Ying Xu - Juan Cui
David Puett

Ifancer
Bioinformatics

2 Springer



Cancer Bioinformatics






Ying Xu ¢ Juan Cui * David Puett

Cancer Bioinformatics

@ Springer



Ying Xu Juan Cui

Department of Biochemistry Department of Computer Science
and Molecular Biology and Engineering

University of Georgia University of Nebraska

Athens, GA, USA Lincoln, NE, USA

David Puett

Department of Biochemistry
and Molecular Biology

University of Georgia
Athens, GA, USA

ISBN 978-1-4939-1380-0 ISBN 978-1-4939-1381-7 (eBook)
DOI 10.1007/978-1-4939-1381-7
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014945124

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

Preface

In his superb exposition, The Emperor of All Maladies: A Biography of Cancer,
Mukherjee attributes the earliest documentation of cancer to the brilliant Egyptian,
Imhotep, who some 4,500 years ago clearly described a case of breast cancer
(Mukherjee 2010). Roughly two millennia later (ca. 400 BC), the Greek physician
Hippocrates named the disease karkinos (the Greek word for crab), which has now
come down to us as cancer. Some five to six centuries later while practicing in Rome
(ca. 130-200 AD), the Greek physician, Claudius Galen, who was influenced by the
four humors constituting the human body as proposed by the Hippocratic school,
i.e., blood, phlegm, yellow bile, and black bile, attributed cancer to an excess of
black bile. It took centuries before Vesalius (sixteenth century) and Baillie (eigh-
teenth century) put the black bile hypothesis to rest, thus indirectly encouraging
surgeons to begin resection of solid tumors. (Surgical procedures had been done
earlier by some fearless surgeons, but few patients survived the ordeal and infection
that likely followed.) The later introduction of anesthesia and antibiotics in the nine-
teenth to twentieth centuries, as well as more sterile operating environments, thrust
surgery (and later radiation therapy) as a major treatment of this disease, an approach
that is still used whenever possible. In the middle of the twentieth century and con-
tinuing today, chemotherapy and hormonal therapy emerged as a complement to,
and sometimes instead of, surgery and radiation therapy to treat cancer.

A number of theories have been proposed regarding those factors that may drive
and facilitate a cancer to initiate, develop, and metastasize, and these have guided
cancer studies in the past few decades. An insightful speculation was made by Otto
Warburg following his seminal work in the 1920s: “Cancer ... has countless second-
ary causes. But ... there is only one prime cause, [which] is the replacement of res-
piration of oxygen in normal body cells by a fermentation of sugar” (Warburg 1969).

The first discovery of oncogenes and tumor suppressor genes about 40 years ago
marked another major milestone in our understanding of cancer development,
which has profoundly influenced research in this area during the past three decades.
It has become a widely held belief that cancer is ultimately a disease caused by
genomic mutations. Aided by the rapidly increasing pool of a variety of omic data
such as genomic, transcriptomic, epigenomic, metabolomic, glycomic, lipidomic,

v



vi Preface

and pharmacogenomic data collected on both cell lines and cancer tissues, spectacu-
lar progress has been made in the past two decades in our understanding of cancer,
particularly in terms of how the microenvironment and the immune system contrib-
ute to the whole process of neoplasm formation and survival.

In spite of the considerable progress made, however, a number of salient ques-
tions remain to be answered. The authors posit that a considerable amount of infor-
mation needed to address and answer many of these questions already exists in the
available omic databases, and much of these data are substantially undermined and
underutilized. Among the many possible reasons, a key one, we believe, is that com-
putational cancer biologists, as a community, have yet to sufficiently develop their
independent thinking about the overall biology of cancer. The thinking should be
quite different from the reductionist approaches that have been widely used in
experimental studies of cancer in the past century and should enable them to address
fundamental questions about cancer in a holistic manner as an evolving system.
Many fundamental issues concerning cancer are intrinsically holistic by nature.
Thus, when examining cancer as an evolutionary problem, its microenvironment,
including the extracellular matrix and the immune and other stromal cells, must be
considered as an integral part of the system. This strongly suggests that cell culture-
based or animal model-based cancer studies must be complemented by cancer
tissue-based studies in order to gain a full understanding of cancer. The omic data
collected on cancer tissue samples, covering different developmental stages, is
likely to contain the information on the interplay between cancer cells and their
environment, and particularly how such interactions may drive the evolution in spe-
cific directions. Hence, we posit that mining such omic data for information discov-
ery will, in the future, represent an essential component of cancer research,
complementary to the current more reductionist-oriented approaches.

The goals of this book are to provide an overview of cancer biology from an
informatics perspective and to demonstrate how omic data can be mined to generate
new insights and a more comprehensive understanding that is needed to address a
wide range of fundamental cancer biology questions. Throughout this book, the
authors have attempted to establish the following key points: (1) cancer is a process
of cell survival in an increasingly more stressful and difficult microenvironment,
which co-evolves with the diseased cells; (2) cell proliferation is a cancer’s way to
reduce the stresses imposed on them for survival; (3) the challenges that the evolv-
ing cells must overcome are not only at the cell level, but more importantly at the
tissue level, hence making cancer dominantly a tissue rather than a cell-only prob-
lem; (4) the survival pathway for each cancer is not created ‘on the fly’ through its
selection of molecular malfunctions or genetic mutations, instead it is largely deter-
mined by substantial cellular programs encoded in the human genome, which origi-
nally evolved for other purposes; (5) subpopulations of cancer cells have managed
to create the conditions needed to trigger such cellular program-guided survival
pathways; (6) as the stresses become increasingly more challenging, cancer cells
utilize increasingly less reversible stress-responses for their survival, thus making
the disease progressively more malignant; (7) genomic mutations in sporadic
cancers probably serve mainly as permanent replacements for ongoing functions to
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provide efficiency and sustainability for survival; in contrast, mutations in heredi-
tary cancers dominantly play driver roles of cancer initiation, but in a sense different
from driver mutations as defined in the current literature; (8) there is a fundamental
difference between cell proliferation in primary versus metastatic cancers as the
former is essential in overcoming the encountered stress(es) while the latter is sim-
ply a side product of a stress-response process, suggesting that their treatment regi-
ments should be different; and (9) cancer survives and proliferates by continually
evolving with natural selection having a major part in deciding which cells remain
and which must perish.

For each chapter, the authors present the main topic by placing cancer in an evo-
lutionary context, for example by raising and addressing questions such as: What
pressures are the evolving neoplastic cells currently under, and How have the cells
responded to adapt to the pressures? In addition, the authors also demonstrate
through examples how to derive the desired information from the available omic
data by asking questions and then addressing them using a hypothesis-driven data
mining approach. An example could be as follows: What is the difference between
the main driving forces of primary versus metastatic cancer? This can be addressed
by identifying genes that are up-regulated consistently across all metastatic cancers
versus their matching primary cancer tissues, and then delineating the particular
pathways that are enriched by these genes.

This 14-chapter book consists of the following clusters of chapters. Chapters 1
and 2 introduce the basic biology and biochemistry of cancer and the available
cancer omic data, as well as the type of information derivable from such data.
Chapter 3 serves as an introduction to the use of omic data to address cancer-
related problems, written for someone with only a limited knowledge of cancer;
and Chap. 12 serves a similar purpose but for someone who has a general under-
standing about cancer at the molecular and cellular levels, e.g., having read a sub-
stantial portion of this book. Chapter 4 is a transition chapter, serving as an
introduction to both information that can be derived from cancer genomes and
elucidation of cancer mechanisms using such information. Chapters 5 through 9
represent the core of the book: elucidation of novel information and how to gain a
new and better understanding about the fundamental biology of primary cancer, in
which cancer is treated as an evolving system driven by specific pressures and
assisted by certain facilitators at different developmental stages. A common theme
is used when tackling a series of cancer-related key issues across these five chap-
ters: What stresses do the cancer cells need to overcome at a specific stage, and
how do such cells utilize encoded stress-response systems to ensure their survival?
Chapters 10 and 11 extend this discussion to metastatic cancer, which, somewhat
surprisingly, represents a different type of disease from primary cancers with fun-
damentally different drivers. Chapter 13 provides some general information to
those new to the field about how to conduct meaningful data mining-based cancer
research. Chapter 14 presents our perspectives about cancer research using a more
holistic approach than is generally done.

The authors hope that this book will help in bridging the gap between experimental
cancer biologists and computational biologists in their joint efforts to uncover the
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enormous wealth of information hidden in the cancer omic data. Success in this
endeavor will lead to a better understanding of cancer, as well as assist computa-
tional biologists to develop independent thinking when tackling these complex
problems. This approach will probably be less detail-oriented but more holistic and
will likely span the entire range of cancer evolution, thus making it different from
but complementary to those of their experimental peers. It is the authors’ contention
that more qualitative and quantitative utilization of the omic data will improve our
overall understanding of cancer biology, hence leading to improved capabilities in
early detection, development of more effective cancer treatments, and improvement
in the quality of the patient lives.

The authors welcome any feedback from the reader regarding errors that need
correcting and areas where the book could be improved. Such information will be
highly valuable, particularly if there is a decision to write a future edition of the book.

Athens, GA, USA Ying Xu
Lincoln, NE, USA Juan Cui
Chapel Hill, NC, USA David Puett
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Chapter 1
Basic Cancer Biology

1.1 Overview of Cancer

Cancer has been recognized since early times, but treatment protocols and
medications have lagged, by millennia, the initial observations of the disease. The
tragic cases of childhood and teenage cancer notwithstanding, most cancers develop
in the aging population, consistent with the nature of metabolic, genetic and other
alterations discussed below and in various chapters. Epidemiological data show
that, behind heart disease, cancer is the second leading cause of death worldwide,
and many expect that in time cancer will overtake heart disease as the leading cause
of mortality. Some 150 years ago it was demonstrated that cancer is composed of
cells with morphology differing from that of normal cells. With information becom-
ing available from numerous areas in biology and medicine, and capitalizing on
major advances in technology, great strides were made in the twentieth century in
unraveling many of the complexities of cancer, work that is continuing at an accel-
erating pace in the twenty-first century. It is now recognized that by far the majority
of all cancers arises from environmental factors, metabolic disturbances, somatic
mutations, and other pathophysiological processes (discussed throughout the book),
while the remaining ones are attributable to germline mutations and are thus inherit-
able (familial).

In the early development of vertebrates, the embryonic stem cells undergo dif-
ferentiation into the three primary cell layers, ectoderm, endoderm, and mesoderm.
These, in turn, differentiate to give the 200-plus cell types of the human body com-
prising the myriad organs and supporting structures. The tissues can be categorized
into four main groups, the epithelium, mesenchyme, nervous system and reticuloen-
dothelial system, which in time can become subject to the development of cancer. It
is also believed that normal cells throughout the body are continually in the process
of undergoing changes that can result in cancer; fortunately, these events are spread
over many years. From this it follows that, while one may die from cancer, individu-
als will often die from other causes before the cancer develops sufficiently to cause
death. Clearly, the changes alluded to, as well as their rate of formation, depend on
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many variables such as genetic background, diet, environmental factors, etc. With
tobacco smoke as the best documented example, one can convincingly argue for the
importance of one’s lifestyle in enhancing or diminishing the possible development
of cancer.

Cancer has been considered by many investigators as a genetic disease, generally
involving sequential random mutations and epigenetic changes. There is, however,
now a school of thought being actively pursued by many scientists that the origins
of cancer lie in cellular and micro-environmental perturbations that, in turn, can
lead to genetic alterations or selection of such alterations. Indeed, cancer is now
recognized as a very heterogeneous disease, even within the same type of cancer,
and it may emerge that its origins can be attributable to a number of causes.

As discussed below and throughout the book, there are many metabolic/cellular
micro-environmental disturbances and combinations of genomic alterations that
can lead to cell transformation. Once established, or when being established, many
other mutations accumulate in the tumor cells, each giving rise to clonal expansion.
Regardless of the initiating cause(s) of cancer, there will be in time genetic altera-
tions, e.g., mutations, amplifications, deletions and translocations, that facilitate
growth, inhibit apoptosis (programmed cell death) and escape from immune
destruction. The cells harboring metabolic alterations, micro-environmental changes
and mutations that provide a growth advantage and best meet the other requirements
for continued tumor survival will prevail, and the processes of natural selection and
survival of the fittest and most adaptable become crucial for these cells. Thus, while
Darwinian principles were originally proposed to explain the evolution of organ-
isms, a similar rationale appears to underlie tumor progression. These events may
lead to cellular heterogeneity, particularly since new mutations can arise due to loss-
of-function of negative cell cycle regulators such as P53 and perhaps even by
gain-of-function of positive cell cycle regulators such as RAS, leading to persistent
cell division and a statistical chance of errors in replication.

The following quotation (Eifert and Powers 2012) nicely summarizes the current
thinking on the genetic component and alludes to the challenges ahead. “Diversity
and complexity are hallmarks of cancer genomes. Even cancers that arise from the
same cell type can harbor a range of different genetic alterations that facilitate
their unrestrained expansion and eventual metastasis. As a result, the behaviour of
individual tumours—how they progress and eventually respond to therapy—can be
varied and difficult to predict.” Cancer development, survival and growth are, how-
ever, also heavily influenced, if not caused, by many of the aberrations in cancer
metabolism and the microenvironment in which the tumor is located. Indeed, as
alluded to above and discussed later in this book, some of these non-genetic altera-
tions may become driving forces for the possible formation and/or survival of can-
cer. Another quotation is germane to a more holistic perspective of cancer (Nakajima
and Van Houten 2013). “The tumor must be recognized as an evolving ecosystem,
adapting constantly to oxygen and nutrient availability”.

Large scale cancer genome sequencing is occurring at a rapid pace, and already
the data are showing the extraordinary genomic complexity of tumors. It is common
to find thousands, tens of thousands, or even hundreds of thousands of mutations
and other genetic changes in a typical epithelial tumor. A working hypothesis was
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that only a limited number of the genetic alterations are necessary to initiate and/or
propagate tumor formation in a single cell and that this genetically altered cell
undergoes clonal expansion with increasing genetic changes. The few early key
alterations are said to be “driver mutations” that confer a growth and survival advan-
tage, in effect leading to the conversion of a normal cell, or one that is on the road
to transformation from non-genetic causes, to one that is transformed and capable
of sustained growth. The multitude of additional mutations are denoted as “passenger
mutations” that are not required for tumor growth or survival. As discussed later, the
driver mutations, at least for certain cancers, may occur sequentially, but whether
there is any order to the process, whether there are many genes that can participate
and how the genetic changes relate to phenotypic changes are not known (Ashworth
et al. 2011).

The remainder of this chapter is focused on a succinct review of some of the
aspects of cancer that are deemed important in its formation and growth. These sec-
tions will set the stage for the chapters dealing with omics-based cancer studies
elsewhere in this book.

1.2 Hallmarks of Cancer

In 2000 Hanahan and Weinberg (2000) proposed six hallmarks of cancer to provide
a framework for a better understanding of the basic molecular and cellular princi-
ples responsible for the development and maintenance of neoplasia, hallmarks that
were extended in 2011 to a total of eight (Hanahan and Weinberg 2011). It is worth-
while to briefly review these hallmarks since they offer a rational understanding of
the necessary changes that are required of normal cells to make the transition to a
state of perpetual growth and survival. Suffice it to mention at this point that most
of the following alterations can be attributed to one or a combination of the follow-
ing: metabolic changes, hypoxia, extracellular matrix (ECM) alterations, epig-
enomic changes or somatic mutations, including chromosomal rearrangements, of
key players in or regulators of the growth promoting or cell cycle pathways.

1.2.1 Sustained Proliferative Signaling

Unlike normal cells that tightly regulate their cell division, transformed cells have
the ability to perpetuate growth-promoting signals and become refractory to growth-
inhibiting processes. A variety of molecular mechanisms can contribute to sustained
signaling for cell division, including the following examples: hyaluronic acid frag-
ments (see Chap. 6), a constant supply of growth-promoting signals originally
designed for tissue repair, constitutively activated (gain-of-function) growth factor
receptors, a constitutively activated component of the cellular pathway for cell
division, and the constitutive inactivation (loss-of-function) of growth-inhibiting
components of the pathway for cell division A.
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1.2.2 Evasion of Growth Suppressors

There are a number of negative regulators of the cell cycle, e.g., RB (retinoblastoma)
and P53 (tumor protein of 53 kDa) being two of the best known and studied, that
must be overcome or evaded to ensure continued division of the aberrant cells.
These two so-called tumor suppressors function in large part in responding to extra-
cellular and intracellular signals, respectively. These important suppressors of
growth are part of larger complex networks that in some manner serve to introduce
redundancy in the regulation. In this vein, it should be mentioned that the ECM is
important in modulating the balance of growth factors and growth suppressors. For
example, when the ECM is altered from a highly elastic state to a one that is stiffer,
the efficaciousness of growth factors can increase by 100-fold (see Chap. 4).

1.2.3 Resisting Cell Death

The cellular process of apoptosis (cell death or cell suicide) serves to rid the body
of damaged or aged cells and is a powerful barrier to the development of cancer.
BAX and BAK are two important mitochondrial membrane proteins that act to begin
the process of apoptosis by disrupting the mitochondrial membrane and thus releas-
ing cytochrome c; this in turn leads to the activation of caspases, a family of prote-
ases key in releasing the apoptotic effectors. In opposition to this pathway are
anti-apoptotic members of the BCL2 family of proteins such as BCL2, BCLB and
MCLI. Tumor cells have developed several mechanisms for overcoming the apop-
totic pathway including the loss of P53 function (a common alteration in cancer
cells) and others that are actively being studied.

1.2.4 Enabling Replicative Immortality

Located on the ends of chromosomes, telomeres, composed of hexanucleotide
repeats, are shortened as cells undergo progressive divisions. In time, after multiple
divisions the telomeres become sufficiently shortened that cells are no longer via-
ble, leading to senescence and eventual cell death. This seems to be the major rea-
son that non-immortalized cells have a finite number of divisions and thus a finite
life span. Telomerase is the enzyme responsible for adding these protective repeat
segments of DNA to chromosomes, but it is present at progressively lower levels as
cells divide. In contrast, cancer cells maintain relatively high levels of telomerase,
thus ensuring that telomere shortening is minimized. In addition to the maintenance
of telomere length, telomerase is now believed to also have other cellular functions
related to growth.
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1.2.5 Activation of Invasion and Metastasis

Carcinoma, the most common form of cancer and the main focus of this book, arise
from epithelial cells that are engaged with neighboring cells and with the ECM. The
protein E-cadherin is a well characterized cell-cell adhesion molecule, while inter-
actions between cells and the ECM are regulated by other proteins (see Chap. 10).
The processes of invasion and metastasis require several steps. First, the trans-
formed cells must become disengaged from their interactions with other cells and
with the ECM. This involves down-regulation of E-cadherin accompanied by metal-
loproteinases and cysteine cathepsin proteases, many of these being supplied by
immune cells near the primary tumor. In addition, stromal cells neighboring the
tumor, in response to signals from the cancer cells, secrete proteins facilitating inva-
siveness. This set of events is termed the epithelial-mesenchymal transition and also
includes the ability of cancer cells to inhibit apoptosis. Second, the now loosely
attached transformed cells undergo intravasation into blood and lymphatic vessels
in their vicinity. Third, colonization to a distant site(s) then requires successful
travel via the blood or lymph followed by the process of extravasation. Finally,
growth of the cancer cell(s) at the new site completes the process of metastasis.
Each of these processes requires many alterations in cell function that are systemati-
cally being investigated (see Chaps. 10 and 11).

1.2.6 Induction of Angiogenesis

The high energy requirements of tumors, both primary and secondary, necessitate a
good blood supply for continuing availability of oxygen, nutrients and precursors
for fuel-generating metabolic pathways. Angiogenesis refers to the sprouting of
new blood vessels from existing ones, i.e. those produced during embryogenesis.
This process is regulated by the protein, vascular endothelial growth factor-A
(VEGFA), which acts through tyrosine kinase receptors to ensure the continued bio-
synthesis of new vessels. Except in a few physiological and pathological states, e.g.
cancer, angiogenesis is quiescent in the adult, being inhibited in large part by
thrombospondin-1.

1.2.7 Evasion of Inmune Destruction

During evolution humans have developed a most sophisticated immune system,
often discussed in two categories, the innate and the adaptive. The immune system
is believed to be highly effective in protecting the body from the growth of trans-
formed cells, both virally and non-virally induced. From this argument, one can
argue that the cancers that do emerge have, in some manner, escaped immune sur-
veillance or have developed the ability to counter an immune attack, particularly
from T helper cells and natural killer cells, as discussed in details in Chap. 8.
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1.2.8 Reprogramming Energy Metabolism

In the 1920s Otto Warburg reported that cancer cells increase their rate of glycolysis
many fold over that of non-cancer cells. This reprogramming event occurs even in
the presence of an ample supply of oxygen that would normally dictate that the end-
product of glycolysis, pyruvate, would be converted to acetyl-CoA that in turn
would enter the tricarboxylic acid (TCA) cycle (also known as the citric acid or
Krebs cycle), eventually accounting for the conversion of oxygen to carbon dioxide
and the generation of ATP. The putative regulatory factors responsible for this
altered course of glucose metabolism will be discussed later, one hypothesis to
account for the Warburg effect being that intermediates in glycolysis can be shuttled
into other metabolic pathways for the biosynthesis of amino acids and nucleosides,
required components for protein and nucleic acid synthesis, respectively. The
important role of the glucosaminoglycan, hyaluronic acid, cannot be overlooked in
cancer metabolism. This topic is briefly mentioned in Sect. 1.10 below and greatly
elaborated on in Chap. 6.

1.2.9 Other Considerations

In addition to these delineated eight hallmarks of cancer, Hanahan and Weinberg
also discussed processes defined as enabling characteristics of cancer: (a) genome
instability and mutation, and (b) tumor-promoting inflammation. They concluded
that the reduced cellular efficiency in genome maintenance and repair ultimately
increases the rate of developing viable phenotypes of the cancer cells. The presence
of immune cells in tumors prompted studies into their possible functions. Tantalizing
results show, paradoxically, that the immune cells, normally charged with protect-
ing the body, can aid tumor growth by secreting growth factors, pro-angiogenic
factors, survival factors, and others that contribute positively to the survivability and
growth of the tumor as discussed in detail in Chap. 7.

1.3 Proto-oncogenes, Oncogenes and Tumor
Suppressor Genes

As discussed earlier, the cancer genome tends to contain numerous mutations and
genomic rearrangements, but a central question is: Are these causal for cancer or
important for cancer growth and survival? The introduction of the concept of an
oncogene in the 1960s clearly represented a major breakthrough in defining an
intellectual framework for studying cancer. It has provided useful guiding informa-
tion in elucidating cancer mechanisms, particularly cancer drivers. However, this
well-accepted concept seems, unfortunately, to have also restricted the thinking of


http://dx.doi.org/10.1007/978-1-4939-1381-7_6
http://dx.doi.org/10.1007/978-1-4939-1381-7_7

1.3 Proto-oncogenes, Oncogenes and Tumor Suppressor Genes 7

cancer researchers somewhat since it requires that an oncogene must be the mutated
or overexpressed form of a proto-oncogene, which is defined as genes involved in
cell growth and differentiation. Originally attributed as being responsible for the
origin of cancer, recent thinking by many has shifted the role of oncogenes from that
of the originator to genetic alterations that arise during cancer evolution and selec-
tion of mutations that permit continued proliferation and survival.

1.3.1 The Rous Sarcoma Virus

The story begins with the elucidation of an avian retroviral oncogene prompted by
the studies of Peyton Rous in the early 1900s at the Rockefeller Institute (now the
Rockefeller University) in New York City. Interested in avian cancer, Rous was
given a chicken harboring a sarcoma by an upstate chicken farmer who had read of
his research at Rockefeller. Rous excised the tumor, then ground and filtered it to
remove the cartilaginous residue. He found that upon injecting the soluble filtrate
into certain strains of tumor-free chickens a sarcoma would develop. This repre-
sented a major breakthrough, demonstrating for the first time that this form of can-
cer was transmissible in chickens.

1.3.2 Proto-oncogenes and Oncogenes

Following many years of intense research by numerous investigators, the transmis-
sible agent was identified as the (appropriately named) Rous sarcoma virus (RSV).
Of interest to us in this section was the recognition that the oncogenic element in the
retroviral genome was a mutated version of a highly conserved and essential gene
in human cells, SRC. This gene encodes a tyrosine kinase that functions in a cellular
growth pathway; the mutation of the gene in the retroviral genome renders the gene
product constitutively active, thus the explanation for tumorigenicity in infected
chickens. It appears that during a cycle of infection some time ago, RSV comman-
deered the normal cellular SRC gene, i.e. a proto-oncogene (also referred to as a
cellular oncogene), from the infected bird and incorporated it into its genome.
A subsequent mutation in the SRC gene was sufficient to render the protein consti-
tutively active such that proliferation signaling occurred in the absence of proper
growth signals. The mutation was responsible for the conversion of the proto-
oncogene to an oncogene. To date, over 30 retroviral oncogenes have been identi-
fied, most of them being in rodent and avian viruses (Vogt 2012). [N.B. While we do
not know the exact constituents of the filtrate that were injected into the chickens, it
surely contained some macromolecular constituents and probably cells associated
with the sarcoma. Later studies demonstrated, however, that it was the presence of
the viral SRC gene that produced the tumorigenicity.)
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In normal cellular function, the gene encoding almost any regulatory protein
involved in cell growth or survival can undergo the proto-oncogene-to-oncogene
conversion by certain mutations or amplification that result in constitutive activity
promoting, say, cell division without the requirement of external or even internal
growth signals. Even the growth factors or their receptors can be considered onco-
genic if, for example, there are mutations in their genes that increase their expres-
sion. In addition to mutations, genomic rearrangements can also produce oncogenes
if the proto-oncogene is translocated to make a fusion gene that is no longer regu-
lated and possibly gives a constitutively active fusion protein. This is the basis of the
Philadelphia chromosome that is responsible for many cases of chronic myeloge-
nous leukemia (CML). With this definition one can consider hundreds of proto-
oncogenes that have the potential to become oncogenes. Suffice it to say that the
proto-oncogene-to-oncogene conversion does not necessarily lead to cancer; rather,
it can be considered a signal.

1.3.3 Conversion of Proto-oncogenes to Oncogenes

There are several genetic alterations that convert proto-oncogenes to oncogenes,
most of which were mentioned or alluded to above.

Mutations, often single base changes (point mutations), leading to gain-of-
function of positive regulators of the cell cycle, e.g., growth factor receptors or SRC.

Chromosomal instability such as loss of portions of chromosomes or rearrange-
ments, e.g., inversions, translocations, deletions and insertions, resulting in a gain-
of-function of positive regulators. An example of such a translocation is the fusion
of the ABL gene on chromosome 9 to chromosome 22 where it is fused to the BCR
gene yielding a fusion protein of BCR-ABL where ABL, normally highly regulated,
exhibits constitutive activity.

Gene amplification resulting in abnormally high expression of growth factor
receptors (or growth factors) that function in a pathway leading to cell division, e.g.
the HER?2 receptor in breast cancer.

Viral infection/insertion may also contribute to some forms of cancer, e.g., the
human papilloma virus (HPV) and cervical cancer.

1.3.4 Tumor Suppressor Genes

We now turn our attention to the topic of tumor suppressor genes. These genes and
their protein products refer to ones that function to prevent the progression of the
cell cycle if conditions at some checkpoints are not met, e.g., DNA damage is
detected and not repaired. For a tumor suppressor gene to lose its function, it
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Resting state Spindle Assembly Checkpoint

G2 Checkpoint -'-\*

G1 Checkpoint

Resting state (Go)

Fig. 1.1 A schematic view of the cell cycle showing the resting state (G,), the first gap phase (G,),
the synthesis phase (S), the second gap phase (G,) and the phase where mitosis occurs (M). A
complete cycle can require some 18-24 h, although some cancer cells complete the cell cycle in
less time

requires the loss of both copies of the gene while the loss of one copy increases the
risk of cancer development. Within this class are the familiar BRACI and BRAC2
genes involved in a familial form of breast and ovarian cancers, and the APC
(adenomatous polyposis coli) gene responsible for most cases of familial colorectal
cancer. Of the many other tumor suppressor genes in the human genome, we will
next discuss two well-studied examples that function in the cell cycle (Fig. 1.1).
Some cells in the body are dividing frequently, but most are in a resting or qui-
escent state denoted as G,. A signal for cell division, such as growth factors initiat-
ing an intracellular signaling cascade or even the presence of a constitutively active
oncogene in the signaling pathway, begins a process that takes the cells from the
quiescent state to the first gap phase (G;). Cyclin D family members are expressed
and the proteins interact with cyclin-dependent kinase (CDK) complexes. The reti-
noblastoma (RB) gene, a tumor suppressor gene, encodes a nuclear protein that is a
negative regulator of cell division, constantly maintaining cells in G, provided it is
associated with another nuclear protein, the transcription factor E2F. The action of
the CDK complex is to hyperphosphorylate RB, leading to dissociation of the RB-
E2F complex. Freed of the inhibitory effects of RB, E2F acts to up-regulate itself,
another cyclin, and enzymes required to carry out replication of the genomic
DNA. These events, along with others, will lead to the progression from G, into the
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S or synthesis phase of the cell cycle where DNA synthesis occurs. This progres-
sion is limited, however, by another protein P53 (or TP53, tumor protein 53) that
oversees DNA fidelity, along with other roles to be discussed later. Among its many
actions P53 can induce the activation of genes for DNA repair, cause cell cycle
arrest or send the cell into apoptosis if DNA repair is not successful. Successful
entry into the S phase results in the replication of ~3 billion base pairs of DNA
accomplished with a variety of enzymes including ones capable of proofreading
and repair of errors. As summarized, estimates suggest that the mutation rate in
cells is some 107!2 to 10~ per nucleotide in each cell division and that, of the 10
cells comprising the average human, there are about 10'¢ division cycles during a
lifetime (Duesberg 1987; Loeb 1989). Needless to say, these estimates are depen-
dent on many factors and assumptions, and a wide range can be found in the litera-
ture. Although not discussed here, there are checkpoints and inhibitors at the
S — G, and the G, - M boundaries (G, is the second gap phase and M is mitosis,
i.e., cell division).

RB and P53 are, in effect, gatekeepers that prevent cells from dividing unless
signaling pathways for growth impact on the nucleus and the cells have high fidelity,
e.g., no damaged DNA. These negative regulators of cell division are thus critical
components of cell oversight. From this perspective it is not surprising that muta-
tions interfering with RB and P53 functions could allow continual cell division and
transcription of faulty DNA. Suffice it to say that the RB and/or P53 genes are fre-
quently mutated in various cancers.

1.4 Emerging Results on Cancer Genomes, Tumor
Heterogeneity and Cancer Evolution

The emergence of rapid deep sequencing technology has provided an unprecedented
opportunity to sequence large numbers of cancers for comparison with DNA sequences
obtained from normal controls. In an interesting twist of fate, DNA sequencing is no
longer the rate-limiting step in cancer genomics. Rather, it is the ability to analyze
the copious amounts of data that are forthcoming from many laboratories and factory-
like sequencing centers. From this perspective, the timing is good for bioinformati-
cians to enter cancer research with the possibility of adding substantively to our
knowledge relating genomic changes to phenotypic changes in cancer patients.

1.4.1 What Is Being Learned?

The results from cancer genome sequencing are providing considerable informa-
tion on mutations and the myriad other genomic changes, e.g., chromosomal
gains, losses and rearrangements, present in most cancers (Stratton et al. 2009;
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Pleasance et al. 2010; Garraway and Lander 2013; Alexandrov and Stratton 2014;
The Cancer Genome Atlas Research Network 2011a, b, 2012a, b, ¢, 2013a, b, c,
2014; Alexandrov et al. 2013; Kandoth et al. 2013; Vogelstein et al. 2013). In one
study 3,281 tumors from 12 different types of cancer (11 solid tumors plus acute
myeloid leukemia) were analyzed for point mutations and small insertions and
deletions (Kandoth et al. 2013). In this sampling 617,354 somatic mutations were
identified: 398,750 missense; 145,488 silent and smaller numbers each of non-
sense, splice site, non-coding RNA, non-stop read-through, frame-shift insertions/
deletions (indels) and in-frame indels. P53 was found to be the one most frequently
mutated, and the lipid kinase gene, PIK3CA (phosphatidylinositol-4,5-bisphosphate
3-kinase, catalytic subunit alpha), was the second. Not surprisingly, many muta-
tions appeared in genes encoding transcription factors; cell cycle regulators; sig-
naling pathways, including receptor tyrosine kinase, MAPK, PI3K, TGFp and
WNT/B-catenin; and ECM related genes as detailed in Chap. 4.

Genome sequencing has also provided some surprising observations, but ones
that are consistent with the emerging view that cancer is not just a disease of the
genome. Sequencing studies by two labs (Mack et al. 2014; Parker et al. 2014) on
three subtypes of ependymoma brain tumor found the following. One subtype had
an intrachromosomal translocation yielding what appears to be a ‘driver muta-
tion’ for cancer, and another subtype had abnormal epigenetic alterations. Of par-
ticular interest, however, was the finding that another subtype was devoid of gene
mutations and aberrant epigenetic changes. These results emphasize the complex-
ity of cancer and importantly the role of non-genomic changes driving cancer
formation.

1.4.2 Driver and Passenger Mutations

In recent years there has been considerable interest in identifying the ‘driver’ muta-
tions and separating them from the ‘passenger’ mutations. Although as discussed
later (Chap. 5), there is a current movement to consider those crucial mutations as
ones that were selected as necessary to maintain proliferation and survival of the
developing cancer cell(s) and may not necessarily be causal to cancer. This informa-
tion will of course direct many of the treatment modalities for specific cancers.
Many mutations, particularly in older individuals, are known to exist before the
occurrence of cancer and are believed to have nothing to do with the onset or con-
tinuation of cancer (Tomasetti et al. 2013). These innocuous mutations arise from
the high number of cell divisions and the inherent errors that occur in proofreading
and repair, as well as mutations from environmental causes that do not produce
‘drivers’ of cancer. One estimate is that there are about 140 genes that, with appro-
priate mutations, can become drivers (Vogelstein et al. 2013).
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1.4.3 Major Findings

Some of the major findings from genomic sequencing of various tumors have been
delineated and provide much insight into, if not cancer initiation, then at least its
progression (Vogelstein et al. 2013). Some of these principles are listed below; how-
ever, we have qualified them as more likely being responsible, through natural
selection, for unlimited growth and survival, not necessarily causal.

a. Solid tumors have an average of 33-66 somatic nonsynonymous mutations,
predominantly single-base changes that are expected to alter the resulting pro-
teins; however, a limited number of mutations are capable of sustaining cancer
proliferation and survival. [N.B. Vogelstein et al. (2013) claim that the majority
of human cancers result from two to eight sequential mutations occurring over
20-30 years, each of which confers about a 0.4 % growth advantage.]

b. There are about 140 such genes that if mutated can contribute to cancer, either
via initiation, proliferation or survival.

c. Three cellular processes are regulated by these essential genes: cell fate determi-
nation, cell survival and genome maintenance.

d. Although the pathways altered by key mutations in different tumors are similar,
each individual tumor is distinct.

e. Heterogeneity exists in the cells of tumors, and this can affect therapeutic
effectiveness.

1.4.4 Metastasis

There is considerable interest in the delineation of the various changes that can drive
a primary tumor to metastasis (see Chaps. 10 and 11), the cause of over 90 % of
cancer mortality (Irmisch and Huelsken 2013). This is an important aspect of cancer
research that bioinformatics can address when more data are available from the
ongoing sequencing of cancer genomes and transcriptomes. In addition to the
genetic changes referred to above, many alterations in metabolism, hypoxia, and
other cellular processes exist that tend to drive cancer growth. These are covered in
depth in Chap. 10.

1.4.5 Cancer Heterogeneity

It is important that the role of cancer heterogeneity be pointed out. Pathologists
and clinicians have known for years that solid tumors are heterogeneous with regard
to cellular morphology and patient responses to treatment. Thus, cancer heteroge-
neity, first proposed several decades ago (Nowell 1976), is an important aspect
of cancer and an area that is being addressed (Meacham and Morrison 2013;
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Burrell et al. 2013; Vogelstein et al. 2013). It is now appreciated that considerable
heterogeneity exists in any given cancer, both at the molecular and cellular level.
Cancer is clearly many diseases, and even individual tumors within similar types of
cancer may be unique. A given tumor is likely composed of a dominant clone and
several subclones, each of which may grow at different rates and respond differ-
ently to treatment(s). This intratumor heterogeneity impacts on the evolution of
cancer and the natural selection of clones more favorable for sustained growth,
survival and ability to colonize distant sites (extravasation and metastasis). Cancer
heterogeneity, evolution and natural selection are emerging as significant features
in our understanding of cancer growth and control (Klein 2013; Burrell and Swanton
2014; Lawrence et al. 2013) and are areas in which bioinformatics can provide
considerable insight as more data become available.

1.5 An Early Sequential Model of Cancer Development

One of the early models to explain the development of cancer strictly from genetic
changes is referred to as a “sequential model” based on a series of mutations. It is
now well recognized that this model may be overly simplistic, but it is presented to
introduce the concept and several genes that, when mutated, can function to aid
propagation of cancer. Based on extensive studies of benign and malignant colorec-
tal cancer (hereafter referred to simply as colon cancer), Fearson and Vogelstein
proposed a sequential pathway for the development of malignancy, a pathway often
referred to as the canonical pathway (Fearson and Vogelstein 1990). Colon cancer
can be categorized into two forms, sporadic and familial, having respective frequen-
cies of about 80 and 20 %. Sporadic colon cancer can be further divided into a form
arising from mutations and/or chromosomal instability and a form attributable to
microsatellite instability. These two forms of sporadic colon cancer exhibit frequen-
cies of approximately 80-85 % and 15-20 %, respectively.

The canonical pathway was proposed to arise from a sequential or linear set of
genetic alterations. In the majority of cases the APC gene, located on chromosome
5q, was found to undergo a mutation that reduced or abolished its activity and con-
tributed to the formation of a benign lesion or early adenoma. While the protein
encoded by APC has a number of biological actions including its role in the WNT
pathway, cell adhesion (via E-cadherin), mitosis and cytoskeletal regulation, it is
the former that has attracted most attention. Forming part of a complex with glyco-
gen synthase kinase-3f3 and axin, loss of APC activity results in f-catenin escaping
degradation and thus constitutively activating the WNT pathway that regulates
numerous genes, some of which are involved in the cell cycle. We mention in pass-
ing that mutations in APC have been identified in many if not most cases of familial
colon cancer.

Mutations to the oncogene KRAS on chromosome 12p12.1 have been frequently
identified in intermediate adenomas, mutations that result in producing a defective
GTP-binding protein that is involved in the mitogen-activated protein kinase
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(MAPK) and other growth-promoting pathways. Again, constitutive activation of
the protein KRAS, e.g., by inactivating the intrinsic GTPase activity that converts
GTP to GDP leading to KRAS inactivation, results in a constant enhancement of
growth-promoting pathways as well as a loss of cell polarity that could reduce
cell adhesion.

Other allelic losses (via mutations or chromosomal loss) are often found in late
adenomas and carcinomas with the P53 and DCC (deleted in colorectal cancer)
genes on chromosomes 17p13.1 and 18q21.1, respectively. P53 is considered a
tumor suppressor gene and serves as a gatekeeper for cells exiting G to the S phase
of the cell cycle. It promotes repair of damaged DNA, e.g. from errors in replication
or environmental stress, and if repair is not successful terminates cell cycle progres-
sion and leads to apoptosis. Clearly, inactivation of this key cell cycle regulator
could have major detrimental effects on the normal fidelity expected in the cell
cycle. The DCC protein is a transmembrane protein that serves as a receptor for
proteins involved in regulating axon guidance in the nervous system and also seems
to participate in cell motility, signaling and overcoming apoptosis.

Although attractive in its simplicity, the sequential model is now believed by
many investigators to function more as developing cancer cells are undergoing an
“evolution and natural selection” phase to obtain a genomic background that per-
petuates growth and evades apoptosis and immune destruction.

1.6 Epigenetics and Cancer

Most of the research on cancer has heretofore dealt with the role of genetic changes,
i.e. alterations in the sequence of DNA, that lead to changes in normal cellular func-
tions that regulate proliferation, survival, angiogenesis, metastasis and others.
Recent studies have, however, documented that epigenetic changes are also impor-
tant in the initiation and progression of cancer (Beck et al. 2012; Shen and Laird
2013; Timp and Feinberg 2013; Waldman and Schneider 2013; Suva et al. 2013).
Such changes are attributable to modifications of chromatin and chromatin packag-
ing, as emphasized by the appearance of mutations in genes involved in DNA meth-
ylation, histone modification and chromatin remodeling, with a number of mutations
found to be tumor-specific.

Composed of nucleic acids and proteins, there are potentially many possibilities
for epigenomic changes in chromatin. The protein core around which genomic
DNA is wrapped is composed of a histone octomer with two copies each of four
distinct histones, forming a nucleosome; these, in turn, form a helical arrangement.
As summarized (Shen and Laird 2013), there are multiple sites for alterations that
control the level of transcriptional activity, including DNA methylation, histone
modifications and variants, interacting proteins, noncoding RNAs and nucleosome
positioning.

Certainly one of the more prevalent alterations is that of DNA methylation, cata-
lyzed and maintained by several DNA methyltransferases yielding primarily
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cytosine-5 methylation of CpG dinucleotides. Such enzymes can be considered as
‘writers’ since they in effect make the epigenetic mark. Another chemical change is
that of histone modification, including methylation, acetylation and phosphoryla-
tion. The histone modifications are catalyzed by histone methyltransferases and
demethylases, acetyltransferases and deacetylases, and kinases and phosphorylases.
Those enzymes that remove the covalent tag are referred to as ‘erasers’. Also,
numerous histone variants have been identified. Another mode by which the
epigenome can be altered is that of nucleosome positioning and remodeling, accom-
plished by sequence-specific binding proteins. These are important in selecting the
form of chromatin, euchromatin (open form) and heterochromatin (a more closed
form), thus enhancing or inhibiting the availability of readers, writers, erasers and
other chromatin-binding proteins.

From this abbreviated overview, mentioning most but certainly not all of the fac-
tors responsible for defining and maintaining the epigenome, sequencing and func-
tional studies have shown that mutations can occur in essentially all of the genes
required to form and maintain the epigenome (Fullgrabe et al. 2011; Shen and Laird
2013; Timp and Feinberg 2013). Importantly, many of these mutations have been
documented to be related, or at least correlated, at one level or another to tumorigen-
esis. This area will undoubtedly emerge as an important component of cancer as
more results become available.

1.7 Cancer Cell Metabolism

1.7.1 Meeting the Energetic Requirement of Cells

Of the many types of foods ingested, the body uses three major classes as fuels for
its energetic needs: carbohydrates, lipids (fats) and proteins. The chemical composi-
tions and structures of these vastly different biomolecules, ranging from simple
sugars to complex polysaccharides, fatty acids to triacylglycerols (triglycerides) and
peptides to high molecular weight proteins. Yet, many of the different metabolic
pathways converge at a common intermediate, acetyl-coenzyme A (acetyl-CoA) or
a downstream intermediate, leading to the biosynthesis of adenosine triphosphate
(ATP), an important source for cellular energetic needs.

The average sedentary adult requires about 2,000 Calories (Cal) per day to meet
the normal requirements to maintain overall homeostasis, i.e., for heart, brain,
lung, kidney and other organs to function. This daily requirement for any given
sedentary individual can vary as much as +400 Cal since it is influenced by age,
gender and metabolic factors. Over 80 kg of ATP are required to meet this daily
basal caloric need; however, the body contains only about 0.25 kg (Tymoczko et al.
2013). Thus, ATP is constantly being utilized and resynthesized to meet daily
needs. For someone who is physically active, the caloric requirement rises dramati-
cally, and consequently ATP biosynthesis must increase as well. [N.B. The calorie,
more specifically the gram or small calorie, is defined as the energy required to
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increase the temperature of 1 g of water 1 °C at standard atmospheric pressure
(this corresponds to about 4.2 J). Biochemists and nutritionists, on the other hand,
use a “large” or “kilogram” calorie, i.e. the Cal, that is equivalent to 1,000
“small” calories (about 4.2 kJ).]

Metabolism of carbohydrates, proteins and lipids yields approximately 4 Cal/g,
4 Cal/g and 9 Cal/g, respectively. Thus, per unit weight ingested, lipids provide
more than twice the Cal (or energy) than do carbohydrates and proteins; however,
we rely on all three for energetic needs, particularly lipids and carbohydrates (and
certainly circulating glucose for minute-to-minute cellular needs). Glucose can be
metabolized anaerobically (absence of oxygen) to yield small amounts of ATP and
aerobically (presence of oxygen) to obtain greater amounts. Fatty acids, most being
obtained from lipolysis of triacylglycerols, can undergo f-oxidation, giving acetyl-
CoA that can enter the TCA cycle for ATP production, and glycerol that can enter
the hepatic gluconeogenic pathway and be converted to glucose for metabolism.
Proteins are constantly turning over, and some of the amino acids so derived can
serve as precursors for glucose synthesis (gluconeogenesis) or for synthesis of pyru-
vate or intermediates in the TCA cycle (see below).

Cancer cells also utilize carbohydrates, lipids and proteins to generate the ATP
that is required to meet the energetic needs for proliferation, metastasis and survival.
In order to appreciate the metabolic derangements unique to cancer, it is first neces-
sary to understand, even if superficially, the pathways of normal metabolism, which
are briefly treated in the following section with reference to the changes that occur
in cancer.

1.7.2 Glucose Metabolism

Glucose metabolism will be discussed first since it is quite distinct in cancer cells
compared to normal cells. For both normal and cancer cells, circulating glucose in
the bloodstream enters cells via one or more glucose transporter proteins (GLUTS)
and is then rapidly phosphorylated to glucose 6-phosphate by either of two ATP-
dependent enzymes, hexokinase or glucokinase, thus ensuring retention within the
cell (Reaction 1.1).

glucose + ATP — glucose 6 — phosphate + ADP + H” (1.1

There are three metabolic paths for glucose 6-phosphate within the cell. If the
cell does not require ATP, glucose 6-phosphate can be metabolized to a high molec-
ular weight polysaccharide of repeating glucose units, glycogen (Reaction 1.2). The
three subsequent reactions are catalyzed by the enzymes phosphoglucomutase,
UDP-glucose pyrophosphorylase and glycogen synthase, respectively, where UDP
is uridine-diphosphate.

glucose 6 — phosphate — glucose 1 —phosphate — UDP — glucose — glycogen (1.2)
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The two other metabolic paths for glucose 6-phosphate are of most interest here:
the glycolytic pathway and the pentose phosphate pathway. Glycolysis represents a
series of enzymatic reactions that convert the phosphorylated 6-carbon glucose into
two molecules of pyruvate, a 3-carbon product. The pathway yields, in addition to
two molecules of pyruvate, two molecules each of ATP, NADH and other reaction
products for each molecule of glucose entering the pathway (Reaction 1.3 and
Fig. 1.2).

glucose + 2ADP +2NAD ™ + 2P — 2pyruvate + 2ATP +2NADH + 2H +2H,0(1.3)

Pyruvate can be converted to acetyl-CoA (Reaction 1.4), the main substrate for
the TCA cycle, to lactate (Reaction 1.5) or to oxaloacetate (Reaction 1.6). The
enzymes catalyzing these reactions are, respectively, pyruvate dehydrogenase, lac-
tate dehydrogenase and pyruvate carboxylase.

pyruvate + CoA + NAD® — acetyl - CoA + CO, + NADH + H* (1.4)
pyruvate + NADH + H" <> lactate + NAD" (1.5)
pyruvate + CO, + ATP + H,O — oxaloacetate + ADP + P, + 2H" (1.6)

The other metabolic route for glucose 6-phosphate is that of the pentose phos-
phate pathway (Fig. 1.3). This pathway consists of an oxidative phase in which
glucose 6-phosphate is converted to ribulose 5-phosphate by several enzymes acting
sequentially, glucose 6-phosphate dehydrogenase, lactonase and 6-phosphogluconate
dehydrogenase (Reaction 1.7). This is an important reaction since it regenerates
NADPH and associated reducing power. The second phase is a complex oxidative
component consisting of a number of enzymes that yields ribose 5-phosphate
(Reaction 1.8, catalyzed by phosphopentose isomerase), fructose 6-phosphate and
glyceraldehyde 3-phosphate. Of the three pentose phosphates, ribose 5-phosphate
(a 5-carbon sugar phosphate) is needed for the synthesis of nucleic acids, and the
other two, fructose 6-phosphate and glyceraldehyde 3-phosphate, can enter as inter-
mediates in the glycolytic pathway.

