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  Pref ace   

 In his superb exposition,  The Emperor of All Maladies: A Biography of Cancer , 
Mukherjee attributes the earliest documentation of cancer to the brilliant Egyptian, 
Imhotep, who some 4,500 years ago clearly described a case of breast cancer 
(Mukherjee 2010). Roughly two millennia later (ca. 400 BC), the Greek physician 
Hippocrates named the disease  karkinos  (the Greek word for crab), which has now 
come down to us as cancer. Some fi ve to six centuries later while practicing in Rome 
(ca. 130–200 AD), the Greek physician, Claudius Galen, who was infl uenced by the 
four humors constituting the human body as proposed by the Hippocratic school, 
i.e., blood, phlegm, yellow bile, and black bile, attributed cancer to an excess of 
black bile. It took centuries before Vesalius (sixteenth century) and Baillie (eigh-
teenth century) put the black bile hypothesis to rest, thus indirectly encouraging 
surgeons to begin resection of solid tumors. (Surgical procedures had been done 
earlier by some fearless surgeons, but few patients survived the ordeal and infection 
that likely followed.) The later introduction of anesthesia and antibiotics in the nine-
teenth to twentieth centuries, as well as more sterile operating environments, thrust 
surgery (and later radiation therapy) as a major treatment of this disease, an approach 
that is still used whenever possible. In the middle of the twentieth century and con-
tinuing today, chemotherapy and hormonal therapy emerged as a complement to, 
and sometimes instead of, surgery and radiation therapy to treat cancer. 

 A number of theories have been proposed regarding those factors that may drive 
and facilitate a cancer to initiate, develop, and metastasize, and these have guided 
cancer studies in the past few decades. An insightful speculation was made by Otto 
Warburg following his seminal work in the 1920s: “Cancer … has countless second-
ary causes. But … there is only one prime cause, [which] is the replacement of res-
piration of oxygen in normal body cells by a fermentation of sugar” (Warburg 1969). 

 The fi rst discovery of oncogenes and tumor suppressor genes about 40 years ago 
marked another major milestone in our understanding of cancer development, 
which has profoundly infl uenced research in this area during the past three decades. 
It has become a widely held belief that cancer is ultimately a disease caused by 
genomic mutations. Aided by the rapidly increasing pool of a variety of  omic  data 
such as genomic, transcriptomic, epigenomic, metabolomic, glycomic, lipidomic, 



vi

and pharmacogenomic data collected on both cell lines and cancer tissues, spectacu-
lar progress has been made in the past two decades in our understanding of cancer, 
particularly in terms of how the microenvironment and the immune system contrib-
ute to the whole process of neoplasm formation and survival. 

 In spite of the considerable progress made, however, a number of salient ques-
tions remain to be answered. The authors posit that a considerable amount of infor-
mation needed to address and answer many of these questions already exists in the 
available  omic  databases, and much of these data are substantially undermined and 
underutilized. Among the many possible reasons, a key one, we believe, is that com-
putational cancer biologists, as a community, have yet to suffi ciently develop their 
independent thinking about the overall biology of cancer. The thinking should be 
quite different from the reductionist approaches that have been widely used in 
experimental studies of cancer in the past century and should enable them to address 
fundamental questions about cancer in a holistic manner as an evolving system. 
Many fundamental issues concerning cancer are intrinsically holistic by nature. 
Thus, when examining cancer as an evolutionary problem, its microenvironment, 
including the extracellular matrix and the immune and other stromal cells, must be 
considered as an integral part of the system. This strongly suggests that cell culture- 
based or animal model-based cancer studies must be complemented by cancer 
tissue- based studies in order to gain a full understanding of cancer. The  omic  data 
collected on cancer tissue samples, covering different developmental stages, is 
likely to contain the information on the interplay between cancer cells and their 
environment, and particularly how such interactions may drive the evolution in spe-
cifi c directions. Hence, we posit that mining such  omic  data for information discov-
ery will, in the future, represent an essential component of cancer research, 
complementary to the current more reductionist-oriented approaches. 

 The goals of this book are to provide an overview of cancer biology from an 
informatics perspective and to demonstrate how  omic  data can be mined to generate 
new insights and a more comprehensive understanding that is needed to address a 
wide range of fundamental cancer biology questions. Throughout this book, the 
authors have attempted to establish the following key points: (1) cancer is a process 
of cell survival in an increasingly more stressful and diffi cult microenvironment, 
which co-evolves with the diseased cells; (2) cell proliferation is a cancer’s way to 
reduce the stresses imposed on them for survival; (3) the challenges that the evolv-
ing cells must overcome are not only at the cell level, but more importantly at the 
tissue level, hence making cancer dominantly a tissue rather than a cell-only prob-
lem; (4) the survival pathway for each cancer is not created ‘on the fl y’ through its 
selection of molecular malfunctions or genetic mutations, instead it is largely deter-
mined by substantial cellular programs encoded in the human genome, which origi-
nally evolved for other purposes; (5) subpopulations of cancer cells have managed 
to create the conditions needed to trigger such cellular program-guided survival 
pathways; (6) as the stresses become increasingly more challenging, cancer cells 
utilize increasingly less reversible stress-responses for their survival, thus making 
the disease progressively more malignant; (7) genomic mutations in sporadic 
 cancers probably serve mainly as permanent replacements for ongoing functions to 
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provide effi ciency and sustainability for survival; in contrast, mutations in heredi-
tary cancers dominantly play driver roles of cancer initiation, but in a sense different 
from driver mutations as defi ned in the current literature; (8) there is a fundamental 
difference between cell proliferation in primary  versus  metastatic cancers as the 
former is essential in overcoming the encountered stress(es) while the latter is sim-
ply a side product of a stress-response process, suggesting that their treatment regi-
ments should be different; and (9) cancer survives and proliferates by continually 
evolving with natural selection having a major part in deciding which cells remain 
and which must perish. 

 For each chapter, the authors present the main topic by placing cancer in an evo-
lutionary context, for example by raising and addressing questions such as:  What 
pressures are the evolving neoplastic cells currently under , and  How have the cells 
responded to adapt to the pressures ? In addition, the authors also demonstrate 
through examples how to derive the desired information from the available  omic  
data by asking questions and then addressing them using a hypothesis-driven data 
mining approach. An example could be as follows:  What is the difference between 
the main driving forces of primary versus metastatic cancer ? This can be addressed 
by identifying genes that are up-regulated consistently across all metastatic cancers 
 versus  their matching primary cancer tissues, and then delineating the particular 
pathways that are enriched by these genes. 

 This 14-chapter book consists of the following clusters of chapters. Chapters   1     
and   2     introduce the basic biology and biochemistry of cancer and the available 
cancer  omic  data, as well as the type of information derivable from such data. 
Chapter   3     serves as an introduction to the use of  omic  data to address cancer-
related problems, written for someone with only a limited knowledge of cancer; 
and Chap.   12     serves a similar purpose but for someone who has a general under-
standing about cancer at the molecular and cellular levels, e.g., having read a sub-
stantial portion of this book. Chapter   4     is a transition chapter, serving as an 
introduction to both information that can be derived from cancer genomes and 
elucidation of cancer mechanisms using such information. Chapters   5     through   9     
represent the core of the book: elucidation of novel information and how to gain a 
new and better understanding about the fundamental biology of primary cancer, in 
which cancer is treated as an evolving system driven by specifi c pressures and 
assisted by certain facilitators at different developmental stages. A common theme 
is used when tackling a series of cancer-related key issues across these fi ve chap-
ters:  What stresses do the cancer cells need to overcome at a specifi c stage , and 
 how do such cells utilize encoded stress-response systems to ensure their survival ? 
Chapters   10     and   11     extend this discussion to metastatic cancer, which, somewhat 
surprisingly, represents a different type of disease from primary cancers with fun-
damentally different drivers. Chapter   13     provides some general information to 
those new to the fi eld about how to conduct meaningful data mining-based cancer 
research. Chapter   14     presents our perspectives about cancer research using a more 
holistic approach than is generally done. 

 The authors hope that this book will help in bridging the gap between  experimental 
cancer biologists and computational biologists in their joint efforts to uncover the 
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enormous wealth of information hidden in the cancer  omic  data. Success in this 
endeavor will lead to a better understanding of cancer, as well as assist computa-
tional biologists to develop independent thinking when tackling these complex 
problems. This approach will probably be less detail-oriented but more holistic and 
will likely span the entire range of cancer evolution, thus making it different from 
but complementary to those of their experimental peers. It is the authors’ contention 
that more qualitative and quantitative utilization of the  omic  data will improve our 
overall understanding of cancer biology, hence leading to improved capabilities in 
early detection, development of more effective cancer treatments, and improvement 
in the quality of the patient lives. 

 The authors welcome any feedback from the reader regarding errors that need 
correcting and areas where the book could be improved. Such information will be 
highly valuable, particularly if there is a decision to write a future edition of the book. 

  Athens, GA, USA        Ying     Xu   
 Lincoln, NE, USA     Juan     Cui   
 Chapel Hill, NC, USA     David     Puett    
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Chapter 1
Basic Cancer Biology

1.1  Overview of Cancer

Cancer has been recognized since early times, but treatment protocols and 
 medications have lagged, by millennia, the initial observations of the disease. The 
tragic cases of childhood and teenage cancer notwithstanding, most cancers develop 
in the aging population, consistent with the nature of metabolic, genetic and other 
alterations discussed below and in various chapters. Epidemiological data show 
that, behind heart disease, cancer is the second leading cause of death worldwide, 
and many expect that in time cancer will overtake heart disease as the leading cause 
of mortality. Some 150 years ago it was demonstrated that cancer is composed of 
cells with morphology differing from that of normal cells. With information becom-
ing available from numerous areas in biology and medicine, and capitalizing on 
major advances in technology, great strides were made in the twentieth century in 
unraveling many of the complexities of cancer, work that is continuing at an accel-
erating pace in the twenty-first century. It is now recognized that by far the majority 
of all cancers arises from environmental factors, metabolic disturbances, somatic 
mutations, and other pathophysiological processes (discussed throughout the book), 
while the remaining ones are attributable to germline mutations and are thus inherit-
able (familial).

In the early development of vertebrates, the embryonic stem cells undergo dif-
ferentiation into the three primary cell layers, ectoderm, endoderm, and mesoderm. 
These, in turn, differentiate to give the 200-plus cell types of the human body com-
prising the myriad organs and supporting structures. The tissues can be categorized 
into four main groups, the epithelium, mesenchyme, nervous system and reticuloen-
dothelial system, which in time can become subject to the development of cancer. It 
is also believed that normal cells throughout the body are continually in the process 
of undergoing changes that can result in cancer; fortunately, these events are spread 
over many years. From this it follows that, while one may die from cancer, individu-
als will often die from other causes before the cancer develops sufficiently to cause 
death. Clearly, the changes alluded to, as well as their rate of formation, depend on 
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many variables such as genetic background, diet, environmental factors, etc. With 
tobacco smoke as the best documented example, one can convincingly argue for the 
importance of one’s lifestyle in enhancing or diminishing the possible development 
of cancer.

Cancer has been considered by many investigators as a genetic disease, generally 
involving sequential random mutations and epigenetic changes. There is, however, 
now a school of thought being actively pursued by many scientists that the origins 
of cancer lie in cellular and micro-environmental perturbations that, in turn, can 
lead to genetic alterations or selection of such alterations. Indeed, cancer is now 
recognized as a very heterogeneous disease, even within the same type of cancer, 
and it may emerge that its origins can be attributable to a number of causes.

As discussed below and throughout the book, there are many metabolic/cellular 
micro-environmental disturbances and combinations of genomic alterations that 
can lead to cell transformation. Once established, or when being established, many 
other mutations accumulate in the tumor cells, each giving rise to clonal expansion. 
Regardless of the initiating cause(s) of cancer, there will be in time genetic altera-
tions, e.g., mutations, amplifications, deletions and translocations, that facilitate 
growth, inhibit apoptosis (programmed cell death) and escape from immune 
destruction. The cells harboring metabolic alterations, micro-environmental changes 
and mutations that provide a growth advantage and best meet the other requirements 
for continued tumor survival will prevail, and the processes of natural selection and 
survival of the fittest and most adaptable become crucial for these cells. Thus, while 
Darwinian principles were originally proposed to explain the evolution of organ-
isms, a similar rationale appears to underlie tumor progression. These events may 
lead to cellular heterogeneity, particularly since new mutations can arise due to loss-
of- function of negative cell cycle regulators such as P53 and perhaps even by 
 gain-of- function of positive cell cycle regulators such as RAS, leading to persistent 
cell division and a statistical chance of errors in replication.

The following quotation (Eifert and Powers 2012) nicely summarizes the current 
thinking on the genetic component and alludes to the challenges ahead. “Diversity 
and complexity are hallmarks of cancer genomes. Even cancers that arise from the 
same cell type can harbor a range of different genetic alterations that facilitate 
their unrestrained expansion and eventual metastasis. As a result, the behaviour of 
individual tumours—how they progress and eventually respond to therapy—can be 
varied and difficult to predict.” Cancer development, survival and growth are, how-
ever, also heavily influenced, if not caused, by many of the aberrations in cancer 
metabolism and the microenvironment in which the tumor is located. Indeed, as 
alluded to above and discussed later in this book, some of these non-genetic altera-
tions may become driving forces for the possible formation and/or survival of can-
cer. Another quotation is germane to a more holistic perspective of cancer (Nakajima 
and Van Houten 2013). “The tumor must be recognized as an evolving ecosystem, 
adapting constantly to oxygen and nutrient availability”.

Large scale cancer genome sequencing is occurring at a rapid pace, and already 
the data are showing the extraordinary genomic complexity of tumors. It is common 
to find thousands, tens of thousands, or even hundreds of thousands of mutations 
and other genetic changes in a typical epithelial tumor. A working hypothesis was 
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that only a limited number of the genetic alterations are necessary to initiate and/or 
propagate tumor formation in a single cell and that this genetically altered cell 
undergoes clonal expansion with increasing genetic changes. The few early key 
alterations are said to be “driver mutations” that confer a growth and survival advan-
tage, in effect leading to the conversion of a normal cell, or one that is on the road 
to transformation from non-genetic causes, to one that is transformed and capable 
of sustained growth. The multitude of additional mutations are denoted as  “passenger 
mutations” that are not required for tumor growth or survival. As discussed later, the 
driver mutations, at least for certain cancers, may occur sequentially, but whether 
there is any order to the process, whether there are many genes that can participate 
and how the genetic changes relate to phenotypic changes are not known (Ashworth 
et al. 2011).

The remainder of this chapter is focused on a succinct review of some of the 
aspects of cancer that are deemed important in its formation and growth. These sec-
tions will set the stage for the chapters dealing with omics-based cancer studies 
elsewhere in this book.

1.2  Hallmarks of Cancer

In 2000 Hanahan and Weinberg (2000) proposed six hallmarks of cancer to provide 
a framework for a better understanding of the basic molecular and cellular princi-
ples responsible for the development and maintenance of neoplasia, hallmarks that 
were extended in 2011 to a total of eight (Hanahan and Weinberg 2011). It is worth-
while to briefly review these hallmarks since they offer a rational understanding of 
the necessary changes that are required of normal cells to make the transition to a 
state of perpetual growth and survival. Suffice it to mention at this point that most 
of the following alterations can be attributed to one or a combination of the follow-
ing: metabolic changes, hypoxia, extracellular matrix (ECM) alterations, epig-
enomic changes or somatic mutations, including chromosomal rearrangements, of 
key players in or regulators of the growth promoting or cell cycle pathways.

1.2.1  Sustained Proliferative Signaling

Unlike normal cells that tightly regulate their cell division, transformed cells have 
the ability to perpetuate growth-promoting signals and become refractory to growth- 
inhibiting processes. A variety of molecular mechanisms can contribute to sustained 
signaling for cell division, including the following examples: hyaluronic acid frag-
ments (see Chap. 6), a constant supply of growth-promoting signals originally 
designed for tissue repair, constitutively activated (gain-of-function) growth factor 
receptors, a constitutively activated component of the cellular pathway for cell 
 division, and the constitutive inactivation (loss-of-function) of growth-inhibiting 
components of the pathway for cell division A.

1.2  Hallmarks of Cancer

http://dx.doi.org/10.1007/978-1-4939-1381-7_6
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1.2.2  Evasion of Growth Suppressors

There are a number of negative regulators of the cell cycle, e.g., RB  (retinoblastoma) 
and P53 (tumor protein of 53 kDa) being two of the best known and studied, that 
must be overcome or evaded to ensure continued division of the aberrant cells. 
These two so-called tumor suppressors function in large part in responding to extra-
cellular and intracellular signals, respectively. These important suppressors of 
growth are part of larger complex networks that in some manner serve to introduce 
redundancy in the regulation. In this vein, it should be mentioned that the ECM is 
important in modulating the balance of growth factors and growth suppressors. For 
example, when the ECM is altered from a highly elastic state to a one that is stiffer, 
the efficaciousness of growth factors can increase by 100-fold (see Chap. 4).

1.2.3  Resisting Cell Death

The cellular process of apoptosis (cell death or cell suicide) serves to rid the body 
of damaged or aged cells and is a powerful barrier to the development of cancer. 
BAX and BAK are two important mitochondrial membrane proteins that act to begin 
the process of apoptosis by disrupting the mitochondrial membrane and thus releas-
ing cytochrome c; this in turn leads to the activation of caspases, a family of prote-
ases key in releasing the apoptotic effectors. In opposition to this pathway are 
anti-apoptotic members of the BCL2 family of proteins such as BCL2, BCLB and 
MCL1. Tumor cells have developed several mechanisms for overcoming the apop-
totic pathway including the loss of P53 function (a common alteration in cancer 
cells) and others that are actively being studied.

1.2.4  Enabling Replicative Immortality

Located on the ends of chromosomes, telomeres, composed of hexanucleotide 
repeats, are shortened as cells undergo progressive divisions. In time, after multiple 
divisions the telomeres become sufficiently shortened that cells are no longer via-
ble, leading to senescence and eventual cell death. This seems to be the major rea-
son that non-immortalized cells have a finite number of divisions and thus a finite 
life span. Telomerase is the enzyme responsible for adding these protective repeat 
segments of DNA to chromosomes, but it is present at progressively lower levels as 
cells divide. In contrast, cancer cells maintain relatively high levels of telomerase, 
thus ensuring that telomere shortening is minimized. In addition to the maintenance 
of telomere length, telomerase is now believed to also have other cellular functions 
related to growth.
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1.2.5  Activation of Invasion and Metastasis

Carcinoma, the most common form of cancer and the main focus of this book, arise 
from epithelial cells that are engaged with neighboring cells and with the ECM. The 
protein E-cadherin is a well characterized cell-cell adhesion molecule, while inter-
actions between cells and the ECM are regulated by other proteins (see Chap. 10). 
The processes of invasion and metastasis require several steps. First, the trans-
formed cells must become disengaged from their interactions with other cells and 
with the ECM. This involves down-regulation of E-cadherin accompanied by metal-
loproteinases and cysteine cathepsin proteases, many of these being supplied by 
immune cells near the primary tumor. In addition, stromal cells neighboring the 
tumor, in response to signals from the cancer cells, secrete proteins facilitating inva-
siveness. This set of events is termed the epithelial-mesenchymal transition and also 
includes the ability of cancer cells to inhibit apoptosis. Second, the now loosely 
attached transformed cells undergo intravasation into blood and lymphatic vessels 
in their vicinity. Third, colonization to a distant site(s) then requires successful 
travel via the blood or lymph followed by the process of extravasation. Finally, 
growth of the cancer cell(s) at the new site completes the process of metastasis. 
Each of these processes requires many alterations in cell function that are systemati-
cally being investigated (see Chaps. 10 and 11).

1.2.6  Induction of Angiogenesis

The high energy requirements of tumors, both primary and secondary, necessitate a 
good blood supply for continuing availability of oxygen, nutrients and precursors 
for fuel-generating metabolic pathways. Angiogenesis refers to the sprouting of 
new blood vessels from existing ones, i.e. those produced during embryogenesis. 
This process is regulated by the protein, vascular endothelial growth factor-A 
(VEGFA), which acts through tyrosine kinase receptors to ensure the continued bio-
synthesis of new vessels. Except in a few physiological and pathological states, e.g. 
cancer, angiogenesis is quiescent in the adult, being inhibited in large part by 
thrombospondin-1.

1.2.7  Evasion of Immune Destruction

During evolution humans have developed a most sophisticated immune system, 
often discussed in two categories, the innate and the adaptive. The immune system 
is believed to be highly effective in protecting the body from the growth of trans-
formed cells, both virally and non-virally induced. From this argument, one can 
argue that the cancers that do emerge have, in some manner, escaped immune sur-
veillance or have developed the ability to counter an immune attack, particularly 
from T helper cells and natural killer cells, as discussed in details in Chap. 8.

1.2  Hallmarks of Cancer
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1.2.8  Reprogramming Energy Metabolism

In the 1920s Otto Warburg reported that cancer cells increase their rate of glycolysis 
many fold over that of non-cancer cells. This reprogramming event occurs even in 
the presence of an ample supply of oxygen that would normally dictate that the end- 
product of glycolysis, pyruvate, would be converted to acetyl-CoA that in turn 
would enter the tricarboxylic acid (TCA) cycle (also known as the citric acid or 
Krebs cycle), eventually accounting for the conversion of oxygen to carbon dioxide 
and the generation of ATP. The putative regulatory factors responsible for this 
altered course of glucose metabolism will be discussed later, one hypothesis to 
account for the Warburg effect being that intermediates in glycolysis can be shuttled 
into other metabolic pathways for the biosynthesis of amino acids and nucleosides, 
required components for protein and nucleic acid synthesis, respectively. The 
important role of the glucosaminoglycan, hyaluronic acid, cannot be overlooked in 
cancer metabolism. This topic is briefly mentioned in Sect. 1.10 below and greatly 
elaborated on in Chap. 6.

1.2.9  Other Considerations

In addition to these delineated eight hallmarks of cancer, Hanahan and Weinberg 
also discussed processes defined as enabling characteristics of cancer: (a) genome 
instability and mutation, and (b) tumor-promoting inflammation. They concluded 
that the reduced cellular efficiency in genome maintenance and repair ultimately 
increases the rate of developing viable phenotypes of the cancer cells. The presence 
of immune cells in tumors prompted studies into their possible functions. Tantalizing 
results show, paradoxically, that the immune cells, normally charged with protect-
ing the body, can aid tumor growth by secreting growth factors, pro-angiogenic 
factors, survival factors, and others that contribute positively to the survivability and 
growth of the tumor as discussed in detail in Chap. 7.

1.3  Proto-oncogenes, Oncogenes and Tumor 
Suppressor Genes

As discussed earlier, the cancer genome tends to contain numerous mutations and 
genomic rearrangements, but a central question is: Are these causal for cancer or 
important for cancer growth and survival? The introduction of the concept of an 
oncogene in the 1960s clearly represented a major breakthrough in defining an 
intellectual framework for studying cancer. It has provided useful guiding informa-
tion in elucidating cancer mechanisms, particularly cancer drivers. However, this 
well-accepted concept seems, unfortunately, to have also restricted the thinking of 
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cancer researchers somewhat since it requires that an oncogene must be the mutated 
or overexpressed form of a proto-oncogene, which is defined as genes involved in 
cell growth and differentiation. Originally attributed as being responsible for the 
origin of cancer, recent thinking by many has shifted the role of oncogenes from that 
of the originator to genetic alterations that arise during cancer evolution and selec-
tion of mutations that permit continued proliferation and survival.

1.3.1  The Rous Sarcoma Virus

The story begins with the elucidation of an avian retroviral oncogene prompted by 
the studies of Peyton Rous in the early 1900s at the Rockefeller Institute (now the 
Rockefeller University) in New York City. Interested in avian cancer, Rous was 
given a chicken harboring a sarcoma by an upstate chicken farmer who had read of 
his research at Rockefeller. Rous excised the tumor, then ground and filtered it to 
remove the cartilaginous residue. He found that upon injecting the soluble filtrate 
into certain strains of tumor-free chickens a sarcoma would develop. This repre-
sented a major breakthrough, demonstrating for the first time that this form of can-
cer was transmissible in chickens.

1.3.2  Proto-oncogenes and Oncogenes

Following many years of intense research by numerous investigators, the transmis-
sible agent was identified as the (appropriately named) Rous sarcoma virus (RSV). 
Of interest to us in this section was the recognition that the oncogenic element in the 
retroviral genome was a mutated version of a highly conserved and essential gene 
in human cells, SRC. This gene encodes a tyrosine kinase that functions in a cellular 
growth pathway; the mutation of the gene in the retroviral genome renders the gene 
product constitutively active, thus the explanation for tumorigenicity in infected 
chickens. It appears that during a cycle of infection some time ago, RSV comman-
deered the normal cellular SRC gene, i.e. a proto-oncogene (also referred to as a 
cellular oncogene), from the infected bird and incorporated it into its genome. 
A subsequent mutation in the SRC gene was sufficient to render the protein consti-
tutively active such that proliferation signaling occurred in the absence of proper 
growth signals. The mutation was responsible for the conversion of the proto- 
oncogene to an oncogene. To date, over 30 retroviral oncogenes have been identi-
fied, most of them being in rodent and avian viruses (Vogt 2012). [N.B. While we do 
not know the exact constituents of the filtrate that were injected into the chickens, it 
surely contained some macromolecular constituents and probably cells associated 
with the sarcoma. Later studies demonstrated, however, that it was the presence of 
the viral SRC gene that produced the tumorigenicity.]

1.3  Proto-oncogenes, Oncogenes and Tumor Suppressor Genes
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In normal cellular function, the gene encoding almost any regulatory protein 
involved in cell growth or survival can undergo the proto-oncogene-to-oncogene 
conversion by certain mutations or amplification that result in constitutive activity 
promoting, say, cell division without the requirement of external or even internal 
growth signals. Even the growth factors or their receptors can be considered onco-
genic if, for example, there are mutations in their genes that increase their expres-
sion. In addition to mutations, genomic rearrangements can also produce oncogenes 
if the proto-oncogene is translocated to make a fusion gene that is no longer regu-
lated and possibly gives a constitutively active fusion protein. This is the basis of the 
Philadelphia chromosome that is responsible for many cases of chronic myeloge-
nous leukemia (CML). With this definition one can consider hundreds of proto- 
oncogenes that have the potential to become oncogenes. Suffice it to say that the 
proto-oncogene-to-oncogene conversion does not necessarily lead to cancer; rather, 
it can be considered a signal.

1.3.3  Conversion of Proto-oncogenes to Oncogenes

There are several genetic alterations that convert proto-oncogenes to oncogenes, 
most of which were mentioned or alluded to above.

Mutations, often single base changes (point mutations), leading to gain-of- 
function of positive regulators of the cell cycle, e.g., growth factor receptors or SRC.

Chromosomal instability such as loss of portions of chromosomes or rearrange-
ments, e.g., inversions, translocations, deletions and insertions, resulting in a gain-
of- function of positive regulators. An example of such a translocation is the fusion 
of the ABL gene on chromosome 9 to chromosome 22 where it is fused to the BCR 
gene yielding a fusion protein of BCR-ABL where ABL, normally highly regulated, 
exhibits constitutive activity.

Gene amplification resulting in abnormally high expression of growth factor 
receptors (or growth factors) that function in a pathway leading to cell division, e.g. 
the HER2 receptor in breast cancer.

Viral infection/insertion may also contribute to some forms of cancer, e.g., the 
human papilloma virus (HPV) and cervical cancer.

1.3.4  Tumor Suppressor Genes

We now turn our attention to the topic of tumor suppressor genes. These genes and 
their protein products refer to ones that function to prevent the progression of the 
cell cycle if conditions at some checkpoints are not met, e.g., DNA damage is 
detected and not repaired. For a tumor suppressor gene to lose its function, it 
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requires the loss of both copies of the gene while the loss of one copy increases the 
risk of cancer development. Within this class are the familiar BRAC1 and BRAC2 
genes involved in a familial form of breast and ovarian cancers, and the APC 
( adenomatous polyposis coli) gene responsible for most cases of familial colorectal 
cancer. Of the many other tumor suppressor genes in the human genome, we will 
next discuss two well-studied examples that function in the cell cycle (Fig. 1.1).

Some cells in the body are dividing frequently, but most are in a resting or qui-
escent state denoted as Go. A signal for cell division, such as growth factors initiat-
ing an intracellular signaling cascade or even the presence of a constitutively active 
oncogene in the signaling pathway, begins a process that takes the cells from the 
quiescent state to the first gap phase (G1). Cyclin D family members are expressed 
and the proteins interact with cyclin-dependent kinase (CDK) complexes. The reti-
noblastoma (RB) gene, a tumor suppressor gene, encodes a nuclear protein that is a 
negative regulator of cell division, constantly maintaining cells in G1 provided it is 
associated with another nuclear protein, the transcription factor E2F. The action of 
the CDK complex is to hyperphosphorylate RB, leading to dissociation of the RB- 
E2F complex. Freed of the inhibitory effects of RB, E2F acts to up-regulate itself, 
another cyclin, and enzymes required to carry out replication of the genomic 
DNA. These events, along with others, will lead to the progression from G1 into the 

Fig. 1.1 A schematic view of the cell cycle showing the resting state (Go), the first gap phase (G1), 
the synthesis phase (S), the second gap phase (G2) and the phase where mitosis occurs (M). A 
complete cycle can require some 18–24 h, although some cancer cells complete the cell cycle in 
less time

1.3  Proto-oncogenes, Oncogenes and Tumor Suppressor Genes
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S or synthesis phase of the cell cycle where DNA synthesis occurs. This progres-
sion is limited, however, by another protein P53 (or TP53, tumor protein 53) that 
oversees DNA fidelity, along with other roles to be discussed later. Among its many 
actions P53 can induce the activation of genes for DNA repair, cause cell cycle 
arrest or send the cell into apoptosis if DNA repair is not successful. Successful 
entry into the S phase results in the replication of ~3 billion base pairs of DNA 
accomplished with a variety of enzymes including ones capable of proofreading 
and repair of errors. As summarized, estimates suggest that the mutation rate in 
cells is some 10−12 to 10−9 per nucleotide in each cell division and that, of the 1014 
cells comprising the average human, there are about 1016 division cycles during a 
lifetime (Duesberg 1987; Loeb 1989). Needless to say, these estimates are depen-
dent on many factors and assumptions, and a wide range can be found in the litera-
ture. Although not discussed here, there are checkpoints and inhibitors at the 
S → G2 and the G2 → M boundaries (G2 is the second gap phase and M is mitosis, 
i.e., cell division).

RB and P53 are, in effect, gatekeepers that prevent cells from dividing unless 
signaling pathways for growth impact on the nucleus and the cells have high fidelity, 
e.g., no damaged DNA. These negative regulators of cell division are thus critical 
components of cell oversight. From this perspective it is not surprising that muta-
tions interfering with RB and P53 functions could allow continual cell division and 
transcription of faulty DNA. Suffice it to say that the RB and/or P53 genes are fre-
quently mutated in various cancers.

1.4  Emerging Results on Cancer Genomes, Tumor 
Heterogeneity and Cancer Evolution

The emergence of rapid deep sequencing technology has provided an unprecedented 
opportunity to sequence large numbers of cancers for comparison with DNA sequences 
obtained from normal controls. In an interesting twist of fate, DNA sequencing is no 
longer the rate-limiting step in cancer genomics. Rather, it is the ability to analyze 
the copious amounts of data that are forthcoming from many laboratories and factory-
like sequencing centers. From this perspective, the timing is good for bioinformati-
cians to enter cancer research with the possibility of adding substantively to our 
knowledge relating genomic changes to phenotypic changes in cancer patients.

1.4.1  What Is Being Learned?

The results from cancer genome sequencing are providing considerable informa-
tion on mutations and the myriad other genomic changes, e.g., chromosomal 
gains, losses and rearrangements, present in most cancers (Stratton et al. 2009; 
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Pleasance et al. 2010; Garraway and Lander 2013; Alexandrov and Stratton 2014; 
The Cancer Genome Atlas Research Network 2011a, b, 2012a, b, c, 2013a, b, c, 
2014; Alexandrov et al. 2013; Kandoth et al. 2013; Vogelstein et al. 2013). In one 
study 3,281 tumors from 12 different types of cancer (11 solid tumors plus acute 
myeloid leukemia) were analyzed for point mutations and small insertions and 
deletions (Kandoth et al. 2013). In this sampling 617,354 somatic mutations were 
identified: 398,750 missense; 145,488 silent and smaller numbers each of non-
sense, splice site, non-coding RNA, non-stop read-through, frame-shift insertions/
deletions (indels) and in-frame indels. P53 was found to be the one most frequently 
mutated, and the lipid kinase gene, PIK3CA (phosphatidylinositol-4,5-bisphosphate 
3-kinase, catalytic subunit alpha), was the second. Not surprisingly, many muta-
tions appeared in genes encoding transcription factors; cell cycle regulators; sig-
naling pathways, including receptor tyrosine kinase, MAPK, PI3K, TGFβ and 
WNT/β-catenin; and ECM related genes as detailed in Chap. 4.

Genome sequencing has also provided some surprising observations, but ones 
that are consistent with the emerging view that cancer is not just a disease of the 
genome. Sequencing studies by two labs (Mack et al. 2014; Parker et al. 2014) on 
three subtypes of ependymoma brain tumor found the following. One subtype had 
an intrachromosomal translocation yielding what appears to be a ‘driver muta-
tion’ for cancer, and another subtype had abnormal epigenetic alterations. Of par-
ticular interest, however, was the finding that another subtype was devoid of gene 
mutations and aberrant epigenetic changes. These results emphasize the complex-
ity of cancer and importantly the role of non-genomic changes driving cancer 
formation.

1.4.2  Driver and Passenger Mutations

In recent years there has been considerable interest in identifying the ‘driver’ muta-
tions and separating them from the ‘passenger’ mutations. Although as discussed 
later (Chap. 5), there is a current movement to consider those crucial mutations as 
ones that were selected as necessary to maintain proliferation and survival of the 
developing cancer cell(s) and may not necessarily be causal to cancer. This informa-
tion will of course direct many of the treatment modalities for specific cancers. 
Many mutations, particularly in older individuals, are known to exist before the 
occurrence of cancer and are believed to have nothing to do with the onset or con-
tinuation of cancer (Tomasetti et al. 2013). These innocuous mutations arise from 
the high number of cell divisions and the inherent errors that occur in proofreading 
and repair, as well as mutations from environmental causes that do not produce 
‘drivers’ of cancer. One estimate is that there are about 140 genes that, with appro-
priate mutations, can become drivers (Vogelstein et al. 2013).

1.4  Emerging Results on Cancer Genomes…
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1.4.3  Major Findings

Some of the major findings from genomic sequencing of various tumors have been 
delineated and provide much insight into, if not cancer initiation, then at least its 
progression (Vogelstein et al. 2013). Some of these principles are listed below; how-
ever, we have qualified them as more likely being responsible, through natural 
selection, for unlimited growth and survival, not necessarily causal.

 a. Solid tumors have an average of 33–66 somatic nonsynonymous mutations, 
 predominantly single-base changes that are expected to alter the resulting pro-
teins; however, a limited number of mutations are capable of sustaining cancer 
proliferation and survival. [N.B. Vogelstein et al. (2013) claim that the majority 
of human cancers result from two to eight sequential mutations occurring over 
20–30 years, each of which confers about a 0.4 % growth advantage.]

 b. There are about 140 such genes that if mutated can contribute to cancer, either 
via initiation, proliferation or survival.

 c. Three cellular processes are regulated by these essential genes: cell fate determi-
nation, cell survival and genome maintenance.

 d. Although the pathways altered by key mutations in different tumors are similar, 
each individual tumor is distinct.

 e. Heterogeneity exists in the cells of tumors, and this can affect therapeutic 
effectiveness.

1.4.4  Metastasis

There is considerable interest in the delineation of the various changes that can drive 
a primary tumor to metastasis (see Chaps. 10 and 11), the cause of over 90 % of 
cancer mortality (Irmisch and Huelsken 2013). This is an important aspect of cancer 
research that bioinformatics can address when more data are available from the 
ongoing sequencing of cancer genomes and transcriptomes. In addition to the 
genetic changes referred to above, many alterations in metabolism, hypoxia, and 
other cellular processes exist that tend to drive cancer growth. These are covered in 
depth in Chap. 10.

1.4.5  Cancer Heterogeneity

It is important that the role of cancer heterogeneity be pointed out. Pathologists 
and clinicians have known for years that solid tumors are heterogeneous with regard 
to cellular morphology and patient responses to treatment. Thus, cancer heteroge-
neity, first proposed several decades ago (Nowell 1976), is an important aspect 
of cancer and an area that is being addressed (Meacham and Morrison 2013; 
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Burrell et al. 2013; Vogelstein et al. 2013). It is now appreciated that considerable 
heterogeneity exists in any given cancer, both at the molecular and cellular level. 
Cancer is clearly many diseases, and even individual tumors within similar types of 
cancer may be unique. A given tumor is likely composed of a dominant clone and 
several subclones, each of which may grow at different rates and respond differ-
ently to treatment(s). This intratumor heterogeneity impacts on the evolution of 
cancer and the natural selection of clones more favorable for sustained growth, 
survival and ability to colonize distant sites (extravasation and metastasis). Cancer 
heterogeneity, evolution and natural selection are emerging as significant features 
in our understanding of cancer growth and control (Klein 2013; Burrell and Swanton 
2014; Lawrence et al. 2013) and are areas in which bioinformatics can provide 
considerable insight as more data become available.

1.5  An Early Sequential Model of Cancer Development

One of the early models to explain the development of cancer strictly from genetic 
changes is referred to as a “sequential model” based on a series of mutations. It is 
now well recognized that this model may be overly simplistic, but it is presented to 
introduce the concept and several genes that, when mutated, can function to aid 
propagation of cancer. Based on extensive studies of benign and malignant colorec-
tal cancer (hereafter referred to simply as colon cancer), Fearson and Vogelstein 
proposed a sequential pathway for the development of malignancy, a pathway often 
referred to as the canonical pathway (Fearson and Vogelstein 1990). Colon cancer 
can be categorized into two forms, sporadic and familial, having respective frequen-
cies of about 80 and 20 %. Sporadic colon cancer can be further divided into a form 
arising from mutations and/or chromosomal instability and a form attributable to 
microsatellite instability. These two forms of sporadic colon cancer exhibit frequen-
cies of approximately 80–85 % and 15–20 %, respectively.

The canonical pathway was proposed to arise from a sequential or linear set of 
genetic alterations. In the majority of cases the APC gene, located on chromosome 
5q, was found to undergo a mutation that reduced or abolished its activity and con-
tributed to the formation of a benign lesion or early adenoma. While the protein 
encoded by APC has a number of biological actions including its role in the WNT 
pathway, cell adhesion (via E-cadherin), mitosis and cytoskeletal regulation, it is 
the former that has attracted most attention. Forming part of a complex with glyco-
gen synthase kinase-3β and axin, loss of APC activity results in β-catenin escaping 
degradation and thus constitutively activating the WNT pathway that regulates 
numerous genes, some of which are involved in the cell cycle. We mention in pass-
ing that mutations in APC have been identified in many if not most cases of familial 
colon cancer.

Mutations to the oncogene KRAS on chromosome 12p12.1 have been frequently 
identified in intermediate adenomas, mutations that result in producing a defective 
GTP-binding protein that is involved in the mitogen-activated protein kinase 
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(MAPK) and other growth-promoting pathways. Again, constitutive activation of 
the protein KRAS, e.g., by inactivating the intrinsic GTPase activity that converts 
GTP to GDP leading to KRAS inactivation, results in a constant enhancement of 
growth-promoting pathways as well as a loss of cell polarity that could reduce 
cell adhesion.

Other allelic losses (via mutations or chromosomal loss) are often found in late 
adenomas and carcinomas with the P53 and DCC (deleted in colorectal cancer) 
genes on chromosomes 17p13.1 and 18q21.1, respectively. P53 is considered a 
tumor suppressor gene and serves as a gatekeeper for cells exiting G1 to the S phase 
of the cell cycle. It promotes repair of damaged DNA, e.g. from errors in replication 
or environmental stress, and if repair is not successful terminates cell cycle progres-
sion and leads to apoptosis. Clearly, inactivation of this key cell cycle regulator 
could have major detrimental effects on the normal fidelity expected in the cell 
cycle. The DCC protein is a transmembrane protein that serves as a receptor for 
proteins involved in regulating axon guidance in the nervous system and also seems 
to participate in cell motility, signaling and overcoming apoptosis.

Although attractive in its simplicity, the sequential model is now believed by 
many investigators to function more as developing cancer cells are undergoing an 
“evolution and natural selection” phase to obtain a genomic background that per-
petuates growth and evades apoptosis and immune destruction.

1.6  Epigenetics and Cancer

Most of the research on cancer has heretofore dealt with the role of genetic changes, 
i.e. alterations in the sequence of DNA, that lead to changes in normal cellular func-
tions that regulate proliferation, survival, angiogenesis, metastasis and others. 
Recent studies have, however, documented that epigenetic changes are also impor-
tant in the initiation and progression of cancer (Beck et al. 2012; Shen and Laird 
2013; Timp and Feinberg 2013; Waldman and Schneider 2013; Suva et al. 2013). 
Such changes are attributable to modifications of chromatin and chromatin packag-
ing, as emphasized by the appearance of mutations in genes involved in DNA meth-
ylation, histone modification and chromatin remodeling, with a number of mutations 
found to be tumor-specific.

Composed of nucleic acids and proteins, there are potentially many possibilities 
for epigenomic changes in chromatin. The protein core around which genomic 
DNA is wrapped is composed of a histone octomer with two copies each of four 
distinct histones, forming a nucleosome; these, in turn, form a helical arrangement. 
As summarized (Shen and Laird 2013), there are multiple sites for alterations that 
control the level of transcriptional activity, including DNA methylation, histone 
modifications and variants, interacting proteins, noncoding RNAs and nucleosome 
positioning.

Certainly one of the more prevalent alterations is that of DNA methylation, cata-
lyzed and maintained by several DNA methyltransferases yielding primarily 
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 cytosine- 5 methylation of CpG dinucleotides. Such enzymes can be considered as 
‘writers’ since they in effect make the epigenetic mark. Another chemical change is 
that of histone modification, including methylation, acetylation and phosphoryla-
tion. The histone modifications are catalyzed by histone methyltransferases and 
demethylases, acetyltransferases and deacetylases, and kinases and phosphorylases. 
Those enzymes that remove the covalent tag are referred to as ‘erasers’. Also, 
numerous histone variants have been identified. Another mode by which the 
 epigenome can be altered is that of nucleosome positioning and remodeling, accom-
plished by sequence-specific binding proteins. These are important in selecting the 
form of chromatin, euchromatin (open form) and heterochromatin (a more closed 
form), thus enhancing or inhibiting the availability of readers, writers, erasers and 
other chromatin-binding proteins.

From this abbreviated overview, mentioning most but certainly not all of the fac-
tors responsible for defining and maintaining the epigenome, sequencing and func-
tional studies have shown that mutations can occur in essentially all of the genes 
required to form and maintain the epigenome (Fullgrabe et al. 2011; Shen and Laird 
2013; Timp and Feinberg 2013). Importantly, many of these mutations have been 
documented to be related, or at least correlated, at one level or another to tumorigen-
esis. This area will undoubtedly emerge as an important component of cancer as 
more results become available.

1.7  Cancer Cell Metabolism

1.7.1  Meeting the Energetic Requirement of Cells

Of the many types of foods ingested, the body uses three major classes as fuels for 
its energetic needs: carbohydrates, lipids (fats) and proteins. The chemical composi-
tions and structures of these vastly different biomolecules, ranging from simple 
sugars to complex polysaccharides, fatty acids to triacylglycerols (triglycerides) and 
peptides to high molecular weight proteins. Yet, many of the different metabolic 
pathways converge at a common intermediate, acetyl-coenzyme A (acetyl-CoA) or 
a downstream intermediate, leading to the biosynthesis of adenosine triphosphate 
(ATP), an important source for cellular energetic needs.

The average sedentary adult requires about 2,000 Calories (Cal) per day to meet 
the normal requirements to maintain overall homeostasis, i.e., for heart, brain, 
lung, kidney and other organs to function. This daily requirement for any given 
sedentary individual can vary as much as ±400 Cal since it is influenced by age, 
gender and metabolic factors. Over 80 kg of ATP are required to meet this daily 
basal caloric need; however, the body contains only about 0.25 kg (Tymoczko et al. 
2013). Thus, ATP is constantly being utilized and resynthesized to meet daily 
needs. For someone who is physically active, the caloric requirement rises dramati-
cally, and consequently ATP biosynthesis must increase as well. [N.B. The calorie, 
more specifically the gram or small calorie, is defined as the energy required to 
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increase the temperature of 1 g of water 1 °C at standard atmospheric pressure 
(this corresponds to about 4.2 J). Biochemists and nutritionists, on the other hand, 
use a “large” or “kilogram” calorie, i.e. the Cal, that is equivalent to 1,000 
“small” calories (about 4.2 kJ).]

Metabolism of carbohydrates, proteins and lipids yields approximately 4 Cal/g, 
4 Cal/g and 9 Cal/g, respectively. Thus, per unit weight ingested, lipids provide 
more than twice the Cal (or energy) than do carbohydrates and proteins; however, 
we rely on all three for energetic needs, particularly lipids and carbohydrates (and 
certainly circulating glucose for minute-to-minute cellular needs). Glucose can be 
metabolized anaerobically (absence of oxygen) to yield small amounts of ATP and 
aerobically (presence of oxygen) to obtain greater amounts. Fatty acids, most being 
obtained from lipolysis of triacylglycerols, can undergo β-oxidation, giving acetyl- 
CoA that can enter the TCA cycle for ATP production, and glycerol that can enter 
the hepatic gluconeogenic pathway and be converted to glucose for metabolism. 
Proteins are constantly turning over, and some of the amino acids so derived can 
serve as precursors for glucose synthesis (gluconeogenesis) or for synthesis of pyru-
vate or intermediates in the TCA cycle (see below).

Cancer cells also utilize carbohydrates, lipids and proteins to generate the ATP 
that is required to meet the energetic needs for proliferation, metastasis and survival. 
In order to appreciate the metabolic derangements unique to cancer, it is first neces-
sary to understand, even if superficially, the pathways of normal metabolism, which 
are briefly treated in the following section with reference to the changes that occur 
in cancer.

1.7.2  Glucose Metabolism

Glucose metabolism will be discussed first since it is quite distinct in cancer cells 
compared to normal cells. For both normal and cancer cells, circulating glucose in 
the bloodstream enters cells via one or more glucose transporter proteins (GLUTs) 
and is then rapidly phosphorylated to glucose 6-phosphate by either of two ATP- 
dependent enzymes, hexokinase or glucokinase, thus ensuring retention within the 
cell (Reaction 1.1).

 glucose ATP glucose phosphate ADP H+ ® - + + +6  (1.1)

There are three metabolic paths for glucose 6-phosphate within the cell. If the 
cell does not require ATP, glucose 6-phosphate can be metabolized to a high molec-
ular weight polysaccharide of repeating glucose units, glycogen (Reaction 1.2). The 
three subsequent reactions are catalyzed by the enzymes phosphoglucomutase, 
UDP-glucose pyrophosphorylase and glycogen synthase, respectively, where UDP 
is uridine-diphosphate.

glucose phosphate glucose phosphate UDP glucose glycogen6 1- ® - ® - ®  (1.2)
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The two other metabolic paths for glucose 6-phosphate are of most interest here: 
the glycolytic pathway and the pentose phosphate pathway. Glycolysis represents a 
series of enzymatic reactions that convert the phosphorylated 6-carbon glucose into 
two molecules of pyruvate, a 3-carbon product. The pathway yields, in addition to 
two molecules of pyruvate, two molecules each of ATP, NADH and other reaction 
products for each molecule of glucose entering the pathway (Reaction 1.3 and 
Fig. 1.2).

glucose ADP NAD Pi pyruvate ATP NADH H H O+ + + + ® + + + + +2 2 2 2 2 2 2 2 2  (1.3)

Pyruvate can be converted to acetyl-CoA (Reaction 1.4), the main substrate for 
the TCA cycle, to lactate (Reaction 1.5) or to oxaloacetate (Reaction 1.6). The 
enzymes catalyzing these reactions are, respectively, pyruvate dehydrogenase, lac-
tate dehydrogenase and pyruvate carboxylase.

 pyruvate CoA NAD acetyl CoA CO NADH H+ + ® - + + ++ +
2  (1.4)

 pyruvate NADH H lactate NAD+ + « ++ +

 (1.5)

 pyruvate CO ATP H O oxaloacetate ADP P Hi+ + + ® + + + +
2 2 2  (1.6)

The other metabolic route for glucose 6-phosphate is that of the pentose phos-
phate pathway (Fig. 1.3). This pathway consists of an oxidative phase in which 
glucose 6-phosphate is converted to ribulose 5-phosphate by several enzymes acting 
sequentially, glucose 6-phosphate dehydrogenase, lactonase and 6- phosphogluconate 
dehydrogenase (Reaction 1.7). This is an important reaction since it regenerates 
NADPH and associated reducing power. The second phase is a complex oxidative 
component consisting of a number of enzymes that yields ribose 5-phosphate 
(Reaction 1.8, catalyzed by phosphopentose isomerase), fructose 6-phosphate and 
glyceraldehyde 3-phosphate. Of the three pentose phosphates, ribose 5-phosphate 
(a 5-carbon sugar phosphate) is needed for the synthesis of nucleic acids, and the 
other two, fructose 6-phosphate and glyceraldehyde 3-phosphate, can enter as inter-
mediates in the glycolytic pathway.

Glucose phosphate NADP H O ribulose phosphate NADPH6 2 2 5 2

2

- + + + ® - +

+ HH CO+ + 2  

(1.7)

 Ribulose phosphate ribose phosphate5 5- « -  (1.8)

From the point of entry of glucose into cells, the glycolytic pathway is composed 
of ten enzymatic reactions, all occurring in the cell cytoplasm, to give the 3-carbon 
product pyruvate. Pyruvate, in turn, can undergo one of several enzymatically cata-
lyzed steps with its conversion to either of the following. (1) lactate: This reaction 
reduces pyruvate and occurs independent of the availability of oxygen; it is catalyzed 
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Fig. 1.2 The glycolytic pathway from the entry of glucose into a cell and the subsequent reactions 
that yield pyruvate. Note the conversion of the 6-carbon structure, glucose, into two molecules of 
pyruvate
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by the enzyme lactate dehydrogenase. (2) oxaloacetate: This metabolite, obtained 
from the carboxylation of pyruvate by the enzyme pyruvate carboxylase, is an inter-
mediate in the TCA cycle and also a precursor for the synthesis of glucose via a 
metabolic pathway, gluconeogenesis (the synthesis of glucose from non- glucose 
precursors). (3) acetyl-CoA: In the presence of oxygen the enzyme pyruvate dehy-
drogenase, in an oxidation reaction, catalyzes the conversion to acetyl-CoA, releas-
ing CO2, of which the body must rid itself, and reducing NAD+ to NADH, thus the 
enzyme is catalyzing an overall oxidation-reduction reaction. Acetyl-CoA is an 
important intermediate for several pathways and serves as a convergent point for 
metabolism of carbohydrates, lipids and proteins.

Pertinent to our discussion, one major fate of acetyl-CoA is its entry into the 
TCA cycle, located in the mitochondrion and composed of eight enzymes 
(Fig. 1.4). This is an important component of metabolism, particularly when 
energy is needed and available to the cells. The entering acetyl group on acetyl-
CoA is oxidized, i.e., loses electrons, and forms CO2 (two molecules for each 
acetyl-CoA entering the pathway) in a series of oxidation-reduction reactions that 
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Fig. 1.3 The pentose phosphate pathway showing the conversion of glucose 6-phosphate to three 
pentose phosphates, ribose 5-phosphate, fructose 6-phosphate and glyceraldehyde 3-phosphate
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generate high energy electrons from carbon sources. Continuing the mitochondrial 
reactions, oxidative phosphorylation refers to an important series of complex reac-
tions that culminate in the synthesis of ATP. The reactions allow electrons from 
NADH and FADH2 to transfer to oxygen (O2) that is converted to water in the pres-
ence of hydrogen ions. This flow of electrons pumps protons into the region 
between the inner and outer mitochondrial membranes from the mitochondrial 
matrix (cf. the schematic in Fig. 1.5). The proton gradient is responsible for driving 
the synthesis of ATP from ADP and Pi, a reaction catalyzed by ATP synthase. 
Accounting for the ATP required to transport NADH into the organelle, a net 
production of 30 molecules of ATP for each molecule of glucose metabolized is 
realized. As mentioned earlier, even sedentary individuals require some 2,000 Cal 
per day, an amount that can increase significantly during vigorous exercise, and 
this requires some 80 kg of ATP biosynthesized per day, most of this from de novo 
synthesis by recycling ADP into ATP.

1.7.3  The Warburg Effect and Other Metabolic  
Alterations in Cancer

Working at the Kaiser Wilhelm Institute in Berlin, now the Max Planck Institute, 
Otto Warburg made the significant observation in the 1920s that cancer cells utilize 
more glucose than normal cells (Koppenol et al. 2011). Further, it was found that 
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glucose was converted to lactate (lactic acid) via glycolysis (see Fig. 1.2 and 
Reaction 1.5). The confounding aspect of this finding, however, was that the 
increased level of glycolysis occurred even in the presence of oxygen. Under these 
conditions, i.e., ample oxygen, one expects aerobic respiration in which glucose is 
directed to pyruvate which is then converted to acetyl-CoA, not lactate.

Another surprising observation by Warburg was that aerobic respiration was like 
that of normal tissues, but it failed to prevent lactate formation. This is in contrast to 
aerobic metabolism in general since the well-known and accepted Pasteur effect 
leads to a reduction in lactate production in the presence of oxygen. In spite of these 
results, Warburg nonetheless believed that the pathway of aerobic respiration was 
damaged; it is now known however that it is the regulation of glycolysis that differs 
from normal cells in cancer cells. Warburg’s experiments were initially conducted 
using thin slices of Flexner-Jobling rat liver carcinoma, and they were later con-
firmed with a number of human carcinomas.

The singular finding of enhanced anaerobic glycolysis in the presence of oxygen 
has led to numerous investigations in the subsequent years. Although a full explana-
tion of the Warburg effect and its ramifications in cancer are still unfolding, a num-
ber of recent investigations have yielded many exciting and provocative observations 
that offer some rationale of why a less efficient energy-generating pathway, anaero-
bic metabolism, may be preferred over the more efficient aerobic respiration 
(Ferreira 2010; Cairns et al. 2011; Dang 2012; Bensinger and Christofk 2012; Icard 
and Lincet 2012; Oermann et al. 2012; Soga 2013). Moreover, elucidation of the 
distinctions between normal and cancer cell metabolism provides potentially new 
avenues to explore for therapeutic regimens (Jang et al. 2013). [N.B. As a side note, 
the Warburg effect forms the basis of imaging by means of positron emission tomog-
raphy (PET) in which patients receive 2-fluoro-2-deoxy-d-glucose (FDG), a radio-
labeled (18F) and non-metabolizable form of glucose that becomes concentrated in 

Fig. 1.5 A simplified and schematic representation of oxidative phosphorylation leading to the 
synthesis of ATP. The electron transport chain, shown as a dark cylinder, is responsible for trans-
ferring electrons from NADH and FADH2 to oxygen and creating a proton gradient. The energy of 
the proton gradient that is used by the enzyme ATP synthase, indicated by a gray cylinder, to drive 
the synthesis of ATP from ADP and Pi. Adapted from (Tymoczko et al. 2013)
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cancer cells at a higher level than in normal cells thus enabling imaging to occur. 
Tumors in highly metabolically active tissues such as liver and brain, however, are 
often difficult to detect because of the high background level.]

Through various mechanisms, lactate itself has been found to enhance angiogen-
esis, cell migration and escape from immune surveillance. Also, the increased 
 lactate production reduces pericellular pH resulting in the activation of apoptosis in 
neighboring normal cells, the protection of the cancer cells by inhibition of the 
immune system and an elevation of a number of proteases, including metallopro-
teinases that can facilitate escape of tumor cells from their local environment, a 
requirement for metastasis to occur. In addition, the increased uptake of glucose, 
and hence the amount of glucose 6-phosphate, ensures a plentiful supply of sub-
strate for the pentose phosphate pathway (cf. Fig. 1.3 and Reactions 1.7 and 1.8), 
products of which can be converted to nucleotides for nucleic acid synthesis or 
serve as intermediates to the glycolytic pathway.

Reinforcing the importance of metabolic changes in cancer, an exome sequenc-
ing study (175,471 exons from 20,661 genes) uncovered recurring mutations in the 
IDH1 gene (Parsons et al. 2008). The protein encoded by IDH1 is isocitrate dehy-
drogenase, an enzyme that converts isocitrate to α-ketoglutarate in the TCA cycle 
(cf. Fig. 1.4). Subsequent research by a number of investigators studying different 
cancers, reviewed by Garraway and Lander (Garraway and Lander 2013), showed 
that the mutations in IDH1 led to gain-of-function in the enzyme and that, more-
over, the enzyme product was an enantiomer of 2-hydroxyglutarate. This unex-
pected metabolite was found to inhibit α-ketoglutarate-dependent enzymes, 
including prolyl-4-hyroxylases that are important in regulating hypoxia inducible 
factor (HIF). Such IDH1 mutations, surprisingly, correlated with the CpG island 
methylator phenotype; further, IDH1 and IDH2 (the mitochondrial homolog) 
 mutations were found to be mutually exclusive with TET2 mutations, the gene 
 product being a methylcytosine dioxygenase that catalyzes methylcytosine to 
5- hydroxymethylcytosine in DNA. Such unexpected observations and correlations 
reinforce the importance of metabolic alterations in cancer and emphasize the need 
for careful bioinformatic approaches when comparing large datasets; totally unex-
pected and potentially important new information can be forthcoming.

Another player that has emerged is the amino acid glutamine, and of interest is a 
role of the oncogene MYC, as well as other oncogenes and tumor suppressors, in 
regulating glutamine metabolism. Glutamine can function as a carbon source in the 
process of energy production; it can also regulate redox homeostasis, in large part 
through its role in the biosynthesis of the antioxidant glutathione. Lastly, glutamine 
can supply carbon and nitrogen to a number of cellular reactions. Regarding 
 glutamine’s role in energy production, the enzyme glutaminase is responsible for 
the conversion of glutamine to glutamate, the latter of which can be converted to 
α-ketogluterate that is an integral part of the TCA cycle (Fig. 1.3). This is particu-
larly important in proliferating cells since citrate, another integral component of the 
TCA cycle (Fig. 1.3), is transported from the mitochondria to contribute to the syn-
thesis of acetyl-CoA for lipid biosynthesis (Icard et al. 2012). Many other cellular 
proteins, including enzymes, oncogenes and tumor suppressors, are emerging as 
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having important roles in cancer metabolism (Chen and Russo 2012; Oermann et al. 
2012). While most of these are not discussed further, it is expected that they and 
others, as well as presently unknown regulators and processes, will materialize as 
important contributors to the altered metabolic status of cancer cells.

Hypoxia-inducible factor (HIF), notably HIF1 (discussed in greater detail in 
Sect. 1.8), can escape its normal degradation under normoxic conditions due to 
mutations in certain enzyme-encoding genes, e.g., succinate dehydrogenase, fuma-
rate hydratase, or prolyl hydroxylases or tumor suppressor proteins, e.g., von 
Hippel-Lindau (VHL), as well as higher cellular levels of metabolic intermediates, 
e.g., lactate, oxaloacetate and pyruvate (Cairns et al. 2011). The presence of HIF1 
under normal concentrations alters the expression of a number of genes participat-
ing in glycolysis, such as those for phosphofructokinase, hexokinase-II, pyruvate 
kinase M2, lactate dehydrogenase-A and glucose transporters, thus enhancing gly-
colysis; other genes are also affected that lead to reduced amounts of pyruvate enter-
ing the TCA cycle. YC and HIF1 both activate the expression of the lactate 
dehydrogenase gene, LDHA, that favors the conversion of pyruvate to lactate; MYC, 
by suppressing two microRNAs (miR-23A and miR-23b), stimulates glutaminase 
gene expression resulting in a replenishment of intermediates in the TCA cycle 
(Oermann et al. 2012).

Another important metabolic component is that of the Ser/Thr kinase, AMP- 
activated protein kinase (AMPK), that serves to regulate metabolism and energy 
homeostasis. This regulatory kinase, depending upon the cellular conditions, can 
enhance or inhibit cancer cell growth (Faubert et al. 2014). In addition to these well 
documented changes, there are also other changes in cancer that impact on metabo-
lism, but in the interest of brevity these will not be discussed.

Many years after the discovery of the Warburg effect, Warburg himself was still 
discussing the importance of mitochondrial alterations in giving a reduced ability of 
ATP synthesis via oxidative phosphorylation. Yet, more recent studies have shown 
unequivocally that cancer cells are not deficient in oxidative phosphorylation, at 
least for some cancers. On the other hand, some form of mitochondrial dysfunction 
or uncoupling has recently been noted. This involves elevated expression of certain 
uncoupling proteins (UCPs) that would lead to a reduction in effectiveness of the 
mitochondrial membrane potential. While not discussed herein this would result in 
a reduction in mitochondrial ATP synthesis, thus enhancing the cell’s need for 
increased aerobic glycolysis.

Another aspect of the Warburg effect and mitochondrial function involves reac-
tive oxygen species (ROS). An increase in oxidants such as ROS that are not coun-
tered by an increase in antioxidants, leads to oxidative stress in a cell. Since in 
mitochondrial respiration oxygen is the final acceptor for electrons in the formation 
of water, several ROS can arise: the superoxide radical (•O2

−), the hydroxyl radical 
(OH•), and hydrogen peroxide (H2O2). These highly reactive species can damage all 
molecules, and proteins and DNA are particularly susceptible. There are enzymes to 
remove the free radicals, e.g., superoxide dismutase and catalase, but if ROS levels 
become too high, then cellular damage can occur. It is possible that the Warburg 
effect can reduce the level of ROS by increasing the amount of pyruvate produced 
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since pyruvate can scavenge peroxides that result from the action of superoxide 
dismutase; moreover, the pentose phosphate pathway generates NADPH that is 
required for the conversion of glutathione disulfide to glutathione, important in the 
inactivation of hyperoxide. Lastly, the mitochondrial uncoupling discussed above 
may reduce oxidative stress.

An additional component of metabolism was recently found with regard to ROS 
(Anastasiou et al. 2011). Cancer cells, like normal cells, must protect themselves 
from high concentrations of ROS. Proliferation of the transformed cells requires 
reducing power from NADPH to support the biosynthesis of nucleotides and lipids. 
NADPH also acts to maintain glutathione in the reduced state, necessary for homeo-
stasis of ROS. This increased demand for NADPH, supplied in large part through 
the pentose phosphate pathway (Fig. 1.3), was found to be facilitated by ROS- 
mediated oxidation of a particular cysteine on an alternatively spliced form of the 
glycolytic enzyme, pyruvate kinase that functions to convert phosphoenolpyruvate 
to pyruvate. This alternatively spliced form is designated pyruvate kinase M2 
(PKM2) and is expressed in many cancer cells. Oxidation of the cysteine leads to 
enzyme inactivation, thus diverting glucose metabolism into the pentose phosphate 
pathway. This metabolic switch helps ensure synthesis of adequate amounts of 
NADPH to meet the needs for cell proliferation and protection from excess ROS.

The Warburg effect leads to interesting and, at first, paradoxical effects on the pH 
of cancer cells. It seems reasonable to expect the intracellular pH to decrease with 
the higher levels of lactate (lactic acid) and other acidic intermediates in the glyco-
lytic pathway being produced. Yet, the opposite occurs with the intracellular pH 
increasing from its normal value of approximately 7.2 to about 7.4 or even greater. 
While this may appear to be but a minor alteration, it nonetheless represents a sig-
nificant decrease in the concentration of hydrogen ions. Conversely the extracellular 
pH, normally some 7.3–7.4, becomes acidified. This unusual reversal of hydrogen 
ion fluxes can be attributed to increased expression of plasma membrane-associated 
acid transporters such as H+-ATPase, the Na+-H+ exchanger NHE1, and the H+-
monocarboxylate transporter, all of which lead to increased efflux of hydrogen ions 
from the cell interior into the extracellular milieu (Webb et al. 2011). The latter also 
transports lactate out of the cells. Cell surface carbonic anhydrases increase as well, 
these being enzymes that catalyze the important reaction by which carbon dioxide 
(CO2) from respiring cells interacts with water to form carbonic acid (H2CO3); this 
in turn, forms bicarbonate (HCO3

−) and a hydrogen ion (H+) as shown below 
(Reaction 1.9).

 CO H O H CO HCO H2 2 2 3 3+ « « +- +

 (1.9)

This simple reversible reaction can proceed non-enzymatically, but it is greatly 
accelerated by carbonic anhydrase. It shows how much of the carbon dioxide from 
respiring cells/tissues is converted to bicarbonate and how, in the lungs, carbon 
dioxide is formed that can be exhaled. In the vicinity of cancer cells overexpressing 
carbonic anhydrase there can be acidification from increased utilization of carbon 
dioxide, as well as the increase from hydrogen ions pumped from the cells, as fur-
ther discussed in Chap. 8.
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The small shift of the intracellular pH to one more alkaline can have profound 
effects on the cells. Numerous cellular pathways are altered by the pH change, in 
effect favoring cancer cell survival. For example, glycolysis, cell growth, and metas-
tasis are enhanced while apoptosis is inhibited.

While this section has emphasized the alterations in carbohydrate metabolism, 
cancer cells also exhibit changes in other aspects of metabolism. For example, 
increased lipid biosynthesis often occurs in cancer (Yoshii et al. 2014), and lipids 
have been associated with maintaining redox potential in cancer cells, as well as 
enhancing tumor cell proliferation and survival (Santos and Schulze 2012). Altered 
amino acid metabolism and increased protein synthesis also accompany cancer 
development and growth. Recent studies have shown that P53, in addition to its 
known function as a tumor suppressor, is important in regulating glycolysis, oxida-
tive phosphorylation, lipid metabolism, glutamine metabolism and ROS levels in 
non-transformed cells (Liang et al. 2013). Consequently, loss-of-function mutations 
in this gene can contribute significantly to the metabolic derangements in cancer,

In addition to the alterations in the cellular function of cancer cells, there are 
many other genes and pathways, some of which appear at first glance as being 
paradoxical, that can at least partially explain the Warburg effect. Of interest is the 
suggestion that epigenetics contribute to altered cell metabolism (Johnson et al. 
2014). Importantly, what is emerging is a paradigm shift in our understanding and 
appreciation of the Warburg effect in that the metabolic perturbations may be 
important in driving tumor growth and survivability, not just the result of certain 
mutations that hinder carbohydrate metabolism. A comprehensive omics approach 
as discussed in this volume will contribute greatly to our understanding of this 
fundamental observation made many years ago that has withstood the test of time 
and countless studies, and along with genomic and proteomic investigations is sur-
facing again as a likely regulator, not a by-product, of cancer.

1.8  Emerging Roles of Hypoxia, Inflammation  
and Reactive Oxygen Species in Cancer

A general understanding now exists that hypoxia and inflammation are linked in 
cancer as well as in other pathological disorders. Hypoxia can lead to inflammation; 
in turn, inflammation can also lead to hypoxia, both of which can contribute to can-
cer formation and survival (Grivennikov and Karin 2010; Grivennikov et al. 2010; 
Eltzchig and Carmeliet 2011; Shay and Simon 2012; Ji 2014; Gorlach 2014). 
Adding to this pathophysiological interplay, ROS are associated with both hypoxia 
and inflammation, thus inextricably linking these three conditions and cellular com-
ponents to cancer (Gorlach 2014; Costa et al. 2014). ROS, including the superoxide 
anion (O2

−), hydroxyl radical (HO·) and hydrogen peroxide (H2O2), are highly regu-
lated in cells through a combination of generation, e.g., mitochondrial metabolism, 
and elimination, e.g., via a variety of routes such as superoxide dismutases, catalase, 
glutathione peroxidase, thioredoxin and others. There are also reactive nitrogen spe-
cies, but these are not discussed in this section. As briefly mentioned in Sect. 1.7 and 
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discussed further in subsequent chapters, ROS is elevated in cancer and is believed 
to contribute to its initiation and subsequent cell growth (Waris and Ahsan 2006; 
Lu et al. 2007; Liou and Storz 2010; Catalano et al. 2013; Costa et al. 2014).

Hypoxia, or low oxygen tensions, is defined as cellular environments in the 
 presence of 2 % or less oxygen. This is compared to normal, healthy cellular envi-
ronments of oxygen in the range of 2–9 % (except at high altitudes the air we breathe 
is 21 % oxygen). Normal physiological responses to overcome hypoxia in the body 
include increased blood flow and respiration. Under more chronic conditions of 
hypoxia, two related heterodimers, HIF1α/HIF1β and HIF2α/HIF2β, respectively, 
are key players in regulating the myriad cellular responses to low oxygen (Wilson 
and Hay 2011; Shay and Simon 2012).

In normoxic conditions an enzyme, oxygen-sensitive prolyl hydroxylase, 
hydroxylates two prolines in HIF1α, which results in recognition by an E3 ubiquitin 
ligase, the von Hippel-Lindau tumor suppressor. The polyubiquinated HIF is then 
targeted for degradation by the 26S proteosome, thus rendering it inactive at normal 
oxygen tensions. Of interest, the degradation, even under normal oxygen concentra-
tions, can be overcome by mutations in several proteins and by certain signaling 
pathways. As discussed earlier, HIF so stabilized is involved in enhancing glycolysis 
and inhibiting oxidative phosphorylation.

Another enzyme (factor-inhibiting HIF) is also oxygen-dependent and can 
inhibit HIF (via hydroxylation of asparagines on either of the two α subunits). It is 
the combined action of these two enzymes that monitor and respond to oxygen 
deprivation. At low oxygen concentrations prolyl oxidation is reduced and the 
HIF1α subunit accumulates and associates with HIF1β. This HIF1 heterodimer is 
then translocated to the nucleus where it binds to a hypoxia-response element, thus 
transcriptionally activating several genes including those encoding nuclear factor 
κB (NFκB), toll-like receptors (TLRs), VEGFA and other growth factors, glucose 
transporters, most of the glycolytic enzymes (see Fig. 1.2), some enzymes in the 
pentose phosphate pathway (see Fig. 1.3) and others. These HIF-mediated gene 
activations lead to changes in metabolism, one such adjustment being that ATP 
production is shifted from oxidative respiration to glycolysis. This is a result of 
HIF’s role in stimulating gene expression of pyruvate dehydrogenase kinase 1, an 
enzyme that inhibits pyruvate dehydrogenase, the enzyme responsible for the reac-
tion, pyruvate to acetyl-CoA (see Reaction 1.4).

Inflammation refers to a rather detailed and multifaceted process of vascular tis-
sue in response to noxious or harmful stimuli, which can include hypoxia. The dis-
order, recognized some 2,000 years ago in the west by Celsus and Galen, is 
characterized by swelling, pain, redness, heat and loss of mobility (or function of a 
joint). Some of the normal responses of the body to overcome the harmful stimulus 
include vasodilation of the surrounding vessels to permit more blood flow and 
increased vessel permeability to permit leukocytes (mainly macrophages and other 
immune cells), antibodies, fibrin and other components to escape the blood and 
serve in a protective manner at the site of inflammation. Pertinent to our discussion 
is the observation that chronic inflammation can lead to cancer, for example hepatitis 
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B or C viruses give rise to liver cancer, Helicobacter pylori infections can result in 
gastric cancer and tobacco smoking can induce lung and other forms of cancer, to 
mention but a few.

It is now recognized that a number of mechanisms are involved in 
 inflammatory- associated tumorigenesis (Grivennikov and Karin 2010; Grivennikov 
et al. 2010; Wu et al. 2014). Numerous signaling pathways lose their regulatory 
controls and result in pro-inflammatory gene expression related to cancer forma-
tion. Genes so activated include protein kinases, e.g., members of the JAK (Janus-
activated kinase), MAPK (mitogen-activated protein kinase) and PI3K/AKT 
(phosphatidylinositol-3- kinase), thus impacting on cell proliferation. As discussed 
below, immune cells form an integral component of an inflammatory response. 
Moreover, as will be elaborated on later in the book, cancer cells develop an ability 
to escape immune destruction and instead use such cells, e.g., lymphocytes (T and 
B), macrophages, natural killer cells, neutrophils, and others, to produce cytokines 
that can function in a mitogenic or survival role for the developing, as well as estab-
lished, cancer cells. For example, cytokines can activate transcription factors such 
as STAT3 and NFκB that, in turn, can lead to the expression of many genes associ-
ated with tumorigenesis: angiogenic regulators, proliferation mediators and anti-
apoptosis. Lastly, it has been shown that ultraviolet radiation to melanoma produces 
an inflammatory response that leads to metastasis (Bald et al. 2014), again docu-
menting the important role of inflammation in cancer.

Recent studies have shown that hypoxia and inflammation are inextricably 
linked components of cancer. Solid tumors tend to be hypoxic and exhibit features 
of inflammation. For example, the presence of leukocytes in tumors was noted 
about 200 years ago. The main component of immune cells within solid tumors is 
now known to be macrophages, designated macrophage-associated tumors 
(TAMs). Hypoxia can give rise to inflammation; inflamed tissues are often hypoxic. 
Both hypoxia and inflammation trigger a series of biological responses that favor 
cancer growth. As described above, hypoxia of cancer cells, for example, leads to 
the transcriptional activation of NFκB and TLRs, as well as other genes encoding 
proteins involved in the endothelial-to-mesenchymal transition, metastasis, angio-
genesis, cell proliferation (HIF2α, but not HIF1α, increases c-MYC activity) and 
activation of TAMs via secretion of chemokines and cytokines. In addition, 
hypoxia increases ROS and down-regulates DNA repair mechanisms. Similarly, 
leukocytes can be recruited and activated by the hypoxic cancer cells and, more-
over, respond to hypoxia, also via NFκB and TLRs, by secreting chemokines and 
cytokines, as well as additional signals that enhance angiogenesis and other param-
eters favorable for cancer survival and growth. Necrotic cancer cells, acting 
through TLRs, also activate TAMs. Thus, rather than being benign or even negative 
aspects of cancer, hypoxia and inflammation participate in promoting cancer 
growth and metastasis.

Again the case is made for the need of incorporating omics approaches to aid in 
unraveling the many and often overlapping biological processes. The combination 
of experimental and computational biology is required to reduce the often confusing 
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and, at times, paradoxical findings into a rational framework. Then and only then 
can the intricacies of cancer be fully appreciated and individual therapeutic regi-
mens devised.

1.9  Overcoming Apoptosis

For survival all cancer cells must overcome apoptosis, i.e., programmed cell death 
(Elmore 2007). Apoptosis refers to a series of cellular events including plasma 
membrane breakage, reduction in cell volume, swelling of mitochondria, and chro-
matin fragmentation. There are two major pathways involved in apoptosis, namely 
an intrinsic and an extrinsic cascade; in addition, a third pathway, activated by natu-
ral killer (NK) cells and cytotoxic T lymphocytes, serves to lead to apoptosis of 
targeted cells.

The intrinsic pathway will be discussed first. This pathway is initiated by a vari-
ety of non-receptor-mediated factors that activate intracellular signaling pathways. 
These initiators can be quite diverse and include external and internal factors such 
as toxins, radiation, free radicals, viral infections and others. Also, certain proteins, 
e.g., cytokines, can initiate apoptosis simply by their absence, the presence of which 
inhibits apoptosis. The tumor suppressor protein P53 is very much at the center of 
regulating this pathway, as are mitochondria. An important class of proteins is the 
BCL2 family that contains both pro-apoptotic members (BAX, BAK, BID, BOK and 
others) and anti-apoptotic members (BCL2, BCLXL, MCL1 and others). The link 
between P53 and the BCL pro-apoptotic proteins is not well understood, but the 
proteins are known to act on the inner mitochondrial membrane and open the mito-
chondrial permeability transition (MPT) pore with a loss of the mitochondrial trans-
membrane potential and the initial release of cytochrome c, SMAC/DIABLO and a 
serine protease HTRA2/OMI. The heme-containing protein, cytochrome c, interacts 
with APAF1 to make the apoptosome, and this structure activates procaspase-9, a 
member of the caspase (cysteine aspartyl-specific proteases) family of proteases, 
converting it to the enzymatically active form, caspase-9. The activated caspase-9 
then activates the first of the so-called executioner pro-caspases, pro-caspase-3; this 
in turn continues the proteolytic cascade via the activation of pro-caspases 6 and 7. 
These proteases serve to cleave a variety of proteins termed death substrates that 
contribute to the destruction of the cell. Two other mitochondrial proteins released 
in apoptosis are SMAC/DIABLO and HTRA2/OMI, which function to inhibit IAP 
(inhibitors of apoptosis), that otherwise would antagonize caspase-9. Later in apop-
tosis several additional proteins are released from the mitochondria, AIF, endonu-
clease G and CAD, three proteins that are responsible for fragmenting DNA and 
chromatin condensation.

A distinct pathway, the extrinsic pathway, can mediate apoptosis via transmem-
brane receptors (referred to as death receptors) that belong to the superfamily of 
TNF (tumor necrosis factor) receptors. Members of this family include TNFR1, 
FASR, DR3, DR4 and DR5, and these bind, respectively, TNFα, FASL, APO3L and 
APO2 (or TRAIL) that associates with both DR4 and DR5 (also termed TRAILR1 
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and TRAILR2, respectively). The ligands bind to their cognate receptor ectodomain, 
thus triggering a conformational change transmitted through the membrane a cyto-
plasmic death domain, common to all death receptors. The death domain then binds 
and activates a FAS-associated death domain protein (FADD); the complex so 
formed is denoted as a death-inducing signaling complex (DISC). The role of DISC 
in apoptosis is to activate procaspase-8 (or in some cases procaspase-10) that, in 
turn, is responsible for activating pro-caspases 3, 6 and 7. This latter event repre-
sents a converging point for the intrinsic and extrinsic pathways. Moreover, a com-
ponent of the intrinsic pathway can be recruited to enhance the extrinsic pathway. 
Here, BID, a member of the BCL2 family, is activated by caspase 3 and functions to 
open mitochondrial channels, resulting in increased signaling for apoptosis.

The third pathway, also an extrinsic pathway but one requiring NK cells or cyto-
toxic T lymphocytes to initiate apoptosis, acts via two mechanisms. The most com-
mon one acts through the FAS/FASR interaction, and the other involves the proteases 
granzyme A and granzyme B. These enzymes enter the cell after perforin, a pore- 
forming protein that opens a channel into the targeted cell, and trigger apoptosis as 
follows. While both function, it appears that granzyme B is the more common of the 
two pathways. This protease exhibits specificity for cleaving proteins at Asp resi-
dues, and consequently serves to activate procaspase-3 and procaspase-10, as well 
as cleaving intracellular proteins. Granzyme A, acting independently of the caspase 
system, leads to DNA degradation by its actions on two proteins, DNAse NM23H1 
and SET, a nucleosome assembly protein.

These pathways, covered in greater depth elsewhere (Elmore 2007), represent 
challenges that cancer cells must overcome. The many mechanisms used by cancer 
cells to avoid apoptosis are discussed by Weinberg (Weinberg 2012) and reflect a 
multi-faceted approach to escape early destruction by the body. One of these 
responses by a variety of cancer cells is an inhibition, e.g., by overexpression of 
MDM2 resulting in an inactivation of the P53 pathway, thus diminishing its role in 
apoptosis, as well as permitting cells with damaged DNA to progress through the 
cell cycle. The same is true for the RB pathway, hence overcoming the negative 
regulation of the cell cycle exerted by this tumor suppressor protein.

Growth factors such as insulin-like growth factor IGF1 are important in main-
taining cell viability, and these may become overexpressed with a concomitant 
reduction in the expression or activity of the IGF binding proteins (IGFBPs) that 
otherwise would render them ineffective. Among the many intracellular signaling 
pathways activated by IGF, one important one for cancer cells is the activation of 
the PI3K-AKT/PKB pathway that results in anti-apoptotic signals. Another mecha-
nism utilized by cancer cells is the overexpression of survivin, an inhibitor of cas-
pases. An inhibitor of the extrinsic apoptotic pathway such as FLIP is often 
expressed to reduce apoptosis in cancer cells. These are but a few of the many 
changes that have been observed in cancer cells to overcome apoptosis. Indeed, 
cancer cells have devised multiple strategies for minimizing or even abolishing the 
three pathways used by normal cells for programmed death. Obviously there is 
much interest in the design of new drugs that act on these various steps found in 
cancer cells to aid their survival. This is another major area of interest where the use 
of omics can contribute significantly to new treatment options.

1.9  Overcoming Apoptosis
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1.10  Contributions of the Extracellular Matrix  
and Stroma to Cancer

In addition to the changes in the cellular component associated with cancer, there is 
an important non-cellular component, the ECM, as well as the surrounding stromal 
cells, both of which have essential roles in the development and progression of can-
cer. Originally believed to be more of a static unit that maintains tissue integrity, it 
is now recognized that the ECM is vital to normal cellular function and has emerged 
as another key factor of cancer initiation and metastasis (Friedl and Alexander 2011; 
Jinka et al. 2010; Lu et al. 2012; van Dijk et al. 2013). Likewise, the neighboring 
stromal cells (e.g., fibroblasts), immune cells and endothelial cells (reflecting blood 
vessel formation), were originally believed to have no role in cancer, but there are 
now inconvertible data showing that these non-transformed cells contribute signifi-
cantly to cancer progression (Bhowmick et al. 2004; Tripathi et al. 2012; Calona 
et al. 2014; Corteza et al. 2014; De Wevera et al. 2014; Escoté and Fajas 2014; 
Martinez-Outschoorna et al. 2014). Two key properties of ECM are particularly 
important in the current context: (1) a large number of growth factors tend to be 
stored with or linked to ECMs and (2) hyaluronic acid, a component of the ECM, 
has essential roles in all key transitions during carcinogenesis (see Chaps. 6 and 10).

ECM serves as a magnet and storage for a variety of growth factors released into 
the extracellular space, possibly as a way for their protection against degradation 
and to maintain them in close proximity to cells. ECM retains growth factors, e.g., 
bone morphogenetic protein (BMP), epidermal growth factor (EGF), fibroblast 
growth factor (FGF), hepatocyte growth factor (HGF), transforming growth factor 
β (TGFβ) and vascular endothelial growth factor (VEGF), by direct binding with 
ECM proteins such as fibronectin, collagens and proteoglycans (Schultz and 
Wysocki 2009). Biologically this seems logical since ECM serves as the basis for 
tissue cells; when a tissue is injured, the damaged ECM will lease its stored growth 
factors, thus facilitating tissue regeneration and repair.

Constituting a complex network, the ECM contains two main classes of extracel-
lular macromolecules: proteoglycans and fibrous proteins. Several fibrous proteins 
constitute the non-proteoglycan portion, including the glycoproteins collagen, elas-
tin, fibronectin and laminin. Proteoglycans are formed by the covalent attachment of 
glycosaminoglycans to proteins. The one exception is that of hyaluronic acid which 
is not attached to protein. Figure 1.6 shows a schematic illustration of the organiza-
tion of the ECM.

Glycosaminoglycans refer to unbranched polysaccharide chains comprised of 
repeating disaccharide units, one of which is an amino sugar. The major amino sug-
ars in glycosaminoglycans are N-acetyl-d-glucosamine and N-acetylgalactosamine, 
and the adjoining non-amino sugar is generally d-glucuronic acid or l-iduronic acid. 
Hyaluronic acid is a glycosaminoglycan like heparin, chondroitin-4-sulfate, chon-
droitin-6-sulfate, keratin sulfate and dermatan sulfate, and in general, is polydis-
perse and can contain up to some 250,000 units of the disaccharide d-glucuronic 
acid and N-acetyl-d-glucosamine connected in a β(1 → 3) linkage (Fig. 1.7). 
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The disaccharides are connected to each other in a β(1 → 4) linkage. Negatively 
charged due to the COO− group on d-glucuronic acid, hyaluronic acid is a high 
molecular weight polyanion that binds several cations such as K+, Na+ and Ca2+. It 
forms a left- handed helix (single strand), one turn of which contains three disac-
charides. Pertinent to our interest in this volume, fragments of hyaluronic acid, 
cleaved by hyaluronidase, have emerged as important structures in cancer, as will be 
discussed in Chap. 6.

The combination of these complex macromolecular structures yields special 
biochemical, biomechanical and biophysical properties to the ECM. Although 
highly complex in nature, the ECM is nonetheless highly regulated during develop-
ment and tissue homeostasis. Such tight regulation implies well-controlled 

Fig. 1.6 A schematic of extracellular matrix

Fig. 1.7 The structure of the repeating disaccharide, d-glucuronic acid and N-acetyl-d- 
glucosamine, that forms hyaluronic acid
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 transcription, translation and post-translational modifications, and of course 
 remodeling that, for example, may alter the synthesis of one or more components. 
In addition to the regulation of bioactive ECM macromolecules functioning as 
structural and cell interaction components, the expression and/or activation of one 
or more of the ECM degrading enzymes, e.g., matrix metalloproteinases, disinteg-
rin and others, may be changed.

Interaction of the ECM with cells requires a host of macromolecular constitu-
ents. One interaction involves members of the class of proteins denoted as integrins. 
These are heterodimeric (one each of an α and a β subunit) cell surface receptors of 
which 24 are known, formed from 18 α and 8 β subunits. The integrin ectodomains 
exhibit binding specificity for a host of ECM macromolecular ligands, including 
members of the collagen family, fibronectin, laminin, vitronectin and elastin. The 
ECM ligand-integrin complex mediates its action intracellularly via focal adhesions 
in which the ligand-bound integrins form clusters, followed by interaction of the 
integrin cytoplasmic components with a number of cytoskeletal-associated proteins, 
actin, vinculin, talin and others. Such ‘outside-in’ signaling of ECM-cell interac-
tions can lead to activation of a number of intracellular signaling pathways involv-
ing tyrosine kinases, e.g. SRC, focal adhesion kinase (FAK), integrin-linked kinase 
(ILK), extracellular-signal-regulated kinase (ERK) and others, and tyrosine phos-
phatases. A particular integrin, β1, is responsible for interacting with the ECM to 
regulate cell polarity, an important aspect of epithelial cells, particularly relevant to 
their division. Of interest, the complex just described in which integrin serves as a 
link between the ECM and the cell interior can function not only for the transmis-
sion of information from the extracellular milieu to the cell interior, but the various 
intracellular interactions with integrin can affect the type of ECM interaction, i.e., 
signaling from the cell interior to the cell exterior (‘inside-out’ signaling).

Throughout embryonic development and normal tissue differentiation and 
homeostasis, there is close interaction between the epithelial cells and the stromal 
cells. In addition to the important role of epithelial-stromal interaction in normal 
tissue function, such a cooperation functions in pathological states, e.g., wound 
healing and cancer, with elaboration on the latter below.

With this abbreviated introduction, the question arises as to how the ECM and 
stroma affect the initiation, development and metastasis of cancer. For one, the vari-
ous ECM-cell interactions impact on processes critical to cancer such as prolifera-
tion, survival, invasion and migration. An important aspect of tumor initiation and 
progression involves a change in the integrin expression pattern (Jinka et al. 2012). 
Higher levels of expression of several integrins correlate with a host of cellular pro-
cesses conducive to cancer growth and survival: cell proliferation, survival, tissue 
invasion, migration and new blood vessel formation (angiogenesis). The various 
integrins preferentially recognize different components of the ECM, e.g., collagen, 
laminin and fibronectin. These interactions, in turn, lead to activation of a variety of 
signaling cascades, including RAS, SRC and others. Several oncogenes, MYC, SRC 
and RAS, appear to be responsible for the transformation of anchorage-dependent 
cell growth (normal cells) to anchorage-independent cell growth (cancer cells), 
which is discussed in detail in Chap. 6.
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Changing our focus to the stromal fibroblasts, it has been known for some time 
that cancer-associated fibroblasts differ from normal fibroblasts (Tripathi et al. 
2012). For example, cancer-associated fibroblasts can respond to transformed epi-
thelial cells with increased production of proteases, growth factors and collagen; 
moreover, the loss of transforming growth factor-β (TGFβ) on fibroblasts can serve 
as initiators of tumorigenesis. The stroma also responds to secretion of VEGF by 
cancer cells, a necessary event in the promotion of new blood vessels to provide 
blood-borne nutrients for a growing tumor and for colonization to distant sites.

In summary, the interactions of epithelial cells with the ECM and stroma contrib-
ute to the formation and growth of epithelial cell cancer, as further discussed in 
multiple chapters of the book. A better understanding of the various players and 
mechanisms could lead to new therapeutic modalities.

1.11  Challenging Questions in Classifying  
and Diagnosing Cancer

With the plethora of potential causes of cancer, ranging from metabolic alterations, 
hypoxia, inflammation, genomic changes and other changes, coupled with the 
known heterogeneity of this disease, it should be no surprise that attempts to consis-
tently classify the extent and severity of cancer are challenging. In large part, the 
identification is based on the site of origin, the appearance of the cells, again com-
promised to some extent by the heterogeneity of cancer, and its spread to distant 
sites (often not known). This section provides a synopsis of the current methods in 
use for cancer diagnosis, grading and staging; a more detailed discussion and the 
introduction of emerging omic contributions are presented in Chap. 3.

Complementing the physical examination, there are a number of techniques in 
current use to aid in the identification of cancer. These include mammography, 
positron emission tomography (PET scanning), magnetic resonance (MR) imaging, 
and in some instances radiographic analysis and measurement of biomarkers, e.g. 
concentration of circulating prostate specific antigen (PSA). The final diagnosis is, 
however, based on pathological examination of tissue sections from biopsy or 
resection.

A specimen is judged to be benign or malignant and is then graded. The pur-
pose of cancer grading is to provide an assessment of how abnormal the cells 
appear and indicate possible treatment modalities. In addition to visual inspection 
of the section, immunocytochemistry is often used to identify the presence of cer-
tain markers that impact on treatment and prognosis, e.g. estrogen receptor in 
breast cancer. Grading of most solid tumors is done using one of four possibilities, 
although prostate cancer grading is based on a different scale. Aside from GX 
which indicates that the grade cannot be assessed, grading will lead to one of the 
following, where high grade tumors require more aggressive treatment than low 
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grade tumors: G1: well differentiated (low grade); G2: moderately differentiated 
(intermediate grade); G3: poorly differentiated (high grade); and G4: undifferenti-
ated (high grade).

Cancer staging, on the other hand, is an assessment of the severity of an 
 individual’s cancer, and the stage assigned influences the choice of treatment and 
provides some information of the prognosis. The following components impact of 
the staging: tumor size and location, lymph node involvement, cell type and 
 metastasis. The TNM staging system refers to the following three elements: T: 
extent of the tumor; N: whether or not the cancer cells are present in close proximity 
in lymph nodes; and M: whether metastasis has occurred.

The extent of the tumor, aside from TX (the primary tumor for whatever reason 
cannot be evaluated) or T0 (there is no evidence of a primary tumor), is given as Tis, 
referring to carcinoma in situ where the abnormal cells are localized and have not 
spread to other sites, or one of four designations: T1, T2, T3 and T4, reflecting the 
size and extent of the primary tumor. The regional lymph nodes, i.e., in close prox-
imity to the primary tumor, can be designated as NX in which the neighboring 
lymph nodes cannot be evaluated; N0 which specifies that lymph nodes in the 
immediate vicinity are not involved; and N1, N2, N3, indicating the number of 
lymph nodes showing involvement. Distant metastasis is represented by MX, M0 or 
M1, referring to metastasis that cannot be evaluated, no metastasis, or the presence 
of metastasis, respectively.

It is mentioned only in passing that this staging method is not used for all can-
cers, but it covers the majority of solid tumors. Yet, the current grading and staging 
systems are quite subjective in many aspects and woefully inadequate in fully char-
acterizing the important genetic changes leading to the particular molecular and 
cellular alterations in transformed cells; moreover, they lack discriminatory power 
when making choices for adjuvant treatment and for predicting likely outcomes 
with any degree of confidence.

The landscape of cancer characterization is rapidly changing with individual 
genome sequencing and the use of many of the omics techniques in this volume 
(Cowin et al. 2010). For example, a comprehensive study of breast cancer from 510 
tumors obtained from 507 patients was conducted using a variety of methods: 
exome sequencing, microRNA sequencing, DNA methylation, genomic DNA copy 
number arrays, mRNA arrays and reverse-phase protein arrays (The Cancer Genome 
Atlas Network 2012c). Upon combining data from five platforms, they were able to 
classify four major classes of breast cancer in their starting population.

