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This book on comparative genomics was written for early researchers (advanced 
undergraduate students, postgraduates, and postdoctoral fellows). Well-established 
biologists should leave it alone—it is not intended to impress them.

What is comparative genomics? Before a proper definition can be put for-
ward, we need to recognize that a genome has many primary features such as the 
genomic sequence, strand asymmetry, genes, gene order, regulatory motifs, and 
genomic structural landmarks that can be recognized or modified by cellular com-
ponents with functional implications, etc. A genome also has secondary features 
such as the dynamic transcriptome, proteome, codon–anticodon adaptation, func-
tional association of genes, and gene interaction networks. Comparative genomics 
is a branch of genomics that aims to (1) characterize the similarity and differences 
in genomic features and trace their gain and loss along different evolutionary line-
ages, (2) understand the evolutionary forces such as mutation and selection that 
govern the changes of these genomic features, and (3) find out how genomic evo-
lution can help us battle diseases, restore environmental health, make money, etc.

It is better to illustrate this with an example. Suppose we have a set of bacterial 
genomes, with Genome A missing genes for lactose metabolism in contrast to all 
closely related genomes that still carry the genes. We may reasonably infer that 
the genes were lost in the lineage leading to Genome A. Suppose we further find 
that the organism carrying Genome A has inhabited an environment that is con-
stantly lactose-free (I, as well as some of my Chinese, Finnish and German col-
leagues, would love to have such an environment), then we can infer that genetic 
alterations to the lactose-metabolizing genes are essentially neutral for the car-
rier of Genome A, with no functional consequence for losing the gene. Through 
a phylogeny-based analysis, we may find that lactose-free environment is strongly 
associated with the loss of lactose-metabolizing genes. If we further find that the 
set of genes are either strongly conserved in evolutionary lineages requiring lac-
tose metabolism or degraded by accumulated mutations in those living in lactose-
free environment, we can infer that the genes are strongly associated only for the 
lactose-metabolizing function. In contrast, if we find that the set of genes are still 
strongly conserved in lineages inhabiting lactose-free environment for a long time, 
then the genes may have functions other than lactose metabolism.

Preface
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What basic knowledge do we need to do research in comparative genomics?  
The most fundamental feature of a single genome is its nucleotide sequence, and the 
most fundamental feature shared among a set of genomes is coancestry, or shared 
homology. These immediately bring into our mind the necessity of sequence-related 
computational tools such as sequence alignment and molecular phylogeny. For this 
reason, some literacy in computation and mathematics/statistics is assumed.

Much of the comparative genomics is done by genomic comparison against 
genomes of model organisms. Consequently, it is of tremendous value to gain a good 
understanding of molecular biology of some model organisms such as Escherichia coli, 
Bacillus subtilis, Mycoplasma genitalium, Chlamydomonas reinhardtii, Arabidopsis 
thaliana, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila mela-
nogaster, Ciona intestinalis, Danio rerio, Takifugu rubripes, Xenopus laevis, Gallus 
gallus, Mus musculus and, of course, Homo sapiens. For an evolutionary biologist, it 
is a great comfort to see such a diverse array of model organisms, especially for those 
who have lived through the bygone era dominated by the dogmatic assertion that 
“What is true in E. coli is also true in the elephant”.

What about viruses? Can one do research in comparative genomics of viral 
genomes? The main difficulty with viral genomes is that viral lineages are often 
so diverse that they do not share any detectable homology. So comparative 
genomics is typically limited to closely related lineages such as among differ-
ent subtypes of influenza viruses or among HIV/SIV viruses. However, lack of 
homology does not preclude one extremely important aspect of evolutionary stud-
ies, i.e., the study of convergent evolution. Diverse bacteriophage lineages can 
parasitize the same host and serve as a fertile ground for studying convergent evo-
lution in response to the same intracellular environment of the host. However, it 
is the demonstration of functional equivalence, instead of homology, of the genes 
that is at the center of lime light in the study of convergent evolution in compara-
tive viral genomics.

Comparative genomic research should be guided by the conceptual frame-
work of evolutionary biology, so readers are assumed to have read something 
Darwinian. There are two most fundamental problems in evolutionary biology. 
The first is the origin and maintenance of new features and new species. There is 
no better way to address this question than comparative genomics, where the gain 
and loss of functional genes, as well as modification of a gene to gain a new func-
tion, can often be unequivocally identified from a set of related genomes. Many 
bacterial species are competent in pick up environmental DNA segments and inte-
grate them into their genomes. Some of these DNA segments contain functional 
genes, leading to inheritance of the newly “acquired characters” and changes in 
subsequent evolutionary trajectories.

The second fundamental problem in evolutionary biology is the establishment 
of the links among genotype, phenotype, and environment. The greatest stumbling 
block to this line of enquiry has been the characterization of the genotype. This 
block is essentially non-existent when we have all the genomes and can character-
ize various aspects of the genotype, e.g., the presence/absence of a set of genes. 
We can then use phylogeny-based methods to systematically characterize the 
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association between this matrix of genotypes and the matrix of phenotypes or the 
matrix of environmental factors.

The diverse genomes we see today did not originate independently, but repre-
sent products of descent with modification. This has fundamental implications on 
the methodology in comparative genomics. A good phylogeny is typically required 
for any comparative genomic study involving more than two genomes. The reader 
is therefore assumed to have gained basic understanding of phylogenetics.

Many examples of comparative genomic research are illustrated throughout 
the book. The first chapter includes many small-scale research examples, while 
the second chapter is heavy with large-scale studies and their associated statisti-
cal methods, in particular the comparative methods involving both continuous and 
discrete variables. The effort to develop phylogeny-based comparative methods 
was initiated by Joe Felsenstein and subsequently further developed and promoted 
by Paul Harvey and Mark Pagel. I numerically illustrated these methods in such a 
way that researchers with basic statistical and programing skills can include these 
methods in their programs. It should also facilitate further development of the 
methods by people well-versed in stochastic processes. The third chapter presents 
frequently used methods for detecting viral recombination.

The comparative approach has gone way beyond biology. For example, social 
scientists have characterized “phenotypes” of different forms of government and 
how much of the “phenotypic” differences can be attributed to historical iner-
tia and environmental and cultural determinants. From a social biogeographic 
point of view, there are two possibilities for why Government Form A (GFA) is 
found in Area X but GFB is found in Area Y. First, GFA is “good” for people in 
Area X and “bad” for people in Area Y. Likewise, GFB is “good” for people in 
Area Y but “bad” for people in Area X. In this case, we should leave these people 
alone. Second, GFA is “better” than GFB in both areas but has never got a chance 
to be practised by people in Area Y. In this case, we might try to persuade peo-
ple in Area Y to practise GFA. Phylogeny-based methods can help us discriminate 
between the two possibilities, although some politicians and religious leaders have 
long settled for the second possibility, i.e., one particular GF or religion is bet-
ter than all alternatives and should be promoted and practised everywhere in the 
world.

This book is not on democracy or religion, and is not good for everyone.  
In fact, book authors universally acknowledge the truth that a book is never good 
for everyone. For this reason, many authors are profusely apologetic in the pref-
ace, although there are also a few courageous ones who simply stated “Please 
read the book”. I do not want to be apologetic and obviously do not want to draw 
reader’s attention to problems in my book, but feel that I have to list a few things 
below just to conform to the convention.

First, this book does not cover all aspects of comparative genomics. In par-
ticular, it does not cover any aspect of genome rearrangement, for three reasons. 
First, many books entitled “Comparative Genomics” include extensive cover-
age of genome rearrangement. Second, most genes in eukaryotes and operons in 
prokaryotes appear to function well without being constrained by their location in 
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the genome. Third, I myself do not work on genome rearrangement, which is my 
strongest justification for the omission. I do not think that anyone wants to read a 
professional book, or even part of it, written by a layperson.

Second, do not be infuriated when you find your important works not cited in 
the book because this book has a mandate to be brief. If you keep up your good 
work, readers of the book will discover you sooner or later. You would be a mod-
ern Mendel if you get rediscovered by three separate investigators, which perhaps 
is not a bad thing after all.

Third, I am a Chinese, and English is not my mother tongue. If you come 
across a grammatical error, please do not immediately shred the book or angrily 
demand refund. Let me see if I can squeeze a smile out of you by sharing a little 
story of me. The textbook of English during my undergraduate years in China typ-
ically had a list of new English words/phrases and their Chinese equivalents side 
by side. “Should” and “to be supposed to” happened to have the same Chinese 
equivalent that means “should”, and I had since considered “should” and “to be 
supposed to” as synonymous. Then there came a time when I was doing my gradu-
ate research in a field station with a group of other Canadian students. I typically 
would wash dishes because others did the cooking which took much more time 
and energy. Once my fellow students suggested that I should share the dishwash-
ing with others, and I wanted to say “I should wash the dishes” because others 
did the cooking. But then I thought that “to be supposed to” seemed much more 
grandiose than the plain “should”. So I replied that “I am supposed to wash the 
dishes”, privately thinking that they would be really impressed by my command of 
English. The resulting behaviour of my Canadian fellow students puzzled me for 
a whole field season, and I wrote home that “culture shock” was so real and that 
Canadians could truly be weird and unpredictable.

I hope that this book will not create many “weird and unpredictable” readers.
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An experienced publisher once pointed me to a few examples of “effective use” of 
acknowledgment, each with an impressive list of well-known scientists, tactfully 
acknowledged to boost the reputation of the book author. The practice reminded 
me of some recent scientific conferences each with a list of 8–11 Nobel laureates 
as session chairs or keynote speakers. A journal would not have legitimacy if it 
does not have a list of silverbacks in the editorial board, even though some of the 
silverbacks are never involved in the manuscript-screening process. A person’s 
worth is often evaluated by the number of “like” in social networks. We are enter-
ing a world in which a masterpiece in art is no longer evaluated on its own merit, 
but on whether it features gold-plated frame or displayed in a prominent location 
in a museum or gallery!

Should I mould a few famous names into a gold-plated frame for my limited 
painting of comparative genomics? I did have the good fortune of being associated 
with a number of silverbacks. Some helped me to switch to molecular evolution 
and phylogenetics when I was forced to switch fields because of severe allergies 
toward rodents that I used to study. Some offered me their books as gifts that 
inspired me and cultivated in my mind a strong desire to produce something simi-
lar. Some donated their previous field data or bacterial strains that led to results 
included in this book. Some have commented much of the book and corrected 
errors in the second chapter of this book. However, there are also little known peo-
ple, but much greater in number, who have helped me and supported me in vari-
ous ways during the writing process. If the “effective use” of Acknowledgement 
implies the exclusion of little known names, then let me engrave all these names in 
my heart without mentioning any here. I think that they would all like it this way.

But some explicit acknowledgments are absolutely essential—there would 
be serious repercussions if I did not. Scientists, just as religious monks, need 
patronage to carry out their daily routines and rituals. Without generous patron-
age, there would be neither religious freedom nor academic freedom. So here 
goes my acknowledgment to funding agencies: NSERC (Discovery Grant) and 
CAS/SAFEA (International Partnership Program for Creative Research Teams). 
While the money has never been sufficient for research, it is perhaps worth as 
much as a gold-plated frame for decorating the book.
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Some scientists are visionary and can envision the theoretical foundation and 
experimental methodology of a new branch of science long before it takes any 
concrete shape. However, most scientists are just classifiers. When they see col-
leagues engage in novel activities such as catching flies, killing mice, chasing 
elephants in Africa and mounting whale specimen for museums, they would cre-
ate a container labelled “zoology” and dump all these activities into it. Similarly, 
all those activities such as climbing trees, picking flowers, growing Arabidopsis 
thaliana and maintaining greenhouses are boxed together as botany. One former 
colleague of mine claimed that the only exception to this naming convension 
involves those studies of feces in hospitals—they are lumped together as microbi-
ology instead of a potentially more descriptive name.

Then what is comparative genomics? Following the convention of classifica-
tion, we simply define comparative genomics as the collection of all research 
activities that derive biological insights by comparing genomic features.  
A genome has many features such as the genomic sequence, strand asymmetry, 
genes, gene order, regulatory sequences, genomic structural landmarks that can be 
recognized or modified by cellular components with functional implications, etc. 
Comparative genomics is a branch of genomics that aims to (1) characterize the 
similarity and differences in genomic features and trace their origin, change and 
loss along different evolutionary lineages, (2) understand the evolutionary forces 
such as mutation, recombination, lateral gene transfer, and selection (mediated by 
abiotic environment such as temperature, food, and pH and biotic factors such as 
host, parasite, and competitors) that govern the changes of these genomic features, 
and (3) find out how genomic evolution can help us battle diseases by developing 
personalized medicine, improve environmental health, restore sustainable devel-
opment, etc.

The development of comparative genomics predates the availability of genomic 
sequences. It has long been known that organisms are genetically related, with 
many homologous genes sharing similar functions among diverse organisms. 

Chapter 1
What is Comparative Genomics?

X. Xia, Comparative Genomics, SpringerBriefs in Genetics,  
DOI: 10.1007/978-3-642-37146-2_1, © The Author(s) 2013
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For example, the yeast IRA2 gene is homologous to the human NF1 gene, and 
the functional equivalence of the two genes was demonstrated by the yeast IRA2 
mutant being rescued by the human NF1 gene (Ballester et al. 1990). This sug-
gests the possibility that simple genomes can be used as a model to study compli-
cated genomes. A multitude of such demonstrations of functional equivalence of 
homologous genes across diverse organisms has led to the dogmatic assertion that 
what is true in E. coli is also true in the elephant (attributed to Jacques Monod, 
Jacob 1988, p. 290).

It is the realization that what is true in E. coli is often not true in the elephant 
that has brought comparative genomics into the proper evolutionary context with 
the concept of phylogenetic controls. This is best illustrated by a simple example. 
Suppose we compare two Dodge Caravans (DCs) that are similar in functional-
ity except that DC1 warns the driver when it is backing towards an object behind 
the car while DC2 does not. What is the structural basis of this warning function? 
Nearly all structural elements in DC1 have their “homologues” in DC2 except 
for the four sensors on the rear bumper of DC1. This would lead us to quickly 
hypothesize that the four sensors are associated with the warning function, which 
turns out to be true. Now if we replace DC2 with a baby stroller, then the com-
parison will be quite difficult because a stroller and a DC differ structurally in 
numerous ways and any structural difference could be responsible for the warn-
ing function. We may mistakenly hypothesize that the rear lights or the rear win-
dow defroster in DC1, which are all missing in the stroller, may be responsible for 
the warning function. To test the hypotheses, we would destroy the rear lights, the 
rear window defroster, etc., one by one, but will get nothing but negative results. 
What could be even worse is that, when destroying the rear lights, we acciden-
tally destroy a part of the electric system in such a way that the warning func-
tion is lost, which would mislead us to conclude that the rear lights are indeed 
part of the structural basis responsible for the warning function—an “experimen-
tally substantiated” yet wrong conclusion. A claim that what is true in E. coli is 
also true in the elephant is equivalent to a claim that what is true in a stroller is 
also true in a DC. It will take comparative genomics out of its proper conceptual 
framework in evolutionary biology and render it inefficient to address biological 
questions.

Let’s take a biologically more relevant example involving Shigella flexneri 
and E. coli (Sansonetti et al. 1982a, b). Shigella strains cause shigellosis, 
whereas strains of Escherichia coli are generally avirulent. What is respon-
sible for the difference? Nuclear genomes are similar between Shigella and 
E. coli, which led scientists to focus on a plasmid that is present in the patho-
genic Shigella strains but absent in the avirulent E. coli strains. The pathogenic 
Shigella strains become avirulent when the plasmid is taken away, and originally 
avirulent strains of E. coli gains virulence after acquiring the plasmid. This led 
quickly to the conclusion that the plasmid is largely responsible for shigellosis. 
Had one compared between S. flexneri and Saccharomyces cerevisiae, one would 
need to hypothesize that any one of the thousands of genes in S. cerevisiae not 
shared by S. flexneri could be a causal factor. Filtering through these thousands 
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of possibilities would take forever even if we do not consider gene combinations 
as causal factors.

In this chapter I will detail a few typical comparative genomic studies so that 
we can develop an intuitive appreciation of what is hidden in the box labelled 
“comparative genomics”. These studies involve biological problems that can be 
addressed by comparing two genomics as well as problems that would require 
more than two genomes to reach a solution. The similarities among these studies 
are summarized at the end to highlight essential elements in a comparative genom-
ics study.

 Genomic Comparison Between Helicobacter pylori and its 
Relatives

 Problems and Hypotheses

Helicobacter pylori is a human pathogen causing gastric and duodenal ulcers 
and gastric cancer (Hamajima et al. 2004; Hunt 2004; Menaker et al. 2004; 
Siavoshi et al. 2004). It is an acid-resistant neutralophile (Bauerfeind et al. 1997; 
Rektorschek et al. 2000; Sachs et al. 1996; Scott et al. 2002) capable of surviv-
ing for at least 3 h at pH = 1 with urea (Stingl et al. 2001) and maintaining a 
nearly neutral cytoplasmic pH between pH 3.0 and 7.0 (Matin et al. 1996; Scott 
et al. 2002). In the presence of urea, H. pylori can accomplish its cytoplasmic pH 
homeostasis down to an external pH of 1.2 (Stingl et al. 2002b). These properties 
allow it to survive and reproduce in the human stomach where the gastric fluid 
has a pH averaging about 1.4 over a 24-h period (Sachs et al. 2003).

