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Preface

This book on comparative genomics was written for early researchers (advanced
undergraduate students, postgraduates, and postdoctoral fellows). Well-established
biologists should leave it alone—it is not intended to impress them.

What is comparative genomics? Before a proper definition can be put for-
ward, we need to recognize that a genome has many primary features such as the
genomic sequence, strand asymmetry, genes, gene order, regulatory motifs, and
genomic structural landmarks that can be recognized or modified by cellular com-
ponents with functional implications, etc. A genome also has secondary features
such as the dynamic transcriptome, proteome, codon—anticodon adaptation, func-
tional association of genes, and gene interaction networks. Comparative genomics
is a branch of genomics that aims to (1) characterize the similarity and differences
in genomic features and trace their gain and loss along different evolutionary line-
ages, (2) understand the evolutionary forces such as mutation and selection that
govern the changes of these genomic features, and (3) find out how genomic evo-
lution can help us battle diseases, restore environmental health, make money, etc.

It is better to illustrate this with an example. Suppose we have a set of bacterial
genomes, with Genome A missing genes for lactose metabolism in contrast to all
closely related genomes that still carry the genes. We may reasonably infer that
the genes were lost in the lineage leading to Genome A. Suppose we further find
that the organism carrying Genome A has inhabited an environment that is con-
stantly lactose-free (I, as well as some of my Chinese, Finnish and German col-
leagues, would love to have such an environment), then we can infer that genetic
alterations to the lactose-metabolizing genes are essentially neutral for the car-
rier of Genome A, with no functional consequence for losing the gene. Through
a phylogeny-based analysis, we may find that lactose-free environment is strongly
associated with the loss of lactose-metabolizing genes. If we further find that the
set of genes are either strongly conserved in evolutionary lineages requiring lac-
tose metabolism or degraded by accumulated mutations in those living in lactose-
free environment, we can infer that the genes are strongly associated only for the
lactose-metabolizing function. In contrast, if we find that the set of genes are still
strongly conserved in lineages inhabiting lactose-free environment for a long time,
then the genes may have functions other than lactose metabolism.
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What basic knowledge do we need to do research in comparative genomics?
The most fundamental feature of a single genome is its nucleotide sequence, and the
most fundamental feature shared among a set of genomes is coancestry, or shared
homology. These immediately bring into our mind the necessity of sequence-related
computational tools such as sequence alignment and molecular phylogeny. For this
reason, some literacy in computation and mathematics/statistics is assumed.

Much of the comparative genomics is done by genomic comparison against
genomes of model organisms. Consequently, it is of tremendous value to gain a good
understanding of molecular biology of some model organisms such as Escherichia coli,
Bacillus subtilis, Mycoplasma genitalium, Chlamydomonas reinhardtii, Arabidopsis
thaliana, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila mela-
nogaster, Ciona intestinalis, Danio rerio, Takifugu rubripes, Xenopus laevis, Gallus
gallus, Mus musculus and, of course, Homo sapiens. For an evolutionary biologist, it
is a great comfort to see such a diverse array of model organisms, especially for those
who have lived through the bygone era dominated by the dogmatic assertion that
“What is true in E. coli is also true in the elephant”.

What about viruses? Can one do research in comparative genomics of viral
genomes? The main difficulty with viral genomes is that viral lineages are often
so diverse that they do not share any detectable homology. So comparative
genomics is typically limited to closely related lineages such as among differ-
ent subtypes of influenza viruses or among HIV/SIV viruses. However, lack of
homology does not preclude one extremely important aspect of evolutionary stud-
ies, i.e., the study of convergent evolution. Diverse bacteriophage lineages can
parasitize the same host and serve as a fertile ground for studying convergent evo-
lution in response to the same intracellular environment of the host. However, it
is the demonstration of functional equivalence, instead of homology, of the genes
that is at the center of lime light in the study of convergent evolution in compara-
tive viral genomics.

Comparative genomic research should be guided by the conceptual frame-
work of evolutionary biology, so readers are assumed to have read something
Darwinian. There are two most fundamental problems in evolutionary biology.
The first is the origin and maintenance of new features and new species. There is
no better way to address this question than comparative genomics, where the gain
and loss of functional genes, as well as modification of a gene to gain a new func-
tion, can often be unequivocally identified from a set of related genomes. Many
bacterial species are competent in pick up environmental DNA segments and inte-
grate them into their genomes. Some of these DNA segments contain functional
genes, leading to inheritance of the newly “acquired characters” and changes in
subsequent evolutionary trajectories.

The second fundamental problem in evolutionary biology is the establishment
of the links among genotype, phenotype, and environment. The greatest stumbling
block to this line of enquiry has been the characterization of the genotype. This
block is essentially non-existent when we have all the genomes and can character-
ize various aspects of the genotype, e.g., the presence/absence of a set of genes.
We can then use phylogeny-based methods to systematically characterize the
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association between this matrix of genotypes and the matrix of phenotypes or the
matrix of environmental factors.

The diverse genomes we see today did not originate independently, but repre-
sent products of descent with modification. This has fundamental implications on
the methodology in comparative genomics. A good phylogeny is typically required
for any comparative genomic study involving more than two genomes. The reader
is therefore assumed to have gained basic understanding of phylogenetics.

Many examples of comparative genomic research are illustrated throughout
the book. The first chapter includes many small-scale research examples, while
the second chapter is heavy with large-scale studies and their associated statisti-
cal methods, in particular the comparative methods involving both continuous and
discrete variables. The effort to develop phylogeny-based comparative methods
was initiated by Joe Felsenstein and subsequently further developed and promoted
by Paul Harvey and Mark Pagel. I numerically illustrated these methods in such a
way that researchers with basic statistical and programing skills can include these
methods in their programs. It should also facilitate further development of the
methods by people well-versed in stochastic processes. The third chapter presents
frequently used methods for detecting viral recombination.

The comparative approach has gone way beyond biology. For example, social
scientists have characterized “phenotypes” of different forms of government and
how much of the “phenotypic” differences can be attributed to historical iner-
tia and environmental and cultural determinants. From a social biogeographic
point of view, there are two possibilities for why Government Form A (GF,) is
found in Area X but GFj is found in Area Y. First, GF, is “good” for people in
Area X and “bad” for people in Area Y. Likewise, GFg is “good” for people in
AreaY but “bad” for people in Area X. In this case, we should leave these people
alone. Second, GF, is “better” than GF;g in both areas but has never got a chance
to be practised by people in Area Y. In this case, we might try to persuade peo-
ple in Area Y to practise GF,. Phylogeny-based methods can help us discriminate
between the two possibilities, although some politicians and religious leaders have
long settled for the second possibility, i.e., one particular GF or religion is bet-
ter than all alternatives and should be promoted and practised everywhere in the
world.

This book is not on democracy or religion, and is not good for everyone.
In fact, book authors universally acknowledge the truth that a book is never good
for everyone. For this reason, many authors are profusely apologetic in the pref-
ace, although there are also a few courageous ones who simply stated ‘“Please
read the book™. I do not want to be apologetic and obviously do not want to draw
reader’s attention to problems in my book, but feel that I have to list a few things
below just to conform to the convention.

First, this book does not cover all aspects of comparative genomics. In par-
ticular, it does not cover any aspect of genome rearrangement, for three reasons.
First, many books entitled “Comparative Genomics” include extensive cover-
age of genome rearrangement. Second, most genes in eukaryotes and operons in
prokaryotes appear to function well without being constrained by their location in
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the genome. Third, I myself do not work on genome rearrangement, which is my
strongest justification for the omission. I do not think that anyone wants to read a
professional book, or even part of it, written by a layperson.

Second, do not be infuriated when you find your important works not cited in
the book because this book has a mandate to be brief. If you keep up your good
work, readers of the book will discover you sooner or later. You would be a mod-
ern Mendel if you get rediscovered by three separate investigators, which perhaps
is not a bad thing after all.

Third, I am a Chinese, and English is not my mother tongue. If you come
across a grammatical error, please do not immediately shred the book or angrily
demand refund. Let me see if I can squeeze a smile out of you by sharing a little
story of me. The textbook of English during my undergraduate years in China typ-
ically had a list of new English words/phrases and their Chinese equivalents side
by side. “Should” and “to be supposed to”” happened to have the same Chinese
equivalent that means “should”, and I had since considered “should” and “to be
supposed to” as synonymous. Then there came a time when I was doing my gradu-
ate research in a field station with a group of other Canadian students. I typically
would wash dishes because others did the cooking which took much more time
and energy. Once my fellow students suggested that I should share the dishwash-
ing with others, and I wanted to say “I should wash the dishes” because others
did the cooking. But then I thought that “to be supposed to” seemed much more
grandiose than the plain “should”. So I replied that “I am supposed to wash the
dishes”, privately thinking that they would be really impressed by my command of
English. The resulting behaviour of my Canadian fellow students puzzled me for
a whole field season, and I wrote home that “culture shock” was so real and that
Canadians could truly be weird and unpredictable.

I hope that this book will not create many “weird and unpredictable” readers.



Acknowledgments

An experienced publisher once pointed me to a few examples of “effective use” of
acknowledgment, each with an impressive list of well-known scientists, tactfully
acknowledged to boost the reputation of the book author. The practice reminded
me of some recent scientific conferences each with a list of 8—11 Nobel laureates
as session chairs or keynote speakers. A journal would not have legitimacy if it
does not have a list of silverbacks in the editorial board, even though some of the
silverbacks are never involved in the manuscript-screening process. A person’s
worth is often evaluated by the number of “like” in social networks. We are enter-
ing a world in which a masterpiece in art is no longer evaluated on its own merit,
but on whether it features gold-plated frame or displayed in a prominent location
in a museum or gallery!

Should I mould a few famous names into a gold-plated frame for my limited
painting of comparative genomics? I did have the good fortune of being associated
with a number of silverbacks. Some helped me to switch to molecular evolution
and phylogenetics when I was forced to switch fields because of severe allergies
toward rodents that I used to study. Some offered me their books as gifts that
inspired me and cultivated in my mind a strong desire to produce something simi-
lar. Some donated their previous field data or bacterial strains that led to results
included in this book. Some have commented much of the book and corrected
errors in the second chapter of this book. However, there are also little known peo-
ple, but much greater in number, who have helped me and supported me in vari-
ous ways during the writing process. If the “effective use” of Acknowledgement
implies the exclusion of little known names, then let me engrave all these names in
my heart without mentioning any here. I think that they would all like it this way.

But some explicit acknowledgments are absolutely essential—there would
be serious repercussions if I did not. Scientists, just as religious monks, need
patronage to carry out their daily routines and rituals. Without generous patron-
age, there would be neither religious freedom nor academic freedom. So here
goes my acknowledgment to funding agencies: NSERC (Discovery Grant) and
CAS/SAFEA (International Partnership Program for Creative Research Teams).
While the money has never been sufficient for research, it is perhaps worth as
much as a gold-plated frame for decorating the book.

ix



X Acknowledgments

I should also thank Evelyn Best who encouraged me to write this book as an
expansion of a previous book chapter. I was initially reluctant because the word
“expansion” reminds me of software bloating. To paraphrase Joe Armstrong
(creator of Erlang), when a reader asks for only a banana, should I give him a
gorilla holding a banana or even an entire jungle? However, I soon realized that
the banana alone does not make a healthy meal. Hence this book, with some addi-
tional berries, but no gorilla or jungle in it.

My limited command of the English language becomes particularly acute when
I come to express my appreciation for my wife (Zheng) and my children. They are
a miracle to me. The arrow of time has brought so much wonderful transforma-
tion to our little ones and created so many memorable moments. By just looking
at them, I am convinced that the world after me will be much nicer, gentler, and
smarter. May they grow up and enjoy reading this book!



Contents

1 What is Comparative Genomics? ..............................
Genomic Comparison Between Helicobacter pylori and its Relatives. . . .
Problems and Hypotheses . .......... .. ... ... . i,
Testing the Hypotheses by Comparative Genomics. . ............
Genomic Comparison Between HIV-1 and HTLV-1..................
Genomic Comparison Among Mycoplasma Species . ................
Genomic Comparison to Characterize Changes in tRNA
and Codon-Anticodon Adaptation. . . ............... ...,
The Met Codon Family ........... ... .. . ... .. . ......
UGA Codon, CGN Codon for Arg and the Expanded
Wobble Hypothesis ........... . .. i
Genomic Strand Asymmetry and Genome Replication ...............

2 Comparative Genomics and the Comparative Methods . . . .........

The Comparative Method for Continuous Characters. .. ..............

The Necessity of Phylogeny-Based Comparative Method. . . ... ...

Computing the Independent Contrasts. .. .....................

The Comparative Methods for Discrete Characters ..................
Studying Variables Individually: Detecting Genes that Tend

to be Laterally Transferred. . ................ ... .. .........

Studying Association Between Variables. .....................

Multiple Comparisons and the Method of False Discovery Rate . . ... ...

POSESCIIPL. . o o

xi


http://dx.doi.org/10.1007/978-3-642-37146-2_1
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec1
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec2
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec3
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec4
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec5
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec6
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec6
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec7
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec8
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec8
http://dx.doi.org/10.1007/978-3-642-37146-2_1#Sec9
http://dx.doi.org/10.1007/978-3-642-37146-2_2
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec1
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec2
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec3
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec4
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec5
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec5
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec6
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec7
http://dx.doi.org/10.1007/978-3-642-37146-2_2#Sec8
http://dx.doi.org/10.1007/978-3-642-37146-2_3
http://dx.doi.org/10.1007/978-3-642-37146-2_3#Sec1
http://dx.doi.org/10.1007/978-3-642-37146-2_3#Sec2

Chapter 1
What is Comparative Genomics?

