1. For s > 0, chaotic states dominate over the 
regular ones during the process, and their volume increases. The regular states are not 
able to stabilize dynamics of the entire system anymore. 
 Gompertzian dynamics contains information about complexity of the system, 
(i.e., internal couplings between its elements). Each complex cellular system possesses 
certain optimum of growth and self-organization. This optimum is determined by the 
ratio of chaotic states to regular states. In the first stage of growth, fractal dimension is 
lower than dimension of the complementary Euclidean space. Regular states dominate 
over chaotic ones in the system. As the fractal dimension of time-space attains integer 
value, almost entire volume of space is occupied by chaotic states (compare equation 24 
and 27). The greater the volume of chaotic states within a system, the lower number of 
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interactions between its elements, the more difficult is flow of information in the 
system. The system can continue to grow if and only if it finds additional space with a 
greater number of dimensions than the current one. Then, the ratio of the volume of 
chaotic states to the volume of regular states can be decreased. Otherwise, non-linear 
Gompertzian dynamics must cease utterly. The process cannot just go back to the 
previous stage of its evolution. The excess of chaotic states would destroy the dynamic 
system and increase entropy. Thus, the evolution of a complex, non-linear system with 
Gompertzian dynamics depends not only on the existence of interactions between its 
elements, but also on the complementary Euclidean space surrounding that system, 
which is available for its development. 
 To summarize, a few important findings must be emphasized. First, both time 
and space are coupled through Gompertzian dynamics of the process. Second, time or 
space possess in that case geometric fractal structure. Third, fractality of time-space is a 
prerequisite conditions for the coupling and growth. Fourth, there is a relationship 
between fractality of time-space, connectivity, equilibrium between the chaotic and 
regular states in dynamic system, and volume of complementary Euclidean space. Fifth, 
fractal–stochastic dualism is a universal natural law. That law underlies Gompertzian 
dynamics. 
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Summary. The aim of this article is to present a practical introduction to fractional calculus. Fractional 
calculus is an old mathematical subject concerned with fractional derivatives. Fractional derivatives used 
in this paper are restricted to the Riemann-Liouville type. Based on the Riemann-Liouville calculus, we 
formulate fractional differential equations. Fractional differential equations are applied to models in 
relaxation and diffusion problems. Fractional calculus is used to formulate and to solve different physical 
models allowing a continuous transition from relaxation to oscillation phenomena. An application to an 
anomalous diffusion process demonstrates that the method used is also useful for more than one 
independent variable. Based on the theory of fractional derivatives and linear transformation theory, we 
demonstrate how symbolic calculations on a computer can be used to support practical calculations. The 
symbolic program FractionalCalculus based on Mathematica is used to demonstrate the solution of 
fractional differential equations step by step. The key method applied is linear transformation theory in 
connection with generalized functions. 

1 Introduction 

Fractional calculus and fractal geometry are as old as calculus itself. 300 years of 
research and development have neither closed the subject of fractional calculus nor of  
fractal geometry. Today, fractal geometry and fractional calculus are applied to 
phenomenological theories for complex systems [1-16]. There are numerous 
applications demonstrating that fractional calculus is useful and consistent with 
measurements of different phenomena in physics, biology and medicine  [13-15].  
However, the application of fractional calculus to measurements demonstrates that there 
are numerous difficulties in handling the involved mathematical expressions. One of 
these problems is the lack of information on some special functions resp. the lack of 
special transformations to solve fractional differential equations. This article discusses 
symbolic calculations which master these difficulties and support everyday calculations 
on a computer.  

Fractional calculus is useful to describe phenomenological models for different 
chemical and physical processes [6-8]. Among these processes are temporal relaxations 
of polymeric material and diffusion processes in space and time. Fractional calculus is 
an approach to mathematically describe natural phenomena which are mainly connected 
to power law behavior within the asymptotic limit. Contrary to the asymptotic power 
law, natural systems also show different behaviour for very small scales. For small 
scales, natural systems deviate mainly from the power law. In fact, fractional calculus is 
a tool allowing an interpolation between these two behaviours. 

The second section of this article introduces the basic concepts of  fractional 
calculus. It also discusses special functions and derivatives which are used to represent 
fractional differential equations (FDE). The third section gives examples of fractional 
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differential equations and techniques to solve these equations. The last section discusses 
conclusions and future developments.  