The buffering action of the gastric epithelium and limited acid diffusion 
through the gastric mucus were previously thought to protect the bacterium against 
stomach acidity, but both empirical studies (Allen et al. 1993) and theoretical 
modeling (Engel et al. 1984) have suggested that the protection is rather limited 
(Matin et al. 1996; Sachs 2003 #14944). Recently it has also been shown that 
mucus does not hinder proton diffusion and a trans-mucus pH gradient is abol-
ished when the luminal pH drops to <2.5 (Baumgartner and Montrose 2004). It is 
therefore necessary for H. pylori to have acid-resisting mechanisms to colonize the 
gastric mucosa successfully (Sachs et al. 2003).

H. pylori has evolved two mechanisms protecting itself against the acidic 
environment in the mammalian stomach. The first, schematically illustrated 
in Fig. 1.1, involves the urease gene cluster ureABIEFGH. The constitutively 
expressed cytoplasmic urease consists of four heterodimer each with two subunits 
coded by ureA and ureB, respectively. It catalyzes urea to generate 2NH3 + CO2 
to buffer against the H+ influx into either the periplasm or the cytoplasm (Mobley 
et al. 1991; Rektorschek et al. 2000; Sachs et al. 2003; Stingl et al. 2002a) 
and to facilitate the extrusion of H+ from the cytoplasm in the form of NH4

+  

1 What is Comparative Genomics?
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(Stingl et al. 2002a). However, urease is an apoenzyme requiring a nickel to 
be active. The ureEFGH gene cluster, whose expression is acid-induced, codes 
for nickel-sequestrating proteins that insert nickel into the urease, leading to 
increased and sustained urease activity (Sachs et al. 2003; Wen et al. 2003; 
Williams et al. 1996).

The urease, once activated, naturally needs a constant supply of urea as its sub-
strate, and the cell has two sources of urea supply, one intrinsic and one extrinsic 
(Fig. 1.1). The extrinsic source refers to urea present in saliva and stomach fluid. 
The exposure of H. pylori to gastric acid results in a large increase in urea influx 
into the cell due to the pH-gating of the urea channel protein UreI (Bury-Mone 
et al. 2001; Weeks et al. 2000). The intrinsic source comes from efficient conver-
sion of arginine to urea in the cytoplasm by the highly expressed arginase in H. 
pylori (Mendz and Hazell 1996). For this reason, arginine is underused, but lysine 
is overused, in H. pylori proteins (Xia and Palidwor 2005).

The second acid-resistant mechanism in H. pylori is the restriction of acute pro-
ton entry across its membranes by having a high frequency of positively charged 
amino acids and consequent high pI (isoelectric point) values in the inner and 
outer membrane proteins (Sachs et al. 2003; Scott et al. 1998; Valenzuela et al. 
2003). This is supported by recent discovery of a basic proteome (Tomb et al. 
1997), a set of basic membrane proteins (Baik et al. 2004) in H. pylori, and an 
extensive genomic analysis (Xia and Palidwor 2005) testing the adaptation, pre-
adaptation and exaptation hypotheses concerning the overuse of lysine residues in 
H. pylori proteins. The mechanism gained functional importance after the discov-
ery that urease-negative H. pylori can colonize the acidic gastric environment and 
cause gastric ulcers in Mongolian gerbils (Mine et al. 2005).
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Fig. 1.1  Schematic illustration of the acid-resistance mechanisms in H. pylori mediated by 
genes in the urease gene cluster ureAB-I-EFGH
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Given that H. pylori has many Lys-rich proteins with high pI values relative 
to other bacterial species that do not live in acidic environment, one is naturally 
tempted to conclude that the high pI values in the H. pylori proteins represent an 
adaptation to the acidic environment. However, there are at least four possible 
hypotheses for the origin of the basic proteome in H. pylori (Xia 2007a, Chap. 10).

The first hypothesis states that H. pylori would benefit from positively charged 
proteins (especially membrane proteins) to alleviate the influx of H+ into cyto-
plasm. This hypothesis is known as the acid-adaptation hypothesis (Xia and 
Palidwor 2005), i.e., H. pylori acquired its high-pI proteins as an adaptation in 
response to selection imposed by the acidic environment.

The second hypothesis argues that parasitic bacterial genomes typically 
evolve towards AT-richness because spontaneous mutations are generally 
AT-biased according to comparisons between pseudogenes and their functional 
counterparts (Gojobori et al. 1982; Li 1983; Li et al. 1981) and the discovery 
of the prevalence of spontaneous C → T/U deamination (Frederico et al. 1990, 
1993; Lindahl 1993). All known parasitic bacterial genomes are AT-rich. H. 
pylori has a relatively AT-rich genome, e.g., the genomic GC% of H. pylori 
26695 is only 38 %, in contrast to the genomic GC% of 50 % in E. coli sub-
str DH10B. The AT-richness would lead to an increase in A-rich codons such 
as the lysine codon AAA and AAG and a consequent increase in lysine usage 
and protein pI. Because H. pylori and its sibling species are all parasites, their 
most recent common ancestor might have already practiced parasitism, acquired 
AT-richness and increased frequency of lysine codons before it became a par-
asite in the mammalian stomach. Therefore, an overrepresentation of lysine 
residues in its proteins, if beneficial for acid-resistance, would represent an 
exaptation, i.e., the process in which an originally neutral trait has subsequently 
acquired a beneficial function. A well known example of exaptation is the brain-
specific RNA gene BC200 resulting from the exaptation of a presumably neutral 
SINE repeat (Smit 1999).

The third hypothesis states that nucleotide C is rare in eukaryotic cells and a 
eukaryotic parasite should therefore minimize the usage of C as a building block 
for its RNA and DNA. CTP concentration is much lower than the other three 
nucleotides chick fibroblast cells (Colby and Edlin 1970) and in mouse 3T3 cells 
(Weber and Edlin 1971), suggesting the generality of C limitation. Consistent with 
the suggestion, the protozoan parasite, Trypanosoma brucei, maintains its de novo 
synthesis pathway for CTP and inhibiting its CTP synthetase effectively eradicates 
the parasite population in the host (Hofer et al. 2001). In contrast, the parasite does 
not have de novo synthesis pathways for purines, suggesting that the parasite can 
obtain the purines by its salvage pathway. This suggests that little CTP can be sal-
vaged from the host. The relevance of these observations is highlighted by the fact 
that H. pylori maintains an active biosynthesis pathway, and a much less active 
salvage pathway, for pyrimidine nucleotides (Mendz et al. 1994). Thus, it might 
be evolutionarily beneficial for a mammalian parasite or symbiont to minimize the 
use of CTP in its DNA in building its genomes and in transcription (Rocha and 
Danchin 2002; Xia 1996).

Genomic Comparison Between Helicobacter pylori
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Minimizing C in an organism with a DNA genome has the necessary conse-
quence of reduced G, with a consequent increase in A and T. This will also con-
tribute to increase AT and increased lysine codon. Thus, lysine overuse represents 
a secondary consequence of an adaptation to a C-rare environment, but it predis-
posed the organism to tolerate an acidic environment. Such a mechanism is called 
preadaptation, i.e., a trait originally selected for one function but that subsequently 
gained a different function beneficial to the carrier of the trait. An often cited 
example of preadaptation is the rudimentary feather that presumably has been 
selected for thermoregulation in nonavian dinosaurs but preadapted their carriers 
to subsequent evolution of flight.

The fourth hypothesis is more complicated. A protein in a solution with a pH 
equal to the protein pI is not charged. If highly expressed proteins happen to have 
their pI equal to the cytoplasmic pH, then there is no electrostatic repulsion among 
these proteins when they are mass-produced. Such proteins will have low solubil-
ity and tend to aggregate and precipitate, which is often harmful to the cell. The 
“amyloid precursor protein” causing Alzheimer disease and the prion protein caus-
ing the mad cow disease are examples of the undesirable protein aggregation and 
precipitation. Take E. coli for example. Its intestinal environment has pH close to  
9 and it can maintain its optimal growth at external pH as high as 8.8 (Zilberstein  
et al. 1980, 1982). Its intracellular pH is regulated in the range of 7.4–7.8 at external 
pH range of 5.5–9 (Slonczewski et al. 1981). Thus, in its intestinal environment, its 
internal pH should be around 7.8 and we should expect E. coli to avoid having pro-
teins with their pI values around 7.8. This is true (Fig. 1.2). Avoiding proteins with 
pI equal to intracellular pH appears to be universal among unicellular organisms.
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Given the avoidance of proteins with pI equal to intracellular pH, we would 
expect mass-produced proteins in the gastric H. pylori, whose intracellular pH is 
around 5, to avoid having pI ≈ 5. This prediction is substantiated (Fig. 1.2). The 
pronounced peak of proteins with pI in the range of 4–6 in E. coli is missing in H. 
pylori. Instead, proteins with pI in the range of 10–11 are over-represented in H. 
pylori (Fig. 1.2)

One might ask why H. pylori proteins cannot lower their pI to the range of 
0–3 to avoid precipitation. This would be practically difficult because the proteins 
would require an excessively large number of GAN to code for Glu and Asp. It is 
extremely rare to have proteins with a pI smaller than 3.

 Testing the Hypotheses by Comparative Genomics

The first three hypotheses have been tested before and the second and third 
hypotheses were found to be inconsistent with the empirical data (Xia and 
Palidwor 2005). Here we illustrate how to discriminate between the first and the 
last hypothesis, i.e., whether the increase in protein pI is for alleviating the influx 
of protons, referred hereafter as AAH (acidity adaptation hypothesis), or for avoid-
ing protein precipitation, referred to hereafter as precipitation avoidance hypoth-
esis (PAH).

The two hypotheses have different predictions. AAH predicts that it is those 
membrane proteins that tend to gain a higher pI. In contrast, PAH predicts that 
the overrepresentation of the high-pI proteins in H. pylori is due to the necessity 
of mass-produced proteins to have their pI shifting away from the cytoplasmic pH 
to avoid protein precipitation. Specifically, the shifting of the pI distribution to the 
right in Fig. 1.2 is due to mass-produced proteins increasing their pI to shift their 
pI away from the cytoplasmic pH.

To test the AAH prediction, one needs to separate proteins into membrane pro-
teins and cytoplasmic proteins. The main difficulty is that membrane proteins are 
difficult to separate and identify and only 34 membrane proteins have been identi-
fied in H. pylori (Baik et al. 2004). These proteins do exhibit a significantly higher 
pI than the rest of the H. pylori proteins (Xia and Palidwor 2005). Furthermore, 
one can use an excellent bioinformatic tool, pSort (Gardy et al. 2003; Nakai and 
Horton 1999), for protein cellular localization. Those proteins identified to be 
localized in cytoplasmic membrane, outer membrane and periplasmic space 
all have their mean pI values highly significantly higher than those localized in 
cytoplasm.

Are these results in favor of AAH? Not necessarily. Although AAH predicts 
that membrane proteins with a high pI would contribute to a positively charged 
shell alleviating the influx of protons into the cell, the result cannot be claimed to 
support, or even be consistent with, AAH. The reason is that membrane proteins in 
general have higher pI than cytoplasmic proteins, even for bacterial species that do 
not live in an acidic environment. What is important is to find bacterial species that 

Genomic Comparison Between Helicobacter pylori
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are phylogenetically closely related to H. pylori, but do not exhibit acid resistance. 
Such species could be H. hepaticus or Campylobacter species, and are gener-
ally referred to as phylogenetic controls (because they and H. pylori were identi-
cal when we trace them back in time to their common ancestor). If we can find 
such pairs of sister species, with one living in acidic environment and the other 
not, and if we consistently find the former to have significantly elevated pI in their 
membrane proteins than the latter, then we can claim that the result supports, or at 
least is consistent with, the prediction of AAH. What is exciting about compara-
tive genomics today is that, once we are equipped with the conceptual framework 
above, it takes only a few hours to complete the analysis by using publicly avail-
able genomic databases and software packages such as DAMBE (Xia 2001; Xia 
and Xie 2001). The empirical result, as you can verify by yourself, is consistent 
with the prediction of AAH. Both H. pylori and H. hepaticus have their membrane 
proteins with significantly high pI than cytoplasmic proteins, but the difference is 
much greater in H. pylori than in H. hepaticus.

Testing the prediction of PAH (i.e., mass-produced H. pylori proteins should 
evolve to have increased pI values away from cytoplasmic pH around 5) seems 
straightforward at first. We need to obtain pI and protein expression for each 
gene. Although we do not have reliable protein expression data in H. pylori at the 
moment, the difficulty can somewhat overcome by using indices of codon usage 
bias as a proxy of gene expression (Xia 1998a, 2007b, 2008). Similarly, although 
we do not have experimentally determined pI for each protein, theoretically 
derived pI based on amino acid composition (Xia 2007a, pp. 207–212) represents 
a good approximation. Now suppose we have protein pI and protein expres-
sion (designated by E). It seems that the prediction of PAH can be reduced to a 
statement that pI and E are positively correlated because high-E proteins should 
increase their pI away from the cytoplasmic pH. Is this inference correct? Now 
suppose you found that pI and E are indeed positively correlated, will you con-
clude that PAH is supported? Alternatively, if you found pI and E are negatively 
correlated, will you reject PAH?

It turns out that you cannot say much about PAH based on the correlation 
between pI and E. A positive correlation is expected if the data include many 
highly expressed DNA-binding or RNA-binding proteins because these proteins 
all tend to have a DNA/RNA-binding domain which is rich in positively charged 
amino acids (Recall that the backbone of RNA and DNA are negatively charged 
and a positively charged protein domain facilitates the binding to RNA and DNA). 
This would result in a positive correlation between pI and E which has nothing to 
do with PAH.

You may also get a negative correlation between pI and E for the following 
reason. Differences in pI among proteins mainly depend on the relative number 
of the strongly acidic amino acid residues such as Asp, and Glu and the strongly 
basic amino acid residues such as Arg, Lys, and His. The positively charged amino 
acids, however, are generally more energetically expensive to make in bacte-
rial species (Akashi and Gojobori 2002). For example, the total high-energy ~P 
required to make Asp and Glu are 12.7 and 15.3, respectively, which are quite 
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close to the cost of making the smallest amino acids Gly and Ala. In contrast, the 
energetic costs for making His, Lys and Arg are 38.3, 30.3 and 27.3, respectively. 
Highly expressed proteins tend to use cheap amino acids and avoid the expensive 
Arg, Lys and His in almost all bacterial species, resulting in highly expressed pro-
teins (except for those ribosomal proteins) to have a low pI and a consequent nega-
tive correlation between pI and E. Thus, a negative correlation between pI and E 
again could have nothing to do with PAH.

Thus, to properly test the prediction of PAH, comparative genomics involv-
ing sister species (e.g., between H. pylori and H. hepaticus) is again neces-
sary. Suppose we found 500 H. hepaticus proteins that have pI around 5 and are 
homologous to those in H. pylori. Also suppose that, among the 500 proteins, 
200 of them are highly expressed and 200 are lowly expressed. If the 200 highly 
expressed proteins in H. pylori have all shifted their pI away from the cytoplas-
mic pH of about 5, whereas the 200 lowly expressed proteins have their pI hardly 
changed relative to their H. hepaticus homologues, then we can claim that result is 
consistent with PAH. Of course, this represents only one of possible ways to test 
the prediction from PAH.

 Genomic Comparison Between HIV-1 and HTLV-1

Because viruses use the host translational machinery to translate their own mRNA, 
their codon usage is under selective pressure to adapt to the host tRNA pool 
(Sharp and Li 1987). In RNA viruses in general and Human Immunodeficiency 
Virus 1 (HIV-1) in particular, adaptation to the host is poor despite this selection 
(Bahir et al. 2009; van Weringh et al. 2011), in contrast to the codon-anticodon 
adaptation documented in bacterial genomes (Gouy and Gautier 1982; Ikemura 
1981a, 1992; Xia 1998a) as well as in mitochondrial genomes in vertebrates (Xia 
2005; Xia et al. 2007) and fungi (Carullo and Xia 2008; Xia 2008). For exam-
ple, according to a recent compilation of tRNAs in human genome (Chan and 
Lowe 2009), the AUC codon can be translated by 17 tRNAIle species, i.e., 14 
tRNAIle/IAU and 3 tRNAIle/GAU, AUU can be translated by 14 tRNAIle/IAU species, 
whereas AUA can be translated by only 5 tRNAIle/UAU species. In agreement with 
this, human genes code Ile mostly by AUC and least by AUA. In contrast, HIV-1 
genes code Ile mostly by AUA and least by AUC (Haas et al. 1996; Nakamura et 
al. 2000). The poor codon adaptation of HIV-1 reduces the translation efficiency 
of HIV-1 genes. Modifying HIV-1 codon usage according to host codon usage 
has been shown to increase the production of viral proteins (Haas et al. 1996; 
Ngumbela et al. 2008).

The A-biased mutation hypothesis has been proposed to explain the poor con-
cordance between HIV-1 and host codon usage (Jenkins and Holmes 2003). The 
A-bias is mediated by the error prone reverse transcriptase (Martinez et al. 1994; 
Vartanian et al. 2002) and the human APOBEC3 protein (Yu et al. 2004). The fre-
quency of A can reach up to 40 % in some HIV-1 genomes (Vartanian et al. 2002), 

Genomic Comparison Between Helicobacter pylori
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resulting in a preponderance of A-ending codons which are typically rarely used 
in the host genes (Kypr and Mrazek 1987; Sharp 1986). While there have been 
claims that the A-richness in a parasitic or symbiotic genome may confer some 
selective advantage (Keating et al. 2009; Xia 1996), further empirical substantia-
tion is required. In short, although avoiding A-ending codons will lead to better 
codon-anticodon adaptation, strongly A-biased mutations lead to an over-represen-
tation of A-ending codons in HIV-1 genes, disrupting codon-anticodon adaptation.