Some scientists are visionary and can envision the theoretical foundation and
experimental methodology of a new branch of science long before it takes any
concrete shape. However, most scientists are just classifiers. When they see col-
leagues engage in novel activities such as catching flies, killing mice, chasing
elephants in Africa and mounting whale specimen for museums, they would cre-
ate a container labelled “zoology” and dump all these activities into it. Similarly,
all those activities such as climbing trees, picking flowers, growing Arabidopsis
thaliana and maintaining greenhouses are boxed together as botany. One former
colleague of mine claimed that the only exception to this naming convension
involves those studies of feces in hospitals—they are lumped together as microbi-
ology instead of a potentially more descriptive name.

Then what is comparative genomics? Following the convention of classifica-
tion, we simply define comparative genomics as the collection of all research
activities that derive biological insights by comparing genomic features.
A genome has many features such as the genomic sequence, strand asymmetry,
genes, gene order, regulatory sequences, genomic structural landmarks that can be
recognized or modified by cellular components with functional implications, etc.
Comparative genomics is a branch of genomics that aims to (1) characterize the
similarity and differences in genomic features and trace their origin, change and
loss along different evolutionary lineages, (2) understand the evolutionary forces
such as mutation, recombination, lateral gene transfer, and selection (mediated by
abiotic environment such as temperature, food, and pH and biotic factors such as
host, parasite, and competitors) that govern the changes of these genomic features,
and (3) find out how genomic evolution can help us battle diseases by developing
personalized medicine, improve environmental health, restore sustainable devel-
opment, etc.

The development of comparative genomics predates the availability of genomic
sequences. It has long been known that organisms are genetically related, with
many homologous genes sharing similar functions among diverse organisms.

X. Xia, Comparative Genomics, SpringerBriefs in Genetics, 1
DOI: 10.1007/978-3-642-37146-2_1, © The Author(s) 2013
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For example, the yeast /IRA2 gene is homologous to the human NFI gene, and
the functional equivalence of the two genes was demonstrated by the yeast /RA2
mutant being rescued by the human NFI gene (Ballester et al. 1990). This sug-
gests the possibility that simple genomes can be used as a model to study compli-
cated genomes. A multitude of such demonstrations of functional equivalence of
homologous genes across diverse organisms has led to the dogmatic assertion that
what is true in E. coli is also true in the elephant (attributed to Jacques Monod,
Jacob 1988, p. 290).

It is the realization that what is true in E. coli is often not true in the elephant
that has brought comparative genomics into the proper evolutionary context with
the concept of phylogenetic controls. This is best illustrated by a simple example.
Suppose we compare two Dodge Caravans (DCs) that are similar in functional-
ity except that DCy warns the driver when it is backing towards an object behind
the car while DC; does not. What is the structural basis of this warning function?
Nearly all structural elements in DC; have their “homologues” in DC, except
for the four sensors on the rear bumper of DCj. This would lead us to quickly
hypothesize that the four sensors are associated with the warning function, which
turns out to be true. Now if we replace DC, with a baby stroller, then the com-
parison will be quite difficult because a stroller and a DC differ structurally in
numerous ways and any structural difference could be responsible for the warn-
ing function. We may mistakenly hypothesize that the rear lights or the rear win-
dow defroster in DCy, which are all missing in the stroller, may be responsible for
the warning function. To test the hypotheses, we would destroy the rear lights, the
rear window defroster, etc., one by one, but will get nothing but negative results.
What could be even worse is that, when destroying the rear lights, we acciden-
tally destroy a part of the electric system in such a way that the warning func-
tion is lost, which would mislead us to conclude that the rear lights are indeed
part of the structural basis responsible for the warning function—an “experimen-
tally substantiated” yet wrong conclusion. A claim that what is true in E. coli is
also true in the elephant is equivalent to a claim that what is true in a stroller is
also true in a DC. It will take comparative genomics out of its proper conceptual
framework in evolutionary biology and render it inefficient to address biological
questions.

Let’s take a biologically more relevant example involving Shigella flexneri
and E. coli (Sansonetti et al. 1982a, b). Shigella strains cause shigellosis,
whereas strains of Escherichia coli are generally avirulent. What is respon-
sible for the difference? Nuclear genomes are similar between Shigella and
E. coli, which led scientists to focus on a plasmid that is present in the patho-
genic Shigella strains but absent in the avirulent E. coli strains. The pathogenic
Shigella strains become avirulent when the plasmid is taken away, and originally
avirulent strains of E. coli gains virulence after acquiring the plasmid. This led
quickly to the conclusion that the plasmid is largely responsible for shigellosis.
Had one compared between S. flexneri and Saccharomyces cerevisiae, one would
need to hypothesize that any one of the thousands of genes in S. cerevisiae not
shared by S. flexneri could be a causal factor. Filtering through these thousands
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of possibilities would take forever even if we do not consider gene combinations
as causal factors.

In this chapter I will detail a few typical comparative genomic studies so that
we can develop an intuitive appreciation of what is hidden in the box labelled
“comparative genomics”. These studies involve biological problems that can be
addressed by comparing two genomics as well as problems that would require
more than two genomes to reach a solution. The similarities among these studies
are summarized at the end to highlight essential elements in a comparative genom-
ics study.

Genomic Comparison Between Helicobacter pylori and its
Relatives

Problems and Hypotheses

Helicobacter pylori is a human pathogen causing gastric and duodenal ulcers
and gastric cancer (Hamajima et al. 2004; Hunt 2004; Menaker et al. 2004;
Siavoshi et al. 2004). It is an acid-resistant neutralophile (Bauerfeind et al. 1997;
Rektorschek et al. 2000; Sachs et al. 1996; Scott et al. 2002) capable of surviv-
ing for at least 3 h at pH = 1 with urea (Stingl et al. 2001) and maintaining a
nearly neutral cytoplasmic pH between pH 3.0 and 7.0 (Matin et al. 1996; Scott
et al. 2002). In the presence of urea, H. pylori can accomplish its cytoplasmic pH
homeostasis down to an external pH of 1.2 (Stingl et al. 2002b). These properties
allow it to survive and reproduce in the human stomach where the gastric fluid
has a pH averaging about 1.4 over a 24-h period (Sachs et al. 2003).

The buffering action of the gastric epithelium and limited acid diffusion
through the gastric mucus were previously thought to protect the bacterium against
stomach acidity, but both empirical studies (Allen et al. 1993) and theoretical
modeling (Engel et al. 1984) have suggested that the protection is rather limited
(Matin et al. 1996; Sachs 2003 #14944). Recently it has also been shown that
mucus does not hinder proton diffusion and a trans-mucus pH gradient is abol-
ished when the luminal pH drops to <2.5 (Baumgartner and Montrose 2004). It is
therefore necessary for H. pylori to have acid-resisting mechanisms to colonize the
gastric mucosa successfully (Sachs et al. 2003).

H. pylori has evolved two mechanisms protecting itself against the acidic
environment in the mammalian stomach. The first, schematically illustrated
in Fig. 1.1, involves the urease gene cluster ureABIEFGH. The constitutively
expressed cytoplasmic urease consists of four heterodimer each with two subunits
coded by ureA and ureB, respectively. It catalyzes urea to generate 2NH3z + CO»
to buffer against the HT influx into either the periplasm or the cytoplasm (Mobley
et al. 1991; Rektorschek et al. 2000; Sachs et al. 2003; Stingl et al. 2002a)
and to facilitate the extrusion of H* from the cytoplasm in the form of NHy™
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(Stingl et al. 2002a). However, urease is an apoenzyme requiring a nickel to
be active. The ureEFGH gene cluster, whose expression is acid-induced, codes
for nickel-sequestrating proteins that insert nickel into the urease, leading to
increased and sustained urease activity (Sachs et al. 2003; Wen et al. 2003;
Williams et al. 1996).

The urease, once activated, naturally needs a constant supply of urea as its sub-
strate, and the cell has two sources of urea supply, one intrinsic and one extrinsic
(Fig. 1.1). The extrinsic source refers to urea present in saliva and stomach fluid.
The exposure of H. pylori to gastric acid results in a large increase in urea influx
into the cell due to the pH-gating of the urea channel protein Urel (Bury-Mone
et al. 2001; Weeks et al. 2000). The intrinsic source comes from efficient conver-
sion of arginine to urea in the cytoplasm by the highly expressed arginase in H.
pylori (Mendz and Hazell 1996). For this reason, arginine is underused, but lysine
is overused, in H. pylori proteins (Xia and Palidwor 2005).

The second acid-resistant mechanism in H. pylori is the restriction of acute pro-
ton entry across its membranes by having a high frequency of positively charged
amino acids and consequent high pl (isoelectric point) values in the inner and
outer membrane proteins (Sachs et al. 2003; Scott et al. 1998; Valenzuela et al.
2003). This is supported by recent discovery of a basic proteome (Tomb et al.
1997), a set of basic membrane proteins (Baik et al. 2004) in H. pylori, and an
extensive genomic analysis (Xia and Palidwor 2005) testing the adaptation, pre-
adaptation and exaptation hypotheses concerning the overuse of lysine residues in
H. pylori proteins. The mechanism gained functional importance after the discov-
ery that urease-negative H. pylori can colonize the acidic gastric environment and
cause gastric ulcers in Mongolian gerbils (Mine et al. 2005).

Stomach fluid:
Extrinsic source
of urea

Arginine+arginase:

Intrinsic source .
Ammonia
of urea

ureAB-I-EFGH

Fig. 1.1 Schematic illustration of the acid-resistance mechanisms in H. pylori mediated by
genes in the urease gene cluster ureAB-I-EFGH
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Given that H. pylori has many Lys-rich proteins with high pl values relative
to other bacterial species that do not live in acidic environment, one is naturally
tempted to conclude that the high pl values in the H. pylori proteins represent an
adaptation to the acidic environment. However, there are at least four possible
hypotheses for the origin of the basic proteome in H. pylori (Xia 2007a, Chap. 10).

The first hypothesis states that H. pylori would benefit from positively charged
proteins (especially membrane proteins) to alleviate the influx of H* into cyto-
plasm. This hypothesis is known as the acid-adaptation hypothesis (Xia and
Palidwor 2005), i.e., H. pylori acquired its high-pl proteins as an adaptation in
response to selection imposed by the acidic environment.

The second hypothesis argues that parasitic bacterial genomes typically
evolve towards AT-richness because spontaneous mutations are generally
AT-biased according to comparisons between pseudogenes and their functional
counterparts (Gojobori et al. 1982; Li 1983; Li et al. 1981) and the discovery
of the prevalence of spontaneous C — T/U deamination (Frederico et al. 1990,
1993; Lindahl 1993). All known parasitic bacterial genomes are AT-rich. H.
pylori has a relatively AT-rich genome, e.g., the genomic GC% of H. pylori
26695 is only 38 %, in contrast to the genomic GC% of 50 % in E. coli sub-
stt DH10B. The AT-richness would lead to an increase in A-rich codons such
as the lysine codon AAA and AAG and a consequent increase in lysine usage
and protein pl. Because H. pylori and its sibling species are all parasites, their
most recent common ancestor might have already practiced parasitism, acquired
AT-richness and increased frequency of lysine codons before it became a par-
asite in the mammalian stomach. Therefore, an overrepresentation of lysine
residues in its proteins, if beneficial for acid-resistance, would represent an
exaptation, i.e., the process in which an originally neutral trait has subsequently
acquired a beneficial function. A well known example of exaptation is the brain-
specific RNA gene BC200 resulting from the exaptation of a presumably neutral
SINE repeat (Smit 1999).

The third hypothesis states that nucleotide C is rare in eukaryotic cells and a
eukaryotic parasite should therefore minimize the usage of C as a building block
for its RNA and DNA. CTP concentration is much lower than the other three
nucleotides chick fibroblast cells (Colby and Edlin 1970) and in mouse 3T3 cells
(Weber and Edlin 1971), suggesting the generality of C limitation. Consistent with
the suggestion, the protozoan parasite, Trypanosoma brucei, maintains its de novo
synthesis pathway for CTP and inhibiting its CTP synthetase effectively eradicates
the parasite population in the host (Hofer et al. 2001). In contrast, the parasite does
not have de novo synthesis pathways for purines, suggesting that the parasite can
obtain the purines by its salvage pathway. This suggests that little CTP can be sal-
vaged from the host. The relevance of these observations is highlighted by the fact
that H. pylori maintains an active biosynthesis pathway, and a much less active
salvage pathway, for pyrimidine nucleotides (Mendz et al. 1994). Thus, it might
be evolutionarily beneficial for a mammalian parasite or symbiont to minimize the
use of CTP in its DNA in building its genomes and in transcription (Rocha and
Danchin 2002; Xia 1996).
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Minimizing C in an organism with a DNA genome has the necessary conse-
quence of reduced G, with a consequent increase in A and T. This will also con-
tribute to increase AT and increased lysine codon. Thus, lysine overuse represents
a secondary consequence of an adaptation to a C-rare environment, but it predis-
posed the organism to tolerate an acidic environment. Such a mechanism is called
preadaptation, i.e., a trait originally selected for one function but that subsequently
gained a different function beneficial to the carrier of the trait. An often cited
example of preadaptation is the rudimentary feather that presumably has been
selected for thermoregulation in nonavian dinosaurs but preadapted their carriers
to subsequent evolution of flight.

The fourth hypothesis is more complicated. A protein in a solution with a pH
equal to the protein plI is not charged. If highly expressed proteins happen to have
their pI equal to the cytoplasmic pH, then there is no electrostatic repulsion among
these proteins when they are mass-produced. Such proteins will have low solubil-
ity and tend to aggregate and precipitate, which is often harmful to the cell. The
“amyloid precursor protein” causing Alzheimer disease and the prion protein caus-
ing the mad cow disease are examples of the undesirable protein aggregation and
precipitation. Take E. coli for example. Its intestinal environment has pH close to
9 and it can maintain its optimal growth at external pH as high as 8.8 (Zilberstein
et al. 1980, 1982). Its intracellular pH is regulated in the range of 7.4-7.8 at external
pH range of 5.5-9 (Slonczewski et al. 1981). Thus, in its intestinal environment, its
internal pH should be around 7.8 and we should expect E. coli to avoid having pro-
teins with their pl values around 7.8. This is true (Fig. 1.2). Avoiding proteins with
pl equal to intracellular pH appears to be universal among unicellular organisms.

s K12 ——— J99

Percentage of proteins
S

3 4 5 6 7 8 9 10 1 12 13

Fig. 1.2 Genomic pl profiling for E. coli K12 and H. pylori J99
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Given the avoidance of proteins with pl equal to intracellular pH, we would
expect mass-produced proteins in the gastric H. pylori, whose intracellular pH is
around 5, to avoid having pl & 5. This prediction is substantiated (Fig. 1.2). The
pronounced peak of proteins with pl in the range of 4-6 in E. coli is missing in H.
pylori. Instead, proteins with pl in the range of 10-11 are over-represented in H.
pylori (Fig. 1.2)

One might ask why H. pylori proteins cannot lower their pl to the range of
0-3 to avoid precipitation. This would be practically difficult because the proteins
would require an excessively large number of GAN to code for Glu and Asp. It is
extremely rare to have proteins with a pI smaller than 3.

