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Plastic design is one of the most 
widely used methods for the design 
of portal frames and other low rise 
steel structures, as well as for 
continuous beams and other simple 
indeterminate structures. 

This book provides a complete 
summary of plastic theory, from 
elementary principles to the use of 
plastic theory as a practical tool in 
the design office. It examines plastic 
design and behaviour of main 
frames, both low rise industrial and 
agricultural, and multi—storey. 

Topics such as member stability, 
frame stability and restraints are 
covered in clear, detailed 
presentations, backed up by 
numerous diagrams and worked 
examples. 

The book recognises the increasing 
significance of the elastic critical 
load as a measure of the sensitivity 
of a structure to second order 
effects, and in so doing anticipates 
the requirements of Eurocode 3 
which will become increasingly 
important for designers. 

Whilst much of the book is devoted 
to portal frames, it also includes 
what is believed to be the first 
complete plastic design procedure 
for multi—storey frames. 

Combining a unique blend of theory 
and practice, the book provides both 
a complete university course to 
master level in the subject and all 
the practical methods required by 
designers. 

'The structural steelwork 
community has been waiting for 
over a decade for an authoritative 
text explaining the plastic design 
provisions of BS 5950: Part 1 - it is 
now available.' 

Professor D.A. Nethercot 
ii ye rs it)' of No tti i igh an, 



Errata for Plastic Design to BS5950 

Page 7, Fig. 1.10 should be as below: 

(a) (b) TJJJJ 4=4 J7 
(c) I111IIIIlIIIIIIItItI TT1 (d) j liii 111111 I iii i-i—a—i—i-i—i-—i 

Tr17 x7 
Page 11, Example 1.1(a), third line of calculation should read: 

29.58 mm 

Page 62, Fig. 2.62, equation within diagram labelling should read: 

(-+o.s) 
Page 80, calculation immediately above Fig. 2.83 should read: 

4.5O= giving8=ii 
Page 96, Section 5.7.3.3, Clause (e), calculation (2) should read: 

(2) when 5.75 <Ai- < 20: ),, > 

Page 113, Table 3.1, right-hand column, 6th paragraph should read: 

Simplified version of Ref. 3.15 

Page 118, 17 lines up from base of page, should read: 

analysis which was derived by Home.3'5 It has been verified by 

Page 119, Fig. 3.24, Reference citation within diagram labelling should read: 

From formula of Ref. 3.15 

Page 124, numbered list point (3), citation should read: 

Reference 3.15 

Page 174, seventh line of calculations should read: 

:. S = 49.2(39.53 — 19.865) + 24.946(0.20 + 19.798) 

Page 182, sixth line of calculations should read: 

B=width of section= 142.4mm 

Page 213, Table 6.3, first section should read: 

A 13 C 

4th storey 162 324 162 
-I +1 

13/20 70 12 70 
231 336 233 
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Foreword 

It is estimated that 50% of the constructional steelwork used in the UK 
is fabricated into single-storey buildings. Within this major market 
sector the portal frame is the most common structural form and plastic 
analysis is the most frequently used method for its design. Plastic design 
is also widely used for continuous beams and other simple indetermi- 
nate structures. 

The plastic design of structural steelwork has come a long way since it 
was first allowed in the UK by the 1949 edition of BS 449. Yet it was 

only with the publication of BS 5950 in 1985, nearly 40 years later, that 
designers in the UK were given code of practice clauses with which to 
put the design on a more formal basis. There were considerable benefits 
from this state of affairs because it allowed the practical usage of plastic 
theory to develop without the constraints of a rigorous design code. 
There have also been disadvantages in that some of the procedures that 
have evolved into practice have been more in the nature of folklore than 
sound engineering. 

BS 5950 introduced a higher yield stress for the commonly used 

grades of mild steel together with lower load factors. These, taking 
advantage also of the relatively new reduction in the snow load, have led 
to much lighter steel frames than those which were used in earlier 
practice. This situation requires the designer to pay more attention to 
member and frame stability as well as to working load deflections. These 
are considerations that are carefully treated by the authors. 

It is unreasonable to expect an initial statement of detailed design 
procedures to be without flaw or ambiguity and it has to be admitted 
that the 1985 Edition of BS 5950 was far from perfect. Many of the 
problem areas have been improved with the 1990 Edition but some 
inconsistency and lack of clarity still remains and the writers have 
attempted to make their own contribution to the debate on these where 
this has been appropriate. In doing this they have been able to draw on 
two quite different lifetime experiences in the subject. 