How can we test this mutation hypothesis? If we can find pairs of sister species 
that differ much in mutation rate, then we can test the hypothesis by checking if 
the species with higher mutation rate tend to have poorer codon-anticodon adapta-
tion than its sister species with lower mutation rate. HTLV-1 could serve as a sister 
species for the HIV/SIV lineage. Both HTLV-1 and HIV-1 are retroviruses with 
RNA genomes and both infect the same type of host cell, i.e., human CD4 + T 
cells (Rimsky et al. 1988). The two viruses are therefore subject to the same selec-
tive pressures on codon usage by the host tRNA pool. However, HTLV-1 is excep-
tional in that it does not have a strong A-biased mutation spectrum (Van Dooren 
et al. 2004; van Hemert and Berkhout 1995). HTLV-1 relies for the most part on 
the host polymerase to replicate through clonal expansion of infected cells rather 
than undergoing iterative replication cycles like HIV-1 (Strebel 2005). The sub-
stitution rate of HTLV-1 is consequently lower, about 5.2 × 10−6 substitutions/
site/year (Hanada et al. 2004; Van Dooren et al. 2004), in contrast to that of HIV-1 
at 2.5 × 10−3 substitutions/site/year (Hanada et al. 2004). Codon-anticodon adap-
tation is less likely to be disrupted by mutation in HTLV-1 than in HIV-1. Thus 
we predict that HTLV-1 coding sequences should exhibit better codon-anticodon 
adaptation.

Codon-anticodon adaptation can be measured by the correlation in RSCU 
(Sharp and Li 1987) between the host and the parasite. RSCU is a normalized 
index of codon usage (Sharp and Li 1987). It has a value of zero for unused syn-
onymous codons, a value of one for equally used synonymous codons and a max-
imum of n, where n is the number of synonymous codons in the codon family. 
Thus, the prediction of the mutation hypothesis is that the correlation in RSCU 
between human and HTLV-1 genes should be greater than that between human 
and HIV-1 genes.

The correlation in RSCU between human and HIV-1 genes is poor (Pearson 
r = −0.1470, p = 0.2665; Spearman r = 0.1829, p = 0.1657). In contrast, the pos-
itive correlation in RSCU between HTLV-1 and human genes is highly significant 
(Pearson r = 0.4982, p < 0.0001, Spearman r = 0.4688, p = 0.0002). Such results 
are consistent with the mutation hypothesis.

The real scenario of codon-anticodon adaptation in HIV-1 is much more com-
plicated, of course. In particular, the early gene and late genes in HIV-1 may be 
translated in different tRNA pools and subject to different selection for codon-
anticodon adaptation (van Weringh et al. 2011). HIV-1 has recently been shown to 
package non-lysyl tRNAs in addition to the tRNALys needed for priming reverse-
transcription and integration of the HIV-1 genome. In particular, tRNAs decoding 
A-ending codons, required for the expression of HIV’s A-rich genome, are highly 
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enriched. Because the affinity of Gag-Pol for all tRNAs is non-specific, HIV 
packaging is most likely passive and reflects the tRNA pool at the time of viral 
particle formation. Codon usage of HIV-1 early genes is similar to that of highly 
expressed host genes, but codon usage of HIV-1 late genes were better adapted 
to the selectively enriched tRNA pool, suggesting that alterations in the tRNA 
pool are induced late in viral infection. If HIV-1 genes are adapting to an altered 
tRNA pool, codon adaptation of HIV-1 may be better than previously thought (van 
Weringh et al. 2011).

 Genomic Comparison Among Mycoplasma Species

CpG deficiency has been documented in a large number of genomes covering a 
wide taxonomic distribution (Cardon et al. 1994; Josse et al. 1961; Karlin and 
Burge 1995; Karlin and Mrazek 1996; Nussinov 1984). DNA methylation is one 
of the many hypotheses proposed to explain differential CpG deficiency in differ-
ent genomes (Bestor and Coxon 1993; Rideout et al. 1990; Sved and Bird 1990). 
It features a plausible mechanism as follows. Methyltransferases in many species, 
especially those in vertebrates, appear to methylate specifically the cytosine in 
CpG dinucleotides, and the methylated cytosine is prone to mutate to thymine by 
spontaneous deamination (Frederico et al. 1990; Lindahl 1993). This implies that 
CpG would gradually decay into TpG and CpA, leading to CpG deficiency and 
reduced genomic GC%. Different genomes may differ in CpG deficiency because 
they differ in methylation activities, with genomes having high methylation activi-
ties exhibiting stronger CpG deficiency than genomes with little or no methylation 
activity.

In spite of its plausibility, the methylation-deamination hypothesis has several 
major empirical difficulties (Cardon et al. 1994), especially in recent years with 
genome-based analysis (Goto et al. 2000). For example, Mycoplasma genitalium 
does not seem to have any methyltransferase and exhibits no methylation activity, 
yet its genome shows a severe CpG deficiency. Therefore, the CpG deficiency in 
M. genitalium, according to the critics of the methylation-deamination hypothesis, 
must be due to factors other than DNA methylation.

A related species, M. pneumoniae, also devoid of any DNA methyltransferase, 
has a genome that is not deficient in CpG. Given the difference in CpG deficiency 
between the two Mycoplasma species, the methylation hypothesis would have pre-
dicted that the M. genitalium genome is more methylated than the M. pneumoniae 
genome, which is not true as neither has a methyltransferase. Thus, the methyla-
tion hypothesis does not seem to have any explanatory power to account for the 
variation in CpG deficiency, at least in the Mycoplasma species.

These criticisms are derived from phylogeny-free reasoning. When phy-
logeny-based comparisons are made, the Mycoplasma genomes become 
quite consistent with the methylation hypothesis (Xia 2003). First, several 
lines of evidence suggest that the common ancestor of M. genitalium and  
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M. pneumoniae have methyltransferases methylating C in CpG dinucleotides, 
and should have evolved strong CpG deficiency and low genomic GC% as a 
result of the specific DNA methylation. Methylated m5C exists in the DNA of 
a close relative, Mycoplasma hyorhinis (Razin and Razin 1980), suggesting the 
existence of methyltransferases in M. hyorhinis. Methyltransferases are also 
present in Mycoplasma pulmonis which contains at least four CpG-specific 
methyltransferase genes (Chambaud et al. 2001). Methyltransferases are also 
found in all surveyed species of a related genus, Spiroplasma (Nur et al. 1985). 
These lines of evidence suggest that methyltransferases are present in the 
ancestors of M. genitalium and M. pneumoniae.

Second, the methyltransferase-encoding M. pulmonis genome is even more defi-
cient in CpG and lower in genomic GC% than M. genitalium or M. pneumoniae, 
consistent with the methylation hypothesis (Fig. 1.3). It is now easy to understand 
that, after the loss of methyltransferase in the ancestor of M. genitalium and M. 
pneumoniae (Fig. 1.3), both genomes would begin to accumulate CpG dinucleo-
tides and increase their genomic GC%. However, the evolutionary rate is much 
faster in M. pneumoniae than in M. genitanlium based on the comparison of a 
large number of protein-coding genes (Xia 2003). So M. pneumoniae regained 
CpG dinucleotide and genomic GC% much faster than M. genitalium. In short, 
the Mycoplasma data that originally seem to contradict the methylation hypothesis 
actually provide strong support for the methylation hypothesis when phylogeny-
based genomic comparisons are made.

One might note that Ureaplasma urealyticum in Fig. 1.3 is not deficient in CpG 
because its PCpG/(PCPG) ratio is close to 1, yet its genomic GC% is the lowest. 
Has its low genomic GC% resulted from CpG-specific DNA methylation? If yes, 
then why doesn’t the genome exhibit CpG deficiency? It turns out that U. urealyti-
cum has C-specific, but not CpG-specific, methyltransferase, i.e., the genome of 
U. urealyticum is therefore expected to have low CG % (because of the methyla-
tion-mediated C → T mutation) but not a low PCpG/(PCPG) ratio. The methyltrans-
ferase gene from U. urealyticum is not homologous to that from M. pulmonis.

Methylation   PCpG /(PCPG) GC%

- 0.8186 40.0

Loss of methyltransferase gene

M. pulmonis

M. genitalium

M. pneumoniae

U. urealyticum

- 0.3875 31.7

+ 0.2815           26.6

+ 0.8829 25.5

Fig. 1.3  Phylogenetic tree of Mycoplasma pneumoniae, M. genitalium, and their relatives, 
together with the presence (+) or absence (−) of CpG-specific methylation, PCpG/(PCPG) as a 
measure of CpG deficiency, and genomic GC%. M. pneumoniae evolves faster and has a longer 
branch than M. genitalium
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We have seen how phylogeny can help us in evolutionary inference, and most 
comparative genomic studies represent phylogeny-based inference. It is appropri-
ate here to introduce a few phylogeny-related terms. Most published phylogenies 
are build from molecular sequence data, i.e., multiple alignment of homologous 
sequences. Sequence similarity can arise in two ways, one from convergence (i.e., 
similarity gained from independent evolution), and the other from coancestry. 
Coancestral sequences are homologous, and can be divided into orthologous and 
paralogous sequences. Two or more duplicated genes within one genome repre-
sent a special form of homology and are termed paralogous genes. Two or more 
homologous genes that are related by inheritance are orthologous. Genes acquired 
through horizontal gene transfer are neither orthologous nor paralogous. Species 
phylogeny ideally should be built only from orthologous genes.

 Genomic Comparison to Characterize Changes in tRNA 
and Codon-Anticodon Adaptation

Ever since the empirical documentation of the correlation between codon usage 
and tRNA abundance (Ikemura 1981a, b, 1982, 1992), studies on codon-anticodon 
adaptation have progressed in theoretical elaboration (Bulmer 1987, 1991; Higgs 
and Ran 2008; Jia and Higgs 2008; Palidwor et al. 2010; Xia 1998a, 2008), in 
critical tests of alternative theoretical predictions (Carullo and Xia 2008; Plotkin 
and Kudla 2010; Plotkin et al. 2004; van Weringh et al. 2011; Xia 1996, 2005) 
and in formulation and improvement of various codon usage indices to character-
ize codon usage bias (Sharp and Li 1987; Wright 1990; Xia 2007b). Here I present 
two examples in which a gain/loss of a tRNA gene or a change in genetic code 
lead to significant changes in codon usage. 

 The Met Codon Family

An evolutionary change in tRNA composition or relative abundance is expected to 
alter codon-anticodon adaptation. This is not controversial theoretically. However, how 
fast can an alternation in tRNA lead to consequent changes in codon-anticodon adapta-
tion? Can the cause-effect relationship be demonstrated with empirical data? Changes 
in tRNAMet genes (where Met is the amino acid carried by the tRNA) in animal mito-
chondrial DNA (mtDNA) paved the way for such a demonstration (Xia 2012b).

In MtDNA of most animal species, Met is coded by AUA and AUG codons. 
In some animal species, e.g., vertebrates, these two codons are translated by a 
single tRNAMet/CAU species (where CAU is the anticodon in the 5’ to 3’ orienta-
tion) with a modified C (i.e., f5C) at the first anticodon position (Grosjean et 
al. 2010) to allow C/A pairing. In other animal species, e.g., tunicates, an addi-
tional tRNAMet/UAU gene is present in the mtDNA. One would expect that, when 
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tRNAMet/UAU is absent, Met should be preferably coded by AUG with a reduced 
AUA usage. The gain of tRNAMet/UAU would favor more Met to be coded by AUA. 
Can such a prediction be empirically substantiated?

MtDNA in bivalve species have two tRNAMet genes. In some bivalve species 
(e.g., Acanthocardia tuberculata, Crassostrea gigas, C. virginica, Hiatella arctica, 
Placopecten magellanicus, and Venerupis philippinarum), both tRNAMet genes 
have a CAU anticodon forming Watson–Crick base pair with codon AUG. In some 
other bivalve species (e.g., Mytilus edulis, Mytilus galloprovincialis, and Mytilus 
trossulus), one tRNAMet has a CAU anticodon and the other has a UAU anticodon 
forming Watson–Crick base pair with the AUA codon. One would predict that the 
latter should be more likely to code Met by AUA than the former, i.e., the pro-
portion of AUA codon within the AUR codon family, designated PAUA, should be 
greater in the latter with both a tRNAMet/CAU and a tRNAMet/UAU gene than in the 
former with a single tRNAMet/CAU gene in the mtDNA (Xia et al. 2007).

To test the prediction, I will use PUUA (the proportion of UUA codon in the UUR 
codon family) as a reference control to test the prediction that, at the same PUUA level, 
PAUA in the three Mytilus mtDNA with both a tRNAMet/CAU and a tRNAMet/UAU gene 
is higher than that in the six bivalve species without a tRNAMet/UAU gene. This is sup-
ported by empirical evidence (ANCOVA test, p = 0.0111, Fig. 1.4a). Thus, the presence 
of tRNAMet/UAU increases AUA usage significantly.
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Fig. 1.4  Relationship between PAUA and PUUA, highlighting the observation that PAUA 
is greater when both a tRNAMet/CAU and a tRNAMet/UAU are present than when only 
tRNAMet/CAU is present in the mtDNA, for bivalve species (a) and chordate species (b). The 
filled squares are for mtDNA containing both tRNAMet/CAU and tRNAMet/UAU genes, and the 
open triangles are for mtDNA without a tRNAMet/UAU gene
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A similar comparison can be performed between the urochordates (tunicates, 
with both tRNAMet/CAU and tRNAMet/UAU genes in their mtDNA) and cephalochor-
dates (lancelets, with only a tRNAMet/CAU gene in their mtDNA). Figure 1.4b shows 
that PAUA is much smaller in lancelets than in tunicates at the same PUUA level. 
Thus, AUA usage is consistently increased by the gain of a tRNAMet/UAU gene (or 
consistently decreased by the loss of a tRNAMet/UAU gene) in animal mtDNA.

A gain of a tRNAMet/UAU gene is also associated with a surplus of 
AUG → AUA substitutions in animal mitochondrial coding sequences (results not 
shown). Similar associations can also be observed with other gain/loss of tRNA 
genes in animal mitochondrial. In contrast, a gain/loss of tRNA genes in plant 
mtDNA appears to have little effect on nucleotide substitutions or codon usage, 
presumably because such gain/loss events do not significantly alter the tRNA pool 
in plant cells where nuclear tRNAs are mass-imported into plant mitochondria.

 UGA Codon, CGN Codon for Arg and the Expanded Wobble 
Hypothesis

The number of distinct tRNA species is invariably fewer than the number of sense 
codons, leading to the formulation of the original wobble hypothesis (Crick 1966). 
Figure 1.5 depicts the extended codon-anticodon base pairs as well as the sub-
scripted numbering system used for codon-anticodon base pairs (Xia 2013). Note 
that the anticodon sites are denoted by Roman numerals and tho the codon sites by 
Arabic numerals (Fig. 1.5).

The wobble hypothesis explains why tRNAIle/IAU, where I in IAU is inosine 
derived from A, is able to translate all three Ile codons (AUC, AUU and AUA), 
why a tRNA with a GI can translate Y-ending codons (where Y stands for C or U), 
and why a tRNA with a UI can translate R-ending codons (where R stands for A or 
G). The hypothesis also explains the lack of AI in tRNA genes for decoding 2-fold 
Y-ending codon family because such a tRNA, when its AI is modified to II, would 
mis-read the near cognate R-ending codons. One might note that all base-pairs 
involve a purine and a pyrimidine except for the I/A pair which is a bulky purine-
purine pair that may lead to inefficient translation (Curran 1995).

Wobble pairing reduces the number of tRNAs needed for translation and sim-
plifies the translation machinery. Few organisms can afford the luxury of hav-
ing different gene products doing the same task. As an example of parsimonious 
tRNA usage, the Y-ending codons, be they in 2-fold or 4-fold codon families, are 
decoded by tRNAs with either a II or a GI, but never both. This rule is obeyed in 
all three kingdoms of life. Almost all 4-fold codon families in Mycoplasma pulmo-
nis (including the Ser UCN codon family and Leu CUN codon family, where N is 
any nucleotide) are decoded by a single tRNA species with a UI, except for the Thr 
ACN and Arg CGN codon families which are each decoded by two tRNA species, 
one with a UI and other with a GI. The most dramatic simplification of tRNome is 
observed in metazoan mitochondria, e.g., vertebrate mitochondrial genomes which 

Genomic Comparison to Characterize Changes
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contain only 22 tRNA genes, with each tRNA species decoding a codon family. 
Instead of separate initiation tRNAiMet/CAU and elongation tRNAeMet/CAU con-
tained in all nuclear genomes, a single tRNAMet/CAU, with a modified CI, decodes 
both the initiation AUG codon and internal Met AUR codons. Each Y-ending 
codon family is decoded by a single tRNA species with a wobble GI, and each 
R-ending codon family by a single tRNA with a wobble UI which is modified to 
prevent its pairing with U or C. All 4-fold codon families are decoded by a tRNA 
with a wobble UI which is not modified.

Recent comparative genomic studies on tRNA have led to the expanded wob-
ble hypothesis (Carullo and Xia 2008; Xia 2013) which arose from the following 
observation. A tRNA species with a wobble UI (where subscripted I indicates the 
first anticodon position that pairs with the third codon position) is almost always 
present among tRNA species decoding 4-fold codon families and 2-fold R-ending 
codon families, with most exceptions observed in the Arg CGN codon family. In 
the mitochondrial genomes of Caenorhabditis elegans (metazoan), Marchantia 
polymorpha (plant), Pichia canadensis (fungus), and Saccharomyces cerevisiae 
(fungus), there is no tRNAArg/UCG, and Arg CGN codon family is decoded by 
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tRNAArg/ACG (Xia 2005). The lack of tRNAArg/UCG in the mitochondrial genome 
of these diverse taxa suggests that the lack is an ancestral state and that the pres-
ence of tRNAArg/UCG in vertebrate mitochondria is a derived state. This is con-
sistent with the observation that almost all eubacterial species, from which the 
mitochondrion was originally derived, lack tRNAArg/UCG (Grosjean et al. 2010).