2 The Riemann-Liouville Calculus 

2.1 History 

Fractional calculus was initiated by Leibniz and L`Hospital as a result of a 
correspondence which lasted several months in 1695. Both Leibniz and L`Hospital, 
aware of ordinary calculus, raised the question of a noninteger differentiation for simple 
functions. In a letter, dated September 30, 1695, Leibniz put an end to the discussion by 
asserting that some day the problem of noninteger differentiation will be solved for the 
merit of humankind. This unsatisfactory answer has served as incentive for the past 300 
years for further developments by Lacroix, Fourier, Abel, Riemann, Liouville and 
others [17-19]. Today, we know how to calculate fractional derivatives for a certain 
class of functions. However, the calculations involved are cumbersome and laborious. 
The use of symbolic calculations on a computer helps to manage the calculations for a 
large variety of functions.

2.2 Riemann-Liouville Calculus 

In the beginnings of fractional calculus, fractional derivatives were based on heuristics 
using properties of Euler's -function. For example, the nth derivative of a power 
function is generated by 

which can be easily generalized to a noninteger differentiation by replacing n with q, a 
noninteger real number which gives 

However, this generalization is restricted to powers as Lacroix notes in 1819 [17].  A 
more general definition of fractional derivatives was later given independently by 
Liouville and Riemann [18,19]. In the following, we will introduce an operator to 
calculate fractional derivatives based on the ideas by Riemann and Liouville. 
Paradoxically, the basis of this differential operator is not a derivative but an integral. 
We understand integration as a differentiation if we introduce a differentiation with 
negative powers. For example the -1th order derivative is defined by 

The negative order of differentiation means nothing more than an integration. Higher 
orders of differentiations are calculated by nesting the integrals on the right hand side. 
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We abbreviate this kind of recursion by the symbol  where n is a positive integer. 
Thus, an integration is denoted by 

Recalling Cauchy's integral formula and nesting the formula n times, we end up with the 
Riemann-Liouville (RL) representation of a fractional derivative 

This kind of operator is defined for functions f satisfying the condition  
 for >0. For example, the functions xa with >-1 and  constant 

belong to this class of functions.    
So far, we have introduced the notation of a fractional integral. A fractional 

derivative is connected with a fractional integral by replacing the negative 
differentiation by a positive one. This shift is generated by introducing an ordinary 
differentiation followed by a fractional integration. We thus define a fractional 
differentiation by 

with  n , s>0, and n-s>0. The main properties needed in an implementation of RL 
operators are linearity and composition rule. These two properties are basic properties in 
addition to Leibniz’s rule of differentiation and chain rule. The implementation of the 
RL operator in Mathematica is based on the formulas given above and on the main 
algebraic properties of this operator. Below, the application of the RL operator to a 
constant is given. The integration step assumes that x>0.

This result is surprising when we compare it to our knowledge of ordinary 
calculus. Contrary to an ordinary differentiation, a fractional differentiation does not 
vanish but depends on the original variable x. A graphical representation of this result 
for different differentiation orders  is shown in Figure 1. The symbolic calculation 
above shows lines between the input (bold framed) and the output. Conditions under  
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which the calculation was carried out are automatically given by FractionalCalculus.

Figure 1: Fractional derivative of a constant for different values of .

The following example uses a power function x  to which we apply the symbolic 
RL operator. Power functions with fractional differential operators remain within the 
same class of functions. Let us assume that the fractional order of integration is any 
positive number greater than zero and let  be a real positive number. The application of 
the RL operator to this function gives 

The result is a power function containing both parameters  and  as exponents. This 
behavior is not common for the RL operator. For example, if we examine rational 
functions, we find 

generalized hypergeometric functions which are part of a more generalized class of 
functions, the so called Fox-H functions [20,21].  Fox-H functions are very useful for 
the treatment of fractional differential equations as we will see next. 

The basis of the Fox-H function is a generalized Mellin-Barns integral [22] given 
by 



Fractional Calculus and Symbolic Solution of Fractional Differential Equations 291 

where the integrand (s) is defined by four products of -functions 

and where the variable zs has the representation
.

The Fox function is not unique since the factor zs in the integrand allows several 
leaves in the complex plane. The main branch of log(z) is, however, always unique. Fox 
notes in his work that this kind of function is a generalization of the G function by 
Meijer [20]. The package FractionalCalculus allows Fox-H functions by the following 
notation 

to reduce to the corresponding Meijer-G function. 