Glucose 6 — phosphate + 2NADP" + H20 — ribulose 5 — phosphate + 2NADPH (1.7)
+2H" +CO,

Ribulose 5 — phosphate <> ribose 5 — phosphate (1.8)

From the point of entry of glucose into cells, the glycolytic pathway is composed
of ten enzymatic reactions, all occurring in the cell cytoplasm, to give the 3-carbon
product pyruvate. Pyruvate, in turn, can undergo one of several enzymatically cata-
lyzed steps with its conversion to either of the following. (1) lactate: This reaction
reduces pyruvate and occurs independent of the availability of oxygen,; it is catalyzed
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Fig. 1.2 The glycolytic pathway from the entry of glucose into a cell and the subsequent reactions
that yield pyruvate. Note the conversion of the 6-carbon structure, glucose, into two molecules of
pyruvate
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Fig. 1.3 The pentose phosphate pathway showing the conversion of glucose 6-phosphate to three
pentose phosphates, ribose 5-phosphate, fructose 6-phosphate and glyceraldehyde 3-phosphate

by the enzyme lactate dehydrogenase. (2) oxaloacetate: This metabolite, obtained
from the carboxylation of pyruvate by the enzyme pyruvate carboxylase, is an inter-
mediate in the TCA cycle and also a precursor for the synthesis of glucose via a
metabolic pathway, gluconeogenesis (the synthesis of glucose from non-glucose
precursors). (3) acetyl-CoA: In the presence of oxygen the enzyme pyruvate dehy-
drogenase, in an oxidation reaction, catalyzes the conversion to acetyl-CoA, releas-
ing CO,, of which the body must rid itself, and reducing NAD"* to NADH, thus the
enzyme is catalyzing an overall oxidation-reduction reaction. Acetyl-CoA is an
important intermediate for several pathways and serves as a convergent point for
metabolism of carbohydrates, lipids and proteins.

Pertinent to our discussion, one major fate of acetyl-CoA is its entry into the
TCA cycle, located in the mitochondrion and composed of eight enzymes
(Fig. 1.4). This is an important component of metabolism, particularly when
energy is needed and available to the cells. The entering acetyl group on acetyl-
CoA is oxidized, i.e., loses electrons, and forms CO, (two molecules for each
acetyl-CoA entering the pathway) in a series of oxidation-reduction reactions that
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Fig. 1.4 The TCA cycle showing the entry of acetyl-CoA

generate high energy electrons from carbon sources. Continuing the mitochondrial
reactions, oxidative phosphorylation refers to an important series of complex reac-
tions that culminate in the synthesis of ATP. The reactions allow electrons from
NADH and FADH, to transfer to oxygen (O,) that is converted to water in the pres-
ence of hydrogen ions. This flow of electrons pumps protons into the region
between the inner and outer mitochondrial membranes from the mitochondrial
matrix (cf. the schematic in Fig. 1.5). The proton gradient is responsible for driving
the synthesis of ATP from ADP and P;, a reaction catalyzed by ATP synthase.
Accounting for the ATP required to transport NADH into the organelle, a net
production of 30 molecules of ATP for each molecule of glucose metabolized is
realized. As mentioned earlier, even sedentary individuals require some 2,000 Cal
per day, an amount that can increase significantly during vigorous exercise, and
this requires some 80 kg of ATP biosynthesized per day, most of this from de novo
synthesis by recycling ADP into ATP.

1.7.3 The Warburg Effect and Other Metabolic
Alterations in Cancer

Working at the Kaiser Wilhelm Institute in Berlin, now the Max Planck Institute,
Otto Warburg made the significant observation in the 1920s that cancer cells utilize
more glucose than normal cells (Koppenol et al. 2011). Further, it was found that
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Fig. 1.5 A simplified and schematic representation of oxidative phosphorylation leading to the
synthesis of ATP. The electron transport chain, shown as a dark cylinder, is responsible for trans-
ferring electrons from NADH and FADH, to oxygen and creating a proton gradient. The energy of
the proton gradient that is used by the enzyme ATP synthase, indicated by a gray cylinder, to drive
the synthesis of ATP from ADP and P;. Adapted from (Tymoczko et al. 2013)

glucose was converted to lactate (lactic acid) via glycolysis (see Fig. 1.2 and
Reaction 1.5). The confounding aspect of this finding, however, was that the
increased level of glycolysis occurred even in the presence of oxygen. Under these
conditions, i.e., ample oxygen, one expects aerobic respiration in which glucose is
directed to pyruvate which is then converted to acetyl-CoA, not lactate.

Another surprising observation by Warburg was that aerobic respiration was like
that of normal tissues, but it failed to prevent lactate formation. This is in contrast to
aerobic metabolism in general since the well-known and accepted Pasteur effect
leads to a reduction in lactate production in the presence of oxygen. In spite of these
results, Warburg nonetheless believed that the pathway of aerobic respiration was
damaged; it is now known however that it is the regulation of glycolysis that differs
from normal cells in cancer cells. Warburg’s experiments were initially conducted
using thin slices of Flexner-Jobling rat liver carcinoma, and they were later con-
firmed with a number of human carcinomas.

The singular finding of enhanced anaerobic glycolysis in the presence of oxygen
has led to numerous investigations in the subsequent years. Although a full explana-
tion of the Warburg effect and its ramifications in cancer are still unfolding, a num-
ber of recent investigations have yielded many exciting and provocative observations
that offer some rationale of why a less efficient energy-generating pathway, anaero-
bic metabolism, may be preferred over the more efficient aerobic respiration
(Ferreira 2010; Cairns et al. 2011; Dang 2012; Bensinger and Christofk 2012; Icard
and Lincet 2012; Oermann et al. 2012; Soga 2013). Moreover, elucidation of the
distinctions between normal and cancer cell metabolism provides potentially new
avenues to explore for therapeutic regimens (Jang et al. 2013). [N.B. As a side note,
the Warburg effect forms the basis of imaging by means of positron emission tomog-
raphy (PET) in which patients receive 2-fluoro-2-deoxy-d-glucose (FDG), a radio-
labeled ("*F) and non-metabolizable form of glucose that becomes concentrated in
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cancer cells at a higher level than in normal cells thus enabling imaging to occur.
Tumors in highly metabolically active tissues such as liver and brain, however, are
often difficult to detect because of the high background level.]

Through various mechanisms, lactate itself has been found to enhance angiogen-
esis, cell migration and escape from immune surveillance. Also, the increased
lactate production reduces pericellular pH resulting in the activation of apoptosis in
neighboring normal cells, the protection of the cancer cells by inhibition of the
immune system and an elevation of a number of proteases, including metallopro-
teinases that can facilitate escape of tumor cells from their local environment, a
requirement for metastasis to occur. In addition, the increased uptake of glucose,
and hence the amount of glucose 6-phosphate, ensures a plentiful supply of sub-
strate for the pentose phosphate pathway (cf. Fig. 1.3 and Reactions 1.7 and 1.8),
products of which can be converted to nucleotides for nucleic acid synthesis or
serve as intermediates to the glycolytic pathway.

Reinforcing the importance of metabolic changes in cancer, an exome sequenc-
ing study (175,471 exons from 20,661 genes) uncovered recurring mutations in the
IDH] gene (Parsons et al. 2008). The protein encoded by IDH1 is isocitrate dehy-
drogenase, an enzyme that converts isocitrate to a-ketoglutarate in the TCA cycle
(cf. Fig. 1.4). Subsequent research by a number of investigators studying different
cancers, reviewed by Garraway and Lander (Garraway and Lander 2013), showed
that the mutations in IDH/ led to gain-of-function in the enzyme and that, more-
over, the enzyme product was an enantiomer of 2-hydroxyglutarate. This unex-
pected metabolite was found to inhibit a-ketoglutarate-dependent enzymes,
including prolyl-4-hyroxylases that are important in regulating hypoxia inducible
factor (HIF). Such IDHI mutations, surprisingly, correlated with the CpG island
methylator phenotype; further, IDHI and IDH2 (the mitochondrial homolog)
mutations were found to be mutually exclusive with TET2 mutations, the gene
product being a methylcytosine dioxygenase that catalyzes methylcytosine to
5-hydroxymethylcytosine in DNA. Such unexpected observations and correlations
reinforce the importance of metabolic alterations in cancer and emphasize the need
for careful bioinformatic approaches when comparing large datasets; totally unex-
pected and potentially important new information can be forthcoming.

Another player that has emerged is the amino acid glutamine, and of interest is a
role of the oncogene MYC, as well as other oncogenes and tumor suppressors, in
regulating glutamine metabolism. Glutamine can function as a carbon source in the
process of energy production; it can also regulate redox homeostasis, in large part
through its role in the biosynthesis of the antioxidant glutathione. Lastly, glutamine
can supply carbon and nitrogen to a number of cellular reactions. Regarding
glutamine’s role in energy production, the enzyme glutaminase is responsible for
the conversion of glutamine to glutamate, the latter of which can be converted to
a-ketogluterate that is an integral part of the TCA cycle (Fig. 1.3). This is particu-
larly important in proliferating cells since citrate, another integral component of the
TCA cycle (Fig. 1.3), is transported from the mitochondria to contribute to the syn-
thesis of acetyl-CoA for lipid biosynthesis (Icard et al. 2012). Many other cellular
proteins, including enzymes, oncogenes and tumor suppressors, are emerging as
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having important roles in cancer metabolism (Chen and Russo 2012; Oermann et al.
2012). While most of these are not discussed further, it is expected that they and
others, as well as presently unknown regulators and processes, will materialize as
important contributors to the altered metabolic status of cancer cells.

Hypoxia-inducible factor (HIF), notably HIFI (discussed in greater detail in
Sect. 1.8), can escape its normal degradation under normoxic conditions due to
mutations in certain enzyme-encoding genes, e.g., succinate dehydrogenase, fuma-
rate hydratase, or prolyl hydroxylases or tumor suppressor proteins, e.g., von
Hippel-Lindau (VHL), as well as higher cellular levels of metabolic intermediates,
e.g., lactate, oxaloacetate and pyruvate (Cairns et al. 2011). The presence of HIF]
under normal concentrations alters the expression of a number of genes participat-
ing in glycolysis, such as those for phosphofructokinase, hexokinase-II, pyruvate
kinase M2, lactate dehydrogenase-A and glucose transporters, thus enhancing gly-
colysis; other genes are also affected that lead to reduced amounts of pyruvate enter-
ing the TCA cycle. YC and HIFI both activate the expression of the lactate
dehydrogenase gene, LDHA, that favors the conversion of pyruvate to lactate; MYC,
by suppressing two microRNAs (miR-23A and miR-23b), stimulates glutaminase
gene expression resulting in a replenishment of intermediates in the TCA cycle
(Oermann et al. 2012).

Another important metabolic component is that of the Ser/Thr kinase, AMP-
activated protein kinase (AMPK), that serves to regulate metabolism and energy
homeostasis. This regulatory kinase, depending upon the cellular conditions, can
enhance or inhibit cancer cell growth (Faubert et al. 2014). In addition to these well
documented changes, there are also other changes in cancer that impact on metabo-
lism, but in the interest of brevity these will not be discussed.

Many years after the discovery of the Warburg effect, Warburg himself was still
discussing the importance of mitochondrial alterations in giving a reduced ability of
ATP synthesis via oxidative phosphorylation. Yet, more recent studies have shown
unequivocally that cancer cells are not deficient in oxidative phosphorylation, at
least for some cancers. On the other hand, some form of mitochondrial dysfunction
or uncoupling has recently been noted. This involves elevated expression of certain
uncoupling proteins (UCPs) that would lead to a reduction in effectiveness of the
mitochondrial membrane potential. While not discussed herein this would result in
a reduction in mitochondrial ATP synthesis, thus enhancing the cell’s need for
increased aerobic glycolysis.

Another aspect of the Warburg effect and mitochondrial function involves reac-
tive oxygen species (ROS). An increase in oxidants such as ROS that are not coun-
tered by an increase in antioxidants, leads to oxidative stress in a cell. Since in
mitochondrial respiration oxygen is the final acceptor for electrons in the formation
of water, several ROS can arise: the superoxide radical ("O,"), the hydroxyl radical
(OH"), and hydrogen peroxide (H,O,). These highly reactive species can damage all
molecules, and proteins and DNA are particularly susceptible. There are enzymes to
remove the free radicals, e.g., superoxide dismutase and catalase, but if ROS levels
become too high, then cellular damage can occur. It is possible that the Warburg
effect can reduce the level of ROS by increasing the amount of pyruvate produced
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since pyruvate can scavenge peroxides that result from the action of superoxide
dismutase; moreover, the pentose phosphate pathway generates NADPH that is
required for the conversion of glutathione disulfide to glutathione, important in the
inactivation of hyperoxide. Lastly, the mitochondrial uncoupling discussed above
may reduce oxidative stress.

An additional component of metabolism was recently found with regard to ROS
(Anastasiou et al. 2011). Cancer cells, like normal cells, must protect themselves
from high concentrations of ROS. Proliferation of the transformed cells requires
reducing power from NADPH to support the biosynthesis of nucleotides and lipids.
NADPH also acts to maintain glutathione in the reduced state, necessary for homeo-
stasis of ROS. This increased demand for NADPH, supplied in large part through
the pentose phosphate pathway (Fig. 1.3), was found to be facilitated by ROS-
mediated oxidation of a particular cysteine on an alternatively spliced form of the
glycolytic enzyme, pyruvate kinase that functions to convert phosphoenolpyruvate
to pyruvate. This alternatively spliced form is designated pyruvate kinase M2
(PKM?2) and is expressed in many cancer cells. Oxidation of the cysteine leads to
enzyme inactivation, thus diverting glucose metabolism into the pentose phosphate
pathway. This metabolic switch helps ensure synthesis of adequate amounts of
NADPH to meet the needs for cell proliferation and protection from excess ROS.

The Warburg effect leads to interesting and, at first, paradoxical effects on the pH
of cancer cells. It seems reasonable to expect the intracellular pH to decrease with
the higher levels of lactate (lactic acid) and other acidic intermediates in the glyco-
lytic pathway being produced. Yet, the opposite occurs with the intracellular pH
increasing from its normal value of approximately 7.2 to about 7.4 or even greater.
While this may appear to be but a minor alteration, it nonetheless represents a sig-
nificant decrease in the concentration of hydrogen ions. Conversely the extracellular
pH, normally some 7.3-7.4, becomes acidified. This unusual reversal of hydrogen
ion fluxes can be attributed to increased expression of plasma membrane-associated
acid transporters such as H*-ATPase, the Na*-H* exchanger NHE1, and the H*-
monocarboxylate transporter, all of which lead to increased efflux of hydrogen ions
from the cell interior into the extracellular milieu (Webb et al. 2011). The latter also
transports lactate out of the cells. Cell surface carbonic anhydrases increase as well,
these being enzymes that catalyze the important reaction by which carbon dioxide
(CO,) from respiring cells interacts with water to form carbonic acid (H,COs;); this
in turn, forms bicarbonate (HCO;") and a hydrogen ion (H*) as shown below
(Reaction 1.9).

CO, +H,0 « H,CO, <> HCO, +H" (1.9)

This simple reversible reaction can proceed non-enzymatically, but it is greatly
accelerated by carbonic anhydrase. It shows how much of the carbon dioxide from
respiring cells/tissues is converted to bicarbonate and how, in the lungs, carbon
dioxide is formed that can be exhaled. In the vicinity of cancer cells overexpressing
carbonic anhydrase there can be acidification from increased utilization of carbon
dioxide, as well as the increase from hydrogen ions pumped from the cells, as fur-
ther discussed in Chap. 8.
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The small shift of the intracellular pH to one more alkaline can have profound
effects on the cells. Numerous cellular pathways are altered by the pH change, in
effect favoring cancer cell survival. For example, glycolysis, cell growth, and metas-
tasis are enhanced while apoptosis is inhibited.

While this section has emphasized the alterations in carbohydrate metabolism,
cancer cells also exhibit changes in other aspects of metabolism. For example,
increased lipid biosynthesis often occurs in cancer (Yoshii et al. 2014), and lipids
have been associated with maintaining redox potential in cancer cells, as well as
enhancing tumor cell proliferation and survival (Santos and Schulze 2012). Altered
amino acid metabolism and increased protein synthesis also accompany cancer
development and growth. Recent studies have shown that P53, in addition to its
known function as a tumor suppressor, is important in regulating glycolysis, oxida-
tive phosphorylation, lipid metabolism, glutamine metabolism and ROS levels in
non-transformed cells (Liang et al. 2013). Consequently, loss-of-function mutations
in this gene can contribute significantly to the metabolic derangements in cancer,

In addition to the alterations in the cellular function of cancer cells, there are
many other genes and pathways, some of which appear at first glance as being
paradoxical, that can at least partially explain the Warburg effect. Of interest is the
suggestion that epigenetics contribute to altered cell metabolism (Johnson et al.
2014). Importantly, what is emerging is a paradigm shift in our understanding and
appreciation of the Warburg effect in that the metabolic perturbations may be
important in driving tumor growth and survivability, not just the result of certain
mutations that hinder carbohydrate metabolism. A comprehensive omics approach
as discussed in this volume will contribute greatly to our understanding of this
fundamental observation made many years ago that has withstood the test of time
and countless studies, and along with genomic and proteomic investigations is sur-
facing again as a likely regulator, not a by-product, of cancer.

1.8 Emerging Roles of Hypoxia, Inflammation
and Reactive Oxygen Species in Cancer

A general understanding now exists that hypoxia and inflammation are linked in
cancer as well as in other pathological disorders. Hypoxia can lead to inflammation;
in turn, inflammation can also lead to hypoxia, both of which can contribute to can-
cer formation and survival (Grivennikov and Karin 2010; Grivennikov et al. 2010;
Eltzchig and Carmeliet 2011; Shay and Simon 2012; Ji 2014; Gorlach 2014).
Adding to this pathophysiological interplay, ROS are associated with both hypoxia
and inflammation, thus inextricably linking these three conditions and cellular com-
ponents to cancer (Gorlach 2014; Costa et al. 2014). ROS, including the superoxide
anion (O,"), hydroxyl radical (HO") and hydrogen peroxide (H,0,), are highly regu-
lated in cells through a combination of generation, e.g., mitochondrial metabolism,
and elimination, e.g., via a variety of routes such as superoxide dismutases, catalase,
glutathione peroxidase, thioredoxin and others. There are also reactive nitrogen spe-
cies, but these are not discussed in this section. As briefly mentioned in Sect. 1.7 and
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discussed further in subsequent chapters, ROS is elevated in cancer and is believed
to contribute to its initiation and subsequent cell growth (Waris and Ahsan 2006;
Lu et al. 2007; Liou and Storz 2010; Catalano et al. 2013; Costa et al. 2014).

Hypoxia, or low oxygen tensions, is defined as cellular environments in the
presence of 2 % or less oxygen. This is compared to normal, healthy cellular envi-
ronments of oxygen in the range of 2-9 % (except at high altitudes the air we breathe
is 21 % oxygen). Normal physiological responses to overcome hypoxia in the body
include increased blood flow and respiration. Under more chronic conditions of
hypoxia, two related heterodimers, HIF1a/HIF1f and HIF2a/HIF 2, respectively,
are key players in regulating the myriad cellular responses to low oxygen (Wilson
and Hay 2011; Shay and Simon 2012).

In normoxic conditions an enzyme, oxygen-sensitive prolyl hydroxylase,
hydroxylates two prolines in HIF 1 a, which results in recognition by an E3 ubiquitin
ligase, the von Hippel-Lindau tumor suppressor. The polyubiquinated HIF is then
targeted for degradation by the 26S proteosome, thus rendering it inactive at normal
oxygen tensions. Of interest, the degradation, even under normal oxygen concentra-
tions, can be overcome by mutations in several proteins and by certain signaling
pathways. As discussed earlier, HIF so stabilized is involved in enhancing glycolysis
and inhibiting oxidative phosphorylation.

Another enzyme (factor-inhibiting HIF) is also oxygen-dependent and can
inhibit HIF (via hydroxylation of asparagines on either of the two a subunits). It is
the combined action of these two enzymes that monitor and respond to oxygen
deprivation. At low oxygen concentrations prolyl oxidation is reduced and the
HIF Il subunit accumulates and associates with HIF1f. This HIFI heterodimer is
then translocated to the nucleus where it binds to a hypoxia-response element, thus
transcriptionally activating several genes including those encoding nuclear factor
kB (NFkB), toll-like receptors (TLRs), VEGFA and other growth factors, glucose
transporters, most of the glycolytic enzymes (see Fig. 1.2), some enzymes in the
pentose phosphate pathway (see Fig. 1.3) and others. These HIF-mediated gene
activations lead to changes in metabolism, one such adjustment being that ATP
production is shifted from oxidative respiration to glycolysis. This is a result of
HIF’s role in stimulating gene expression of pyruvate dehydrogenase kinase 1, an
enzyme that inhibits pyruvate dehydrogenase, the enzyme responsible for the reac-
tion, pyruvate to acetyl-CoA (see Reaction 1.4).

Inflammation refers to a rather detailed and multifaceted process of vascular tis-
sue in response to noxious or harmful stimuli, which can include hypoxia. The dis-
order, recognized some 2,000 years ago in the west by Celsus and Galen, is
characterized by swelling, pain, redness, heat and loss of mobility (or function of a
joint). Some of the normal responses of the body to overcome the harmful stimulus
include vasodilation of the surrounding vessels to permit more blood flow and
increased vessel permeability to permit leukocytes (mainly macrophages and other
immune cells), antibodies, fibrin and other components to escape the blood and
serve in a protective manner at the site of inflammation. Pertinent to our discussion
is the observation that chronic inflammation can lead to cancer, for example hepatitis
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B or C viruses give rise to liver cancer, Helicobacter pylori infections can result in
gastric cancer and tobacco smoking can induce lung and other forms of cancer, to
mention but a few.

It is now recognized that a number of mechanisms are involved in
inflammatory-associated tumorigenesis (Grivennikov and Karin 2010; Grivennikov
et al. 2010; Wu et al. 2014). Numerous signaling pathways lose their regulatory
controls and result in pro-inflammatory gene expression related to cancer forma-
tion. Genes so activated include protein kinases, e.g., members of the JAK (Janus-
activated kinase), MAPK (mitogen-activated protein kinase) and PI3K/AKT
(phosphatidylinositol-3-kinase), thus impacting on cell proliferation. As discussed
below, immune cells form an integral component of an inflammatory response.
Moreover, as will be elaborated on later in the book, cancer cells develop an ability
to escape immune destruction and instead use such cells, e.g., lymphocytes (T and
B), macrophages, natural killer cells, neutrophils, and others, to produce cytokines
that can function in a mitogenic or survival role for the developing, as well as estab-
lished, cancer cells. For example, cytokines can activate transcription factors such
as STAT3 and NFkB that, in turn, can lead to the expression of many genes associ-
ated with tumorigenesis: angiogenic regulators, proliferation mediators and anti-
apoptosis. Lastly, it has been shown that ultraviolet radiation to melanoma produces
an inflammatory response that leads to metastasis (Bald et al. 2014), again docu-
menting the important role of inflammation in cancer.

Recent studies have shown that hypoxia and inflammation are inextricably
linked components of cancer. Solid tumors tend to be hypoxic and exhibit features
of inflammation. For example, the presence of leukocytes in tumors was noted
about 200 years ago. The main component of immune cells within solid tumors is
now known to be macrophages, designated macrophage-associated tumors
(TAMs). Hypoxia can give rise to inflammation; inflamed tissues are often hypoxic.
Both hypoxia and inflammation trigger a series of biological responses that favor
cancer growth. As described above, hypoxia of cancer cells, for example, leads to
the transcriptional activation of NFxB and TLRs, as well as other genes encoding
proteins involved in the endothelial-to-mesenchymal transition, metastasis, angio-
genesis, cell proliferation (HIF2a, but not HIF I a, increases c-MYC activity) and
activation of TAMs via secretion of chemokines and cytokines. In addition,
hypoxia increases ROS and down-regulates DNA repair mechanisms. Similarly,
leukocytes can be recruited and activated by the hypoxic cancer cells and, more-
over, respond to hypoxia, also via NFkB and TLRs, by secreting chemokines and
cytokines, as well as additional signals that enhance angiogenesis and other param-
eters favorable for cancer survival and growth. Necrotic cancer cells, acting
through TLRs, also activate TAMs. Thus, rather than being benign or even negative
aspects of cancer, hypoxia and inflammation participate in promoting cancer
growth and metastasis.

Again the case is made for the need of incorporating omics approaches to aid in
unraveling the many and often overlapping biological processes. The combination
of experimental and computational biology is required to reduce the often confusing



28 1 Basic Cancer Biology

and, at times, paradoxical findings into a rational framework. Then and only then
can the intricacies of cancer be fully appreciated and individual therapeutic regi-
mens devised.

1.9 Overcoming Apoptosis

For survival all cancer cells must overcome apoptosis, i.e., programmed cell death
(Elmore 2007). Apoptosis refers to a series of cellular events including plasma
membrane breakage, reduction in cell volume, swelling of mitochondria, and chro-
matin fragmentation. There are two major pathways involved in apoptosis, namely
an intrinsic and an extrinsic cascade; in addition, a third pathway, activated by natu-
ral killer (NK) cells and cytotoxic T lymphocytes, serves to lead to apoptosis of
targeted cells.

The intrinsic pathway will be discussed first. This pathway is initiated by a vari-
ety of non-receptor-mediated factors that activate intracellular signaling pathways.
These initiators can be quite diverse and include external and internal factors such
as toxins, radiation, free radicals, viral infections and others. Also, certain proteins,
e.g., cytokines, can initiate apoptosis simply by their absence, the presence of which
inhibits apoptosis. The tumor suppressor protein P53 is very much at the center of
regulating this pathway, as are mitochondria. An important class of proteins is the
BCL2 family that contains both pro-apoptotic members (BAX, BAK, BID, BOK and
others) and anti-apoptotic members (BCL2, BCLXL, MCLI and others). The link
between P53 and the BCL pro-apoptotic proteins is not well understood, but the
proteins are known to act on the inner mitochondrial membrane and open the mito-
chondrial permeability transition (MPT) pore with a loss of the mitochondrial trans-
membrane potential and the initial release of cytochrome ¢, SMAC/DIABLO and a
serine protease HTRA2/OMI. The heme-containing protein, cytochrome c, interacts
with APAFI to make the apoptosome, and this structure activates procaspase-9, a
member of the caspase (cysteine aspartyl-specific proteases) family of proteases,
converting it to the enzymatically active form, caspase-9. The activated caspase-9
then activates the first of the so-called executioner pro-caspases, pro-caspase-3; this
in turn continues the proteolytic cascade via the activation of pro-caspases 6 and 7.
These proteases serve to cleave a variety of proteins termed death substrates that
contribute to the destruction of the cell. Two other mitochondrial proteins released
in apoptosis are SMAC/DIABLO and HTRA2/OMI, which function to inhibit JAP
(inhibitors of apoptosis), that otherwise would antagonize caspase-9. Later in apop-
tosis several additional proteins are released from the mitochondria, AIF, endonu-
clease G and CAD, three proteins that are responsible for fragmenting DNA and
chromatin condensation.

A distinct pathway, the extrinsic pathway, can mediate apoptosis via transmem-
brane receptors (referred to as death receptors) that belong to the superfamily of
TNF (tumor necrosis factor) receptors. Members of this family include TNFRI,
FASR, DR3, DR4 and DRS5, and these bind, respectively, TNFa, FASL, APO3L and
APO?2 (or TRAIL) that associates with both DR4 and DR5 (also termed TRAILRI
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and TRAILR?2, respectively). The ligands bind to their cognate receptor ectodomain,
thus triggering a conformational change transmitted through the membrane a cyto-
plasmic death domain, common to all death receptors. The death domain then binds
and activates a FAS-associated death domain protein (FADD); the complex so
formed is denoted as a death-inducing signaling complex (DISC). The role of DISC
in apoptosis is to activate procaspase-8 (or in some cases procaspase-10) that, in
turn, is responsible for activating pro-caspases 3, 6 and 7. This latter event repre-
sents a converging point for the intrinsic and extrinsic pathways. Moreover, a com-
ponent of the intrinsic pathway can be recruited to enhance the extrinsic pathway.
Here, BID, a member of the BCL2 family, is activated by caspase 3 and functions to
open mitochondrial channels, resulting in increased signaling for apoptosis.

The third pathway, also an extrinsic pathway but one requiring NK cells or cyto-
toxic T lymphocytes to initiate apoptosis, acts via two mechanisms. The most com-
mon one acts through the FAS/FASR interaction, and the other involves the proteases
granzyme A and granzyme B. These enzymes enter the cell after perforin, a pore-
forming protein that opens a channel into the targeted cell, and trigger apoptosis as
follows. While both function, it appears that granzyme B is the more common of the
two pathways. This protease exhibits specificity for cleaving proteins at Asp resi-
dues, and consequently serves to activate procaspase-3 and procaspase-10, as well
as cleaving intracellular proteins. Granzyme A, acting independently of the caspase
system, leads to DNA degradation by its actions on two proteins, DNAse NM23H1
and SET, a nucleosome assembly protein.

These pathways, covered in greater depth elsewhere (Elmore 2007), represent
challenges that cancer cells must overcome. The many mechanisms used by cancer
cells to avoid apoptosis are discussed by Weinberg (Weinberg 2012) and reflect a
multi-faceted approach to escape early destruction by the body. One of these
responses by a variety of cancer cells is an inhibition, e.g., by overexpression of
MDM? resulting in an inactivation of the P53 pathway, thus diminishing its role in
apoptosis, as well as permitting cells with damaged DNA to progress through the
cell cycle. The same is true for the RB pathway, hence overcoming the negative
regulation of the cell cycle exerted by this tumor suppressor protein.

Growth factors such as insulin-like growth factor /IGF1 are important in main-
taining cell viability, and these may become overexpressed with a concomitant
reduction in the expression or activity of the /GF binding proteins (/IGFBPs) that
otherwise would render them ineffective. Among the many intracellular signaling
pathways activated by IGF, one important one for cancer cells is the activation of
the PI3K-AKT/PKB pathway that results in anti-apoptotic signals. Another mecha-
nism utilized by cancer cells is the overexpression of survivin, an inhibitor of cas-
pases. An inhibitor of the extrinsic apoptotic pathway such as FLIP is often
expressed to reduce apoptosis in cancer cells. These are but a few of the many
changes that have been observed in cancer cells to overcome apoptosis. Indeed,
cancer cells have devised multiple strategies for minimizing or even abolishing the
three pathways used by normal cells for programmed death. Obviously there is
much interest in the design of new drugs that act on these various steps found in
cancer cells to aid their survival. This is another major area of interest where the use
of omics can contribute significantly to new treatment options.
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1.10 Contributions of the Extracellular Matrix
and Stroma to Cancer

In addition to the changes in the cellular component associated with cancer, there is
an important non-cellular component, the ECM, as well as the surrounding stromal
cells, both of which have essential roles in the development and progression of can-
cer. Originally believed to be more of a static unit that maintains tissue integrity, it
is now recognized that the ECM is vital to normal cellular function and has emerged
as another key factor of cancer initiation and metastasis (Friedl and Alexander 2011;
Jinka et al. 2010; Lu et al. 2012; van Dijk et al. 2013). Likewise, the neighboring
stromal cells (e.g., fibroblasts), immune cells and endothelial cells (reflecting blood
vessel formation), were originally believed to have no role in cancer, but there are
now inconvertible data showing that these non-transformed cells contribute signifi-
cantly to cancer progression (Bhowmick et al. 2004; Tripathi et al. 2012; Calona
et al. 2014; Corteza et al. 2014; De Wevera et al. 2014; Escoté and Fajas 2014;
Martinez-Outschoorna et al. 2014). Two key properties of ECM are particularly
important in the current context: (1) a large number of growth factors tend to be
stored with or linked to ECMs and (2) hyaluronic acid, a component of the ECM,
has essential roles in all key transitions during carcinogenesis (see Chaps. 6 and 10).

ECM serves as a magnet and storage for a variety of growth factors released into
the extracellular space, possibly as a way for their protection against degradation
and to maintain them in close proximity to cells. ECM retains growth factors, e.g.,
bone morphogenetic protein (BMP), epidermal growth factor (EGF), fibroblast
growth factor (FGF), hepatocyte growth factor (HGF), transforming growth factor
B (TGFp) and vascular endothelial growth factor (VEGF), by direct binding with
ECM proteins such as fibronectin, collagens and proteoglycans (Schultz and
Wysocki 2009). Biologically this seems logical since ECM serves as the basis for
tissue cells; when a tissue is injured, the damaged ECM will lease its stored growth
factors, thus facilitating tissue regeneration and repair.

Constituting a complex network, the ECM contains two main classes of extracel-
lular macromolecules: proteoglycans and fibrous proteins. Several fibrous proteins
constitute the non-proteoglycan portion, including the glycoproteins collagen, elas-
tin, fibronectin and laminin. Proteoglycans are formed by the covalent attachment of
glycosaminoglycans to proteins. The one exception is that of hyaluronic acid which
is not attached to protein. Figure 1.6 shows a schematic illustration of the organiza-
tion of the ECM.

Glycosaminoglycans refer to unbranched polysaccharide chains comprised of
repeating disaccharide units, one of which is an amino sugar. The major amino sug-
ars in glycosaminoglycans are N-acetyl-p-glucosamine and N-acetylgalactosamine,
and the adjoining non-amino sugar is generally p-glucuronic acid or L-iduronic acid.
Hyaluronic acid is a glycosaminoglycan like heparin, chondroitin-4-sulfate, chon-
droitin-6-sulfate, keratin sulfate and dermatan sulfate, and in general, is polydis-
perse and can contain up to some 250,000 units of the disaccharide p-glucuronic
acid and N-acetyl-p-glucosamine connected in a p(1 — 3) linkage (Fig. 1.7).
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Fig. 1.7 The structure of the repeating disaccharide, p-glucuronic acid and N-acetyl-p-
glucosamine, that forms hyaluronic acid

The disaccharides are connected to each other in a B(1 —4) linkage. Negatively
charged due to the COO~ group on D-glucuronic acid, hyaluronic acid is a high
molecular weight polyanion that binds several cations such as K*, Na* and Ca*". It
forms a left-handed helix (single strand), one turn of which contains three disac-
charides. Pertinent to our interest in this volume, fragments of hyaluronic acid,
cleaved by hyaluronidase, have emerged as important structures in cancer, as will be
discussed in Chap. 6.

The combination of these complex macromolecular structures yields special
biochemical, biomechanical and biophysical properties to the ECM. Although
highly complex in nature, the ECM is nonetheless highly regulated during develop-
ment and tissue homeostasis. Such tight regulation implies well-controlled
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transcription, translation and post-translational modifications, and of course
remodeling that, for example, may alter the synthesis of one or more components.
In addition to the regulation of bioactive ECM macromolecules functioning as
structural and cell interaction components, the expression and/or activation of one
or more of the ECM degrading enzymes, e.g., matrix metalloproteinases, disinteg-
rin and others, may be changed.

Interaction of the ECM with cells requires a host of macromolecular constitu-
ents. One interaction involves members of the class of proteins denoted as integrins.
These are heterodimeric (one each of an a and a f subunit) cell surface receptors of
which 24 are known, formed from 18 o and 8 § subunits. The integrin ectodomains
exhibit binding specificity for a host of ECM macromolecular ligands, including
members of the collagen family, fibronectin, laminin, vitronectin and elastin. The
ECM ligand-integrin complex mediates its action intracellularly via focal adhesions
in which the ligand-bound integrins form clusters, followed by interaction of the
integrin cytoplasmic components with a number of cytoskeletal-associated proteins,
actin, vinculin, talin and others. Such ‘outside-in’ signaling of ECM-cell interac-
tions can lead to activation of a number of intracellular signaling pathways involv-
ing tyrosine kinases, e.g. SRC, focal adhesion kinase (FAK), integrin-linked kinase
(ILK), extracellular-signal-regulated kinase (ERK) and others, and tyrosine phos-
phatases. A particular integrin, 1, is responsible for interacting with the ECM to
regulate cell polarity, an important aspect of epithelial cells, particularly relevant to
their division. Of interest, the complex just described in which integrin serves as a
link between the ECM and the cell interior can function not only for the transmis-
sion of information from the extracellular milieu to the cell interior, but the various
intracellular interactions with integrin can affect the type of ECM interaction, i.e.,
signaling from the cell interior to the cell exterior (‘inside-out’ signaling).

Throughout embryonic development and normal tissue differentiation and
homeostasis, there is close interaction between the epithelial cells and the stromal
cells. In addition to the important role of epithelial-stromal interaction in normal
tissue function, such a cooperation functions in pathological states, e.g., wound
healing and cancer, with elaboration on the latter below.

With this abbreviated introduction, the question arises as to how the ECM and
stroma affect the initiation, development and metastasis of cancer. For one, the vari-
ous ECM-cell interactions impact on processes critical to cancer such as prolifera-
tion, survival, invasion and migration. An important aspect of tumor initiation and
progression involves a change in the integrin expression pattern (Jinka et al. 2012).
Higher levels of expression of several integrins correlate with a host of cellular pro-
cesses conducive to cancer growth and survival: cell proliferation, survival, tissue
invasion, migration and new blood vessel formation (angiogenesis). The various
integrins preferentially recognize different components of the ECM, e.g., collagen,
laminin and fibronectin. These interactions, in turn, lead to activation of a variety of
signaling cascades, including RAS, SRC and others. Several oncogenes, MYC, SRC
and RAS, appear to be responsible for the transformation of anchorage-dependent
cell growth (normal cells) to anchorage-independent cell growth (cancer cells),
which is discussed in detail in Chap. 6.


http://dx.doi.org/10.1007/978-1-4939-1381-7_6

1.11 Challenging Questions in Classifying and Diagnosing Cancer 33

Changing our focus to the stromal fibroblasts, it has been known for some time
that cancer-associated fibroblasts differ from normal fibroblasts (Tripathi et al.
2012). For example, cancer-associated fibroblasts can respond to transformed epi-
thelial cells with increased production of proteases, growth factors and collagen;
moreover, the loss of transforming growth factor-p (TGFJ) on fibroblasts can serve
as initiators of tumorigenesis. The stroma also responds to secretion of VEGF by
cancer cells, a necessary event in the promotion of new blood vessels to provide
blood-borne nutrients for a growing tumor and for colonization to distant sites.

In summary, the interactions of epithelial cells with the ECM and stroma contrib-
ute to the formation and growth of epithelial cell cancer, as further discussed in
multiple chapters of the book. A better understanding of the various players and
mechanisms could lead to new therapeutic modalities.

1.11 Challenging Questions in Classifying
and Diagnosing Cancer

With the plethora of potential causes of cancer, ranging from metabolic alterations,
hypoxia, inflammation, genomic changes and other changes, coupled with the
known heterogeneity of this disease, it should be no surprise that attempts to consis-
tently classify the extent and severity of cancer are challenging. In large part, the
identification is based on the site of origin, the appearance of the cells, again com-
promised to some extent by the heterogeneity of cancer, and its spread to distant
sites (often not known). This section provides a synopsis of the current methods in
use for cancer diagnosis, grading and staging; a more detailed discussion and the
introduction of emerging omic contributions are presented in Chap. 3.

Complementing the physical examination, there are a number of techniques in
current use to aid in the identification of cancer. These include mammography,
positron emission tomography (PET scanning), magnetic resonance (MR) imaging,
and in some instances radiographic analysis and measurement of biomarkers, e.g.
concentration of circulating prostate specific antigen (PSA). The final diagnosis is,
however, based on pathological examination of tissue sections from biopsy or
resection.

A specimen is judged to be benign or malignant and is then graded. The pur-
pose of cancer grading is to provide an assessment of how abnormal the cells
appear and indicate possible treatment modalities. In addition to visual inspection
of the section, immunocytochemistry is often used to identify the presence of cer-
tain markers that impact on treatment and prognosis, e.g. estrogen receptor in
breast cancer. Grading of most solid tumors is done using one of four possibilities,
although prostate cancer grading is based on a different scale. Aside from GX
which indicates that the grade cannot be assessed, grading will lead to one of the
following, where high grade tumors require more aggressive treatment than low
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grade tumors: G1: well differentiated (low grade); G2: moderately differentiated
(intermediate grade); G3: poorly differentiated (high grade); and G4: undifferenti-
ated (high grade).

Cancer staging, on the other hand, is an assessment of the severity of an
individual’s cancer, and the stage assigned influences the choice of treatment and
provides some information of the prognosis. The following components impact of
the staging: tumor size and location, lymph node involvement, cell type and
metastasis. The TNM staging system refers to the following three elements: T:
extent of the tumor; N: whether or not the cancer cells are present in close proximity
in lymph nodes; and M: whether metastasis has occurred.

The extent of the tumor, aside from TX (the primary tumor for whatever reason
cannot be evaluated) or TO (there is no evidence of a primary tumor), is given as Tis,
referring to carcinoma in situ where the abnormal cells are localized and have not
spread to other sites, or one of four designations: T1, T2, T3 and T4, reflecting the
size and extent of the primary tumor. The regional lymph nodes, i.e., in close prox-
imity to the primary tumor, can be designated as NX in which the neighboring
lymph nodes cannot be evaluated; NO which specifies that lymph nodes in the
immediate vicinity are not involved; and N1, N2, N3, indicating the number of
lymph nodes showing involvement. Distant metastasis is represented by MX, MO or
M1, referring to metastasis that cannot be evaluated, no metastasis, or the presence
of metastasis, respectively.

It is mentioned only in passing that this staging method is not used for all can-
cers, but it covers the majority of solid tumors. Yet, the current grading and staging
systems are quite subjective in many aspects and woefully inadequate in fully char-
acterizing the important genetic changes leading to the particular molecular and
cellular alterations in transformed cells; moreover, they lack discriminatory power
when making choices for adjuvant treatment and for predicting likely outcomes
with any degree of confidence.

The landscape of cancer characterization is rapidly changing with individual
genome sequencing and the use of many of the omics techniques in this volume
(Cowin et al. 2010). For example, a comprehensive study of breast cancer from 510
tumors obtained from 507 patients was conducted using a variety of methods:
exome sequencing, microRNA sequencing, DNA methylation, genomic DNA copy
number arrays, mRNA arrays and reverse-phase protein arrays (The Cancer Genome
Atlas Network 2012c). Upon combining data from five platforms, they were able to
classify four major classes of breast cancer in their starting population.

Studies such as this, now in the experimental stages, will surely emerge in time
to offer a more meaningful and systematic classification of all cancers. Such detailed
characterization should also prove very useful in deciding on treatment options and
providing better prognoses for likely outcomes and disease recurrence. Detailed
data of this type will also prove useful in distinguishing driver from passenger muta-
tions and hopefully will provide specificity in seeking specific biomarkers in serum
or urine.
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1.12 Concluding Remarks

Cancer is a multi-faceted disease, a full understanding of which requires knowledge
and information that span a number of scientific disciplines including biochemistry,
genetics, and molecular, cellular and developmental biology. The material covered
in this chapter on biochemistry and molecular and cellular biology provides the
basic knowledge for the reader to follow the discussions in later chapters and to
critically assess and utilize the material presented throughout the book for the
reader’s own research. It is worth emphasizing that cancer is a rapidly evolving
system, so that the knowledge learned here, such as biochemical reactions or molec-
ular interactions, is applicable to individual snapshots of an evolving system.
Specifically, the environments where the biochemical reactions and molecular inter-
actions take place continue to change. As the environment changes, the catalysts of
these reactions and interactions will be altered according to the instructions encoded
in the genome and the epigenome in response to the intra- and extracellular condi-
tions, such as the oxygen level, the oxidative stress, the pH and a few others, which
are determined by invading endogenous factors, immune responses, cellular metab-
olism, the genome and epigenomes of the relevant cells. Basically attention is drawn
to the study of a dynamic biochemical reaction system. Superimposed upon this
evolving cellular reaction system for individual cells, changes also occur at the can-
cer tissue level, which selects certain cells, and hence their reaction systems that
best fit the current environment, and eliminate the others, i.e., Darwin’s natural
selection theory at work. Specifically, a cancer tissue is constantly changing its cell
population by amplifying one sub-clone and inducing the demise of the other sub-
clones as the disease evolves. The knowledge learned here is applicable to each
snapshot as a static reaction system, and the information presented in Chaps. 3
through 13 will guide the reader to connect the snapshots along the possible evolu-
tion trajectories from multiple perspectives.
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Chapter 2
Omic Data, Information Derivable
and Computational Needs

Cancer is probably the most complex class of human diseases. Its complexity lies
in: (1) its rapidly evolving population of cells that drift away from their normal
functional states at the molecular, epigenomic and genomic levels, (2) its growth
and expansion to encroach and replace normal tissue cells; and (3) its abilities to
resist both endogenous and exogenous measures for stopping or slowing down its
growth. According to Hanahan and Weinberg, cancer cells, regardless of the type,
tend to have eight hallmark characteristics (Hanahan and Weinberg 2011). As intro-
duced in Chap. 1, these hallmarks are: (1) reprogrammed energy metabolism, (2)
sustained cell-growth signaling, (3) evading growth suppressors, (4) resisting cell
death, (5) enabling replicative immortality, (6) inducing angiogenesis, (7) avoiding
immune destruction, and (8) activating cell invasion and metastasis. Other authors
have suggested some additional hallmarks of cancer such as tumor-promoting
inflammation (Colotta et al. 2009) and deregulated extracellular matrix dynamics
(Lu et al. 2012). These recognized hallmarks have provided an effective framework
for addressing cancer-related questions, having led to a deeper understanding of
this disease. However, the reality is that our overall ability in curing cancer has not
yet made substantive improvements, particularly in adult cancers that account for
99 % of all cancers since the start of the “War on Cancer” in 1971 (The-National-
Cancer-Act 1971).

Major challenging issues that clinical oncologists have to deal with include not
only considerable heterogeneity and different genetic backgrounds even within the
same type of cancer, but also that effective medicines tend to lose their efficacious-
ness within a year, or often within a few months. A natural question to pose is:
What are the reasons for this loss of effectiveness? Intuitively this is due to a can-
cer’s ability to evolve rapidly, particularly in terms of generating drug-resistant
sub-populations, which is facilitated by its abilities to proliferate and to accumu-
late genomic mutations rapidly. However, such an answer, plausible as it may be,
has possibly missed the real root issue: Why do these cells divide so rapidly in the
first place?
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The Red Queen Hypothesis, proposed by Leigh Van Valen in 1973, may provide
a good framework for studying this and other cancer-related fundamental issues
from an evolutionary perspective. The hypothesis states: an adaptation in a popula-
tion of one species may change the selection pressure on a population of another
species. giving rise to an antagonistic coevolution (Valen 1973). When in this frame
of thinking, one may be inspired to ask: What specific selection pressures must the
evolving neoplastic cells overcome, pressures that may drive their rapid prolifera-
tion? Currently we do not have an answer to this question yet. Among the many
reasons that our knowledge is so sparse has been the lack of molecular-level data,
full analyses and mining of which can potentially reveal the full complexity of an
evolving cancer. While large quantities of omic data such as genomic, epigenomic,
transcriptomic, metabolomic and proteomic data have been generated for a variety
of cancer types, only a few cancer studies have been designed to take full advantage
of all the information derivable from the available omic data (Cancer-Genome-
Atlas-Research 2008, 2011, 2012a, b, ¢, 2013a, b; Kandoth et al. 2013). Integrative
analyses of multiple data types may prove to be essential to gain a full and
systems-level understanding about a cancer’s evolution dynamics, including the
elucidation of its true drivers as well as key facilitators at different developmental
stages of a cancer. We anticipate that only when all of the key information hidden in
omic data can be fully derived and utilized can we expect a meaningful breakthrough
in our understanding of cancer.

2.1 Genomic Sequence Data

The Human Genome Project was initiated in 1986 by the US Department of Energy
and the National Institutes of Health, which ultimately led to the generation of the
first digital copies of two complete human genomes in 2001 (Lander et al. 2001;
Venter et al. 2001), one by government agencies and one by a private organization.
For the first time in history, the three billion base pairs (bps) of nucleotides compris-
ing a complete human genome are represented in a digital form, directly readable by
humans and computers, allowing researchers and clinicians to view and analyze the
detailed genetic makeup of two healthy humans. This singular achievement has pro-
foundly changed biological and medical sciences, clearly representing the most sig-
nificant discovery since the finding of the double-strand helical structure of DNA in
1950s. Complementing and extending the invaluable genome sequence data, the
major change that the Human Genome Project has brought about is that genetic sci-
ence is now equipped with two powerful tools: rapid genome-sequence generation
and computation-based information discovery from the genomic sequences. These
tools along with the advances they have helped to make in the biological sciences,
have fundamentally transformed the science of genetics, which is now data-rich and
quantitative. This transition has attracted and continues to attract many mathemati-
cal and computational scientists to study problems related to genomes and other bio-
molecules represented in digital forms. The progress made has further transformed
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the general biological sciences and has substantially advanced our overall ability to
study more complex biological problems than could be done before the omic era.

With the public availability of digitally represented human genomes in hand,
scientists have computationally identified the vast majority of the ~20,000 protein-
encoding genes in our genome, along with large numbers of single-nucleotide poly-
morphisms (SNPs) and other types of genetic variations across individuals and
different ethnic groups as well as various disease groups. Targeted sequencing of
specific genomic regions deemed to be relevant to certain diseases has led to the
identification of numerous genetic markers for multiple diseases. For example,
Down syndrome is now understood to be caused by an extra copy of chromosome 21.
A few additional examples include: (1) adrenoleukodystrophy, a progressive degen-
erative myelin disorder caused by mutations in the ABCDI (ATP-binding cascade
subfamily D) gene, which was made popular because of the movie “Lorenzo’s Oil”
in the early 1990s; (2) a class of hereditary breast cancers caused by mutations in
the BRCA (breast cancer) genes; (3) familial hyperlipidemia attributable to mutations
in the APC (adenomatous polyposis coli) gene; and (4) frontotemporal dementia, a
form of inherited dementia, caused by mutations related to the splicing of exon 10
of the Tau gene (D’Souza et al. 1999). All these were detected through genome-
scale or targeted gene sequencing and associated sequence analyses.