Testing the Hypotheses by Comparative Genomics

The first three hypotheses have been tested before and the second and third
hypotheses were found to be inconsistent with the empirical data (Xia and
Palidwor 2005). Here we illustrate how to discriminate between the first and the
last hypothesis, i.e., whether the increase in protein pl is for alleviating the influx
of protons, referred hereafter as AAH (acidity adaptation hypothesis), or for avoid-
ing protein precipitation, referred to hereafter as precipitation avoidance hypoth-
esis (PAH).

The two hypotheses have different predictions. AAH predicts that it is those
membrane proteins that tend to gain a higher pl. In contrast, PAH predicts that
the overrepresentation of the high-pl proteins in H. pylori is due to the necessity
of mass-produced proteins to have their pl shifting away from the cytoplasmic pH
to avoid protein precipitation. Specifically, the shifting of the pl distribution to the
right in Fig. 1.2 is due to mass-produced proteins increasing their pl to shift their
pl away from the cytoplasmic pH.

To test the AAH prediction, one needs to separate proteins into membrane pro-
teins and cytoplasmic proteins. The main difficulty is that membrane proteins are
difficult to separate and identify and only 34 membrane proteins have been identi-
fied in H. pylori (Baik et al. 2004). These proteins do exhibit a significantly higher
pI than the rest of the H. pylori proteins (Xia and Palidwor 2005). Furthermore,
one can use an excellent bioinformatic tool, pSort (Gardy et al. 2003; Nakai and
Horton 1999), for protein cellular localization. Those proteins identified to be
localized in cytoplasmic membrane, outer membrane and periplasmic space
all have their mean pl values highly significantly higher than those localized in
cytoplasm.

Are these results in favor of AAH? Not necessarily. Although AAH predicts
that membrane proteins with a high pl would contribute to a positively charged
shell alleviating the influx of protons into the cell, the result cannot be claimed to
support, or even be consistent with, AAH. The reason is that membrane proteins in
general have higher plI than cytoplasmic proteins, even for bacterial species that do
not live in an acidic environment. What is important is to find bacterial species that
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are phylogenetically closely related to H. pylori, but do not exhibit acid resistance.
Such species could be H. hepaticus or Campylobacter species, and are gener-
ally referred to as phylogenetic controls (because they and H. pylori were identi-
cal when we trace them back in time to their common ancestor). If we can find
such pairs of sister species, with one living in acidic environment and the other
not, and if we consistently find the former to have significantly elevated pl in their
membrane proteins than the latter, then we can claim that the result supports, or at
least is consistent with, the prediction of AAH. What is exciting about compara-
tive genomics today is that, once we are equipped with the conceptual framework
above, it takes only a few hours to complete the analysis by using publicly avail-
able genomic databases and software packages such as DAMBE (Xia 2001; Xia
and Xie 2001). The empirical result, as you can verify by yourself, is consistent
with the prediction of AAH. Both H. pylori and H. hepaticus have their membrane
proteins with significantly high pI than cytoplasmic proteins, but the difference is
much greater in H. pylori than in H. hepaticus.

Testing the prediction of PAH (i.e., mass-produced H. pylori proteins should
evolve to have increased pl values away from cytoplasmic pH around 5) seems
straightforward at first. We need to obtain pl and protein expression for each
gene. Although we do not have reliable protein expression data in H. pylori at the
moment, the difficulty can somewhat overcome by using indices of codon usage
bias as a proxy of gene expression (Xia 1998a, 2007b, 2008). Similarly, although
we do not have experimentally determined pl for each protein, theoretically
derived pl based on amino acid composition (Xia 2007a, pp. 207-212) represents
a good approximation. Now suppose we have protein pl and protein expres-
sion (designated by E). It seems that the prediction of PAH can be reduced to a
statement that pl and E are positively correlated because high-E proteins should
increase their pl away from the cytoplasmic pH. Is this inference correct? Now
suppose you found that pI and E are indeed positively correlated, will you con-
clude that PAH is supported? Alternatively, if you found pl and E are negatively
correlated, will you reject PAH?

It turns out that you cannot say much about PAH based on the correlation
between pl and E. A positive correlation is expected if the data include many
highly expressed DNA-binding or RNA-binding proteins because these proteins
all tend to have a DNA/RNA-binding domain which is rich in positively charged
amino acids (Recall that the backbone of RNA and DNA are negatively charged
and a positively charged protein domain facilitates the binding to RNA and DNA).
This would result in a positive correlation between pl and E which has nothing to
do with PAH.

You may also get a negative correlation between pl and E for the following
reason. Differences in pl among proteins mainly depend on the relative number
of the strongly acidic amino acid residues such as Asp, and Glu and the strongly
basic amino acid residues such as Arg, Lys, and His. The positively charged amino
acids, however, are generally more energetically expensive to make in bacte-
rial species (Akashi and Gojobori 2002). For example, the total high-energy ~P
required to make Asp and Glu are 12.7 and 15.3, respectively, which are quite
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close to the cost of making the smallest amino acids Gly and Ala. In contrast, the
energetic costs for making His, Lys and Arg are 38.3, 30.3 and 27.3, respectively.
Highly expressed proteins tend to use cheap amino acids and avoid the expensive
Arg, Lys and His in almost all bacterial species, resulting in highly expressed pro-
teins (except for those ribosomal proteins) to have a low pI and a consequent nega-
tive correlation between pl and E. Thus, a negative correlation between pl and E
again could have nothing to do with PAH.

Thus, to properly test the prediction of PAH, comparative genomics involv-
ing sister species (e.g., between H. pylori and H. hepaticus) is again neces-
sary. Suppose we found 500 H. hepaticus proteins that have pl around 5 and are
homologous to those in H. pylori. Also suppose that, among the 500 proteins,
200 of them are highly expressed and 200 are lowly expressed. If the 200 highly
expressed proteins in H. pylori have all shifted their pI away from the cytoplas-
mic pH of about 5, whereas the 200 lowly expressed proteins have their pI hardly
changed relative to their H. hepaticus homologues, then we can claim that result is
consistent with PAH. Of course, this represents only one of possible ways to test
the prediction from PAH.

Genomic Comparison Between HIV-1 and HTLV-1

Because viruses use the host translational machinery to translate their own mRNA,
their codon usage is under selective pressure to adapt to the host tRNA pool
(Sharp and Li 1987). In RNA viruses in general and Human Immunodeficiency
Virus 1 (HIV-1) in particular, adaptation to the host is poor despite this selection
(Babhir et al. 2009; van Weringh et al. 2011), in contrast to the codon-anticodon
adaptation documented in bacterial genomes (Gouy and Gautier 1982; Tkemura
1981a, 1992; Xia 1998a) as well as in mitochondrial genomes in vertebrates (Xia
2005; Xia et al. 2007) and fungi (Carullo and Xia 2008; Xia 2008). For exam-
ple, according to a recent compilation of tRNAs in human genome (Chan and
Lowe 2009), the AUC codon can be translated by 17 tRNAle species, i.e., 14
tRNATIAU and 3 t(RNAIC/GAU AUU can be translated by 14 tRNATIAU gpecies,
whereas AUA can be translated by only 5 tRNAI®UAU gpecies. In agreement with
this, human genes code Ile mostly by AUC and least by AUA. In contrast, HIV-1
genes code Ile mostly by AUA and least by AUC (Haas et al. 1996; Nakamura et
al. 2000). The poor codon adaptation of HIV-1 reduces the translation efficiency
of HIV-1 genes. Modifying HIV-1 codon usage according to host codon usage
has been shown to increase the production of viral proteins (Haas et al. 1996;
Ngumbela et al. 2008).

The A-biased mutation hypothesis has been proposed to explain the poor con-
cordance between HIV-1 and host codon usage (Jenkins and Holmes 2003). The
A-bias is mediated by the error prone reverse transcriptase (Martinez et al. 1994;
Vartanian et al. 2002) and the human APOBEC3 protein (Yu et al. 2004). The fre-
quency of A can reach up to 40 % in some HIV-1 genomes (Vartanian et al. 2002),
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resulting in a preponderance of A-ending codons which are typically rarely used
in the host genes (Kypr and Mrazek 1987; Sharp 1986). While there have been
claims that the A-richness in a parasitic or symbiotic genome may confer some
selective advantage (Keating et al. 2009; Xia 1996), further empirical substantia-
tion is required. In short, although avoiding A-ending codons will lead to better
codon-anticodon adaptation, strongly A-biased mutations lead to an over-represen-
tation of A-ending codons in HIV-1 genes, disrupting codon-anticodon adaptation.

How can we test this mutation hypothesis? If we can find pairs of sister species
that differ much in mutation rate, then we can test the hypothesis by checking if
the species with higher mutation rate tend to have poorer codon-anticodon adapta-
tion than its sister species with lower mutation rate. HTLV-1 could serve as a sister
species for the HIV/SIV lineage. Both HTLV-1 and HIV-1 are retroviruses with
RNA genomes and both infect the same type of host cell, i.e., human CD4 + T
cells (Rimsky et al. 1988). The two viruses are therefore subject to the same selec-
tive pressures on codon usage by the host tRNA pool. However, HTLV-1 is excep-
tional in that it does not have a strong A-biased mutation spectrum (Van Dooren
et al. 2004; van Hemert and Berkhout 1995). HTLV-1 relies for the most part on
the host polymerase to replicate through clonal expansion of infected cells rather
than undergoing iterative replication cycles like HIV-1 (Strebel 2005). The sub-
stitution rate of HTLV-1 is consequently lower, about 5.2 x 10~ substitutions/
site/year (Hanada et al. 2004; Van Dooren et al. 2004), in contrast to that of HI'V-1
at 2.5 x 1073 substitutions/site/year (Hanada et al. 2004). Codon-anticodon adap-
tation is less likely to be disrupted by mutation in HTLV-1 than in HIV-1. Thus
we predict that HTLV-1 coding sequences should exhibit better codon-anticodon
adaptation.

Codon-anticodon adaptation can be measured by the correlation in RSCU
(Sharp and Li 1987) between the host and the parasite. RSCU is a normalized
index of codon usage (Sharp and Li 1987). It has a value of zero for unused syn-
onymous codons, a value of one for equally used synonymous codons and a max-
imum of n, where n is the number of synonymous codons in the codon family.
Thus, the prediction of the mutation hypothesis is that the correlation in RSCU
between human and HTLV-1 genes should be greater than that between human
and HIV-1 genes.

The correlation in RSCU between human and HIV-1 genes is poor (Pearson
r= —0.1470, p = 0.2665; Spearman r = 0.1829, p = 0.1657). In contrast, the pos-
itive correlation in RSCU between HTLV-1 and human genes is highly significant
(Pearson r = 0.4982, p < 0.0001, Spearman r = 0.4688, p = 0.0002). Such results
are consistent with the mutation hypothesis.

The real scenario of codon-anticodon adaptation in HIV-1 is much more com-
plicated, of course. In particular, the early gene and late genes in HIV-1 may be
translated in different tRNA pools and subject to different selection for codon-
anticodon adaptation (van Weringh et al. 2011). HIV-1 has recently been shown to
package non-lysyl tRNAs in addition to the tRNAS needed for priming reverse-
transcription and integration of the HIV-1 genome. In particular, tRNAs decoding
A-ending codons, required for the expression of HIV’s A-rich genome, are highly
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enriched. Because the affinity of Gag-Pol for all tRNAs is non-specific, HIV
packaging is most likely passive and reflects the tRNA pool at the time of viral
particle formation. Codon usage of HIV-1 early genes is similar to that of highly
expressed host genes, but codon usage of HIV-1 late genes were better adapted
to the selectively enriched tRNA pool, suggesting that alterations in the tRNA
pool are induced late in viral infection. If HIV-1 genes are adapting to an altered
tRNA pool, codon adaptation of HIV-1 may be better than previously thought (van
Weringh et al. 2011).

Genomic Comparison Among Mycoplasma Species

CpG deficiency has been documented in a large number of genomes covering a
wide taxonomic distribution (Cardon et al. 1994; Josse et al. 1961; Karlin and
Burge 1995; Karlin and Mrazek 1996; Nussinov 1984). DNA methylation is one
of the many hypotheses proposed to explain differential CpG deficiency in differ-
ent genomes (Bestor and Coxon 1993; Rideout et al. 1990; Sved and Bird 1990).
It features a plausible mechanism as follows. Methyltransferases in many species,
especially those in vertebrates, appear to methylate specifically the cytosine in
CpG dinucleotides, and the methylated cytosine is prone to mutate to thymine by
spontaneous deamination (Frederico et al. 1990; Lindahl 1993). This implies that
CpG would gradually decay into TpG and CpA, leading to CpG deficiency and
reduced genomic GC%. Different genomes may differ in CpG deficiency because
they differ in methylation activities, with genomes having high methylation activi-
ties exhibiting stronger CpG deficiency than genomes with little or no methylation
activity.