Why tRNAArg/UCG is missing in the ancestral mitochondrial lineages 
and why did it appear in derived lineages such as vertebrate mitochondrial 
genomes? It is these questions that prompted the proposal of an expanded wob-
ble hypothesis.

The expanded wobble hypothesis for the lack of tRNAArg/UCG in bacterial and 
early mitochondrial lineages invokes wobble paring between the third anticodon 
site (XIII) and the first codon site (Y1), conditional on a CII/G2 or GII/C2 with three 
hydrogen bonds. Thus, the anticodon UCG would wobble-pair with stop codon 
UGA through a wobble UIII/G1 pair, and should therefore be strongly selected 
against because it would read through the stop codon (Carullo and Xia 2008). This 
not only explains the absence of tRNAArg/UCG in bacterial and early mitochondrial 
lineages where UGA is used as a stop codon, but also why it appeared in derived 
mitochondrial lineages such as vertebrate mitochondrial genomes where UGA 
is no longer used as a stop codon. Wobble pairing involving NIII/N1 represents a 
fundamental deviation from the original wobble hypothesis and requires further 
empirical validation.

 Genomic Strand Asymmetry and Genome Replication

Most mutations occur during DNA replication, and different DNA replication 
mechanisms often leave distinct footprints in genomic strand asymmetric patterns 
because DNA polymerase for the leading and lagging strands differ in replication 
fidelity (Marin and Xia 2008; Xia 2012a). Strand asymmetry is typically measured 
by the GC skew (Lobry 1996; Marín and Xia 2008) defined as

A more general motif skew (Lopez et al. 1999) is defined as

where m is either a nucleotide (e.g., G or A) or a motif (e.g., ACG), mrc is the 
reverse complement of m (mrc = C if m = G, or mrc = CGT if m = ACG), and Nx 
is the number of x (where x is either m or mrc). GC skew and AT skew are special 
cases of Sm when m is equal to either G or A, respectively, i.e., GC Skew is SG and 
AT skew is SA. Strand asymmetry represents a primary feature of DNA genomes, 
and its study can lead to insight into different genome replication mechanisms. 
Strand asymmetry represents a primary feature of DNA genomes, and its study 

(2.1)SG =
PG − PC

PG + PC

(2.2)Sm =
Nm − Nmrc

Nm + Nmrc

Genomic Comparison to Characterize Changes
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can lead to insight into different genome replication mechanisms. A typical SG plot 
(Fig. 1.6a) allows one to infer the origin and termination of the replication fork.

Bacterial species from Bacillus subtilis to Escherichia coli share the strand 
asymmetric pattern in Fig. 1.6a, which is characteristic of the single-origin bi-
directional DNA replication shared by eubacterial species, with the leading strand 
being GT-rich and lagging strand AC-rich. Interestingly, primitive forms of plants 
such as the liverwort Marchantia polymorpha, or primitive forms of metazoans 
such as the sponge Oscarella lobularis, have strand asymmetric patterns (Fig. 1.6b) 
that are indistinguishable from what is typically seen in bacterial genomes with a 
single origin of replication. This similarity in strand asymmetric patterns suggests 
similarity in replication mechanisms and may explain the extremely slow rate of 
evolution in primitive animal and plant mtDNA relative to mtDNA in higher meta-
zoans. In other words, mitochondrial genomes in plants and primitive invertebrates 
may maintain the high-fidelity replication as in their bacterial ancestor.

The fast evolving vertebrate mtDNAs share the strand asymmetric pattern 
(Fig. 1.6c–d) consistent with the strand-displacement model of DNA replication 
(Bogenhagen and Clayton 2003; Brown et al. 2005; Clayton 1982, 2000; Shadel 
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and Clayton 1997) which, although challenged recently by a new proposal of 
strand-coupled bidirectional replication (Yang et al. 2002; Yasukawa et al. 2005), 
is favored by current empirical evidence (Brown et al. 2005). According to this 
replication model, the L-strand is first used as a template to replicate the daughter 
H-strand, starting at the origin of replication OH, while the parental H-strand was 
left single-stranded for an extended period because the complete replication of 
mtDNA takes nearly two hours (Clayton 1982, 2000; Shadel and Clayton 1997). 
After about 2/3 of the daughter H-strand has been synthesized and the second 
origin of replication (OL) is exposed, the parental H-strand is used as a template 
to synthesize the daughter L-strand. Thus, different parts of the H-strands are in 
single-stranded form for different periods of time.

Single-stranded DNA binding proteins (SSB) protects single-stranded DNA 
from nucleolytic degradations. In E. coli, this works best with the presence of 
Rec-A. SSB from E. coli also reduces the C-U deamination rate in single-stranded 
DNA by 4-5 fold (Lough et al. 2001). However, it is not known if mtSSB also 
has the equivalent Rec-A partner or if it also protects single-stranded DNA from 
deamination in mitochondria.

Spontaneous deamination of both A and C (Lindahl 1993; Sancar and 
Sancar 1988) occurs frequently in human mtDNA (Tanaka and Ozawa 1994). 
Deamination of A leads to hypoxanthine that pairs with C, generating an 
A/T → G/C mutation. Deamination of C leads to U, generating C/G → U/A 
mutations. Among these two types of spontaneous deamination, the C → U muta-
tion occurs more frequently than the A → G mutation (Lindahl 1993). In par-
ticular, the C → U mutation mediated by the spontaneous deamination occurs in 
single-stranded DNA more than 100 times as frequent as double-stranded DNA 
(Frederico et al. 1990). Note that these C → U sites will immediately be used as 
template to replicate the daughter L-strand, leading to a G → A mutation in the 
L-strand after one round of DNA duplication. Such mutation patterns are expected 
to leave their footprints on different parts of the H-strands left single-stranded for 
different periods of time.

While experimental evidence for the strand-displacement model is limited to 
mammalian species, the nearly identical pattern of strand asymmetry among ver-
tebrate species suggests that the replication mechanism is most likely shared (Xia 
2012a). The reduction in SG correspond to the reduction of C in the H strand (and 
the associated G in the L strand), allowing us to infer the location of replication 
origins OH and OL (Fig. 1.6c–d). The GC skew values for vertebrate mtDNA 
are all negative, implying global asymmetry in addition to the local asymmetric 
patterns.

Strand asymmetry patterns provide an empirical test for inferred genome 
rearrangement by maximum parsimony. Much of the genome rearrangement in 
bacterial species may be attributed to inversion which leads to involved genes 
switching strands and experiencing different mutation spectrum. When two 
genomes or two genome segments with the same set of genes but differ in gene 
order, then one can compute the inversion distance which is the minimum num-
ber of inversions that can transform the gene order in one genome into that of 

Genomic Strand Asymmetry and Genome Replication
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the other (Kececioglu and Sankoff 1994, 1995). When the inversion event is rare, 
then this maximum parsimony approach is reasonable. However, it is important to 
keep in mind that the inferred inversion events constitute only a hypothesis that 
needs to be empirically tested. Because inversion events would leave its footprints 
in strand asymmetry patterns, we can test the hypothesis by checking whether the 
strand asymmetry pattern is consistent with the inferred inversion events.

In summary, a comparative genomic study contains four essential elements: 
(1) genomes with biologically interesting genotypic or phenotypic traits, (2) phy-
logenetic control, (3) genomic features, and (4) a solvable biological problem 
involving genomic features. These components are summarized in Table 1.1 for 
the four studies outlined in this chapter. Many comparative genomics studies focus 
on the gene order as a genomic feature to understand how various recombination 
mechanisms would lead to gene and exon reshuffling. Phylogenetic controls are 
particularly important for such genome rearrangement studies because one can 
reconstruct genome rearrangement events reliably only with very closely related 
genomes with few rearrangement events.

Table 1.1  Components of a comparative genomic study

Target genomes Phylogenetic control Genomic features
Biological problem involving 
genomic features

H. pylori H. hepaticus Protein pI, genomic  
GC%

Is protein pI increase in H. 
pylori driven by genomic 
GC% or by acid-adaptation?

HIV-1 HTLV-1 Codon adaptation, 
genomic mutation bias

Is poor codon-anticodon 
adaptation in HIV-1 caused 
by high mutation rate?

Mycoplasma 
species

Closely related 
species

CpG deficiency,  
methyltransferase,  
evolutionary rate

Is genomic CpG deficiencies 
driven by methylation-medi-
ated mutation bias?

Bivalves, 
chordates

Closely related 
species

Codon usage, presence/
absence of tRNAMet/UAU

Does codon usage in met 
codon family evolve in 
response to the presence/
absence of tRNAMet/UAU?
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Large-scale comparative genomics involves the type of data aimed to understand 
functional association among genes, between genes and phenotypes, and between 
genotype/phenotype and the environmental variables (Fig. 2.1). The most straight-
forward genetic variables (referred hereafter as G variables) are the presence/
absence of genes, so the Gij variables will be binary. Alternatively, A G variable 
could be a polymorphic site in a set of aligned HIV-1 polyproteins and take one 
of 20 alternative states. Changes in Gi may be associated with changes in Gj (e.g., 
a loss of a negative charge at site i may be compensated by a gain of a negative 
charge at a neighbouring site). Similarly, a change in Gi may have a phenotypic 
effect, i.e., Gi is associated with one or more of the phenotypic variables (hereafter 
referred to as P variables). For example, a change in Gi may results in drug resist-
ance. Evolutionary biologists are also interested in whether certain changes in the 
G variables and P variables are in response to the environmental variables (hereaf-
ter referred to as E variables).

Depending on one’s research objective, one may also allow the G variables to 
take continuous values. For example, with N orthologous protein-coding genes 
shared among all genomes, Gi can be the isoelectric point (pI) for protein i. It is 
known that pI of a number of enzymes co-evolve with the pI of their substrates, 
simply because an enzyme and its substrate typically should not be both positively 
charged or both negatively charged - they would push each other apart if they 
were. In the simplest case, we could have a single G variable representing pI of, 
say, laccase, and a single P variable representing the optimal pH for laccase. Such 
a setup would allow us to study the association between the G and P variables.

Dr. Tianjue Hu (a former postdoctoral fellow in my lab) carried out an interest-
ing study relating pI of lignin-degrading laccases to the optimal pH of the enzyme. 
Different laccases have been isolated from different fungal species living in envi-
ronments with different pH. Because lignin is relatively hydrophobic, a laccase 
needs to be hydrophobic as well, which implies that its pI should be close to its 
environmental pH (pHe). However, pI computed from the original protein speci-
fied in the coding sequence (pIo) is often much higher than pHe, suggesting that 

Chapter 2
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the nascent protein is not in its optimal state for digesting lignin and that there is 
selection on the organism to modify its laccase to reach a pI that is closer to pHe. 
We may define an index of selection (Is) as

We designate the pI of the modified mature protein as pIm. The index of 
response to the selection by modifying laccase to reduce its pI can be defined as

We expect Is and Ir to be positively correlated. The empirical evidence 
(unpublished) does support this expectation. Comparative genomics, with 
the data illustrated in Fig. 2.1, allows us to carry out millions of such studies 
simultaneously.

The G variables could also be the length of poly(A) tracts upstream of the 
translation initiation codon for a set of homologous genes shared among a set of 
eukaryotic genomes. Short pre-AUG poly(A) can bind to translation initiation fac-
tors and enhance translation initiation, whereas long pre-AUG poly(A) would bind 
to the poly(A)-binding protein and inhibit translation initiation (Xia et al. 2011). 
While the translation machinery is highly conserved in fungal species, the length 
and location of pre-AUG poly(A) of mRNAs often vary much among homolo-
gous genes, leading to associated changes in relative gene expression (which is a 
P variable). We can thus study the relationship between the variation in pre-AUG 
poly(A), which is a G variable, and gene expression. In large-scale compara-
tive genomics, the most frequently used continuous variables will most likely be 
SNP sites and copy number of mRNAs. For example, Affymetrix Genome-Wide 
Human SNP Array 6.0 produces both the discrete nucleotide state of SNP sites and 
the copy number of probes representing genes.

(2.1)Is = pIo − pHe

(2.2)Ir = pIo − pIm

Fig. 2.1  Typical data sets 
for large-scale comparative 
genomics, with 8 species/
genomes and the associated 
genetic variables (G), 
phenotypic variables (P) and 
environmental variables (E)

Sp8 G81 G82 G83 ... P81 P82 P83 ... E81 E82 E83 ...

Sp7 G71 G72 G73 ... P71 P72 P73 ... E71 E72 E73 ...

Sp6 G61 G62 G63 ... P61 P62 P63 ... E61 E62 E63 ...

Sp5 G51 G52 G53 ... P51 P52 P53 ... E51 E52 E53 ...

Sp4 G41 G42 G43 ... P41 P42 P43 ... E41 E42 E43 ...

Sp3 G31 G32 G33 ... P31 P32 P33 ... E31 E32 E33 ...

Sp2 G21 G22 G23 ... P21 P22 P23 ... E21 E22 E23 ...

Sp1 G11 G12 G13 ... P11 P12 P13 ... E11 E12 E13 ...
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In what follows, I will numerically illustrate the comparative methods (Barker 
and Pagel 2005; Felsenstein 1985; Harvey and Pagel 1991; Pagel 1994; Schluter 
et al. 1997) for characterizing the association between any two columns of data 
shown in Fig. 2.1. The simplest data set in Fig. 2.1 would have only two columns 
of data, and that is the type of data I will use to illustrate the comparative method 
for the continuous and discrete variables. According to the late population geneti-
cist C. C. Li, it is not necessary to create a rainbow spanning the sky to demon-
strate how a rainbow forms—a small one is convincing enough.

Note that N columns of data would imply N*(N-1)/2 pairwise associations, 
so large-scale comparative genomic studies almost always lead to multiple com-
parisons. So I will also illustrate the computation involved in controlling for false 
discovery rate which represents a key development in recent studies of statistical 
significance tests (Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001).

One evolutionary process that has shaped bacterial genomes is the horizontal 
gene transfer. The phylogenetic incongruence test used to detect such horizontal 
gene transfer events will also be illustrated.

 The Comparative Method for Continuous Characters

The two continuous variables that I will use here is genomic GC% and optimal 
growth temperature in bacterial species. The former represents a genomic vari-
able and the latter an environmental variable (a G variable and an E variable in 
Fig. 2.1). I will first numerically illustrate the conventional method of independ-
ent contrasts based on the random-walk Brownian motion model (Felsenstein 1985, 
2004, pp. 432–459) and the associated statistical methods for assessing the rela-
tionship between two variables. One shortcoming of this method is that the ances-
tral states of the variables lie somewhere between those of descendent lineages. 
However, evolution often proceeds with directional changes. For example, various 
mammalian lineages have in general increased their body size from their hum-
ble beginning of tiny insectivores. The ancestral state of the body size, estimated 
with the assumption of the random-walk Brownian model would be substantially 
greater than the true one. This shortcoming can be accommodated by the general-
ized least-square method (Martins and Hansen 1997; Pagel 1997, 1999). The gen-
eralized least-square method has an implicit assumption that, if a variable such as 
body size has exhibited directional change, e.g., having increased in body size in 
evolutionary lineages, then longer branches should be associated with greater body 
size. This assumption may not be true because the tree and branch lengths are typi-
cally derived from molecular data that do not have direct link to specific phenotypic 
characters. In addition, the assumption also leads to the restriction that the method 
for assessing directional change cannot be used with ultrametric trees, i.e., trees 
with leaves having equal distance to the root such as trees built with a molecular 
clock. I present an extension of the method of independent contrast, based on the 
least-square method, to accommodate directional change without this assumption.
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Studies of the variation in genomic GC% among bacterial species serve as the 
easiest entry point into comparative genomics because one does not need any bio-
logical knowledge to comprehend the meaning of the variable. Wide variation in 
genomic GC% is observed in bacterial species. A popular selectionist hypothesis 
is that bacterial species living in high temperature should have high genomic GC% 
for two reasons. First, an increased GC usage, with more hydrogen bonds between 
the two DNA strands, would stabilize the physical structure of the genome 
(Kushiro et al. 1987; Saenger 1984). Second, high temperature would need more 
thermostable amino acids (Argos et al. 1979) which are typically coded by GC-
rich codons. Such a hypothesis predicts that genomic GC% should increase with 
optimal grow temperature (OGT) in bacterial species.

The prediction above, however, is not supported empirically. A bacterial spe-
cies, Pasteurella multocida, was cultured under increasing temperatures for 
~14,400 generations. GC% was estimated for the ancestral and derived strains 
by probing both with many AT-rich and GC-rich RAPD primers. If the derived 
strain has increased genomic GC% during this period of adaptation to increased 
culture temperature, one would expect to observe more amplification of the GC-
rich primers and fewer amplification of AT-rich primers in the derived strain than 
in the ancestral strain. However, the opposite was observed (Xia et al. 2002). A 
comparative sequence analysis (Galtier and Lobry 1997) also does not support the 
prediction.

Surprisingly, it has been found that GC% of rRNA genes is highly correlated 
with OGT (Dalgaard and Garrett 1993, p. 535; Galtier and Lobry 1997; Hurst and 
Merchant 2001; Nakashima et al. 2003; Wang and Hickey 2002). In particular, 
when the loop and stem regions of rRNA are studied separately, it was found that 
the hyperthermophilic bacterial species not only have higher proportion of GC in 
the stems but also longer stems (Wang et al. 2006). In contrast, the GC% in the 
loop region correlates only weakly with OGT. Because stems function to stabi-
lize the RNA secondary structure which is functionally important, these results 
are consistent with the hypothesized selection for RNA structural stability in high 
environmental temperatures.