In addition to the Human Genome Project, a number of closely related genome
sequencing projects have been established to provide a more comprehensive dataset
for the human genome(s): (1) the Human Genome Diversity Project to document
genomic differences across different ethnic groups (Cavalli-Sforza 2005); (2) the
Human Variome Project to establish relationships between human genomic varia-
tions and diseases (Cotton et al. 2008); (3) the International HapMap Project to
develop a haplotype map of the human genome (International-HapMap 2003); (4)
the 1000 Genome Project to establish a detailed catalog of all human genetic varia-
tions (Service 2006); and (5) the Personal Genome Project to sequence the complete
genomes and establish the matching medical records of 100,000 individuals (Church
2005). All these sequencing projects, along with other related ones, such as the
Neanderthal Genome Project (Green et al. 2010) and the Chimpanzee Genome
Project (Cheng et al. 2005; Green et al. 2010), could provide a comprehensive view
of the genomes of healthy humans with normal polymorphisms as well as mutations
associated with various diseases.

The Cancer Genome Atlas (TCGA) represents probably the most ambitious
cancer-genome sequencing project, which aims to sequence up to 10,000 cancer
genomes covering 25 major cancer types by 2014 and make the data publicly avail-
able (Cancer-Genome-Atlas-Research et al. 2013). Such data will provide a sub-
stantial amount of information about cancer-related genomic mutations. By
comparing the genome sequences of a cancer and the matching normal tissue, one
can identify all the genomic changes in the cancer genome, which generally fall into
two categories: simple and complex mutations. Specifically, simple mutations refer
to single base-pair mutations and DNA single or double-strand breaks; and complex
mutations refer to duplications and deletions (together referred to as copy-number
changes), translocations and inversions of genomic segments. Simple mutations can
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result from exogenous factors such as radiation, air-borne and food-related
carcinogens in the environment, as well as from endogenous factors in the microen-
vironments inside our bodies, including ROS (reactive oxygen species) and other
reactive metabolites plus random mutations. For example, ionizing radiation,
including X-rays and gamma rays, can directly cause point mutations and DNA
breaks. In addition, a variety of non-radioactive carcinogens have been identified
that can damage DNA, including microbes, chemical compounds in the environ-
ment and reactive species inside our cells, as detailed in Chap. 5. Free radicals rep-
resent a large class of internal, potentially carcinogenic agents that are highly
reactive molecules and can participate in undesired reactions, causing damages to
cells and specifically to DNA. Infidelity of transcription and/or repair can also lead
to simple mutations. While these carcinogens can produce simple DNA damages, it
is the faulty or imprecise DNA replication and repair machineries that lead to the
complex mutations, namely undesired duplications, deletions, inversions and trans-
locations of large DNA segments.

There are multiple situations that can result in such complex genomic mutations.
For example, under persistent hypoxic conditions, cells tend to use emergency
mechanisms to repair simple mutations, but the inaccuracy of such mechanisms can
lead to complex mutations as defined above (Scanlon and Glazer 2013). Here we
outline one such mechanism, named microhomology-mediated end joining (MMEJ)
for repairing double-strand DNA breaks, through which undesired DNA copy-
number changes, inversions and translocations can result (Truong et al. 2013). Like
the regular repair mechanism for double-strand breaks, MMEIJ uses the sister chro-
mosome as the template to replace the region with a break. The difference is that it
uses a much shorter homologous region in the sister chromosome, typically 5-25 bps
rather than the usual 200 bps required by the normal DNA repair mechanism, hence
the designation microhomology-mediated. While the advantage is that this mecha-
nism is substantially faster than the regular DNA repair machinery, which is needed
under certain emergency conditions, it is error prone due to the less stringent
requirement for finding the equivalent region in the sister chromosome, thus leading
to various complex mutations (Bentley et al. 2004). This mechanism is used only
under highly stressful conditions when the regular DNA repair mechanisms are
functionally repressed (Bindra et al. 2007), and hence is often used in cancer-
associated environments.

Knowing how different genomic mutations occur, one could possibly develop
computational models to infer the evolutionary history of the mutations observed in
a cancer genome from the matching reference genome. The idea is that one can first
identify all the genomic differences between a cancer genome and the matching
reference genome. For each identified complex mutation, one can apply a mechanis-
tic model like the one outlined above (or from the literature) to predict how it occurs
from the previous generation of the genome, while simple mutations can be assumed
to take place randomly according to some stochastic models. It is worth noting that
some of the evolutionary intermediates (mutations) may or may not be present in the
cancer genome, due to the possibilities that some portions of the genome might have
been deleted during evolution. In addition, it should be emphasized that such an
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approach (even when taking into consideration the other emergency DNA repair
mechanisms) may not necessarily yield a unique evolutionary path from the refer-
ence to the cancer genome. One possible way to constrain this phylogenetic recon-
struction problem to a solution space as small as possible is to find such a path under
the parsimony assumption (Steel and Penny 2000), as often used in phylogenetic
reconstruction algorithms. Specifically one can require that the predicted evolution-
ary path have either the smallest number of generations or the highest consistency
with the occurrence probabilities of different types of mutations as documented in
the literature. As of now, no such algorithms have been published for making evolu-
tionary path predictions, but the need for such tools is clearly there in order to
understand the evolution of a cancer genome.

Various other types of information may also be derivable from cancer genomes,
such as: (1) oncogenes and tumor suppressor genes (see Chap. 1 for definition) that
may be specific to a particular cancer type. Examples include gene fusions as in the
case of the Philadelphia chromosome for chronic myelogenous leukemia (CML)
(Nowell and Hungerford 1960); (2) potential integration of microbial genes into the
cancer genomes as in the case of hepatitis B virus genes integrated into the host
genome; (3) biological pathways that are enriched with genetic mutations in a par-
ticular cancer, leading to the loss of function at the pathway level; and (4) changes
in mutation patterns as a cancer advances.

By systematically identifying mutations in the genomes of multiple patients of
the same cancer type, one can identify biological pathways enriched with such
mutations, using analysis tools like DAVID (Huang et al. 2009) against pathway
databases such as KEGG (Kanehisa et al. 2010, 2012, 2014), BIOCARTA
(Nishimura 2001) or cancer-related gene sets (Forbes et al. 2011; Chen et al. 2013;
Zhao et al. 2013). For example, a study, published in 2007 on genomic mutations
observed across 210 cancer types, discovered that the pathway having the highest
enrichment with non-synonymous mutations is the FGF (fibroblast growth factor)
signaling pathway, revealing one commonality among changes needed by cancer
evolution across different cancer types (Greenman et al. 2007). With such informa-
tion, one can further infer which cellular processes need to be terminated or become
hyperactive in any specific order as a cancer evolves, hence possibly developing
new insights about the evolutionary paths unique to particular cancer types or com-
mon among all cancer types.

2.2 Epigenomic Data

Epigenomic data provide information about all the chemical modifications on the
genomic DNA and associated histone proteins in a cell, namely DNA methylation
and histone modification, among a few other less studied epigenomic activity types.
While epigenetic analyses are not new, it is the high-throughput array and sequenc-
ing techniques that have made such analyses at a genome scale possible and have
clearly advanced our overall capabilities to study cancer.
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DNA methylation is a process by which a methyl group is added to the carbon 5
position of cytosine residues (C) in CpG dinucleotides. This is accomplished
through a group of enzymes known as DNA methyl-transferases, the reactions of
which can be reversed by another group of enzymes termed DNA demethylases.
When a CpG region is highly methylated, they attract a group of enzymes called
histone deacetylases that will initiate chromatin remodeling to change the local
structure of the DNA, hence changing its accessibility to large molecular structures
such as the transcription machinery, RNA polymerase. Since long CpG regions
(denoted as CpG islands) tend to be associated with the promoters of genes, meth-
ylation of such regions represses the expression of the genes.

Histones are proteins that bind with DNA to form the basic folding units, denoted
as nucleosomes, of chromatin, as introduced in Chap. 1. The packing density of
chromatin is closely related to the transcriptional state of a gene, i.e., lower packing
density implying higher transcriptional activity. Cells change their chromatin struc-
tures through post-translational modifications on the relevant histones, including
acetylation, deamination, methylation, phosphorylation, SUMOylation and ubiqui-
tination. The understanding is that interactions between histones and DNA are
formed by electrostatic attraction between the positive charges on the histone sur-
face and the negative charges on DNA. Consequently, modifications on histones
may change the charges of the surface residues, possibly changing the conformation
and the transcriptional accessibility of a folded DNA and ultimately enhancing or
repressing expression of the relevant genes (Strahl and Allis 2000; Kamakaka and
Biggins 2005). Another mechanism is through recruiting and applying chromatin
remodeling AT Pases, where histone modifications can lead to disruptions of ATPase
attraction to the chromatin, hence altering the DNA’s physical accessibility to the
RNA polymerase (Vignali et al. 2000).

Various techniques have been developed to reliably capture DNA methylations
and histone modifications at a genome scale. Among the assays that have been used
for detecting methylations is the bisulfite sequencing technique (Yang et al. 2004).
By converting each methylated C to a T and removing the methylation, the bisulfite
method utilizes the current sequencing techniques to produce the modified sequence
and then recovers the methylation locations through comparisons between the
sequenced Ts and Cs at the same locations in the original DNA and the modified
DNA done as above.

Histone modification sites can be detected using the ChIP-chip array technique
(Huebert et al. 2006), which has previously been used to identify the binding sites
of transcriptional factors. The difference here is to detect the DNA binding sites
with histones relevant to the packing of DNA. Comparisons between the identified
DNA binding sites under different conditions can lead to the identification of modi-
fied chromatin structures. The advancement of sequencing techniques in the past
few years has led to the development of the second generation ChIP technique,
namely ChIP-seq, which can provide more quantitative and reliable data about his-
tone modification sites.

From either of the two types of epigenomic data, one can infer genes that are
primed to be repressed or enhanced transcriptionally at the epigenomic level.
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These data, in conjunction with other omic data such as transcriptomic and genomic
information, can be used to derive association relationships between epigenomic
activities and the cellular as well as micro-environmental states. This can lead to
identification of possible triggers and regulatory pathways of different epigenomic
activities. Information of this type is clearly needed since, although numerous
epigenomic effectors such the enzymes for DNA methylation and histone modifi-
cations have been identified, very little is known about the regulation of these
effectors and under what conditions a specific set of genes will be methylated. As
discussed in Chap. 9, epigenomic level changes can be considered as an intermedi-
ate step between (reversible) functional state changes of effector molecules and
(permanent) genomic mutations. A detailed discussion regarding the possible rela-
tionships among these three types of changes needed by evolving cancer cells is
given in Chap. 9.

A number of large-scale epigenomic sequencing projects have been initiated
with similar ambitious goals to those of the genome sequencing projects outlined in
Sect. 2.1. These projects include: (a) the NIH Roadmap Epigenomics Program,
which started in 2008 with the aim of producing histone modification data for over
30 types of modifications in a variety of human cell types; (b) a component of the
ENCODE (Encyclopedia of DNA Elements) project launched by the US National
Human Genome Research Institute aiming as part of its goal the characterization of
the epigenomic profiles of 50 different tissue types; (c) the International Human
Epigenome Consortium having its goal to build on and expand the NIH Epigenomics
Program to include nonhuman cells and tissues, and to make it a functional interna-
tional program; and (d) some regional epigenomics projects such as the “Epigenetics,
Environment and Health” project in Canada and the Australian Alliance for
Epigenetics. A number of human epigenomic databases have been developed as the
result of these and related projects (see Chap. 13 for details).

2.3 Transcriptomic Data

The advent of microarray technology in the mid-1990s has made it possible to mea-
sure in real time the expression levels of all the genes encoded in the human genome
under defined cellular conditions. This methodology also applies to other genomes
as long as their protein-encoding genes are known. This is one of the high-throughput
techniques that has clearly fueled the revolution in biological sciences that we have
been witnessing since the start of the Human Genome Project.

Comparative analyses of gene-expression data of cells collected under different
controlled conditions or on disease versus control tissues can provide a large amount
of information useful for studying human diseases at the molecular and the cellular
levels. For example, by comparing gene-expression levels in a lung cancer tissue
with those in the adjacent healthy tissue of the same patient, one can identify dif-
ferentially expressed genes in the lung cancer versus the healthy lung. While not
necessarily all the differentially expressed genes are directly relevant to cancer, this
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information provides a basis for further inference of genes that may be directly
relevant to cancer. For example, one can compare such sets of differentially
expressed genes across multiple patients of the same cancer type to eliminate those
genes whose differential expressions are specific to a few individuals or cancers at
a specific developmental stage. That is, one can identify genes that may be most
essential to the development of a cancer type through the identification of genes that
are commonly differentially expressed across all or the majority of the patients of
the cancer type examined.

When applied in conjunction with pathway-enrichment analysis, particularly
against the eight cancer-hallmark related pathways mentioned earlier, one can iden-
tify hallmark pathways enriched with up-regulated (or down-regulated) genes in a
specific type of cancer. If the cancer data also have the stage information, one can
further derive information about how each of the cancer hallmarks is executed at the
molecular and cellular levels for this cancer type and in what order. By comparing
such information across multiple cancer types, one can possibly detect which
relative orders among the observed hallmark events are essential and which are
coincidental. And by comparing such data between two subgroups of patients of the
same cancer type, for example one with smoking histories and the other without,
one can possibly derive how smoking may have contributed to the development of
individual hallmark events. Similar analyses can be used to discover possible con-
tributions by other lifestyle habits.

Actually, much more information can be derived through analyses of cancer tran-
scriptomic data. For example, tiling array is a variation of the gene-expression tech-
nique used to detect DNA-binding sites of specific proteins through ChIP-chip
experiments, hence making it possible to identify transcription regulators of specific
genes under particular conditions (Ren et al. 2000; Iyer et al. 2001). RNA-seq is the
new generation of techniques for transcriptomic data collection (Wang et al. 2009).
It refers to the use of high-throughput technologies to sequence cDNAs that are
reversely transcribed from the expressed RNA molecules. By doing deep sequenc-
ing, the dynamic range of RNA-seq can span five orders of magnitude, substantially
larger than those of microarray-based techniques. This allows more accurate identi-
fication of differentially expressed genes, particularly those that tend to express at a
relatively low or high level and where changes tend to be relatively small but statis-
tically significant, such as those often observed with transcription factors. In addi-
tion, RNA-seq techniques are digital in nature, in comparison with the analog
signals provided by microarrays. One advantage of digital signals is that the result-
ing measurements are more repeatable compared to analog signals and less prone to
be affected by the experimental environments. The biggest advantage of RNA-seq
data over microarray data is that it contains all the information about alternatively
spliced variants since they do not rely on short sequence probes as in microarrays,
instead producing the entire sequence for each transcript. Such information allows
one to derive all splicing variants in specific cancers and cancer stages, thus enabling
more detailed functional mechanism studies.

A few computer programs have been developed and made publicly available for
inference of splicing variants based on RNA-seq data, such as Cufflinks, which
requires a reliable reference genome for its inference of splicing isoforms (Trapnell
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et al. 2010). Another popular transcript-assembly program, Trinity, is a de novo
method, i.e., no reference genome is required (Grabherr et al. 2011), but at the
expense of less reliable assembly results compared to Cufflinks. The limitation of
Cufflinks and similar programs is that they may not necessarily work well on cancer
RNA-seq data when the underlying cancer genome is not available, which could be
substantially different from the matching genome of healthy cells since cancer
genomes tend to have large numbers of genomic reorganizations such as transloca-
tions, copy-number changes and inversions, as well as breaks as discussed in
Sect. 2.2. Thus, more effective computational techniques are clearly needed for
inference of splicing isoforms from cancer RNA-seq data.

Presently, a number of databases for microarray and RNA-seq gene-expression
data have been developed and are publicly available. For example, GEO is a general-
purpose gene-expression database consisting of both cancer and other tissue types
(Edgar et al. 2002). A cancer-centric genome database that also contains epigenomic
and transcriptomic data for numerous cancer types is TCGA (Cancer-Genome-
Atlas-Research et al. 2013). Gene Expression for Pediatric Cancer Genome Project
is a gene-expression database developed specifically for pediatric cancers (Downing
etal. 2012). Overall these databases have genome-scale transcriptomic data for over
200 different types of cancer tissues and a substantially larger number of cancer cell
lines. A tremendous amount of information could potentially be derived through
comparative analyses of these data across different cancer types and cancers at vary-
ing stages or of distinct malignancy grades (see Chap. 3). For example, by simply
plotting the average number of differentially expressed genes across cancer samples
versus the 5-year survival rate for each of the following nine cancer types: mela-
noma, pancreatic, lung, stomach, colon, kidney, breast, prostate cancers and basal
cell carcinoma, one can see that there is a close relationship between these two
numbers (see Fig. 2.1).
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Fig. 2.1 The 5-year (y-axis) survival rate for each cancer type versus the average number of dif-
ferentially expressed genes per cancer sample (x-axis) (adapted from (Xu et al. 2012))
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By examining the average up- or down-regulation levels of genes in selected
pathways of different cancer types, it is possible to derive information about acti-
vated energy metabolism in different cancer types, which vary from glucose- to
lipid- to amino acid-based. As an example, Fig. 2.2 shows the activity levels of
multiple energy producing metabolic pathways, covering glycolysis, the TCA cycle,
oxidative phosphorylation and fatty acid metabolism in nine cancer types. One can
see from the figure that pancreatic cancer has the highest up-regulation in glucose
metabolism, followed by kidney and lung with breast cancer having the least
changes in glucose metabolism when compared with their matching control tissues.
One can also see that, while most of the seven cancer types on the left show down-
regulation or no changes in oxidative phosphorylation, both skin cancer types,
namely melanoma and basal cell carcinoma, show up-regulation in this pathway.
[N.B. Throughout this book, all the analyses of transcriptomic data across different
patients samples are properly normalized, hence comparisons among fold-changes
of genes across different samples are meaningful. |

A variety of computational techniques have been developed for information deri-
vation from gene-expression data, including: (1) identification of differentially
expressed genes using simple statistical tests such as T-test or Fisher’s exact test, (2)
clustering analysis, (3) bi-clustering analysis and (4) pathway enrichment analysis
for differentially expressed genes. The following discussion provides some basic
ideas about these analysis techniques, followed with a list of novel techniques for
more advanced analysis needs.

2.3.1 Data Clustering

Identification of co-expressed genes is a basic technique for gene-expression analy-
sis, which has a wide range of applications in cancer studies. The idea is to identify
all genes whose expression patterns exhibit statistical correlations over a time
course (typically for cell line-based data) or among a collection of samples; such
genes are called co-expressed genes. There are numerous online tools for identifica-
tion of co-expressed genes such as DAVID, CoExpress (Nazarov et al. 2010) and
GeneXPress (Segal et al. 2004). Co-expressed genes may suggest that the genes are
transcriptionally co-regulated even though some co-expressed genes appear coinci-
dentally, particularly when the number of conditions or the number of samples is
small. One way to computationally “validate” such a prediction is through identifi-
cation of conserved cis regulatory motifs within the promoter sequences of the co-
expressed genes (Liu et al. 2009). The rationale is that if these genes are indeed
co-regulated transcriptionally, they should share conserved cis regulatory elements
for binding with their common transcription regulators. From the predicted co-
expressed genes and cis regulatory motifs, one can predict with confidence that
these genes are transcriptionally co-regulated, and even possibly predict their main
transcription regulators using tools such as those by Essaghir et al. (2010) or by
Qian et al. (2003).
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Fig. 2.2 Gene-expression levels associated with the energy metabolism of glucose (both glyco-
Iytic fermentation and oxidative phosphorylation) and fatty acids plus the TCA cycle in nine can-
cer types. The y-axis is a list of genes involved in four metabolic pathways: oxidative
phosphorylation, fatty acid metabolism, TCA cycle and glycolysis; and the x-axis is a list of nine
cancer types, including three stages of basal cell carcinoma (BCC) and melanoma, respectively.
Each entry is the average log-ratio of expression levels between cancer samples and the matching
control samples in different cancer types. The side-bar on the right shows the gray-level code for
the expression level changes, with “gray” indicating down-regulation, “white” for no change and
“black” denoting up-regulation. Adapted from (Xu et al. 2012)
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Fig. 2.3 A heat-map of gene-expression changes of 42 genes, with each row representing one
gene and 80 gastric cancer samples versus the matching control samples, with each column repre-
senting one sample, which are grouped into four stages: I, II, III and IV, with light gray, dark gray
and black representing up-, down-regulation and no changes, respectively. The figure is adapted
from (Cui et al. 2011)

2.3.2 Bi-clustering Analysis

Bi-clustering is a generalized form of clustering analysis, which aims to identify
co-expressed genes among some to-be-identified subgroups of samples, but not
among all samples. Such a technique is particularly useful for discovering sub-
types, stages or grades of a cancer (see Chap. 3 for details). Figure 2.3 shows one
example of signature genes for gastric cancer stages identified through a bi-
clustering analysis. Specifically, 42 genes are found to exhibit distinct patterns
for a group of 80 gastric cancer samples (one sample from each patient) grouped
according to their stages (Cui et al. 2011). Interestingly the samples assigned to
stage III exhibit two distinct expression patterns, with samples on the left clearly
showing different patterns from those on the right, suggesting that these patients
may actually fall into five different stages such as stage I, II, IIa, IIT and IV,
rather than four as proposed by the pathologists who analyzed these samples
(Cui et al. 2011).

A bi-clustering problem is computationally much more difficult to solve than a
clustering problem since it involves two variables, i.e., genes to be identified as co-
expressed and samples to be found to have similar expression patterns, compared to
only one variable, i.e., co-expressed genes in traditional clustering analyses. A few
computer tools have been published for identification of bi-clusters in gene-
expression datasets such as QUBIC (Li et al. 2009) and BicAT (Barkow et al. 2006).
After bi-clusters are identified, similar analyses about regulatory relationships can
also be carried out as above to predict the possible transcription regulators for each
bi-cluster.


http://dx.doi.org/10.1007/978-1-4939-1381-7_3

2.3 Transcriptomic Data 53
2.3.3 Pathway (or Gene Set) Enrichment Analysis

Pathway enrichment analysis is a way to map up- or down-regulated genes to higher
level functional organizations such as biological pathways, networks or gene sets
that are each known to be relevant to cancer or cancer-related. The basic idea is to
homology-map the identified up-regulated (or down-regulated) genes to known
pathways in pathway databases such as KEGG, REACTOME (Croft et al. 2011) or
BIOCARTA, and then assess if a specific pathway has substantially more genes
mapped to it than by chance, measured using statistical significance values. For
example, DAVID is one popular tool for doing pathway enrichment analysis.
Basically, it homology-maps a set of given genes to pathways in the above data-
bases, then assesses the statistical significance of having K given genes in the given
set mapped to a specific pathway using « statistics, i.e., a chance-corrected measure
of co-occurrence, and predicts that a pathway is enriched by the given gene set if its
statistical significance is above some threshold (Huang et al. 2007). Figure 2.4
shows one enriched pathway by up-regulated genes in gastric cancer.

With the increasing needs for studying more complex analysis problems based
on gene-expression data, there is clearly an urgent necessity for more powerful anal-
ysis techniques. A few are listed here, which could definitely benefit from the
involvement of researchers equipped with advanced statistical analysis techniques.

1. Inference of causal relationships: Analyses discussed above, such as clustering
or bi-clustering, can provide association relationships among activities of genes
or pathways through detection of correlations among their expression patterns.
Clearly cancer researchers could benefit even more if such analyses can be
extended to infer causal relations among genes or pathways with altered expres-
sion patterns.

Causality has been difficult to derive due to the nature of the problem (Pearl
2009). Many may remember the argument made by the tobacco industry when
being presented with statistical data showing that smokers have higher probabili-
ties of developing lung cancer than non-smokers. The industry officials argued
that such data do not necessarily imply that smoking causes cancer, pointing out

the following: there could be an unknown genetic factor that gives rise to a

sub-population who enjoys smoking and has a higher propensity to develop lung
cancer. Logically, this argument holds. Hence, in order to prove that smoking

indeed causes lung cancer, one would need to demonstrate that individuals who
are forced to smoke, regardless if they like it or not, are at higher risk of develop-
ing lung cancer than those who are forced not to smoke. This would then rule out
a possible contribution from genetic factors as suggested by the defense lawyers
of the tobacco industry. In general, inference of causality is fundamentally hard.
Fortunately, there have been some interesting developments in theoretical stud-
ies on causal relationships. One example is the development of causal calculus
by Pearl (2009). Application of this or other causal theories to the information-
rich gene-expression-based causality analyses would help to advance the field in
a profound way.
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Fig. 2.4 An example of a KEGG pathway enriched with differentially expressed genes in gastric
cancer versus matching controls. Each rectangle represents an enzyme-encoding gene and each
oval represents a metabolite. An up-regulated gene is marked as dark gray and down-regulated
gene marked in light gray while a white rectangle represents an enzyme whose gene is not identi-
fied yet. A metabolite with increased concentration is marked in dark gray and a decreased metab-
olite is marked in light gray

2. De-convolution methods for expression data collected on cancer tissues: One
challenge in analyzing gene-expression data collected on cancer tissues is that
the data are not from a homogeneous cell population, but instead a collection of
different cell types with cancer cells as the dominating sub-population. It is well
known that each sample of cancer tissue generally has other cell types such as
macrophages and other immune cells, stromal cells, and blood vessel cells,
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although there may have been attempts to make the cell population as
homogeneous as possible, using techniques such as laser-directed micro-
dissection (Emmert-Buck et al. 1996). The reality is that collecting highly homo-
geneous cell populations from cancer tissues is challenging and very time
consuming.

Gene-expression data collected on a mixture of multiple cell types can easily
lead to false conclusions if done without proper data processing. This issue has
been reflected in a common complaint from gene-expression data analysts that
tissue gene-expression data are not reliable and are difficult to compare across
different samples. One key reason is that tissue samples collected by different
labs may have been processed using different procedures so that the sub-
populations of different cell types may be different from those in situ. Moreover,
different sample-processing procedures may lead to systematic changes in the
sub-populations but in different ways, thus making tissue gene-expression data
not easily comparable.

It is our belief that techniques in statistical analysis, properly applied, can aid
immensely in resolving the issue by de-convoluting the observed gene-expression
data into expression levels contributed by different cell types. The basic idea of
one such de-convolution technique is as follows. Each cell type has its unique
functional characteristics. For example, cancer cells are the only cell type in the
tissue that divides rapidly, while fibroblasts are the only cell type that synthesizes
the components of the extracellular matrix. These unique functional characteris-
tics of different cell types are reflected by their gene-expression data. Specifically,
it is expected that each cell type can be represented (or approximated) by a set of
expressed genes unique to the cell type, along with the cell type-specific correla-
tions among the expression levels of different genes. Such cell type-specific
(condition-invariant) correlations among their genes can possibly be represented
in some generalized form of a covariance matrix, which can be considered as the
signature of individual cell types. To derive such a signature, one needs unam-
biguous gene-expression data of specific cell types collected under multiple and
different conditions, allowing the capture of the invariance among the correla-
tions between expression patterns of individual genes.

With such a reliable de-convolution tool, one can decompose each gene-
expression dataset collected on cancer tissues into gene-expression contributions
from different cell types. Then, one can analyze the gene-expression data pre-
dicted to be solely associated with cancer cells or other cell types such as macro-
phages to understand the interplay between cancer and immune cells. Such
decomposed datasets of cancer samples at different stages have the potential of
enabling one to realistically study a range of important problems in elucidating
the complex relationships among different cell populations in each cancer niche,
which are not feasible with the current experimental techniques.

3. Development of an infrastructure in support of the study of cancer systems
biology: Another area where computational statistical techniques can make a
fundamental contribution is in characterization of cancer microenvironments and
in linking micro-environmental factors to the evolutionary trajectories of specific
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cancer tissues. While experimental studies of the evolving microenvironment of
a cancer in vivo may not be feasible, computational analyses of gene-expression
data could help to solve such a problem. The premise is as follows. When the
microenvironment changes, such as changes in (1) the composition and physical
properties of the pericellular matrix, (2) the level of hypoxia, (3) the ROS level,
(4) the pH level and (5) the sub-population sizes of different cell types in the
stromal compartments (see Chap. 10), some genes will respond by changing
their expression levels. For example, when the cellular level of oxygen changes,
the expression patterns of the HIFI (hypoxia-induced factor) and HIF2 genes
change, as discussed in Chap. 1. By carefully analyzing gene-expression data
collected under specific conditions on relevant cancer cell lines, one should be
able to train predictors for changes in each aspect of the microenvironment based
on their relationships reflected by gene-expression data. Such prediction capa-
bilities will enable cancer researchers to examine how micro-environmental fac-
tors change as a cancer evolves and to link such information to cancer phenotypes,
hence possibly generating new understanding about how microenvironments
affect cancer progression and cancer phenotypes.

2.4 Metabolomic Data

Our own experience has been that transcriptomic data represent probably the most
information-rich data that are relatively straightforward to obtain for cancer studies.
Such data are particularly useful for gaining a big-picture view and for the deriva-
tion of rough models for a specific mechanism, while genomic and epigenomic data
can provide useful complementary information. Transcriptomic data, however, do
not always portray an accurate picture regarding the activity of a pathway. This is
because they measure only the intermediates for making the functional parts, the
proteins, of the pathway; others, such as those constitutively expressed, will of
course not appear as altered gene expressions. Clearly, it is highly desirable to have
protein expression data. However, proteins are notoriously difficult to study, much
more complex than, say, transcripts, as proteins may have different post-translational
modifications and splicing variants, which are not amenable to the current high-
throughput techniques. Consequently, proteomic data have not been as widely used
as transcriptomic data in cancer studies. Metabolomic data can, however, assist in
filling the void due to the lack of protein level information since they provide infor-
mation on the substrates and products of proteins, specifically enzymes.

As of now, over 40,000 metabolites have been identified in human cells accord-
ing to the Human Metabolome Database (HMDB) (Wishart et al. 2007, 2009, 2013).
These metabolites can be intermediates or products of cellular metabolism, which
include the basic metabolites such as amino acids, nucleotides, alcohols, organic
acids and vitamins, and complex metabolites such as cholesterol and steroid hor-
mones. By analyzing the quantitative data of metabolites associated with a specific
metabolic pathway, it is possible to make a generally accurate estimate of the
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activity level of the pathway. For example, glucose-6-phosphate, fructose-6-
phosphate, glyceraldehyde 3-phosphate, phosphoenol-pyruvate, pyruvate and lac-
tate are the main metabolites of the glycolytic fermentation pathway (see Fig. 1.4),
and their relative abundances provide accurate information about the activity level
of the pathway. By carrying out metabolite flux analyses (Varma and Palsson 1994)
based on the pathway information and the measured quantities of these metabolites,
one can infer if some of these intermediates or end products may be directed towards
other metabolic pathways, in addition to being part of the glycolytic pathway.

Metabolic flux analysis generally applies to any well-established biological path-
way, such as those in central metabolism. That is, with all the relevant reactions and
the encoding genes known, metabolic data can be used in conjunction with the
matching transcriptomic data, to infer the flux of a specific molecular species such
as carbon or nitrogen. In essence, this provides flux information of different ele-
ments across an entire network, which preserves balances between the total input
and the output elements for each reaction, hence providing a systems-level repre-
sentation of the flux distribution across all the branch points in the network.
Identification of unbalanced reactions, i.e., the total number of carbons into a reac-
tion is different from that out of the reaction, can help to detect previously unknown
branches involved in the relevant reactions. This type of analysis can be used to
identify possible relationships between two known metabolic pathways, such as
detecting possible metabolic relationships between the glutaminolysis pathway
(McKeehan 1982), which tends to be up-regulated in cancer cells, and other meta-
bolic pathways, or detection of relationships between cholesterol metabolism and
phospholipid metabolism in metastatic cancer (see Chap. 11). For example, an anal-
ysis like this has led us to detect that some metabolites of the glycolysis pathway
become substrates of another metabolic pathway, the hyaluronic acid synthesis
pathway (see Chap. 6). When reaction rate constants are available or can be esti-
mated for all the relevant enzymes, one can identify the rate-limiting steps in a
pathway, thus enabling one to undertake detailed mechanistic studies of a biological
process.

Both high-resolution mass spectrometry (MS) and nuclear magnetic resonance
(NMR) spectroscopy have been used to identify metabolites present in cells and in
tissue samples, each having their own advantages and limitations. MS can provide
quantitative measures for up to 1,000 different metabolite species, but it suffers
from relatively low repeatability (Boshier et al. 2010). In comparison, NMR can
provide highly accurate measurements of metabolites but is limited in the number
of metabolite species in each experiment. With either type of instrument, one can
obtain quantitative measures of numerous metabolite species.

When coupled with transcriptomic data and functional annotations of genes,
metabolomic data can be used to infer the detailed metabolic pathway that may
produce specific metabolites. Specifically, for each experimentally identified metab-
olite in a sample, one can search for enzymes among the expressed enzyme-encoding
genes that may be responsible for its synthesis through comparisons against the
Enzyme Classification (Bairoch 2000) or KEGG database. Both of these databases
contain information about enzymes and substrates that can lead to the production of
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a specific metabolite. If there is more than one candidate, a selection can be inferred
by finding the one that is most consistent with the available transcriptomic and func-
tional annotation data, i.e., the enzyme-encoding gene is expressed and the substrate
is among the identified metabolites. By repeating this process, one can create a
pathway consisting of the identified enzymes along with the identified metabolites.
Although one cannot expect to derive all the relevant enzymes along the pathway, it
is generally possible to develop a crude model based on our own experience. In
addition, it is possible to expand a pathway model through careful applications of
the transcriptomic data and the metabolomic data collected to identify previously
unknown or poorly studied branches of well-studied pathways. For example, by
carefully analyzing the metabolites associated with glycolysis, one can possibly
identify those that serve as intermediates between glycolytic metabolites and
metabolites involved in the synthesis of hyaluronic acids as detailed in Chap. 6.

There are a number of databases for human metabolomic data in the public
domain, including the HMDB, BiGG (metabolic reconstruction of human metabo-
lism) (Schellenberger et al. 2010) and the Tumor Metabolism database (The-Tumor-
Metabolome 2011). Another useful database is Brenda (Scheer et al. 2011), which
provides the reaction parameters of various enzymes. All these databases provide
useful information needed for reconstruction of specific metabolic processes in nor-
mal and cancer cells.

2.5 Patient Data

Knowledge of patient data is essential for the correct interpretation of their respec-
tive omic data. People of different gender, age and race, and with different histories
of smoking, alcohol consumption and health problems, could have different base-
line gene-expression levels. It was noted, from our previous studies, that some genes
are sensitive to one aspect of a person’s attributes, such as age or gender, while other
genes may be more sensitive to other attributes. And some genes are attribute-
independent. For example, based on our analysis on gene-expression data of 80
gastric cancer tissues and their matching tissues from 80 patients (see Appendix of
Chap. 3 for details of the dataset), it was found that the expression levels of some
genes are age-dependent, gender-dependent and smoking history-dependent, while
other genes are, in large part, independent of any of these features (Cui et al. 2011).
When working with these datasets, it was noted that the baseline expression levels
of 143 genes were highly age-dependent, including MUCI (mucin 1), UBFDI
(ubiquitin family domain 1) and MDK (neurite growth-promoting factor 2). In addi-
tion, 59 genes were gender-dependent; these included WNT?2 (wingless-type MMTV
integration site family, member 2), ARSE (arylsulfatase E) and KCNN2 (potassium
intermediate/small conductance calcium-activated channel, subfamily N, member
2) (see (Cui et al. 2011) for details). Similar analyses can be carried out on depen-
dence using various lifestyle habits such as smoking and medications.
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Knowing such information, one then needs to make age or gender corrections on
the observed gene-expression data before interpreting the data for functional infer-
ence. The detailed correction scheme depends on the actual relationship between a
specific attribute and the gene-expression levels. Various normalization techniques
and software tools are publicly available for this purpose.

2.6 A Case Study of Integrative Omic Data Analyses

We present an example here to show how integrative analyses of multiple omic and
computational data types can lead to new insights about cancer mechanisms. The
main question being addressed here is: What makes metastatic cancers grow sub-
stantially faster than their primary cancer counterparts? While a detailed model for
this problem is given in Chap. 11, the current focus is on how this problem can be
approached through transcriptomic data analyses coupled with limited metabolomic
data analyses.

To address this question, all the transcriptomic data of metastatic cancers, along
with their corresponding primary cancers, were collected on the Internet. Sixteen
large sets of genome-scale transcriptomic data covering 11 types of metastatic and
corresponding primary cancers were extracted from the GEO database, including
breast to bone, breast to brain, breast to liver, breast to lung, colon to liver, colon to
lung, kidney-to-lung, pancreas to liver and lung, and prostate to bone and liver. The
detailed information of these datasets is given in Chap. 11.

The first question addressed is: Which genes are consistently up-regulated in
metastatic cancers in comparison with their corresponding primary cancers across
all these datasets? Simple statistical analyses led to the identification of about 100
such genes.

The second question asked is: What do these genes do in terms of cellular
function(s)? Pathway enrichment analyses of these genes using DAVID against
KEGG, REACTOME and BIOCARTA revealed that the most significantly enriched
pathway was “cholesterol uptake and metabolism”. Two questions were then asked:
(a) What does cholesterol do in metastatic cancer cells? And (b) Why do metastatic
cancer cells need more cholesterol, as suggested by the observation that at least one
cholesterol-containing lipoprotein transporter gene, SRBI (scavenger receptor B),
LDLR (low density lipoprotein receptor) or VLDLR (very low density lipoprotein
receptor) was substantially up-regulated compared to the corresponding primary
cancers except for some brain metastases. These metastases synthesize cholesterol
de novo as cholesterol-containing lipoproteins probably could not enter brain tissue
due to the blood-brain barrier (Bjorkhem and Meaney 2004).

Here, only the first question is considered. It was noted that multiple CYP (cyto-
chrome P450) genes are up-regulated in each metastatic cancer type: these genes
encode enzymes for oxidizing cholesterols to various oxysterols or bile acids. Some
of these oxysterols are further metabolized to steroid hormones such as estrogens,
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androgens or steroidogenic derivatives by various enzymes whose genes show
substantially increased expression levels in comparison with their corresponding
primary cancers. A number of these steroid products can bind with and activate dif-
ferent nuclear receptors, such as FXR (farnesoid X receptor) and ER (estrogen
receptor) (see Chap. 11). Various growth-factor receptors such as FGFR (fibroblast
growth factor receptor) and EGFR (epidermal growth factor receptor) are up-
regulated in different metastatic cancers, some of which can be directly activated by
oxysterols and/or steroid hormones, whose abundances tend to be substantially
elevated in metastatic cancers. For the other growth factor receptors, strong correla-
tions between their gene-expressions and the expression patterns of the various
nuclear receptors are observed across different metastases, thus suggesting the pos-
sibility of a functional relationship between the activation of the two sets of recep-
tors. Based on more detailed analyses and validation, a mechanistic model for how
metastatic cancers utilize oxidized cholesterols to accelerate their growth is pre-
sented in Chap. 11. Similar integrative analyses of multiple types of data can be
carried out to derive the mechanistic models for a large variety of poorly understood
cancer-related processes if one can ask the right questions that could be answered
through analyses and mining of the relevant omic data.

2.7 Concluding Remarks

A substantial amount of information concerning the activities of individual bio-
chemical pathways, their dynamics and the complex relationships among them, and
with respect to various micro-environmental factors, is hidden in the very large pool
of publicly available cancer omic data, including transcriptomic, genomic, metabo-
lomic and epigenomic data. Powerful statistical analysis techniques can aid
immensely in uncovering such information if one poses the right questions. Such
focused questions create a framework for hypothesis-guided data analysis and min-
ing to check for the validity of the formulated hypothesis, as well as for guiding the
formulation of further questions, which may ultimately lead to the elucidation of
specific pathways or even possibly causal relationships among the activities of dif-
ferent pathways. More powerful analysis tools for different omic data types are
clearly needed in order to address more complex and deeper questions about the
available data such as de-convolution of gene-expression data collected on tissue
samples consisting of multiple cell types and inference of causal relationships.
Integrative analyses of multiple types of omic and computational data will prove to
be the key to effective data mining and information discovery. A large number of
examples are presented throughout the following chapters regarding how best to
address various cancer biology inquiries, including fundamental questions, through
mining the available omic data.
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Chapter 3
Cancer Classification and Molecular Signature
Identification

Cancer is a family of diseases that share a common set of characteristics such
as reprogrammed energy metabolism, uncontrolled cell growth, tumor angio-
genesis and avoidance of immune destruction, referred to as cancer hallmarks,
as introduced in Chap. 1. Based on their original cell types, cancers are clas-
sified into five classes: (1) carcinoma, which begins in epithelial cells and
represents the majority of the human cancer cases; (2) sarcoma, derived from
mesenchymal cells, e.g., connective tissue cells such as fibroblasts; (3) lym-
phoma, leukemia and myeloma, originating in hematopoietic or blood-forming
cells; (4) germ cell tumors, developing, as the name implies, from germ cells;
and (5) neuroblastoma, glioma, glioblastoma and others derived from cells of
the central and peripheral nervous system and denoted as neuroectodermal
tumors because of their beginning in the early embryo. Each class may consist
of cancers of different types. For example, carcinoma comprises adenocarci-
noma, basal-cell carcinoma, small-cell carcinoma and squamous cell carci-
noma, independent of their underlying tissue types. Cancers of the same type
and developing in the same tissue may have distinct properties in terms of
their growth patterns, malignance levels, survival rates and possibly even dif-
ferent underlying mechanisms. They may respond differently to the same drug
treatment and hence have different mortality rates. As of now, over 200 types
of human cancers have been identified and characterized (Stewart and Kleihues
2003), the majority of which are determined based on the location, the origi-
nating cell type and cell morphology. It is now becoming evident that this type
of classification, in large part subjective, is not adequate for developing per-
sonalized treatment plans, which are becoming increasingly desirable and
clearly represents the future of cancer medicine.

With the rapid accumulation of high-throughput omic data for cancer, particu-
larly transcriptomic and genomic data, it is now feasible to classify cancers based on
their molecular level information. For example, this can be based on distinct expres-
sion patterns of certain genes or pathways shared only by samples of the same cancer
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type, or combinations of mutations that tend to co-occur (or be selected, to be more
accurate) in certain cancer types. Such type-defining expression or mutation patterns
of genes are referred to as the signature of a cancer type. This idea should be appli-
cable to every kind of cancer as has been done for a few cancer types, such as
Oncotype DX for one form of breast cancer (Albain et al. 2010), as long as transcrip-
tomic or genomic mutation data are available for the cancer category. Similarly, it
should also be possible to derive molecular signatures for cancer grades and cancer
stages, with the former referring to the level of malignancy of a tumor and the latter
representing the location of the cancer in its development towards the terminal stage,
i.e., metastasis. Compared to the traditional definitions of cancer types, molecular
signatures, as outlined here, can potentially provide more accurate characterization
of a cancer and even reveal its underlying mechanisms, hence possibly having sig-
nificant implications to cancer treatment and prognosis prediction. Here we use
gene-expression data as an example to illustrate how cancer typing, staging and
grading can be done using omic data, which could potentially lead to substantially
more accurate characterization of cancers of different types, grades and stages.
Similar ideas should be applicable to mutation-based cancer classification.

3.1 Cancer Types, Grades and Stages

The earliest description of cancer can be traced back to 2500 BC by Egyptian
physician Imhotep (Mukherjee 2010). Evidence exists suggesting that Egyptian
physicians at the time could distinguish between benign and malignant tumors. The
study of cancer as a scientific discipline came in the nineteenth century when micro-
scopes became widely available to physicians and surgeons. Microscopic pathology,
pioneered by German doctor Rudolf Virchow, laid the foundation for the develop-
ment of cancer surgery as practiced now. Since then, cancer tissues removed from
patients are microscopically examined and classified based on their morphological
characteristics. Scientific oncology was born out of the debate concerning a few
competing hypotheses regarding the possible causes of cancer in the late 1800s
through the early 1900s. It developed based on findings that linked microscopic
observations made on cancer tissues to clinical data during the course of the disease
development. The popular hypotheses included: (1) one proposed by Stahl and
Hoffman, which suggested that cancer was caused by coagulated lymph; (2) a pro-
posal by Johannes Muller who suggested that cancer cells arose from budding ele-
ments between normal tissues; and (3) the theory developed by Rudolph Virchow,
which considered cancer as a disease of cells. The next major advance in attempts to
elucidate the possible causes of a cancer came in the 1920s when the German
biochemist Otto Warburg observed that cancer cells rely heavily on glycolytic fer-
mentation rather than the more efficient oxidative phosphorylation for ATP genera-
tion, even when oxygen is available. This metabolic alteration is referred to as the
Warburg effect (Warburg 1956) and remains under active investigation as discussed
in depth in Chap. 5. Based on the accelerated glycolysis, some 10 to 20-fold over that
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of normal cells, Warburg attributed cancer to a malfunctioning mitochondria-induced
metabolic disease. The discovery of oncogenes in 1970s by Bishop and Varmus,
along with the discovery of tumor-suppressor genes by A. G. Knudson also in 1970s,
represented the next key advancement, which started the era of classifying cancer as
a genetic disease.

Early classification of cancers was based on a cancer’s location, such as lung
cancer, skin cancer or blood cancer (e.g., leukemia). Over time, oncologists began
to realize that different types of cancers can develop from the same organ. The earli-
est classification of cancers from the same organ, in this case bone marrow which
houses the hematopoietic stem cells, can be traced back to the early 1900s when it
was found that there were at least four types of leukemia, namely ALL (acute lym-
phoblastic leukemia), AML (acute myelogenous leukemia), CLL (chronic lympho-
blastic leukemia) and CML. This realization occurred about 50 years after the
diagnosis of the first documented leukemia case (Beutler 2001). For other cancers,
recognition of multiple cancer types originating from the same organ came rather
late. For example, small-cell lung cancer was not considered as a separate type of
lung cancer from the more prevalent and less aggressive non-small cell lung cancer
until the 1960s. Gastric cancers were found to have at least two subtypes, intestinal
and diffuse, in 1965 (Lauren 1965). It is worth noting that correct diagnosis of a
cancer type has significant implications to designing the most effective treatment
protocols and prognosis. For example, statistics show that the current 5-year sur-
vival rates for adult ALL, AML, CLL and CML patients are 50 %, 40 %, 75 % and
90 %, respectively, and the treatment plan for each of them is quite different. ALL
is typically treated using chemotherapy followed by anti-metabolite drugs; AML is
generally treated using chemotherapy; CLL, while incurable, is often being con-
trolled with chemotherapy using a combination of fludarabine and alkylating agents;
and CML is, in most cases, successfully treated using the so called “miracle” drug
Gleevec, or else newer and improved drugs.

The multistage nature of a cancer was first discovered by Japanese researchers
Yamagiwa and Ichikawa in the beginning of the twentieth century (Yamagiwa and
Ichikawa 1918). Basically for most cancer types, the histological stage refers to the
extent the cancer has spread, which is typically numbered from stage I through stage
IV, with IV representing the most advanced stage. The stage of a cancer is an impor-
tant predictor for survival, with the treatment plan often determined based on stag-
ing. Currently the stage of a cancer is generally determined by pathological analysis
from a biopsied specimen of the cancer tissue, including lymph nodes, as well as
analysis by imaging techniques with the results interpreted by radiologists; only
limited molecular level information such as the expression levels of a few marker
genes as determined by immune-detection.

In addition to type and stage, cancer grade is another important parameter that has
been used by pathologists to represent the level of malignancy of a given cancer,
determined based on surgical specimens. This parameter is largely independent of
the type and the stage of a cancer. A popular grading system uses four grades:
(1) G1 (highly differentiated), (2) G2 (moderately differentiated), (3) G3 (poorly dif-
ferentiated) and (4) G4 (undifferentiated), with G4 representing the most malignant.
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The level of differentiation refers to the maturity of a cell in developmental biology.
In the current context, the more differentiated cancer cells resemble more of the
normal mature cells, and they tend to grow and spread at slower rates than undiffer-
entiated or poorly differentiated cancer cells. The grade of a cancer provides another
key indicator for prognosis. While the term seems to be defined in terms of cellular
differentiation, the actual determination of the cancer grade is often made based on
a combination of the cellular appearance (degree of abnormality), the rate of growth
and the degree of invasiveness.

The current availability of significant quantities of molecular level omic data on
cancer, such as transcriptomic, genomic, epigenomic and metabolomic data, pro-
vides unprecedented opportunities for developing molecular-level signatures for
each known cancer type, grade and stage, and, if needed, possibly reclassifying
some of the previously determined cancer types, stages and/or grades. This has the
potential to lead to more accurate classifications of a cancer for the purpose of
improved treatment design and prognosis evaluation.

3.2 Computational Cancer Typing, Staging and Grading
Through Data Classification

The main question addressed here is: For a given set of cancer samples, each marked
with a specific type, stage or grade determined by pathologists, is it possible to
identify common characteristics, e.g., in terms of gene expression patterns among
samples having the same class label? If the answer is yes, such a capability could
potentially be used to accurately define the type or subtype, stage or substage, grade
or subgrade of a cancer. In the following sections, we demonstrate how this could
be done to possibly provide a new way of classifying cancer based on molecular
level data.

3.2.1 Cancer Typing

A basis for gene-expression data-based cancer typing is that cancers of various
types have their distinct phenotypic characteristics such as differences in cellular
shape, growth rates and responses to the same treatment regiments, and possibly
distinct underlying mechanisms, while samples of the same type tend to share com-
mon characteristics. These phenotypic and mechanistic commonalities among can-
cer cases of the same type as well as differences across multiple cancer types are
realized through molecular level activities and hence should be in general reflected
by the expression patterns of some genes. A key in accomplishing cancer typing
based on gene-expression data is to identify those genes whose expression patterns
are shared by samples of the same type but not shared by samples of the other can-
cer types. This problem can be modeled computationally in various ways,



3.2 Computational Cancer Typing, Staging and Grading Through Data Classification 69

depending on the specific purpose(s) of the cancer typing. For example, if the goal
is to identify the defining characteristics of a cancer type, one may decide to identify
a maximal gene set, whose expression patterns are similar across all the (available)
cancer samples of the same type and different from those of other types. If, instead,
the goal is to identify distinguishing characteristics between two (or more) types of
cancers, one may want to find a minimal set of genes whose expression patterns can
delineate among samples between the two (or more) cancer types, which may not
necessarily contain any information about the distinct mechanisms of the different
cancer types.