In spite of its plausibility, the methylation-deamination hypothesis has several
major empirical difficulties (Cardon et al. 1994), especially in recent years with
genome-based analysis (Goto et al. 2000). For example, Mycoplasma genitalium
does not seem to have any methyltransferase and exhibits no methylation activity,
yet its genome shows a severe CpG deficiency. Therefore, the CpG deficiency in
M. genitalium, according to the critics of the methylation-deamination hypothesis,
must be due to factors other than DNA methylation.

A related species, M. pneumoniae, also devoid of any DNA methyltransferase,
has a genome that is not deficient in CpG. Given the difference in CpG deficiency
between the two Mycoplasma species, the methylation hypothesis would have pre-
dicted that the M. genitalium genome is more methylated than the M. pneumoniae
genome, which is not true as neither has a methyltransferase. Thus, the methyla-
tion hypothesis does not seem to have any explanatory power to account for the
variation in CpG deficiency, at least in the Mycoplasma species.

These criticisms are derived from phylogeny-free reasoning. When phy-
logeny-based comparisons are made, the Mpycoplasma genomes become
quite consistent with the methylation hypothesis (Xia 2003). First, several
lines of evidence suggest that the common ancestor of M. genitalium and
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M. pneumoniae have methyltransferases methylating C in CpG dinucleotides,
and should have evolved strong CpG deficiency and low genomic GC% as a
result of the specific DNA methylation. Methylated m>C exists in the DNA of
a close relative, Mycoplasma hyorhinis (Razin and Razin 1980), suggesting the
existence of methyltransferases in M. hyorhinis. Methyltransferases are also
present in Mycoplasma pulmonis which contains at least four CpG-specific
methyltransferase genes (Chambaud et al. 2001). Methyltransferases are also
found in all surveyed species of a related genus, Spiroplasma (Nur et al. 1985).
These lines of evidence suggest that methyltransferases are present in the
ancestors of M. genitalium and M. pneumoniae.

Second, the methyltransferase-encoding M. pulmonis genome is even more defi-
cient in CpG and lower in genomic GC% than M. genitalium or M. pneumoniae,
consistent with the methylation hypothesis (Fig. 1.3). It is now easy to understand
that, after the loss of methyltransferase in the ancestor of M. genitalium and M.
pneumoniae (Fig. 1.3), both genomes would begin to accumulate CpG dinucleo-
tides and increase their genomic GC%. However, the evolutionary rate is much
faster in M. pneumoniae than in M. genitanlium based on the comparison of a
large number of protein-coding genes (Xia 2003). So M. pneumoniae regained
CpG dinucleotide and genomic GC% much faster than M. genitalium. In short,
the Mycoplasma data that originally seem to contradict the methylation hypothesis
actually provide strong support for the methylation hypothesis when phylogeny-
based genomic comparisons are made.

One might note that Ureaplasma urealyticum in Fig. 1.3 is not deficient in CpG
because its Pcpc/(PcPg) ratio is close to 1, yet its genomic GC% is the lowest.
Has its low genomic GC% resulted from CpG-specific DNA methylation? If yes,
then why doesn’t the genome exhibit CpG deficiency? It turns out that U. urealyti-
cum has C-specific, but not CpG-specific, methyltransferase, i.e., the genome of
U. urealyticum is therefore expected to have low CG % (because of the methyla-
tion-mediated C — T mutation) but not a low Pcpc/(PcPg) ratio. The methyltrans-
ferase gene from U. urealyticum is not homologous to that from M. pulmonis.

Loss of methyltransferase gene
Methylation Py c/(PcPg) GC%

i M. p i - 0.8186 40.0
Yt
"\
M. genitalium - 0.3875 31.7
— M. pulmoni + 0.2815 26.6
U. urealyticum + 0.8829 25.5

Fig. 1.3 Phylogenetic tree of Mycoplasma pneumoniae, M. genitalium, and their relatives,
together with the presence (4) or absence (—) of CpG-specific methylation, PCpG/(PCPG) as a
measure of CpG deficiency, and genomic GC%. M. pneumoniae evolves faster and has a longer
branch than M. genitalium
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We have seen how phylogeny can help us in evolutionary inference, and most
comparative genomic studies represent phylogeny-based inference. It is appropri-
ate here to introduce a few phylogeny-related terms. Most published phylogenies
are build from molecular sequence data, i.e., multiple alignment of homologous
sequences. Sequence similarity can arise in two ways, one from convergence (i.e.,
similarity gained from independent evolution), and the other from coancestry.
Coancestral sequences are homologous, and can be divided into orthologous and
paralogous sequences. Two or more duplicated genes within one genome repre-
sent a special form of homology and are termed paralogous genes. Two or more
homologous genes that are related by inheritance are orthologous. Genes acquired
through horizontal gene transfer are neither orthologous nor paralogous. Species
phylogeny ideally should be built only from orthologous genes.

Genomic Comparison to Characterize Changes in tRNA
and Codon-Anticodon Adaptation

Ever since the empirical documentation of the correlation between codon usage
and tRNA abundance (Ikemura 1981a, b, 1982, 1992), studies on codon-anticodon
adaptation have progressed in theoretical elaboration (Bulmer 1987, 1991; Higgs
and Ran 2008; Jia and Higgs 2008; Palidwor et al. 2010; Xia 1998a, 2008), in
critical tests of alternative theoretical predictions (Carullo and Xia 2008; Plotkin
and Kudla 2010; Plotkin et al. 2004; van Weringh et al. 2011; Xia 1996, 2005)
and in formulation and improvement of various codon usage indices to character-
ize codon usage bias (Sharp and Li 1987; Wright 1990; Xia 2007b). Here I present
two examples in which a gain/loss of a tRNA gene or a change in genetic code
lead to significant changes in codon usage.

The Met Codon Family

An evolutionary change in tRNA composition or relative abundance is expected to
alter codon-anticodon adaptation. This is not controversial theoretically. However, how
fast can an alternation in tRNA lead to consequent changes in codon-anticodon adapta-
tion? Can the cause-effect relationship be demonstrated with empirical data? Changes
in tRNAM® genes (where Met is the amino acid carried by the tRNA) in animal mito-
chondrial DNA (mtDNA) paved the way for such a demonstration (Xia 2012b).

In MtDNA of most animal species, Met is coded by AUA and AUG codons.
In some animal species, e.g., vertebrates, these two codons are translated by a
single tRNAMEVCAU gpecies (where CAU is the anticodon in the 5° to 3” orienta-
tion) with a modified C (i.e., f°C) at the first anticodon position (Grosjean et
al. 2010) to allow C/A pairing. In other animal species, e.g., tunicates, an addi-
tional tRNAMeVUAU gene is present in the mtDNA. One would expect that, when
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tRNAMeVUAU g absent, Met should be preferably coded by AUG with a reduced
AUA usage. The gain of tRNAMVUAU woyld favor more Met to be coded by AUA.
Can such a prediction be empirically substantiated?

MtDNA in bivalve species have two tRNAMet genes. In some bivalve species
(e.g., Acanthocardia tuberculata, Crassostrea gigas, C. virginica, Hiatella arctica,
Placopecten magellanicus, and Venerupis philippinarum), both tRNAMet genes
have a CAU anticodon forming Watson—Crick base pair with codon AUG. In some
other bivalve species (e.g., Mytilus edulis, Mytilus galloprovincialis, and Mytilus
trossulus), one tRNAMet has a CAU anticodon and the other has a UAU anticodon
forming Watson—Crick base pair with the AUA codon. One would predict that the
latter should be more likely to code Met by AUA than the former, i.e., the pro-
portion of AUA codon within the AUR codon family, designated Paya, should be
greater in the latter with both a tRNAMVCAU and a (RNAMEVUAU gene than in the
former with a single tRNAMeVCAU gene in the mtDNA (Xia et al. 2007).

To test the prediction, I will use Pyya (the proportion of UUA codon in the UUR
codon family) as a reference control to test the prediction that, at the same Pyya level,
Paua in the three Mytilus mtDNA with both a tRNAMEVCAU apd 3 (RNAMEVUAU gepe
is higher than that in the six bivalve species without a tRNAMSVUAU gene. This is sup-
ported by empirical evidence (ANCOVA test, p = 0.0111, Fig. 1.4a). Thus, the presence
of tRNAMeVUAU jncreases AUA usage significantly.
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Fig. 1.4 Relationship between PAUA and PUUA, highlighting the observation that PAUA
is greater when both a tRNAMet/CAU and a tRNAMet/UAU are present than when only
tRNAMet/CAU is present in the mtDNA, for bivalve species (a) and chordate species (b). The
filled squares are for mtDNA containing both tRNAMet/CAU and tRNAMet/UAU genes, and the
open triangles are for mtDNA without a tRNAMet/UAU gene
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A similar comparison can be performed between the urochordates (tunicates,
with both tRNAMeVCAU and (RNAMVUAU genes in their mtDNA) and cephalochor-
dates (lancelets, with only a tRNAMEVCAU gene in their mtDNA). Figure 1.4b shows
that Poua is much smaller in lancelets than in tunicates at the same Pyya level.
Thus, AUA usage is consistently increased by the gain of a tRNAMEVUAU gene (or
consistently decreased by the loss of a tRNAMYUAU gene) in animal mtDNA.

A gain of a tRNAMeVUAU gene is also associated with a surplus of
AUG — AUA substitutions in animal mitochondrial coding sequences (results not
shown). Similar associations can also be observed with other gain/loss of tRNA
genes in animal mitochondrial. In contrast, a gain/loss of tRNA genes in plant
mtDNA appears to have little effect on nucleotide substitutions or codon usage,
presumably because such gain/loss events do not significantly alter the tRNA pool
in plant cells where nuclear tRNAs are mass-imported into plant mitochondria.

UGA Codon, CGN Codon for Arg and the Expanded Wobble
Hypothesis

The number of distinct tRNA species is invariably fewer than the number of sense
codons, leading to the formulation of the original wobble hypothesis (Crick 1966).
Figure 1.5 depicts the extended codon-anticodon base pairs as well as the sub-
scripted numbering system used for codon-anticodon base pairs (Xia 2013). Note
that the anticodon sites are denoted by Roman numerals and tho the codon sites by
Arabic numerals (Fig. 1.5).

The wobble hypothesis explains why tRNAUIAU where T in IAU is inosine
derived from A, is able to translate all three Ile codons (AUC, AUU and AUA),
why a tRNA with a Gy can translate Y-ending codons (where Y stands for C or U),
and why a tRNA with a Uy can translate R-ending codons (where R stands for A or
G). The hypothesis also explains the lack of A1 in tRNA genes for decoding 2-fold
Y-ending codon family because such a tRNA, when its Ay is modified to Ij, would
mis-read the near cognate R-ending codons. One might note that all base-pairs
involve a purine and a pyrimidine except for the I/A pair which is a bulky purine-
purine pair that may lead to inefficient translation (Curran 1995).

Wobble pairing reduces the number of tRNAs needed for translation and sim-
plifies the translation machinery. Few organisms can afford the luxury of hav-
ing different gene products doing the same task. As an example of parsimonious
tRNA usage, the Y-ending codons, be they in 2-fold or 4-fold codon families, are
decoded by tRNAs with either a Iy or a Gy, but never both. This rule is obeyed in
all three kingdoms of life. Almost all 4-fold codon families in Mycoplasma pulmo-
nis (including the Ser UCN codon family and Leu CUN codon family, where N is
any nucleotide) are decoded by a single tRNA species with a Uy, except for the Thr
ACN and Arg CGN codon families which are each decoded by two tRNA species,
one with a Uy and other with a Gy. The most dramatic simplification of tRNome is
observed in metazoan mitochondria, e.g., vertebrate mitochondrial genomes which
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Fig. 1.5 Base pairs between nucleotides at the first anticodon site (which can have I, G, C, U but
rarely A) and the third codon site. The inset shows the site numbering system of codon-anticodon
base pairs, with codon sites subscripted with 1, 2 and 3 and anticodon sites subscripted with I, II,
and III (corresponding to 34, 35 and 36 in the conventional system), so that base pairs are 1j/Cs,
Gp/Cy, Cri/Gy. This numbering system is used because the 34" site of many tRNAs sequences is
not the first anticodon site

contain only 22 tRNA genes, with each tRNA species decoding a codon family.
Instead of separate initiation tRNAMUCAU and elongation tRNASMEVCAU cop.
tained in all nuclear genomes, a single tRNAMVCAU with a modified Cy, decodes
both the initiation AUG codon and internal Met AUR codons. Each Y-ending
codon family is decoded by a single tRNA species with a wobble Gy, and each
R-ending codon family by a single tRNA with a wobble Uy which is modified to
prevent its pairing with U or C. All 4-fold codon families are decoded by a tRNA
with a wobble U which is not modified.

Recent comparative genomic studies on tRNA have led to the expanded wob-
ble hypothesis (Carullo and Xia 2008; Xia 2013) which arose from the following
observation. A tRNA species with a wobble U (where subscripted I indicates the
first anticodon position that pairs with the third codon position) is almost always
present among tRNA species decoding 4-fold codon families and 2-fold R-ending
codon families, with most exceptions observed in the Arg CGN codon family. In
the mitochondrial genomes of Caenorhabditis elegans (metazoan), Marchantia
polymorpha (plant), Pichia canadensis (fungus), and Saccharomyces cerevisiae
(fungus), there is no tRNAA®UCG and Arg CGN codon family is decoded by
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tRNAAZACG (Xja 2005). The lack of tRNAA™UCG i the mitochondrial genome
of these diverse taxa suggests that the lack is an ancestral state and that the pres-
ence of tRNAAUCG in vertebrate mitochondria is a derived state. This is con-
sistent with the observation that almost all eubacterial species, from which the
mitochondrion was originally derived, lack tRNAA™UCG (Grosjean et al. 2010).

Why tRNAA®UCG s missing in the ancestral mitochondrial lineages
and why did it appear in derived lineages such as vertebrate mitochondrial
genomes? It is these questions that prompted the proposal of an expanded wob-
ble hypothesis.