 The Necessity of Phylogeny-Based Comparative Method

When studying the relationship between two quantitative variables, such as OGT 
and stem GC%, a phylogeny-based comparison is crucially important to avoid vio-
lation of statistical assumptions. Figure 2.2 illustrates a case in which one may 
mistakenly conclude a positive relationship between X and Y when the 16 data 
points are taken as independent. A phylogenetic tree superimposed on the points 
allows us to see immediately that the data points are not independent. All eight 
points in the left share one common ancestor, so do the eight points in the right. 
So the superficial association between X and Y could be due to a single coinciden-
tal change in X and Y in one of the two common ancestors. One needs to use the 
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phylogeny-based method, such as independent contrasts (Felsenstein 1985; 2004, 
pp. 432–459) or the generalized least-square method (Martins and Hansen 1997; 
Pagel 1997, 1999) when assessing the relationship between quantitative variables.

While the derivation and mathematical justification of the phylogeny-based 
comparative method is quite complicated, the most fundamental assumption is the 
Brownian motion model (Felsenstein 2004, pp. 391–414) which appears reason-
able for neutrally evolving continuous characters assumed by the null hypothesis. 
Here I illustrate the actual computation of independent contrasts with a numeri-
cal example to facilitate its application to comparative genomics, prompted by my 
personal belief that one generally cannot interpret the results properly if one does 
not know how the results are obtained.

 Computing the Independent Contrasts

Suppose a phylogeny of eight bacterial species whose OGT and GC% of rRNA 
genes have been measured, with the eight species referred to hereafter as s1 to s8 
from left to right in Fig. 2.3. The computation is recursive, and is exactly the same 
for any quantitative variable. So we will only illustrate the computation involving 
OGT. One may repeat the computation involving GC% as an exercise.

The computation is of three steps. First, we recursively compute the ancestral 
values for internal (ancestral) nodes x1 to x6. We treat these ancestors as if they 
were new taxa and compute the branch lengths leading to these ancestral nodes. 
We may start with the two sister species s1 and s2. The OGT of their ancestor (x1) 
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is a weighted average of the OGT values for s1 and s2 (weighted by the branch 
lengths):

One may note that the weighting scheme in Eq. (2.3) is such that the ancestral 
state is more similar to the state of the descendent node with a shorter branch than 
the other with a longer branch. This makes intuitive sense as a descendent node 
diverged much from the ancestor should be less reliable for inferring the ancestral 
state than a descendent node diverged little from the ancestor.

We now treat x1 as if it is a new taxon and compute the branch lengths leading 
to it from its ancestor (x5) as

We do the same for x2 to x4, and the associated OGTxi and vxi values are listed 
in Table 2.1. The computation of the ancestral states for x5 and x6 is similar to that 
in Eq. (2.3), e.g.,

(2.3)OGTx1
=

v2

v1 + v2

OGTs1
+

v1

v1 + v2

OGTs2
=

3 × 70

4
+

1 × 74

4
= 71

(2.4)vx1
=

v1v2

v1 + v2

+ v9 =
1 × 3

1 + 3
+ 3 = 3.75

(2.5)

OGTx5
=

vx2
OGTx1

vx1
+ vx2

+
vx1

OGTx2

vx1
+ vx2

=
3.9 × 71

7.65
+

3.75 × 78.4

7.65
= 74.63

30

35

40

45

50

55

60

65

70

65 70 75 80 85 90 95 100

OGT

G
C

% s1:70, 50 s3:78, 50

s2:74, 55

s4:82, 70

s5:86, 60

s6:90, 70

s7:94, 50

s8:98, 65

v1=1 v2=3 v3=1 v4=9 v5=6 v6=9 v7=1 v8=8

v9=3 v10=3 v11=3 v12=3

v13=3 v14=3

x1 x2 x3 x4

x5 x6

Fig. 2.3  A phylogeny of eight bacterial species (s1 to s8) each labeled with optimal growth tem-
perature (OGT) and GC% of the stem region of rRNA genes in the format of “OGT, GC%”. The 
branch lengths (v1–v14) are next to the branches. Ancestral nodes are designated by x1 to x6
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Now we can take the second step to compute the unweighted contrasts (desig-
nated by C) as well as the sum of branch lengths linking the two contrasted taxa. 
With eight species, we have seven (=n−1, where n is the number of species) con-
trasts (first column in Table 2.2). These unweighted contrasts, as well as the sum 
of branch lengths (SumV) associated with the contrasts, are illustrated for those 
between s1 and s2 and between x1 and x2 for OGT in Eq. (2.6). All the computed 
unweighted contrasts for both OGT and GC%, as well as the associated SumV 
values, are listed in columns 2–4 in Table 2.2.

We can now take the third step of obtaining independent weighted contrasts 
(WC) by dividing each unweighted contrasts by the square root of the associated 
SumV. For example,

(2.6)

Cs1 − s2 . OGT = OGTs1
− OGTs2

= 70 − 74 = −4

SumVCs1 − s2
= v1 + v2 = 1 + 3 = 4

Cx1 − x2 . OGT = OGTx1
− OGTx2

= 71 − 78.4 = −7.4

SumVCx1 − x2
= vx1

+ vx2
= 3.75 + 3.9 = 7.65

(2.7)

WCs1−s2 . OGT =
Cs1−s2 . OGT
√

SumVCs1−s2

=
−4
√

4
= −2

WCx1−x2 . OGT =
Cx1−x2 . OGT
√

SumVCx1−x2

=
−7.4
√

7.65
= −2.6755

Table 2.1  Computed ancestral states (OGTxi and GCxi) and the branch lengths (vxi) for the six 
ancestral nodes

xi OGTxi vxi GCxi

x1 71.0000 3.7500 51.2500
x2 78.4000 3.9000 52.0000
x3 87.6000 6.6000 64.0000
x4 94.4444 3.8889 51.6667
x5 74.6275 4.9118 51.6176
x6 91.9068 5.4470 56.2394

Table 2.2  Unweighted and weighted contrasts for the two quantitative variables OGT and GC%

Contrast

Unweighted Contrasts

Sum V

Weighted contrasts

OGT GC% WCOGT WCGC%

s1–s2 −4.0000 −5.0000 4.0000 −2.0000 −2.5000
s3–s4 −4.0000 −20.0000 10.0000 −1.2649 −6.3246
s5–s6 −4.0000 −10.0000 15.0000 −1.0328 −2.5820
s7–s8 −4.0000 −15.0000 9.0000 −1.3333 −5.0000
x1–x2 −7.4000 −0.7500 7.6500 −2.6755 −0.2712
x3–x4 −6.8444 12.3333 10.4889 −2.1134 3.8082
x5–x6 −17.2793 −4.6218 10.3588 −5.3687 −1.4360

The Comparative Method for Continuous Characters
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These independent contrasts for OGT thus computed, together with those for GC%, 
are shown in the last two columns in Table 2.2. Now we need to assess the relationship 
between WCOGT and WCGC%, specifically whether an increase in OGT will result in 
an increase in GC%, i.e., whether the two are positively correlated. There are two ways 
to assess the relationship. The first is parametric by performing a linear regression of 
WCGC% on WCOGT, forcing the intercept equal to 0. The reason for a zero intercept 
is that we do not expect a change in GC% if there is no change in OGT. The resulting 
slope is 0.4647. The regression accounts for 11.17 % of the variation in WCGC%. The 
square root of 11.17 %, equal to 0.3342, is the correlation coefficient between the two. 
Of course you may also do a regression of WCOGT on WCGC%, which will result in a 
slope of 0.2403. These slopes and the correlation coefficients are in the default output 
in the CONTRAST program in PHYLIP (Felsenstein 2002). The relationship between 
WCOGT and WCGC%, although positive, is not significant (p = 0.4249).

One may also assess the relationship between WCOGT and WCGC% by using 
nonparametric tests. For example, we expect half of the (WCOGT, WCGC%) pairs 
to have the same sign (i.e., both positive or both negative) and the other half to 
have different signs. We observe six pairs to have the same sign and one pair to 
have different signs (Table 2.2). So we have

with one degree of freedom, the relationship is not significant (p = 0.05878).
Although the method of independent contrasts has been available for many 

years, many studies, even recent ones, still fall into the same trap, as illustrated in 
Fig. 2.2, of concluding a significant relationship between X and Y without taking 
the phylogeny into account. A recent claim of a strong relationship between intron 
conservation and intron number (Irimia et al. 2007) represents one of such studies.

When the method of independent contrasts was applied to the real data to assess the 
relationship between bacterial OGT and GC% of rRNA stem sequences and between 
OGT and rRNA stem lengths, the two relationships are both statistically significant 
(Wang et al. 2006). Thus, the selectionist hypothesis is supported, but it accounts for 
only a very small fraction of variation in the genomic GC% among bacterial species, 
which calls for an alternative hypothesis for the variation in genomic GC%.

One shortcoming of the method of independent contrasts is that the value of the 
ancestral state is always somewhere between the two values of the descendents. 
This implies that it cannot detect directional changes over time. For example, if 
the ancestor is small in body size and all descendents have increased in body size 
over time, then the Brownian motion model assumed by the independent contrast 
method is no longer applicable. For example, if we label the root as x7, then the 
OGT and GC% values for x7, OGTx7, are expected to be

(2.8)χ2
=

(6 − 3.5)2

3.5
+

(1 − 3.5)2

3.5
= 3.5714

(2.9)

OGTx7
=

vx5OGTx6

vx5
+ vx6

+
vx6OGTx5

vx5
+ vx6

=
4.9118 × 91.9068

4.9118 + 5.4470
+

5.4470 × 74.6275

4.9118 + 5.4470
= 82.8208

GCx7
=

vx5GCx6

vx5
+ vx6

+
vx6GCx5

vx5
+ vx6

=
4.9118 × 56.2394

4.9118 + 5.4470
+

5.4470 × 51.6176

4.9118 + 5.4470
= 53.8091
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However, if we actually know that the ancestral values of OGT and GC% 
at x7 are 40 and 45 %, respectively, then these values obviously deviates much 
from the Brownian expectation. A well known example is the body size of mod-
ern mammals which has in general increased substantially from that of the ances-
tral insectivores since the time of dinosaurs. The Brownian model would lead to 
the inference of an ancestral body size much larger than that of real insectivore 
ancestor. It is therefore essential for us to incorporate the known ancestral state to 
improve the inference.

The generalized least-square method (Martins and Hansen 1997; Pagel 1997, 
1999) can be used to accommodate directional changes. However, the method has 
the limitation that it cannot work with altrametric trees or trees with little variation 
among the leaf-to-root distances.

Here I present a simple least-square framework to incorporate the ancestral 
information in the estimation of the values at nodes x1 to x6. The residual sum of 
squares for variable OGT (RSSOGT) is specified below:

where 40 is the known ancestral value of OGT at the root, and the terms inside 
the parentheses are the expected OGT values as illustrated before, e.g., Eq. (2.3). 
To obtain the least-square estimates of OGT values at internal nodes x1 to x6, we 
take the partial derivatives of RSSOGT with respect to OGTx1, OGTx2, …, OGTx6, 
set them to zero and solve the six resulting simultaneous equations. The new esti-
mated values of OGT at x1 to x6 are 64.3717, 71.0352, 85.7588, 86.9876, 53.8856, 
and 77.4462, respectively. The new values suggest that the OGT values have 
increased in all descendent lineages from the ancestral value of 40, i.e., the OGT 
values at ancestral nodes are consistently smaller than the descendant lineages.

The least-square frame is not limited to one known ancestral value. For exam-
ple, if OGTx5 is known, it can be substituted into Eq. (2.10) so that we will only 
need to estimate five unknown ancestral OGT values. The same computation can 
be done for GC% or any other variable with one or more known ancestral values. 
The independent contrasts can be computed the same way as before, except that 
the new ancestral values are then used.

The mutation hypothesis of genomic GC% variation (Muto and Osawa 1987; 
Sueoka 1964; Xia and Yuen 2005; Xia et al. 2002) invokes biased mutation in 
different bacterial species to explain genomic variation in GC%, i.e., GC-rich 

(2.10)

RSSOGT =

[

40 −

(

vx5OGTx6

vx5
+ vx6

+
vx6OGTx5

vx5
+ vx6

)]2

+

[

OGTx6
−

(

vx3OGTx4

vx3
+ vx4

+
vx4OGTx3

vx3
+ vx4

)]2

+

[

OGTx5
−

(

vx1OGTx2

vx1
+ vx2

+
vx2OGTx1

vx1
+ vx2

)]2

+

[

OGTx4
−

(

v7OGTs8

v7 + v8

+
v8OGTs7

v7 + v8

)]2

+

[

OGTx3
−

(

v5OGTs6

v5 + v6

+
v6OGTs5

v5 + v6

)]2

+

[

OGTx2
−

(

v3OGTs4

v3 + v4

+
v4OGTs3

v3 + v4

)]2

+

[

OGTx1
−

(

v1OGTs2

v1 + v2

+
v2OGTs1

v1 + v2

)]2
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genomes are the result of GC-biased mutation. One prediction from the mutation 
hypothesis is that the third codon position should increase more rapidly with the 
genomic GC% than the first codon position which in turn should have its GC% 
increase more rapidly with the genomic GC% than the second codon position. The 
reason for this prediction is that the third codon positions are little constrained 
functionally because most substitutions at the third codon positions are synony-
mous. Some nucleotide substitutions at the first codon positions are synonymous, 
but most are nonsynonymous. All nucleotide substitutions at the second codon 
positions are nonsynonymous and typically involve rather different amino acids 
(Xia 1998b; Xia and Li 1998). The empirical results (Fig. 2.4) strongly support the 
prediction above (Muto and Osawa 1987).

However, the pattern in Fig. 2.4, while consistent with the mutation hypothesis, 
has resulted in two misconceptions. First, the pattern shown by the third codon 
position is often interpreted to reflect mutation bias. This interpretation is incorrect 
because the third codon position is subject to selection by differential availability 
of tRNA species (Carullo and Xia 2008; Xia 1998a, 2005, 2008; Xia et al. 2007). 
We may contrast a GC-rich Streptomyces coelicolor and a GC-poor Mycoplasma 
capricolum as an illustrative example. M. capricolum has no tRNA with a C or G 
at the wobble site for four-fold codon families (Ala, Gly, Pro, Thr and Val), i.e., 
the translation machinery would be inefficient in translating C-ending or G-ending 
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Fig. 2.4  Correlation of GC% between genomic DNA and first, second and third codon posi-
tions (Muto and Osawa 1987). While the actual position of the points may be substantially 
revised with new genomic data (e.g., the GC% for the first, second and third codon positions for 
Mycoplasma capricolum is 35.8, 27.4, and 8.8 % based on all annotated CDSs in the genomic 
sequence), the general trend remains the same
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codons. This implies selection in favour of A-ending or U-ending codons and will 
consequently reduce GC% at the third codon position. This most likely has con-
tributed to the low GC% at the third codon position in M. capricolum. In contrast, 
most of the tRNA genes translating the five four-fold codon families in the GC-
rich S. coelicolor have G or C at the wobble site, and should favour the use of 
C-ending or G-ending codons. This most likely has contributed to the high GC% 
at the third codon position in S. coelicolor. The same pattern is observed for two-
fold codon families. The most conspicuous one is the Gln codon family (CAA and 
CAG). There is only one tRNAGln gene in M. capricolum with a UUG anticodon 
favouring the CAA codon. In contrast, there are two tRNAGln in S. coelicolor, both 
with a CUG anticodon favouring the CAG codon. Thus, the high slope for the 
third codon position in Fig. 2.4 is at least partially attributable to the tRNA-medi-
ated selection. Relative contribution of mutation and tRNA-mediated selection to 
codon usage has been evaluated in several recent studies (Carullo and Xia 2008; 
Xia 2005, 2008; Xia et al. 2007).

Second, the observation that GC% of the third codon position increases with 
genomic GC% is sometimes taken to imply that the frequency of G-ending and 
C-ending codons will increase with genomic GC% or GC-biased mutation 
(Kliman and Bernal 2005). This is not generally true. Take the arginine codons for 
example. Given the transition probability matrix for the six synonymous codons 
shown in Table 2.3, the equilibrium frequencies (π) for the six codons are

The three solutions correspond to the number of GC in the codon, with AGA 
having one, AGG, CGA and CGT having two, and CGC and CGG having three 

(2.11)

πAGA =
1

2k2 + 3k + 1

πAGG = πCGA = πCGT =
k

2k2 + 3k + 1

πCGC = πCGG =
k2

2k2 + 3k + 1

Table 2.3  Transition probability matrix for the six synonymous arginine codons, with α for tran-
sitions (C↔T and A↔G), β for transversions, and k modeling AT-biased mutation (0 ≤ k ≤ 1) or 
GC-biased mutation (k > 1)

CGT CGC CGA CGG AGA AGG

CGT kα β kβ 0 0
CGC α β β 0 0
CGA β kβ kα β 0
CGG β β α 0 β

AGA 0 0 kβ 0 kα

AGG 0 0 0 kβ α

We ignore nonsynymous substitutions because nonsynonymous substitution rate is often negligi-
blly low compared to synonymous rate. The diagonal is constrained by the row sum equal to 1

The Comparative Method for Continuous Characters
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G or C. One may note that the G-ending codon AGG has the same equilibrium 
frequency as that of the A-ending CGA and the T-ending CGT. Thus, we should 
not expect A-ending or T-ending codons to always decrease, or G-ending and 
C-ending codons always increase, with increasing genomic GC% or GC-biased 
mutation. In fact, according to the solutions in Eq. (2.11), πAGG, πCGA, and πCGT 
will first increase with k until k reaches 

√

2/2, and will then decrease with k when 
k >

√

2/2 (Palidwor et al. 2010).
One may ask why the phylogeny-based comparison was not used for character-

izing the relationship between codon GC% and genomic GC% in the 11 species 
in Fig. 2.4. The reason is that the two variables change very fast relative to the 
divergence time among the studied species, i.e., phylogenetic relatedness among 
the 11 species is a poor predictor of the codon GC% or genomic GC%. That 
genomic GC% has little phylogenetic inertia is generally true in prokaryotic spe-
cies (Xia et al. 2006). In such cases, one may assume approximate data independ-
ence and perform a phylogeny-free analysis. Another study that leads to insight 
into the relationship between UV exposure and GC% in bacterial genomes (Singer 
and Ames 1970), which may be the first comparative genomic study, is also not 
phylogeny-based.