We now present one example to model the cancer typing problem and to illus-
trate how such a problem can be solved computationally. Consider two subtypes of
gastric cancer, the intestinal (C,) and diffuse (C,) subtypes, each having genome-
scale gene-expression data collected using the same platform on paired cancer and
matching control tissue samples from the same patients. For each patient one can
obtain the fold-change information for any gene between its expression in a cancer
and its matching control, which is typically calculated as the logarithm of the ratio
between the two expression levels, referred to as the log-ratio throughout this book.
The present goal is to find a minimal subset of genes out of the total of ~20,000
human genes, whose expression patterns can unequivocally distinguish between the
two subtypes, C; and C,. Specifically, the aim is to identify a set G of genes and a
discriminant function F() so that F(G(x))>0 for x € C, and F(G(x))<0 for x € C,
for as many x € C; U C, as possible, where G(x) represents the list of fold-changes
in expression levels of genes in G between cancer tissue x and its matching control.
There are many classes of discriminant functions that can be used for solving this
classification problem. Here a specific class of functions is used, the linear support
vector machine (SVM) (Cortes and Vapnik 1995). The goal now becomes that of
locating a minimal set G of genes and an SVM that achieve the best classification
with the misclassification rate lower than a pre-defined threshold 5.

One method of solving this problem is by going through all combinations of K
genes among all the human genes, searching from K=1 and up until an SVM-based
classifier and a K-gene set G are found, which achieve the desired classification
accuracy defined by 8. In practice, the search will not include all the human genes
since the majority will not be expressed for any specific tissue type. For this prob-
lem, one only needs to consider genes that are differentially expressed between
cancer samples and the matching controls. To get a sense of the amount of comput-
ing time that may be needed to exhaustively search through all K-gene combina-
tions, consider the following typical scenario: the two gene-expression datasets with
C, having 100 pairs of samples and C, consisting of 150 pairs of samples; and 500
genes showing differential expressions (see Chap. 2) between the two sets of sam-

ples. In this case, one would need to examine [ X j combinations to find a K-gene

combination that achieves the optimal classification between the two datasets. For
each K-gene combination, a linear SVM is trained to optimally classify the two
datasets as discussed above; if a trained SVM achieves a classification accuracy bet-
ter than 9, retain the SVM as a candidate classifier; then repeat this process until all
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K-gene combinations are exhausted. The final classifier is the one with the lowest
misclassification rate among all those retained. Our experience has been that K

5
should be no larger than 8; otherwise the number ( K j may be too large for a

desktop workstation to handle. The following gives a detailed procedure of the
search process:

Cancer classification algorithm
FOR K=1TO NDO

FOR each K-gene combination from the pool of differentially expressed genes
DO

a. DO the following FOR 1,000 times

1. Randomly split C,; and C, into C;-training and C,-testing, and C,-
training and C,-testing, respectively, with C,-training and C,-testing
having the same size, x € {1, 2};

2. Train a linear SVM based on the current K-gene combination on C;-
training and C,-training, which achieves optimal classification between
C,-testing and C,-testing;

3. IF the misclassification rate of the trained SVM is < 8, THEN keep the
SVM;

b. IF at least one SVM for the K-gene combination has misclassification
rates < O, THEN keep the K-gene combination with the lowest misclassi-
fication rate a candidate for the final classifier.

IF at least one final classifier candidate is found, THEN OUTPUT the one with the
lowest misclassification rate, ELSE OUTPUT no classifier is found with at most
N genes and misclassification rate <d.

where N is the upper bound (set by the user) for searching a satisfying K-gene dis-
criminator, and 1,000 is the number of times used to find an optimal K-gene classi-
fier over different partitions of the given datasets C; and C,.

This simple procedure has been used to find an optimal SVM-based classifier
between the two subtypes of gastric cancer based on gene-expression data collected
on 80 pairs of gastric cancer and matching controls (Cui et al. 2011a). Figure 3.1
shows classification accuracies by the best K-gene classifiers for K <8.

If one needs to search for a K-gene classifier with larger K’s (>8) for some appli-
cation, a different search strategy may be needed to make it computationally feasi-
ble. One such strategy is called recursive feature elimination, a procedure often
used in conjunction with an SVM application; together they are referred to as RFE-
SVM. While the detailed information of an RFE-SVM procedure can be found in
(Guyon et al. 2002; Inza et al. 2004), the basic idea is to start with a list of all genes,
each having some discerning power in distinguishing between the two classes of
samples, and to train a classifier, followed with the RFE procedure to repeatedly



3.2 Computational Cancer Typing, Staging and Grading Through Data Classification 71

1.00
|

070 075 0.80 0.85 0.90 0.95

T T T T T T T T
1 2 3 4 5 6 7 8

Fig. 3.1 SVM-based classification accuracy using the best K-gene combination, for K=1, 2, ...,
8, on 80 pairs of gastric cancer and control tissues

remove genes from the initial gene list as long as the classification accuracy is not
affected until only K genes are left.

If desired, this idea for solving a 2-class classification problem can be general-
ized to M-class problems, for M>2, so multi-type cancers originating from the
same tissue, such as the different types of leukemia, can be classified based on
identification and application of K-gene combinations as done above. One specific
way to accomplish this is given as follow: a M-class classifier can be constructed by
separately calculating M binary classifiers, each separating class i from the remain-
ing classes, i=1, ..., M. Then, an input sample is classified to class J if the sample
has the highest classification significance by the J" classifier. Such a method is
regarded as one-versus-all multi-class SVM (Cui et al. 2011a). A detailed review on
such classifiers can be found in (Duan and Keerthi 2005). Using this type of classi-
fication method, one can build classifiers for all the cancer types as long as they
have gene-expression data available, along with labeled type information for each
sample.

Numerous K-gene combinations, also referred to as K-gene panels, have been
identified and used as signatures for various cancer types. For example, a panel of
104 genes has been identified for distinguishing cancer tissues (of multiple types)
from healthy tissues (Starmans et al. 2008), aimed to detect if a tissue is cancerous
or not. Other signature panels include: (1) a 70-gene panel for predicting the poten-
tial for developing breast cancer, built by MammaPrint (Slodkowska and Ross
2009); (2) a 21-gene panel, termed Oncotype DX, for a similar purpose; (3) a
71-gene panel for identification of cancers that are sensitive to TRAIL-induced
apoptosis (Chen et al. 2012); (4) a 31-gene panel used to predict the metastasis
potential of a breast cancer, developed by CompanDX (Cho et al. 2012); and (5) a
16-gene panel for testing for non-small-cell lung cancer against other lung cancer
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types (Shedden et al. 2008). Having a test kit for a specific cancer type, e.g.,
metastasis-prone or not, can enable surgeons to make a rapid and informed decision
regarding the appropriate surgical procedure to adopt. Other test kits can assist
oncologists in making an informed decision regarding the most appropriate treat-
ment plan for a particular cancer case. For example, TRAIL (TNF-related apoptosis
inducing ligand) is an anticancer-mediating protein that can induce apoptosis in
cancer cells but not in normal cells. This makes TRAIL highly desirable; however,
not all cancers are sensitive to TRAIL. Hence, having a test using such a kit can
quickly determine if a cancer patient should be treated with TRAIL or not.

In order to ensure the general applicability of any identified signature genes, it is
essential to carry out proper normalization of the to-be-used transcriptomic data that
may be collected by different research labs, specifically to correct any systematic
errors in the data caused by different sample-preparation and data-collection proto-
cols. Batch-based normalization such as the model presented in (Johnson et al.
2007) may prove to be effective in removing so created systematic errors due to
using different data-collection protocols.

Although a number of computational methods have been developed for defining
cancer types using gene-expression data (Ramaswamy et al. 2001; Tibshirani et al.
2002; Weigelt et al. 2010; Reis-Filho and Pusztai 2011), none of them have achieved
100 % consistency with the typing results determined by cancer pathologists. There
may be two key reasons for the less-than-perfect agreement. One is that some of the
cancer typing decisions by pathologists may not necessarily be correct for various
reasons: (a) a cancer identification protocol may use only limited molecular level
and somewhat subjective visual information; and (b) there is always the possibility
of human errors in executing a type-calling procedure, particularly when visual
appearances may be borderline between different options. Another possibility could
be due to limitations of the current classification techniques. For example, the above
classification methods may be too simple to capture the complex relationships
among the expression data of multiple genes, which are unique to a specific cancer
type. Moreover, it may be due to something more fundamental, such as the gene
expression data not necessarily having all the information needed to classify cancer
types correctly, e.g., some of the needed information may be at the protein or the
post-translational level. It is expected that answers to this question may emerge as
more cancer omic data become available and/or when more advanced analysis tech-
niques will be developed.

3.2.2 Cancer Staging

Cancer stages have been defined mainly in terms of the tumor size, cell morphology
and the state of metastasis. Currently its determination involves some level of sub-
jectivity by pathologists. Like cancer types, cancer stages can also be defined in
terms of expression patterns of some subset of the human genes. A number of stud-
ies have been published on applications of computational techniques to predict the
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stage of a cancer based on gene-expression data (Eddy et al. 2010; Goodison et al.
2010; Liong et al. 2012). For example, a 7-gene panel (ANPEP, ABLI, PSCA,
EFNAI, HSPBI, INMT, TRIP13) was used to measure the progression of prostate
cancer and achieved high-80 % consistencies with pathologically-determined stages
(Liong et al. 2012). Another example is a 4-gene panel (ILIB, SI00A8, S100A9,
EGFR) for assessing the progression of muscle invasive bladder cancer (Kim et al.
2011). Similar gene panels have been developed for a few other cancers, such as
breast cancer (Rodenhiser et al. 2011; Arranz et al. 2012), colon cancer (Erten et al.
2012) and oral cancer (Mroz and Rocco 2012).

Potentially, one can develop such gene-panels for any cancer as long as tran-
scriptomic data for cancer and control tissues, along with their stage information,
are available. Here we use gastric cancer again as an example to illustrate how gene-
expression data can be used to predict the developmental stage of a cancer.

The same set of gene-expression data collected on 80 pairs of gastric cancer
and matching noncancerous gastric tissues used in Sect. 3.2.1 is again analyzed.
Of the 80 cancer tissues, 4 were in stage I, 7 in stage II, 54 in stage III and 15 in
stage IV. The detailed gene-expression data of these samples can be found in the
Appendix. Note that these tissue samples are not evenly distributed across the
four stages, but this may be a good representation of the actual stage distribution
for gastric cancer patients presenting for resection, at least in China where the 80
samples were collected. The present goal is to identify a set of differentially
expressed genes between cancer and the matching controls, where the expression
patterns adequately reflect the stages of all the gastric cancer samples. On this
data set of 80 pairs of samples, 715 genes were found consistently to be differen-
tially expressed between the cancer and the matching controls (Cui et al. 2011a).

A simplified version of the staging problem is considered first, by merging stages
I and IT samples into one “early stage” group and stages III and IV samples into the
“advanced stage” group, making this a 2-stage classification problem. From an
analysis of all the differentially-expressed genes, four genes, CHRM3 (cholinergic
receptor), PCDH7 (protocadherin), SATB2 (special AT-rich sequence-binding pro-
tein) and PPAI (pyrophosphatase), were identified, each giving a consistency level
with the two combined stages better than 80 % by using a simple fold-change cut-
off. When using K-gene combinations for K> 1, the classification consistency (with
pathologist-determined stages) continues to increase as K increases until it reaches
95 %, and then the improvement becomes asymptotic.

Using the generalized classification scheme outlined in Sect. 3.2.1, one can
undertake the 4-stage classification problem. To ascertain if this problem is solv-
able, we have examined if there are genes whose (average) expression levels change
monotonically with the progression of a cancer. Fortunately, numerous such genes
are found, suggesting that the problem is solvable. Figure 3.2 shows three such
genes, namely LANCL3 (1anC lanti-biotic synthetase component c-like protein),
MFAP?2 (microfibrillar-associated protein) and PPAI (pyrophosphatase).

While the average levels of these three genes each change monotonically with
cancer progression, they may not necessarily represent the best genes whose
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Fig. 3.2 The average gene-expression levels of three genes represented by three panels from left to
right, LANCL3, MFAP2 and PPA1, over all samples in each stage for stages S=1, 2, 3 and 4. The y-axis
is the average fold-change of gene-expression levels across all samples of a specific stage in cancer
versus control samples, and the x-axis is the stage axis. The figure is adapted from Cui et al. (2011b)

expression levels are most informative in predicting cancer stages for individual
tissue samples. To find out, an exhaustive search was made for the best K-gene dis-
criminator, for 2 <K< 10, for the 4-stage classification problem. The combination
(DPT, EIFIAX, FAM26D, IFITM2, LOC401498, OR2AEI, PRRGI, REEP3,
RTKN?2) was found to be the best 9-gene signature for gastric cancer staging, and
(CPS1, DEFAS, DES, DMN, GFRA3, MUC17, OR9G1, REEP3, TMEDG, TTN) rep-
resents the best 10-gene marker, achieving 84.0 % and 90.0 % 4-stage classification
consistencies with the pathologists who did the original staging, respectively (Cui
et al. 2011b).

The following table lists the functions of these marker genes, which were
retrieved from the GeneCards database (Rebhan et al. 1997), to give the reader a
sense about what functional genes may serve as good markers for cancer staging.
Interestingly, the two lists have very little in common with only one gene, REEP3,
shared by the two lists plus a pair of homologous genes, OR2AE] and OR9G], in
the two lists as shown in the following table. Even by examining cellular level func-
tions, the two sets of pathways enriched with the two gene lists have very little in
common. This suggests that there is probably a sizeable set of genes whose expres-
sion patterns are informative for the determination of cancer stages, and it just hap-
pens that these two lists give rise to the two best discriminators (Table 3.1).

As in the case of cancer typing, the discrepancy between the pathologist-assigned
stages and gene-expression-based staging could be due to various reasons as dis-
cussed in Sect. 3.2.1. One useful effort will be to refine both definitions through
collaboration between cancer pathologists and cancer data analysts. Such a joint
effort to identify reasons for staging discrepancies by the two approaches should lead
to a refinement of the criteria used by both parties in an iterative fashion until there
is convergence. Such an exercise could lead to improvement in cancer-staging based
on gene-expression data in a systematic manner. Another important issue is that the
current 4-stage classification scheme for measuring cancer progression is probably
somewhat arbitrary. There is no strong evidence to support the operational premise
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Table 3.1 Functional annotation of the signature genes

Gene name
DPT (dermatopontin)

EIFIAX (ukaryotic translation
initiation factor 1)

FAM26D (family with sequence
similarity 26, member D)
IFITM?2 (interferon induced
transmembrane protein 2)
LOC401498 (a hypothetical
protein)

OR2AE]I (olfactory receptor
2AEl)

PRRG] (proline-rich gamma-
carboxyglutamic acid protein 1)
REEP3 (receptor accessory
protein 3):

RTKN? (rhotekin 2)

CPSI (carbamoyl-phosphate
synthase):

DEFAS5 (defensin a5)

DES (intermediate filament
protein)
DMN (dystrophin)

GFRA3 (glial cell-derived
neurotrophic factor family
receptor)

MUCI17 (cell surface associated
mucin 17)

OR9G] (olfactory receptor,
family 9)

TMEDG (transmembrane emp24
protein transport domain)

TTN (connectin)

Function

An extracellular matrix protein involved in cell-matrix
interaction and matrix assembly

An essential translation initiation factor

A pore-forming subunit of a voltage gated ion channel

An IFN-induced protein that inhibits the entry of viruses
to the host cell cytoplasm

No function has been identified

A hormone receptor responsible for recognition
and G protein-mediated transduction of odorant signals

The protein containing two functional motifs generally
found in signaling and cytoskeletal proteins

May enhance the cell-surface expression of odorant
receptors

May have an important role in lymphopoiesis

Important in removing excess ammonia from the cell
through the urea cycle

Has antimicrobial activity and kills microbes by
permeabilizing their plasma membrane

Forms a fibrous network connecting myofibrils to each
other and to the plasma membrane

A cohesive protein linking actin filaments to another
support protein that resides on the inside surface of each
muscle fiber’s plasma membrane

Mediates the artemin-induced autophosphorylation

and activation of the RET (rearranged during transfection)
receptor tyrosine kinase

Active in maintaining homeostasis on mucosal surfaces

May serve as a hormone receptor like OR2AE] in the above
A HNFla (hepatic nuclear factor 1a) regulated transporter

Contributes to the balance of forces between the two halves
of the sarcomere by providing connections at the level
of individual microfilaments

that the development of a cancer has four distinct phases, but not three or five or even
a continuous progression without obvious phases and phase transitions, say, in terms
of their probabilities to metastasize. To rigorously address this issue computation-
ally, it will require not only transcriptomic data of cancer versus control tissues, but
also data regarding metastases. This is clearly an area where computational
approaches could assist in making fundamental and highly meaningful advances.
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3.2.3 Cancer Grading

Cancer grading is a less developed area compared to cancer typing and staging.
Only a handful of grading systems have been proposed for some cancer types since
Bloom and Richardson developed the first grading system for breast cancer in 1957
(Bloom and Richardson 1957). Similar classifications include the Gleason system
for prostate cancer (Gleason 1966; Gleason and Mellinger 1974), the Fuhrman
method for kidney cancer (Fuhrman et al. 1982) and the approach proposed by
Goseki et al. for gastric cancer (Goseki et al. 1992). As of now, only a few grading
systems have been developed based on molecular information, such as the
Nottingham grading system for breast cancer (Simpson et al. 2000) and the work by
Cui et al. for gastric cancer (Cui et al. 2011b). The main challenge here is that,
unlike cancer typing and staging, for which some molecular level information has
already been used, cancer grading has been solely based on morphologic data of
cancer cells and decided by cancer pathologists. Hence, there may be a large gap
between pathologist-assigned grades and molecular-level commonalities among
samples of the same grade. An example is given here to illustrate the possibility of
using transcriptomic data to grade cancer tissues and point out possible issues with
the existing grading procedures.

We continue to use the same gastric cancer dataset introduced in Sect. 3.2.1. Out
of the 80 gastric cancer tissues, 54 have grades assigned by cancer pathologists (Cui
et al. 2011b), so only these data are used for developing a computational method for
grading a tumor based on its gene-expression data. Of the 54 tissues, 8 are well dif-
ferentiated (WD), 9 moderately differentiated (MD), 35 poorly differentiated (PD)
and 2 undifferentiated (UD), with the patients’ data given in Table 3.2. The aim here
is to identify a set of genes whose expression patterns can well distinguish among
the four grades of gastric cancer.

As in cancer staging, one can determine if some genes have expression levels
that change monotonically with change in cancer grades from highly differentiated
to undifferentiated. Using this criterion, 99 such genes were found. For each of
these genes, its average fold-change among samples of each grade exhibits a mono-
tonic relationship with the grade list WD-MD-PD-UD from the least malignant to
the most malignant, suggesting that the current grading scheme for gastric cancer
does have some molecular basis. These genes include POFIB (premature ovarian
failure 1PB), MET (hepatocyte growth factor receptor), CEACAMG6 (carcinoembry-
onic antigen-related cell adhesion molecule), ZNF367 (zinc finger protein involved
in transcriptional activation of erythroid genes), GKNI (gastrokine-1 with strong
anticancer activity), LIPF (gastric lipase with lipid binding and retinyl-palmitate
esterase activity), SLC5AS5 (a glutamate transporter), MUC13 (cell surface associ-
ated mucin), CLDN] (senescence-associated epithelial membrane protein), MMP7
(matrix metalloproteinase) and ATP4A (ATPase, H+/K +transporting, o). Figure 3.3
shows four examples of these genes in terms of their averaged expression levels
versus cancer grades across samples of each cancer grade.
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Fig. 3.3 The average gene-expression levels of four genes, CEACAM6, MUCI3, CLDNI and
PGA4, over gastric cancer samples of each grade for grades WD, MD, PD and UD. The definitions
of the y- and x-axis are the same as in Fig. 3.2. Adapted from Cui et al. (2011b)

Intuitively one may expect that some combinations of the 99 genes should give a
good classification among the four grades. However, this may not necessarily be the
case for the same reason as discussed in Sect. 3.2.2. Instead, a 19-gene combination
is identified, whose expression fold-changes gave a 79.2 % classification consis-
tency with pathologist-assigned grades on two combined grades, namely ‘“highly
differentiated” covering the WD and MD samples and “poorly differentiated” for
the PD and UD samples, using the algorithm of Sect. 3.2.1. It takes a minimum of
198 genes to give a 4-grade classification at a comparable classification consistency,
specifically at 74.2 %.

There may be multiple reasons for the relatively low consistency levels between
the pathologist-decided and gene-expression-based grading results, but one key rea-
son, we suspect, may be that the morphological information-based grade arrived at
by pathologists may not be as informative in terms of their prognostic values as it
could be, at least not on this dataset, indicating the possible limitations of the cur-
rent approaches and a need for improved techniques.

3.3 Discovering (Sub)Types, (Sub)Stages and (Sub)Grades
Through Data Clustering

The analysis presented in Sect. 3.2 is based on the assumption that the pathologist-
assigned cancer types, stages and grades are generally correct, i.e., they reflect, to a
large extent, the true molecular level commonalities of cancer samples within each
type (or stage, grade) and differences across cancer samples of different types (or
stages, grades). A more general cancer typing (or staging, grading) problem is to
identify cancer types (or stages, grades) when the information of human-designated
types (stages and grades) is not available. The question addressed here is: Can one
possibly discover types or subtypes of a cancer based on the similarities among
expression patterns of some (to-be-identified) genes among a subset of cancer and
matching control samples. To put it in a more specific context: when given a collec-
tion of gene-expression data collected on leukemia samples consisting of four types
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of leukemia, namely ALL, AML, CLL and CML, but without any labels, is it possible
to rediscover the four types of leukemia from the given samples based solely on their
gene-expression data? The answer is: Yes, but it may take a lot of computing time.

From a computational perspective, this represents a different type of data analy-
sis problem from those discussed in Sect. 3.2, which are called classification prob-
lems. The main issue there was: Given a set of objects, each labeled to belong to a
specific class, can one identify “features” that can accurately predict the class label
(e.g., stages or types) of each object based on the features? For the current problem,
the question is: For the same set of objects, can one partition all the objects into a
few classes so that objects in each class share some common features that are not
shared by objects in other classes? Using computer science terminology, this is a
clustering problem.

Clustering techniques have long been used in gene-expression data analyses
(Ben-Dor et al. 1999; Wu et al. 2004; D’haeseleer 2005). Through identification of
sample groups sharing similar expression patterns of some genes, researchers have
identified various previously unknown subclasses of human diseases. The earliest
work in cancer class discovery based on gene-expression data was published by
Golub et al., which showed that without prior knowledge, the algorithm “discov-
ered” two subtypes of leukemia, namely, AML and ALL, based on the distinct gene-
expression patterns among samples of the two subtypes (Golub et al. 1999). Other
discoveries of cancer subtypes include: (1) the discovery of five subtypes of breast
cancers based on gene-expression patterns, namely, luminal A, luminal B, basal-
like, normal-like and ERBB2+ groups, which were found to have clinical implica-
tions (Livasy et al. 2006); (2) a recent study that classifies colon cancer into six
subtypes based on distinct genomic mutation patterns in the samples, namely sam-
ples with or without BRAF, KRAS and P53 mutations, CpG island methylation pat-
terns, DNA mismatch repair status and the chromosomal instability level. The study
also showed clinical relevance of the six subtypes (Marisa et al. 2013); and (3) a
study that showed improvement in subtyping over the previously determined sub-
types of leukemia using gene-expression data (Yeoh et al. 2002).

These examples signify the importance that the to-be-discovered new subtypes
must have clinical relevance. Otherwise such an analysis may lead to clustering
results that group cancer samples according to their growth rates, which may share
similar expression patterns of some genes but not any common driving or facilitat-
ing mechanisms in cancer development, hence limiting their usefulness from a
clinical perspective.

Recent studies have revealed one key inadequacy in the current clustering tech-
niques in discovering subgroups having common or similar gene-expression pat-
terns, which are distinct from other subgroups. Specifically, a major issue is that the
clustering techniques require a pre-defined subset of genes, based on which tissue
samples are grouped according to the similarities in expression patterns of these
genes. This, however, is too restrictive for discovering novel subgroups that may
have similar expression patterns of some genes that cannot be determined in advance.
The computational difficulty in handling this more general clustering problem is
that for a problem with m differentially expressed genes, 2" combinations of genes
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need to be considered in order to identify a subset of the m genes sharing similar
expression patterns among some samples. When m is relatively large, say even in the
range of a few tens, this clustering problem becomes computationally intractable.
A more powerful clustering strategy is needed to solve such problems, and bi-
clustering is one such technique (Van Mechelen et al. 2004).

To understand the basic principles of a bi-clustering algorithm, one can represent
a gene-expression dataset as a numeric matrix with each row representing a gene,
each column representing a paired (cancer versus control) sample, and each entry in
the matrix having the log-ratio value between the expression levels of the corre-
sponding gene in the corresponding sample pair. Two genes are considered to have
similar expression patterns for a subset of samples if the correlational coefficient
between the two genes-corresponding rows across the samples-corresponding col-
umns is above some defined threshold. A bi-clustering problem is defined as that
locating all (maximal) sub-matrices, in each of which the correlational coefficient
between each pair of rows across the samples defined by the sub-matrix is above the
specified threshold. Each so defined sub-matrix is called a bi-cluster. Clearly, a
bi-clustering problem is substantially more general than the traditional clustering
problem, in that it enables one to discover previously unknown subclasses of a can-
cer class (e.g., type, stage or grade). The generality of a bi-clustering problem also
makes it considerably more difficult to solve computationally.

A number of algorithms have been proposed to solve this challenging problem
(Madeira and Oliveira 2004; Van Mechelen et al. 2004). To assess the effectiveness
of the bi-clustering approach in subgroup discovery, we have applied QUBIC
(Lietal. 2009), a bi-clustering method we previously developed, to gene-expression
data of three leukemia types, ALL, MLL and AML, mixed together with their type
information removed. The algorithm can accurately recover the three subtypes of
leukemia as shown in Fig. 3.4, suggesting the general feasibility in discovering sub-
types from gene-expression data of multiple samples of the same cancer type.

This technique has also been applied to the 80 pairs of gastric cancer expression
data for the discovery of possible subgroups among the samples, which led to the
identification of 20-plus bi-clusters. Some of these bi-clusters represent previously
uncharacterized subtypes of gastric cancer. For example, Fig. 3.5 shows one
bi-cluster defined by 42 genes, for which the 80 samples fall into two groups, each
sharing common expression patterns of the 42 genes but different between the two
groups, specifically the light-gray subset on the left and the dark-gray subset on the
right in the figure. Further analyses suggest that the two subgroups may belong to
two known subtypes of gastric cancer, namely intestinal and diffuse subtypes (Shah
et al. 2011). This conclusion is based on the observation that six of the 42 genes,
namely CNNI, MYH11, LMODI, MAOB, HSPBS and FHLI, have previously been
reported to be differentially expressed between the intestinal and the diffuse sub-
types of gastric cancer, which all show similar expression patterns among samples
in each subgroup in the figure.

Such a bi-clustering analysis can also be used for discovery of cancer stages and
grades. The approach is to first identify genes whose expression patterns change
with alterations in stage or grade and then conduct bi-clustering analyses using such
genes as the gene set like the above analysis on cancer subtypes.



Fig. 3.4 An illustration of the identified three subtypes of leukemia based on gene-expression data
using the bi-clustering method QUBIC without using a prior knowledge about the three subtypes.
The rows and columns represent genes and samples, respectively, and dark gray and light gray
represent up- and down-regulations, respectively

Fig. 3.5 A bi-clustering result based on 42 genes (/isted along the right side of the figure) and 80
paired samples (columns). The patterns suggest that the 80 patients fall into two subtypes, intesti-
nal and diffuse subtypes. Adapted from Cui et al. (2011a)
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3.4 Challenging Issues

The availability of genome-scale transcriptomic data for a variety of cancer samples
has enabled molecular information-based typing, staging and grading on more
objective and scientific grounds. Along with this opportunity also comes a number
of challenging technical issues in dealing with the complexity of the data and dis-
covering samples sharing distinct gene-expression patterns with statistical signifi-
cance. A few such challenges that must be addressed in order to make cancer
typing, staging or grading analyses done in an informative and reliable manner are
listed below.

3.4.1 Identification of Pathway-Level Versus Gene-Level
Signatures

The basic premise for cancer typing (and similarly staging, grading) using classifi-
cation or clustering techniques is that some genes exhibit similar expression pat-
terns in cancer samples of the same type, which are not shared by cancers in other
types. While this is probably true for some genes and cancers as shown in this
chapter, there is no reason to believe that this has to be true universally. The reason
is that cancers sharing certain phenotypic characteristics may tend to behave simi-
larly at the biochemical pathway level rather than at the individual gene level. For
example, the repression of the apoptosis system could be accomplished through
functional state changes in numerous different ways such as the inhibition of P53
transcription, P53 gene mutations, over-expression of various survival pathways,
the activation of anti-apoptotic members of the BCL2 family, and over-expression of
certain oncogenes. There are even multiple ways to repress apoptosis just through
different ways of inhibiting the function of P53, such as repression of P53’s expres-
sion transcriptionally or epigenomically, over-expression of its inhibitory binding
partner MDM?2, prevention of the P53 protein from entering the nucleus or inhibi-
tion of P53’s function through posttranslational modification (see Chap. 7 for
details). Hence, an improved strategy for gene-expression-based cancer typing
needs to take this fact into consideration. An improved strategy may need to first
identify equivalent gene groups, each defined as genes whose expression changes
may lead to the same effects at the pathway level. The challenge is how to identify
such equivalent gene groups, which, we believe, requires novel ideas knowing that
the current understanding of cancer-relevant pathways is far from complete.
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3.4.2 Close Collaboration Between Data Analysts
and Pathologists May Be Essential

Another challenge in using computational techniques for cancer typing (or staging,
grading) lies in how to optimally integrate the experience of cancer pathologists in
defining cancer types and the molecular information hidden in the omic data.
A common practice, as shown above, has been to statistically link cancer samples,
defined as the same type by pathologists, to a set of genes with common expression
patterns, which are distinct from cancer samples of the other types. An issue encoun-
tered with such an approach is what to do next when the computational methods
give rise to staging results different from those by pathologists, knowing that both
approaches could have errors. An important message to convey here is that it is
essential for cancer pathologists and omic data analysts to collaborate in order to
resolve inconsistent results, and better yet to develop general protocols for mapping
the knowledge of onco-pathologists to computer-based cancer typing, staging and
grading procedures.

3.4.3 Capturing Complex Relationships Among Gene-
Expression Patterns

Another challenging issue is to identify complex relationships among gene expres-
sion data. For example, some cellular regulation may be triggered when the differ-
ence between the concentrations of certain gene products exceed a certain range,
rather than their actual expression levels increasing above some threshold. Oxidative
stress, defined as the difference between the abundance of oxidant molecules (such as
ROS) and that of antioxidants (see Chap. 8 for details), serves as a good example
here. Specifically it is the difference between the abundances of ROS molecules and
the antioxidant species, rather than the abundance of one individual molecular species
like ROS, that triggers oxidative-stress responses when it is beyond some threshold.
Basically more general models are needed for capturing the complex relationships
among gene expression data than simply up-or-down expression levels. The problem
here is to detect non-trivial mathematical relationships among some genes, which are
shared by some subgroup of samples. Clearly this represents a substantially more
complex problem in identifying genes similar expression patterns, which, if solvable,
can help to solve substantially more complex clustering problems.

3.5 Concluding Remarks

The state of the art in cancer typing, staging and grading relies heavily on morpho-
logical information of cancer cells, along with limited molecular level data. The
limitation of such approaches is obvious since they are not connected with the
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detailed molecular mechanism(s), raising an urgent need for improved cancer
characterization using omic data. The importance in moving in this direction is
clear, as knowing that typing, staging and grading have important implications to
prognosis as well as selection of the optimum treatment plan(s). Large scale omic
data, such as transcriptomic data, probably contain all or the majority of the infor-
mation about the underlying cancer in terms of its driving force, growth mechanism
and ability to invade and metastasize. By linking such information to typing, staging
and grading, one can potentially develop more effective ways to assess the level of
development and malignancy of a cancer. To render omic data-based cancer typing,
staging and grading prediction impactful, collaboration between cancer patholo-
gists and omic data analysts is the key.

There are two types of computational techniques that can assist in cancer typing,
staging and grading. One relies on training datasets in which cancer samples are
labeled with specific types, stages and grades by cancer pathologists; the problem is
to extend this knowledge to enable computer programs to make the same calls by
identifying genes whose expression patterns correlate well with the specified types,
stages or grades. This is an example of what is termed a classification problem, or
supervised learning as referred to in the field of data mining. The other does not
require a training dataset; instead the problem is to determine if a given group of
cancer samples can be partitioned into subgroups so that each shares common
expression patterns among some to-be-identified genes, but distinct from other can-
cer samples. This approach is denoted as a clustering problem, or an un-supervised
learning problem. Various challenging computational problems exist that await
improved techniques, thus making computer-based decisions substantially more
reliable than the state-of-the-art, including: (1) going beyond the simple similarity
measures between gene expression to capture more complex relationships among
gene-expression data of different cancer samples of the same type, stage or grade;
and (2) more integrated approaches to cancer typing, staging and grading through a
refinement of the existing classification schemes involving feedback from patholo-
gists and computational prediction.

Appendix

Table 3.2 Patient data used in the analysis in Sect. 3.2

Patient ID | Age | Gender | Histologic type Grade |Stage | Smoking | Alcohol | Weight

1 54 |F WMD G2 I 0 0 70
2 62 |F WMD Gl mA |0 0 60
3 53 |M WMD G2 mB |0 0 60
4 51 |M WMD G2 mB |1 0 —

5 73 M WMD - IB 0 0 63
6 41 M WMD G2 I - - -

7 59 M WMD Gl I 1 1 51

(continued)
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Table 3.2 (continued)

Patient ID | Age | Gender | Histologic type Grade |Stage | Smoking | Alcohol | Weight
8 68 ‘M WMD G2 v 0 0 48
9 56 |F WMD Gl mA |0 0 45
10 43 |F WMD Gl 111 0 0 55
11 71 |F WMD G2 I 0 0 42
12 65 ‘M WMD G2 A |0 0 70
13 55 |M WMD G2 111 0 0 69
14 55 |M WMD G2 mB 0 0 74
15 62 |F WMD Gl v - - -
16 41 |F SRC - v 0 0 43
17 492 M SRC - 111 0 0 60
18 68 ‘M SRC - I 0 0 50
19 50 M SRC - 111 0 0 62
20 55 |M SRC - 111 0 0 50
21 34 M SRC - I 0 0 90
22 63 ‘M PD G3 mB |1 1 -
23 56 M PD G3 111B 1 1 -
24 71 |M PD G3 nB |1 0 -
25 55 |F PD G3 mB 0 0 63
26 64 |M PD G3 mB |0 0 55
27 53 |F PD G3 mB 0 0 77
28 56 ‘M PD G3 nB |1 0 55
29 53 |M PD G2- |II 0 0 62
G3
30 71 M PD G3 111 0 0 60
31 58 M PD G2- |II 0 0 50
G3

32 492 M PD G3 1B 0 0 52
33 65 |F PD G3 A |0 0 -
34 50 M PD G3 11 1 0 47
35 59 |M PD G3 111 0 0 57
36 75 M PD G3 I 0 0 65
37 40 M PD G3 I 0 1 80
38 51 |F PD G3 I 1 0 52
39 67 |F PD G3 v 0 0 48
40 65 |F PD G3 mA |0 0 53
41 53 |F PD G3 mA |1 0 60
42 60 |F PD G3 mB 0 0 60
43 70 |M PD G3 I 1 0 59
44 56 |F PD G3 I 0 0 74
45 78 |F PD G3 mB 0 0 39
46 65 ‘M PD G3 I 0 1 70
47 68 |M PD G3 I 1 1 69

(continued)



References 85

Table 3.2 (continued)
Patient ID | Age | Gender | Histologic type Grade |Stage | Smoking | Alcohol | Weight

48 57 |F PD G3 mA |0 0 61
49 68 |F PD G3 1 - - -
50 61 |M PD G2- |1 1 0 70
G3
51 55 M PD G3 111 - - -
52 67 F PD G3 11 - - -
53 50 |F PD G3 I - - -
54 62 |F MC - 1 0 0 70
55 55 |M MC - 1B 0 60
56 57 |M MC G2 1A - 65
57 74 M MC - 1B 0 0 62
58 58 M MC G3 1AY 0 0 66
59 7% M MC - 1T 0 0 70
60 54 |M MC - 1 1 1 49
61 47 M (tublar) - 1B 1 1 65
62 49 M (tubular/ - I 1 1 60
papillary)
63 76 |F (undifferentiated) # G4 11 0 0 -
64 51 |M (undifferentiated) K G4 1T - NA 70
65 69 F (squamous cell) - 111 0 0 50
66 65 M (squamous cell) G3 111 0 1 50
67 36 |M (ulcerative) G3 mA |1 0 60
68 75 F (ulcerative) G2- v - 40
G3
69 69 M (mucous cell G3- 11 0 0 55
type) G4
70 81 M (adenosquamous) | — 111 1 0 56
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Chapter 4
Understanding Cancer at the Genomic Level

According to mainstream thinking in the past three decades, cancer is a disease of
the genome. That is, cancer evolves from benign to malignant lesions by accumulat-
ing a series of genetic mutations over time. This model was initially developed for
colorectal cancers based on mutations in the APC gene (Fearon and Vogelstein
1990) and a few other recurring genomic mutations that have been observed in
colorectal cancers. To drive the genetic basis of this and other cancers, extensive
collaborative efforts have been established to sequence the genomes of numerous
cancer types, predominantly solid tumors. This undertaking has led to the public
availability of thousands of cancer genomes and the identification of myriad
genomic mutations, including single-point mutations, copy-number changes and
genomic rearrangements. Analyses of the sequenced genomes have observed that a
cancer genome may harbor tens to a few tens of thousands of mutations across dif-
ferent cancer types. One somewhat surprising observation has been that cancer
genomes tend to have a high degree of heterogeneity in terms of their mutation pat-
terns among tissue samples of the same cancer type, even among different cells in
the same cancer tissue (Xu et al. 2012). From this, an obvious question is: Which of
the observed mutations contribute to the initiation and development of a sporadic
cancer, and how? Or, from another perspective, are any of these mutations respon-
sible for tumor initiation, progression and metastasis?

To address such and related questions, cancer genome analysts have cataloged all
the genetic changes observed in cancer genomes (versus their healthy controls) and
have identified numerous common changes across different genomes of the same as
well as different cancer types. Interesting results have emerged. For example, ~50 %
of the sequenced cancer genomes harbor mutations in the P53 gene and ~90 % of
colon cancer genomes have mutations in the APC gene. With all the cancer and their
control genomes, one can start to address a variety of basic questions about cancer
such as: (1) Do genes of a specific pathway tend to have more mutations than other
pathways? (2) Do mutations in certain pathways tend to take place before mutations
in other pathways? (3) To which aspects of a cancer development do mutations tend
to contribute during the process of tumorigenesis? And even (4) Do genomic
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mutations really drive a cancer development as it has been widely believed? We
fully expect that questions like these and possibly many beyond can be realistically
addressed based on the available and emerging cancer genome data.

4.1 Basic Information Derived from Cancer Genomes

Since the first human genome was sequenced in 2001 (Lander et al. 2001; Venter
et al. 2001), a number of large cancer-related genome sequencing projects have
started as outlined in Chap. 2. These efforts have led to the generation of thousands
of sequenced cancer genomes or exomes as of early 2014, all aimed to find the holy-
grail: the driver mutations for each cancer. Clearly such data have provided ample
opportunities for cancer researchers and genome analysts to characterize the
genomic landscapes of mutations across different cancer types and to link such
information to their clinical phenotypes. The rapid advancement in sequencing
technology, along with the rapid price reduction, e.g., with a 100-fold price reduc-
tion in sequencing one human genome from 2008 to 2014, has clearly fueled the
competition for producing larger numbers of cancer genomes worldwide, thus
increased opportunities to discover common genomic and pathway level character-
istics across cancer samples of the same types. It has become common now for a
published study to report sequencing and analysis results of dozens to hundreds of
cancer genomes.

With the accumulation of the cancer mutation data, various statistics on mutation
patterns have been compiled. For example, according to a recent review (Vogelstein
et al. 2013), each solid-cancer genome for adults harbors a median of 25-80 genes
having non-synonymous mutations with respect to the matching control. This con-
clusion is based on data from multiple cancer types including colon, breast, brain
and pancreatic cancers. More than 90 % of these mutations are single-base muta-
tions (such as C to G substitutions), of which 90.7 % result in missense changes,
7.6 % result in nonsense changes and 1.7 % are alterations in splice sites or untrans-
lated regions. The variation in the number of mutations per genome can be large
across different samples of the same cancer type. For example, a median of ~9,600
mutations per genome was found in the gastric cancer genomes that our lab
sequenced (Cui et al. 2014), and the genome with the highest number of mutations,
namely ~50,000 mutations, in this set is from a patient with some 20 years of smok-
ing history. The compiled statistics also revealed that different cancer types may
have different ranges in the number of mutations per genome. For example, small
cell lung cancer and melanoma genomes are at the high end in this spectrum, con-
taining 23,000 and 30,000+ mutations per genome on average, respectively. In con-
trast, pediatric cancers were found at the lowest end, harboring 9.6 point mutations
per genome on average. Multiple explanations for cancer type-dependent mutation
frequencies have been proposed, including histories of smoking and exposure to
UV light, but few of them have been rigorously tested. We believe that cancer omic
data analyses can provide useful insights in linking endogenous factors to the
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observed variations in mutation frequencies through association analyses between
factors such as cellular ROS levels versus single-point mutation rates or hypoxic
levels versus rates of complex mutations.

The public availability of sequenced cancer genomes has also made it possible
to carry out in-depth genetic analyses regarding early mutations that may cause
cancer, as well as statistical inference of the relative order of occurrences/selections
of mutations associated with different pathways. Such information would be
invaluable, for example, to inference of which mutation(s) may be the disease
initiator(s) responsible for the onset of a cancer and which mutations subsequently
contribute to progression and metastasis. The APC-based model for colon cancer
represents the first such study, which predated the cancer genome sequencing proj-
ects (Fearon and Vogelstein 1990). According to this model, the APC mutation is
probably the first or of the first few among other mutations involved in the forma-
tion of a colon adenoma. The normal function of the protein includes signal trans-
duction in the WNT-signaling pathway, mediation of intercellular adhesion,
stabilization of cytoskeleton and cell-cycle regulation (Fearnhead et al. 2001). The
model predicts that the loss-of-function mutations in the gene may provide the host
cells a growth advantage, hence allowing the cells with the mutations to outgrow
the neighboring cells and become a microscopic clone, forming a small slow-growing
adenoma. A significant tumor expansion will take place when a second mutation
arises in a proto-oncogene gene, such as KRAS, which promotes the clonal growth.
At this point, two cell types co-exist in the same colony, one with APC mutations
only and the other with mutations in both genes. The latter may have a substan-
tially larger cell population than the former because of the growth advantage pro-
vided by the KRAS mutation. As this clonal expansion continues, additional
mutations in other genes, specifically PIK3CA (phosphatidylinositol 4,5-bisphos-
phate 3-kinase), SMAD4 (deleted in pancreatic carcinoma locus 4) and P53, may
occur and be selected, eventually leading to a malignant tumor (Vogelstein and
Kinzler 2004). Here PIK3CA is a proto-oncogene and has key roles in cell prolif-
eration, survival and migration (Murat et al. 2012); SMAD4 is a tumor suppressor
gene and a key gene in the TGFp (transforming growth factor ) pathway (de
Caestecker et al. 2000); and P53 is a well-studied tumor-suppressor gene that has a
variety of functional roles in cell cycle control, RNA repair and initiation of apop-
tosis (Lakin and Jackson 1999; Zilfou and Lowe 2009) (see Chap. 7 for detailed
information about P53).

Substantially improved understanding has been gained about the biology of can-
cer formation since the initial proposal of the APC mutation-based cancer model in
1990. It is now, for example, well understood that this genetic model is too simplis-
tic for explaining the actual formation of a human colon cancer (see Sect. 4.4 for
details). Still this model has played a major role in driving the research on cancer
genetics in the past two decades.

Mutations in the aforementioned genes are considered as driver mutations in
colon cancer development, since each is believed to give the host cells a growth
advantage. A recent study has quantified this advantage by estimating that one such
loss-of-function mutation results in a 0.4 % advantage towards cell growth in the
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dynamic equilibrium between cell growth and death (Bozic et al. 2010). Hence, the
compounding effect of these slight advantages over years, say 10-20 years (the
typical duration needed for a cancer to fully develop in an adult), may lead to
the formation of a large tumor. Compared to driver mutations, the vast majority of
the somatic mutations observed in cancer genomes are considered as passenger
mutations, i.e., they are believed not to give any growth advantage to the host cells.
These passenger mutations may happen and be selected by chance, as the result of
a faulty or imprecise DNA replication or repair machinery.

To date, over 300 candidate driver genes have been proposed in different cancers,
the majority of which are tumor suppressor genes and only a few dozen are proto-
oncogenes (Vogelstein et al. 2013). According to this study by Vogelstein and col-
leagues, a typical cancer may require 2—8 driver mutations for its full development.
What has been surprising is that, aside from a few driver mutations such as APC
mutations in colorectal cancer, BRCAI-2 mutations in familial breast and ovarian
cancers and the fused ABL-BCR gene (also known as the Philadelphia chromosome)
in CML, the vast majority of the predicted driver mutations have very low recur-
rence rates among the genomes of the same cancer type. This observation, not sur-
prisingly, has put the usefulness of the driver-mutation concept in question, as will
be further discussed in Sect. 4.4.

4.2 General Information Learned from
Cancer Genome Data

As of the end of 2013, complete genomes for over 20 cancer types have been
sequenced on a few to a few hundred cancer and control tissue samples per sequenc-
ing project. We use the following three cancer types as examples to give the reader
a sense about the type of information that has been learned, namely (a) lung cancer,
the most common cancer in the US and worldwide; (b) colon cancer, the cancer with
a genetic model; and (c) gastric cancer, sequenced and analyzed by our own team
and representing the second leading cause of cancer-related mortality worldwide. In
addition, two subtypes of leukemia are also included as representative non-solid
tumors in the discussion.

4.2.1 Lung Cancer Genomes

Lung cancer is the deadliest cancer type among all cancers for both men and women
in the US and worldwide, with an estimated 228,190 new cases and 159,480 deaths
anticipated in 2013 in the US (ACS 2013). Lung cancer has two main subtypes:
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). The latter
is more aggressive and accounts for about 15 % of all lung cancer cases. Most
SCLC cases are attributed to smoking, and the patients generally have poor
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prognosis. In 2010, one SCLC cell line, NCI-H209, was sequenced along with a
control line, NCI-BL209, by the Sanger Institute (Pleasance et al. 2010b).

This sequencing project led to the identification of a large number of mutations
in SCLC cells, such as 22,910 somatic mutations including 94 non-synonymous
single-point mutations, 65 insertions and deletions, 58 genomic rearrangements and
334 copy-number changes. The G — T substitution was the most common substitu-
tion, accounting for over 1/3 of the observed single-point mutations; this may be
partially related to the known chemical modification of purines (A/G) induced by
tobacco mutagens. Tobacco mutagens are known to bind with and chemically mod-
ify genomic DNA, forming bulky adducts at the purine residues and leading to non-
Watson-Crick pairing during DNA replication. Such mispairing may escape
correction by a compromised DNA repair system that tends to be associated with
cancer (Pleasance et al. 2010a).

In comparison, more sequencing studies have been carried out on NSCLC, the
most common form of lung cancer. A number of driver mutations have been pre-
dicted in a few proto-oncogenes and tumor suppressor genes such as AKT1, ALK,
BRAF, EGFR, HER2, KRAS, MEKI, MET, NRAS, PIK3CA, RET and ROSI
(Serizawa et al. 2013). Mutations in these genes may lead to constitutive activation
of a number of growth-signaling pathways and hence possibly drive tumorigenesis.
Interestingly, it was found that these driver mutations rarely co-occur in the same
cancer sample, suggesting the possibility that these mutations play similar roles in
the evolution of different cancer samples.

178 lung squamous cell carcinomas (SCC), a subtype of NSCLC, were sequenced
in 2012 by the NIH TCGA (The Cancer Genome Atlas) consortium. Analyses of the
sequenced genomes have led to the identification of a mean of 360 mutations in
protein-coding regions, 165 genomic rearrangements and 323 copy-number changes
or variations (CNVs) per genome. A few recurrent mutations were found in multiple
proto-oncogenes and tumor suppressor genes such as CDKN2A, PTEN, PIK3CA,
KEAPI, MLL2, HLAA, NFE2L2, NOTCHI, RBI and P53, with P53 being mutated
in nearly all the 178 genomes. In addition, CNVs were found with a few genes such
as SOX2, PDGFRA, KIT, EGFR, FGFRI, WHSCILI, CCNDI and CDKN2A, and
significant amplifications were observed with the NFE2L2, MYC, CDK6, MDM?2,
BCL2LI and EYS genes, along with deletions of the FOXPI, PTEN and NF1 genes
(The-Cancer-Genome-Atlas 2012a). Unfortunately, no fundamentally new biology
about the formation mechanism of this cancer type was revealed based on the
discovery of these mutations, a common outcome in multiple other cancer-genome
sequencing projects.