3 Fractional Differential Equations 

3.1 Solution Procedures 

This section deals with the formulation and solution of fractional differential equations 
(FDEs). We introduce the solution procedure by using the techniques for linear ordinary 
differential equations (ODEs). A modification of these techniques allows us to treat 
FDEs for different physical and chemical applications. We discuss relaxation 
phenomena in complex systems like polymers and anomalous diffusion processes. 

Let us start with a linear ODE =0 of arbitrary order. The Laplace transformation 
of this equation and the solution with respect to the Laplace variable F delivers a 
solution in Laplace space. In principle, the inversion of the Laplace solution F delivers 
the solution of the ODE. These steps are feasible if the coefficients of the derivatives 
and the functions are constants. If we encounter analytic coefficients, we end up with an 
ODE in Laplace space. 

The steps solving a linear initial value problem for ODEs can be summarized as: 

1. Laplace transform the ODE. 
2. Solve the resulting algebraic equation to find the solution in Laplace space. 
3. Invert the Laplace transform to find the solution in the original coordinates. 
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These three steps are shown in Figure 2. 

Figure 2: Solution steps for ODEs using linear transformation theory. The solution follows Laplace 
transforming the original equation to an algebraic representation. The solution of the algebraic 
representation with respect to the unknown delivers the solution in Laplace space. The inversion of the 
Laplace transform yields the solution of the ODE. 

Linear fractional differential equations or FDEs are integral equations of the 
Volterra type. These equations have in common that one part of the equation consists of 
an integral operator of the Riemann-Liouville type. In general, a FDE is given by 

where >0 denotes the order of the FDE. One of the key steps in solving FDEs is the 
Laplace transform as a first step. This step allows us to reduce a fractional differential 
equation to an algebraic equation. We demonstrate this behavior by means of the 
generalized relaxation equation 

where q is a positive number and  is related to the initial condition. The Laplace 
transform of the above equation delivers the algebraic equation 

The Laplace transform of f is denoted by . The solution of this 
equation in Laplace space follows by solving the above equation with respect to the 
Laplace representation of f. 
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If we try to apply the inverse Laplace transformation, we end up with an integral which 
cannot be solved by Mathematica 

However, the solution of the problem is an additional application of a Mellin 
transform to the Laplace representation. If we, in addition, shift the Mellin variable, we 
get 

The inversion of the Mellin transform to the original independent coordinate t by means 
of the inverse Mellin transform delivers the solution in the original coordinates. 

The derived solution is given by a Mittag-Leffler function [23]. This example 
contains the necessary steps to derive a solution for an initial value problem. We realize 
that the method presented is completely algorithmic and can be incorporated by a 
symbolic function. The steps solving a linear initial value problem for an FDE in f can 
be summarized as: 

1. Laplace transform the FDE. 
2. Solve the resulting algebraic equation to find the solution in the Laplace 

variable. 
3. Apply the Mellin transform to find a representation of the Laplace solution in 

the Mellin space. 
4. Invert the Mellin transform to find the solution in original coordinates. 

These four steps are shown in Figure 3. 

Figure 3: Solution steps to solve FDEs by means of Laplace-Mellin transforms. 



G. Baumann294

The method is restricted to those functions which can be represented by the 
inverse Mellin transform. In other words, the functions must be given by a Mellin-Barns 
integral. If this is not the case, the procedure fails to deliver a solution. However, the 
solution class derived by this method is larger than the solutions derived by a simple 
Laplace transform. 

To summarize the solution procedure: we started from a linear FDE =0 of 
arbitrary order. Then Laplace transform this equation, and solve for the Laplace variable 
F. An additional transformation to a Mellin representation allows us to gain the solution 
by an inverse Mellin transform. The inversion of the Mellin solution delivers the 
solution of the FDE. These steps are feasible if the coefficients of the derivatives and 
the functions of the FDE are constants. 

The four steps necessary to solve an initial value problem for FDEs are 
incorporated in the FractionalCalculus function FractalDSolve[]. This function not only 
allows the solution of ODEs but is especially designed to solve linear fractional 
differential equations. The following line demonstrates the application of this function 
to an inhomogeneous relaxation equation. 

The result is identical to the result derived in the interactive calculation. 