The expanded wobble hypothesis for the lack of tRNAA™UCG i bacterial and
early mitochondrial lineages invokes wobble paring between the third anticodon
site (Xqrr) and the first codon site (Y1), conditional on a Cy/G, or Gyi/C, with three
hydrogen bonds. Thus, the anticodon UCG would wobble-pair with stop codon
UGA through a wobble Uyy/G; pair, and should therefore be strongly selected
against because it would read through the stop codon (Carullo and Xia 2008). This
not only explains the absence of tRNAA™®/UCG ip bacterial and early mitochondrial
lineages where UGA is used as a stop codon, but also why it appeared in derived
mitochondrial lineages such as vertebrate mitochondrial genomes where UGA
is no longer used as a stop codon. Wobble pairing involving Nyi/N| represents a
fundamental deviation from the original wobble hypothesis and requires further
empirical validation.

Genomic Strand Asymmetry and Genome Replication

Most mutations occur during DNA replication, and different DNA replication
mechanisms often leave distinct footprints in genomic strand asymmetric patterns
because DNA polymerase for the leading and lagging strands differ in replication
fidelity (Marin and Xia 2008; Xia 2012a). Strand asymmetry is typically measured
by the GC skew (Lobry 1996; Marin and Xia 2008) defined as

Pg—P
Sg=-¢_"°¢ 2.1)
P+ Pc
A more general motif skew (Lopez et al. 1999) is defined as
Ny — Ny,
Sm = = 2.2
"= NN (22)

where m is either a nucleotide (e.g., G or A) or a motif (e.g., ACG), my is the
reverse complement of m (my. = C if m = G, or m; = CGT if m = ACG), and Ny
is the number of x (where x is either m or my;). GC skew and AT skew are special
cases of Sy, when m is equal to either G or A, respectively, i.e., GC Skew is Sg and
AT skew is Sa. Strand asymmetry represents a primary feature of DNA genomes,
and its study can lead to insight into different genome replication mechanisms.
Strand asymmetry represents a primary feature of DNA genomes, and its study
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can lead to insight into different genome replication mechanisms. A typical Sg plot
(Fig. 1.6a) allows one to infer the origin and termination of the replication fork.

Bacterial species from Bacillus subtilis to Escherichia coli share the strand
asymmetric pattern in Fig. 1.6a, which is characteristic of the single-origin bi-
directional DNA replication shared by eubacterial species, with the leading strand
being GT-rich and lagging strand AC-rich. Interestingly, primitive forms of plants
such as the liverwort Marchantia polymorpha, or primitive forms of metazoans
such as the sponge Oscarella lobularis, have strand asymmetric patterns (Fig. 1.6b)
that are indistinguishable from what is typically seen in bacterial genomes with a
single origin of replication. This similarity in strand asymmetric patterns suggests
similarity in replication mechanisms and may explain the extremely slow rate of
evolution in primitive animal and plant mtDNA relative to mtDNA in higher meta-
zoans. In other words, mitochondrial genomes in plants and primitive invertebrates
may maintain the high-fidelity replication as in their bacterial ancestor.

The fast evolving vertebrate mtDNAs share the strand asymmetric pattern
(Fig. 1.6¢c—d) consistent with the strand-displacement model of DNA replication
(Bogenhagen and Clayton 2003; Brown et al. 2005; Clayton 1982, 2000; Shadel
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Fig. 1.6 Genomic strand asymmetric patterns characterized by GC skew values along a sliding
window, with inferred replication origins. The Bacillus subtilis pattern (a) is shared among all
eubacterial species known to have single-origin bi-directional replication. The sponge mtDNA,
which evolves slower than the nuclear DNA, has the strand asymmetric pattern similar to its
eubacterial ancestor (b). Vertebrate mtDNAs are replicated by the highly derived, but error-
prone, two-origin strand-displacement replication, and evolve much faster than the nuclear DNA.
Modified from Fig. 1, Fig. 9a, Fig. 9b and Fig. 10c in (Xia 2012a)
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and Clayton 1997) which, although challenged recently by a new proposal of
strand-coupled bidirectional replication (Yang et al. 2002; Yasukawa et al. 2005),
is favored by current empirical evidence (Brown et al. 2005). According to this
replication model, the L-strand is first used as a template to replicate the daughter
H-strand, starting at the origin of replication Oy, while the parental H-strand was
left single-stranded for an extended period because the complete replication of
mtDNA takes nearly two hours (Clayton 1982, 2000; Shadel and Clayton 1997).
After about 2/3 of the daughter H-strand has been synthesized and the second
origin of replication (Or) is exposed, the parental H-strand is used as a template
to synthesize the daughter L-strand. Thus, different parts of the H-strands are in
single-stranded form for different periods of time.

Single-stranded DNA binding proteins (SSB) protects single-stranded DNA
from nucleolytic degradations. In E. coli, this works best with the presence of
Rec-A. SSB from E. coli also reduces the C-U deamination rate in single-stranded
DNA by 4-5 fold (Lough et al. 2001). However, it is not known if mtSSB also
has the equivalent Rec-A partner or if it also protects single-stranded DNA from
deamination in mitochondria.

Spontaneous deamination of both A and C (Lindahl 1993; Sancar and
Sancar 1988) occurs frequently in human mtDNA (Tanaka and Ozawa 1994).
Deamination of A leads to hypoxanthine that pairs with C, generating an
A/T — G/C mutation. Deamination of C leads to U, generating C/G — U/A
mutations. Among these two types of spontaneous deamination, the C — U muta-
tion occurs more frequently than the A — G mutation (Lindahl 1993). In par-
ticular, the C — U mutation mediated by the spontaneous deamination occurs in
single-stranded DNA more than 100 times as frequent as double-stranded DNA
(Frederico et al. 1990). Note that these C — U sites will immediately be used as
template to replicate the daughter L-strand, leading to a G — A mutation in the
L-strand after one round of DNA duplication. Such mutation patterns are expected
to leave their footprints on different parts of the H-strands left single-stranded for
different periods of time.

While experimental evidence for the strand-displacement model is limited to
mammalian species, the nearly identical pattern of strand asymmetry among ver-
tebrate species suggests that the replication mechanism is most likely shared (Xia
2012a). The reduction in Sg correspond to the reduction of C in the H strand (and
the associated G in the L strand), allowing us to infer the location of replication
origins Oy and Op, (Fig. 1.6c—d). The GC skew values for vertebrate mtDNA
are all negative, implying global asymmetry in addition to the local asymmetric
patterns.

Strand asymmetry patterns provide an empirical test for inferred genome
rearrangement by maximum parsimony. Much of the genome rearrangement in
bacterial species may be attributed to inversion which leads to involved genes
switching strands and experiencing different mutation spectrum. When two
genomes or two genome segments with the same set of genes but differ in gene
order, then one can compute the inversion distance which is the minimum num-
ber of inversions that can transform the gene order in one genome into that of
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Table 1.1 Components of a comparative genomic study

Biological problem involving

Target genomes  Phylogenetic control Genomic features genomic features
H. pylori H. hepaticus Protein pl, genomic Is protein pl increase in H.
GC% pylori driven by genomic
GC% or by acid-adaptation?
HIV-1 HTLV-1 Codon adaptation, Is poor codon-anticodon

genomic mutation bias  adaptation in HIV-1 caused
by high mutation rate?

Mycoplasma Closely related CpG deficiency, Is genomic CpG deficiencies
species species methyltransferase, driven by methylation-medi-
evolutionary rate ated mutation bias?
Bivalves, Closely related Codon usage, presence/ Does codon usage in met
chordates species absence of tRNAMVUAU codon family evolve in

response to the presence/
absence of tRNAMEVUAU?

the other (Kececioglu and Sankoff 1994, 1995). When the inversion event is rare,
then this maximum parsimony approach is reasonable. However, it is important to
keep in mind that the inferred inversion events constitute only a hypothesis that
needs to be empirically tested. Because inversion events would leave its footprints
in strand asymmetry patterns, we can test the hypothesis by checking whether the
strand asymmetry pattern is consistent with the inferred inversion events.

In summary, a comparative genomic study contains four essential elements:
(1) genomes with biologically interesting genotypic or phenotypic traits, (2) phy-
logenetic control, (3) genomic features, and (4) a solvable biological problem
involving genomic features. These components are summarized in Table 1.1 for
the four studies outlined in this chapter. Many comparative genomics studies focus
on the gene order as a genomic feature to understand how various recombination
mechanisms would lead to gene and exon reshuffling. Phylogenetic controls are
particularly important for such genome rearrangement studies because one can
reconstruct genome rearrangement events reliably only with very closely related
genomes with few rearrangement events.



Chapter 2
Comparative Genomics and the
Comparative Methods

Large-scale comparative genomics involves the type of data aimed to understand
functional association among genes, between genes and phenotypes, and between
genotype/phenotype and the environmental variables (Fig. 2.1). The most straight-
forward genetic variables (referred hereafter as G variables) are the presence/
absence of genes, so the Gjj variables will be binary. Alternatively, A G variable
could be a polymorphic site in a set of aligned HIV-1 polyproteins and take one
of 20 alternative states. Changes in G; may be associated with changes in G; (e.g.,
a loss of a negative charge at site i may be compensated by a gain of a negative
charge at a neighbouring site). Similarly, a change in Gj may have a phenotypic
effect, i.e., Gj is associated with one or more of the phenotypic variables (hereafter
referred to as P variables). For example, a change in Gj may results in drug resist-
ance. Evolutionary biologists are also interested in whether certain changes in the
G variables and P variables are in response to the environmental variables (hereaf-
ter referred to as E variables).

Depending on one’s research objective, one may also allow the G variables to
take continuous values. For example, with N orthologous protein-coding genes
shared among all genomes, G; can be the isoelectric point (pI) for protein i. It is
known that pI of a number of enzymes co-evolve with the pl of their substrates,
simply because an enzyme and its substrate typically should not be both positively
charged or both negatively charged - they would push each other apart if they
were. In the simplest case, we could have a single G variable representing pl of,
say, laccase, and a single P variable representing the optimal pH for laccase. Such
a setup would allow us to study the association between the G and P variables.

Dr. Tianjue Hu (a former postdoctoral fellow in my lab) carried out an interest-
ing study relating pl of lignin-degrading laccases to the optimal pH of the enzyme.
Different laccases have been isolated from different fungal species living in envi-
ronments with different pH. Because lignin is relatively hydrophobic, a laccase
needs to be hydrophobic as well, which implies that its pI should be close to its
environmental pH (pH.). However, pl computed from the original protein speci-
fied in the coding sequence (pl,) is often much higher than pHe, suggesting that

X. Xia, Comparative Genomics, SpringerBriefs in Genetics, 21
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the nascent protein is not in its optimal state for digesting lignin and that there is
selection on the organism to modify its laccase to reach a pl that is closer to pHe.
We may define an index of selection () as

I, = pl, — pH, 2.1)

We designate the pl of the modified mature protein as ply. The index of
response to the selection by modifying laccase to reduce its pl can be defined as

I, = plo — ply (2.2)

We expect I and I; to be positively correlated. The empirical evidence
(unpublished) does support this expectation. Comparative genomics, with
the data illustrated in Fig. 2.1, allows us to carry out millions of such studies
simultaneously.

The G variables could also be the length of poly(A) tracts upstream of the
translation initiation codon for a set of homologous genes shared among a set of
eukaryotic genomes. Short pre-AUG poly(A) can bind to translation initiation fac-
tors and enhance translation initiation, whereas long pre-AUG poly(A) would bind
to the poly(A)-binding protein and inhibit translation initiation (Xia et al. 2011).
While the translation machinery is highly conserved in fungal species, the length
and location of pre-AUG poly(A) of mRNAs often vary much among homolo-
gous genes, leading to associated changes in relative gene expression (which is a
P variable). We can thus study the relationship between the variation in pre-AUG
poly(A), which is a G variable, and gene expression. In large-scale compara-
tive genomics, the most frequently used continuous variables will most likely be
SNP sites and copy number of mRNAs. For example, Affymetrix Genome-Wide
Human SNP Array 6.0 produces both the discrete nucleotide state of SNP sites and
the copy number of probes representing genes.
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In what follows, I will numerically illustrate the comparative methods (Barker
and Pagel 2005; Felsenstein 1985; Harvey and Pagel 1991; Pagel 1994; Schluter
et al. 1997) for characterizing the association between any two columns of data
shown in Fig. 2.1. The simplest data set in Fig. 2.1 would have only two columns
of data, and that is the type of data I will use to illustrate the comparative method
for the continuous and discrete variables. According to the late population geneti-
cist C. C. Li, it is not necessary to create a rainbow spanning the sky to demon-
strate how a rainbow forms—a small one is convincing enough.

Note that N columns of data would imply N*(N-1)/2 pairwise associations,
so large-scale comparative genomic studies almost always lead to multiple com-
parisons. So I will also illustrate the computation involved in controlling for false
discovery rate which represents a key development in recent studies of statistical
significance tests (Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001).

One evolutionary process that has shaped bacterial genomes is the horizontal
gene transfer. The phylogenetic incongruence test used to detect such horizontal
gene transfer events will also be illustrated.