To assist the reader in understanding why each of these specific genes has a large
number of duplications or are deleted in the SCC genomes, the following table gives
a brief description about the function of each (Table 4.1).

From this table one may come to the conclusion that genes with significant
amplifications tend to be related to cell growth, proliferation, inhibition of cell death
and response to oxidative stress, while the deleted genes have antagonist functions
to those that are amplified.
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Table 4.1 A brief functional description of the amplified and deleted genes in SCC genomes

Gene symbol (gene name)

NFE2L2 (nuclear factor, erythroid
2-like 2)

MYC (avian myelocytomatosis viral
oncogene)

CDKG6 (cyclin-dependent kinase)
MDM?2 (E3 ubiquitin protein ligase)

BCL2LI (Bcl-2-like protein 1)
EYS (eyes shut homolog)

FOXP] (Forkhead box P1)
PTEN (phosphatase and tensin

homolog)
NF1 (neurofibromatosis)

Function

Is important for the coordinated up-regulation of
genes in response to oxidative stress

Activates the transcription of growth-related genes

Promotes G,/S transition in cell cycle

Inhibits P53- and P73-mediated cell cycle arrest and
apoptosis

A potent inhibitor of cell death

Contains multiple epidermal growth factor (EGF)-like
domains

An essential transcriptional regulator of B-cell
development

Antagonizes the PI3K-AKT/PKB survival signaling
pathway
Accelerates RAS inactivation

4.2.2 Colorectal Cancer Genomes

Colorectal cancer is the third leading cause of cancer-related deaths in the
US. Analyses of cancer genome data revealed that more than 80 % of the human
colorectal carcinomas (CRCs) have mutations in the APC gene (Kinzler and
Vogelstein 1996), which is true for both sporadic and hereditary CRCs. The physi-
ological role of APC as a tumor suppressor is to retain the p-catenin protein for
phosphorylation, thus preventing it from entering the nucleus to function as a tran-
scription factor for cell proliferation.

The first large-scale genome sequencing paper on CRCs was published by TCGA
in 2012, which sequenced 276 CRC genomes (The-Cancer-Genome-Atlas 2012b).
Twenty-four genes were found to be significantly mutated in CRC genomes. In
addition to the five genes used in Fearon and Vogelstein’s CRC model, ARIDIA,
SOX9 and FAM123B have been found to harbor mutations most frequently in CRC
genomes, suggesting their importance to the formation of a CRC. Among these
genes, ARIDIA is related to chromatin remodeling (Guan et al. 2011); SOX9 is a
developmental gene, involved in male sexual development (Kent et al. 1996); and
FAM 123B is a signaling protein, possibly involved in kidney development (Genetics-
Home-Reference 2014).

A computational analysis of these mutations has provided new insights into the
biology of CRC at the pathway level. For example, 16 genes in the WNT-signaling
pathway were found to be mutated, suggesting the importance in altering the normal
function of the pathway to CRC development. It is worth noting that a key function
of this pathway is in coordinating cell proliferation, differentiation and migration
activities, so multiple mutations in this pathway suggest that CRC may benefit from
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loss of coordination among these three essential cellular processes. Mutations in the
PI3K and RAS-MAPK signaling pathways were also common in the sequenced
samples, including mutually exclusive mutations in PIK3RI and PIK3CA, deletions
in PTEN, and mutually exclusive mutations in KRAS, NRAS and BRAF, suggesting
that simultaneous inhibition of the RAS and PI3K pathways may be required to
achieve therapeutic benefit in treatment of a CRC (The-Cancer-Genome-Atlas
2012b). The TGFp and P53 signaling pathways were found to be frequently mutated
in CRC. Amplifications of the ERBB2 gene were found multiple times across differ-
ent samples, and amplification of IGF2 was also observed, both of which are growth
factors. Lastly, fusions between the NAV2 gene and the WNT-pathway member
TCF7LI were identified in multiple samples.

Overall, a substantial amount of information has been derived from the mutation
data, which should be highly informative for elucidating the specific evolutionary
pressures that the CRC is under. Specifically, these mutations were selected to facil-
itate the CRC cells to evolve and survive the pressures to which they are exposed
(see Chap. 5 for a detailed discussion). Advanced data analyses of these mutations,
along with the known functions of the relevant genes under physiological condi-
tions and the current knowledge about the cancer development, could lead to the
establishment of logic models that can explain why these mutations are specifically
selected by the CRC cells, which could result in new insights about the underlying
mechanisms of the selected evolutionary trajectories by the CRC samples.

4.2.3 Gastric Cancer Genomes

Very little is currently known about the molecular basis of gastric cancer, although
infection of bacterial H. pylori is believed to be a risk factor for its development.
A number of large-scale genome sequencing analyses have been published on this
cancer, including two exome sequencing projects and one genome-wide association
study, which reported novel mutations in the chromatin remodeling gene ARIDIA
and two suspicious loci associated with non-cardia gastric cancers (Shi et al. 2011;
Wang et al. 2011). Another genome analysis on two gastric adenocarcinomas
revealed the architecture of a wild-type KRAS amplification along with three dis-
tinct mutational signatures in this cancer (Nagarajan et al. 2012). Further analyses
of the observed mutations, in conjunction with genome data from 40 gastric cancer
exomes and followed with a targeted screening of an additional 94 independent
gastric tumors, uncovered recurring mutations in the ACVR2A, RPL22, LMANI and
PAPPA genes in multiple gastric cancer samples (Nagarajan et al. 2012). ACVR2A
can activate SMAD transcription regulators, which are cofactors of signal transduc-
tion of TGFf; RPL22 is a ribosomal protein; LMANI is mannose-specific lectin;
and PAPPA is a metalloproteinase and related to the release of IGF (insulin like
growth factor).

Our group has performed a whole-genome sequencing analysis on five pairs of
gastric adenocarcinoma and matching control tissues (Cui et al. 2014). The goal was
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to elucidate not just which, but also how the genomic changes may have arisen and
their possible roles in cancer progression. A particular focus was on associations
between the identified genomic changes and likely cancer-causing factors relevant
to the impaired DNA repair system, and potential integration of H. pylori DNA into
the host genome. The analysis identified 407 non-synonymous point mutations,
among which the most recurrent were in MUC3A and MUC12 (mucins) and three
transcription factors, ZNF717 (zinc finger protein), ZNF595 and P53, where both
zinc finger proteins have been implicated in a number of cancers (Litman et al.
2008; Barbieri et al. 2012; Liu et al. 2012). 679 genomic rearrangements were
detected, which disrupt 355 protein-coding genes; in addition, 76 genes were found
to have copy-number changes. The most interesting finding of the analysis, how-
ever, was the observation suggesting potential integration of H. pylori DNA into the
host genome. If proven to be true experimentally, this could potentially provide
highly useful guiding information for effective treatment of the illness.

4.2.4 Leukemia Genomes

For non-solid tumors, ALL is the most common pediatric malignancy. Among dif-
ferent subtypes, early T-cell precursor ALL (ETP ALL) has high occurrences of
copy-number variations and is known to have low success rates in treatment
(Coustan-Smith et al. 2009). A whole-genome sequencing study on 12 ETP ALL
samples was published in 2012 (Zhang et al. 2012). An average of 1,140 point
mutations, including 154 non-synonymous ones, and 12 structural alterations per
genome were detected, which overlap with a number of protein-coding regions such
as those involved in cytokine-receptor regulation and RAS signaling (NRAS, KRAS,
FLT3, IL7R, JAK3, JAKI, SH2B3 and BRAF), hematopoietic development (GATA3,
ETV6, RUNXI, IKZF1 and EP300) and histone-modification (EZH2, EED, SUZI2,
SETD?2 and EP300). Two genes, DNM2 and ECT2L, were found to have recurring
mutations across multiple samples, where DNM?2 (a cytoskeletal protein) is believed
to be involved in endocytosis and cell motility, and ECT2L (epithelial cell trans-
forming sequence 2) may be an oncogene that acts as a guanine nucleotide exchange
factor. In addition, mutations in JAK3 (leukocyte Janus kinase), IL7R (interleukin 7
receptor), IFNRI (interferon gamma receptor 1) and BRAF were considered as a
possible common pathogenesis for the establishment of the ETP leukemic clone.

Among all leukemia types, CML is probably the best understood. In most cases
the illness is believed to be caused by or closely associated with the formation of a
Philadelphia chromosome (see Fig. 4.1 and Chap. 1). Specifically, the ABL gene
(acquired from the Abelson murine leukemia virus) on chromosome 9 is fused with
BCL (breakpoint cluster region) on chromosome 22, giving rise to constitutive acti-
vation of the ABL-BCL tyrosine kinase, which is considered to be the sole driver of
the cancer.

A tyrosine kinase inhibitor drug, Gleevac, was developed and hailed to be
extraordinarily effective in terminating the rapid malignant cell proliferation.
However, in time, the drug begins to lose its effectiveness due to the ability of the
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Fig. 4.1 A schematic for the formation of the Philadelphia chromosome

cancer to develop drug-resistant clones (Hochhaus 2006). Two general classes of
resistance cases have been observed: one being ABL-BCL-dependent and the other
ABL-BCL-independent. The ABL-BCL-dependent class tends to develop point
mutations in the ABL gene that prevents Gleevac from binding (Deininger et al.
2005), while the ABL-BCL-independent class by-passes the drug-induced ABL-BCL
inhibition by constitutively activating down-stream signaling proteins such as SRC
kinases (Thomas et al. 2004). All these clearly raise an issue of whether the

Philadelphia chromosome is indeed the sole driver of the cancer. If so, then what
drives the cancer to return when the driver is inhibited?

4.3 Driver Mutations Considered at a Pathway
Level: Case Studies

By mapping the observed driver mutations onto biological pathways in databases
such as KEGG (Ogata et al. 1999), BIOCARTA (Nishimura 2001) and REACTOME
(Croft et al. 2011), some pathways are found to be statistically enriched with such
mutations. According to one report, all the known driver mutations enrich 12 signal-
ing pathways (Vogelstein et al. 2013). The following discussion considers three
pathways or biological processes enriched with driver mutations in various cancers:
cell growth, cell survival and genome maintenance, to give the reader a sense of
why these pathways tend to be highly mutated.
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4.3.1 Cell Differentiation

Cell division and differentiation are two fundamental processes that are linked
through cell-cycle controls, where a growth-to-differentiation transition (GDT)
point exists in the G, phase of a cell cycle. A proliferating cell exits the cell cycle
and enters the differentiation process only when the GDT check fails, e.g., when
no adequate amount of nutrient is available in support of cell division. Thus, a
normal proliferating cell proceeds to either of the two paths depending on the
check result at the GDT. For cancer cells, the situation becomes quite complex.
Specifically, cell division in cancer is a means for survival as detailed in Chap. 5.
That is, without cell division, these cells will die. It is generally known that cancer
cells tend to be low in ATP production compared to normal cells (Hirayama et al.
2009); also see Chap. 5 for a detailed discussion. When the ATP-deficient prolifer-
ating cells (another paradox of cancer) traverse the cell cycle, they should have
been directed to cell differentiation at the GDT checkpoint. However, cells transi-
tioned there will die, hence creating a pressure for them to select mutations that
favor cell division over differentiation. Mutations found in the APC, HH and
NOTCH genes are probably all relevant to this selection as these genes are known
to be important to the GDT checkpoint (Jordan et al. 2006; Meza et al. 2008;
Kahane et al. 2013). A specific mutation in /DH (isocitrate dehydrogenase), termed
the 2HG-producing mutant /DH, has been found in glioma, acute myeloid leuke-
mia and chondrosarcoma (Lu et al. 2012), which essentially serves the same pur-
pose by blocking the cells from transitioning to differentiation through inhibition
of a histone demethylation.

4.3.2 Cell Survival

As discussed above and detailed in Chap. 5, neoplastic cells proliferate as a way of
survival. During this process, they gradually lose the normal functionalities of
their cell cycle regulators. Survival has become the sole purpose of these cells, so
consequently any genetic mutations that give these cells a survival advantage over
death will be selected. Cancer genome analyses have shown that numerous muta-
tions are related to cell survival such as mutations that can lead to: (1) prevention
of apoptosis activation, (2) skipping checkpoints in cell cycles, (3) boosting cel-
lular fitness levels as discussed in Chap. 8 and (4) enhanced proliferation that can
also boost survival (Li et al. 1998). The following gives a few such genes: (1)
tumor suppressor genes PTEN, RB1, NF1, WT'l, MYC, CDKN2A and VHL, and (2)
proto-oncogenes MYC, EGFR, HER2, EGFR2, PDGFR, TGFSR2, MET, KIT, RAS,
RAF, PIK3CA and BCL2. Survival at any cost appears to be a key characteristic of
all cancers.
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4.3.3 Genome Maintenance

Normal human cells have a sophisticated machinery to maintain the fidelity of DNA
replication to ensure that their genomes are faithfully copied from one generation to
the next, which is required to execute their intended functions as encoded in the
genome. An inaccurate copy of DNA may lead to elimination of the new cell under
physiological conditions for the health of the whole tissue. It is known that neoplas-
tic microenvironments tend to have a high level of oxidative stress due to their over-
production of the ROS and reactive nitrogen species (RNS), predominantly
associated with increased metabolic activities. Under stressful conditions induced
by ROS accumulation and DNA damage, DNA-integrity checks during the cell
cycle may slow the cell-division process or even direct the cells to apoptosis, which
cancer cells attempt to avoid. While healthy cells need such mechanisms for remov-
ing the malfunctioning cells, tumors cells do not; and losing such a capability may
help them to gain efficiency for survival. Hence, numerous genes involved in
genome-integrity maintenance, such as P53 and ATM (ataxia telangiectasia
mutated), are often mutated as widely observed across different cancers. For the
same reason, genes responsible for DNA repair, such as MLHI (DNA mismatch
repair protein 1), MSH2 or MSHG, are also often mutated in cancers. This will lead
to loss-of-function in DNA repair, which will, in turn, accelerate the accumulation
of additional mutations.

Mutational analyses at the pathway level enables one to identify cellular pro-
cesses that require inhibition or enhancement in cancer cells, hence providing a way
to see the big picture of a forest (cellular pathways) rather than just individual trees
(genes), and to understand the impact of individual mutations at a higher functional
level. Further discussion along this line of thinking is carried out in Sect. 4.4, where
all the mutations observed in cancer genomes of a specific type, including both
driver or passenger mutations as defined in the current literature, are examined.

4.4 Information (Potentially) Derivable from Mutation
Data of Cancer Genomes

A large number of cancer genomes have been sequenced and numerous genome-
analysis papers have been published as outlined in the previous sections. These
studies have uncovered mutations in genes encoding a wide range of cellular func-
tions. However, what has been somewhat surprising and possibly disappointing is
that not many breakthroughs in our understanding about the basic biology of cancer
have resulted from these large-scale genome sequencing and analysis efforts. In the
past few years, concerns have been raised by some, including leading cancer geneti-
cists, questioning the true value of continual cancer-genome sequencing. A close
examination of a presentation by Vogelstein in 2010 may give some hints about why
this is the case (Kaiser 2010). The presentation predicts that the yet-to-be-identified
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driver genes will probably be part of the 12 pathways that are dominantly enriched
with the 300+ predicted drivers, and does not expect that many new driver genes
will be discovered from future cancer genome sequencing projects.

This is clearly surprising as this prediction seems to suggest that the genetic
information of any cancer is dominantly encoded in these 300+ genes? To put it in
a form of a question: Have we really uncovered all the cancer-related genetic infor-
mation from genomic mutation data, or have we been too limiting in our vision in
information derivation from the sequenced cancer genomes?

As a possible check on which one of these two possibilities is likely to be correct,
one published set of 24 sequenced genomes of human colon samples have been
chosen for further analyses, which cover different disease stages including colon
polyps, precancerous colon adenoma (small), precancerous colon adenoma (large)
and colon adenocarcinoma (Nikolaev et al. 2012). The selection of this particular
dataset is mostly based on the consideration that it provides mutation information in
precancerous colon tissues. Out of the 24 sequenced genomes, 4 were removed
from our analysis since 3 are sessile serrated adenoma, which represent a type of
colon tumor distinct from the other tumor samples, and 1 adenoma sample lacks a
clear label for its developmental stage. The 20 samples used in our analysis consist
of 1 polyp with 4 mutations, 8§ mild and small adenoma samples harboring 272
mutations, 8 severe and large adenoma samples having 344 mutations and 3 adeno-
carcinoma samples with 198 mutations. Out of these 815 mutations, 9 are predicted
to be driver mutations by the authors of the study, namely (APC, KRAS, CTNNBI,
P53, NRAS, GNAS, AKTI, ADRIDIA, SOX9), all of which are either tumor-
suppressor genes or proto-oncogenes, while the remainder of the 815 mutations are
considered as passenger mutations. Since this dataset has only three adenocarci-
noma samples, too small to generate meaningful statistics, one published set of
colon adenocarcinoma genomes (The-Cancer-Genome-Atlas 2012b) is also
included in our analysis.

This combined dataset enables us to examine how the mutation-enriched path-
ways change as the disease progresses through different stages. The new dataset
consists of complete genomes of 131 adenocarcinoma samples, 18 stage-1 samples
with a total of 1,439 mutations, 47 stage-2 samples with 3,683 mutations, 43 stage-3
samples harboring 3,657 mutations and 23 stage-4 samples having 2,061 mutations.
32 of these mutations are predicted to be driver mutations by the authors of this
dataset. The following analysis included only passenger mutations predicted by the
original authors of these two datasets.

To check if the predicted passenger mutations may contain any interesting infor-
mation, a simple pathway-enrichment analysis was carried out on these mutations
using DAVID against three pathway databases, KEGG, BIOCARTA and
REACTOME. Table 4.2 lists the pathways or gene groups that are enriched with
genomic mutations of high statistical significance.

Each column of the table lists all the pathways enriched with (passenger) muta-
tions having p-values <0.05 for the first dataset and <0.005 for the second set (using
a more stringent cutoff to simplify the following analysis as an illustrative example
since otherwise too many mutations need to be considered). From the table, one can
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see that in the early adenoma stage, pathways (gene groups) enriched with mutations
are related to cell adhesion, extracellular matrix composition and interaction
(fibronectin, extracellular matrix (ECM), ECM-receptor interaction, glycoproteins),
cell morphology, cell cycle and cell motility. These results strongly suggest that in
early adenoma, changes are already made in: (a) the composition of the extracellu-
lar matrix as well as cell-ECM interactions, (b) cell-cell adhesion, (c) cell morphol-
ogy and (d) cell cycle. It is noteworthy that all of these mutations are related to
genes involved with tissue development!

As introduced in Chap. 1, the composition of the ECM plays an essential role in
cancer (or any tissue) development. It has been well established that changes in the
mechanical properties, via changes in the composition of the ECM, is a key step in
the beginning of tissue development. The data in Table 4.2 suggest that altering the
mechanical properties of the ECM by changing its composition is probably a first,
or at least an early step that needs to be taken for a cancer (tissue) to develop. The
changes observed here in ECM-cell interaction, cell-cell adhesion, cell morphology
and cell cycle through mutations suggest that in colon cancer, and possibly other
cancers as well, tissue development is not a top-down process as in a normal tissue-
developmental process. In the latter, signals emanate to all the relevant processes
(players) in a coordinated fashion to prepare and execute the actions needed for
proper tissue development. Specifically the following changes must be in place for
the cells to proliferate and the tissue to develop: (1) growth signaling; (2) material
preparation for cell division; (3) cell cycle activation; (4) cell morphology changes
induced by altered interactions with the extracellular matrix induced by (5); and (5)
changes in the composition and hence the mechanical properties of the ECM,
among a few other changes.

The observed mutation data suggest that the cancer tissue-development is a
bottom-up process. Specifically cells are first pressured to divide (see Chap. 5 for
the detailed driver information) but without the proper signals at the tissue level to
inform all the relevant players. The initial cell-division signals, produced through
the cells’ altered metabolism (see Chap. 6) and specifically generation of hyaluronic
acid fragments, may lead to the activation of some, but probably not all players
involved in the tissue development machinery. At a minimum, this would not be at
the same level of coordinated activities, which puts the relevant cells in a partially
activated state for tissue development, waiting for the additional players to join. The
selected mutations in the above categories may represent these awaited players, i.e.,
these mutations open all the doors needed for the cells to divide without full signals
for tissue development.

This is not difficult to imagine since, although hyaluronic acid fragments can
(theoretically) provide all the signals needed for the above (1)—(5), they are the
result of random degradation of hyaluronic acid polymers by hyaluronidases and
not designed to support tissue development in a well-coordinated fashion. In addi-
tion, knowing that cell growth signals will trigger cell death when no adequate mac-
romolecules can be synthesized to support cell division (Vaux and Weissman 1993),
we speculate that the un-coordinated hyaluronic acid fragment-based signaling for
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tissue development leads to cell-growth related stress, which may be the direct
reason for the observed mutations selected by the neoplastic cells.

The mutation-enriched pathways in the large adenoma samples, as can be seen
from the second column in Table 4.2, include: (1) EGF-like (epidermal growth fac-
tor like) domain, (2) ABC (ATP-binding cassette) transporters, (3) cadherin, and (4)
actin binding in addition to those shared with small adenoma samples. It is worth
noting that the EGF-like domain is part of the laminin protein, a key linker protein
as an integral part of ECM. ABC transporters have long been known to be relevant
to cancer, mostly because of their roles in the multi-drug resistance pathway
(Szakacs et al. 2006). Recent studies have found that ABC transporters actually play
active roles in cancer development based on the following observations: (a) the
expression of ABCBI can delay the activation of apoptosis in leukemia; (b) ABCC1
has been found to promote cell survival, and knock-down of this gene suppresses
proliferation in neuroblastoma; and (c) cell proliferation was increased with reduced
knock-down of ABCG2, all as reviewed in (Fletcher et al. 2010). Regarding (3), the
loss of cadherin function reduces cell-cell adhesion, hence allowing cells to move
and invade neighboring tissues. Regarding (4), actin-binding is the link between the
ECM and the intracellular actin cytoskeleton, where cell division requires structural
changes of the actin cytoskeleton, which is generally induced through interactions
between actins and ECM-associated proteins as shown in Fig. 4.2.

Overall, it can be seen that, as an adenoma grows from a small to a larger size, it
continues to alter the composition and hence the physical properties of the underly-
ing ECM, possibly to enhance the effectiveness of growth signals and to induce
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Fig. 4.2 A schematic of the actin cytoskeletal structure and interactions with the ECM-associated
proteins. Cell division requires structural changes in the cytoskeleton, generally induced via inter-
actions between actins and ECM-associated proteins such as integrins
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changes in actin cytoskeletal structures. A previous study has shown, for example,
that the effects of growth factors can increase 100-fold when the underlying ECM
changes from very elastic to very stiff (Wells 2008). From the mutation data, we
suggest that the increased change in cell morphology driven by mutations is possi-
bly to stay abreast of the advances in other aspects of the poorly-coordinated tissue
development, signaled by hyaluronic acid fragments (see Chap. 6 for details). In
addition, cells seem to have initiated an effort to delay or repress apoptosis before
other more permanent inhibitory measures are taken, like the loss of P53 function.

For stage-1 adenocarcinoma, it can be seen from the fourth column of Table 4.2
that a number of pathways and gene groups enriched with mutations continue to be
the same as in precancerous adenoma tissues, but with increased statistical signifi-
cance and enhanced activities. These include cell adhesion, ECM composition,
cytoskeletal structure and ATP binding, which tend to continue throughout the four
stages of cancer development. These results clearly indicate that changing the func-
tional states of these pathways through mutations are essential during the whole
process of cancer (tissue) development, again possibly due to the lack of (suffi-
ciently strong) signals for these aspects of (cancer) tissue development. In addition,
mutations in a number of new pathways and gene groups start to emerge in stage-1
cancer, such as: (1) ion transporter, (2) plasma membrane, (3) immunoglobulins and
(4) complement control.

Studies in the past decade have identified links of ion transporters (and channels)
to the control of the timing of cell-cycle checkpoints. Specifically, it has been shown
that ion channels mediate the calcium signals that punctuate the mitotic process
(Becchetti 2011). Losing this capability has been found to promote neoplasia as
one would expect. Regarding (2) above, changes in plasma membrane structures
have long been known to be associated with cancer development (Weinstein 1976).
One study has suggested that cancer cells may consume oxygen at the cell surface
through plasma membrane electron transport to oxidize NADH to support glycolytic
ATP production (Herst and Berridge 2006). Hence, it is possible that there is selec-
tion for glycolytic cancer cells that have altered plasma membrane structures to bet-
ter facilitate glycolytic ATP production and cancer growth. Regarding the observed
mutations in immunoglobulins in (3), a recent study found that the activities of these
proteins may be relevant to the immune protection during carcinogenesis, making a
possible link between the selected mutations in this family of proteins and cancer.
Regarding (4), it was recently reported that cancer cells may have exploited the con-
trol of the complement pathway, as part of the innate immune system, to evade the
immune attack on cancer cells through unwanted recognition of the altered self-cells,
i.e., cancer cells (see Chap. 8) (Ferreira et al. 2010). Overall, these additional muta-
tions in stage-1 cancer disrupt the normal timing control of cell cycle events, enhance
glycolytic ATP production needed by cancer cells and disrupt the immune system.

The three sets of mutations in three consecutive developmental stages of colon
tumor examined above provide a clear picture of the key events in the early devel-
opmental stage of a colon (pre) cancer. When such data are analyzed in conjunction
with transcriptomic data of the same set of samples, one should be able to determine
not only which functionalities must be inhibited, but also which functionalities must
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be activated (due to some mutations), hence providing a more complete picture of
all the key events needed for the early development of a cancer.

To move on, one can see from columns 5-7 of Table 4.2 that, as the cancer pro-
gresses to stages 2, 3 and 4, new mutations occur in: (1) Rho guanyl-nucleotide
exchange factor activity (stage 2), and the related microtubule (stage 3) and GTPase
binding (stage 4); (2) cell motion (stages 2, 3 and 4); (3) differentiation (stages 3 and
4); (4) embryonic development; and (5) a tyrosine kinase (stages 3 and 4). Briefly,
mutations in (1) are associated with the activation of cytoskeletal reorganization
required by cell division, as discussed earlier. Mutations in (2) are clearly related to
tumor invasion; both (3) and (4) are related to the so-called de-differentiation of
cancer cells, a property that has been known to be associated with cancer cells
(Medema 2013); and (5) is related to constitutive growth signaling, strongly sug-
gesting that cell proliferation at this point is not driven by the early driver such as
ridding cells of the accumulated glucose metabolites (see Chap. 5 for details) any-
more; instead it is by something else, yet to be identified, that requires growth sig-
naling in a more efficient manner than via hyaluronic acid-based signaling,
specifically through mutation-facilitated constitutive activation of growth factors.
Basically as a cancer progresses, cell motion, cell de-differentiation and tissue
development become increasingly more important, as suggested by the mutation
data.

It is worth noting that while mutations observed in precancerous and early stage
cancer tissues are highly tissue-development related, mutations observed in the
more advanced stages tend to be associated more to cell movement, cell de-
differentiation and increased efficiency for growth signaling.

From this combined dataset on colon cancer genomes, it is ascertained that
changes in eight major areas through genomic mutations are needed for cancer tissue
development: (a) alteration in the composition and hence the mechanical properties
of extracellular matrices; (b) ECM-cell interaction and cell-cell adhesions; (c) cell
morphology, cytoskeletal structure and cell-cycle activation state; (d) ion channels
and plasma membranes; (e) innate immune system; followed by (f) cell de-
differentiation, (g) self-sufficiency in growth signaling and (h) tumor invasion. In
addition, if one includes the “driver” mutations that were reported in the original
studies and omitted in our data analysis, one should also see changes in (i) cell-cycle
control; (j) evasion of apoptosis; and (k) growth signaling or activation of their recep-
tors among a few other activities, which are clearly too narrowly focused on one
aspect of cancer tissue development, i.e., cell proliferation and associated control.

It is expected that more careful analyses of such genomic mutation data could
lead to a very detailed understanding about which cellular processes must be inhib-
ited and which must be enhanced as a cancer develops, as well as the determination
of the relative order of these changes. In addition, if analyzed together with gene-
expression data, one may possibly derive which particular functional inhibition or
enhancement must be accomplished through mutations and which can be done
through either mutations or transcription or epigenomic level regulation. When
comparative analyses of such data are carried out across different cancer types, it is
expected to reveal which relative orders among mutated pathways are essential and
which are probably accidental.
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Overall, using the genome mutation data of one cancer type, it is demonstrated
here that substantially more information, possibly orders of magnitude more, can be
derived from the sequenced cancer genomes compared to the published studies on
these two sets of cancer genomes. So the question is: What has happened to the
published studies, i.e., why has such information not been reported before?

To answer this question, one needs to look carefully at the definitions of a few
widely used terminologies such as oncogenes, tumor suppressor genes, and driver
and passenger mutations. According to the widely accepted definition (Bozic et al.
2010), a driver mutation is a mutation that gives a selective advantage to a clone in
its microenvironment, through either increasing its survival or reproduction. Based
on this definition, all the mutations given in Table 4.2 should be driver mutations
since they all helped the underlying cancer to develop, but none of them are included
in the candidate driver genes discussed earlier. The reason is that, while they con-
tribute to the growth of a cancer, they are not proto-oncogenes or tumor suppressor
genes by the current definitions in the cancer literature.

Actually, according to the original definitions, oncogenes and tumor suppressor
genes are both defined in terms of their relevance to cancer tissue development (see
Chap. 1 for definitions). But their definitions in real practice have evolved. Basically
they have been determined based on their cellular level functions. For example, the
activation of the MYC gene can lead to cell proliferation in cell culture, an action
that will not happen in a tissue environment since, as discussed above, many other
conditions must be met in addition to an activated MYC before cell proliferation can
take place. It can be checked that many of the proto-oncogenes reported in the lit-
erature are predicted to be oncogenic based on their observed functions in cell cul-
ture instead of tissue level studies! It is worth reemphasizing that the distinction
between tissue and cellular level functions is vitally important since the latter defini-
tion has been clearly used in the published cancer genome analysis papers, which
has led to the somewhat disappointing performance by these large-scale cancer
genome sequencing and analysis studies. This vision is probably responsible for the
rather limited information that has been derived from the cancer genomes.

For practical purposes, a valuable lesson learned here is that one should look at
all the mutations, instead of only the putative “proto-oncogenes” and “‘tumor sup-
pressor genes’ identified based on their cellular functions in artificial environments.
The pathway-enrichment analyses, without any pre-defined filtering, should inform
us which genes are cancer-relevant with statistical confidence, and hence enable the
identification of all the mutations that assist cancer in its development, the true
driver mutations or genes by the original definition.

4.5 Limitations of Cell Line-Based Studies: A Prelude
to Microenvironments Driving Carcinogenesis

It is important to point out that a substantial number of cancer-related studies have
been carried out using cell lines or mouse xenograft models. Such experimental
paradigms permit research to be conducted in a well-controlled and hopefully
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reproducible environment. This, in turn, enables elucidation of the specific signals
that can activate specific pathways or those mutations that will change particular
functional states. Virtually all the known molecular and cellular mechanisms for
cancer have been derived in such in vitro cellular systems. However, one should not
overlook the fact that cancer is not only a cellular level problem; instead, cancer is
the result of very complex interactions between cells and their microenvironment(s)
and that both evolve very rapidly. That is: the core issue of a cancer is a problem at
the tissue level rather than at the cellular level (see Chaps. 5 and 6 for detailed dis-
cussion). Only with this understanding can one possibly find the right information
encoded in the sequenced cancer genomes. The following example is used to illus-
trate why this is the case.

Oncogenes will lead to cell proliferation when activated, which is true only in
cell lines or organ cultures lacking the actual tissue environment, while cancer
in vivo is a tissue-developmental problem. It should be noted that cell proliferation
and tissue development are fundamentally different problems. In a tissue environ-
ment, there are numerous constraints that define when a cell can start to divide.
First, cells must be attached to their base, i.e., the ECM (also referred to as basement
membrane, the portion in direct contact with the cells), to have a chance to grow. It
also requires the underlying ECM to have certain mechanical properties to support
cell growth. In addition, when proliferating cells come too close to each other, they
will stop growing due to contact inhibition, an encoded mechanism in cells for the
prevention of overgrowth. There are also a few intracellular conditions that the cells
must meet before they can divide, even when an oncogene is activated, including:
(1) the cell cycle must have been activated; (2) the proliferating cells must pass all
the cell-cycle checkpoints; (3) the cells must have sufficient biomolecules to pro-
duce a new cell; (4) the cells must have a specific morphology; and (5) the cells
must be relatively healthy (see Chap. 8). For cell division to occur, these conditions,
and possibly additional ones, must be met or specific mutations must be selected to
allow the checkpoints of some conditions to be by-passed. Basically cell division,
possibly driven by oncogenes, is only part of a much larger machinery that controls
tissue development. Cancer studies, including computational analyses such as pre-
diction of oncogenes or analyses of genomic mutations, must be put into the context
of tissue development.

This brings up a more general issue: genomic data of sporadic cancers may not
necessarily contain much information on cancer drivers, as the driving forces for
cancer initiation, progression and metastasis may predominately be attributable, at
least in solid-tumor cancers, to the microenvironment(s) as is emphasized through-
out this book. According to the current literature definitions, it is quite possible that
the mutations in proto-oncogenes and tumor suppressor genes, selected by cancer
evolution, may exert only late facilitator roles instead of early driver roles as repeat-
edly presented in the cancer literature.



http://dx.doi.org/10.1007/978-1-4939-1381-7_5
http://dx.doi.org/10.1007/978-1-4939-1381-7_6
http://dx.doi.org/10.1007/978-1-4939-1381-7_8

110 4 Understanding Cancer at the Genomic Level
4.6 Concluding Remarks

Thousands of cancer genomes have been sequenced and a large number of mutations
have been identified in these sequenced genomes. However, questions are beginning
to emerge from the cancer research community about the true value in further
sequencing more cancer genomes. While interesting information has been forthcom-
ing, with few exceptions the results have not led to groundbreaking discoveries about
the biology of cancer or to new treatment modalities as many have expected. Yet, in
this chapter we have demonstrated that considerable information is present in the
cancer genomes that can be mined by using existing techniques. Indeed, it is esti-
mated that perhaps an order of magnitude more information is available than that
currently published in the genome sequencing and analysis papers. It is not that the
needed methodologies are lacking, instead it is that we have limited our visions by
concepts that were developed for other practical purposes. It is now time to cast aside
those popular concepts and mine the data without any unnecessary constraints.
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Chapter 5
Elucidation of Cancer Drivers Through
Comparative Omic Data Analyses

Past statistics suggest that one out of every two men and every three women in
developed countries will develop cancer during his or her life time. Cancer
accounts for 12.5 % of all disease-induced deaths and ranks number three behind
cardiovascular diseases and infectious and parasitic diseases worldwide. Its
ranking moves up to number two when only developed countries are surveyed.
A central question to be addressed here is: What causes a cancer to initiate and
develop?

Clinically, different cancers seem to have different causes. For example,
some cancers are known to be closely related to viral or bacterial infections.
Cervical cancer results primarily from infection by human papilloma virus.
Hepatitis viruses, such as HBV and HCV, can cause hepatic (liver) cancer.
Similarly, Helicobacter pylori is believed to be responsible for some gastric
(stomach) cancers. Skin cancer, such as basal cell carcinoma, is attributed to
overexposure to UV light, particularly for individuals with fair skin. Other can-
cer-inducing factors include: (1) microbial products such as aflatoxin produced
by flavus growing on stored grains, (2) industrial chemical compounds such as
dioxins, benzene and asbestos, (3) tobacco products, and (4) nuclear radiation
such as gamma rays and alpha particles, all of which are referred to as carcino-
gens. Other than the environment-induced cancers, there is a class of cancers
that are considered as hereditary or familial, such as breast and ovarian cancers
resulting from BRCA gene mutations or colon cancer attributable to APC gene
mutations.

Although induced by different factors, various cancer types share certain common
characteristics at the cellular and tissue levels such as: (1) uncontrolled cell prolifera-
tion, (2) reprogrammed energy metabolism, (3) development of angiogenesis,
(4) evasion of apoptosis, (5) avoidance of immune destruction, and (6) cell invasion
and metastasis; the so-called cancer hallmarks as discussed in Chap. 1. These com-
mon characteristics strongly suggest that different cancers may share something in
common at the root level. This commonality could possibly be something intrinsic to
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our cellular systems, as well as similar characteristics in the abnormal conditions
induced by the relevant exogenous or endogenous factors that may force the underlying
cells to take similar evolutionary trajectories for their survival. The root-level com-
monalities that have been proposed across different cancer types are analyzed in this
chapter, along with an analysis of what may be missing from the current thinking on
this important issue. This will be followed by a proposal describing a new model
about the possible root causes of cancers.

5.1 Two Distinct Schools of Thoughts About Cancer Drivers

5.1.1 Cancer as a Metabolic Disease Related to Reprogrammed
Energy Metabolism

German biochemist Otto Warburg published one of the earliest papers in 1924 about
the possible causes of cancer at the molecular and cellular level (Warburg et al.
1924). When studying cancer metabolism, Warburg noted that cancer cells utilize
glycolysis followed by fermentation of pyruvate to lactic acid in cytosol as the main
ATP producer. This mode of ATP production is in contrast with normal cells that use
glycolysis followed by a more complete oxidation process, oxidative phosphoryla-
tion in mitochondria for ATP generation. A key difference is that the first process
does not require oxygen (anaerobic) while the second uses oxygen (aerobic) as the
terminal electron acceptor. In addition, the second process is about 18 times more
efficient than the first in terms of the number of ATPs produced per mole of glucose
oxidized, as introduced in Chap. 1. Warburg observed that cancer cells utilize the
first process even in the presence of oxygen, the so called Warburg effect (Warburg
et al. 1924). This metabolic alteration was considered by Warburg to be the main
characteristic across all cancers and possibly the primary cause for a cancer to initi-
ate and develop (Warburg 1956). In 1967 he explicitly stated: “Cancer ... has count-
less secondary causes. But ... there is only one prime cause,[which] is the
replacement of respiration of oxygen in normal body cells by a fermentation of
sugar”(Warburg 1967). He went further to state: “... the de-differentiation of life
takes place in cancer development. The highly differentiated cells are transformed
into non-oxygen-breathing fermenting cells, which have lost all their body functions
and retain only the now useless property of growth ... What remains are growing
machines that destroy the body in which they grow”, to offer his insights about the
essence of tumorigenesis. While all of this was very thought-provoking, his theory
about a metabolic cancer driver never became part of the mainstream thinking
among cancer researchers during his active years.

Among the issues for which Warburg had difficulty in convincing his peers about
his theory, he unfortunately gave a partially incorrect explanation about a “paradox”
of cancer cells. As rapidly proliferating cells require more ATP than normal cells,
one would expect a priori that cancer cells should use the more efficient oxidative
phosphorylation, but instead they choose the less efficient glycolytic fermentation
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for ATP production. Warburg suggested that cancer cells must have damaged or
dysfunctional mitochondria and hence have to use glycolytic fermentation even
when oxygen is available. This proposal, however, was found not to be the case on
cancer samples as revealed by later studies (Weinhouse et al. 1956; Pedersen et al.
1970). Warburg’s explanation was probably correct on one class of cancer, namely
hereditary cancers, as discussed in Sect. 5.5, but incorrect on some sporadic can-
cers, at least during some developmental stages. This discrepancy clearly did not
help his case when trying to convince his colleagues of the validity of his proposal
during his lifetime. Warburg’s theory remained visible in the scientific literature for
the next half century. It is worth mentioning that Warburg received the Nobel Prize
in medicine in 1931, but the award was for his work on “Discovery of the nature and
mode of action of the respiratory enzyme”, which is unrelated to his cancer study.
His theory was basically relegated to the sidelines by the time cancer came to be
considered a genetic disease in the 1970s.

Interestingly, in the past few years Warburg’s proposal has received renewed
attention, reflected by the numerous publications in mainstream cancer journals,
often containing words like “reexamination of the Warburg effect”.

5.1.2 Cancer as a Genomic Disease

The discovery of the retrovirus oncogene, SRC, in the 1970s marked the beginning
of a new era of cancer research (Stehelin et al. 1976). In 1976, Bishop and Varmus
discovered that certain human genes, when multiple-copied, mutated or over-
expressed, can become oncogenes, i.e., cancer-causing genes (Stehelin et al. 1976).
These genes are referred to as proto-oncogenes in their normal functional states, as
introduced in Chap. 1. For this discovery, Bishop and Varmus received the Nobel
Prize in medicine in 1989, and their work has had an enormous impact on cancer
research in the past three decades. The conventional thinking in cancer research
subsequently has become greatly genome-centric up till now. A substantial effort
has been invested into the study of oncogenes since then, with a major influence by
governmental funding agencies. As of now, ~150 proto-oncogenes have been identi-
fied in the human genome, including the well-studied RAS (rat sarcoma protein),
WNT (wingless-type MMTYV integration site family, member 1) and MYC genes.
Another group of genes, referred to as fumor suppressor genes (introduced in
Chap. 1), was also discovered to have essential roles in the initiation and development
of cancers in the 1970s. RB was the first tumor suppressor gene discovered by
A.G. Knudson when studying human retinoblastoma (Knudson 1971). Such genes
can safeguard a human cell from developing into a cancerous cell, with the protection
provided by such a gene being lost when both copies of the gene have loss-of-function
mutations. Hence, having mutations in one copy of the gene will increase the risk of
losing its tumor-suppression function. As of now, ~200 tumor suppressor genes have
been identified (Zhao et al. 2013), including the well-known P53(tumor protein 53),
RB(retinoblastoma protein) and APC (adenomatous polyposis coli) genes.
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The concepts of proto-oncogenes and tumor suppressor genes have clearly
provided an effective framework for the development of mechanistic models that
link gene mutations to cancer initiation and progression. Specifically by identifying
over-expression or amplification of specific proto-oncogenes (positive cell cycle
regulators) and repression or mutations of certain tumor suppressor genes (negative
cell cycle regulators) in a cancer, one can infer the main driver mutations of
the cancer and the associated mechanistic models. As of now, a number of cancer
models have been developed based on the identified proto-oncogenes and tumor
suppressor genes, such as the widely cited APC mutation-based model for colorec-
tal cancer by Fearon and Vogelstein (Fearon and Vogelstein 1990); the BRCA
mutation-induced breast cancer model developed by Pollard and colleagues (Lin
et al. 2003); and the BCR-ABL gene fusion (i.e., the Philadelphia chromosome)
model for CML by Nowell and Hungerford (Nowell and Hungerford 1960). It is
clear that this proto-oncogene/tumor suppressor gene framework has helped to
accelerate the generation of new information and knowledge about cancer initiation
and development at the molecular and cellular levels.

The advent of high-throughput sequencing techniques, e.g., next generation
sequencing, has helped to further accelerate genome-based cancer research. As of
the end of 2013, thousands of complete cancer genomes have been sequenced
worldwide using public and private funds (Mwenifumbo and Marra 2013). Most of
these cancer genomes have had their matching control genomes also sequenced,
making the identification of genomic changes in cancer readily doable, which
include point mutations, copy number changes, inversions and genomic transloca-
tions. A substantial amount of information about cancer-associated mutations has
been derived in various cancer genomes, as detailed in Chap. 4.

Various oncogenes and tumor suppressor genes have been identified that are
associated with specific cancer types. For example, the APC gene is considered as a
tumor suppressor gene of colon cancer and CDKS (cyclin-dependent protein kinase
8) as an oncogene of the cancer (Firestein et al. 2008). HER2 (human epidermal
growth factor receptor 2, also known as ERBB2) and MYC are considered as onco-
genes of breast cancer among a few other genes, while BRCAI and BRCA2 are
tumor suppressor genes for many breast cancers (Buchholz et al. 1999). The onco-
genes of prostate cancer include HER2 and BCL2 (B-cell lymphoma 2) (Segal et al.
1994; Arai et al. 1997; Scholl et al. 2001), while the tumor suppressor genes of the
cancer include GADD45A (growth arrest and DNA damage 45A), GADD45B and
IGFBP3 (insulin-like growth factor binding protein 3) (Isaacs and Kainu 2001;
Ramachandran et al. 2009; Ibragimova et al. 2010; Mehta et al. 2011).

The discoveries of oncogenes and tumor suppressor genes, along with the large
number of other mutations found in cancer genomes, have contributed to the now
popular speculation: “cancer is the result of a sequence of genomic mutations”
(Fearon and Vogelstein 1990; Budillon 1995), which has been widely publicized in
both scientific and popular publications. In the past few years, active discussions
have been on-going about driver versus passenger mutations (Greenman et al. 2007;
Stratton et al. 2009; Bignell et al. 2010). The aim is to distinguish mutations that are
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positively selected by cancer evolution from those random mutations that are neutral
to cancer, hence providing a tool to allow researchers to focus on genes that are
essential to cancer initiation and/or development.

The view of “cancer as a genomic disease” has not only attracted many cancer
researchers to study the disease from a highly genome-centric perspective, but also
has profoundly influenced the priorities of federal funding agencies. A substantial
level of funding has been invested into the sequencing of cancer genomes, with the
aim of understanding the genomic level drivers and key mutations through consortia
such as TCGA (The Cancer Genome Atlas) (The-Cancer-Genome-Atlas-Research-
Network 2008) and ICGC (International Cancer Genome Consortium) (Hudson
etal. 2010). As a considerable amount of sequence data of cancer genomes has been
generated from these and other projects, there has been an increasing voice from the
cancer research community in the past few years that questions the true value of the
cancer-genome sequencing projects in terms of gaining a deeper understanding
about cancer biology and in support of developing improved capabilities to fight
against cancer. For example, after decades of popularizing the view of cancer being
a genomic disease, very little has actually been established between the activation
of oncogenes and cancer initiation in a real tissue environment (versus cell culture
models in artificial environments). In a published study on the predictive power of
whole genome sequencing for cancer, Vogelstein and colleagues concluded: “[Their]
research casts doubt on whether whole genome sequencing can reliably predict the
majority of future medical problems” (Roberts et al. 2012)!

As presented in Chap. 4, the vast majority of the mutations selected by cancer
tissues are not associated with proto-oncogenes or tumor suppressor genes as
defined in the current literature; instead they tend to be associated with genes related
to tissue development such as changes in extracellular matrix (ECM) composition
and cell morphology, and immune responses, among other biological functions.
This analysis has clearly revealed limitations in the current proto-oncogene and
tumor suppressor gene-centric views in studies of cancer genome mutations and
their relevance to cancer initiation and development.

5.2 A Driver Model Based on APC-Gene Mutations
in Colorectal Cancer

In their widely cited article published in 1990, Fearson and Vogelstein proposed a
genetic-centric model for the initiation of non-hereditary colorectal cancer (Fearon
and Vogelstein 1990), in which cancer initiation is attributed solely to mutations in
both proto-oncogenes and tumor suppressor genes. Specifically the authors consid-
ered RAS gene mutations as the possible initiating event for some colorectal can-
cers; however, as discussed below, mutations in APC were eventually considered as
a likely initiator. A later study speculated that the RAS mutations discussed in this
work may lead to constitutive activation of the RAS protein (Vojtek and Der 1998).


http://dx.doi.org/10.1007/978-1-4939-1381-7_4

118 5 Elucidation of Cancer Drivers Through Comparative Omic Data Analyses

APC gene RAS gene DCC gene
mutations mutations mutations P53 mutations

Normal Initial Intermediate Late
Epithelium :{> Adenoma l:(> Adenoma ‘:{> Adenoma ED Cancer

Fig. 5.1 A genetic model for colorectal cancer development (adapted from (Fearon and Vogelstein
1990; Martinez et al. 2006))

In addition, the model suggests that for the development of a colorectal cancer, the
host cells need to lose part of their chromosome 5q, which was later found to be the
region that encodes the APC (adenomatous polyposis coli) gene (Nishisho et al.
1991). Cancer-genome sequence data have confirmed that the vast majority of colon
cancers have mutations in this gene (see Chap. 4). The model also suggests that the
majority of colorectal cancers harbor mutations in P53 as well as mutations in the
DCC (deleted in colorectal cancer) gene. Overall, the model predicts that it takes
mutations of at least these four genes for normal epithelial cells to develop to ade-
noma that progresses from the early to the advanced stage and then becomes adeno-
carcinoma when the cells lose the function of P53 (as depicted in Fig. 5.1). The
authors speculated that it is the accumulation of these mutations, rather than
the relative order of the mutations, that really matters. When presenting the model,
the authors made an important observation that neoplastic cells tend to have a small
number of mutations initially, which continues to increase as the disease advances,
a key point that will be further developed in our argument about cancer progression
(see Chap. 9).

Since the publication of this work some 20 years ago, substantial progress has
been made regarding the necessary conditions for cells to become malignant.
Numerous other cellular and micro-environmental changes must take place before
cells can become cancerous as discussed in Chap. 4, such as changes in energy
metabolism, cell-cycle control, tumor angiogenesis, development of microenviron-
ments with certain properties, and avoidance of immune destruction. In addition,
the neoplastic cells must also develop a capability to enable their anchorage-
independent proliferation and lose the contact-inhibition machinery encoded in
their genomes, which has been widely observed in cancer tissues before they can
start their neoplastic growth.