3.2 Relaxation Oscillation Equation 

Next, let us consider an equation which interpolates between the ordinary relaxation and 
the oscillation equation. This kind of equation can be considered as a weak form of 
Newton's equation or a generalization of relaxation processes. The main assumption is 
that we restrict the order of differentiation to the interval 1 q 2. The equation we 
consider is given by 

where we specialize the left hand side of the equation to a power function. This equation 
is a generalized relaxation oscillation equation. Applying the fractional solution 
operator to this equation delivers the solution 

The result is a function determined by the generalized Mittag-Leffler function 
providing the solution manifold for different differentiation orders q. Since the 

gamma function contained in this solution possesses singularities at different negative 
integer orders of the arguments, we have to choose the initial conditions in such a way 
that the singularities are eliminated. We introduce a scaled initial condition g(0)/ (1-q-

) allowing us to exclude the singularities from the functional domain. However, we 
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must keep in mind that at certain values of q=1-  being negative integers, singularities 
of the function occur. The following plot of the singularity free function shows the 
transition from relaxation behavior to oscillations. Depending on the fractional order q,
we observe that the total relaxation phenomenon is changed to a damped oscillation and 
then to a pure oscillation if q increases from 1 to 2 (Figure 4). 
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Figure 4: The solution of the Relaxation Oscillation Equation for different q values. 

3.3 Anomalous Diffusion 

Many experiments indicate that diffusion processes usually do not follow the standard 
Gaussian behavior [24]. In turn, the mean square displacement r(t)2  t for a 
Gaussian process changes to r(t)2  t2/dw where the anomalous diffusion exponent dw
differs from 2, the value for the standard (Fickean) diffusion. The deviation from a 
linear dependence to a power law is an indication for anomalous diffusion. Anomalous 
diffusion in which the mean square distance between diffusing quantities increases 
slower or faster than linearly in time has been observed in different physical and 
biological systems from macroscopic surface growth to DNA sequences [25]. One of 
the first investigations discussing fractional diffusion goes back to Wyss [26] and 
O'Shaugnessy and Procaccia [27]. A method for solving fractional diffusion equations 
using Fox H-functions has been presented by Schneider and Wyss [28] and more 
recently by Metzler et al [29]. 

The motivation for the anomalous diffusion equation follows from the concept of  
starting from a standard model and generalizing the equation by incorporating initial 
conditions. The standard diffusion equation in 1+1-dimensions reads 

The equation is given in a scaled representation where the diffusion constant is 
incorporated in the time variable. Let us start with the memory-diffusion equation 

that has been motivated and derived in [30,31]. 
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If we assume that the memory kernel takes on a power law K(t)=D0 t -1/ ( ) with 
0< <1, then we can write 

with >0 which in terms of Riemann-Liouville operators     may be written as

Applying an integration         to both sides, we find 

This generalized diffusion equation incorporates besides the fractional 
differentiation in time the initial condition 0 for the density . Replacing the fractional 
order 1+  by q, we find the simplified equation 

with 1<q<2. The solution is derived by applying Laplace-Fourier-Mellin transform 
techniques to this equation. The last step of the inversion is shown next. 

The solution of the generalized diffusion equation is thus represented by a Fox H-
function of . A graphical representation of the solution is given in Figure 5. 
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Figure 5: Solution of a generalized relaxation diffusion equation in spatial and temporal variables. 

4 Discussion 

The examples discussed demonstrate that fractional calculus as introduced in classical 
textbooks by Oldham and Spanier [32] as well as by Miller and Ross [33] is useful to 
describe anomalous relaxation and diffusion problems in one and two independent 
variables. These types of equations are applied to different models in physics, biology 
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and medicine [1-14]. The examples given in this article demonstrate that the main steps 
in solving FDEs are supported by symbolic calculations. The Riemann-Liouville 
fractional calculus used is designed in such a way that problems for a positive domain 
of initial conditions are solvable. The package FractionalCalulus is capable to handle 
also other kinds of fractional derivatives and initial value problems. For example, the 
package also supports the Weyl representation of fractional derivatives and different 
Erdely-Kober derivatives. For the spatial domain, the Riesz representation is available. 
The solution manifold for FDEs in FracionalCalculus is restricted to Fox-H functions 
containing a large number of hypergeometric and Meijer-G functions. Since this class of 
functions is very general, a large number of problems can be consequently treated. 
However, there are problems for which the class of Fox-H functions is too small to 
generate a symbolic representation of the solution. For these cases, the space of 
admissible functions must be extended. The related theoretical and software engineering 
work has already started but will be a huge task for the  future. 