Studies such as this, now in the experimental stages, will surely emerge in time 
to offer a more meaningful and systematic classification of all cancers. Such detailed 
characterization should also prove very useful in deciding on treatment options and 
providing better prognoses for likely outcomes and disease recurrence. Detailed 
data of this type will also prove useful in distinguishing driver from passenger muta-
tions and hopefully will provide specificity in seeking specific biomarkers in serum 
or urine.
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1.12  Concluding Remarks

Cancer is a multi-faceted disease, a full understanding of which requires knowledge 
and information that span a number of scientific disciplines including biochemistry, 
genetics, and molecular, cellular and developmental biology. The material covered 
in this chapter on biochemistry and molecular and cellular biology provides the 
basic knowledge for the reader to follow the discussions in later chapters and to 
critically assess and utilize the material presented throughout the book for the 
 reader’s own research. It is worth emphasizing that cancer is a rapidly evolving 
system, so that the knowledge learned here, such as biochemical reactions or molec-
ular interactions, is applicable to individual snapshots of an evolving system. 
Specifically, the environments where the biochemical reactions and molecular inter-
actions take place continue to change. As the environment changes, the catalysts of 
these reactions and interactions will be altered according to the instructions encoded 
in the genome and the epigenome in response to the intra- and extracellular condi-
tions, such as the oxygen level, the oxidative stress, the pH and a few others, which 
are determined by invading endogenous factors, immune responses, cellular metab-
olism, the genome and epigenomes of the relevant cells. Basically attention is drawn 
to the study of a dynamic biochemical reaction system. Superimposed upon this 
evolving cellular reaction system for individual cells, changes also occur at the can-
cer tissue level, which selects certain cells, and hence their reaction systems that 
best fit the current environment, and eliminate the others, i.e., Darwin’s natural 
selection theory at work. Specifically, a cancer tissue is constantly changing its cell 
population by amplifying one sub-clone and inducing the demise of the other sub- 
clones as the disease evolves. The knowledge learned here is applicable to each 
snapshot as a static reaction system, and the information presented in Chaps. 3 
through 13 will guide the reader to connect the snapshots along the possible evolu-
tion trajectories from multiple perspectives.
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    Chapter 2   
  Omic  Data, Information Derivable 
and Computational Needs 

                    Cancer is probably the most complex class of human diseases. Its complexity lies 
in: (1) its rapidly evolving population of cells that drift away from their normal 
functional states at the molecular, epigenomic and genomic levels, (2) its growth 
and expansion to encroach and replace normal tissue cells; and (3) its abilities to 
resist both endogenous and exogenous measures for stopping or slowing down its 
growth. According to Hanahan and Weinberg, cancer cells, regardless of the type, 
tend to have eight hallmark characteristics (Hanahan and Weinberg  2011 ). As intro-
duced in Chap.   1    , these hallmarks are: (1) reprogrammed energy metabolism, (2) 
sustained cell-growth signaling, (3) evading growth suppressors, (4) resisting cell 
death, (5) enabling replicative immortality, (6) inducing angiogenesis, (7) avoiding 
immune destruction, and (8) activating cell invasion and metastasis. Other authors 
have suggested some additional hallmarks of cancer such as tumor-promoting 
infl ammation (Colotta et al.  2009 ) and deregulated extracellular matrix dynamics 
(Lu et al.  2012 ). These recognized hallmarks have provided an effective framework 
for addressing cancer-related questions, having led to a deeper understanding of 
this disease. However, the reality is that our overall ability in curing cancer has not 
yet made substantive improvements, particularly in adult cancers that account for 
99 % of all cancers since the start of the “War on Cancer” in 1971 (The-National-
Cancer- Act  1971 ). 

 Major challenging issues that clinical oncologists have to deal with include not 
only considerable heterogeneity and different genetic backgrounds even within the 
same type of cancer, but also that effective medicines tend to lose their effi cacious-
ness within a year, or often within a few months. A natural question to pose is: 
 What are the reasons for this loss of effectiveness ? Intuitively this is due to a can-
cer’s ability to evolve rapidly, particularly in terms of generating drug-resistant 
sub- populations, which is facilitated by its abilities to proliferate and to accumu-
late genomic mutations rapidly. However, such an answer, plausible as it may be, 
has possibly missed the real root issue:  Why do these cells divide so rapidly in the 
fi rst place ? 
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 The  Red Queen Hypothesis , proposed by Leigh Van Valen in 1973, may provide 
a good framework for studying this and other cancer-related fundamental issues 
from an evolutionary perspective. The hypothesis states:  an adaptation in a popula-
tion of one species may change the selection pressure on a population of another 
species, giving rise to an antagonistic coevolution  (Valen  1973 ). When in this frame 
of thinking, one may be inspired to ask:  What specifi c selection pressures must the 
evolving neoplastic cells overcome, pressures that may drive their rapid prolifera-
tion ? Currently we do not have an answer to this question yet. Among the many 
reasons that our knowledge is so sparse has been the lack of molecular-level data, 
full analyses and mining of which can potentially reveal the full complexity of an 
evolving cancer. While large quantities of  omic  data such as gen omic , epigen omic , 
transcript omic , metabol omic  and prote omic  data have been generated for a variety 
of cancer types, only a few cancer studies have been designed to take full advantage 
of all the information derivable from the available  omic  data (Cancer-Genome- 
Atlas-Research  2008 ,  2011 ,  2012a ,  b ,  c ,  2013a ,  b ; Kandoth et al.  2013 ). Integrative 
analyses of multiple data types may prove to be essential to gain a full and 
 systems- level understanding about a cancer’s evolution dynamics, including the 
elucidation of its true drivers as well as key facilitators at different developmental 
stages of a cancer. We anticipate that only when all of the key information hidden in 
 omic  data can be fully derived and utilized can we expect a meaningful breakthrough 
in our understanding of cancer. 

2.1      Genomic Sequence Data 

 The Human Genome Project was initiated in 1986 by the US Department of Energy 
and the National Institutes of Health, which ultimately led to the generation of the 
fi rst digital copies of two complete human genomes in 2001 (Lander et al.  2001 ; 
Venter et al.  2001 ), one by government agencies and one by a private organization. 
For the fi rst time in history, the three billion base pairs (bps) of nucleotides compris-
ing a complete human genome are represented in a digital form, directly readable by 
humans and computers, allowing researchers and clinicians to view and analyze the 
detailed genetic makeup of two healthy humans. This singular achievement has pro-
foundly changed biological and medical sciences, clearly representing the most sig-
nifi cant discovery since the fi nding of the double-strand helical structure of DNA in 
1950s. Complementing and extending the invaluable genome sequence data, the 
major change that the Human Genome Project has brought about is that genetic sci-
ence is now equipped with two powerful tools: rapid genome-sequence generation 
and computation-based information discovery from the genomic sequences. These 
tools along with the advances they have helped to make in the biological sciences, 
have fundamentally transformed the science of genetics, which is now data-rich and 
quantitative. This transition has attracted and continues to attract many mathemati-
cal and computational scientists to study problems related to genomes and other bio-
molecules represented in digital forms. The progress made has further transformed 
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the general biological sciences and has substantially advanced our overall ability to 
study more complex biological problems than could be done before the  omic  era. 

 With the public availability of digitally represented human genomes in hand, 
scientists have computationally identifi ed the vast majority of the ~20,000 protein- 
encoding genes in our genome, along with large numbers of single-nucleotide poly-
morphisms (SNPs) and other types of genetic variations across individuals and 
different ethnic groups as well as various disease groups. Targeted sequencing of 
specifi c genomic regions deemed to be relevant to certain diseases has led to the 
identifi cation of numerous genetic markers for multiple diseases. For example, 
Down syndrome is now understood to be caused by an extra copy of chromosome 21. 
A few additional examples include: (1) adrenoleukodystrophy, a progressive degen-
erative myelin disorder caused by mutations in the  ABCD1  (ATP-binding cascade 
subfamily D) gene, which was made popular because of the movie “Lorenzo’s Oil” 
in the early 1990s; (2) a class of hereditary breast cancers caused by mutations in 
the  BRCA  (breast cancer) genes; (3) familial hyperlipidemia attributable to  mutations 
in the  APC  (adenomatous polyposis coli) gene; and (4) frontotemporal dementia, a 
form of inherited dementia, caused by mutations related to the splicing of exon 10 
of the  Tau  gene (D’Souza et al.  1999 ). All these were detected through genome- 
scale or targeted gene sequencing and associated sequence analyses. 

 In addition to the Human Genome Project, a number of closely related genome 
sequencing projects have been established to provide a more comprehensive dataset 
for the human genome(s): (1) the Human Genome Diversity Project to document 
genomic differences across different ethnic groups (Cavalli-Sforza  2005 ); (2) the 
Human Variome Project to establish relationships between human genomic varia-
tions and diseases (Cotton et al.  2008 ); (3) the International HapMap Project to 
develop a haplotype map of the human genome (International-HapMap  2003 ); (4) 
the 1000 Genome Project to establish a detailed catalog of all human genetic varia-
tions (Service  2006 ); and (5) the Personal Genome Project to sequence the complete 
genomes and establish the matching medical records of 100,000 individuals (Church 
 2005 ). All these sequencing projects, along with other related ones, such as the 
Neanderthal Genome Project (Green et al.  2010 ) and the Chimpanzee Genome 
Project (Cheng et al.  2005 ; Green et al.  2010 ), could provide a comprehensive view 
of the genomes of healthy humans with normal polymorphisms as well as mutations 
associated with various diseases. 

 The Cancer Genome Atlas (TCGA) represents probably the most ambitious 
cancer- genome sequencing project, which aims to sequence up to 10,000 cancer 
genomes covering 25 major cancer types by 2014 and make the data publicly avail-
able (Cancer-Genome-Atlas-Research et al.  2013 ). Such data will provide a sub-
stantial amount of information about cancer-related genomic mutations. By 
comparing the genome sequences of a cancer and the matching normal tissue, one 
can identify all the genomic changes in the cancer genome, which generally fall into 
two categories: simple and complex mutations. Specifi cally,  simple  mutations refer 
to single base-pair mutations and DNA single or double-strand breaks; and  complex  
mutations refer to duplications and deletions (together referred to as  copy-number 
changes ), translocations and inversions of genomic segments. Simple mutations can 
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result from exogenous factors such as radiation, air-borne and food-related 
 carcinogens in the environment, as well as from endogenous factors in the microen-
vironments inside our bodies, including ROS (reactive oxygen species) and other 
reactive metabolites plus random mutations. For example, ionizing radiation, 
including X-rays and gamma rays, can directly cause point mutations and DNA 
breaks. In addition, a variety of non-radioactive carcinogens have been identifi ed 
that can damage DNA, including microbes, chemical compounds in the environ-
ment and reactive species inside our cells, as detailed in Chap.   5    . Free radicals rep-
resent a large class of internal, potentially carcinogenic agents that are highly 
reactive molecules and can participate in undesired reactions, causing damages to 
cells and specifi cally to DNA. Infi delity of transcription and/or repair can also lead 
to simple mutations. While these carcinogens can produce simple DNA damages, it 
is the faulty or imprecise DNA replication and repair machineries that lead to the 
complex mutations, namely undesired duplications, deletions, inversions and trans-
locations of large DNA segments. 

 There are multiple situations that can result in such complex genomic mutations. 
For example, under persistent hypoxic conditions, cells tend to use emergency 
mechanisms to repair simple mutations, but the inaccuracy of such mechanisms can 
lead to complex mutations as defi ned above (Scanlon and Glazer  2013 ). Here we 
outline one such mechanism, named  microhomology-mediated end joining  (MMEJ) 
for repairing double-strand DNA breaks, through which undesired DNA copy- 
number changes, inversions and translocations can result (Truong et al.  2013 ). Like 
the regular repair mechanism for double-strand breaks, MMEJ uses the sister chro-
mosome as the template to replace the region with a break. The difference is that it 
uses a much shorter homologous region in the sister chromosome, typically 5–25 bps 
rather than the usual 200 bps required by the normal DNA repair mechanism, hence 
the designation microhomology-mediated. While the advantage is that this mecha-
nism is substantially faster than the regular DNA repair machinery, which is needed 
under certain emergency conditions, it is error prone due to the less stringent 
requirement for fi nding the equivalent region in the sister chromosome, thus leading 
to various complex mutations (Bentley et al.  2004 ). This mechanism is used only 
under highly stressful conditions when the regular DNA repair mechanisms are 
functionally repressed (Bindra et al.  2007 ), and hence is often used in cancer- 
associated environments. 

 Knowing how different genomic mutations occur, one could possibly develop 
computational models to infer the evolutionary history of the mutations observed in 
a cancer genome from the matching reference genome. The idea is that one can fi rst 
identify all the genomic differences between a cancer genome and the matching 
reference genome. For each identifi ed complex mutation, one can apply a mechanis-
tic model like the one outlined above (or from the literature) to predict how it occurs 
from the previous generation of the genome, while simple mutations can be assumed 
to take place randomly according to some stochastic models. It is worth noting that 
some of the evolutionary intermediates (mutations) may or may not be present in the 
cancer genome, due to the possibilities that some portions of the genome might have 
been deleted during evolution. In addition, it should be emphasized that such an 
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approach (even when taking into consideration the other emergency DNA repair 
mechanisms) may not necessarily yield a unique evolutionary path from the refer-
ence to the cancer genome. One possible way to constrain this phylogenetic recon-
struction problem to a solution space as small as possible is to fi nd such a path under 
the parsimony assumption (Steel and Penny  2000 ), as often used in phylogenetic 
reconstruction algorithms. Specifi cally one can require that the predicted evolution-
ary path have either the smallest number of generations or the highest consistency 
with the occurrence probabilities of different types of mutations as documented in 
the literature. As of now, no such algorithms have been published for making evolu-
tionary path predictions, but the need for such tools is clearly there in order to 
understand the evolution of a cancer genome. 

 Various other types of information may also be derivable from cancer genomes, 
such as: (1) oncogenes and tumor suppressor genes (see Chap.   1     for defi nition) that 
may be specifi c to a particular cancer type. Examples include gene fusions as in the 
case of the Philadelphia chromosome for chronic myelogenous leukemia (CML) 
(Nowell and Hungerford  1960 ); (2) potential integration of microbial genes into the 
cancer genomes as in the case of hepatitis B virus genes integrated into the host 
genome; (3) biological pathways that are enriched with genetic mutations in a par-
ticular cancer, leading to the loss of function at the pathway level; and (4) changes 
in mutation patterns as a cancer advances. 

 By systematically identifying mutations in the genomes of multiple patients of 
the same cancer type, one can identify biological pathways enriched with such 
mutations, using analysis tools like DAVID (Huang et al.  2009 ) against pathway 
databases such as KEGG (Kanehisa et al.  2010 ,  2012 ,  2014 ), BIOCARTA 
(Nishimura  2001 ) or cancer-related gene sets (Forbes et al.  2011 ; Chen et al.  2013 ; 
Zhao et al.  2013 ). For example, a study, published in 2007 on genomic mutations 
observed across 210 cancer types, discovered that the pathway having the highest 
enrichment with non-synonymous mutations is the  FGF  (fi broblast growth factor) 
signaling pathway, revealing one commonality among changes needed by cancer 
evolution across different cancer types (Greenman et al.  2007 ). With such informa-
tion, one can further infer which cellular processes need to be terminated or become 
hyperactive in any specifi c order as a cancer evolves, hence possibly developing 
new insights about the evolutionary paths unique to particular cancer types or com-
mon among all cancer types.  

2.2      Epigenomic Data 

 Epigenomic data provide information about all the chemical modifi cations on the 
genomic DNA and associated histone proteins in a cell, namely  DNA methylation  
and  histone modifi cation , among a few other less studied epigenomic activity types. 
While epigenetic analyses are not new, it is the high-throughput array and sequenc-
ing techniques that have made such analyses at a genome scale possible and have 
clearly advanced our overall capabilities to study cancer. 

2.2  Epigenomic Data
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 DNA methylation is a process by which a methyl group is added to the carbon 5 
position of cytosine residues (C) in CpG dinucleotides. This is accomplished 
through a group of enzymes known as  DNA methyl-transferases , the reactions of 
which can be reversed by another group of enzymes termed  DNA demethylases . 
When a CpG region is highly methylated, they attract a group of enzymes called 
histone deacetylases that will initiate chromatin remodeling to change the local 
structure of the DNA, hence changing its accessibility to large molecular structures 
such as the transcription machinery, RNA polymerase. Since long CpG regions 
(denoted as  CpG islands ) tend to be associated with the promoters of genes, meth-
ylation of such regions represses the expression of the genes. 

 Histones are proteins that bind with DNA to form the basic folding units, denoted 
as  nucleosomes , of chromatin, as introduced in Chap.   1    . The packing density of 
chromatin is closely related to the transcriptional state of a gene, i.e., lower packing 
density implying higher transcriptional activity. Cells change their chromatin struc-
tures through post-translational modifi cations on the relevant histones, including 
acetylation, deamination, methylation, phosphorylation, SUMOylation and ubiqui-
tination. The understanding is that interactions between histones and DNA are 
formed by electrostatic attraction between the positive charges on the histone sur-
face and the negative charges on DNA. Consequently, modifi cations on histones 
may change the charges of the surface residues, possibly changing the conformation 
and the transcriptional accessibility of a folded DNA and ultimately enhancing or 
repressing expression of the relevant genes (Strahl and Allis  2000 ; Kamakaka and 
Biggins  2005 ). Another mechanism is through recruiting and applying chromatin 
remodeling  ATPases , where histone modifi cations can lead to disruptions of  ATPase  
attraction to the chromatin, hence altering the DNA’s physical accessibility to the 
RNA polymerase (Vignali et al.  2000 ). 

 Various techniques have been developed to reliably capture DNA methylations 
and histone modifi cations at a genome scale. Among the assays that have been used 
for detecting methylations is the  bisulfi te  sequencing technique (Yang et al.  2004 ). 
By converting each methylated C to a T and removing the methylation, the bisulfi te 
method utilizes the current sequencing techniques to produce the modifi ed sequence 
and then recovers the methylation locations through comparisons between the 
sequenced Ts and Cs at the same locations in the original DNA and the modifi ed 
DNA done as above. 

 Histone modifi cation sites can be detected using the ChIP-chip array technique 
(Huebert et al.  2006 ), which has previously been used to identify the binding sites 
of transcriptional factors. The difference here is to detect the DNA binding sites 
with histones relevant to the packing of DNA. Comparisons between the identifi ed 
DNA binding sites under different conditions can lead to the identifi cation of modi-
fi ed chromatin structures. The advancement of sequencing techniques in the past 
few years has led to the development of the second generation ChIP technique, 
namely  ChIP-seq , which can provide more quantitative and reliable data about his-
tone modifi cation sites. 

 From either of the two types of epigenomic data, one can infer genes that are 
primed to be repressed or enhanced transcriptionally at the epigenomic level. 
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These data, in conjunction with other  omic  data such as transcriptomic and genomic 
 information, can be used to derive association relationships between epigenomic 
activities and the cellular as well as micro-environmental states. This can lead to 
identifi cation of possible triggers and regulatory pathways of different epigenomic 
activities. Information of this type is clearly needed since, although numerous 
epigenomic effectors such the enzymes for DNA methylation and histone modifi -
cations have been identifi ed, very little is known about the regulation of these 
effectors and under what conditions a specifi c set of genes will be methylated. As 
discussed in Chap.   9    , epigenomic level changes can be considered as an intermedi-
ate step between (reversible) functional state changes of effector molecules and 
(permanent) genomic mutations. A detailed discussion regarding the possible rela-
tionships among these three types of changes needed by evolving cancer cells is 
given in Chap.   9    . 

 A number of large-scale epigenomic sequencing projects have been initiated 
with similar ambitious goals to those of the genome sequencing projects outlined in 
Sect.  2.1 . These projects include: (a) the NIH Roadmap Epigenomics Program, 
which started in 2008 with the aim of producing histone modifi cation data for over 
30 types of modifi cations in a variety of human cell types; (b) a component of the 
ENCODE (Encyclopedia of DNA Elements) project launched by the US National 
Human Genome Research Institute aiming as part of its goal the characterization of 
the epigenomic profi les of 50 different tissue types; (c) the International Human 
Epigenome Consortium having its goal to build on and expand the NIH Epigenomics 
Program to include nonhuman cells and tissues, and to make it a functional interna-
tional program; and (d) some regional epigenomics projects such as the “Epigenetics, 
Environment and Health” project in Canada and the Australian Alliance for 
Epigenetics. A number of human epigenomic databases have been developed as the 
result of these and related projects (see Chap.   13     for details).  

2.3     Transcriptomic Data 

 The advent of microarray technology in the mid-1990s has made it possible to mea-
sure in real time the expression levels of all the genes encoded in the human genome 
under defi ned cellular conditions. This methodology also applies to other genomes 
as long as their protein-encoding genes are known. This is one of the high- throughput 
techniques that has clearly fueled the revolution in biological sciences that we have 
been witnessing since the start of the Human Genome Project. 

 Comparative analyses of gene-expression data of cells collected under different 
controlled conditions or on disease  versus  control tissues can provide a large amount 
of information useful for studying human diseases at the molecular and the cellular 
levels. For example, by comparing gene-expression levels in a lung cancer tissue 
with those in the adjacent healthy tissue of the same patient, one can identify dif-
ferentially expressed genes in the lung cancer  versus  the healthy lung. While not 
necessarily all the differentially expressed genes are directly relevant to cancer, this 
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information provides a basis for further inference of genes that may be directly 
relevant to cancer. For example, one can compare such sets of differentially 
expressed genes across multiple patients of the same cancer type to eliminate those 
genes whose differential expressions are specifi c to a few individuals or cancers at 
a specifi c developmental stage. That is, one can identify genes that may be most 
essential to the development of a cancer type through the identifi cation of genes that 
are commonly differentially expressed across all or the majority of the patients of 
the cancer type examined. 

 When applied in conjunction with pathway-enrichment analysis, particularly 
against the eight cancer-hallmark related pathways mentioned earlier, one can iden-
tify hallmark pathways enriched with up-regulated (or down-regulated) genes in a 
specifi c type of cancer. If the cancer data also have the stage information, one can 
further derive information about how each of the cancer hallmarks is executed at the 
molecular and cellular levels for this cancer type and in what order. By comparing 
such information across multiple cancer types, one can possibly detect which 
 relative orders among the observed hallmark events are essential and which are 
coincidental. And by comparing such data between two subgroups of patients of the 
same cancer type, for example one with smoking histories and the other without, 
one can possibly derive how smoking may have contributed to the development of 
individual hallmark events. Similar analyses can be used to discover possible con-
tributions by other lifestyle habits. 

 Actually, much more information can be derived through analyses of cancer tran-
scriptomic data. For example, tiling array is a variation of the gene-expression tech-
nique used to detect DNA-binding sites of specifi c proteins through ChIP-chip 
experiments, hence making it possible to identify transcription regulators of specifi c 
genes under particular conditions (Ren et al.  2000 ; Iyer et al.  2001 ). RNA-seq is the 
new generation of techniques for transcriptomic data collection (Wang et al.  2009 ). 
It refers to the use of high-throughput technologies to sequence cDNAs that are 
reversely transcribed from the expressed RNA molecules. By doing deep sequenc-
ing, the dynamic range of RNA-seq can span fi ve orders of magnitude, substantially 
larger than those of microarray-based techniques. This allows more accurate identi-
fi cation of differentially expressed genes, particularly those that tend to express at a 
relatively low or high level and where changes tend to be relatively small but statis-
tically signifi cant, such as those often observed with transcription factors. In addi-
tion, RNA-seq techniques are digital in nature, in comparison with the analog 
signals provided by microarrays. One advantage of digital signals is that the result-
ing measurements are more repeatable compared to analog signals and less prone to 
be affected by the experimental environments. The biggest advantage of RNA-seq 
data over microarray data is that it contains all the information about alternatively 
spliced variants since they do not rely on short sequence probes as in microarrays, 
instead producing the entire sequence for each transcript. Such information allows 
one to derive all splicing variants in specifi c cancers and cancer stages, thus enabling 
more detailed functional mechanism studies. 

 A few computer programs have been developed and made publicly available for 
inference of splicing variants based on RNA-seq data, such as Cuffl inks, which 
requires a reliable reference genome for its inference of splicing isoforms (Trapnell 
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et al.  2010 ). Another popular transcript-assembly program, Trinity, is a  de novo  
method, i.e., no reference genome is required (Grabherr et al.  2011 ), but at the 
expense of less reliable assembly results compared to Cuffl inks. The limitation of 
Cuffl inks and similar programs is that they may not necessarily work well on cancer 
RNA-seq data when the underlying cancer genome is not available, which could be 
substantially different from the matching genome of healthy cells since cancer 
genomes tend to have large numbers of genomic reorganizations such as transloca-
tions, copy-number changes and inversions, as well as breaks as discussed in 
Sect.  2.2 . Thus, more effective computational techniques are clearly needed for 
inference of splicing isoforms from cancer RNA-seq data. 

 Presently, a number of databases for microarray and RNA-seq gene-expression 
data have been developed and are publicly available. For example, GEO is a general- 
purpose gene-expression database consisting of both cancer and other tissue types 
(Edgar et al.  2002 ). A cancer-centric genome database that also contains epigenomic 
and transcriptomic data for numerous cancer types is TCGA (Cancer-Genome- 
Atlas-Research et al.  2013 ). Gene Expression for Pediatric Cancer Genome Project 
is a gene-expression database developed specifi cally for pediatric cancers (Downing 
et al.  2012 ). Overall these databases have genome-scale transcriptomic data for over 
200 different types of cancer tissues and a substantially larger number of cancer cell 
lines. A tremendous amount of information could potentially be derived through 
comparative analyses of these data across different cancer types and cancers at vary-
ing stages or of distinct malignancy grades (see Chap.   3    ). For example, by simply 
plotting the average number of differentially expressed genes across cancer samples 
 versus  the 5-year survival rate for each of the following nine cancer types: mela-
noma, pancreatic, lung, stomach, colon, kidney, breast, prostate cancers and basal 
cell carcinoma, one can see that there is a close relationship between these two 
numbers (see Fig.  2.1 ).

  Fig. 2.1    The 5-year (y-axis) survival rate for each cancer type  versus  the average number of dif-
ferentially expressed genes per cancer sample (x-axis) (adapted from (Xu et al.  2012 ))       
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   By examining the average up- or down-regulation levels of genes in selected 
pathways of different cancer types, it is possible to derive information about acti-
vated energy metabolism in different cancer types, which vary from glucose- to 
lipid- to amino acid-based. As an example, Fig.  2.2  shows the activity levels of 
multiple energy producing metabolic pathways, covering glycolysis, the TCA cycle, 
oxidative phosphorylation and fatty acid metabolism in nine cancer types. One can 
see from the fi gure that pancreatic cancer has the highest up-regulation in glucose 
metabolism, followed by kidney and lung with breast cancer having the least 
changes in glucose metabolism when compared with their matching control tissues. 
One can also see that, while most of the seven cancer types on the left show down- 
regulation or no changes in oxidative phosphorylation, both skin cancer types, 
namely melanoma and basal cell carcinoma, show up-regulation in this pathway. 
[ N.B.   Throughout this book, all the analyses of transcriptomic data across different 
patients samples are properly normalized, hence comparisons among fold-changes 
of genes across different samples are meaningful  . ]

   A variety of computational techniques have been developed for information deri-
vation from gene-expression data, including: (1) identifi cation of differentially 
expressed genes using simple statistical tests such as T-test or Fisher’s exact test, (2) 
clustering analysis, (3) bi-clustering analysis and (4) pathway enrichment analysis 
for differentially expressed genes. The following discussion provides some basic 
ideas about these analysis techniques, followed with a list of novel techniques for 
more advanced analysis needs. 

2.3.1     Data Clustering 

 Identifi cation of co-expressed genes is a basic technique for gene-expression analy-
sis, which has a wide range of applications in cancer studies. The idea is to identify 
all genes whose expression patterns exhibit statistical correlations over a time 
course (typically for cell line-based data) or among a collection of samples; such 
genes are called  co-expressed genes . There are numerous online tools for identifi ca-
tion of co-expressed genes such as DAVID, CoExpress (Nazarov et al.  2010 ) and 
GeneXPress (Segal et al.  2004 ). Co-expressed genes may suggest that the genes are 
transcriptionally co-regulated even though some co-expressed genes appear coinci-
dentally, particularly when the number of conditions or the number of samples is 
small. One way to computationally “validate” such a prediction is through identifi -
cation of conserved  cis  regulatory motifs within the promoter sequences of the co- 
expressed genes (Liu et al.  2009 ). The rationale is that if these genes are indeed 
co-regulated transcriptionally, they should share conserved  cis  regulatory elements 
for binding with their common transcription regulators. From the predicted co- 
expressed genes and  cis  regulatory motifs, one can predict with confi dence that 
these genes are transcriptionally co-regulated, and even possibly predict their main 
transcription regulators using tools such as those by Essaghir et al. ( 2010 ) or by 
Qian et al. ( 2003 ).  
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  Fig. 2.2    Gene-expression levels associated with the energy metabolism of glucose (both glyco-
lytic fermentation and oxidative phosphorylation) and fatty acids plus the TCA cycle in nine can-
cer types. The y-axis is a list of genes involved in four metabolic pathways: oxidative 
phosphorylation, fatty acid metabolism, TCA cycle and glycolysis; and the x-axis is a list of nine 
cancer types, including three stages of basal cell carcinoma (BCC) and melanoma, respectively. 
Each entry is the average log-ratio of expression levels between cancer samples and the matching 
control samples in different cancer types. The side-bar on the  right  shows the gray-level code for 
the expression level changes, with “ gray ” indicating down-regulation, “ white ” for no change and 
“ black ” denoting up-regulation. Adapted from (Xu et al.  2012 )       
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2.3.2     Bi-clustering Analysis 

 Bi-clustering is a generalized form of clustering analysis, which aims to identify 
co-expressed genes among some to-be-identifi ed subgroups of samples, but not 
among all samples. Such a technique is particularly useful for discovering sub- 
types, stages or grades of a cancer (see Chap.   3     for details). Figure  2.3  shows one 
example of signature genes for gastric cancer stages identifi ed through a bi-
clustering analysis. Specifi cally, 42 genes are found to exhibit distinct patterns 
for a group of 80 gastric cancer samples (one sample from each patient) grouped 
according to their stages (Cui et al.  2011 ). Interestingly the samples assigned to 
stage III exhibit two distinct expression patterns, with samples on the left clearly 
showing different patterns from those on the right, suggesting that these patients 
may actually fall into fi ve different stages such as stage I, II, IIa, III and IV, 
rather than four as proposed by the pathologists who analyzed these samples 
(Cui et al.  2011 ).

   A bi-clustering problem is computationally much more diffi cult to solve than a 
clustering problem since it involves two variables, i.e., genes to be identifi ed as co- 
expressed and samples to be found to have similar expression patterns, compared to 
only one variable, i.e., co-expressed genes in traditional clustering analyses. A few 
computer tools have been published for identifi cation of bi-clusters in gene- 
expression datasets such as QUBIC (Li et al.  2009 ) and BicAT (Barkow et al.  2006 ). 
After bi-clusters are identifi ed, similar analyses about regulatory relationships can 
also be carried out as above to predict the possible transcription regulators for each 
bi-cluster.  

  Fig. 2.3    A heat-map of gene-expression changes of 42 genes, with each row representing one 
gene and 80 gastric cancer samples  versus  the matching control samples, with each column repre-
senting one sample, which are grouped into four stages: I, II, III and IV, with  light gray ,  dark gray  
and  black  representing up-, down-regulation and no changes, respectively. The fi gure is adapted 
from (Cui et al.  2011 )       
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2.3.3     Pathway (or Gene Set) Enrichment Analysis 

 Pathway enrichment analysis is a way to map up- or down-regulated genes to higher 
level functional organizations such as biological pathways, networks or gene sets 
that are each known to be relevant to cancer or cancer-related. The basic idea is to 
homology-map the identifi ed up-regulated (or down-regulated) genes to known 
pathways in pathway databases such as KEGG, REACTOME (Croft et al.  2011 ) or 
BIOCARTA, and then assess if a specifi c pathway has substantially more genes 
mapped to it than by chance, measured using statistical signifi cance values. For 
example, DAVID is one popular tool for doing pathway enrichment analysis. 
Basically, it homology-maps a set of given genes to pathways in the above data-
bases, then assesses the statistical signifi cance of having  K  given genes in the given 
set mapped to a specifi c pathway using  κ  statistics, i.e., a chance-corrected measure 
of co-occurrence, and predicts that a pathway is enriched by the given gene set if its 
statistical signifi cance is above some threshold (Huang et al.  2007 ). Figure  2.4  
shows one enriched pathway by up-regulated genes in gastric cancer.

   With the increasing needs for studying more complex analysis problems based 
on gene-expression data, there is clearly an urgent necessity for more powerful anal-
ysis techniques. A few are listed here, which could defi nitely benefi t from the 
involvement of researchers equipped with advanced statistical analysis techniques.

    1.     Inference of causal relationships : Analyses discussed above, such as clustering 
or bi-clustering, can provide association relationships among activities of genes 
or pathways through detection of correlations among their expression patterns. 
Clearly cancer researchers could benefi t even more if such analyses can be 
extended to infer causal relations among genes or pathways with altered expres-
sion patterns. 

 Causality has been diffi cult to derive due to the nature of the problem (Pearl 
 2009 ). Many may remember the argument made by the tobacco industry when 
being presented with statistical data showing that smokers have higher probabili-
ties of developing lung cancer than non-smokers. The industry offi cials argued 
that such data do not necessarily imply that smoking causes cancer, pointing out 
the following:  there could be an unknown genetic factor that gives rise to a 
 sub- population who enjoys smoking and has a higher propensity to develop lung 
cancer.  Logically, this argument holds. Hence, in order to prove that smoking 
indeed causes lung cancer, one would need to demonstrate that individuals who 
are forced to smoke, regardless if they like it or not, are at higher risk of develop-
ing lung cancer than those who are forced not to smoke. This would then rule out 
a possible contribution from genetic factors as suggested by the defense lawyers 
of the tobacco industry. In general, inference of causality is fundamentally hard. 
Fortunately, there have been some interesting developments in theoretical stud-
ies on causal relationships. One example is the development of  causal calculus  
by Pearl ( 2009 ). Application of this or other causal theories to the information- 
rich gene-expression-based causality analyses would help to advance the fi eld in 
a profound way.   
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   2.     De-convolution methods for expression data collected on cancer tissues : One 
challenge in analyzing gene-expression data collected on cancer tissues is that 
the data are not from a homogeneous cell population, but instead a collection of 
different cell types with cancer cells as the dominating sub-population. It is well 
known that each sample of cancer tissue generally has other cell types such as 
macrophages and other immune cells, stromal cells, and blood vessel cells, 

  Fig. 2.4    An example of a KEGG pathway enriched with differentially expressed genes in gastric 
cancer  versus  matching controls. Each  rectangle  represents an enzyme-encoding gene and each 
 oval  represents a metabolite. An up-regulated gene is marked as  dark gray  and down-regulated 
gene marked in  light gray  while a  white rectangle  represents an enzyme whose gene is not identi-
fi ed yet. A metabolite with increased concentration is marked in  dark gray  and a decreased metab-
olite is marked in  light gray        
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although there may have been attempts to make the cell population as 
 homogeneous as possible, using techniques such as laser-directed micro- 
dissection (Emmert-Buck et al.  1996 ). The reality is that collecting highly homo-
geneous cell populations from cancer tissues is challenging and very time 
consuming. 

 Gene-expression data collected on a mixture of multiple cell types can easily 
lead to false conclusions if done without proper data processing. This issue has 
been refl ected in a common complaint from gene-expression data analysts that 
tissue gene-expression data are not reliable and are diffi cult to compare across 
different samples. One key reason is that tissue samples collected by different 
labs may have been processed using different procedures so that the sub- 
populations of different cell types may be different from those  in situ.  Moreover, 
different sample-processing procedures may lead to systematic changes in the 
sub-populations but in different ways, thus making tissue gene-expression data 
not easily comparable. 

 It is our belief that techniques in statistical analysis, properly applied, can aid 
immensely in resolving the issue by de-convoluting the observed gene- expression 
data into expression levels contributed by different cell types. The basic idea of 
one such de-convolution technique is as follows. Each cell type has its unique 
functional characteristics. For example, cancer cells are the only cell type in the 
tissue that divides rapidly, while fi broblasts are the only cell type that synthesizes 
the components of the extracellular matrix. These unique functional characteris-
tics of different cell types are refl ected by their gene-expression data. Specifi cally, 
it is expected that each cell type can be represented (or approximated) by a set of 
expressed genes unique to the cell type, along with the cell type-specifi c correla-
tions among the expression levels of different genes. Such cell type-specifi c 
(condition-invariant) correlations among their genes can possibly be represented 
in some generalized form of a covariance matrix, which can be considered as the 
 signature o f individual cell types. To derive such a signature, one needs unam-
biguous gene-expression data of specifi c cell types collected under multiple and 
different conditions, allowing the capture of the invariance among the correla-
tions between expression patterns of individual genes. 

 With such a reliable de-convolution tool, one can decompose each gene- 
expression dataset collected on cancer tissues into gene-expression contributions 
from different cell types. Then, one can analyze the gene-expression data pre-
dicted to be solely associated with cancer cells or other cell types such as macro-
phages to understand the interplay between cancer and immune cells. Such 
decomposed datasets of cancer samples at different stages have the potential of 
enabling one to realistically study a range of important problems in elucidating 
the complex relationships among different cell populations in each cancer niche, 
which are not feasible with the current experimental techniques.   

   3.     Development of an infrastructure in support of the study of cancer systems 
 biology : Another area where computational statistical techniques can make a 
fundamental contribution is in characterization of cancer microenvironments and 
in linking micro-environmental factors to the evolutionary trajectories of specifi c 

2.3  Transcriptomic Data



56

cancer tissues. While experimental studies of the evolving microenvironment of 
a cancer  in vivo  may not be feasible, computational analyses of gene-expression 
data could help to solve such a problem. The premise is as follows. When the 
microenvironment changes, such as changes in (1) the composition and physical 
properties of the pericellular matrix, (2) the level of hypoxia, (3) the ROS level, 
(4) the pH level and (5) the sub-population sizes of different cell types in the 
stromal compartments (see Chap.   10    ), some genes will respond by changing 
their expression levels. For example, when the cellular level of oxygen changes, 
the expression patterns of the  HIF1  (hypoxia-induced factor) and  HIF2  genes 
change, as discussed in Chap.   1    . By carefully analyzing gene-expression data 
collected under specifi c conditions on relevant cancer cell lines, one should be 
able to train predictors for changes in each aspect of the microenvironment based 
on their relationships refl ected by gene-expression data. Such prediction capa-
bilities will enable cancer researchers to examine how micro-environmental fac-
tors change as a cancer evolves and to link such information to cancer phenotypes, 
hence possibly generating new understanding about how microenvironments 
affect cancer progression and cancer phenotypes.       

2.4     Metabolomic Data 

 Our own experience has been that transcriptomic data represent probably the most 
information-rich data that are relatively straightforward to obtain for cancer studies. 
Such data are particularly useful for gaining a big-picture view and for the deriva-
tion of rough models for a specifi c mechanism, while genomic and epigenomic data 
can provide useful complementary information. Transcriptomic data, however, do 
not always portray an accurate picture regarding the activity of a pathway. This is 
because they measure only the intermediates for making the functional parts, the 
proteins, of the pathway; others, such as those constitutively expressed, will of 
course not appear as altered gene expressions. Clearly, it is highly desirable to have 
protein expression data. However, proteins are notoriously diffi cult to study, much 
more complex than, say, transcripts, as proteins may have different post- translational 
modifi cations and splicing variants, which are not amenable to the current high- 
throughput techniques. Consequently, proteomic data have not been as widely used 
as transcriptomic data in cancer studies. Metabolomic data can, however, assist in 
fi lling the void due to the lack of protein level information since they provide infor-
mation on the substrates and products of proteins, specifi cally enzymes. 

 As of now, over 40,000 metabolites have been identifi ed in human cells accord-
ing to the Human Metabolome Database (HMDB) (Wishart et al.  2007 ,  2009 ,  2013 ). 
These metabolites can be intermediates or products of cellular metabolism, which 
include the basic metabolites such as amino acids, nucleotides, alcohols, organic 
acids and vitamins, and complex metabolites such as cholesterol and steroid hor-
mones. By analyzing the quantitative data of metabolites associated with a specifi c 
metabolic pathway, it is possible to make a generally accurate estimate of the 
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 activity level of the pathway. For example, glucose-6-phosphate, fructose-6- 
phosphate, glyceraldehyde 3-phosphate, phosphoenol-pyruvate, pyruvate and lac-
tate are the main metabolites of the glycolytic fermentation pathway (see Fig.   1.4    ), 
and their relative abundances provide accurate information about the activity level 
of the pathway. By carrying out metabolite fl ux analyses (Varma and Palsson  1994 ) 
based on the pathway information and the measured quantities of these metabolites, 
one can infer if some of these intermediates or end products may be directed towards 
other metabolic pathways, in addition to being part of the glycolytic pathway. 

 Metabolic fl ux analysis generally applies to any well-established biological path-
way, such as those in central metabolism. That is, with all the relevant reactions and 
the encoding genes known, metabolic data can be used in conjunction with the 
matching transcriptomic data, to infer the fl ux of a specifi c molecular species such 
as carbon or nitrogen. In essence, this provides fl ux information of different ele-
ments across an entire network, which preserves balances between the total input 
and the output elements for each reaction, hence providing a systems-level repre-
sentation of the fl ux distribution across all the branch points in the network. 
Identifi cation of unbalanced reactions, i.e., the total number of carbons into a reac-
tion is different from that out of the reaction, can help to detect previously unknown 
branches involved in the relevant reactions. This type of analysis can be used to 
identify possible relationships between two known metabolic pathways, such as 
detecting possible metabolic relationships between the glutaminolysis pathway 
(McKeehan  1982 ), which tends to be up-regulated in cancer cells, and other meta-
bolic pathways, or detection of relationships between cholesterol metabolism and 
phospholipid metabolism in metastatic cancer (see Chap.   11    ). For example, an anal-
ysis like this has led us to detect that some metabolites of the glycolysis pathway 
become substrates of another metabolic pathway, the  hyaluronic acid synthesis  
pathway (see Chap.   6    ). When reaction rate constants are available or can be esti-
mated for all the relevant enzymes, one can identify the rate-limiting steps in a 
pathway, thus enabling one to undertake detailed mechanistic studies of a biological 
process. 

 Both high-resolution mass spectrometry (MS) and nuclear magnetic resonance 
(NMR) spectroscopy have been used to identify metabolites present in cells and in 
tissue samples, each having their own advantages and limitations. MS can provide 
quantitative measures for up to 1,000 different metabolite species, but it suffers 
from relatively low repeatability (Boshier et al.  2010 ). In comparison, NMR can 
provide highly accurate measurements of metabolites but is limited in the number 
of metabolite species in each experiment. With either type of instrument, one can 
obtain quantitative measures of numerous metabolite species. 

 When coupled with transcriptomic data and functional annotations of genes, 
metabolomic data can be used to infer the detailed metabolic pathway that may 
produce specifi c metabolites. Specifi cally, for each experimentally identifi ed metab-
olite in a sample, one can search for enzymes among the expressed enzyme- encoding 
genes that may be responsible for its synthesis through comparisons against the 
Enzyme Classifi cation (Bairoch  2000 ) or KEGG database. Both of these databases 
contain information about enzymes and substrates that can lead to the production of 
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a specifi c metabolite. If there is more than one candidate, a selection can be inferred 
by fi nding the one that is most consistent with the available transcriptomic and func-
tional annotation data, i.e., the enzyme-encoding gene is expressed and the substrate 
is among the identifi ed metabolites. By repeating this process, one can create a 
pathway consisting of the identifi ed enzymes along with the identifi ed metabolites. 
Although one cannot expect to derive all the relevant enzymes along the pathway, it 
is generally possible to develop a crude model based on our own experience. In 
addition, it is possible to expand a pathway model through careful applications of 
the transcriptomic data and the metabolomic data collected to identify previously 
unknown or poorly studied branches of well-studied pathways. For example, by 
carefully analyzing the metabolites associated with glycolysis, one can possibly 
identify those that serve as intermediates between glycolytic metabolites and 
metabolites involved in the synthesis of hyaluronic acids as detailed in Chap.   6    . 

 There are a number of databases for human metabolomic data in the public 
domain, including the HMDB, BiGG (metabolic reconstruction of human metabo-
lism) (Schellenberger et al.  2010 ) and the Tumor Metabolism database (The-Tumor- 
Metabolome  2011 ). Another useful database is Brenda (Scheer et al.  2011 ), which 
provides the reaction parameters of various enzymes. All these databases provide 
useful information needed for reconstruction of specifi c metabolic processes in nor-
mal and cancer cells.  

2.5     Patient Data 

 Knowledge of patient data is essential for the correct interpretation of their respec-
tive  omic  data. People of different gender, age and race, and with different histories 
of smoking, alcohol consumption and health problems, could have different base-
line gene-expression levels. It was noted, from our previous studies, that some genes 
are sensitive to one aspect of a person’s attributes, such as age or gender, while other 
genes may be more sensitive to other attributes. And some genes are attribute- 
independent. For example, based on our analysis on gene-expression data of 80 
gastric cancer tissues and their matching tissues from 80 patients (see Appendix of 
Chap.   3     for details of the dataset), it was found that the expression levels of some 
genes are age-dependent, gender-dependent and smoking history- dependent, while 
other genes are, in large part, independent of any of these features (Cui et al.  2011 ). 
When working with these datasets, it was noted that the baseline expression levels 
of 143 genes were highly age-dependent, including  MUC1  (mucin 1),  UBFD1  
(ubiquitin family domain 1) and  MDK  (neurite growth-promoting factor 2). In addi-
tion, 59 genes were gender-dependent; these included  WNT2  (wingless- type MMTV 
integration site family, member 2),  ARSE  (arylsulfatase E) and  KCNN2  (potassium 
intermediate/small conductance calcium-activated channel, subfamily N, member 
2) (see (Cui et al.  2011 ) for details). Similar analyses can be carried out on depen-
dence using various lifestyle habits such as smoking and medications. 
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 Knowing such information, one then needs to make age or gender corrections on 
the observed gene-expression data before interpreting the data for functional infer-
ence. The detailed correction scheme depends on the actual relationship between a 
specifi c attribute and the gene-expression levels. Various normalization techniques 
and software tools are publicly available for this purpose.  

2.6     A Case Study of Integrative  Omic  Data Analyses 

 We present an example here to show how integrative analyses of multiple  omic  and 
computational data types can lead to new insights about cancer mechanisms. The 
main question being addressed here is:  What makes metastatic cancers grow sub-
stantially faster than their primary cancer counterparts ? While a detailed model for 
this problem is given in Chap.   11    , the current focus is on how this problem can be 
approached through transcriptomic data analyses coupled with limited metabolomic 
data analyses. 

 To address this question, all the transcriptomic data of metastatic cancers, along 
with their corresponding primary cancers, were collected on the Internet. Sixteen 
large sets of genome-scale transcriptomic data covering 11 types of metastatic and 
corresponding primary cancers were extracted from the GEO database, including 
breast to bone, breast to brain, breast to liver, breast to lung, colon to liver, colon to 
lung, kidney-to-lung, pancreas to liver and lung, and prostate to bone and liver. The 
detailed information of these datasets is given in Chap.   11    . 

 The fi rst question addressed is:  Which genes are consistently up-regulated in 
metastatic cancers in comparison with their corresponding primary cancers across 
all these datasets ? Simple statistical analyses led to the identifi cation of about 100 
such genes. 

 The second question asked is:  What do these genes do in terms of cellular 
function(s) ? Pathway enrichment analyses of these genes using DAVID against 
KEGG, REACTOME and BIOCARTA revealed that the most signifi cantly enriched 
pathway was “cholesterol uptake and metabolism”. Two questions were then asked: 
(a)  What does cholesterol do in metastatic cancer cells ? And (b)  Why do metastatic 
cancer cells need more cholesterol , as suggested by the observation that at least one 
cholesterol-containing lipoprotein transporter gene,  SRB1  (scavenger receptor B), 
 LDLR  (low density lipoprotein receptor) or  VLDLR  (very low density lipoprotein 
receptor) was substantially up-regulated compared to the corresponding primary 
cancers except for some brain metastases. These metastases synthesize cholesterol 
 de novo  as cholesterol-containing lipoproteins probably could not enter brain tissue 
due to the blood-brain barrier (Bjorkhem and Meaney  2004 ). 

 Here, only the fi rst question is considered. It was noted that multiple  CYP  (cyto-
chrome P450) genes are up-regulated in each metastatic cancer type: these genes 
encode enzymes for oxidizing cholesterols to various oxysterols or bile acids. Some 
of these oxysterols are further metabolized to steroid hormones such as estrogens, 
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androgens or steroidogenic derivatives by various enzymes whose genes show 
 substantially increased expression levels in comparison with their corresponding 
primary cancers. A number of these steroid products can bind with and activate dif-
ferent nuclear receptors, such as  FXR  (farnesoid X receptor) and  ER  (estrogen 
receptor) (see Chap.   11    ). Various growth-factor receptors such as  FGFR  (fi broblast 
growth factor receptor) and  EGFR  (epidermal growth factor receptor) are up- 
regulated in different metastatic cancers, some of which can be directly activated by 
oxysterols and/or steroid hormones, whose abundances tend to be substantially 
elevated in metastatic cancers. For the other growth factor receptors, strong correla-
tions between their gene-expressions and the expression patterns of the various 
nuclear receptors are observed across different metastases, thus suggesting the pos-
sibility of a functional relationship between the activation of the two sets of recep-
tors. Based on more detailed analyses and validation, a mechanistic model for how 
metastatic cancers utilize oxidized cholesterols to accelerate their growth is pre-
sented in Chap.   11    . Similar integrative analyses of multiple types of data can be 
carried out to derive the mechanistic models for a large variety of poorly understood 
cancer-related processes if one can ask the right questions that could be answered 
through analyses and mining of the relevant  omic  data.  

2.7     Concluding Remarks 

 A substantial amount of information concerning the activities of individual bio-
chemical pathways, their dynamics and the complex relationships among them, and 
with respect to various micro-environmental factors, is hidden in the very large pool 
of publicly available cancer  omic  data, including transcriptomic, genomic, metabo-
lomic and epigenomic data. Powerful statistical analysis techniques can aid 
immensely in uncovering such information if one poses the right questions. Such 
focused questions create a framework for hypothesis-guided data analysis and min-
ing to check for the validity of the formulated hypothesis, as well as for guiding the 
formulation of further questions, which may ultimately lead to the elucidation of 
specifi c pathways or even possibly causal relationships among the activities of dif-
ferent pathways. More powerful analysis tools for different  omic  data types are 
clearly needed in order to address more complex and deeper questions about the 
available data such as de-convolution of gene-expression data collected on tissue 
samples consisting of multiple cell types and inference of causal relationships. 
Integrative analyses of multiple types of  omic  and computational data will prove to 
be the key to effective data mining and information discovery. A large number of 
examples are presented throughout the following chapters regarding how best to 
address various cancer biology inquiries, including fundamental questions, through 
mining the available  omic  data.     

2 Omic Data, Information Derivable and Computational Needs
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    Chapter 3   
 Cancer Classifi cation and Molecular Signature 
Identifi cation 

                  Cancer is a family of diseases that share a common set of characteristics such 
as  reprogrammed energy metabolism, uncontrolled cell growth, tumor angio-
genesis and avoidance of immune destruction, referred to as cancer hallmarks, 
as introduced in Chap.   1    . Based on their original cell types, cancers are clas-
sified into five classes: (1)  carcinoma , which begins in epithelial cells and 
represents the majority of the human cancer cases; (2)  sarcoma , derived from 
mesenchymal cells, e.g., connective tissue cells such as fibroblasts; (3)  lym-
phoma, leukemia  and  myeloma , originating in hematopoietic or blood-forming 
cells; (4)  germ cell tumors , developing, as the name implies, from germ cells; 
and (5)  neuroblastoma ,  glioma, glioblastoma  and others derived from cells of 
the central and peripheral nervous system and denoted as  neuroectodermal  
tumors because of their beginning in the early embryo. Each class may consist 
of cancers of different types. For example, carcinoma comprises adenocarci-
noma, basal-cell carcinoma, small-cell carcinoma and squamous cell carci-
noma, independent of their underlying tissue types. Cancers of the same type 
and developing in the same tissue may have distinct properties in terms of 
their growth patterns, malignance levels, survival rates and possibly even dif-
ferent underlying mechanisms. They may respond differently to the same drug 
treatment and hence have different mortality rates. As of now, over 200 types 
of human cancers have been identified and characterized (Stewart and Kleihues 
 2003 ), the majority of which are determined based on the location, the origi-
nating cell type and cell morphology. It is now becoming evident that this type 
of classification, in large part subjective, is not adequate for developing per-
sonalized treatment plans, which are becoming increasingly desirable and 
clearly represents the future of cancer medicine. 

 With the rapid accumulation of high-throughput  omic  data for cancer, particu-
larly transcriptomic and genomic data, it is now feasible to classify cancers based on 
their molecular level information. For example, this can be based on distinct expres-
sion patterns of certain genes or pathways shared only by samples of the same c ancer 
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type, or combinations of mutations that tend to co-occur (or be selected, to be more 
accurate) in certain cancer types. Such type-defi ning expression or mutation patterns 
of genes are referred to as the  signature  of a cancer type. This idea should be appli-
cable to every kind of cancer as has been done for a few cancer types, such as 
Oncotype DX for one form of breast cancer (Albain et al.  2010 ), as long as transcrip-
tomic or genomic mutation data are available for the cancer category. Similarly, it 
should also be possible to derive molecular signatures for cancer grades and cancer 
stages, with the former referring to the level of malignancy of a tumor and the latter 
representing the location of the cancer in its development towards the terminal stage, 
i.e., metastasis. Compared to the traditional defi nitions of cancer types, molecular 
signatures, as outlined here, can potentially provide more accurate characterization 
of a cancer and even reveal its underlying mechanisms, hence possibly having sig-
nifi cant implications to cancer treatment and prognosis prediction. Here we use 
gene-expression data as an example to illustrate how cancer typing, staging and 
grading can be done using  omic  data, which could potentially lead to substantially 
more accurate characterization of cancers of different types, grades and stages. 
Similar ideas should be applicable to mutation-based cancer classifi cation. 

3.1     Cancer Types, Grades and Stages 

 The earliest description of cancer can be traced back to 2500 BC by Egyptian 
 physician Imhotep (Mukherjee  2010 ). Evidence exists suggesting that Egyptian 
p hysicians at the time could distinguish between benign and malignant tumors. The 
study of cancer as a scientifi c discipline came in the nineteenth century when micro-
scopes became widely available to physicians and surgeons. Microscopic pathology, 
pioneered by German doctor Rudolf Virchow, laid the foundation for the develop-
ment of cancer surgery as practiced now. Since then, cancer tissues removed from 
patients are microscopically examined and classifi ed based on their morphological 
characteristics. Scientifi c oncology was born out of the debate concerning a few 
competing hypotheses regarding the possible causes of cancer in the late 1800s 
through the early 1900s. It developed based on fi ndings that linked microscopic 
observations made on cancer tissues to clinical data during the course of the disease 
development. The popular hypotheses included: (1) one proposed by Stahl and 
Hoffman, which suggested that cancer was caused by coagulated lymph; (2) a pro-
posal by Johannes Muller who suggested that cancer cells arose from budding ele-
ments between normal tissues; and (3) the theory developed by Rudolph Virchow, 
which considered cancer as a disease of cells. The next major advance in attempts to 
elucidate the possible causes of a cancer came in the 1920s when the German 
 biochemist Otto Warburg observed that cancer cells rely heavily on glycolytic fer-
mentation rather than the more effi cient oxidative phosphorylation for ATP genera-
tion, even when oxygen is available. This metabolic alteration is referred to as the 
 Warburg effect  (Warburg  1956 ) and remains under active investigation as discussed 
in depth in Chap.   5    . Based on the accelerated glycolysis, some 10 to 20-fold over that 

3 Cancer Classifi cation and Molecular Signature Identifi cation

http://dx.doi.org/10.1007/978-1-4939-1381-7_5


67

of normal cells, Warburg attributed cancer to a malfunctioning mitochondria-induced 
metabolic disease. The discovery of oncogenes in 1970s by Bishop and Varmus, 
along with the discovery of tumor-suppressor genes by A. G. Knudson also in 1970s, 
represented the next key advancement, which started the era of classifying cancer as 
a genetic disease. 

 Early classifi cation of cancers was based on a cancer’s location, such as lung 
cancer, skin cancer or blood cancer (e.g., leukemia). Over time, oncologists began 
to realize that different types of cancers can develop from the same organ. The earli-
est classifi cation of cancers from the same organ, in this case bone marrow which 
houses the hematopoietic stem cells, can be traced back to the early 1900s when it 
was found that there were at least four types of leukemia, namely ALL (acute lym-
phoblastic leukemia), AML (acute myelogenous leukemia), CLL (chronic lympho-
blastic leukemia) and CML. This realization occurred about 50 years after the 
diagnosis of the fi rst documented leukemia case (Beutler  2001 ). For other cancers, 
recognition of multiple cancer types originating from the same organ came rather 
late. For example, small-cell lung cancer was not considered as a separate type of 
lung cancer from the more prevalent and less aggressive non-small cell lung cancer 
until the 1960s. Gastric cancers were found to have at least two subtypes, intestinal 
and diffuse, in 1965 (Lauren  1965 ). It is worth noting that correct diagnosis of a 
cancer type has signifi cant implications to designing the most effective treatment 
protocols and prognosis. For example, statistics show that the current 5-year sur-
vival rates for adult ALL, AML, CLL and CML patients are 50 %, 40 %, 75 % and 
90 %, respectively, and the treatment plan for each of them is quite different. ALL 
is typically treated using chemotherapy followed by anti-metabolite drugs; AML is 
generally treated using chemotherapy; CLL, while incurable, is often being con-
trolled with chemotherapy using a combination of fl udarabine and alkylating agents; 
and CML is, in most cases, successfully treated using the so called “miracle” drug 
Gleevec, or else newer and improved drugs. 

 The multistage nature of a cancer was fi rst discovered by Japanese researchers 
Yamagiwa and Ichikawa in the beginning of the twentieth century (Yamagiwa and 
Ichikawa  1918 ). Basically for most cancer types, the histological stage refers to the 
extent the cancer has spread, which is typically numbered from stage I through stage 
IV, with IV representing the most advanced stage. The stage of a cancer is an impor-
tant predictor for survival, with the treatment plan often determined based on stag-
ing. Currently the stage of a cancer is generally determined by pathological analysis 
from a biopsied specimen of the cancer tissue, including lymph nodes, as well as 
analysis by imaging techniques with the results interpreted by radiologists; only 
limited molecular level information such as the expression levels of a few marker 
genes as determined by immune-detection. 

 In addition to type and stage, cancer grade is another important parameter that has 
been used by pathologists to represent the level of malignancy of a given cancer, 
determined based on surgical specimens. This parameter is largely independent of 
the type and the stage of a cancer. A popular grading system uses four grades: 
(1) G1 (highly differentiated), (2) G2 (moderately differentiated), (3) G3 (poorly dif-
ferentiated) and (4) G4 (undifferentiated), with G4 representing the most  malignant. 

3.1 Cancer Types, Grades and Stages
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The level of differentiation refers to the maturity of a cell in  developmental biology. 
In the current context, the more differentiated cancer cells resemble more of the 
normal mature cells, and they tend to grow and spread at slower rates than undiffer-
entiated or poorly differentiated cancer cells. The grade of a cancer provides another 
key indicator for prognosis. While the term seems to be defi ned in terms of cellular 
differentiation, the actual determination of the cancer grade is often made based on 
a combination of the cellular appearance (degree of abnormality), the rate of growth 
and the degree of invasiveness. 

 The current availability of signifi cant quantities of molecular level  omic  data on 
cancer, such as transcriptomic, genomic, epigenomic and metabolomic data, pro-
vides unprecedented opportunities for developing molecular-level signatures for 
each known cancer type, grade and stage, and, if needed, possibly reclassifying 
some of the previously determined cancer types, stages and/or grades. This has the 
potential to lead to more accurate classifi cations of a cancer for the purpose of 
improved treatment design and prognosis evaluation.  

3.2       Computational Cancer Typing, Staging and Grading 
Through Data Classifi cation 

 The main question addressed here is: For a given set of cancer samples, each marked 
with a specifi c type, stage or grade determined by pathologists , is it possible to 
identify common characteristics,  e.g. , in terms of gene expression patterns among 
samples having the same class label ? If the answer is yes, such a capability could 
potentially be used to accurately defi ne the type or subtype, stage or substage, grade 
or subgrade of a cancer. In the following sections, we demonstrate how this could 
be done to possibly provide a new way of classifying cancer based on molecular 
level data. 

3.2.1           Cancer Typing  

 A basis for gene-expression data-based cancer typing is that cancers of various 
types have their distinct phenotypic characteristics such as differences in cellular 
shape, growth rates and responses to the same treatment regiments, and possibly 
distinct underlying mechanisms, while samples of the same type tend to share com-
mon characteristics. These phenotypic and mechanistic commonalities among can-
cer cases of the same type as well as differences across multiple cancer types are 
realized through molecular level activities and hence should be in general refl ected 
by the expression patterns of some genes. A key in accomplishing cancer typing 
based on gene-expression data is to identify those genes whose expression patterns 
are shared by samples of the same type but not shared by samples of the other can-
cer types. This problem can be modeled computationally in various ways, 
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depending on the specifi c purpose(s) of the cancer typing. For example, if the goal 
is to identify the defi ning characteristics of a cancer type, one may decide to identify 
a maximal gene set, whose expression patterns are similar across all the (available) 
cancer samples of the same type and different from those of other types. If, instead, 
the goal is to identify distinguishing characteristics between two (or more) types of 
cancers, one may want to fi nd a minimal set of genes whose expression patterns can 
delineate among samples between the two (or more) cancer types, which may not 
necessarily contain any information about the distinct mechanisms of the different 
cancer types. 

 We now present one example to model the cancer typing problem and to illus-
trate how such a problem can be solved computationally. Consider two subtypes of 
gastric cancer, the intestinal (C 1 ) and diffuse (C 2 ) subtypes, each having genome- 
scale gene-expression data collected using the same platform on paired cancer and 
matching control tissue samples from the same patients. For each patient one can 
obtain the fold-change information for any gene between its expression in a cancer 
and its matching control, which is typically calculated as the logarithm of the ratio 
between the two expression levels, referred to as the  log-ratio  throughout this book. 
The present goal is to fi nd a minimal subset of genes out of the total of ~20,000 
human genes, whose expression patterns can unequivocally distinguish between the 
two subtypes, C 1  and C 2 . Specifi cally, the aim is to identify a set G of genes and a 
discriminant function F() so that F(G(x)) > 0 for x ∈ C 1  and F(G(x)) < 0 for x ∈ C 2  
for as many x ∈ C 1  ∪ C 2  as possible, where G(x) represents the list of fold-changes 
in expression levels of genes in G between cancer tissue x and its matching control. 
There are many classes of discriminant functions that can be used for solving this 
classifi cation problem. Here a specifi c class of functions is used, the linear  support 
vector machine  (SVM) (Cortes and Vapnik  1995 ). The goal now becomes that of 
locating a minimal set G of genes and an SVM that achieve the best classifi cation 
with the misclassifi cation rate lower than a pre-defi ned threshold δ. 

 One method of solving this problem is by going through all combinations of  K  
genes among all the human genes, searching from  K  = 1 and up until an SVM-based 
classifi er and a  K -gene set G are found, which achieve the desired classifi cation 
accuracy defi ned by δ. In practice, the search will not include all the human genes 
since the majority will not be expressed for any specifi c tissue type. For this prob-
lem, one only needs to consider genes that are differentially expressed between 
cancer samples and the matching controls. To get a sense of the amount of comput-
ing time that may be needed to exhaustively search through all  K -gene combina-
tions, consider the following typical scenario: the two gene-expression datasets with 
C 1  having 100 pairs of samples and C 2  consisting of 150 pairs of samples; and 500 
genes showing differential expressions (see Chap.   2    ) between the two sets of sam-

ples. In this case, one would need to examine  
500

K
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  combinations to fi nd a  K -gene 

combination that achieves the optimal classifi cation between the two datasets. For 
each  K -gene combination, a linear SVM is trained to optimally classify the two 
datasets as discussed above; if a trained SVM achieves a classifi cation accuracy bet-
ter than δ, retain the SVM as a candidate classifi er; then repeat this process until all 
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 K -gene combinations are exhausted. The fi nal classifi er is the one with the lowest 
misclassifi cation rate among all those retained. Our experience has been that  K  

should be no larger than 8; otherwise the number  
500

K
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  may be too large for a 

desktop workstation to handle. The following gives a detailed procedure of the 
search process:

  Cancer classifi cation algorithm 

   FOR   K  = 1  TO   N   DO 

    FOR  each  K -gene combination from the pool of differentially expressed genes 
 DO 

   a.     DO  the following  FOR  1,000 times

   1.    Randomly split C 1  and C 2  into C 1 -training and C 1 -testing, and C 2 - 
training and C 2 -testing, respectively, with C x -training and C x -testing 
having the same size, x ∈ {1, 2};   

  2.    Train a linear SVM based on the current  K -gene combination on C 1 - 
training and C 2 -training, which achieves optimal classifi cation between 
C 1 -testing and C 2 -testing;   

  3.     IF  the misclassifi cation rate of the trained SVM is < δ,  THEN  keep the 
SVM;    

     b.     IF  at least one SVM for the  K -gene combination has misclassifi cation 
rates < δ,  THEN  keep the  K -gene combination with the lowest misclassi-
fi cation rate a candidate for the fi nal classifi er.    

        IF  at least one fi nal classifi er candidate is found,  THEN OUTPUT  the one with the 
lowest misclassifi cation rate,  ELSE OUTPUT  no classifi er is found with at most 
 N  genes and misclassifi cation rate < δ.   

where  N  is the upper bound (set by the user) for searching a satisfying  K -gene dis-
criminator, and 1,000 is the number of times used to fi nd an optimal  K -gene classi-
fi er over different partitions of the given datasets C 1  and C 2 . 

 This simple procedure has been used to fi nd an optimal SVM-based classifi er 
between the two subtypes of gastric cancer based on gene-expression data collected 
on 80 pairs of gastric cancer and matching controls (Cui et al.  2011a ). Figure  3.1  
shows classifi cation accuracies by the best  K -gene classifi ers for  K  ≤ 8.

   If one needs to search for a  K -gene classifi er with larger  K ’s (>8) for some appli-
cation, a different search strategy may be needed to make it computationally feasi-
ble. One such strategy is called  recursive feature elimination , a procedure often 
used in conjunction with an SVM application; together they are referred to as  RFE- 
SVM  . While the detailed information of an RFE-SVM procedure can be found in 
(Guyon et al.  2002 ; Inza et al.  2004 ), the basic idea is to start with a list of all genes, 
each having some discerning power in distinguishing between the two classes of 
samples, and to train a classifi er, followed with the RFE procedure to repeatedly 
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remove genes from the initial gene list as long as the classifi cation accuracy is not 
affected until only  K  genes are left. 

 If desired, this idea for solving a 2-class classifi cation problem can be general-
ized to M-class problems, for M > 2, so multi-type cancers originating from the 
same tissue, such as the different types of leukemia, can be classifi ed based on 
identifi cation and application of  K -gene combinations as done above. One specifi c 
way to accomplish this is given as follow: a M-class classifi er can be constructed by 
separately calculating M binary classifi ers, each separating class  i  from the remain-
ing classes,  i =  1, …, M. Then, an input sample is classifi ed to class  J  if the sample 
has the highest classifi cation signifi cance by the  J   th   classifi er. Such a method is 
regarded as one- versus -all multi-class SVM (Cui et al.  2011a ). A detailed review on 
such classifi ers can be found in (Duan and Keerthi  2005 ). Using this type of classi-
fi cation method, one can build classifi ers for all the cancer types as long as they 
have gene-expression data available, along with labeled type information for each 
sample. 

 Numerous  K -gene combinations, also referred to as  K-gene panels , have been 
identifi ed and used as signatures for various cancer types. For example, a panel of 
104 genes has been identifi ed for distinguishing cancer tissues (of multiple types) 
from healthy tissues (Starmans et al.  2008 ), aimed to detect if a tissue is cancerous 
or not. Other signature panels include: (1) a 70-gene panel for predicting the poten-
tial for developing breast cancer, built by MammaPrint (Slodkowska and Ross 
 2009 ); (2) a 21-gene panel, termed  Oncotype DX , for a similar purpose; (3) a 
71-gene panel for identifi cation of cancers that are sensitive to  TRAIL -induced 
apoptosis (Chen et al.  2012 ); (4) a 31-gene panel used to predict the metastasis 
potential of a breast cancer, developed by CompanDX (Cho et al.  2012 ); and (5) a 
16-gene panel for testing for non-small-cell lung cancer against other lung cancer 

  Fig. 3.1    SVM-based classifi cation accuracy using the best  K -gene combination, for  K  = 1, 2, …, 
8, on 80 pairs of gastric cancer and control tissues       
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types (Shedden et al.  2008 ). Having a test kit for a specifi c cancer type, e.g., 
metastasis- prone or not, can enable surgeons to make a rapid and informed decision 
regarding the appropriate surgical procedure to adopt. Other test kits can assist 
oncologists in making an informed decision regarding the most appropriate treat-
ment plan for a particular cancer case. For example,  TRAIL  ( TNF -related apoptosis 
inducing ligand) is an anticancer-mediating protein that can induce apoptosis in 
cancer cells but not in normal cells. This makes  TRAIL  highly desirable; however, 
not all cancers are sensitive to  TRAIL . Hence, having a test using such a kit can 
quickly determine if a cancer patient should be treated with  TRAIL  or not. 

 In order to ensure the general applicability of any identifi ed signature genes, it is 
essential to carry out proper normalization of the to-be-used transcriptomic data that 
may be collected by different research labs, specifi cally to correct any systematic 
errors in the data caused by different sample-preparation and data-collection proto-
cols. Batch-based normalization such as the model presented in (Johnson et al. 
 2007 ) may prove to be effective in removing so created systematic errors due to 
using different data-collection protocols. 

 Although a number of computational methods have been developed for defi ning 
cancer types using gene-expression data (Ramaswamy et al.  2001 ; Tibshirani et al. 
 2002 ; Weigelt et al.  2010 ; Reis-Filho and Pusztai  2011 ), none of them have achieved 
100 % consistency with the typing results determined by cancer pathologists. There 
may be two key reasons for the less-than-perfect agreement. One is that some of the 
cancer typing decisions by pathologists may not necessarily be correct for various 
reasons: (a) a cancer identifi cation protocol may use only limited molecular level 
and somewhat subjective visual information; and (b) there is always the possibility 
of human errors in executing a type-calling procedure, particularly when visual 
appearances may be borderline between different options. Another possibility could 
be due to limitations of the current classifi cation techniques. For example, the above 
classifi cation methods may be too simple to capture the complex relationships 
among the expression data of multiple genes, which are unique to a specifi c cancer 
type. Moreover, it may be due to something more fundamental, such as the gene 
expression data not necessarily having all the information needed to classify cancer 
types correctly, e.g., some of the needed information may be at the protein or the 
post-translational level. It is expected that answers to this question may emerge as 
more cancer  omic  data become available and/or when more advanced analysis tech-
niques will be developed.  

3.2.2      Cancer Staging 

 Cancer stages have been defi ned mainly in terms of the tumor size, cell morphology 
and the state of metastasis. Currently its determination involves some level of sub-
jectivity by pathologists. Like cancer types, cancer stages can also be defi ned in 
terms of expression patterns of some subset of the human genes. A number of stud-
ies have been published on applications of computational techniques to predict the 
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stage of a cancer based on gene-expression data (Eddy et al.  2010 ; Goodison et al. 
 2010 ; Liong et al.  2012 ). For example, a 7-gene panel ( ANPEP, ABL1, PSCA, 
EFNA1, HSPB1, INMT, TRIP13 ) was used to measure the progression of prostate 
cancer and achieved high-80 % consistencies with pathologically-determined stages 
(Liong et al.  2012 ). Another example is a 4-gene panel ( IL1B ,  S100A8 ,  S100A9 , 
 EGFR ) for assessing the progression of muscle invasive bladder cancer (Kim et al. 
 2011 ). Similar gene panels have been developed for a few other cancers, such as 
breast cancer (Rodenhiser et al.  2011 ; Arranz et al.  2012 ), colon cancer (Erten et al. 
 2012 ) and oral cancer (Mroz and Rocco  2012 ). 

 Potentially, one can develop such gene-panels for any cancer as long as tran-
scriptomic data for cancer and control tissues, along with their stage information, 
are available. Here we use gastric cancer again as an example to illustrate how gene- 
expression data can be used to predict the developmental stage of a cancer. 

 The same set of gene-expression data collected on 80 pairs of gastric cancer 
and matching noncancerous gastric tissues used in Sect.  3.2.1  is again analyzed. 
Of the 80 cancer tissues, 4 were in stage I, 7 in stage II, 54 in stage III and 15 in 
stage IV. The detailed gene-expression data of these samples can be found in the 
Appendix. Note that these tissue samples are not evenly distributed across the 
four stages, but this may be a good representation of the actual stage distribution 
for gastric cancer patients presenting for resection, at least in China where the 80 
samples were collected. The present goal is to identify a set of differentially 
expressed genes between cancer and the matching controls, where the expression 
patterns adequately refl ect the stages of all the gastric  cancer samples. On this 
data set of 80 pairs of samples, 715 genes were found consistently to be differen-
tially expressed between the cancer and the matching controls (Cui et al.  2011a ). 

 A simplifi ed version of the staging problem is considered fi rst, by merging stages 
I and II samples into one “early stage” group and stages III and IV samples into the 
“advanced stage” group, making this a 2-stage classifi cation problem. From an 
analysis of all the differentially-expressed genes, four genes,  CHRM3  (cholinergic 
receptor),  PCDH7  (protocadherin),  SATB2  (special AT-rich sequence-binding pro-
tein) and  PPA1  (pyrophosphatase), were identifi ed, each giving a consistency level 
with the two combined stages better than 80 % by using a simple fold-change cut-
off. When using  K -gene combinations for  K  > 1, the classifi cation consistency (with 
pathologist-determined stages) continues to increase as  K  increases until it reaches 
95 %, and then the improvement becomes asymptotic. 

 Using the generalized classifi cation scheme outlined in Sect.  3.2.1 , one can 
undertake the 4-stage classifi cation problem. To ascertain if this problem is solv-
able, we have examined if there are genes whose (average) expression levels change 
monotonically with the progression of a cancer. Fortunately, numerous such genes 
are found, suggesting that the problem is solvable. Figure  3.2  shows three such 
genes, namely  LANCL3  (lanC lanti-biotic synthetase component c-like protein), 
 MFAP2  (microfi brillar-associated protein) and  PPA1  (pyrophosphatase).

   While the average levels of these three genes each change monotonically with 
cancer progression, they may not necessarily represent the best genes whose 
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 expression levels are most informative in predicting cancer stages for individual 
tissue samples. To fi nd out, an exhaustive search was made for the best  K -gene dis-
criminator, for 2 ≤  K  ≤ 10, for the 4-stage classifi cation problem. The combination 
( DPT, EIF1AX, FAM26D, IFITM2, LOC401498, OR2AE1, PRRG1, REEP3, 
RTKN2 ) was found to be the best 9-gene signature for gastric cancer staging, and 
( CPS1, DEFA5, DES, DMN, GFRA3, MUC17, OR9G1, REEP3, TMED6, TTN ) rep-
resents the best 10-gene marker, achieving 84.0 % and 90.0 % 4-stage classifi cation 
consistencies with the pathologists who did the original staging, respectively (Cui 
et al.  2011b ). 

 The following table lists the functions of these marker genes, which were 
retrieved from the GeneCards database (Rebhan et al.  1997 ), to give the reader a 
sense about what functional genes may serve as good markers for cancer staging. 
Interestingly, the two lists have very little in common with only one gene,  REEP3 , 
shared by the two lists plus a pair of homologous genes,  OR2AE1  and  OR9G1,  in 
the two lists as shown in the following table. Even by examining cellular level func-
tions, the two sets of pathways enriched with the two gene lists have very little in 
common. This suggests that there is probably a sizeable set of genes whose expres-
sion patterns are informative for the determination of cancer stages, and it just hap-
pens that these two lists give rise to the two best discriminators (Table  3.1 ).

   As in the case of cancer typing, the discrepancy between the pathologist-assigned 
stages and gene-expression-based staging could be due to various reasons as dis-
cussed in Sect.  3.2.1 . One useful effort will be to refi ne both defi nitions through 
collaboration between cancer pathologists and cancer data analysts. Such a joint 
effort to identify reasons for staging discrepancies by the two approaches should lead 
to a refi nement of the criteria used by both parties in an iterative fashion until there 
is convergence. Such an exercise could lead to improvement in cancer-staging based 
on gene-expression data in a systematic manner. Another important issue is that the 
current 4-stage classifi cation scheme for measuring cancer progression is probably 
somewhat arbitrary. There is no strong evidence to support the operational premise 

  Fig. 3.2    The average gene-expression levels of three genes represented by three panels from  left  to 
 right ,  LANCL3 ,  MFAP2  and  PPA1 , over all samples in each stage for stages S = 1, 2, 3 and 4. The y-axis 
is the average fold-change of gene-expression levels across all samples of a specifi c stage in cancer 
 versus  control samples, and the x-axis is the stage axis. The fi gure is adapted from Cui et al. ( 2011b )       
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that the development of a cancer has four distinct phases, but not three or fi ve or even 
a continuous progression without obvious phases and phase transitions, say, in terms 
of their probabilities to metastasize. To rigorously address this issue computation-
ally, it will require not only transcriptomic data of cancer  versus  control tissues, but 
also data regarding metastases. This is clearly an area where computational 
approaches could assist in making fundamental and highly meaningful advances.  

   Table 3.1    Functional annotation of the signature genes   

 Gene name  Function 

  DPT  (dermatopontin)  An extracellular matrix protein involved in cell-matrix 
interaction and matrix assembly 

  EIF1AX  (ukaryotic translation 
initiation factor 1α) 

 An essential translation initiation factor 

  FAM26D  (family with sequence 
similarity 26, member D) 

 A pore-forming subunit of a voltage gated ion channel 

  IFITM2  (interferon induced 
transmembrane protein 2) 

 An  IFN -induced protein that inhibits the entry of viruses 
to the host cell cytoplasm 

  LOC401498  (a hypothetical 
protein) 

 No function has been identifi ed 

  OR2AE1  (olfactory receptor 
2AE1) 

 A hormone receptor responsible for recognition 
and  G  protein-mediated transduction of odorant signals 

  PRRG1  (proline-rich gamma- 
carboxyglutamic acid protein 1) 

 The protein containing two functional motifs generally 
found in signaling and cytoskeletal proteins 

  REEP3  (receptor accessory 
protein 3): 

 May enhance the cell-surface expression of odorant 
receptors 

  RTKN2  (rhotekin 2)  May have an important role in lymphopoiesis 
  CPS1  (carbamoyl-phosphate 
synthase): 

 Important in removing excess ammonia from the cell 
through the urea cycle 

  DEFA5  (defensin α5)  Has antimicrobial activity and kills microbes by 
permeabilizing their plasma membrane 

  DES  (intermediate fi lament 
protein) 

 Forms a fi brous network connecting myofi brils to each 
other and to the plasma membrane 

  DMN  (dystrophin)  A cohesive protein linking actin fi laments to another 
support protein that resides on the inside surface of each 
muscle fi ber’s plasma membrane 

  GFRA3  (glial cell-derived 
neurotrophic factor family 
receptor) 

 Mediates the artemin-induced autophosphorylation 
and activation of the RET (rearranged during transfection) 
receptor tyrosine kinase 

  MUC17  (cell surface associated 
mucin 17) 

 Active in maintaining homeostasis on mucosal surfaces 

  OR9G1  (olfactory receptor, 
family 9) 

 May serve as a hormone receptor like  OR2AE1  in the above 

  TMED6  (transmembrane emp24 
protein transport domain) 

 A  HNF1α  (hepatic nuclear factor 1α) regulated transporter 

  TTN  (connectin)  Contributes to the balance of forces between the two halves 
of the sarcomere by providing connections at the level 
of individual microfi laments 
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3.2.3     Cancer Grading 

 Cancer grading is a less developed area compared to cancer typing and staging. 
Only a handful of grading systems have been proposed for some cancer types since 
Bloom and Richardson developed the fi rst grading system for breast cancer in 1957 
(Bloom and Richardson  1957 ). Similar classifi cations include the Gleason system 
for prostate cancer (Gleason  1966 ; Gleason and Mellinger  1974 ), the Fuhrman 
method for kidney cancer (Fuhrman et al.  1982 ) and the approach proposed by 
Goseki et al. for gastric cancer (Goseki et al.  1992 ). As of now, only a few grading 
systems have been developed based on molecular information, such as the 
Nottingham grading system for breast cancer (Simpson et al.  2000 ) and the work by 
Cui et al. for gastric cancer (Cui et al.  2011b ). The main challenge here is that, 
unlike cancer typing and staging, for which some molecular level information has 
already been used, cancer grading has been solely based on morphologic data of 
cancer cells and decided by cancer pathologists. Hence, there may be a large gap 
between pathologist-assigned grades and molecular-level commonalities among 
samples of the same grade. An example is given here to illustrate the possibility of 
using transcriptomic data to grade cancer tissues and point out possible issues with 
the existing grading procedures. 

 We continue to use the same gastric cancer dataset introduced in Sect.  3.2.1 . Out 
of the 80 gastric cancer tissues, 54 have grades assigned by cancer pathologists (Cui 
et al.  2011b ), so only these data are used for developing a computational method for 
grading a tumor based on its gene-expression data. Of the 54 tissues, 8 are well dif-
ferentiated (WD), 9 moderately differentiated (MD), 35 poorly differentiated (PD) 
and 2 undifferentiated (UD), with the patients’ data given in Table  3.2 . The aim here 
is to identify a set of genes whose expression patterns can well distinguish among 
the four grades of gastric cancer. 

 As in cancer staging, one can determine if some genes have expression levels 
that change monotonically with change in cancer grades from highly differentiated 
to undifferentiated. Using this criterion, 99 such genes were found. For each of 
these genes, its average fold-change among samples of each grade exhibits a mono-
tonic relationship with the grade list WD-MD-PD-UD from the least malignant to 
the most malignant, suggesting that the current grading scheme for gastric cancer 
does have some molecular basis. These genes include  POF1B  (premature ovarian 
failure 1β),  MET  (hepatocyte growth factor receptor),  CEACAM6  (carcinoembry-
onic antigen-related cell adhesion molecule),  ZNF367  (zinc fi nger protein involved 
in transcriptional activation of erythroid genes),  GKN1  (gastrokine-1 with strong 
anticancer activity),  LIPF  (gastric lipase with lipid binding and retinyl-palmitate 
esterase activity),  SLC5A5  (a glutamate transporter),  MUC13  (cell surface associ-
ated mucin),  CLDN1  (senescence-associated epithelial membrane protein),  MMP7  
(matrix metalloproteinase) and  ATP4A  (ATPase, H+/K + transporting,  α ). Figure  3.3  
shows four examples of these genes in terms of their averaged expression levels 
 versus  cancer grades across samples of each cancer grade.
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   Intuitively one may expect that some combinations of the 99 genes should give a 
good classifi cation among the four grades. However, this may not necessarily be the 
case for the same reason as discussed in Sect.  3.2.2 . Instead, a 19-gene combination 
is identifi ed, whose expression fold-changes gave a 79.2 % classifi cation consis-
tency with pathologist-assigned grades on two combined grades, namely “highly 
differentiated” covering the WD and MD samples and “poorly differentiated” for 
the PD and UD samples, using the algorithm of Sect.  3.2.1 . It takes a minimum of 
198 genes to give a 4-grade classifi cation at a comparable classifi cation consistency, 
specifi cally at 74.2 %. 

 There may be multiple reasons for the relatively low consistency levels between 
the pathologist-decided and gene-expression-based grading results, but one key rea-
son, we suspect, may be that the morphological information-based grade arrived at 
by pathologists may not be as informative in terms of their prognostic values as it 
could be, at least not on this dataset, indicating the possible limitations of the cur-
rent approaches and a need for improved techniques.   

3.3     Discovering (Sub)Types, (Sub)Stages and (Sub)Grades 
Through Data Clustering 

 The analysis presented in Sect.  3.2  is based on the assumption that the pathologist- 
assigned cancer types, stages and grades are generally correct, i.e., they refl ect, to a 
large extent, the true molecular level commonalities of cancer samples within each 
type (or stage, grade) and differences across cancer samples of different types (or 
stages, grades). A more general cancer typing (or staging, grading) problem is to 
identify cancer types (or stages, grades) when the information of human-designated 
types (stages and grades) is not available. The question addressed here is:  Can one 
possibly discover types or subtypes of a cancer based on the similarities among 
expression patterns of some (to-be-identifi ed) genes  among a subset of cancer and 
matching control samples. To put it in a more specifi c context: when given a collec-
tion of gene-expression data collected on leukemia samples consisting of four types 

  Fig. 3.3    The average gene-expression levels of four genes,  CEACAM6, MUC13, CLDN1  and 
 PGA4 , over gastric cancer samples of each grade for grades WD, MD, PD and UD. The defi nitions 
of the y- and x-axis are the same as in Fig.  3.2 . Adapted from Cui et al. ( 2011b )       
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of leukemia, namely ALL, AML, CLL and CML, but without any labels,  is it possible 
to rediscover the four types of leukemia from the given samples based solely on their 
gene-expression data ? The answer is: Yes, but it may take a lot of computing time. 

 From a computational perspective, this represents a different type of data analy-
sis problem from those discussed in Sect.  3.2 , which are called  classifi cation  prob-
lems. The main issue there was:  Given a set of objects, each labeled to belong to a 
specifi c class, can one identify “features” that can accurately predict the class label 
( e.g. , stages or types) of each object based on the features ? For the current problem, 
the question is:  For the same set of objects, can one partition all the objects into a 
few classes so that objects in each class share some common features that are not 
shared by objects in other classes ? Using computer science terminology, this is a 
 clustering  problem. 

 Clustering techniques have long been used in gene-expression data analyses 
(Ben-Dor et al.  1999 ; Wu et al.  2004 ; D’haeseleer  2005 ). Through identifi cation of 
sample groups sharing similar expression patterns of some genes, researchers have 
identifi ed various previously unknown subclasses of human diseases. The earliest 
work in cancer class discovery based on gene-expression data was published by 
Golub et al., which showed that without prior knowledge, the algorithm “discov-
ered” two subtypes of leukemia, namely, AML and ALL, based on the distinct gene- 
expression patterns among samples of the two subtypes (Golub et al.  1999 ). Other 
discoveries of cancer subtypes include: (1) the discovery of fi ve subtypes of breast 
cancers based on gene-expression patterns, namely, luminal A, luminal B, basal- 
like, normal-like and  ERBB2 + groups, which were found to have clinical implica-
tions (Livasy et al.  2006 ); (2) a recent study that classifi es colon cancer into six 
subtypes based on distinct genomic mutation patterns in the samples, namely sam-
ples with or without  BRAF ,  KRAS  and  P53  mutations, CpG island methylation pat-
terns, DNA mismatch repair status and the chromosomal instability level. The study 
also showed clinical relevance of the six subtypes (Marisa et al.  2013 ); and (3) a 
study that showed improvement in subtyping over the previously determined sub-
types of leukemia using gene-expression data (Yeoh et al.  2002 ). 

 These examples signify the importance that the to-be-discovered new subtypes 
must have clinical relevance. Otherwise such an analysis may lead to clustering 
results that group cancer samples according to their growth rates, which may share 
similar expression patterns of some genes but not any common driving or facilitat-
ing mechanisms in cancer development, hence limiting their usefulness from a 
clinical perspective. 

 Recent studies have revealed one key inadequacy in the current clustering tech-
niques in discovering subgroups having common or similar gene-expression pat-
terns, which are distinct from other subgroups. Specifi cally, a major issue is that the 
clustering techniques require a pre-defi ned subset of genes, based on which tissue 
samples are grouped according to the similarities in expression patterns of these 
genes. This, however, is too restrictive for discovering novel subgroups that may 
have similar expression patterns of some genes that cannot be determined in advance. 
The computational diffi culty in handling this more general clustering problem is 
that for a problem with  m  differentially expressed genes,  2   m   combinations of genes 
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need to be considered in order to identify a subset of the  m  genes sharing similar 
expression patterns among some samples. When  m  is relatively large, say even in the 
range of a few tens, this clustering problem becomes computationally intractable. 
A more powerful clustering strategy is needed to solve such problems, and  bi-
clustering  is one such technique (Van Mechelen et al.  2004 ). 

 To understand the basic principles of a bi-clustering algorithm, one can represent 
a gene-expression dataset as a numeric matrix with each row representing a gene, 
each column representing a paired (cancer  versus  control) sample, and each entry in 
the matrix having the log-ratio value between the expression levels of the corre-
sponding gene in the corresponding sample pair. Two genes are considered to have 
similar expression patterns for a subset of samples if the correlational coeffi cient 
between the two genes-corresponding rows across the samples-corresponding col-
umns is above some defi ned threshold. A  bi-clustering  problem is defi ned as that 
locating all (maximal) sub-matrices, in each of which the correlational coeffi cient 
between each pair of rows across the samples defi ned by the sub-matrix is above the 
specifi ed threshold. Each so defi ned sub-matrix is called a  bi-cluster . Clearly, a 
bi- clustering problem is substantially more general than the traditional clustering 
problem, in that it enables one to discover previously unknown subclasses of a can-
cer class (e.g., type, stage or grade). The generality of a bi-clustering problem also 
makes it considerably more diffi cult to solve computationally. 

 A number of algorithms have been proposed to solve this challenging problem 
(Madeira and Oliveira  2004 ; Van Mechelen et al.  2004 ). To assess the effectiveness 
of the bi-clustering approach in subgroup discovery, we have applied QUBIC 
(Li et al.  2009 ), a bi-clustering method we previously developed, to gene-expression 
data of three leukemia types, ALL, MLL and AML, mixed together with their type 
information removed. The algorithm can accurately recover the three subtypes of 
leukemia as shown in Fig.  3.4 , suggesting the general feasibility in discovering sub-
types from gene-expression data of multiple samples of the same cancer type.

   This technique has also been applied to the 80 pairs of gastric cancer expression 
data for the discovery of possible subgroups among the samples, which led to the 
identifi cation of 20-plus bi-clusters. Some of these bi-clusters represent previously 
uncharacterized subtypes of gastric cancer. For example, Fig.  3.5  shows one 
bi- cluster defi ned by 42 genes, for which the 80 samples fall into two groups, each 
sharing common expression patterns of the 42 genes but different between the two 
groups, specifi cally the light-gray subset on the left and the dark-gray subset on the 
right in the fi gure. Further analyses suggest that the two subgroups may belong to 
two known subtypes of gastric cancer, namely intestinal and diffuse subtypes (Shah 
et al.  2011 ). This conclusion is based on the observation that six of the 42 genes, 
namely  CNN1, MYH11, LMOD1, MAOB, HSPB8  and  FHL1 , have previously been 
reported to be differentially expressed between the intestinal and the diffuse sub-
types of gastric cancer, which all show similar expression patterns among samples 
in each subgroup in the fi gure.

   Such a bi-clustering analysis can also be used for discovery of cancer stages and 
grades. The approach is to fi rst identify genes whose expression patterns change 
with alterations in stage or grade and then conduct bi-clustering analyses using such 
genes as the gene set like the above analysis on cancer subtypes.  

3.3 Discovering (Sub)Types, (Sub)Stages and (Sub)Grades Through Data Clustering



  Fig. 3.5    A bi-clustering result based on 42 genes ( listed along the right side  of the fi gure) and 80 
paired samples ( columns ). The patterns suggest that the 80 patients fall into two subtypes, intesti-
nal and diffuse subtypes. Adapted from Cui et al. ( 2011a )       

  Fig. 3.4    An illustration of the identifi ed three subtypes of leukemia based on gene-expression data 
using the bi-clustering method QUBIC without using  a prior  knowledge about the three subtypes. 
The  rows  and  columns  represent genes and samples, respectively, and  dark gray  and  light gray  
represent up- and down- regulations, respectively       
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3.4     Challenging Issues 

 The availability of genome-scale transcriptomic data for a variety of cancer  samples 
has enabled molecular information-based typing, staging and grading on more 
objective and scientifi c grounds. Along with this opportunity also comes a number 
of challenging technical issues in dealing with the complexity of the data and dis-
covering samples sharing distinct gene-expression patterns with statistical signifi -
cance. A few such challenges that must be addressed in order to make cancer 
typing, staging or grading analyses done in an informative and reliable manner are 
listed below. 