In the following sections, we consider the relationships between genetic muta-
tions and cancer development in a larger and richer context, namely the overall
micro- and intracellular environment needed for a cancer to initiate and develop.
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5.3 Warburg’s Thesis: Reprogrammed Energy
Metabolism as a Cancer Driver

While the genetic-centric views remain a dominating school of thought concerning
drivers of cancer initiation and development in the field of cancer research, increas-
ingly more researchers have begun to reexamine Warburg’s theory across a larger
set of cancer types using the powerful omic techniques. The aim of these studies is
to develop an improved understanding about how Warburg’s observation relates to
the fundamental biology of cancer, of which genetic mutations may be just a part.
By going through the literature of cancer genetics and genomics studies, one sur-
prising observation is made: the published studies seem to have ignored, for some
reason, one basic issue, potentially a most important issue in cancer study: What
pressures do the cancer-forming cells evolve to overcome as they proliferate and
select specific mutations? In retrospect, it seems that this should have been an obvi-
ous question when studying the evolution of any cancer. In addition, no hypotheses
or models have been proposed which aim to connect the numerous mutations
observed in individual cancer genomes, essentially treating the observed mutations
as independent events. This is clearly unsatisfying as discussed further in the fol-
lowing sections and later chapters.

Intuitively one would imagine that specific mutations are selected to better facili-
tate the evolution of the underlying cells to overcome some yet to-be-elucidated
pressures cast on the cells by their microenvironment. An understanding of these
“pressures” may provide functional links among the seemingly unrelated genetic
mutations found in each cancer genome and possibly new understanding about the
evolutionary trajectories selected by individual cancers. We suggest that the Red
Queen Hypothesis (Valen 1973) outlined in Chap. 2 provides a useful framework of
thinking about this issue, i.e., to guide one in elucidation of the evolutionary pres-
sures that cancer cells need to overcome. The Hypothesis basically stated: “the
coevolution of interacting species drive molecular evolution through natural selec-
tion for adaptation and counter-adaptation”. Here we use a more recent publication
to further illustrate the essence of the Hypothesis and its possible relevance to can-
cer evolution, which reported an elegant study on coevolution and co-adaption
between the bacterium Pseudomonas fluorescens and its viral parasite phage ®2
that co-exist in equilibrium in the same environment (Paterson et al. 2010). The
study demonstrated that the increased attacking ability, obtained through genetic
engineering on the phage, hence shifting the equilibrium, will lead to accelerated
evolutionary changes in the bacteria to regain the previously established equilib-
rium. The same result was also observed when the roles of the two organisms were
switched, which is to enhance the defense ability in the bacteria, again through
genetic engineering, leading to a shift in the dynamic equilibrium towards an
increased bacterial population. This triggers accelerated evolutionary changes in the
phage until the previous equilibrium is regained. A key point made by the authors
of the study is that antagonistic coevolution is a cause of rapid and divergent evolu-

tion and likely to be a major driver of evolutionary changes within species.



http://dx.doi.org/10.1007/978-1-4939-1381-7_2

120 5 Elucidation of Cancer Drivers Through Comparative Omic Data Analyses

Returning to the cancer evolutionary problem, the affected cells must be facing
tremendous pressures, since they evolve rapidly. It is only natural to ask: Can
genomic mutations alone create such pressures that drive the affected cells to
evolve? Our answer is: very unlikely since: (1) changes in key functional states of
cells, such as switch from non-dividing to dividing cells and then to a growing tis-
sue, require substantial changes in the tissue environment, including changes in the
functional states of cells and their ECM, along with various signaling molecules, as
discussed in Chap. 4; (2) such changes, if only due to genomic mutations, will
require a large number of mutations as discussed in Chap. 4 and shown in Table 4.2;
and (3) the probability for so many co-occurring mutations in tissue development-
related genes without being removed by the cellular, tissue or whole-body level
surveillance systems is going to be extremely small if any!

One key new understanding about cancer development in the past decade came
from the realization that the microenvironment of cells plays vital roles in cancer
initiation and development (Witz and Levy-Nissenbaum 2006; Lorusso and Ruegg
2008; Sounni and Noel 2013), which is clearly consistent with the Red Hypothesis
discussed above. It is now generally accepted that the following factors in the envi-
ronment of cells contribute to tumorigenesis: (1) the physical properties of the under-
lying ECM (also see Chap. 8); (2) the level of intracellular hypoxia (Wilson and Hay
2011); (3) intra- and peri-cellular accumulation of ROS or reactive nitric species
(RNS) (Wiseman and Halliwell 1996; Lu and Gabrilovich 2012); (4) population sizes
of stromal and immune cells (Coussens and Werb 2002; Grivennikov et al. 2010;
Chew et al. 2012); (5) the intra- and peri-cellular pH level (Estrella et al. 2013); and
(6) certain signals from the local stromal cells. Here we focus on hypoxia and ROS,
and discuss how these two factors may contribute to cancer initiation and develop-
ment, leaving discussions on other micro-environmental factors to later chapters.

It has been well established that chronic inflammation can lead to hypoxia, and
conversely hypoxia can also lead to inflammation (Eltzschig and Carmeliet 2011).
In addition, chronic inflammation can lead to increased generation of ROS (Khansari
et al. 2009), along with a number of other factors, including exogenous factors such
as tobacco products and radiation, and endogenous factors such as oxidative phos-
phorylation, various chemical reactions and aging. One driver model for the early
phase of carcinogenesis, presented in the next section and Chap. 6, is based on
persistent hypoxia and the accumulation of ROS. This model provides one possible
explanation of how Warburg’s thesis, i.e., the primary cause of cancer is the replace-
ment of respiration of oxygen in normal body cells by glucose fermentation, is
related to cancer initiation and development.

First, to understand the generality of Warburg’s observation, which was origi-
nally made on mouse ascites cancer, a larger-scale analysis of transcriptomic data
of 18 types of cancers, namely bladder, brain, breast, cervical, colon, kidney, leu-
kemia, liver, lung, melanoma, metastatic melanoma, metastatic prostate, ovarian,
pancreatic, prostate, skin (basal cell), stomach and thyroid cancer, was carried
out, focused on glucose metabolism including both glycolytic fermentation and
oxidative phosphorylation (See Table 5.1). These cancers were selected because
they represent a wide range of cancer types and each has a large number of
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genome-scale transcriptomic datasets in the public domain. Genes involved in the
two forms of glucose-based energy metabolism, selected amino acid and fatty
acid metabolism, are examined and their expression data compared in cancer ver-

sus adjacent normal tissues. The results of the analysis are shown in Fig. 5.2.
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Fig. 5.2 Comparisons between gene-expression levels of glycolytic fermentation and oxidative
phosphorylation pathways in cancer versus adjacent normal tissues for 18 cancer types. Multiple
genes are used for each category. Each row represents a unique gene and each column represents
a unique cancer type, with dark gray, light gray and white representing up-regulation, down-
regulation and no change, respectively
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One can see from the figure that in 16 of the 18 cancer types, the glycolytic
fermentation pathway shows increased expression while the oxidative phosphoryla-
tion pathway shows decreased expression, consistent with Warburg’s observation 90
years ago. Leukemia is a complex case as it shows increased glycolysis, but its
oxidative-phosphorylation genes exhibit rather complex patterns of changes, having
almost the same number of genes with increased expression as the number of genes
with decreased expression. The only exception is bladder cancer, which has virtu-
ally no changes in gene expressions of either pathway, suggesting that the initiation
mechanism of this cancer may be different from the other 17 cancer types. While
these gene-expression patterns reveal that not all cancers show the same repro-
grammed metabolism as observed by Warburg, 17 out of 18 cancer types have
increased activities of glycolytic fermentation, highlighting the significance in the
activation of this pathway in cancer development in general.

A further examination is made to ascertain if the expression of glucose trans-
porter genes is altered as the hypoxia level changes. The lower part of Fig. 5.2 shows
a high-level of consistency in expression changes between the glucose transporter
genes and the hypoxia marker gene HIFIa. Specifically, 14 out of the 18 cancer
types show overall up-regulation in their glucose transporter genes; two cancer
types, skin basal cell carcinoma and prostate cancer, exhibit no changes in these
genes; and one cancer type, liver cancer, displays down-regulation of one glucose-
transporter gene. For the two cancer types with no changes in transporter-gene
expressions, one possible reason is that they use amino acids and lipids as the main
nutrient sources, but not glucose as has been observed before (Reitzer et al. 1979;
Liu et al. 2010; Carracedo et al. 2013). Leukemia again shows a complex pattern of
expression changes in its glucose-transporter genes.

In addition, metabolite data involved in glucose metabolism of colon and gastric
cancers have been examined, as depicted in Fig. 5.3. One can see that there is a
substantially increased accumulation of multiple metabolites such as G6P (glucose
6-phosphate), FO6P (fructose 6-phosphate) and lactate along the glycolysis pathway,
succinate, fumarate and malate along the TCA cycle, and glycerol, a substrate for
gluconeogenesis, during cancer development (Hirayama et al. 2009).

An additional investigation was made regarding the expression patterns of the
genes analyzed in Fig. 5.2 along with a few additional genes related to the cellular
environment, namely hypoxia and ROS, over a set of diseased colon samples that
range from different stages of precancerous tissues to colon cancer tissues. These
include: (a) inflammatory sigmoid colon tissues (the earliest stage of adenoma),
(b) inflammatory descending colon tissues, (c) tissues of inflammatory bowel
disease, regarded as the earliest stage of colon cancer development, (d) colon ade-
noma and (e) colon adenocarcinoma tissues (see Table 5.1 for details of the data).
On this dataset, the expression levels of marker genes for 10 biological processes
are examined, namely (1) glycolysis, (2) oxidative phosphorylation, (3) hypoxia
and glucose transporter genes, (4) cell cycle, (5) hyaluronic acid related genes, (6)
apoptosis, (7) angiogenesis, (8) epithelial-mesenchymal transition (EMT), (9)
inflammation and (10) immune response. The expression data of the diseased tis-
sues are all normalized with respect to the matching normal colon tissues, as shown
in Fig. 5.4.
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Fig. 5.3 An illustration of increased glucose metabolite accumulation in colon and gastric cancer
tissues, adapted from (Hirayama et al. 2009)

One can see from the figure that: (1) inflammation marker genes tend to be up-
regulated in early stage disease tissues but down-regulated in adenoma and adeno-
carcinoma tissues; (2) hypoxia takes place in the early stage disease tissues and
seems to be correlated with the expression levels of the inflammation marker genes;
(3) glycolysis is generally up-regulated across all the diseased samples, (4) lactate
exporter genes are generally up-regulated except for the adenoma tissues; (5) the
majority of the oxidative phosphorylation genes are down-regulated across all dis-
ease stages; (6) hyaluronic acid synthesis and degradation genes are generally up-
regulated except for HAS2, a hyaluronic acid synthase, across different disease
stages; (7) cell cycle genes tend to be generally up-regulated in adenoma and adeno-
carcinoma samples; (8) at least one of the anti-apoptotic genes among BCL2, BAK1
and BAX is up-regulated across each of the disease stages; and (9) immune marker
genes tend to be down-regulated in the adenoma and adenocarcinoma stages. These
data, along with the ones in Fig. 5.3, set the stage for our model to be presented.

First, however, some background information is reviewed about published opin-
ions regarding why cancer cells tend to have increased activities of glycolytic fer-
mentation, a question that researchers have been groping with for some 90 years. A
number of recent studies suggest that glycolytic fermentation is more beneficial
than oxidative phosphorylation to cancer cells even when oxygen is available since,
to maintain pace with rapid cell proliferation: (a) it generates ATP significantly
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Fig. 5.4 Gene-expression level changes of HIF o along with 10 sets of genes related to cancer
hallmark pathways (Hanahan and Weinberg 2011) on precancerous and cancerous tissues of colon.
In both heat-maps, each row represents a unique gene; and the five columns represent, from left to
right, (1) inflammatory sigmoid colon tissues, (2) inflammatory descending colon tissues, (3) tis-
sues of inflammatory bowel disease, (4) colon adenoma and (5) colon adenocarcinoma tissues.
Each entry of the heat-map represents the log-ratio of the expressions of a gene in a diseased tissue
versus the matching normal colon tissue, with dark gray, light gray and white representing up-
regulation, down-regulation and no change, respectively

faster than oxidative phosphorylation because it has fewer reactions (Pfeiffer et al.
2001); and (b) it produces building blocks for DNA synthesis via the pentose phos-
phate pathway, that can be up-regulated by increased anaerobic fermentation (Lunt
and Vander Heiden 2011).

Based on the above analyses of genome-scale transcriptomic data of pre-cancer
and cancer tissues presented here, and the analyses in Chap. 6, we propose that: (1)

it is the to-be-identified micro-environmental pressures, not the mutations, that
derive the evolution of the underlying cells, possibly different pressures at different
developmental stages; (2) cell proliferation is a feasible and sustained way for the
cells to reduce these pressures; and (3) selection of particular mutations is probably
dictated by the need to up-regulate or inhibit specific functions constitutively as
demanded by the evolution, which are probably already being accomplished through

other means. e.g.. functional regulation.
As one will see in the next section, the key pressure that the evolving cells need

to overcome is to remove the accumulation of glucose metabolites resulting from
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energy metabolism reprogramming. Within our proposed model, DNA synthesis
from the accrued glucose metabolites is a way to dispose of these products, rather
than needed solely in support of cell proliferation; moreover, cell proliferation is
driven by the need for survival as it provides a way to remove the accumulated
metabolites by consuming them towards macromolecular synthesis for the new
cells. Consequently, our view regarding the reason for utilization of glycolysis
fermentation in cancer cells, at least in the early stage, is fundamentally different
from, actually opposite to the aforementioned view in the literature, in terms of its
cause-and-effect relationship with proliferation.

5.4 Cell Proliferation as a Way of Survival: Our
Driver Model

When asking: What drives a cancer to grow, a common answer that one will likely
receive is: oncogenes! But if one carefully examines some examples of oncogenes,
the answer may be not as simple as that. Consider the Philadelphia chromosome
(Nowell and Hungerford 1960) as an example, which is believed to be the sole
oncogene for CML. Specifically, the fusion of the BCR gene and the ABL gene gives
rise to a new constitutively expressed tyrosine kinase BCR-ABL gene, which inter-
acts with the IL3f(c) (interleukin 3f) receptor and continuously activates the cell
cycle. It is worth reemphasizing that the activation of this fused gene alone is not
adequate to drive cancer tissue development since this process requires numerous
coordinated signals relevant to cell survival, celllECM interaction, by-passing
anchorage-dependent growth requirement and a few others as detailed in Chap. 4.
Gleevec was once considered a miracle drug for stopping CML through inhibiting
the activation of this fused tyrosine kinase (Sawyers et al. 2002). However, long-
term studies indicate that drug resistance becomes a common issue for CML patients
due to additional genetic mutations (Roche-Lestienne et al. 2002). This raises an
issue: Are there driving forces at a deeper level than the fused BCR-ABL gene, or
does this fused oncogene serve a similar role to those of mutated tyrosine kinase
proteins in solid tumors such as platelet-derived growth factor receptors (PDGFRs)
or the KIT gene?

Genomic sequence data of CML, particularly bone marrow tissues where pre-
CML cells are generated, should help to answer this question. However, unfortu-
nately only one CML genome has been sequenced as of early 2014, and the only
relevant information released is a one-page abstract (Sloma et al. 2013). From the
very limited information given in the abstract, the authors report that the genome
harbors 845,175 point mutations and 68,817 short indels, in addition to the
Philadelphia chromosome. Virtually nothing is known currently about the molecular
mechanisms of the CML development prior to the formation of the Philadelphia
chromosome as an oncogene. Among all the mutations, eight genes are revealed:
JAK2,ASXLI, CTNNAI, AIDA, RAS, ULKI, GSR and NUPI160. Interestingly these
mutated genes resemble mutated genes in some solid tumors: (1) CTNNAI is
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involved in the association between catenins and cadherins that link to actin fila-
ment, hence relevant to cell morphological changes; (2) JAK2, RAS and ULK] are
involved in cell growth and development; (3) AIDA is related to embryogenesis,
hence possibly related to cell de-differentiation; (4) GSR is an antioxidant, suggest-
ing high oxidative stress level; (5) ASXLI is a member of the Polycomb group that
may be the main regulators of epigenomic responses; and (6) NUP160, a nucleopo-
rin, is involved in RNA transport. This information from eight out of some 800,000
point mutations raises the possibility that CML may share similar or common
mechanisms with solid tumors, and further raises an issue: Is the Philadelphia onco-
gene the root driver, or is it the result of some other events and serves as the main
facilitator, like oncogenes in solid tumors, for the host cells to escape certain pres-
sures through cell proliferation?

5.4.1 ATP Demand Versus Supply

Returning to the issue of root causes of a cancer, recent medical research has estab-
lished that chronic inflammation is at the origin of many human diseases, including
cancer (Khansari et al. 2009), diabetes (Donath and Shoelson 2011) and dementia
(Blasko et al. 2004). The current understanding is that chronic inflammation leads
to hypoxia and an increased ROS production as discussed in Sect. 5.3. Transcriptomic
data analyses across a large number of tissue samples of different cancer types
reveal that hypoxia occurs in cancer-forming cells before any of the cancer hallmark
events (see Fig. 5.4 as an example). This has led us to approach the cancer driver
issue from the perspective of ATP supply versus demand in human cells under
chronic hypoxic conditions, inspired by Warburg’s observation 90 years ago.

As mentioned earlier in this chapter, ATP production decreases in human cells
under hypoxic conditions due to the lower ATP-generation efficiency per mole of
glucose metabolized by glycolytic fermentation as compared to oxidative phosphor-
ylation. This is also true for other vertebrates in general. The main question to be
addressed here is: How does the ATP demand change under hypoxia versus nor-
moxia? This is addressed through a comparative analysis over eight organisms:
human, mouse, rat, hypoxia-tolerant rat, naked mole rat, blind mole rat, turtle and
frog. These organisms were selected because they are known to either develop can-
cer as in the case of human, mouse and rat, or rarely do as in the case of the other
five organisms. Moreover, their ATP-consumption data under normoxia versus
hypoxia are publicly available or can be reliably estimated based on the available
transcriptomic data. The specific question is: What percentage of the ATP-consuming
proteins is substantially repressed during hypoxia versus normoxia?

It has been established that the following six classes of enzymes and pathways
consume on average 84 % of the ATP in vertebrate cells: translation, Na*/K* ATPase,
Ca?* ATPase, gluconeogenesis, urea synthesis and actin ATPase (Rolfe and Brown
1997). (The list of genes is given in Table 5.3.) So we address the above question by
examining only these six classes of proteins, including all those associated with the
relevant pathways.
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ATP consumption data by these proteins in hypoxia-tolerant rat, naked mole rat,
frog and turtle during hypoxia (1-5 % oxygen in the experimental environments)
versus normoxia (21 % oxygen) are available in the public domain (Buttgereit and
Brand 1995; Hochachka et al. 1996; St-Pierre et al. 2000; Larson et al. 2012;
Nathaniel et al. 2012). In addition, matching gene-expression data under the two
conditions are also available for hypoxia-tolerant rat and naked mole rat (See
Table 5.4). No ATP-consumption data are publicly available for human, mouse, rat
and blind mole rat, but they each have gene-expression data collected under condi-
tions of hypoxia versus normoxia. We will thus predict their reduced ATP consump-
tion based on their reduced gene-expression data under hypoxia versus normoxia.

5.4.2 A Regression Model of ATP-Consumption Reduction
Versus Reduced Expression Levels of Relevant Genes

A linear regression model is derived between the reduced ATP consumption and the
reduced gene expressions for naked mole rats and hypoxia-tolerant rats, using pub-
licly available data, namely the reduced ATP consumption AE and the averaged
reduced expression level AELS of the relevant genes in each of the six groups of
proteins. The validity of using gene-expression level to approximate protein-
expression level is assured by a recent study on the detailed relationship between
gene and protein expression levels (Evans et al. 2012). The parameters a and b in a
linear model: AE=a* AELS+b are estimated for the two organisms using linear
regression based on the AE and AELS values for each of the six groups of proteins
collected from the published literature, along with the assumption, without loss of
generality, that AE=0 when AELS=0, which is introduced for the mathematical
rigor and should not affect the data as shown in Fig. 5.5.

AE a b

Translation -5.056 1.009
Sodium-potassium exchange ATPase activity -0.6026 1.110
Calcium transporting ATPase activity —0.8246 0.997
Gluconeogenesis -1.919 1.002
Urea genesis -1.012 0.995
Actin-activated ATPase activity -0.979 1.004

This model is first applied to the AELS values for mouse, rat and blind mole rat
based on their gene-expression data under hypoxia versus normoxia. The validity of
the predicted results is assessed as follows. From Fig. 5.5, one can see: (1) the blind
mole rat is predicted to have a larger reduction in its ATP consumption than that of
the naked mole rat, which is consistent with the general knowledge that blind mole
rats can tolerate more hypoxic conditions than naked mole rats, 3 % versus 5~10 %
in terms of the minimal level of environmental oxygen needed by the two organisms,
respectively (Edrey et al. 2011; Manov et al. 2013); (2) the blind mole rat is predicted
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Fig. 5.5 For human, rat, mouse, naked mole rat, hypoxia-tolerant rat, blind mole rat, frog and
turtle (from bottom to top), 1.0 along the x-axis represents the total ATP demand by the six groups
of proteins during normoxia. The length of each bar represents the percentage of ATP consumption
under matching hypoxia, hence the difference between 1.0 and the percentage representing the
percentage in reduction. Each bar is divided into six gray-level coded sections, each representing
one group of relevant proteins under consideration

to have a smaller reduction in its ATP consumption than those by frog and turtle,
which is also consistent with the fact that frogs and turtles can live virtually without
oxygen for extended periods of time; and (3) both mouse and rat are predicted to
have substantially smaller ATP-consumption reductions than those by naked, blind
mole rats and hypoxia-tolerant rats, which is clearly consistent with our understand-
ing about the basic oxygen needs by mouse and rat. Based on this qualitative valida-
tion, we posit that the model is meaningful; hence we have applied it to predict the
reduction in ATP consumption by human cells under hypoxia versus normoxia.
Again the prediction result is consistent with our general knowledge about these
organisms in terms of their relative abilities to deal with hypoxia.

A literature search revealed that organisms, shown in the figure, with larger energy
reductions tend to have lower chances for developing cancer, suggesting a possible
causal relationship between an organism’s ability to adequately minimize certain
parts of their ATP-consuming metabolism to keep the ATP demand consistent with the
ATP supply under hypoxia versus the organism’s potential for cancer development.
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From an evolutionary perspective, this is not surprising as animals like blind
mole rats have been using both (deep) underground and ground as their living habi-
tats. Their metabolic systems have adapted to living in two different environments
with substantially different levels of oxygen, and their cells have been trained to
switch on and off certain parts of their house-keeping system when different levels
of oxygen are available to keep their ATP demand within the ATP supply. This
capability may have already been encoded in their genomes through adaption and
natural selection during their evolution. In contrast, humans, as a population, never
lived under hypoxic conditions for extended periods of time throughout evolution to
the current stage. As a result, our systems have not been trained (or selected) to
adequately reduce portions of our metabolism during hypoxia to keep ATP demands
within the ability to supply, hence leaving a gap, seemingly a large gap, between
energy demand and supply under persistent hypoxic conditions as shown in Fig. 5.5.
Mice and rats seem to behave in the same way as humans.

5.4.3 A Driver Model

Because of the energy gap, human cells will need to substantially increase their
glucose uptake during persistent hypoxia to meet the ATP demands of the cells,
which has been widely observed in the majority of cancers as increased glucose
metabolism has been the basis for PET/CT scans for cancer detection. In contrast,
organisms like blind mole rats or turtles, do not increase glucose uptake under
hypoxic conditions. Another widely observed phenomenon is that these cells accu-
mulate glucose metabolites, as shown in Fig. 5.4. Hence one may speculate that the
fundamental reason for the accumulation is the result of a mismatch between the
influx rate of glucose, which is regulated by the ATP deficiency, and the maximum
flux rate capable by the glycolytic fermentation pathway, which is determined by
evolution. Knowing that humans have not lived under hypoxic conditions for
extended periods of time during evolution, one can infer that their glycolytic fer-
mentation pathway has been used only as a supplement to the aerobic respiration
system for ATP production and for only short periods of time when humans are in
oxygen demand. One can thus posit that the maximum flux rate of this system
intrinsically cannot meet the need for dealing with the substantially increased influx
of glucose under hypoxia. In addition, one can further speculate that this accumula-
tion does not have a feedback mechanism developed to regulate the glucose trans-
porters to cease functioning when glucose metabolite accumulation takes place,
which may also be due to the lack of training during evolution for adapting to such
a situation. Clearly all these speculations need to be experimentally validated in
order to validate the hypothesis.

The continual accumulation of the glucose metabolites will lead to cell death if
not removed (Kubasiak et al. 2002; Schaffer 2003), and this may continue as long as
the hypoxic condition persists. Thus, we have the main hypothesis of the model: the
need for removing the accumulated glucose metabolites casts strong initial pressure
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Fig. 5.6 A schematic of the cell cycle and growth factors from stromal cells

for the underlying cells to evolve, and cell division may represent a feasible and
sustained way for the affected cells to rid themselves of the glucose metabolites.
This defines the direction for the needed evolution for survival, i.e., cell proliferation
is dictated by the need for survival and probably not by oncogenic mutations.

While the accumulated glucose derivatives may exert the initial pressure for the
cells to evolve to eliminate the accumulation, the cells require signals to change
their cellular state from the non-dividing G, phase to the dividing phase in the cell
cycle to start division (see Fig. 5.6) and to enable them to overcome multiple tightly
controlled conditions designed for preventing uncontrolled growth, which involves
at least three sets of signals: (1) cell biomass growth, (2) cell division, and (3) cell
survival with the ECM in certain states (see Chap. 6). When searching for links
between accumulated glucose metabolites and cell proliferation, an association
connecting these two is found, namely hyaluronic acid. While a detailed discussion
regarding this connection is given in Chap. 6, some basic information is briefly
provided here in order to complete the current development.

Hyaluronic acid is a long polysaccharide chain and serves as a key component
of the ECM along with collagen fibrils and a few linker proteins such as fibronec-
tins, elastins and laminins. Under normal conditions, hyaluronic acid is synthesized
(see Fig. 5.7) in order to accommodate tissue development, remodeling and repair
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Fig. 5.7 The synthesis Glucose
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(Chen and Abatangelo 1999; Noble 2002; Stern et al. 2006; Jiang et al. 2007), and is
generally integrated into the ECM. However, under inflammation-induced hypoxic
conditions with a plentiful supply of glucose metabolites, the biosynthetic pathway
of hyaluronic acid will be activated. The newly synthesized hyaluronic acid is then
exported to the extracellular space and degraded into fragments (see Chap. 6).

Coincidentally, studies on tissue injury and repair have discovered that when a
tissue is injured, it releases the hyaluronic acid fragments from its ECM. These frag-
ments of different sizes serve as signals for various purposes related to tissue repair,
including signals for inflammation, anti-apoptosis, cell survival, cell proliferation
and angiogenesis (Stern et al. 2006), as well as signals that allow anchorage-
independent growth (Kosaki et al. 1999; Toole 2002) and loss of contact inhibition
(Itano et al. 2002), basically all the signals needed for cancer development.

As detailed in Chap. 6, the released hyaluronic acid fragments, arising from glu-
cose metabolite accumulation, are treated as signals for tissue injury, leading to the
continuous process of “tissue repair” as long as the hypoxic condition persists. This
progression of events probably serve as the initial driver and facilitator of cell pro-
liferation, with strong supporting evidence as shown in Chap. 6.

One fundamental difference between this model and those in the literature is that
DNA synthesis is initiated by the accumulation of glucose metabolites that in turn
lead to the synthesis of hyaluronic acid and its subsequent fragmentation which
promotes cell proliferation. Clearly, this is in contrast with a popular view that
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increased DNA synthesis is necessary for the rapid cell proliferation. The cause-effect
relationship of these two processes is exactly opposite between the model presented
here and much of the current thinking.

A recent study on the modulation of the architecture of fibroblasts by hypoxia
strongly suggests that hypoxia may exert a more direct role in mediating cell division.
Specifically, the study demonstrated that hypoxia can substantially change the organi-
zation of the actin cytoskeleton (Vogler et al. 2013), leading to morphological changes
of the cells, a key step towards cell division. It has been previously established that the
state of actin filament organization directly controls cell-cycle progression (Assoian
and Zhu 1997; Thery and Bornens 2006). This observation raises the possibility that
hypoxia may directly mediate cell division, at least by increasing the possibility for
cell hyperplasia. Actually the same study also showed that hypoxia leads to increased
cell volume, i.e., hypertrophy, which could be related to the glucose metabolite accu-
mulation discussed above. If this proves to be true through experimental validation, it
is likely that hypoxia has a double role in early tumorigenesis: creating the pressure
for cells to evolve to remove the accumulated glucose metabolites and facilitating the
removal of the accumulation through cell division.

Hypoxia is also known to mediate a number of other events that may further
facilitate sustained cell division and cancer initiation, such as up-regulation of
telomerase (TERT) (Nishi et al. 2004), genomic instability (Huang et al. 2007),
angiogenesis (Moeller et al. 2004; Liao and Johnson 2007) and cell migration
(Fujiwara et al. 2007). As discussed in Sect. 5.3, hypoxia takes place prior to other
cancer hallmark events. Based on this and later discussions throughout the book, it
should be pointed out that hypoxia can lead to most of the cancer hallmark events.

5.5 Roles Played by Genetic Mutations in Tumorigenesis

Previous studies in this area have mostly focused on the impact of mutations in
proto-oncogenes and tumor suppressor genes, specifically in terms of the driving or
inhibitory roles in cell division by these two classes of genes. Data presented in
Chap. 4 clearly show that genetic mutations selected by cancer have much broader
roles than just driving or inhibiting cell division, as cell division is only a part, albeit
an important part, of cancer tissue development. Here we continue the discussion
about genetic mutations and their roles in two areas: (a) ROS accumulation and
implications to cancer development, and (b) replacement of persistent and abnormal
functions to provide sustainability and energy efficiency.

5.5.1 Genetic Mutations Related to Hereditary Cancers

While the above model applies to sporadic cancers, it is natural to ask if this or a
similar model may apply to familial cancers. To address this question, seven
types of the most common familial cancers with known genetic mutations were
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examined: (1) breast cancer due to the BRCA mutations (Lin et al. 2003); (2) kidney
cancer resulting from mutations in fumarate hydratase (FH) (Toro et al. 2003); (3)
APC mutation-induced colon cancer (Morin et al. 1997); (4) retinoblastoma induced
by RBI mutations (Murphree and Benedict 1984); (5) Li-Fraumeni syndrome due
to P53 mutations (Srivastava et al. 1990); (6) syndrome caused by PTEN mutations
(Liaw et al. 1997); and (7) syndrome because of VHL mutations (Lonser et al. 2003).
Each of these genes has multiple functional roles in normal cells such as P53 (see
Chap. 7 under “P53 network™). All these genes are classified as tumor suppressor
genes in the literature, because of their roles in cell cycle regulation and apoptotic
activation (i.e., as gatekeepers). However as we will see below, these genes actually
play driver roles in familial cancer development.

A literature survey revealed that these mutational effects are similar in one
respect: they all lead to ROS accumulation in mitochondria. This event, in and of
itself, will ultimately lead to the repression of mitochondrial function, including
oxidative phosphorylation. Hence, it will ultimately force the activation of glyco-
lytic fermentation to compensate for the reduced ATP production in mitochondria.
We suspect that this may be the basis of Warburg’s observation 90 years ago, which
consists of normoxic cells with repressed mitochondrial functions due to ROS accu-
mulation. Potentially, this common functional role by the loss-of-function muta-
tions in the seven genes (see below) may prove to be the most essential role in the
tumorigenesis of the relevant cancers, where they exert a “driving” instead of a gate
keeping role as generally believed. Details follow.

Recent studies have shown that BRCA mutations in normal breast cells can lead
to generation of hydrogen peroxide, as one of the normal functions of BRCA is to
neutralize this ROS (Martinez-Outschoorn et al. 2012). The same study also
observed increased glycolysis and decreased oxidative phosphorylation, revealing
the repression of the mitochondrial activities, which forces cells to increase their
activity of glycolytic fermentation regardless of being cancer or non-cancer cells.

Regarding fumarate hydratase, it has been shown that loss-of-function mutations
in FH leads to the constitutive state of pseudo-hypoxia (e.g., increased expression
levels of the HIF genes) and of increased ROS. These, in turn, further lead to
increased glycolysis and decreased oxidative phosphorylation due to repressed
mitochondrial function, hence in time leading to induction of the glycolytic
fermentation pathway (Sudarshan et al. 2009).

Loss-of-function mutations in the APC gene have been found to lead to constitu-
tive activation of the WNT-signaling pathway (Sunaga et al. 2001) since APC is a
negative regulator of the pathway. This pathway activates a downstream gene, RAC/
(a GTPase), the activation of which leads to ROS production (Sundaresan et al.
1996). From these observations, one can speculate that the gradual production and
accumulation of ROS will progressively result in a reduction of mitochondrial func-
tion, including the repression of oxidative phosphorylation, and hence the activation
of glycolytic fermentation pathway and the likelihood of cancer development at
some point during the lifetime of the patient.

P53 gene mutations have long been linked to ROS production (Polyak et al.
1997). A recent study suggests the following mechanism for this observed activity
(Kalo et al. 2012). Loss-of-function mutations in P53 can interfere with the normal
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response of human cells to oxidative stress by attenuating the activation and function
of NFE2-related factor 2, a transcription factor that induces antioxidant responses.
This effect is manifested by decreased expressions of phase 2 detoxifying enzymes
NQOI (NAD(P)H dehydrogenase, quinone 1) and HMOX1(heme oxygenase (decy-
cling) 1) and an increased ROS level, ultimately leading to the repression of mito-
chondrial function, activation of the glycolytic fermentation pathway and possibly
the development of cancer.

The relationship between PTEN (phosphatase and tensin homolog) mutations
and ROS production is interesting. A recent study reported that loss-of-function
mutations in the ATP-binding domain of PTEN lead to disruption of the correct
subcellular localization of the protein, resulting in a significantly decreased nuclear
P53 protein level and its transcriptional activity, and hence increased production of
ROS (He et al. 2011). Ultimately, this will lead to the activation of the glycolytic
fermentation pathway and possibly cancer.

VHL-deficiency was recently found to constitutively activate NOX oxidases to
maintain the protein expression of HIF2a (hypoxia inducible factor-2a), while
NADPH oxidases of the NOX family are the major sources of ROS (Murdoch et al.
2006; Nauseef 2008; Frey et al. 2009). Later the same process ultimately leading to
the development of cancer can take place.

The current understanding about the relationship between RB/ mutations and
ROS production is that loss-of-function mutations in RB/ lead to dysregulation of
E2F2, a component of the transcription factor gene E2F involved in cell-cycle regu-
lation and DNA synthesis, which drives increased production of ROS (Bremner and
Zacksenhaus 2010), and hence the rest of the same or similar process, possibly lead-
ing to cancer.

Based on the above discussion, one may speculate that the gradual accumulation
of ROS over an extended period of time will ultimately lead to the constitutive acti-
vation of NFxB (Gloire et al. 2006), a master transcription regulator in response to
ROS, which will ultimately lead to cancer as has been established (Karin et al.
2002). In addition, it has been well established that mitochondrial ROS triggers
hypoxia-induced transcription (Chandel et al. 1998) and inflammation (Gupta et al.
2012). One can thus speculate that the same model discussed in Sect. 5.4 should
essentially apply to the seven types of hereditary cancers, except that the initial trig-
ger is increased ROS instead of persistent hypoxia. Potentially, this model may
apply to most of the hereditary cancers for the same reason discussed here. A sys-
tematic study of this issue is clearly needed in order to work out the detailed mecha-
nisms of how each of the seven mutations ultimately leads to cancer development
and why the induced cancer tends to be organ-specific.

In this same vein, it is reasonable to speculate that aging-induced cancers may
also follow this or a similar model as mitochondrial ROS accumulates and inflam-
matory cells increase, in addition to cellular senescence (Campisi et al. 2011) as one
ages. At some point these cells may repress their mitochondrial activities with suf-
ficiently high ROS levels accumulated (in steady state), leading to the reprogrammed
energy metabolism and the associated phenomena discussed above. Figure 5.8
summarizes this driver model.
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Fig. 5.8 A model for cancer initiation with two possible drivers: persistent hypoxia and ROS
accumulation. Each solid arrow represents a strong causal relationship and a dashed line denotes
a possible “lead to” relationship

5.5.2 Genetic Mutations in Sporadic Cancers

While genetic mutations are believed by many to be a primary reason for sporadic
cancer development, recent studies are beginning to challenge this view as dis-
cussed in Chap. 4. A possible alternative is that genetic mutations may serve as
facilitators rather than the primary drivers in sporadic cancers. More specifically, it
has been suggested that loss-of-function or gain-of-function mutations in tumor
suppressor genes or proto-oncogenes such as P53 and RAS, respectively, are prob-
ably selected as “permanent” replacements for inhibitions or amplifications of the
functions that are already being executed through functional regulations, post-
translational modifications or other means. Such changes may be needed for sus-
tained and efficient survival. While Chap. 9 provides an in-depth discussion on this
issue, we use the following examples to illustrate the basic idea here.

The functional form of PKM?2 (pyruvate kinase isozyme M2) is a homo-tetramer
that catalyzes the conversion from phosphoenolpyruvate to pyruvate and is also the
rate-limiting step along the glycolytic pathway. It has been observed that the vast
majority of advanced cancers have mutations in the PKM2 gene (Mazurek et al.
2005), which inhibit the homo-tetramer formation. This finding indicates that there
is strong evolutionary pressure for the affected cells to reduce their pyruvate pro-
duction, possibly due to the glucose metabolite accumulation discussed earlier.
It has been shown that oxidation of PKM?2 on specific residues by ROS can increase
the possibility of the homo-tetramer’s disassociation to dimers or monomers
(Anastasiou et al. 2011), hence reducing its normal function. It is quite possible that
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disassociation of the PKM?2 tetramer occurs before the mutations in PKM2, as the
first piece of data suggests that cells with fewer functional PKM?2 tetramers may
have an advantage for survival. Also, the oxidation data suggest the possibility of
other and less permanent means to accomplish the same loss of function.

Another example is the loss of contact inhibition of cells, a process that can ter-
minate cell division when cells are in close proximity one to another (Sgambato
et al. 2000). The increased hyaluronic acid synthesis and export, in response to
glucose-metabolite accumulation (detailed in Chap. 6), will override contact inhibi-
tion, allowing for sustained proliferation by the cells. Mutations in genes responsi-
ble for activating the contact inhibition machinery, such as ING4 (inhibitor of
growth family, member 4) (Kim et al. 2004), are selected, thus ensuring the perma-
nent loss of the inhibition capability, as observed in advanced cancer.

Overall, the selection of loss-of-function mutations of specific genes may repre-
sent a general mechanism in cancer-forming cells. That is, the surviving cells may
require the repression or over-expression of specific genes to remain viable. Genetic
mutations may prove to be the permanent replacement of the desired function,
diminution or enhancement, initially accomplished through other means. We fully
anticipate that a systematic analysis of all well documented cancer-related muta-
tions, coupled with analyses of the matching transcriptomic and epigenomic data
of cancer tissues at different developmental stages versus control tissues, could
provide a detailed knowledge of which genetic mutations tend to serve as perma-
nent replacements of on-going functions and which may be selected by cancer cells
to start new functions. Such information should deepen, as well as broaden our
current understanding of the process of tumorigenesis.

5.6 Exogenous Factors and Cancer

5.6.1 Microbial Infections

A number of cancers are known to be induced and closely associated with microbial
infections. For example, human papilloma virus (HPV) is closely associated with
cervical cancer (Walboomers et al. 1999; Crosbie et al. 2013); Hepatitis virus B and
C (HBV and HCV) are with liver cancer (Perz et al. 2006); H. pylori is connected
with gastric cancer; Chlamydophila pneumonia with lung cancer; and Streptococcus
bovis is closely associated with colorectal cancer (Boleij et al. 2009). The current
estimate is that 18 % of all the diagnosed cancer cases are related to infectious dis-
eases, including viral, bacterial and parasitic infections (Anand et al. 2008). From
the literature, the proposed mechanisms for different infection-related cancers vary
considerably, but with one commonality: all these infections result in chronic
inflammation (Shacter and Weitzman 2002) in the diseased lesions, suggesting a
possibility that our model may apply to the tumorigenesis of the relevant cancers.
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5.6.2 HBYV, HCV and Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the third leading cancer worldwide, and 85 %
of the liver cancers are associated with either HCV or HBV infection worldwide
(Hiotis et al. 2012). Interestingly, the two types of viral infections have very little in
common. HCV is a single-stranded RNA virus that does not have its genome inte-
grated into the host genome, and HBV is a DNA virus whose genome does integrate
into the host hepatocyte genome during early infection.

Previous studies have identified multiple integration sites of the HBV genes in
the host hepatocyte genome, which can lead to the loss of heterozygosity for tumor
suppressor genes such as PRLTS (Kahng et al. 2003). In addition, the HVB-x anti-
gen is able to activate oncogenes, as well as interfere with the function of tumor
suppressor genes such as P53 (Feitelson and Duan 1997; Lian et al. 2003). In com-
parison, the current knowledge of the relationship between HCV and liver cancer is
very limited. For example, it is not known whether the proliferating cells of liver
cancer are HCV-infected cells or if they are responding to apoptosis induced by
HCV in neighboring cells in order to maintain tissue homeostasis. A number of
dysregulated cancer-associated genes, e.g., RB and P53, have been identified in
such cancers (Lan et al. 2002; Munakata et al. 2007), but it is unclear whether these
dysregulations are directly related to HCV infection or cancer development. One
general observation has been that HCV-associated liver cancers tend to first develop
cirrhosis that persists for an extended duration before the development of cancer.

Transcriptomic data analyses, coupled with statistical inference and guided by
our model given in Sect. 5.5 and Chap. 6, should be able to help identify the key
steps in initiation and development of HCV-induced cancer. Specifically, one can
ask how different HCV genes, known to be relevant to liver cancer initiation and
development, contribute to various significant events such as inflammation, hypoxia
or ROS. Such studies have the potential of putting multiple and seemingly unrelated
events into one coherent driver model, potentially leading to new and testable
hypotheses about the initiation and development of the cancer. It is foreseeable that
such studies can also reveal possible problems of our model that may require further
refinement and expansion. The same strategy can be applied to studies of other
infection-associated cancers as follows.

5.6.3 Human Papilloma Virus (HPV) and Cervical Cancer

Virtually all the reported cervical cancer cases are associated with the infection of
human papilloma virus (Walboomers et al. 1999; Crosbie et al. 2013). Although
HPV is essential to the transformation of cervical epithelial cells, studies have
shown that it is not sufficient by viral infection itself for such a transformation.
A number of cofactors are needed, including co-infection with cytomegalovirus or
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human herpes virus, while co-infection with adeno-associated virus can reduce the
risk of cervical cancer. Interestingly, among 15 HPV strains known to be associated
with cervical cancer, each acts independently when a person is infected with mul-
tiple strains of the virus, and infection with more HPV strains tend to increase the
malignancy of the resulting cancer (Walboomers et al. 1999; Munoz et al. 2003).
HPV16 and HPV18 have been identified as the most carcinogenic among all the
strains (Ault 2006; Schiffman et al. 2009). Of note, long-term inflammation has
been found in all cervical cancer cases. HPV infection leads to the up-regulation of
178 and the down-regulation of 150 genes in the host. The down-regulated genes are
mainly those involved in the regulation of cell growth, and some are keratinocyte-
specific genes and interferon-responsive genes (Chang and Laimins 2000). Unlike
the situation in many other cancers, the P53 gene in cervical cancer is typically not
mutated. However, two proteins of HPV, E6 and E7, have a high binding affinity
with both P53 and RB, which disrupts the normal functions of the two proteins
(Burd 2003; Oh et al. 2004), hence not requiring mutations of the genes.

5.6.4 H. pylori and Gastric Cancer

The relationship between H. pylori and gastric cancer is rather complex, as it is esti-
mated that two thirds of the world’s population is infected with H. pylori according
to statistics from the US Center for Disease Control. Yet, most of the infected indi-
viduals do not develop gastric cancer. On the other hand, H. pylori is considered as
a major risk factor of the disease, mainly because numerous studies have shown that
the risk of developing gastric cancer is about six times higher for those infected with.
pylori compared to those who are not (Helicobacter and Cancer Collaborative 2001).
Recent studies have found that eradication of H. pylori does not substantially reduce
the risk of gastric cancer development after chronic infection, suggesting important
roles of H. pylori during the very early stage of the disease, possibly long before
malignant transformation takes place. For example, it has been well established that
H. pylori is a key contributor to the development of atrophic gastritis, an essential
step leading to gastric cancer; consequently, atrophic gastritis induced by H. pylori
may, quite early after infection, determine the disease development trajectories.

A number of H. pylori genes have been implicated to be relevant to the develop-
ment of gastric cancer. For example, vac-A (vacuolatingcytotoxingene A) is a gene
in some strains of H. pylori that can induce vacuolation in epithelial cells. It was
observed that cag-A-containing H. pylori strains tend to be associated with patients
having atrophic gastritis or gastric ulcer (Kuipers et al. 1995; Yamazaki et al. 2005).
In addition, studies have shown that infection with H. pylori strains carrying the
cag-A gene is associated with an increased risk of non-cardia gastric cancer (Nguyen
et al. 2008). Here, cag refers to the pathogenicity island in an H. pylori genome,
which consists of ~30 cytotoxin-associated genes, with other members of the island
including cag-C, cag-E, cag-L, cag-T, cag-V and cag-Gamma. While these genes
are believed to be directly relevant to the formation of atrophic gastritis, their roles
in gastric carcinogenesis are yet to be understood.
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While microbial infections have been found to be associated with the development
of a variety of cancers, the detailed mechanisms of how these infections lead to can-
cer are unknown. It is, however, clear that all these infections lead to chronic inflam-
mation, hence creating a hypoxic microenvironment of the infected tissue and
possibly forming the initial pressure for the infected cells to evolve. Knowing that
these microbial infections tend to be tissue specific, it is possible that specific biomol-
ecules of the different microbes may target specific cell types and/or the specific
microenvironment associated with these cell types. This would provide the needed
vehicles for the affected cells to evolve to alleviate the pressures exerted on them by
the microenvironment. Through a combination of high-throughput omic data analy-
sis, computational prediction and statistical inference, it should be possible to make
substantial progress in elucidating the detailed mechanisms of how a specific microbe
may trigger the development of a particular cancer type.

5.6.5 Radiation-Induced Cancer

It is estimated that up to 10 % of the cancers is related to radiation exposure, includ-
ing both ionizing radiation such as subatomic particles and non-ionizing radiation
such as UV light (Anand et al. 2008). Ionizing radiation is known to induce leuke-
mia among other cancer types. While the published studies have mostly focused on
the damaging effects of ionizing radiation to DNA (Iliakis et al. 2003), the bio-
chemical approaches have revealed that ionizing radiation can lead to the generation
of ROS (Mikkelsen and Wardman 2003). For example, when water is exposed to
ionizing radiation, a variety of ROS is generated, such as superoxide, hydroxyl radi-
cals and hydrogen peroxide. If Warburg turns out to be correct in his hypothesis that
the primary cause of cancer is a switch in energy metabolism, the ionizing radiation-
induced ROS production may be a key reason for ionizing radiation-induced cancer
development.

Multiple studies have recently shown that long-term exposure to non-ionizing
radiation, including microwave radiation (Yakymenko et al. 2011) and UV light
(Heck et al. 2003), leads to over-production of reactive oxygen and nitrogen species.
Clearly, these results suggest that additional and more systematic analyses are
needed to clarify the relevant mechanisms.

5.7 Concluding Remarks

Understanding the drivers of cancer initiation at the root level represents one of the
most fundamental, most challenging and also most interesting problems in cancer
research. Taking a very different approach to examine this problem, we focused on
the intrinsic gap between energy demand and supply in human cells when oxidative
phosphorylation is (partially) shut down, as mediated, for example, by hypoxia and/
or accumulation of mitochondrial ROS. This energy gap, from our perspective, may
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represent an intrinsic “flaw” in our cellular system that allows cancer to develop
since it can lead to the accumulation of glucose metabolites, forming the initial
pressure for cells to evolve and rid themselves of the accumulation. In this context,
genomic mutations probably serve as facilitators for the needed functional changes
to take place, possibly in a sustained and efficient manner. The transcriptomic data
analysis of energy metabolism in cancer versus control tissues has revealed that the
current model is not complete since some cancers do not show increased uptake of
glucose, at least based on the transcriptomic data. We speculate that the accumula-
tion probably still takes place in those cancer-forming cells, possibly due to com-
bined fluxes from glycolysis, amino acid and fatty acid metabolism, which overlaps
with the glycolysis pathway. It is posited that glucose metabolite accumulation rep-
resents a most common driver for solid-tumor cancers and that the activation of
hyaluronic acid synthesis pathway, as will be discussed in Chap. 6, represents the
most essential step in malignant transformation of cells. Simply stated, persistent
glucose metabolite accumulation necessitates cell proliferation since it provides a
natural exit for the accumulated metabolites, and the natural link between glucose
metabolite accumulation and hyaluronic acid synthesis serves as a facilitator for this
action to take place.