 The Comparative Methods for Discrete Characters

A genome typically encodes many genes. The presence or absence of certain 
genes, certain phenotypic traits and environmental conditions jointly represent a 
major source of data for comparative genomic analysis. These binary data are best 
analyzed by comparative methods for discrete data.

A total of 11728 bacterial genomes and 249 archaea genomes have been 
made available for research through Entrez as of May 29, 2012. In addition to 
genomic GC that can be computed as soon as the sequences are available, each 
sequencing project also delivers a list of genes in the sequenced genome, identi-
fied by one of two categories of methods, i.e., by checking against the “gene 
dictionary” through homology search, e.g., BLAST (Altschul et al. 1990, 1997) 
or by computational gene prediction, e.g., GENSCAN (Burge and Karlin 1997, 
1998). The availability of such annotated genomes, as well as the availability 
of powerful phylogenetic software packages (Aris-Brosou and Xia 2008) such 
as MEGA (Kumar et al. 2008), PAUP* (Swofford 2000), PHYLIP (Felsenstein 
2002), BEAST (Drummond and Rambaut 2007) and DAMBE (Xia 2001), 
greatly facilitates the compilation of data for comparative genomics illustrated 
in Fig. 2.1.

One concrete example is shown in Fig. 2.5. We can study the column variables 
individually or associations between column variables. For each column of gene 
presence/absence data, the absence can be attributed to gene loss, but the presence 
of a gene in a gene may either result from inheritance from the ancestor or from 
lateral gene transfer which occurs frequently in bacterial species. Phylogeny-based 
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inferences, such as phylogenetic incongruence test illustrated in the next section, 
help us identify genes that tend to be laterally transferred. It is the discovery of 
the rampant occurrence of lateral gene transfer that lead to the realization that the 
cenancestor is neither a single cell nor a single genome, but is instead an entan-
gled bank of heterogeneous genomes with relatively free flow of genetic infor-
mation. Out of this entangled bank of frolicking genomes arose probably many 
evolutionary lineages with gradually reduced rate of horizontal gene transfer con-
fined mainly within individual lineages (Xia and Yang 2012). Only three (Archaea, 
Eubacteria and Eukarya) of these early lineages have representatives survived to 
this day.

Identifying laterally transferred genes is not only important in its own merit, 
but also crucial in molecular phylogenetics for building species trees which 
should rely only on ancestrally inherited characters. The late Ernst Mayr, once 
in an argument against using parasites as markers to infer phylogeny in a con-
ference, stated that two birds can exchange parasites but never exchange their 
heads or wings or legs (Paterson et al. 1995). The point is that we should use 
characters such as heads, wings, and tails that are ancestrally inherited instead of 
parasites that could be laterally transferred to build phylogenetic relationships. 
Phylogeny-based comparative methods require accurate phylogeny. It is mainly 
for this reason that the phylogenetic incongruence test was detailed in the next 
section.

While studying individual genes has its merits, comparative genomes is mainly 
about association between genes and between genes and phenotypic and environ-
mental variables. The phylogeny-based comparative method (Barker and Pagel 
2005; Pagel 1994) for characterizing such associations for discrete variables is 
also numerically illustrated in this section.

Escherichia coli +  - - +  - +  +  +  ...  Mammalian commensal

Shigella flexneri - - - +  - - +  +  ...  Primate pathogen

Salmonella enterica - +  +  - - +  +  +  ...  Mammalian pathogen

Klebsiella pneumoniae +  +  - - +  +  +  +  ...  Soil

Serratia marcescens - +  - - +  +  +  +  ...  Soil

Yersinia pestis - - - - - - +  +  ...  Mammalian pathogen

U
til

iz
e

la
ct

os
e

U
til

iz
e

ci
tra

te

Pr
od

uc
e H 2

S
Pr

od
uc

e in
do

le

Pr
od

uc
e ur

ea
se

Ly
sin

e de
ca

rb
ox

yl
as

e
Ty

pe
II

EN
as

e

Ty
pe

II
M

Ta
se

A

E

FB

G

D

C

H

Fig. 2.5  Phylogeny-based comparative bacterial genomics, with ± indicating the presence/
absence of gene-mediated functions. Modern bacterial comparative genomics typically would 
have thousands of columns each representing the presence/absence of one gene function as well 
as many environmental variables of which only a habitat variable is shown here. Modified from 
Ochman et al. (2000)
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 Studying Variables Individually: Detecting Genes that Tend to 
be Laterally Transferred

While there are many ways to study the variables individually, here we illustrate 
only one type of study, i.e., detecting lateral gene transfer (LGT). We may focus 
on the first column in Fig. 2.5. First, Escherichia coli and Klebsiella pneumoniae 
have genes coding proteins for lactose metabolism, but others do not. This leads 
to at least three possible evolutionary scenarios. First, lactose-metabolizing func-
tion may be absent in the ancestor A (Fig. 2.5), but (1) gained along lineage B and 
lost in lineage F and G or (2) gained independently along lineage E and lineage 
H (e.g., by LGT). The third possible scenario is that the function is present in the 
ancestor A, but lost in all species except for lineages E and H.

If lactose-metabolizing genes are frequently involved in LGT, then we should 
expect the gene tree built from the lactose operon genes to be different from the 
species tree which is typically approximated by a tree built from many housekeep-
ing genes. Is the lactose operon gene tree significantly different from the species 
tree?

Suppose we have the sequence data (Fig. 2.6) from housekeeping genes, a spe-
cies tree (T1) and a lactose operon gene tree (T2). We wish to test whether T1 is 
significantly better than T2 given the housekeeping gene sequences, with the null 
hypothesis being that T2 is just as good as T1. Both the maximum parsimony (MP) 
and the maximum likelihood (ML) methods have been used for such significance 
tests.

For the ML method, we compute the log-likelihood (lnL) for each of the nine 
sites (Fig. 2.6) given T1 and T2, respectively (lnL1 and lnL2 for T1 and T2, respec-
tively, Table 2.4). A simple numerical illustration of computing site-specific lnL 
can be found in Xia (2007a, pp. 279–280). A paired-sample t test can then be 
applied to test whether mean lnL1 is significantly different from mean lnL2. For 
our data in Table 2.4, t = 4.107, DF = 8, p = 0.0034, two-tailed test). So we reject 
the null hypothesis and conclude that the lactose operon gene tree (T2) is signifi-
cantly worse than the species tree (T1). A natural explanation for the phylogenetic 
incongruence is LGT.

For the MP method, we compute the minimum number of changes (NC) for 
each site given T1 and T2 (Fig. 2.6), respectively (NC1 and NC2 for T1 and T2, 
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S3
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S4

S0123456789
S0 ACAAGGCTT  
S1 GCTAGGCTC
S2 GCTAGGCTC
S3 GCAAAACTT
S4 GCAAAACTT T1 T2

Fig. 2.6  DNA sequence data for significance tests of two alternative topologies
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respectively, Table 2.4). A simple numerical illustration of computing site-specific 
NC can be found in Xia (2007a, pp. 272–275). We can then perform a paired-sam-
ple t test as before to test whether mean NC1 is significantly smaller than NC2, 
in one of three ways. The first is to use the entire nine pairs of data, which yields 
t = −2.5298, DF = 8, p = 0.0353, and a decision to reject the null hypothesis that 
T1 and T2 are equally good at the 0.05 significance level, i.e., T1 is significantly 
better than T2. Second, we may use only the five polymorphic sites in the paired-
sample t test, which would yield t = −4, DF = 4, and p = 0.0161. This leads to 
the same conclusion. The third is to use only the four informative sites which is 
however inapplicable in our case because we would have four NC1 values all equal 
to 1 and four NC2 values all equal to 2, i.e., the variation in the difference is zero.

When the phylogenetic incongruence test is applied to real lactose operon data, 
it was found that the lactose operon gene tree is somewhat compatible to the spe-
cies tree, and the case for LGT is therefore not strong (Stoebel 2005). This sug-
gests the possibility that the lactose operon was present in the ancestor, but has 
been lost in a number of descendent lineages. In contrast, the urease gene cluster, 
which is important for long-term pH homeostasis in the bacterial gastric patho-
gen, Helicobacter pylori (Sachs et al. 2003; Xia and Palidwor 2005), generate 
genes trees significantly different from the species tree (unpublished result). This 
suggests that the urease gene cluster is involved in LGT and has implications in 
emerging pathogens. For example, many bacterial species pass through our diges-
tive system daily, and it is conceivable that some of them may gain the urease gene 
cluster and become acid-resistant, with the consequence of one additional patho-
gen for our stomach.

One may note that significant incongruence between the gene tree and species 
tree does not imply LGT because events such as gene duplication and lineage-spe-
cific gene loss can also lead to phylogenetic incongruence (Page 2003). This is 
illustrated in Fig. 2.7 with five species labelled Sp1 to Sp5. A gene duplication 

Table 2.4  Phylogenetic incongruence tests with maximum likelihood (ML) and maximum par-
simony (MP) methods. lnL1 and lnL2 are site-specific log-likelihood values based on the F84 
model and T1 and T2 (Fig. 2.6), respectively, and NC1 and NC2 are the minimum number of 
changes required for each site given T1 and T2, respectively

Site

ML MP

lnL1 lnL2 NC1 NC2

1 −4.0975 −4.0990 1 1
2 −2.0634 −2.7767 0 0
3 −5.1147 −7.7335 1 2
4 −1.9481 −2.6238 0 0
5 −3.2142 −5.0875 1 2
6 −3.2142 −5.0875 1 2
7 −2.0634 −2.7767 0 0
8 −2.3938 −3.2626 0 0
9 −3.1090 −3.8572 1 2

The Comparative Methods for Discrete Characters



36 2 Comparative Genomics and the Comparative Methods

event occurred at node N in Fig. 2.7a, leading to paralogous genes A and B in 
all subsequent lineages. Differential gene losses occurred subsequently (Fig. 2.7b), 
leading to the loss of A1, B2 and A3, which would mislead us to think that gene 
duplication has never occurred and the gene has always been in a single-copy 
state. Using these five gene sequences, B1, B3, A2, A4 and A5, we would arrive at 
the wrong tree that is different from the true tree in Fig. 2.7a. However, genes that 
have undergone such duplications and lineage-specific gene losses are also poor 
phylogenetic markers. The illustration does not invalidate the use of the phyloge-
netic incongruence test to identify genes that are poor phylogenetic markers.

 Studying Association Between Variables

Many genes work together and complement each other to accomplish a biologi-
cal function. For example, Type II ENase (restriction endonuclease) is always 
accompanied by the same type of MTase (methyltransferase) recognizing the 
same site (Fig. 2.5). Patterns like this allow us to quickly identify enzymes that 
are partners working in concert. ENase cuts the DNA at specific sites and defends 
the bacterial host against invading DNA phages. MTase modifies (methylates) 
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A2
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Sp5

Sp4

Sp3

Sp2

Sp1

A3

A2

A1

B3

B2

B1

A5

A4

Sp5

Sp4

Sp2

Sp3

Sp1

A2

B3

B1

A5

A4
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N

Fig. 2.7  Phylogenetic incongruence can result from gene duplication and lineage-specific gene 
loss. a A gene duplication event occurred at Node N. b Genes A1, B2 and B3 were lost in evolu-
tion. c Phylogenetic tree resulting from the remaining 5 gene sequences is different from the true 
tree (shaded)
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the same site in the bacterial genome to prevent ENase from cutting the bacte-
rial genome. Obviously, ENase activity without MTase is suicidal, so MTase must 
accompany ENase, although ENase may get lost without immediate detrimental 
effect. The functional complementation also explains why the activity of many 
ENases depends on S-adenosylmethionine (AdoMet) availability. AdoMet always 
serves as the methyl donor for MTase. Without AdoMet, the restriction sites in the 
host genome will not be modified even in the presence of MTase because of the 
lack of the methyl donor, and ENase activity will then kill the host. So it is selec-
tively advantageous for ENase activity to depend on the availability of AdoMet. 
Although rare, MTase can be present without the associated ENase. For example, 
E. coli possesses two unaccompanied MTases, Dam and Dcm. Some bacterio-
phages carry one or more MTases to modify their own genome so as to nullify the 
hostile action of the host ENases.

Aside from association between genes, we are often interested in the associa-
tion between gene function and environmental variables. For example, the pro-
duction of functional urease is often associated with an acidic environment in 
bacterial species, such as Helicobacter pylori, Klebsiella pneumoniae and Serratia 
marcescens. H. pylori inhabits the acidic environment in mammalian stomach, 
and the two other species can generate acids by fermentation leading to acidifica-
tion of their environment. The presence of urease, which catalyzes urea to produce 
ammonia, can help maintain cytoplasmic pH homeostasis and allow them to toler-
ate environmental pH of 5 or even lower. Thus, comparative genomics can help us 
understand gene functions in particular environmental conditions.

Urease gene cluster serves as one of the two key acid-resistant mechanisms in 
the bacterial pathogen Helicobacter pylori in mammalian stomach, with the other 
mechanism being a positively charged cell membrane that alleviates the influx 
of protons into cytoplasm. The latter mechanism is established by comparative 
genomics between H. pylori and its close relatives as an adaptation to the acidic 
environment in the mammalian stomach (Xia and Palidwor 2005).

Not only can association between genes, or between genes and their function 
can lead to biological insights, but the lack of certain expected association can also 
shed light on gene functions. For example, a set of ERG genes involved in de novo 
cholesterol biosynthesis are strongly conserved among various animal lineages. 
However, some of these genes are also strongly conserved in Drosophila mela-
nogaster and Caenorhabditis elegans that are unable to synthesize cholesterol, i.e., 
a de-coupling of the genes and their expected function. Comparative genomics 
studies suggest that the ERG homologs in D. melanogaster and C. elegans have 
evolved to acquire new functions (Vinci et al. 2008).

The identification of association either between two genes (e.g., between a type 
II ENase and a type II MTase) or between a gene and an environmental variable 
(e.g., between urease production and the habitat) represents the same statistical 
problem. However, a statistician without biological background may misconstrue 
the problem and might use a 2 × 2 contingency table (i.e., N+/+, N+/−, N−/+, 
N−/−) and Fisher’s exact test to identify the association between two columns 
without taking the phylogeny into consideration. However, such an approach can 

The Comparative Methods for Discrete Characters



38 2 Comparative Genomics and the Comparative Methods

lead to both false negatives and false positives. Figure 2.8 illustrates the associa-
tion study of two pairs of genes. Ignoring the phylogeny will lead to a significant 
association between genes ORC3 and CIN3. However, the data points are not inde-
pendent as the superficial association could be caused by only two consecutive 
gene-gain events (Fig. 2.8) and all the seven “11” could then be the consequence 
of shared ancestral characters.

A phylogeny-based comparative analysis (Barker and Pagel 2005; Pagel 1994) 
characterizes the state transition by a Markov chain, and uses a likelihood ratio 
test to detect the presence of association between genes or between a gene func-
tion and an environmental condition. Two genes, each with two states (presence/
absence), have four possible joint states and eight rate parameters (α1, α2, β1, β2, 
δ1, δ2, γ1 and γ2) to be estimated from the data (Fig. 8). When the gain or loss of 
one gene is independent of the other gene, then α1 = α2, β1 = β2, δ1 = δ2, and 
γ1 = γ2, with only four rate parameters to be estimated. Thus, we compute the 
log-likelihood for the eight-parameter and four-parameter model given the tree and 

00
00 01 10 11
- α1 β1 0

01 γ1 - 0 β 2

10 δ1 0 - α 2

11 0 δ2 γ2 -

(a)

(b)

Fig. 2.8  Comparative methods for discrete binary characters. The presence and absence (des-
ignated by 1 and 0, respectively) of four genes are recorded for each species (a) The two black 
arrows indicate a gene-gain event. The instantaneous rate matrix (b), with notations following 
Felsenstein (2004), shows the relationship among the four character designation, i.e., 00 for both 
genes absent, 01 for the absence of gene 1 but presence of gene 2, 10 for the presence of gene 1 
but absence of gene 2, and 11 for both genes present. The diagonals are constrained by each row 
sum equal to 0. Modified from (Barker and Pagel 2005)
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the data, designated lnL8 and lnL4, respectively, and perform a likelihood ratio test 
with test statistic being 2(lnL8−lnL4) and four degrees of freedom.