The Comparative Method for Continuous Characters

The two continuous variables that I will use here is genomic GC% and optimal
growth temperature in bacterial species. The former represents a genomic vari-
able and the latter an environmental variable (a G variable and an E variable in
Fig. 2.1). I will first numerically illustrate the conventional method of independ-
ent contrasts based on the random-walk Brownian motion model (Felsenstein 1985,
2004, pp. 432-459) and the associated statistical methods for assessing the rela-
tionship between two variables. One shortcoming of this method is that the ances-
tral states of the variables lie somewhere between those of descendent lineages.
However, evolution often proceeds with directional changes. For example, various
mammalian lineages have in general increased their body size from their hum-
ble beginning of tiny insectivores. The ancestral state of the body size, estimated
with the assumption of the random-walk Brownian model would be substantially
greater than the true one. This shortcoming can be accommodated by the general-
ized least-square method (Martins and Hansen 1997; Pagel 1997, 1999). The gen-
eralized least-square method has an implicit assumption that, if a variable such as
body size has exhibited directional change, e.g., having increased in body size in
evolutionary lineages, then longer branches should be associated with greater body
size. This assumption may not be true because the tree and branch lengths are typi-
cally derived from molecular data that do not have direct link to specific phenotypic
characters. In addition, the assumption also leads to the restriction that the method
for assessing directional change cannot be used with ultrametric trees, i.e., trees
with leaves having equal distance to the root such as trees built with a molecular
clock. I present an extension of the method of independent contrast, based on the
least-square method, to accommodate directional change without this assumption.
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Studies of the variation in genomic GC% among bacterial species serve as the
easiest entry point into comparative genomics because one does not need any bio-
logical knowledge to comprehend the meaning of the variable. Wide variation in
genomic GC% is observed in bacterial species. A popular selectionist hypothesis
is that bacterial species living in high temperature should have high genomic GC%
for two reasons. First, an increased GC usage, with more hydrogen bonds between
the two DNA strands, would stabilize the physical structure of the genome
(Kushiro et al. 1987; Saenger 1984). Second, high temperature would need more
thermostable amino acids (Argos et al. 1979) which are typically coded by GC-
rich codons. Such a hypothesis predicts that genomic GC% should increase with
optimal grow temperature (OGT) in bacterial species.

The prediction above, however, is not supported empirically. A bacterial spe-
cies, Pasteurella multocida, was cultured under increasing temperatures for
~14,400 generations. GC% was estimated for the ancestral and derived strains
by probing both with many AT-rich and GC-rich RAPD primers. If the derived
strain has increased genomic GC% during this period of adaptation to increased
culture temperature, one would expect to observe more amplification of the GC-
rich primers and fewer amplification of AT-rich primers in the derived strain than
in the ancestral strain. However, the opposite was observed (Xia et al. 2002). A
comparative sequence analysis (Galtier and Lobry 1997) also does not support the
prediction.

Surprisingly, it has been found that GC% of rRNA genes is highly correlated
with OGT (Dalgaard and Garrett 1993, p. 535; Galtier and Lobry 1997; Hurst and
Merchant 2001; Nakashima et al. 2003; Wang and Hickey 2002). In particular,
when the loop and stem regions of rRNA are studied separately, it was found that
the hyperthermophilic bacterial species not only have higher proportion of GC in
the stems but also longer stems (Wang et al. 2006). In contrast, the GC% in the
loop region correlates only weakly with OGT. Because stems function to stabi-
lize the RNA secondary structure which is functionally important, these results
are consistent with the hypothesized selection for RNA structural stability in high
environmental temperatures.

The Necessity of Phylogeny-Based Comparative Method

When studying the relationship between two quantitative variables, such as OGT
and stem GC%, a phylogeny-based comparison is crucially important to avoid vio-
lation of statistical assumptions. Figure 2.2 illustrates a case in which one may
mistakenly conclude a positive relationship between X and Y when the 16 data
points are taken as independent. A phylogenetic tree superimposed on the points
allows us to see immediately that the data points are not independent. All eight
points in the left share one common ancestor, so do the eight points in the right.
So the superficial association between X and Y could be due to a single coinciden-
tal change in X and Y in one of the two common ancestors. One needs to use the
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Fig. 2.2 Phylogeny-based comparison is important for evolutionary studies. The data points,
when wrongly taken as independent, would result in a significant positive but spurious relation-
ship between Y and X (which represent any two continuous variables, e.g., GC% and OGT)

phylogeny-based method, such as independent contrasts (Felsenstein 1985; 2004,
pp. 432-459) or the generalized least-square method (Martins and Hansen 1997;
Pagel 1997, 1999) when assessing the relationship between quantitative variables.

While the derivation and mathematical justification of the phylogeny-based
comparative method is quite complicated, the most fundamental assumption is the
Brownian motion model (Felsenstein 2004, pp. 391-414) which appears reason-
able for neutrally evolving continuous characters assumed by the null hypothesis.
Here I illustrate the actual computation of independent contrasts with a numeri-
cal example to facilitate its application to comparative genomics, prompted by my
personal belief that one generally cannot interpret the results properly if one does
not know how the results are obtained.

Computing the Independent Contrasts

Suppose a phylogeny of eight bacterial species whose OGT and GC% of rRNA
genes have been measured, with the eight species referred to hereafter as s to sg
from left to right in Fig. 2.3. The computation is recursive, and is exactly the same
for any quantitative variable. So we will only illustrate the computation involving
OGT. One may repeat the computation involving GC% as an exercise.

The computation is of three steps. First, we recursively compute the ancestral
values for internal (ancestral) nodes x; to x¢. We treat these ancestors as if they
were new taxa and compute the branch lengths leading to these ancestral nodes.
We may start with the two sister species s and sy. The OGT of their ancestor (x1)
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Fig. 2.3 A phylogeny of eight bacterial species (s; to sg) each labeled with optimal growth tem-
perature (OGT) and GC% of the stem region of rRNA genes in the format of “OGT, GC%”. The
branch lengths (vi—vi4) are next to the branches. Ancestral nodes are designated by x; to X¢

is a weighted average of the OGT values for s; and s> (weighted by the branch
lengths):
T 1) T Vi T 3x70 1x74
OGX'_WOGS'+WOGS2_T 2

One may note that the weighting scheme in Eq. (2.3) is such that the ancestral
state is more similar to the state of the descendent node with a shorter branch than
the other with a longer branch. This makes intuitive sense as a descendent node
diverged much from the ancestor should be less reliable for inferring the ancestral
state than a descendent node diverged little from the ancestor.

We now treat x; as if it is a new taxon and compute the branch lengths leading
to it from its ancestor (Xs) as

=71 (2.3)

ViV 1x3
Vy = ———— +v9g=——+4+3=3.75 24

i vi+ v ? 14+3 24

We do the same for X» to X4, and the associated OGTy; and vy; values are listed

in Table 2.1. The computation of the ancestral states for x5 and X¢ is similar to that

in Eq. (2.3), e.g.,

06T, = 20GTy | vOGTy _39x 71 375x784 __
B o v, vy 4 v 7.65 7.65 :
2.5)
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Now we can take the second step to compute the unweighted contrasts (desig-
nated by C) as well as the sum of branch lengths linking the two contrasted taxa.
With eight species, we have seven (=n—1, where n is the number of species) con-
trasts (first column in Table 2.2). These unweighted contrasts, as well as the sum
of branch lengths (SumV) associated with the contrasts, are illustrated for those
between s; and s; and between x; and x» for OGT in Eq. (2.6). All the computed
unweighted contrasts for both OGT and GC%, as well as the associated SumV
values, are listed in columns 2—4 in Table 2.2.

Cs, —5, . 061 = OGTs, — OGTy, =70 —T74 = —4
SumVe, . =vi+v=1+3=4
Cx, —x,. 061 =O0GT,, —OGTy, =71 —784 =-74

SumVc, =Vy +V, =375+39=7.65

—x

(2.6)

We can now take the third step of obtaining independent weighted contrasts

(WC) by dividing each unweighted contrasts by the square root of the associated
SumV. For example,

wC oGr = Csl—sz.OGT _ __4 )
S1—82 . - - -
[SumVe, Nz
b Q2.7)
CX] —x3 . OGT =74

Table 2.1 Computed ancestral states (OGTy; and GCy;) and the branch lengths (vy;) for the six
ancestral nodes

Xj OGTy; Vxi GCyi

X1 71.0000 3.7500 51.2500
X2 78.4000 3.9000 52.0000
X3 87.6000 6.6000 64.0000
X4 94.4444 3.8889 51.6667
X5 74.6275 49118 51.6176
X6 91.9068 5.4470 56.2394

Table 2.2 Unweighted and weighted contrasts for the two quantitative variables OGT and GC%

Unweighted Contrasts Weighted contrasts

Contrast OGT GC% Sum V WCost WCgca%
S1—S2 —4.0000 —5.0000 4.0000 —2.0000 —2.5000
$3—S4 —4.0000 —20.0000 10.0000 —1.2649 —6.3246
$5—S6 —4.0000 —10.0000 15.0000 —1.0328 —2.5820
$7-S8 —4.0000 —15.0000 9.0000 —1.3333 —5.0000
X1—X2 —7.4000 —0.7500 7.6500 —2.6755 —0.2712
X3-X4 —6.8444 12.3333 10.4889 —2.1134 3.8082

X5—X6 —17.2793 —4.6218 10.3588 —5.3687 —1.4360
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These independent contrasts for OGT thus computed, together with those for GC%,
are shown in the last two columns in Table 2.2. Now we need to assess the relationship
between WCogt and WCgca, specifically whether an increase in OGT will result in
an increase in GC%, i.e., whether the two are positively correlated. There are two ways
to assess the relationship. The first is parametric by performing a linear regression of
WCgca% on WCogr, forcing the intercept equal to 0. The reason for a zero intercept
is that we do not expect a change in GC% if there is no change in OGT. The resulting
slope is 0.4647. The regression accounts for 11.17 % of the variation in WCgcq,. The
square root of 11.17 %, equal to 0.3342, is the correlation coefficient between the two.
Of course you may also do a regression of WCogTt on WCgc9, which will result in a
slope of 0.2403. These slopes and the correlation coefficients are in the default output
in the CONTRAST program in PHYLIP (Felsenstein 2002). The relationship between
WCogt and WCqca, although positive, is not significant (p = 0.4249).

One may also assess the relationship between WCogt and WCgcg by using
nonparametric tests. For example, we expect half of the (WCogT, WCgc%) pairs
to have the same sign (i.e., both positive or both negative) and the other half to
have different signs. We observe six pairs to have the same sign and one pair to
have different signs (Table 2.2). So we have

2 2
2 _ (6—-3.9) (1-39) _ 35714 2.8)
3.5 3.5

with one degree of freedom, the relationship is not significant (p = 0.05878).

Although the method of independent contrasts has been available for many
years, many studies, even recent ones, still fall into the same trap, as illustrated in
Fig. 2.2, of concluding a significant relationship between X and Y without taking
the phylogeny into account. A recent claim of a strong relationship between intron
conservation and intron number (Irimia et al. 2007) represents one of such studies.

When the method of independent contrasts was applied to the real data to assess the
relationship between bacterial OGT and GC% of rRNA stem sequences and between
OGT and rRNA stem lengths, the two relationships are both statistically significant
(Wang et al. 2006). Thus, the selectionist hypothesis is supported, but it accounts for
only a very small fraction of variation in the genomic GC% among bacterial species,
which calls for an alternative hypothesis for the variation in genomic GC%.

One shortcoming of the method of independent contrasts is that the value of the
ancestral state is always somewhere between the two values of the descendents.
This implies that it cannot detect directional changes over time. For example, if
the ancestor is small in body size and all descendents have increased in body size
over time, then the Brownian motion model assumed by the independent contrast
method is no longer applicable. For example, if we label the root as x7, then the
OGT and GC% values for x7, OGTy7, are expected to be

VsOGTy,  vi6OGT,. 49118 x 91.9068  5.4470 x 74.6275
OGT,, = 6 4 5 _ n
Ves + Vi Ve + Ve, 49118454470 ' 49118 + 5.4470

visGCy,  vi6GCys 49118 x 56.2394  5.4470 x 51.6176

GC, = - = 53.8091
T s A Vg + Ves + vy, 49118 + 5.4470 t 49118 1 5.4470

= 82.8208

(2.9)
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However, if we actually know that the ancestral values of OGT and GC%
at x7 are 40 and 45 %, respectively, then these values obviously deviates much
from the Brownian expectation. A well known example is the body size of mod-
ern mammals which has in general increased substantially from that of the ances-
tral insectivores since the time of dinosaurs. The Brownian model would lead to
the inference of an ancestral body size much larger than that of real insectivore
ancestor. It is therefore essential for us to incorporate the known ancestral state to
improve the inference.

The generalized least-square method (Martins and Hansen 1997; Pagel 1997,
1999) can be used to accommodate directional changes. However, the method has
the limitation that it cannot work with altrametric trees or trees with little variation
among the leaf-to-root distances.

Here I present a simple least-square framework to incorporate the ancestral
information in the estimation of the values at nodes x; to X¢. The residual sum of
squares for variable OGT (RSSogr) is specified below:

Vx50GTxg N Vx6O0GTxs )]2
Vxs t Vxg Vxs + Vxg

v30GTy,  v4OGTyxy \ 12 Ve1OGTy,  vOGTy, \1?
+ 0GTX6 _ x3 X4 + x4 X3 + OGTXS _ x1 X + x2 x|
Vaz F Vay Vxy T+ Vxy Vxp F Vxy Vxp Vg

v70GTy,  vgOGT. vsOGTy,  vgOGTyss \ 1>
+ | OGTy, — Mt BN b & + OGTy, — 6 4 55
vy +vg V7+v8 Vs + vg V5 + Vg

v30GTs,  v40GTs, \ 12 viOGTs,  vOGTs, \1?
+|0GTy, — [ 2+ 25 ) | +|o6Ty, - 2 4 1
V3 +vq V3 +v4 V] +v2 Vi +v2

RSSoGT = [40 - (

(2.10)

where 40 is the known ancestral value of OGT at the root, and the terms inside
the parentheses are the expected OGT values as illustrated before, e.g., Eq. (2.3).
To obtain the least-square estimates of OGT values at internal nodes x; to xg, we
take the partial derivatives of RSSogT with respect to OGTy, OGTxo, ..., OGTxg,
set them to zero and solve the six resulting simultaneous equations. The new esti-
mated values of OGT at x; to x¢ are 64.3717, 71.0352, 85.7588, 86.9876, 53.8856,
and 77.4462, respectively. The new values suggest that the OGT values have
increased in all descendent lineages from the ancestral value of 40, i.e., the OGT
values at ancestral nodes are consistently smaller than the descendant lineages.

The least-square frame is not limited to one known ancestral value. For exam-
ple, if OGTys is known, it can be substituted into Eq. (2.10) so that we will only
need to estimate five unknown ancestral OGT values. The same computation can
be done for GC% or any other variable with one or more known ancestral values.
The independent contrasts can be computed the same way as before, except that
the new ancestral values are then used.