Appendix

Table 5.1 A list of datasets used in analysis of Fig. 5.2

Tissue type Data ID Sample size Platform
Pancreatic GSE15471 78 GPL570
Kidney GSE36895 76 GPL570
Colon GSE21510 148 GPL570
Cervical GSE6791 84 GPL570
Gastric GSE13911 69 GPL570
Thyroid GSE33630 105 GPL570
Brain GSE50161 130 GPL570
Lung GSE30219 307 GPL570
Breast GSE42568 121 GPL570
Ovarian GSE38666 45 GPL570
Metastatic prostate GSE7553 43 GPL570
Metastatic melanoma GSE7553 43 GPL570
Liver GSE41804 40 GPL570
Primary melanoma GSE7553 22 GPL570
Bladder GSE31189 92 GPL570
Prostate primary GSE3325 19 GPL570
Bce GSE7553 17 GPL570

Leukemia GSE31048 221 GPL570
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Table 5.2 A list of datasets used in analysis of Fig. 5.4

Tissue type Data ID Sample size Platform
Inflammatory colon tissue versus normal colon GSE11223 202 GPL1708
Inflammatory bowl disease/adenoma/ GSE4183 53 GPL570
adenocarcinoma versus colon normal

Colon adenoma versus colon normal GSE8671 64 GPL570

Table 5.3 Gene expression data of different species under hypoxia and normoxia

Number
GEO ID Species of samples Description
GSE3537 Homo sapiens 69 Cell lines of human breast epithelial cell,
renal proximal tubule epithelial cell,
endothelial cell, and smooth muscle cell
GSE480 Mus musculus 20 Mouse brain, heart, lung and muscle cells
GSE3763 Blind mole rats 12 Muscle tissue
GSE1357 Rattus 24 Hippocampus cell of hypoxia-sensitive
norvegicus and hypoxia-tolerant rat tissue
GSE30337 Naked mole rats 13 Transcriptome sequencing of naked mole

rat tissue

Table 5.4 A list of ATP-consuming house-keeping genes in human used for the study of Sect. 5.4

Translation: GO_0006412

Sodium/potassium-exchanging ATPase activity: GO_0005391
Calcium-transporting ATPase activity: GO_0005388
Gluconeogenesis: GO_0006094

Urea cycle: ASS1, ASL, NOS1, NOS2, NOS3, ARGI1, ARG2, OTC
Actin-dependent ATPase activity: GO_0030898
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Chapter 6
Hyaluronic Acid: A Key Facilitator
of Cancer Evolution

Otto Warburg made a seminal speculation in the 1960s that the switch in cellular
energy metabolism from aerobic respiration to glycolytic fermentation is the driving
force for cancer development. While increasingly more cancer researchers tend to
agree with Warburg, it remains unknown, even five decades after his hypothesis,
how this switch is linked to cell proliferation. We have discussed in Chap. 5 how
chronic hypoxia and mitochondrial ROS accumulation will lead to continual accu-
mulation of glucose metabolites, possibly resulting in cell death if not removed.
This buildup imposes a persistent pressure on the host cells to evolve in order to
survive, and cell proliferation represents a most feasible way for these cells to
remove the accumulation of metabolites in a sustained manner. We will discuss in
this chapter how this pressure can trigger a cellular program to facilitate cell prolif-
eration, hence providing an exit for the accumulated glucose metabolites and a path-
way to survival through proliferation.

The traditional view has been that genomic mutations, particularly mutations in
proto-oncogenes or tumor suppressor genes, drive and facilitate cancer evolution.
This may be true once the disease has reached a certain developmental stage, spe-
cifically after a few encoded constraints related to tissue development can be
bypassed, as observed from the cancer genome data, but it is very unlikely for them
to be the initial driver or even facilitator as discussed in Chap. 4. Here a model,
based on the analysis results of large-scale transcriptomic data, is presented to offer
a detailed explanation of how persistent hypoxia and ROS-induced stresses can lead
to cell proliferation through activation and utilization of the tissue-repair system
encoded in the human genome. Under normal conditions, signals for tissue repair
come from the fragmented ECM of a damaged tissue; however, under stressful con-
ditions as defined above, the cells can produce such fragments, specifically those of
hyaluronic acid, from the accumulated glucose metabolites. This situation creates
(or mimicks) all the signals needed for tissue repair, such as those for inflammation,
anti-apoptosis, cell proliferation, cell survival and angiogenesis, leading to cell pro-
liferation. Clearly, cell division provides relief for the stressed cells by consuming
some of the accumulated metabolites for DNA and lipid synthesis. It is worth noting
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that such molecular accumulation will continue, even in new cells, due to the
hypoxia and ROS condition in the microenvironment, which may become increas-
ingly more stressful due to cell proliferation, possibly creating a vicious cycle for
cell division.

6.1 Hyaluronic Acid and Its Physiological Functions

The glycosaminoglycan, hyaluronic acid (also known as hyaluronate or hyaluro-
nan), is a key component of the extracellular matrix. It consists of a long chain of a
repeating disaccharide, each consisting of one p-glucuronic acid (GlcUA) and one
D-N-acetylglucosamine (GIcNAc). Each hyaluronic acid molecule may comprise
up to 2x 103 disaccharides with a total molecular weight approaching 107 Da. The
negatively charged glycosaminoglycan binds various cations, e.g. Na*, K* and
Ca?, and forms an extended left-handed helix. Three enzymes, HASI-3
(hyaluronic acid synthases 1-3), are known to synthesize hyaluronic acid by
lengthening the molecule through repeated addition of one glucuronic acid and one
N-acetylglucosamine, derived from UDP-GIcUA and UDP-GlcNAc, respectively,
to the nascent polydisaccharide as it is extruded via ABC transporters into the
extracellular space. The exported hyaluronic acid, if not incorporated into extracel-
lular matrices, will be degraded by at least six enzymes, hyaluronidases HYALI-6,
or by ROS into fragments of different sizes. Not until the late 1970s was the mol-
ecule found to play a significant role in cell migration during cardiac cushion
development (Bernanke and Markwald 1979). Since then, a substantial amount of
information has been learned about the amazingly wide range of functions of this
molecule and its fragments.

6.1.1 Hyaluronic Acid Synthesis and Its Regulation

The synthesis of hyaluronic acid is tightly controlled at the transcriptional level of
the three synthases, HAS -3, because of its unique signaling roles in tissue develop-
ment, remodeling and repair (Toole 2004). The current understanding is that HAS-
2 tends to synthesize longer hyaluronic acid chains while HAS3 produces shorter
ones. HAS2 is probably responsible for the production of most of the hyaluronic
acid in human tissues while, interestingly, HAS3 has been found to be up-regulated
in cancer in general (Liu et al. 2001a, b; Tammi et al. 2011a; Teng et al. 2011).
Figure 6.1 shows the synthetic pathway of this molecule from glucose 6-phosphate
(G6P), the first glucose intermediate of the glycolytic pathway. The following table
gives a list of the nine enzymes in the synthetic pathway of hyaluronic acid and
their associated reactions as this information is important to our discussion in this
chapter (Table 6.1).
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Fig. 6.1 The biosynthetic pathway of hyaluronic acid from UDP-GlcUA and UDP-GIcNAc, both
derived from the common precursor glucose 6-phosphate (adapted from (Tammi et al. 2011a))

Table 6.1 Enzymes and reactions in the hyaluronic acid biosynthesis pathway

Enzyme name

Phosphoglucose isomerase
Glutamine-fructose-6-phosphate transaminase
Glucosamine-phosphate N-acetyltransferase
Phosphoacetyl glucosamine mutase
UDP-N-acetylglucosamine pyrophosphorylase
Phosphoglucomutase

UDP-glucose pyrophosphorylase
UDP-glucose dehydrogenase

Hyaluronic acid synthase

Reaction catalyzed

G6P — F6P

F6P + GLN — GIcN6P + GLU

GIcN6P +Ac-CoA — GlcNAc-6P+CoA
GlcNAc-6P — GIcNAc-1P
GlcNAc-1P+UTP — UDP-GIcNAc +PP
G6P - G1P

G1P+UTP - UDP-G+PP

UDP-G+2 NAD +— UDP-GIcUA +2 NADH

UDP-GlcNAc+UDP-GIcUA — hyaluronic
acid

Among the nine enzymes, (1) GPI (phosphoglucose isomerase) is part of the
glycolytic pathway and is activated whenever glycolysis is activated; (2) the follow-
ing three enzymes: GNPNAT (glucosamine phosphate N-acetyltransferase), PGM3
(phosphoacetyl glucosamine mutase) and UAPI (UDP-N acetylglucosamine pyro-
phosphorylase), are shared with the hexosamine pathway (Fantus et al. 2006), which
is positively regulated by the concentration of glucosamine (Patti et al. 1999) and by
hypoxia (Guillaumond et al. 2013); (3) PGM (phosphoglucomutase) and GFPT2
(glutamine-fructose-6-phosphate transaminase) are up-regulated by hypoxia
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(Pelletier et al. 2012; Guillaumond et al. 2013) and by PAKI(P21 protein-activated
kinase) (Gururaj et al. 2004); (4) UGP2 (UDP-glucose pyrophosphorylase) is up-
regulated by hypoxia (Pescador et al. 2010); (5) UGDH (UDP-glucose dehydroge-
nase) is positively regulated by TGFf but negatively regulated by hypoxia, which is
different from all the other genes discussed above; and (6) the hyaluronic acid syn-
thases can be regulated by various growth factors (Tammi et al. 2011a) such as
PDGF, KGF (keratinocyte growth factor), FGF2, EGF, TGFf, IL1f and TNFa. In
addition, the level of UDP-GIcNAc has been found to control the expression of
HAS2(Tammi et al. 201 1a). The above information suggests that the high possibility
of synthesis of hyaluronic acid when the cell contains ample G6P under hypoxic
conditions in a TGFf-containing microenvironment.

6.1.2 Functions of Hyaluronic Acid

The most relevant function of hyaluronic acid, in the current context, is its role in
ECM, which also consists of collagen fibrils and numerous linker proteins. The
other physiological functions of hyaluronic acid include: (1) its role as a major com-
ponent of human skin, where it mainly serves as part of the tissue-repair machinery
(Jiang et al. 2007); (2) the formation of a coat around each cell in articular cartilage
(Holmes et al. 1988); and (3) a possible role in the development of brain as a previ-
ous study suggested (Margolis et al. 1975).

Studies in the past decade have discovered that a number of key interaction part-
ners of hyaluronic acid have essential functional roles in tissue development and
immunity. Among these partners, CD44 and RHAMM (hyaluronic acid-mediated
motility receptor) are the most significant ones since hyaluronic acid mediates many
of its functions through interactions with these two cell-surface receptors. In addi-
tion, CD44 has long been known to be closely associated with cancer development
(Toole 2009). Other partners include EMMPRIN (extracellular matrix metallopro-
teinase inducer), LYVEI (lymphatic vessel endothelial hyaluronic acid receptor 1)
and HARE (hyaluronic acid receptor for endocytosis), all being cell-surface recep-
tors. Their detailed functions are as follows.

The wild-type CD44 has three functional domains, an ectodomain, a transmem-
brane domain and a cytoplasmic domain, where the ectodomain binds hyaluronic
acid and the cytoplasmic domain can bind with numerous regulatory molecules
such as NFxB and RAS (Isacke 1994; Okamoto et al. 1999; Thorne et al. 2004;
Misra et al. 2011). The majority of these regulatory molecules are involved in
changing the key functional states of the host cell, such as proliferation, survival,
differentiation, migration, production of cytokines and chemokines, and angiogen-
esis. CD44-hyaluronic acid interactions have been found to play critical roles in all
these processes (Ahrens et al. 2001; Alaniz et al. 2002; Bourguignon et al. 2006;
Bourguignon et al. 2009; Bourguignon et al. 2011; Park et al. 2012).

CD44 has 32 known functional splicing variants (Roca et al. 1998; Brown et al.
2011), suggesting the diversity of its function. The transcription of CD44 is regulated
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in part by p-catenin and the WNT signaling pathway (Zeilstra et al. 2008; Ishimoto
et al. 2013), and the functional state of the protein depends largely on its binding
with hyaluronic acid (Toole 2009). Numerous post-translational modifications add
another layer of the functional diversity to this protein, including its well-studied
sialofucosylated glycoform, HCELL (Jacobs and Sackstein 2011), which serves as
P-, L- and E-selectin ligands and fibrin receptors, where selectins are involved in
chronic and acute inflammation, as well as in constitutive lymphocyte homing.

EMMPRIN (also known as CDI147) is a cell-surface glycoprotein, and its pri-
mary function is an inducer of metalloproteinase (Guo et al. 2000; Attia et al. 2011).
In addition, the protein can regulate, or at least mediate, a variety of cellular pro-
cesses such as mono-carboxylate transporters and responsiveness of lymphocytes.
It can bind with immunosuppressants such as cyclophilins A and B (CYCA and
CYCB) and with integrins, which mediate the attachment of the host cell to the
ECM. The protein interacts with hyaluronic acid indirectly through interactions
with CD44 or LYVE]. Interactions between CD44 and EMMPRIN have been found
to be a key player in the multi-drug resistance pathway (Toole and Slomiany 2008;
Slomiany et al. 2009). Consequently, cancers harboring this molecular interaction
tend to have poor clinical outcomes due to the cell survival capability induced by the
interactions.

RHAMM (also known as CD168) functions both extra- and intra-cellularly. For
its intracellular functions, RHAMM interacts with numerous signaling proteins such
as tyrosine kinases (e.g., focal adhesion kinase or mitogen-induced protein kinase),
NF«B, RAS, ERK]I (extracellular regulated protein kinase 1) and actin cytoskeletal
proteins. One key function relevant to the topic here is its involvement in the regula-
tion of mitosis through interactions with BRCAI and BARDI (BRCAI-associated
ring domain protein 1). For its extracellular functions, the protein binds with CD44
on the cell surface. When the two proteins form a complex with hyaluronic acid, a
variety of cellular processes will be activated, including the release of growth fac-
tors such as PDGFBB, TGFf2 and FGF2 (Hamilton et al. 2007; Nikitovic et al.
2013), which (1) enhances the deposition of the hyaluronic acid chains to the ECM
(Hall et al. 1994), (2) increases the locomotion in RAS-transformed cells (Hall et al.
1994; Hall and Turley 1995), (3) provides hyaluronic acid-mediated mobility
(Hamilton et al. 2007; Nikitovic et al. 2013), and (4) sustains high basal motility
when further bound with ERKI-2 (mitogen-activated protein kinase) (Zhang et al.
1998; Lokeshwar and Rubinowicz 1999; Tolg et al. 2006).

The physiological function of LYVE] (also known as XLKD1 (extracellular link
domain containing 1)) is poorly understood, but its increased expression has been
observed to be associated with lymph-node invasion. In addition, the protein exhib-
its expression patterns strongly correlated with those of CD44 and VEGFR3 (vascu-
lar endothelial growth factor receptor 3) during lymph-node invasion. While the
detailed biochemical functions of LYVE! are not known, a large number of gene-
expression datasets containing this protein are publicly available. With this informa-
tion readily available, it is possible to conduct in-depth statistical analyses of its
expression patterns and associations with other genes, potentially revealing causal
relationships between this gene and other biological processes, and hence gaining
an improved understanding of its functions.
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Similar to LYVEI, very little is known about the function of HARE. A recent
study found that HARE can activate NFxB-mediated gene expressions in response to
low molecular-weight hyaluronic acid fragments (in the range of 40-400 kDa)
(Pandey et al. 2013). A hypothesis was formulated based on this observation regard-
ing its possible role in monitoring the homeostasis of ECM turnover. Again, this
could be another case where computational data mining and statistical inference can
lead to important new information about its functional roles.

6.1.3 Hyaluronic Acid Fragments as Signaling Molecules

The realization that hyaluronic acids have signaling roles in reporting tissue injury
marks a major breakthrough in our understanding of the physiological functions of
this glycosaminoglycan and the significant pathophysiological implications to can-
cer research. Initially this knowledge came from studies on tissue injury and repair
(Noble 2002). When assaulted, an injured tissue releases ECM fragments, among
which those derived from hyaluronic acid serve as signals for repairing the injured
tissue. Most interestingly, hyaluronic acid fragments of different sizes have been
found to serve as signals for different purposes, including the induction of inflam-
mation, anti-apoptosis, cell survival, cell-cycle activation, cell proliferation, activa-
tion of angiogenesis and cell motility, all related to injury response, maintenance of
tissue integrity, tissue repair and remodeling (Jiang et al. 2007).

The identified functions of these hyaluronic acid fragments include:(1) frag-
ments consisting of four disaccharides typically serve as signals for suppression of
apoptosis, up-regulation of MMPs, HSFI (heat shock factor-1) and FASL (a member
of the TNF family); (2) fragments of four to six disaccharides signal for induction
of cytokine synthesis; (3) six disaccharides function as signals for activation of
HAS?2, nitric oxide and MMPs; (4) 10-disaccharide fragments serve as signals for
displacement of proteoglycans from cell surfaces; (5) fragments of 12 disaccharides
function as signals for up-regulation of PTEN and endothelial cell differentiation;
(6) 8-32 disaccharides serve as signals for angiogenesis stimulation; (7) 10—40
disaccharides, overlapping with the aforementioned, signal for induction of CD44
cleavage and promotion of tumor migration; (8) ~1,000 disaccharides function as
signals for production of inflammatory chemokines and stimulation of PA/l
(plasminogen activator inhibitor) and UPA (urokinase); and (9) fragments of
1,000-5,000 disaccharides tend to signal for immune suppression and suppression
of hyaluronic acid synthesis, i.e., providing a negative feedback for its synthesis
(Stern et al. 2006; Duan and Kasper 2011).

One can see from this list that some hyaluronic acid fragments each may serve as
signals for multiple biological functions, suggesting that they require additional
partners to carry out their specific functions. Overall, these hyaluronic acid-derived
signaling molecules promote cell survival, proliferation, angiogenesis and mobility,
plus pro- or anti-immune responses depending upon their sizes. Hence they gener-
ate a microenvironment having the majority, if not all, of the essential ingredients
needed for cancer (tissue) development, as discussed in the following section.
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Therefore, these fragments become a high risk factor for cancer development if
persistently present.

It is noteworthy that some of these signals interact with immune cells. For exam-
ple, some hyaluronic acid fragments can induce the maturation of dendritic cells
and the activation of allogenetic and antigen-specific T-cells (Jiang et al. 2007,
2011). Other fragments have been found to be capable of stimulating the develop-
ment of the CD34+ progenitor cells into mature eosinophil cells (Hamann et al.
1995). There are also reports that these fragments can stimulate the production and
release of cytokines such as ILIf, TNFa and ILS from the pericellular fibroblasts
(Kobayashi and Terao 1997; Wilkinson et al. 2004), and some other fragments can
induce proliferation of endothelial cells (West et al. 1985; Slevin et al. 1998). Many
of these functional capabilities play key roles in cancer development, particularly in
the early stages and during the metastatic transformation (see Chap. 10 for details).

Overall, evolution has selected hyaluronic acid fragments as signaling cues for
maintaining tissue integrity and homeostasis, their release triggering the tissue repair
system. Cancer or cancer-forming cells seem have learned to take full advantage of
this capability, allowing them to survive the stress discussed in Chap. 5, through cell
proliferation facilitated by hyaluronic acid synthesis, export and degradation.

6.2 Hyaluronic Acid: Its Links with Cancer
Initiation and Development

Knowing the functional roles of hyaluronic acid and its fragments in response to
tissue injury, specifically their roles in the induction of inflammation, anti-apoptosis,
cell survival, proliferation, motility and angiogenesis, it is only natural to ask: What
roles do these functional capabilities have during cancer development, particularly
in its early stage?

Multiple roles by hyaluronic acid and fragments derived therefrom have been
implicated in cancer development across different cancer types, particularly related
to cancer metastasis (Hall and Turley 1995; Savani et al. 2001; Yoshihara et al.
2005; Bharadwaj et al. 2007, 2009; Ouhtit et al. 2007; Naor et al. 2008; Pandey
et al. 2013). Our own study suggests that hyaluronic acid may have active roles
throughout the entire process of cancer development and particularly in cancer
initiation. The following summarizes the functions known to be exhibited by these
molecules during tumorigenesis, which serves as a starting point for developing a
hyaluronic acid-facilitated cancer initiation model in Sect. 6.3.

6.2.1 Inflammatory Signaling

Chronic inflammation is known to be closely related to cancer initiation and early
development (Lu et al. 2006; Rakoff-Nahoum 2006; Colotta et al. 2009), as dis-
cussed in the earlier chapters. The current understanding is that cancer-inducing
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microenvironments are largely orchestrated by inflammatory cells, which are an
integral part of a neoplastic process as they foster cell proliferation, survival and
migration (Coussens and Werb 2002). Low molecular-weight hyaluronic acid frag-
ments have been found to promote inflammation by up-regulating the expression of
a number of pro-inflammatory genes such as MIPla (macrophage inflammatory
protein la), MIPIB, KC (keratinocyte chemo-attractant), MCPI (macrophage
chemo-attractant proteinl), IFIT10 (interferon induced protein 10), TNFa and a few
other cytokines, and by down-regulating the anti-inflammatory gene A2AR (adenos-
ine A2a receptor) (Collins et al. 2011; Black et al. 2013).

6.2.2 Cell Survival Signaling

A key characteristic of cancer cells is that they can survive conditions that should
lead to apoptosis of normal cells. Interactions between hyaluronic acid and CD44
are known to have key roles in this distinct capability as they have been widely
observed to be associated with the activation of survival pathways in both cancer
and normal cells under stressful conditions. While detailed discussions on survival
pathways are given in Chap. 7, a model of how hyaluronic acid and its interaction
partners can activate survival pathways is introduced here.

The PI3K/AKT signaling pathway is at the core of a number of survival path-
ways. A recent study has found that constitutive synthesis and export of hyaluronic
acid can activate a PI3K/AKT-mediated survival pathway (Ghatak et al. 2002). The
mechanism for this activation involves the binding of hyaluronic acid to CD44,
leading to the activation of ERBB2 (also known as HER?2), a receptor tyrosine kinase
that can activate the PI3K/AKT signaling pathway. Specifically, an activated PI3K
can phosphorylate AKT, which alters its structural conformation to enable the pro-
tein to be activated by the PDKI/PRK (phosphoinositide-dependent kinase 1 and
phosphoribulokinase) complex (Datta et al. 1999). Then the active form of PI3K/
AKT activates P-catenin, a cell-cell adhesion regulator that, in turn, up-regulates
and activates COX2 (cyclooxygenase-2), an enzyme that has been found to inhibit
apoptosis in multiple cancers (Ding et al. 2000; Nzeako et al. 2002; Basu et al.
2004; Kern et al. 2006). COX2 leads to the production of PGE2 (prostaglandin E2),
that activates the RAS-MAPK-ERK pathway via EP4 (prostaglandin E receptor 4).
This activated pathway will then up-regulate the expression of the anti-apoptotic
protein BCL2 via CREB (CAMP-response element-binding protein) (May 2009).

Hyaluronic acid can also activate cell-survival pathways in a CD44-independent
manner. For example, the molecule can lead to the retention and concentration of
IL6 near its site of secretion (Vincent et al. 2001b), an event that promotes cell sur-
vival through the activation of STAT3 (signal transducer and activator of transcrip-
tion 3), this being an essential step for cell survival for a number of cancer
types (Calame 2008; Diehl et al. 2008; Avery et al. 2010; Lin et al. 2011). A study
has recently reported that an activated STAT3 can enhance cell survival through
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up-regulation of OX40 (also known as CD134), a member of the TNFR superfamily,
and BCL2, as well as down-regulation of FASL and BAD (BCL2-associated agonist
of cell death), a pro-apoptotic member of the BCL2 family (Malemud 2013).

6.2.3 Mediating the Cell Cycle

Tight coupling between cell-cycle progression and cell polarity is crucial for cell
division (Budirahardja and Gonczy 2009; Noatynska et al. 2013). The main regula-
tors, the cyclins and CDKs, act on both cell-cycle progression and development of
cell polarity (Drubin and Nelson 1996). While this relationship was established in
the 1990s, only recently were the main targets of cyclins and CDKs identified, these
being the RHO GTPases such as CDC42 (Croft and Olson 2006; Yoshida and
Pellman 2008). Interestingly, previous studies have shown that hyaluronic acid-
CD44 interactions can activate various GTPases such as RHOA (RAS homolog gene
A), RACI and CDC42 (also see earlier discussion on hyaluronic acid synthesis
pathway), as well as cytoskeletal functions in cancer (Bourguignon et al. 2005;
Bourguignon 2008), strongly suggesting the possibility that hyaluronic acid can
modulate the cell cycle. A recent study has shown that the activation of hyaluroni-
dase HYALI increases the cell-doubling rate (Bharadwaj et al. 2009), hence provid-
ing indirect evidence to the above speculation.

6.2.4 Insensitivity to Anti-growth Signals

A hallmark of cancer is that the transformed cells become insensitive to anti-growth
signals (Hanahan and Weinberg 2000, 2011), as introduced in Chap. 1. Cancer cells
have evolved various mechanisms to achieve this, one being discussed here. The
anti-growth factor TGFp is known to be activated by different cellular stressors such
as inflammation, destruction of the ECM, high ROS level, tissue injury and high
intracellular acidity. The activated TGFf inhibits a dividing cell by blocking its
advancement through the G, phase of the cell cycle. However, this anti-growth role
by TGFp can be converted to a pro-growth role as has been widely observed in
advanced cancers (Tang et al. 2003). It has been shown that the concentration of
hyaluronic acid determines the anti- or pro-growth function of TGFf (Porsch 2013).
It is noteworthy that while the anti-growth role of TGFf1 is CD44 independent, its
switch to a pro-growth role is mediated by CD44 in conjunction with an increased
concentration of hyaluronic acid (Meran et al. 2011). We speculate here that the
activation of CD44 is also induced by the increased concentration of hyaluronic
acid. Overall, upon binding TGFp, the receptor TGFR up-regulates EGF, which
binds to and activates its cognate receptor, EGFR, hence promoting cell growth. An
environment rich in hyaluronic acid synthesized by HAS2, which tends to be longer
than those synthesized by other synthases, has been found to promote binding
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between CD44 and EGFR. The formation of this complex leads to the activation of
the MEK (MAPK/ERK -2 kinases) and then the activation of ERK-2 (Meran et al.
2011), which are known to be cancer promoting (Hamilton et al. 2007).

6.2.5 Cell Proliferation and Anchorage-Independent Growth

It has been established that hyaluronic acid and a versican-rich ECM are required
for cell proliferation, at least in smooth muscle cells (Evanko et al. 1999).
Furthermore, it has been observed that an increased hyaluronic acid concentration
can lead to cell proliferation through hyaluronic acid-CD44 interactions (Hamann
et al. 1995; Ghatak et al. 2002). While the detailed mechanism of how hyaluronic
acid-CD44 interactions promote cell proliferation are yet to be fully understood, a
number of studies have revealed how such interactions may be associated with
proliferation in specific cancers. For example, it was found that hyaluronic acid-
CD44 interactions with PRKCE (protein kinase C epsilon type) promote oncogenic
signaling via NANOG (a transcription factor critical to self-renewal of stem cells)
and the production of microRNA-21, leading to down-regulation of the tumor sup-
pressor protein PDCD4 in breast cancer (Bourguignon et al. 2009). In another
study, increased hyaluronic acid production was found to promote coupling
between CD44 and EGFR, which will lead to CD44-dependent activation of
EGFR-mediated growth signaling in head and neck cancers (Wang and Bourguignon
2011). Figure 6.2 shows a model of how hyaluronic acid may be linked to cell
proliferation.

Another unique role of hyaluronic acid in cancer growth is that it facilitates
anchorage-independent growth. In normal human tissues, cells require a surface on
which to flatten and divide, that being the basement membrane. This process, termed
the anchorage dependence of growth, is a mechanism used to prevent persistent and
unregulated cell division. This is executed by a requirement of having companion
ECM signals when signaled to grow. Studies have shown that over-production of
hyaluronic acid, in conjunction with over-expression of EMMPRIN, allows cell
growth on soft agar or even in suspension (Marieb et al. 2004), although the detailed
mechanism remains to be fully understood.

A related capability gained by cancer cells is their loss of contact inhibition,
another mechanism encoded in human cells for preventing over-growth during
normal tissue development and remodeling. All cancer cells appear to have lost
this preventive machinery or have gained a capability to override the processes
leading to contact inhibition. The over-production of HAS2-synthesized hyal-
uronic acid has been found to allow cells to escape from the contact-inhibition
constraint through formation of a large hyaluronic acid matrix regulated by PI3K
(Itano et al. 2002).
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Fig. 6.2 A model for linkages between hyaluronic acid-CD44 interactions and cell proliferation
(adapted from (Toole 2009))

6.2.6 Tumor Angiogenesis

As discussed in Sect. 6.1, hyaluronic acids can provide signals for angiogenesis
during tissue repair. The activation of the angiogenesis process requires a high con-
centration of HIFIa, in addition to hyaluronic acids (Pugh and Ratcliffe 2003; Stern
et al. 2006; Toole 2009), both of which are available in a typical neoplastic environ-
ment. The actual formation of tumor blood vessels requires MMPs to partially
degrade the basement membrane, thus making connections with existing blood ves-
sels possible. The MMPs are also available in the environment under discussion (see
below).

6.2.7 Invasiveness, EMT and Metastasis

Tissue invasion typically refers to cell growth across the basement membrane (a
type of ECM), which underlies epithelial cells and surrounds blood vessels. A key
step in tumor invasion, to be detailed in Chap. 10, is ECM proteolysis by MMPs.
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It has been well established that low molecular-weight hyaluronic acid fragments
can induce MMP3 (Fieber et al. 2004). The current understanding is that ECM pro-
teolysis is regulated by the balance between the concentrations of MMPs and their
inhibitors TIMPs (tissue inhibitors of metalloproteinase) (Maeso et al. 2007), i.e., a
higher MMP concentration generally indicates higher invasion rates. This relation-
ship can explain the observation that interactions between HAS2-synthesized hyal-
uronic acid and CD44 are important in determining the level of invasiveness of a
cancer (Zoltan-Jones et al. 2003), since HAS2 is known to be a suppressor of TIMP
expression (Bernert et al. 2011), and hence its activation can shift the balance
towards a higher MMP concentration.

An essential step in tumor metastasis is the activation of the EMT (epithelial-
mesenchymal transition) pathway. Recent studies have found that hyaluronic acid
has a central role in EMT activation. Specifically, the accumulation of extracellular
low molecular-weight hyaluronic acids can create cyclic mechanical stretches when
the innate immune adaptor protein MYDS8S (myeloid differentiation primary
response gene) is present, which can induce the activation of EMT. Mechanistically,
WISPI1 (WNT-inducible signaling protein 1) is significantly up-regulated in hyal-
uronic acid-stretched cells in a MYDS88-dependent fashion, while inhibition of
WISPI has been found to prevent the activation of EMT in these cells (Heise et al.
2011). This represents the best explanation to date that mechanical forces, created
by the increased accumulation of hyaluronic acids, can lead to the activation of
EMT via the innate immune system.

Hyaluronic acid has also been found to have other important roles during the
metastatic processes such as intravasation, circulation in blood, extravasation of the
blood vessels into new locations and reactivation from dormancy as the colonizing
cells become established in the new location (s). Detailed discussions of these issues
are given in Chaps. 10 and 11.

6.2.8 Evasion of Immune Detection

There is a close relationship between hyaluronic acids and immune signaling
(Taylor et al. 2004; Scheibner et al. 2006; Jiang et al. 2007; Shirali and Goldstein
2008; Jiang et al. 2011; Erickson and Stern 2012), as discussed in Sect. 6.1.
Specifically, hyaluronic acids can serve as endogenous activators of the innate
immune system. For example, hyaluronic acid fragments can activate dendritic cells
and prime T-cell alloimmunity via a TLR4 (toll-like receptor 4)/TIRA P-dependent
pathway (Shirali and Goldstein 2008). Furthermore, CD44 is able to modulate these
immune responses through augmenting the regulatory T-cell functions and enhanc-
ing the expression of the negative regulators of TLR-signaling (Shirali and Goldstein
2008). Knowing the intimate relationship between immune signaling and hyal-
uronic acid, it is reasonable to speculate that cancer cells may have evolved ways to
alter the interactions between hyaluronic acid and its key receptors such as CD44 to
avoid detection by the immune system.
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A recent study on the evolution of hyaluronic acid and associated genes suggests
that the original function of the molecule was to provide a protective shield of cells
for two situations where survival is vitally important: (1) in the cumulus mass that
surrounds the ovum, and (2) in the stem cell niche (Salustri et al. 1999; Haylock and
Nilsson 2006; Schraufstatter et al. 2010; Csoka and Stern 2013). For these situa-
tions, it is necessary that hyaluronic acid provide a shield for the cells to avoid
detection by surveillance machineries. More generally, hyaluronic acids, particularly
in their high molecular weight forms, have been shown to be intrinsically immuno-
suppressive (McBride and Bard 1979; Delmage et al. 1986). For example, hyal-
uronic acid suppresses septic responses to lipopolysaccharides and acts to maintain
immune tolerance. In addition, it can induce the production of immunosuppressive
macrophages. Possibly through repeated trial-and-error for survival, cancer cells
have evidently adapted to create favorable environmental conditions that promote
the production of hyaluronic acids of the right sizes and take advantage of their
immunosuppressive capability.

Knowing that hyaluronic acids of different sizes serve as signaling molecules for
different aspects of tissue repair, one can hypothesize that upon tissue injury the
hyaluronic acid fragments must have the “appropriate” size distribution to facilitate
tissue repair being done in a coordinated manner, a response that has presumably
been perfected through millions of years of evolution. In the following section, we
present how cancer cells have adapted to take advantage of this powerful signaling
capability by creating an environment that promotes the synthesis, export and deg-
radation of hyaluronic acid to mimic the hyaluronic acid-based signals for their
survival. It is worth noting that there is one fundamental difference between injury-
induced versus neoplastic cell-induced hyaluronic acid-based signaling, as pre-
sented in Sect. 6.3. That is, the tissue-repair signaling induced by persistent hypoxia
is done in an uncoordinated manner, which may be the key reason for needing
genomic mutations to assist these cells’ survival as discussed in Chap. 4. [N.B. As a
point of clarification, it should be stressed that the cells continue evolving with
natural selection, favoring those that can best survive and proliferate. Many of
course, probably the vast majority, fail to evolve appropriately and are destroyed by
the normal defenses of the body.]

6.3 A Model for Hyaluronic Acid-Facilitated
Cancer Initiation and Development

A recent study reported that elevated cellular glucose concentrations can lead to the
production of hyaluronic acid (Yevdokimova 2006). In addition, other investiga-
tions have shown that hyaluronic acid processing and interaction with the host cells
can lead to proliferation (Kosaki et al. 1999; Vincent et al. 2001a). From these
observations and discussions in the above two sections, one can see that hyaluronic
acid can be synthesized from glucose metabolites, leading to the generation of
signals needed for tissue repair. By integrating all this information, one can
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hypothesize that the accumulation of glucose metabolites in inflammation-induced
hypoxic cells will lead to the production of hyaluronic acid., which ultimately
provides an exit for the accumulated glucose metabolites out of the cells through
cell division.

A model, based on extensive analyses of transcriptomic data of multiple cancer
types, is now presented in support of this hypothesis. Through this model, the fol-
lowing will be demonstrated:(1) how the accumulation of glucose metabolites in
inflammation-induced hypoxic cells can trigger the activation of the synthesis,
export and degradation of hyaluronic acid; (2) how the fragments of this molecule
lead to cell proliferation, thus providing an exit for the accumulated glucose metab-
olites and a (temporary) relief of the pressure forced on the relevant cells; and (3)
how this process may continue as long as the hypoxic condition persists; some
components of the model may ultimately be replaced by genetic mutations to
accomplish the same functions but with better sustainability and possibly energy
efficiency. While no statistical significance analysis is presented of the model
against the available omic data, the model is nonetheless highly statistically signifi-
cant, reaching a high level of consistence with the available transcriptomic data.

6.3.1 Activation of Synthesis, Export and Degradation
of Hyaluronic Acid

One may recall from Chap. 5 that chronic hypoxia leads to a switch in cellular
energy metabolism from aerobic respiration to (anaerobic) glycolysis, ultimately
resulting in the accumulation of glucose metabolites. From the earlier discussion in
this chapter, hypoxia, in conjunction with a high concentration of cellular G6P and
TGFJ in the microenvironment, can lead to the activation of seven out of the nine
enzymes in the hyaluronic acid synthetic pathway, namely GPI, GFPT2, GNPNATI,
PGM3 and UAPI in the upper part of the pathway and PGM2 and UGP?2 in the
lower part of the pathway (Fig. 6.1). All the three triggering conditions should be
satisfied under inflammation-induced hypoxic conditions, as discussed in Sect. 6.1.
For the two other genes, both UGDH and HAS can be up-regulated by TGFp if its
active form is available, which should be the case in chronic inflammatory sites
(Clarkin et al. 2011; Tammi et al. 2011b).

Gene expression data have been examined on the same set of colon precancerous
adenoma and adenocarcinoma samples used for Fig. 5.4 of Chap. 5, with a focus on
the nine enzyme-encoding genes involved in hyaluronic acid synthesis, along with
a number of related genes, namely UAPILI (a homolog of UAPI), three hyaluroni-
dase genes HYALI-3, the hyaluronic acid exporter gene CFTR (cystic fibrosis trans-
membrane conductance regulator) (Schulz et al. 2010), two anti-apoptosis genes
(BCL2A1I and BCL2LI), one heat shock gene (HSF1), TGFf and MYC (v-myc
avian myelocytomatosis viral oncogene homolog). Figure 6.3 shows the expression
data of these genes except for UGP2, which is missing in the gene-expression data-
sets used here.
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From the figure, one can see the following: all genes in the pathway of Fig. 6.1
are up-regulated in adenomas except for UAPI and UGDH, which are consistently
down-regulated across all the samples. Interestingly for the down-regulated UAP]
(EC2.7.7.23), its homolog UAPILI is consistently up-regulated across all the
adenocarcinoma samples, whose function is only partially determined to be in the
EC2.7.7 enzyme class with the last digit of the EC (enzyme classification) class
undetermined. Based on a KEGG pathway analysis, GIcNAc-1P, the substrate of
UAP]I, can only be metabolized to UDP-GIcNAc by an EC2.7.7.23 enzyme without
other exits. Hence, it is reasonable to posit that UAP1LI is used to make this conver-
sion. Regarding the other down-regulated enzyme, UGDH, the gene has 13 known
splicing variants. Interestingly multiple splicing variants are up-regulated across the
adenocarcinoma samples, raising the possibility that some of these splicing variants
may have the same enzymatic function for the following reason: the rate-limiting
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gene (GFPT2) of hyaluronic acid synthesis pathway, the hyaluronic acid exporter
gene CFTR and multiple hyaluronidase genes (HAYLI-3) are all up-regulated.
Interestingly, TGFp is up-regulated in the precancerous stage, and its expression
then returns to the background level once the downstream genes of hyaluronic acid
synthesis such as HSF1 and MYC are up-regulated. This indicates that once the tis-
sue becomes cancerous, cell proliferation may be driven by factors other than
hypoxia-induced hyaluronic acid production and fragmentation, such as over-
expression of certain proto-oncogenes. Clearly further analyses are needed to infer
which oncogenes or other genes may have replaced the roles played by hyaluronic
acid fragments to drive the tumorigenesis process.

The observation of up-regulated HAYLI-3 strongly suggests that synthesized
hyaluronic acid is exported and degraded into fragments, some of which, by chance,
will be of the same sizes of those required to be tissue-repair related signals, as
discussed in Sect. 6.2. Since all sizes of short hyaluronic acids serve as signals for
inflammation induction, anti-apoptosis, cell survival, cell proliferation or angiogen-
esis, it is reasonable to posit that cell proliferation will be initiated. In addition, it is
reasonable to further posit that cells that did not produce the necessary combina-
tions of signals for tissue repair may be destroyed. That is, the natural selection has
selected the sub-population of cells that produce the right combinations of signals.

Highly similar gene-expression patterns to those in Fig. 6.3 are observed in vari-
ous other precancerous and early cancer types, strongly suggesting that the driver
model being developed here is generally applicable to other cancers, at least solid
cancers. One interesting observation is that while ABCCS has been found to encode
the main exporter for hyaluronic acids in fibroblasts cells (Schulz et al. 2007), epi-
thelial cells tend to use CFTR (Schulz et al. 2010), which is indeed up-regulated as
shown in Fig. 6.3.

6.3.2 Hyaluronic Acid-Facilitated Tissue Development

The exported hyaluronic acid is degraded by hyaluronidases or through partial de-
polymerization by ROS (Agren et al. 1997). Multiple factors can activate different
hyaluronidases. For example, inflammation and necrosis-related signals such as
TNFa and IL1f can activate HYAL2 (Monzén et al. 2008), which should be avail-
able under the conditions being considered here. HYALI can be up-regulated by the
binding of EGRI (early growth response protein 1) to the promoter region of the
gene. The same study also found that while the binding of NF«B is not necessary to
activate the gene, it enhances its expression.

A number of cell proliferation signaling pathways can be activated by hyaluronic
acids, including genes in the ERKI-2 pathway, namely RAFI, MAP (mitogen-
activated protein), ERK (Slevin et al. 1998) and heat-shock receptor binding pro-
tein HSFI1 (Xu et al. 2002). The link between hyaluronic acids and HSFI is
particularly interesting since HSF is known to orchestrate a large network of core
cellular functions including proliferation, survival, protein synthesis and glucose
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Fig. 6.4 HSFI and the gene network it regulates (adapted from (Mendillo et al. 2012))

metabolism (Dai et al. 2007) and is up-regulated in adenocarcinoma as shown in
Fig. 6.3. Figure 6.4 shows the genes that are regulated by HSFI. Clearly multiple
genes involved in cell proliferation such as cell cycle control, transcription and pro-
tein synthesis are up-regulated by this protein. From the above discussion, it is rea-
sonable to postulate that growth signals and various regulatory signals are made
available to the evolving cells under consideration. We will now examine how these
signals are related to the development of cancer.

As discussed in Chap. 4, growth factors alone are not sufficient to initiate cell
proliferation in a tissue environment as a number of conditions must be met. For a
cell to divide or a tissue to grow via hyperplasia, at least three classes of extracel-
lular signals are needed: (1) mifogens such as PDGF or EGF that stimulate cell
division by activating intracellular growth signaling proteins such as RAS and the
MAPK cascade and triggering cell-cycle progression; (2) growth factors such as
PI3K and PDGF that stimulate cells to increase their mass by up-regulating genes
involved in cell metabolism and macromolecular syntheses, typically through up-
regulation of the MYC gene [N.B. growth factors should not be confused with
mitogens although some genes may serve in both roles]; and (3) survival factors
such as the anti-apoptotic members of the BCL2 family, which inhibit apoptosis
during tissue development (Alberts et al. 2002). Certain growth signals such as FGF
and PDGF are communicated into the cells through ECM-cell adhesions (also
called focal adhesions). Specifically, such signals alter the physical properties of an
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ECM, which leads to changes in actin cytoskeletal structures through interactions
between ECM proteins such as laminins and fibronectins and integrins on the cell
surface, and to activation of the focal adhesion kinase (FAK) among other protein
kinases, leading to signaling of cell growth.

Recall from Chap. 4 that the majority of the genomic mutations observed in the
precancerous stage of colon adenoma predominantly involves genes relevant to
ECM modifications and cell morphogenesis. This suggests that, unlike normal tis-
sue development, the process of tumorigenesis, as triggered by the signals discussed
above, may not have all of the needed signals or else lack sufficient quantities for
cancer tissue to develop based on the signals alone. This is not hard to imagine
since, although hyaluronic acid fragments, generated from a damaged tissue, pro-
vide all the signals needed for tissue repair, the randomly generated fragments of
hyaluronic acid due to persistent hypoxia may not necessarily enable tissue repair in
a coordinated manner. The aforementioned genomic mutations seem to suggest that
signals related to changes in ECM and cell morphology may be relatively too weak
compared to other signals, even though such fragments have been found to be capa-
ble of up-regulating a number of genes involved in ECM modification such as over-
expression of MMPs (Fieber et al. 2004) and UPAs (Horton et al. 2000). Hence, it is
reasonable to speculate that the observed mutations detailed in Chap. 4 are selected
to supplement the missing or weak signals needed for continual tissue repair, which
is triggered by the released hyaluronic acid fragments as a result of persistent
hypoxia in an inflammatory site.

In addition, hyaluronic acid and fragments provide other signals needed for tis-
sue repair. Specifically, a number of tumor angiogenesis-related genes are activated
by hyaluronic acid (Slevin et al. 2002; Takahashi et al. 2005); similarly a number of
survival genes such as HSPA2 (heat shock 70 kDa protein 2) are over-expressed by
hyaluronic acid (Xu et al. 2002). Furthermore, hyaluronic acid can also facilitate
cells to overcome the constraints of anchorage-dependent growth and contact inhi-
bition (Itano et al. 2002), as discussed in Sect. 6.2. Overall, it is the combination of
hyaluronic acid, hyaluronic acid fragments and mutations in genes involved in
changing the composition and hence the physical properties of the ECM, as well as
in altering cell morphology, that facilitates cell proliferation in a tissue without
actual signals for tissue repair.

Clearly, when cells divide, their accumulated glucose metabolites can be used as
the building blocks for DNA and lipid synthesis, hence providing an exit for the
accumulation and relieving the pressure as discussed in Chap. 5. This, however, is
only temporary, as all the cells, including the newly synthesized ones, will become
hypoxic again because of the local environment, thus again leading to the accumula-
tion of glucose metabolites, and ultimately continuous cell proliferation. As this
process continues and the biomass grows due to cell division, the microenvironment
will become increasingly more hypoxic. One can expect that this process continues
as long as the hypoxic condition persists, while the vast majority of the proliferated
cells will die due to various reasons, including programmed cell death and cell-cell
competition as discussed in Chap. 8, in the early phase of the tumorigenesis.
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This process may go on for years without visible tumor growth, but fundamental
changes are taking place inside these cells.

It is noteworthy that it was recently discovered that inhibition of tumor growth by
the high molecular weight hyaluronic acid produced in naked mole rat tissues is
reversed by treatment that removed the accumulated glycosaminoglycan (Tian et al.
2013). This observation provides strong supporting evidence for the key role played
by hyaluronic acid synthesis in hypoxia-induced cell proliferation.

6.3.3 General Roles of Hyaluronic Acid During Tumorigenesis

It is known that extracellular hyaluronic acid can positively regulate lactate efflux
(Slomiany et al. 2009), suggesting a possibility that its synthesis may serve as an
overflow buffer for glycolytic metabolites and that the exported hyaluronic acid
functions as a signal for increasing the exit flux of glycolysis by increasing the lac-
tate efflux. Interestingly, lactate has also been found to serve as a stimulator for the
increased production of hyaluronic acid in some cell types such as fibroblasts (Stern
et al. 2002). These two pieces of data suggest a possible vicious cycle between
hyaluronic acid production and lactate efflux, which may continuously generate cell
proliferation signals. Clearly, this possibility requires experimental validation.

As this cell-division process continues, mutations in some genes, not limited to
proto-oncogenes and tumor suppressor genes as discussed in Chap. 4, may be
selected to allow constitutive activation or inhibition of functionalities to facilitate
cell proliferation in a more sustained and efficient manner. It is foreseeable that, as
a cancer evolves, the signaling roles of hyaluronic acids may be gradually replaced
by the constitutive activation of the relevant processes of tissue repair, made possi-
ble via selection of certain genomic mutations such as oncogenes. When all the
signaling roles of hyaluronic acid and its fragments are replaced by genomic muta-
tions, some cancers may select, at some developmental stage, to cease the biosyn-
thesis of hyaluronic acid, hence terminating their facilitator’s role for cancer
initiation. This hypothesis is clearly supported by the decreased expressions of hyal-
uronic acid synthase genes as the cancer advances (see Fig. 6.3).

We speculate that hyaluronic acid production is essential to cancer initiation not
only because it provides signals for tissue growth, but also because it generates cell-
survival signals. These may prove to be essential for the underlying cells to select
mutations in genes with essential functions without being destroyed by apoptosis or
tissue-level surveillance (see Chap. 8). The reason is that, by promoting anti-
apoptotic activities, survival pathways may keep alive those cells harboring muta-
tions in genes involved in essential cellular functions, which otherwise will be killed
by apoptosis. A good example is that of the proto-oncogene EGFR since it can be
constitutively activated due to mutations (Okabe et al. 2007) or oxidation of specific
residues in the absence of its ligand EGF (discussed in Chap. 5).

During the entire course of neoplastic development, hyaluronic acid and their
fragments are known to exhibit a variety of other regulatory actions, particularly at
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Fig. 6.5 A schematic illustration of roles played by hyaluronic acid (hyaluron) and its fragments
in tissue injury and repair versus their roles in cell proliferation. (a) A description of the process of
going from normal tissue to damaged tissue and the role(s) of hyaluronic acid and fragments in
triggering tissue repair. (b) A description of the process of going from hypoxic cells with accumu-
lated glucose metabolites to synthesis, export and fragmentation of hyaluronic acid in the extracel-
lular space to triggering tissue repair and then proliferation

key transition points throughout cancer development, including cancer metastasis
and exiting dormancy in the metastatic locations as discussed in Chap. 10. The
up-regulated TGFf gene expression at stage 4 cancers in Fig. 6.3 seems to suggest
that the gene may have a key role in cancer metastasis as its activation will trigger
the increased production of hyaluronic acid, which is essential for the initiation of
metastasis (see Chap. 10). Figure 6.5 shows a model for the proposed hypoxia-
driven, hyaluronic acid-facilitated cell proliferation in the early phase of cancer
development.