I illustrate the computation of lnL8 by using a simpler tree with only four oper-
ational taxonomic units or OTUs (Fig. 2.9). The joint states, represented by binary 
numbers 00, 01, 10 and 11, correspond to decimal numbers 0, 1, 2 and 3 which 
will be used to denote the four states in some equations below. The likelihood for 
the eight-parameter model is

Equation (2.12) may seem to suggest that we need to sum 34 terms. However, 
the amount of computation involved is greatly reduced by the pruning algorithm 
(Felsenstein 1981). To implement this algorithm, we define a vector L with ele-
ments L(0), L(1), L(2), and L(3) for every node including the leaves. L for leaf i is 
defined as

(2.12)

L8 =

3
∑

z=0

3
∑

y=0

3
∑

x=0

πzPzx(b6)Px0(b1)Px3(b2)Pzy(b5)Py0(b3)Py3(b4)

(2.13)Li(s) =

{

1, if s = Si

0, otherwise

S1: 0 0 → 0

S2: 1 1 → 3

S3: 0 0 → 0

S4: 1 1 → 3

b 5 = 0.1

b 6 = 0.3

b 2 = 0.1

b 1 = 0.1

b 3 = 0.3

b 4 = 0.3

Lx(00) = 0.24527
Lx(01) = 0.24720
Lx(10) = 0.24710
Lx(11) = 0.24719

LS2(00) = 0
LS2(01) = 0
LS2(10) = 0
LS2(11) = 1

LS1(00) = 1
LS1(01) = 0
LS1(10) = 0
LS1(11) = 0

LS4(00) = 0
LS4(01) = 0
LS4(10) = 0
LS4(11) = 1

LS3(00) = 1
LS3(01) = 0
LS3(10) = 0
LS3(11) = 0

Lz(00) = 0.060687
Lz(01) = 0.060692
Lz(10) = 0.060691
Lz(11) = 0.060691

Ly(00) = 0.24647
Ly(01) = 0.24649
Ly(10) = 0.24649 
Ly(11) = 0.24649

x

z

y

Fig. 2.9  Four-OTU tree with branch lengths (b1 to b6) for illustrating likelihood computation. 
The L vectors are computed recursively according to Eqs. (2.13)–(2.14)
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L for an internal node with two offspring (o1 and o2) is recursively defined as

where bi, o1 means the branch length between internal node i and its offspring o1, 
and Psk is the transition probability from state s to state k computed from the rate 
matrix (Fig. 2.8b). For example, bx, S1 (branch length between internal node x and its 
offspring S1) is b1 in Fig. 2.9. The computation involves finding the eight rate param-
eters that maximize L8. As there is no analytical solution, the maximizing algorithm 
will simply try various rate parameter values and evaluate L8 repeatedly until we 
converge on a set of parameter values that result in maximum L8. Many such algo-
rithms are well explained and readily available in source code (Press et al. 1992).

While the equations might be confusing to some, the actual computation is quite 
simple. With only four OTUs, S1 = S3 = ‘00’ and S2 = S4 = ‘11’ (Fig. 2.9), the likeli-
hood surface is quite flat and many different combination of the rate parameters can 
lead to the same maximum L8. In fact, the only constraint on the rate parameters is 
high rates from states 01 and 10 to states 00 and 11 (i.e., large δ1 + γ1 + α2 + β2) and 
low rates from states 00 and 11 to states 01 and 10 (i.e., (i.e., small δ2 + γ2 + α1 + β1). 
This should be obvious when we look at the four OTUs in the tree (Fig. 2.9), with only 
00 and 11 being observed at the leaves. This implies that 01 and 10 should be transient 
states, quickly changing to 00 or 11, whereas 00 and 11 are relatively conservative sta-
ble states. One of the rate matrices that approaches the maximum L8 is

The rate of transition from states 01 and 10 to states 00 and 11 is 644.5 times 
greater (The true rate should be infinitely greater) than the other way round, which 
implies that we will almost never observe 01 and 10 states. The transition prob-
ability matrices with branch lengths of 0.1 and 0.3, which are computed as eQt, 
where t is the branch length, are, respectively,

(2.14)Li(s) =

[

3
∑

k=0

Psk(bi,o1
)Lo1

(k)

][

3
∑

k=0

Psk(bi,o2
)Lo2

(k)

]

(2.15)Q =













00 01 10 11

00 −16.47 13.15 3.32 0

01 1.10 −135653.97 0 135652.87

10 1816.49 0 −20308.04 18491.54

11 0 18.30 207.21 −225.52













(2.16)

P(0.1) =













00 01 10 11

00 0.54616 0.00011 0.00467 0.44908

01 0.51459 0.00011 0.00499 0.48038

10 0.51738 0.00011 0.00496 0.47759

11 0.51458 0.00011 0.00499 0.48034













P(0.3) =













00 01 10 11

00 0.53145 0.00011 0.00482 0.46377

01 0.53144 0.00011 0.00482 0.46382

10 0.53144 0.00011 0.00482 0.46382

11 0.53144 0.00011 0.00482 0.46382
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We can now compute L8 by using the pruning algorithm. First, LS1 to LS4 are 
straightforward from Eq. (2.13) and shown in Fig. 2.9. Lx and Ly are computed 
according to Eq. (2.14), e.g.,

Similarly, Ly(00), Ly(01), Ly(10), and Ly(11) are computed the same way and 
have values 0.24647, 0.24649, 0.24649, and 0.24649, respectively. Similarly, Lz is 
also computed by applying Eq. (2.14), e.g.,

Lz(01), Lz(10), and Lz(11) are 0.060692, 0.060691, and 0.060691, respectively. 
The final L8 is

where we used the empirical frequencies for πk, although πk could also be esti-
mated as a parameter of the model. Note that states 01 and 10 are not observed, 
and π01 and π10 are assumed to be 0 in Eq. (2.19).

The computation of ln(L4) is simpler because only four rate parameters need 
to be estimated, and is equal to −5.545. If quite a large number of OTUs are 
involved, then twice the difference between the two log-likelihood, designated 
2ΔlnL, follows approximately the χ2 distribution with 4 degrees of freedom. If we 
could assume large-sample approximation in our case, then 2ΔlnL = 5.486, which 
leads to p = 0.241, i.e., the eight-parameter model is not significantly better than 
the four-parameter model. Such a result is not surprising given the small number 
of OTUs.

With this phylogeny-based likelihood approach, Barker et al. (2007) found 
that the superficial association between genes CIN4 and ORC3 is not signifi-
cant, although Fisher’s exact test ignoring the phylogeny would produce a sig-
nificant association between the two genes. Similarly, genes L9A and L42B 
were found to be significantly associated based on the phylogeny-based like-
lihood approach, although Fisher’s exact test ignoring the phylogeny would 
suggest a lack of the association. In this particular case, L9A and L42B are 
known to be functionally associated and CIN4 and ORC3 are known not be 

(2.17)

Lx(00) = P00,00(0.1)P00,11(0.1) = 0.54616 × 0.44908 = 0.24527

Lx(01) = 0.51459 × 0.48038 = 0.24720

Lx(10) = 0.51738 × 0.47759 = 0.24710

Lx(11) = 0.51458 × 0.48037 = 0.24719

(2.18)

Lz(00) = AB = 0.246207 × 0.246487 = 0.060687, where

A = [P00,00(b6)Lx(00) + P00,01(b6)Lx(01) + P00,10(b6)Lx(10) + P00,11(b6)Lx(11)]

= 0.246207

B = [P00,00(b5)Ly(00) + P00,01(b5)Ly(01) + P00,10(b5)Ly(10) + P00,11(b5)Ly(11)]

= 0.246487

(2.19)
L8 =

3
∑

k=0

πkLz(k) = 0.060687 × 0.5 + 0.060691 × 0.5 = 0.060689

ln(L8) = −2.802
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functionally associated. Ignoring the phylogeny would have produced both a 
false positive and a false negative. Phylogeny-based comparative methods 
for continuous and discrete methods have been implemented in the freely 
available software DAMBE(Xia 2001; Xia and Xie 2001) at http://dambe.
bio.uottawa.ca.

Sometimes one may find the presence of orthologous genes in different spe-
cies but the function associated with the gene is missing in some species, i.e., 
the same genotype (presence of a gene or a group of genes) correspond to dif-
ferent phenotypes. Such is the case of ERG genes involved in sterol metabo-
lism. Many species, including Drosophila melanogaster and Caenorhabditis 
elegans, share orthologous genes involved in de novo sterol synthesis (Vinci et 
al. 2008), but D. melanogaster and C. elegans have lost their ability to synthe-
size sterols de novo, although their ERG orthologs are still under strong purify-
ing selection revealed by a much lower nonsynonymous substitution rate than 
the synonymous substitution rate. Further microarray studies demonstrated 
a strong association between the orthologs of ERG24 and ERG25 in D. mela-
nogaster and genes involved in ecdysteroid synthesis and in intracellular protein 
trafficking and folding (Vinci et al. 2008). This suggests that the ERG genes in 
D. melanogaster have evolved new association with other genes and gained new 
functions.

Mapping genes and gene functions to a phylogeny has revealed the loss 
of an essential single-copy Maelstrom gene in fish, and a plausible explana-
tion is that the essential function has been fulfilled by a non-homologous gene 
(Zhang et al. 2008). Thus, the same phenotype can have different genotypes. 
Such findings that a specific molecular function can be performed by evolution-
arily unrelated genes suggest a fundamental flaw in research effort to identify 
the minimal genome by identifying shared orthologous genes (Mushegian and 
Koonin 1996). The rationale for such an approach is this. Suppose a minimal 
organism needs to perform three essential functions designated {x, y, z}, and 
three different genes, designated {A, B, C}, encode products that perform these 
three functions. If we have a genome (G1) with five genes {A, B, C, D, E} and 
another genome (G2) with four genes {A, B, C, F}, with genes of the same 
letter being orthologous, then shared orthologous genes between G1 and G2 
are {A, B, C} which would be a good approximation of the minimal genome. 
However, it is possible that G1 = {A, D, E} for essential functions {x, y, z} and 
G2 = {A, C, F} for the same set of functions {x, y, z}. Both are already mini-
mal genomes, but the intersection of G1 and G2 is only {A} which is a severe 
underestimation of a minimal genome. Creating a cell with such a “minimal” 
genome is doomed to fail.

The comparative methods still need further development. For example, one dif-
ficulty with the comparative methods for the continuous and discrete characters 
is what branch lengths to use because different trees, or even the same topology 
with different branch lengths, can lead to different conclusions. One may need to 
explore all plausible trees to check the robustness of the conclusion.

http://dambe.bio.uottawa.ca
http://dambe.bio.uottawa.ca
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 Multiple Comparisons and the Method of False Discovery 
Rate

The material in this section can be found in several books and papers (e.g., Ma and 
Xia 2011). It is included purely for reader’s convenience.

Modern comparative genomic studies may often involve the functional asso-
ciation of thousands of genes or more. With N genes, there are N(N−1)/2 possi-
ble pairwise associations and N(N−1)/2 tests of associations. There are N(N−1)
(N−2)/6 possible triplet associations. So it is necessary to consider the topic of 
how to control for error rates in multiple comparisons.

There are two approaches for adjusting type I error rate involving multiple 
comparisons, one controlling for familywise error rate (FWER), and the other con-
trolling for the false discovery rate (FDR) (Nichols and Hayasaka 2003). While 
FWER methods are available in many statistical packages and covered in many 
books, there are few computational tutorials for the FDR in comparative genom-
ics, an imbalance which I will try to compensate below.

The difference between the FDR and FWER is illustrated in Table 2.5, where 
N12 denotes the number of null hypotheses that are true but rejected (false posi-
tives). FWER is the probability that N12 is greater or equal to 1, whereas FDR is 
the expected proportion of N12/N.2 and defined to be 0 when N.2 = 0. Thus, FDR 
is a less conservative protocol for comparison, with greater power than FWER, but 
at a cost of increasing the likelihood of obtaining type I errors.

The FDR protocol works with a set of p values. For example, with 10 genes, 
there are 45 pairwise tests of gene associations, yielding 45 p values. The FDR 
protocol is to specify a reasonable FDR (typically designated by q) and find a criti-
cal p (designated pcritical) so that a p value that is smaller than pcritical is considered 
as significant, otherwise it is not. The q value is typically 0.05 or 0.01. Two gen-
eral FDR procedures, Benjamini-Hochberg (BH) and Benjamini-Yekutieli (BY), 
are illustrated below.

Suppose we have a set of 15 sorted p values from testing 15 different hypoth-
eses (Table 2.6). The Bonferroni method uses α/m (where m is the number of p 
values) as a critical p value (pcritical . Benferroni) for controlling for FWER. We have 
m = 15. If we take α = 0.05, then pcritical . Benferroni = 0.05/15 = 0.00333 which 
would reject the first three hypotheses with the three smallest p values.

Table 2.5  Cross-classificationof N tests of hypothesis

H0

Reject

No Yes

TRUE N11 N12

FALSE N21 N22

Subtotal N.1 N.2

Multiple Comparisons and the Method of False Discovery Rate
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The classical FDR approach (Benjamini and Hochberg 1995), now commonly 
referred to as the BH procedure, computes pcritical . BH.i for the ith p value (where 
the subscript BH stands for the BH procedure) as

where q is FDR (e.g., 0.05), and i is the rank of the p value in the sorted array 
of p values (Table 6). If k is the largest i satisfying the condition of pi ≤ pcriti-

cal . BH.i, then we reject hypotheses from H1 to Hk. In Table 6, k = 4 and we reject 
the first four hypotheses. Note that the fourth hypothesis was not rejected by pcriti-

cal . Bonferroni but rejected by pcritical . BH.4. Also note that pcritical . Bonferroni is the 
same as pcritical . BH.1.

The FDR procedure above assumes that the test statistics are independent.  
A more conservative FDR procedure has been developed that relaxes the inde-
pendence assumption (Benjamini and Yekutieli 2001). This method, now com-
monly referred to as the BY procedure, computes pcritical . BY . i for the ith 
hypothesis as

With m = 15 in our case, Σ1/k = 3.318228993. Now k (the largest i satis-
fying pi ≤ pcritical . BY . i) is 3 (Table 2.6). Thus, only the first three hypotheses 
are rejected. The BY procedure was found to be too conservative and several 

(2.20)pcritical . BH . i =
q • i

m

(2.21)
pcritical.BY .i =

q • i

m
m
∑

i=1

1
i

=
pcritical.BH.i

m
∑

i=1

1
i

Table 2.6  Illustration of the BH (Benjamini and Hochberg 1995) and BY (Benjamini and 
Yekutieli 2001) procedures in controlling for FDR, with 15 sorted p values taken from Benjamini 
and Hochberg (1995)

i p pcritical . BH.i pcritical . BY . i
1 0.0001 0.00333 0.00100
2 0.0004 0.00667 0.00201
3 0.0019 0.01000 0.00301
4 0.0095 0.01333 0.00402
5 0.0201 0.01667 0.00502
6 0.0278 0.02000 0.00603
7 0.0298 0.02333 0.00703
8 0.0344 0.02667 0.00804
9 0.0459 0.03000 0.00904
10 0.324 0.03333 0.01005
11 0.4262 0.03667 0.01105
12 0.5719 0.04000 0.01205
13 0.6528 0.04333 0.01306
14 0.759 0.04667 0.01406
15 1 0.05000 0.01507
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alternatives have been proposed (Ge et al. 2008). For large m, Σ1/k converges 
to ln(m) + γ (Euler’s constant equal approximately to 0.57721566). Thus, for 
m = 10000, Σ1/k is close to 10. So pcritical . BY is nearly 10 times smaller than 
pcritical . BH.

One may also obtain empirical distribution of p values by resampling the data. 
For studying association between genes or between gene and environmental fac-
tors, one may compute the frequencies of states 0 (absence) and 1 (presence) for 
each gene (designated f0 and f1, respectively) and reconstitute each column by ran-
domly sampling from the pool of states with f0 and f1. For each resampling, we 
may carry out the likelihood ratio test shown above to obtain p values. If we have 
generated 10000 p values, then the 500th smallest p value may be taken as the 
critical p value. Note that all the null hypotheses from resampled data are true. 
So FDR and FWER are equivalent. This is easy to see given that FDR is defined 
as the expected proportion of N12/N.2 (Table 2.5) and FWER as the probability 
that N12 (Table 2.5) is greater or equal to 1. As we cannot observe Nij, we use nij 
to indicate their realized values. When all null hypotheses are true, n22 = 0 and 
n12 = n.2. Now if n12 > 0, then FDR = E(n12/n.2) = 1, and FWER = P(n12 ≥ 1) 
is naturally also 1. If n12 = 0, then FDR = 0 (Recall that FDR is defined to be 0 
when n.2 = 0), and FWER = P(n12 ≥ 1) is also 0 (Benjamini and Hochberg 1995).

Key steps in comparative genomics involves the compilation of data in the form 
of Fig. 2.1, perform data analyses such as measuring association and assessing 
statistical significance, and present biologically significant results. All these can 
be computationally automated with various software packages such as DAMBE 
which was originally released in 2000 (Xia 2001; Xia and Xie 2001). A recently 
developed XML-based rich data format, named NeXML (Vos et al. 2012), is par-
ticularly suitable for large-scale comparative genomics. Reconstruction of phylo-
genetic relationships from a large number of species and dating their branching 
points can be accomplished very rapidly by using the distance-based least-square 
methods (Xia and Yang 2011).

 Postscript

Comparative genomic analysis depends on how we represent a genome. In 
Fig. 2.1, we represented a genome simply by the presence/absence of a set of 
genes, without paying any attention to gene locations on the genome. Although the 
function of most genes is independent of their genomic location, there are cases 
where positional information can help us in many scenarios of evolutionary infer-
ence. In most other books on comparative genomics, the genome is represented as 
a linear permutation of genes as signed or unsigned numbers, with the length and 
nature of the intergenic sequences ignored. This representation is used most fre-
quently in studying genome rearrangement (Bader et al. 2001; Berman et al. 2002; 
Kececioglu and Sankoff 1994, 1995). The similarity between two genomes is often 
measured by the inversion distance (the minimum number of inversions that can 

Multiple Comparisons and the Method of False Discovery Rate
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convert one genome into another in gene order). If the inversion distance is sig-
nificantly shorter than random expectation (which can be assessed by comparing 
the inversion distance against those from random permutation), we may assume 
that the two genomes share conserved synteny which simply means the similarity 
in the connectedness of a shared set of genes between two genomes. Here I briefly 
mention a few cases where conserved synteny provides invaluable information in 
comparative genomics.