3.4.1     Identifi cation of Pathway-Level Versus Gene-Level 
Signatures 

 The basic premise for cancer typing (and similarly staging, grading) using classifi -
cation or clustering techniques is that some genes exhibit similar expression pat-
terns in cancer samples of the same type, which are not shared by cancers in other 
types. While this is probably true for some genes and cancers as shown in this 
chapter, there is no reason to believe that this has to be true universally. The reason 
is that cancers sharing certain phenotypic characteristics may tend to behave simi-
larly at the biochemical pathway level rather than at the individual gene level. For 
example, the repression of the apoptosis system could be accomplished through 
functional state changes in numerous different ways such as the inhibition of  P53  
transcription,  P53  gene mutations, over-expression of various survival pathways, 
the activation of anti-apoptotic members of the  BCL2  family, and over-expression of 
certain oncogenes. There are even multiple ways to repress apoptosis just through 
different ways of inhibiting the function of  P53 , such as repression of  P53 ’s expres-
sion transcriptionally or epigenomically, over-expression of its inhibitory binding 
partner  MDM2 , prevention of the  P53  protein from entering the nucleus or inhibi-
tion of  P53 ’s function through posttranslational modifi cation (see Chap.   7     for 
details). Hence, an improved strategy for gene-expression-based cancer typing 
needs to take this fact into consideration. An improved strategy may need to fi rst 
identify  equivalent  gene groups, each defi ned as genes whose expression changes 
may lead to the same effects at the pathway level. The challenge is how to identify 
such equivalent gene groups, which, we believe, requires novel ideas knowing that 
the current understanding of cancer-relevant pathways is far from complete.  

3.4 Challenging Issues
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3.4.2     Close Collaboration Between Data Analysts 
and Pathologists May Be Essential 

 Another challenge in using computational techniques for cancer typing (or staging, 
grading) lies in how to optimally integrate the experience of cancer pathologists in 
defi ning cancer types and the molecular information hidden in the  omic  data. 
A common practice, as shown above, has been to statistically link cancer samples, 
defi ned as the same type by pathologists, to a set of genes with common expression 
patterns, which are distinct from cancer samples of the other types. An issue encoun-
tered with such an approach is what to do next when the computational methods 
give rise to staging results different from those by pathologists, knowing that both 
approaches could have errors. An important message to convey here is that it is 
essential for cancer pathologists and  omic  data analysts to collaborate in order to 
resolve inconsistent results, and better yet to develop general protocols for mapping 
the knowledge of onco-pathologists to computer-based cancer typing, staging and 
grading procedures.  

3.4.3     Capturing Complex Relationships Among Gene- 
Expression Patterns 

 Another challenging issue is to identify complex relationships among gene expres-
sion data. For example, some cellular regulation may be triggered when the differ-
ence between the concentrations of certain gene products exceed a certain range, 
rather than their actual expression levels increasing above some threshold. Oxidative 
stress, defi ned as the difference between the abundance of oxidant molecules (such as 
ROS) and that of antioxidants (see Chap.   8     for details), serves as a good example 
here. Specifi cally it is the difference between the abundances of ROS molecules and 
the antioxidant species, rather than the abundance of one individual molecular  species 
like ROS, that triggers oxidative-stress responses when it is beyond some threshold. 
Basically more general models are needed for capturing the complex relationships 
among gene expression data than simply up-or-down expression levels. The problem 
here is to detect non-trivial mathematical relationships among some genes, which are 
shared by some subgroup of samples. Clearly this represents a substantially more 
complex problem in identifying genes similar expression patterns, which, if solvable, 
can help to solve substantially more complex clustering problems.   

3.5     Concluding Remarks 

 The state of the art in cancer typing, staging and grading relies heavily on morpho-
logical information of cancer cells, along with limited molecular level data. The 
limitation of such approaches is obvious since they are not connected with the 
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detailed molecular mechanism(s), raising an urgent need for improved cancer 
 characterization using  omic  data. The importance in moving in this direction is 
clear, as knowing that typing, staging and grading have important implications to 
prognosis as well as selection of the optimum treatment plan(s). Large scale  omic  
data, such as transcriptomic data, probably contain all or the majority of the infor-
mation about the underlying cancer in terms of its driving force, growth mechanism 
and ability to invade and metastasize. By linking such information to typing, staging 
and grading, one can potentially develop more effective ways to assess the level of 
development and malignancy of a cancer. To render  omic  data-based cancer typing, 
staging and grading prediction impactful, collaboration between cancer patholo-
gists and  omic  data analysts is the key. 

 There are two types of computational techniques that can assist in cancer typing, 
staging and grading. One relies on training datasets in which cancer samples are 
labeled with specifi c types, stages and grades by cancer pathologists; the problem is 
to extend this knowledge to enable computer programs to make the same calls by 
identifying genes whose expression patterns correlate well with the specifi ed types, 
stages or grades. This is an example of what is termed a classifi cation problem, or 
 supervised learning  as referred to in the fi eld of data mining. The other does not 
require a training dataset; instead the problem is to determine if a given group of 
cancer samples can be partitioned into subgroups so that each shares common 
expression patterns among some to-be-identifi ed genes, but distinct from other can-
cer samples. This approach is denoted as a clustering problem, or an  un-supervised 
learning  problem. Various challenging computational problems exist that await 
improved techniques, thus making computer-based decisions substantially more 
reliable than the state-of-the-art, including: (1) going beyond the simple similarity 
measures between gene expression to capture more complex relationships among 
gene-expression data of different cancer samples of the same type, stage or grade; 
and (2) more integrated approaches to cancer typing, staging and grading through a 
refi nement of the existing classifi cation schemes involving feedback from patholo-
gists and computational prediction.      

    Appendix 

    Table 3.2    Patient data used in the analysis in Sect.   3.2       

 Patient ID  Age  Gender  Histologic type  Grade  Stage  Smoking  Alcohol  Weight 

 1  54  F  WMD  G2  III  0  0  70 
 2  62  F  WMD  G1  IIIA  0  0  60 
 3  53  M  WMD  G2  IIIB  0  0  60 
 4  51  M  WMD  G2  IIIB  1  0  – 
 5  73  M  WMD  –  IB  0  0  63 
 6  41  M  WMD  G2  II  –  –  – 
 7  59  M  WMD  G1  III  1  1  51 

(continued)
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 Patient ID  Age  Gender  Histologic type  Grade  Stage  Smoking  Alcohol  Weight 

 8  68  M  WMD  G2  IV  0  0  48 
 9  56  F  WMD  G1  IIIA  0  0  45 
 10  43  F  WMD  G1  III  0  0  55 
 11  71  F  WMD  G2  III  0  0  42 
 12  65  M  WMD  G2  IIIA  0  0  70 
 13  55  M  WMD  G2  III  0  0  69 
 14  55  M  WMD  G2  IIIB  0  0  74 
 15  62  F  WMD  G1  IV  –  –  – 
 16  41  F  SRC  –  IV  0  0  43 
 17  42  M  SRC  –  III  0  0  60 
 18  68  M  SRC  –  III  0  0  50 
 19  50  M  SRC  –  III  0  0  62 
 20  55  M  SRC  –  III  0  0  50 
 21  34  M  SRC  –  III  0  0  90 
 22  63  M  PD  G3  IIIB  1  1  – 
 23  56  M  PD  G3  IIIB  1  1  – 
 24  71  M  PD  G3  IIIB  1  0  – 
 25  55  F  PD  G3  IIIB  0  0  63 
 26  64  M  PD  G3  IIIB  0  0  55 
 27  53  F  PD  G3  IIIB  0  0  77 
 28  56  M  PD  G3  IIIB  1  0  55 
 29  53  M  PD  G2–

G3 
 III  0  0  62 

 30  71  M  PD  G3  III  0  0  60 
 31  58  M  PD  G2–

G3 
 III  0  0  50 

 32  42  M  PD  G3  IB  0  0  52 
 33  65  F  PD  G3  IIIA  0  0  – 
 34  50  M  PD  G3  III  1  0  47 
 35  59  M  PD  G3  III  0  0  57 
 36  75  M  PD  G3  III  0  0  65 
 37  40  M  PD  G3  III  0  1  80 
 38  51  F  PD  G3  III  1  0  52 
 39  67  F  PD  G3  IV  0  0  48 
 40  65  F  PD  G3  IIIA  0  0  53 
 41  53  F  PD  G3  IIIA  1  0  60 
 42  60  F  PD  G3  IIIB  0  0  60 
 43  70  M  PD  G3  II  1  0  59 
 44  56  F  PD  G3  II  0  0  74 
 45  78  F  PD  G3  IIIB  0  0  39 
 46  65  M  PD  G3  III  0  1  70 
 47  68  M  PD  G3  III  1  1  69 

Table 3.2 (continued)
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 Patient ID  Age  Gender  Histologic type  Grade  Stage  Smoking  Alcohol  Weight 

 48  57  F  PD  G3  IIIA  0  0  61 
 49  68  F  PD  G3  III  –  –  – 
 50  61  M  PD  G2–

G3 
 III  1  0  70 

 51  55  M  PD  G3  III  –  –  – 
 52  67  F  PD  G3  II  –  –  – 
 53  50  F  PD  G3  III  –  –  – 
 54  62  F  MC  –  III  0  0  70 
 55  55  M  MC  –  IIIB  0  0  60 
 56  57  M  MC  G2  IIIA  –  65 
 57  74  M  MC  –  IB  0  0  62 
 58  58  M  MC  G3  IV  0  0  66 
 59  76  M  MC  –  II  0  0  70 
 60  54  M  MC  –  III  1  1  49 
 61  47  M  (tublar)  –  IB  1  1  65 
 62  49  M  (tubular/

papillary) 
 –  III  1  1  60 

 63  76  F  (undifferentiated)  G4  II  0  0  – 
 64  51  M  (undifferentiated)  G4  II  –  NA  70 
 65  69  F  (squamous cell)  –  III  0  0  50 
 66  65  M  (squamous cell)  G3  III  0  1  50 
 67  36  M  (ulcerative)  G3  IIIA  1  0  60 
 68  75  F  (ulcerative)  G2–

G3 
 IV  –  40 

 69  69  M  (mucous cell 
type) 

 G3–
G4 

 III  0  0  55 

 70  81  M  (adenosquamous)  –  III  1  0  56 
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    Chapter 4   
 Understanding Cancer at the Genomic Level 

                    According to mainstream thinking in the past three decades,  cancer is a disease of 
the genome . That is, cancer evolves from benign to malignant lesions by accumulat-
ing a series of genetic mutations over time. This model was initially developed for 
colorectal cancers based on mutations in the  APC  gene (Fearon and Vogelstein 
 1990 ) and a few other recurring genomic mutations that have been observed in 
colorectal cancers. To drive the genetic basis of this and other cancers, extensive 
collaborative efforts have been established to sequence the genomes of numerous 
cancer types, predominantly solid tumors. This undertaking has led to the public 
availability of thousands of cancer genomes and the identifi cation of myriad 
genomic mutations, including single-point mutations, copy-number changes and 
genomic rearrangements. Analyses of the sequenced genomes have observed that a 
cancer genome may harbor tens to a few tens of thousands of mutations across dif-
ferent cancer types. One somewhat surprising observation has been that cancer 
genomes tend to have a high degree of heterogeneity in terms of their mutation pat-
terns among tissue samples of the same cancer type, even among different cells in 
the same cancer tissue (Xu et al.  2012 ). From this, an obvious question is:  Which of 
the observed mutations contribute to the initiation and development of a sporadic 
cancer ,  and how ? Or, from another perspective,  are any of these mutations respon-
sible for tumor initiation, progression and metastasis ? 

 To address such and related questions, cancer genome analysts have cataloged all 
the genetic changes observed in cancer genomes ( versus  their healthy controls) and 
have identifi ed numerous common changes across different genomes of the same as 
well as different cancer types. Interesting results have emerged. For example, ~50 % 
of the sequenced cancer genomes harbor mutations in the  P53  gene and ~90 % of 
colon cancer genomes have mutations in the  APC  gene. With all the cancer and their 
control genomes, one can start to address a variety of basic questions about cancer 
such as: (1)  Do genes of a specifi c pathway tend to have more mutations than other 
pathways ? (2)  Do mutations in certain pathways tend to take place before mutations 
in other pathways?  (3)  To which aspects of a cancer development do mutations tend 
to contribute during the process of tumorigenesis ? And even (4)  Do genomic 
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 mutations really drive a cancer development as it has been widely believed ? We 
fully expect that questions like these and possibly many beyond can be realistically 
addressed based on the available and emerging cancer genome data. 

4.1     Basic Information Derived from Cancer Genomes 

    Since the fi rst human genome was sequenced in 2001 (Lander et al.  2001 ; Venter 
et al.  2001 ), a number of large cancer-related genome sequencing projects have 
started as outlined in Chap.   2    . These efforts have led to the generation of thousands 
of sequenced cancer genomes or exomes as of early 2014, all aimed to fi nd the holy- 
grail: the driver mutations for each cancer. Clearly such data have provided ample 
opportunities for cancer researchers and genome analysts to characterize the 
genomic landscapes of mutations across different cancer types and to link such 
information to their clinical phenotypes. The rapid advancement in sequencing 
technology, along with the rapid price reduction, e.g., with a 100-fold price reduc-
tion in sequencing one human genome from 2008 to 2014, has clearly fueled the 
competition for producing larger numbers of cancer genomes worldwide, thus 
increased opportunities to discover common genomic and pathway level character-
istics across cancer samples of the same types. It has become common now for a 
published study to report sequencing and analysis results of dozens to hundreds of 
cancer genomes. 

 With the accumulation of the cancer mutation data, various statistics on mutation 
patterns have been compiled. For example, according to a recent review (Vogelstein 
et al.  2013 ), each solid-cancer genome for adults harbors a median of 25–80 genes 
having non-synonymous mutations with respect to the matching control. This con-
clusion is based on data from multiple cancer types including colon, breast, brain 
and pancreatic cancers. More than 90 % of these mutations are single-base muta-
tions (such as C to G substitutions), of which 90.7 % result in missense changes, 
7.6 % result in nonsense changes and 1.7 % are alterations in splice sites or untrans-
lated regions. The variation in the number of mutations per genome can be large 
across different samples of the same cancer type. For example, a median of ~9,600 
mutations per genome was found in the gastric cancer genomes that our lab 
sequenced (Cui et al.  2014 ), and the genome with the highest number of mutations, 
namely ~50,000 mutations, in this set is from a patient with some 20 years of smok-
ing history. The compiled statistics also revealed that different cancer types may 
have different ranges in the number of mutations per genome. For example, small 
cell lung cancer and melanoma genomes are at the high end in this spectrum, con-
taining 23,000 and 30,000+ mutations per genome on average, respectively. In con-
trast, pediatric cancers were found at the lowest end, harboring 9.6 point mutations 
per genome on average. Multiple explanations for cancer type-dependent mutation 
frequencies have been proposed, including histories of smoking and exposure to 
UV light, but few of them have been rigorously tested. We believe that cancer  omic  
data analyses can provide useful insights in linking endogenous factors to the 
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observed variations in mutation frequencies through association analyses between 
factors such as cellular ROS levels  versus  single-point mutation rates or hypoxic 
levels  versus  rates of complex mutations. 

 The public availability of sequenced cancer genomes has also made it possible 
to carry out in-depth genetic analyses regarding early mutations that may cause 
cancer, as well as statistical inference of the relative order of occurrences/selections 
of mutations associated with different pathways. Such information would be 
invaluable, for example, to inference of which mutation(s) may be the disease 
initiator(s) responsible for the onset of a cancer and which mutations subsequently 
contribute to progression and metastasis. The  APC -based model for colon cancer 
represents the fi rst such study, which predated the cancer genome sequencing proj-
ects (Fearon and Vogelstein  1990 ). According to this model, the  APC  mutation is 
probably the fi rst or of the fi rst few among other mutations involved in the forma-
tion of a colon adenoma. The normal function of the protein includes signal trans-
duction in the  WNT -signaling pathway, mediation of intercellular adhesion, 
stabilization of  cytoskeleton and cell-cycle regulation (Fearnhead et al.  2001 ). The 
model predicts that the loss-of-function mutations in the gene may provide the host 
cells a growth advantage, hence allowing the cells with the mutations to outgrow 
the neighboring cells and become a microscopic clone, forming a small slow-growing 
adenoma. A signifi cant tumor expansion will take place when a second mutation 
arises in a proto-oncogene gene, such as  KRAS , which promotes the clonal growth. 
At this point, two cell types co-exist in the same colony, one with  APC  mutations 
only and the other with mutations in both genes. The latter may have a substan-
tially larger cell population than the former because of the growth advantage pro-
vided by the  KRAS  mutation. As this clonal expansion continues, additional 
mutations in other genes, specifi cally  PIK3CA  (phosphatidylinositol 4,5-bisphos-
phate 3-kinase) , SMAD4  (deleted in pancreatic carcinoma locus 4) and  P53 , may 
occur and be selected, eventually leading to a malignant tumor (Vogelstein and 
Kinzler  2004 ). Here  PIK3CA  is a proto-oncogene and has key roles in cell prolif-
eration, survival and migration (Murat et al.  2012 );  SMAD4  is a tumor suppressor 
gene and a key gene in the  TGFβ  (transforming growth factor β) pathway (de 
Caestecker et al.  2000 ); and  P53  is a well-studied tumor-suppressor gene that has a 
variety of functional roles in cell cycle control, RNA repair and initiation of apop-
tosis (Lakin and Jackson  1999 ; Zilfou and Lowe  2009 ) (see Chap.   7     for detailed 
information about  P53 ). 

 Substantially improved understanding has been gained about the biology of can-
cer formation since the initial proposal of the  APC  mutation-based cancer model in 
1990. It is now, for example, well understood that this genetic model is too simplis-
tic for explaining the actual formation of a human colon cancer (see Sect.  4.4  for 
details). Still this model has played a major role in driving the research on cancer 
genetics in the past two decades. 

 Mutations in the aforementioned genes are considered as  driver  mutations in 
colon cancer development, since each is believed to give the host cells a growth 
advantage. A recent study has quantifi ed this advantage by estimating that one such 
loss-of-function mutation results in a 0.4 % advantage towards cell growth in the 
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dynamic equilibrium between cell growth and death (Bozic et al.  2010 ). Hence, the 
compounding effect of these slight advantages over years, say 10–20 years (the 
typical duration needed for a cancer to fully develop in an adult), may lead to 
the formation of a large tumor. Compared to driver mutations, the vast majority of 
the somatic mutations observed in cancer genomes are considered as  passenger 
mutations , i.e., they are believed not to give any growth advantage to the host cells. 
These passenger mutations may happen and be selected by chance, as the result of 
a faulty or imprecise DNA replication or repair machinery. 

 To date, over 300 candidate driver genes have been proposed in different cancers, 
the majority of which are tumor suppressor genes and only a few dozen are proto- 
oncogenes (Vogelstein et al.  2013 ). According to this study by Vogelstein and col-
leagues, a typical cancer may require 2–8 driver mutations for its full development. 
What has been surprising is that, aside from a few driver mutations such as  APC  
mutations in colorectal cancer,  BRCA1-2  mutations in familial breast and ovarian 
cancers and the fused  ABL-BCR  gene (also known as the Philadelphia chromosome) 
in CML, the vast majority of the predicted driver mutations have very low recur-
rence rates among the genomes of the same cancer type. This observation, not sur-
prisingly, has put the usefulness of the driver-mutation concept in question, as will 
be further discussed in Sect.  4.4 .  

4.2     General Information Learned from 
Cancer Genome Data 

 As of the end of 2013, complete genomes for over 20 cancer types have been 
sequenced on a few to a few hundred cancer and control tissue samples per sequenc-
ing project. We use the following three cancer types as examples to give the reader 
a sense about the type of information that has been learned, namely (a) lung cancer, 
the most common cancer in the US and worldwide; (b) colon cancer, the cancer with 
a genetic model; and (c) gastric cancer, sequenced and analyzed by our own team 
and representing the second leading cause of cancer-related mortality worldwide. In 
addition, two subtypes of leukemia are also included as representative non-solid 
tumors in the discussion. 

4.2.1     Lung Cancer Genomes 

 Lung cancer is the deadliest cancer type among all cancers for both men and women 
in the US and worldwide, with an estimated 228,190 new cases and 159,480 deaths 
anticipated in 2013 in the US (ACS 2013). Lung cancer has two main subtypes: 
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). The latter 
is more aggressive and accounts for about 15 % of all lung cancer cases. Most 
SCLC cases are attributed to smoking, and the patients generally have poor 
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prognosis. In 2010, one SCLC cell line, NCI-H209, was sequenced along with a 
control line, NCI-BL209, by the Sanger Institute (Pleasance et al.  2010b ). 

 This sequencing project led to the identifi cation of a large number of mutations 
in SCLC cells, such as 22,910 somatic mutations including 94 non-synonymous 
single-point mutations, 65 insertions and deletions, 58 genomic rearrangements and 
334 copy-number changes. The G → T substitution was the most common substitu-
tion, accounting for over 1/3 of the observed single-point mutations; this may be 
partially related to the known chemical modifi cation of purines (A/G) induced by 
tobacco mutagens. Tobacco mutagens are known to bind with and chemically mod-
ify genomic DNA, forming bulky adducts at the purine residues and leading to non-
Watson- Crick pairing during DNA replication. Such mispairing may escape 
correction by a compromised DNA repair system that tends to be associated with 
cancer (Pleasance et al.  2010a ). 

 In comparison, more sequencing studies have been carried out on NSCLC, the 
most common form of lung cancer. A number of driver mutations have been pre-
dicted in a few proto-oncogenes and tumor suppressor genes such as  AKT1, ALK, 
BRAF, EGFR, HER2, KRAS, MEK1, MET, NRAS, PIK3CA, RET  and  ROS1  
(Serizawa et al.  2013 ). Mutations in these genes may lead to constitutive activation 
of a number of growth-signaling pathways and hence possibly drive tumorigenesis. 
Interestingly, it was found that these driver mutations rarely co-occur in the same 
cancer sample, suggesting the possibility that these mutations play similar roles in 
the evolution of different cancer samples. 

 178 lung squamous cell carcinomas (SCC), a subtype of NSCLC, were sequenced 
in 2012 by the NIH TCGA (The Cancer Genome Atlas) consortium. Analyses of the 
sequenced genomes have led to the identifi cation of a mean of 360 mutations in 
protein-coding regions, 165 genomic rearrangements and 323 copy-number changes 
or variations (CNVs) per genome. A few recurrent mutations were found in multiple 
proto-oncogenes and tumor suppressor genes such as  CDKN2A, PTEN, PIK3CA, 
KEAP1, MLL2, HLAA, NFE2L2, NOTCH1, RB1  and  P53 , with  P53  being mutated 
in nearly all the 178 genomes. In addition, CNVs were found with a few genes such 
as  SOX2, PDGFRA, KIT, EGFR, FGFR1, WHSC1L1, CCND1  and  CDKN2A , and 
signifi cant amplifi cations were observed with the  NFE2L2, MYC, CDK6, MDM2, 
BCL2L1  and  EYS  genes, along with deletions of the  FOXP1, PTEN  and  NF1  genes 
(The-Cancer-Genome-Atlas  2012a ). Unfortunately, no fundamentally new biology 
about the formation mechanism of this cancer type was revealed based on the 
 discovery of these mutations, a common outcome in multiple other cancer-genome 
sequencing projects. 

 To assist the reader in understanding why each of these specifi c genes has a large 
number of duplications or are deleted in the SCC genomes, the following table gives 
a brief description about the function of each    (Table  4.1 ).

   From this table one may come to the conclusion that genes with signifi cant 
amplifi cations tend to be related to cell growth, proliferation, inhibition of cell death 
and response to oxidative stress, while the deleted genes have antagonist functions 
to those that are amplifi ed.  
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4.2.2     Colorectal Cancer Genomes 

 Colorectal cancer is the third leading cause of cancer-related deaths in the 
US. Analyses of cancer genome data revealed that more than 80 % of the human 
colorectal carcinomas (CRCs) have mutations in the  APC  gene (Kinzler and 
Vogelstein  1996 ), which is true for both sporadic and hereditary CRCs. The physi-
ological role of  APC  as a tumor suppressor is to retain the β-catenin protein for 
phosphorylation, thus preventing it from entering the nucleus to function as a tran-
scription factor for cell proliferation. 

 The fi rst large-scale genome sequencing paper on CRCs was published by TCGA 
in 2012, which sequenced 276 CRC genomes (The-Cancer-Genome-Atlas  2012b ). 
Twenty-four genes were found to be signifi cantly mutated in CRC genomes. In 
addition to the fi ve genes used in Fearon and Vogelstein’s CRC model,  ARID1A, 
SOX9  and  FAM123B  have been found to harbor mutations most frequently in CRC 
genomes, suggesting their importance to the formation of a CRC. Among these 
genes,  ARID1A  is related to chromatin remodeling (Guan et al.  2011 );  SOX9  is a 
developmental gene, involved in male sexual development (Kent et al.  1996 ); and 
 FAM123B  is a signaling protein, possibly involved in kidney development (Genetics-
Home- Reference  2014 ). 

 A computational analysis of these mutations has provided new insights into the 
biology of CRC at the pathway level. For example, 16 genes in the  WNT -signaling 
pathway were found to be mutated, suggesting the importance in altering the normal 
function of the pathway to CRC development. It is worth noting that a key function 
of this pathway is in coordinating cell proliferation, differentiation and migration 
activities, so multiple mutations in this pathway suggest that CRC may benefi t from 

   Table 4.1    A brief functional description of the amplifi ed and deleted genes in SCC genomes   

 Gene symbol (gene name)  Function 

  NFE2L2  (nuclear factor, erythroid 
2-like 2) 

 Is important for the coordinated up-regulation of 
genes in response to oxidative stress 

  MYC  (avian myelocytomatosis viral 
oncogene) 

 Activates the transcription of growth-related genes 

  CDK6  (cyclin-dependent kinase)  Promotes G 1 /S transition in cell cycle 
  MDM2  (E3 ubiquitin protein ligase)  Inhibits  P53 - and  P73 -mediated cell cycle arrest and 

apoptosis 
  BCL2L1  (Bcl-2-like protein 1)  A potent inhibitor of cell death 
  EYS  (eyes shut homolog)  Contains multiple epidermal growth factor ( EGF )-like 

domains 
  FOXP1  (Forkhead box P1)  An essential transcriptional regulator of B-cell 

development 
  PTEN  (phosphatase and tensin 
homolog) 

 Antagonizes the  PI3K-AKT/PKB  survival signaling 
pathway 

  NF1  (neurofi bromatosis)  Accelerates  RAS  inactivation 
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loss of coordination among these three essential cellular processes. Mutations in the 
 PI3K  and  RAS–MAPK  signaling pathways were also common in the sequenced 
samples, including mutually exclusive mutations in  PIK3R1  and  PIK3CA , deletions 
in  PTEN , and mutually exclusive mutations in  KRAS, NRAS  and  BRAF , suggesting 
that simultaneous inhibition of the  RAS  and  PI3K  pathways may be required to 
achieve therapeutic benefi t in treatment of a CRC (The-Cancer-Genome-Atlas 
 2012b ). The  TGFβ  and  P53  signaling pathways were found to be frequently mutated 
in CRC. Amplifi cations of the  ERBB2  gene were found multiple times across differ-
ent samples, and amplifi cation of  IGF2  was also observed, both of which are growth 
factors. Lastly, fusions between the  NAV 2 gene and the  WNT -pathway member 
 TCF7L1  were identifi ed in multiple samples. 

 Overall, a substantial amount of information has been derived from the mutation 
data, which should be highly informative for elucidating the specifi c evolutionary 
pressures that the CRC is under. Specifi cally, these mutations were selected to facil-
itate the CRC cells to evolve and survive the pressures to which they are exposed 
(see Chap.   5     for a detailed discussion). Advanced data analyses of these mutations, 
along with the known functions of the relevant genes under physiological condi-
tions and the current knowledge about the cancer development, could lead to the 
establishment of logic models that can explain why these mutations are specifi cally 
selected by the CRC cells, which could result in new insights about the underlying 
mechanisms of the selected evolutionary trajectories by the CRC samples.  

4.2.3     Gastric Cancer Genomes 

 Very little is currently known about the molecular basis of gastric cancer, although 
infection of bacterial  H. pylori  is believed to be a risk factor for its development. 
A number of large-scale genome sequencing analyses have been published on this 
cancer, including two exome sequencing projects and one genome-wide association 
study, which reported novel mutations in the chromatin remodeling gene  ARID1A  
and two suspicious loci associated with non-cardia gastric cancers (Shi et al.  2011 ; 
Wang et al.  2011 ). Another genome analysis on two gastric adenocarcinomas 
revealed the architecture of a wild-type  KRAS  amplifi cation along with three dis-
tinct mutational signatures in this cancer (Nagarajan et al.  2012 ). Further analyses 
of the observed mutations, in conjunction with genome data from 40 gastric cancer 
exomes and followed with a targeted screening of an additional 94 independent 
gastric tumors, uncovered recurring mutations in the  ACVR2A, RPL22, LMAN1  and 
 PAPPA  genes in multiple gastric cancer samples (Nagarajan et al.  2012 ).  ACVR2A  
can activate  SMAD  transcription regulators, which are cofactors of signal transduc-
tion of  TGFβ ;  RPL22  is a ribosomal protein;  LMAN1  is mannose-specifi c lectin; 
and  PAPPA  is a metalloproteinase and related to the release of  IGF  (insulin like 
growth factor) .  

 Our group has performed a whole-genome sequencing analysis on fi ve pairs of 
gastric adenocarcinoma and matching control tissues (Cui et al.  2014 ). The goal was 
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to elucidate not just which, but also how the genomic changes may have arisen and 
their possible roles in cancer progression. A particular focus was on associations 
between the identifi ed genomic changes and likely cancer-causing factors relevant 
to the impaired DNA repair system, and potential integration of  H. pylori  DNA into 
the host genome. The analysis identifi ed 407 non-synonymous point mutations, 
among which the most recurrent were in  MUC3A  and  MUC12  (mucins) and three 
transcription factors,  ZNF717  (zinc fi nger protein),  ZNF595  and  P53 , where both 
zinc fi nger proteins have been implicated in a number of cancers (Litman et al. 
 2008 ; Barbieri et al.  2012 ; Liu et al.  2012 ). 679 genomic rearrangements were 
detected, which disrupt 355 protein-coding genes; in addition, 76 genes were found 
to have copy-number changes. The most interesting fi nding of the analysis, how-
ever, was the observation suggesting potential integration of  H. pylori  DNA into the 
host genome. If proven to be true experimentally, this could potentially provide 
highly useful guiding information for effective treatment of the illness.  

4.2.4     Leukemia Genomes 

 For non-solid tumors, ALL is the most common pediatric malignancy. Among dif-
ferent subtypes, early T-cell precursor ALL (ETP ALL) has high occurrences of 
copy-number variations and is known to have low success rates in treatment 
(Coustan-Smith et al.  2009 ). A whole-genome sequencing study on 12 ETP ALL 
samples was published in 2012 (Zhang et al.  2012 ). An average of 1,140 point 
mutations, including 154 non-synonymous ones, and 12 structural alterations per 
genome were detected, which overlap with a number of protein-coding regions such 
as those involved in cytokine-receptor regulation and  RAS  signaling ( NRAS, KRAS, 
FLT3, IL7R, JAK3, JAK1, SH2B3  and  BRAF ), hematopoietic development ( GATA3, 
ETV6, RUNX1, IKZF1  and  EP300 ) and histone-modifi cation ( EZH2, EED, SUZ12, 
SETD2  and  EP300 ). Two genes,  DNM2  and  ECT2L , were found to have recurring 
mutations across multiple samples, where  DNM2  (a cytoskeletal protein) is believed 
to be involved in endocytosis and cell motility, and  ECT2L  (epithelial cell trans-
forming sequence 2) may be an oncogene that acts as a guanine nucleotide exchange 
factor. In addition, mutations in  JAK3  (leukocyte Janus kinase) , IL7R  (interleukin 7 
receptor),  IFNR1  (interferon gamma receptor 1) and  BRAF  were considered as a 
possible common pathogenesis for the establishment of the ETP leukemic clone. 

 Among all leukemia types, CML is probably the best understood. In most cases 
the illness is believed to be caused by or closely associated with the formation of a 
Philadelphia chromosome (see Fig.  4.1  and Chap.   1    ). Specifi cally, the  ABL  gene 
(acquired from the  Ab elson murine  l eukemia virus) on chromosome 9 is fused with 
 BCL  ( b reakpoint  cl uster region) on chromosome 22, giving rise to constitutive acti-
vation of the  ABL-BCL  tyrosine kinase, which is considered to be the sole driver of 
the cancer.

   A tyrosine kinase inhibitor drug, Gleevac, was developed and hailed to be 
extraordinarily effective in terminating the rapid malignant cell proliferation. 
However, in time, the drug begins to lose its effectiveness due to the ability of the 
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cancer to develop drug-resistant clones (Hochhaus  2006 ). Two general classes of 
resistance cases have been observed: one being  ABL-BCL- dependent and the other 
 ABL-BCL- independent. The  ABL-BCL- dependent class tends to develop point 
mutations in the  ABL  gene that prevents Gleevac from binding (Deininger et al. 
 2005 ), while the  ABL-BCL- independent class by-passes the drug-induced  ABL-BCL  
inhibition by constitutively activating down-stream signaling proteins such as  SRC  
kinases (Thomas et al.  2004 ). All these clearly raise an issue of  whether the 
Philadelphia chromosome is indeed the sole driver of the cancer . If so, then what 
drives the cancer to return when the driver is inhibited?   

4.3     Driver Mutations Considered at a Pathway 
Level: Case Studies 

 By mapping the observed driver mutations onto biological pathways in databases 
such as KEGG (Ogata et al.  1999 ), BIOCARTA (Nishimura  2001 ) and REACTOME 
(Croft et al.  2011 ), some pathways are found to be statistically enriched with such 
mutations. According to one report, all the known driver mutations enrich 12 signal-
ing pathways (Vogelstein et al.  2013 ). The following discussion considers three 
pathways or biological processes enriched with driver mutations in various cancers: 
cell growth, cell survival and genome maintenance, to give the reader a sense of 
why these pathways tend to be highly mutated. 

  Fig. 4.1    A schematic for the formation of the Philadelphia chromosome       
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4.3.1     Cell Differentiation 

 Cell division and differentiation are two fundamental processes that are linked 
through cell-cycle controls, where a growth-to-differentiation transition (GDT) 
point exists in the G 2  phase of a cell cycle. A proliferating cell exits the cell cycle 
and enters the differentiation process only when the GDT check fails, e.g., when 
no adequate amount of nutrient is available in support of cell division. Thus, a 
normal proliferating cell proceeds to either of the two paths depending on the 
check result at the GDT. For cancer cells, the situation becomes quite complex. 
Specifi cally, cell division in cancer is a means for survival as detailed in Chap.   5    . 
That is, without cell division, these cells will die. It is generally known that cancer 
cells tend to be low in ATP production compared to normal cells (Hirayama et al. 
 2009 ); also see Chap.   5     for a detailed discussion. When the ATP-defi cient prolifer-
ating cells (another paradox of cancer) traverse the cell cycle, they should have 
been directed to cell differentiation at the GDT checkpoint. However, cells transi-
tioned there will die, hence creating a pressure for them to select mutations that 
favor cell division over differentiation. Mutations found in the  APC, HH  and 
 NOTCH  genes are probably all relevant to this selection as these genes are known 
to be important to the GDT checkpoint (Jordan et al.  2006 ; Meza et al.  2008 ; 
Kahane et al.  2013 ). A specifi c mutation in  IDH  (isocitrate dehydrogenase), termed 
the 2HG-producing mutant  IDH , has been found in glioma, acute myeloid leuke-
mia and chondrosarcoma (Lu et al.  2012 ), which essentially serves the same pur-
pose by blocking the cells from transitioning to differentiation through inhibition 
of a histone demethylation.  

4.3.2     Cell Survival 

 As discussed above and detailed in Chap.   5    , neoplastic cells proliferate as a way of 
survival. During this process, they gradually lose the normal functionalities of 
their cell cycle regulators. Survival has become the sole purpose of these cells, so 
consequently any genetic mutations that give these cells a survival advantage over 
death will be selected. Cancer genome analyses have shown that numerous muta-
tions are related to cell survival such as mutations that can lead to: (1) prevention 
of apoptosis activation, (2) skipping checkpoints in cell cycles, (3) boosting cel-
lular fi tness levels as discussed in Chap.   8     and (4) enhanced proliferation that can 
also boost survival (Li et al.  1998 ). The following gives a few such genes: (1) 
tumor suppressor genes  PTEN, RB1, NF1, WT1, MYC, CDKN2A  and  VHL , and (2) 
proto-oncogenes  MYC, EGFR, HER2, EGFR2, PDGFR, TGFβR2, MET, KIT, RAS, 
RAF, PIK3CA  and  BCL2 . Survival at any cost appears to be a key characteristic of 
all cancers.  
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4.3.3     Genome Maintenance 

 Normal human cells have a sophisticated machinery to maintain the fi delity of DNA 
replication to ensure that their genomes are faithfully copied from one generation to 
the next, which is required to execute their intended functions as encoded in the 
genome. An inaccurate copy of DNA may lead to elimination of the new cell under 
physiological conditions for the health of the whole tissue. It is known that neoplas-
tic microenvironments tend to have a high level of oxidative stress due to their over- 
production of the ROS and reactive nitrogen species (RNS), predominantly 
associated with increased metabolic activities. Under stressful conditions induced 
by ROS accumulation and DNA damage, DNA-integrity checks during the cell 
cycle may slow the cell-division process or even direct the cells to apoptosis, which 
cancer cells attempt to avoid. While healthy cells need such mechanisms for remov-
ing the malfunctioning cells, tumors cells do not; and losing such a capability may 
help them to gain effi ciency for survival. Hence, numerous genes involved in 
genome-integrity maintenance, such as  P53  and  ATM  (ataxia telangiectasia 
mutated), are often mutated as widely observed across different cancers. For the 
same reason, genes responsible for DNA repair, such as  MLH1  (DNA mismatch 
repair protein 1) , MSH2  or  MSH6 , are also often mutated in cancers. This will lead 
to loss-of-function in DNA repair, which will, in turn, accelerate the accumulation 
of additional mutations. 

 Mutational analyses at the pathway level enables one to identify cellular pro-
cesses that require inhibition or enhancement in cancer cells, hence providing a way 
to see the big picture of a forest (cellular pathways) rather than just individual trees 
(genes), and to understand the impact of individual mutations at a higher functional 
level. Further discussion along this line of thinking is carried out in Sect.  4.4 , where 
all the mutations observed in cancer genomes of a specifi c type, including both 
driver or passenger mutations as defi ned in the current literature, are examined.   

4.4        Information (Potentially) Derivable from Mutation 
Data of Cancer Genomes 

 A large number of cancer genomes have been sequenced and numerous genome- 
analysis papers have been published as outlined in the previous sections. These 
studies have uncovered mutations in genes encoding a wide range of cellular func-
tions. However, what has been somewhat surprising and possibly disappointing is 
that not many breakthroughs in our understanding about the basic biology of cancer 
have resulted from these large-scale genome sequencing and analysis efforts. In the 
past few years, concerns have been raised by some, including leading cancer geneti-
cists, questioning the true value of continual cancer-genome sequencing. A close 
examination of a presentation by Vogelstein in 2010 may give some hints about why 
this is the case (Kaiser  2010 ). The presentation predicts that the yet-to-be-identifi ed 
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driver genes will probably be part of the 12 pathways that are dominantly enriched 
with the 300+ predicted drivers, and does not expect that many new driver genes 
will be discovered from future cancer genome sequencing projects. 

 This is clearly surprising as this prediction seems to suggest that the genetic 
information of any cancer is dominantly encoded in these 300+ genes? To put it in 
a form of a question:  Have we really uncovered all the cancer-related genetic infor-
mation from genomic mutation data, or have we been too limiting in our vision in 
information derivation from the sequenced cancer genomes ? 

 As a possible check on which one of these two possibilities is likely to be correct, 
one published set of 24 sequenced genomes of human colon samples have been 
chosen for further analyses, which cover different disease stages including colon 
polyps, precancerous colon adenoma (small), precancerous colon adenoma (large) 
and colon adenocarcinoma (Nikolaev et al.  2012 ). The selection of this particular 
dataset is mostly based on the consideration that it provides mutation information in 
precancerous colon tissues. Out of the 24 sequenced genomes, 4 were removed 
from our analysis since 3 are sessile serrated adenoma, which represent a type of 
colon tumor distinct from the other tumor samples, and 1 adenoma sample lacks a 
clear label for its developmental stage. The 20 samples used in our analysis consist 
of 1 polyp with 4 mutations, 8 mild and small adenoma samples harboring 272 
mutations, 8 severe and large adenoma samples having 344 mutations and 3 adeno-
carcinoma samples with 198 mutations. Out of these 815 mutations, 9 are predicted 
to be driver mutations by the authors of the study, namely ( APC, KRAS, CTNNB1, 
P53, NRAS, GNAS, AKT1, ADRID1A, SOX9 ) ,  all of which are either tumor- 
suppressor genes or proto-oncogenes, while the remainder of the 815 mutations are 
considered as passenger mutations. Since this dataset has only three adenocarci-
noma samples, too small to generate meaningful statistics, one published set of 
colon adenocarcinoma genomes (The-Cancer-Genome-Atlas  2012b ) is also 
included in our analysis. 

 This combined dataset enables us to examine how the mutation-enriched path-
ways change as the disease progresses through different stages. The new dataset 
consists of complete genomes of 131 adenocarcinoma samples, 18 stage-1 samples 
with a total of 1,439 mutations, 47 stage-2 samples with 3,683 mutations, 43 stage-3 
samples harboring 3,657 mutations and 23 stage-4 samples having 2,061 mutations. 
32 of these mutations are predicted to be driver mutations by the authors of this 
dataset. The following analysis included  only  passenger mutations predicted by the 
original authors of these two datasets. 

 To check if the predicted passenger mutations may contain any interesting infor-
mation, a simple pathway-enrichment analysis was carried out on these mutations 
using DAVID against three pathway databases, KEGG, BIOCARTA and 
REACTOME. Table  4.2  lists the pathways or gene groups that are enriched with 
genomic mutations of high statistical signifi cance.

   Each column of the table lists all the pathways enriched with (passenger) muta-
tions having p-values <0.05 for the fi rst dataset and <0.005 for the second set (using 
a more stringent cutoff to simplify the following analysis as an illustrative example 
since otherwise too many mutations need to be considered). From the table, one can 
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see that in the early adenoma stage, pathways (gene groups) enriched with  mutations 
are related to cell adhesion, extracellular matrix composition and interaction 
 (fi bronectin, extracellular matrix (ECM), ECM-receptor interaction, glycoproteins), 
cell morphology, cell cycle and cell motility. These results strongly suggest that in 
early adenoma, changes are already made in: (a) the composition of the extracellu-
lar matrix as well as cell-ECM interactions, (b) cell-cell adhesion, (c) cell morphol-
ogy and (d) cell cycle. It is noteworthy that all of these mutations are related to 
genes involved with tissue development! 

 As introduced in Chap.   1    , the composition of the ECM plays an essential role in 
cancer (or any tissue) development. It has been well established that changes in the 
mechanical properties, via changes in the composition of the ECM, is a key step in 
the beginning of tissue development. The data in Table  4.2  suggest that altering the 
mechanical properties of the ECM by changing its composition is probably a fi rst, 
or at least an early step that needs to be taken for a cancer (tissue) to develop. The 
changes observed here in ECM-cell interaction, cell-cell adhesion, cell morphology 
and cell cycle through mutations suggest that in colon cancer, and possibly other 
cancers as well, tissue development is not a  top-down  process as in a normal tissue- 
developmental process. In the latter, signals emanate to all the relevant processes 
(players) in a coordinated fashion to prepare and execute the actions needed for 
proper tissue development. Specifi cally the following changes must be in place for 
the cells to proliferate and the tissue to develop: (1) growth signaling; (2) material 
preparation for cell division; (3) cell cycle activation; (4) cell morphology changes 
induced by altered interactions with the extracellular matrix induced by (5); and (5) 
changes in the composition and hence the mechanical properties of the ECM, 
among a few other changes. 

 The observed mutation data suggest that the cancer tissue-development is a 
 bottom- up   process. Specifi cally cells are fi rst pressured to divide (see Chap.   5     for 
the detailed driver information) but without the proper signals at the tissue level to 
inform all the relevant players. The initial cell-division signals, produced through 
the cells’ altered metabolism (see Chap.   6    ) and specifi cally generation of hyaluronic 
acid fragments, may lead to the activation of some, but probably not all players 
involved in the tissue development machinery. At a minimum, this would not be at 
the same level of coordinated activities, which puts the relevant cells in a partially 
activated state for tissue development, waiting for the additional players to join. The 
selected mutations in the above categories may represent these awaited players, i.e., 
these mutations  open all the doors  needed for the cells to divide without full signals 
for tissue development. 

 This is not diffi cult to imagine since, although hyaluronic acid fragments can 
(theoretically) provide all the signals needed for the above (1)–(5), they are the 
result of random degradation of hyaluronic acid polymers by hyaluronidases and 
not designed to support tissue development in a well-coordinated fashion. In addi-
tion, knowing that cell growth signals will trigger cell death when no adequate mac-
romolecules can be synthesized to support cell division (Vaux and Weissman  1993 ), 
we speculate that  the un-coordinated hyaluronic acid fragment-based signaling for 
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tissue development leads to cell-growth related stress , which may be the direct 
 reason for the observed mutations selected by the neoplastic cells. 

 The mutation-enriched pathways in the large adenoma samples, as can be seen 
from the second column in Table  4.2 , include: (1)  EGF -like (epidermal growth fac-
tor like) domain, (2)  ABC  (ATP-binding cassette) transporters, (3) cadherin, and (4) 
actin binding in addition to those shared with small adenoma samples. It is worth 
noting that the  EGF -like domain is part of the laminin protein, a key linker protein 
as an integral part of ECM.  ABC  transporters have long been known to be relevant 
to cancer, mostly because of their roles in the multi-drug resistance pathway 
(Szakacs et al.  2006 ). Recent studies have found that  ABC  transporters actually play 
active roles in cancer development based on the following observations: (a) the 
expression of  ABCB1  can delay the activation of apoptosis in leukemia; (b)  ABCC1  
has been found to promote cell survival, and knock-down of this gene suppresses 
proliferation in neuroblastoma; and (c) cell proliferation was increased with reduced 
knock-down of  ABCG2 , all as reviewed in (Fletcher et al.  2010 ). Regarding (3), the 
loss of cadherin function reduces cell-cell adhesion, hence allowing cells to move 
and invade neighboring tissues. Regarding (4), actin-binding is the link between the 
ECM and the intracellular actin cytoskeleton, where cell division requires structural 
changes of the actin cytoskeleton, which is generally induced through interactions 
between actins and ECM-associated proteins as shown in Fig.  4.2 .

   Overall, it can be seen that, as an adenoma grows from a small to a larger size, it 
continues to alter the composition and hence the physical properties of the underly-
ing ECM, possibly to enhance the effectiveness of growth signals and to induce 

  Fig. 4.2    A schematic of the actin cytoskeletal structure and interactions with the ECM-associated 
proteins. Cell division requires structural changes in the cytoskeleton, generally induced via inter-
actions between actins and ECM-associated proteins such as integrins       
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changes in actin cytoskeletal structures. A previous study has shown, for example, 
that the effects of growth factors can increase 100-fold when the underlying ECM 
changes from very elastic to very stiff (Wells  2008 ). From the mutation data, we 
suggest that the increased change in cell morphology driven by mutations is possi-
bly to stay abreast of the advances in other aspects of the poorly-coordinated tissue 
development, signaled by hyaluronic acid fragments (see Chap.   6     for details). In 
addition, cells seem to have initiated an effort to delay or repress apoptosis before 
other more permanent inhibitory measures are taken, like the loss of  P53  function. 

 For stage-1 adenocarcinoma, it can be seen from the fourth column of Table  4.2  
that a number of pathways and gene groups enriched with mutations continue to be 
the same as in precancerous adenoma tissues, but with increased statistical signifi -
cance and enhanced activities. These include cell adhesion, ECM composition, 
cytoskeletal structure and ATP binding, which tend to continue throughout the four 
stages of cancer development. These results clearly indicate that changing the func-
tional states of these pathways through mutations are essential during the whole 
process of cancer (tissue) development, again possibly due to the lack of (suffi -
ciently strong) signals for these aspects of (cancer) tissue development. In addition, 
mutations in a number of new pathways and gene groups start to emerge in stage-1 
cancer, such as: (1) ion transporter, (2) plasma membrane, (3) immunoglobulins and 
(4) complement control. 

 Studies in the past decade have identifi ed links of ion transporters (and channels) 
to the control of the timing of cell-cycle checkpoints. Specifi cally, it has been shown 
that ion channels mediate the calcium signals that punctuate the mitotic process 
(Becchetti  2011 ). Losing this capability has been found to promote neoplasia as 
one would expect. Regarding (2) above, changes in plasma membrane structures 
have long been known to be associated with cancer development (Weinstein  1976 ). 
One study has suggested that cancer cells may consume oxygen at the cell surface 
through plasma membrane electron transport to oxidize NADH to support glycolytic 
ATP production (Herst and Berridge  2006 ). Hence, it is possible that there is selec-
tion for glycolytic cancer cells that have altered plasma membrane structures to bet-
ter facilitate glycolytic ATP production and cancer growth. Regarding the observed 
mutations in immunoglobulins in (3), a recent study found that the activities of these 
proteins may be relevant to the immune protection during carcinogenesis, making a 
possible link between the selected mutations in this family of proteins and cancer. 
Regarding (4), it was recently reported that cancer cells may have exploited the con-
trol of the complement pathway, as part of the innate immune system, to evade the 
immune attack on cancer cells through unwanted recognition of the altered self-cells, 
i.e., cancer cells (see Chap.   8    ) (Ferreira et al.  2010 ). Overall, these additional muta-
tions in stage-1 cancer disrupt the normal timing control of cell cycle events, enhance 
glycolytic ATP production needed by cancer cells and disrupt the immune system. 

 The three sets of mutations in three consecutive developmental stages of colon 
tumor examined above provide a clear picture of the key events in the early devel-
opmental stage of a colon (pre) cancer. When such data are analyzed in conjunction 
with transcriptomic data of the same set of samples, one should be able to determine 
not only which functionalities must be inhibited, but also which functionalities must 
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be activated (due to some mutations), hence providing a more complete picture of 
all the key events needed for the early development of a cancer. 

 To move on, one can see from columns 5–7 of Table  4.2  that, as the cancer pro-
gresses to stages 2, 3 and 4, new mutations occur in: (1)  Rho  guanyl-nucleotide 
exchange factor activity (stage 2), and the related microtubule (stage 3) and  GTPase  
binding (stage 4); (2) cell motion (stages 2, 3 and 4); (3) differentiation (stages 3 and 
4); (4) embryonic development; and (5) a tyrosine kinase (stages 3 and 4). Briefl y, 
mutations in (1) are associated with the activation of cytoskeletal reorganization 
required by cell division, as discussed earlier. Mutations in (2) are clearly related to 
tumor invasion; both (3) and (4) are related to the so-called  de-differentiation  of 
cancer cells, a property that has been known to be associated with cancer cells 
(Medema  2013 ); and (5) is related to constitutive growth signaling, strongly sug-
gesting that cell proliferation at this point is not driven by the early driver such as 
ridding cells of the accumulated glucose metabolites (see Chap.   5     for details) any-
more; instead it is by something else, yet to be identifi ed, that requires growth sig-
naling in a more effi cient manner than via hyaluronic acid-based signaling, 
specifi cally through mutation-facilitated constitutive activation of growth factors. 
Basically as a cancer progresses, cell motion, cell de- differentiation and tissue 
development become increasingly more important, as suggested by the mutation 
data. 

 It is worth noting that while mutations observed in precancerous and early stage 
cancer tissues are highly tissue-development related, mutations observed in the 
more advanced stages tend to be associated more to cell movement, cell de- 
differentiation and increased effi ciency for growth signaling. 

 From this combined dataset on colon cancer genomes, it is ascertained that 
changes in eight major areas through genomic mutations are needed for cancer tissue 
development: (a) alteration in the composition and hence the mechanical properties 
of extracellular matrices; (b) ECM-cell interaction and cell-cell adhesions; (c) cell 
morphology, cytoskeletal structure and cell-cycle activation state; (d) ion channels 
and plasma membranes; (e) innate immune system; followed by (f) cell de- 
differentiation, (g) self-suffi ciency in growth signaling and (h) tumor invasion. In 
addition, if one includes the “driver” mutations that were reported in the original 
studies and omitted in our data analysis, one should also see changes in (i) cell-cycle 
control; (j) evasion of apoptosis; and (k) growth signaling or activation of their recep-
tors among a few other activities, which are clearly too narrowly focused on one 
aspect of cancer tissue development, i.e., cell proliferation and associated control. 

 It is expected that more careful analyses of such genomic mutation data could 
lead to a very detailed understanding about which cellular processes must be inhib-
ited and which must be enhanced as a cancer develops, as well as the determination 
of the relative order of these changes. In addition, if analyzed together with gene- 
expression data, one may possibly derive which particular functional inhibition or 
enhancement must be accomplished through mutations and which can be done 
through either mutations or transcription or epigenomic level regulation. When 
comparative analyses of such data are carried out across different cancer types, it is 
expected to reveal which relative orders among mutated pathways are essential and 
which are probably accidental. 
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 Overall, using the genome mutation data of one cancer type, it is demonstrated 
here that substantially more information, possibly orders of magnitude more, can be 
derived from the sequenced cancer genomes compared to the published studies on 
these two sets of cancer genomes. So the question is:  What has happened to the 
published studies , i.e.,  why has such information not been reported before ? 

 To answer this question, one needs to look carefully at the defi nitions of a few 
widely used terminologies such as oncogenes, tumor suppressor genes, and driver 
and passenger mutations. According to the widely accepted defi nition (Bozic et al. 
 2010 ),  a driver mutation is a mutation that gives a selective advantage to a clone in 
its microenvironment, through either increasing its survival or reproduction . Based 
on this defi nition, all the mutations given in Table  4.2  should be driver mutations 
since they all helped the underlying cancer to develop, but none of them are included 
in the candidate driver genes discussed earlier. The reason is that, while they con-
tribute to the growth of a cancer, they are not proto-oncogenes or tumor suppressor 
genes by the current defi nitions in the cancer literature. 

 Actually, according to the original defi nitions, oncogenes and tumor suppressor 
genes are both defi ned in terms of their relevance to cancer  tissue  development (see 
Chap.   1     for defi nitions). But their defi nitions in real practice have evolved. Basically 
they have been determined based on their  cellular  level functions. For example, the 
activation of the  MYC  gene can lead to cell proliferation in cell culture, an action 
that will not happen in a tissue environment since, as discussed above, many other 
conditions must be met in addition to an activated  MYC  before cell proliferation can 
take place. It can be checked that many of the proto-oncogenes reported in the lit-
erature are predicted to be oncogenic based on their observed functions in cell cul-
ture instead of tissue level studies! It is worth reemphasizing that the distinction 
between tissue and cellular level functions is vitally important since the latter defi ni-
tion has been clearly used in the published cancer genome analysis papers, which 
has led to the somewhat disappointing performance by these large-scale cancer 
genome sequencing and analysis studies. This vision is probably responsible for the 
rather limited information that has been derived from the cancer genomes. 

 For practical purposes, a valuable lesson learned here is that one should look at 
all the mutations, instead of only the putative “proto-oncogenes” and “tumor sup-
pressor genes” identifi ed based on their cellular functions in artifi cial environments. 
The pathway-enrichment analyses, without any pre-defi ned fi ltering, should inform 
us which genes are cancer-relevant with statistical confi dence, and hence enable the 
identifi cation of all the mutations that assist cancer in its development, the true 
driver mutations or genes by the original defi nition.  

4.5     Limitations of Cell Line-Based Studies: A Prelude 
to Microenvironments Driving Carcinogenesis 

 It is important to point out that a substantial number of cancer-related studies have 
been carried out using cell lines or mouse xenograft models. Such experimental 
paradigms permit research to be conducted in a well-controlled and hopefully 
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reproducible environment. This, in turn, enables elucidation of the specifi c signals 
that can activate specifi c pathways or those mutations that will change particular 
functional states. Virtually all the known molecular and cellular mechanisms for 
cancer have been derived in such  in vitro  cellular systems. However, one should not 
overlook the fact that cancer is not only a cellular level problem; instead, cancer is 
the result of very complex interactions between cells and their microenvironment(s) 
and that both evolve very rapidly. That is: the core issue of a cancer is a problem at 
the tissue level rather than at the cellular level (see Chaps.   5     and   6     for detailed dis-
cussion). Only with this understanding can one possibly fi nd the right information 
encoded in the sequenced cancer genomes. The following example is used to illus-
trate why this is the case. 

 Oncogenes will lead to cell proliferation when activated, which is true only in 
cell lines or organ cultures lacking the actual tissue environment, while cancer 
 in vivo  is a tissue-developmental problem. It should be noted that  cell proliferation 
and tissue development are fundamentally different problems . In a tissue environ-
ment, there are numerous constraints that defi ne when a cell can start to divide. 
First, cells must be attached to their base, i.e., the ECM (also referred to as  basement 
membrane , the portion in direct contact with the cells), to have a chance to grow. It 
also requires the underlying ECM to have certain mechanical properties to support 
cell growth. In addition, when proliferating cells come too close to each other, they 
will stop growing due to contact inhibition, an encoded mechanism in cells for the 
prevention of overgrowth. There are also a few intracellular conditions that the cells 
must meet before they can divide, even when an oncogene is activated, including: 
(1) the cell cycle must have been activated; (2) the proliferating cells must pass all 
the cell-cycle checkpoints; (3) the cells must have suffi cient biomolecules to pro-
duce a new cell; (4) the cells must have a specifi c morphology; and (5) the cells 
must be relatively healthy (see Chap.   8    ). For cell division to occur, these conditions, 
and possibly additional ones, must be met or specifi c mutations must be selected to 
allow the checkpoints of some conditions to be by-passed. Basically cell division, 
possibly driven by oncogenes, is only part of a much larger machinery that controls 
tissue development. Cancer studies, including computational analyses such as pre-
diction of oncogenes or analyses of genomic mutations, must be put into the context 
of tissue development. 

 This brings up a more general issue: genomic data of sporadic cancers may not 
necessarily contain much information on cancer drivers, as the driving forces for 
cancer initiation, progression and metastasis may predominately be attributable, at 
least in solid-tumor cancers, to the microenvironment(s) as is emphasized through-
out this book. According to the current literature defi nitions, it is quite possible that 
the mutations in proto-oncogenes and tumor suppressor genes, selected by cancer 
evolution, may exert only late facilitator roles instead of early driver roles as repeat-
edly presented in the cancer literature.  

4.5 Limitations of Cell Line-Based Studies…
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4.6     Concluding Remarks 

 Thousands of cancer genomes have been sequenced and a large number of  mutations 
have been identifi ed in these sequenced genomes. However, questions are beginning 
to emerge from the cancer research community about the true value in further 
sequencing more cancer genomes. While interesting information has been forthcom-
ing, with few exceptions the results have not led to groundbreaking discoveries about 
the biology of cancer or to new treatment modalities as many have expected. Yet, in 
this chapter we have demonstrated that considerable information is present in the 
cancer genomes that can be mined by using existing techniques. Indeed, it is esti-
mated that perhaps an order of magnitude more information is available than that 
currently published in the genome sequencing and analysis papers. It is not that the 
needed methodologies are lacking, instead it is that we have limited our visions by 
concepts that were developed for other practical purposes. It is now time to cast aside 
those popular concepts and mine the data without any unnecessary constraints.     
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    Chapter 5   
 Elucidation of Cancer Drivers Through 
Comparative  Omic  Data Analyses 

                  Past statistics suggest that one out of every two men and every three women in 
developed countries will develop cancer during his or her life time. Cancer 
accounts for 12.5 % of all disease-induced deaths and ranks number three behind 
cardiovascular diseases and infectious and parasitic diseases worldwide. Its 
ranking moves up to number two when only developed countries are surveyed. 
A central question to be addressed here is:  What causes a cancer to initiate and 
develop ? 

 Clinically, different cancers seem to have different causes. For example, 
some cancers are known to be closely related to viral or bacterial infections. 
Cervical cancer results primarily from infection by human papilloma virus. 
Hepatitis viruses, such as HBV and HCV, can cause hepatic (liver) cancer. 
Similarly,  Helicobacter pylori  is believed to be responsible for some gastric 
(stomach) cancers. Skin cancer, such as basal cell carcinoma, is attributed to 
overexposure to UV light, particularly for individuals with fair skin. Other can-
cer-inducing factors include: (1) microbial products such as afl atoxin produced 
by fl avus growing on stored grains, (2) industrial chemical compounds such as 
dioxins, benzene and asbestos, (3) tobacco products, and (4) nuclear radiation 
such as gamma rays and alpha particles, all of which are referred to as  carcino-
gens . Other than the environment-induced cancers, there is a class of cancers 
that are considered as hereditary or familial, such as breast and ovarian cancers 
resulting from  BRCA  gene mutations or colon cancer attributable to  APC  gene 
mutations. 

 Although induced by different factors, various cancer types share certain common 
characteristics at the cellular and tissue levels such as: (1) uncontrolled cell prolifera-
tion, (2) reprogrammed energy metabolism, (3) development of angiogenesis, 
(4) evasion of apoptosis, (5) avoidance of immune destruction, and (6) cell invasion 
and metastasis; the so-called cancer hallmarks as discussed in Chap.   1    . These com-
mon characteristics strongly suggest that different cancers may share something in 
common at the root level. This commonality could possibly be something intrinsic to 
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our cellular systems, as well as similar characteristics in the abnormal conditions 
induced by the relevant exogenous or endogenous factors that may force the underlying 
cells to take similar evolutionary trajectories for their survival. The root-level com-
monalities that have been proposed across different cancer types are analyzed in this 
chapter, along with an analysis of what may be missing from the current thinking on 
this important issue. This will be followed by a proposal describing a new model 
about the possible root causes of cancers. 

5.1     Two Distinct Schools of Thoughts About Cancer Drivers 

5.1.1     Cancer as a Metabolic Disease Related to Reprogrammed 
Energy Metabolism 

 German biochemist Otto Warburg published one of the earliest papers in 1924 about 
the possible causes of cancer at the molecular and cellular level (Warburg et al. 
 1924 ). When studying cancer metabolism, Warburg noted that cancer cells utilize 
glycolysis followed by fermentation of pyruvate to lactic acid in cytosol as the main 
ATP producer. This mode of ATP production is in contrast with normal cells that use 
glycolysis followed by a more complete oxidation process,  oxidative phosphoryla-
tion  in mitochondria for ATP generation. A key difference is that the fi rst process 
does not require oxygen (anaerobic) while the second uses oxygen (aerobic) as the 
terminal electron acceptor. In addition, the second process is about 18 times more 
effi cient than the fi rst in terms of the number of ATPs produced per mole of glucose 
oxidized, as introduced in Chap.   1    . Warburg observed that cancer cells utilize the 
fi rst process even in the presence of oxygen, the so called  Warburg effect  (Warburg 
et al.  1924 ). This metabolic alteration was considered by Warburg to be the main 
characteristic across all cancers and possibly the primary cause for a cancer to initi-
ate and develop (Warburg  1956 ). In 1967 he explicitly stated:  “  Cancer … has count-
less secondary causes. But … there is only one prime cause,[which] is the 
replacement of respiration of oxygen in normal body cells by a fermentation of 
sugar  ” (Warburg  1967 ). He went further to state:  “… the de-differentiation of life 
takes place in cancer development. The highly differentiated cells are transformed 
into non-oxygen-breathing fermenting cells, which have lost all their body functions 
and retain only the now useless property of growth … What remains are growing 
machines that destroy the body in which they grow”,  to offer his insights about the 
essence of tumorigenesis. While all of this was very thought-provoking, his theory 
about a metabolic cancer driver never became part of the mainstream thinking 
among cancer researchers during his active years. 

 Among the issues for which Warburg had diffi culty in convincing his peers about 
his theory, he unfortunately gave a partially incorrect explanation about a “paradox” 
of cancer cells. As rapidly proliferating cells require more ATP than normal cells, 
one would expect  a priori  that cancer cells should use the more effi cient oxidative 
phosphorylation, but instead they choose the less effi cient glycolytic fermentation 
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for ATP production. Warburg suggested that cancer cells must have damaged or 
dysfunctional mitochondria and hence have to use glycolytic fermentation even 
when oxygen is available. This proposal, however, was found not to be the case on 
cancer samples as revealed by later studies (Weinhouse et al.  1956 ; Pedersen et al. 
 1970 ). Warburg’s explanation was probably correct on one class of cancer, namely 
hereditary cancers, as discussed in Sect.  5.5 , but incorrect on some sporadic can-
cers, at least during some developmental stages. This discrepancy clearly did not 
help his case when trying to convince his colleagues of the validity of his proposal 
during his lifetime. Warburg’s theory remained visible in the scientifi c literature for 
the next half century. It is worth mentioning that Warburg received the Nobel Prize 
in medicine in 1931, but the award was for his work on “Discovery of the nature and 
mode of action of the respiratory enzyme”, which is unrelated to his cancer study. 
His theory was basically relegated to the sidelines by the time cancer came to be 
considered a genetic disease in the 1970s. 

 Interestingly, in the past few years Warburg’s proposal has received renewed 
attention, refl ected by the numerous publications in mainstream cancer journals, 
often containing words like “reexamination of the Warburg effect”.  

5.1.2     Cancer as a Genomic Disease 

 The discovery of the retrovirus oncogene,  SRC , in the 1970s marked the beginning 
of a new era of cancer research (Stehelin et al.  1976 ). In 1976, Bishop and Varmus 
discovered that certain human genes, when multiple-copied, mutated or over- 
expressed, can become  oncogenes , i.e., cancer-causing genes (Stehelin et al.  1976 ). 
These genes are referred to as  proto-oncogenes  in their normal functional states, as 
introduced in Chap.   1     .  For this discovery, Bishop and Varmus received the Nobel 
Prize in medicine in 1989, and their work has had an enormous impact on cancer 
research in the past three decades. The conventional thinking in cancer research 
subsequently has become greatly genome-centric up till now. A substantial effort 
has been invested into the study of oncogenes since then, with a major infl uence by 
governmental funding agencies. As of now, ~150 proto-oncogenes have been identi-
fi ed in the human genome, including the well-studied  RAS  (rat sarcoma protein), 
 WNT  (wingless-type MMTV integration site family, member 1) and  MYC  genes. 

 Another group of genes, referred to as  tumor suppressor genes  (introduced in 
Chap.   1    ), was also discovered to have essential roles in the initiation and development 
of cancers in the 1970s.  RB  was the fi rst tumor suppressor gene discovered by 
A.G. Knudson when studying human retinoblastoma (Knudson  1971 ). Such genes 
can safeguard a human cell from developing into a cancerous cell, with the protection 
provided by such a gene being lost when both copies of the gene have loss-of- function 
mutations. Hence, having mutations in one copy of the gene will increase the risk of 
losing its tumor-suppression function. As of now, ~200 tumor suppressor genes have 
been identifi ed (Zhao et al.  2013 ), including the well-known  P53 (tumor protein 53), 
 RB (retinoblastoma protein) and  APC  (adenomatous polyposis coli) genes. 

5.1  Two Distinct Schools of Thoughts About Cancer Drivers
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 The concepts of proto-oncogenes and tumor suppressor genes have clearly 
 provided an effective framework for the development of mechanistic models that 
link gene mutations to cancer initiation and progression. Specifi cally by identifying 
over-expression or amplifi cation of specifi c proto-oncogenes (positive cell cycle 
regulators) and repression or mutations of certain tumor suppressor genes (negative 
cell cycle regulators) in a cancer, one can infer the main driver mutations of 
the  cancer and the associated mechanistic models. As of now, a number of cancer 
models have been developed based on the identifi ed proto-oncogenes and tumor 
 suppressor genes, such as the widely cited  APC  mutation-based model for colorec-
tal cancer by Fearon and Vogelstein (Fearon and Vogelstein  1990 ); the  BRCA  
mutation- induced breast cancer model developed by Pollard and colleagues (Lin 
et al.  2003 ); and the  BCR-ABL  gene fusion (i.e., the Philadelphia chromosome) 
model for CML by Nowell and Hungerford (Nowell and Hungerford  1960 ). It is 
clear that this proto- oncogene/tumor suppressor gene framework has helped to 
accelerate the generation of new information and knowledge about cancer initiation 
and development at the molecular and cellular levels. 

 The advent of high-throughput sequencing techniques, e.g., next generation 
sequencing, has helped to further accelerate genome-based cancer research. As of 
the end of 2013, thousands of complete cancer genomes have been sequenced 
worldwide using public and private funds (Mwenifumbo and Marra  2013 ). Most of 
these cancer genomes have had their matching control genomes also sequenced, 
making the identifi cation of genomic changes in cancer readily doable, which 
include point mutations, copy number changes, inversions and genomic transloca-
tions. A substantial amount of information about cancer-associated mutations has 
been derived in various cancer genomes, as detailed in Chap.   4    . 

 Various oncogenes and tumor suppressor genes have been identifi ed that are 
associated with specifi c cancer types. For example, the  APC  gene is considered as a 
tumor suppressor gene of colon cancer and  CDK8  (cyclin-dependent protein kinase 
8) as an oncogene of the cancer (Firestein et al.  2008 ).  HER2  (human epidermal 
growth factor receptor 2, also known as  ERBB2 ) and  MYC  are considered as onco-
genes of breast cancer among a few other genes, while  BRCA1  and  BRCA2  are 
tumor suppressor genes for many breast cancers (Buchholz et al.  1999 ). The onco-
genes of prostate cancer include  HER2  and  BCL2  (B-cell lymphoma 2) (Segal et al. 
 1994 ; Arai et al.  1997 ; Scholl et al.  2001 ), while the tumor suppressor genes of the 
cancer include  GADD45A  (growth arrest and DNA damage 45A),  GADD45B  and 
 IGFBP3  (insulin-like growth factor binding protein 3) (Isaacs and Kainu  2001 ; 
Ramachandran et al.  2009 ; Ibragimova et al.  2010 ; Mehta et al.  2011 ). 

 The discoveries of oncogenes and tumor suppressor genes, along with the large 
number of other mutations found in cancer genomes, have contributed to the now 
popular speculation: “cancer is the result of a sequence of genomic mutations” 
(Fearon and Vogelstein  1990 ; Budillon  1995 ), which has been widely publicized in 
both scientifi c and popular publications. In the past few years, active discussions 
have been on-going about driver  versus  passenger mutations (Greenman et al.  2007 ; 
Stratton et al.  2009 ; Bignell et al.  2010 ). The aim is to distinguish mutations that are 
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positively selected by cancer evolution from those random mutations that are neutral 
to cancer, hence providing a tool to allow researchers to focus on genes that are 
essential to cancer initiation and/or development. 

 The view of “cancer as a genomic disease” has not only attracted many cancer 
researchers to study the disease from a highly genome-centric perspective, but also 
has profoundly infl uenced the priorities of federal funding agencies. A substantial 
level of funding has been invested into the sequencing of cancer genomes, with the 
aim of understanding the genomic level drivers and key mutations through consortia 
such as TCGA (The Cancer Genome Atlas) (The-Cancer-Genome-Atlas-Research- 
Network  2008 ) and ICGC (International Cancer Genome Consortium) (Hudson 
et al.  2010 ). As a considerable amount of sequence data of cancer genomes has been 
generated from these and other projects, there has been an increasing voice from the 
cancer research community in the past few years that questions the true value of the 
cancer-genome sequencing projects in terms of gaining a deeper understanding 
about cancer biology and in support of developing improved capabilities to fi ght 
against cancer. For example, after decades of popularizing the view of cancer being 
a genomic disease, very little has actually been established between the activation 
of oncogenes and cancer initiation in a real tissue environment ( versus  cell culture 
models in artifi cial environments). In a published study on the predictive power of 
whole genome sequencing for cancer, Vogelstein and colleagues concluded: “[Their] 
research casts doubt on whether whole genome sequencing can reliably predict the 
majority of future medical problems”  (Roberts et al.  2012 )! 

 As presented in Chap.   4    , the vast majority of the mutations selected by cancer 
tissues are not associated with proto-oncogenes or tumor suppressor genes as 
defi ned in the current literature; instead they tend to be associated with genes related 
to tissue development such as changes in extracellular matrix (ECM) composition 
and cell morphology, and immune responses, among other biological functions. 
This analysis has clearly revealed limitations in the current proto-oncogene and 
tumor suppressor gene-centric views in studies of cancer genome mutations and 
their relevance to cancer initiation and development.   

5.2     A Driver Model Based on APC-Gene Mutations 
in Colorectal Cancer 

 In their widely cited article published in 1990, Fearson and Vogelstein proposed a 
genetic-centric model for the initiation of non-hereditary colorectal cancer (Fearon 
and Vogelstein  1990 ), in which cancer initiation is attributed solely to mutations in 
both proto-oncogenes and tumor suppressor genes. Specifi cally the authors consid-
ered  RAS  gene mutations as the possible initiating event for some colorectal can-
cers; however, as discussed below, mutations in  APC  were eventually considered as 
a likely initiator. A later study speculated that the  RAS  mutations discussed in this 
work may lead to constitutive activation of the  RAS  protein (Vojtek and Der  1998 ). 
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In addition, the model suggests that for the development of a colorectal cancer, the 
host cells need to lose part of their chromosome 5q, which was later found to be the 
region that encodes the  APC  (adenomatous polyposis coli) gene (Nishisho et al. 
 1991 ). Cancer-genome sequence data have confi rmed that the vast majority of colon 
cancers have mutations in this gene (see Chap.   4    ). The model also suggests that the 
majority of colorectal cancers harbor mutations in  P53  as well as mutations in the 
 DCC  (deleted in colorectal cancer) gene. Overall, the model predicts that it takes 
mutations of at least these four genes for normal epithelial cells to develop to ade-
noma that progresses from the early to the advanced stage and then becomes adeno-
carcinoma when the cells lose the function of  P53  (as depicted in Fig.  5.1 ). The 
authors speculated that it is the accumulation of these mutations, rather than 
the  relative order of the mutations, that really matters. When presenting the model, 
the authors made an important observation that neoplastic cells tend to have a small 
number of mutations initially, which continues to increase as the disease advances, 
a key point that will be further developed in our argument about cancer progression 
(see Chap.   9    ).

   Since the publication of this work some 20 years ago, substantial progress has 
been made regarding the necessary conditions for cells to become malignant. 
Numerous other cellular and micro-environmental changes must take place before 
cells can become cancerous as discussed in Chap.   4    , such as changes in energy 
metabolism, cell-cycle control, tumor angiogenesis, development of microenviron-
ments with certain properties, and avoidance of immune destruction. In addition, 
the neoplastic cells must also develop a capability to enable their anchorage- 
independent proliferation and lose the contact-inhibition machinery encoded in 
their genomes, which has been widely observed in cancer tissues before they can 
start their neoplastic growth. 

 In the following sections, we consider the relationships between genetic muta-
tions and cancer development in a larger and richer context, namely the overall 
micro- and intracellular environment needed for a cancer to initiate and develop.  

  Fig. 5.1    A genetic model for colorectal cancer development (adapted from (Fearon and Vogelstein 
 1990 ; Martinez et al.  2006 ))       
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5.3       Warburg’s Thesis: Reprogrammed Energy 
Metabolism as a Cancer Driver 

 While the genetic-centric views remain a dominating school of thought concerning 
drivers of cancer initiation and development in the fi eld of cancer research, increas-
ingly more researchers have begun to reexamine Warburg’s theory across a larger 
set of cancer types using the powerful  omic  techniques. The aim of these studies is 
to develop an improved understanding about how Warburg’s observation relates to 
the fundamental biology of cancer, of which genetic mutations may be just a part. 
By going through the literature of cancer genetics and genomics studies, one sur-
prising observation is made: the published studies seem to have ignored, for some 
reason, one basic issue, potentially a most important issue in cancer study:  What 
pressures do the cancer-forming cells evolve to overcome as they proliferate and 
select specifi c mutations?  In retrospect, it seems that this should have been an obvi-
ous question when studying the evolution of any cancer. In addition, no hypotheses 
or models have been proposed which aim to connect the numerous mutations 
observed in individual cancer genomes, essentially treating the observed mutations 
as independent events. This is clearly unsatisfying as discussed further in the fol-
lowing sections and later chapters. 

 Intuitively one would imagine that specifi c mutations are selected to better facili-
tate the evolution of the underlying cells to overcome some yet to-be-elucidated 
pressures cast on the cells by their microenvironment. An understanding of these 
“pressures” may provide functional links among the seemingly unrelated genetic 
mutations found in each cancer genome and possibly new understanding about the 
evolutionary trajectories selected by individual cancers. We suggest that the Red 
Queen Hypothesis (Valen  1973 ) outlined in Chap.   2     provides a useful framework of 
thinking about this issue, i.e., to guide one in elucidation of the evolutionary pres-
sures that cancer cells need to overcome. The Hypothesis basically stated:  “the 
coevolution of interacting species drive molecular evolution through natural selec-
tion for adaptation and counter-adaptation”.  Here we use a more recent publication 
to further illustrate the essence of the Hypothesis and its possible relevance to can-
cer evolution, which reported an elegant study on coevolution and co-adaption 
between the bacterium  Pseudomonas fl uorescens  and its viral parasite phage Φ2 
that co-exist in equilibrium in the same environment (Paterson et al.  2010 ). The 
study demonstrated that the increased attacking ability, obtained through genetic 
engineering on the phage, hence shifting the equilibrium, will lead to accelerated 
evolutionary changes in the bacteria to regain the previously established equilib-
rium. The same result was also observed when the roles of the two organisms were 
switched, which is to enhance the defense ability in the bacteria, again through 
genetic engineering, leading to a shift in the dynamic equilibrium towards an 
increased bacterial population. This triggers accelerated evolutionary changes in the 
phage until the previous equilibrium is regained. A key point made by the authors 
of the study is that  antagonistic coevolution is a cause of rapid and divergent evolu-
tion and likely to be a major driver of evolutionary changes within species . 
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 Returning to the cancer evolutionary problem, the affected cells must be facing 
tremendous pressures, since they evolve rapidly. It is only natural to ask : Can 
genomic mutations alone create such pressures that drive the affected cells to 
evolve ? Our answer is:  very unlikely  since: (1) changes in key functional states of 
cells, such as switch from non-dividing to dividing cells and then to a growing tis-
sue, require substantial changes in the tissue environment, including changes in the 
functional states of cells and their ECM, along with various signaling molecules, as 
discussed in Chap.   4    ; (2) such changes, if only due to genomic mutations, will 
require a large number of mutations as discussed in Chap.   4     and shown in Table   4.2    ; 
and (3) the probability for so many co-occurring mutations in tissue development- 
related genes without being removed by the cellular, tissue or whole-body level 
surveillance systems is going to be extremely small if any! 

 One key new understanding about cancer development in the past decade came 
from the realization that the microenvironment of cells plays vital roles in cancer 
initiation and development (Witz and Levy-Nissenbaum  2006 ; Lorusso and Ruegg 
 2008 ; Sounni and Noel  2013 ), which is clearly consistent with the Red Hypothesis 
discussed above. It is now generally accepted that the following factors in the envi-
ronment of cells contribute to tumorigenesis: (1) the physical properties of the under-
lying ECM (also see Chap.   8    ); (2) the level of intracellular hypoxia (Wilson and Hay 
 2011 ); (3) intra- and peri-cellular accumulation of ROS or reactive nitric species 
(RNS) (Wiseman and Halliwell  1996 ; Lu and Gabrilovich  2012 ); (4) population sizes 
of stromal and immune cells (Coussens and Werb  2002 ; Grivennikov et al.  2010 ; 
Chew et al.  2012 ); (5) the intra- and peri-cellular pH level (Estrella et al.  2013 ); and 
(6) certain signals from the local stromal cells. Here we focus on hypoxia and ROS, 
and discuss how these two factors may contribute to cancer initiation and develop-
ment, leaving discussions on other micro-environmental factors to later chapters. 

 It has been well established that chronic infl ammation can lead to hypoxia, and 
conversely hypoxia can also lead to infl ammation (Eltzschig and Carmeliet  2011 ). 
In addition, chronic infl ammation can lead to increased generation of ROS (Khansari 
et al.  2009 ), along with a number of other factors, including exogenous factors such 
as tobacco products and radiation, and endogenous factors such as oxidative phos-
phorylation, various chemical reactions and aging. One driver model for the early 
phase of carcinogenesis, presented in the next section and Chap.   6    , is based on 
persistent hypoxia and the accumulation of ROS. This model provides one possible 
explanation of how Warburg’s thesis, i.e., the primary cause of cancer is the replace-
ment of respiration of oxygen in normal body cells by glucose fermentation, is 
related to cancer initiation and development. 

 First, to understand the generality of Warburg’s observation, which was origi-
nally made on mouse ascites cancer, a larger-scale analysis of transcriptomic data 
of 18 types of cancers, namely bladder, brain, breast, cervical, colon, kidney, leu-
kemia, liver, lung, melanoma, metastatic melanoma, metastatic prostate, ovarian, 
pancreatic, prostate, skin (basal cell), stomach and thyroid cancer, was carried 
out, focused on glucose metabolism including both glycolytic fermentation and 
oxidative phosphorylation (See Table  5.1 ). These cancers were selected because 
they  represent a wide range of cancer types and each has a large number of 
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genome-scale transcriptomic datasets in the public domain. Genes involved in the 
two forms of glucose-based energy metabolism, selected amino acid and fatty 
acid metabolism, are examined and their expression data compared in cancer  ver-
sus  adjacent normal tissues. The results of the analysis are shown in Fig.  5.2 .

  Fig. 5.2    Comparisons between gene-expression levels of glycolytic fermentation and oxidative 
phosphorylation pathways in cancer  versus  adjacent normal tissues for 18 cancer types. Multiple 
genes are used for each category. Each row represents a unique gene and each column represents 
a unique cancer type, with  dark gray ,  light gray  and  white  representing up-regulation, down- 
regulation and no change, respectively       

 

5.3  Warburg’s Thesis: Reprogrammed Energy…



122

   One can see from the fi gure that in 16 of the 18 cancer types, the glycolytic 
 fermentation pathway shows increased expression while the oxidative phosphoryla-
tion pathway shows decreased expression, consistent with Warburg’s observation 90 
years ago. Leukemia is a complex case as it shows increased glycolysis, but its 
oxidative-phosphorylation genes exhibit rather complex patterns of changes, having 
almost the same number of genes with increased expression as the number of genes 
with decreased expression. The only exception is bladder cancer, which has virtu-
ally no changes in gene expressions of either pathway, suggesting that the initiation 
mechanism of this cancer may be different from the other 17 cancer types. While 
these gene-expression patterns reveal that not all cancers show the same repro-
grammed metabolism as observed by Warburg, 17 out of 18 cancer types have 
increased activities of glycolytic fermentation,  highlighting the signifi cance in the 
activation of this pathway in cancer development in general . 

 A further examination is made to ascertain if the expression of glucose trans-
porter genes is altered as the hypoxia level changes. The lower part of Fig.  5.2  shows 
a high-level of consistency in expression changes between the glucose transporter 
genes and the hypoxia marker gene  HIF1α.  Specifi cally, 14 out of the 18 cancer 
types show overall up-regulation in their glucose transporter genes; two cancer 
types, skin basal cell carcinoma and prostate cancer, exhibit no changes in these 
genes; and one cancer type, liver cancer, displays down-regulation of one glucose- 
transporter gene. For the two cancer types with no changes in transporter-gene 
expressions, one possible reason is that they use amino acids and lipids as the main 
nutrient sources, but not glucose as has been observed before (Reitzer et al.  1979 ; 
Liu et al.  2010 ; Carracedo et al.  2013 ). Leukemia again shows a complex pattern of 
expression changes in its glucose-transporter genes. 

 In addition, metabolite data involved in glucose metabolism of colon and gastric 
cancers have been examined, as depicted in Fig.  5.3 . One can see that there is a 
substantially increased accumulation of multiple metabolites such as G6P (glucose 
6-phosphate), F6P (fructose 6-phosphate) and lactate along the glycolysis pathway, 
succinate, fumarate and malate along the TCA cycle, and glycerol, a substrate for 
gluconeogenesis, during cancer development (Hirayama et al.  2009 ).

   An additional investigation was made regarding the expression patterns of the 
genes analyzed in Fig.  5.2  along with a few additional genes related to the cellular 
environment, namely hypoxia and ROS, over a set of diseased colon samples that 
range from different stages of precancerous tissues to colon cancer tissues. These 
include: (a) infl ammatory sigmoid colon tissues (the earliest stage of adenoma), 
(b) infl ammatory descending colon tissues, (c) tissues of infl ammatory bowel 
 disease, regarded as the earliest stage of colon cancer development, (d) colon ade-
noma and (e) colon adenocarcinoma tissues (see Table  5.1  for details of the data). 
On this dataset, the expression levels of marker genes for 10 biological processes 
are examined, namely (1) glycolysis, (2) oxidative phosphorylation, (3) hypoxia 
and glucose transporter genes, (4) cell cycle, (5) hyaluronic acid related genes, (6) 
apoptosis, (7) angiogenesis, (8) epithelial-mesenchymal transition (EMT), (9) 
infl ammation and (10) immune response. The expression data of the diseased tis-
sues are all normalized with respect to the matching normal colon  tissues, as shown 
in Fig.  5.4 .
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   One can see from the fi gure that: (1) infl ammation marker genes tend to be up- 
regulated in early stage disease tissues but down-regulated in adenoma and adeno-
carcinoma tissues; (2) hypoxia takes place in the early stage disease tissues and 
seems to be correlated with the expression levels of the infl ammation marker genes; 
(3) glycolysis is generally up-regulated across all the diseased samples, (4) lactate 
exporter genes are generally up-regulated except for the adenoma tissues; (5) the 
majority of the oxidative phosphorylation genes are down-regulated across all dis-
ease stages; (6) hyaluronic acid synthesis and degradation genes are generally up- 
regulated except for  HAS2 , a hyaluronic acid synthase, across different disease 
stages; (7) cell cycle genes tend to be generally up-regulated in adenoma and adeno-
carcinoma samples; (8) at least one of the anti-apoptotic genes among  BCL2, BAK1  
and  BAX  is up-regulated across each of the disease stages; and (9) immune marker 
genes tend to be down-regulated in the adenoma and adenocarcinoma stages. These 
data, along with the ones in Fig.  5.3 , set the stage for our model to be presented. 

 First, however, some background information is reviewed about published opin-
ions regarding why cancer cells tend to have increased activities of glycolytic fer-
mentation, a question that researchers have been groping with for some 90 years. A 
number of recent studies suggest that glycolytic fermentation is more benefi cial 
than oxidative phosphorylation to cancer cells even when oxygen is available since, 
to maintain pace with rapid cell proliferation: (a) it generates ATP signifi cantly 

  Fig. 5.3    An illustration of increased glucose metabolite accumulation in colon and gastric cancer 
tissues, adapted from (Hirayama et al.  2009 )       

 

5.3  Warburg’s Thesis: Reprogrammed Energy…



124

faster than oxidative phosphorylation because it has fewer reactions (Pfeiffer et al. 
 2001 ); and (b) it produces building blocks for DNA synthesis via the pentose phos-
phate pathway, that can be up-regulated by increased anaerobic fermentation (Lunt 
and Vander Heiden  2011 ). 

 Based on the above analyses of genome-scale transcriptomic data of pre-cancer 
and cancer tissues presented here, and the analyses in Chap.   6    , we propose that: (1) 
 it is the to-be-identifi ed micro-environmental pressures, not the mutations, that 
derive the evolution of the underlying cells, possibly different pressures at different 
developmental stages; (2) cell proliferation is a feasible and sustained way for the 
cells to reduce these pressures; and (3) selection of particular mutations is probably 
dictated by the need to up-regulate or inhibit specifi c functions constitutively as 
demanded by the evolution, which are probably already being accomplished through 
other means, e.g., functional regulation . 

 As one will see in the next section, the key pressure that the evolving cells need 
to overcome is to remove the accumulation of glucose metabolites resulting from 

  Fig. 5.4    Gene-expression level changes of  HIF1α  along with 10 sets of genes related to cancer 
hallmark pathways (Hanahan and Weinberg  2011 ) on precancerous and cancerous tissues of colon. 
In both heat-maps, each row represents a unique gene; and the fi ve columns represent, from left to 
right, (1) infl ammatory sigmoid colon tissues, (2) infl ammatory descending colon tissues, (3) tis-
sues of infl ammatory bowel disease, (4) colon adenoma and (5) colon adenocarcinoma tissues. 
Each entry of the heat-map represents the log-ratio of the expressions of a gene in a diseased tissue 
 versus  the matching normal colon tissue, with  dark gray ,  light gray  and  white  representing up- 
regulation, down-regulation and no change, respectively       
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energy metabolism reprogramming. Within our proposed model, DNA synthesis 
from the accrued glucose metabolites is a way to dispose of these products, rather 
than needed solely in support of cell proliferation; moreover, cell proliferation is 
driven by the need for survival as it provides a way to remove the accumulated 
metabolites by consuming them towards macromolecular synthesis for the new 
cells. Consequently, our view regarding the reason for utilization of glycolysis 
 fermentation in cancer cells, at least in the early stage, is fundamentally different 
from, actually opposite to the aforementioned view in the literature, in terms of its 
cause-and- effect relationship with proliferation.  

5.4      Cell Proliferation as a Way of Survival: Our 
Driver Model  

 When asking:  What drives a cancer to grow , a common answer that one will likely 
receive is: oncogenes! But if one carefully examines some examples of oncogenes, 
the answer may be not as simple as that. Consider the Philadelphia chromosome 
(Nowell and Hungerford  1960 ) as an example, which is believed to be the sole 
oncogene for CML. Specifi cally, the fusion of the  BCR  gene and the  ABL  gene gives 
rise to a new constitutively expressed tyrosine kinase  BCR-ABL  gene, which inter-
acts with the  IL3β(c)  (interleukin 3β) receptor and continuously activates the cell 
cycle. It is worth reemphasizing that the activation of this fused gene alone is not 
adequate to drive cancer tissue development since this process requires numerous 
coordinated signals relevant to cell survival, cell-ECM interaction, by-passing 
anchorage-dependent growth requirement and a few others as detailed in Chap.   4    . 
Gleevec was once considered a miracle drug for stopping CML through inhibiting 
the activation of this fused tyrosine kinase (Sawyers et al.  2002 ). However, long- 
term studies indicate that drug resistance becomes a common issue for CML patients 
due to additional genetic mutations (Roche-Lestienne et al.  2002 ). This raises an 
issue:  Are there driving forces at a deeper level than the fused BCR-ABL gene, or 
does this fused oncogene serve a similar role to those of mutated tyrosine kinase 
proteins in solid tumors such as platelet-derived growth factor receptors (PDGFRs) 
or the KIT gene?  

 Genomic sequence data of CML, particularly bone marrow tissues where pre- 
CML cells are generated, should help to answer this question. However, unfortu-
nately only one CML genome has been sequenced as of early 2014, and the only 
relevant information released is a one-page abstract (Sloma et al.  2013 ). From the 
very limited information given in the abstract, the authors report that the genome 
harbors 845,175 point mutations and 68,817 short indels, in addition to the 
Philadelphia chromosome. Virtually nothing is known currently about the molecular 
mechanisms of the CML development prior to the formation of the Philadelphia 
chromosome as an oncogene. Among all the mutations, eight genes are revealed: 
 JAK2,ASXL1, CTNNA1, AIDA, RAS, ULK1, GSR  and  NUP160.  Interestingly these 
mutated genes resemble mutated genes in some solid tumors: (1)  CTNNA1  is 
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involved in the association between catenins and cadherins that link to actin fi la-
ment, hence relevant to cell morphological changes; (2)  JAK2, RAS  and  ULK1  are 
involved in cell growth and development; (3)  AIDA  is related to embryogenesis, 
hence possibly related to cell de-differentiation; (4)  GSR  is an antioxidant, suggest-
ing high oxidative stress level; (5)  ASXL1  is a member of the Polycomb group that 
may be the main regulators of epigenomic responses; and (6)  NUP160,  a nucleopo-
rin ,  is involved in RNA transport. This information from eight out of some 800,000 
point mutations raises the possibility that CML may share similar or common 
mechanisms with solid tumors, and further raises an issue:  Is the Philadelphia onco-
gene the root driver, or is it the result of some other events and serves as the main 
facilitator, like oncogenes in solid tumors, for the host cells to escape certain pres-
sures through cell proliferation ? 

5.4.1     ATP Demand Versus Supply 

 Returning to the issue of root causes of a cancer, recent medical research has estab-
lished that chronic infl ammation is at the origin of many human diseases, including 
cancer (Khansari et al.  2009 ), diabetes (Donath and Shoelson  2011 ) and dementia 
(Blasko et al.  2004 ). The current understanding is that chronic infl ammation leads 
to hypoxia and an increased ROS production as discussed in Sect.  5.3 . Transcriptomic 
data analyses across a large number of tissue samples of different cancer types 
reveal that hypoxia occurs in cancer-forming cells before any of the cancer hallmark 
events (see Fig.  5.4  as an example). This has led us to approach the cancer driver 
issue from the perspective of  ATP supply   versus   demand  in human cells under 
chronic hypoxic conditions, inspired by Warburg’s observation 90 years ago. 