Acknowledgment:  I acknowledge the cooperation with N. Südland who developed 
main parts of the package FractionalCalculus with great enthusiasm and skill. 
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Summary. In this contribution we will present a FOX H-FUNCTION formulation
of a generalized exponential function (Arrhenius Law), which describes the central
concept of anomalous particle transport including anomalous relaxation / diffusion
processes, in disordered but scaling materials. We will develop a fractional concept
for the mathematical description of anomalous relaxation processes based on linear
fractional differential equations of type dα/dtα where, 0 < α < 1, α is the order of
fractional differentiation (α �= 1). We also will present a transformation procedure for
semi-fractional (α = 1/2, 3/2, ...) linear differential equations to a system of integer
number ordinary differential equations. This last formulation of the relaxation problem
takes the term ”fractals” out of the picture. As examples we compare our theoretical
results on mechanical stress relaxation of a plastic material, and to the rebinding process
of CO to myoglobin (Mb) after photodissociation for a test of the generalized Arrhenius
Law.

1 Introduction

Modelling structures and / or dynamical processes in so-called complex, chaotic
or disordered systems is, as elsewhere in science, to obtain simple models that
capture the essential features of the structure or dynamical process under investi-
gation. Over the last three decades anomalous relaxation and diffusion processes
have been studied from both the experimental and theoretical point of view.
From the mathematical point of view the class of H-functions enter the game.
These functions are solutions of a linear fractional initial value problem, thus
there are strong relations between H-functions and fractional differential or frac-
tional integral equations [1]. In many cases of applications the Mittag-Leffler
(ML) function - a special representation of a H-function - plays a central part
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in fitting experimental data sets. Although this class of functions has originally
rarely been used in physical applications, but their basic mathematical proper-
ties are well established [2]. The ML-function represents a generalization of the
exponential function and it models fractional (inverse power law) relaxation in
the asymptotic limit t → ∞, and it approaches in the limit t → 0 the well known
Kohlrausch-Williams-Watts (KWW) relaxation [1, 3, 4] (see Fig. 1). A series
representation of a sum over exponential functions has usually been used, and is
known as the discrete Markovian chain model that has been applied earlier to
interpret protein channel gating kinetics [5, 6, 7, 8].

We will not overload this paper with mathematical formulas. However,
a minimum number of mathematical definitions and relations is necessary, and
will be collected in the Appendix (remark: the book of nature is written in the
language of mathematics). It is most likely that real progress in the medical sci-
ences emerges from collaboration between researchers in biomedical sciences and
mathematicians developing models simple enough to be understood, yet com-
plicated enough to be realistic. So, for instance, fractional and non-fractional
models have been developed over the last decades. Many of these models are
dealing with the question of what is the functional operation within the mole-
cules, for instance in proteins and how is it correlated to the geometrical form of
the biomolecules. The study of the geometrical shape of such objects out of their
relation to the functional dynamics of the molecules is still one of the unsolved
problems. Perhaps more experiments are necessary to support physical methods
to model and to design realistic pictures and interpretations by making sense out
of the experimental data sets.

2 Fractional Relaxation and Diffusion Equations

Due to growing interest in the physics of complex systems, anomalous transport
properties and their mathematical modeling is a central field of current research.
At least two powerful approaches are emerging: Lévy statistics and fractional
calculus (FC) techniques. First we recall some fundamental facts and definitions.
Concerning notation we follow closely two review papers [9, 10] and a recent paper
on H-Functions (Saxena and Nonnenmacher)[11]. We note that the standard
(Maxwell-Debye) relaxation process is modelled by the initial value problem

τ
dφ(t)

dt
= −φ(t), t > 0, φ(0) = φ0, τ > 0, (1)

with the solution (Arrhenius Law)
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φ(t) =

{
φ0e

(−t/τ) if, t ≥ 0
0 if, t < 0.

(2)

In this model the relaxation process decays exponentially, i.e. faster than a power-
law decay what has been observed experimentally in many different systems.