Suppose that a processed pseudogene is found in two sister lineages, designated 
P1 and P2. Do P1 and P2 originate independently or inherited from their common 
ancestor? Because it is unlikely that two independent origins would land the pseu-
dogene at the same genomic location in two separate lineages, we may answer 
the question by examining synteny conservation. Conserved synteny between the 
two lineages (Fig. 2.10a) indicates duplication before the split of the two lineages, 
whereas a lack of synteny (Fig. 2.10b) suggests that P1 and P2 may have originated 
independently, after the split of the two lineages.

Conserved synteny can also aid the identification of orthologous genes. 
Suppose two duplicated genes (P1 and P2) are found in two different genome seg-
ments (Fig. 2.10b) in species A. Also suppose that we have a gene P3 in species 
B that matches both (P1 and P2). Is P3 orthologous to P1 or to P2? Again, if P3 
shares synteny with P1 but not with P2, then we can conclude that P3 and P1 are 
orthologous.

It has often been assumed to be true that two rounds of genome duplication 
have occurred during vertebrate genome evolution, one in the ancestral chordate 
lineage and another after the divergence of gnathostomes from Agnatha. One more 
round of genome duplication has also been assumed to have occurred in the line-
age leading to Salmonids. Genome duplication should lead to extensive synteny 
among chromosome segments. However, the limited synteny observed, coupled 
with a lack of quantitative assessment of the available evidence, proved to be 
insufficient to distinguish the hypothesis of genome duplication from the alterna-
tive hypothesis of duplication of genes and multi-gene segments (Hughes 2000).

Another way to represent a genome is to list the palindromes along the 
sequence, with each palindrome characterized by the length of the stem (num-
ber of paired nucleotides) and the length of the loop. Such a list of palindromes 

1 2 3 P1 4 5

1 2 3 P2 4 5

1 2 3 P1 4 5

6 7 8 P2 9 10

(a)

(b)

Fig. 2.10  Synteny helps us infer the timing of gene duplication and establish gene orthology. 
The boxes sharing the same number represent homologous genes a synteny present b synteny 
absent
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constitutes the most fundamental aspect of genome phenotype or DNA morphol-
ogy. Palindromes are the signposts of many cellular proteins involved in gene 
regulation, and a change in palindrome structure is expected to have functional 
implications.

Comparative genomics is a developing field. Better description of the genome 
will lead to new ways of representing the genome and new way of analysis. This 
chapter represents only a starting point in studying comparative genomics.

Postscript



49

There are two major reasons to study recombination. The first is that it is  
biologically interesting. For example, different strains of viruses often recom-
bine to form new strains of recombinants leading to host-jumping or resistance 
to antiviral medicine, posing direct threat to our health. The second reason is that 
recombination is the source of many evils in comparative genomics and molec-
ular evolution as it can generate rate variation among sites and among lineages 
and distort phylogenetic relationships (Lemey and Posada 2009). We may be led 
astray without controlling for the effect of recombination in comparative genomic 
analysis.

Detecting viral recombination and mapping recombination points represent 
important research themes in viral comparative genomics (Salminen and Martin 
2009). This is often done in two different situations. The first is to address whether 
one particular genome (typically the one causing human health concerns, desig-
nated hereafter as R) is the result of viral recombination from a set of N poten-
tial parental strains (designated hereafter as Pi, where i = 1, 2, …, N). Graphic 
visualization methods such as Simplot (Lole et al. 1999) and Bootscan (Salminen  
et al. 1995), as well as the phylogenetic incongruence test (illustrated in Chap. 2), 
are often used in this first situation.

In the second situation, one does not know which one is R and which ones 
are P genomes. One simply has a set of genomic sequences and wishes to know 
whether some are recombinants of others. This is a more difficult problem. Many 
methods have been developed to solve the problem, and have been reviewed 
lucidly (Husmeier and Wright 2005). I will include here only what has been left 
out in the review, i.e., the graphic methods (Simplot and Bootscan) for the first 
situation and the compatibility matrix methods for the second. The compatibility 
matrix methods are among the most powerful methods for detecting recombina-
tion events.

Comparative Viral Genomics: Detecting 
Recombination

Chapter 3

X. Xia, Comparative Genomics, SpringerBriefs in Genetics,  
DOI: 10.1007/978-3-642-37146-2_3, © The Author(s) 2013
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 Is a Particular Genome a Recombinant of N Other 
Genomes?

Given a sequence alignment, compute genetic distances dR,Pi (between R and 
Pi) along a sliding window of typically a few hundred bases. If we have a small 
dR,Pi and a large dR,Pk for one stretch of the genome, but a large dR,Pi and a small 
dR,Pk for another stretch of the genome, then a recombination likely occurred. This 
method, with visualization of the d values along the sliding windows, is known as 
Simplot (Lole et al. 1999). Its disadvantage is that it does not generate any meas-
ure of statistical confidence.

I will illustrate the Simplot procedure by using HIV-1 M genomes in an A-J-
cons-kal153.fsa file (Salminen and Martin 2009). HIV-1 has three groups des-
ignated M (main), O (outgroup) and N (non-M and non-O), with the M group 
further divided into A-D and F-K subtypes. The A-J-cons-kal153.fsa contains con-
sensus genomic sequences for subtypes A, B, C, D, F, G, H, and J, as well as the 
KAL153 strain which may be a recombinant of two of the subtypes.

The result of applying the Simplot procedure is shown in Fig. 3.1. The genetic 
distance used is a simultaneously estimated (SE) distance based on the F84 model 
(Xia 2009). Note that dKAL153,A is relatively small and dKAL153,B relatively large 
up to site 2601, after which dKAL153,A becomes large and dKAL153,B small until 
site 8701. After site 8701, dKAL153,A again becomes small and dKAL153,B large 
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(Fig. 3.1). The simplest interpretation is that KAL153 is a recombinant between an 
A-like strain and a B-like strain. The two sites at which KAL153 changes its phy-
logenetic affinity (i.e., 2601 and 8701) may be taken as the recombination sites.

One may ask what the interpretation would be if B is missing from the data. The 
interpretation unavoidably would be that KAL153 is a recombinant between an A-like 
strain and a D-like strain (Fig. 3.1). This interpretation is still reasonable because sub-
types B and D are the most closely related phylogenetically. However, if A is missing 
from the data set, then the recombination event would become difficult to identify.

One might also note a few locations where the HIV-1 viral genomes are highly 
conserved across all included subtypes. Biopharmaceutical researchers typically 
would use such comparative genomic method to find conserved regions as drug 
targets or for developing vaccines against the virus.

One shortcoming of the Simplot method is that it does not produce any measure 
of statistical confidence. Given the stochastic nature of evolution, the distance of a 
sequence to other homologous sequence will often fluctuate. So the interpretation 
of patterns in Fig. 3.1 is associated with much uncertainty. Two approaches have 
been developed to overcome this shortcoming, one being the Bootscan method 
(Salminen and Martin 2009; Salminen et al. 1995), and the other is the phyloge-
netic incongruence test illustrated in Chap. 2.

The Bootscan method also takes a sliding window approach, but bootstraps the 
sequences to find the number of times each Pi has the smallest distance to R. The 
application of the bootscan method to the HIV-1 M data (Fig. 3.2) shows that A 
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is closest to KAL153 for almost all resampled data up to site 2601, after which B 
becomes the closest to KAL153 until site 4801. At this point A again becomes the 
closest to KAL153, albeit only briefly and with limited support. After site 5051, B 
again becomes the closest to KAL153 until site 8701 after which A again becomes 
the closest to KAL153 (Fig. 3.2). The result suggests that there might be two 
recombination events.

The Simplot and the Bootscan procedures work well with highly diverged paren-
tal sequences, e.g., when the parental sequences belong to different subtypes as in 
our examples above. Their performance is improved when genetic distances based on 
more realistic substitution models than K80 are used. DAMBE (Xia 2001; Xia and 
Xie 2001) implements many other distances including the GTR distance and several 
simultaneously estimated distances suitable for highly diverged sequences. However, 
the two methods are not sensitive when the parental sequences are closely related. 
This is true for most of the conventional methods for detecting recombination.

The second method for confirming KAL153s phylogenetic affinity reflected 
by changes in the genetic distance to other HIV-1 M genomes (Fig. 3.1) is the 
phylogenetic incongruence test. The result in Fig. 3.1 allows us to partition the 
aligned genomic sequences into two sets, one consisting of the segment from 2601 
and 8630 (hereafter referred to MIDDLE), and the other made of the rest of the 
sequences (hereafter referred to as TAILS). The phylogenetic tree for the eight 
subtypes of HIV-1 M is shown in Fig. 3.3. A new HIV-1 M genome suspected to 
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be a recombinant, such as KAL153, may be phylogenetically grafted onto any one 
of the positions indicated by the numbered arrows (Fig. 3.3), creating 13 possible 
unrooted trees referred hereafter as T1, T2, …, T13, respectively, with the subscript 
number corresponding to the numbers in the arrow in Fig. 3.3). From results in 
Fig. 3.1, we can already infer that T6 should be supported by the TAILS data set 
and T9 should be supported the MIDDLE data set. However, will the support be 
significant against other alternative trees?

The result of phylogenetic tests (Table 3.1) shows that the TAILS data set 
strongly support T6 (grouping KAL153 with subtype A) but the MIDDLE data 
set strongly support T9 (grouping KAL153 with subtype B). This suggests that 
KAL153 is very highly likely to be a recombinant from subtypes A and B.

Table 3.1  Statistical tests of 13 alternative trees, based on the TAILS and MIDDLE data sets

Data Tree lnLa ΔlnLb SE (Δ)c T pTd pSHe pRELLf

TAILS 6 −15046.0 0.000 0.000 1.000
2 −15223.6 −177.587 28.579 6.214 0.000 0.000 0.000
7 −15225.4 −179.382 28.092 6.385 0.000 0.000 0.000
1 −15279.4 −233.325 34.684 6.727 0.000 0.000 0.000
5 −15287.2 −241.162 34.013 7.090 0.000 0.000 0.000
3 −15334.1 −288.028 38.281 7.524 0.000 0.000 0.000
4 −15341.0 −294.930 38.052 7.751 0.000 0.000 0.000

10 −15373.2 −327.121 40.059 8.166 0.000 0.000 0.000
12 −15379.0 −332.934 39.987 8.326 0.000 0.000 0.000
11 −15423.2 −377.209 42.205 8.938 0.000 0.000 0.000
13 −15424.7 −378.629 41.968 9.022 0.000 0.000 0.000
9 −15592.2 −546.125 48.274 11.313 0.000 0.000 0.000
8 −15598.1 −552.052 47.741 11.563 0.000 0.000 0.000

MIDDLE 9 −23875.2 0.000 0.000 1.000
13 −24086.1 −210.934 30.721 6.866 0.000 0.000 0.000
8 −24091.5 −216.388 30.005 7.212 0.000 0.000 0.000

11 −24395.1 −519.977 48.357 10.753 0.000 0.000 0.000
12 −24398.1 −522.909 47.870 10.924 0.000 0.000 0.000
10 −24535.3 −660.101 54.873 12.030 0.000 0.000 0.000
4 −24553.5 −678.299 54.061 12.547 0.000 0.000 0.000
3 −24623.9 −748.766 56.714 13.202 0.000 0.000 0.000
5 −24627.3 −752.148 56.671 13.272 0.000 0.000 0.000
1 −24652.2 −776.994 57.503 13.512 0.000 0.000 0.000
2 −24653.3 −778.099 57.767 13.470 0.000 0.000 0.000
7 −24749.9 −874.732 61.169 14.300 0.000 0.000 0.000
6 −24753.4 −878.281 61.246 14.340 0.000 0.000 0.000

a log-likelihood of each tree
bdifferences in log-likelihood between tree i and the best tree
c standard error of ΔlnL
dP value for paired-sample t test (two-tailed)
eP value with multiple-comparison correction (Shimodaira and Hasegawa 1999)
fRELL bootstrap proportions (Kishino and Hasegawa 1989)

Is a Particular Genome a Recombinant of N Other Genomes?
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The use of the MIDDLE and TAILS for the phylogenetic incongruence test might 
be criticized for having fallen into a sequential testing trap (Suchard et al. 2002). A 
sliding-window approach together with the control for the false discovery rate may 
be statistically more defendable.

 General Methods Based on the Compatibility Matrix

In the set of four sequences in Fig. 3.4a, there are three possible unrooted trees 
labeled T1, T2 and T3. Except for site 49, all sites are compatible with each other 
because they all support T1. In contrast, site 49 supports T3. In the classical pop-
ulation genetics with the infinite alleles model (Kimura and Crow 1964) where 
each mutation is unique and not reversible, site 49 would be considered as result-
ing from recombination because mutations, being unique and not reversible by 
definition with the infinite alleles model, could not produce the pattern in site 49. 
In other words, parallel convergent mutations in different evolutionary lineages 
(homoplasies) are not allowed in the infinite allele model.

The infinite alleles model is not applicable to nucleotide sequences where each 
site has only four possible states that can all change into each other. So we need 
to decide whether site 49 in Fig. 3.4a can be generated by substitutions without 
involving recombination. In general, sequence-based statistical methods for detect-
ing recombination share one fundamental assumption (or flaw) that we have only 

(a)

(b)

Fig. 3.4  Two sets of aligned nucleotide sequences for illustrating the compatibility-based 
method for detecting recombination events. a Four sequences without recombination. b Four 
sequences with recombination between S2 and S3, indicated by the switching of colored nucleo-
tides. Dots indicate monomorphic sites
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two alternatives, homoplasy or recombination, to explain polymorphic site patterns 
in a set of aligned sequences. If we reject the homoplasy explanation, then we 
arrive at the conclusion of recombination which is aptly named a backdoor con-
clusion (Hey 2000). Such a backdoor conclusion is ultimately not as satisfying as 
empirical demonstrations of recombination. For example, statistical detection of 
recombination involving mammalian mitochondrial genomes have been reported 
numerous times, but only an empirical demonstration (Kraytsberg et al. 2004) con-
vinced the skeptical majority.

If we are happy with the fundamental assumption above that we have only two 
alternatives to discriminate between, then the method based on a compatibility 
matrix is both powerful and computationally fast. With a set of aligned sequences, 
two sites are compatible if and only if they both support the same tree topology. 
We only need to consider informative sites, i.e., sites featuring at least two states 
each of which is represented by at least two sequences. Non-informative sites are 
always compatible with other sites and need not be considered.

A pairwise compatibility matrix, or just compatibility matrix for short, lists 
whether sites i and j are compatible. The compatibility matrices for the two set 
of sequences in Fig. 3.4, one experiencing no recombination (Fig. 3.4a) and the 
other experiencing recombination involving the segment between informative sites 
16–39 (Fig. 3.4b) are shown in Table 3.2. Two points are worth highlighting. First, 
sites that share the same evolutionary history are expected to be more compati-
ble than those that do not (e.g., when the shared ancestry is disrupted by recom-
bination). Note more 0’s (compatible sites) in the upper triangle for sequences 
without recombination than in the lower triangle for sequences with recombina-
tion involving informative sites 16–39 (Table 3.2). Second, recombination tends 
to create similar neighbors in the compatibility matrix. Note the blocks of 1’s 
and 0’s in the lower triangle in Table 3.2. This similarity among neighbors has 

Table 3.2  Pairwise compatibility matrices, with 0 for compatible sites and 1 for incompatible 
sites, for aligned sequences in Fig. 3.4a (upper triangle) without recombination and those in 
Fig. 3.4b (lower triangle) with recombination between informative sites 16–39

Site 1 10 13 16 17 25 30 32 37 40 43 49 50

1 0 0 0 0 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 1 0
13 0 0 0 0 0 0 0 0 0 0 1 0
16 1 1 1 0 0 0 0 0 0 0 1 0
17 1 1 1 0 0 0 0 0 0 0 1 0
25 1 1 1 0 0 0 0 0 0 0 1 0
30 1 1 1 0 0 0 0 0 0 0 1 0
32 1 1 1 0 0 0 0 0 0 0 1 0
37 1 1 1 0 0 0 0 0 0 0 1 0
40 0 0 0 1 1 1 1 1 1 0 1 0
43 0 0 0 1 1 1 1 1 1 0 1 0
49 1 1 1 1 1 1 1 1 1 1 1 1
50 0 0 0 1 1 1 1 1 1 0 0 1

General Methods Based on the CompatibilityMatrix
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been characterized by the neighbor similarity score (NSS) which is the fraction 
of neighbors sharing either 0 (compatible) or 1 (incompatible). NSS is the basis 
of a number of methods for detecting recombination events (Brown et al. 2001; 
Jakobsen and Easteal 1996; Posada 2002; Posada and Crandall 2001; Wiuf et al. 
2001) because its significance can be easily assessed by reshuffling the sites and 
recomputing NSS many times. The clumping of the compatible and incompat-
ible sites in the compatibility matrix also suggests the possibility of mapping the 
recombination points. For example, one may infer from the compatibility matrix 
for the four sequences in Fig. 3.4b (lower triangle in Table 3.2) that the 5’-end 
recombination point is between informative sites 13 and 16, and that the 3’-end 
recombination point is between informative sites 37 and 40.

The compatibility matrix approach can be refined in two ways. First, when 
sequences are many, one will have some sites that are highly incompatible with 
each other as well as some sites that are only slightly incompatible with each 
other. The compatibility matrix approach lumps all these sites as incompatible 
sites, resulting in loss of information. Second, neighboring sites in a set of aligned 
sequences are expected to be more compatible with each other than with sites that 
are far apart. These two refinements were included in a recent study (Bruen et al. 
2006) that uses a refined incompatibility score (RIS) and the PHI statistic based on 
RIS. This new method appears much more sensitive than previous ones based on 
empirical applications (Bruen et al. 2006; Salemi et al. 2008).
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