 As mentioned earlier in this chapter, ATP production decreases in human cells 
under hypoxic conditions due to the lower ATP-generation effi ciency per mole of 
glucose metabolized by glycolytic fermentation as compared to oxidative phosphor-
ylation. This is also true for other vertebrates in general. The main question to be 
addressed here is:  How does the ATP demand change under hypoxia versus nor-
moxia?  This is addressed through a comparative analysis over eight organisms: 
human, mouse, rat, hypoxia-tolerant rat, naked mole rat, blind mole rat, turtle and 
frog. These organisms were selected because they are known to either develop can-
cer as in the case of human, mouse and rat, or rarely do as in the case of the other 
fi ve organisms. Moreover, their ATP-consumption data under normoxia  versus  
hypoxia are publicly available or can be reliably estimated based on the available 
transcriptomic data. The specifi c question is:  What percentage of the ATP-consuming 
proteins is substantially repressed during hypoxia versus normoxia ? 

 It has been established that the following six classes of enzymes and pathways 
consume on average 84 % of the ATP in vertebrate cells: translation, Na + /K +  ATPase, 
Ca 2+  ATPase, gluconeogenesis, urea synthesis and actin ATPase (Rolfe and Brown 
 1997 ). (The list of genes is given in Table  5.3 .) So we address the above question by 
examining only these six classes of proteins, including all those associated with the 
relevant pathways. 
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 ATP consumption data by these proteins in hypoxia-tolerant rat, naked mole rat, 
frog and turtle during hypoxia (1–5 % oxygen in the experimental environments) 
 versus  normoxia (21 % oxygen) are available in the public domain (Buttgereit and 
Brand  1995 ; Hochachka et al.  1996 ; St-Pierre et al.  2000 ; Larson et al.  2012 ; 
Nathaniel et al.  2012 ). In addition, matching gene-expression data under the two 
conditions are also available for hypoxia-tolerant rat and naked mole rat (See 
Table  5.4 ). No ATP-consumption data are publicly available for human, mouse, rat 
and blind mole rat, but they each have gene-expression data collected under condi-
tions of hypoxia  versus  normoxia. We will thus predict their reduced ATP consump-
tion based on their reduced gene-expression data under hypoxia  versus  normoxia.  

5.4.2     A Regression Model of ATP-Consumption Reduction 
Versus Reduced Expression Levels of Relevant Genes 

 A linear regression model is derived between the reduced ATP consumption and the 
reduced gene expressions for naked mole rats and hypoxia-tolerant rats, using pub-
licly available data, namely the reduced ATP consumption Δ E  and the averaged 
reduced expression level Δ ELS  of the relevant genes in each of the six groups of 
proteins. The validity of using gene-expression level to approximate protein- 
expression level is assured by a recent study on the detailed relationship between 
gene and protein expression levels (Evans et al.  2012 ). The parameters  a  and  b  in a 
linear model: Δ E  =  a  * Δ ELS  +  b  are estimated for the two organisms using linear 
regression based on the Δ E  and Δ ELS  values for each of the six groups of proteins 
collected from the published literature, along with the assumption, without loss of 
generality, that Δ E  = 0 when Δ ELS  = 0, which is introduced for the mathematical 
rigor and should not affect the data as shown in Fig.  5.5 .

 ΔE  a  b 

 Translation  −5.056  1.009 
 Sodium-potassium exchange ATPase activity  −0.6026  1.110 
 Calcium transporting ATPase activity  −0.8246  0.997 
 Gluconeogenesis  −1.919  1.002 
 Urea genesis  −1.012  0.995 
 Actin-activated ATPase activity  −0.979  1.004 

   This model is fi rst applied to the Δ ELS  values for mouse, rat and blind mole rat 
based on their gene-expression data under hypoxia  versus  normoxia. The validity of 
the predicted results is assessed as follows. From Fig.  5.5 , one can see: (1) the blind 
mole rat is predicted to have a larger reduction in its ATP consumption than that of 
the naked mole rat, which is consistent with the general knowledge that blind mole 
rats can tolerate more hypoxic conditions than naked mole rats, 3 %  versus  5 ~ 10 % 
in terms of the minimal level of environmental oxygen needed by the two organisms, 
respectively (Edrey et al.  2011 ; Manov et al.  2013 ); (2) the blind mole rat is predicted 
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to have a smaller reduction in its ATP consumption than those by frog and turtle, 
which is also consistent with the fact that frogs and turtles can live virtually without 
oxygen for extended periods of time; and (3) both mouse and rat are predicted to 
have substantially smaller ATP-consumption reductions than those by naked, blind 
mole rats and hypoxia-tolerant rats, which is clearly consistent with our understand-
ing about the basic oxygen needs by mouse and rat. Based on this qualitative valida-
tion, we posit that the model is meaningful; hence we have applied it to predict the 
reduction in ATP consumption by human cells under hypoxia  versus  normoxia. 
Again the prediction result is consistent with our general knowledge about these 
organisms in terms of their relative abilities to deal with hypoxia. 

 A literature search revealed that organisms, shown in the fi gure, with larger energy 
reductions tend to have lower chances for developing cancer, suggesting a possible 
causal relationship between an organism’s ability to adequately minimize certain 
parts of their ATP-consuming metabolism to keep the ATP demand consistent with the 
ATP supply under hypoxia  versus  the organism’s potential for cancer development. 

  Fig. 5.5    For human, rat, mouse, naked mole rat, hypoxia-tolerant rat, blind mole rat, frog and 
turtle (from  bottom  to  top ), 1.0 along the x-axis represents the total ATP demand by the six groups 
of proteins during normoxia. The length of each bar represents the percentage of ATP consumption 
under matching hypoxia, hence the difference between 1.0 and the percentage representing the 
percentage in reduction. Each bar is divided into six gray-level coded sections, each representing 
one group of relevant proteins under consideration       
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 From an evolutionary perspective, this is not surprising as animals like blind 
mole rats have been using both (deep) underground and ground as their living habi-
tats. Their metabolic systems have adapted to living in two different environments 
with substantially different levels of oxygen, and their cells have been trained to 
switch on and off certain parts of their house-keeping system when different levels 
of oxygen are available to keep their ATP demand within the ATP supply. This 
capability may have already been encoded in their genomes through adaption and 
natural selection during their evolution. In contrast, humans, as a population, never 
lived under hypoxic conditions for extended periods of time throughout evolution to 
the current stage. As a result, our systems have not been trained (or selected) to 
adequately reduce portions of our metabolism during hypoxia to keep ATP demands 
within the ability to supply, hence leaving a gap, seemingly a large gap, between 
energy demand and supply under persistent hypoxic conditions as shown in Fig.  5.5 . 
Mice and rats seem to behave in the same way as humans.  

5.4.3     A Driver Model 

 Because of the energy gap, human cells will need to substantially increase their 
glucose uptake during persistent hypoxia to meet the ATP demands of the cells, 
which has been widely observed in the majority of cancers as increased glucose 
metabolism has been the basis for PET/CT scans for cancer detection. In contrast, 
organisms like blind mole rats or turtles, do not increase glucose uptake under 
hypoxic conditions. Another widely observed phenomenon is that these cells accu-
mulate glucose metabolites, as shown in Fig.  5.4 . Hence one may speculate that the 
fundamental reason for the accumulation is the result of a mismatch between the 
infl ux rate of glucose, which is regulated by the ATP defi ciency, and the maximum 
fl ux rate capable by the glycolytic fermentation pathway, which is determined by 
evolution. Knowing that humans have not lived under hypoxic conditions for 
extended periods of time during evolution, one can infer that their glycolytic fer-
mentation pathway has been used only as a supplement to the aerobic respiration 
system for ATP production and for only short periods of time when humans are in 
oxygen demand. One can thus posit that  the maximum fl ux rate of this system 
intrinsically cannot meet the need for dealing with the substantially increased infl ux 
of glucose under hypoxia . In addition, one can further speculate that this accumula-
tion does not have a feedback mechanism developed to regulate the glucose trans-
porters to cease functioning when glucose metabolite accumulation takes place, 
which may also be due to the lack of training during evolution for adapting to such 
a situation. Clearly all these speculations need to be experimentally validated in 
order to validate the hypothesis. 

 The continual accumulation of the glucose metabolites will lead to cell death if 
not removed (Kubasiak et al.  2002 ; Schaffer  2003 ), and this may continue as long as 
the hypoxic condition persists. Thus, we have the main hypothesis of the model:  the 
need for removing the accumulated glucose metabolites casts strong initial pressure 
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for the underlying cells to evolve, and cell division may represent a feasible and 
sustained way for the affected cells to rid themselves of the glucose metabolites . 
This defi nes the direction for the needed evolution for survival, i.e.,  cell proliferation 
is dictated by the need for survival and probably not by oncogenic mutations . 

 While the accumulated glucose derivatives may exert the initial pressure for the 
cells to evolve to eliminate the accumulation, the cells require signals to change 
their cellular state from the non-dividing G 0  phase to the dividing phase in the cell 
cycle to start division (see Fig.  5.6 ) and to enable them to overcome multiple tightly 
controlled conditions designed for preventing uncontrolled growth, which involves 
at least three sets of signals: (1) cell biomass growth, (2) cell division, and (3) cell 
survival with the ECM in certain states (see Chap.   6    ). When searching for links 
between accumulated glucose metabolites and cell proliferation, an association 
 connecting these two is found, namely  hyaluronic acid . While a detailed discussion 
regarding this connection is given in Chap.   6    , some basic information is briefl y 
provided here in order to complete the current development.

   Hyaluronic acid is a long polysaccharide chain and serves as a key component 
of the ECM along with collagen fi brils and a few linker proteins such as fi bronec-
tins, elastins and laminins. Under normal conditions, hyaluronic acid is synthesized 
(see Fig.  5.7 ) in order to accommodate tissue development, remodeling and repair 

  Fig. 5.6    A schematic of the cell cycle and growth factors from stromal cells       
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(Chen and Abatangelo  1999 ; Noble  2002 ; Stern et al.  2006 ; Jiang et al.  2007 ), and is 
generally integrated into the ECM. However, under infl ammation-induced hypoxic 
conditions with a plentiful supply of glucose metabolites, the biosynthetic pathway 
of hyaluronic acid will be activated. The newly synthesized hyaluronic acid is then 
exported to the extracellular space and degraded into fragments (see Chap.   6    ).

   Coincidentally, studies on tissue injury and repair have discovered that when a 
tissue is injured, it releases the hyaluronic acid fragments from its ECM. These frag-
ments of different sizes serve as signals for various purposes related to tissue repair, 
including signals for infl ammation, anti-apoptosis, cell survival, cell proliferation 
and angiogenesis (Stern et al.  2006 ), as well as signals that allow anchorage- 
independent growth (Kosaki et al.  1999 ; Toole  2002 ) and loss of contact inhibition 
(Itano et al.  2002 ), basically all the signals needed for cancer development. 

 As detailed in Chap.   6    , the released hyaluronic acid fragments, arising from glu-
cose metabolite accumulation, are treated as signals for tissue injury, leading to the 
continuous process of “tissue repair” as long as the hypoxic condition persists. This 
progression of events probably serve as  the initial driver and facilitator of cell pro-
liferation , with strong supporting evidence as shown in Chap.   6    . 

 One fundamental difference between this model and those in the literature is that 
DNA synthesis is initiated by the accumulation of glucose metabolites that in turn 
lead to the synthesis of hyaluronic acid and its subsequent fragmentation which 
promotes cell proliferation. Clearly, this is in contrast with a popular view that 

  Fig. 5.7    The synthesis 
pathway for hyaluronic acid 
from glycolytic metabolites 
(adapted from (Vigetti 
et al.  2010 ))       
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increased DNA synthesis is necessary for the rapid cell proliferation. The cause- effect 
relationship of these two processes is exactly opposite between the model presented 
here and much of the current thinking. 

 A recent study on the modulation of the architecture of fi broblasts by hypoxia 
strongly suggests that hypoxia may exert a more direct role in mediating cell division. 
Specifi cally, the study demonstrated that hypoxia can substantially change the organi-
zation of the actin cytoskeleton (Vogler et al.  2013 ), leading to morphological changes 
of the cells, a key step towards cell division. It has been previously established that the 
state of actin fi lament organization directly controls cell-cycle  progression (Assoian 
and Zhu  1997 ; Thery and Bornens  2006 ). This observation raises the possibility that 
hypoxia may directly mediate cell division, at least by increasing the possibility for 
cell hyperplasia. Actually the same study also showed that hypoxia leads to increased 
cell volume, i.e., hypertrophy, which could be related to the glucose metabolite accu-
mulation discussed above. If this proves to be true through experimental validation, it 
is likely that hypoxia has a double role in early tumorigenesis: creating the pressure 
for cells to evolve to remove the accumulated glucose metabolites and facilitating the 
removal of the accumulation through cell division. 

 Hypoxia is also known to mediate a number of other events that may further 
facilitate sustained cell division and cancer initiation, such as up-regulation of 
telomerase ( TERT ) (Nishi et al.  2004 ), genomic instability (Huang et al.  2007 ), 
angiogenesis (Moeller et al.  2004 ; Liao and Johnson  2007 ) and cell migration 
(Fujiwara et al.  2007 ). As discussed in Sect.  5.3 , hypoxia takes place prior to other 
cancer hallmark events. Based on this and later discussions throughout the book, it 
should be pointed out that hypoxia can lead to most of the cancer hallmark events.   

5.5       Roles Played by Genetic Mutations in Tumorigenesis 

 Previous studies in this area have mostly focused on the impact of mutations in 
proto-oncogenes and tumor suppressor genes, specifi cally in terms of the driving or 
inhibitory roles in cell division by these two classes of genes. Data presented in 
Chap.   4     clearly show that genetic mutations selected by cancer have much broader 
roles than just driving or inhibiting cell division, as cell division is only a part, albeit 
an important part, of cancer tissue development. Here we continue the discussion 
about genetic mutations and their roles in two areas: (a) ROS accumulation and 
implications to cancer development, and (b) replacement of persistent and abnormal 
functions to provide sustainability and energy effi ciency. 

5.5.1     Genetic Mutations Related to Hereditary Cancers 

 While the above model applies to sporadic cancers, it is natural to ask if this or a 
similar model may apply to familial cancers. To address this question, seven 
types of the most common familial cancers with known genetic mutations were 
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examined: (1) breast cancer due to the  BRCA  mutations (Lin et al.  2003 ); (2) kidney 
cancer resulting from mutations in fumarate hydratase ( FH ) (Toro et al.  2003 ); (3) 
 APC  mutation-induced colon cancer (Morin et al.  1997 ); (4) retinoblastoma induced 
by  RB1  mutations (Murphree and Benedict  1984 ); (5)   Li-Fraumeni syndrome     due 
to  P53  mutations (Srivastava et al.  1990 ); (6) syndrome caused by  PTEN  mutations 
(Liaw et al.  1997 ); and (7) syndrome because of  VHL  mutations (Lonser et al.  2003 ). 
Each of these genes has multiple functional roles in normal cells such as  P53  (see 
Chap.   7     under “ P53  network”). All these genes are classifi ed as tumor suppressor 
genes in the literature, because of their roles in cell cycle regulation and apoptotic 
activation (i.e., as gatekeepers). However as we will see below, these genes actually 
play driver roles in familial cancer development. 

 A literature survey revealed that these mutational effects are similar in one 
respect: they all lead to ROS accumulation in mitochondria. This event, in and of 
itself, will ultimately lead to the repression of mitochondrial function, including 
oxidative phosphorylation. Hence, it will ultimately force the activation of glyco-
lytic fermentation to compensate for the reduced ATP production in mitochondria. 
We suspect that this may be the basis of Warburg’s observation 90 years ago, which 
consists of normoxic cells with repressed mitochondrial functions due to ROS accu-
mulation. Potentially, this common functional role by the loss-of-function muta-
tions in the seven genes (see below) may prove to be the most essential role in the 
tumorigenesis of the relevant cancers, where they exert a “driving” instead of a gate 
keeping role as generally believed. Details follow. 

 Recent studies have shown that  BRCA  mutations in normal breast cells can lead 
to generation of hydrogen peroxide, as one of the normal functions of  BRCA  is to 
neutralize this ROS (Martinez-Outschoorn et al.  2012 ). The same study also 
observed increased glycolysis and decreased oxidative phosphorylation, revealing 
the repression of the mitochondrial activities, which forces cells to increase their 
activity of glycolytic fermentation regardless of being cancer or non-cancer cells. 

 Regarding fumarate hydratase, it has been shown that loss-of-function mutations 
in  FH  leads to the constitutive state of pseudo-hypoxia (e.g., increased expression 
levels of the  HIF  genes) and of increased ROS. These, in turn, further lead to 
increased glycolysis and decreased oxidative phosphorylation due to repressed 
mitochondrial function, hence in time leading to induction of the glycolytic 
 fermentation pathway (Sudarshan et al.  2009 ). 

 Loss-of-function mutations in the  APC  gene have been found to lead to constitu-
tive activation of the  WNT -signaling pathway (Sunaga et al.  2001 ) since  APC  is a 
negative regulator of the pathway. This pathway activates a downstream gene,  RAC1  
(a GTPase), the activation of which leads to ROS production (Sundaresan et al. 
 1996 ). From these observations, one can speculate that the gradual production and 
accumulation of ROS will progressively result in a reduction of mitochondrial func-
tion, including the repression of oxidative phosphorylation, and hence the activation 
of glycolytic fermentation pathway and the likelihood of cancer development at 
some point during the lifetime of the patient. 

  P53  gene mutations have long been linked to ROS production (Polyak et al. 
 1997 ). A recent study suggests the following mechanism for this observed activity 
(Kalo et al.  2012 ). Loss-of-function mutations in  P53  can interfere with the normal 
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response of human cells to oxidative stress by attenuating the activation and function 
of  NFE2 -related factor 2, a transcription factor that induces antioxidant responses. 
This effect is manifested by decreased expressions of phase 2 detoxifying enzymes 
 NQO1  (NAD(P)H dehydrogenase, quinone 1) and  HMOX1 (heme oxygenase (decy-
cling) 1) and an increased ROS level, ultimately leading to the repression of mito-
chondrial function, activation of the glycolytic fermentation pathway and possibly 
the development of cancer. 

 The relationship between  PTEN  (phosphatase and tensin homolog) mutations 
and ROS production is interesting. A recent study reported that loss-of-function 
mutations in the ATP-binding domain of  PTEN  lead to disruption of the correct 
subcellular localization of the protein, resulting in a signifi cantly decreased nuclear 
 P53  protein level and its transcriptional activity, and hence increased production of 
ROS (He et al.  2011 ). Ultimately, this will lead to the activation of the glycolytic 
fermentation pathway and possibly cancer. 

  VHL -defi ciency was recently found to constitutively activate  NOX  oxidases to 
maintain the protein expression of  HIF2α  (hypoxia inducible factor-2α), while 
NADPH oxidases of the  NOX  family are the major sources of ROS (Murdoch et al. 
 2006 ; Nauseef  2008 ; Frey et al.  2009 ). Later the same process ultimately leading to 
the development of cancer can take place. 

 The current understanding about the relationship between  RB1  mutations and 
ROS production is that loss-of-function mutations in  RB1  lead to dysregulation of 
 E2F2 , a component of the transcription factor gene  E2F  involved in cell-cycle regu-
lation and DNA synthesis, which drives increased production of ROS (Bremner and 
Zacksenhaus  2010 ), and hence the rest of the same or similar process, possibly lead-
ing to cancer. 

 Based on the above discussion, one may speculate that the gradual accumulation 
of ROS over an extended period of time will ultimately lead to the constitutive acti-
vation of  NFκB  (Gloire et al.  2006 ), a master transcription regulator in response to 
ROS, which will ultimately lead to cancer as has been established (Karin et al. 
 2002 ). In addition, it has been well established that mitochondrial ROS triggers 
hypoxia-induced transcription (Chandel et al.  1998 ) and infl ammation (Gupta et al. 
 2012 ). One can thus speculate that the same model discussed in Sect.  5.4  should 
essentially apply to the seven types of hereditary cancers, except that the initial trig-
ger is increased ROS instead of persistent hypoxia. Potentially, this model may 
apply to most of the hereditary cancers for the same reason discussed here. A sys-
tematic study of this issue is clearly needed in order to work out the detailed mecha-
nisms of how each of the seven mutations ultimately leads to cancer development 
and why the induced cancer tends to be organ-specifi c. 

 In this same vein, it is reasonable to speculate that aging-induced cancers may 
also follow this or a similar model as mitochondrial ROS accumulates and infl am-
matory cells increase, in addition to cellular senescence (Campisi et al.  2011 ) as one 
ages. At some point these cells may repress their mitochondrial activities with suf-
fi ciently high ROS levels accumulated (in steady state), leading to the reprogrammed 
energy metabolism and the associated phenomena discussed above. Figure  5.8  
 summarizes this driver model.

5 Elucidation of Cancer Drivers Through Comparative Omic Data Analyses



135

5.5.2        Genetic Mutations in Sporadic Cancers 

 While genetic mutations are believed by many to be a primary reason for sporadic 
cancer development, recent studies are beginning to challenge this view as dis-
cussed in Chap.   4    . A possible alternative is that genetic mutations may serve as 
facilitators rather than the primary drivers in sporadic cancers. More specifi cally, it 
has been suggested that loss-of-function or gain-of-function mutations in tumor 
suppressor genes or proto-oncogenes such as  P53  and  RAS , respectively, are prob-
ably selected as “permanent” replacements for inhibitions or amplifi cations of the 
functions that are already being executed through functional regulations, post- 
translational modifi cations or other means. Such changes may be needed for sus-
tained and effi cient survival. While Chap.   9     provides an in-depth discussion on this 
issue, we use the following examples to illustrate the basic idea here. 

 The functional form of  PKM2  (pyruvate kinase isozyme M2) is a homo-tetramer 
that catalyzes the conversion from phosphoenolpyruvate to pyruvate and is also the 
rate-limiting step along the glycolytic pathway. It has been observed that the vast 
majority of advanced cancers have mutations in the  PKM2  gene (Mazurek et al. 
 2005 ), which inhibit the homo-tetramer formation. This fi nding indicates that there 
is strong evolutionary pressure for the affected cells to reduce their pyruvate pro-
duction, possibly due to the glucose metabolite accumulation discussed earlier. 
It has been shown that oxidation of  PKM2  on specifi c residues by ROS can increase 
the possibility of the homo-tetramer’s disassociation to dimers or monomers 
(Anastasiou et al.  2011 ), hence reducing its normal function. It is quite possible that 

  Fig. 5.8    A model for cancer initiation with two possible drivers: persistent hypoxia and ROS 
accumulation. Each  solid arrow  represents a strong causal relationship and a  dashed line  denotes 
a possible “lead to” relationship       

 

5.5  Roles Played by Genetic Mutations in Tumorigenesis

http://dx.doi.org/10.1007/978-1-4939-1381-7_4
http://dx.doi.org/10.1007/978-1-4939-1381-7_9


136

disassociation of the  PKM2  tetramer occurs before the mutations in  PKM2 , as the 
fi rst piece of data suggests that cells with fewer functional  PKM2  tetramers may 
have an advantage for survival. Also, the oxidation data suggest the possibility of 
other and less permanent means to accomplish the same loss of function. 

 Another example is the loss of contact inhibition of cells, a process that can ter-
minate cell division when cells are in close proximity one to another (Sgambato 
et al.  2000 ). The increased hyaluronic acid synthesis and export, in response to 
glucose-metabolite accumulation (detailed in Chap.   6    ), will override contact inhibi-
tion, allowing for sustained proliferation by the cells. Mutations in genes responsi-
ble for activating the contact inhibition machinery, such as  ING4  (inhibitor of 
growth family, member 4) (Kim et al.  2004 ), are selected, thus ensuring the perma-
nent loss of the inhibition capability, as observed in advanced cancer. 

 Overall, the selection of loss-of-function mutations of specifi c genes may repre-
sent a general mechanism in cancer-forming cells. That is, the surviving cells may 
require the repression or over-expression of specifi c genes to remain viable. Genetic 
mutations may prove to be the permanent replacement of the desired function, 
diminution or enhancement, initially accomplished through other means. We fully 
anticipate that a systematic analysis of all well documented cancer-related muta-
tions, coupled with analyses of the matching transcriptomic and epigenomic data 
of cancer tissues at different developmental stages  versus  control tissues, could 
provide a detailed knowledge of which genetic mutations tend to serve as perma-
nent replacements of on-going functions and which may be selected by cancer cells 
to start new functions. Such information should deepen, as well as broaden our 
current understanding of the process of tumorigenesis.   

5.6     Exogenous Factors and Cancer 

5.6.1     Microbial Infections 

 A number of cancers are known to be induced and closely associated with microbial 
infections. For example, human papilloma virus (HPV) is closely associated with 
cervical cancer (Walboomers et al.  1999 ; Crosbie et al.  2013 ); Hepatitis virus B and 
C (HBV and HCV) are with liver cancer (Perz et al.  2006 );  H. pylori  is connected 
with gastric cancer;  Chlamydophila pneumonia  with lung cancer; and  Streptococcus 
bovis  is closely associated with colorectal cancer (Boleij et al.  2009 ). The current 
estimate is that 18 % of all the diagnosed cancer cases are related to infectious dis-
eases, including viral, bacterial and parasitic infections (Anand et al.  2008 ). From 
the literature, the proposed mechanisms for different infection-related cancers vary 
considerably, but with one commonality: all these infections result in chronic 
infl ammation (Shacter and Weitzman  2002 ) in the diseased lesions, suggesting a 
possibility that our model may apply to the tumorigenesis of the relevant cancers.  
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5.6.2     HBV, HCV and Hepatocellular Carcinoma 

 Hepatocellular carcinoma (HCC) is the third leading cancer worldwide, and 85 % 
of the liver cancers are associated with either HCV or HBV infection worldwide 
(Hiotis et al.  2012 ). Interestingly, the two types of viral infections have very little in 
common. HCV is a single-stranded RNA virus that does not have its genome inte-
grated into the host genome, and HBV is a DNA virus whose genome does integrate 
into the host hepatocyte genome during early infection. 

 Previous studies have identifi ed multiple integration sites of the HBV genes in 
the host hepatocyte genome, which can lead to the loss of heterozygosity for tumor 
suppressor genes such as  PRLTS  (Kahng et al.  2003 ). In addition, the HVB-x anti-
gen is able to activate oncogenes, as well as interfere with the function of tumor 
suppressor genes such as  P53  (Feitelson and Duan  1997 ; Lian et al.  2003 ). In com-
parison, the current knowledge of the relationship between HCV and liver cancer is 
very limited. For example, it is not known whether the proliferating cells of liver 
cancer are HCV-infected cells or if they are responding to apoptosis induced by 
HCV in neighboring cells in order to maintain tissue homeostasis. A number of 
dysregulated cancer-associated genes, e.g.,  RB  and  P53 , have been identifi ed in 
such cancers (Lan et al.  2002 ; Munakata et al.  2007 ), but it is unclear whether these 
dysregulations are directly related to HCV infection or cancer development. One 
general observation has been that HCV-associated liver cancers tend to fi rst develop 
cirrhosis that persists for an extended duration before the development of cancer. 

 Transcriptomic data analyses, coupled with statistical inference and guided by 
our model given in Sect.  5.5  and Chap.   6    , should be able to help identify the key 
steps in initiation and development of HCV-induced cancer. Specifi cally, one can 
ask how different HCV genes, known to be relevant to liver cancer initiation and 
development, contribute to various signifi cant events such as infl ammation, hypoxia 
or ROS. Such studies have the potential of putting multiple and seemingly unrelated 
events into one coherent driver model, potentially leading to new and testable 
hypotheses about the initiation and development of the cancer. It is foreseeable that 
such studies can also reveal possible problems of our model that may require further 
refi nement and expansion. The same strategy can be applied to studies of other 
infection-associated cancers as follows.  

5.6.3     Human Papilloma  Virus  (HPV) and Cervical Cancer 

 Virtually all the reported cervical cancer cases are associated with the infection of 
human papilloma virus (Walboomers et al.  1999 ; Crosbie et al.  2013 ). Although 
HPV is essential to the transformation of cervical epithelial cells, studies have 
shown that it is not suffi cient by viral infection itself for such a transformation. 
A number of cofactors are needed, including co-infection with cytomegalovirus or 
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human herpes virus, while co-infection with adeno-associated virus can reduce the 
risk of cervical cancer. Interestingly, among 15 HPV strains known to be associated 
with cervical cancer, each acts independently when a person is infected with mul-
tiple strains of the virus, and infection with more HPV strains tend to increase the 
malignancy of the resulting cancer (Walboomers et al.  1999 ; Munoz et al.  2003 ). 
HPV16 and HPV18 have been identifi ed as the most carcinogenic among all the 
strains (Ault  2006 ; Schiffman et al.  2009 ). Of note, long-term infl ammation has 
been found in all cervical cancer cases. HPV infection leads to the up-regulation of 
178 and the down-regulation of 150 genes in the host. The down-regulated genes are 
mainly those involved in the regulation of cell growth, and some are keratinocyte- 
specifi c genes and interferon-responsive genes (Chang and Laimins  2000 ). Unlike 
the situation in many other cancers, the  P53  gene in cervical cancer is typically not 
mutated. However, two proteins of HPV,  E6 and E7 , have a high binding affi nity 
with both  P53  and  RB , which disrupts the normal functions of the two proteins 
(Burd  2003 ; Oh et al.  2004 ), hence not requiring mutations of the genes.  

5.6.4      H. pylori  and Gastric Cancer 

 The relationship between  H. pylori  and gastric cancer is rather complex, as it is esti-
mated that two thirds of the world’s population is infected with  H. pylori  according 
to statistics from the US Center for Disease Control. Yet, most of the infected indi-
viduals do not develop gastric cancer. On the other hand,  H. pylori  is considered as 
a major risk factor of the disease, mainly because numerous studies have shown that 
the risk of developing gastric cancer is about six times higher for those infected with . 
pylori  compared to those who are not (Helicobacter and Cancer Collaborative  2001 ). 
Recent studies have found that eradication of  H. pylori  does not substantially reduce 
the risk of gastric cancer development after chronic infection, suggesting important 
roles of  H. pylori  during the very early stage of the disease, possibly long before 
malignant transformation takes place. For example, it has been well established that 
 H. pylori  is a key contributor to the development of atrophic gastritis, an essential 
step leading to gastric cancer; consequently, atrophic gastritis induced by  H. pylori  
may, quite early after infection, determine the disease development trajectories. 

 A number of  H. pylori  genes have been implicated to be relevant to the develop-
ment of gastric cancer. For example,  vac-A  (vacuolatingcytotoxingene A) is a gene 
in some strains of  H. pylori  that can induce vacuolation in epithelial cells. It was 
observed that  cag-A -containing  H. pylori  strains tend to be associated with patients 
having atrophic gastritis or gastric ulcer (Kuipers et al.  1995 ; Yamazaki et al.  2005 ). 
In addition, studies have shown that infection with  H. pylori  strains carrying the 
 cag-A  gene is associated with an increased risk of non-cardia gastric cancer (Nguyen 
et al.  2008 ). Here,  cag  refers to the pathogenicity island in an  H. pylori  genome, 
which consists of ~30 cytotoxin-associated genes, with other members of the island 
including  cag-C ,  cag-E ,  cag-L ,  cag-T ,  cag-V  and  cag-Gamma . While these genes 
are believed to be directly relevant to the formation of atrophic gastritis, their roles 
in gastric carcinogenesis are yet to be understood. 
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 While microbial infections have been found to be associated with the development 
of a variety of cancers, the detailed mechanisms of how these infections lead to can-
cer are unknown. It is, however, clear that all these infections lead to chronic infl am-
mation, hence creating a hypoxic microenvironment of the infected tissue and 
possibly forming the initial pressure for the infected cells to evolve. Knowing that 
these microbial infections tend to be tissue specifi c, it is possible that specifi c biomol-
ecules of the different microbes may target specifi c cell types and/or the specifi c 
microenvironment associated with these cell types. This would provide the needed 
vehicles for the affected cells to evolve to alleviate the pressures exerted on them by 
the microenvironment. Through a combination of high-throughput  omic  data analy-
sis, computational prediction and statistical inference, it should be possible to make 
substantial progress in elucidating the detailed mechanisms of how a specifi c microbe 
may trigger the development of a particular cancer type.  

5.6.5     Radiation-Induced Cancer 

 It is estimated that up to 10 % of the cancers is related to radiation exposure, includ-
ing both ionizing radiation such as subatomic particles and non-ionizing radiation 
such as UV light (Anand et al.  2008 ). Ionizing radiation is known to induce leuke-
mia among other cancer types. While the published studies have mostly focused on 
the damaging effects of ionizing radiation to DNA (Iliakis et al.  2003 ), the bio-
chemical approaches have revealed that ionizing radiation can lead to the generation 
of ROS (Mikkelsen and Wardman  2003 ). For example, when water is exposed to 
ionizing radiation, a variety of ROS is generated, such as superoxide, hydroxyl radi-
cals and hydrogen peroxide. If Warburg turns out to be correct in his hypothesis that 
the primary cause of cancer is a switch in energy metabolism, the ionizing radiation- 
induced ROS production may be a key reason for ionizing radiation-induced cancer 
development. 

 Multiple studies have recently shown that long-term exposure to non-ionizing 
radiation, including microwave radiation (Yakymenko et al.  2011 ) and UV light 
(Heck et al.  2003 ), leads to over-production of reactive oxygen and nitrogen species. 
Clearly, these results suggest that additional and more systematic analyses are 
needed to clarify the relevant mechanisms.   

5.7     Concluding Remarks 

 Understanding the drivers of cancer initiation at the root level represents one of the 
most fundamental, most challenging and also most interesting problems in cancer 
research. Taking a very different approach to examine this problem, we focused on 
the intrinsic gap between energy demand and supply in human cells when oxidative 
phosphorylation is (partially) shut down, as mediated, for example, by hypoxia and/
or accumulation of mitochondrial ROS. This energy gap, from our perspective, may 
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represent an intrinsic “fl aw” in our cellular system that allows cancer to develop 
since it can lead to the accumulation of glucose metabolites, forming the initial 
pressure for cells to evolve and rid themselves of the accumulation. In this context, 
genomic mutations probably serve as facilitators for the needed functional changes 
to take place, possibly in a sustained and effi cient manner. The transcriptomic data 
analysis of energy metabolism in cancer  versus  control tissues has revealed that the 
current model is not complete since some cancers do not show increased uptake of 
glucose, at least based on the transcriptomic data. We speculate that the accumula-
tion probably still takes place in those cancer-forming cells, possibly due to com-
bined fl uxes from glycolysis, amino acid and fatty acid metabolism, which overlaps 
with the glycolysis pathway. It is posited that glucose metabolite accumulation rep-
resents a most common driver for solid-tumor cancers and that the activation of 
hyaluronic acid synthesis pathway, as will be discussed in Chap.   6    , represents the 
most essential step in malignant transformation of cells. Simply stated, persistent 
glucose metabolite accumulation necessitates cell proliferation since it provides a 
natural exit for the accumulated metabolites, and the natural link between glucose 
metabolite accumulation and hyaluronic acid synthesis serves as a facilitator for this 
action to take place.      

    Appendix 

      Table 5.1    A list of datasets used in analysis of Fig. 5.2   

 Tissue type  Data ID  Sample size  Platform 

 Pancreatic  GSE15471  78  GPL570 
 Kidney  GSE36895  76  GPL570 
 Colon  GSE21510  148  GPL570 
 Cervical  GSE6791  84  GPL570 
 Gastric  GSE13911  69  GPL570 
 Thyroid  GSE33630  105  GPL570 
 Brain  GSE50161  130  GPL570 
 Lung  GSE30219  307  GPL570 
 Breast  GSE42568  121  GPL570 
 Ovarian  GSE38666  45  GPL570 
 Metastatic prostate  GSE7553  43  GPL570 
 Metastatic melanoma  GSE7553  43  GPL570 
 Liver  GSE41804  40  GPL570 
 Primary melanoma  GSE7553  22  GPL570 
 Bladder  GSE31189  92  GPL570 
 Prostate primary  GSE3325  19  GPL570 
 Bcc  GSE7553  17  GPL570 
 Leukemia  GSE31048  221  GPL570 
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    Table 5.2    A list of datasets used in analysis of Fig. 5.4   

 Tissue type  Data ID  Sample size  Platform 

 Infl ammatory colon tissue  versus  normal colon  GSE11223  202  GPL1708 
 Infl ammatory bowl disease/adenoma/
adenocarcinoma  versus  colon normal 

 GSE4183  53  GPL570 

 Colon adenoma  versus  colon normal  GSE8671  64  GPL570 

     Table 5.3    Gene expression data of different species under hypoxia and normoxia   

 GEO ID  Species 
 Number 
of samples  Description 

 GSE3537  Homo sapiens  69  Cell lines of human breast epithelial cell, 
renal proximal tubule epithelial cell, 
endothelial cell, and smooth muscle cell 

 GSE480  Mus musculus  20  Mouse brain, heart, lung and muscle cells 
 GSE3763  Blind mole rats  12  Muscle tissue 
 GSE1357  Rattus 

norvegicus 
 24  Hippocampus cell of hypoxia-sensitive 

and hypoxia-tolerant rat tissue 
 GSE30337  Naked mole rats  13  Transcriptome sequencing of naked mole 

rat tissue 

     Table 5.4    A list of ATP-consuming house-keeping genes in human used for the study of Sect. 5.4   

 Translation: GO_0006412 
 Sodium/potassium-exchanging ATPase activity: GO_0005391 
 Calcium-transporting ATPase activity: GO_0005388 
 Gluconeogenesis: GO_0006094 
 Urea cycle:  ASS1 ,  ASL ,  NOS1 ,  NOS2 ,  NOS3 ,  ARG1 ,  ARG2 ,  OTC  
 Actin-dependent ATPase activity: GO_0030898 
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    Chapter 6   
 Hyaluronic Acid: A Key Facilitator 
of Cancer Evolution 

                    Otto Warburg made a seminal speculation in the 1960s that  the switch in cellular 
energy metabolism from aerobic respiration to glycolytic fermentation is the  driving 
force for cancer development . While increasingly more cancer researchers tend to 
agree with Warburg, it remains unknown, even fi ve decades after his hypothesis, 
how this switch is linked to cell proliferation. We have discussed in Chap.   5     how 
chronic hypoxia and mitochondrial ROS accumulation will lead to continual accu-
mulation of glucose metabolites, possibly resulting in cell death if not removed. 
This buildup imposes a persistent pressure on the host cells to evolve in order to 
survive, and cell proliferation represents a most feasible way for these cells to 
remove the accumulation of metabolites in a sustained manner. We will discuss in 
this chapter how this pressure can trigger a cellular program to facilitate cell prolif-
eration, hence providing an exit for the accumulated glucose metabolites and a path-
way to survival through proliferation. 

 The traditional view has been that genomic mutations, particularly mutations in 
proto-oncogenes or tumor suppressor genes, drive and facilitate cancer evolution. 
This may be true once the disease has reached a certain developmental stage, spe-
cifi cally after a few encoded constraints related to tissue development can be 
bypassed, as observed from the cancer genome data, but it is very unlikely for them 
to be the initial driver or even facilitator as discussed in Chap.   4    . Here a model, 
based on the analysis results of large-scale transcriptomic data, is presented to offer 
a detailed explanation of how persistent hypoxia and ROS-induced stresses can lead 
to cell proliferation through activation and utilization of the tissue-repair system 
encoded in the human genome. Under normal conditions, signals for tissue repair 
come from the fragmented ECM of a damaged tissue; however, under stressful con-
ditions as defi ned above, the cells can produce such fragments, specifi cally those of 
hyaluronic acid, from the accumulated glucose metabolites. This situation creates 
(or mimicks) all the signals needed for tissue repair, such as those for infl ammation, 
anti-apoptosis, cell proliferation, cell survival and angiogenesis, leading to cell pro-
liferation. Clearly, cell division provides relief for the stressed cells by consuming 
some of the accumulated metabolites for DNA and lipid synthesis. It is worth noting 
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that such molecular accumulation will continue, even in new cells, due to the 
hypoxia and ROS condition in the microenvironment, which may become increas-
ingly more stressful due to cell proliferation, possibly creating a vicious cycle for 
cell division. 

6.1        Hyaluronic Acid and Its Physiological Functions 

    The glycosaminoglycan,  hyaluronic acid  (also known as hyaluronate or hyaluro-
nan), is a key component of the extracellular matrix. It consists of a long chain of a 
repeating disaccharide, each consisting of one D-glucuronic acid (GlcUA) and one 
D-N-acetylglucosamine (GlcNAc). Each hyaluronic acid molecule may comprise 
up to 2 × 10 5  disaccharides with a total molecular weight approaching 10 7  Da. The 
negatively charged glycosaminoglycan binds various cations, e.g. Na + , K +  and 
Ca 2+ , and forms an extended left-handed helix. Three enzymes,  HAS1-3  
(hyaluronic acid synthases 1–3), are known to synthesize hyaluronic acid by 
lengthening the molecule through repeated addition of one glucuronic acid and one 
 N- acetylglucosamine, derived from UDP-GlcUA and UDP-GlcNAc, respectively, 
to the nascent polydisaccharide as it is extruded via  ABC  transporters into the 
extracellular space. The exported hyaluronic acid, if not incorporated into extracel-
lular matrices, will be degraded by at least six enzymes, hyaluronidases  HYAL1-6 , 
or by ROS into fragments of different sizes. Not until the late 1970s was the mol-
ecule found to play a signifi cant role in cell migration during cardiac cushion 
development (Bernanke and Markwald  1979 ). Since then, a substantial amount of 
information has been learned about the amazingly wide range of functions of this 
molecule and its fragments. 

6.1.1     Hyaluronic Acid Synthesis and Its Regulation 

 The synthesis of hyaluronic acid is tightly controlled at the transcriptional level of 
the three synthases,  HAS1-3 , because of its unique signaling roles in tissue develop-
ment, remodeling and repair (Toole  2004 ). The current understanding is that  HAS1- 
2   tends to synthesize longer hyaluronic acid chains while  HAS3  produces shorter 
ones.  HAS2  is probably responsible for the production of most of the hyaluronic 
acid in human tissues while, interestingly,  HAS3  has been found to be up-regulated 
in cancer in general (Liu et al.  2001a ,  b ; Tammi et al.  2011a ; Teng et al.  2011 ). 
Figure  6.1  shows the synthetic pathway of this molecule from glucose 6-phosphate 
(G6P), the fi rst glucose intermediate of the glycolytic pathway. The following table 
gives a list of the nine enzymes in the synthetic pathway of hyaluronic acid and 
their associated reactions as this information is important to our discussion in this 
chapter    (Table  6.1 ).
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    Among the nine enzymes, (1)  GPI  (phosphoglucose isomerase) is part of the 
glycolytic pathway and is activated whenever glycolysis is activated; (2) the follow-
ing three enzymes:  GNPNAT  (glucosamine phosphate  N- acetyltransferase),  PGM3  
(phosphoacetyl glucosamine mutase) and  UAP1  (UDP-N acetylglucosamine pyro-
phosphorylase), are shared with the hexosamine pathway (Fantus et al.  2006 ), which 
is positively regulated by the concentration of glucosamine (Patti et al.  1999 ) and by 
hypoxia (Guillaumond et al.  2013 ); (3)  PGM  (phosphoglucomutase) and  GFPT2  
(glutamine-fructose-6-phosphate transaminase) are up-regulated by hypoxia 

  Fig. 6.1    The biosynthetic pathway of hyaluronic acid from UDP-GlcUA and UDP-GlcNAc, both 
derived from the common precursor glucose 6-phosphate (adapted from (Tammi et al.  2011a ))       

   Table 6.1    Enzymes and reactions in the hyaluronic acid biosynthesis pathway   

 Enzyme name  Reaction catalyzed 

 Phosphoglucose isomerase  G6P → F6P 
 Glutamine-fructose-6-phosphate transaminase  F6P + GLN → GlcN6P + GLU 
 Glucosamine-phosphate  N -acetyltransferase  GlcN6P + Ac-CoA → GlcNAc-6P + CoA 
 Phosphoacetyl glucosamine mutase  GlcNAc-6P → GlcNAc-1P 
 UDP- N -acetylglucosamine pyrophosphorylase  GlcNAc-1P + UTP → UDP-GlcNAc + PP 
 Phosphoglucomutase  G6P → G1P 
 UDP-glucose pyrophosphorylase  G1P + UTP → UDP-G + PP 
 UDP-glucose dehydrogenase  UDP-G + 2 NAD +→ UDP-GlcUA + 2 NADH 
 Hyaluronic acid synthase  UDP-GlcNAc + UDP-GlcUA → hyaluronic 

acid 
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(Pelletier et al.  2012 ; Guillaumond et al.  2013 ) and by  PAK1 ( P21  protein-activated 
kinase) (Gururaj et al.  2004 ); (4)  UGP2  (UDP-glucose pyrophosphorylase) is up- 
regulated by hypoxia (Pescador et al.  2010 ); (5)  UGDH  (UDP-glucose dehydroge-
nase) is positively regulated by  TGFβ  but negatively regulated by hypoxia, which is 
different from all the other genes discussed above; and (6) the hyaluronic acid syn-
thases can be regulated by various growth factors (Tammi et al.  2011a ) such as 
 PDGF ,  KGF  (keratinocyte growth factor),  FGF2 ,  EGF ,  TGFβ ,  IL1β  and  TNFα . In 
addition, the level of UDP-GlcNAc has been found to control the expression of 
 HAS2 (Tammi et al.  2011a ). The above information suggests that  the high possibility 
of synthesis of hyaluronic acid when the cell contains ample G6P under hypoxic 
conditions in a   TGFβ  -containing microenvironment .  

6.1.2     Functions of Hyaluronic Acid 

 The most relevant function of hyaluronic acid, in the current context, is its role in 
ECM, which also consists of collagen fi brils and numerous linker proteins. The 
other physiological functions of hyaluronic acid include: (1) its role as a major com-
ponent of human skin, where it mainly serves as part of the tissue-repair machinery 
(Jiang et al.  2007 ); (2) the formation of a coat around each cell in articular cartilage 
(Holmes et al.  1988 ); and (3) a possible role in the development of brain as a previ-
ous study suggested (Margolis et al.  1975 ). 

 Studies in the past decade have discovered that a number of key interaction part-
ners of hyaluronic acid have essential functional roles in tissue development and 
immunity. Among these partners,  CD44  and  RHAMM  (hyaluronic acid-mediated 
motility receptor) are the most signifi cant ones since hyaluronic acid mediates many 
of its functions through interactions with these two cell-surface receptors .  In addi-
tion,  CD44  has long been known to be closely associated with cancer development 
(Toole  2009 ). Other partners include  EMMPRIN  (extracellular matrix metallopro-
teinase inducer),  LYVE1  (lymphatic vessel endothelial hyaluronic acid receptor 1) 
and  HARE  (hyaluronic acid receptor for endocytosis), all being cell-surface recep-
tors. Their detailed functions are as follows. 

 The wild-type  CD44  has three functional domains, an ectodomain, a transmem-
brane domain and a cytoplasmic domain, where the ectodomain binds hyaluronic 
acid and the cytoplasmic domain can bind with numerous regulatory molecules 
such as  NFκB  and  RAS  (Isacke  1994 ; Okamoto et al.  1999 ; Thorne et al.  2004 ; 
Misra et al.  2011 ). The majority of these regulatory molecules are involved in 
changing the key functional states of the host cell, such as proliferation, survival, 
differentiation, migration, production of cytokines and chemokines, and angiogen-
esis.  CD44 -hyaluronic acid interactions have been found to play critical roles in all 
these processes (Ahrens et al.  2001 ; Alaniz et al.  2002 ; Bourguignon et al.  2006 ; 
Bourguignon et al.  2009 ; Bourguignon et al.  2011 ; Park et al.  2012 ). 

  CD44  has 32 known functional splicing variants (Roca et al.  1998 ; Brown et al. 
 2011 ), suggesting the diversity of its function. The transcription of  CD44  is  regulated 
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in part by β-catenin and the  WNT  signaling pathway (Zeilstra et al.  2008 ; Ishimoto 
et al.  2013 ), and the functional state of the protein depends largely on its binding 
with hyaluronic acid (Toole  2009 ). Numerous post-translational modifi cations add 
another layer of the functional diversity to this protein, including its well- studied 
sialofucosylated glycoform,  HCELL  (Jacobs and Sackstein  2011 ), which serves as 
P-, L- and E-selectin ligands and fi brin receptors, where selectins are involved in 
chronic and acute infl ammation, as well as in constitutive lymphocyte homing. 

  EMMPRIN  (also known as  CD147 ) is a cell-surface glycoprotein, and its pri-
mary function is an inducer of metalloproteinase (Guo et al.  2000 ; Attia et al.  2011 ). 
In addition, the protein can regulate, or at least mediate, a variety of cellular pro-
cesses such as mono-carboxylate transporters and responsiveness of lymphocytes. 
It can bind with immunosuppressants such as cyclophilins A and B ( CYCA  and 
 CYCB ) and with integrins, which mediate the attachment of the host cell to the 
ECM. The protein interacts with hyaluronic acid indirectly through interactions 
with  CD44  or  LYVE1 . Interactions between  CD44  and  EMMPRIN  have been found 
to be a key player in the multi-drug resistance pathway (Toole and Slomiany  2008 ; 
Slomiany et al.  2009 ). Consequently, cancers harboring this molecular interaction 
tend to have poor clinical outcomes due to the cell survival capability induced by the 
interactions. 

  RHAMM  (also known as  CD168 ) functions both extra- and intra-cellularly. For 
its intracellular functions,  RHAMM  interacts with numerous signaling proteins such 
as tyrosine kinases (e.g., focal adhesion kinase or mitogen-induced protein kinase), 
 NFκB ,  RAS ,  ERK1  (extracellular regulated protein kinase 1) and actin cytoskeletal 
proteins. One key function relevant to the topic here is its involvement in the regula-
tion of mitosis through interactions with  BRCA1  and  BARD1  ( BRCA1 -associated 
ring domain protein 1). For its extracellular functions, the protein binds with  CD44  
on the cell surface. When the two proteins form a complex with hyaluronic acid, a 
variety of cellular processes will be activated, including the release of growth fac-
tors such as  PDGFBB ,  TGFβ2  and  FGF2  (Hamilton et al.  2007 ; Nikitovic et al. 
 2013 ), which (1) enhances the deposition of the hyaluronic acid chains to the ECM 
(Hall et al.  1994 ), (2) increases the locomotion in  RAS -transformed cells (Hall et al. 
 1994 ; Hall and Turley  1995 ), (3) provides hyaluronic acid-mediated mobility 
(Hamilton et al.  2007 ; Nikitovic et al.  2013 ), and (4) sustains high basal motility 
when further bound with  ERK1-2  (mitogen-activated protein kinase) (Zhang et al. 
 1998 ; Lokeshwar and Rubinowicz  1999 ; Tolg et al.  2006 ). 

 The physiological function of  LYVE1  (also known as  XLKD1  (extracellular link 
domain containing 1)) is poorly understood, but its increased expression has been 
observed to be associated with lymph-node invasion. In addition, the protein exhib-
its expression patterns strongly correlated with those of  CD44  and  VEGFR3  (vascu-
lar endothelial growth factor receptor 3) during lymph-node invasion. While the 
detailed biochemical functions of  LYVE1  are not known, a large number of gene- 
expression datasets containing this protein are publicly available. With this informa-
tion readily available, it is possible to conduct in-depth statistical analyses of its 
expression patterns and associations with other genes, potentially revealing causal 
relationships between this gene and other biological processes, and hence gaining 
an improved understanding of its functions. 
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 Similar to  LYVE1,  very little is known about the function of  HARE . A recent 
study found that  HARE  can activate  NFκB -mediated gene expressions in response to 
low molecular-weight hyaluronic acid fragments (in the range of 40–400 kDa) 
(Pandey et al.  2013 ). A hypothesis was formulated based on this observation regard-
ing its possible role in monitoring the homeostasis of ECM turnover. Again, this 
could be another case where computational data mining and statistical inference can 
lead to important new information about its functional roles.  

6.1.3     Hyaluronic Acid Fragments as Signaling Molecules 

 The realization that hyaluronic acids have signaling roles in reporting tissue injury 
marks a major breakthrough in our understanding of the physiological functions of 
this glycosaminoglycan and the signifi cant pathophysiological implications to can-
cer research. Initially this knowledge came from studies on tissue injury and repair 
(Noble  2002 ). When assaulted, an injured tissue releases ECM fragments, among 
which those derived from hyaluronic acid serve as signals for repairing the injured 
tissue. Most interestingly, hyaluronic acid fragments of different sizes have been 
found to serve as signals for different purposes, including the induction of infl am-
mation, anti-apoptosis, cell survival, cell-cycle activation, cell proliferation, activa-
tion of angiogenesis and cell motility, all related to injury response, maintenance of 
tissue integrity, tissue repair and remodeling (Jiang et al.  2007 ). 

 The identifi ed functions of these hyaluronic acid fragments include:(1) frag-
ments consisting of four disaccharides typically serve as signals for suppression of 
apoptosis, up-regulation of  MMPs ,  HSF1  (heat shock factor-1) and  FASL  (a member 
of the  TNF  family); (2) fragments of four to six disaccharides signal for induction 
of cytokine synthesis; (3) six disaccharides function as signals for activation of 
 HAS2 , nitric oxide and  MMP s; (4) 10-disaccharide fragments serve as signals for 
displacement of proteoglycans from cell surfaces; (5) fragments of 12 disaccharides 
function as signals for up-regulation of  PTEN  and endothelial cell differentiation; 
(6) 8–32 disaccharides serve as signals for angiogenesis stimulation; (7) 10–40 
disaccharides, overlapping with the aforementioned, signal for induction of  CD44  
cleavage and promotion of tumor migration; (8) ~1,000 disaccharides function as 
signals for production of infl ammatory chemokines and stimulation of  PAI1  
 (plasminogen activator inhibitor) and  UPA  (urokinase); and (9) fragments of 
 1,000–5,000 disaccharides tend to signal for immune suppression and suppression 
of hyaluronic acid synthesis, i.e., providing a negative feedback for its synthesis 
(Stern et al.  2006 ; Duan and Kasper  2011 ). 

 One can see from this list that some hyaluronic acid fragments each may serve as 
signals for multiple biological functions, suggesting that they require additional 
partners to carry out their specifi c functions. Overall, these hyaluronic acid-derived 
signaling molecules promote cell survival, proliferation, angiogenesis and mobility, 
plus pro- or anti-immune responses depending upon their sizes. Hence they gener-
ate a microenvironment having the majority, if not all, of the essential ingredients 
needed for cancer (tissue) development, as discussed in the following section. 
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Therefore, these fragments become a high risk factor for cancer development if 
persistently present. 

 It is noteworthy that some of these signals interact with immune cells. For exam-
ple, some hyaluronic acid fragments can induce the maturation of dendritic cells 
and the activation of allogenetic and antigen-specifi c T-cells (Jiang et al.  2007 , 
 2011 ). Other fragments have been found to be capable of stimulating the develop-
ment of the CD34+ progenitor cells into mature eosinophil cells (Hamann et al. 
 1995 ). There are also reports that these fragments can stimulate the production and 
release of cytokines such as  IL1β ,  TNFα  and  IL8  from the pericellular fi broblasts 
(Kobayashi and Terao  1997 ; Wilkinson et al.  2004 ), and some other fragments can 
induce proliferation of endothelial cells (West et al.  1985 ; Slevin et al.  1998 ). Many 
of these functional capabilities play key roles in cancer development, particularly in 
the early stages and during the metastatic transformation (see Chap.   10     for details). 

 Overall, evolution has selected hyaluronic acid fragments as signaling cues for 
maintaining tissue integrity and homeostasis, their release triggering the tissue repair 
system. Cancer or cancer-forming cells seem have learned to take full advantage of 
this capability, allowing them to survive the stress discussed in Chap.   5    , through cell 
proliferation facilitated by hyaluronic acid synthesis, export and degradation.   

6.2       Hyaluronic Acid: Its Links with Cancer 
Initiation and Development 

 Knowing the functional roles of hyaluronic acid and its fragments in response to 
tissue injury, specifi cally their roles in the induction of infl ammation, anti- apoptosis, 
cell survival, proliferation, motility and angiogenesis, it is only natural to ask:  What 
roles do these functional capabilities have during cancer development, particularly 
in its early stage ? 

 Multiple roles by hyaluronic acid and fragments derived therefrom have been 
implicated in cancer development across different cancer types, particularly related 
to cancer metastasis (Hall and Turley  1995 ; Savani et al.  2001 ; Yoshihara et al. 
 2005 ; Bharadwaj et al.  2007 ,  2009 ; Ouhtit et al.  2007 ; Naor et al.  2008 ; Pandey 
et al.  2013 ). Our own study suggests that  hyaluronic acid may have active roles 
throughout the entire process of cancer development and particularly in cancer 
 initiation . The following summarizes the functions known to be exhibited by these 
molecules during tumorigenesis, which serves as a starting point for developing a 
hyaluronic acid-facilitated cancer initiation model in Sect.  6.3 . 

6.2.1     Infl ammatory Signaling 

 Chronic infl ammation is known to be closely related to cancer initiation and early 
development (Lu et al.  2006 ; Rakoff-Nahoum  2006 ; Colotta et al.  2009 ), as dis-
cussed in the earlier chapters. The current understanding is that cancer-inducing 
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microenvironments are largely orchestrated by infl ammatory cells, which are an 
integral part of a neoplastic process as they foster cell proliferation, survival and 
migration (Coussens and Werb  2002 ). Low molecular-weight hyaluronic acid frag-
ments have been found to promote infl ammation by up-regulating the expression of 
a number of pro-infl ammatory genes such as  MIP1α  (macrophage infl ammatory 
protein 1α),  MIP1β ,  KC  (keratinocyte chemo-attractant),  MCP1  (macrophage 
chemo-attractant protein1),  IFIT10  (interferon induced protein 10),  TNFα  and a few 
other cytokines, and by down-regulating the anti-infl ammatory gene  A2AR  (adenos-
ine A2a receptor) (Collins et al.  2011 ; Black et al.  2013 ).  

6.2.2     Cell Survival Signaling 

 A key characteristic of cancer cells is that they can survive conditions that should 
lead to apoptosis of normal cells. Interactions between hyaluronic acid and  CD44  
are known to have key roles in this distinct capability as they have been widely 
observed to be associated with the activation of survival pathways in both cancer 
and normal cells under stressful conditions. While detailed discussions on survival 
pathways are given in Chap.   7    , a model of how hyaluronic acid and its interaction 
partners can activate survival pathways is introduced here. 

 The  PI3K/AKT  signaling pathway is at the core of a number of survival path-
ways. A recent study has found that constitutive synthesis and export of hyaluronic 
acid can activate a  PI3K/AKT -mediated survival pathway (Ghatak et al.  2002 ). The 
mechanism for this activation involves the binding of hyaluronic acid to  CD44 , 
leading to the activation of  ERBB2  (also known as  HER2 ), a receptor tyrosine kinase 
that can activate the  PI3K/AKT  signaling pathway. Specifi cally, an activated  PI3K  
can phosphorylate  AKT,  which alters its structural conformation to enable the pro-
tein to be activated by the  PDK1/PRK  (phosphoinositide-dependent kinase 1 and 
phosphoribulokinase) complex (Datta et al.  1999 ). Then the active form of  PI3K/
AKT  activates β-catenin, a cell–cell adhesion regulator that, in turn, up-regulates 
and activates  COX2  (cyclooxygenase-2), an enzyme that has been found to inhibit 
apoptosis in multiple cancers (Ding et al.  2000 ; Nzeako et al.  2002 ; Basu et al. 
 2004 ; Kern et al.  2006 ).  COX2  leads to the production of  PGE2  (prostaglandin E2), 
that activates the  RAS-MAPK-ERK  pathway via  EP4  (prostaglandin E receptor 4). 
This activated pathway will then up-regulate the expression of the anti-apoptotic 
protein  BCL2  via  CREB  ( CAMP -response element-binding protein) (May  2009 ). 

 Hyaluronic acid can also activate cell-survival pathways in a  CD44 -independent 
manner. For example, the molecule can lead to the retention and concentration of 
 IL6  near its site of secretion (Vincent et al.  2001b ), an event that promotes cell sur-
vival through the activation of  STAT3  (signal transducer and activator of transcrip-
tion 3), this being an essential step for cell survival for a number of cancer 
types (Calame  2008 ; Diehl et al.  2008 ; Avery et al.  2010 ; Lin et al.  2011 ). A study 
has recently reported that an activated  STAT3  can enhance cell survival through 
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 up- regulation of  OX40  (also known as  CD134 ), a member of the  TNFR  superfamily, 
and  BCL2 , as well as down-regulation of  FASL  and  BAD  ( BCL2 -associated agonist 
of cell death), a pro-apoptotic member of the  BCL2  family (Malemud  2013 ).  

6.2.3     Mediating the Cell Cycle 

 Tight coupling between cell-cycle progression and cell polarity is crucial for cell 
division (Budirahardja and Gonczy  2009 ; Noatynska et al.  2013 ). The main regula-
tors, the cyclins and  CDKs , act on both cell-cycle progression and development of 
cell polarity (Drubin and Nelson  1996 ). While this relationship was established in 
the 1990s, only recently were the main targets of cyclins and  CDKs  identifi ed, these 
being the  RHO GTPases  such as  CDC42  (Croft and Olson  2006 ; Yoshida and 
Pellman  2008 ). Interestingly, previous studies have shown that hyaluronic acid-
 CD44    interactions can activate various  GTPases  such as  RHOA  ( RAS  homolog gene 
A),  RAC1  and  CDC42  (also see earlier discussion on hyaluronic acid synthesis 
pathway), as well as cytoskeletal functions in cancer (Bourguignon et al.  2005 ; 
Bourguignon  2008 ), strongly suggesting the possibility that hyaluronic acid can 
modulate the cell cycle. A recent study has shown that the activation of hyaluroni-
dase  HYAL1  increases the cell-doubling rate (Bharadwaj et al.  2009 ), hence provid-
ing indirect evidence to the above speculation.  

6.2.4     Insensitivity to Anti-growth Signals 

 A hallmark of cancer is that the transformed cells become insensitive to anti-growth 
signals (Hanahan and Weinberg  2000 ,  2011 ), as introduced in Chap.   1    . Cancer cells 
have evolved various mechanisms to achieve this, one being discussed here. The 
anti-growth factor  TGFβ  is known to be activated by different cellular stressors such 
as infl ammation, destruction of the ECM, high ROS level, tissue injury and high 
intracellular acidity. The activated  TGFβ  inhibits a dividing cell by blocking its 
advancement through the G 1  phase of the cell cycle. However, this anti-growth role 
by  TGFβ  can be converted to a pro-growth role as has been widely observed in 
advanced cancers (Tang et al.  2003 ). It has been shown that the concentration of 
hyaluronic acid determines the anti- or pro-growth function of  TGFβ  (Porsch  2013 ). 
It is noteworthy that while the anti-growth role of  TGFβ1  is  CD44  independent, its 
switch to a pro-growth role is mediated by  CD44  in conjunction with an increased 
concentration of hyaluronic acid (Meran et al.  2011 ). We speculate here that the 
activation of  CD44  is also induced by the increased concentration of hyaluronic 
acid. Overall, upon binding  TGFβ , the receptor  TGFR  up-regulates  EGF , which 
binds to and activates its cognate receptor,  EGFR,  hence promoting cell growth. An 
environment rich in hyaluronic acid synthesized by  HAS2 , which tends to be longer 
than those synthesized by other synthases, has been found to promote binding 
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between  CD44  and  EGFR.  The formation of this complex leads to the activation of 
the  MEK  ( MAPK/ERK1-2  kinases) and then the activation of  ERK1-2  (Meran et al. 
 2011 ), which are known to be cancer promoting (Hamilton et al.  2007 ).  

6.2.5     Cell Proliferation and Anchorage-Independent Growth 

 It has been established that hyaluronic acid and a versican-rich ECM are required 
for cell proliferation, at least in smooth muscle cells (Evanko et al.  1999 ). 
Furthermore, it has been observed that an increased hyaluronic acid concentration 
can lead to cell proliferation through hyaluronic acid- CD44  interactions (Hamann 
et al.  1995 ; Ghatak et al.  2002 ). While the detailed mechanism of how hyaluronic 
acid- CD44  interactions promote cell proliferation are yet to be fully understood, a 
number of studies have revealed how such interactions may be associated with 
proliferation in specifi c cancers. For example, it was found that hyaluronic acid -
CD44  interactions with  PRKCE  (protein kinase C epsilon type) promote oncogenic 
signaling via  NANOG  (a transcription factor critical to self-renewal of stem cells) 
and the production of microRNA-21, leading to down-regulation of the tumor sup-
pressor protein  PDCD4  in breast cancer (Bourguignon et al.  2009 ). In another 
study, increased hyaluronic acid production was found to promote coupling 
between  CD44  and  EGFR , which will lead to  CD44 -dependent activation of 
 EGFR -mediated growth signaling in head and neck cancers (Wang and Bourguignon 
 2011 ). Figure  6.2  shows a model of how hyaluronic acid may be linked to cell 
proliferation.

   Another unique role of hyaluronic acid in cancer growth is that it facilitates 
anchorage-independent growth. In normal human tissues, cells require a surface on 
which to fl atten and divide, that being the basement membrane. This process, termed 
the  anchorage dependence of growth , is a mechanism used to prevent persistent and 
unregulated cell division. This is executed by a requirement of having companion 
ECM signals when signaled to grow. Studies have shown that over-production of 
hyaluronic acid, in conjunction with over-expression of  EMMPRIN , allows cell 
growth on soft agar or even in suspension (Marieb et al.  2004 ), although the detailed 
mechanism remains to be fully understood. 

 A related capability gained by cancer cells is their loss of contact inhibition, 
another mechanism encoded in human cells for preventing over-growth during 
normal tissue development and remodeling. All cancer cells appear to have lost 
this preventive machinery or have gained a capability to override the processes 
leading to contact inhibition. The over-production of  HAS2- synthesized hyal-
uronic acid has been found to allow cells to escape from the contact-inhibition 
constraint through formation of a large hyaluronic acid matrix regulated by  PI3K  
(Itano et al.  2002 ).  
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6.2.6     Tumor Angiogenesis 

 As discussed in Sect.  6.1 , hyaluronic acids can provide signals for angiogenesis 
 during tissue repair. The activation of the angiogenesis process requires a high con-
centration of  HIF1α , in addition to hyaluronic acids (Pugh and Ratcliffe  2003 ; Stern 
et al.  2006 ; Toole  2009 ), both of which are available in a typical neoplastic environ-
ment. The actual formation of tumor blood vessels requires  MMPs  to partially 
degrade the basement membrane, thus making connections with existing blood ves-
sels possible. The  MMPs  are also available in the environment under discussion (see 
below).  

6.2.7     Invasiveness, EMT and Metastasis 

 Tissue invasion typically refers to cell growth across the basement membrane (a 
type of ECM), which underlies epithelial cells and surrounds blood vessels. A key 
step in tumor invasion, to be detailed in Chap.   10    , is ECM proteolysis by  MMPs . 

  Fig. 6.2    A model for linkages between hyaluronic acid- CD44  interactions and cell proliferation 
(adapted from (Toole  2009 ))       
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It has been well established that low molecular-weight hyaluronic acid fragments 
can induce  MMP3  (Fieber et al.  2004 ). The current understanding is that ECM pro-
teolysis is regulated by the balance between the concentrations of  MMPs  and their 
inhibitors  TIMPs  (tissue inhibitors of metalloproteinase) (Maeso et al.  2007 ), i.e., a 
higher  MMP  concentration generally indicates higher invasion rates. This relation-
ship can explain the observation that interactions between  HAS2 -synthesized hyal-
uronic acid and  CD44  are important in determining the level of invasiveness of a 
cancer (Zoltan-Jones et al.  2003 ), since  HAS2  is known to be a suppressor of  TIMP  
expression (Bernert et al.  2011 ), and hence its activation can shift the balance 
towards a higher  MMP  concentration. 

 An essential step in tumor metastasis is the activation of the EMT (epithelial- 
mesenchymal transition) pathway. Recent studies have found that hyaluronic acid 
has a central role in EMT activation. Specifi cally, the accumulation of extracellular 
low molecular-weight hyaluronic acids can create cyclic mechanical stretches when 
the innate immune adaptor protein  MYD88  (myeloid differentiation primary 
response gene) is present, which can induce the activation of EMT. Mechanistically, 
 WISP1  ( WNT -inducible signaling protein 1) is signifi cantly up-regulated in hyal-
uronic acid-stretched cells in a  MYD88 -dependent fashion, while inhibition of 
 WISP1  has been found to prevent the activation of EMT in these cells (Heise et al. 
 2011 ). This represents the best explanation to date that mechanical forces, created 
by the increased accumulation of hyaluronic acids, can lead to the activation of 
EMT via the innate immune system. 

 Hyaluronic acid has also been found to have other important roles during the 
metastatic processes such as intravasation, circulation in blood, extravasation of the 
blood vessels into new locations and reactivation from dormancy as the colonizing 
cells become established in the new location (s). Detailed discussions of these issues 
are given in Chaps.   10     and   11    .  

6.2.8     Evasion of Immune Detection 

 There is a close relationship between hyaluronic acids and immune signaling 
(Taylor et al.  2004 ; Scheibner et al.  2006 ; Jiang et al.  2007 ; Shirali and Goldstein 
 2008 ; Jiang et al.  2011 ; Erickson and Stern  2012 ), as discussed in Sect.  6.1 . 
Specifi cally, hyaluronic acids can serve as endogenous activators of the innate 
immune system. For example, hyaluronic acid fragments can activate dendritic cells 
and prime T-cell alloimmunity via a  TLR4  (toll-like receptor 4)/ TIRAP -dependent 
pathway (Shirali and Goldstein  2008 ). Furthermore,  CD44  is able to modulate these 
immune responses through augmenting the regulatory T-cell functions and enhanc-
ing the expression of the negative regulators of  TLR -signaling (Shirali and Goldstein 
 2008 ). Knowing the intimate relationship between immune signaling and hyal-
uronic acid, it is reasonable to speculate that cancer cells may have evolved ways to 
alter the interactions between hyaluronic acid and its key receptors such as  CD44  to 
avoid detection by the immune system. 
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 A recent study on the evolution of hyaluronic acid and associated genes suggests 
that the original function of the molecule was to provide a protective shield of cells 
for two situations where survival is vitally important: (1) in the cumulus mass that 
surrounds the ovum, and (2) in the stem cell niche (Salustri et al.  1999 ; Haylock and 
Nilsson  2006 ; Schraufstatter et al.  2010 ; Csoka and Stern  2013 ). For these situa-
tions, it is necessary that hyaluronic acid provide a shield for the cells to avoid 
detection by surveillance machineries. More generally, hyaluronic acids,  particularly 
in their high molecular weight forms, have been shown to be intrinsically immuno-
suppressive (McBride and Bard  1979 ; Delmage et al.  1986 ). For example, hyal-
uronic acid suppresses septic responses to lipopolysaccharides and acts to maintain 
immune tolerance. In addition, it can induce the production of immunosuppressive 
macrophages. Possibly through repeated trial-and-error for survival, cancer cells 
have evidently adapted to create favorable environmental conditions that promote 
the production of hyaluronic acids of the right sizes and take advantage of their 
immunosuppressive capability. 

 Knowing that hyaluronic acids of different sizes serve as signaling molecules for 
different aspects of tissue repair, one can hypothesize that upon tissue injury the 
hyaluronic acid fragments must have the “appropriate” size distribution to facilitate 
tissue repair being done in a  coordinated  manner, a response that has presumably 
been perfected through millions of years of evolution. In the following section, we 
present how cancer cells have adapted to take advantage of this powerful signaling 
capability by creating an environment that promotes the synthesis, export and deg-
radation of hyaluronic acid to mimic the hyaluronic acid-based signals for their 
survival. It is worth noting that there is one fundamental difference between injury- 
induced  versus  neoplastic cell-induced hyaluronic acid-based signaling, as pre-
sented in Sect.  6.3 . That is, the tissue-repair signaling induced by persistent hypoxia 
is done in an  uncoordinated  manner, which may be the key reason for needing 
genomic mutations to assist these cells’ survival as discussed in Chap.   4    .  [N.B. As a 
point of clarifi cation, it should be stressed that the cells continue evolving with 
natural selection, favoring those that can best survive and proliferate. Many of 
course, probably the vast majority, fail to evolve appropriately and are destroyed by 
the normal defenses of the body.]    

6.3        A Model for Hyaluronic Acid-Facilitated 
Cancer Initiation and Development 

 A recent study reported that elevated cellular glucose concentrations can lead to the 
production of hyaluronic acid (Yevdokimova  2006 ). In addition, other investiga-
tions have shown that hyaluronic acid processing and interaction with the host cells 
can lead to proliferation (Kosaki et al.  1999 ; Vincent et al.  2001a ). From these 
observations and discussions in the above two sections, one can see that hyaluronic 
acid can be synthesized from glucose metabolites, leading to the generation of 
signals needed for tissue repair. By integrating all this information, one can 
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hypothesize that  the accumulation of glucose metabolites in infl ammation-induced 
hypoxic cells will lead to the production of hyaluronic acid, which ultimately 
 provides an exit for the accumulated glucose metabolites out of the cells through 
cell division . 

 A model, based on extensive analyses of transcriptomic data of multiple cancer 
types, is now presented in support of this hypothesis. Through this model, the fol-
lowing will be demonstrated:(1) how the accumulation of glucose metabolites in 
infl ammation-induced hypoxic cells can trigger the activation of the synthesis, 
export and degradation of hyaluronic acid; (2) how the fragments of this molecule 
lead to cell proliferation, thus providing an exit for the accumulated glucose metab-
olites and a (temporary) relief of the pressure forced on the relevant cells; and (3) 
how this process may continue as long as the hypoxic condition persists; some 
components of the model may ultimately be replaced by genetic mutations to 
accomplish the same functions but with better sustainability and possibly energy 
effi ciency. While no statistical signifi cance analysis is presented of the model 
against the available  omic  data, the model is nonetheless highly statistically signifi -
cant, reaching a high level of consistence with the available transcriptomic data. 

6.3.1     Activation of Synthesis, Export and Degradation 
of Hyaluronic Acid 

 One may recall from Chap.   5     that chronic hypoxia leads to a switch in cellular 
energy metabolism from aerobic respiration to (anaerobic) glycolysis, ultimately 
resulting in the accumulation of glucose metabolites. From the earlier discussion in 
this chapter, hypoxia, in conjunction with a high concentration of cellular G6P and 
 TGFβ  in the microenvironment, can lead to the activation of seven out of the nine 
enzymes in the hyaluronic acid synthetic pathway, namely  GPI ,  GFPT2 ,  GNPNAT1 , 
 PGM3  and  UAP1  in the upper part of the pathway and  PGM2  and  UGP2  in the 
lower part of the pathway (Fig.  6.1 ). All the three triggering conditions should be 
satisfi ed under infl ammation-induced hypoxic conditions, as discussed in Sect.  6.1 . 
For the two other genes, both  UGDH  and  HAS  can be up-regulated by  TGFβ  if its 
active form is available ,  which should be the case in chronic infl ammatory sites 
(Clarkin et al.  2011 ; Tammi et al.  2011b ). 

 Gene expression data have been examined on the same set of colon precancerous 
adenoma and adenocarcinoma samples used for Fig.   5.4     of Chap.   5    , with a focus on 
the nine enzyme-encoding genes involved in hyaluronic acid synthesis, along with 
a number of related genes, namely  UAP1L1 ( a homolog of  UAP1 ), three hyaluroni-
dase genes  HYAL1-3,  the hyaluronic acid exporter gene  CFTR  (cystic fi brosis trans-
membrane conductance regulator) (Schulz et al.  2010 ), two anti-apoptosis genes 
( BCL2A1  and  BCL2L1 ), one heat shock gene ( HSF1 ),  TGFβ  and  MYC  (v-myc 
avian myelocytomatosis viral oncogene homolog). Figure  6.3  shows the expression 
data of these genes except for  UGP2 , which is missing in the gene-expression data-
sets used here.
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   From the fi gure, one can see the following: all genes in the pathway of Fig.  6.1  
are up-regulated in adenomas except for  UAP1  and  UGDH , which are consistently 
down-regulated across all the samples. Interestingly for the down-regulated  UAP1  
(EC2.7.7.23), its homolog  UAP1L1  is consistently up-regulated across all the 
 adenocarcinoma samples, whose function is only partially determined to be in the 
EC2.7.7 enzyme class with the last digit of the EC (enzyme classifi cation) class 
undetermined. Based on a KEGG pathway analysis, GlcNAc-1P, the substrate of 
 UAP1 , can only be metabolized to UDP-GlcNAc by an EC2.7.7.23 enzyme without 
other exits. Hence, it is reasonable to posit that  UAP1L1  is used to make this conver-
sion. Regarding the other down-regulated enzyme,  UGDH,  the gene has 13 known 
splicing variants. Interestingly multiple splicing variants are up-regulated across the 
adenocarcinoma samples, raising the possibility that some of these splicing variants 
may have the same enzymatic function for the following reason: the rate-limiting 

  Fig. 6.3    Expression data of 
the hyaluronic acid synthetic 
pathway and related genes. 
The six columns represent 
the tissue types, going from 
 left to right : (1) tissues of 
infl ammatory bowel disease, 
(2) colon adenoma, and (3–6) 
colon adenocarcinoma stages 
1–4. The 18 rows represent 
18 relevant genes. The data 
shown here strongly suggest 
that hyaluronic acid is being 
produced and degraded into 
fragments       

 

6.3  A Model for Hyaluronic Acid-Facilitated Cancer Initiation and Development



164

gene ( GFPT2 ) of hyaluronic acid synthesis pathway, the hyaluronic acid exporter 
gene  CFTR  and multiple hyaluronidase genes ( HAYL1-3 ) are all up-regulated. 
Interestingly,  TGFβ  is up-regulated in the precancerous stage, and its expression 
then returns to the background level once the downstream genes of hyaluronic acid 
synthesis such as  HSF1  and  MYC  are up-regulated. This indicates that once the tis-
sue becomes cancerous, cell proliferation may be driven by factors other than 
hypoxia-induced hyaluronic acid production and fragmentation, such as over- 
expression of certain proto-oncogenes. Clearly further analyses are needed to infer 
which oncogenes or other genes may have replaced the roles played by hyaluronic 
acid fragments to drive the tumorigenesis process. 

 The observation of up-regulated  HAYL1-3  strongly suggests that synthesized 
hyaluronic acid is exported and degraded into fragments, some of which, by chance, 
will be of the same sizes of those required to be tissue-repair related signals, as 
discussed in Sect.  6.2 . Since all sizes of short hyaluronic acids serve as signals for 
infl ammation induction, anti-apoptosis, cell survival, cell proliferation or angiogen-
esis, it is reasonable to posit that cell proliferation will be initiated. In addition, it is 
reasonable to further posit that cells that did not produce the necessary combina-
tions of signals for tissue repair may be destroyed. That is, the natural selection has 
selected the sub-population of cells that produce the right combinations of signals. 

 Highly similar gene-expression patterns to those in Fig.  6.3  are observed in vari-
ous other precancerous and early cancer types, strongly suggesting that the driver 
model being developed here is generally applicable to other cancers, at least solid 
cancers. One interesting observation is that while  ABCC5  has been found to encode 
the main exporter for hyaluronic acids in fi broblasts cells (Schulz et al.  2007 ), epi-
thelial cells tend to use  CFTR  (Schulz et al.  2010 ), which is indeed up-regulated as 
shown in Fig.  6.3 .  

6.3.2     Hyaluronic Acid-Facilitated Tissue Development 

 The exported hyaluronic acid is degraded by hyaluronidases or through partial de- 
polymerization by ROS (Ågren et al.  1997 ). Multiple factors can activate different 
hyaluronidases. For example, infl ammation and necrosis-related signals such as 
 TNFα  and  IL1β  can activate  HYAL2  (Monzón et al.  2008 ), which should be avail-
able under the conditions being considered here.  HYAL1  can be up-regulated by the 
binding of  EGR1  (early growth response protein 1) to the promoter region of the 
gene. The same study also found that while the binding of  NFκB  is not necessary to 
activate the gene, it enhances its expression. 

 A number of cell proliferation signaling pathways can be activated by hyaluronic 
acids, including genes in the  ERK1-2  pathway, namely  RAF1 ,  MAP  (mitogen- 
activated protein),  ERK1  (Slevin et al.  1998 ) and heat-shock receptor binding pro-
tein  HSF1  (Xu et al.  2002 ). The link between hyaluronic acids and  HSF1  is 
particularly interesting since  HSF1  is known to orchestrate a large network of core 
cellular functions including proliferation, survival, protein synthesis and glucose 
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metabolism (Dai et al.  2007 ) and is up-regulated in adenocarcinoma as shown in 
Fig.  6.3 . Figure  6.4  shows the genes that are regulated by  HSF1 . Clearly multiple 
genes involved in cell proliferation such as cell cycle control, transcription and pro-
tein synthesis are up-regulated by this protein. From the above discussion, it is rea-
sonable to postulate that growth signals and various regulatory signals are made 
available to the evolving cells under consideration. We will now examine how these 
signals are related to the development of cancer.

   As discussed in Chap.   4    , growth factors alone are not suffi cient to initiate cell 
proliferation in a tissue environment as a number of conditions must be met. For a 
cell to divide or a tissue to grow via hyperplasia, at least three classes of extracel-
lular signals are needed: (1)  mitogens  such as  PDGF  or  EGF  that stimulate cell 
division by activating intracellular growth signaling proteins such as  RAS  and the 
 MAPK  cascade and triggering cell-cycle progression; (2)  growth factors  such as 
 PI3K  and  PDGF  that stimulate cells to increase their mass by up-regulating genes 
involved in cell metabolism and macromolecular syntheses, typically through up- 
regulation of the  MYC  gene  [N.B. growth factors should not be confused with 
 mitogens although some genes may serve in both roles] ; and (3)  survival factors  
such as the anti-apoptotic members of the  BCL2  family, which inhibit apoptosis 
during tissue development (Alberts et al.  2002 ). Certain growth signals such as  FGF  
and  PDGF  are communicated into the cells through ECM - cell adhesions (also 
called  focal adhesions ). Specifi cally, such signals alter the physical properties of an 

  Fig. 6.4     HSF1  and the gene network it regulates (adapted from (Mendillo et al.  2012 ))       
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ECM, which leads to changes in actin cytoskeletal structures through interactions 
between ECM proteins such as laminins and fi bronectins and integrins on the cell 
surface, and to activation of the focal adhesion kinase ( FAK ) among other protein 
kinases, leading to signaling of cell growth. 

 Recall from Chap.   4     that the majority of the genomic mutations observed in the 
precancerous stage of colon adenoma predominantly involves genes relevant to 
ECM modifi cations and cell morphogenesis. This suggests that, unlike normal tis-
sue development, the process of tumorigenesis, as triggered by the signals discussed 
above, may not have all of the needed signals or else lack suffi cient quantities for 
cancer tissue to develop based on the signals alone. This is not hard to imagine 
since, although hyaluronic acid fragments, generated from a damaged tissue, pro-
vide all the signals needed for tissue repair, the randomly generated fragments of 
hyaluronic acid due to persistent hypoxia may not necessarily enable tissue repair in 
a coordinated manner. The aforementioned genomic mutations seem to suggest that 
signals related to changes in ECM and cell morphology may be relatively too weak 
compared to other signals, even though such fragments have been found to be capa-
ble of up-regulating a number of genes involved in ECM modifi cation such as over- 
expression of  MMP s (Fieber et al.  2004 ) and  UPA s (Horton et al.  2000 ). Hence, it is 
reasonable to speculate that  the observed mutations detailed in Chap.     4       are selected 
to supplement the missing or weak signals needed for continual tissue repair, which 
is triggered by the released hyaluronic acid fragments as a result of persistent 
hypoxia in an infl ammatory site . 

 In addition, hyaluronic acid and fragments provide other signals needed for tis-
sue repair. Specifi cally, a number of tumor angiogenesis-related genes are activated 
by hyaluronic acid (Slevin et al.  2002 ; Takahashi et al.  2005 ); similarly a number of 
survival genes such as  HSPA2  (heat shock 70 kDa protein 2) are over-expressed by 
hyaluronic acid (Xu et al.  2002 ). Furthermore, hyaluronic acid can also facilitate 
cells to overcome the constraints of anchorage-dependent growth and contact inhi-
bition (Itano et al.  2002 ), as discussed in Sect.  6.2 . Overall, it is the combination of 
hyaluronic acid, hyaluronic acid fragments and mutations in genes involved in 
changing the composition and hence the physical properties of the ECM, as well as 
in altering cell morphology, that facilitates cell proliferation in a tissue without 
actual signals for tissue repair. 

 Clearly, when cells divide, their accumulated glucose metabolites can be used as 
the building blocks for DNA and lipid synthesis, hence providing an exit for the 
accumulation and relieving the pressure as discussed in Chap.   5    . This, however, is 
only temporary, as all the cells, including the newly synthesized ones, will become 
hypoxic again because of the local environment, thus again leading to the accumula-
tion of glucose metabolites, and ultimately continuous cell proliferation. As this 
process continues and the biomass grows due to cell division, the microenvironment 
will become increasingly more hypoxic. One can expect that this process continues 
as long as the hypoxic condition persists, while the vast majority of the proliferated 
cells will die due to various reasons, including programmed cell death and cell-cell 
competition as discussed in Chap.   8    , in the early phase of the tumorigenesis. 
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This process may go on for years without visible tumor growth, but fundamental 
changes are taking place inside these cells. 

 It is noteworthy that it was recently discovered that inhibition of tumor growth by 
the high molecular weight hyaluronic acid produced in naked mole rat tissues is 
reversed by treatment that removed the accumulated glycosaminoglycan (Tian et al. 
 2013 ). This observation provides strong supporting evidence for the key role played 
by hyaluronic acid synthesis in hypoxia-induced cell proliferation.  

6.3.3     General Roles of Hyaluronic Acid During Tumorigenesis 

 It is known that extracellular hyaluronic acid can positively regulate lactate effl ux 
(Slomiany et al.  2009 ), suggesting a possibility that its synthesis may serve as an 
overfl ow buffer for glycolytic metabolites and that the exported hyaluronic acid 
functions as a signal for increasing the exit fl ux of glycolysis by increasing the lac-
tate effl ux. Interestingly, lactate has also been found to serve as a stimulator for the 
increased production of hyaluronic acid in some cell types such as fi broblasts (Stern 
et al.  2002 ). These two pieces of data suggest a possible vicious cycle between 
hyaluronic acid production and lactate effl ux, which may continuously generate cell 
proliferation signals. Clearly, this possibility requires experimental validation. 

 As this cell-division process continues, mutations in some genes, not limited to 
proto-oncogenes and tumor suppressor genes as discussed in Chap.   4    , may be 
selected to allow constitutive activation or inhibition of functionalities to facilitate 
cell proliferation in a more sustained and effi cient manner. It is foreseeable that, as 
a cancer evolves, the signaling roles of hyaluronic acids may be gradually replaced 
by the constitutive activation of the relevant processes of tissue repair, made possi-
ble via selection of certain genomic mutations such as oncogenes. When all the 
signaling roles of hyaluronic acid and its fragments are replaced by genomic muta-
tions, some cancers may select, at some developmental stage, to cease the biosyn-
thesis of hyaluronic acid, hence terminating their facilitator’s role for cancer 
initiation. This hypothesis is clearly supported by the decreased expressions of hyal-
uronic acid synthase genes as the cancer advances (see Fig.  6.3 ). 

 We speculate that hyaluronic acid production is essential to cancer initiation not 
only because it provides signals for tissue growth, but also because it generates cell- 
survival signals. These may prove to be essential for the underlying cells to select 
mutations in genes with essential functions without being destroyed by apoptosis or 
tissue-level surveillance (see Chap.   8    ). The reason is that, by promoting anti- 
apoptotic activities, survival pathways may keep alive those cells harboring muta-
tions in genes involved in essential cellular functions, which otherwise will be killed 
by apoptosis. A good example is that of the proto-oncogene  EGFR  since it can be 
constitutively activated due to mutations (Okabe et al.  2007 ) or oxidation of specifi c 
residues in the absence of its ligand  EGF  (discussed in Chap.   5    ). 

 During the entire course of neoplastic development, hyaluronic acid and their 
fragments are known to exhibit a variety of other regulatory actions, particularly at 
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key transition points throughout cancer development, including cancer metastasis 
and exiting dormancy in the metastatic locations as discussed in Chap.   10    . The 
 up- regulated  TGFβ  gene expression at stage 4 cancers in Fig.  6.3  seems to suggest 
that the gene may have a key role in cancer metastasis as its activation will trigger 
the increased production of hyaluronic acid, which is essential for the initiation of 
metastasis (see Chap.   10    ). Figure  6.5  shows a model for the proposed hypoxia- 
driven, hyaluronic acid-facilitated cell proliferation in the early phase of cancer 
development.

6.4         Bioinformatics Opportunities and Challenges 

 The model given in Sect.  6.3  represents, to the best of our knowledge, the fi rst 
model that links cancer initiation to infl ammation-induced hypoxia and hyaluronic 
acid production at the molecular level. A number of opportunities present them-
selves in this model for further study of the important issue of cancer initiation 
through computational analyses of large-scale  omic  data of cancer and statistical 

  Fig. 6.5    A schematic illustration of roles played by hyaluronic acid (hyaluron) and its fragments 
in tissue injury and repair  versus  their roles in cell proliferation. ( a ) A description of the process of 
going from normal tissue to damaged tissue and the role(s) of hyaluronic acid and fragments in 
triggering tissue repair. ( b ) A description of the process of going from hypoxic cells with accumu-
lated glucose metabolites to synthesis, export and fragmentation of hyaluronic acid in the extracel-
lular space to triggering tissue repair and then proliferation       
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inference in a systematic manner in terms of model validation, refi nement and 
expansion. It is expected that such computational studies may lead to fundamental 
and novel insights of cancer initiation, particularly through this type of comparative 
analysis across multiple cancer types. From such data, one may be able to identify 
the most essential common characteristics in cancer initiation in general. 

6.4.1     Completing the Details of the Model Based 
on Available Transcriptomic Data 

 The model provides a high-level conceptual framework of a mechanism by which 
cancer may be initiated, but numerous details are needed for specifi c cancer types. 
For example, from the transcriptomic data, strong correlations were observed 
between the increased glucose accumulation and the activation of hyaluronic acid 
synthesis, but the detailed signaling and regulatory processes may differ for differ-
ent types of cancers. Another example relates to the sizes of hyaluronic acid frag-
ments that are generated under specifi c cellular conditions. Intuitively, higher 
abundances of hyaluronidases are expected to produce shorter fragments due to the 
repeated degradations with higher frequencies. Some mathematical relationships 
between the expression levels of hyaluronidases and the size distributions of hyal-
uronic acids need to be established in order to address this issue. One approach 
involves the collection of data on the abundances and distributions of different hyal-
uronic acid fragments along with the corresponding gene-expression data under 
controlled conditions using cell lines. The results obtained could then be used to 
train a predictor for estimating the fragment size distributions based on the observed 
gene-expression data for specifi c cancer types. A similar approach could be taken to 
address issues such as identifi cation of the: (1) specifi c signals that activate the 
genes responsible for hyaluronic acid synthesis, along with the required cellular 
environmental features such as the level of hypoxia and the availability of specifi c 
immune cells in the pericellular environment, and (2) detailed regulatory pathway 
between increased hyaluronic acid and lactate production and export.  

6.4.2     Validation, Refi nement and Expansion of the Model 

 The model can be checked against transcriptomic data of different cancer types for 
their validity. Specifi cally, one can check if each of the model-predicted associa-
tions holds against the available data for each cancer type. For example, if the model 
predicts transcription regulator X positively regulates the expression of gene Y, one 
can check if these two genes tend to show co-expression patterns under the relevant 
conditions, or determine if the up-regulation of gene Y tends to imply the up- 
regulation of gene X in the available data. With more advanced analyses, it may 
be possible to predict causal relations among genes found to be co-expressed. 
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Systematic analyses such as this on each model-predicted association can lead to 
identifi cation of incorrect prediction or partially correct prediction, hence providing 
guidance for further refi nement of the model.  

6.4.3     Application of the Model 

 The above model allows one to study how hyaluronic acid may be functionally con-
nected to other cancer-related activities during the early stage of tumorigenesis. For 
example, one can investigate if hyaluronic acid fragment patterns contribute to the 
clinical diversity of a specifi c cancer type across different patients using, say, cancer 
samples with different levels of differentiation (see Chap.   3    ), based on the knowl-
edge that hyaluronic acid has key roles in cell differentiation of various cell types 
(Heldin  2003 ). Similarly, various mechanistic questions about hyaluronic acid and 
cancer can be asked and addressed (see below for examples).

 –    Information has been presented on the mechanism by which hyaluronic acid 
contributes to the initiation of cancer. In a similar vein, one can ask what roles 
hyaluronic acid has during the development of a cancer and have this question or 
related questions computationally studied in a fashion similar to the above. For 
example, one can determine how the expression patterns of hyaluronic acid syn-
thesis, export and degradation genes change as a function of cancer progression, 
or how these patterns are statistically related to other environmental parameters 
such as the hypoxia level, ROS level, or to various cancer-related activities such 
as angiogenesis, activation of telomerase, signaling for angiogenesis and possi-
bly other developments in cancer.  