We note that the solution (15) of the fractional relaxation Eq (13) shows
the short time asymptotic (t → 0) behavior [12]

φ(t) ∼ φ0e
−(t/τ)α

, 0 < α < 1. (3)

representing the KWW-function which is also known as stretched exponential
function. In the limit t → ∞ one finds the asymptotic power law φ(t) ∼ t−α.

In Fig. 1 we have compared experimental data sets [13] with theoretical
predictions based on the closed form solution Eq (15) for α = 0.67. One observes
the transition from KWW-behavior (small t-values) to the power law pattern
(large t-values). Thus, α is a measure for the deviation from pure exponential,
standard Arrhenius relaxation decay (α = 1). Here, let us notice the following
problem: if you have measured a set of data points by a relaxation experiment
you need some formula (for instance an Arrhenius-Law) in order to compare the
experimental values with the theoretical predictions. In general one observes a
decay slower than exponential. In this case one finds if measured in the short
time domain (t → 0) a KWW-behavior which in the case α → 1 approaches
a ”standard” Arrhenius Law. The frequently used term ”fractal” applies only
in the asymptotic power-law term t−α, which follows a straight line in a log-log
plot. Whatever, it is not consistent with (Mandelbrots) theory to collect all mea-
sured points, counted by box or other methods, and determine by least square fit
methods a straight line (in a log-log plot) to find a slope β that is usually called
”fractal” dimension.

The KWW-function, for instance, does not show ”fractal” properties, be-
cause it shows no scaling behavior.

Similarly, diffusion processes in various complex systems usually no longer
follow Gaussian statistics, and one observes deviations from the linear time de-
pendence (γ = 1) of the mean squared displacement

< x2(t) >= ctγ. (4)

The diffusion exponent γ can be measured and compared with theoretical
results, and even more: γ can be used for a classification of diffusion processes
[10]:

(i) 0 < γ < 1 dispersive (subdiffusive) transport
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Figure 1: Mechanical stress relaxation φ(t) = σ(t) of a plastic material (experi-
mental data from Ref. [13]). Best fit to the theoretical result (15):
α = 0.67, σ0 = φ0 = 14 dynes cm−2 x 104, τ = 75 sec. Dashed curve repre-
sents the asymptotic behavior of Eq (15) for t → 0 (KWW-asymptotic), the
asymptotic result for t → ∞ dotted line shows the power law behavior of
Eq (15), and the full curve is the exact H-function result (15) that extrap-
olates between the asymptotic results and demonstrates good agreement
with the experimental data points.

(ii) γ = 1 (normal Fickean) transport

(iii) γ > 1 enhanced (superdiffusive) transport, including:

• 1 < γ < 2 intermediate

• γ = 2 ballistic

• γ > 2 turbulent transport

Discussing fractional diffusion equations we start out with the integral form
[12, 14, 15, 16, 17]

ρ(x, t) − ρ0(x) = Kα 0D
−α
t Rµ

xρ(x, t)

here, 0D
−α
t represents the RL-fractional time operator (see Appendix), and Rµ

x,
acting on the space variable x, let be a Riesz-operator [16, 17, 18], with the
property Rµ

x → ∂xx (for µ = 2) Kα is a fractional diffusion constant. Taking this
choice, and 0D

−α
t let be the RL-operator, Schneider and Wyss [14] have suggested

the following form of a (time fractional) diffusion equation

0D
α
t ρ(x, t) − ρ0(x)

t−α

Γ(1 − α)
= Kα∂xxρ(x, t). (5)
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The solution is given by [14, 15]

ρ(x, t) =
1√

2πKαtα
H2,0

1,2

[
x2

2Kαtα

∣∣∣∣∣
(1 − α/2, α),−
(0, 1), (1/2, 1)

]

. (6)

Again, we find a H-function as the solution of a time fractional diffusion
equation. To add another example to fractional diffusion equations let us discuss
the problem of single-file diffusion which is the restricted propagation of particles
that cannot pass each other [19]. Experimentally, Hahn et. al. [19] found for the
variance

< x2(t) >= c
∫

x2ρ(x, t)dx = ctγ (7)

with γ = 1/2. The propagator (6) leads to

< x2(t) >= c0t
α (8)

where α is the fractional order of the time-fractional diffusion equation (5). Com-
paring α and γ we conclude, (since γ = 1/2 = α) that a semifractal diffusion
equation gives the correct answer. This value (γ = 1/2) fits into the condition
0 < γ < 1 which describes dispersive transport. Remark: The time-fractional
propagator Eq (6) produces the result (8) with c0 = 2Kα

Γ(1+α)
.