The mutation hypothesis of genomic GC% variation (Muto and Osawa 1987,
Sueoka 1964; Xia and Yuen 2005; Xia et al. 2002) invokes biased mutation in
different bacterial species to explain genomic variation in GC%, i.e., GC-rich
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genomes are the result of GC-biased mutation. One prediction from the mutation
hypothesis is that the third codon position should increase more rapidly with the
genomic GC% than the first codon position which in turn should have its GC%
increase more rapidly with the genomic GC% than the second codon position. The
reason for this prediction is that the third codon positions are little constrained
functionally because most substitutions at the third codon positions are synony-
mous. Some nucleotide substitutions at the first codon positions are synonymous,
but most are nonsynonymous. All nucleotide substitutions at the second codon
positions are nonsynonymous and typically involve rather different amino acids
(Xia 1998b; Xia and Li 1998). The empirical results (Fig. 2.4) strongly support the
prediction above (Muto and Osawa 1987).

However, the pattern in Fig. 2.4, while consistent with the mutation hypothesis,
has resulted in two misconceptions. First, the pattern shown by the third codon
position is often interpreted to reflect mutation bias. This interpretation is incorrect
because the third codon position is subject to selection by differential availability
of tRNA species (Carullo and Xia 2008; Xia 1998a, 2005, 2008; Xia et al. 2007).
We may contrast a GC-rich Streptomyces coelicolor and a GC-poor Mycoplasma
capricolum as an illustrative example. M. capricolum has no tRNA with a C or G
at the wobble site for four-fold codon families (Ala, Gly, Pro, Thr and Val), i.e.,
the translation machinery would be inefficient in translating C-ending or G-ending
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Fig. 2.4 Correlation of GC% between genomic DNA and first, second and third codon posi-
tions (Muto and Osawa 1987). While the actual position of the points may be substantially
revised with new genomic data (e.g., the GC% for the first, second and third codon positions for
Mycoplasma capricolum is 35.8, 27.4, and 8.8 % based on all annotated CDSs in the genomic
sequence), the general trend remains the same
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codons. This implies selection in favour of A-ending or U-ending codons and will
consequently reduce GC% at the third codon position. This most likely has con-
tributed to the low GC% at the third codon position in M. capricolum. In contrast,
most of the tRNA genes translating the five four-fold codon families in the GC-
rich S. coelicolor have G or C at the wobble site, and should favour the use of
C-ending or G-ending codons. This most likely has contributed to the high GC%
at the third codon position in S. coelicolor. The same pattern is observed for two-
fold codon families. The most conspicuous one is the Gln codon family (CAA and
CAG). There is only one tRNAS!" gene in M. capricolum with a UUG anticodon
favouring the CAA codon. In contrast, there are two tRNACM in S. coelicolor, both
with a CUG anticodon favouring the CAG codon. Thus, the high slope for the
third codon position in Fig. 2.4 is at least partially attributable to the tRNA-medi-
ated selection. Relative contribution of mutation and tRNA-mediated selection to
codon usage has been evaluated in several recent studies (Carullo and Xia 2008;
Xia 2005, 2008; Xia et al. 2007).

Second, the observation that GC% of the third codon position increases with
genomic GC% is sometimes taken to imply that the frequency of G-ending and
C-ending codons will increase with genomic GC% or GC-biased mutation
(Kliman and Bernal 2005). This is not generally true. Take the arginine codons for
example. Given the transition probability matrix for the six synonymous codons
shown in Table 2.3, the equilibrium frequencies (1) for the six codons are

1
TAGA = e 3k 1
k
= = = 2.11
TAGG = TCGA = TTCGT = 53— (2.11)
k2
Teae = MO0 = B

The three solutions correspond to the number of GC in the codon, with AGA
having one, AGG, CGA and CGT having two, and CGC and CGG having three

Table 2.3 Transition probability matrix for the six synonymous arginine codons, with a for tran-
sitions (C<>T and A<>G), B for transversions, and k modeling AT-biased mutation (0 <k < 1) or
GC-biased mutation (k > 1)

CGT CGC CGA CGG AGA AGG
CGT kat B kB 0 0
CGC a B B 0 0
CGA B kB kat B 0
CGG B B a 0 B
AGA 0 0 kB 0 kat
AGG 0 0 0 kB a

We ignore nonsynymous substitutions because nonsynonymous substitution rate is often negligi-
blly low compared to synonymous rate. The diagonal is constrained by the row sum equal to 1
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G or C. One may note that the G-ending codon AGG has the same equilibrium
frequency as that of the A-ending CGA and the T-ending CGT. Thus, we should
not expect A-ending or T-ending codons to always decrease, or G-ending and
C-ending codons always increase, with increasing genomic GC% or GC-biased
mutation. In fact, according to the solutions in Eq. (2.11), TaGG, TcGa, and TcgT
will first increase with k until k reaches ﬁ /2, and will then decrease with k when
k > +/2/2 (Palidwor et al. 2010).

One may ask why the phylogeny-based comparison was not used for character-
izing the relationship between codon GC% and genomic GC% in the 11 species
in Fig. 2.4. The reason is that the two variables change very fast relative to the
divergence time among the studied species, i.e., phylogenetic relatedness among
the 11 species is a poor predictor of the codon GC% or genomic GC%. That
genomic GC% has little phylogenetic inertia is generally true in prokaryotic spe-
cies (Xia et al. 2006). In such cases, one may assume approximate data independ-
ence and perform a phylogeny-free analysis. Another study that leads to insight
into the relationship between UV exposure and GC% in bacterial genomes (Singer
and Ames 1970), which may be the first comparative genomic study, is also not
phylogeny-based.

The Comparative Methods for Discrete Characters

A genome typically encodes many genes. The presence or absence of certain
genes, certain phenotypic traits and environmental conditions jointly represent a
major source of data for comparative genomic analysis. These binary data are best
analyzed by comparative methods for discrete data.

A total of 11728 bacterial genomes and 249 archaea genomes have been
made available for research through Entrez as of May 29, 2012. In addition to
genomic GC that can be computed as soon as the sequences are available, each
sequencing project also delivers a list of genes in the sequenced genome, identi-
fied by one of two categories of methods, i.e., by checking against the “gene
dictionary” through homology search, e.g., BLAST (Altschul et al. 1990, 1997)
or by computational gene prediction, e.g., GENSCAN (Burge and Karlin 1997,
1998). The availability of such annotated genomes, as well as the availability
of powerful phylogenetic software packages (Aris-Brosou and Xia 2008) such
as MEGA (Kumar et al. 2008), PAUP* (Swofford 2000), PHYLIP (Felsenstein
2002), BEAST (Drummond and Rambaut 2007) and DAMBE (Xia 2001),
greatly facilitates the compilation of data for comparative genomics illustrated
in Fig. 2.1.

One concrete example is shown in Fig. 2.5. We can study the column variables
individually or associations between column variables. For each column of gene
presence/absence data, the absence can be attributed to gene loss, but the presence
of a gene in a gene may either result from inheritance from the ancestor or from
lateral gene transfer which occurs frequently in bacterial species. Phylogeny-based
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Shigella flexneri - - - 4+ - - + + ... Primate pathogen
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Fig. 2.5 Phylogeny-based comparative bacterial genomics, with £ indicating the presence/
absence of gene-mediated functions. Modern bacterial comparative genomics typically would
have thousands of columns each representing the presence/absence of one gene function as well
as many environmental variables of which only a habitat variable is shown here. Modified from
Ochman et al. (2000)

inferences, such as phylogenetic incongruence test illustrated in the next section,
help us identify genes that tend to be laterally transferred. It is the discovery of
the rampant occurrence of lateral gene transfer that lead to the realization that the
cenancestor is neither a single cell nor a single genome, but is instead an entan-
gled bank of heterogeneous genomes with relatively free flow of genetic infor-
mation. Out of this entangled bank of frolicking genomes arose probably many
evolutionary lineages with gradually reduced rate of horizontal gene transfer con-
fined mainly within individual lineages (Xia and Yang 2012). Only three (Archaea,
Eubacteria and Eukarya) of these early lineages have representatives survived to
this day.

Identifying laterally transferred genes is not only important in its own merit,
but also crucial in molecular phylogenetics for building species trees which
should rely only on ancestrally inherited characters. The late Ernst Mayr, once
in an argument against using parasites as markers to infer phylogeny in a con-
ference, stated that two birds can exchange parasites but never exchange their
heads or wings or legs (Paterson et al. 1995). The point is that we should use
characters such as heads, wings, and tails that are ancestrally inherited instead of
parasites that could be laterally transferred to build phylogenetic relationships.
Phylogeny-based comparative methods require accurate phylogeny. It is mainly
for this reason that the phylogenetic incongruence test was detailed in the next
section.

While studying individual genes has its merits, comparative genomes is mainly
about association between genes and between genes and phenotypic and environ-
mental variables. The phylogeny-based comparative method (Barker and Pagel
2005; Pagel 1994) for characterizing such associations for discrete variables is
also numerically illustrated in this section.
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Studying Variables Individually: Detecting Genes that Tend to
be Laterally Transferred

While there are many ways to study the variables individually, here we illustrate
only one type of study, i.e., detecting lateral gene transfer (LGT). We may focus
on the first column in Fig. 2.5. First, Escherichia coli and Klebsiella pneumoniae
have genes coding proteins for lactose metabolism, but others do not. This leads
to at least three possible evolutionary scenarios. First, lactose-metabolizing func-
tion may be absent in the ancestor A (Fig. 2.5), but (1) gained along lineage B and
lost in lineage F and G or (2) gained independently along lineage E and lineage
H (e.g., by LGT). The third possible scenario is that the function is present in the
ancestor A, but lost in all species except for lineages E and H.

If lactose-metabolizing genes are frequently involved in LGT, then we should
expect the gene tree built from the lactose operon genes to be different from the
species tree which is typically approximated by a tree built from many housekeep-
ing genes. Is the lactose operon gene tree significantly different from the species
tree?

Suppose we have the sequence data (Fig. 2.6) from housekeeping genes, a spe-
cies tree (T7) and a lactose operon gene tree (Tz). We wish to test whether T is
significantly better than T, given the housekeeping gene sequences, with the null
hypothesis being that T» is just as good as Tj. Both the maximum parsimony (MP)
and the maximum likelihood (ML) methods have been used for such significance
tests.

For the ML method, we compute the log-likelihood (InL) for each of the nine
sites (Fig. 2.6) given Ty and Ty, respectively (InL; and InL; for Ty and Ty, respec-
tively, Table 2.4). A simple numerical illustration of computing site-specific InL
can be found in Xia (2007a, pp. 279-280). A paired-sample ¢ test can then be
applied to test whether mean InL; is significantly different from mean InL,. For
our data in Table 2.4, t = 4.107, DF = 8, p = 0.0034, two-tailed test). So we reject
the null hypothesis and conclude that the lactose operon gene tree (T;) is signifi-
cantly worse than the species tree (T1). A natural explanation for the phylogenetic
incongruence is LGT.

For the MP method, we compute the minimum number of changes (NC) for
each site given T; and Ty (Fig. 2.6), respectively (NC; and NC, for T; and T,

123456789 S0 50
S, ACAAGGCTT s1 S4
S, GCTAGGCTC — {
S, GCTAGGCTC 52 S2
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S, GCAAAACTT T, {54 T, {51

Fig. 2.6 DNA sequence data for significance tests of two alternative topologies
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Table 2.4 Phylogenetic incongruence tests with maximum likelihood (ML) and maximum par-
simony (MP) methods. InL; and InL; are site-specific log-likelihood values based on the F84
model and T; and T, (Fig. 2.6), respectively, and NC1 and NC2 are the minimum number of
changes required for each site given T and T, respectively

ML MP
Site InL; InL, NC; NC,
1 —4.0975 —4.0990 1 1
2 —2.0634 —2.7767 0 0
3 —5.1147 —7.7335 1 2
4 —1.9481 —2.6238 0 0
5 —3.2142 —5.0875 1 2
6 —3.2142 —5.0875 1 2
7 —2.0634 —2.7767 0 0
8 —2.3938 —3.2626 0 0
9 —3.1090 —3.8572 1 2

respectively, Table 2.4). A simple numerical illustration of computing site-specific
NC can be found in Xia (2007a, pp. 272-275). We can then perform a paired-sam-
ple ¢ test as before to test whether mean NC;j is significantly smaller than NC,
in one of three ways. The first is to use the entire nine pairs of data, which yields
t = —2.5298, DF = 8, p = 0.0353, and a decision to reject the null hypothesis that
T and T, are equally good at the 0.05 significance level, i.e., T is significantly
better than T,. Second, we may use only the five polymorphic sites in the paired-
sample ¢ test, which would yield t = —4, DF = 4, and p = 0.0161. This leads to
the same conclusion. The third is to use only the four informative sites which is
however inapplicable in our case because we would have four NC; values all equal
to 1 and four NC, values all equal to 2, i.e., the variation in the difference is zero.

When the phylogenetic incongruence test is applied to real lactose operon data,
it was found that the lactose operon gene tree is somewhat compatible to the spe-
cies tree, and the case for LGT is therefore not strong (Stoebel 2005). This sug-
gests the possibility that the lactose operon was present in the ancestor, but has
been lost in a number of descendent lineages. In contrast, the urease gene cluster,
which is important for long-term pH homeostasis in the bacterial gastric patho-
gen, Helicobacter pylori (Sachs et al. 2003; Xia and Palidwor 2005), generate
genes trees significantly different from the species tree (unpublished result). This
suggests that the urease gene cluster is involved in LGT and has implications in
emerging pathogens. For example, many bacterial species pass through our diges-
tive system daily, and it is conceivable that some of them may gain the urease gene
cluster and become acid-resistant, with the consequence of one additional patho-
gen for our stomach.