 –   Knowing the roles of hyaluronic acid in multiple aspects of cancer development, 
one can ask how the amount of hyaluronic acid generated and the resulting frag-
mentation patterns are linked to cancer mortality rates or the malignancy level. 
Such a study should be feasible using statistical correlation analyses between 
clinical parameters such as the average mortality rates and the average activation 
levels of hyaluronic acid-associated proteins. Similarly, studies can also be con-
ducted between drug responses and hyaluronic acid-related proteins, knowing its 
role in the multi-drug resistance pathway (Misra et al.  2003 ).  

 –   One can also investigate the possibility of using hyaluronic acid as a diagnostic 
or prognostic marker for different cancer types. For example, one can predict the 
size distribution of hyaluronic acid fragments based on the hyaluronic acid- 
related protein expression patterns and the expression levels of various cellular 
environmental parameters. Next, computational predictions can be undertaken to 
determine which of the abnormally expressed proteins is likely to be secreted 
(into the blood) and even excreted (into the urine) (see Chap.   12    ). Finally, such 
potential markers can be linked with different developmental stages of a cancer 
or with different cancers.      
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6.5     Concluding Remarks 

 Hyaluronic acid appears to represent a largely overlooked, albeit essential, element 
in cancer initiation because of its diverse roles as a facilitator in making multiple 
aspects of early cancer development possible. This includes: (1) serving as multiple 
types of signals by its fragmentation pattern, the products of which serve as signals 
for cell survival, cell-cycle control, cell proliferation, anti-apoptosis, angiogenesis, 
evasion of immune detection and induction of EMT; (2) facilitating anchorage- 
independent growth and overcoming contact inhibition through its interactions with 
the cell surfaces; (3) making intravasation and extravasation of blood vessels pos-
sible and (4) aiding migrating cells to become attached and reactivated from their 
dormancy states (see Chap.   10    ). Knowing the challenging nature of studying hyal-
uronic acid  in vivo  and the effectiveness in computational inference of new informa-
tion as shown throughout this chapter ,  one can expect that computational techniques 
offer a unique and essential approach to better understand the functional roles of 
hyaluronic acid and its fragments, and particularly their interactions throughout 
cancer development. Various computational and statistical techniques are clearly 
needed to estimate the amounts, the fragment-size distributions and their depen-
dence on various cellular environments.     
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    Chapter 7   
 Multiple Routes for Survival: Understanding 
How Cancer Evades Apoptosis 

                  Apoptosis is a process of programmed cell-death encoded in all multicellular 
organisms. The system is designed to remove damaged, unhealthy or unneeded 
cells during development and under certain stresses. At the tissue level, it plays a 
key role in maintaining tissue homeostasis. For example, the typical human body 
produces approximately 50–70 billion new cells by mitosis each day (Karam 
 2009 ), and the same number of cells will be terminated by apoptosis to maintain 
total cell homeostasis, suggesting that there is a functional link between growth 
and cell death by apoptosis. Malfunctions of the apoptotic system, in either its 
regulators or effectors, have been linked to a variety of human diseases. Examples 
include: (1) human degenerative diseases, such as multiple sclerosis, which are 
known to be associated with abnormally high activities of apoptosis, and (2) can-
cer that is considered by some as a disease of abnormally low activities of 
apoptosis. 

 The effector component of the apoptosis system is relatively simple, consisting 
of a set of death substrates, whose release will kill the cell. In contrast, the regula-
tory component of apoptosis is rather extensive and complex. The activity level of 
the effector component is adjusted through changes in the concentration balance 
between pro- and anti-apoptotic proteins, as well as by enhancing or repressing 
the activities of specifi c proteins in response to external signals released to the 
extracellular space or to intracellular signals refl ecting certain stresses. As dis-
cussed in the earlier chapters, cancer cells tend to accumulate a large number of 
genetic mutations, which should normally induce apoptosis and cell death. 
However, for reasons that are only partially understood, cancer cells have 
“learned” to be anti-apoptotic and remain viable through over-expression of their 
survival pathways, inhibiting the activities of their pro-apoptotic proteins or 
selecting genomic mutations that lose the connection to or the activity of the 
apoptotic effectors. 
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 The focus of this chapter is on that which can be learned through integrative 
analyses of  omic  data about how cancers may have become anti-apoptotic by 
 creating a microenvironment through which they can advantageously use the 
encoded cellular mechanisms in normal cells for their survival. 

7.1       The Basic Biology of Apoptosis 

    Apoptosis in Greek means “dropping off” of petals or leaves from plants. In cell 
biology, it refers to a programmed cell-death process, which involves a sequence of 
morphological changes such as cell shrinkage, membrane blebbing, chromatin 
 condensation and DNA fragmentation, leading to cell death. This characteristic is 
considered to be the distinguishing property of apoptosis from that of the other pro-
grammed cell deaths such as necrosis, senescence, autophagy, paraptosis and 
mitotic catastrophe. 

 The discovery of the programmed natural cell-death process was fi rst made by 
German scientist Carl Vogt in 1842, who introduced the designation  apoptosis  
(Peter et al.  1997 ). Kerr, Wyllie and Currie raised the possibility in 1972 that apop-
tosis may participate in a major way during cancer development when they noted 
that the observed tumor-proliferation rate and the tumor size do not match, and 
hence inferred that more than 95 % of the tumor cells may have died due to apopto-
sis (Kerr et al.  1972 ). Later, Sydney Brenner, Robert Horvitz and John Sulston iden-
tifi ed and characterized the genes that control the apoptotic process, for which they 
won the Nobel Prize in medicine in 2002. Over one hundred thousand scientifi c 
papers have been published on the topic of apoptosis since the early work by Kerr, 
Wyllie and Currie, indicating that apoptosis has been one of the most active research 
fi elds in modern biology. 

7.1.1     The Apoptosis Execution System 

 The execution component of the apoptosis system consists of the following compo-
nents: the activated  caspase-3  (a cysteine-aspartic protease) or  caspase-7  proteins 
will cleave the inhibitor of the  caspase -activated deoxyribonuclease, which releases 
a number of death substrates such as LaminA, LaminB1, LaminB2, ICAD and 
D4-DGI, leading to the destruction of the cell through a sequence of well-defi ned 
steps: cell shrinkage, chromatin condensation, membrane blebbing, DNA fragmen-
tation, nuclear collapse, apoptotic body formation and lysis of apoptotic bodies. 
Currently, a few hundreds of caspase substrates have been identifi ed (Luthi and 
Martin  2007 ). Two well-studied signaling pathways, the intrinsic and extrinsic path-
ways, can activate  caspase-3  or  -7 , and hence activate the execution of apoptosis. 
The former activates  caspase-3  or  -7  through the release of cytochrome c molecules 
from mitochondria, which then activates  caspase-9 ; and the latter activates it by 
activating  caspase-8  or  -10 , as shown in Fig.  7.1 .
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7.1.2        The Signaling and Regulatory System of Apoptosis 

 Apoptosis has a rather elaborate signaling and regulatory system based on a number 
of internal and external signals that can lead to the activation or repression of the 
system at certain activity levels. Under physiological conditions, apoptosis is used 
to maintain tissue homeostasis, so growth signals (or withdrawal or absence of such 
signals) and death signals will affect its activity level. In addition, apoptosis serves 
as a gatekeeper for removing damaged cells; thus, it responds to a variety of intra-
cellular signals indicative of cellular damage such as membrane leakage, DNA 
damage or nutrient depletion. These basic signaling systems interact with a large 
number of pathways relevant to tissue development and remodeling, tissue injury 
and repair, removal of infl ammatory cells, removal of auto-aggressive immune 
cells, cell proliferation and various stress-response systems, making the (extended) 
apoptosis system very complex. Figure  7.2  provides a global view of the signaling 
and regulatory interactions related to the apoptosis system.

  Fig. 7.2    A schematic of the signaling pathways of apoptosis, adapted from (Signal-transduction- 
pathways 2010)       
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   The basic signaling pathways of apoptosis fall into three categories: (1) the 
 intrinsic signaling pathway  that is activated by intracellular stress signals followed 
by activation of the  caspase-3  or  -7  proteins, leading to the release of  cytochrome c  
and  SMAC  (second mitochondrial activator of  caspases ), which bind with the 
 APAF1  (adaptor protein apoptotic protease-activating factor 1) protein, leading to 
the formation of apoptosomes and the activation of  caspase-9  proteins; (2) the 
 extrinsic signaling pathway  that is activated in response to external death signals 
such as  FAS , and then activates  caspase-3  or  -7  through the activation of the  cas-
pase- 8   or  -10  proteins, which is induced through the formation of the death-induced 
signal complex ( DISC ); and (3) a number of non-canonical signaling pathways that 
do not fall into either of the fi rst two groups and will be explained in detail later in 
this section. In addition, there is a family of apoptosis regulators, the  BCL2  (B-cell 
CLL/lymphoma 2) family, that can directly block or activate different proteins along 
the signaling pathways (see Fig.  7.2 ); these are often referred to as the main regula-
tors of apoptosis. 

 Despite its name,  BCL2  genes are expressed in a variety of cell types, including 
epithelial cells that have been the focus of much of this book. As of now, 25 mem-
bers of the  BCL2  family have been identifi ed. Some of these members are pro- 
apoptotic, such as  BAX, BAD, BAK, BID, BIM, BOK, NOXA  and  PUMA , while the 
other members are anti-apoptotic such as  BCL2 ,  BCLB ,  BCLW ,  BCLXL  and  MCL1  
(see Fig.  7.2  for the functional roles of these proteins). The overall apoptotic activity 
level is largely determined by the balance between the pro- and anti-apoptotic  BCL2  
family members.

    1.     The intrinsic signaling pathway : The intrinsic pathway is activated when the cell 
is under severe intracellular stress, including extensive DNA damage, membrane 
damage, nutrient deprivation, hypoxia and viral infection, as well as withdrawal 
of growth factors, hormones and cytokines. These signals induce changes in the 
inner membrane of mitochondria, leading to an increase in mitochondrial perme-
ability and the release of two groups of pro-apoptotic proteins from the inter- 
membrane space of mitochondria to cytosol (Siskind  2005 ; Suen et al.  2008 ). 
One group of proteins includes  cytochrome c  and  SMAC , which can lead to the 
formation of apoptosomes and activation of the caspase cascade, hence the acti-
vation of cell suicide. Since the initial signals to this pathway originate in mito-
chondria, the pathway is sometimes referred to as the  mitochondrial signaling 
pathway . This may be one of the reasons why cancer cells tend to have dysfunc-
tional mitochondria, i.e., so selected to prevent the production and release of the 
pro-apoptotic signals, as some have speculated (Gogvadze et al.  2008 ). Another 
group of released proteins includes  AIF  (apoptosis induced factor), endonucle-
ase  G  and  CAD , which are all translocated to the nucleus upon receiving signals 
for the activation of apoptosis to carry out the execution activities of cell death, 
including DNA fragmentation and chromatin condensation.   

   2.     The extrinsic signaling pathway : The extrinsic signaling pathway is activated 
upon receiving death signals by their corresponding receptors on the cell surface, 
each of which has a cytoplasmic “death domain” that transmits the death signal 
to the intracellular signaling pathway. A number of such signals and the corre-
sponding receptors have been identifi ed, including  FAS  and  FASR, TNFα  and 
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 TNFR1, APO3L  and  DR3, APO2L  and  DR4,  and  APO2L  and  DR5 , all being in 
the superfamily of  TNFs , also known as  cachectin , and their corresponding 
receptors in the  TNFR  family. While many cell types can release death signals, 
macrophages represent the dominant cell type for the production and release of 
these signals, serving their supporting roles in determining the fate of their 
parenchymal cells based on their microenvironment. Upon binding a death sig-
nal such as  FAS , the receptor protein  FASR  binds with the  TRADD  (tumor necro-
sis factor receptor type 1-associated death domain) protein, which in turn recruits 
the proteins,  FADD  (Fas-associated protein with death domain) and  RIP  
(receptor- interacting serine/threonine protein).  FADD  then associates with  pro-
caspase- 8  , activating the caspase cascade and the execution of apoptosis. See 
Fig.  7.2  for the detailed relationships among these proteins, death signals and the 
execution of apoptosis.   

   3.     The non-canonical signaling pathways : Studies in the past decade have found 
that the current classifi cation between apoptosis and necrosis, both being pro-
grammed cell death, is probably an over-simplifi cation. The two are probably 
part of a larger cell-death program, although each has its distinct morphological 
pattern during the respective cell-death process. Multiple investigations have 
reported different intermediates between the two, such as the apoptosis-like and 
necrosis-like death processes (Leist and Jaattela  2001 ; Jaattela  2004 ; Broker 
et al.  2005a ; Qi and Liu  2006 ), which resemble only some aspects of the two 
canonical programs. A particularly interesting class of non-canonical apoptosis 
pathways is one referred to as  caspase-independent apoptosis  since it does not 
go through the canonical caspase cascade (Jaattela and Tschopp  2003 ), as its 
name suggested. The emergence of these newly identifi ed signaling pathways 
has resulted in a number of studies with the aim to reclassify apoptosis, necrosis 
and the like. One study grouped all such pathways into four classes: (1) apopto-
sis, (2) apoptosis-like, (3) necrosis-like and (4) necrosis (Leist and Jaattela 
 2001 ), based on the cellular morphological differences during the death pro-
cesses. Another study classifi ed the signaling pathways based on their level of 
dependence on caspase proteins (Kolenko et al.  2000 ; Mathiasen and Jaattela 
 2002 ; Broker et al.  2005b ).    

  A new model was recently proposed (see Fig.  7.3 ) suggesting that apoptosis is a 
part of a larger cell-death program that also covers necrosis and other newly discov-
ered caspase-independent cell-death programs. This model expands the current 
apoptosis system that utilizes intracellular signals only from mitochondria to also 
include signals from lysosomes and ER. This recent model speculates that the dif-
ferent components of the cell death program may have distinct roles upon receiving 
stress-related signals from different organelles. The observed death phenotype is 
probably determined by the relative speeds in the execution of different death path-
ways under various conditions, and consequently only that by the fastest and most 
effective one is observed.

   It should be possible to validate this model computationally by using the avail-
able  omic  data. For example, one can check for each observed activation based 
on gene-expression data whether the model-predicted associations indeed exhibit 
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co- expression patterns for some cancer types (and at certain developmental stages). 
Such analyses can quickly identify incorrect associations predicted by the model or 
provide evidence for some model-predicted associations, hence validating or reject-
ing the model. For cases when time-course data are available, it should be possible 
to derive causal relationships among the identifi ed associations.  

7.1.3     The P53 Network 

  P53  is one of the best known tumor-suppressor genes. The fact that ~50 % of can-
cers have  P53  mutations across all cancer types reveals its dominating role in pro-
tecting cells from becoming cancerous. The current understanding is that  P53  is at 
the junction of a number of fundamental processes in cellular life, namely apopto-
sis, senescence, proliferation and immunity. According to (Levine and Oren  2009 ; 
Brady and Attardi  2010 ), the  P53  protein directly interacts with over one hundred 
different proteins under different cellular conditions, covering functions ranging 
from:  AKT/PKB  pathway regulator, adipogenesis, apoptosis, asymmetric cell divi-
sion, cAMP pathway, cell cycle control, cell proliferation, chromatin proteins, chro-
mosome condensation, development, differentiation, DNA damage and repair, DNA 
methylation, energy metabolism, extracellular matrix proteins, heat shock, hypoxia 
response,  MAPK ,    NFκB     , nucleocytoplasmic transport, nuclear receptors, protea-
some degradation, protection against viral infection, ribosomal proteins to 
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  Fig. 7.3    A model for programmed cell death that integrates apoptosis, necrosis and newly discov-
ered caspase-independent cell-death programs, adapted from (Desai  2013 )       
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transforming activity and ubiquitination. From this list, one can imagine the very 
complex nature in the relationship between  P53  and apoptosis. The following sum-
marizes a few major biological processes in which  P53  is involved, showing a 
framework for one to study both induction and inhibition of apoptosis via  P53 . It 
should be noted that this is clearly not the entire picture of the  P53  interaction net-
work as the following four processes do not begin to cover every interaction partner 
of  P53  as outlined above.

    1.     Apoptosis : As an apoptosis regulator,  P53  responds to a large variety of cellular 
stresses as discussed earlier. Typically  P53  is inactive after being expressed 
because of binding to its negative regulator,  MDM2 , thus preventing it from 
functioning as a transcription factor. The activation of  P53  is accomplished 
through phosphorylation of its N-terminal domain by various protein kinases, 
which leads to a conformational change and the release of  MDM2 . One group of 
 P53 -activating kinases consists of members of the  MAPK  family such as  JNK1  
and  ERK1  in response to cell-cycle abnormalities among other stresses. Under 
these conditions, the activated  P53  induces apoptosis by up-regulating pro- 
apoptotic members of the  BCL2  family such as  PUMA, BAX  and  BAK . Another 
group of  P53 -activating kinases are related to DNA damage, such as  ATR, ATM  
and  DNAPK . The activated  P53  by these kinases will up-regulate a series of 
regulators relevant to  CDK  inhibition, growth arrest and the DNA damage- 
inducible gene  GADD45α  to repair the identifi ed DNA damage. This process 
may lead to the execution of apoptosis if DNA repair fails.   

   2.     Senescence : While an inactivated  P53  can increase the potential of cancer devel-
opment, constitutive activation of  P53  will lead to tissue degeneration and pre-
mature aging as recently reported (Rodier et al.  2007 ; Feng et al.  2011 ). The 
speculation was that constitutive activation of  P53  can result in the annihilation 
of stem cells, which impairs the tissue-regeneration capability, in addition to 
apoptosis. Previous studies have shown that constitutive activation of  P53  can 
cause lifespan reduction (Dumble et al.  2007 ), providing supporting evidence to 
the above hypothesis. While research on the impact of the  P53  activity levels on 
tissue degeneration, as well as lifespan reduction, has emerged only in recent 
years and an understanding at the molecular level is still lacking, it is safe to state 
that the normal range of the  P53  activity level results from balancing tumor sup-
pression and lifespan as determined by evolution.   

   3.     Proliferation :  P53  can be activated by a number of oncogenes such as  E1A  
(Debbas and White  1993 ; Lowe and Ruley  1993 ; Querido et al.  1997 ; Samuelson 
and Lowe  1997 ; Lowe  1999 ),  MYC  (Hermeking and Eick  1994 ) and  RAS  
(Serrano et al.  1997 ), which requires the participation of the  P19  protein. This is 
probably part of a mechanism encoded in cells for prevention of over-growth. 
The key point to note here is that proliferation and death are tightly linked in the 
cellular mechanisms encoded in human cells.   

   4.     Immunity : The connection between  P53  and the immune system is fairly exten-
sive and is rooted at a fundamental level. It deserves mention that  NFκB  is a key 
regulator of both the innate and the adaptive immune systems. Published studies 
have established that  P53  and  NFκB  are opposing regulators in terms of apoptosis 
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 versus  survival, as the former promotes apoptosis while the latter enhances 
 survival. Actually, the two proteins can directly inhibit each other (Schneider 
et al.  2010 ). As of now, ~30 immune-related genes have been found to be direct 
targets of  P53  regulation (Lowe et al.  2013 ).    

  The more detailed relationship between  P53  and the immune responses can be 
summarized as follows. It has been widely observed that  P53  is up-regulated in 
infl ammation sites. While the detailed triggering mechanisms are not yet fully elu-
cidated, the speculation has been that  P53  is induced by the increased ROS or reac-
tive nitrogen species, both of which are produced during infl ammation (Vousden 
and Prives  2009 ; Hafsi and Hainaut  2011 ). Conversely,  P53  has been found to 
inhibit autoimmune infl ammation by suppressing the expression of infl ammatory 
cytokine-encoding genes, possibly serving as a general negative regulator of infl am-
mation (Santhanam et al.  1991 ; Pesch et al.  1996 ; Okuda et al.  2003 ; Takaoka et al. 
 2003 ; Zheng et al.  2005 ; Liu et al.  2009 ). 

 It has also been shown that an activated  P53  can serve as a co-stimulatory protein 
for the activation of T-cells (Gorgoulis et al.  2003 ; Lowe et al.  2013 ) and contribute 
to the initiation of adaptive immune responses. The link between  P53  and the innate 
immune system lies in the need for clearance of damaged or infected cells, which is 
typically done through cooperative actions between  P53  and the innate immune 
system (Martins et al.  2006 ; Ventura et al.  2007 ). There are clearly other links 
between  P53  and the innate immune system as it has been found that infections by 
several viruses, such as Epstein-Barr, adenovirus, infl uenza A and HIV-1, can acti-
vate  P53 . One potential activation mechanism is through  TLR  (toll-like receptor), 
which is a key regulator of the innate immune responses and provides a front-line 
protection against pathogens through recognition of their common features, referred 
to as the  pathogen-associated molecular patterns. TLR  can activate protein kinase 
 R , which is capable of phosphorylating and activating  P53 . Interestingly, the activa-
tion of  P53  can lead to the expression of most  TLR  genes and the general response 
of the innate immune system (Menendez et al.  2010 ,  2011 ,  2013 ), suggesting a 
functional loop between  P53  and  TLR . 

 Knowing the close and complex relationships between  P53  and the above path-
ways, it is logical to speculate that loss of  P53  function may overall be benefi cial to 
cancer development in multiple ways as has been suggested for some time, in addi-
tion to just the loss of its inhibitory role of apoptosis. Specifi cally, cells without 
normal  P53  function will be more pro-infl ammatory, more oxidative, less immune 
responsive, exhibit a lower level of counter-reaction to over-proliferation and be less 
prone to be eliminated due to fi tness reasons (see Chap.   8    ), hence making the overall 
environment more cancer friendly. One may further speculate that it is these multi-
ple benefi cial factors to cancer development that have led to the high mutation rate 
in the  P53  gene in cancer tissues through natural selection. We believe that this 
hypothesis can be rigorously studied computationally by examining cancer tissue 
samples in terms of the activity levels of the relevant pathways  versus  the mutation 
rates of  P53 . To undertake such a project, one would need to statistically determine 
if there is a correlation between the  P53  mutation rates and the level of activity in 
each of the aforementioned processes such as infl ammation response, production of 
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antioxidant molecules or proliferation rate. With such data in hand, it may be 
 possible to estimate the percentage of the  P53  mutations that are selected to directly 
benefi t which particular processes.   

7.2     Different Ways to Evade Apoptosis by Cancer 

 Since the seminal publication that links apoptosis to development and cancer by 
Kerr et al. in 1972 (Kerr et al.  1972 ), a large body of literature has been published 
on cancer apoptosis. Upon reviewing some of these publications, one quickly rec-
ognizes the considerable complexity of the topic. This involves close interactions 
and balances among multiple processes spanning a number of essential aspects of 
multicellular organisms as discussed in the previous section. In an effort to enable 
the reader to quickly grasp the essence of how different survival signaling pathways 
balance the apoptotic activities induced by cancer-associated environments and 
activities, the current knowledge is organized in the following fashion, focused on 
the fundamental (non-accidental) connections that link growth, apoptosis and sur-
vival, as well as genetic mutations that enhance such connections by making them 
constitutively active or repressed. 

7.2.1     Growth and Apoptosis 

 There is a clear link between proliferation and apoptosis encoded in human genomes 
as briefl y outlined in Sect.  7.1 . Here the  MYC  gene is used as an example to explain 
the connection.  MYC  is an extensively studied oncogenic transcription regulator, 
whose overexpression can drive cellular proliferation in cancer tissue and has been 
widely observed in numerous cancer types. It has been well established that over- 
expression of  MYC  can directly induce apoptosis in the absence of survival factors 
in normal cells (Askew et al.  1991 ; Evan et al.  1992 ; Shi et al.  1992 ). Later studies 
have observed coordinated expression patterns between  MYC  and  BCL2  genes 
(Strasser et al.  1990 ; Bissonnette et al.  1992 ; Fanidi et al.  1992 ). Specifi cally the 
expression of  MYC  can inhibit the expression of  BCL2  (an anti-apoptotic member 
of the  BCL2  family) and induce the expression of  BAX  (a pro-apoptotic member of 
the  BCL2  family), hence establishing a functional link between growth and apopto-
sis. In addition, it has been shown that when  BCL2  is inhibited, the activation of 
 MYC  can induce cell death via apoptosis. The current understanding about these 
observations is that cellular systems have developed a mechanism to keep growth in 
check, i.e., when growth takes place, apoptosis is also activated at some level as a 
safety valve. It has been speculated that a large number of other oncogenes may 
have similar relationships with the apoptosis regulators as those between  MYC  and 
 BCL2 . We expect that carefully-designed data mining and statistical inference can 
lead to new discoveries of all the other oncogenes with the above properties, and 
even possibly provide information on the detailed mechanisms of how the onco-
genes regulate  BCL2  and other anti-apoptotic genes.  
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7.2.2     Cell Cycle and Apoptosis 

 The cell cycle and apoptosis are, not surprisingly, tightly linked one with the other, 
mainly to ensure cellular integrity. For example, the cell cycle process consists of 
multiple checkpoints, such as those at the G 1 /S phase transition, in the S phase and 
in the M phase. These checkpoints consist of a sequence of control steps that allow 
proliferation to proceed only when appropriate growth signals are present and when 
the DNA integrity is assured. If DNA damage is detected, then the necessary repair 
machinery will be activated. If the damage cannot be repaired, the cell will be elimi-
nated through apoptosis. Interestingly, the cell cycle and apoptosis share a number 
of common genes, presumably to facilitate the close and effi cient interactions 
between the two. For example, the cell cycle gene  cyclin D  binds with  CDK4  and 
 CDK6  to form a complex during the G 1  phase to facilitate their interaction and phos-
phorylation of the  RB  protein, a negative cell-cycle regulator. The hyper- 
phosphorylated  RB  protein dissociates from the  E2F  protein, thus enabling it to 
function as a transcriptional activator for genes required in the S phase for DNA 
synthesis. It has been observed that the loss of  RB  function triggers the activation of 
the apoptosis pathway via  P53  (Morgenbesser et al.  1994 ; Macleod et al.  1996 ; 
Harbour and Dean  2000 ; Nevins  2001 ), indicating that cells are designed to be 
removed once their  RB  function is lost. Interestingly, in the majority of cancers, the 
 RB  gene is either repressed or mutated (Vandel et al.  2001 ; Du and Searle  2009 ; 
Engel et al.  2013 ), refl ecting the strong anti-apoptotic role by  RB . 

 The relationships between some cell-cycle genes and apoptosis seem to be 
condition- dependent. For example, some cyclin genes such as  cyclin G  can have 
either pro-apoptotic or anti-apoptotic roles dependent on the cellular conditions 
(Okamoto and Prives  1999 ; Russell et al.  2012 ). Some  CDK  genes seem to be 
required for the execution phase of apoptosis. For example, the complex of  cyclin A  
and  CDK  is activated whenever the caspase cascade is activated (Levkau et al. 
 1998 ), but the detailed mechanism remains to be elucidated. This represents another 
fundamental biology problem to the study of which data mining and statistical 
inference could contribute.  

7.2.3     Cancer-Associated Stresses and Apoptosis 

 As a cancer evolves, it will accumulate a variety of abnormalities such as increased 
hypoxia, ROS and (lactic) acidity in the microenvironment, as well as DNA damage 
and nutrient deprivation, which should trigger the activation of apoptosis under nor-
mal conditions. However, cancer cells have acquired capabilities to avoid such acti-
vation via using different mechanisms. The following summarizes the known 
alterations that cancer cells have adopted to avoid apoptosis.

    1.     Genetic mutations : as discussed in Chaps.   1     and   4    , cancer genomes tend to accu-
mulate a large number of mutations. While some of the mutations probably do not 
serve any purpose germane to cancer development, many single-point mutations 
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are selected to serve specifi c roles to the benefi t of the cancer cells, such as those 
in tumor-suppressor genes. For example, close to 90 % of all colon cancers have 
mutations in their APC gene as discussed in Chap.   4    ; similarly, the majority of 
cancers have mutations in  P53  and/or  RB . The advantage of such mutations in 
comparison with functional inhibition of the relevant genes is that the genetically 
modifi ed functional state change is more sustainable and effi cient for cancer 
development.   

   2.     Epigenomic modifi cations : Genes can be silenced through epigenomic level 
changes such as DNA methylation or histone modifi cation. A large number of 
tumor suppressor genes have been found to be highly methylated in cancer epig-
enomes. For example, the promoter region of the  GSTP1  (glutathione S-transferase 
P) gene is hyper-methylated in more than 90 % of prostate cancers (Cairns et al. 
 2001 ), and the  HPV16L1  (human papillomavirus 16 oncogene) gene is highly 
methylated in the majority of the cervical cancers (Clarke et al.  2012 ). Compared 
to the irreversible genomic mutations, epigenomic modifi cations are reversible, 
but clearly not as easy as reversion through transcriptional regulation.   

   3.     Growth factors as survival factors : Previous studies have found that some growth 
factors can serve as survival factors and that their activation will lead to the inhi-
bition of apoptosis under specifi c conditions. The best studied case is  IGFI  
(insulin- like growth factor 1), the normal physiological function being that of a 
potent growth factor during early growth. The activation of this protein can 
inhibit apoptosis through the activation of the  PI3K/AKT  pathway (see the 
Sect.  7.2.4 ) (O’Connor  1998 ; Vincent and Feldman  2002 ; Kuemmerle  2003 ; 
Torres Aleman  2005 ). A literature search revealed that many known growth fac-
tors can serve as survival factors, including  EGF  (Rawson et al.  1991 ),  FGF  
(Araki et al.  1990 ),  HDGF  (hepatoma-derived growth factor) (Tsang et al.  2008 ), 
 HGF  (hepatocyte growth factor) (Xiao et al.  2001 ),  IL3  and  IL4  (Collins et al. 
 1994 ),  NGF  (nerve growth factor) (Batistatou and Greene  1991 ),  PDGF1  (Barres 
et al.  1992 ) and  VEGF  (Harmey and Bouchier-Hayes  2002 ). Based on such 
information, it seems reasonable to speculate that all growth factors may serve as 
survival factors under certain conditions. This hypothesis could probably be vali-
dated computationally by mining cancer transcriptomic data through identifying 
coordinated relationships between the expression patterns of each growth factor 
and some survival pathway. If this turns out to be true, it may imply the existence 
of a common mechanism that links growth factor receptor activation and the 
induction of survival pathways. This would undoubtedly generate new informa-
tion and knowledge about the canonical proliferation pathway(s) since, as dis-
cussed earlier, proliferation is typically accompanied with the activation of 
apoptosis at some level. With this new information, it may be possible to argue 
for the existence of an encoded mechanism to maintain the equilibrium between 
proliferation and apoptosis; specifi cally, overactive proliferation will trigger 
apoptosis while overactive apoptosis may enhance the effect of proliferation. It 
is likely that molecular level computational simulation among the relevant 
 players may lead to interesting insights about how such a mutually inhibitory 
system works in detail.   
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   4.     Functional-state changes at the protein level : It has been observed that the 
activation of some oncogenes can inhibit apoptosis (see the Sect.  7.2.4 ); more-
over, these oncogenes can be constitutively activated through genetic muta-
tions. For example, it has been established that specifi c mutations in  EGFR  can 
activate the protein in the absence of ligand binding (Voldborg et al.  1997 ; 
Gazdar  2009 ). Specifi cally, these gain-of-function mutations can lead to con-
formational changes of the  EGFR  protein mimicking that induced by the natu-
ral ligand  EGF  (Dawson et al.  2005 ). More interestingly, oxidation of specifi c 
residues of  EGFR  (not the same residues with mutations) can accomplish 
exactly the same, i.e., having the protein constitutively activated, as we have 
recently discovered (Ji et al.  2014 ). This may be a general phenomenon, i.e., 
functional-state changes of key cancer-related genes may take place fi rst 
through regulation or selection of accidental post-translational modifi cation 
(e.g., oxidation) in response to the cellular environment. Such regulation-
directed changes may then be gradually replaced by epigenomic or genomic 
level changes (see Chap.   9     for details), possibly to keep the evasion of apopto-
sis more sustained and more energetically effi cient.     

 It is worth mentioning that cancer cells have been found to release factors to 
either stabilize anti-apoptotic proteins or destabilize pro-apoptotic proteins, as 
another way to evade apoptosis. For example, cancer cells tend to activate post- 
translational modifi cation factors to attenuate or abrogate the degradation of 
 MCL1  (Derouet et al.  2004 ; Zhong et al.  2005 ; Akgul  2009 ), an anti-apoptotic 
member of the  BCL2  family. Similar observations have been made that cancer 
cells tend to promote the degradation of pro-apoptotic members of the  BCL2  
family, such as  BAX  and  BIM , through the ubiquitin-proteasome pathway (Zhang 
et al.  2004 ; Meller et al.  2006 ; Brancolini  2008 ). Currently the detailed trigger-
ing mechanisms in releasing these factors are not understood, but it is likely that 
data mining and statistical inference can lead to new information and a better 
understanding of the possible triggering signals.

    5.     Change through functional regulation : In order to assess the impact of  P53  muta-
tions, an examination of gene-expression data between cancer samples with  ver-
sus  those without such mutations has been conducted. Specifi cally, we searched 
for apoptosis-related genes that show consistent expression-level changes 
between the two sets of cancer samples. A wide range of changes were observed 
in the  BCL2  family members without any obvious consistent patterns among the 
tissues with  versus  those without  P53  mutations. The only apoptosis-related 
gene exhibiting consistent expression patterns was  MDM2 , the negative regula-
tor of  P53 . Figure  7.4  shows consistent down-regulation of  MDM2  in samples 
without  P53  mutations  versus  those with  P53  mutations across nine cancer 
types. It is hypothesized that cancer may up-regulate the expression of  MDM2  to 
ensure that  P53  remains inactive before loss-of-function mutations appear in the 
gene. Once loss-of-function mutations occur in  P53 , there is no need to continue 
the up-regulation of  MDM2 , hence its expression level decreases. This observa-
tion is consistent with an earlier statement that mutations in tumor suppressor 
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genes tend to occur in later stages during the development of cancer while the 
inhibition of its function may have taken place through other more reversible and 
less effi cient means such as functional regulation in the early stage.

       As indicated above, expression-level changes among the  BCL2  family members 
between the two groups of samples are clearly not as uniform as the  MDM2  gene 
(data not shown), suggesting that the impact of  P53  mutations is primarily on 
 MDM2  and less on the  BCL2  family members. One possible reason for this observa-
tion could be that the  BCL2  genes may need to be protected against mutations since 
they guard against the activation of apoptosis through other pathways as well. 

  IAP  (inhibitor of apoptosis protein) is an interesting member of the apoptosis- 
inhibitor family as it can terminate apoptosis, even after the caspase genes are acti-
vated, by directly binding with  caspases-3, -7  and  -9  (Deveraux and Reed  1999 ; Shi 
 2004 ). Thus, the gene-expression pattern of the  IAP  gene was investigated and 
found to have highly elevated expression levels for a large fraction of the samples 
without elevated anti-apoptotic  BCL2  gene expression. 

 The above discussion depicts a plausible organization of the possible routes for 
apoptosis evasion. Generally, the apoptotic execution genes tend to remain at rela-
tively low expression levels.  IAP  serves as the last safeguard against the execution of 
apoptosis, even after the activation of the  caspase  genes, through maintaining a high 
baseline expression-level of the protein. Together  P53  and  MDM2  serve as key regu-
lators of the activity level of the apoptosis system, which responds to an intrinsic 
signaling pathway. The large set of  BCL2  genes and their splicing isoforms serve at 

  Fig. 7.4    A comparison of gene-expression levels of  MDM2  in samples without  P53  mutations 
 versus  those with  P53  mutations across nine cancer types: breast cancer (BRCA), cervical cancer 
(CESC), colon cancer (COAD), lung cancer (LUAD), ovarian cancer (OV), pancreatic cancer 
(PAAD), prostate cancer (PRAD), rectum cancer (READ) and thyroid cancer (THCA) (from  left  
to  right ). The y-axis represents the gene-expression levels. The  light  and  dark grays  are for cancer 
samples with and without  P53  mutations, respectively       
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the next layer of signaling and control. Recent studies have shown that not only do 
individual  BCL2  genes fall into two groups with opposing functions, i.e., pro- and 
anti-apoptosis, but also individual  BCL2  genes may have splicing isoforms with 
opposing functions. For example,  MCL1  has two known such isoforms (Boise et al. 
 1993 ; Craig  2002 ; Burlacu  2003 ; Youle and Strasser  2008 ), one being pro-apoptotic 
and the other anti-apoptotic. Numerous signaling pathways can then regulate these 
 BCL2  genes and their splicing isoforms in response to a large variety of survival sig-
nals (see the next section) or alterations at the protein, epigenomic or genomic levels. 
Clearly our understanding of the detailed mechanisms involved in apoptosis inhibi-
tion decreases as we move further away from the core apoptotic execution system. 

 We anticipate that carefully-designed data analyses and statistical inference will 
provide important new insights about the detailed mechanisms relevant to different 
survival pathways, as well as the mechanism(s) by which cancer cells have taken 
advantage of these encoded schemes to acquire new capabilities to avoid apoptosis. In 
time it may be possible to predict the evolutionary processes of cancer cells in select-
ing specifi c survival pathways for a fi xed as well as a changing microenvironment. 

 To better understand the evolutionary trajectories of different cancers in terms of 
which survival pathways are selected and in what order, a detailed understanding of 
the survival mechanisms encoded in human cells is needed. These are of course 
used to stop cell death under severe conditions, which otherwise would lead to pro-
grammed cell death. Such survival pathways may have provided a basic framework 
through which cancer cells developed their initial anti-apoptotic capabilities. Later 
these capabilities may be further developed for more sustained and more effi cient 
survival through the adoption of more permanent changes such as genomic or epig-
enomic alterations to replace the initial changes, either transcriptional or post- 
translational (see Chap.   9     for a more detailed discussion).  

7.2.4       Survival Pathways and Apoptosis 

 To avoid destruction, survival pathways inject interference or termination signals to 
(damaged) cells that are destined or signaled to die. As of now, a number of survival 
pathways have been identifi ed and found to be activated by different conditions. For 
example, the  KEAP1-NRF2-ARE  pathway is a survival pathway in response to 
severe oxidative stress that may cause injury to the cells (Kensler et al.  2007 ). The 
 NFκB -dependent survival pathway can be activated by  TNFα  (Oeckinghaus et al. 
 2011 ).  MNK/EIF4E  is another survival pathway that can be induced by cytarabine, 
a chemotherapeutic that was discovered through analyses of cancers that had devel-
oped drug resistance (Altman et al.  2010 ). A number of other survival pathways 
have also been identifi ed from studies of cancers that have developed drug resis-
tance, including the well-studied multi-drug resistance pathway (Szakacs et al. 
 2006 ) in which hyaluronic acid plays a key regulatory role (Misra et al.  2003 ). At 
the core of this and other known survival pathways is that of the  PIK3/AKT  series of 
reactions (LoPiccolo et al.  2008 ). 
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  AKT  is a centerpiece of multiple survival pathways. A number of proteins and 
signals can activate this protein kinase (see Fig.  7.5 ) through phosphorylation by the 
 PDK1/PRK  complex (see Chap.   6     for a more detailed introduction). It is speculated 
that the conformational change of the  AKT  protein, as induced by the growth factor- 
mediated  PI3K  activation, makes its phosphorylation possible. When activated, 
 AKT  can phosphorylate specifi c residues on a number of key proteins involved in 
signaling to apoptosis, thus inhibiting their function. Proteins so altered include the 
pro-apoptotic members  BAD, caspase-9 , transcription factors in the Forkhead 
 family and the  NFκB  regulator  IKK  (Datta et al.  1999 ).

   Computationally, one should be able to make informative inferences about the 
detailed relationships among the activation of survival pathways and the micro- 
environmental conditions through co-occurrence analyses of the activated survival 
pathways, the inactivated pro-apoptotic members of the  BCL2  family, and the 

  Fig. 7.5    A schematic representation of survival pathways, adapted from (Cell-Signaling-Tech  2011 )       
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activated  versus  inactivated apoptosis signaling pathways, in conjunction with the 
intracellular microenvironment such as oxidative state, hypoxic level and nutrient 
deprivation. The analyses should consider the following scenarios: (a) apoptosis 
signaling pathways that should have been activated, and (b) possible causes for 
“should be” but “not” activated signaling pathways. By making such analyses 
across multiple samples of the same cancer type at different developmental stages, 
one should be able to derive the occurrence order of the apoptosis-inhibition mecha-
nisms adopted by cancer cells of the same cancer type. By conducting this analysis 
across multiple cancer types, it should be possible to derive different evolutionary 
trajectories by different cancer types in adopting different survival strategies. The 
same analytic approach can also be applied to examine possible relationships 
between the adopted apoptosis–inhibition schemes and clinical outcomes of differ-
ent cancers, for example, by the cancer grade (see Chap.   3    ).   

7.3     Cancer Characterization Through Resolution 
of How They Avoid Apoptosis 

 Our current understanding of the triggering mechanisms of apoptosis (see Fig.  7.2 ) 
and the known survival pathways (see Fig.  7.5 ) provides a framework to address 
several fundamental questions. For example, the possible relationships between the 
different routes for survival and the clinical outcome of specifi c cancer cases could 
potentially be derived through large-scale transcriptomic and other  omic  data for all 
cancer types in the public domain. Specifi cally one can ask and possibly address 
computationally the following questions regarding cancer samples:

 –     Do different samples of the same cancer type tend to use consistent pathways to 
trigger their apoptosis system ?  

 –    Do different samples of the same cancer type tend to use consistent pathways to 
inhibit their apoptosis system?   

 –    What are the major factors that may affect the selection of apoptosis activation 
and inhibition pathways ?  

 –    Is it possible to predict the activation and inhibition pathways used by a specifi c 
cancer based on its micro-environmental factors? If not, what other conditions 
need to be considered?   

 –    Are there connections between the average survival rate of a cancer type and the 
activation and inhibition pathways of apoptosis?     

 In addition to these general questions, one can also ask more detailed mechanis-
tic questions about the activation and inhibition of apoptosis and possibly address 
them computationally. For example, it is plausible to address the following:

 –     Why different cancer types have substantially different mutation rates in P53 or 
other cancer-related genes ?  
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 –    Are functions of P53 or other cancer-related genes already inhibited or repressed 
in general before their loss-of-function mutations are selected in cancer-forming 
cells?   

 –    If the answer to the above question is yes, then what are the triggering signals for 
functional inhibition or repression through regulation for a specifi c cancer type?   

 –    Do epigenomic alterations such as DNA methylation tend to occur after func-
tional inhibition through regulation and before genomic mutations are selected 
for the same gene as one would intuitively expect?   

 –    Do cancers with P53 mutations tend to have higher benefi ts for sustained growth 
and survival than cancers without P53 mutations as measured using the terms 
discussed in the last paragraph of Section    7.1   ?     

 Similarly, many other important questions can be asked regarding how different 
cancers evade apoptosis and then have them addressed by computationally mining 
the cancer  omic  data collected on tissue samples at different developmental stages 
(and possibly of different grades). These data are publicly available in databases 
such as the TCGA database (Collins and Barker  2007 ; Cancer-Genome-Atlas- 
Network  2012 ). Here we illustrate with a few examples how one can proceed 
towards solving some of the above questions by addressing simpler issues fi rst and 
then integrating the solutions to provide answers to the questions posed. 

  What do cancers do when they are devoid of P53 mutations?  Our current under-
standing is that loss of  P53  function is benefi cial for cancer development. Intuitively 
one would thus expect that cancers without such mutations may need to functionally 
repress the activity of  P53 . To address this hypothesis, we have examined one set of 
 omic  data collected on 503 breast cancer samples in the TCGA database (Cancer-
Genome- Atlas-Network  2012 ). 157 of these samples (31.2 %) have  P53  mutations 
according to the information provided on the sample set in TCGA. For the remain-
ing samples, 149 have up-regulated expression levels of the  MDM2  gene, the nega-
tive regulator of  P53  that keeps  P53  in an inactive state; 145 have up-regulated 
 BCL2  expressions; 52 have up-regulated  BCL2L2 ; and 77 have down-regulated 
 cytochrome c  ( CYC ) levels. Statistical analyses indicate that gene-expression level 
changes among  MDM2, BCL2  and  BCL2L2  are strongly correlated, suggesting that 
these genes are probably controlled through the same regulatory machinery. See 
Fig.  7.6  for the detailed information.

   Analyses of other cancer types show similar trends in terms of up-regulated 
expression of anti-apoptotic genes and down-regulated expression of pro-apoptotic 
genes, but the actual genes with altered expression levels could be rather different. 
This leads to our next question. 

  What is the level of consistency in terms of up- and down-regulation of the 
apoptosis- associated genes across different cancer types ? To answer this question, 15 
cancer types were examined, namely bladder, brain, breast, colorectal, esophagus, 
gastric, head-neck, liver, lung, melanoma, ovary, pancreas, prostate, renal and thyroid 
cancers (see Appendix for the detailed names of the datasets used). The primary aim 
in analyzing the transcriptomic data of these cancer types was to identify the general 
triggers for apoptotic activation and apoptotic inhibition in different  cancers. The 
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rationale is based on the observation that the relative strengths of these two types of 
triggers determine the ultimate step of cell death or survival. Also, of course, one 
would like to know the evolutionary trajectories of these two competing  processes, 
each having continuously increasing force and complexity. 

 From Fig.  7.7 , it is fi rst noted that the overall consistency level in any category of 
apoptotic genes is fairly low. This singular result suggests that different cancer types 
may have distinct driving forces for cell death and hence use different activation 
pathways of the apoptosis system, possibly due to the different microenvironments 
in different cancers. For example, it was noted that apoptosis is triggered by distinct 
stressors in different cancers, e.g., pancreatic cancer by oxidative stress, brain cancer 
via  P53  induced by DNA damage, gastric cancer often by natural killer cell- mediated 
cytotoxicity and thyroid cancer by ionic level changes. Interestingly, the toll-like 
receptor pathway was found to be consistently up-regulated across all the 15 cancer 
types, suggesting the essential role of this pathway in activating apoptosis.

   The dominating survival signals in each of the 15 cancer types show a diverse 
range. For example, (1) bladder cancer tends to use the  ER  overload response to 
trigger the activation of  NFκB  and the associated survival pathway; (2) ovarian can-
cer triggers the replicative senescence system to curtail cancer rather than inducing 
cell death; (3) renal cancer tends to trigger the hyperosmotic response system for 
survival; and (4) head-neck cancer generally uses the “virus evasion of host immune 
system” mechanism for survival. 

 It is hypothesized that, as cancer continues to evolve, different types of cancers 
may utilize more than one survival pathway as their cellular environments diverge 

  Fig. 7.6    Expression-level assessment of four genes in breast cancer samples (see designation 
along the x-axis) comparing those with  P53  mutations and those without. The y-axis represents the 
gene-expression levels. The  light  and  dark gray  are for cancer samples with and without  P53  muta-
tions, respectively       
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from normal. Such diversity will create more opportunities and pathways to ensure 
survival and overcome apoptosis. It is further hypothesized that mutations may be 
selected to make survival more sustainable and effi cient as pressure from cell death 
mounts. Chapter   9     discusses these issues in a systematic manner.  

7.4     Concluding Remarks 

 The current knowledge about induction and inhibition of apoptosis, as summarized 
in Figs.  7.2  and  7.5 , provides a powerful framework to study inducers of apoptosis 
 versus  inducers of the counteraction, namely survival, across different cancer types. 
It is the availability of transcriptomic and genomic data of these cancer types that 
makes such delineation feasible. By carefully analyzing stress-related pathways that 
are consistently up-regulated and linked to apoptosis, it may be possible to identify 
the major triggers for apoptosis in the cancer type. A similar approach can provide 
information on the triggers for survival. Having such a capability, it is possible to 
study the evolutionary trajectories of the generation of signals for programmed cell 
death and for survival by analyzing  omic  data of cancers at different developmental 
stages. It is further anticipated that, when linking such analyses to cancers with high 
levels of malignancies, one could potentially derive useful insights about why 
 certain cancer types result in greater mortalities than the others.      

  Fig. 7.7    Consistency levels in up- and down-regulated genes involved in: (1) the entire apoptosis 
system; (2) intrinsic signaling pathways; (3) extrinsic signaling pathways; (4) apoptotic execution; 
and (5) apoptosis regulation (from  left  to  right ), across 15 cancer types. For each differentially- 
expressed apoptotic gene, its consistency level is defi ned as the maximum number of cancer types that 
show consistent up- or down-regulation in this gene’s expression (as defi ned in Fig.  7.5 ). The y-axis 
gives the distribution of the consistency levels of genes involved in one of the above categories       
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    Appendix 

    Table 7.1    Transcriptomic datasets of 15 cancer types are collected 
from the GEO database and used in our data analysis   

 Bladder  GSE31676 
 Brain  GSE42906 
 Breast  GSE108106 
 Colorect  GSE209167 
 Esophagus  GSE20347 
 Gastric  GSE198264 
 Headneck  GSE98444 
 Liver  GSE143234 
 Lung  GSE198043 
 Melanoma  GSE31894 
 Ovary  GSE267128 
 Pancreas  GSE154717 
 Prostate  GSE69561 
 Renal  GSE156415 
 Thyroid  GSE36786 
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Chapter 8
Cancer Development in Competitive 
and Hostile Environments

From the perspective of cancer cells, they reside and must survive in a highly 
stressful and unfriendly environment. From the beginning, the cells have been 
under tremendous pressure to evolve in order to rid themselves of accumulated 
glucose metabolites and hence survival via cell division, as discussed in Chap. 
5. In order to sustain their proliferation for long-term survival, they must con-
tinuously adjust their metabolism to adapt to the micro-environmental stresses 
and concurrently avoid the detection and destruction by myriad defense mecha-
nisms that are present in humans to neutralize and destroy infectious organisms 
and aberrant cells. The adaptations of these cells to the challenging environment 
continue to drive their metabolism to become increasingly more irregular. As 
they continue to accumulate abnormalities, these cells must also continue to 
evolve to gain additional protection, thus ensuring their survival in the increas-
ingly hostile environment. The ongoing processes of evolution and adaptation 
may drive the cellular metabolism to become even more anomalous, thus form-
ing a vicious cycle and serving as a new driver for survival via proliferation. The 
defense systems that these evolving cells must overcome include: (1) the cellu-
lar surveillance and protection systems such as apoptosis and limited growth 
potential; (2) competition from the neighboring cells, a tissue- level mechanism 
for eliminating less fit cells and (3) the immune system. The main question 
addressed in this chapter is: How have the cancer cells evolved to survive these 
obstacles and become increasingly more malignant? The question of how the 
cancer cells respond to and overcome other microenvironment-induced stresses 
will be deferred to Chap. 9.

The first set of obstacles that these cells must overcome is intracellular, namely 
apoptosis, anti-growth signals and limited growth potential. As discussed in Chap. 6, 
hyaluronic acid fragments generated by the neoplastic cells can provide them the 
ability to avoid the activation of apoptosis and anti-growth mechanisms. In addition, 
the hypoxic environment can facilitate a gain in the capability for unlimited growth 
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potential by activating telomerase to repair the shortened telomeres during cell 
 division (Nishi et al. 2004). The focus of this chapter is on how such cells over-
come challenges from their competing neighbors, the acidic environment and the 
immune system.

8.1  Cell-Cell Competition in Growing Tissues

Studies on Drosophila in the past decade, particularly in the past few years, have 
revealed that viable cells can die solely due to competition with their neighboring 
cells in growing tissues. Specifically during tissue growth, cell-cell communication 
plays a critical role in determining whether cells remain viable in the tissue or die. 
This is accomplished through cells sensing the fitness level of the neighboring cells 
and eliminating those determined to be less fit by signaling their apoptosis and then 
engulfing the debris (Vivarelli et al. 2012). This mechanism allows a tissue to keep 
the fittest cells during development, repair and remodeling when growth is involved. 
The available data suggest that competitive interactions among cells are regulated at 
the tissue level, i.e., competitions stay within boundaries of developmental compart-
ments of organs (Johnston 2009). More specifically, super-competitors can elimi-
nate less fit neighbors and replace them by their own off-spring, so the total tissue 
size is not affected by such competition. Interestingly, a counterbalance mechanism 
has also been discovered, namely the resistance of a competition-based elimination 
accomplished by adjusting the elimination threshold (Portela et al. 2010). Some 
details are summarized as follows.

Cell fitness level: Cell-cell competition in growing tissues was discovered when 
it was found that Drosophila cells with a specific mutation, Minute, are viable on 
their own, but are actively eliminated when growing in the same environment but 
containing wild-type cells (Simpson 1979; Simpson and Morata 1981). Further 
studies revealed that the expression level of dmyc, the Drosophila homolog of the 
human MYC gene, determines the winners and losers in such a competition (de la 
Cova et al. 2004; Moreno and Basler 2004). A later study suggested that a similar 
competition mechanism may exist in mice with P53 serving as a sensor and reporter 
of cellular fitness, where an up-regulated P53 puts the host cell in a growth disad-
vantage (Bondar and Medzhitov 2010a). Data from this study revealed that cells 
harboring loss-of-function P53 mutants are unable to report their own fitness levels 
even when they are damaged, and hence can elude the machinery for eliminating 
them, which, otherwise, should have been competitive losers (Bondar and Medzhitov 
2010b). This finding indicates that loss of P53 function gives a survival advantage 
to the host cell in addition to the other growth advantages, as discussed in the earlier 
chapters. More recent studies further suggest that a number of other cancer-related 
genes such as RAS and SRC are also involved in the complex network in signaling 
and regulating cellular competition in growing tissues (Prober and Edgar 2000; 
Levayer and Moreno 2013).
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The Flower code: A basic question in studying cell-cell competition is: How do 
cells recognize each other’s fitness level? Again turning to Drosophila, recent stud-
ies have produced some exciting data about this issue. Specifically, the losing cells 
in a competition all express specific isoforms of the Flower (fwe) protein, one of its 
physiological functions being that of a Ca+2 channel (Yao et al. 2009). The protein 
is known to have three splicing isoforms: the predominant fwe(ubi) isoform and two 
fwe(loss) isoforms. The study found that, when putting wild-type wing-disc cells of 
Drosophila in the milieu containing cells of the same type but harboring over- 
expressed dmyc genes, two less frequently used isoforms, fwe(loss), will be 
expressed in the disadvantaged cells. This happens only during competition, i.e., 
during growth with multiple sub-populations in the same environment (Rhiner et al. 
2010). Similar observations have also been made about other competitive situations 
among Drosophila cells, suggesting that labeling less fit cells with fwe(loss) expres-
sion is a general mechanism for putting such cells in a queue to be eliminated.

Loser elimination mechanism: The expression of the fwe(loss) isoforms will 
 ultimately lead to activation of the caspase cascade in the host cells (Baker 2011), 
and also activate an engulfment process in the neighboring cells expressing the 
 winner fwe(ubi) isoform, ultimately leading to the engulfment of the loser cells by 
the winners (Johnston 2009).

Relevant signaling pathways: Two signaling pathways have been found to be 
involved in signal transduction among neighboring cells to inform their relative fit-
ness: the WNT pathway and the Hippo-Salvador-Warts (HSW) pathway (Tamori and 
Deng 2011). Specifically, the HSW pathway, known for controlling an organ’s size 
through its regulation of cell proliferation and apoptosis, controls the expression of 
dmyc via the yki transcription factor (Neto-Silva et al. 2010; Ziosi et al. 2010). The 
WNT pathway, known as the key regulator of cell survival, cell fate decision and 
tissue growth, serves as a signaling pathway for cell competition independent of 
dmyc.

A balancing force: A separate study has recently discovered that there is a coun-
teracting mechanism in Drosophila that protects cells from being killed after they 
are labeled with fwe(loss) (Portela et al. 2010). It was found that dsparc, the 
Drosophila homolog of the human SPARC gene, serves as a regulator for protecting 
the losing cells by increasing the activation threshold of the caspase cascade. 
Interestingly, the human SPARC gene, long implicated in cancer development, has 
been found to serve multiple roles such as promotion of cancer development and 
metastasis (Puolakkainen et al. 2004; Sansom et al. 2007),as well as tumor suppres-
sion (Mok et al. 1996). These data suggest the possibility that a similar SPARC- 
centric mechanism may exist in human cells because of the multiple connections of 
the over-expressed SPARC gene with human cancers.

Extending the knowledge to humans: A substantial amount of information has 
been accumulated about the different roles played by SPARC in human cancer, sug-
gesting the possibility that the gene may serve as some type of master regulator. It 
has, however, been challenging to piece together all this information into a cohesive 
SPARC-centric model from the published data since these reports are often conflict-
ing (Arnold and Brekken 2009). If, however, all the data are reliable, this suggests a 
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high complexity of the SPARC-associated mechanism. The discovery of the dsparc 
gene serving as a regulator for cell survival during cell-cell competition may pro-
vide a unifying scheme for human cells, which is consistent with all the published 
human SPARC data.

One can imagine the challenging nature of developing a logical framework of 
cancer-related SPARC data based on the above discussion, particularly when the 
relevant context information about MYC and the human homolog of fwe is not con-
sidered. The challenge arises from our knowledge that the effects of SPARC could 
be highly context-dependent, specifically depending on the relative fitness levels of 
the neighboring cells. This is based on the assumption that a similar mechanism 
indeed exists in human, which involves cell elimination through fitness competition 
and protection of such cells from elimination under some to-be-identified condi-
tions. A recent study has found that deficiency in the mouse homolog of the fwe 
gene can reduce the susceptibility to skin papilloma formation in mice (Petrova 
et al. 2012), suggesting the possibility that when no cells are labeled as unfit by 
expressing fwe(loss), there will be no trigger to activate SPARC for protecting such 
cells from being eliminated. This further suggests that the rescue provided by 
SPARC may represent a novel survival pathway that cancer cells may have possibly 
learned to use. Of course, to derive a SPARC-centric model in mouse or human 
 similar to that in Drosophila may require integrated investigation of omic data gen-
eration, analysis and computational inference.

Despite reservations expressed about cell culture-based cancer studies in various 
chapters, this system has the advantage of enabling the experimentalist to study mul-
tiple sub-populations of cancer cells expressing different levels of MYC in order to 
elucidate the functional roles of SPARC in cancer. This will require the consideration 
of MYC and the human homolog of the fwe gene, along with genes identified to be 
relevant to the functionalities of SPARC as reported in the literature. Clearly, both 
RNA and DNA sequencing data will be needed to facilitate the inference of splicing 
isoforms of the key relevant genes, coupled with the available expression data on 
these genes in the public domain. It is worth emphasizing that while the mouse 
homolog of fwe has been identified (Petrova et al. 2012),the human homolog has not 
yet. Hence, the elucidation of the SPARC-regulated survival mechanism may repre-
sent a major undertaking in both bioinformatics analysis and omic data generation.

8.2  Cancer Versus Normal Cells in a Lactic Acidic 
Environment

As discussed in Chaps. 1 and 5, the reprogramming of energy metabolism is a hall-
mark of cancer. That is, glycolytic fermentation replaces aerobic respiration as the 
main form of glucose metabolism (at least in the early stage). A direct result of this 
change is that substantially more lactate, as the terminal receiver of electrons in 
glucose metabolism, is produced and transported extracellularly. To maintain the 
intracellular electro-neutrality when releasing lactate, the cells release one proton 
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for each released lactate, the anionic form of lactic acid. This leads to increased 
acidity in the extracellular environment of the neoplastic cells, which will also affect 
the neighboring normal cells. The question addressed here is: How do the neoplastic 
cells and the normal cells fare in the lactic acidosis environment?

Normal cells: The typical extracellular pH for normal cells is 7.3–7.4 and the 
intracellular pH ranges between 6.99 and 7.20. In contrast, the extracellular pH of 
cancer cells tends to range between 6.2 and 6.9. Such an acidic extracellular pH, 
particularly when coupled with hypoxia, can lead to cell death via the activation of 
apoptosis, specifically through a direct activation of the caspase genes without 
going through the upstream regulators of apoptosis such as P53 (Xu et al. 2013). 
Consequently, the acidic extracellular pH created by cancer cells provides these 
cells with an opportunity to encroach into the areas occupied by normal cells.

Neoplastic cells: While the acidic microenvironment will ultimately lead to the 
death of normal cells, this does not seem to be the case with cancer cells, at least not 
at the same level. The literature has suggested that such an acidic environment may 
be more favorable for cancer cells to thrive, as will be discussed later in this 
section.

8.2.1  Maintaining a Neutral or Slightly Alkaline Intracellular 
pH in Cancer Cells

Compared to normal cells, cancer cells tend to have higher intracellular pH levels, 
typically ranging between 7.12 and 7.56 (Calorini et al. 2012). This is consistent 
with the general understanding that a slightly alkaline environment is more ideal for 
cell proliferation. But this also creates a pressure on the neoplastic cells because of 
the pH difference, hence a proton gradient between the two sides of their cell mem-
brane. Cancer cells seem to have found some effective responses to accommodate 
the proton gradient while maintaining the pH difference, which seems not to be 
available to normal cells. A comparative analysis of genome-scale transcriptomic 
data on six types of solid cancers has recently been carried out, namely breast, 
colon, liver, two lung (adenocarcinoma, squamous cell carcinoma) and prostate can-
cer, to understand how cancer cells, but not normal cells, have accomplished this 
(Xu et al. 2013). The following observations were made.

Cellular responses to increased acidity: In glycolysis, the degradation of each 
mole of glucose generates 2 lactates, 2 protons and 2 ATPs, detailed as follows:

glucose + 2NAD+ + 2ADP + 2Pi → 2 ATP + 2NADH +2H2O + 2 lactate + 2 H+

while in contrast the complete degradation of glucose through oxidative phosphory-
lation is pH neutral. The two extra protons generated by glycolytic fermentation 
must be removed or neutralized to avoid acidosis. Four monocarboxylate transport-
ers, all in the SLC16A family, have been found to serve as exporters of the excess 
protons (Halestrap and Price 1999; Halestrap 2012), thus maintaining the intracellular 

8.2 Cancer Versus Normal Cells in a Lactic Acidic Environment



210

pH neutrality (Casey et al. 2010). Among the four transporter genes, two are up-
regulated in five out of the six cancers, suggesting that these transporters have been 
activated to export protons extracellularly. Specifically, SLC16A1 is  up- regulated in 
breast, colon, liver cancer and lung adenocarcinoma, and SLC16A3 is up-regulated 
in colon and squamous cell lung cancer, as shown in the top part of Fig. 8.1. 
These data are consistent with previous reports that these transporter genes are 

Fig. 8.1 A heat-map of expression-level changes in transporter genes and associated genes in six 
cancer types: breast, colon, liver, lung adenocarcinoma, squamous cell lung cancer, and prostate 
cancer, each represented by one column from left to right, in comparison with their matching 
control tissues. A total of 28 genes are included here, with each row representing one gene from 
top down: two genes for proton exporters: SLC16A3, SLC16A1; seven genes encoding the V0 
domain of V-ATPase:ATP6V0E2, ATP6V0E1, ATP6V0B, ATP6V0A2, ATP6V0A1, ATP6AP2, 
ATP6AP1;12 genes encoding the V1 domain of V-ATPase: ATP6V1H, ATP6V1G3, ATP6V1G2, 
ATP6V1G1, ATP6V1F, ATP6V1E2, ATP6V1E1, ATP6V1D, ATP6V1C2, ATP6V1C1, ATP6V1B1, 
ATP6V1A;two genes for mTORC1: GBL and FRAP1; and five genes for NHE anti-porters: SLC9A8, 
SLC9A7, SLC9A3R1, SLC9A3, SLC9A2. Each entry is the log-ratio between a gene’s expression 
levels in cancer and the matching control, averaged across all the samples for each cancer type, 
with gray representing down-regulation, white for no change and black for up-regulation as defined 
in the side bar on the right side of the figure. The detailed information about the datasets used here 
is given in the Appendix. Adapted from (Xu et al. 2013)
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up-regulated in breast, colon, lung and ovarian cancer (Ganapathy et al. 2009; 
Pinheiro et al. 2010). Prostate cancer is the only exception here, as none of the four 
transporter genes were up-regulated, suggesting that the intracellular pH in prostate 
cancer may not be particularly low and hence the relevant genes are not needed. 
This is consistent with the fact that prostate cancer tends to use lipids as the major 
nutrient and thus may not generate as many protons as the other five cancer types 
do, reducing the need for the removal of excess protons (Liu et al. 2008).

SLC16A1 and SLC16A3 are known to be partially regulated by intracellular 
hypoxia (Xu et al. 2013). In addition, hyaluronic acid has been found capable of 
regulating these genes (Slomiany et al. 2009). While these two conditions tend to be 
satisfied in neoplastic cells, neither of them will be met in normal cells in general, 
providing one possible explanation of why these genes are up-regulated only in 
cancer cells. In addition to the above proton exporters, other genes have also been 
examined that may be involved in the removal or neutralization of protons in cancer 
cells across multiple cancer types. Details follow.

Activation of V-ATPase: ATPases, transmembrane bidirectional transporters, can 
import many of the metabolites necessary for cellular metabolism and export toxins 
and wastes that can be detrimental to the health of the host cells (Perez-Sayans et al. 
2009). V-ATPase is an ATPase that can transport solutes extracellularly and is fueled 
by ATP hydrolysis. For each proton it pumps out, it brings in one cation such as Na+ 
or K+ to maintain the electro-neutrality, and is found to be up-regulated in numerous 
cancer types (see Fig. 8.1). From Fig. 8.1, one can see that multiple V-ATPase genes 
are up-regulated in five cancer types except for prostate cancer, which is consistent 
with the earlier discussion regarding the SLC16 genes in prostate cancers, suggest-
ing that V-ATPase is being used to remove the excess protons in the five cancer 
types.

Now the question is: What regulates V-ATPase? A literature search revealed that 
V-ATPase can be regulated by mTORC, a key cell-growth regulator (Pena-Llopis 
et al. 2011). By examining the two genes encoding mTORC1, namely GBL and 
FRAP1, one can see that both genes are up-regulated in five out of six cancer types 
except for colon cancer (see Figure 8.1). Hence it is reasonable to speculate that it 
is the combined effect of decreased pH and up-regulation of mTORC1 that activates 
V-ATPase to pump out the excess protons while normal cells, which are not prolif-
erating and hence have no up-regulated mTORC-encoding genes, will not survive 
the increased acidity level.

Na+-H+ exchanger (NHE): NHE anti-porters represent another class of proteins 
that can transport protons out and exchange each for a cation to maintain intracel-
lular electro-neutrality. They have an important role in the regulation of intracellular 
pH (Mahnensmith and Aronson 1985). An examination of the five genes encoding 
this group of transporters (see Fig. 8.1) found that these genes are highly  up- regulated 
in the two lung cancer types among the six under consideration. Knowing that its 
main function is related to sodium homeostasis, one may speculate that the NHE 
system may be used here as a backup for removing protons, possibly under emer-
gency conditions. It is interesting that the expression patterns are highly comple-
mentary between NHE and V-ATPase in five out of the six cancer types as shown  
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in Fig. 8.1, suggesting that the NHE anti-porters may play a complementary role to 
that of the V-ATPases through coordinated regulation by an unknown mechanism.

The NHE genes have been found to be regulated by both growth factors and pH, 
among a few other factors (Donowitz and Li 2007). Again, the triggering condition 
of the system partially explains why it is more active in cancer than in normal cells. 
Based on the above results, one can expect that carefully-designed computational 
analyses of transcriptomic data of multiple cancer types may reveal detailed regula-
tory mechanisms regarding why some cancers use the NHE system while others use 
the V-ATPase system to export protons.

Carbonic anhydrases are important in pH neutralization in cancer cells: It has 
been previously suggested that carbonic anhydrases (CAs) have a role in neutraliz-
ing protons in cancer cells. For example, a model for proton export via the 
membrane- associated CAs has been reported (Swietach et al. 2007). Basically, the 
membrane-bound CAs reversibly catalyze the otherwise slow reaction from 
CO2 + H2O to H2CO3 (carbonic acid), which dissociates into HCO3

− (bicarbonate) 
and H+ in an acidic extracellular environment, as detailed by the following.

 HCO H H CO CO H O3 2 3 2 2
- ++ +   

HCO3
− is then imported across the membrane via an NBC transporter (Johnson 

and Casey 2009), where it reacts with a H+ to form CO2 and H2O. Note that the 
membrane-permeability of CO2 is regulated by the ratio between the content of 
membrane cholesterol and that of phospholipid (Itel et al. 2012), specifically the 
higher the ratio, the lower the permeability. As discussed in Chap. 11, cells in 
hypoxic conditions tend to have a lower membrane cholesterol content, hence mak-
ing the membrane more CO2 permeable (see Chap. 11). Thus, under hypoxic condi-
tions, the high CO2 efflux facilitates a cycle for removing excess H+.

This model has been checked against gene-expression data of the six cancer 
types under consideration. Figure 8.2 shows expression changes of the relevant 
genes between cancer and the matching normal tissue. From the figure, one can see 
that: (1) at least one membrane-associated CA is up-regulated in five out of six 
 cancer types (except for prostate cancer); and (2) at least one NBC gene is up-regu-
lated in five cancer types. Interestingly the cytosolic CAs are generally down-regu-
lated in all cancer tissues but prostate cancer. This observation indicates that (1) 
oxidative phosphorylation is not being used as actively as in five cancer types versus 
their matching normal tissues, hence producing less CO2 in cytoplasmic matrices of 
cancer cells versus normal cells; and (2) prostate cancer relies on oxidative phos-
phorylation in its glucose metabolism.

Knowing that CA9 and CA12 are hypoxia-inducible in brain cancer (Proescholdt 
et al. 2005) and that the NBC genes are pH inducible (Chiche et al. 2010),one is 
tempted to predict that under hypoxic conditions with low pH, the membrane- 
associated CA genes and the NBC genes are activated to accomplish the functions of 
the above model.

Neutralization of acidity through decarboxylation reactions: A novel mechanism? 
Our recent study has led to the proposal of a novel de-acidification mechanism 
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in cancer cells (Xu et al. 2013), based on a similar mechanism used in Lactococcus 
lactis for releasing lactic acid that the bacteria produce to the extracellular space.  
It has been reported that bacteria use the glutamate decarboxylases (GAD) to 
 consume one (dissociable) H+ during the decarboxylation reaction that GAD cata-
lyzes (Cotter and Hill 2003) as presented, which converts glutamate to γ-aminobutyrate 
(GABA) plus carbon dioxide.

−OOC–CH2–CH2–CH(NH3
+)–COO− + H+ → CO2 + −OOC–CH2–CH2–CH2–NH3+

Two human homologues of GAD(glutamate decarboxylase), GAD1 and GAD2, 
have been found. A previous study has demonstrated that the activation of GAD 
leads to the synthesis of GABA in human brain (Hyde et al. 2011), suggesting that 
the human GAD genes have (or cover) the same function as the GAD gene in 
Lactococcus lactis, i.e., catalyzing the GABA-synthesis reaction.

Data analyses on the six cancer types have further revealed that GAD1 is up- 
regulated in three of the six cancer types, namely colon, liver and lung adenocarci-
noma, and GAD2 is up-regulated in prostate cancer. In addition, the concentration 
of glutamate, the main substrate of the above reaction catalyzed by GAD, is  generally 
elevated in cancer (DeBerardinis et al. 2008). Hence, one can posit that the above 
reaction takes place in human cancer with the following supporting evidence, as 
depicted in Fig. 8.3: (a) at least one importer of glutamate is up-regulated in all six 
cancer types; and (b) at least one gene encoding the GABA exporter is up- regulated 
in four out of the six cancer types, indicating that the GABA is not used by cancer 
cells in general, but instead serves only as a vehicle for H+ removal.

To elucidate what may have triggered the activation of the GAD genes, one can 
search the database for transcription regulations, Cscan (Zambelli et al. 2012), to 
identify ones for GAD. The search suggests that GAD is regulated by FOS (FBJ 
murine osteosarcoma viral oncogene homolog), a known oncogene (Wang et al. 
2003). Analyses of transcriptomic data in the ENCODE database (Rosenbloom 

Fig. 8.2 Expression-levels of genes involved in carbonic anhydrases (CAs) pH regulation in six 
cancer types, each represented by one column: breast, colon, liver, lung adenocarcinoma, squamous 
cell lung cancer, and prostate cancer (from left to right). 10 genes are included here, with each row 
representing one gene from top down: three membrane- associated CAs: CA9, CA14, CA12;three 
NBC-transporter genes: SLC4A7, SLC4A5, SLC4A4; and four cytosolic CAs: CA7, CA3, CA2, 
CA13. Each entry is defined similarly to that in Fig. 8.1. Adapted from (Xu et al. 2013)
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et al. 2012) indicate that the expression of GAD1 is positively correlated with that 
of FOS in the HUVEC cell-line. Based on this information, one can predict that 
FOS, in conjunction with some pH-associated regulator, controls GAD. This then 
would lead to the activation of GABA synthesis and remove one H+ for each 
GABA molecule synthesized, with the unneeded GABAs ultimately exported by the 
up- regulated GABA exporters from the cells. A more carefully designed analysis 
will likely provide more convincing data to support this novel possibility of a 
 de- acidification mechanism used by cancers; further studies may lead to the identi-
fication of the pH-related regulatory factors responsible for GAD up-regulation in 
cancer cells.

A model for cancer to maintain intracellular pH in a normal range: A model for 
de-acidification is depicted in Fig. 8.4 based on the above discussion, which con-
sists of six possible mechanisms for exporting or neutralizing excess protons. It is 
worth emphasizing that hypoxia and growth factors, in conjunction with the pH 
level, may serve as the main regulators of the de-acidification processes, thus mak-
ing them available to cancer cells but not to normal cells in general. It is also notable 
that when dealing with acidity, cancer cells do not have to acquire new capabilities 
as all those genes and systems discussed above are encoded in normal cells. These 
capabilities are utilized by cancer cells, but not normal cells, simply because cancer 
cells have created the appropriate conditions that can trigger them, probably 
selected to give cancer cells a survival advantage.

Fig. 8.3 Expression-levels of genes involved in the conversion of glutamate to GABA and CO2, 
along with the genes encoding the GABA transporters in six cancer types, each represented as one 
column from left to right: breast, colon, liver, lung adenocarcinoma, squamous cell lung cancer, 
and prostate cancer. 11 genes are included in this figure, with each row representing one gene from 
top down: two GAD genes: GAD2, GAD1; four GABA transporter genes: SLC6A8, SLC6A6, 
SLC6A11, SLC6A1; and five glutamate transporter genes: SLC1A7, SLC1A6, SLC1A4, SLC1A3, 
SLC1A2. Each entry is defined similarly to that in Fig. 8.1. Adapted from (Xu et al. 2013)
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This model can be expanded to include a number of transcriptional regulators, 
tying the effector transporters and enzymes to a number of cancer-related genes. For 
example, a detailed examination of the above analysis shows that 44 genes are 
involved in the de-acidification process. Searches of these genes against the Cscan 
database indicate that 28 out of the 44 genes are predicted to be regulated by nine 
proto-oncogenes, namely BCL3 (B-cell lymphoma 3-encoded protein), ETS1 (pro-
tein C-ets-1), FOS (FBJ murine osteosarcoma viral oncogene homolog), JUN, 
MXI1 (MAX-interacting protein 1), MYC, PAX5 (paired box protein), SPI1 (tran-
scription factor PU.1) and TAL1 (T-cell acute lymphocytic leukemia protein 1), and 
17 genes are regulated by two tumor-suppressor genes, IRF1 and BRCA1, suggest-
ing that there is a strong connection between de-acidification and cancer growth.

Fig. 8.4 A model for de-acidification in cancer cells using six sets of transporters, each repre-
sented as one component along the cell membrane (the outer circle), along with the triggering 
conditions for their activation, depicted using arrows. The intermediate, carbonic acid, in the 
reversible enzymatic reaction is not shown. Also, NAD+ and NADH are omitted in the reaction 
shown for glycolysis

8.2 Cancer Versus Normal Cells in a Lactic Acidic Environment
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8.2.2  Lactic Acidosis Facilitates Cancer Cells to Grow 
and Become More Malignant

Recent studies have established that lactic acidosis in the pericellular space does not 
only provide a competitive advantage to cancer cells over neighboring normal cells, 
but also serves as a protector and facilitator for cancer cells to overcome some chal-
lenges that the hostile environment imposes on them (Hirschhaeuser et al. 2011). We 
now examine this issue from multiple angles to understand how an acidic  environment 
facilitates cancer cells to progress and to become increasingly more malignant.

Evading apoptosis: As discussed in Chaps. 1 and 7, cancer cells tend to lose the 
triggering mechanisms to apoptosis, hence allowing them to remain viable even 
when these cells have accumulated large numbers of abnormalities. Lactic acidosis 
has been found to play an essential role in facilitating such a change. It has been 
observed that lactic acidosis correlates with drug resistance in multiple cancer types 
(Wu et al. 2012), indicating a functional link between lactic acidosis and cell sur-
vival although the detailed mechanisms are yet to be fully understood. In addition, 
lactic acidosis has been found to have protective effects on cancer cells under mul-
tiple cytotoxic stresses, including starvation of glucose and glutamine (Ryder et al. 
2012a; Wu et al. 2012). These studies showed that extracellular acidosis induces 
up-regulation of BCL2 and BCLXL, two anti-apoptotic members of the BCL2 fam-
ily, and down-regulation of PUMA and BIM, highly pro-apoptotic relatives of BCL2. 
Hence, the increased ratio between the activated anti-apoptotic and pro-apoptotic 
members (or relatives) of the BCL2 family provides a protection against apoptosis 
activation (Gross et al. 1999), where the acid-sensing enzyme GPR65 (G-protein 
coupled receptor 65) serves as the mediator of the observed up-regulation of BCL2 
and BCLXL (Ryder et al. 2012b).

Becoming increasingly more malignant: As has been widely observed, extracel-
lular lactic acidosis can enhance tumorigenesis. For example, lactic acidosis was 
recently found to directly reduce necrosis-induced cell death and moderately 
increase ROS production (Riemann et al. 2011), with the latter tending to be associ-
ated with increased survival (Trachootham et al. 2009). In addition, lactic acidosis 
can also trigger the activation of ERK1-2 and P38 MAP kinases. Together they have 
essential roles in the survival of cancer cells. While the latter can phosphorylate 
BCL2, thus protecting the cells against apoptosis (Ruvolo et al. 2001), the former 
can increase the expressions of BCL2, BCLXL and MCL1, as well as stabilize the 
MCL1 protein (Balmanno and Cook 2009). Furthermore, acidosis has been found to 
increase phosphorylation of transcription factor CREB via P38, suggesting its pos-
sible role in promoting cell proliferation, since inhibition of P38/CREB 
 phosphorylation has been shown to have anti-proliferative effects. Overall, this 
study has demonstrated that acidosis leads to enhanced cell survival and that the 
P38/CREB- mediated transcriptional program can have lasting effects, which remain 
even after the cells leave the tumor environment (Riemann et al. 2011).

Facilitating invasiveness and metastasis: Degradation of the ECM represents the 
first step in tumor cell invasion and metastasis (see Chap. 10 for details). An acidic 
environment will promote this process in multiple ways, including the activation of 
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MMPs, the enzymes for matrix degradation. Specifically, it has been reported that 
low pH facilitates the redistribution of the activated CTSB (cathepsin B), a lyso-
somal aspartic proteinase, to the surfaces of malignant cells (Rozhin et al. 1994); 
and acid-activated Cathepsin L can promote amplification of the proteinase cascade 
through the activation of UPA (Goretzki et al. 1992), which is known to promote the 
conversion of MMPs to their active forms. It is noteworthy that another function of 
activated MMPs is to release various growth factors from the fragmented ECMs 
(Nagase et al. 2006).

Reducing the effectiveness of immune cells: Multiple mechanisms have been 
identified regarding how lactic acidity weakens immune responses to cancer devel-
opment. The best understood mechanism is that of lactic acid directly interrupting 
the normal functions of T-cells (Fischer et al. 2007). Specifically, activated T-cells 
use glycolytic fermentation instead of oxygen respiration for ATP production, and 
normal functions of T-cells depend on the efficient removal of their glycolytic prod-
ucts, particularly lactic acid, into the extracellular space. Consequently a high con-
centration of lactic acid in the pericellular space will form a (partial) blockade of the 
lactate transporter MCT1, hence resulting in impaired T-cell function.

Another affected mechanism is related to the reduced responses by the natural 
killer (NK) cells of the innate immune system. Lactic acid can inhibit NK cell func-
tion via direct inhibition of their cytolytic function and by indirectly increasing the 
number of myeloid-derived suppressor cells that together inhibit NK cytotoxicity to 
cancer cells (Husain et al. 2013).

Overall, through their rapid evolution, cancer cells have learned to create an 
acidic microenvironment to facilitate them to thrive and expand, and to promote cell 
death in their non-cancerous neighboring cells. This environment also provides other 
factors for them to develop angiogenesis and the mobility to migrate (Hirschhaeuser 
et al. 2011). For example, a study has reported that membrane vesicles shed by can-
cer cells into the extracellular space contain VEGF and two different types of MMPs, 
and that the acidic environmental pH can lead to vesicle rupture, hence releasing 
these pro-angiogenesis factors that prompt angiogenesis (Taraboletti et al. 2006).

8.3  Cancer Development Under Immune Surveillance

The relationship between the immune system and cancer development is a very com-
plex one, quite different from what one may intuitively speculate: a healthy immune 
system will prevent cancer from happening. While the current understanding about 
immunity and cancer is far from being complete, it is generally understood that dif-
ferent components of the immune system play different roles throughout cancer 
development, including both anti- and pro-cancer activities. One aspect is probably 
true: without immune responses such as inflammation, most cancers will not develop, 
knowing the deep connections between the immune system and the ECM (de Visser 
et al. 2006; Sorokin 2010; Lu et al. 2012). In addition, immune responses may have 
different roles at different stages during cancer development, including inflamma-
tory responses in the beginning of tumorigenesis and providing growth factors by 
tumor-associated macrophages (TAMs) throughout cancer development.

8.3 Cancer Development Under Immune Surveillance
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A brief introduction to the human immune system: The human immune system 
consists of two layers, with some overlap, of defense mechanisms: the innate 
immune system and the adaptive immune system. The former is a non-specific and 
fast reacting system that can detect and destroy non-self cells, e.g., bacteria and 
viruses, and the latter can adapt its responses during the invasion of non-self patho-
gens with a more specific detection and elimination mechanism of the invading 
organism. The innate response is triggered when pathogens or altered self, some-
times referred to as self pathogen in the literature, are detected. Both systems can be 
triggered by inflammatory signals, the first response to foreign invasions or to dis-
ruption of tissue homeostasis (see Chap. 6), and by each other (Alberts et al. 2002).

The innate immune system consists of: (a) the inflammatory signals, (b) the com-
plement pathway that attacks the surfaces of non-self pathogens and (c) multiple 
types of immune cells such as macrophages, neutrophils, dendritic cells, mast cells, 
eosinophils, basophils and natural killer cells. Each of these cell types serves dis-
tinct purposes and is often located in different sites, which together identify and 
eliminate non-self pathogens. The complement pathway serves as the command 
center of the innate immune system, with its key functions being to: (1) signal for 
inflammatory cells; (2) label pathogens for destruction by other immune cells; and 
(3) directly attack the cell membrane of pathogens. Another component of the 
innate system acts by engulfing and destroying invading organisms.

The adaptive immune system is comprised of lymphocytes, the majority being 
B-cells and T-cells, both of which carry receptor molecules that recognize specific 
targets. T-cells recognize a non-self-pathogen only after its cell-surface antigens 
(molecular fragments of the pathogen) have been processed and presented. Using 
membrane-associated immunoglobulins, B-cells bind intact antigens (e.g., from 
pathogens), then internalize and process (degrade) them before presenting the 
derived peptides via MHC (major histocompatibility complex) II to helper T cells. 
If the antigen is deemed foreign, the T cells secrete cytokines leading to a clonal 
expansion of the B cells producing the appropriate antibody. Gene switching then 
leads to secreted antibodies capable of binding intact pathogens and orchestrating 
their destruction. The main difference here is that the adaptive immune system 
retains an immunological memory through its B cells after its initial response to 
each pathogen type, thus allowing the system to have tailored a more effective 
response to individual pathogens.

Cancer development is essentially rooted in the overlap between tissue mainte-
nance and immune responses for the following reasons: (1) immune systems 
respond to two types of signals, invasion of foreign pathogens and disruption of 
tissue homeostasis by recruitment of immune cells to the relevant sites; (2) signals 
reporting tissue damage are designed to come from damaged ECMs, but can also be 
generated directly from cells under persistent hypoxic conditions; (3) persistent 
low-grade immune responses, namely inflammation, will lead to persistent hypoxia; 
and (4) continuous interactions between innate and adaptive immune cells will lead 
to loss of tissue architecture (de Visser et al. 2006). By integrating this information 
with the information offered in Chaps. 5 and 6, one can see that: (1) persistent 
inflammation contributes to the initiation of a cancer; (2) the loss of tissue architec-
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ture induced by persistent interactions between innate and adaptive immune cells 
will lead to wound over-healing (de Visser et al. 2006), a characteristic of neo-
plasms; and (3) the co-evolutionary relationships between the neoplastic cells and 
their pericellular innate and adaptive immune cells start from the very beginning, 
which must have contributed to the formation of the future conjugative relations 
between cancer cells and some immune cells such as TAMs (see below).

Knowing all this, one has to ask about the validity of cancer studies carried out 
on immune-deficient mouse models, particularly for fundamental mechanism stud-
ies of cancer or drug treatments of cancer. This has been a common practice mainly 
to overcome the issue that active immune systems of mice will kill implanted for-
eign cells but at the expense of losing a key, actually indispensable, ingredient in 
cancer development.

Furthermore, it is worth noting that while activated immune cells attack “patho-
gens” based on their recognition of the non-self surface signals, cancer cells are 
self-cells, only altered. Consequently, it is more challenging for the (fresh) immune 
cells to recognize and attack these self-pathogens than foreign invaders such as 
bacteria or viruses. Even if the self-pathogens have distinct molecules on their sur-
faces, they tend to be only weakly immunogenic, which may be the result of selec-
tion by the immune system. Various cancer immunity studies using mouse models 
have found that T-cells tend to either ignore such weak signals or not attack them 
aggressively (Houghton and Guevara-Patino 2004). These studies have raised a 
number of questions about cancer immunity such as:(a) Which types of the cancer- 
related genetic alterations may have their products recognized by a competent 
immune system? And (b) Why are some alterations more detectable by the immune 
system than others? Answers to these questions may shed new light on our under-
standing of cancer immunity.

Cancer immunity: A yet to be understood system: The hypothesis of cancer 
immuno-surveillance was initially proposed in 1982 by Lewis Thomas, which states 
that a human immune system has the capability to recognize and destroy nascent 
transformed cells (Thomas 1982). Since then the hypothesis has evolved to one 
much richer, now referred to as the cancer immunoediting system, which consists of 
three phases: elimination, equilibrium and escape (Dunn et al. 2002; Kim et al. 
2007). Specifically, the elimination phase suggests that a competent immune system 
can recognize antigens associated with neoplastic cells, and then attack and elimi-
nate them. The following molecules are believed to serve as “antigen” signals for 
neoplastic cells: uric acid, pro-inflammatory signals such as TLR (toll-like receptor) 
ligands, heat shock proteins and hyaluronic acid chains. γδ T-cells, αβ T-cells and 
killer T-cells form the basic components of the antitumor defense mechanism that 
can detect cancer-specific antigens. For example, CD4+ and CD8+ αβ T-cells have 
been found to serve such roles in mouse (Yusuf et al. 2008). The type II interferon, 
IFNγ, represents a key arsenal for attacking and killing the neoplastic cells by these 
T-cells (Dighe et al. 1994).

During the elimination phase, not all neoplastic cells are necessarily detected and 
eliminated. Then, interactions between cancer cells and immunity move to the equi-
librium and escape phases. There are documented studies showing the possible 
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existence of the hypothesized equilibrium phase when the surviving neoplastic cells 
remain inactive for an extended period of time. For example, two kidney-transplant 
recipients from the same donor both developed melanoma within 2 years of receiv-
ing the kidney, neither of whom had a history of cancer. Further investigation 
revealed that the donor was treated for primary melanoma 16 years before, and, at 
the time of donation, the donor was believed to be cancer free (MacKie et al. 2003).

During the equilibrium phase, new neoplastic cell populations may be generated 
if the initial elimination phase did not destroy all the neoplastic cells. The new cell 
populations are selected by the genetic disposition of the patient, particularly their 
immune systems, and hence may have the makeup for escaping immune detection. 
One can further carry out hypothesis-driven analyses of the available omic data in 
the TCGA database (The Cancer Genome Atlas Data Portal, 2010) to assess the 
plausibility and generality of the existence of such an equilibrium phase during 
cancer development across different types of cancers.

The pro-cancerous roles played by the immune system: It has been established that 
increased infiltrating lymphocytes, including both T-cells and B-cells, in cancer tis-
sues generally correlate with favorable prognosis while, in contrast, increased infiltrat-
ing innate immune cells, such as macrophages and mast cells, correlate with increased 
tumor angiogenesis and poor prognosis (de Visser et al. 2006; Dirkx et al. 2006). 
Currently the detailed mechanisms are not well understood. Again, data mining and 
statistical inference could have important ramifications in identifying pathways and 
gene groups with distinct expression patterns between these two classes of cancer 
samples, and hence potentially provide a deeper understanding and new insights about 
the complex relationships between cancer and their infiltrating immune cells.

It has been well established that, when tissue homeostasis is disrupted, macro-
phages and mast cells are first recruited, and they, in turn, release multiple types of 
signals to recruit innate immune cells for tissue repair. The activation of the innate 
immune system will then lead to the activation of the adaptive immune system, 
which generally requires the creation of a pro-inflammatory environment (Charles 
2001), indicating interactions between the two immune systems. As discussed ear-
lier, this, if continues persistently, will lead to cycles of excessive tissue remodeling 
and repair, as well as loss of tissue architecture (de Visser et al. 2006). This, of 
course, increases the opportunity for cancer development.

In addition to the pro-cancer roles played by the innate immune system, pub-
lished studies have also found that B-cells are essential for maintaining chronic 
inflammation (Hamel et al. 2008),known to be associated with pre-malignant 
 progression. Therefore, potentially B-cells may also have indirect pro-cancer roles 
during cancer development.

Overall, while the detailed mechanisms and impact of adaptive immunity in 
 cancer development are rather complex and not fully understood, chronic activation 
of the innate immune cells contributes to cancer development (de Visser et al. 2006). 
Multiple types of chronically activated immune cells therefore exert cancer- 
promoting effects directly by influencing proliferation and survival of neoplastic 
cells, as well as by indirectly modulating neoplastic microenvironments to favor 
cancer progression.
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8.4  Elucidating Detailed Relationships Between Immunity 
and Cancer Evolution

Immunity seems to be most essential in cancer development based on the informa-
tion provided above. Some important interactive relationships between immune 
responses and cancer development have been established. These include the conju-
gative relationship between cancer cells and TAMs (see Fig. 8.5) and immune cells 
serving a selection mechanism for more robust cancer cells. However, many detailed 
relationships between the two are yet to be elucidated. For example, a few questions 
about their relationships are listed below, which could benefit from well-designed 
computational data mining and associated statistical inference:

 – It is known that multiple types of immune cells can infiltrate cancer tissues. One 
question is: Can one possibly estimate the composition of the infiltrating immune 
cells, in terms of their types and population sizes in a tissue sample, based on the 
available transcriptomic data? Along this line of questioning, one can further 
ask: How do the sub-populations of different infiltrating immune cells change 
during the course of cancer evolution? Does the composition of such a cell popu-

Fig. 8.5 A schematic illustration of the relationships between cancer cells and TAMs, where 
arrows showing the feeding relationships among cancer cells, TAMs and T-cells. The figure is 
adapted from (Wang and Joyce 2010)
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lation at the early stage of a cancer have any predictive power for the cancer’s 
evolutionary trajectory or 5-year survival rate? Or more specifically, are there 
relationships between the composition of the infiltrating cell population and the 
clinical phenotype of a cancer?

 – Macrophages probably represent the most abundant immune-cell infiltrates into 
cancer tissues (Bingle et al. 2002). It is natural to ask: How do the TAMs  co- evolve 
with the cancer cells? More specifically, what are the common differences 
between TAMs across different cancer types and normal macrophages? In the 
conjugative relationship between TAMs and cancer cells, what other signals/
nutrients do these two types of cells exchange with each other in addition to the 
ones depicted in Fig. 8.5?

 – The same types of questions can also be asked about other types of infiltrating 
immune cells, including both the innate and the adaptive immune cells that have 
been detected in a cancer microenvironment.

Clearly it is very challenging to address these questions experimentally, not to 
mention the amount of time and expense needed. In contrast, computational tech-
niques provide a unique and powerful approach in generating highly useful informa-
tion and addressing some of these questions when the relevant transcriptomic data 
are available. A key tool needed is a computational capability for de- convoluting the 
transcriptomic data collected on a cancer tissue sample to contributions from indi-
vidual cell types present in the cancer tissue, which will allow one to see the detailed 
sub-populations of different cell types and their contributions to various activities as 
reflected by the gene-expression data. While a detailed description of such a de-
convolution technique is discussed in Chap. 2, an outline is summarized as follows.