3 Protein Dynamics

Relaxation processes and reaction kinetics of proteins deviate from exponential
(Arrhenius) decay [20]. The dynamics are governed by many time-scales τi. Such
hierarchical structure indicates scaling properties leading to the idea [21] to try
a theoretical formulation, i.e. a fractional relaxation equation that incorporates
scaling properties. As a typical process we consider the ligand rebinding to the
heme iron of myoglobin (Mb) after flash dissociation [20]. The main role of Mb
is storage of oxygen Mb + 02 ⇀↽ Mb02. The amount N(t) = φ(t)/φ0 of Mb that
has not bound in a ligand up to time t should be described by the fractional
relaxation equation [21]

τ−αφ(t) +0 Dα
t φ(t) − φ0t

−α

Γ(1 − α)
= 0 (9)

with the solution

φ(t) = φ0Eα(−(
t

τ
)α). (10)
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Figure 2: The plot gives log N(t) versus log t for rebinding of C0 to Mb. The data
points are from Ref. [23], and the solid lines represents the (Arrhenius)
theoretical relaxation model. Eq (10) shows good agreement for the range
over 9 orders of magnitude.

This, again is the ML-function, i.e. a special form of the Fox H-function
(for more details see Ref [1, 2, 11, 21, 22]). The most detailed information on the
kinetic reaction Mb+x ⇀↽ Mbx has been obtained by flash photolysis studies for
the ligand molecules x = 02 and x = C0 [20, 23]. The solution of the fractional

relaxation Eq (9) is given by Eq (10) with φ(t)
φ0

= N(t). In Fig. 2 experimental
data from C0 rebinding to Mb are shown for different temperatures. The solid
lines correspond to the fractal model in which the temperature dependence of α
is taken proportional to T : α(T ) = 0.41

120K
T (see Fig. 2).

4 Discussion

For an interpretation of transport mechanisms the parameters α and µ of the
fractional operators can be used to clarify the type of diffusion processes. The
solution let us call the H-function propagator, which in the limit α → 1 and
µ → 2 approaches the Fickean ”normal” Gaussian propagator. The fractional
concept is based on linear equations and puts the physics behind all that into a
more general context, and does not represent just another way of presenting the
old stories.

In chapter 2 we have shown that the dynamics of the single-file diffusion
process can be formulated by a semi-fractal (α = 1/2) diffusion equation. We
comment that the Schneider-Wyss diffusion equation is of type ”time-fractional”
diffusion equation with a single fractal parameter α. More recently, the com-
bined space- and time - fractional (bi-fractional [15]) form was discussed and put
forward by West and Nonnenmacher [16], and it was investigated in detail by
Luchko and Gorenflo [17]. Such bi-fractional equations introduce two fractional
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parameters, α and µ incorporating time - and space fractional properties leading
to < x2 >∼ tβwith β = 2α/µ which approaches the form, Eq (7), i.e. β → α = γ
in the limit µ → 2. The mathematically required limitations of α and µ are given
and discussed in Ref. [17]. Again, we point out that the class of H-functions
offers solution strategies for (at least linear) fractional integral - and differential
equations of physical interest and importance.

5 Appendix

We define the linear integral operator by the convolution integral

0D
−β
t φ(t) :=

∫ t

0

(t − t′)β−1

Γ(β)
φ(t′)dt′ (11)

=
∫ t

0
K(t − t′)φ(t′)dt′ = K(t) ∗ φ(t).

Here, the integral kernel K(t) is the memory
(
K(t) = tβ−1

Γ(β)

)
kernel, Eq. (11)

defines what is usually called Riemann-Liouville (RL) integral operator (Reβ >
0). With Rev > 0 and if the natural number n satisfies the inequality n ≥ Rev >
n − 1, than we call 0D

v
t (RL)-differential operator:

0D
v
t φ(t) =

dn

dtn
0D

v−n
t φ(t), n = 1, 2, 3, ... (12)

Having in hand these fractional integral and differential (RL) operators,
then one can construct a fractional differential equation [1, 14] with incorporated
initial value φ0

0D
α
t φ(t) − φ0

t−α

Γ(1 − α)
= −τ−αφ(t), 0 < α < 1. (13)

The solution of this fractional relaxation equation is given by a H-function

φ(t) = φ0H(t), (14)

where H(t) is in this case the Mittag-Leffler function given by

φ(t) = φ0

∞∑

k=0

(−1)k

Γ(1 + αk)

(
t

τ

)αk

= φ0Eα(−(t/τ)α), t ≥ 0 (15)

=
φ0

α
H11

12

[
t

τ

∣∣∣∣∣
(0, 1/α),−
(0, 1/α), (0, 1).