One may note that significant incongruence between the gene tree and species
tree does not imply LGT because events such as gene duplication and lineage-spe-
cific gene loss can also lead to phylogenetic incongruence (Page 2003). This is
illustrated in Fig. 2.7 with five species labelled Spl to Sp5. A gene duplication
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Sp1

Al sp1 —E—AT gp1
(a) P (b) P (c)
A2 gpo A2 gpo sp3
N
A N A
3 sp3 2$—A3 sp3 2 Sp2
A4 Sp4 A4 Spa A4 Sp4
A5 sp5 A5 Sp5 A5 Sp5

Fig. 2.7 Phylogenetic incongruence can result from gene duplication and lineage-specific gene
loss. a A gene duplication event occurred at Node N. b Genes A1, B2 and B3 were lost in evolu-
tion. ¢ Phylogenetic tree resulting from the remaining 5 gene sequences is different from the true
tree (shaded)

event occurred at node N in Fig. 2.7a, leading to paralogous genes A and B in
all subsequent lineages. Differential gene losses occurred subsequently (Fig. 2.7b),
leading to the loss of Al, B2 and A3, which would mislead us to think that gene
duplication has never occurred and the gene has always been in a single-copy
state. Using these five gene sequences, B1, B3, A2, A4 and AS, we would arrive at
the wrong tree that is different from the true tree in Fig. 2.7a. However, genes that
have undergone such duplications and lineage-specific gene losses are also poor
phylogenetic markers. The illustration does not invalidate the use of the phyloge-
netic incongruence test to identify genes that are poor phylogenetic markers.

Studying Association Between Variables

Many genes work together and complement each other to accomplish a biologi-
cal function. For example, Type II ENase (restriction endonuclease) is always
accompanied by the same type of MTase (methyltransferase) recognizing the
same site (Fig. 2.5). Patterns like this allow us to quickly identify enzymes that
are partners working in concert. ENase cuts the DNA at specific sites and defends
the bacterial host against invading DNA phages. MTase modifies (methylates)
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the same site in the bacterial genome to prevent ENase from cutting the bacte-
rial genome. Obviously, ENase activity without MTase is suicidal, so MTase must
accompany ENase, although ENase may get lost without immediate detrimental
effect. The functional complementation also explains why the activity of many
ENases depends on S-adenosylmethionine (AdoMet) availability. AdoMet always
serves as the methyl donor for MTase. Without AdoMet, the restriction sites in the
host genome will not be modified even in the presence of MTase because of the
lack of the methyl donor, and ENase activity will then kill the host. So it is selec-
tively advantageous for ENase activity to depend on the availability of AdoMet.
Although rare, MTase can be present without the associated ENase. For example,
E. coli possesses two unaccompanied MTases, Dam and Dcm. Some bacterio-
phages carry one or more MTases to modify their own genome so as to nullify the
hostile action of the host ENases.

Aside from association between genes, we are often interested in the associa-
tion between gene function and environmental variables. For example, the pro-
duction of functional urease is often associated with an acidic environment in
bacterial species, such as Helicobacter pylori, Klebsiella pneumoniae and Serratia
marcescens. H. pylori inhabits the acidic environment in mammalian stomach,
and the two other species can generate acids by fermentation leading to acidifica-
tion of their environment. The presence of urease, which catalyzes urea to produce
ammonia, can help maintain cytoplasmic pH homeostasis and allow them to toler-
ate environmental pH of 5 or even lower. Thus, comparative genomics can help us
understand gene functions in particular environmental conditions.

Urease gene cluster serves as one of the two key acid-resistant mechanisms in
the bacterial pathogen Helicobacter pylori in mammalian stomach, with the other
mechanism being a positively charged cell membrane that alleviates the influx
of protons into cytoplasm. The latter mechanism is established by comparative
genomics between H. pylori and its close relatives as an adaptation to the acidic
environment in the mammalian stomach (Xia and Palidwor 2005).

Not only can association between genes, or between genes and their function
can lead to biological insights, but the lack of certain expected association can also
shed light on gene functions. For example, a set of ERG genes involved in de novo
cholesterol biosynthesis are strongly conserved among various animal lineages.
However, some of these genes are also strongly conserved in Drosophila mela-
nogaster and Caenorhabditis elegans that are unable to synthesize cholesterol, i.e.,
a de-coupling of the genes and their expected function. Comparative genomics
studies suggest that the ERG homologs in D. melanogaster and C. elegans have
evolved to acquire new functions (Vinci et al. 2008).

The identification of association either between two genes (e.g., between a type
IT ENase and a type II MTase) or between a gene and an environmental variable
(e.g., between urease production and the habitat) represents the same statistical
problem. However, a statistician without biological background may misconstrue
the problem and might use a 2 x 2 contingency table (i.e., N4/, N/, N_/4,
N_,_) and Fisher’s exact test to identify the association between two columns
without taking the phylogeny into consideration. However, such an approach can



38 2 Comparative Genomics and the Comparative Methods

lead to both false negatives and false positives. Figure 2.8 illustrates the associa-
tion study of two pairs of genes. Ignoring the phylogeny will lead to a significant
association between genes ORC3 and CIN3. However, the data points are not inde-
pendent as the superficial association could be caused by only two consecutive
gene-gain events (Fig. 2.8) and all the seven “11” could then be the consequence
of shared ancestral characters.

A phylogeny-based comparative analysis (Barker and Pagel 2005; Pagel 1994)
characterizes the state transition by a Markov chain, and uses a likelihood ratio
test to detect the presence of association between genes or between a gene func-
tion and an environmental condition. Two genes, each with two states (presence/
absence), have four possible joint states and eight rate parameters (o, o2, B, B2,
d1, 32, y1 and ;) to be estimated from the data (Fig. 8). When the gain or loss of
one gene is independent of the other gene, then o = ap, B = P2, 81 = dp, and
Y1 = Y2, with only four rate parameters to be estimated. Thus, we compute the
log-likelihood for the eight-parameter and four-parameter model given the tree and

(a) Wi G
Caenorhabditis elegans 00 01

Drosophila melanogaster 00 01
Cryptococcus neoformans 00 0 1

Aspergillus nidulans 00 01
Magnaporthe grisea 00 11

Neurospora crassa 00 01

Fusarium graminearum 00 01

—— Schizosaccharomyces pombe 01 11

Candida albicans 11 0cC

Saccharomyces kluyveri 1 1 0C

(b) S. castellii 11 0cC
0T S. bayanus 11 0C
00 - o S. mikatae 11 0cC
(1)(1) g‘l 0 S. paradoxus 11 11
o s v S. cerevisiae 11 11

Fig. 2.8 Comparative methods for discrete binary characters. The presence and absence (des-
ignated by 1 and 0, respectively) of four genes are recorded for each species (a) The two black
arrows indicate a gene-gain event. The instantaneous rate matrix (b), with notations following
Felsenstein (2004), shows the relationship among the four character designation, i.e., 00 for both
genes absent, 01 for the absence of gene 1 but presence of gene 2, 10 for the presence of gene 1
but absence of gene 2, and 11 for both genes present. The diagonals are constrained by each row
sum equal to 0. Modified from (Barker and Pagel 2005)
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the data, designated InLg and InL4, respectively, and perform a likelihood ratio test
with test statistic being 2(InLg—InL4) and four degrees of freedom.

I illustrate the computation of InLg by using a simpler tree with only four oper-
ational taxonomic units or OTUs (Fig. 2.9). The joint states, represented by binary
numbers 00, 01, 10 and 11, correspond to decimal numbers 0, 1, 2 and 3 which
will be used to denote the four states in some equations below. The likelihood for
the eight-parameter model is

33 3

Ly =D > > P (b6)Pso(b1)Py3(b2)Pey(bs)Pyo (b3)Py3 (ba)
z=0 y=0 x=0
(2.12)

Equation (2.12) may seem to suggest that we need to sum 3* terms. However,
the amount of computation involved is greatly reduced by the pruning algorithm
(Felsenstein 1981). To implement this algorithm, we define a vector L with ele-
ments L(0), L(1), L(2), and L(3) for every node including the leaves. L for leaf i is
defined as
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Fig. 2.9 Four-OTU tree with branch lengths (bl to b6) for illustrating likelihood computation.
The L vectors are computed recursively according to Eqs. (2.13)—(2.14)
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L for an internal node with two offspring (01 and 0,) is recursively defined as

3 3
Li(s) = [Z Py (bioy)Lo, (k)} [Z Py (bioy) Lo, (k)} (2.14)

k=0 k=0

where b; o1 means the branch length between internal node i and its offspring oy,
and Pgy is the transition probability from state s to state k computed from the rate
matrix (Fig. 2.8b). For example, by s; (branch length between internal node x and its
offspring Sy) is by in Fig. 2.9. The computation involves finding the eight rate param-
eters that maximize Lg. As there is no analytical solution, the maximizing algorithm
will simply try various rate parameter values and evaluate Lg repeatedly until we
converge on a set of parameter values that result in maximum Lg. Many such algo-
rithms are well explained and readily available in source code (Press et al. 1992).

While the equations might be confusing to some, the actual computation is quite
simple. With only four OTUs, S; = S3 = ‘00" and Sy = S4 = ‘11’ (Fig. 2.9), the likeli-
hood surface is quite flat and many different combination of the rate parameters can
lead to the same maximum Lg. In fact, the only constraint on the rate parameters is
high rates from states 01 and 10 to states 00 and 11 (i.e., large 8; + y; + a2 + B2) and
low rates from states 00 and 11 to states O1 and 10 (i.e., (i.e., small 8> + y2 + o1 + By).
This should be obvious when we look at the four OTUs in the tree (Fig. 2.9), with only
00 and 11 being observed at the leaves. This implies that 01 and 10 should be transient
states, quickly changing to 00 or 11, whereas 00 and 11 are relatively conservative sta-
ble states. One of the rate matrices that approaches the maximum Lg is

00 01 10 11
00 —16.47 13.15 3.32 0
O0=|01 110 —135653.97 0 135652.87 (2.15)
10 1816.49 0 —20308.04 18491.54
11 0 18.30 207.21 —225.52

The rate of transition from states Ol and 10 to states 00 and 11 is 644.5 times
greater (The true rate should be infinitely greater) than the other way round, which
implies that we will almost never observe 01 and 10 states. The transition prob-
ability matrices with branch lengths of 0.1 and 0.3, which are computed as e?,
where t is the branch length, are, respectively,

00 01 10 11
00 0.54616 0.00011 0.00467 0.44908
P(0.1) =] 01 0.51459 0.00011 0.00499 0.48038
10 0.51738 0.00011 0.00496 0.47759
| 11 0.51458 0.00011 0.00499 0.43034

00 01 10 11
00 0.53145 0.00011 0.00482 0.46377
P(0.3) =| 01 0.53144 0.00011 0.00482 0.46382
10 0.53144 0.00011 0.00482 0.46382
| 11 0.53144 0.00011 0.00482 0.46382 |

- (2.16)
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We can now compute Lg by using the pruning algorithm. First, Lgy to Lg4 are
straightforward from Eq. (2.13) and shown in Fig. 2.9. Ly and Ly are computed
according to Eq. (2.14), e.g.,

L, (00) = Poopo(0.1)Pgp;1(0.1) = 0.54616 x 0.44908 = 0.24527
L.(01) =0.51459 x 0.48038 = 0.24720
L.(10) =0.51738 x 0.47759 = 0.24710
L,(11) =0.51458 x 0.48037 = 0.24719

(2.17)

Similarly, Ly(00), Ly(01), Ly(10), and Ly(11) are computed the same way and
have values 0.24647, 0.24649, 0.24649, and 0.24649, respectively. Similarly, L, is
also computed by applying Eq. (2.14), e.g.,

L.(00) = AB = 0.246207 x 0.246487 = 0.060687, where

A = [Poopo(bs)Lx(00) + Poop1(be)Lx(01) + Poo10(be)Lx(10) + Pooy1(be)Ly(11)]
= 0.246207

B = [Poopo(b5)Ly(00) + Poop1(bs)Ly(01) + Poojo(b5)Ly(10) + Pooy1(bs)Ly(11)]

= 0.246487
(2.18)

L,01), L,(10), and L,(11) are 0.060692, 0.060691, and 0.060691, respectively.
The final Lg is

3
Ly = > miL(k) = 0.060687 x 0.5 +0.060691 x 0.5 = 0.060689
k=0
In(Lg) = —2.802

where we used the empirical frequencies for Ty, although 7y could also be esti-
mated as a parameter of the model. Note that states 01 and 10 are not observed,
and 1o and 7yg are assumed to be 0 in Eq. (2.19).

The computation of In(L4) is simpler because only four rate parameters need
to be estimated, and is equal to —5.545. If quite a large number of OTUs are
involved, then twice the difference between the two log-likelihood, designated
2AInL, follows approximately the %2 distribution with 4 degrees of freedom. If we
could assume large-sample approximation in our case, then 2AInL = 5.486, which
leads to p = 0.241, i.e., the eight-parameter model is not significantly better than
the four-parameter model. Such a result is not surprising given the small number
of OTUs.

With this phylogeny-based likelihood approach, Barker et al. (2007) found
that the superficial association between genes CIN4 and ORC3 is not signifi-
cant, although Fisher’s exact test ignoring the phylogeny would produce a sig-
nificant association between the two genes. Similarly, genes L9A and L42B
were found to be significantly associated based on the phylogeny-based like-
lihood approach, although Fisher’s exact test ignoring the phylogeny would
suggest a lack of the association. In this particular case, L9A and L42B are
known to be functionally associated and CIN4 and ORC3 are known not be

(2.19)
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functionally associated. Ignoring the phylogeny would have produced both a
false positive and a false negative. Phylogeny-based comparative methods
for continuous and discrete methods have been implemented in the freely
available software DAMBE(Xia 2001; Xia and Xie 2001) at http://dambe.
bio.uottawa.ca.

Sometimes one may find the presence of orthologous genes in different spe-
cies but the function associated with the gene is missing in some species, i.e.,
the same genotype (presence of a gene or a group of genes) correspond to dif-
ferent phenotypes. Such is the case of ERG genes involved in sterol metabo-
lism. Many species, including Drosophila melanogaster and Caenorhabditis
elegans, share orthologous genes involved in de novo sterol synthesis