Each cell type in the mixture has its own uniquely expressed genes that are not 
expressed in other cell types. In addition, the key characteristics of each cell type 
can possibly be captured by a (generalized) covariance matrix that reflects the 
invariant relationships among expression patterns of different genes in a cell under 
different conditions. A de-convolution process is, in essence, to determine (1) the 
fractions of individual cell sub-populations in a mixture of multiple cell types and 
(2) contributions by each cell type to the gene-expression data collected on the mix-
ture, which are most consistent with the covariance matrix for each cell type derived 
based on clean cell line-data collected under multiple conditions, as well as with the 
estimated fractions of individual cell types in the collected tissue-cell population. 
Using a  de-convolution tool like this, one can decompose each gene-expression 
dataset  collected on cancer tissue samples into gene-expression contributions from 
different cell types. Example questions that can be addressed through such data 
analyses may include: How does the population size of TAMs change over the 
course of development of a specific cancer type? Similarly one can ask: Is there any 
correlation between the immune cell population and the proliferation rate of the 
associated cancer? Or how do the activated functionalities of TAMs or T-cells 
change during the course of cancer evolution? We fully expect that such studies 
could lead to fundamentally novel information about cancer initiation, development 
and metastasis.
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8.5  Concluding Remarks

In order to understand the clinical phenotype and the evolutionary trajectory of a 
cancer, it is essential to study the interplay between cancer cells and other cell types 
in their pericellular environment such as immune cells in vivo, particularly along the 
developmental axis. Such investigations will allow one to examine the problem of 
cancer development in a more realistic setting since continuous and complex inter-
actions between the neoplastic cells and their neighboring cells, including immune 
cells, probably define the key characteristics of a cancer. While traditional cancer 
studies in a controlled and isolated setting have clearly generated a great amount of 
information about the detailed molecular and cellular level mechanisms, they tend 
to suffer from being overly simplistic and from missing key information associated 
with essential interactions between cancer cells and their co-evolving microenviron-
ments and the interaction results. Computational data analyses of cancer tissues 
allow one to integrate the rich molecular level, some cellular level and tissue level 
information with the enormously large pool of cancer omic data. Such an approach 
has the potential to identify key and subtle relationships among different players and 
provide highly informative models to guide experimental design for further studies 
in a highly rationalized manner. It is anticipated that tightly integrated studies 
between computational and experimental approaches will prove to be most effective 
in tackling complex cancer systems biology problems, hence possibly revealing the 
complex roles played by the two classes of immune cells in cancer development, as 
well as defining the key characteristics of individual cancers. An improved under-
standing about the relationships between cancer and immune responses has consid-
erable potential in improving capabilities for cancer treatment.

 Appendix

The gene-expression data for the six cancer types, (breast, colon, liver, lung 
adenocarcinoma, squamous cell lung, prostate), were downloaded from the GEO 
database (Edgar et al. 2002) of the NCBI. For each cancer type, the following crite-
ria were applied in selecting the dataset used for this study: (1) all the data in 
each dataset were generated using the same platform by the same research group; 
(2) each dataset consists of only paired samples, i.e., cancer tissue sample and the 
matching adjacent noncancerous tissue sample; and (3) each dataset has at least ten 
pairs of samples. In the GEO database, only six cancer types have datasets satisfying 
these criteria. A summary of the 12 datasets, 2 sets for each cancer, is listed in the 
following table.
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Table 8.1 Gene expression data for six cancer types used in transcriptomic data analysis in Sect. 8.2

Cancer type Dataset 1 Dataset 2 Pairs

Breast cancer GSE14999  
(Uva et al. 2009)

GSE15852  
(Pau Ni et al. 2010)

61/43

Colon cancer GSE18105  
(Matsuyama et al. 2010)

GSE25070  
(Hinoue et al. 2012)

17/26

Liver cancer GSE22058  
(Burchard et al. 2010)

GSE25097  
(Tung et al. 2011)

97/238

Lung  
adenocarcinoma

GSE31552 
 (Tan et al. 2012)

GSE7670  
(Su et al. 2007)

31/26

Lung squamous  
cell carcinoma

GSE31446  
(Hudson et al. 2010)

GSE31552  
(Tan et al. 2012)

13/17

Prostate cancer GSE21034  
(Taylor et al. 2010)

GSE6608  
(Chandran et al. 2007)

29/58
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    Chapter 9   
 Cell Proliferation from Regulated 
to Deregulated States Via Epigenomic 
Responses 

                  It was established in the previous chapters that cells, under chronic conditions 
of hypoxia and/or ROS accumulation, must evolve for survival to overcome the 
pressure created by continuous glycolytic-metabolite accumulation plus possi-
bly other pressures. This leads to continuous synthesis and export of hyaluronic 
acids in the early stage of a cancer development, as observed in many cancers. 
The fragments of the hyaluronic acid chains released into the pericellular space 
immediately become signals for infl ammation, cell-cycle activation, cell prolif-
eration, cell survival and angiogenesis, all designed for tissue repair except that 
no tissue is injured here. These molecules are continuously generated as long as 
the hypoxic or ROS conditions persist, hence providing driving signals for tis-
sue repair on a continuous basis. In contrast, when a tissue is indeed injured, the 
hyaluronic acid fragments are released from the damaged underlying ECM 
rather than from the cells directly, hence the signaling will not continue 
indefi nitely. 

 As the neoplastic cells continue to evolve by changing their metabolism to adapt 
to the challenging microenvironment, they also continuously change their microen-
vironment as a side-product of their altered metabolism, making their environment 
increasingly more stressful and unfamiliar. In time, the environment may become so 
atypical and stressful that no condition-specifi c stress responses encoded in the 
genomes can overcome the conditions, hence putting these cells in a life-or-death 
situation. Recent studies on epigenomics suggest that cellular systems have a gen-
eral stress-response mechanism to handle unfamiliar, persistent and severe stressors 
through epigenomic modifi cations, possibly as a last resort for survival. The 
increased utilization of the general stress-responses as observed in cancers refl ects 
the challenging nature of the pressures imposed upon them. While the utilization of 
such a general stress-response mechanism aids the cells in overcoming the stress 
encountered, they also direct the cells onto evolutionary trajectories considerably 
less reversible than those created by condition-specifi c responses. In such a case the 



230

ensuing evolution becomes increasingly more irreversible and uncontrollable when 
genomic mutations are selected to replace certain cellular activities accomplishing 
the same functionalities, possibly driven by sustainability and energetic reasons, 
leading to increasingly more malignant cells. 

9.1      Changing Microenvironments Caused 
by Evolving Neoplastic Cells 

    The development of neoplastic cells is the result of cells responding to the stressful 
microenvironment such as chronic hypoxia, increased ROS and persistent infl am-
mation. Concurrently, the evolving cells also further change the micro- and intracel-
lular environments as side-products of their altered metabolism, which may further 
drive the evolving cells to become increasingly more malignant, forming a vicious 
cycle. For example, it is known that cancer cells tend to create an acidic pericellular 
environment by releasing higher-than-normal quantities of lactic acid as a result of 
their altered glucose metabolism, initially induced by their hypoxic environment. 
As a result, the altered microenvironment induces further changes in the cellular 
metabolism as discussed in Chap.   8    . The same can be said about other micro- 
environmental changes, such as hypoxia-induced angiogenesis leading to increased 
ROS level in neoplastic cells. Here a systematic examination is presented regarding 
how the microenvironment changes as a cancer evolves, taking multiple factors into 
consideration such as (1) hypoxia, (2) ROS, (3) the composition of the pericellular 
matrix, and (4) the composition of local stromal cells. We will also discuss how 
cells respond to such changes by altering the activities of various metabolic and 
other activities, leading to further altered microenvironments. From these analyses, 
it can be seen that it is the active interplay and co-adaptation between the neoplastic 
cells and their microenvironments directed by instructions encoded in the genomes 
that drive the interactions from the originally harmonic to the increasingly more 
antagonistic and stressful during their co-evolution. The example given in Chap.   5     
on the co-adaptation and co-evolution between  Pseudomonas fl uorescens  and its 
viral parasite serves a good framework of thinking when considering the co- evolving 
and antagonistic relationships between the cells and the microenvironment. 

9.1.1     Hypoxia in a Cancer Microenvironment 

 Previous studies have established a strong correlation between the cellular O 2  level 
and the survival rate of cancer patients (Vaupel  2008 ). Specifi cally, the level of 
hypoxia plays a vital role in defi ning the malignancy of a cancer. Expression data of 
tissue samples of multiple cancer types are examined here in terms of how their 
hypoxic level changes as a cancer progresses. In Fig.  9.1 , the average expression 
level of the  HIF1α  gene, a most widely used marker gene for hypoxia, was 
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calculated and plotted across multiple samples for each of the four stages of mela-
noma and gastric cancer, respectively. These two cancer types were selected since 
the former represents one of the most aggressive cancers and the latter is a relatively 
slow growing cancer. One can see from Fig.  9.1  that the hypoxia level generally 
increases from the early stage to stage 4 for both cancer types, while the detailed 
increasing patterns are different between the two: gastric cancer exhibits an increase 
from stage 1 to stage 2, but then remains fl at after while melanoma shows a steady 
increase over the fi rst three stages, but with a substantial jump from stage 3 (radial 
growth stage) to stage 4 (radial vertical growth stage), which is consistent with the 
general knowledge about the growth pattern of this cancer type.

   Generally cells will adjust their O 2  consumption by altering their metabolism, 
redox homeostasis and other O 2  consuming processes, in response to reducing oxy-
gen levels. As a result, numerous pathways will alter their activity levels. These 
changes are coordinated by a few key pathways such as the unfolded protein response 
( UPR ),  mTOR  signaling and transcription regulation by the  HIF  genes. A number of 
fundamental processes are regulated by  UPR  and  mTOR  signaling, such as (1) trans-
lation attenuation, (2) cell cycle arrest in the G 1  phase, (3) induction of ER stress, (4) 
production of proteins involved in chaperon function and protein folding, (5) activa-
tion of  JNK  and  TRAF2  (tumor necrosis factor receptor-associated factor 2) and (6) 
apoptosis inhibition. In addition, a large number of pathways are regulated by the 

  Fig. 9.1    Expression levels of  HIF1α  normalized with respect to the internal control for each 
 dataset across stages 1 through 4. ( a ) Gastric cancer (dataset GSE13195 in GEO) and ( b ) mela-
noma (dataset GSE12391 in GEO). The detailed information about the two datasets is given in 
Appendix. The y- and x-axes give the average gene- expression level and the stage, respectively, 
with the  leftmost  denoting normal tissue and the following three representing stages 2 through 4 for 
( a ) and stages 1 through 4, namely, common melanocytic nevus, dysplastic nevus, radial growth 
phase melanoma, and vertical growth phase for ( b ). For each boxplot,  three horizontal lines  are 
shown, the 75 percentile line in the  top , the  middle thick line  inside a  box  for the mean, and the 25 
percentile line in the  bottom        
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 HIF  genes as discussed in Chaps.   5     and   6    . As an example, Fig.  9.2  shows a few 
pathways in central metabolism that are directly regulated by the two  HIF  genes. 
Some of the induced responses will make the tumor environment more stressful and 
unfamiliar to the underlying cells such as the increased acidity in the pericellular 
environment as a direct result of the increased activity level of glycolytic fermenta-
tion caused by increased hypoxia. Another example is the production of hyaluronic 
acid caused ultimately by hypoxia, which results in cell proliferation.

9.1.2        Intermittent Hypoxia 

 Intermittent hypoxia occurs when the cellular O 2  level alternates between normoxia 
and hypoxia, which takes place repeatedly throughout the development of a cancer 
when the tumor goes through cycles of re-oxygenation due to repeated tumor 
angiogenesis. Studies on responses to chronic intermittent hypoxia have shown that 
it can induce ROS production (Peng et al.  2006 ). Intermittent hypoxia in cancer 
may trigger a variety of processes by way of increased ROS levels. A recent study 
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  Fig. 9.2    Roles of the  HIF  genes in central metabolism (adapted from (Majmundar et al.  2010 ))       
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revealed that intermittent hypoxia can enhance stem-like characteristics and 
 suppress differentiation propensities in neuroblastoma (Bhaskara et al.  2012 ). 
Specifi cally, the study found that stem cell markers  CD133  and  OCT4  are 
 up- regulated in intermittent hypoxia-conditioned cells compared with cells grown 
under normoxia, suggesting that intermittent hypoxia may play a selective role for 
more malignant cancer cells. Another study showed that metastasis-associated 
genes were signifi cantly up-regulated in tumors of intermittent hypoxia- conditioned 
mice (Chaudary and Hill  2009 ).  

9.1.3     Changes in Cellular ROS Level 

 Cellular ROS is predominantly produced by the NADPH oxidase complexes. 
Previous studies have found that cancer cells tend to have increased ROS levels 
compared to normal cells, possibly due to the combination of increased metabolic 
activities, re-oxygenation and mitochondrial malfunction. The current knowledge is 
that moderately increased ROS is benefi cial to the growth of cancer cells while 
substantially elevated ROS may drive cancers to metastasize (Pani et al.  2010 ) or 
lead to cell death (Cai and Jones  1998 ). 

 To elucidate the detailed functional roles played by ROS throughout a cancer 
development, it is important as a starting point to examine how the ROS level changes 
as a cancer progresses from the early to advanced stages. Also it is important to scru-
tinize if cancers with distinct clinical phenotypes, such as fast  versus  slow growing 
cancers, may correlate with their cellular ROS levels. While it is not trivial to directly 
measure the ROS level  in situ , one can possibly estimate the ROS level through analy-
ses of the expression levels of genes that are known to respond to such changes, one 
being  SOD2  (superoxide dismutase 2), whose expression level has been used as a 
marker for the cellular ROS level (Zelko et al.  2002 ). Figure  9.3  shows changes in 
 SOD2  expression levels with the progression of gastric cancer and melanoma, respec-
tively, on the same set of transcriptomic data used for Fig.  9.1 . It can be seen from the 
fi gure that the ROS level increases from the early stage to stage 4 in both cancer types.

   When the ROS level exceeds the antioxidant capacities, the cells become  oxida-
tively stressed . A number of biological processes are known to respond to the ROS 
increase to protect the cells. Specifi cally, ROS can regulate directly or indirectly the 
activities of some important proteins such as those involved in  GPR  signaling, apop-
tosis, angiogenesis, immune response and general stress response. Specifi cally this 
list includes  ATM ,  ERKs ,  HSF1 ,  JAK ,  JNKs ,  NFκB ,  PI3K ,  PKC  (protein kinase C), 
 PLCγ1  (phospholipase C-γ1) and  STAT , indicating the global impact of ROS- induced 
stress, many of which will lead to changes in a range of metabolic activities, hence 
further altering the cellular and extracellular environments. To fi nd out all the path-
ways responsive to increased ROS, one can carry out statistical correlation analysis 
to identify genes whose expression patterns exhibit strong correlations with changes 
in ROS levels (e.g., the one shown in Fig.  9.3 ), and carry out pathway enrichment 
analysis among such genes.  

9.1 Changing Microenvironments Caused by Evolving Neoplastic Cells
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9.1.4     Compositional Changes in ECM 

 Similar analyses to the above can be carried out on ECM composition changes and the 
corresponding responses. The ECM maintains tissue integrity by providing cell cohe-
sion and organizing the constituent cells into the specifi c shape of a tissue. The 
mechanical properties of ECM have essential roles in cell differentiation, prolifera-
tion, adhesion, migration and apoptosis (Guilak et al.  2009 ). As discussed in Chap.   8    , 
the relative concentrations of collagen, laminin and elastin are among the key deter-
minants of the mechanical properties of a matrix. Specifi cally, collagen provides the 
tensile strength, hence the resistance to plastic deformation (Buehler  2006 ), while 
elastin defi nes the extensibility and the reversible recoil (Muiznieks and Keeley  2010 ). 
In addition, laminins, unlike the fi ber-forming collagens and elastins, form network-
like structures to provide resistance to tensile forces. The rich set of glycoproteins in 
ECM such as fi bronectins, proteoglycans and glycosaminoglycans like hyaluronic 
acid also contribute to the mechanical properties of the ECM. An examination of the 
expression levels of ECM-component encoding genes can provide useful information 
about the composition of an ECM and changes in the composition as a cancer pro-
gresses when the examination is carried out over cancer samples at different stages. 

 To demonstrate the feasibility of obtaining such information, a number of genes 
whose proteins are known to contribute to the basic components of the ECM were 
examined here in terms of their expressions. The goal was to determine how the 
expression patterns of these genes change as a cancer advances, thus providing infor-
mation, albeit indirect, of changes in the relevant component concentrations in the 
ECM. Figure  9.4  shows expression changes of three such genes in gastric cancer and 
melanoma, namely  COL4A2 ,  HAS2  and  FN1 , where  COL4A  is a gene responsible 

  Fig. 9.3    Expression levels of  SOD2  normalized with respect to the internal control for each data-
set across stages 1 through 4. ( a ) Gastric cancer and ( b ) melanoma. Other defi nitions are the same 
as in Fig.  9.1        
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  Fig. 9.4    Expression patterns of ( a  and  b )  COL4A2 , ( c  and  d )  HAS2  and ( e  and  f )  FN1  genes, 
across stages 1 through 4. ( a ,  c , and  e ) Gastric and ( b ,  d , and  f ) melanoma. Other defi nitions are 
the same as in Fig.  9.1        
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for one form of collagen production,  HAS2  for hyaluronic acid and  FN1  for fi bronectins. 
Overall, these genes are up-regulated in cancer  versus  normal tissues and generally 
increase as a cancer progresses, although the detailed up-regulation patterns are dif-
ferent between the two cancer types.

   If one is interested in predicting the physical properties of a matrix from the 
expression data of the ECM genes, it is fi rst necessary to carry out association anal-
yses between the expression levels and the matching data collected on the physical 
properties of the matrix. Clearly, measurement of such properties  in situ  represents 
a challenging technical problem and is probably not feasible on a large scale. 
Fortunately, computational approaches can provide useful information here. 
Knowing that very little data are currently available on the physical properties of 
ECMs, one can directly conduct association analyses between clinical phenotype 
data and expression data of EMC-relevant genes as follows. One can select a few 
phenotypic characteristics such as fast  versus  slow growing or easy-to-metastasize 
 versus  diffi cult-to-metastasize cancers, and then identify ECM-related gene- 
expression patterns that are distinctly associated with each phenotypic characteris-
tic in a similar fashion to the typing or staging prediction discussed in Chap.   3    . Then 
the observed relationships between gene-expression patterns and phenotypic char-
acteristics can be applied to the limited physical property data in order to establish 
associations between gene-expression patterns and ECM physical properties. For 
example, knowing that a stiffer matrix tends to make a cancer grow faster (Wells 
 2008 ), one may be able to establish links between the stiffness of a matrix and gene- 
expression patterns via the observed relationships between expression patterns and 
fast  versus  slow growing cancers. 

 A number of biological processes are known to respond to changes in the 
mechanical properties of the ECM. For example, the stiffness of a matrix modulates 
a diverse range of cellular/tissue activities such as focal adhesion, cytoskeletal 
assembly, cell-cell assembly, migration, cell proliferation, cell differentiation, tissue 
development, regeneration and repair (Mason et al.  2012 ). Computational analyses 
of  omic  data should be able to identify all, at least most of the biological processes 
that respond to changes in the physical property of an ECM through association 
analyses of gene-expression patterns, thus leading to a more comprehensive under-
standing of how changes in ECM invoke alterations in cellular metabolism and 
changes in the interplay between the neoplastic cells and the microenvironment.  

9.1.5     Changes in Local Stromal-Cell Population 

 As discussed in Chap.   6    , when a tissue is injured, various immune cells are recruited 
from circulation, leading to changes in the local stromal cell population and facilitat-
ing tissue repair. It has been well established that different types of injuries will lead 
to different sets of tissue-repair signals, resulting in distinct stromal cell populations. 
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The subpopulation sizes of different cell types can thus provide information 
about the nature of an injury. Since cancer is being treated like an injured tissue 
(see Chap.   6    ), knowing the subpopulation sizes of different immune and stromal 
cells can provide useful information about the main facilitators of a cancer’s evo-
lution and possibly their relationships with the evolutionary trajectories. That is, 
these cell population sizes may refl ect, at least to some extent, nature of the 
underlying cancer. 

 As discussed earlier and detailed in Chap.   2    , transcriptomic data analyses can be 
used to estimate the relative subpopulation sizes of different stromal cells and how 
the subpopulation sizes change as cancer advances. It is worth noting that some 
normalization is needed when using such data to ensure that the observed expres-
sion levels of cell type-specifi c genes across different samples can be compared 
directly with each other. Such normalization can help to overcome the inherent 
problem of different tissue samples being processed with varying methods by sepa-
rate labs, leading to the possibility that samples have different types of systematic 
errors introduced in terms of the (relative) subpopulation sizes of distinct cell types. 
Only with such normalization can one assume that the relative population sizes of 
different cell types in the resected samples are the same as in the tissues  in situ . 
Then one can argue that the average expression level of genes uniquely expressed in 
specifi c cell types provide a reasonable estimate of the relative subpopulation sizes 
of the relevant cell types. 

 To demonstrate that this is feasible, a number of genes known to be uniquely 
expressed in specifi c stromal cell types, such as  IL2RA  and  SELL  ( L-selectin , also 
known  CD62L ) in T-cells and  CD68  in macrophages, were examined. Figure  9.5  
shows the expression level changes of these genes as a cancer progresses in both 
gastric cancer and melanoma. From the fi gure, one should be able to estimate 
changes in the (relative) subpopulation size of a specifi c cell type based on the aver-
age expression changes of genes uniquely expressed across multiple samples in the 
cell type. To accurately estimate the subpopulation-size changes, say as needed for 
in-depth analyses such as a determination of which biological processes are trig-
gered by such changes, it may be necessary to include all the genes uniquely 
expressed in a specifi c cell type. A reliable way to accomplish this may prove to be 
a very useful tool for the general community that does cancer transcriptomic data 
analyses for functional studies of cancer.

   The data presented in this section indicate that the cancer cellular activities and 
microenvironment become increasingly different from the normal ones. A natural 
question is:  What happens when the environment-induced stresses become suffi -
ciently unfamiliar and challenging to the underlying cells that none of the condition- 
specifi c stress response systems, as outlined in this section, can overcome the stress ? 
If not responded properly, the stressful conditions may kill the cells. It is likely that 
this is the point where epigenomic responses are being heavily used, as observed 
from transcriptomic data of different cancers, a topic that is addressed in the follow-
ing section.   

9.1 Changing Microenvironments Caused by Evolving Neoplastic Cells
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  Fig. 9.5    Expression levels of ( a  and  b )  IL2RA , ( c  and  d )  CD68 , and ( e  and  f )  SELL , each normal-
ized with respect to the internal control for each dataset, across stages 1 through 4. ( a ,  c  and  e ) 
Gastric and ( b ,  d  and  f ) melanoma. Other defi nitions are the same as in Fig.  9.1        
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9.2     Epigenetic Response: A General Stress-Response System 
to Unfamiliar and Persistent Stresses 

 The epigenome of a cell refers to the collection of all the chemical modifi cations to 
the genomic DNA and the associated histones that impact on DNA-protein interac-
tions, folding, packing and nucleosome positioning, thus facilitating or inhibiting 
various DNA-related functions such as transcription or DNA replication (see Chaps. 
  1     and   2     for details). Such changes can be passed on to the next generation during 
cell division. Among many possible epigenetic modifi cations, two have been exten-
sively studied, namely DNA methylation and histone modifi cation. Genes with 
methylated CpG islands are transcriptionally repressed or even inhibited, depend-
ing on the level of methylation. The interaction between a histone and DNA is 
formed by electrostatic attraction between the positive charges on the histone sur-
face and the negative charges on DNA. Hence, modifi cations on histone proteins 
such as methylation or ubiquitination may change the charges of the surface resi-
dues. This in turn can alter the conformation and hence the transcriptional accessi-
bility of a folded DNA and ultimately enhance or repress the expression of the 
relevant gene. 

 As an emerging area of cancer research, numerous studies have appeared on 
cancer epigenomics, resulting in the identifi cation of a number of general character-
istics of cancer epigenomes, as well as cancer type-specifi c epigenomic modifi ca-
tions (Jones and Laird  1999 ; Feinberg and Tycko  2004 ). For example, it has been 
reported that cancer genomes tend to have a global reduction in DNA methylation, 
while promoter regions of protein-encoding genes generally have increased meth-
ylation compared with the matching noncancerous genomes (Das and Singal  2004 ). 
Also, a global reduction in mono-acetylated and tri-methylated histone  H4  has been 
observed in the epigenomes of numerous cancer types (Fraga et al.  2005 ). To a 
lesser degree, over-production of histone methyltransferases for methylation of the 
K4 or K27 residue of histone  H3  has been found across multiple cancer types (Yoo 
and Hennighausen  2012 ; Yang et al.  2013 ). In addition, specifi c epigenomic changes 
have been consistently observed in tissue samples of specifi c cancer types. For 
example, hyper-methylation of the CpG island in the promoter region of the  GSTP1  
(glutathione  S -transferase pi 1) gene was observed in 90 % of prostate cancers 
(Nakayama et al.  2004 ), and increased methylations have been consistently observed 
in a number of nuclear genes such as  TERT  (telomerase reverse transcriptase), 
 DAPK1  (death-associated protein kinase 1),  RARβ  (retinoic acid receptor β),  MAL  
(myelin and lymphocyte protein) and  CADM1  (cell adhesion molecule 1) in cervi-
cal cancer genomes. 

 Here the goal is to understand how the overall level of epigenomic activities dif-
fers between cancer and matching normal tissues, as well as how this level changes 
as a cancer progresses. To accomplish the goal, the total expression levels of genes 
involved in epigenomic activities were compared, and the expression levels of a 
comprehensive set of genes involved in DNA methylation and histone modifi cation, 
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respectively, were examined. The genes investigated include: three DNA methyla-
tion enzymes and 65 enzymes involved in histone modifi cations, namely (a) 
 DNMT1 ,  DNMT3A  and  DNMT3B  for DNA methylation, and (b)  HDAC1 ,  HDAC2 , 
 HDAC3 ,  HDAC4 ,  HDAC5 ,  HDAC6 ,  HDAC7 ,  HDAC8 ,  HDAC9 ,  HDAC10 ,  HDAC11 , 
 KAT2B ,  KAT2A ,  KAT7 ,  KAT5 ,  KAT1 ,  KAT6B ,  KAT8 ,  AKT6A ,  EP300 ,  KMT2A , 
 SETD1A ,  SETD2 ,  SETD7 ,  SETD8 ,  EHMT2 ,  EHMT1 ,  SUV39H1 ,  SUV39H2 , 
 SETDB1 ,  DOT1L ,  SETMAR, CARM1 ,  KMT2C ,  KMT2D ,  SETD2 ,  KMT2B ,  NSD1 , 
 ASH1L ,  WHSC1L1 ,  SMYD3 ,  WHSC1 ,  EZH1 ,  KMT2E ,  SUV420H1 ,  SETD3 , 
 SUV420H2 ,  SETD1B ,  PRDM9 ,  SETDB2 ,  SMYD1 ,  KMT2A ,  EZH2 ,  KDM4A , 
 KDM4B ,  KDM5D ,  KDM6A ,  JHDM1D ,  KDM5A ,  KDM5B ,  KDM5C ,  KDM4D , 
 KDM4C ,  PHF2 ,  KDM6B  and  PHF8  for histone modifi cation. For each of these two 
sets of enzymes, the sum of the expression values of each gene is calculated over a 
set of samples for each of three cancer types: gastric cancer, melanoma and lung 
cancer. The results are plotted in Fig.  9.6 . The detailed information of the datasets 
used here is given in the Appendix.

  Fig. 9.6    Expression levels of histone-modifi cation related enzymes ( a ,  b  and  c ) and DNA methyla-
tion enzymes ( d ,  e  and  f ). Three cancer types are considered: gastric cancer ( a  and  d ) 
(GEO:GSE13195), melanoma ( b  and  e ) (GEO:GSE12391), and lung cancer ( c  and  f ) 
(GEO:GSE19804). Detailed information on the three datasets is given in the Appendix. The y-axis 
denotes the average gene-expression level axis, and the x-axis represents the cancer axis, with the 
 leftmost  for normal tissue and the following being stages 2 through 4 for ( a  and  d ) and stages 1 
through 4 (or common melanocytic nevus, dysplastic nevus, radial growth phase melanoma, and 
vertical growth phase) for ( b  and  e ;  c  and  f ). Other defi nitions are the same as in Fig.  9.1        
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   From the fi gure, one can see that gastric and lung cancers both have increased 
levels of epigenomic activities over the matching normal tissues, along with increas-
ing trends in the utilization of epigenomic modifi cation genes as a cancer advances. 
This pattern is shared by numerous other solid cancer types. Melanoma has a com-
plex expression pattern in its epigenomic modifi cation genes, showing that epig-
enomic activities have an overall decreasing trend for both DNA methylation and 
histone modifi cation. This clearly represents an interesting case and warrants fur-
ther investigation to understand the possible reason for the reduced epigenomic 
activities in the advanced stage of melanoma and the possible implications to the 
explosive growth of such cancer. 

9.2.1     Towards Understanding Cancer Epigenomics 

 While some distinct patterns of epigenomic modifications have been observed 
in cancer  versus  normal cells, very little is understood as to why cancers in 
general tend to have increased epigenomic activities as revealed in Fig.  9.6 . 
An understanding of this issue could potentially provide fundamental and novel 
insights into cancer development and possibly tissue development in general. 
Some proposals have been made regarding the possible reasons for this obser-
vation. One suggestion is that when a gene or a group of genes needs to be 
silenced for an extended period, such as tumor suppressor genes during the 
development of cancer, epigenomic modifications may be selected to provide 
the stability for gene silencing (Sharma et al.  2010 ). Another proposal argues 
that it is the “accumulated stress” (defined as the activation duration of stress 
response pathways) that triggers short-term or long- term deregulation of the 
cancer epigenome, leading to changes in repression states of stress-response 
genes on a global scale (Vojta and Zoldos  2013 ). Specifically, the model sug-
gests that as the environmental stresses intensify and become constant, cancer 
cells will “traverse their adaptive response continuum” to search for a long- 
term and effective response. 

 We propose here another possible cause for the increased utilization of epigenomic 
activities. Specifi cally,  the epigenome encodes a general stress-response mechanism 
possibly as the last resort protection of severely stressed cells; the mechanism is acti-
vated when all the applicable condition-specifi c stress-responses fail and the stress 
level goes beyond the tolerance capacity of the cells . This proposal is based on the 
following three considerations.

    1.    It has been proposed previously that the epigenome emerged originally as a 
defense mechanism for genome-integrity protection (Johnson  2007 ), which has 
been accepted by some authors (Johnson and Tricker  2010 ). This defense 
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 mechanism may be triggered by genome integrity-related stress sensors or by 
some general stress sensors which may be triggered by genome integrity-related 
stress.   

   2.    A major side-product of the rapidly evolving cancer cells is their increasingly 
deteriorating cellular and microenvironment, largely due to the altered cellular 
metabolism, refl ected by the increased proliferation rates as a cancer advances 
(recall the antagonist co-adaption example of  Pseudomonas fl uorescens  and its 
viral parasite phage in Chap.   5    ). Published studies support this view since it has 
been well established that higher hypoxia levels tend to lead to more malignant 
cancers (Vaupel  2008 ). Consequently, the issue becomes that which was asked 
at the end of Sect.  9.1 :  What happens to the cells if all the applicable condition- 
specifi c stress responses fail to overcome the stress ? It has been hypothesized 
that a yet to-be-understood general stress-response mechanism at the epig-
enomic level will be triggered, which allows the cells to search for effective 
stress- responses that are encoded in the genome but not designed for the current 
stress. A few authors have suggested similar ideas (Vojta and Zoldos  2013 ), 
where it was referred to as  epigenomic deregulation  or  relaxation of epigenetic 
regulation  as has been used in the plant epigenomic literature (Madlung and 
Comai  2004 ). While such a general stress-response system is speculated to exist, 
no proposals have been made in terms of its detailed trigger and effector mecha-
nisms in the literature. Interestingly, a recent study on fl y larvae development 
under an unfamiliar and life-or-death stress may help clarify this fundamental 
issue, not only to cancer biology but also to developmental biology in general 
(Stern et al.  2012 ). 

 The goal of the study (Stern et al.  2012 ) was to demonstrate how fl y larvae 
cells, utilizing a more basic and probably more primitive mechanism, handle 
severe and persistent stress that is unfamiliar to the encoded condition-specifi c 
stress-response system. Specifi cally, larvae tissues were treated with the toxin 
G418 at concentrations that are lethal to the organism. A toxin-resistance gene 
had been genetically inserted into the larvae genome with a randomly selected 
 developmental promoter  that is unrelated to the toxin, while the protein encoded 
by the gene is capable of pumping out the toxin when it is activated. Systematic 
tests found that the wild-type larvae without the inserted gene were all killed by 
the toxin. In contrast, eight out of nine genetically engineered larvae, each  having 
a distinct developmental promoter, survived and developed into adulthood but 
with some developmental delays. This fi nding indicates that a general  survival 
mechanism was able to overcome the toxin, which evidently located and acti-
vated the inserted gene. 

 Interestingly, this capability is heritable for at least four generations, and the 
offspring of the fi rst generation of genetically engineered larvae develop into 
adulthood without any developmental delay when treated with the same toxin 
G418. These data strongly suggest that an epigenetic modifi cation was made, 
giving rise to a new and heritable survival capability that has integrated the 
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added toxin resistance gene and the randomly selected promoter as an encoded 
response to the toxin in the next generation. Further investigation by these 
authors revealed that there is a general stress-response mechanism in fl ies that 
can broaden the range of activation of all developmental promoters. With the 
broadened activation range, the genetically engineered larvae have managed to 
activate their randomly selected promoters, and hence activated the toxin- 
resistance gene and gave rise to the observed survival of the larvae. This study 
also found that the broadened range of activation is achieved through lowering 
the expression of the  PcG  (polycomb group) genes that are known to repress 
many developmental regulators epigenetically. The authors suggest that  this 
broadening mechanism of developmental regulators may be a general mecha-
nism for coping with unfamiliar stressors . Since this mechanism is accomplished 
epigenetically, this gained function is inherited for a number of generations as 
demonstrated in the study.   

   3.    To determine if a similar mechanism may exist in humans, the expression data 
of the human  Polycomb  genes, which are known to have key roles in many 
aspects of organism development, were examined in cancer  versus  normal tis-
sues. Figure  9.7  shows the summarized expression-level changes of these 
genes with the cancer progression of the same three cancers used in Fig.  9.6 . 
From the fi gure, it can be seen that all three cancers have increased  Polycomb  
expression over the matching normal tissues, suggesting the possibility that 
 Polycomb  may potentially be involved in the regulation of large-scale epig-
enomic activities.

       Based on the above discussion and analyses, one may speculate that as neoplastic 
cells (except possibly for melanoma) continue to evolve for survival, their micro- 
environmental stress becomes increasingly more challenging and unfamiliar for 
their condition-specifi c stress-response systems to overcome. The result is that the 
stress level goes beyond certain thresholds, which triggers a currently unknown 
general stress-response mechanism encoded at the epigenomic level, possibly as the 
last resort to save the cell. It is reasonable to speculate that a general stress-response 
mechanism similar to that in fl ies may exist in humans as hinted by Fig.  9.7 , which 
may be the main reason for the observed increased utilization of epigenomic activi-
ties in cancer  versus  normal cells. As suggested by the above study on fl ies, this 
mechanism may consist of trial-and-error search strategies, and hence take a longer 
time to respond, as was observed. Knowing that melanoma is a very fast growing 
cancer (at the vertical growth stage), it is likely that the cancer may have used a dif-
ferent system to overcome the severe stress issue, as the above mechanism may 
require too much time to be consistent with the observed behavior of melanoma 
development. 

 Overall, this may represent another problem that could benefi t signifi cantly from 
computational analyses of  omic  data. In this case, association analyses could poten-
tially identify the key relevant players and potential relationships in this still enig-
matic but fundamentally important mechanism in cancer. 
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 While this to-be-elucidated mechanism facilitates the survival of the severely 
stressed cells by fi nding novel combinations of stress-responses to overcome the cur-
rent stress, it also makes the changes substantially less reversible than those accom-
plished through the condition-specifi c stress responses generally induced through 
transcriptional regulation, hence moving further away from the normal behavior of 
healthy human cells. In addition, recent studies have revealed that epigenomic modi-
fi cations have a strong connection to genome instability (Suzuki and Bird  2008 ). 

  Fig. 9.7    Expression levels of  Polycomb  genes. Three cancer types are considered, namely gastric 
cancer, melanoma, and lung cancer, from  left  to  right . For each fi gure, the sum of the expression 
values of each of the following 24  Polycomb  genes:  EZH2 ,  EZH1 ,  EED ,  SUZ12 ,  RBBP4 ,  RBBP7 , 
 RING1 ,  RNF2 ,  CBX2 ,  CBX4 ,  CBX6 ,  CBX7 ,  CBX8 ,  PHC1 ,  PHC2 ,  PHC3 ,  PCGF1 ,  PCGF2 , 
 PCGF3 ,  BMI1 ,  PCGF5 ,  PCGF6 ,  ZNF134 ,  SCMH1 , which form two large complexes (Cavalli-lab 
 2014 ), over all the samples for each of the three cancer types (see Fig.  9.6  for the detailed data 
information). Other defi nitions are the same as in Fig.  9.6        
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This may represent another reason for the observed increase in genomic mutations in 
cancer in general, in addition to the increased utilization of emergency DNA repair 
under persistent hypoxic conditions and increased proliferation rates as cancer pro-
gresses (see discussion in Chap.   4    ).   

9.3     Genome Instability and Cancer Evolution 

 Genome instability is considered as one of the cancer hallmarks (Hanahan and 
Weinberg  2011 ), as discussed in Chaps.   1     and   4    . It typically refers to the increased 
genomic structural changes and copy-number variations in the genome with the 
progression of a cancer. Two general types of genomic instabilities have been 
observed across the genomes of virtually all cancer types, with  chromosomal insta-
bility  (CIN) as the dominating one and  microsatellite instability  (MSI) as the distant 
second. While these genome instabilities are known to be associated with cancer 
genomes, their causes are not well understood (Negrini et al.  2010 ), even though 
multiple proposals have been made as discussed earlier. 

 One suggestion was that about 60,000 mutations take place on average in the 
genome of a healthy human cell per day, caused by endogenous factors such as 
ROS and other reactive metabolites, the vast majority of which are single-point 
mutations (Bernstein et al.  2013 ). If a neoplastic cell loses its ability for accurate 
repair of DNA damage, such mutations will accumulate rapidly over time. In addi-
tion, ROS, which tends to be elevated in cancer cells, is known to be responsible for 
many of the single-point mutations in cancer genomes. Clearly, these factors cannot 
explain the genomic instabilities defi ned as above. A few proposals about the pos-
sible causes for cancer genome instabilities have been made such as: (1) being 
induced by the activation of oncogenes and inactivation of tumor suppressor genes 
(Halazonetis et al.  2008 ); (2) related to epigenomic modifi cations (Qu et al.  1999 ); 
and (3) due to aberrant behavior of DNA repair systems associated with cancer- 
promoting microenvironments (Wimberly et al.  2013 ). As can be seen from the 
following, there is evidence for each of these possibilities; hence they may apply 
under different conditions, and possibly are all correct. However, it remains 
unknown how these different mechanisms relate to each other in producing the 
genome instability patterns observed in individual cancer types—recall from Chap.   4     
that different cancer types may have distinct genome alteration patterns. We expect 
that careful statistical analyses of cancer genomic sequences, along with the match-
ing transcriptomic data, could potentially reveal useful information and insights 
about this issue. Moreover, such an analysis could possibly lead to mutation models 
that can explain the distinct mutation patterns observed in cancer genomes of dif-
ferent types. 
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9.3.1     Genome Instability Due to Compromised 
DNA Repair Machinery 

 There are multiple models on how compromised DNA repair machinery is res-
ponsible for the large number of mutations observed in cancer genomes such as: 
(a) those that attribute structural alterations to loss-of-function mutations in DNA 
repair machinery or in mitotic checkpoint genes (Negrini et al.  2010 ), and (b) those 
that suggest such mutations are the result of inaccurate DNA repair under hypoxic 
conditions. The latter relies on microhomology rather than the normal 200-base pair 
homology, as discussed in Chap.   2    , when using the sister chromosome as the tem-
plate to repair damaged DNA such as single-point mutations and double-strand 
DNA breaks, possibly caused by rapid proliferation and lack of a suffi cient supply 
of nucleotides.  

9.3.2     Epigenomic Modifi cation and Genome Instability 

 The earliest discovery of the association between cancer and DNA hypo- methylation 
can be traced back to the 1980s when colon cancers were found to have a substan-
tially reduced methylation content on a genome scale (Goelz et al.  1985 ). In the past 
decade, a number of studies have detected strong correlations between changes in 
methylation levels and genome instability. 

 One early study found that decreasing the level of DNA methylation on a 
genomic scale by activating methylation inhibitors can lead to the instability of the 
CTG·CAG repeat in the genome, specifi cally having increased the run of the tri- 
nucleotide repeat (Gorbunova et al.  2004 ), a hallmark of a number of human genetic 
diseases (Ashley and Warren  1995 ; Mitas  1997 ). A few other studies have found 
that hypo-methylation tends to be associated with increased genomic instability 
(Chen et al.  1998 ) in general, including: (a) increased centromere instability corre-
lates with hypo-methylated centromeres (Ehrlich  2002 ); (b) defi ciency in methyla-
tion enzymes, specifi cally  DNMT1 , has been found to co-occur with chromosomal 
instability; and (c) DNA hypo-methylation precedes extensive genomic damage in 
gastrointestinal cancer (Suzuki et al.  2006 ). A more recent study suggests that it is 
the activity of DNA demethylation rather than the hypo-methylation state of a 
genome that correlates with genome instability, an observation made on colon can-
cer (Rodriguez et al.  2006 ). Some studies have demonstrated causal relationships 
between changes in methylation and genetic instability for specifi c cases (Rizwana 
and Hahn  1999 ; Robertson and Jones  2000 ; Rodriguez et al.  2006 ). 

 Intuitively the above observations seem reasonable since hypo-methylation sug-
gests the possibility of increased transcription, which requires unwinding the 
double- stranded DNA into single-stranded DNA, hence increasing the chance of 
DNA breaks and the need for DNA repair. In addition, there is a deep connection 
between DNA repair and methylation mechanisms (Schar and Fritsch  2011 ). 
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Again, computational analyses could have a key role in identifying association 
relationships among the key players in DNA usage, DNA repair and methylation 
utilization.  

9.3.3     Genome Instability Relevant to Aberrant Behavior 
of Proto-oncogenes and Tumor Suppressor Genes 

 A recent model suggests that genome instability is largely induced by double- 
stranded DNA breaks generated as a result of oncogene-induced rapid cell replica-
tion (Halazonetis et al.  2008 ). The model speculates that rapid DNA replication 
induced by oncogenes may result in stalling and collapse of DNA replication forks 
and hence double-stranded DNA breaks. This is attributed to the fact that nucleotide 
production cannot maintain pace with the cell replication rates, as often observed in 
cancer. This, we speculate, will take place only after oncogenes start to drive the 
proliferation process (instead of hyaluronic acid fragments) once a cancer reaches 
certain developmental stages, based on our discussion in Chaps.   5     and   6    . In con-
junction with the impaired DNA repair systems, this may ultimately lead to the 
observed genome instability. However, this model has been questioned because it 
may not represent the majority of the oncogene-induced genome instabilities 
observed in cancer tissues (Corcos  2012 ). 

 A related but improved model suggests that it is the unbalanced DNA replication, 
resulting from a combination of growth signaling, rapid replication driven by onco-
genes and the inactivation of certain tumor-suppressor genes, that leads to genome 
instability (Corcos  2012 ). Specifi cally, during cancer cell proliferation, the cell 
cycle may enter a G 1  quiescent state due to some suboptimal growth conditions such 
as DNA damage caused by ROS. When the  MYC  gene is overexpressed, the cell 
cycle will move forward but is arrested at the G 2  phase (Felsher et al.  2000 ), indicat-
ing that  MYC  is able to overcome the G 1 /S checkpoint under suboptimal growth 
conditions but not the G 2  checkpoint. The aberrant activation of other oncogenes 
and the inactivation of some tumor suppressor genes may also lead to arrests in the 
G 1  or G 2  checkpoint in general. For example,  RB  defi ciency can lead to a G 2  arrest. 
When the loss of the G 2  checkpoint occurs due to additional mutations, the cell 
cycle may fi nish, but with  an extended or shortened S phase , depending on specifi c 
cellar conditions. A direct result of such inhomogeneous replications, which may 
take place frequently in cancer cells, is that some portions of the genomic DNA can 
be under-generated while other portions might be over-generated. Such inhomoge-
neous abundances of different segments of the DNA will clearly lead to genome 
instabilities. This interesting aspect of the model is that it requires only high prolif-
eration rates but not a compromised DNA repair system. Hence it represents a fun-
damentally different cause, possibly a more realistic one, of DNA instability 
compared to the other proposals. 
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 Based on the above discussion, one can possibly assemble a simple model for 
genome instabilities as observed in cancer as follows. Endogenous factors in normal 
and in cells undergoing transformation, such as increased ROS, may lead to the 
initial single-point mutations. It is worth emphasizing that all the structural altera-
tions and copy-number changes are  not  produced by such mechanisms, instead they 
are the results of compromised DNA repair machinery under persistent abnormal 
conditions such as hypoxia (Hastings et al.  2009 ). As the intracellular or pericellular 
stresses become increasingly more unfamiliar and persistent, epigenomic responses 
will be utilized more frequently to handle the more challenging stresses. As a side- 
effect, the increased epigenomic activities may generate more genomic alterations 
as discussed earlier. The relationship between epigenomic activities, particularly 
methylation, and genome instability could be quite complex and possibly funda-
mentally important to the transformation process of proliferating cells to malignant 
cells. One reason is that methylation seems to be connected with the DNA repair 
machinery at a fundamental level, which involves DNA replication when doing 
template-based repair. 

 From studies on meiotic replications, methylation and replication are closely 
associated with each other. This could prove useful in guiding computational stud-
ies on the relationships between methylation and short-range replications resulting 
from DNA repair in cancer cells. To date, all the genomic instabilities are not rele-
vant to the increased replication rate. As cancer starts to be driven by oncogenes 
such as  MYC , which may lead to inadequacies in supplying nucleotides needed for 
the rapid DNA replication and hence give rise to double-strand DNA breaks, the 
genome instability may move to a different complexity level. Clearly during these 
processes, when DNA repair genes or cell-cycle checkpoint genes become compro-
mised, e.g., via mutations, it will add to the complexity. To ascertain how such a 
simple model may apply to various cancers, one may need to build dynamic models 
that integrate models developed for individual mutation-generation mechanisms 
along with the triggering conditions. These can be estimated based on the available 
genomic, epigenomic and transcriptomic data for cancer tissue samples collected at 
different developmental stages, followed by an assessment of how well such models 
can explain the observed mutation patterns for individual cancer types.   

9.4     Concluding Remarks 

 The complexity in studying cancer may arise largely from the challenging problem 
in elucidating the impact of the evolving microenvironment on the underlying cells. 
Initially the impact arising from either hypoxia or increased ROS is quite simple, 
i.e., leading to increased activity of glycolytic fermentation. As the cells continue to 
evolve through adaptation, their metabolism changes and this further alters their 
microenvironment, forming a self-propelled vicious cycle and driving the underly-
ing cells to become increasingly more malignant. In this chapter, a number of 
micro-environmental factors were considered with the fi nding that the co- adaptation 
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and antagonist coevolution ultimately drive the environmental conditions to 
become suffi ciently stressful that none of the condition-specifi c stress responses 
can overcome them. Consequently, this will lead to the frequent activation of 
 general stress- response mechanisms at the epigenomic level. Two consequences 
are probably the direct result of the increased utilization of epigenomic activities: 
(a) increased irreversibility of the evolutionary trajectories by the neoplastic cells; and 
(b) increased genomic instability due to the fundamental link between the two, pos-
sibly  a pathway encoded in human genomes for increasing the chances in creating 
genomic mutations relevant to specifi c functions  as we hypothesize. From the 
 discussion presented here, one may get the tantalizing impression that epigenomic 
responses, which can be altered by the changing environment, may have a more 
pivotal role than genomic changes in cancer development, consistent with many 
recent studies. Currently there are no epigenomic landmarks for measuring the 
return-ability or the potential for metastasis of neoplastic cells in their journey for 
survival. Again, computational  omic  data analyses, in an integrated fashion, may 
prove to be a key in addressing these important questions.     

     Appendix 

    Table 9.1          

 Data set  Cancer types  Sample size  Platform 

 GSE13195  Gastric cancer   49  GPL5175 
 GSE12391  Melanoma   41  GPL1708 
 GSE19804  Lung cancer  120  GPL570 

       References 

    Ashley Jr CT, Warren ST (1995) Trinucleotide repeat expansion and human disease. Annual review 
of genetics 29: 703-728  

   Bernstein C, Prasad AR, Nfonsam V et al. (2013) DNA Damage, DNA Repair and Cancer. New 
Research Directions in DNA Repair.  

    Bhaskara VK, Mohanam I, Rao JS et al. (2012) Intermittent hypoxia regulates stem-like character-
istics and differentiation of neuroblastoma cells. PloS one 7: e30905  

    Buehler MJ (2006) Nature designs tough collagen: Explaining the nanostructure of collagen fi brils. 
Proceedings of the National Academy of Sciences 103: 12285-12290  

    Cai J, Jones DP (1998) Superoxide in Apoptosis MITOCHONDRIAL GENERATION 
TRIGGERED BY CYTOCHROMEc LOSS. Journal of Biological Chemistry 273: 
11401-11404  

   Cavalli-lab (2014) The Polycomb and Trithorax page.  
    Chaudary N, Hill RP (2009) Increased expression of metastasis-related genes in hypoxic cells 

sorted from cervical and lymph nodal xenograft tumors. Laboratory investigation; a journal of 
technical methods and pathology 89: 587-596  

    Chen RZ, Pettersson U, Beard C et al. (1998) DNA hypomethylation leads to elevated mutation 
rates. Nature 395: 89-93  

References



250

     Corcos D (2012) Unbalanced replication as a major source of genetic instability in cancer cells. 
Am J Blood Res 2: 160-169  

    Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22: 4632-4642  
    Ehrlich M (2002) DNA hypomethylation, cancer, the immunodefi ciency, centromeric region insta-

bility, facial anomalies syndrome and chromosomal rearrangements. J Nutr 132: 2424S-2429S  
    Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nature Reviews Cancer 4: 

143-153  
    Felsher DW, Zetterberg A, Zhu J et al. (2000) Overexpression of MYC causes p53-dependent G2 

arrest of normal fi broblasts. Proc Natl Acad Sci U S A 97: 10544-10548  
    Fraga MF, Ballestar E, Villar-Garea A et al. (2005) Loss of acetylation at Lys16 and trimethylation 

at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391-400  
    Goelz SE, Vogelstein B, Hamilton SR et al. (1985) Hypomethylation of DNA from benign and 

malignant human colon neoplasms. Science 228: 187-190  
    Gorbunova V, Seluanov A, Mittelman D et al. (2004) Genome-wide demethylation destabilizes 

CTG.CAG trinucleotide repeats in mammalian cells. Hum Mol Genet 13: 2979-2989  
    Guilak F, Cohen DM, Estes BT et al. (2009) Control of stem cell fate by physical interactions with 

the extracellular matrix. Cell Stem Cell 5: 17-26  
     Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for 

cancer development. Science 319: 1352-1355  
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674  
    Hastings P, Lupski JR, Rosenberg SM et al. (2009) Mechanisms of change in gene copy number. 

Nature Reviews Genetics 10: 551-564  
    Johnson LJ (2007) The Genome Strikes Back: The Evolutionary Importance of Defence Against 

Mobile Elements. Evol Biol 34: 121-129  
    Johnson LJ, Tricker PJ (2010) Epigenomic plasticity within populations: its evolutionary signifi -

cance and potential. Heredity 105: 113-121  
    Jones PA, Laird PW (1999) Cancer-epigenetics comes of age. Nature genetics 21: 163-167  
    Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Annals of 

botany 94: 481-495  
    Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to 

hypoxic stress. Molecular cell 40: 294-309  
    Mason B, Califano J, Reinhart-King C (2012) Matrix Stiffness: A Regulator of Cellular Behavior 

and Tissue Formation. In: Bhatia SK (ed) Engineering Biomaterials for Regenerative Medicine. 
Springer New York, pp 19-37  

    Mitas M (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Research 25: 
2245-2253  

    Muiznieks LD, Keeley FW (2010) Proline periodicity modulates the self-assembly properties of 
elastin-like polypeptides. J Biol Chem 285: 39779-39789  

    Nakayama M, Gonzalgo ML, Yegnasubramanian S et al. (2004) GSTP1 CpG island hypermethyl-
ation as a molecular biomarker for prostate cancer. Journal of Cellular Biochemistry 91: 
540-552  

     Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of 
cancer. Nat Rev Mol Cell Biol 11: 220-228  

    Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer 
metastasis reviews 29: 351-378  

    Peng YJ, Yuan G, Ramakrishnan D et al. (2006) Heterozygous HIF-1alpha defi ciency impairs 
carotid body-mediated systemic responses and reactive oxygen species generation in mice 
exposed to intermittent hypoxia. J Physiol 577: 705-716  

    Qu G-z, Grundy PE, Narayan A et al. (1999) Frequent Hypomethylation in Wilms Tumors of 
Pericentromeric DNA in Chromosomes 1 and 16. Cancer Genetics and Cytogenetics 109: 
34-39  

    Rizwana R, Hahn PJ (1999) CpG methylation reduces genomic instability. J Cell Sci 112 (Pt 24): 
4513-4519  

9 Cell Proliferation from Regulated to Deregulated States Via Epigenomic Responses



251

    Robertson KD, Jones PA (2000) DNA methylation: past, present and future directions. 
Carcinogenesis 21: 461-467  

     Rodriguez J, Frigola J, Vendrell E et al. (2006) Chromosomal instability correlates with genome- 
wide DNA demethylation in human primary colorectal cancers. Cancer Res 66: 8462-9468  

    Schar P, Fritsch O (2011) DNA repair and the control of DNA methylation. Progress in drug 
research Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques 
67: 51-68  

    Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31: 27-36  
     Stern S, Fridmann-Sirkis Y, Braun E et al. (2012) Epigenetically heritable alteration of fl y develop-

ment in response to toxic challenge. Cell Rep 1: 528-542  
    Suzuki K, Suzuki I, Leodolter A et al. (2006) Global DNA demethylation in gastrointestinal cancer 

is age dependent and precedes genomic damage. Cancer Cell 9: 199-207  
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. 

Nature reviews Genetics 9: 465-476  
     Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. 

The oncologist 13 Suppl 3: 21-26  
     Vojta A, Zoldos V (2013) Adaptation or malignant transformation: the two faces of epigenetically 

mediated response to stress. BioMed research international 2013: 954060  
    Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47: 

1394-1400  
    Wimberly H, Shee C, Thornton PC et al. (2013) R-loops and nicks initiate DNA breakage and 

genome instability in non-growing Escherichia coli. Nature communications 4: 2115  
    Yang YJ, Song TY, Park J et al. (2013) Menin mediates epigenetic regulation via histone H3 lysine 

9 methylation. Cell Death Dis 4: e583  
    Yoo KH, Hennighausen L (2012) EZH2 methyltransferase and H3K27 methylation in breast 

 cancer. Int J Biol Sci 8: 59-65  
    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the 

CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and 
expression. Free Radical Biology and Medicine 33: 337-349    

References



253© Springer Science+Business Media New York 2014 
Y. Xu et al., Cancer Bioinformatics, DOI 10.1007/978-1-4939-1381-7_10

    Chapter 10   
 Understanding Cancer Invasion 
and Metastasis 

                  Cancer is a deadly disease in large part because, if not stopped, will generally evolve 
to the metastatic stage, i.e., cancer cells spread from the primary site to new loca-
tions (generally different organs) through blood circulation or the lymphatic system. 
For largely unknown reasons, metastatic cancers tend to exhibit distinct growth 
 patterns from its primary cancer counterpart, growing substantially faster and 
metastasizing more easily. Recent statistics show that metastatic cancer is respon-
sible for approximately 90 % of all cancer-related mortalities. While it is known to 
be the deadliest stage of a cancer, the current understanding of the biology of meta-
static cancer is rather limited. Some of the very basic questions such as:  what drives 
a primary cancer to metastasize ;  why some cancers tend to metastasize more easily 
than the other cancers, e.g., melanoma versus basal cell carcinoma ; and  why meta-
static cancers tend to grow much faster than the corresponding primary cancer , still 
have no clear answers. This may be the result of: (1) the true challenging nature of 
these questions, and (2) the lack of adequate investment and hence efforts into meta-
static cancer research. This unfortunate reality is probably due to the general belief 
in the fi eld that little can be done once a cancer has metastasized. 

 In this and the following chapter, we present the current knowledge about the 
potential drivers of metastasis, the key mechanisms in executing cancer metastasis 
and our recent understanding about the biology of metastatic cancers in their new 
microenvironment. As in the previous chapters, cancer evolution is viewed as a 
process for the diseased cells to escape from the deadly pressures imposed on them 
from their microenvironment. As part of their adaption to the challenges, the altered 
metabolism of the cells may be responsible to a signifi cant degree for their increas-
ingly more challenging microenvironment, this following the initial pressure caused 
by the accumulation of glucose metabolites due to chronic hypoxia and/or ROS 
accumulation (see Chap.   5    ). 
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10.1      Local Invasion by Cancer Cells 

    The fi rst step in cancer metastasis is tumor invasion, i.e., cancer cells breach their 
basement membrane (a type of ECM) and enter the stromal compartment, where 
stromal cells (fi broblasts and pericytes), immune cells and blood capillaries reside, 
as introduced in Chap.   1     and depicted in Fig.  10.1 . To understand the process of 
tumor invasion, one needs to fi rst understand how epithelial cells, from which most 
of the solid tumors evolve, are organized to facilitate their division and inhibition of 
division when needed.

10.1.1       Tumor Invasion and the Roles Played 
by Hyaluronic Acid 

 Epithelial cells are arranged adjacent to each other, much like a sheet, on top of the 
basement membrane, which is a knitted network consisting of collagen and hyal-
uronic acid fi brils and multiple types of linker proteins such as fi bronectins, elastins 
and laminins (Hay  1981 ), as discussed in Chap.   1     and a few other chapters. It is 
known that cell-cell contacts inhibit cell division, a phenomenon referred to 
as   contact inhibition  under physiological conditions, and their anchorage to the 
basement membrane is generally required before they can divide. Structurally, cell-
cell adhesion is provided by  adherens junctions , one of the three types of intercel-
lular junctions connecting two neighboring cells while the other two types,  tight  and 

  Fig. 10.1    A schematic of epithelial cells located above a basement membrane and associated 
stromal compartment, along with developing neoplastic cells       
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 gap junctions , serve mainly as communication channels to allow molecules, 
 including nutrients and signals, to pass between cells. An adherens junction consists 
of cadherin and a number of cytoplasmic proteins such as actin and catenin bound 
to cadherin, providing the actual intercellular adhesion as shown in Fig.  10.2 . The 
cadherin protein in epithelial cells, specifi cally  E-cadherin , is constantly regener-
ated with a 5-h half-life on the cell surface. As recently reported, reduced expres-
sion of this protein allows cells to migrate (Chen et al.  1997 ). A possible mechanism 
for this may be that repression of E-cadherin, in conjunction with other factors, can 
lead to the activation of the EMT (epithelial-mesenchymal transition) pathway since 
the repression of E-cadherin is crucial to the EMT activation as reported in a recent 
study (Lee et al.  2006 ). It has been demonstrated that  SNAIL  is a key regulator in 
repression of E-cadherin (Peinado et al.  2004 ; Montserrat et al.  2011 ). Interestingly, 
high molecular-weight hyaluronic acid has been reported to have a key role in the 
regulation of  SNAIL  (Craig et al.  2009 ), strongly suggesting its roles in repression 
of E-cadherin, as well as in activation of EMT as discussed in Chap.   6    . [ N.B. A 
mesenchymal cell is a type of stem cell that can differentiate to different cell types 
and move between different locations .]

   We fi rst briefl y introduce the EMT pathway and its associated functions. The 
EMT pathway is involved in organ formation during embryogenesis. Under physi-
ological conditions, its activation facilitates invasion of the endometrium and pla-
centa placement to enable nutrient and gas exchange to the embryo. Cancer cells 
have apparently adapted to utilizing this pathway to facilitate their migration and 
then its reverse pathway, MET, to convert the migrated cells back to the original 

  Fig. 10.2    A schematic of three types of junctions connecting two neighboring cells with adherens 
junctions providing the actual binding between the cells, each represented as a  rectangular box        
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epithelial tumor form to become established in the new location(s). It is noteworthy 
that the two cell types are very different, both functionally and morphologically; 
yet, they are convertible to each other through the activation of the EMT and the 
MET pathways. 

 Briefl y, the basic functions of epithelial cells include: (1) protection of the tissues 
lying beneath them from invasion by pathogens and physical assault; (2) exchange 
of chemicals between the tissues they separate; (3) secretion of hormones into the 
vascular system and secretion of sweat, mucus and enzymes that are delivered by 
ducts glandular epithelium; and (4) transferring sensation such as smell, sound and 
sight. The epithelial tissue is one of the four major tissue types in humans, with the 
other three being connective, muscle and nervous tissues as introduced in Chap.   1    . 
In contrast, mesenchymal tissue is a type of undifferentiated loose connective tissue 
composed of cells that can migrate easily. Generally mesenchymal cells interact 
with each other via their focal points rather than requiring cell-cell adhesion. 

 A number of signals have been found capable of activating the EMT pathway, 
such as the activation of  TGFβ ,  FGF ,  EGF ,  HGF ,  RAS-MAPK ,  WNT  and the 
 NOTCH  pathway, as well as hypoxia. A recent study reports that the activation of a 
specifi c isoform of  CD44  (see Chap.   6    ), namely  CD44s , is a necessary condition for 
the activation of EMT. By integrating the information above and the discussion in 
Sect.   6.2    , one can speculate that the excess production of hyaluronic acid may be a 
key initiator for abolishing cell-cell adhesion through a sequence of events compris-
ing activation of  SNAIL , repression of E-cadherin, mechanical stretches induced by 
hyaluronic acid and interactions between  CD44s  and hyaluronic acid, leading to the 
disconnection between two cells at the end. Potentially a well-designed computa-
tional analysis of transcriptomic data and statistical inference could lead to a detailed 
model of how cells lose their cell-cell adhesion in specifi c cancer types. 

 In addition to cell-cell adhesion, the adhesion between epithelial cells and base-
ment membrane is provided by interactions between integrins on the cell surface 
and fi bronectins of the ECM. While the current knowledge of the regulation of the 
interactions between such proteins is not complete, it has been observed that the 
spatial distance between the two is one key regulating factor, namely mechanical 
forces that stretch the connection can lead to their separation (Li et al.  2008 ; 
Schwartz  2010 ). 

 Furthermore, cancer cells also need to breach the basement membrane in order 
to migrate. This is accomplished through assembly and activation of a large com-
plex structure named  invadopodium , which consists of a dense actin core surrounded 
by actin-assembly proteins, membrane traffi cking proteins, signaling proteins and 
transmembrane proteinases (Hagedorn and Sherwood  2011 ; Hagedorn et al.  2013 ). 
When activated, invadopodia create tunnels in the basement membrane for delivery 
of  MMPs  to the desired locations to degrade the membrane, which will be followed 
by tumor growth into the newly created space as depicted in Fig.  10.3 . The current 
understanding is that the assembly of invadopodia is regulated by pericellular accu-
mulation of excess hyaluronic acid and its interactions with  CD44  and  PKC  (Artym 
et al.  2006 ; Hill et al.  2006 ; Montgomery et al.  2012 ).
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   The stiffness of a basement membrane has been found to have a key regulatory 
role in promoting the activity of invadopodia (Alexander et al.  2008 ; Parekh et al. 
 2011 ), in addition to its role in stimulating cell proliferation as discussed in Chap.   8    . 
As reviewed in the earlier chapters, the stiffness of a basement membrane is mainly 
determined by the relative concentrations of collagen, elastin and laminin (Alberts 
et al.  2002 ; Owen and Shoichet  2010 ). Interestingly, hyaluronic acid fragments may 
have an important role in determining the relative concentrations of these macro-
molecules, hence the stiffness of the matrix. Specifi cally, hyaluronic acid fragments 
are able to up-regulate collagen-encoding gene (Chung et al.  2009 ) and enhance the 
synthesis of matrix elastin (Kothapalli and Ramamurthi  2009 ; Kothapalli et al. 
 2009 ). In addition, hyaluronic acid has also been linked to the  production of laminin 
in various diseases such as cirrhosis (Lindqvist  1997 ). Overall, increased stiffness 
results in an increased concentration of invadopodia, as well as increased activities 
by invadopodia via the myosin II- FAK / CAS  (Crk-associated substrate) pathway 
(Alexander et al.  2008 ), which could be triggered by the increased production of 
hyaluronic acid, ultimately induced by increased ROS levels as discussed later in 
this chapter. 

  Fig. 10.3    A schematic of an invadopodium complex in action to break an extracellular matrix, 
where the  ARP2 - 3  protein complex has a key role in the regulation of the actin cytoskeleton; 
 CDC42  is involved in the regulation of cell cycle; and  WASP  is related to the  W iskott– A ldrich 
 S yndrome       
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 To ascertain how these distinct components may functionally cooperate to  initiate 
the metastatic process, one needs to focus on one specifi c protein family,  TGFβ , as 
it may be the thread that connects all these pieces. The  TGFβ  proteins are a well- 
studied family of growth factors and are known to control cell proliferation and 
differentiation in most cell types. They exhibit regulatory roles in: (1) the activation 
of apoptosis; (2) cell cycle control by blocking cell-cycle advance from the G 1  to the 
S phase; and (3) inhibiting lymphocytes and monocyte-derived phagocytes from 
formation. The family has three known members,  TGFβ1 ,  TGFβ2  and  TGFβ3 , all 
having been implicated in tumor invasion and metastases of multiple cancer types. 
Interestingly, these proteins serve different roles in early stage  versus  advanced 
stage cancers as discussed in Chap.   6    . Specifi cally, they are anti-proliferative factors 
in the early stage of tumorigenesis but become oncogenes in advanced cancers 
(Prime et al.  2004 ; Seoane  2006 ).  TGFβ  is synthesized as a latent protein complex 
with  LTBP  (latent  TGFβ  binding protein) and  LAP  (latency-associated peptide), and 
secreted into the extracellular space. The fi rst step in its activation is that of release 
from the complex. After its release, the protein can be activated by multiple factors 
under different conditions, such as integrins,  MMPs , the tissue-injury responder 
protein  TSP1  (thrombospondin 1) (Rifkin and Sheppard  1999 ; Yu and Stamenkovic 
 2000 ) and even by changes in the ROS (Barcellos-Hoff and Dix  1996 ) and pH levels 
(Lyons et al.  1988 ). A particular mechanism is most relevant here, that of mechano- 
chemical signaling through integrin-αvβ5 (Wipff et al.  2007 ), strongly suggesting 
that tissue growth may play a role in the activation of  TGFβ . 

 To examine if hyaluronic acid may have a role in the breaching of the basement 
membrane, an analysis of transcriptomic data of three cancer types, namely brain, 
liver and lung, was conducted. The statistical analysis revealed that, when  TGFβ  is 
activated, key hyaluronic acid synthesis and export genes, e.g.,  HAS2  and  ABCC5  
(see Chap.   6    ), tend to be expressed as shown in Fig.  10.4 , suggesting that  TGFβ  may 
be a regulator of hyaluronic acid synthesis. Interestingly, multiple studies have 
reported that  TGFβ  can indeed increase the synthesis of hyaluronic acid (Wang 
et al.  2005 ; Nataatmadja et al.  2006 ), hence providing strong supporting evidence to 
the hypothesis.

   In addition to its role in promoting hyaluronic acid synthesis,  TGFβ  can also 
activate the EMT pathway through multiple mechanisms. One pathway involves the 
activation of  SMAD2-3 , which then forms a complex with  SMAD4 , together serving 
as a transcription factor to trigger the EMT pathway (Miyazawa et al.  2002 ; Derynck 
and Zhang  2003 ; ten Dijke and Hill  2004 ; Gui et al.  2012 ), where  SMAD s are a fam-
ily of proteins that transduce extracellular signals from  TGFβ  ligands to the nucleus. 
Another pathway does not involve the  SMAD  proteins, instead through the activa-
tion of  ERK MAP  kinases,  RHO GTPases  and the  PI3K / AKT  pathway (Derynck and 
Zhang  2003 ; Xu et al.  2009 ; Zhang  2009 ). Overall, the current understanding is that 
 TGFβ  can activate both  SMAD  and non- SMAD  pathways, which crosstalk with vari-
ous signaling pathways to trigger EMT and possibly other pathways depending on 
the specifi c context. 
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 Joining the above information and discussion, one can postulate the following 
sequence of events that could lead to the breach of the basement membrane by a grow-
ing tumor. The continuous growth of a tumor, coupled with infl ammation, may create 
mechanical forces that promote the activation of integrin-αvβ5, which in turn activates 
 TGFβ , leading to the synthesis and export of hyaluronic acid. The increased produc-
tion and export of hyaluronic acid can further increase the aforementioned mechanical 
forces, further increasing bioactive integrin-αvβ5 and  TGFβ , which, in conjunction 
with the repressed E-cadherin due to hyaluronic acid, can ultimately lead to the activa-
tion of EMT, as well as increased mobility and invasiveness of the cancer cells. The 
actual breaching of the basement membrane is accomplished by  MMPs  delivered to 
the right locations through the assembly and activity of invadopodia, which seem to 
be initiated by the production and degradation of hyaluronic acid. Overall, hyaluronic 
acid exerts an essential role in making this sequence of events possible.  

  Fig. 10.4    Gene expression of  TGFβ versus  genes responsible for hyaluronic acid synthesis across 
multiple tissue samples of three types of advanced cancer, where  HAS2  and  ABCC5  are hyaluronic 
acid synthesis and export genes, respectively (data from the GEO database)       
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10.1.2     Interactions with Stromal Cells 

 The second key event during local invasion of tumor cells is that they enter the 
 stromal compartment where they can interact directly with stromal cells, namely 
fi broblasts and pericytes, which are the supporting cells to the parenchymal cells in 
an organ. The local immune cells are also considered as stromal cells because of 
their supporting roles. 

 The main physiological functions of fi broblasts are to synthesize and export 
ECM proteins, glycoproteins and glycosaminoglycans, and to function in wound 
healing. Multiple diseases are closely related to excess production, deposition and 
contraction of the ECM, such as diabetic nephropathy, liver cirrhosis, arteriosclero-
sis and rheumatoid arthritis. The current understanding is that  TGFβ  can induce not 
only the synthesis by fi broblasts but also the contraction of an ECM. Specifi cally, it 
induces a specifi c form of fi bronectin,  EDA  (ectodysplasin-A), which together with 
 TGFβ1  can trigger the enhancement of α-SMA (alpha-actin-2) and accelerate the 
contraction of fi broblasts (Ina et al.  2011 ), a major cue for activation of latent 
 TGFβ1  (Wipff et al.  2007 ). The information here complements the above model for 
mechanical force-induced activation of integrin-αvβ5, ultimately leading to the acti-
vation of EMT. Moreover, these two processes may interact, sending signals to each 
other and together accomplishing EMT activation. Well-designed analyses of tran-
scriptomic data for various advanced stage cancers may lead to the establishment of 
a self-consistent model for the entire process of EMT activation in the microenvi-
ronment of advanced cancers. In addition to this role, cancer associated fi broblasts 
are also known to release a variety of proteases such as  MMPs , hence further facili-
tating remodeling of the ECM needed by cancer invasion and metastasis. 

 Pericytes are contractile cells that surround the endothelial cells of capillaries. 
Their physiological function is to regulate capillary blood fl ow and clearance of cel-
lular debris. Previous studies have discovered that pericytes serve as a gatekeeper in 
preventing cancer cells from spreading as it has been demonstrated that pericyte- 
defi ciency in mice increases cancer metastasis (Xian et al.  2006 ). A report on dia-
betic retinopathy may provide a strong clue as to why cancer tissues tend to have 
decreased numbers of pericytes as has been observed. The study concludes that the 
activation of the angiopoietin-2 protein leads to a reduction in pericyte population 
(Hammes et al.  2004 ). Hence, one can infer that the increased expression of angio-
poietin- 2, triggered by the need for angiogenesis in a tumor microenvironment, 
results in a decrease in pericyte population, hence gradually losing its safeguard 
against metastasis. This model is well supported by the transcriptomic data col-
lected on a large number of tissue samples of four cancer types. Specifi cally the 
pericyte concentration decreases in tumor samples as a cancer advances, as refl ected 
by the decreased expressions of pericyte marker genes:  ACTA2  (actin, aortic smooth 
muscle),  CSPG4  (chondroitin sulfate proteoglycan 4),  ENPEP  (glutamyl amino-
peptidase) and  ANPEP  (alanyl aminopeptidase), as well as by increased expression 
of  ANGPT2  (angiopoietin-2) as shown in Fig.  10.5 . It can be expected that data 
mining and statistical inference on larger datasets in a more systematic manner 
could lead to the development of a detailed model for this hypothesis.
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   In addition, there seems to be a partner relationship between tumor cells and the 
tumor-associated stromal cells from an energy-metabolism perspective. As dis-
cussed in Chaps.   5     and   8    , cancer cells produce high concentrations of lactic acid in 
their microenvironments, which is an incompletely used energy source. The lactate 
acid can be further used by the stromal cells, which do not necessarily use glycolysis 
for ATP generation as tumor cells do after its oxidation back to pyruvate. A proposal 
has been made with supporting data that the regenerated, excess pyruvate in stromal 
cells can also be released and reused subsequently by the cancer cells (Martinez-
Outschoorn et al.  2011 ). This model is also partially supported by the observation 
that tumor-associated stromal cells tend to have low expression levels of their glu-
cose transporters, indicating the possibility of low glucose uptake, thus enabling 
tumor cells greater access to glucose. In addition, epithelial cancer cells have been 
found capable of inducing the expression of metabolic genes in the neighboring 
fi broblasts and enhancing their output for the production of energy-rich metabolites 
(Pavlides et al.  2009 ; Migneco et al.  2010 ; Martinez-Outschoorn et al.  2011 ), hence 
making these two cell types adopt a close “host-parasite” relationship. 

 The results of interactions between cancer and immune cells can be very com-
plex as different immune cells may have different roles, including both anti- and 
pro-cancer, at different stages of cancer development. In addition to the direct 
involvement of immune cells in tumorigenesis, they also serve as a selection process 
for those tumor cells that elude destruction by immune cells, as discussed in detail 
in Chap.   8    .   

  Fig. 10.5    Expression-level changes of fi ve genes related to pericyte population in cancer  versus  
control samples. Each  column  represents one cancer from  left  to  right : renal cell carcinoma, leuke-
mia, liver, and lung adenocarcinoma, and each  row  represents a gene.  Black  and  gray  denote 
increase and decrease in gene-expression levels, respectively, while  white  is for no change. The 
detailed dataset used here is given in Appendix       
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10.2     Traveling Cancer Cells 

 While cancer cells can travel to distant locations through both blood circulation and 
the lymphatic system, clinical data suggest that the majority of cancer cells travel 
through the circulatory system (Wong and Hynes  2006 ; Eccles and Welch  2007 ). 
Hence, we focus on the fate of cancer cells in blood circulation in this section. 

10.2.1     Intravasation 

 The fi rst step for the invading cancer cells to enter circulation is to cross the endothe-
lial cell barrier that forms the wall of capillaries. Innate immune cells are known to 
have essential roles in promoting cancer cell intravasation, analogous to their roles 
during cancer initiation as discussed in Chap.   7    . Specifi cally, tumor-associated mac-
rophages (TAMs) promote tumor angiogenesis through release of  VEGFs  to stimu-
late the formation of tumor blood vessels, which tend to be leaky compared to normal 
blood vessels, hence allowing cancer cells to enter the circulation more easily.  

10.2.2     In Circulation 

 It is estimated that for each gram of tumor tissue accessible to blood circulation, 
about one million tumor cells actually escape into the circulation, and they typically 
remain there for just a few hours before they lodge on the inside wall of the blood 
vessels or are destroyed. Another estimate suggests that 1 out of 10,000 cancer cells 
in circulation can survive and ultimately settle in a distant location. 

 Circulating tumor cells ( CTCs ) need to overcome a number of challenges to 
survive in circulation, including mechanical forces and immune destruction. In 
addition, they also need to overcome a programmed cell death, called  anoikis , which 
is self-induced when cells leave their original habitats and become anchorage-free 
(Douma et al.  2004 ; Gupta and Massague  2006 ). The mechanism(s) by which the 
CTCs avoid this programmed cell death is poorly understood, but the following 
information provides some hints about this. It is known that tumor cells can con-
tinue to thrive in an anchorage-independent manner through a signaling process 
mediated by cell-surface hyaluronic acid to avoid anoikis. However, it is not known 
whether the CTCs have any hyaluronic acid on their surfaces. While determination 
of whether this is the case can be done through metabolic analyses of cells using 
techniques such as mass spectrometry, no data are currently available in the public 
domain to give a direct answer to the question. 

 Recent fi ndings suggest that protein  TRKB  (tyrosine receptor kinase B) may have 
an important role in rendering tumor cells anoikis-resistant (Kim et al.  2012 ), where 
 TRKB  is a growth factor that can induce cell survival and differentiation pathways, 

10 Understanding Cancer Invasion and Metastasis

http://dx.doi.org/10.1007/978-1-4939-1381-7_7


263

upon binding with and being activated by its cognate ligand such as  BDNF  (brain 
derived neurotrophic factor). Another study has reported that the hyaluronic acid 
tetrasaccharide can increase the expression of  BDNF  and  VGEF  in an  in vitro  exper-
iment (Wang et al.  2012 ). Furthermore, a study on tissue regeneration has shown 
that high molecular-weight hyaluronic acid can serve as a scaffold for  BDNF  during 
tissue regeneration (Takeda et al.  2011 ). Together this information suggests the pos-
sibility that hyaluronic acid may be generated by CTCs, which trigger the expres-
sion of  BDNF , possibly along with other factors, that in turn activates  TRKB  and 
provides the CTCs with anoikis-resistance. Clearly this possibility requires further 
experimental validation. 

 While in circulation, CTCs tend to aggregate into clusters with platelets (Cho 
et al.  2012a ). Such a formation should give CTCs an advantage for their survival 
against the mechanical forces of the blood fl ow, the shear force and immune attack 
in circulation. Platelets seem to have an essential role in transporting the CTCs and 
maintaining their viability as multiple studies have demonstrated that platelet deple-
tion, or even an inhibition of tumor cell-induced platelet aggregates, diminishes 
metastasis (Gasic et al.  1968 ; Gasic  1984 ; Amirkhosravi et al.  2003 ; Palumbo et al. 
 2005 ). While the detailed binding mode between CTCs and platelets has not been 
thoroughly elucidated, it has been proposed that the interaction is through binding 
of integrins on the cell surfaces of the two types to common fi bronectin or collagen, 
or through binding of  PAR s (  protease activated receptors    ) on the two cell surfaces to 
common thrombin (Gay and Felding-Habermann  2011 ). Note that integrins are a 
family of transmembrane receptors for providing linkages among cells or between 
cells and macromolecules in the ECM as discussed earlier. 

 An analysis of gene-expression data of breast cancer CTCs in the public domain 
(Molloy et al.  2012 ) revealed that genes encoding integrin-α2bβ3, integrin-α2β1, 
 GPI  receptors (responsible for platelet adhesion),  ADP  (adipose) receptors and the 
“platelet aggregation plug formation” pathway are all up-regulated, hence providing 
strong evidence in support of the above proposal.  

10.2.3     Extravasation 

 Tumor extravasation is the process through which the CTCs lodge to the inner wall 
of a blood vessel of a distant organ and then penetrate the wall to settle in the stro-
mal compartment of the organ. Little is known about the mechanism of tumor 
extravasation, but it has been speculated that it is probably similar to that of leuko-
cyte extravasation into infl ammatory tissues during immune responses (Strell and 
Entschladen  2008 ). 

 Briefl y, the extravasation process of leukocytes, such as T-cells, natural killer 
cells, neutrophil granulocytes and monocytes, consists of the following steps: (1) 
 rolling : the vascular endothelial cells recruit leukocytes through the protein selectin 
on cell surfaces, which bind with selectin ligands such as  SELPLG  (p-selectin gly-
coprotein ligand-1, also known as  CD162 ) on the surfaces of leukocytes, forming 
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loose interactions, where selectins are a family of cell-adhesion glycoproteins. 
Because the interactions tend to be relatively loose, the recruited leukocytes have 
rolling motions in response to the blood fl ow, hence the name; (2)  adhesion : 
 integrins are activated on both leukocytes and endothelial cells during the rolling 
step, and their binding gives rise to tight adhesion between the cells; and (3)  trans-
migration : leukocytes transmigrate through the endothelium without irreversibly 
impairing its integrity as they tend to move through the endothelial monolayer 
between the endothelial cells (Hofbauer et al.  1999 ). 

 It has been speculated that while cancer cells may use a similar mechanism for 
extravasation, they may use a different set of selectin ligands in different metastasis 
types to accomplish the initial loose binding with endothelial cells, such as  HCELL  
(an E- and L-selectin ligand),  CD44 ,  ELAM1  (E-selectin ligand-1, also known as 
 CD62E ) for bone metastasis and  CEA  (carcinoembryonic antigen) for colon metas-
tasis (Dimitroff et al.  2005 ; Strell and Entschladen  2008 ; Thomas et al.  2008 ; Dallas 
et al.  2012 ; Hiraga et al.  2013 ). The adhesion between cancer and endothelial cells 
may be accomplished via binding between integrins as in the case of leukocytes 
discussed above, but possibly by subgroups different from those used by leukocytes, 
specifi cally the  β2  subgroup. A recent study has observed that the  α4  subgroup of 
integrins is used in some cancers (Okahara et al.  1994 ; Garofalo et al.  1995 ; Bendas 
and Borsig  2012 ). For the transmigration step, cancer cells may have evolved a 
strategy different from the one used by leukocytes as they tend to be highly destruc-
tive by damaging the endothelium, possibly because of their substantially larger 
sizes compared to those of leukocytes and no restraint being placed on them for not 
impairing the integrity of endothelium. No specifi c genes have been implicated for 
this, but it is expected that computational analyses of transcriptomic data on multi-
ple metastasis types may lead to candidate genes. 

 The CTCs that reached the new locations are referred to as  DTCs  (disseminated 
CTCs) in the literature, which specifi cally refer to the direct progeny of the primary 
cancer rather than highly transformed metastatic cancer. Publicly available gene- 
expression data of  DTCs  originating from prostate cancer have been analyzed. 
It was found that the following gene groups are up-regulated in DTCs in comparison 
with the corresponding CTCs: cell cycle related genes such as the G 1 -phase and 
S-phase genes, actin-cytoskeleton remodeling genes,  WNT -signaling pathways, 
DNA synthesis, glucose metabolism, steroid metabolism and sphingolipid metabo-
lism. These data strongly suggest the following: (1) these DTCs are in a state of 
proliferation; and (2) these cells are under oxidative stress. 

 For (1), it is worth noting that a DTC population tends to remain stable for 
months or even years in their new habitats, hence possible dormancy of these cells 
having been suggested (Meadows  2005 ; Wang et al.  2013 ). Clearly this hypothesis 
was not supported by the above results from data analysis. One possible explanation 
for these two pieces of seemingly confl icting information is that DTCs may initially 
be in a proliferation state but gradually stop proliferation to remain in a growth- 
arrest state in the cell cycle, possibly triggered by their incompatibility with the new 
microenvironment. Such incompatibility may include: (1) attacks from the local 
immune cells that have not become associated with the cancer cells; (2) limitation 
in the blood supply, which is designed only to support the local normal cells before 
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the establishment of tumor angiogenesis; (3) toxic effect by the increased O 2  level 
in comparison with their previous habitats (see Chap.   11     for details); and (4) altered 
ROS and pH levels, both of which will be quite different from their original sites, 
hence possibly causing substantial changes in the cellular metabolism of the DTCs 
if not killed by the altered ROS and pH. Another possibility is that the majority of 
the proliferated cells from the DTCs may be destroyed due to their incompatibility 
with the new microenvironment (see Chap.   11     for a detailed discussion). Therefore, 
the observed population stability of the DTCs may represent a dynamic equilibrium, 
rather than no proliferative activities. Potentially both possibilities may be true for 
some metastatic cancers. 

 For (2), the possibility is an interesting one that has not received much attention 
in the cancer literature. A detailed analysis of the DTC transcriptomic data revealed 
that a number of  CYP  genes, all encoding anti-oxidant P450 enzymes, are up- 
regulated along with increased sphingolipid metabolism  versus  those in CTCs. 
Similar expression patterns are also observed between metastatic cancer and the 
matching primary cancer tissues (see Chap.   11     for details). These data strongly sug-
gest that the DTCs are under increased oxidative stress and the plasma membranes 
are damaged. One possible explanation is: the DTCs have just migrated from a 
highly hypoxic condition where they had been residing for an extended period of 
time, possibly up to 10 or 15 years, and the cancer cells may have evolved to become 
nearly anaerobic. When they are suddenly exposed to an oxygen-rich condition, their 
cellular responses to the new stress induced by the increased O 2  level include the 
activation of  CYPs  and other anti-oxidant genes. In addition, the plasma membrane 
damage, suggested by the increased sphingolipid metabolism, may be the result of 
increased and continuous lipid peroxidation produced by the increased O 2  level as 
discussed in Chap.   11    , where the implications of these observations are also offered. 

 Overall, one can see that cancer cells leave their primary bases and travel through 
the circulatory system, with help from multiple local environmental factors such as 
hyaluronic acid and stromal cells. This journey occurs in various steps, including 
disconnection from the original site and other cells, protection while in circulation 
and establishment in distant organs. The multi-faceted roles played by hyaluronic 
acid highlight this class of molecules as probably a most important facilitator 
throughout the whole process of cancer development (see Chap.   6    ). The relatively 
simple data analyses as done here have revealed interesting and previously unknown 
information about the activities of stromal cells and DTCs as they leave their base 
and seek establishment in the new location(s). The following section discusses how 
the DTCs survive the new environment.   

10.3     Adaptation to the New Microenvironment 

 As mentioned earlier, it typically takes just a few hours for the CTCs to adhere to the 
endothelial cells along the blood vessels after leaving their primary sites, but they 
may remain dormant for weeks, months or even years before they begin to actively 
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proliferate (Meng et al.  2004 ; Alix-Panabieres et al.  2008 ). During this period, these 
cells must overcome a number of obstacles to remain viable and to retain the ability 
to achieve reactivation. 

 The questions we are interested in understanding here are: (a)  What challenges 
must the metastatic tumor cells overcome in their new microenvironment ; (b)  What 
changes must these cells make in their microenvironment before they begin 
 proliferating again ; and (c)  What determines the rate of proliferation of a meta-
static cancer, knowing that some metastatic cancers grow substantially faster than 
others ? 

 To address these questions, it is prudent to fi rst review a hypothesis proposed by 
British surgeon Stephen Paget over 100 years ago when he observed that breast- 
cancer patients tended to develop secondary cancer in their livers. Since then, it has 
been widely observed that cancers from different origins have propensities to differ-
ent destinations. At the heart of the Paget hypothesis, different organs, in terms of 
their microenvironment, may have different levels of compatibility with specifi c 
metastasizing cells, the so-called “seed and soil” hypothesis (Fidler  2003 ; Fidler 
and Poste  2008 ). The hypothesis has recently regained some momentum and is 
being considered as a good model for distant metastasis because of the fi nding that 
the expression patterns of genes involved in mediating the metastasis of breast can-
cer to bone are rather different from those that direct the metastasis to lung (Langley 
and Fidler  2011 ). While validating the “seed and soil” hypothesis experimentally 
may prove to be tricky, it can potentially be computationally validated (or rejected, 
refi ned) through comparative transcriptomic data analyses of primary  versus  match-
ing metastatic cancer samples across multiple cancer types, particularly samples 
with the same type of primary cancer that has metastasized to different organs. This 
can be accomplished by checking if primary cancers that metastasized to different 
organs tend to share similar expression patterns of some to-be-identifi ed genes 
among those that spread to the same organs, which are not shared by those metasta-
sized to different organs. Similar analyses can be carried out on cancers that have 
metastasized to the same organ but from different origins. 

 Interestingly, if one compares the microenvironments of wherever the primary 
cancer is located and wherever it may spread to, the difference between the old 
microenvironment and the new one is substantial and multi-faceted. The low com-
patibility between the metastatic cells and their new environment can make the sur-
vival of the new settlers very challenging. One key piece of information that the 
suggested analyses above could potentially reveal is:  which aspects in the cell- 
microenvironment compatibility are the most essential factors in determining if 
DTCs can remain viable and develop in a specifi c new location ? An answer to this 
question could potentially have a profound impact on our understanding of meta-
static cancer and identifying possible ways to slow their growth. In the following, 
we discuss the adaptations the DTCs must make in order to survive in their new 
environment. 
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10.3.1     Challenges to Cancer Cells in the New 
Microenvironment 

 A key challenge for the arriving metastatic cancer cells is survival in the new micro-
environment. A fundamental difference between the new and the old one is that the 
original environment is a tumor environment that is pro-cancer growth while the 
new one is a normal microenvironment in a healthy organ, which is anti-cancer. This 
difference could be substantial. Using pH as an example, the pH level in the new 
microenvironment will be higher than that of the old one as discussed in Chap.   8    ; 
furthermore, the environment is not lactate-rich as in the original one. Hence, T-cells 
in the new environment may be much more aggressive against the new settlers, 
compared to the T-cells in their old habitats where they have become less active 
against cancer cells due to the lactate-rich environment. More generally, the original 
microenvironment offers a variety of pro-cancer signals, such as anti- apoptotic, 
angiogenesis, cell survival and proliferation signals, but these will not be available 
in the new location. Similarly, their supporting stromal cells, such as TAMs, will not 
be available upon their arrival. Another key challenge is that, unlike the highly 
hypoxic environment typically associated with primary cancers, the new environ-
ment is rich in oxygen. Having the tumor cells in the new environment is analogous 
to putting anaerobic cells in an aerobic environment; it may either kill the new com-
ers or yield substantial changes, for example through regulation or selection of spe-
cifi c mutations, in their cellular states to protect them against the toxic oxygen. A 
similar argument can be made about the need to adapt to the local redox states by 
the new settlers. Further discussion along this line is given in Chap.   11    . 

 Another key factor that may affect the viability of the arriving tumor cells is their 
interactions with the ECM. As discussed in Chaps.   5     and   6    , such interactions play 
essential roles in both the transformation and viability of the tumor cells in their 
original habitat. One obvious difference now is that the old ECM is pro-growth, and 
hence possibly very stiff, while the new one is clearly not. This may be one of the 
reasons for the relatively slow growth during the early stage of the new comers. 
Other than this, very little is currently known about the differences between the 
physicochemical properties of the new  versus  the original ECM. In addition, cell- 
cell competition will be a key factor that may affect the fate of the new settlers (as 
discussed in Chap.   8    ), knowing that they continue to proliferate as revealed by our 
analyses of gene-expression data of DTCs and shown in Fig.  10.6 . One possibility 
could be that the long dormancy time may represent the preparation time needed by 
a metastatic cancer to select the fi ttest cells for the new environment through rounds 
of proliferation and cell-cell competition (see Chap.   8     for the details). It is worth 
noting that cell-cell competition does not change the overall biomass of a tumor but 
only serves as a selection process for more robust cells in the new environment, as 
discussed in Chap.   8    . Overall, one can imagine that, for the cancer cells to become 
established and thrive in the new environment, they must undergo substantial adap-
tations to make the cell population strong enough to survive the new environment.