]

.
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We see, again, that the solution φ(t) of the fractional relaxation equation
(13) is found as a member of the H-function family. It is a generalized exponential
function with notation

Eα(−(t/τ)α) =
1

α
H11

12

[
t

τ

∣∣∣∣∣
(0, 1/α),−
(0, 1/α), (0, 1)

]

. (16)

Indeed, take the limit α → 1, then one obtains by carrying out the summa-
tion

E1

(
− t

τ

)
=

∞∑

k=0

(−1)k

Γ(1 + k)

(
t

τ

)k

= e−t/τ . (17)

We note that the solution (15) of the fractional relaxation Eq (13) shows
the asymptotic behavior [12] for short times (t → 0)

φ(t) ∼ φ0e
−(t/τ)α

, 0 < α < 1, t → 0 (18)

representing the KWW-function, and for long times t → ∞ one obtains the
power-law asymptotic φ(t) ∼ t−α.

Another case of interest is the linear semi-fractional (α = 1/2) differential equa-
tion that follows from Eq (13) for α = 1/2

0D
1/2
t φ(t) − φ0

t−1/2

Γ(1/2)
= −τ−1/2φ(t). (19)

The fractional relaxation concept is based on the fractional differential Eq
(13). Now we will show that the semi-fractional Eq (19) can be transformed
into an ordinary differential equation with integer number differential operators.
This way one can take fractals out of the picture. Equivalent to the fractional
differential equation (19) is its integrated version, i.e. the semi fractional integral
equation

φ(t) − φ0 = −τ−1/2
0D

−1/2
t φ(t). (20)

Apply the operator 0D
1
t = d/dt from the left hand side one obtains

dφ(t)

dt
+ τ−1/2

0D
1
t 0D

−1/2
t φ(t) =

dφ

dt
+ τ−1/2

0D
1/2
t φ(t) = 0.

We eleminate 0D
1/2
t φ(t) by making use of Eq (19) and find

dφ

dt
+ τ−1/2

(
φ0t

−1/2

Γ(1/2)
− τ−1/2φ(t)

)

= 0. (21)
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This is an ordinary differential equation of first order. Thus we have shown
that (at least) the semi fractional differential equations can be transformed into
a non-fractal physical picture. Following the procedure one can show very easely
that this is true for all semi-fractional exponents α = 1/2, 3/2, 5/2, ...
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[12] Glöckle W G, Nonnenmacher T F. Fractional integral operators and Fox
functions in the theory of viscoelasticity. Makromolecules 1991; 24: 6426-
34.



308 T. F. Nonnenmacher

[13] Scott-Blair G W, Caffyn J E. An application of the theory of quasi-
properties to the treatment of anomalous stress-strain relations. Phil Mag
1949; 40: 80-94.

[14] Schneider W R, Wyss W. Fractional diffusion and wave equations. J Math
Phys 1989; 30: 134-44.

[15] Metzler R, Nonnenmacher T F. Space- and time-fractional diffusion and
wave equations, fractional Fokker-Planck equations, and physical motiva-
tion. J Chem Phys 2002; 284: 67-90.

[16] West B J, Nonnenmacher T F. An ant in a gurge. Phys Lett A 2001; 278:
255-9.

[17] Luchko Yu, Gorenflo R. Scale-invariant solutions of a partial differential
equation of fractional order. Fract Calc Appl. Anal 1998; 1: 63-78.

[18] Mainardi F, Luchko Yu, Pagnini G. The fundamental solution of the space-
time fractional diffusion equation. Fract Calc Appl Anal 2001; 4: 153-192.

[19] Hahn H, Kärger J, Kukla V. Single-file diffusion observation. Phys Rev Lett
1996; 76: 2762-5.

[20] Frauenfelder H. Function and dynamics of myoglobin. Ann NY Acad Sci;
1987; 504: 151-167.
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