6.4 Bioinformatics Opportunities and Challenges

The model given in Sect. 6.3 represents, to the best of our knowledge, the first
model that links cancer initiation to inflammation-induced hypoxia and hyaluronic
acid production at the molecular level. A number of opportunities present them-
selves in this model for further study of the important issue of cancer initiation
through computational analyses of large-scale omic data of cancer and statistical
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inference in a systematic manner in terms of model validation, refinement and
expansion. It is expected that such computational studies may lead to fundamental
and novel insights of cancer initiation, particularly through this type of comparative
analysis across multiple cancer types. From such data, one may be able to identify
the most essential common characteristics in cancer initiation in general.

6.4.1 Completing the Details of the Model Based
on Available Transcriptomic Data

The model provides a high-level conceptual framework of a mechanism by which
cancer may be initiated, but numerous details are needed for specific cancer types.
For example, from the transcriptomic data, strong correlations were observed
between the increased glucose accumulation and the activation of hyaluronic acid
synthesis, but the detailed signaling and regulatory processes may differ for differ-
ent types of cancers. Another example relates to the sizes of hyaluronic acid frag-
ments that are generated under specific cellular conditions. Intuitively, higher
abundances of hyaluronidases are expected to produce shorter fragments due to the
repeated degradations with higher frequencies. Some mathematical relationships
between the expression levels of hyaluronidases and the size distributions of hyal-
uronic acids need to be established in order to address this issue. One approach
involves the collection of data on the abundances and distributions of different hyal-
uronic acid fragments along with the corresponding gene-expression data under
controlled conditions using cell lines. The results obtained could then be used to
train a predictor for estimating the fragment size distributions based on the observed
gene-expression data for specific cancer types. A similar approach could be taken to
address issues such as identification of the: (1) specific signals that activate the
genes responsible for hyaluronic acid synthesis, along with the required cellular
environmental features such as the level of hypoxia and the availability of specific
immune cells in the pericellular environment, and (2) detailed regulatory pathway
between increased hyaluronic acid and lactate production and export.

6.4.2 Validation, Refinement and Expansion of the Model

The model can be checked against transcriptomic data of different cancer types for
their validity. Specifically, one can check if each of the model-predicted associa-
tions holds against the available data for each cancer type. For example, if the model
predicts transcription regulator X positively regulates the expression of gene Y, one
can check if these two genes tend to show co-expression patterns under the relevant
conditions, or determine if the up-regulation of gene Y tends to imply the up-
regulation of gene X in the available data. With more advanced analyses, it may
be possible to predict causal relations among genes found to be co-expressed.
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Systematic analyses such as this on each model-predicted association can lead to
identification of incorrect prediction or partially correct prediction, hence providing
guidance for further refinement of the model.

6.4.3 Application of the Model

The above model allows one to study how hyaluronic acid may be functionally con-
nected to other cancer-related activities during the early stage of tumorigenesis. For
example, one can investigate if hyaluronic acid fragment patterns contribute to the
clinical diversity of a specific cancer type across different patients using, say, cancer
samples with different levels of differentiation (see Chap. 3), based on the knowl-
edge that hyaluronic acid has key roles in cell differentiation of various cell types
(Heldin 2003). Similarly, various mechanistic questions about hyaluronic acid and
cancer can be asked and addressed (see below for examples).

— Information has been presented on the mechanism by which hyaluronic acid
contributes to the initiation of cancer. In a similar vein, one can ask what roles
hyaluronic acid has during the development of a cancer and have this question or
related questions computationally studied in a fashion similar to the above. For
example, one can determine how the expression patterns of hyaluronic acid syn-
thesis, export and degradation genes change as a function of cancer progression,
or how these patterns are statistically related to other environmental parameters
such as the hypoxia level, ROS level, or to various cancer-related activities such
as angiogenesis, activation of telomerase, signaling for angiogenesis and possi-
bly other developments in cancer.

— Knowing the roles of hyaluronic acid in multiple aspects of cancer development,
one can ask how the amount of hyaluronic acid generated and the resulting frag-
mentation patterns are linked to cancer mortality rates or the malignancy level.
Such a study should be feasible using statistical correlation analyses between
clinical parameters such as the average mortality rates and the average activation
levels of hyaluronic acid-associated proteins. Similarly, studies can also be con-
ducted between drug responses and hyaluronic acid-related proteins, knowing its
role in the multi-drug resistance pathway (Misra et al. 2003).

— One can also investigate the possibility of using hyaluronic acid as a diagnostic
or prognostic marker for different cancer types. For example, one can predict the
size distribution of hyaluronic acid fragments based on the hyaluronic acid-
related protein expression patterns and the expression levels of various cellular
environmental parameters. Next, computational predictions can be undertaken to
determine which of the abnormally expressed proteins is likely to be secreted
(into the blood) and even excreted (into the urine) (see Chap. 12). Finally, such
potential markers can be linked with different developmental stages of a cancer
or with different cancers.
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6.5 Concluding Remarks

Hyaluronic acid appears to represent a largely overlooked, albeit essential, element
in cancer initiation because of its diverse roles as a facilitator in making multiple
aspects of early cancer development possible. This includes: (1) serving as multiple
types of signals by its fragmentation pattern, the products of which serve as signals
for cell survival, cell-cycle control, cell proliferation, anti-apoptosis, angiogenesis,
evasion of immune detection and induction of EMT; (2) facilitating anchorage-
independent growth and overcoming contact inhibition through its interactions with
the cell surfaces; (3) making intravasation and extravasation of blood vessels pos-
sible and (4) aiding migrating cells to become attached and reactivated from their
dormancy states (see Chap. 10). Knowing the challenging nature of studying hyal-
uronic acid in vivo and the effectiveness in computational inference of new informa-
tion as shown throughout this chapter, one can expect that computational techniques
offer a unique and essential approach to better understand the functional roles of
hyaluronic acid and its fragments, and particularly their interactions throughout
cancer development. Various computational and statistical techniques are clearly
needed to estimate the amounts, the fragment-size distributions and their depen-
dence on various cellular environments.
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Chapter 7
Multiple Routes for Survival: Understanding
How Cancer Evades Apoptosis

Apoptosis is a process of programmed cell-death encoded in all multicellular
organisms. The system is designed to remove damaged, unhealthy or unneeded
cells during development and under certain stresses. At the tissue level, it plays a
key role in maintaining tissue homeostasis. For example, the typical human body
produces approximately 50-70 billion new cells by mitosis each day (Karam
2009), and the same number of cells will be terminated by apoptosis to maintain
total cell homeostasis, suggesting that there is a functional link between growth
and cell death by apoptosis. Malfunctions of the apoptotic system, in either its
regulators or effectors, have been linked to a variety of human diseases. Examples
include: (1) human degenerative diseases, such as multiple sclerosis, which are
known to be associated with abnormally high activities of apoptosis, and (2) can-
cer that is considered by some as a disease of abnormally low activities of
apoptosis.

The effector component of the apoptosis system is relatively simple, consisting
of a set of death substrates, whose release will kill the cell. In contrast, the regula-
tory component of apoptosis is rather extensive and complex. The activity level of
the effector component is adjusted through changes in the concentration balance
between pro- and anti-apoptotic proteins, as well as by enhancing or repressing
the activities of specific proteins in response to external signals released to the
extracellular space or to intracellular signals reflecting certain stresses. As dis-
cussed in the earlier chapters, cancer cells tend to accumulate a large number of
genetic mutations, which should normally induce apoptosis and cell death.
However, for reasons that are only partially understood, cancer cells have
“learned” to be anti-apoptotic and remain viable through over-expression of their
survival pathways, inhibiting the activities of their pro-apoptotic proteins or
selecting genomic mutations that lose the connection to or the activity of the
apoptotic effectors.
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The focus of this chapter is on that which can be learned through integrative
analyses of omic data about how cancers may have become anti-apoptotic by
creating a microenvironment through which they can advantageously use the
encoded cellular mechanisms in normal cells for their survival.

7.1 The Basic Biology of Apoptosis

Apoptosis in Greek means “dropping off” of petals or leaves from plants. In cell
biology, it refers to a programmed cell-death process, which involves a sequence of
morphological changes such as cell shrinkage, membrane blebbing, chromatin
condensation and DNA fragmentation, leading to cell death. This characteristic is
considered to be the distinguishing property of apoptosis from that of the other pro-
grammed cell deaths such as necrosis, senescence, autophagy, paraptosis and
mitotic catastrophe.

The discovery of the programmed natural cell-death process was first made by
German scientist Carl Vogt in 1842, who introduced the designation apoptosis
(Peter et al. 1997). Kerr, Wyllie and Currie raised the possibility in 1972 that apop-
tosis may participate in a major way during cancer development when they noted
that the observed tumor-proliferation rate and the tumor size do not match, and
hence inferred that more than 95 % of the tumor cells may have died due to apopto-
sis (Kerr et al. 1972). Later, Sydney Brenner, Robert Horvitz and John Sulston iden-
tified and characterized the genes that control the apoptotic process, for which they
won the Nobel Prize in medicine in 2002. Over one hundred thousand scientific
papers have been published on the topic of apoptosis since the early work by Kerr,
Wyllie and Currie, indicating that apoptosis has been one of the most active research
fields in modern biology.

7.1.1 The Apoptosis Execution System

The execution component of the apoptosis system consists of the following compo-
nents: the activated caspase-3 (a cysteine-aspartic protease) or caspase-7 proteins
will cleave the inhibitor of the caspase-activated deoxyribonuclease, which releases
a number of death substrates such as LaminA, LaminB1, LaminB2, ICAD and
D4-DGI, leading to the destruction of the cell through a sequence of well-defined
steps: cell shrinkage, chromatin condensation, membrane blebbing, DNA fragmen-
tation, nuclear collapse, apoptotic body formation and lysis of apoptotic bodies.
Currently, a few hundreds of caspase substrates have been identified (Luthi and
Martin 2007). Two well-studied signaling pathways, the intrinsic and extrinsic path-
ways, can activate caspase-3 or -7, and hence activate the execution of apoptosis.
The former activates caspase-3 or -7 through the release of cytochrome ¢ molecules
from mitochondria, which then activates caspase-9; and the latter activates it by
activating caspase-8 or -10, as shown in Fig. 7.1.



181

The Basic Biology of Apoptosis

7.1

stsojdode Jo uonnoaxa ayy pue apeosed SureuSis aspdspo aY) JO UOTIEXSN][T ONBWAYOS V  [°L "SI




182 7 Multiple Routes for Survival: Understanding How Cancer Evades Apoptosis
7.1.2 The Signaling and Regulatory System of Apoptosis

Apoptosis has a rather elaborate signaling and regulatory system based on a number
of internal and external signals that can lead to the activation or repression of the
system at certain activity levels. Under physiological conditions, apoptosis is used
to maintain tissue homeostasis, so growth signals (or withdrawal or absence of such
signals) and death signals will affect its activity level. In addition, apoptosis serves
as a gatekeeper for removing damaged cells; thus, it responds to a variety of intra-
cellular signals indicative of cellular damage such as membrane leakage, DNA
damage or nutrient depletion. These basic signaling systems interact with a large
number of pathways relevant to tissue development and remodeling, tissue injury
and repair, removal of inflammatory cells, removal of auto-aggressive immune
cells, cell proliferation and various stress-response systems, making the (extended)
apoptosis system very complex. Figure 7.2 provides a global view of the signaling
and regulatory interactions related to the apoptosis system.
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Fig. 7.2 A schematic of the signaling pathways of apoptosis, adapted from (Signal-transduction-
pathways 2010)
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The basic signaling pathways of apoptosis fall into three categories: (1) the
intrinsic signaling pathway that is activated by intracellular stress signals followed
by activation of the caspase-3 or -7 proteins, leading to the release of cytochrome ¢
and SMAC (second mitochondrial activator of caspases), which bind with the
APAF] (adaptor protein apoptotic protease-activating factor 1) protein, leading to
the formation of apoptosomes and the activation of caspase-9 proteins; (2) the
extrinsic signaling pathway that is activated in response to external death signals
such as FAS, and then activates caspase-3 or -7 through the activation of the cas-
pase-8 or -10 proteins, which is induced through the formation of the death-induced
signal complex (DISC); and (3) a number of non-canonical signaling pathways that
do not fall into either of the first two groups and will be explained in detail later in
this section. In addition, there is a family of apoptosis regulators, the BCL2 (B-cell
CLL/lymphoma 2) family, that can directly block or activate different proteins along
the signaling pathways (see Fig. 7.2); these are often referred to as the main regula-
tors of apoptosis.

Despite its name, BCL2 genes are expressed in a variety of cell types, including
epithelial cells that have been the focus of much of this book. As of now, 25 mem-
bers of the BCL2 family have been identified. Some of these members are pro-
apoptotic, such as BAX, BAD, BAK, BID, BIM, BOK, NOXA and PUMA, while the
other members are anti-apoptotic such as BCL2, BCLB, BCLW, BCLXL and MCLI
(see Fig. 7.2 for the functional roles of these proteins). The overall apoptotic activity
level is largely determined by the balance between the pro- and anti-apoptotic BCL2
family members.

1. The intrinsic signaling pathway: The intrinsic pathway is activated when the cell
is under severe intracellular stress, including extensive DNA damage, membrane
damage, nutrient deprivation, hypoxia and viral infection, as well as withdrawal
of growth factors, hormones and cytokines. These signals induce changes in the
inner membrane of mitochondria, leading to an increase in mitochondrial perme-
ability and the release of two groups of pro-apoptotic proteins from the inter-
membrane space of mitochondria to cytosol (Siskind 2005; Suen et al. 2008).
One group of proteins includes cyfochrome ¢ and SMAC, which can lead to the
formation of apoptosomes and activation of the caspase cascade, hence the acti-
vation of cell suicide. Since the initial signals to this pathway originate in mito-
chondria, the pathway is sometimes referred to as the mitochondrial signaling
pathway. This may be one of the reasons why cancer cells tend to have dysfunc-
tional mitochondria, i.e., so selected to prevent the production and release of the
pro-apoptotic signals, as some have speculated (Gogvadze et al. 2008). Another
group of released proteins includes AIF (apoptosis induced factor), endonucle-
ase G and CAD, which are all translocated to the nucleus upon receiving signals
for the activation of apoptosis to carry out the execution activities of cell death,
including DNA fragmentation and chromatin condensation.

2. The extrinsic signaling pathway: The extrinsic signaling pathway is activated
upon receiving death signals by their corresponding receptors on the cell surface,
each of which has a cytoplasmic “death domain” that transmits the death signal
to the intracellular signaling pathway. A number of such signals and the corre-
sponding receptors have been identified, including FAS and FASR, TNFa and
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TNFRI, APO3L and DR3, APO2L and DR4, and APO2L and DRS5, all being in
the superfamily of TNFs, also known as cachectin, and their corresponding
receptors in the TNFR family. While many cell types can release death signals,
macrophages represent the dominant cell type for the production and release of
these signals, serving their supporting roles in determining the fate of their
parenchymal cells based on their microenvironment. Upon binding a death sig-
nal such as FAS, the receptor protein FASR binds with the TRADD (tumor necro-
sis factor receptor type 1-associated death domain) protein, which in turn recruits
the proteins, FADD (Fas-associated protein with death domain) and RIP
(receptor-interacting serine/threonine protein). FADD then associates with pro-
caspase-8, activating the caspase cascade and the execution of apoptosis. See
Fig. 7.2 for the detailed relationships among these proteins, death signals and the
execution of apoptosis.

3. The non-canonical signaling pathways: Studies in the past decade have found
that the current classification between apoptosis and necrosis, both being pro-
grammed cell death, is probably an over-simplification. The two are probably
part of a larger cell-death program, although each has its distinct morphological
pattern during the respective cell-death process. Multiple investigations have
reported different intermediates between the two, such as the apoptosis-like and
necrosis-like death processes (Leist and Jaattela 2001; Jaattela 2004; Broker
et al. 2005a; Qi and Liu 2006), which resemble only some aspects of the two
canonical programs. A particularly interesting class of non-canonical apoptosis
pathways is one referred to as caspase-independent apoptosis since it does not
go through the canonical caspase cascade (Jaattela and Tschopp 2003), as its
name suggested. The emergence of these newly identified signaling pathways
has resulted in a number of studies with the aim to reclassify apoptosis, necrosis
and the like. One study grouped all such pathways into four classes: (1) apopto-
sis, (2) apoptosis-like, (3) necrosis-like and (4) necrosis (Leist and Jaattela
2001), based on the cellular morphological differences during the death pro-
cesses. Another study classified the signaling pathways based on their level of
dependence on caspase proteins (Kolenko et al. 2000; Mathiasen and Jaattela
2002; Broker et al. 2005b).

A new model was recently proposed (see Fig. 7.3) suggesting that apoptosis is a
part of a larger cell-death program that also covers necrosis and other newly discov-
ered caspase-independent cell-death programs. This model expands the current
apoptosis system that utilizes intracellular signals only from mitochondria to also
include signals from lysosomes and ER. This recent model speculates that the dif-
ferent components of the cell death program may have distinct roles upon receiving
stress-related signals from different organelles. The observed death phenotype is
probably determined by the relative speeds in the execution of different death path-
ways under various conditions, and consequently only that by the fastest and most
effective one is observed.

It should be possible to validate this model computationally by using the avail-
able omic data. For example, one can check for each observed activation based
on gene-expression data whether the model-predicted associations indeed exhibit
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Fig. 7.3 A model for programmed cell death that integrates apoptosis, necrosis and newly discov-
ered caspase-independent cell-death programs, adapted from (Desai 2013)
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co-expression patterns for some cancer types (and at certain developmental stages).
Such analyses can quickly identify incorrect associations predicted by the model or
provide evidence for some model-predicted associations, hence validating or reject-
ing the model. For cases when time-course data are available, it should be possible
to derive causal relationships among the identified associations.

7.1.3 The P53 Network

P53 is one of the best known tumor-suppressor genes. The fact that ~50 % of can-
cers have P53 mutations across all cancer types reveals its dominating role in pro-
tecting cells from becoming cancerous. The current understanding is that P53 is at
the junction of a number of fundamental processes in cellular life, namely apopto-
sis, senescence, proliferation and immunity. According to (Levine and Oren 2009;
Brady and Attardi 2010), the P53 protein directly interacts with over one hundred
different proteins under different cellular conditions, covering functions ranging
from: AKT/PKB pathway regulator, adipogenesis, apoptosis, asymmetric cell divi-
sion, CAMP pathway, cell cycle control, cell proliferation, chromatin proteins, chro-
mosome condensation, development, differentiation, DNA damage and repair, DNA
methylation, energy metabolism, extracellular matrix proteins, heat shock, hypoxia
response, MAPK, NFkB, nucleocytoplasmic transport, nuclear receptors, protea-
some degradation, protection against viral infection, ribosomal proteins to
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transforming activity and ubiquitination. From this list, one can imagine the very
complex nature in the relationship between P53 and apoptosis. The following sum-
marizes a few major biological processes in which P53 is involved, showing a
framework for one to study both induction and inhibition of apoptosis via P53. It
should be noted that this is clearly not the entire picture of the P53 interaction net-
work as the following four processes do not begin to cover every interaction partner
of P53 as outlined above.

1. Apoptosis: As an apoptosis regulator, P53 responds to a large variety of cellular
stresses as discussed earlier. Typically P53 is inactive after being expressed
because of binding to its negative regulator, MDM?2, thus preventing it from
functioning as a transcription factor. The activation of P53 is accomplished
through phosphorylation of its N-terminal domain by various protein kinases,
which leads to a conformational change and the release of MDM?2. One group of
P53-activating kinases consists of members of the MAPK family such as JNKI
and ERK] in response to cell-cycle abnormalities among other stresses. Under
these conditions, the activated P53 induces apoptosis by up-regulating pro-
apoptotic members of the BCL2 family such as PUMA, BAX and BAK. Another
group of P53-activating kinases are related to DNA damage, such as ATR, ATM
and DNAPK. The activated P53 by these kinases will up-regulate a series of
regulators relevant to CDK inhibition, growth arrest and the DNA damage-
inducible gene GADD45a to repair the identified DNA damage. This process
may lead to the execution of apoptosis if DNA repair fails.

2. Senescence: While an inactivated P53 can increase the potential of cancer devel-
opment, constitutive activation of P53 will lead to tissue degeneration and pre-
mature aging as recently reported (Rodier et al. 2007; Feng et al. 2011). The
speculation was that constitutive activation of P53 can result in the annihilation
of stem cells, which impairs the tissue-regeneration capability, in addition to
apoptosis. Previous studies have shown that constitutive activation of P53 can
cause lifespan reduction (Dumble et al. 2007), providing supporting evidence to
the above hypothesis. While research on the impact of the P53 activity levels on
tissue degeneration, as well as lifespan reduction, has emerged only in recent
years and an understanding at the molecular level is still lacking, it is safe to state
that the normal range of the P53 activity level results from balancing tumor sup-
pression and lifespan as determined by evolution.

3. Proliferation: P53 can be activated by a number of oncogenes such as E/A
(Debbas and White 1993; Lowe and Ruley 1993; Querido et al. 1997; Samuelson
and Lowe 1997; Lowe 1999), MYC (Hermeking and Eick 1994) and RAS
(Serrano et al. 1997), which requires the participation of the P19 protein. This is
probably part of a mechanism encoded in cells for prevention of over-growth.
The key point to note here is that proliferation and death are tightly linked in the
cellular mechanisms encoded in human cells.

4. Immunity: The connection between P53 and the immune system is fairly exten-
sive and is rooted at a fundamental level. It deserves mention that NFB is a key
regulator of both the innate and the adaptive immune systems. Published studies
have established that P53 and NFkB are opposing regulators in terms of apoptosis
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versus survival, as the former promotes apoptosis while the latter enhances
survival. Actually, the two proteins can directly inhibit each other (Schneider
et al. 2010). As of now, ~30 immune-related genes have been found to be direct
targets of P53 regulation (Lowe et al. 2013).

The more detailed relationship between P53 and the immune responses can be
summarized as follows. It has been widely observed that P53 is up-regulated in
inflammation sites. While the detailed triggering mechanisms are not yet fully elu-
cidated, the speculation has been that P53 is induced by the increased ROS or reac-
tive nitrogen species, both of which are produced during inflammation (Vousden
and Prives 2009; Hafsi and Hainaut 2011). Conversely, P53 has been found to
inhibit autoimmune inflammation by suppressing the expression of inflammatory
cytokine-encoding genes, possibly serving as a general negative regulator of inflam-
mation (Santhanam et al. 1991; Pesch et al. 1996; Okuda et al. 2003; Takaoka et al.
2003; Zheng et al. 2005; Liu et al. 2009).

It has also been shown that an activated P53 can serve as a co-stimulatory protein
for the activation of T-cells (Gorgoulis et al. 2003; Lowe et al. 2013) and contribute
to the initiation of adaptive immune responses. The link between P53 and the innate
immune system lies in the need for clearance of damaged or infected cells, which is
typically done through cooperative actions between P53 and the innate immune
system (Martins et al. 2006; Ventura et al. 2007). There are clearly other links
between P53 and the innate immune system as it has been found that infections by
several viruses, such as Epstein-Barr, adenovirus, influenza A and HIV-1, can acti-
vate P53. One potential activation mechanism is through 7LR (toll-like receptor),
which is a key regulator of the innate immune responses and provides a front-line
protection against pathogens through recognition of their common features, referred
to as the pathogen-associated molecular patterns. TLR can activate protein kinase
R, which is capable of phosphorylating and activating P53. Interestingly, the activa-
tion of P53 can lead to the expression of most 7LR genes and the general response
of the innate immune system (Menendez et al. 2010, 2011, 2013), suggesting a
functional loop between P53 and TLR.

Knowing the close and complex relationships between P53 and the above path-
ways, it is logical to speculate that loss of P53 function may overall be beneficial to
cancer development in multiple ways as has been suggested for some time, in addi-
tion to just the loss of its inhibitory role of apoptosis. Specifically, cells without
normal P53 function will be more pro-inflammatory, more oxidative, less immune
responsive, exhibit a lower level of counter-reaction to over-proliferation and be less
prone to be eliminated due to fitness reasons (see Chap. 8), hence making the overall
environment more cancer friendly. One may further speculate that it is these multi-
ple beneficial factors to cancer development that have led to the high mutation rate
in the P53 gene in cancer tissues through natural selection. We believe that this
hypothesis can be rigorously studied computationally by examining cancer tissue
samples in terms of the activity levels of the relevant pathways versus the mutation
rates of P53. To undertake such a project, one would need to statistically determine
if there is a correlation between the P53 mutation rates and the level of activity in
each of the aforementioned processes such as inflammation response, production of
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antioxidant molecules or proliferation rate. With such data in hand, it may be
possible to estimate the percentage of the P53 mutations that are selected to directly
benefit which particular processes.

7.2 Different Ways to Evade Apoptosis by Cancer

Since the seminal publication that links apoptosis to development and cancer by
Kerr et al. in 1972 (Kerr et al. 1972), a large body of literature has been published
on cancer apoptosis. Upon reviewing some of these publications, one quickly rec-
ognizes the considerable complexity of the topic. This involves close interactions
and balances among multiple processes spanning a number of essential aspects of
multicellular organisms as discussed in the previous section. In an effort to enable
the reader to quickly grasp the essence of how different survival signaling pathways
balance the apoptotic activities induced by cancer-associated environments and
activities, the current knowledge is organized in the following fashion, focused on
the fundamental (non-accidental) connections that link growth, apoptosis and sur-
vival, as well as genetic mutations that enhance such connections by making them
constitutively active or repressed.

7.2.1 Growth and Apoptosis

There is a clear link between proliferation and apoptosis encoded in human genomes
as briefly outlined in Sect. 7.1. Here the MYC gene is used as an example to explain
the connection. MYC is an extensively studied oncogenic transcription regulator,
whose overexpression can drive cellular proliferation in cancer tissue and has been
widely observed in numerous cancer types. It has been well established that over-
expression of MYC can directly induce apoptosis in the absence of survival factors
in normal cells (Askew et al. 1991; Evan et al. 1992; Shi et al. 1992). Later studies
have observed coordinated expression patterns between MYC and BCL2 genes
(Strasser et al. 1990; Bissonnette et al. 1992; Fanidi et al. 1992). Specifically the
expression of MYC can inhibit the expression of BCL2 (an anti-apoptotic member
of the BCL2 family) and induce the expression of BAX (a pro-apoptotic member of
the BCL2 family), hence establishing a functional link between growth and apopto-
sis. In addition, it has been shown that when BCL?2 is inhibited, the activation of
MYC can induce cell death via apoptosis. The current understanding about these
observations is that cellular systems have developed a mechanism to keep growth in
check, i.e., when growth takes place, apoptosis is also activated at some level as a
safety valve. It has been speculated that a large number of other oncogenes may
have similar relationships with the apoptosis regulators as those between MYC and
BCL2. We expect that carefully-designed data mining and statistical inference can
lead to new discoveries of all the other oncogenes with the above properties, and
even possibly provide information on the detailed mechanisms of how the onco-
genes regulate BCL2 and other anti-apoptotic genes.
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7.2.2 Cell Cycle and Apoptosis

The cell cycle and apoptosis are, not surprisingly, tightly linked one with the other,
mainly to ensure cellular integrity. For example, the cell cycle process consists of
multiple checkpoints, such as those at the G,/S phase transition, in the S phase and
in the M phase. These checkpoints consist of a sequence of control steps that allow
proliferation to proceed only when appropriate growth signals are present and when
the DNA integrity is assured. If DNA damage is detected, then the necessary repair
machinery will be activated. If the damage cannot be repaired, the cell will be elimi-
nated through apoptosis. Interestingly, the cell cycle and apoptosis share a number
of common genes, presumably to facilitate the close and efficient interactions
between the two. For example, the cell cycle gene cyclin D binds with CDK4 and
CDK®6 to form a complex during the G, phase to facilitate their interaction and phos-
phorylation of the RB protein, a negative cell-cycle regulator. The hyper-
phosphorylated RB protein dissociates from the E2F protein, thus enabling it to
function as a transcriptional activator for genes required in the S phase for DNA
synthesis. It has been observed that the loss of RB function triggers the activation of
the apoptosis pathway via P53 (Morgenbesser et al. 1994; Macleod et al. 1996;
Harbour and Dean 2000; Nevins 2001), indicating that cells are designed to be
removed once their RB function is lost. Interestingly, in the majority of cancers, the
RB gene is either repressed or mutated (Vandel et al. 2001; Du and Searle 2009;
Engel et al. 2013), reflecting the strong anti-apoptotic role by RB.

The relationships between some cell-cycle genes and apoptosis seem to be
condition-dependent. For example, some cyclin genes such as cyclin G can have
either pro-apoptotic or anti-apoptotic roles dependent on the cellular conditions
(Okamoto and Prives 1999; Russell et al. 2012). Some CDK genes seem to be
required for the execution phase of apoptosis. For example, the complex of cyclin A
and CDK is activated whenever the caspase cascade is activated (Levkau et al.
1998), but the detailed mechanism remains to be elucidated. This represents another
fundamental biology problem to the study of which data mining and statistical
inference could contribute.

7.2.3 Cancer-Associated Stresses and Apoptosis

As a cancer evolves, it will accumulate a variety of abnormalities such as increased
hypoxia, ROS and (lactic) acidity in the microenvironment, as well as DNA damage
and nutrient deprivation, which should trigger the activation of apoptosis under nor-
mal conditions. However, cancer cells have acquired capabilities to avoid such acti-
vation via using different mechanisms. The following summarizes the known
alterations that cancer cells have adopted to avoid apoptosis.

1. Genetic mutations: as discussed in Chaps. 1 and 4, cancer genomes tend to accu-
mulate a large number of mutations. While some of the mutations probably do not
serve any purpose germane to cancer development, many single-point mutations
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are selected to serve specific roles to the benefit of the cancer cells, such as those
in tumor-suppressor genes. For example, close to 90 % of all colon cancers have
mutations in their APC gene as discussed in Chap. 4; similarly, the majority of
cancers have mutations in P53 and/or RB. The advantage of such mutations in
comparison with functional inhibition of the relevant genes is that the genetically
modified functional state change is more sustainable and efficient for cancer
development.

2. Epigenomic modifications: Genes can be silenced through epigenomic level
changes such as DNA methylation or histone modification. A large number of
tumor suppressor genes have been found to be highly methylated in cancer epig-
enomes. For example, the promoter region of the GSTP (glutathione S-transferase
P) gene is hyper-methylated in more than 90 % of prostate cancers (Cairns et al.
2001), and the HPVI6LI (human papillomavirus 16 oncogene) gene is highly
methylated in the majority of the cervical cancers (Clarke et al. 2012). Compared
to the irreversible genomic mutations, epigenomic modifications are reversible,
but clearly not as easy as reversion through transcriptional regulation.

3. Growth factors as survival factors: Previous studies have found that some growth
factors can serve as survival factors and that their activation will lead to the inhi-
bition of apoptosis under specific conditions. The best studied case is IGFI
(insulin-like growth factor 1), the normal physiological function being that of a
potent growth factor during early growth. The activation of this protein can
inhibit apoptosis through the activation of the PI3K/AKT pathway (see the
Sect. 7.2.4) (O’Connor 1998; Vincent and Feldman 2002; Kuemmerle 2003;
Torres Aleman 2005). A literature search revealed that many known growth fac-
tors can serve as survival factors, including EGF (Rawson et al. 1991), FGF
(Araki et al. 1990), HDGF (hepatoma-derived growth factor) (Tsang et al. 2008),
HGF (hepatocyte growth factor) (Xiao et al. 2001), /L3 and IL4 (Collins et al.
1994), NGF (nerve growth factor) (Batistatou and Greene 1991), PDGFI (Barres
et al. 1992) and VEGF (Harmey and Bouchier-Hayes 2002). Based on such
information, it seems reasonable to speculate that all growth factors may serve as
survival factors under certain conditions. This hypothesis could probably be vali-
dated computationally by mining cancer transcriptomic data through identifying
coordinated relationships between the expression patterns of each growth factor
and some survival pathway. If this turns out to be true, it may imply the existence
of a common mechanism that links growth factor receptor activation and the
induction of survival pathways. This would undoubtedly generate new informa-
tion and knowledge about the canonical proliferation pathway(s) since, as dis-
cussed earlier, proliferation is typically accompanied with the activation of
apoptosis at some level. With this new information, it may be possible to argue
for the existence of an encoded mechanism to maintain the equilibrium between
proliferation and apoptosis; specifically, overactive proliferation will trigger
apoptosis while overactive apoptosis may enhance the effect of proliferation. It
is likely that molecular level computational simulation among the relevant
players may lead to interesting insights about how such a mutually inhibitory
system works in detail.
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4. Functional-state changes at the protein level: It has been observed that the
activation of some oncogenes can inhibit apoptosis (see the Sect. 7.2.4); more-
over, these oncogenes can be constitutively activated through genetic muta-
tions. For example, it has been established that specific mutations in EGFR can
activate the protein in the absence of ligand binding (Voldborg et al. 1997;
Gazdar 2009). Specifically, these gain-of-function mutations can lead to con-
formational changes of the EGFR protein mimicking that induced by the natu-
ral ligand EGF (Dawson et al. 2005). More interestingly, oxidation of specific
residues of EGFR (not the same residues with mutations) can accomplish
exactly the same, i.e., having the protein constitutively activated, as we have
recently discovered (Ji et al. 2014). This may be a general phenomenon, i.e.,
functional-state changes of key cancer-related genes may take place first
through regulation or selection of accidental post-translational modification
(e.g., oxidation) in response to the cellular environment. Such regulation-
directed changes may then be gradually replaced by epigenomic or genomic
level changes (see Chap. 9 for details), possibly to keep the evasion of apopto-
sis more sustained and more energetically efficient.

It is worth mentioning that cancer cells have been found to release factors to
either stabilize anti-apoptotic proteins or destabilize pro-apoptotic proteins, as
another way to evade apoptosis. For example, cancer cells tend to activate post-
translational modification factors to attenuate or abrogate the degradation of
MCLI (Derouet et al. 2004; Zhong et al. 2005; Akgul 2009), an anti-apoptotic
member of the BCL2 family. Similar observations have been made that cancer
cells tend to promote the degradation of pro-apoptotic members of the BCL2
family, such as BAX and BIM, through the ubiquitin-proteasome pathway (Zhang
et al. 2004; Meller et al. 2006; Brancolini 2008). Currently the detailed trigger-
ing mechanisms in releasing these factors are not understood, but it is likely that
data mining and statistical inference can lead to new information and a better
understanding of the possible triggering signals.

5. Change through functional regulation: In order to assess the impact of P53 muta-
tions, an examination of gene-expression data between cancer samples with ver-
sus those without such mutations has been conducted. Specifically, we searched
for apoptosis-related genes that show consistent expression-level changes
between the two sets of cancer samples. A wide range of changes were observed
in the BCL2 family members without any obvious consistent patterns among the
tissues with versus those without P53 mutations. The only apoptosis-related
gene exhibiting consistent expression patterns was MDM?2, the negative regula-
tor of P53. Figure 7.4 shows consistent down-regulation of MDM?2 in samples
without P53 mutations versus those with P53 mutations across nine cancer
types. It is hypothesized that cancer may up-regulate the expression of MDM?2 to
ensure that P53 remains inactive before loss-of-function mutations appear in the
gene. Once loss-of-function mutations occur in P53, there is no need to continue
the up-regulation of MDM?2, hence its expression level decreases. This observa-
tion is consistent with an earlier statement that mutations in tumor suppressor



http://dx.doi.org/10.1007/978-1-4939-1381-7_9

192 7 Multiple Routes for Survival: Understanding How Cancer Evades Apoptosis

11

. +¢. +‘% ﬁ -% . “é +; e

T T T T T T T T T
BRCA CESC COAD LUAD o PAAD  PRAD READ  THCA

cancer_types

Fig. 7.4 A comparison of gene-expression levels of MDM?2 in samples without P53 mutations
versus those with P53 mutations across nine cancer types: breast cancer (BRCA), cervical cancer
(CESC), colon cancer (COAD), lung cancer (LUAD), ovarian cancer (OV), pancreatic cancer
(PAAD), prostate cancer (PRAD), rectum cancer (READ) and thyroid cancer (THCA) (from left
to right). The y-axis represents the gene-expression levels. The light and dark grays are for cancer
samples with and without P53 mutations, respectively

genes tend to occur in later stages during the development of cancer while the
inhibition of its function may have taken place through other more reversible and
less efficient means such as functional regulation in the early stage.

As indicated above, expression-level changes among the BCL2 family members
between the two groups of samples are clearly not as uniform as the MDM?2 gene
(data not shown), suggesting that the impact of P53 mutations is primarily on
MDM? and less on the BCL2 family members. One possible reason for this observa-
tion could be that the BCL2 genes may need to be protected against mutations since
they guard against the activation of apoptosis through other pathways as well.

IAP (inhibitor of apoptosis protein) is an interesting member of the apoptosis-
inhibitor family as it can terminate apoptosis, even after the caspase genes are acti-
vated, by directly binding with caspases-3, -7 and -9 (Deveraux and Reed 1999; Shi
2004). Thus, the gene-expression pattern of the JAP gene was investigated and
found to have highly elevated expression levels for a large fraction of the samples
without elevated anti-apoptotic BCL2 gene expression.

The above discussion depicts a plausible organization of the possible routes for
apoptosis evasion. Generally, the apoptotic execution genes tend to remain at rela-
tively low expression levels. IAP serves as the last safeguard against the execution of
apoptosis, even after the activation of the caspase genes, through maintaining a high
baseline expression-level of the protein. Together P53 and MDM?2 serve as key regu-
lators of the activity level of the apoptosis system, which responds to an intrinsic
signaling pathway. The large set of BCL2 genes and their splicing isoforms serve at
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the next layer of signaling and control. Recent studies have shown that not only do
individual BCL2 genes fall into two groups with opposing functions, i.e., pro- and
anti-apoptosis, but also individual BCL2 genes may have splicing isoforms with
opposing functions. For example, MCLI has two known such isoforms (Boise et al.
1993; Craig 2002; Burlacu 2003; Youle and Strasser 2008), one being pro-apoptotic
and the other anti-apoptotic. Numerous signaling pathways can then regulate these
BCL?2 genes and their splicing isoforms in response to a large variety of survival sig-
nals (see the next section) or alterations at the protein, epigenomic or genomic levels.
Clearly our understanding of the detailed mechanisms involved in apoptosis inhibi-
tion decreases as we move further away from the core apoptotic execution system.

We anticipate that carefully-designed data analyses and statistical inference will
provide important new insights about the detailed mechanisms relevant to different
survival pathways, as well as the mechanism(s) by which cancer cells have taken
advantage of these encoded schemes to acquire new capabilities to avoid apoptosis. In
time it may be possible to predict the evolutionary processes of cancer cells in select-
ing specific survival pathways for a fixed as well as a changing microenvironment.

To better understand the evolutionary trajectories of different cancers in terms of
which survival pathways are selected and in what order, a detailed understanding of
the survival mechanisms encoded in human cells is needed. These are of course
used to stop cell death under severe conditions, which otherwise would lead to pro-
grammed cell death. Such survival pathways may have provided a basic framework
through which cancer cells developed their initial anti-apoptotic capabilities. Later
these capabilities may be further developed for more sustained and more efficient
survival through the adoption of more permanent changes such as genomic or epig-
enomic alterations to replace the initial changes, either transcriptional or post-
translational (see Chap. 9 for a more detailed discussion).

7.2.4  Survival Pathways and Apoptosis

To avoid destruction, survival pathways inject interference or termination signals to
(damaged) cells that are destined or signaled to die. As of now, a number of survival
pathways have been identified and found to be activated by different conditions. For
example, the KEAPI-NRF2-ARE pathway is a survival pathway in response to
severe oxidative stress that may cause injury to the cells (Kensler et al. 2007). The
NFxB-dependent survival pathway can be activated by TNFa (Oeckinghaus et al.
2011). MNK/EIF4E is another survival pathway that can be induced by cytarabine,
a chemotherapeutic that was discovered through analyses of cancers that had devel-
oped drug resistance (Altman et al. 2010). A number of other survival pathways
have also been identified from studies of cancers that have developed drug resis-
tance, including the well-studied multi-drug resistance pathway (Szakacs et al.
2006) in which hyaluronic acid plays a key regulatory role (Misra et al. 2003). At
the core of this and other known survival pathways is that of the PIK3/AKT series of
reactions (LoPiccolo et al. 2008).
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Fig. 7.5 A schematic representation of survival pathways, adapted from (Cell-Signaling-Tech 2011)

AKT is a centerpiece of multiple survival pathways. A number of proteins and
signals can activate this protein kinase (see Fig. 7.5) through phosphorylation by the
PDKI/PRK complex (see Chap. 6 for a more detailed introduction). It is speculated
that the conformational change of the AKT protein, as induced by the growth factor-
mediated PI3K activation, makes its phosphorylation possible. When activated,
AKT can phosphorylate specific residues on a number of key proteins involved in
signaling to apoptosis, thus inhibiting their function. Proteins so altered include the
pro-apoptotic members BAD, caspase-9, transcription factors in the Forkhead
family and the NFxB regulator /KK (Datta et al. 1999).

Computationally, one should be able to make informative inferences about the
detailed relationships among the activation of survival pathways and the micro-
environmental conditions through co-occurrence analyses of the activated survival
pathways, the inactivated pro-apoptotic members of the BCL2 family, and the
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activated versus inactivated apoptosis signaling pathways, in conjunction with the
intracellular microenvironment such as oxidative state, hypoxic level and nutrient
deprivation. The analyses should consider the following scenarios: (a) apoptosis
signaling pathways that should have been activated, and (b) possible causes for
“should be” but “not” activated signaling pathways. By making such analyses
across multiple samples of the same cancer type at different developmental stages,
one should be able to derive the occurrence order of the apoptosis-inhibition mecha-
nisms adopted by cancer cells of the same cancer type. By conducting this analysis
across multiple cancer types, it should be possible to derive different evolutionary
trajectories by different cancer types in adopting different survival strategies. The
same analytic approach can also be applied to examine possible relationships
between the adopted apoptosis—inhibition schemes and clinical outcomes of differ-
ent cancers, for example, by the cancer grade (see Chap. 3).

7.3 Cancer Characterization Through Resolution
of How They Avoid Apoptosis

Our current understanding of the triggering mechanisms of apoptosis (see Fig. 7.2)
and the known survival pathways (see Fig. 7.5) provides a framework to address
several fundamental questions. For example, the possible relationships between the
different routes for survival and the clinical outcome of specific cancer cases could
potentially be derived through large-scale transcriptomic and other omic data for all
cancer types in the public domain. Specifically one can ask and possibly address
computationally the following questions regarding cancer samples:

— Do different samples of the same cancer type tend to use consistent pathways to
trigger their apoptosis system?

— Do different samples of the same cancer type tend to use consistent pathways to
inhibit their apoptosis system?

— What are the major factors that may affect the selection of apoptosis activation
and inhibition pathways?

— Is it possible to predict the activation and inhibition pathways used by a specific
cancer based on its micro-environmental factors? If not, what other conditions
need to be considered?

— Are there connections between the average survival rate of a cancer type and the
activation and inhibition pathways of apoptosis?

In addition to these general questions, one can also ask more detailed mechanis-
tic questions about the activation and inhibition of apoptosis and possibly address
them computationally. For example, it is plausible to address the following:

— Why different cancer types have substantially different mutation rates in P53 or
other cancer-related genes?
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— Are functions of P53 or other cancer-related genes already inhibited or repressed
in general before their loss-of-function mutations are selected in cancer-forming
cells?

— Ifthe answer to the above question is yes, then what are the triggering signals for
functional inhibition or repression through regulation for a specific cancer type?

— Do epigenomic alterations such as DNA methylation tend to occur after func-
tional inhibition through regulation and before genomic mutations are selected
for the same gene as one would intuitively expect?

— Do cancers with P53 mutations tend to have higher benefits for sustained growth
and survival than cancers without P53 mutations as measured using the terms
discussed in the last paragraph of Section 7.1?

Similarly, many other important questions can be asked regarding how different
cancers evade apoptosis and then have them addressed by computationally mining
the cancer omic data collected on tissue samples at different developmental stages
(and possibly of different grades). These data are publicly available in databases
such as the TCGA database (Collins and Barker 2007; Cancer-Genome-Atlas-
Network 2012). Here we illustrate with a few examples how one can proceed
towards solving some of the above questions by addressing simpler issues first and
then integrating the solutions to provide answers to the questions posed.

What do cancers do when they are devoid of P53 mutations? Our current under-
standing is that loss of P53 function is beneficial for cancer development. Intuitively
one would thus expect that cancers without such mutations may need to functionally
repress the activity of P53. To address this hypothesis, we have examined one set of
omic data collected on 503 breast cancer samples in the TCGA database (Cancer-
Genome-Atlas-Network 2012). 157 of these samples (31.2 %) have P53 mutations
according to the information provided on the sample set in TCGA. For the remain-
ing samples, 149 have up-regulated expression levels of the MDM?2 gene, the nega-
tive regulator of P53 that keeps P53 in an inactive state; 145 have up-regulated
BCL2 expressions; 52 have up-regulated BCL2L2; and 77 have down-regulated
cytochrome ¢ (CYC) levels. Statistical analyses indicate that gene-expression level
changes among MDM?2, BCL2 and BCL2L2 are strongly correlated, suggesting that
these genes are probably controlled through the same regulatory machinery. See
Fig. 7.6 for the detailed information.

Analyses of other cancer types show similar trends in terms of up-regulated
expression of anti-apoptotic genes and down-regulated expression of pro-apoptotic
genes, but the actual genes with altered expression levels could be rather different.
This leads to our next question.

What is the level of consistency in terms of up- and down-regulation of the
apoptosis-associated genes across different cancer types? To answer this question, 15
cancer types were examined, namely bladder, brain, breast, colorectal, esophagus,
gastric, head-neck, liver, lung, melanoma, ovary, pancreas, prostate, renal and thyroid
cancers (see Appendix for the detailed names of the datasets used). The primary aim
in analyzing the transcriptomic data of these cancer types was to identify the general
triggers for apoptotic activation and apoptotic inhibition in different cancers. The
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Fig. 7.6 Expression-level assessment of four genes in breast cancer samples (see designation
along the x-axis) comparing those with P53 mutations and those without. The y-axis represents the
gene-expression levels. The light and dark gray are for cancer samples with and without P53 muta-
tions, respectively

rationale is based on the observation that the relative strengths of these two types of
triggers determine the ultimate step of cell death or survival. Also, of course, one
would like to know the evolutionary trajectories of these two competing processes,
each having continuously increasing force and complexity.

From Fig. 7.7, it is first noted that the overall consistency level in any category of
apoptotic genes is fairly low. This singular result suggests that different cancer types
may have distinct driving forces for cell death and hence use different activation
pathways of the apoptosis system, possibly due to the different microenvironments
in different cancers. For example, it was noted that apoptosis is triggered by distinct
stressors in different cancers, e.g., pancreatic cancer by oxidative stress, brain cancer
via P53 induced by DNA damage, gastric cancer often by natural killer cell-mediated
cytotoxicity and thyroid cancer by ionic level changes. Interestingly, the toll-like
receptor pathway was found to be consistently up-regulated across all the 15 cancer
types, suggesting the essential role of this pathway in activating apoptosis.

The dominating survival signals in each of the 15 cancer types show a diverse
range. For example, (1) bladder cancer tends to use the ER overload response to
trigger the activation of NFkB and the associated survival pathway; (2) ovarian can-
cer triggers the replicative senescence system to curtail cancer rather than inducing
cell death; (3) renal cancer tends to trigger the hyperosmotic response system for
survival; and (4) head-neck cancer generally uses the “virus evasion of host immune
system” mechanism for survival.

It is hypothesized that, as cancer continues to evolve, different types of cancers
may utilize more than one survival pathway as their cellular environments diverge
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Fig. 7.7 Consistency levels in up- and down-regulated genes involved in: (1) the entire apoptosis
system; (2) intrinsic signaling pathways; (3) extrinsic signaling pathways; (4) apoptotic execution;
and (5) apoptosis regulation (from left to right), across 15 cancer types. For each differentially-
expressed apoptotic gene, its consistency level is defined as the maximum number of cancer types that
show consistent up- or down-regulation in this gene’s expression (as defined in Fig. 7.5). The y-axis
gives the distribution of the consistency levels of genes involved in one of the above categories

from normal. Such diversity will create more opportunities and pathways to ensure
survival and overcome apoptosis. It is further hypothesized that mutations may be
selected to make survival more sustainable and efficient as pressure from cell death
mounts. Chapter 9 discusses these issues in a systematic manner.

7.4 Concluding Remarks

The current knowledge about induction and inhibition of apoptosis, as summarized
in Figs. 7.2 and 7.5, provides a powerful framework to study inducers of apoptosis
versus inducers of the counteraction, namely survival, across different cancer types.
It is the availability of transcriptomic and genomic data of these cancer types that
makes such delineation feasible. By carefully analyzing stress-related pathways that
are consistently up-regulated and linked to apoptosis, it may be possible to identify
the major triggers for apoptosis in the cancer type. A similar approach can provide
information on the triggers for survival. Having such a capability, it is possible to
study the evolutionary trajectories of the generation of signals for programmed cell
death and for survival by analyzing omic data of cancers at different developmental
stages. It is further anticipated that, when linking such analyses to cancers with high
levels of malignancies, one could potentially derive useful insights about why
certain cancer types result in greater mortalities than the others.
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Table 7.1 Transcriptomic datasets of 15 cancer types are collected
from the GEO database and used in our data analysis

Bladder GSE31676
Brain GSE42906
Breast GSE108106
Colorect GSE209167
Esophagus GSE20347
Gastric GSE198264
Headneck GSE98444
Liver GSE143234
Lung GSE198043
Melanoma GSE3189%4
Ovary GSE267128
Pancreas GSE154717
Prostate GSE69561
Renal GSE156415
Thyroid GSE36786
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