10.3 Adaptation to the New Microenvironment

http://dx.doi.org/10.1007/978-1-4939-1381-7_8
http://dx.doi.org/10.1007/978-1-4939-1381-7_11
http://dx.doi.org/10.1007/978-1-4939-1381-7_5
http://dx.doi.org/10.1007/978-1-4939-1381-7_6
http://dx.doi.org/10.1007/978-1-4939-1381-7_8
http://dx.doi.org/10.1007/978-1-4939-1381-7_8
http://dx.doi.org/10.1007/978-1-4939-1381-7_8


268

10.3.2        Changing the Microenvironment 

 One proposed mechanism by which the new settlers alter their new environment to 
enhance their chance for survival is through the release of exosomes.  Exosomes  are 
derived from cancer cellular endosomes through a process termed  inward budding , 
where cytoplasmic RNA molecules and functional proteins are encapsulated into 
exosomes and then secreted through a process driven by  RAB  (Rab escort protein 1) 
 GTPases  (Hsu et al.  2010 ; Ostrowski et al.  2010 ). The tetraspanin–integrin complex 
enables the binding of exosomes to the target cells that express adhesion molecules 
such as  ICAM1  (intercellular adhesion molecule 1) on the cell surface. Such adhe-
sion molecules can be activated by pro-infl ammatory signals. Cancer cells  in situ  

  Fig. 10.6    The rankings of 13 cell-cycle related genes, namely  CCNA2  (cyclin A2),  CCNB1 , 
 CCNB2 ,  CCND2 ,  CCNE1 ,  CCNF ,  CDH1  (cadherin 1, type 1, E-cadherin),  E2F1 ,  MCM2  (mini-
chromosome maintenance complex component 2),  MCM3 ,  MCM4 ,  MCM5 ,  MCM6  among all  N  
human genes in terms of gene expression levels, where  N  is set at 20,000 here. For each of the 
seven CTC samples (on the  left ) and the seven DTC samples (on the  right ), a gene’s normalized 
expression rank is calculated as: ( N  − rank of the gene’s expression)/ N . Each  dot  in a box plot is the 
normalized rank for 1 of the 13 above genes in a specifi c sample       
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have been found to exchange proteins endowed with oncogenic activities with each 
other through exosome-mediated transfer for their survival (Kahlert and Kalluri 
 2013 ). A number of studies have reported cases where cancer cells change their 
environment by releasing exosomes into the extracellular space. For example, exo-
somes from breast cancer cells have been found to convert mesenchymal cells to 
myofi broblasts via a  SMAD -mediated pathway. Myofi broblasts, a less differentiated 
form of fi broblasts, are a key source of matrix-remodeling proteins within the tumor 
microenvironment and participate in tumor angiogenesis (Vong and Kalluri  2011 ; 
Cho et al.  2012b ). Another example is that melanoma-derived exosomes enhance 
the lung endothelial permeability and increase lung metastases in mice (Peinado 
et al.  2012 ).  

10.3.3     From Proliferation to Dormancy 

 Generally, DTCs enter a period of dormancy after becoming lodged in their new 
locations. This could result from the limited availability of blood supply (referred to 
as  angiogenic dormancy ), immune surveillance and attack on fast growing cells, or 
by cellular quiescence triggered by the incompatibility with the new environment, 
where growth may be arrested in the G 0 -G 1  phase of the cell cycle. The duration of 
dormant time varies substantially across different cancers, even cancers of the same 
type. One observation is that the less differentiated (i.e., more stem-cell like) tumor 
cells tend to have shorter dormancy times and become more aggressive in their 
renewal to the proliferative phase (Aguirre-Ghiso  2007 ; Wikman et al.  2008 ). The 
overall level of understanding of cancer dormancy is quite limited at this point, par-
tially due to the reality that very limited experimental data on such cells have been 
collected, possibly due to the challenging nature in identifying these cells  in vivo . 

 One proposed tumor-dormancy model is that after the DTCs arrive and adhere to 
the local cells, their metastasis suppressor genes may regulate cell dormancy in 
response to the stresses invoked by the new environment, which will protect them 
from detection by the immune system (Horak et al.  2008 ). Another study has sug-
gested that interactions between the arriving tumor cells and the local ECM may play 
a key role in sending the tumor cells into dormancy. Specifi cally, the study found that 
melanoma cells are growth arrested at the G 1 /S checkpoint when they are in contact 
with polymerized fi brillar collagen. In comparison, alteration of the collagen forma-
tion to that of denatured collagen activates the cell cycle and moves to the S phase 
(Hansen and Albrecht  1999 ). This may represent another problem that can benefi t 
from comparative statistical analyses of transcriptomic data across multiple types of 
early metastatic cancers, which could lead to discoveries regarding the validity of the 
model or whether it is true for only certain types of metastatic cancers. 

 A number of genes have been implicated in executing the growth inhibition of meta-
static tumor cells, hence referred to as  metastasis suppressor  genes. Such genes have the 
ability to prevent proliferation as the tumor cells are becoming established in their new 
environment by inducing dormancy or apoptosis.  KISS1  (kisspeptin) is one such gene. 
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The Kisspeptins, processed by  KISS1 , can bind with  GPR54  and possibly regulate 
 cellular cytoskeletal reorganization to block cell proliferation through the induction of 
dormancy (Nash et al.  2006 ; Paez et al.  2012 ).  KAI1  (R2 leukocyte antigen) is another 
metastasis suppressor gene. Its encoded protein can form a complex with integrins, and 
together they inhibit cell proliferation through induction of tumor-cell growth arrest. 
Other known metastasis suppressor genes include  MKK4  (an activator of  MAPK ,  P38  
and  JNK ),  BRMS1  (inhibitor of angiogenesis by suppressing the  NFκB  activity) and 
 CTGF  (a regulator of cell adhesion, proliferation and differentiation). A recent study 
suggests that some ECM components may have important roles in maintaining meta-
static dormancy (Barkan et al.  2010 ). 

 One should be able to design and carry out computational analyses of relevant 
transcriptomic data of early metastatic cancers to validate, refi ne or reject this 
hypothesis. One thing is clear, however, during dormancy the cancer cells continue 
some of their cellular activities, including proliferation as discussed earlier. It can be 
hypothesized that some of these activities are related to a change(s) in their meta-
bolic state for their adaptation to the new microenvironment, which can also be 
computationally validated, refi ned or rejected when transcriptomic data for meta-
static cancers at the early stages are available.  

10.3.4     Reactivation to Proliferation from Dormancy 

 The remodeling pathway of the ECM is believed to have a key role in the reactiva-
tion of cancer growth from dormancy. Specifi cally, it has been reported that dor-
mant cancer cells have a distinct cytoskeletal organization, which has only transient 
adhesion to the ECM (Barkan et al.  2010 ). Changing the components of the ECM, 
such as an increase in the fi bronectin composition and hence the structure as well as 
the physical properties of the matrix, can reactivate the dormant tumor cells. In 
addition, type I collagen has been found to exhibit reactivation roles of dormant 
tumor cells, suggesting that it may not be specifi c molecular types, but rather the 
shape and the physical properties, such as stiffness of the matrix, that can reactivate 
dormant cells. 

 A few studies have been published that focused on the detailed molecular mecha-
nisms of the reactivation process. One such investigation on bone metastasis found 
that local infl ammation increases the expression of the  VCAM1  (vascular cell adhe-
sion molecule 1) protein in cancer cells in a bone microenvironment. When  VCAM1  
sheds from the cell surface, the soluble  VCAM1  molecule attracts osteoclast pro-
genitors to the cancer cells through binding with the cognate receptor integrin α4β1, 
leading to adhesion of the progenitors to each other and ultimately resulting in an 
increase in osteoclast activity and the escape of dormancy (Lu et al.  2011 ). One pos-
sible cause of the local infl ammation could be the result of certain renewed activities 
in the dormant cancer cells, which triggers the immune response and also alters the 
ECM properties. 
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 As discussed throughout this chapter, hypotheses like the above can be computa-
tionally examined by determining changes in the expression patterns of genes 
believed to be involved in the aforementioned processes. Then, an assessment of the 
correlations between the expression changes of these genes and those possibly 
linked to the reactivation of cancer cells from dormancy could lead to a fi rm valida-
tion or rejection. The key for doing such analyses is the availability of gene- 
expression data of metastatic cancer cells in dormancy  versus  such cells that are 
exiting dormancy, which are currently lacking. Complementing such studies, it 
should be possible in time to also access proteomic data to determine protein con-
tent directly, including post-translational events. 

 A study on the transition from quiescence to proliferation of metastatic breast 
cancer showed that it is the cytoskeletal reorganization with  F-actin  (a protein that 
can form a linear polymer microfi lament, relevant to cell mobility and contraction) 
that leads to actin stress fi ber formation and reactivation of proliferative growth 
(Barkan et al.  2008 ). This study also showed that the ECM and tetraspanins play 
critical roles in enabling cell survival, proliferation and cytoskeletal changes 
required for the switch from dormancy to proliferation and invasion. Clearly this 
hypothesis can also be examined computationally as discussed earlier.   

10.4     Hyaluronic Acid Is a Key Facilitator of Metastasis 

 Like the roles played by hyaluronic acid in cancer initiation, this glucosaminogly-
can seems to also serve as a major facilitator of cancer metastasis and the initial 
development after migration (see discussion in the previous sections). Intuitively 
this makes sense since human cells have evolved in such a way that the ECM, of 
which hyaluronic acid is a part, serves as the main signal source for cell survival, 
proliferation and mobility among other cellular state transitions as introduced in 
Chap.   1    . In these capacities, hyaluronic acid continues to serve cancer cells by facil-
itating their migration and survival in their new environment(s). 

10.4.1     Motility 

 A question of interest here is:  Are there thresholds of some conditions beyond which 
primary cancers start to metastasize ? Clearly, various pericellular or intracellular 
environmental factors can be considered, such as the level of hypoxia, oxidative 
stress, extracellular pH or anything that can potentially lead to the increased produc-
tion, and hence export, of hyaluronic acid as there are multiple lines of evidence 
suggesting that this molecule is a key to initiate the metastasis process. Here some 
discussion is provided on the accumulation of ROS and its role in increased hyal-
uronic acid production. 
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 It is known that ROSs such as the superoxide radical, hydrogen peroxide and 
hydroxyl radicals have an important role in cancer development. The general under-
standing has been that ROS tends to accumulate as a cancer evolves, leading to 
increased DNA damage (Waris and Ahsan  2006 ), faulty antioxidants, activation of 
cancer-related transcription factors such as  NFκB  and a gradual change in the cel-
lular redox state (Gupta et al.  2012 ). A recent study even suggests that cancer metas-
tasis is a cancer cell’s escape from oxidative stress in their primary sites (Pani et al. 
 2010 ). Figure  10.7  shows a general trend of ROS levels in two cancer types as they 
progress, measured in terms of the expression levels of ROS stress-responsive 
genes, indicating that when the ROS levels fl uctuate inside cells, their transient 
maximum ROS level tends to be higher in cancer  versus  matching controls.

   Previous studies have reported that ROS can induce  TGFβ  (Barcellos-Hoff and 
Dix  1996 ; Jain et al.  2013 ), which can serve as an oncogene in advanced cancers 
and trigger the synthesis of hyaluronic acid by activating both hyaluronic acid syn-
thases  HAS1  and  HAS2  (Liu and Gaston Pravia  2010 ). Actually it has been widely 
observed that advanced stage cancers tend to have increased hyaluronic acid 
 production, which we posit is the result of the increased accumulation of ROS. In 
addition, it has been well established that an elevated level of hyaluronic acid 

  Fig. 10.7    Ranges of ROS level fl uctuation, refl ected by expression levels of ROS responsive 
genes, GSS ( top ) and GCLC ( bottom ) in normal ( dark gray )  versus  cancer ( light gray ) in two 
datasets: GSE13195 consisting of 25 pairs of gastric cancer  versus  matching control tissues (the 
 panels  on the  left ) and GSE19804 consisting 60 pairs of lung cancer  versus  matching control 
 tissues (the  panel  on the  right )       
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increases the motility of tumor cells, facilitating their escape from the primary 
tumor site and starting the metastatic process. One study, for example, has shown 
that excess hyaluronic acid synthesis and processing directly promotes metastasis of 
prostate cancer (Bharadwaj et al.  2009 ). Hence it is reasonable to speculate that this 
may be related to the mechanical forces generated by the increased content of hyal-
uronic acid around the cancer cells, leading to the disconnection between the host 
cells and other cells, as well as between the cells and their basement membrane 
(discussed in Sect.  10.1 ).  

10.4.2     Prevention from Programmed Cell Death 

 Analyses of gene expression data of CTCs of breast cancers (see Table  10.3 ) show 
that their hyaluronic acid synthesis gene,  HAS2 , and exporter gene,  ABCC5 , are 
both up-regulated compared to the levels in their primary counterparts, indicating 
that hyaluronic acid is being synthesized, exported and possibly used in circulation. 
Hence, one can hypothesize that these circulating cells may use hyaluronic acid on 
their cell surfaces to prevent activation of the programmed cell death by anoikis as 
discussed earlier. This possibility clearly requires experimental validation.  

10.4.3     Helping Adaptation to and Change 
of the New Microenvironments 

 Gene expression data of newly-arrived cancer cells in a secondary site show that the 
hyaluronic acid synthesis genes,  HAS1  and  HAS2 , and the exporter gene,  ABCC5 , 
are further up-regulated compared to CTCs, indicating that hyaluronic acid, in addi-
tion to its role in preventing programmed cell death, is also serving in a key role to 
assist the integration of the cells into the local environment. Previous studies have 
shown that hyaluronic acid and its cell-surface receptor  CD44  are important in 
changing the local environment to a more pro-metastatic environment by promoting 
the generation of various growth factors, e.g.,  FGF  and  VEGF  for growth and tumor 
angiogenesis, respectively (Misra et al.  2011 ; Ween et al.  2011 ).   

10.5     Concluding Remarks 

 Rapid progress has been made in the past decade in our overall understanding of the 
process of cancer metastasis, such as elucidation of the functional roles played by 
the EMT pathway and by the ECM compositional changes in metastasis. Building 
on this knowledge, numerous hypotheses have been developed regarding some 
important causal relationships in the overall process of cancer metastasis. Such 
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knowledge, in conjunction with the increasing pool of  omic  data collected on metas-
tases at different developmental stages, including primary cancers with different 
levels of local metastasis, CTCs, DTCs, micro-metastasis and full metastatic tumors, 
provides unprecedented opportunities for computational cancer biologists to 
develop and computationally validate causal models. Such models can, in turn, be 
directly validated experimentally, signifi cantly accelerating research progress in 
gaining a full understanding of cancer metastasis. 

 By integrating the information provided in this chapter and the one in Chap.   5    , 
one can possibly develop a full model in which hyaluronic acid and fragments serve 
as the information backbone for providing instructions for stress-responses and pos-
sibly guiding a cancer to evolve. This seems reasonable since the whole purpose of 
cancer cells is growth as Otto Warburg pointed out in the 1960s (Warburg  1966 ). For 
a growing machine, like cancer, living in a rapidly changing and highly stressful 
environment, all they need for survival is to interact with hyaluronic acid and its 
fragments,  which already encode all the “instructions” related to tissue remodeling 
and repair under different conditions, and well-tuned through millions of years of 
evolution. It is this well-developed instruction set that guides the evolving cancer 
cells to fi nd their means to survive and proliferate . This is the fundamental differ-
ence between our view and the current genome-centric views about cancer. That is: 
survival guided by a set of well-developed instructions  versus  survival by selecting 
genomic mutations that are offered to them by chance.      

    Appendix 

    Table 10.1    Data used for gene-expression analysis of circulating tumor cells   

 Data set  Tissue  Platform  #Samples 

 GSE31364  Breast  GPL14378  72 
 GSE18670  Pancreatic  GPL570  24 

    Table 10.2    Data used for gene-expression analysis for Fig. 10.5   

 Data set  Tissue  Platform  #Samples 

 GSE36895  Kidney  GPL570  76 
 GSE31048  Leukemia  GPL570  221 
 GSE41804  Liver  GPL570  40 
 GSE30219  Lung  GPL570  85 

     Table 10.3    Data used for gene-expression analysis for Fig. 10.6   

 Data set  Tissue  Platform  #Samples 

 GSE31364  Breast  GPL14378  72 
 GSE18670  Pancreatic  GPL570  24 

  The breast cancer set contains seven DTC samples, and the pancreatic cancer data-
set has seven CTC samples      
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    Chapter 11   
 Cancer After Metastasis: 
The Second Transformation 

                  It has long been recognized by oncologists and families of cancer patients that 
metastatic cancers are considerably different from their primary cancer counter-
parts. Their growth, for example, tends to be more explosive (Weiss et al.  1986 ; 
Blomqvist et al.  1993 ; Oda et al.  2001 ; Klein  2009 ), easier to spread and more 
diffi cult to stop; yet, very little is understood about the differences between the 
biology of metastatic cancer and that of primary cancer. Current research efforts 
have mostly focused on understanding the mechanisms of metastatic processes 
by addressing questions like the following:  What triggers cancer cells to spread ? 
 How do they circumvent the body’s defenses ? and  How does one prevent metas-
tasis ? In comparison, relatively little can be found in the literature about the 
unique biology of metastatic cancer. For example, the molecular and genetic 
mechanisms responsible for driving the more explosive growth of metastatic 
cancers are virtually unknown. This may have refl ected a belief widely held by 
cancer researchers that metastatic cancer is a terminal illness and hence not 
much can be done to stop its progression once a cancer has metastasized, which 
may have infl uenced the priorities in studying the underlying biology of 
metastasis. 

 Like primary cancers, metastatic cancers in different organs and of different ori-
gins tend to have different growth patterns and respond differently to the same che-
motherapy treatments; and yet they exhibit certain clinical commonalities, which are 
distinct from those of primary cancers, suggesting that metastatic cancers may share 
some common biology. As discussed in Chap.   10    , the common biology of different 
metastatic cancers may be driven by common challenges that the cancer cells must 
overcome when adapting to their new microenvironments that are considerably dif-
ferent from their old habitats. In this chapter, we present some common differences 
between the two different microenvironments; and discuss how metastatic cancers 
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may have responded to the new challenges induced by their new microenvironments, 
which has led to common or similar clinical behaviors among all metastatic cancers, 
e.g., accelerated cell proliferation compared to their primary counterparts. 

11.1       Characteristics Shared Among Metastatic Cancers 
But Distinct from Primary Cancers 

 The fi rst study on elucidation of molecular signatures common to different types of 
metastatic cancers, which are distinct from primary cancers in general, was done by 
Ramaswamy et al. ( 2003 ). By analyzing transcriptomic data of 12 metastatic adeno-
carcinomas of different origins (breast, colorectal, lung, ovary, prostate, and uterus) 
and 64 unmatched primary adenocarcinomas with similar organ distribution, the 
authors identifi ed 128 genes whose expression patterns distinguished quite well the 
metastatic cancers from the primary cancers, where 64 of these genes are up- 
regulated and 64 are down-regulated in the metastatic cancers. Further analysis led 
to the identifi cation of a subset consisting of 17 genes exhibiting strong discerning 
power between the two classes of cancers. Of the 17 genes, 8 are up-regulated in 
metastatic cancers ( SNRPF ,  EIF4EL3 ,  HNRPAB ,  DHPS ,  PTTG1 ,  COL1A1 , 
 COL1A2 ,  LMNB1 ), and 9 are down-regulated ( ACTG2 ,  MYLK ,  MYH11 ,  CNN1 , 
 HLA-DPB1 ,  R4A1 ,  MT3 ,  RBM5 ,  RUNX1 ). Of the eight up-regulated genes, four 
( SNRPF ,  EIF4EL3 ,  HNRPAB ,  DHPS ) are related to mRNA (pre)processing and 
translation initiation; three ( COL1A1 ,  COL1A2 ,  LMNB1 ) are related to extracellular 
matrix compositions, and one ( PTTG1 ) is probably relevant to blocking of the  P53  
activity. Among the nine down-regulated genes, four ( ACTG2 ,  MYLK ,  MYH11 , 
 CNN1 ) are relevant to actin binding; two ( HLA-DPB1 ,  R4A1 ) are involved in 
immune responses; two ( MT3 ,  RBM5 ) are involved in induction of apoptosis; and 
one ( RUNX1 ) is a core transcription binding protein. While these gene-expression 
patterns are clearly consistent with our general understanding about the phenotypic 
differences between metastatic and primary cancers, the functions of these genes do 
not provide any obvious information for explaining why metastatic cancers grow 
substantially faster than their primary counterparts. 

 A number of additional studies have appeared on the differences in gene- 
expression patterns between metastatic and primary cancers, which have been 
focused more on specifi c cancer types rather than the general differences between 
the two classes of cancers. For example, a panel of 70 genes was published in 2002 
for predicting breast cancer with strong metastatic potential (van ‘t Veer et al.  2002 ), 
and another panel of six genes ( DSC2 ,  TFCP2L1 ,  UGT8 ,  ITGB8 ,  ANP32E , 
 FERMT1 ) was published around the same time for distinguishing between breast 
cancer with strong potential for lung metastasis and those without (Landemaine 
et al.  2008 ). Similar studies focused on other cancer types can be found in the litera-
ture, including melanoma (Bittner et al.  2000 ; Onken et al.  2004 ; Winnepenninckx 
et al.  2006 ), breast cancer (Minn et al.  2005 ; Wang et al.  2005 ), prostate cancer 
(Dhanasekaran et al.  2001 ), gastric cancer (Oue et al.  2004 ), pancreatic cancer 
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(Stratford et al.  2010 ; Van den Broeck et al.  2012 ), colon cancer (Bertucci et al. 
 2004 ), and squamous cell carcinoma of the head and neck (HNSCC) (Ginos et al. 
 2004 ; O’Donnell et al.  2005 ). While these signature-gene sets are clearly useful as 
predictive tools, none of them have provided new insights explaining why 
 metastatic cancers so different from primary cancers in general. 

11.1.1     Understanding the Difference Between 
Microenvironments of Metastatic Versus Primary 
Cancers 

 Here we examine the microenvironments of metastatic  versus  primary cancers, with 
the aim of understanding the common differences between these two types of tumor 
microenvironments, extending the brief analysis started in Chap.   10    . The rationale 
is that microenvironments are known to have essential roles in the initiation, pro-
gression and metastasis of primary cancers. Specifi cally, the interplay between can-
cer cells and their microenvironment probably serves as the most important factor 
in determining the evolutionary trajectories of a cancer. The microenvironment of a 
cancer refers to the physical and chemical pericellular environment of a cancer, 
which includes (1) the composition and the physical properties of the ECM, (2) the 
stromal cell populations and relative sizes, (3) various chemical properties such as 
the levels of ROS, hypoxia and pH, and (4) the collection of a variety of signaling 
molecules such as chemokines and cytokines. While it is rather diffi cult to experi-
mentally measure the micro-environmental factors of a cancer, one can possibly 
estimate them through analyses of gene-expression data of the collected cancer tis-
sue samples. This is possible because cancer-affecting environmental factors should 
induce changes in expression patterns of some genes. By detecting and character-
izing the relationships between the environmental changes and the expression 
changes in specifi c genes, one should be able to infer changes in a microenviron-
ment. This is the basis for inference of micro-environmental changes through gene- 
expression analysis of cancer tissues. 

 We have carried out comparative analyses of transcriptomic data on a number of 
metastatic  versus  primary cancer types in the same organs, hence referred to as  cor-
responding  cancers, in order to determine, as best as possible, the common differ-
ences between the microenvironments of metastatic cancers  versus  those of the 
corresponding primary cancers. The reason that we compare microenvironments in 
the same organs (not from the same patients) is that the background micro- 
environmental factors should be similar for the same type of organ, hence making 
direct comparisons between the microenvironments of metastatic and primary can-
cers more meaningful. 

 In the analysis, genes that are related to the following environmental factors are 
examined: (1) hypoxia, (2) ROS, (3) ECM composition, and (4) immune responses. 
A few datasets covering primary and metastatic cancers in four organs: brain, 
liver, lung and ovary, were retrieved from the GEO database (See Table  11.2 ) and 
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used in our analysis, with the detailed information on these datasets given in 
Table  11.2 . Throughout all the analyses in this chapter, the expression data are all 
normalized in a sample-centric manner so the total expression level over all genes in 
each sample is the same. With this normalization for correcting possible batch effects 
(Lazar et al.  2013 ), expression-levels across different samples, including both meta-
static and of primary cancers, are directly comparable.  

11.1.2     Reactive Oxygen Species 

 Two genes,  NRF2  (gene name:  NFE2L2 ) and  INRF2  ( KEAP1 ), are examined, which 
are known marker genes of the ROS level. Specifi cally  NRF2  is the main regulator 
of the antioxidant response pathway (Nguyen et al.  2009 ), and  INRF2  inhibits the 
activation and promotes the degradation of  NRF2  when it binds to  NRF2  (Kaspar 
et al.  2009 ). Both genes show lower expression levels in metastatic cancers  versus  
the corresponding primary cancers across all four organs (see Fig.  11.1 ), strongly 
indicating that metastatic cancers have lower intracellular ROS levels than the 
 corresponding primary cancers.

  Fig. 11.1    Boxplots for comparisons between the (log-2 transformed) expression levels of two 
ROS marker genes,  NFE2L2  ( a ) and  KEAP1  ( b ), across multiple samples in metastatic  versus  
 corresponding primary cancers. Each dot for each gene in each cancer type is the normalized 
expression level of the gene in a specifi c sample. In both ( a ) and ( b ), four groups of metastatic 
and corresponding primary cancer samples are shown, from  left  to  right : (metastatic brain ( left ), 
primary brain ( right )), (metastatic liver, primary liver), (metastatic lung, primary lung) and 
 (metastatic ovarian, primary ovarian). The  bottom  and the  top lines  of each  box  are the fi rst and the 
third quartiles, respectively, and the  line inside the box  is the mean       
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   In addition, we have also examined the expression data of 23 antioxidant enzyme 
genes, consisting of  HMOX1 ,  HMOX2 ,  GSR ,  GCLC ,  GCLM ,  NQO1 , and a few 
additional genes selected in three families:  SOD  (superoxide dismutase),  GPX  (glu-
tathione peroxidase) and  TXN  (thioredoxin). It is noted that 12 out of the 23 genes 
show substantially lower expressions in metastatic  versus  the corresponding pri-
mary cancers across all four organs, namely  HMOX1 ,  GCLC ,  GCLM ,  SOD1 ,  SOD2 , 
 GPX1 ,  GPX3 ,  GPX4 ,  PRDX3 ,  PRDX4 ,  PRDX6  and  TXNL1 , while only three genes, 
 NQO1 ,  GPX2  and  PRDX2 , show over-expression in metastases  versus  the primary 
cancers. These observations provide additional supporting evidence that metastatic 
cancers have lower ROS levels than those in primary cancers across all four organs. 
Since these four were randomly picked, it is reasonable to expect that all solid 
tumors have this property, which is consistent with a recent study suggesting that 
metastasis is cancer’s way to escape from the high ROS levels in their primary sites 
(Pani et al.  2010 ).  

11.1.3     Hypoxia 

 Two hypoxia-induced factor genes,  HIF1α  and  HIF2α , were examined in metastatic 
 versus  corresponding primary cancers. Both genes are established marker genes for 
the intracellular hypoxic level (Koukourakis et al.  2002 ), i.e., the higher the  HIF  
gene expression, the higher the hypoxic level. Figure  11.2  shows that both  HIF1α  
and  HIF2α  are consistently under-expressed in metastatic  versus  primary cancers, 
indicating that metastatic cancer in general has higher oxygen levels than primary 
cancer across all four organ types. This is expected since metastatic cancers tend to 
develop in blood-rich environments. In addition, genes involved in the TCA cycle 
(also referred to as the Krebs cycle) and the oxidative phosphorylation pathway are 
found to be consistently overexpressed in metastatic cancer compared to the corre-
sponding primary cancer. These results provide independent supporting evidence 
for the increased oxygen levels since these two processes require oxygen.

   One interesting observation here is that the majority of the glycolysis genes are 
known to be positively regulated by  HIF1α  in primary cancers in general (Denko 
 2008 ), such as the glucose transporters  GLUT1  and  GLUT3  and glucose enzymes 
 HK2  and  LDHA . However, these genes are consistently up-regulated in metastatic 
 versus  corresponding primary cancers, even though  HIF1α  is down-regulated in 
metastatic cancers as shown in Fig.  11.2 . This suggests that metastatic cancers may 
employ a regulatory mechanism different than  HIF1α  to maintain the glycolytic 
activity level high, which is different from that used in primary cancers. We 
 anticipate that well-designed statistical analyses may lead to the identifi cation of 
transcriptional factors showing co-expression patterns with the above glycolysis 
genes and possibly even to the discovery of an unknown regulatory system used by 
metastatic cancers, which does not involve  HIF1α .  
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11.1.4     Acidic pH Level 

 Both extracellular and intracellular acidity levels are known to be associated with 
the development of cancer. The expression levels of acid-sensing ion channel gene 
 ASIC3 , previously used as the marker genes for the extracellular pH (Waldmann 
et al.  1997 ; Delaunay et al.  2012 ), have been found to be up-regulated in metastatic 
 versus  primary cancers. Figure  11.3  shows one  ASIC  gene,  ASIC3 , with increased 
expression levels in ovarian, liver and lung metastases  versus  their corresponding 
primary cancers, respectively, suggesting that these metastatic cancers have a lower 
pH than the corresponding primary cancers. This is consistent with the above obser-
vation that glycolysis is up-regulated in metastatic cancers. Brain metastases behave 
differently for this particular gene, and further analyses are clearly needed.

11.1.5        Immune Response 

 Immune responses are indispensable components throughout cancer development, 
including initiation, progression and metastasis as discussed in Chap.   8    . Of interest 
however, immune responses play dual roles relevant to cancer evolution. Specifi cally, 
immune surveillance and immunoediting are essential for detecting and inhibiting 
cancer development while some immune responses, such as chronic infl ammation 
and the partnership between cancer and macrophages (Condeelis and Pollard  2006 ; 
Mantovani et al.  2006a ), are probably required for cancer development (see Chap.   8    ). 

 A number of marker genes for the activity levels of TAMs and T-cells are exam-
ined here. It is noteworthy that gene-expression data collected on a cancer tissue 

  Fig. 11.2    Boxplots for comparisons between the average expression levels of two marker genes, 
 HIF1α  ( a ) and  HIF2α  ( b ), for hypoxic levels across multiple samples in metastatic  versus  corre-
sponding primary cancers in four organs: brain, liver, lung and ovary. All the defi nitions in the 
fi gure are the same as in Fig.  11.1        
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sample is likely to have contributions from all cell types contained in the specimen, 
including immune cells, since complete removal of non-cancerous cells from a 
specimen requires a considerable amount of effort and is rarely done. On a positive 
note, however, the non-cancerous cells remaining in a tissue sample may prove 
benefi cial to cancer research since they provide additional and important informa-
tion about the microenvironment of a cancer. As discussed in Chap.   2    , derivation of 
the detailed contribution from each cell type to each gene’s expression level gener-
ally requires substantial effort, including characterization of each cell type in 
terms of its signature genes and gene-expression covariance matrix, as well as a 
 de- convolution algorithm (Ahn et al.  2013 ). Here we do not attempt to derive accu-
rate contributions to each gene’s expression by individual cell types. Instead, it will 
suffi ce to make a rough estimate about the immune-specifi c genes that are up- or 
down-regulated in metastases and those genes that may have altered expression 
levels as a response. With these caveats, only expression data of immune-specifi c 
genes are examined in metastatic  versus  the corresponding primary cancers, in an 
attempt to derive new insights into the differences in gene activity levels in immune 
cells associated with metastatic cancer  versus  those with primary cancer. 

 Genes selected for analysis include the following.  IL4  is an immune-cell gene and 
known to promote differentiation of helper T-cells to type-2 helper T-cells (Th2) and 
activate macrophage M1 cells to become M2 cells (Sokol et al.  2008 ; Ho and Sly 
 2009 ; Martinez et al.  2013 ). Moreover, the combined signals of  IL4  from T-cells and 
 CSF1  (hematopoietic growth factor) from cancer cells can stimulate the biosynthesis 
and release of the potent growth factor  EGF  by TAMs.  ST2  (suppression of tumori-
genicity 2) and  OX40  (also known as  CD134 ) are marker genes of Th2 cells.  CD4  
(cluster of differentiation 4) is an immune cell-derived glycoprotein, and has been 
found on the surface of T helper cells and macrophages.  CD8  and  GZMA  are both 
marker genes of cytotoxic T-cells, and  KIR  is a marker gene of natural killer cells. 

 Comparative expression data analyses of these genes revealed the following.  IL4 , 
 IL4R ,  ST2 ,  OX40 ,  CD4  and  KIR  are consistently up-regulated in brain, liver and 

  Fig. 11.3    Boxplots for 
comparisons between 
expression levels of one gene, 
 ASIC3 , refl ecting the pH level 
in metastatic and primary 
cancers in brain, liver, lung 
and ovary. The defi nitions of 
the plot are the same as in 
Fig.  11.1        
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lung metastases compared to their corresponding primary cancers. Hence, one can 
infer that metastatic cancer tissues tend to have increased concentrations of helper 
T-cells, tumor-associated macrophages and natural killer cells. 

  CD8  and  GZMA  are consistently down-regulated in metastatic cancers  versus  the 
corresponding primary cancers across all the datasets examined. This is consistent 
with a previous report that cytotoxic T-cells can be inhibited by regulatory T-cells 
through  CTLA-4  (cytotoxic T-lymphocyte antigen 4), and by tumor associated mac-
rophages through the production of  TGFβ  and  IL10  (Vesely et al.  2011 ). This mech-
anism allows metastatic cancer cells to escape immune controls. 

 Figure  11.4  shows the expression patterns of a few genes selected from the above 
immune-cell gene list. It is worth emphasizing that ovarian cancer, both metastatic 
and primary, seems to have rather distinct expression patterns compared to the other 

  Fig. 11.4    Boxplots for comparisons between expression levels of genes,  CSF1  ( a ),  IL4  ( b ),  CD4  
( c ) and  CTLA4  ( d ), relevant to immunity in metastatic and primary cancers in brain, liver, lung and 
ovary. The defi nitions of  boxes  in the plot are the same as in Fig.  11.1        
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metastases examined here as can be seen from Fig.  11.4 . The reason could be one of 
the following: (1) ovarian cancer may use a parallel set of genes to accomplish the 
same functions as these genes do; and (2) ovarian cancer may have rather distinct 
immune responses from the other cancer types, which seems unlikely.

11.1.6        Changes in Extracellular Matrix 

 The physical properties of ECM have key roles in cancer initiation, development 
and metastasis as discussed in Chaps.   4    ,   6     and   10    . For example, stiffer ECMs tend 
to increase the effectiveness of growth factors in driving the proliferation of cancer 
cells upwards of 100-fold. In addition, higher ECM stiffness is the cue for the dif-
ferentiation of myofi broblasts (Hinz  2009 ). Here we examine if the ECMs of meta-
static cancers have distinct properties  versus  those of primary cancers. Since the 
physical and chemical properties of ECMs have not been directly measured, the 
approach taken here was to examine the expression data of a few genes whose pro-
teins contribute to various components of the ECM. 

 Recall from Chaps.   1     and   6     that the ECM is composed of collagen and hyal-
uronic acid fi brils, proteoglycans, fi bronectins, laminins, elastins and other linker 
proteins (see Fig.   1.6    ). Out of these components, the levels of collagen, elastins and 
laminins are known to be directly related to the stiffness of an ECM (Bruel and 
Oxlund  1996 ; An et al.  2009 ; Ng and Brugge  2009 ), while relatively little is known 
about the contribution of the other components to the physical properties. A simple 
data analysis revealed that there is a fairly large gene pool that contributes to the 
assembly of ECM: (1) at least 43 genes in the human genome encode collagen pro-
teins, which together have at least 322 known splicing isoforms according to the 
ACEVIEW database (Thierry-Mieg and Thierry-Mieg  2006 ); and (2) genes encod-
ing ECM linker proteins such as fi bronectin, laminin and elastin have numerous 
splicing variants, not to mention the diversity of proteoglycans found in ECM. Hence, 
one can infer that the number of different combinations of different components 
comprising an ECM is exceedingly large, thus resulting in a rather large number of 
different functional states, each of which may represent a distinct signal in cell- 
ECM interactions. Specifi cally, any subtle change in the composition of an ECM 
may lead to changes in the physical properties of the matrix, hence sending different 
signals to the corresponding cells through the cell-matrix adhesion, which directly 
connects with the cell nucleus (Ingber  2006 ). 

 From an examination of the expression levels of a few genes that are involved in 
the synthesis of hyaluronic acid and collagen fi brils, and the biosynthesis of fi bro-
nectins, laminins, elastins and cell focal adhesion, we were able to garner some 
understanding of how the expression levels of various contributing genes differ 
between primary and metastatic cancers. This represents but a fi rst step, and in order 
to obtain a more accurate picture of the diversities of ECM compositions and prop-
erties, a much larger and more sophisticated analyses are needed. 

 Figure  11.5  shows the expression pattern changes of fi ve genes,  CD44 ,  ITGB7 , 
 LAMC2 ,  COL6A3  and  CTTN , which were selected somewhat arbitrarily but, 
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  Fig. 11.5    Boxplots for comparisons between expression levels of genes relevant to the composi-
tion of ECM components in metastatic  versus  primary cancers in brain, liver, lung and ovary, 
where the marker genes are ( a )  CD44 , ( b )  ITGB7  (integrin beta-7), ( c )  LAMC2  (laminin subunit 
gamma-2), ( d )  COL6A3  and ( e )  CTTN  (cortactin). The defi nitions of  boxes  in the plot are the same 
as in Fig.  11.1        
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 importantly, cover fi ve different areas of ECM: hyaluronic acid export, the laminin 
level, the collagen composition and level, and actin rearrangement, respectively. 
 CD44  is found to be up-regulated across all metastatic cancers  versus  their corre-
sponding primary cancers, which is consistent with the increased proliferation rates 
of metastatic cancers. The same can be said about  CTTN  (cortactin), which has 
increased expression levels in all metastatic cancers compared to the primary ones, 
and is also consistent with the increased proliferation rates observed in metastatic 
cancers. While the expression levels of these two genes refl ect the overall prolifera-
tion rates, the other three genes refl ect just the concentration levels of the individual 
proteins.  ITGB7  is up-regulated in three metastatic cancer types, brain, liver and 
lung  versus  the corresponding primary cancers, while it is down-regulated in ovar-
ian metastatic cancer. This is consistent with the ovarian genes shown in Figs.  11.3  
and  11.4 , where the gene expression patterns in ovarian cancer are different from 
those in cancers of brain, liver and lung. A specifi c type of collagen,  COL6A3 , is 
up- regulated in cancers of these three organs, while the gene shows an opposite 
expression pattern in ovarian cancer.

   From the above analyses, one can infer that the microenvironments of metastatic 
cancers tend to: (1) be less hypoxic; (2) be of lower ROS level; (3) be more acidic; 
(4) have increased involvement by macrophages and T-cells; and (5) exhibit 
increased laminin content in ECM in three of the four metastatic cancer types, sug-
gesting the possibility of increased stiffness of the ECM. A natural question to ask 
here is:  What responses do these environmental changes cause in the cancer cells 
when they migrate into new environments ? The answer to this question could poten-
tially lead to novel and possibly deep insights into the unique biology of metastatic 
cancer. To address this issue, further functional analyses have been conducted to 
infer the biological pathways where expression patterns are statistically correlated 
with the expression-changes of the micro-environmental factor genes.   

11.2      Cellular Responses to Altered Microenvironments 

 In order to derive causal relationships between the observed changes in the microen-
vironment of a metastatic cancer and in other cellular activities, one must fi rst identify 
statistical associations between the environmental changes and changes in other pro-
cesses. One can then apply general knowledge about the relationships among differ-
ent cellular processes to infer possible causality. Specifi cally, the following procedure 
can be used to infer statistical associations between gene- expression changes in two 
gene-sets or pathways. For each gene  g  in a gene-expression dataset  D , Spearman 
correlation is calculated between the expression levels of  g  and every other gene in  D . 
If multiple gene-expression datasets are considered, one can use the Fisher transfor-
mation (Fisher  1921 ) to combine the calculated correlations across different datasets. 
The GSEA algorithm (Subramanian et al.  2005a ) can then be used for identifi cation 
of pathways enriched with non-microenvironmental genes having statistical correla-
tions with micro-environmental genes in terms of their gene-expression patterns. 
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All the major micro-environmental factors were examined in a preliminary analysis, 
and it was found that changes in the following environmental factors have consistent 
and strong correlations with the various cellular processes. 

11.2.1     Pathways Showing Strong Correlations with Reduced 
Hypoxia Level 

 The following pathways were found to be highly correlated with the reduced 
hypoxic level as refl ected by the reduced  HIF1α  expression in metastatic cancer: 
 glucose metabolism  and  cellular responses to stress and extracellular stimuli  
are negatively correlated with the expression level of  HIF1α ; in addition,  aerobic 
respiration ,  fatty acid oxidation ,  TCA cycle ,  protein synthesis ,  cholesterol synthesis 
and uptake ,  metabolism  and  primary bile acid synthesis  pathways show negative 
correlations with  HIF1α . As mentioned earlier, glycolysis is probably regulated 
by factors other than  HIF1α , unlike that in primary cancers. Further data analysis 
could potentially lead to the identifi cation of the distinct regulatory mechanism(s) 
of glycolysis in metastatic cancers. 

 In addition, a large number of immune response-related genes were observed to 
be positively correlated with  HIF1α , including the  immune response ,  leukocyte , 
 lymphocyte  and  myeloid cell differentiation . In comparison, a number of ECM- 
related pathways were found to be negatively correlated with  HIF1α , including the 
 biosynthesis pathways of proteoglycans ,  hyaluronic acid  and  collagens  and the  cell- 
shape regulation pathway . These data indicate that metastatic cancers tend to have 
reduced immune responses and increased activities of ECM component production 
and cell morphogenesis.  

11.2.2     Pathways Showing Strong Correlations 
with the Activation of Helper T-Cells and TAMs 

 A few pathways are positively correlated with the activation signals of the two cell 
types:  cell cycle ,  TCA cycle ,  cellular pH regulation ,  detection of external stimuli , 
 cholesterol synthesis ,  primary bile acid synthesis ,  biosynthesis of ECM components  
and  cell adhesion .  

11.2.3     Pathways Showing Strong Correlations with Altered 
ECM Compositions 

 The following pathways are up-regulated and strongly correlated with changes in 
the synthesis of the key ECM components: genes involved in  cell cycle G   2   /M and S 
phase controls ,  actin fi lament-based movement ,  glucose metabolism ,  IL10 pathway , 
 platelet adhesion to exposed collagen , and  protein complex disassembly , suggesting 
an increased cell proliferation rate. 
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 Table  11.1  lists all the pathways that are either up-regulated or down-regulated 
consistently across all the metastatic cancers in comparison with the corresponding 
primary cancers. Some of these pathways are found to have strong correlations with 
the changes of the environmental factors identifi ed in Sect.  11.1 , while a few do not 

     Table 11.1    Differentially expressed pathways in metastatic cancers   

 (a) Up-regulated pathways in metastatic cancers identifi ed through enrichment analyses against 
pathways in the KEGG, BIOCARTA, REACTOME and Msigdb (Subramanian et al.  2005b ) 
 Infl ammation  INTRINSIC_PATHWAY 

 CLASSIC_PATHWAY 
 Immune response  DC_PATHWAY 

 IL10_PATHWAY 
 IL4_PATHWAY 
 POSITIVE_REGULATION_OF_CYTOKINE_SECRETION 
 POSITIVE_REGULATION_OF_DEFENSE_RESPONSE 
 POSITIVE_REGULATION_OF_LYMPHOCYTE_ACTIVATION 

 Cell cycle  RB_PATHWAY 
 CELL_CYCLE_G2_M_HASE 

 Cell growth signal  EPIDERMAL_GROWTH_FACTOR_RECEPTOR_
SIGNALING_PATHWAY 
 MTA3_PATHWAY 

 Detection of external stimuli  DETECTION_OF_ABIOTIC_STIMULUS 
 DETECTION_OF_CHEMICAL_STIMULUS 
 DETECTION_OF_EXTERNAL_STIMULUS 
 DETECTION_OF_STIMULUS_INVOLVED_IN_SENSORY_
PERCEPTION 

 Metabolism  CELLULAR_PROTEIN_COMPLEX_DISASSEMBLY 
 COENZYME_BIOSYNTHETIC_PROCESS 
 COFACTOR_BIOSYNTHETIC_PROCESS 
 ALPHA_LINOLENIC_ACID_METABOLISM 
 ETHER_LIPID_METABOLISM 
 PANTOTHENATE_AND_COA_BIOSYNTHESIS 
 STEROID_BIOSYNTHESIS 
 THYROID_CANCER 
 VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 
 MACROMOLECULAR_COMPLEX_DISASSEMBLY 
 PEPTIDE_METABOLIC_PROCESS 
 POSITIVE_REGULATION_OF_PROTEIN_SECRETION 
 PROTEIN_COMPLEX_DISASSEMBLY 
 PROTEIN_EXPORT_FROM_NUCLEUS 
 PROTEOGLYCAN_BIOSYNTHETIC_PROCESS 
 PROTEOGLYCAN_METABOLIC_PROCESS 
 PYRIMIDINE_CATABOLISM 
 RNA_ELONGATION 
 TRICARBOXYLIC_ACID_CYCLE_INTERMEDIATE_
METABOLIC_PROCESS 

(continued)
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show obvious statistical associations with any of the fi ve factors we checked. This 
observation suggests two possibilities: (1) there are other micro-environmental or 
intracellular factors such as genomic mutations that could drive the changes in 
expression of these pathways as observed in metastatic cancer, or (2) they result from 
combinations of some micro-environmental factors whose relationship with the 
observed responses are non-linear and consequently much more diffi cult to identify. 
In either case, this list provides a good starting point for more in-depth analyses of 
the transcriptomic and other types of data to infer the causes of the observed changes.

   Based on the above analysis, we infer that metastatic cancers have: (1) increased 
oxygen availability and consumption; (2) increased activities of regulatory T-cells 
and TAMs; and (3) increased ECM component synthesis. These may represent the 
basic causes for the changes of the other cellular processes listed in Table  11.1  since 

Table 11.1 (continued)

 Cell junction and cell 
membrane 

 ACTIN_FILAMENT_BUNDLE_FORMATION 

 ACTIN_FILAMENT_ORGANIZATION 
 FOCAL_ADHESION_FORMATION 
 NEGATIVE_REGULATION_OF_CELL_MIGRATION 
 CELL_EXTRACELLULAR_MATRIX_INTERACTIONS 
 PLATELET_ADHESION_TO_EXPOSED_COLLAGEN 
 REGULATION_OF_GTPASE_ACTIVITY 
 REGULATION_OF_RAS_GTPASE_ACTIVITY 
 REGULATION_OF_RAS_PROTEIN_SIGNAL_
TRANSDUCTION 
 REGULATION_OF_RHO_GTPASE_ACTIVITY 
 REGULATION_OF_RHO_PROTEIN_SIGNAL_
TRANSDUCTION 

 Microenvironment  REGULATION_OF_PH 
 (b) Down-regulated pathways in metastatic cancers identifi ed through enrichment analyses 
 Infl ammation  ACUTE_INFLAMMATORY_RESPONSE 
 Immune response  ST_IL_13_PATHWAY 

 REACTOME_IL_6_SIGNALING 
 REGULATION_OF_IMMUNE_EFFECTOR_PROCESS 

 Cell response to external 
stimuli 

 CELLULAR_RESPONSE_TO_EXTRACELLULAR_
STIMULUS 
 CELLULAR_RESPONSE_TO_NUTRIENT_LEVELS 
 CELLULAR_RESPONSE_TO_STRESS 
 DEFENSE_RESPONSE_TO_VIRUS 
 ST_TYPE_I_INTERFERON_PATHWAY 
 REGULATION_OF_INTERFERON_GAMMA_
BIOSYNTHETIC_PROCESS 

 Metabolism  FATTY_ACID_BIOSYNTHETIC_PROCESS 
 Metastasis  EPITHELIAL_TO_MESENCHYMAL_TRANSITION 
 Microenvironment  SUPEROXIDE_METABOLIC_PROCESS 
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most of them show strong correlations with at least one of these three changes. 
Moreover, the three major changes are highly correlated with each other. While 
these associations do not necessarily prove causal relationships, they provide a good 
starting point for inference of possible causality when used in conjunction with 
additional biological information.   

11.3     Understanding the Accelerated Growth of Metastatic 
Cancer: A Data Mining Approach 

 Results from the above analyses show that, when relocating to a new site, metastatic 
cancer cells indeed face new challenges for survival, which are distinct from those 
of the primary cancer. These new challenges force various cellular responses, such 
as those delineated in Table  11.1 , to protect the cancer cells and maintain their via-
bility. Unfortunately, some of these responses add (new) fuel to the fi re, and drive 
the metastatic cancers to grow faster than their primary cancers. In the following, 
one model is presented regarding how the migrated cells respond to the increased 
oxygen level by accelerating their growth, based on a more in-depth analysis of the 
data from Sects.  11.1  and  11.2 . 

 We have examined 16 sets of genome-scale transcriptomic data from the GEO 
database (Barrett et al.  2005 ), covering the following 11 types of primary → meta-
static cancers: breast to liver, colon to liver, pancreas to liver and prostate to liver 
metastases; bone to lung, breast to lung, colon to lung, kidney to lung and pancreas to 
lung metastases; breast to brain metastases; and prostate to bone metastases. Detailed 
information on these datasets is given in the Appendix. The main  question addressed 
here is: “ Which genes are consistently up-regulated in metastatic cancer versus the 
corresponding primary cancer? ” Among the identifi ed genes, the following groups 
are particularly interesting, i.e., genes that encode: (1) the uptake and metabolism of 
cholesterol towards the production of steroidal metabolites; (2) nuclear receptors; (3) 
growth factor receptors; and (4) cell proliferation markers. Specifi cally, the following 
pertinent observations were made:

    (1)    In the majority of the metastatic cancers examined, at least one of the receptor 
genes for HDL (high density lipoprotein), LDL (low density lipoprotein) and 
VLDL (very low density lipoprotein) is up-regulated while the remaining meta-
static cancers, most of them being brain metastases, have their cholesterol bio-
synthesis pathway up-regulated. Specifi cally,  SRB1  (scavenger receptor class 
B1), which can transport HDL and oxidized LDL particles (with their cargo 
cholesterol) into cells, is up-regulated in 44 % of the metastatic cancers exam-
ined.  LDLR  and  VLDLR , receptors for LDL/chylomicrons and VLDL, respec-
tively, are up-regulated in 50 % and 19 % of the metastatic cancers, respectively 
(Cao et al.  2014 ). After entering the metastatic cancer cells, cholesterol and 
cholesteryl esters will be shed from the lipoprotein carriers in lysosomes 
(Fielding and Fielding  1997 ; Ioannou  2001 ). 
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 Brain metastases tend to have up-regulated  de novo  cholesterol biosynthesis, 
probably because circulating cholesterol cannot enter brain due to the blood- 
brain barrier (Orth and Bellosta  2012 ). Interestingly, a substantial fraction of 
metastatic cancer samples examined here use more than one mechanism to 
increase the infl ux of cholesterol. All these observations strongly suggest that 
metastatic cancers have an increased (seemingly urgent) need for cholesterol. 
One natural question emerges:  Is the increased need solely due to the increased 
proliferation rates in metastatic cancer, knowing that cholesterol is a key com-
ponent of cell membranes?  

 To address this question, we have calculated the statistical correlation 
between expression levels of the marker genes of cell proliferation, namely 
cyclins,  CDKs  (cyclin-dependent kinases) and  MCM  (DNA replication licens-
ing factor) (Alison et al.  2002 ; Wheeler et al.  2008 ; Peurala et al.  2013 ), and the 
cholesterol receptor and synthesis genes. The rationale is that if cholesterol is 
needed solely for synthesizing membranes in support of cell proliferation, there 
should be a strong correlation between these two sets of genes. It was found that 
this is exactly the case for primary cancers in general, but the correlation is 
substantially weaker for metastatic cancers. This observation suggests that 
 there are additional reasons for cholesterol uptake other than their important 
role in cell membrane synthesis in support of cell proliferation in metastases.  In 
addition, another key piece of supporting data is that different modes of increas-
ing cholesterol infl ux, including different lipoprotein receptors and/or  de novo  
biosynthesis, are used in different tissue of the same primary to metastatic can-
cer type, strongly suggesting that the increased cholesterol infl ux is not regu-
lated by a well-designed program such as accelerated proliferation, but instead 
it is the result of responses to cellular stress.   

   (2)    In each metastatic cancer examined, at least one  CYP  (cytochrome P450) gene 
is up-regulated, whose main function is to oxidize cholesterol (or sterol) in the 
steroid pathway or to synthesize steroid hormones.  CYP27A1 ,  CYP3A4 , 
 CYP17A1  and  CYP19A1  account for the majority of the up-regulated  CYP  
genes across all the metastatic cancers considered.  CYP27 , sterol 27- hydroxylase, 
is a key enzyme involved in the conversion of cholesterol to bile acid, and 
 CYP17 , steroid 17-α-monooxygenase, is a key enzyme in the steroidogenic 
pathway that produces progestins, mineralocorticoids, glucocorticoids, andro-
gens and estrogens. Bile acids are among the metabolites of  CYP -encoded 
enzymes, along with other metabolites such as 27-hydroxycholesterol and 
4 β -hydroxycholesterol. Of interest, 27-hydroxycholesterol has recently been 
shown to promote tumor growth and metastasis in mammary tumors of mice, 
attributed to its role as a partial agonist for the estrogen receptor (Nelson et al. 
 2013 ). In addition, mass spectrometry-based metabolomic analyses have shown 
that metastatic cancers also tend to have substantially increased auto-oxidized 
cholesterol products such as α-EPOX, β-EPOX and 7-ketocholesterol. 

 A number of enzymes that can further metabolize the oxidized cholesterols 
towards steroidal products are also up-regulated in various metastatic cancers in an 
organ-specifi c manner. For example,  HSD11  (11β-hydroxysteroid dehydrogenase 
type 1) and  SRD5A1-2  are up-regulated in multiple metastatic cancer types such 
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as colon metastases in liver and lung, and pancreatic metastases in liver. Steroid 
hormone synthesis as a whole is signifi cantly up-regulated across virtually all 
metastatic cancer types. Figure  11.6  shows the relationships between cholesterol 
and a number of its key metabolic products. Particular attention should be paid to 
the relationships between oxidized cholesterols and various steroids hormones.

       (3)    In each metastatic cancer sample examined, some nuclear receptors ( NR s) were 
over-expressed.  NRs  are transcription factors that can be activated by oxyster-
ols, specifi c hormones or vitamins, and then regulate genes involved in  develop-
ment and homeostasis  of various types. Among the most commonly up-regulated 
 NR s across all the metastatic cancer samples examined are  FXR  (farnesoid X 
receptor) and  HNF4A  (hepatocyte nuclear factor 4 α ). The natural ligand for 
 FXR  is bile acid, whose synthesis pathway is up-regulated across all metastases. 
 LXR  (liver X receptor) and  RXR  (retinoid X receptor) are also up-regulated in 
most metastases, which can be activated by their agonists such as 
4 β -hydroxycholesterol and 27-hydroxycholesterol, and retinoic acid, whose 
metabolism is up-regulated across all metastases examined. Other up-regulated 
 NR s include estrogen receptors,  ESR1 , and androgen receptor  AR .   

   (4)    In each metastatic cancer sample examined, some growth-factor receptors 
( GFRs ) are up-regulated. The most commonly up-regulated  GFRs  are  EGFR  and 
 FGFR4 , which are consistent with the previous observations that  ESR1  and  FXR  
are common regulators for activating  EGFR  (Levin  2003 ; Razandi et al.  2003 ; 
Sukocheva et al.  2006 ) and  FGFR4  (Chiang  2009 ), respectively. Interestingly, 
for some up-regulated  GFRs , their natural ligand growth-factors are not up-reg-
ulated, suggesting two possibilities. One is that these  GFRs  are activated by non-
native ligands; and another is that their cognate growth factors may be mostly 
produced by the neighboring stromal cells such as macrophages, instead of by 
the cancer cells, a phenomenon that has been widely observed and reported in the 
cancer literature (Qian and Pollard  2010 ; Hanahan and Weinberg  2011 ).   

   (5)    Cell proliferation marker genes such as cyclins,  CDKs  and  MCM  genes are 
consistently up-regulated in metastases, indicating accelerated cell proliferation 
in the secondary tumors in general.    

  Some of the key observations made above have been validated experimentally 
using cancer cell lines, which include: (1) cell proliferation of metastatic cancer 
cells when exposed to cholesterol-containing HDL or oxidized LDL in the culture 
media, while no growth is observed without such treatment, thus indicating that 
metastatic cancer cells can grow on cholesterol from these two types of lipopro-
teins; (2) increased abundance of the protein product of the  SRB1  gene; (3) dimer-
ization of nuclear receptors of multiple types, strongly suggesting that they have 
moved into the nucleus and serve as transcription factors; and (4) increased protein 
abundance of a number of growth factors such as  EGFR . One particular exciting 
piece of data is the observation that metastatic cancers tend to have substantially 
higher oxysterol level than primary cancers as shown in Fig.  11.7 .

   These analyses and validation results provide strong evidence that oxidized cho-
lesterol has an important role in accelerating the growth of metastatic cancers, while 
further studies are clearly needed to derive more detailed mechanistic information. 
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It is important to realize that too much oxysterol can be lethal to the host cancer 
cells as a recent study has observed (de Weille et al.  2013 ). Hence, we speculate that 
metastatic cancers may have employed some mechanism(s) to export the excess 
oxysterols. Interestingly, each of the 16 datasets is found to have at least one 
 up- regulated effl ux transporter for cholesterol or oxidized cholesterol, including 
 ABCA1 ,  ABCG1 ,  ABCG5  and  ABCB11 , strongly suggesting that unused cholester-
ols and oxidized cholesterols are released to the extracellular space. 

 Now the question is:  Why does metastatic cancer in general have increased 
needs for cholesterol compared to primary cancers ? The answer to this question 
could potentially lead us to the real root of this disease, which is generally consid-
ered as terminal. The following analysis, although not yet providing an answer, may 
potentially lead to new insights about answering this question. 

  Fig. 11.7    The abundance of 27-hydroxycholesterol in fi ve samples each of: primary colon cancer 
and matching normal tissue, primary gastric cancer and matching normal tissue, and primary liver 
cancer and matching normal tissue, along with liver metastases from 13 primary colon and breast 
cancers. Data on samples of normal and primary cancer tissues are shown in  light  and  dark gray , 
respectively, and the results on liver metastases from colon and breast cancer tissues are given in 
 black . Adapted from (Cao et al.  2014 )       
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 Previous studies strongly suggested that cholesterol (or sterols in general) 
  co- emerged with O   2    during early evolution around 2.7–2.2 billion years ago as a 
way to protect obligate anaerobic (prokaryotic) cells against the toxic O   2   (Galea 
and Brown  2009b ). Further investigations have found that cholesterol may serve as 
a possible regulator of O 2  entry into cells and a primitive defense against ROS 
(Subczynski et al.  1989 ; López-Revuelta et al.  2006 ; Murphy and Johnson  2008 ; 
Galea and Brown  2009a ). When linking this information to the following fi ndings: 
(1) the human plasma-membrane cholesterol levels are found to be negatively cor-
related with the amount of changes in cellular O 2  levels of red blood cells when the 
blood O 2  level changes (Buchwald et al.  2000 ); and (2) higher membrane cholesterol- 
phospholipid ratios leads to lower O 2  permeability of cellular membranes, we are 
inspired to ask:  Is it possible that when primary cancer cells leave their hypoxic 
environment and migrate to a blood-vessel rich environment ,  and hence oxygen- 
rich  ,  a yet-to-be-understood mechanism is triggered by the higher  O 2   level to 
increase the cholesterol concentration in their cell membrane and hence the need 
for increased uptake and/or synthesis of cholesterol?  

 This hypothesis is supported by some recent studies that identifi ed the known regu-
lator of cholesterol uptake and synthesis,  SREBP  in fi ssion yeast, can be triggered by 
the O 2  level (Hughes et al.  2005 )! This strongly suggests that while cholesterol has 
evolved to have many functional and signaling roles in human cells, their oldest func-
tion as a defense against O 2  may have been retained during evolution and used oppor-
tunistically by metastatic cancers. Yet, another key piece of data to solve this puzzle 
could lie in the knowledge that membrane cholesterols (and phospholipids) can be 
oxidized through (continuous)  lipid peroxidation  (Halliwell and Chirico  1993 ) in an 
environment high in oxidative stress, which is typical for a metastatic cancer environ-
ment (Cao et al.  2014 ), hence causing membrane damages and possibly a continuous 
need for cholesterol to replace that damaged in the membrane. Again two pieces of data 
provide supporting evidence for damaged plasma membranes on a continuous basis: 
(1) regulators in response to membrane damages are constantly up-regulated; and (2) 
the catabolism of the oxidized products of phospholipids such as arachidonic acid, 
linoleic acid and linolenic acid, a key component of cell membrane, is up-regulated. 

11.3.1     A Model for Cholesterol Uptake/Synthesis, Metabolism 
and Accelerated Proliferation 

 Based on the above analyses and discussion, a model has been developed to depict 
how cancer cells utilize the cholesterol metabolites for their accelerated growth 
(Cao et al.  2014 ). The model consists of all the key observations discussed above. 
In addition, our experimental data suggest that metastatic cancer cells may use 
growth factors from one or both of the following two sources: (a) growth factors that 
are released by the cancer cells and then act on the growth factor receptors on the 
surface of cancer cells, i.e. an autocrine mechanism; and (b) growth factors that are 
released by TAMs, a paracrine mechanism, as has been reported in the literature 
(Mantovani et al.  2006b ; Hao et al.  2012 ) (Fig.  11.8 ).
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   In brief, the model consists of the following key steps: (1) cholesterol is taken up 
by metastatic cells through various lipoprotein receptors such as  SRB1 ,  LDLR  or 
 VLDLR  (or synthesized  de novo ) and exists in the free cholesterol form; (2) multiple 
 CYP  genes are up-regulated possibly induced, for example, by oxidative stress via 
nuclear receptors; (3) the cholesterol is oxidized by the  CYP -encoded enzymes and 
further metabolized by various other enzymes such as  HSD11  and  SRD5A1-2  
towards the production of steroids and steroidogenic metabolites, where the detailed 
enzymes seem to be organ-specifi c; (4) the resulting products include a wide range 
of steroidogenic products, including oxysterols, estrogens and androgens; (5) these 
metabolites activate various nuclear receptors such as  FXR ,  HNF4A ,  LXR  and  RXR ; 
(6) the activated nuclear receptors, as well as the generation of steroidogenic metab-
olites, lead to the activation of a variety of growth factors such as  EGFR  and  FGFR4  
either in cancer cells or their neighboring macrophages, hence leading to the accel-
erated proliferation by cancer cells; (7) the increased need, and thus uptake or syn-
thesis of cholesterol seems to be triggered by the change in the level of oxygen from 
highly hypoxic environments to oxygen-rich environments, where blood vessels are 
plentiful, which is probably coordinated through the activation of the  SREBP  genes; 
and (8) there may be multiple vicious cycles that continue to drive the metastatic 
cancer cells to proliferate. For each of the predicted regulatory relations, a strong 
statistical relationship was observed between the expression patterns of the regulator 
genes and the predicted downstream effector genes, as detailed in (Cao et al.  2014 ).   

11.4     Concluding Remarks 

 The simultaneous examination of transcriptomic data of multiple metastatic cancer 
types and the associated statistical inference in this chapter clearly point to the sup-
position that the increased O 2  level encountered when cancer cells move from pri-
mary to metastatic sites may represent the most important reason for the considerably 
altered growth behavior between these two types of cancers. If this ultimately proves 
to be correct, it links cancer development to the early roles played by O 2  in evolu-
tion. It is known, for example, that the emergence of O 2  has been the fundamental 
reason that eukaryotic cells evolved and proliferated over two billion years ago 
while the earliest multicellular eukaryotes arose some 1.5–1.2 billion years ago. 
Thus, the emergence of O 2  preceded the Cambrian explosion that occurred about 
540–525 million years ago. As discussed in the earlier chapters, when human cells 
experience low levels of oxygen for an extended period of time, they are prone to 
become malignantly transformed. Strong evidence is presented herein suggesting 
that the sudden increase in the O 2  level for the migrated cancer cells in their new 
environment(s), after having already adapted to the hypoxic environment, may have 
forced these cells to go through a second transformation for their survival. This 
fundamentally novel perspective of viewing the development of metastatic cancer 
may lead to unorthodox and novel approaches for more effective ways to terminate 
or at least diminish the development and progression of the disease.      
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    Appendix 

    Table 11.2    A list of transcriptomic data used in the analyses in Sect. 11.1   

 Data set  Tissue  Platform  Primary cancer  Metastasis cancer  #Samples 

 GSE20565  Ovary  GPL570  *  *  129 
 GSE14407  Ovary  GPL570  *  24 
 GSE42952  Liver  GPL96  *  33 
 GSE41258  Liver  GPL96  *  47 
 GSE14020  Liver  GPL96  *  5 
 GSE29721  Liver  GPL570  *  10 
 GSE14323  Liver  GPL570  *  53 
 GSE14323  Liver  GPL96  *  11 
 GSE14020  Lung  GPL570  *  4 
 GSE14020  Lung  GPL96  *  16 
 GSE41258  Lung  GPL96  *  20 
 GSE33356  Lung  GPL570  *  60 
 GSE27262  Lung  GPL570  *  25 
 GSE31547  Lung  GPL96  *  25 
 GSE14020  Brain  GPL570  *  7 
 GSE14020  Brain  GPL96  *  15 
 GSE14108  Brain  GPL96  *  28 
 GSE8692  Brain  GPL96  *  12 
 GSE4271  Brain  GPL96  *  100 

  The fi rst column shows the name of each dataset used in our analysis, and each * denotes that the 
corresponding dataset contains the relevant cancer type, primary or metastatic 

       Table 11.3    A list of transcriptomic data sets used in Sect. 11.3   

 Dataset 
 Metastatic 
cancer type 

 # Primary 
cancer samples 

 # Metastatic 
cancer samples 

 GSE14297  Colon → liver  18  18 
 GSE6988  Colon → liver  53  29 
 GSE41258  Colon → liver  186  47 
 GSE26338/GPL5325  Breast → liver  19  5 
 GSE34153  Pancreas → liver  14  20 
 GSE42952  Pancreas → liver  12  7 
 GSE6752  Prostate → liver  10  5 
 GSE8511  Prostate → liver  12  6 
 GSE41258  Colon → lung  186  20 
 GSE26338/GPL1390  Breast → lung  201  6 
 GSE34153  Pancreas → lung  14  8 
 GSE14359  Bone → lung  10  8 
 GSE22541  Kidney → lung  24  24 
 GSE26338/GPL5325  Breast → brain  19  9 
 GSE26338/GPL1390  Breast → brain  201  8 
 GSE32269  Prostate → bone  22  29 
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    Chapter 12   
 Searching for Cancer Biomarkers 
in Human Body Fluids 

                    One of the important lessons learned about cancer survival from the past few 
decades’ experience in cancer treatment is:  early detection is the key . It has now 
become common knowledge that as a cancer progresses from early to more 
advanced stages, it gradually changes from a local and relatively simple problem to 
a very complex health issue involving the body at large. Once a cancer has metasta-
sized, tumors in the new locations tend to grow substantially faster and metastasize 
further and much more rapidly than the primary counterpart, hence making the 
disease considerably more diffi cult to control and treat. The available statistics 
show that the survival rate of a cancer patient drops substantially when an encapsu-
lated tumor spreads to the neighboring tissue and then to distant locations. For 
example, the 5-year survival rate drops from 99 to 66 % and then down to 9.4 % 
when a colorectal cancer is localized, has spread to only the local tissue and then to 
distant organs, respectively. Similar survival statistics hold for virtually all cancers. 
It is particularly worth emphasizing that the 5-year survival rates tend to drop to 
single digits or low tens of percentages for most of the cancers when they have 
spread to distal organs. 

 From these alarming and unsettling statistics, an urgent question begs to be 
answered:  Can one reliably detect cancer in its early stage ? This issue clearly has 
signifi cant implications in saving the lives of cancer patients. Based on our current 
understanding of cancer, one is tempted to say: Yes, but the technical challenges to 
achieve this goal are substantial. It is noted that a basis for early detection lies in the 
observation that cancers at different stages tend to have distinct molecular signa-
tures, as discussed throughout the earlier chapters. For example, it was shown in 
Chap.   3     that the expression patterns of some genes tend to strongly correlate with 
the stage of a cancer. From a computational perspective, the following technical 
problems must be solved before reliable early detection of cancer can become a 
reality. The essential questions to be addressed are: (1)  The abundances of which 
biomolecules accurately refl ect the early stage of a specifi c cancer type ? (2)  Which 
of these putative markers or their products can be secreted into circulation and 
 possibly enter into other body fl uids ? (3)  Of the biomolecules identifi ed in  (2),  which 
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may serve as reliable biomarkers for a specifi c cancer based on their half-life and 
detectability in circulation or other body fl uids ? 

 Disease detection through blood or urine tests have long been used for various 
noncancerous illnesses such as virus infection, diabetes, hepatitis, kidney disease 
and now even Alzheimers (Leidinger et al.  2013 ), but reliable blood or urine bio-
markers are not yet available for accurate cancer diagnosis, particularly for early 
detection. In this chapter, some general ideas are presented about how computa-
tional approaches can aid to make this a reality. 

12.1     A Historical Perspective of Biomarker Identifi cation 
for Disease Diagnosis 

    The earliest diagnostic technique for human diseases can probably be traced back to 
a few thousand years ago when Chinese physicians determined the nature of an ill-
ness by checking a patient’s pulse, inspecting the tongue coating, examining the 
urine color and odor, and smelling the stool. Clearly, our ancestors had learned long 
ago that there were signals in our body wastes that were informative for disease 
diagnoses. 

 Urine was probably the earliest body fl uid that was used for medical diagnoses 
in a systematic manner, particularly in ancient Greece. By examining the urine 
color, ancient Greek physicians believed that they could tell the nature of the illness 
of a patient. Hippocrates (460–370 BC), who is considered as the founding father of 
Western medicine, even suggested that “no other organ system or organ of the 
human body provides so much information by its excretion as does the urinary 
 system” (Scholkopf et al.  2001 ). Interestingly, the fi rst cancer biomarker was also 
found in urine rather than in blood. It was observed in 1848 that 75 % of myeloma 
patients had elevated levels of immunoglobulin in their urine and hence could be 
used as a biomarker for the diagnosis of this illness (Jones  1848 ). 

 The use of blood biomarkers for disease detection on a large scale began in the 
1950s for two main reasons: (1) a better understanding of numerous human illnesses 
at the molecular level had been gained; and (2) isotope-based analytical chemistry 
techniques had matured and become widely available, mainly in the area of radio-
immunoassays. A large number of blood biomarkers have subsequently been dis-
covered and widely used in clinics since then, including from a long list the use of 
the: (1) blood glucose level for diagnosis and control maintenance of diabetes, (2) 
blood transaminase levels for detection of liver damage; (3) creatinine level for 
detection of kidney illness, and (4) blood levels of 12 microRNAs for the detection 
of Alzheimers, as recently reported (Leidinger et al.  2013 ). 

 A number of blood biomarkers for cancer have also been proposed and reported 
in the literature in the past decade, some of which have been used clinically. These 
include: (1)  PSA  (prostate specifi c antigen) for prostate cancer; (2)  CEA  (carcino-
embryonic antigen) for colon cancer, which is also found to be informative for 
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detection of gastric, pancreatic, lung and breast cancers; (3)  AFP  (alpha- fetoprotein) 
for liver cancer; (4)  S100  for melanoma; (5)  CA 125  (cancer antigen, also known as 
 MUC 16 ) for ovarian cancer; (6)  CA 19-9  (carbohydrate antigen 19-9) for pancre-
atic cancer; (7)  BCR-ABL  for chronic myeloid leukemia; plus a number of multi- 
protein diagnostic panels such as (8) a 21-protein panel for early non-small cell lung 
cancers (NSCLC), which includes multiple interleukins,  TFGα  and interferon γ, (9) 
a 7-protein panel ( P53 ,  MYC ,  HER2 ,  CTAG1 ,  BRCA1 ,  BRCA2 ,  MUC1 ) for breast 
cancer; metabolite-based biomarkers such as (10) a panel of six glycolytic metabo-
lites (lactate, alanine, succinate, glutamate, citrate, aspartate) for lung cancer; and 
microRNA-based biomarkers such as (11) miR-25 and miR-223 for NSCLC. In 
addition to these and other diagnostic markers, a number of prognostic biomarkers 
have also been proposed and tested on limited samples such as a panel of fi ve 
 proteins ( DUSP6 ,  MMD ,  STAT1 ,  ERBB3 ,  LCK ) for prognostic prediction of NSCLC 
patients (Sanchez-Cespedes  2008 ) and a 5-protein panel ( AANG2 ,  CRP ,  ICAM1 , 
 IGFBP1 ,  TSP2 ) for prognostic prediction of advanced pancreatic cancer, as recently 
reported (Nixon et al.  2013 ). 

 As of now, numerous cancer-related biomarkers have been developed and are 
available as clinical tests, but the reality is that the majority of these biomarkers 
cannot be considered as reliable indicators for cancer detection in terms of both 
their detection sensitivity and specifi city, even though some of them have been 
widely used in clinics. Among these biomarkers, only one has been FDA approved, 
which is  PSA  used for both diagnosis and prognosis of prostate cancer. Even for this 
widely-used blood biomarker, its predictive value is far below those used for diag-
noses of noncancerous diseases such as the blood glucose level for diabetes or the 
transaminase level for hepatitis. A previous assessment of the PSA as a prostate- 
cancer biomarker involving 5,112 patients found that the cancer-identifi cation spec-
ifi city and sensitivity rates were 93 % and 24 %, respectively, when using a PSA 
threshold ≥4 ng/ml (Thompson et al.  2006 ). In a different large-scale assessment 
using a lower PSA cutoff, >3.0–3.99 ng/ml (Lilja et al.  2008 ), the detection sensitivity 
improved to 33 % but at the cost of substantially lowering the detection specifi city. 
Experience gained over the years has shown that it is the amount of change over 
time of a biomarker score, rather than the score itself, that is more informative. 
Hence the value for PSA and other cancer biomarkers lies in monitoring the prog-
ress of a cancer or assessing the effectiveness of a specifi c drug or treatment regi-
men (Bhatt et al.  2010 ) rather than for pure diagnostic purposes. 

 There are multiple reasons for the subpar performances of the proposed cancer 
diagnostic biomarkers. First and the foremost is that the fi eld is still in the early 
stage in searching for effective strategies for tackling the very challenging problem 
of fi nding reliable biomarkers for cancer. Second, by examining how the majority of 
the current cancer biomarkers have been discovered, one will note that they have 
been typically identifi ed through comparative proteomic (or other  omic ) analyses of 
blood (or urine) samples between cancer patients of a specifi c cancer type and 
healthy controls. This has been typically done by searching for molecular species 
that show consistent abundance differences in blood samples of cancer patients 
  versus  healthy controls. 
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 While in principle this approach should lead to the discovery of molecules with 
discerning power between the two sample pools, it turns out that this is an exceed-
ingly challenging technical problem in reality. Using protein biomarkers as an 
example, one needs to be aware that the dynamic range in protein concentrations in 
human blood spans more than 10 orders of magnitude (Anderson and Anderson 
 2002 ), orders of magnitude larger than those of the current analytical techniques. 
Furthermore, the target proteins, in general, tend to be among the proteins with the 
lowest concentrations in blood, basically at the noise level since they arise from 
tumors of relatively small sizes in small quantities compared to the concentration 
levels of the native and constitutively produced blood proteins such as albumin and 
other proteins secreted from major organs, particularly liver. In addition, a very 
large number of different peptides are present as a result of protein degradation, 
much of the fragmentation occurring in cells, on cell surfaces and in circulation. 

 “Searching for a needle in a haystack” is probably a signifi cant understatement 
of the challenging nature of this search problem. More realistically it could be mod-
ifi ed to “searching for a needle in a fi eld of haystacks” or from a similar saying in 
Chinese, “searching for a needle in an ocean” may better refl ect the level of diffi -
culty in solving the problem. The currently identifi ed biomarkers tend to be for 
tumors having reached certain sizes so that the concentration of the “biomarkers” 
released are already relatively signifi cant. In addition, some of the current bio-
marker molecules may not necessarily be secreted from the tumor cells through 
secretion pathways, instead they have leaked from the damaged cancer cells, which 
tends to be associated with cancers already in an advanced stage. A more funda-
mental issue is that the identifi ed biomarkers may work well for a sample set that 
was used to identify the markers originally and often do not generalize well to 
larger sample sets. 

 Some of the recent biomarkers have been identifi ed through searches in a more 
informed manner, specifi cally guided using  omic  data collected on the relevant can-
cer tissues. For example, a urine biomarker for gastric cancer, epithelial lipase (EL), 
has been identifi ed using transcriptomic data of the gastric cancer tissues as guid-
ance (Hong et al.  2011 ). The idea is that  omic  data analyses of cancer  versus  control 
tissues can reveal which biomolecules, such as proteins or microRNAs, are consis-
tently and differentially expressed, particularly over-expressed, in cancer tissues 
 versus  controls. This approach provides a candidate list for biomarker searches 
rather than searches being conducted in a blind fashion. 

 Clearly, such an approach is in the right direction, but it tends to generate a rather 
sizable candidate list that taxes experimentalists, even those with high-throughput 
assays. In addition, the putative biomarkers so identifi ed may not be the optimal 
ones when taken in a larger context. For example, consideration must be given to 
achieve the best discerning power, not only between the cancer samples and the 
appropriate controls, but also between the target cancer and other diseases in 
 general. Overall, this will require a signifi cant effort to deal with the issue in a 
more informed manner than that of just comparing two pools of blood samples. 
More comprehensive information regarding the specifi cs of a particular cancer type 
needs to be included. In addition, information about the ability of cells to secrete 
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biomolecules extracellularly, the half-life of the biomolecule or its fragments in 
circulation and their detectability using the existing analytical techniques also need 
to be considered. Then and only then can one ensure accurate prediction of bio-
markers, which can help to minimize the experimental effort in successfully fi nding 
highly informative biomarkers. Fortunately, there are a variety of data resources on 
the Internet, the mining of which could lead to the information needed for effective 
biomarker searches. 

 As a starting point, it is necessary to carefully study the metabolism of a specifi c 
type of cancer to identify those aspects of the cancer cells that distinguish them 
from the metabolism of normal cells, as well as from the metabolism of other cancer 
types and possibly even noncancerous diseases in the same organ types. A pathway- 
level analysis can guide the search to focus on biomolecules associated with the 
unique metabolic activities of a target cancer type. Then one will need to address the 
three questions asked in the beginning of the chapter. Such a study could provide a 
list of biomarker candidates, specifi c to a cancer type, which can be checked to 
determine if they are indeed present in circulation and have differential abundances 
compared to the control blood-sample pool. This could be done for example by 
using targeted detection methods such as antibody-based approaches. Such a 
method should largely bypass the demanding issue of dealing with the very com-
plex composition of the blood proteome or other  omes , such as metabolomics, as 
well as the abundance issue discussed earlier. Further analyses regarding the stabil-
ity and detectability of specifi c biomolecules could help to rank the candidate list in 
an informative manner to further diminish the search to the most promising candi-
dates for a specifi c cancer. 

 In the following sections, various technical issues are discussed that must be 
overcome to make this strategy a reality. In essence, this means solving the cancer 
biomarker search problem in a systematic manner, guided by our understanding of 
cancer metabolism unique to specifi c cancer types, our current knowledge of bio-
molecules in circulation and the technical strengths and limitations of the current 
analytical techniques.  

12.2      Search for Biomarkers Using a Top-Down Approach 

 The basic questions to be addressed here are:  Can one identify biomolecules 
whose combination and abundances are unique to: (a) cancer tissues in general; 
(b) tissues of specifi c cancer types; and (c) tissues of specifi c cancer types in early 
stages ? If answers to these questions are generally yes, half of the cancer-biomarker 
search problem will be solved. The second half of the problem is:  Can one predict 
if these biomolecules are released from the cells through normal channels and enter 
into blood circulation, and then, if such molecules are detectable using the existing 
analytical techniques . These important questions will be discussed in the next sec-
tion. In the following, proteins are used as an example to explain the basic ideas, 
while a discussion of how to search for metabolites and microRNAs as potential 
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biomarkers will be given in Sect.  12.5 . In addition, we will use gene-expression 
levels to approximate protein abundances since there is no whole-cell protein 
expression data publicly available for cancer tissues. Furthermore, it is known that 
while protein and gene expressions do not always have the same correlations across 
different classes of proteins, it is true that increased gene expression implies 
increased protein expression, at least qualitatively, in steady state (Vogel and 
Marcotte  2012 ). 

 Here we demonstrate how to predict the initial candidates for three scenarios: (1) 
general cancer biomarkers; (2) biomarkers for a specifi c cancer type; and (3) bio-
markers for a specifi c cancer type in the early stage. 

12.2.1     Biomarker Prediction for Cancers in General 

 While no general biomarkers for cancer, i.e., for detecting if someone has cancer or 
not, have been reported in the literature, we believe that identifying such biomarkers 
is plausible. The rationale is that cancers have numerous characteristics that are very 
distinct from normal and noncancerous diseased tissues, and it takes some unique 
combinations of certain biomolecules to realize these distinctive phenotypes. These 
molecules can potentially be used as biomarkers if they are secreted into blood cir-
culation. The following gives a partial list of such unique features of cancer in 
general:

    1.     Unique characteristics in cell proliferation : The key characteristic of cancer cells 
is that they continuously proliferate, and their proliferation is fundamentally dif-
ferent from that associated with normal tissue development and remodeling. 
When a normal tissue is signaled to develop (or remodel), the development 
involves coordinated activities between cell division and their ECM. As dis-
cussed in Chaps.   5     and   10    , tissue development involves: (1) changes in the shape 
and the physical properties of the underlying ECM; (2) multiple signals to the 
relevant cells in terms of biomass growth, cell division and cell survival, along 
with angiogenesis; and (3) continuous interplay between the cells and their 
ECM. As repeatedly stressed elsewhere in the book, normal cells have direct 
communication with their ECM via ECM-binding integrins, actin fi laments and 
connections to their chromatin (Xu et al.  2009 ), thus facilitating rapid cellular 
responses to ECM changes. In contrast, cancer tissue development seems to be 
triggered by cellular pressures related to proliferation signals but without top- 
down signaling that coordinates different aspects of tissue development, as dis-
cussed in Chap.   5    . While cell division is probably facilitated by signals from the 
hyaluronic acid fragments, there seems to be either no or inadequate correspond-
ing signaling to the ECM for their changes. This hypothesis is strongly sup-
ported by the large number of genomic mutations in ECM-building proteins in 
precancerous tissues as shown in Chap.   4    . The implication is that cancer uses a 
very distinct set of proteins to initiate tissue development (or the repair process), 

12 Searching for Cancer Biomarkers in Human Body Fluids

http://dx.doi.org/10.1007/978-1-4939-1381-7_5
http://dx.doi.org/10.1007/978-1-4939-1381-7_10
http://dx.doi.org/10.1007/978-1-4939-1381-7_5
http://dx.doi.org/10.1007/978-1-4939-1381-7_4


311

facilitated by abnormal production of hyaluronic acid (and fragments) and by 
genetic mutations in multiple ECM-building proteins. Hence, one can expect 
that careful expression-pattern analyses of genes involved in cell division and 
EMC-building in cancer  versus  normal tissues will lead to the identifi cation of 
very distinct gene-expression patterns between cancers in general and normal 
tissues, as well as possibly all noncancerous tissues, which should be generally 
shared across the majority of the cancer types. 

 In addition, one can expect that various other genes may show similar expres-
sion patterns among cancer tissues of different types, but distinct from normal 
tissues. This list may include certain oncogenes such as MYC, which is gener-
ally up-regulated in many cancer types.   

   2.     Unique characteristics in metabolism : As discussed in the previous chapters, 
cancer cells have distinct characteristics in a few metabolic systems such as 
energy metabolism and ECM-associated metabolism, as well as angiogenesis. 
The unique aspects of cancer energy metabolism include the tendency to: (1) 
have an up-regulated glycolytic fermentation pathway, either instead of or in 
conjunction with aerobic respiration for ATP production; (2) use of glutaminoly-
sis as a mode of energy production; and (3) have substantially higher metabolic 
rates compared to normal cells. To determine which specifi c genes or gene 
groups may show similar expression patterns across multiple cancer types, all 
being different from normal tissues, one needs to examine a large number of 
gene-expression data of various cancer tissues  versus  control non-cancerous 
tissues. 

 In addition, healthy tissues should not have highly activated angiogenesis, a 
biological process that is active for all solid cancers. Large scale gene-expression 
analyses between cancer and noncancerous tissues should reveal which angio-
genesis genes may make strong biomarkers based on the gene expression data. 
Furthermore, cancer tissues have highly active genes involved in changing the 
morphology and the physical properties of their ECMs as discussed above. These 
considerations suggest that analyses focused on ECM-building genes in cancer 
 versus  normal growing tissues will lead to interesting discoveries for biomarker 
candidates.   

   3.     Responses to the unique microenvironments of tumors : Knowing that cancers 
have a very distinct microenvironment such as hypoxia, elevated ROS levels, 
increased acidity and altered ECM properties, one can expect that a variety of 
genes will respond to these changes by an adjustment in their expression levels. 
Earlier we discussed (cf. Chaps.   5    ,   9    ,   10     and   11    ) those genes that may respond to 
changes in hypoxia, ROS, pH and the increased rigidity of an ECM, respectively, 
but in order to obtain a comprehensive list of such genes across different cancer 
types, systematic comparative analyses of gene-expression data of cancer  versus  
noncancerous tissues are needed. Intuitively genes may need to be grouped 
together with similar or complementary functions as different genes may respond 
to the same environmental change in different cancers. Hence, it is expected that 
future biomarkers for cancer diagnosis (and prognosis) will be in the form of a 
collection of gene groups instead of individual genes; indeed, some such gene 
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groups are currently being used clinically. This approach permits one to better 
capture the reality that the responses will be at the pathway level instead of at the 
individual gene level. Also, different genes in the same pathway or functional 
group may respond to the same environmental changes in different cancers, 
again emphasizing the need for gene group-based biomarkers.   

   4.     Unusual regulatory behaviors : Genes involved in cell survival, e.g., prevention of 
the activation of apoptosis and necrosis, is another area deserving attention, par-
ticularly since all cancers utilize some mechanism(s) to avoid the activation of 
apoptosis while normal tissue generally does not. Genes involved in DNA repair 
is another area recommended for study since cancer genomes tend to have large 
numbers of mutations as discussed in Chap.   4    , while noncancerous tissues gen-
erally do not. Hence, one can expect that the DNA repair genes will be up- 
regulated in cancers generally.     

 In addition, cancers tend to have increased epigenomic activities as discussed in 
Chap.   9    , making this another fruitful area in which to search for candidate marker 
genes. It has also been well established that cancer cells tend to have altered circa-
dian rhythms. Consequently, some genes involved in this area may have very dis-
tinct expression patterns compared to noncancerous tissues. 

 Basically, multiple pathways or gene groups are expected to have similar expres-
sion patterns among tissues across multiple cancer types, which are not shared by 
noncancerous tissues in general. By accurately identifying these genes or gene 
groups with common or similar expression patterns across different cancer types, 
but distinct from noncancerous tissues, one can potentially identify gene groups as 
likely biomarkers for cancer in general, based on cancer tissue information. It is 
worth noting that the pathways and genes discussed here are not intended to be a 
complete list. Instead, they serve as a starting point for our readers to seek and iden-
tify their own candidate genes inspired by the discussion here.  

12.2.2     Biomarker Prediction for a Specifi c Cancer Type 

 Different cancers may have very different phenotypes. Some cancers in general 
grow much faster than other cancers, and some cancers tend to respond very well to 
a specifi c treatment scheme, while other cancers do not. Some cancers may have a 
long dormancy time before they begin growing very rapidly, while other cancers 
may grow fast from the onset. The question addressed here is:  How does one fi nd 
the distinguishing characteristics of a specifi c cancer type from all the other 
cancers ? 

 It should be noted that reliable identifi cation on biomarkers for a specifi c cancer 
type represents a different type of problem from, and a potentially more challenging 
problem than, the identifi cation of biomarkers for cancers in general. The goal of 
the latter is to fi nd a group of genes whose expression pattern(s) can distinguish 
cancers from all the other tissues, while that of the former requires the identifi cation 
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of genes whose expression pattern(s) can distinguish a specifi c cancer from all the 
other cancers. For the latter, we know that there are such genes, as assured by 
the hallmark events of cancers and other unique activities of cancers discussed in 
the above subsection, and the problem is to fi nd a small subset of them that serve as 
reliable markers. In comparison, the former requires one to identify subtle differ-
ences between one specifi c cancer type and all the other cancers. 

 One brute-force way would be to fi nd a set of genes whose combined expression 
patterns are shared by the available samples of one particular cancer type, but dif-
ferent from all the other cancer types (based on publicly available data). While 
conceptually simple, such an approach would not be productive for at least two 
reasons. First, to do this effectively, one would need to examine all  K -gene combi-
nations for large  K ’s in order to cover genes involved in multiple functional groups 
or pathways, say  K  =  30 , out of a few hundred-to-thousand differentially expressed 
genes in cancer  versus  normal tissues, a problem much too large for the current 
computers. Second, considering expression levels of individual genes may be too 
simplistic to capture the commonalities among the cancer tissues of the same type, 
which are distinct from all other cancer types. Some information about the higher- 
order relationships among the expression levels of some relevant genes, such as the 
covariance relationship among the expression levels of all the differentially 
expressed genes, may be needed. 

 In essence, a more careful design is needed to tackle this very challenging 
 problem. Recall from Chap.   3     that each cancer type always has its distinct and defi n-
ing phenotypes, shared only by samples of this type, which should be refl ected 
through the distinct expression patterns of some genes. The key is how to fi nd these 
type- defi ning gene-expression patterns for each cancer type. Figure   2.2     provides an 
encouraging example, which shows that each of the nine cancer types in the fi gure 
has somewhat distinct expression patterns in terms of their pathway genes in gly-
colysis. One can expect that the same observation should also apply to some other 
pathways. Basically, for each cancer type, one needs to systematically examine all 
cancer-related (or early cancer-related) pathways to: (1) identify those for which the 
cancer type has an outstandingly different expression pattern from all the other can-
cers, and then (2) fi nd the combination of such pathways to maximize the difference 
between a specifi c cancer type and the remainder. In a sense, it is somewhat analo-
gous to examining Fig.   2.2    , only a much larger one with all the cancer-relevant 
pathways listed along the y-axis and all the major cancer types listed along the 
x-axis. The goal for each cancer type is to fi nd all the pathways for which the target 
cancer type has gene-expression patterns distinct from all or the majority of the 
other cancers. In addition, one may also choose to consider some tissue-specifi c 
genes, i.e., genes that are expressed only in the underlying tissue for the target can-
cer. The idea is that some of the tissue-specifi c genes may continue to be expressed 
in the cancer cells. The inclusion of such genes in the analyses may help to better 
distinguish one cancer type from the others. 

 This approach clearly represents a new area for cancer biomarker identifi cation 
through systematic analyses of gene-expression data. Knowing the challenging 
nature of the problem, advanced statistical analysis techniques may be needed here 
to capture all the information discussed and possibly more.  

12.2 Search for Biomarkers Using a Top-Down Approach
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12.2.3     Biomarker Prediction for a Specifi c Cancer Type 
in an Early Stage 

 To search for biomarkers for early-stage cancers (including precancerous tis-
sues), one initially needs to determine which pathways tend to be active in the 
early stage of a specifi c cancer type. Recall from Chap.   5     that one of the two 
events may be the very early driver for cancer initiation, namely persistent 
hypoxia or elevated ROS levels. These early events lead to the accumulation of 
glycolytic metabolites, possibly along with some other metabolites that build up 
along with the glucose metabolic pathway, including part of the TCA cycle and 
links with fatty acid metabolism and amino acid metabolism. These congestions 
may lead to the synthesis and export of hyaluronic acid as discussed in Chap.   6    , 
which will lead to signaling for a variety of tissue repair pathways such as 
infl ammation, cell survival, cell proliferation and possibly other pathways. In 
addition, ECM remodeling is activated based on gene-expression data of early 
stage cancers. Other than this general information, very little is known about the 
differences among early stage cancers of different types based on the published 
data. One possible starting point to look for potential biomarkers is to conduct 
an analysis similar to that in the above subsection, but focused on the few path-
ways known to be activated in early stage cancers. The hope is that among the 
hundreds of genes involved in the above mentioned pathways, some distinctions 
can be identifi ed for each cancer type. 

 Clearly, the earlier the stage a neoplastic tissue is, the more challenging it is to 
fi nd a distinct biomarker for a specifi c cancer type, mainly because the initial 
responses to hypoxia and ROS may be limited to just a few pathways across differ-
ent organs while the divergence in cancer evolutionary trajectories occurs later on. 
This suggests that focusing on organ-specifi c genes may prove to be a productive 
way to pursue this problem.   

12.3      Prediction of Secretome and Circulating Proteins: 
A Data-Mining Approach 

 The main issue addressed in this section is: Given a set of proteins such as those 
predicted to be biomarkers for a specifi c cancer type (as in Sect.  12.2 ),  is it pos-
sible to predict which of them may be good biomarkers in (blood) circulation ? 
This problem will be tackled by solving the following two technical issues: (a) 
predict if a protein can be secreted extracellularly into circulation; and (b) assess 
if a protein in circulation may be relatively stable with a reasonable half-life 
(   Fig.  12.1 ).
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12.3.1       Prediction of Blood-Secretory Proteins 

 A number of computational methods have been developed for predicting if a protein 
can be secreted (out of a cell), based on the identifi cation of specifi c signal peptides 
in the protein sequence (Bendtsen et al.  2004a ,  b ; Yu et al.  2010 ). However, such 
programs do not solve our problem here since not all secreted proteins enter into 
blood circulation. For example, some proteins may act on the cell surface or become 
part of the ECM after being secreted, while others may indeed enter into circulation. 
The current understanding is very limited about which proteins in the extracellular 
space may gain entry into circulation. We have previously developed a computa-
tional method for predicting if a secreted protein is likely to enter into circulation 
using a data classifi cation technique (see Chap.   2     for defi nition) (Cui et al.  2008 ). 
This type of classifi cation technique has been widely used for solving a variety of 
biological data analysis problems such as predicting if a protein is a membrane or 
soluble protein (Lo et al.  2008 ; Fuchs et al.  2009 ; Mishra et al.  2010 ) or if a protein 
is an enzyme or not (Fernandez et al.  2010 ). 

 The basic idea of a (2-class) data classifi cation problem is to search for features 
with discerning power between two given, non-overlapping sets of proteins (or any 
objects) and then  train  a classifi er to best separate the two sets of proteins using an 
optimal combination of the identifi ed features. Once such a classifi er is trained on 
 training  data, it can be used to predict if a new protein belongs to the fi rst or the 
second set based on its feature values. One simple example of a data classifi cation 
problem is the following. For a group of dogs and a group of cats, can one identify 
a few distinguishing features between the two groups and train a classifi cation func-
tion, e.g., a weighted combination of the features, to best distinguish the dogs from 
the cats. This can then be used to predict if a new furry animal is a cat or dog? 

  Fig. 12.1    A schematic of blood circulation and transportation of different molecular species to 
and from cells       
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Potentially such features could include the shape of the head and the frequency of 
the sound(s) produced by the animals. Our problem here, however, is to identify 
features that can distinguish between blood-secretory proteins and non-blood secre-
tory proteins, and train a classifi er based on the identifi ed features. 

 To accomplish this, one needs the following information and capability: (a) a set 
of known blood secretory proteins and a set of proteins deemed not to be blood 
secretory; (b) a set of to-be-identifi ed features with discerning power between these 
two types of proteins; (c) a computer program that can train a classifi er that achieves 
the lowest possible misclassifi cation rate by fi nding an optimal way to combine the 
information provided by each feature. 

 For (a), using results generated from proteomics, all the secretory proteins were 
collected from the Swissprot and SPD databases (Chen et al.  2005 ) and then 
 compared with the proteins in the Plasma Proteome Project (PPP) database (Omenn 
et al.  2005 ), which contains over 16,000 proteins that have been identifi ed in human 
plasma. From this analysis 305 proteins were found to belong to both sets, and 
hence considered as blood secretory proteins; these are denoted as the  positive 
training data . The  negative training set  was generated by including one representa-
tive from each Pfam family (Bateman et al.  2002 ), the most popular protein family 
classifi cation database, that does not overlap with the PPP proteins. 

 For (b), since no information is known about what features may possibly have 
discerning power between the two sets of proteins, some 50 protein features were 
considered, which fall into four categories: (1)  sequence features  such as amino acid 
and di-peptide compositions; (2)  physicochemical properties  such as solubility, 
 disordered regions and charges, (3)  structural properties  such as secondary struc-
tural content and solvent accessibility, and (4)  specifi c functional domains and 
motifs  such as signal peptides, transmembrane regions and the twin-arginine signal 
peptide motif (TAT). 

 For (c), a support vector machine program was used to train a classifi er based on 
the 50+ protein features to distinguish the positive from the negative dataset (Platt 
 1999 ;  Keerthi et al. 2001 ). To determine which features may not have any discern-
ing power for the classifi cation, a feature-selection procedure, called  recursive fea-
ture elimination , was employed to remove features that do not contribute to the 
classifi cation accuracy. At the end of the training process, 12 of the most informa-
tive features were retained, which included transmembrane regions, charges, the 
TatP motif, solubility, signal peptides and the O-linked glycosylation motif. Based 
on these 12 features, the trained classifi er achieved high classifi cation accuracies on 
both the training data and on large independent evaluation sets (Cui et al.  2008 ). 

 The fi rst application of this classifi er for prediction of blood secretory proteins 
was on a set of gene-expression data collected on 80 pairs of gastric cancer tissues 
and neighboring noncancerous tissues (Cui et al.  2010 ). Out of the ~20,000 human 
genes, 715 genes were found to be differentially expressed consistently between 
cancer and the matching control tissues. Of these genes 136 were predicted to 
encode blood-secretory proteins by this classifi er. A combined proteomic analysis 
using both mass spectrometry and Biotin label-based antibody arrays detected 81 of 
the 136 predicted proteins in serum samples, indicating the high-quality of the 
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trained classifi er. Based on specifi c selection criteria, 18 proteins were selected for 
detailed analyses. Of the 18 proteins, 5 ( COL10A1 ,  GKN2 ,  LIPG ,  MUC13 ,  TOP2A ) 
were found to have differential concentrations in blood samples of cancer patients 
 versus  healthy controls, suggesting the potential of these proteins as blood biomark-
ers for gastric cancer detection (Cui et al.  2010 ). 

 This represents only a fi rst attempt to develop one such predictor. To make it 
fully useful for reliable identifi cation of blood biomarkers for gastric cancer, a num-
ber of improvements need to be made, including: (a) improved training data con-
taining substantially larger datasets; (b) improved feature identifi cation based on 
improved understanding of what other features may be relevant in distinguishing 
between proteins that are secreted into blood circulation and proteins that are not; 
and (c) most importantly, a new capability for predicting in what form a protein will 
remain in circulation in steady state.  

12.3.2     Towards Prediction of the Half-Life of a Protein 
and Fragments in Circulation 

 Not all the predicted blood secretory proteins from cancer tissue may serve as good 
biomarkers since they may not necessarily maintain their intact forms in circulation 
very long because of the following reasons: (1) some proteins may be partially 
digested by proteases in circulation or on cell surfaces, which may be particularly 
abundant in the blood in the vicinity of the tumor(s) of advanced stage cancer 
patients (Chan et al.  2002 ; Woo et al.  2012 ); (2) some proteins may become frag-
mented due to the mechanical and sheer forces of the blood fl ow (Di Stasio and De 
Cristofaro  2010 ); and (3) many of these proteins will be degraded quickly by the 
liver. Hence, one needs to be able to predict which fragments of a protein may 
remain in circulation in steady state in order to develop a highly reliable predictor 
for biomarkers in circulation. This is clearly a very challenging and also very impor-
tant problem. As of now, no solutions to this vexing problem have been reported. 

 One possible way to approach this problem is to study the peptide patterns of 
proteins detected in blood using information provided by the Plasma Proteome 
Project database (Omenn et al.  2005 ). This repository is the most comprehensive 
database for proteins found in human plasma, with most of the data obtained from 
mass spectrometry (MS). The data are all in the form of peptides, resulting from 
protein degradation, e.g., by circulating or cell-bound proteases, while in circulation 
or the enzymatic fragmentation (mainly by trypsin, a protease that cleaves peptide 
bonds C-terminal to lysine and arginine residues) required for mass spectrometric 
identifi cation. From the PPP data, one can see that some proteins have signifi cantly 
higher peptide coverage than others, hence providing some information about which 
proteins may possibly serve as better biomarkers since they have more fragments 
detectable in circulation. By carefully examining the peptide patterns, one could 
possibly derive which fragmentations result from  in vivo  cleavage and which are 
due to MS-associated digestions. This information could then be used to construct 
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a model for predicting the circulating peptide patterns for each candidate protein in 
its steady state in circulation. Such information can then be used to guide further 
experimental validation and suggest antibodies that are specifi c for the peptides 
instead of the intact proteins from which they were derived.   

12.4     Searching for Biomarkers in Other Human Body Fluids 

 Human blood is clearly the most information-rich source for detecting human dis-
eases in different organs since this is the central transportation system to and from 
cells. However, detection of specifi c signals is often challenging due to the enor-
mous complexity in terms of the composition and the dynamic range of blood pro-
teins and metabolites as discussed earlier. Other human body fl uids may also provide 
highly informative signals. For example, recent large-scale urinary proteomic anal-
yses revealed that urine is also an information-rich source for disease detection. In 
addition, urine tests are clearly less invasive compared to blood tests, as is saliva. 

12.4.1     Searching for Biomarkers in Urine 

 Recent proteomic analyses of human urine has identifi ed thousands of different 
protein species (Pang et al.  2002 ; Weissinger et al.  2007 ; Zimmerli et al.  2008 ), 
which is somewhat surprising as it was previously thought that very little protein is 
in the urine of a healthy person (Adachi et al.  2006 ). This is true but only in terms 
of protein abundances, not as much in terms of protein diversities. 

 Since urine is formed via fi ltration of blood through the kidneys, some blood- 
borne proteins can be fi ltered and fail to be reabsorbed, thus becoming excreted into 
the urine. Compared to serum, the challenge in searching for urinary biomarkers is 
that urinary proteins/peptides tend to be of substantially lower abundances, while 
the advantage is that the dynamic range of the protein/peptide abundances is sub-
stantially smaller than that in blood. 

 We have previously developed a computational method for predicting proteins 
that can be excreted into urine through secretion from diseased human tissues (Hong 
et al.  2011 ), using essentially the same idea and the same three key steps, (a), (b) 
and (c), as used in predicting blood secretory proteins and outlined in Sect.  12.3 . For 
(a), a positive training dataset was formed by including 1,313 proteins found in 
urine samples of healthy people by a recent large proteomic study (Adachi et al. 
 2006 ), and the negative dataset consisted of 2,627 proteins selected in a similar 
fashion to that in the blood secretory protein prediction. 

 For (b), a large number of potentially relevant features were examined. For this 
data-classifi cation problem, more information was used to guide the feature search. 
For example, electronic charge and the rigidity of a protein structure were included 
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in the feature selection, knowing that the glomerular walls in kidneys are negatively 
charged and with pores of relatively small size. In the end, 18 features were found 
to be informative for prediction of urine-excretory proteins. For (c), a similar sup-
port vector machine-based classifi er was trained as before, which achieved a 78 % 
prediction sensitivity and a 92 % prediction specifi city on an independent test set 
consisting of 460 known urine excretory proteins and 2,148 non-urine excretory 
proteins (Hong et al.  2011 ). 

 This classifi er was then applied to the 715 differentially expressed genes in 
gastric cancer  versus  matching control tissues for prediction of urine excretion 
(Hong et al.  2011 ). This analysis yielded six proteins that were predicted to be 
candidates as urinary biomarkers for gastric cancer, ( AZGP1 ,  COL10A1 ,  EL ,  LIPF , 
 MMP3, MUC13 ), for experimental validation on urine samples of 21 gastric can-
cer patients (mostly advanced stages) and 21 age/gender-matched healthy indi-
viduals. Of the six proteins, fi ve ( AZGP1 ,  COL10A1 ,  EL ,  LIPF ,  MUC13 ) were 
detected by Western blots of urine samples, indicating the high-quality of the pre-
diction classifi er for urine-excretory proteins.  MMP3  was not found in any urine 
sample, possibly due to its low abundance or a false prediction by the classifi er. 
The Western blots for  EL  (epithelial lipase) showed a substantial reduction in its 
abundance in urine samples of the 21 gastric cancer patients compared to the 21 
control samples. Specifi cally, the majority of the control samples were found to 
have  EL , whereas most of the gastric cancer samples had either relatively low 
amounts or no detectable  EL  (see Fig.  12.2 ). The same pattern was observed on a 
substantially larger sample set, achieving a classifi cation AUC value = ~96 % 
(Hong et al.  2011 ), which also includes 30 urinary samples from patients of other 
cancer types that show similar abundance patterns to those of healthy controls. 
This result suggests that  EL  could prove to be a highly promising urinary bio-
marker specifi cally for gastric cancers.

  Fig. 12.2    Western blots 
showing three independent 
gels of EL on urine samples 
of 21 gastric cancer patients 
and of 21 controls. Results 
from the 21 controls are 
given in the 21 lanes  outlined  
in  black  (seven lanes per gel) 
on the  left portion  of each 
gel. Data from the patients 
are shown in the  right portion  
of each gel (seven lanes per 
gel). Adapted from 
(Hong et al.  2011 )       
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12.4.2        Searching for Biomarkers in Saliva 

 We have recently extended this line of study to salivary biomarkers. Compared to 
human blood and urine, saliva has not been used for detection of human disease 
until recently. The impetus for this approach was the report that salivary proteomic 
analyses suggested that human saliva is rich in proteins (Denny et al.  2008 ), some 
of which are derived from the blood and hence can potentially serve as an informa-
tion pool for disease biomarker identifi cation for distal organs. Some salivary pro-
teins have been used for disease detection such as salivary kallikrein for breast 
cancer and gastrointestinal cancer (Jenzano et al.  1986 ),  PSA  for prostate cancer 
(Turan et al.  2000 ) and  HER2  and  P53  for breast cancer (Streckfus et al.  2000 ). 
However, no general methods for systematic searches for biomarkers in saliva have 
been reported. 

 Three mechanisms have been identifi ed for biomolecules to travel from circula-
tion into saliva (Wong  2006 ; Pfaffe et al.  2011 ): (1) active transport for some pro-
teins such as secretory IgA and immunoglobulin E; (2) passive transport for drugs 
and steroids; and (3) ultrafi ltration for small polar molecules such as creatinine. In 
addition, salivary glands may secrete their own proteins into saliva in response to 
specifi c proteins in blood circulation. For such cases, however, bioinformatics can-
not be fruitfully applied yet since there are no stimuli-response data available for 
salivary glands, the basis on which a predictor can be developed. 

 Since proteins that circulate in blood can be detected in saliva, we have devel-
oped a predictor for salivary biomarkers, in a very similar manner to the urine 
marker prediction study (Wang et al.  2013 ). The main difference here is that the 
amount of training data is sparse. Consequently, an extensive literature search was 
carried out, which led to the identifi cation of 62 experimentally validated human 
salivary proteins coming from circulation. These proteins were used as the positive 
training dataset. The negative dataset included 6,816 proteins that were deemed to 
be absent in saliva, based on procedures similar to those used in the development of 
blood and urine biomarker predictors. Then a similar procedure was applied to 
search for protein features with discerning power between the positive and the nega-
tive datasets. A classifi er was then trained as in the previous sections. Following this 
approach, the outcome was identifi cation of the following features that were found 
to be most informative for the classifi cation: the radius of gyration of the protein, 
hydrophobicity, Geary autocorrelation, amino acid composition, dipeptide compo-
sition, secondary structure composition and polarity. These selected features are 
generally consistent with our understanding of secretory proteins and salivary pro-
teins. For example, the diffusion coeffi cient for proteins is inversely proportional to 
the protein structural feature, the radius of gyration (Brandtzaeg  1971 ). 

 The trained classifi er was then applied to a set of gene-expression data of breast 
cancer, and 31 proteins were predicted as biomarker candidates in the patients’ 
saliva, including  TIMP2 ,  CFD ,  CCL14  and  FBLN  (Wang et al.  2013 ). These pro-
teins are known to be involved in wound response, acute infl ammatory response, 
complement and coagulation cascades, cell adhesion, biological adhesion and 
immune response, all of which are related to cancer development.   
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12.5      Searching for Biomarkers Among Other 
Molecular Species 

 To this point, all the discussions have been focused on identifi cation of proteins as 
potential biomarkers for cancer, but there is no reason to limit the search to proteins 
only. Other molecular species such as microRNAs and metabolites could poten-
tially serve the same purpose and may even be more effective. For example, one 
advantage of using microRNAs as blood or other body fl uid biomarkers is that they 
tend to remain in circulation much longer than proteins since they are not degraded 
by the hepatic enzymes (Etheridge et al.  2011 ). As of now, a number of microRNAs 
have been used as potential cancer biomarkers. For example, a combination of miR- 
145 and miR-451 was recently proposed as a blood biomarker for breast cancer 
(Wimberly et al.  2013 ), and a panel of fi ve microRNAs (miR-200a, miR-100, miR- 
141, miR-200b, miR-200c) has been recommended as a biomarker for ovarian 
 cancer. In addition, numerous other microRNA combinations have been suggested 
for a variety of cancers in the past few years (Cho  2007 ; Bartels and Tsongalis 
 2009 ; Kosaka et al.  2010 ). A number of metabolite-based cancer biomarkers has 
also been proposed in the past few years, including metabolites involved in glycoly-
sis, glutamine utilization, fatty acid synthesis and mitochondrial function 
(Chiaradonna et al.  2012 ). 

12.5.1     MicroRNAs as Cancer Biomarkers 

 MicroRNAs are small, single-strand non-coding RNAs (18–22 nucleotides) that are 
estimated to comprise 1–3 % of the human genome (Zhao and Srivastava  2007 ). 
This group of RNAs has been found to play crucial roles in maintaining the normal 
levels of ~30 % of human mRNAs. The recent discovery of the key roles played by 
microRNAs in epigenomic regulation and execution (Choudhry and Catto  2011 ; 
Kunej et al.  2011 ) should make them attractive candidates for cancer biomarkers. 
As discussed in Chap.   9    , increased epigenomic activities may represent a key transi-
tion from proliferating cells to malignant cells. Hence if the associated microRNAs 
are detected in circulation, it may give a strong indication of the stage of a cancer. 

 While the mechanism of microRNA release from cells into circulation is largely 
unknown, it is well accepted that some microRNAs are released into circulation 
(Chen et al.  2008 ). Zhang et al. suggested that cells may selectively package 
microRNAs into micro-vesicles and then secrete them (Zhang et al.  2010 ). The 
resistance of microRNAs to  RNase-A  digestion (Chen et al.  2008 ) suggests that 
serum microRNAs might be modifi ed from cellular microRNAs or they may be in 
complex with a vesicle or proteins. 

 In order to predict blood secretory or urine-excretory microRNAs, a classifi er 
need to be trained as in the previous sections, but the key is to identify a set of 
 different features that have been derived from microRNAs rather than proteins. 
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A number of features have been found to be useful. For example, recent studies 
revealed that the major forms of circulating microRNAs involve a complex with 
the  AGO  (argonaute) proteins; in cells this is part of the RNAi silencing complex. 
The stability of the microRNAs in circulation may be attributable to the formation 
of the  AGO2  complex. Complexation with protein seems to protect the microRNAs 
from  RNase  degradation (Arroyo et al.  2011 ; Turchinovich et al.  2011 ), although the 
mechanism of the miRNA- AGO2  complex secretion remains to be understood. In 
order for non-renal microRNAs to be excreted into urine, they must fi rst enter into 
circulation and then be excreted through the renal glomerulus. Therefore, the dis-
criminating features for excretory microRNAs may be linked to the microRNA 
uptake and release mechanism by transport vesicles or the association with  AGO  
proteins. Thus, features related to binding of a microRNA need to be examined, 
including the secondary structures and sequence-level features. For example, a 
recent study showed that strand-bias selection exists for microRNAs in incorpora-
tion into the  RISC  complex, and highly expressed strands tend to have nucleotide 
G-bias and U-bias at the 5′ end (Hu et al.  2009 ). This suggests that microRNAs 
enriched with G and U nucleotides at the 5′ end may be more likely to bind to the 
 AGO2  protein and form a  RISC  complex. Among those features, a few were identi-
fi ed that can collectively make known urine-excretory microRNAs conspicuous 
among all known human microRNAs, strongly suggesting the possibility of identi-
fying microRNAs as serum or urine biomarkers for cancer. 

 A classifi er was recently developed based on a set of features showing discerning 
power between 325 microRNAs that have been found in serum, but not in urine, and 
a set of 100 microRNAs that have been identifi ed in the urine of healthy individuals 
(unpublished data). When the trained classifi er was applied to 138 microRNAs that 
have been reported to be present in urine, the prediction accuracy was ~70 %. This 
result is clearly encouraging for developing a reliable predictor for microRNA 
excretion. We expect that, as increasingly more microRNAs are detected in serum 
and urine and posted in the miRBase database (Griffi ths-Jones et al.  2006 ; Kozomara 
and Griffi ths-Jones  2011 ), a highly reliable predictor will surface soon.  

12.5.2     Metabolites as Cancer Biomarkers 

 Most of the current metabolite-based cancer biomarkers tend to be those derived 
from glycolysis, glutamine utilization, fatty acid synthesis and mitochondrial func-
tion (Chiaradonna et al.  2012 ). This should not be surprising since the various can-
cers are known to have distinct activities in these metabolic pathways. In order to 
expand the number of potential cancer biomarkers, one should consider the metabo-
lites associated with ECM development and remodeling. It is known that the com-
position of the ECM, and hence its physical properties, change continually during 
cancer tissue development; yet, the metabolites derived from these processes have 
received little attention (Lu et al.  2012 ). One group of such metabolites was dis-
cussed in Chaps.   6     and   10    , namely those fragments formed from hyaluronic acid. 
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These fragments clearly deserve systematic analyses for their potential to serve as 
 biomarkers for different types of cancer, with emphasis on grading, staging and pos-
sibly drug-resistance properties. In addition to hyaluronic acid fragments, there are 
other types of metabolites involved in ECM such as: (a) heparan sulfates that are 
active in tissue development, angiogenesis and cancer metastasis (Vlodavsky and 
Friedmann  2001 ); (b) chondroitin sulfates that affect the tensile strength of a matrix; 
and (c) keratan sulfates, known to be involved in development and scar formation 
after injury (Zhang et al.  2006 ). Most of these metabolites are relatively small and 
water soluble, and it is expected that most, if not all, can readily enter into blood 
circulation.   

12.6     Concluding Remarks 

 With the availability of multiple types of  omic  data collected on various body fl uids 
of healthy individuals, it is a most propitious time to develop powerful computation- 
guided search paradigms for highly effective biomarkers in different body fl uids for 
cancer diagnosis and prognosis. Differing from the traditional approaches that 
essentially try the proverbial “search for a needle in a haystack(s)” with little guid-
ance, hence often leading to predicted markers with subpar prediction capabilities, 
the combination of: (1) the current knowledge of cancer biology at its different 
developmental stages; (2) available  omic  data collected on cancer  versus  control 
tissues and  omic  data collected from different body fl uids; and (3) availability of 
statistics-based data-mining approaches that allow realistic and reliable model 
building for predicting biomarker candidates, followed by target-based experimen-
tal validation. It is expected that the full execution of such ideas could lead to the 
effi cient identifi cation of highly reliable biomarkers for cancers of different types, 
at different developmental stages and different levels of malignancy. Success in 
these endeavors would lead to a fundamental improvement in our current capabili-
ties in cancer detection, especially in the early stages. In addition, we believe that 
the information revealed through such body-fl uid based biomarker searches will not 
only be useful for cancer diagnosis, but also helpful in selecting the most effective 
therapeutic strategies for individualized cancer treatment using the biomarkers to 
monitor effectiveness.     
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    Chapter 13   
  In Silico  Investigation of Cancer Using 
Publicly Available Data 

                    Cancer is a very complex disease, far more multifaceted than the traditional views 
rooted in the thinking that cancer is a genomic disease, at least for solid tumors as 
discussed in the previous chapters. The disease is a rapidly evolving biological sys-
tem drifting away from normal cellular metabolism and homeostasis to adapt to the 
also evolving, increasingly more challenging and unfamiliar microenvironment. It 
may start from some, in and of itself, seemingly harmless metabolic changes in 
response to a stressful local condition such as persistent hypoxia and/or elevated 
ROS, which leads to gradual and continuing changes in the microenvironment, 
hence producing pressure for the underlying cells to evolve. The observed cell pro-
liferation may represent a feasible and effi cient route for the affected cells to escape 
from these pressures. The similar growth patterns and other common characteristics 
across different cancer types, referred to as hallmark activities, strongly suggest that 
the survival pathway of the affected cells is a well-coordinated process, possibly 
guided by signaling instructions manifested by hyaluronic acid and fragments as 
discussed in Chaps.   6     and   9    . The continuous coadaptation and coevolution between 
the changing microenvironment and the altered cellular metabolism may drive the 
evolving cells to utilize whatever cellular capabilities encoded in their genomes via 
the increasingly more relaxed epigenomic regulations or random mutations confer 
for their survival. 

 As the evolution and natural selection of the affected cells continue, the local 
disease gradually becomes a holistic illness, not only because the cancer cells 
migrate to and colonize distant locations, but also because they have evolved to 
make a generalized impact on the body of the individual so affected. For example, 
they have gained capabilities to evade destruction by the immune system, learned to 
utilize increasingly more resources that a normal physiological system can offer, 
and consumed a substantial amount of energy compared to the rest of the body. 
Hence, one may posit that it is the micro-environmental pressures that drive the 
cancer to grow. From this perspective, one can argue that the other changes, includ-
ing those at the functional execution, epigenomic and genomic levels, are facilita-
tors for their survival through proliferation. Consequently, to treat cancer effectively, 
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one needs to accurately identify the specifi c type of cellular pressure(s) that drives 
the current proliferation, as well as the root source of the pressures. 

 Since the discoveries of oncogenes and tumor suppressor genes in the 1970s, a 
substantial amount of knowledge has been gained about molecular and cellular level 
mechanisms of cancer, typically accomplished using model systems. This rich 
background of knowledge serves as the foundation for computational and systems 
biologists to study this disease as an evolving system in its full complexity. It is the 
availability of the variety of  omic  data collected on both model systems and human 
cancer tissues that makes such studies possible. This chapter reviews some of the 
popular and publicly available data resources, as well as computational tools related 
to cancer research, and illustrates the types of questions that can be addressed  in 
silico  through computational analyses of such data. 

13.1       Questions Potentially Addressable Through 
Mining Cancer  Omic  Data 

    A few illustrative examples are outlined in this section to demonstrate the types of 
questions that can be addressed through computational data mining and statistical 
inference, with the aim of providing new information and approaches for cancer 
studies. 

13.1.1     Characterization of Tumor Microenvironments 

 The importance of the microenvironment to the development of cancer has been 
well established in the literature. Throughout this book, emphasis has been placed 
on the role of the microenvironment in driving and facilitating the disease to evolve 
to overcome pressures, different types at different developmental stages, cast on the 
neoplastic cells. This environment can be defi ned in terms of a number of measures, 
such as the oxygen level, the oxidative stress level, the acidity level, the composition 
and mechanical properties of the local ECM, and the various signaling molecules 
released into the extracellular space by the local stromal cells. While it is vitally 
important to collect such data for cancer studies, it has proved to be a very challeng-
ing problem to use experimental techniques for  in situ  studies, clearly unrealistic for 
large-scale studies. Fortunately, computational analyses of gene-expression data 
can generate useful information in probing micro-environmental conditions. 

 The basic idea is that when the micro-environmental factors change, some genes 
will respond by altering their expression levels. A number of marker genes have been 
identifi ed which respond to specifi c environmental changes, such as  HIF1 versus  
cellular oxygen level,  SOD1 versus  ROS level, and the genes responding to acidity-
level changes as discussed in Chap.   8    . Through statistical association  analyses, one 
can possibly identify genes that may respond to or defi ne a specifi c environmental 
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factor, and even genes that may respond to combinations of  environmental stressors. 
When applied to gene-expression data collected on cell lines under specifi c condi-
tions, such as exposure to different levels of oxygen, one can possibly derive quanti-
tative relationships between gene-expression levels and the cellular oxygen level. 
Such analyses can lead to the development of predictive models, defi ning the detailed 
micro-environmental conditions in specifi c cancer samples and hence enabling can-
cer  omic  data analysis to be undertaken in a more informed manner. When linking 
such information with cancer clinical data, one may be able to drive new insights 
regarding the cellular mechanisms by which various environmental conditions affect 
the clinical outcome of a cancer, such as the growth rate, mortality rate, responses to 
various treatments and the potential for metastasis.  

13.1.2     Identifi cation of Key Transition Events and Possible 
Causes Throughout Cancer Development 

 A number of hallmark events of cancer have been identifi ed (Hanahan and Weinberg 
 2011 ) such as reprogrammed energy metabolism, autonomous signaling for growth, 
and angiogenesis across all the (solid tumor) cancers, as introduced in Chap.   1    .  Do 
these hallmark events take place independent of each other or do some need to pre-
cede the others ? It is foreseeable that analyses of transcriptomic data of cancer tis-
sues, ordered according to their developmental stages, could address this issue. For 
example, each hallmark event can be characterized in terms of the expression pat-
terns of a specifi c set of genes. By examining how the expression patterns of these 
genes change as a cancer evolves, one should be able to detect the transition points 
such as the starting point or monotonic change  versus  fl uctuations of the activity 
level of each hallmark event, as well as the relative order among different hallmark 
events. One challenging issue in carrying out such analyses is that of determining 
the relative developmental stages among collected cancer tissues at a resolution 
fi ner than the four discrete stages typically used in the clinical setting, hence allow-
ing one to use “time” on a fi ner and more useful scale and then study hallmarks or 
other events along the more accurate “time” line. 

 So the question is:  How much fi ner can one possibly make the clock based on the 
available omic data , which will enable  age  comparisons among cancer tissues from 
different patients? Actually there are a few obvious measures that can potentially be 
used for such a clock. For example, the number of cancer-related mutations per 
genome could be a candidate. However, normalizations of such a measure across 
different tissues may represent a non-trivial issue since it has been reported that dif-
ferent cancer types may have vastly different median numbers of mutations per 
genome (see Chap.   4    ), suggesting that some micro-environmental factors, such as 
hypoxia and ROS levels, need to be taken into consideration when doing the nor-
malization. Another possible clock could be related to the number of differentially 
expressed genes in cancer  versus  the matching control tissue as used in Fig.   2.1     
(also see (Xu et al.  2010 )). Then again subtle issues could arise that may need to be 
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considered, e.g., gene-expression levels of individual tissues may not be as 
 informative as the average gene-expression levels across multiple tissues as dis-
cussed in Chap.   3    . 

 If one can identify or develop one such “universal” clock for measuring cancer 
progression, many important questions could be addressed, enabled by such a clock. 
For example, one should be able to address: (1) the possible dependence among dif-
ferent hallmark events, (2) possible triggering conditions in the microenvironment 
of each hallmark event; and (3) potential causal relationships among various events, 
including hallmark events, observed during cancer development.  

13.1.3     Understanding the Effects of Redox States 
on Cancer Development 

 Oxidative stress has been known for some time to be associated with cancer devel-
opment (Pani et al.  2010 ; Reuter et al.  2010 ), which is clearly a key driver for 
cancer initiation as discussed in Chap.   5     and possibly serves a driving role in can-
cer metastasis as discussed in Chaps.   10     and   11    . While a number of reviews have 
been published on ROS and cancer, there are no published studies on redox 
( red uction- ox idation) fl uxes at the cellular level as a function of cancer progres-
sion. Such information could potentially reveal the root sources of oxidative stress 
surges observed during the development of a cancer. In comparison, a few meta-
bolic fl ux analyses, e.g., on carbon and nitrogen fl uxes at the pathway or cellular 
level, have been published on cancer (Hirayama et al.  2009 ; Achreja et al.  2013 ). 
Some interesting observations have been forthcoming, such as the accumulation of 
glucose metabolites throughout the entire glycolytic pathway in cancer (Hirayama 
et al.  2009 ). Analyses of the redox fl ux, i.e., fl ux of electrons, are likely to reveal 
even more exciting and surprising information since electron fl uxes are not as intu-
itive as metabolic fl uxes. One can expect that such studies could reveal how redox 
states, specifi cally oxidative stress, contribute to specifi c activities and hallmark 
events throughout the entire process of tumorigenesis. While it is not easy to 
directly collect electron potential data on a large scale, one can possibly model 
electron fl ow by examining enzymatic reactions that involve electron-charge 
changes in the metabolites on the two sides of each reaction and balance them with 
reducing/oxidizing agents, namely GSH/GSSG, NAD + /NADH and NADP + /
NADPH, whose quantities can be estimated based on the gene-expression levels of 
their relevant enzymes such as the NADH kinase and ferredoxin-NADP +  reduc-
tase. This type of systems-level redox fl ux analysis could provide fundamentally 
novel information to the understanding of cancer initiation, progression and 
 metastasis, and computational modelers have an opportunity to assume key roles 
in making this a reality.  
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13.1.4     Impact of Repeated Re-oxygenation on Selection 
of More Resilient Cancer Cells 

 As discussed in Chaps.   5     and   11    , changes in cellular oxygen level have a  fundamental 
impact on cancer initiation and metastasis. It is only natural to ask : How does the 
repeated re-oxygenation induced by continuous tumor growth and new  angiogenesis 
affect cancer evolution ? 

 It has been well established that as a tumor develops it becomes increasingly 
hypoxic, which will lead to the signaling for new angiogenesis, thus increasing the 
blood and oxygen supply. The increased blood supply allows the tumor to continue 
growth until it becomes hypoxic again due to the increased biomass. This cycle 
repeats and leads to multiple rounds of angiogenesis and the associated 
 re- oxygenation. This alternation between hypoxia and normoxia may serve as a key 
measure for selecting robust cancer cells as the disease progresses, and possibly 
serve as a trigger to epigenomic changes that can be passed on to the offspring to 
better cope with the two extreme conditions. 

 Currently there are no published studies on how such a re-oxygenation cycle 
impacts cancer development at a cellular level. Using a bioinformatics approach, 
one can design studies based on the available transcriptomic data. One way to 
accomplish this is by grouping tissue samples into: (1) highly hypoxic ones before 
additional blood fl ows in via tumor angiogenesis; (2) ones with new blood fl ow; and 
(3) the remaining samples. This classifi cation of samples can be achieved through 
the use of marker genes for hypoxia and angiogenesis. Then within each sample 
group, one can infer that genes or pathways whose expression levels exhibit strong 
correlations, either positively or negatively, with changes of the hypoxia level for 
samples. If successful, one should be able to identify cellular processes that are 
enhanced or diminished by repeated re-oxygenation, as well as by repeated hypoxia, 
thus gaining a detailed understanding of how re-oxygenation, in conjunction with 
repeated hypoxia, selects the most resilient cancer cells.  

13.1.5     Triggering Events of Cancer Metastasis 

 A large number of studies have been published on cancer metastasis (see Chap.   10    ), 
and various events have been identifi ed to facilitate metastasis, such as the activa-
tion of the EMT (epithelial-mesenchymal transition) pathway. However, the funda-
mental issue remains unanswered:  What triggers a cancer to metastasize  as the 
activation of the EMT is just a facilitator? It is possible that the driver for this critical 
event in cancer development arises from changes in the microenvironment as in the 
case of cancer initiation. Statistical association studies between metastasis-related 
events such as the activation of the EMT and expression changes of microenvironment- 
related genes can potentially provide useful suggestions about which micro- 
environmental changes serve as the main triggering events of metastasis, such as the 
intracellular ROS level going beyond some thresholds as suggested in Chap.   10    .  
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13.1.6     Characterization of Cancers with Different Clinical 
Phenotypes Using Molecular Features 

 With the availability of large quantities of genomic, epigenomic and transcriptomic 
data, one can carry out association studies between cancers with similar phenotypes 
and their  omic  data. In time, a similar mission could be undertaken using proteomic, 
glycomic, metabolomic and other  omic  data. The goals are to identify common 
molecular-level characteristics among such cancers to obtain new and meaningful 
information connecting phenotypes with molecular changes. Examples of different 
phenotypes may include fast  versus  slow growing cancers, or readily metastasizing 
cancers  versus  cancers with low metastasis potential. Previous studies have been 
typically conducted on genomic data alone. For example, numerous GWAS 
(genome-wide association study) analyses have been employed to delineate type- or 
subtype-defi ning genes, but with only limited success in identifying common 
genetic traits as risk factors (Goldstein  2009 ). In their review article “Genetic het-
erogeneity in human disease” (McClellan and King  2010 ), the authors consider that 
“the vast majority of such [GWAS identifi ed] variants have no established biologi-
cal relevance to disease or clinical utility for prognosis or treatment”. While the 
statement may be overly critical, it does point to one important issue that commonly 
observed genomic changes may not necessarily contain much disease-causing 
information. A generalized association study involving multiple  omic  data types 
needs to be done, which may require more general statistical frameworks than the 
GWAS type of analysis, hence creating challenges as well as opportunities for can-
cer statistical analysts.   

13.2      Databases Useful for  In Silico  Investigation of Cancers 

 A few databases are deemed to be the “must have” resources for biological research, 
including cancer research. One is the NCBI database that provides access to a vari-
ety of databases for genomics, functional genomics and genetic information (NCBI 
 1988 ). For example, GenBank is the NCBI database of all publicly available DNA 
sequences with annotations (Benson et al.  2013 ), and the Gene database integrates 
a wide range of species information and provides more detailed functional annota-
tion of each gene (Maglott et al.  2011 ). GeneCards (Rebhan et al.  1997 ), developed 
and hosted by the Weizmann Institute of Science, is another important database that 
covers more comprehensive information than just gene functions. It includes, for 
example, medical relevance, mutations, gene expression, protein interactions and 
pathway information for each gene in the database (Rebhan et al.  1998 ). 

 The most popular protein database is Swissprot, now a part of the Uniprot data-
base (The-UniProt-Consortium  2014 ). As a manually curated database with high 
quality data, it provides comprehensive information about each experimentally vali-
dated protein, including its biological function, functional domains, subcellular 
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localization and post-translational modifi cations, as well as links to many other 
databases on the Internet. A few other protein functional databases may also prove 
to be useful for cancer studies such as Interpro (Hunter et al.  2012 ), Pfam (Punta 
et al.  2012 ), the ENZYME database (Bairoch  2000 ) and the molecular interaction 
database DIP (Xenarios et al.  2002 ). HAPPI is an integrative database for protein- 
protein interactions collected from a few publicly available databases such as 
HPRD, BIND, MINT, STRING and OPHID. The database currently contains 
142,956 non-redundant human protein-protein interactions among 10,592 human 
proteins (Chen et al.  2009 ). HINT is a collection of high-quality protein-protein 
interaction data for multiple organisms (Das and Yu  2012 ). For human data, the 
database covers 27,493 interactions and 7,629 protein complexes. A detailed review 
on protein-protein interaction databases can be found in (Lehne and Schlitt  2009 ). 

 A number of biological pathway databases may prove to be essential for func-
tional studies of cancer such as pathway enrichment analyses. Among these data-
bases, KEGG is probably the most frequently used, which consists of a collection of 
manually curated pathway models as well as molecular interactions for metabolism, 
regulation and signaling (Kanehisa and Goto  2000 ; Kanehisa et al.  2012 ). BIOCARTA 
is another popular pathway database for human and mouse. Consisting of 137 human 
pathways, PID (Pathway Interaction Database) covers 9,248 molecular species 
extracted from the NCI databases and an additional 322 pathways covering 7,575 
interactions imported from the BIOCARTA and REACTOME databases. MsigDB is 
a set of gene groups, believed to be highly relevant to human cancer development, 
where each gene group potentially represents the components of a yet to be fully 
elucidated pathway (Subramanian et al.  2005 ).    Table  13.1  summarizes a few popular 
pathway and molecular interaction databases, not limited to cancer studies.

   In the remainder of this section, a number of more specialized databases cover-
ing different types of  omic  data are introduced, plus a number of cancer-specifi c 
databases. All these resources are freely available on the Internet and have been 
widely used by the research community. 

   Table 13.1    Pathway and molecular interaction databases   

 Database  Content  URL 

 KEGG  A collection of manually curated 
pathway models 

   www.genome.jp/kegg/pathway.html     

 BIOCARTA  A collection of pathways for more than 
300 species 

   http://www.biocarta.com     

 PID  A collection of curated pathways for 
human signaling and regulatory 
processes 

   http://pid.nci.nih.gov/     

 Pathguide  A meta- database providing an overview 
of all web-accessible biological 
pathway and network databases 

   http://www.pathguide.org/     

 REACTOME  A resource of curated human pathways    http://www.reactome.org/     
 MSidDB  A collection of diseased-related gene 

sets 
   http://www.broadinstitute.org/gsea/
msigdb/collections.jsp     
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13.2.1     Human Cancer Genome and Gene Databases 

 TCGA and ICGC are the two largest cancer genome sequencing projects. TCGA is 
a US-based project and its goal is to sequence and organize 10,000 cancer genomes, 
along with other matching  omic  data types, covering 25 cancer types (Cancer-
Genome- Atlas-Research-Network et al.  2013 ). ICGC is a more international 
collaboration- oriented project, and its goal is to sequence and store 25,000 cancer 
genomes, along with other cancer-related  omic  data and information of 50 cancer 
types (International-Cancer-Genome-Consortium et al.  2010 ). Another large can-
cer genomic database is the COSMIC (Catalog of Somatic Mutations In human 
Cancer) database developed by the Wellcome Trust Sanger Institute (Forbes et al. 
 2001 ). Unlike the fi rst two databases, COSMIC covers only genetic mutations and 
variants that are deemed to be critical to cancer development. The database cur-
rently contains 1,592,109 mutations identifi ed in 25,606 human genes from 947,213 
tumor samples. 

 In addition to these large general purpose databases, there are a few more spe-
cialized databases focused on specifi c cancer types or mutations in certain protein 
families. The Pediatric Cancer Genome Project Database is a comprehensive cancer 
genomic database for pediatric cancers (Downing et al.  2012 ). The database cur-
rently covers three classes of pediatric cancers, namely hematopoietic malignan-
cies, brain tumor and solid tumors, consisting of 15 cancer types. The BIC (the 
Breast Cancer Information Core) database, hosted at the National Human Genome 
Research Institute, is a central repository for mutations and polymorphisms in breast 
cancer susceptibility genes (Szabo et al.  2000 ). CCDB (the Cervical Cancer Gene 
Database) is a manually curated database for genes involved in cervical carcinogen-
esis, currently covering 537 genes along with mutations in these genes and their 
protein products, including polymorphisms, methylations, genomic amplifi cations 
and gene expressions observed in cervical cancer samples (Agarwal et al.  2011 ). 

 The Cancer Gene Census database provides a catalog of mutations identifi ed in 
over 400 cancer-related genes (Futreal et al.  2004 ). CanProVar is a database for 
single amino-acid alterations, including both germline and somatic variations in the 
human proteome (especially those related to human cancers), which is built based 
on information from the literature (Li et al.  2010 ). The IARC TP53 database con-
sists of more than 10,000 variations in the P53 gene observed in human populations 
and cancer samples (Olivier et al.  2002 ). CDKN2A is a similar database but for the 
cyclin-dependent kinase inhibitor 2A gene (Murphy et al.  2004 ). The Androgen 
Receptor Gene Mutation database contains 374 mutations found in androgen recep-
tor genes (Patterson et al.  1994 ). 

 There are a few general genomic mutation databases on the Internet, which are 
not specifi cally focused on human cancers but may prove to be useful to cancer 
research. For example, HGMD (Human Genome Mutation Database) contains 
141,161 germline mutations that are associated with human inheritable diseases 
(Cooper et al.  1998 ). The dbSNP database (Single Nucleotide Polymorphism 
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Database) at the NCBI is another data archive for genetic variation data within and 
across different species, containing information on SNPs, short deletions and 
 insertions, microsatellites, short tandem repeats and heterozygous sequences 
(Smigielski et al.  2000 ). The database has amassed more than 64 million distinct 
variants for 55 organisms since its formation in 1998. Table  13.2  provides some 
additional information about some of the above databases.

   Table 13.2    Human cancer genome and gene databases   

 Database  Content  URL 

 TCGA  A cancer  omic  data 
resource containing 
genomic, epigenomic 
and transcriptomic data 
sponsored by NIH 

   https://tcga-data.nci.nih.gov/tcga/     

 ICGC  A cancer  omic  data 
resource containing 
genomic, epigenomic 
and transcriptomic data 
sponsored by ICGC 

   http://icgc.org/     

 COSMIC  A catalog of somatic 
mutations in human 
cancers containing 
>50,000 mutations 

   http://www.sanger.ac.uk/perl/
genetics/CGP/cosmic     

 Cancer gene census  A catalog of mutations in 
more than 400 cancer-
related genes 

   www.sanger.ac.uk/genetics/
CGP/Census/     

 SNP500 cancer 
database 

 A database for 3,400+ SNPs 
in cancer- related genes 

   http://snp500cancer.nci.nih.gov/     

 Breast cancer 
information core 

 A repository for all 
mutations and 
polymorphisms in breast 
cancer-related genes 

   http://research.nhgri.nih.gov/bic/     

 GAC  A database of gene 
mutations, loss of 
heterozygosity, and 
chromosome changes in 
human, mice or rat tumors 

   www.niehs.nih.gov/research/
resources/databases/gac     

 HGMD  A database for germline 
mutations that are associated 
with heritable diseases 

   www.hgmd.org/     

 dbSNP  A catalog for genome 
variations 

   www.ncbi.nlm.nih.gov/projects/SNP/     

 MedRefSNP  A database with about 
36,199 unique SNPs 
collected from the PubMed 
and OMIM databases 

   www.medclue.com/medrefsnp     
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13.2.2        Human Epigenome Databases 

 Compared to genomic data, the human and cancer epigenomic data are probably 
two orders of magnitude smaller at this point due to a combination of (a) the cur-
rent knowledge about human epigenomes is considerably less than that about 
human genomes, and (b) the technology development for massive production of 
epigenomic data is years behind that for genome sequencing. As mentioned above, 
both TCGA and ICGC have amassed quite a bit of cancer epigenome data. 
Specifi cally, TCGA aims to have a total of over 10,000 cancer epigenome datasets 
for 25 cancer types by 2015, and ICGC plans to generate 25,000 cancer epigenome 
datasets for 50 cancer types. The  ENCODE  (Encyclopedia of DNA Elements) proj-
ect launched by the US National Human Genome Research Institute has a compo-
nent on producing human epigenomic data (Encode-Project-Consortium et al. 
 2012 ). The project goals are to produce epigenomic profi les of 50 different human 
tissue types. In addition, a few focused epigenomics projects have produced a sub-
stantial amount of epigenomic data. For example, the NIH Roadmap Epigenomics 
Program was started in 2008 and aims to produce chromosome-binding histone 
modifi cation data for over 30 types of modifi cations covering a variety of major 
human cell types (Chadwick  2012 ). The Human Epigenome Project at the 
Wellcome Trust Sanger Institute runs its own human epigenome database (Eckhardt 
et al.  2004 ). The database released 43 sets of human epigenome data for 12 differ-
ent tissue types in 2006 and 32 sets of human epigenome data for 7 different tissue 
types in 2013. 

 There are also a few human (cancer) epigenome databases on a smaller scale 
deployed on the Internet. For example, MethyCancer is a database specifi cally 
designed for human cancer epigenome data (He et al.  2008 ), and the PubMeth data-
base is also for human cancer epigenome data (Ongenaert et al.  2008 ). Table  13.3  
lists a few epigenomic databases on the Internet.

   Table 13.3    Human epigenome databases   

 Database  Content  URL 

 NIH roadmap 
epigenomics 
program 

 A database for human 
epigenomes now covering at 
least 23 cell types 

   http://www.roadmapepigenomics.org/data     

 Human 
epigenome 
project 

 A database for genome-wide 
DNA methylation patterns of 
all human genes in all major 
tissues 

   http://www.epigenome.org/     

 MethyCancer  A database for DNA 
methylation information in 
cancer-related genes, 
collected from public resource 

   http://methycancer.genomics.org.cn     
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13.2.3        Transcriptomic Databases 

 Transcriptomic data are by far the largest among all cancer  omic  data, at least one, 
possibly two orders of magnitude larger than the available genomic data. There are 
multiple large databases for cancer transcriptomic data on the Internet (Table  13.4 ). 
In addition to the data in the TCGA and the ICGC databases, large amounts of tran-
scriptomic data are stored in the GEO (Gene Expression Omnibus) database at the 
NCBI and Arrayexpress at the EBI, the two most popular gene-expression databases. 
GEO currently has more than 32,000 sets of gene-expression data collected from 
800,000 samples from more 1,600 organisms (Barrett et al.  2013 ). Arrayexpress con-
sists of 1,245,005 sets of gene-expression data collected through 43,947 experiments, 
including both microarray and RNA-seq data. CGED (Cancer Gene Expression 
Database) currently consists of gene-expression data and associated clinical data col-
lected on breast, colorectal, esophageal, gastric, glioma, hepatocellular, lung and thy-
roid cancers, predominantly using microarray techniques (Kato et al.  2005 ). 

 The ASTD database, although not specifi cally designed for transcriptomic data, 
may prove to be useful for cancer studies as it covers alternatively spliced isoforms 
encoded in human, mouse and rat genomes, derived based on gene-expression data 
(Koscielny et al.  2009 ).

   Table 13.4    Gene expression databases   

 Database  Content  URL 

 NCBI GEO  A comprehensive collection of gene 
expression data 

   http://www.ncbi.nlm.nih.gov/gds     

 Arrayexpress  A database of functional genomics 
including gene expression data in 
both microarray and RNA-seq forms 

   http://www.ebi.ac.uk/arrayexpress/     

 SMD  Stanford microarray database for 
gene expression data covering 
multiple organisms 

   http://smd.stanford.edu/     

 CIBEX  A database for gene-expression data 
hosted at the National Institute of 
Genetics of Japan 

   http://cibex.nig.ac.jp/     

 Oncomine 
(research 
edition) 

 A commercial database for cancer 
transcriptomic and genomic data, 
with a free edition to academic and 
nonprofi t organizations 

   https://www.oncomine.org/resource/
login.html     

 ChipDB  A database for microarray gene-
expression data hosted at the 
Whitehead Institute 

   http://chipdb.wi.mit.edu/chipdb/public/     

 ASTD  A database for human gene-
expression data and derived 
alternatively spliced isoforms of 
human genes 

   http://drcat.sourceforge.net/astd.html     

13.2 Databases Useful for In Silico Investigation of Cancers

http://www.ncbi.nlm.nih.gov/gds
http://www.ebi.ac.uk/arrayexpress/
http://smd.stanford.edu/
http://cibex.nig.ac.jp/
https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
http://chipdb.wi.mit.edu/chipdb/public/
http://drcat.sourceforge.net/astd.html


338

   Table 13.5    MicroRNA databases   

 Database  Content  URL 

 miRecords  A database for animal miRNA-target 
interactions 

   http://mirecords.biolead.org     

 miRBase  A database for published miRNA sequences 
and annotations covering numerous species 

   http://www.mirbase.org     

 TargetScan  A database for microRNA targets    http://www.targetscan.org     

13.2.4        MicroRNA and Target Databases 

 With the predicted intimate relationships between microRNAs and epigenomic 
activities (Chuang and Jones  2007 ), one can expect that microRNA-related cancer 
studies will increase signifi cantly in the years to come, in addition to the functional 
roles that they have been found to play in cancer initiation, progression and metas-
tasis (Calin et al.  2005 ; Yanaihara et al.  2006 ; Bloomston et al.  2007 ; Ambs et al. 
 2008 ; Garzon et al.  2008 ; Schetter et al.  2008 ; Croce  2009 ; Wyman et al.  2009 ). 
Two databases for experimentally validated human microRNAs, along with their 
validated and predicted target genes, are MiRecords and miRBase. Currently, miRe-
cords consists of 2,705 interactions between 644 microRNAs and 1,901 target genes 
in nine animal species (Xiao et al.  2009 ). miRBase currently consists of 24,500+ 
mature microRNAs from 206 species (Griffi ths-Jones et al.  2006 ). TargetScan 
(Lewis et al.  2005 ) and Miranda (Miranda et al.  2006 ) are two popular databases for 
microRNA target genes, including both experimentally validated and computation-
ally predicted targets (Table  13.5 ).

13.2.5        Proteomic Databases 

 Compared with transcriptomic data, proteomic data, particularly quantitative pro-
teomic data, are much more diffi cult to obtain on large scales because of: (1) the 
higher complexities of protein data due to posttranslational modifi cations on protein 
sequences and alternatively spliced isoforms, and (2) the substantially larger 
dynamic range of protein quantities than that of gene-expression levels. These dif-
fi culties have resulted in the current reality that only limited proteomic data are 
available for human cancers compared to transcriptomic data. 

 While there are no large-scale proteomic databases specifi cally for human can-
cers on the Internet, a few databases for general human proteomes are publicly 
available. For example, PeptideAtlas consists of a large collection of peptides 
experimentally validated from a number of organisms including human (Deutsch 
et al.  2008 ). PRIDE (PRoteomics IDEntifi caitons) is a public repository of mass 
spectrometry (MS) based proteomic data (Martens et al.  2005 ). It currently con-
sists of over 4 million identifi ed proteins and 20 million peptides from 104 million 

13 In Silico Investigation of Cancer Using Publicly Available Data

http://mirecords.biolead.org/
http://www.mirbase.org/
http://www.targetscan.org/


339

 spectral data, covering 60 species with human data accounting for the major 
 portion of the data. PPP (Plasma Proteome Project) is another human proteomic 
database (Omenn et al. Proteomics  2005 ), focused on plasma proteins with quan-
titative information, which is currently hosted at the PeptideAtlas site. A database 
for raw proteomic data collected on surgically resected tissues and tissue-cultured 
cells of various malignancies, along with the associated biological and clinico-
pathological data, is GeMDBJ Proteomics. The collected data were obtained using 
2D PAGE and DIGE, with protein identifi cation based on liquid chromatography 
and tandem mass spectrometry. Some detailed information about these databases 
is given in Table  13.6 .

13.2.6        Metabolomic Databases 

 As of now, over 40,000 metabolites have been identifi ed in human cells (Wishart 
et al.  2007 ), but our current ability in identifying metabolites in a (cancer) tissue is 
still rather limited, with a typical experiment using the most sensitive LC-MS/MS 
technology being able to identify only a few hundred up to 1,000 metabolites (Zhou 
et al.  2012 ). Compared to genomic and transcriptomic data, the available metabolo-
mic data for human is substantially smaller (Table  13.7 ). 

 HMDB (the Human Metabolome Database) is a popular metabolite database, 
and currently consists of 41,514 metabolites identifi ed in human (Wishart et al. 
 2009 ,  2013 ). A few databases contain the structural information of the known 
metabolites, such as the Fiehn GC-MS library (Kind et al.  2009 ), the GOLM metab-
olome library (Hummel et al.  2007 ) and the NIST library, derived from the Human 
Metabolome Library in HMDB. A few specialized databases for metabolites 

   Table 13.6    Proteomic data resources   

 Database  Content  URL 

 PRIDE  A database for protein and 
peptide identifi cation, post-
translational modifi cations and 
supporting data 

   http://www.ebi.ac.uk/pride/     

 PeptideAtlas  A database of peptides from 
multiple organisms 

   http://www.peptideatlas.org/     
   http://www.peptideatlas.org/hupo/hppp/     

 Plasma 
Proteome 
Project 
database 

 A comprehensive resource for 
human plasma proteins, including 
protein splicing isoforms 

   www.plasmaproteomedatabase.org/     

 GeMDBJ  A collection of proteomic 
expression and identifi cation data 
of surgically resected tissues and 
tissue-cultured cells of various 
malignancies 

   https://gemdbj.nibio.go.jp/dgdb/     
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detected in human body fl uids can also be found on the Internet, such as Urine 
Metabolome Database (UMDB) that contains 2,651 urine metabolites. 

 In addition, there are a few databases with information useful for conducting 
metabolic fl ux analyses, including such information as biochemical reactions rele-
vant to specifi c metabolites and the reaction kinetic parameters for the relevant 
enzymes. BRENDA is one such database with enzymes, turnover rates and reaction 
kinetic parameters such as  Km ,  Kcat  and  Ki  values (Schomburg et al.  2004 ). Another 
database for biochemical reactions and the kinetic parameters is SABIO-RK (Rojas 
et al.  2007 ). TECRDB is a database for thermodynamic data of biochemical reac-
tions (Goldberg et al.  2004 ), hence facilitating more realistic modeling studies.

13.2.7        Additional Cancer-Related Databases 

 There are various other cancer-related databases that may prove to be useful for 
cancer studies. For example, TANTIGEN is the most comprehensive database for 
human tumor T-cell antigens, which provides the information on validated T-cell 
epitopes and HLA ligands, antigen isoforms and sequence-level mutations 
(TANTIGEN  2009 ). The Cancer Immunity Peptide database contains 129 human 
tumor antigens all with defi ned T-cell epitopes (Novellino et al.  2005 ). The CT 
database provides information on cancer-testicular antigens. 

    Table 13.7    Metabolomic databases   

 Database  Content  URL 

 HMDB  A knowledgebase for the 
human metabolome 

   http://www.hmdb.ca     

 KEGG 
COMPOUND 

 A database of small 
molecules and other 
chemical substances 
relevant to enzymatic 
reactions 

   http://www.genome.jp/kegg/compound/     

 PubChem  A comprehensive database 
of chemical compounds 

   http://pubchem.ncbi.nlm.nih.gov/     

 UMDB  A comprehensive resource 
for confi rmed human urine 
metabolites 

   http://www.urinemetabolome.ca     

 BRENDA  A database for enzymes 
and associated reaction 
kinetic parameters 

   http://www.brenda-enzymes.org/     

 SABIO-RK  A database for 
biochemical reactions and 
their kinetic parameters 

   http://sabio.h-its.org/     

 TECRDB  A database for enzyme 
thermodynamic data 

   http://xpdb.nist.gov/enzyme_thermodynamics/     
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 Databases for clinical reports on cancer are also available. For example, the 
 cancer mortality database created by the International Arctic Research Center 
(IARC) contains cancer mortality statistics by country, and CGEM (Cancer GEnome 
Mine) contains cancer clinical information concerning tumor samples (Table  13.8 ).

13.3         Online Tools Useful for  In Silico  Cancer Studies 

 Numerous computational analysis and data mining tools have been published and 
deployed on the Internet, which can be used to analyze the databases presented in 
Sect.  13.2  or proprietary cancer data. A few are listed below as examples to illus-
trate the types of tools that one can fi nd on the Internet. These tools are organized in 
a similar fashion to that in the above section, i.e., according to the data types on 
which they are used. 

13.3.1     Human Genome Analysis Tools 

 As discussed in Chap.   4    , cancer genomes tend to harbor various changes compared 
to the matching healthy genomes, including (1) single-point mutations; (2) copy 
number changes; and (3) structural variations such as reversals and translocations of 
genomic segments. Identifi cation of such genomic variations can provide useful 
information about the evolutionary footprints of individual cancer samples, as well 
as infer common and distinct characteristics across cancers of different types. Such 
footprint information could possibly reveal bottlenecks that the underlying cancer 
needs to overcome at different developmental stages. 

 Among the many (freely available) cancer genome analysis tools/servers on the 
Internet, a few sites offer clusters of tools, such as the Cancer Genomics Hub at 
UCSC, the TCGA site, the ICGC site and the Cancer Genome Analysis suite at the 
Broad Institute. Specifi cally, the Cancer Genomics Hub (Cancer-Genomics-Hub 
 2013 ) is a good place to visualize cancer genomes mostly from the TCGA project 
and to retrieve simple analysis results such as genomic mutations. 

   Table 13.8    Specialized cancer-related databases   

 Database  Content  URL 

 TANTIGEN  A human tumor T-cell antigen 
database 

   http://cvc.dfci.harvard.edu/tadb/     

 Cancer mortality 
database 

 A database for cancer mortality 
statistics by country 

   http://www.who.int/healthinfo/statistics/
mortality_rawdata/en/index.html     

 CGEM  A database for storing clinical 
information about tumor 
samples and microarray data 

   http://www.cangem.org     
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 A number of tools provided at the Broad Institute’s site (Cancer-Genome- 
Analysis  2013 ) may prove to be useful in doing the initial analysis of a cancer 
genome, with a few listed below. MuTect is a tool for identifying point mutations in 
a cancer genome in comparison with a matching control genome. Breakpointer is a 
tool that can pinpoint the breakpoints of genomic rearrangements in a cancer 
genome (Sun et al.  2012 ). To identify genomic rearrangements in a provided cancer 
genome  versus  a matching control genome, dRanger is recommended. Oncotator 
provides annotations of point mutations and indels in a cancer genome. Actually for 
each of these tools hosted at the Broad Institute’s site, there are numerous other 
tools on the Internet, offering similar functions, some of which may fi t better for 
specifi c analysis needs. For example, CREST is software tool, developed at St. Jude 
Children’s Research Hospital, for mapping somatic structural variation in cancer 
genomes with high resolution (Wang et al.  2011 ). Table  13.9  lists a few tools and 
tool clusters useful for cancer genome analyses.

13.3.2        Human Epigenome Analysis Tools 

 Compared with the large number of genome analysis tools on the Internet, only a 
few tools for epigenomic analysis are there in the public domain, possibly refl ecting 
the reality that the current understanding about human epigenome is far less than 
that about human genomes. This is not surprising, knowing that the current defi ni-
tion of “epigenetics” was not settled until a Cold Spring Harbor meeting in 2008 
(Berger et al.  2009 ). A few tools have been published for identifi cation of differen-
tially methylated regions in a given genome in comparison with reference epig-
enomes. CHARM is an R package for making such identifi cations (Irizarry et al. 
 2008 ), and MethylKit is also an R package for identifi cation and visualization of 
differential methylations across different epigenomes (Akalin et al.  2012 ). 
EpiExplorer is a similar R package for differential methylation analysis (Halachev 
et al.  2012 ); CpGassoc, also an R package, is for analysis of DNA methylation array 
data (Barfi eld et al.  2012 ) (Table  13.10 ).

   Table 13.9    Tools for cancer genome analyses   

 Tool  Content  URL 

 Cancer 
genomics hub 

 A toolkit that provides analysis 
and visualization capabilities of 
cancer genomes 

   https://cghub.ucsc.edu/     

 Cancer genome 
analysis 

 A comprehensive suite of tools for 
identifi cation of abnormalities in 
cancer genomes 

   http://www.broadinstitute.org/cancer/
cga/     

 CREST  A downloadable toolkit for 
detecting genomic structural 
variations at base-pair resolution 

   http://www.stjuderesearch.org/site/lab/
zhang     
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13.3.3        Human Transcriptome Analysis Tools 

 Our own experience has been that among the available cancer  omic  data, 
 transcriptomic data are the most useful for gaining new insights about cancer biol-
ogy. Such data have proven to be highly informative for addressing a wide range of 
cancer related problems, ranging from cancer typing, staging and grading to under-
standing the possible relationships among pathways with altered expression levels, 
further to elucidation of cancer initiation drivers and key facilitators, and then to 
inference of possible drivers for metastasis and understanding the main causes of 
accelerated growth of metastatic cancers. It should be emphasized that information 
derivation through transcriptomic data analysis can go substantially beyond the tra-
ditional association analyses among genes or pathways with correlated expression 
patterns. It can be used to infer: (a) possible fl ux distributions in a qualitative man-
ner (see Chap.   6     for identifi cation of hyaluronic acid synthesis as an exit for accu-
mulated glucose metabolites); (b) possible causal relationships (see Chap.   11     for 
inference of reasons for increased cholesterol metabolisms in metastatic cancers 
 versus  matching primary cancers); (c) possible enzyme-encoding genes to fi ll gaps 
in metabolic pathways (see Chap.   6     for prediction of genes with specifi c enzymatic 
functions); and (d) inference of mechanistic models involving multiple genes (see 
for example Chap.   10    ). It is noteworthy that a recent study has demonstrated that 
one can infer the proteome from transcriptomic data (Evans et al.  2012 ). 

 Numerous analysis tools of transcriptomic data have been published and 
deployed on the Internet, some of which may prove to be useful for information 
derivation in cancer studies. These tools range from: (1) identifi cation of differen-
tially expressed genes in cancer  versus  matching control tissues such as edgeR 
(Robinson et al.  2010 ) and baySeq (Hardcastle and Kelly  2010 ); (2) identifi cation 
of co-expressed genes or genes with correlated expression patterns such as WGCNA 
(Langfelder and Horvath  2008 ) and GeneCAT (Mutwil et al.  2008 ); (3) transcriptome- 
based protein identifi cation (Evans et al.  2012 ); (4) inference of splicing variants 
from RNA-seq data such as CUFFLINK (Roberts et al.  2011 ); (5) inference of path-
ways enriched with up- or down-regulated genes such as DAVID; (6) elucidation of 
human signaling networks from gene-expression data (Brandenberger et al.  2004 ); 

   Table 13.10    Tools for cancer epigenome analyses   

 Tool  Content  URL 

 CHARM  An early and widely used package 
for DNA methylation analysis 

   http://www.bioconductor.org/packages/
release/bioc/html/charm.html     

 EpiExplorer  A web-based tool for identifi cation 
of comparing epigenetic markers in 
a specifi c genome to reference 
human epigenomes 

   http://epiexplorer.mpi-inf.mpg.de/     

 methylKit  An R package for DNA methylation 
analysis based on bisulfi te 
sequencing data 

   https://code.google.com/p/methylkit/     
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(7) de-convolution of gene expression data collected on tissue samples with  multiple 
cell types to contributions from individual cell types (Ahn et al.  2013 ); and (8) 
development of predictive metabolic fl uxes through integration of gene-expression 
data with fl ux balance analysis (Duarte et al.  2007 ), among numerous other tools. 
Table  13.11  lists a few of these tools.

13.3.4        Human Proteome Analysis Tools 

 Unlike cancer genomic, epigenomic, transcriptomic and metabolomic data, to the 
best of our knowledge there are currently no large-scale cancer proteomic data 
resources in the public domain. Hence the proteomic data analysis tools are also 
somewhat limited. There are a few websites that host clusters of proteomics- oriented 
analysis tools, such as those at the NCI Offi ce of Cancer Clinical Proteomics 
Research (CPTAC  2013 ).  

13.3.5     Human Metabolome Analysis Tools 

 Metabolic data are typically collected using mass spectrometry (MS) or nuclear 
magnetic resonance (NMR) techniques as discussed in Chap.   2    . They provide infor-
mation highly complementary to that of transcriptomic data, and hence can be used 
as validation information for metabolic pathways derived based on transcriptomic 
data analyses. There are a few software suites focused on metabolic data analysis on 
the Internet. For example, the website of the Metabolomics Society hosts a number 
of analysis tools, including raw metabolic data processing and normalization, chem-
ical structure identifi cation based on raw NMR or MS data, and linking identifi ed 
chemical structures to relevant biochemical processes (Metabolomics-Society 
 2014 ). The Human Metabolite Database (HMDB) hosts not only a large collection 
of metabolite data (see Table  13.7 ), but also a variety of tools in support of search 
and analysis of the underlying data (Wishart et al.  2007 ). In addition, an associated 
website at the Metabolomics Innovation Center provides a large collection of 

   Table 13.11    Tools for transcriptomic data analyses   

 Tool  Content  URL 

 edgeR  An tool for detection of 
differentially expressed genes 

   http://www.genomine.org/edge/     

 CUFFLINK  A tool for transcript assembly and 
identifi cation of splicing variants 

   http://cuffl inks.cbcb.umd.edu/index.html     

 DAVID  A tool for pathways enriched with 
differentially expressed genes 
(or any specifi ed set of genes) 

   http://david.abcc.ncifcrf.gov/     
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metabolic data analysis tools (The-Metabolomics-Innovation-Centre  2014 ). The 
Nutrigenomics Organization website also hosts a collection of metabolic data anal-
ysis and metabolic network modeling tools (The-Nutrigenomics-Organization 
 2008 ). These tools may prove to be useful to cancer metabolomic data analysis and 
mapping them onto metabolic networks (Table  13.12 ).

13.3.6        Pathway Mapping and Reconstruction Tools 

 Various tools are currently available for pathway model construction, analysis and 
comparison on the Internet. Table  13.13  provides a few such tools.

   Table 13.12    Tools for metabolome analyses   

 Tool  Content  URL 

 Metabolomics 
Society website 

 A suite of tools for 
metabolomics data 
processing, 
normalization, analysis 
and structural 
identifi cation 

   http://www.metabolomicssociety.org/softwar     

 The metabolomics 
innovation center 

 A collection of tools 
more focused on 
metabolic data analysis 

   http://www.metabolomicscentre.ca/software     

 NuGo  A set of tools including 
both metabolic data 
analysis and mapping to 
metabolic networks 

   http://www.nugo.org/
metabolomics/34821/7/0/30     

   Table 13.13    Tools for biological pathway prediction and mapping   

 Tool  Content  URL 

 Pathway tools  The website provides a wide ranges 
of pathway-related tools, ranging 
from pathway construction, editing, 
prediction and fl ux analysis 

   http://bioinformatics.ai.sri.com/ptools/     

 PathoLogic 
pathway 
prediction 

 The toolkit supports automated 
prediction of metabolic pathways 
supported by BioCyc database 

   http://g6g-softwaredirectory.com/bio/
cross-omics/pathway-dbs-kbs/20235S
RIPathoLogicPathwPredict.php     

 BioCyc and 
pathway tools 

 BioCyc database provides a list of 
reconstruction and analysis tools of 
metabolic pathways 

   http://biocyc.org/publications.shtml     
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13.3.7        Statistical Analysis Tools 

 In addition to the above data type-specifi c tools, there is a large collection of 
 statistical analysis tools on the Internet, which have been widely used for analyses 
of different  omic  data types. The following sites provide a number of such tools. 
Bioconductor is a community-wide effort for developing and deploying open source 
bioinformatics software packages. All the deployed tools are written in the R statis-
tical programming language. Currently the website has about 750 software tools, 
covering a wide range of analysis and inference capabilities (Gentleman et al.  2004 ). 
The Galaxy project is another website that hosts a large collection of genomic data 
analysis tools (Goecks et al.  2010 ). The popular Gene Ontology website also hosts 
a wide range of analysis tools (Gene-Ontology-Tools  2013 ).  

13.3.8     Visualization Tools 

 Visualization tools may prove to be highly useful when analyzing complex biologi-
cal data and inferring biological relationships among biomolecules or pathways. 
A number of visualization tools have been developed in support of such needs and 
made publicly available. Among these tools are CytoScape for visualizing molecu-
lar interaction networks (Shannon et al.  2003 ), PathView for biological data integra-
tion and visualization (Luo and Brouwer  2013 ) and iPATH for visualization, analysis 
and customization of pathway models (Yamada et al.  2011 ).   

13.4     Concluding Remarks 

 This is an exciting time to study the extraordinarily complex problems in cancer 
biology, specifi cally those dealing with the key drivers and facilitators at different 
developmental stages such as cancer initiation, progression, metastasis and post- 
metastasis development in their full complexity. A tremendous amount of cancer 
 omic  data has been generated and continues to be produced; fortunately, these data 
are being made publicly available. Without question, a substantial amount of infor-
mation can be derived by analyzing and mining these data, particularly after one has 
learned the types of questions that cancer  omic  data analyses can help to address. 
It is the authors’ hope and trust that we have provided our readers with a general 
understanding of modern cancer biology and suffi cient knowledge of the types of 
questions one can ask and expect to obtain useful information through  omic  data 
analyses. The examples given in Sect.  13.1  represent only a small set of example 
questions that one can address and possibly solve. Using the knowledge gained 
herein as a starting point, one can examine many questions about cancer, which of 
course have to be guided by state-of-the-art reviews and original papers concerning 
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individual topics that the readers will need to review before delving deeply into a 
specifi c problem. The data resources and tools listed in this chapter represent but a 
small set of all the available tools and databases of which we are aware. A recom-
mended reference to fi nd a more comprehensive list of the relevant databases and 
tools is the special database and server issues published annually by Nucleic Acids 
Research. There are undoubtedly many good problems for our readers to think 
about. A recommended start would be the list of the problems used by the authors 
as examples in Sect.  13.1 . If the efforts expended in writing this book inspires com-
putational scientists to tackle some of the challenging cancer problems and make 
progress that contributes not only to basic cancer biology, but importantly to early 
detection, more successful treatment and better prevention of cancer, the authors 
will feel gratifi ed that their time has been well spent.     
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    Chapter 14   
 Understanding Cancer as an Evolving 
Complex System: Our Perspective 

                       “… antagonistic coevolution is a cause of rapid and divergent evolution and likely to 
be a major driver of evolutionary changes within species”  (Paterson et al.  2010 ). 

   “Now, here, you see, it takes all the running you can do, to keep in the same 
place”, as the Queen told Alice in Lewis Carrol’s novel,  Through the Looking-Glass, 
and What Alice Found There  (1871). Evolutionary biologist Leigh Van Valen con-
sidered that this statement captured the essence of his proposal that inter-species 
interactions are a key driving force of evolution and named it the “Red Queen 
Hypothesis” in his 1973 publication (Valen  1973 ). Paterson and colleagues recently 
provided an elegant demonstration that microbial evolution follows this Hypothesis, 
by showing how the dynamic equilibrium between two co-existing populations, one 
bacterial and one viral parasite, is regained through rapid evolution by one party 
once the other is genetically given a new competitive edge (Paterson et al.  2010 ). 
They went further to propose inter-species interactions as a  major  driving force of 
evolution. This hypothesis has been used as a guiding principle when writing this 
monograph. 

14.1     What Is Cancer? 

    This is a topic that has been studied in many millions of scientifi c articles according 
to PubMed. Yet, cancer researchers and clinicians are still searching for an answer 
that can guide us to the root(s) of the problem, and hence can help to develop more 
effective treatment of this often deadly illness. Throughout this book,  cancer is 
 considered as a process of cellular survival in an increasingly more stressful and 
more demanding microenvironment, which co-evolves with the diseased cell 
 population; and cell proliferation is a cancer’s way of survival  in the sense that when 
proliferation stops, the cells die. 

 Clearly, different cancers have selected distinct survival routes, hence giving rise 
to diverse phenotypes as discussed throughout this book, which is probably due to 
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the variations across a variety of cancer-inducing microenvironments. With that 
said, the commonalities shared by different cancers, including the cancer hallmarks 
(Hanahan and Weinberg  2011 ), seem to be substantially more signifi cant than their 
exhibited phenotypic diversities. This strongly suggests that different cancers have 
to overcome similar stresses and may have utilized the same or similar survival 
“guides”, which are probably provided by the same or related cellular programs 
originally used for other purposes, rather than created opportunistically through 
blind selection of malfunctions or mutations in an arbitrary fashion as some may 
believe. Furthermore, we posit, based on the material presented throughout this 
book that proliferation may not be just  a  pathway to survival, but instead it may 
represent the most feasible way for survival when considering the types of stressors 
that cancers must overcome or escape from in a sustained manner.  

14.2     What Stresses Must Cancer Cells Overcome? 

 The current knowledge suggests that neoplastic cells have different types of life-or- 
death stresses at different developmental stages. As discussed in Chap.   5    , the initial 
stress is dominantly induced by chronic hypoxia and/or ROS accumulation, possi-
bly as a result of chronic infl ammation or inheritable genetic mutations, which leads 
to the continuous accumulation of glucose metabolites. Removal of these metabo-
lites becomes a stress that the host cells must overcome, or die. We believe that  this 
is the cancer-defi ning stress  from the onset as cell division represents the most fea-
sible way for the cells to alleviate the stress, i.e., by converting the accumulated 
glucose metabolites into DNA and lipids of the new daughter cells as discussed in 
Chap.   6    . Clearly this offers only a temporary solution to the problem as the hypoxic 
environment will lead to glucose-metabolite accumulation again, and hence a 
vicious cycle. 

 It has been well established that as a cancer progresses, the ROS level, as well as 
the associated oxidative stress, continues to increase as discussed in Chap.   9    , and 
severe ROS levels will lead to cell death (Dröge  2002 ). The increased ROS level 
may be the result of at least two key activities: cancer metabolism (possibly coupled 
with malfunctioning mitochondria) and repeated tumor angiogenesis, hence 
repeated re-oxygenation. This, we believe, is one of the main stresses that accompa-
nies cancer development throughout, i.e., beginning with cell proliferation and end-
ing with metastasis. It should be emphasized that the impact of ROS level changes 
can be signifi cant as they can fundamentally alter the cellular redox biochemistry, 
arguably one of the most essential chemical aspects in a cell. 

 Another key stress during the development of cancer, once the glycolytic fer-
mentation pathway becomes heavily used, is mediated by lactic acidosis, which 
kills normal cells and enables encroachment by cancer cells as discussed in 
Chap.   8    . Cancer cells have adapted to this stress by activating multiple mechanisms 
encoded in human cells to neutralize the acid. 
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 While the initiation of a cancer is closely associated with the lack of O 2 , the main 
challenge among other stresses that a metastatic cancer must overcome is the 
increased O 2  level when moving from a hypoxic environment, where the migrating 
cells have been residing for years, to one that is rich in blood and hence an O 2 -rich 
environment as discussed in Chap.   11    . The increased O 2  level in metastatic sites will 
lead to various types of damage to the metastatic cancer cells that are not equipped 
to handle this level of O 2 , hence casting a severe stress on such cells. 

 Avoiding the activation of apoptosis is a constant battle and thus another stressor 
for any cancer since its cells tend to accumulate a variety of abnormalities. In fact, 
these aberrations would trigger apoptosis in normal cells as discussed in Chap.   7    . 

 Immune response-induced stresses are another class of stressors that the neoplas-
tic cell must overcome. Interestingly, as a cancer evolves, it seems capable of con-
verting the less sophisticated innate immune cells such as macrophages to form 
conjugative relationships with cancer cells, while adapting themselves to weaken 
the attacks from the adaptive immune cells such as T-cells. 

 There are of course other stresses associated with cancer development, including 
DNA damage and nutrient depletion-induced stresses. These, however, we believe 
are secondary compared to the above types of stress.  

14.3     Stresses  Versus  Proliferation 

 Knowing the major stress types a cancer must overcome and the common character-
istics shared by different cancers, one is tempted to speculate that  cell division must 
represent a most effective pathway for the stressed cells to reduce their stress levels, 
and hence has been selected as a common method for survival by different cancers . 
Specifi cally, cell division represents a feasible and direct way for chronic hypoxic 
cells to rid themselves of the accumulated products resulting from the reprogrammed 
energy metabolism as discussed in Chap.   5    , because of: (1) the natural link between 
the accumulated glucose metabolites (specifi cally G6P) and hyaluronic acid synthe-
sis under hypoxic conditions, and (2) the link between hyaluronic acid fragments 
and tissue-repair signaling, hence cell proliferation and survival. 

 Interestingly, cell proliferation also represents a way for neoplastic cells to over-
come the lactic acidosis typically associated with a cancer environment since the 
encoded mechanisms for neutralizing the excess protons are available only to pro-
liferating cells, but not to normal non-dividing cells. Currently, there are no data that 
can be used to assess the relative level of contribution between acidosis-induced 
stresses  versus  other stressors that have the potential to drive the observed cell pro-
liferation, knowing that this may vary across different cancer types. 

 As mentioned above, the cellular ROS level will continually increase as a cancer 
progresses; moreover, it has been established that ROS can induce cell proliferation 
(Sauer et al.  2001 ; Gough and Cotter  2011 ; Chiu and Dawes  2012 ). Hence, we 
speculate that cell division may represent a way to reduce the ROS level since 
each doubling will divide the ROS population in the mother cell between the two 
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daughter cells in some fashion. To the best of our knowledge, no studies have 
reported how the ROS molecules are divided between the two daughter cells, but it 
is natural to assume that some type of division of the ROS population will take place 
between the two new cells, thus resulting in a reduced ROS level in each and allevi-
ating, at least partially and temporarily, ROS-induced stress. From this, we posit 
that cell proliferation, possibly in conjunction with other conditions, provides an 
avenue to reduce the ROS-induced stress. If such an induction requires “other 
 conditions,” which are not generally available, some subpopulation may create the 
triggering conditions, consequently leading to the selection and expansion of this 
subpopulation by evolution and selection. 

 Knowing that the overall ROS level continues to increase, we further speculate 
that the rate of ROS reduction through cell division intrinsically could not maintain 
pace with the rate of ROS increase due to cancer metabolism and re-oxygenation, at 
least for some cancers. Once the ROS level exceeds a certain threshold, it will trig-
ger the synthesis of hyaluronic acid as discussed in Chap.   10    . This time, however, 
they will trigger the process of cancer metastasis. Following this argument one can 
suggest that ROS drives cell proliferation during the development of cancer and 
then drives the cancer to colonize other sites when it becomes too high. 

 While cell proliferation appears to be essential to the survival of the primary 
cancer or cancer-forming cells, it seems to be only a side-product, at least to a large 
extent, of other survival mechanisms in response to the increased O 2 -induced stress 
in metastatic cancer. As discussed in Chap.   11    , metastatic cancer does not require 
cell proliferation to overcome the increased O 2  level-induced stress. Instead, such 
cancer requires the increased cholesterol level to stay viable. However, the increased 
cholesterol level in an O 2 -rich environment gives rise to oxidized cholesterols and 
steroidogenic products, which lead to accelerated growth of cancer as a  side product 
rather than a way for stress reduction and hence survival . This may be an important 
reason why cancer drugs, designed for primary cancers, are less or not effective for 
metastatic cancers, that has led to the belief that metastatic cancer is a terminal ill-
ness. Since for primary cancer, reducing cell proliferation, as is the case with some 
of the current hormone-based drugs, means increasing stress to the cells and possi-
bilities to ultimately kill them. In contrast, cell proliferation is not a channel for 
metastatic cancer cells to reduce stress. Hence,  slowing down or stopping cell 
 proliferation in metastatic cancer will not lead to increased stress to the cells and 
therefore will not have the same effect as on primary cancers . Importantly, one 
needs to understand: although both primary cancer and metastatic cancer prolifer-
ate, they do so for different reasons. 

 This realization, along with the discussion in Chap.   11    , suggests that metastatic 
cancer may not necessarily be a terminal disease. This belief has been ingrained in 
us because of the many observations of ineffectiveness when using the same drugs 
to treat primary and metastatic cancers. The latter, however, is probably a different 
type of disease from the primary counterpart and, consequently, may require a dif-
ferent regimen of drugs for effi cacious treatment. This could be, for example, in the 
form of a reduction in the intake or  de novo  synthesis of cholesterol, since oxidized 
cholesterol serves as a main driver of metastatic cancer as outlined in Chap.   11    . 
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 We suspect that the relationships between cell proliferation and reduction in 
immune- or apoptosis-induced stresses are very different from those discussed 
above. From our current understanding, cell proliferation probably does not 
reduce stress-levels induced by immune or apoptotic attacks; instead they seem to 
be related to the maintenance of tissue homeostasis, i.e., when neoplastic cells are 
killed by immune responses or apoptosis in a cancer tissue, signals may be released 
to initiate repair of the lost tissue, hence triggering new cell generation. Overall, cell 
proliferation in this case represents a way to correct for the eliminated cells rather 
than an essential pathway to survival as in the above situations.  

14.4     Different Survival Routes by Different Cancers 

 The above discussion, while focused on general stresses for all or the majority of the 
solid-tumor cancers to overcome, does provide a useful framework for one to study 
the detailed stresses and survival pathways for individual cancer cases. This frame-
work can help in guiding the search for “rate-limiting” factors along the survival 
pathway of a cancer, hence possibly leading to more effective drugs and treatment 
plans. Specifi cally, by understanding why a specifi c cancer type tends to utilize a 
certain survival pathway (in a more general sense than the survival pathways 
 discussed in Chap.   7    ), one can possibly derive the  main  stress(es) that the underly-
ing cells must overcome, based on the same type of statistical association analysis 
used throughout this book. For example, one can ask:  What stresses drive melanoma 
to grow so much faster than the vast majority of the other cancer types, when the 
cancer switches from the radial growth phase to the vertical growth phase ? 

 This problem can potentially be addressed through a comparison of the various 
micro-environmental factors such as the oxygen level, the ROS level, the acidity 
level and immune responses in melanoma samples in the vertical growth phase 
 versus  the earlier stages. This approach can also be readily extended with samples 
of other cancer types in an effort to identify those stressors, or combinations 
thereof, that are particularly high. A comparison of the results can provide a frame-
work enabling a focus on those frequently occurring stressors. Analyses can then 
be conducted to determine statistical associations between the identifi ed stressors 
and possible facilitators for the high proliferation rate, such as growth factor recep-
tors, nuclear receptors or possibly other functional genes that can be linked to both 
the stressors and cell proliferation, possibly via some intermediate steps. Such 
association analyses between specifi c stressors and key survival steps, when 
applied in an iterative manner, have the potential to lead to the identifi cation of a 
sequence of short-range connections, which together link the stressors to the 
observed proliferation. 

 When studying cancer as a process of survival, two key observations were made 
that may be useful for future studies: (1) cancer cells tend to use mechanisms 
encoded in human cells to overcome or escape from encountered stressors, rather 
than inventing new ones through a random selection of genomic mutations or other 
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malfunctions; and (2) the selected responses to stressors tend to be relatively large 
cellular programs but not a single reaction or a small number of reactions, hence 
providing a substantive pathway, possibly with several sites for intervention. 

 For (1), the evolving cells basically create a micro-environmental condition that 
can trigger the proper response system to help overcome the stress. This pattern has 
been observed repeatedly when studying various topics throughout this book. One 
good example is that neoplastic cells overcome lactic acidosis through prolifera-
tion. This is important as acidosis will trigger apoptosis in a cell unless the cell is 
in a proliferative state. Only then can such cells activate encoded mechanisms for 
neutralizing acidity as discussed in Chap.   8    . Clearly, this is the result of natural 
section of the subpopulation of the cells that are able to trigger the proper responses. 
When a cancer cannot create a triggering condition for the right response(s) for 
self- preservation, the stress level will increase, ultimately leading to the activation 
of a general stress-response system at the epigenomic level as discussed in Chap.   9    . 
All possible responses encoded in the genome will be systematically attempted, 
and if one of the responses is appropriate, as judged by survival, the subpopulation 
that used this response will survive and future generations of the cell will have the 
effective stress response encoded in their epigenomes. Clearly adaption through 
utilization of such general stress-response mechanisms also makes the cancer more 
malignant. 

 For (2), knowing that the survival pathway tends to be well coordinated among 
its individual steps, with substantial commonalities shared by different samples of 
the same cancer type, it is only reasonable to speculate that each survival route is a 
well-designed pathway, already encoded in the human genome. The utilization of 
the tissue repair system by neoplastic cells for survival is a good example. The rich-
ness of the hyaluronic acid-based signaling system can provide different survival 
routes for different stress conditions, hence giving rise to different phenotypes. An 
alternative explanation could be that cancer cells select random mutations or bio-
molecules in abnormal functional states (e.g., proteins with accidentally oxidized 
residues by ROS) in a blind (unguided) fashion and converge on a combination of 
mutations or abnormally functioning molecules that ultimately leads to survival. 
The chance for this to happen is extremely small, which is clearly not in agreement 
with the observed commonalities shared by different cancer cases of the same type 
in different patients, as well as the frequencies of cancer occurrence in the world. 

 Within this framework, the key roles played by genomic mutations in sporadic 
cancers, as we posit, are facilitators to make the survival pathways proceed more 
effi ciently and sustainably, which are defi ned by programs such as the tissue repair 
system. That is, the main role(s) of genetic mutations may be to substitute for on- 
going cellular functions that are either constitutively activated or repressed through 
regulation or accidental modifi cations on specifi c molecules, hence making the 
execution of the same functions more effi cient and more sustainable. An alternative 
is to create a new functionality through selection of a genomic mutation, which will 
be easily detected by the layers of the surveillance systems and the affected cells 
will be destroyed. This is particularly important in the early stage of cancer develop-
ment when survival pathways are not activated (e.g., by the tissue repair system), 

14 Understanding Cancer as an Evolving Complex System: Our Perspective

http://dx.doi.org/10.1007/978-1-4939-1381-7_8
http://dx.doi.org/10.1007/978-1-4939-1381-7_9


359

the apoptosis system is still intact and the immune system is not impaired. Mutations 
in familial cancers provide a good example here as they tend to change the cellular 
conditions in a slow and subtle manner, such as slowly and gradually increasing the 
ROS level over an extended period of time as discussed in Chap.   5    . Hence, we posit 
that mutations in sporadic cancers are generally manifested as facilitators. In con-
trast, germline mutations may dominantly act as drivers in familial cancers. They, 
however, would not function in the way of “driver mutations” as defi ned in the 
 current literature, since they probably all lead to gradual ROS accumulation and 
possibly hypoxia, mimicking the initial conditions that drive sporadic cancers.  

14.5     Tissue Versus Cell Level Problem? 

 Knowing that cell proliferation is essential to the survival of the diseased cells, one 
can probably surmise that the essence of a cancer is predominantly a tissue rather 
than a cell level problem. This is because the ability for a cell to divide is domi-
nantly determined at the tissue level rather than at the cell level, at least for solid- 
tumor cancers, e.g.,  an activated oncogene could not start cell proliferation in a 
tissue environment , a principle that has been discussed frequently in this book.  

14.6     Holistic Versus Reductionist Approaches 

 Studies of cancer at the molecular and cellular level, particularly using cell culture 
or immune-defi cient animal models, have generated enormous amounts of data and 
hypotheses as discussed throughout this book. At the same time, they may have also 
generated some misconceptions about the complexity of the disease as a result of 
tackling this intrinsically diffi cult-to-decompose problem using approaches guided 
by reductionist thinking. For example, the extracellular matrix is an integral part of 
the cancer problem. To study cancer cells independent of their co-evolving 
 extracellular matrix is somewhat analogous to studying the evolution of  Pseudomonas 
fl uorescens  without considering its antagonist co-adapting viral parasite, phage Φ2 
(Paterson et al.  2010 ), as discussed in Chap.   5    . The same can be said about the 
immune system. 

 While cell-based studies on one hand simplify a complex cancer problem, they 
may concurrently introduce even greater complexity as cancer is an intricately cou-
pled system among its components. For example, the result of activating gene X 
may be highly context-dependent, but this context-dependence information may not 
be clear to the experimenter based on the available knowledge of specifi c cell lines. 
For this reason, some of the context information may be unknowingly ignored. 
When assessing the impact of the activation of gene X in two distinct cell lines 
(originating from different tissue types) in the same culture medium, separately, 
one may obtain confl icting results and incorrectly conclude that the response 
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 mechanism to the activation of the gene is different between the two cell types. Yet, 
the reality may be that the two cell lines have essentially the same response system 
but require different cofactors that are constitutively present in their original tissue 
environments, which are unknowingly lacking in the cell culture experiment. We 
suspect that the confl icting results observed on the functional roles of the human 
SPARC gene across different studies as discussed in Chap.   8     may fall into this 
category. 

 Figure  14.1  illustrates the idea using a simple mathematics problem where the 
relationship between the white and the black objects is very clear in two dimen-
sional space, but when examining it in a reduced space, such as in one dimensional 
space (e.g., checking the density distributions of the white and black pixels), the 
relationship becomes more complex. This is essentially the approach that some cell- 
based studies have taken by examining the problem in a simplifi ed setting (i.e., one 
dimensional) where the picture is quite clear in its full complexity (i.e., two dimen-
sional space). One can imagine simple images like this in which the relationships 
could become arbitrarily more complex depending on how the two dimensional 
problem is projected to the one dimensional space. Therefore, studying a problem 
in an artifi cially designed environment (equivalent to dimension reduction in the 
example provided) could potentially make problems substantially more complex 
than they are.

  Fig. 14.1    An object 
consisting of two 
components, white and black 
in the top part of the fi gure, 
along with the density 
distributions of  white points  
and  black points  in the lower 
half of the fi gure       
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   The main point here is that cancer may potentially not be as complex as believed. 
The “complexity” may partially come from years of experience of tackling this 
intrinsically indecomposable problem, at least among key ingredients such as cells 
and their ECM, using highly reductionist approaches. 

 The above discussion, by no means, suggests that cancer is a simple problem. 
We hope that it will serve a purpose to encourage  omic  data analysts and computa-
tional biologists not to be intimidated by the fact that after decades of intensive 
studies by tens of thousands of cancer biologists worldwide, we are still searching 
for the root causes of cancer and the associated mechanisms. Our purpose is to 
attract computational biologists and bioinformaticians to undertake challenging 
cancer-related problems, for example those presented in this book, in the literature 
and personally generated, and take a more holistic approach to mine the available 
data and ask deep, penetrating questions. Of course, the basis for doing this is hav-
ing a general knowledge of the biology of cancer as well as a state-of-the-art under-
standing about the specifi c problem one aims to investigate. It is hoped that the 
information presented herein may serve as a starting point for computational biolo-
gists to enter into this extremely important, interesting and challenging fi eld of 
cancer research. The timing is perfect since a considerable amount of information 
has been generated on cancer biology over the past 100 years, and an enormous 
amount of  omic  data have been made publicly available, with more to come on a 
frequent basis. This wealth of data enables one to address fundamentally important 
cancer-biology questions. We whole-heartedly believe that computation-based 
holistic approaches, which complement the current thinking and tactics, are 
urgently needed in the fi eld in order to make the next quantum leap in our under-
standing of cancer. 

 While a considerable amount of knowledge has been gained concerning can-
cer in the past 100 years, the reality is that our current understanding is somewhat 
fragmented. It, unfortunately, has not yet reached a level with a large framework 
or theory through which all the available information can be integrated to study 
this disease in its full complexity as an evolving tissue-level system. For this, our 
critical analysis must encompasses all of the indispensable players, namely dis-
eased cells, stromal cells, immune cells and the extracellular matrices. The 
emerging knowledge about hyaluronic acid and fragments serving as a key sig-
naling system used by cancer for its survival, as well as the epigenome as a gen-
eral stress-response ( versus  condition-specifi c stress response) mechanism, may 
provide a framework for connecting many of what now appear to be disjointed 
facts. The information derivable from the large-scale  omic  data has the potential 
to provide the local connectivity information when assembling all the facts, like 
jigsaw puzzle pieces (Fig.  14.2 ), big and small, into one integrated system. This 
will allow cancer researchers and clinicians to identify the “weakest links” within 
a cancer system and guide the searches for effective drugs to treat individual 
cancer cases.
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