Professor Davies was introduced to the finer points of plastic theory 
in the early 1960s when he was a research student studying various 
aspects of the subject under the supervision of Professor M.R. Home, 
one of the early pioneers of plastic theory whose contributions have had 
a profound influence on the state-of-the-art. Since then, Professor 



x Foreword 

Davies has retained an active interest in the development of plastic 
theory. His own significant contributions have included writing the 
central elastic—plastic analysis and plastic design modules of the market- 
leading computer package FASTRAK 5950 and some recent important 
improvements in the understanding of the significance of second-order 
effects in plastically designed portal frames. 

He has also taught the subject to generations of students and is well 
aware that many graduate with a relatively flimsy knowledge of some of 
the important basic principles without which plastic design cannot be 
confidently used. An important aspect of the book, therefore, is a 
complete development of plastic theory from the elementary principles 
to a practical tool for the design office. 

In contrast, Brian Brown has built up his experience in the design 
office. With the Conder group in the early days of the subject, he was 
deeply involved in developing plastic design as a practical tool for the 
competitive design of portal frames. The Conder companies were widely 
regarded as leading the market in this respect and, rising to the office of 
Technical Director, Brian Brown has built up a unique experience of 
using plastic design in practice and has made numerous contributions to 
the way things are now done. 

Combining together, Davies and Brown have been able to write a 
book with a unique blend of theory and practice which will be of equal 
benefit to students and practitioners alike. It combines a complete 
university course to Master level in the subject with all of the practical 
methods that designers will require. Emphasis is entirely on manual 
methods — designers do not need to know how to write a software 
package. If they have a computer, they do need to know how to do 
quick manual checks on the results that it produces. 

There are a number of aspects of this that are unique and two are 
worthy of special mention. It recognises the increasing significance of 
the elastic critical load as a measure of the sensitivity of a structure to 
second-order effects. This is implicit in some of the sections of BS 5950 
dealing with plastic theory. It is much more explicit in Eurocode 3 and 
designers will clearly have to become more confident in using this 
parameter in their design procedures. The importance of this can be 
measured by the fact that some structures that have been designed and 
built on the basis of plastic theory in recent years cannot be justified 
when proper consideration is given to second-order effects. Such 
structures probably only survive as a consequence of the stiffness of 
their cladding! Secondly, while much of the book is devoted to portal 
frames, Chapter 6 contains the first attempt to give a complete plastic 
design procedure for multi-storey frames. 

This book is therefore a very worthwhile reference for all those who 
wish to have a detailed understanding of practical plastic design. It 
should be of lasting benefit to practising engineers, students and their 
teachers. I commend it to you warmly. 

Dr Graham Owens 
Director 

The Steel Construction Institute 



Chapter 1 

Introduction 

1.1 Elastic and plastic properties of structural steel 

Plastic design takes advantage of an important and unique property of 
mild steel, namely its ductility. Figure 1.1(a) shows a typical stress— 

strain curve obtained from a simple tensile test. 
Unless a tensile test is carefully carried out using sophisticated 

equipment, the upper yield stress is difficult to determine and it has little 
practical significance. It is therefore ignored in design calculations. 
Similarly, except for one particular exception which will be considered in 
Chapter 3, it is conservative and convenient to ignore strain hardening 
and to consider the simplified stress—strain curve shown in Fig. 1.1(b). 

The significant feature in both Figs 1.1(a) and (b) is the long yield 
plateau which allows the possibility of considerable plastic strain at 
constant stress. Figure 1.1(a) is typical of the carbon steels that have 
traditionally been used in plastic design. However, not all structural 
steels have such a favourable stress—strain curve and Fig. 1.21.1 shows 
the initial part of the stress—strain curve for a range of steels including 
some of the higher grades. It can be seen that the latter have a more 
gradually yielding behaviour though still exhibiting considerable 
ductility. Provided that adequate ductility is available (see below), 
such steels can still be used for plastic design with the yield stress 

replaced by the 0.2% proof stress in the conventional way. 
BS 5950: Part 1: 1990 includes three standard grades of steel 

designated design grades 43, 50 and 55. These steels are defined in the 
European Standard BS EN 10025: 1993 and their significant properties 
are given in Table 1.1. 

The other properties required for design are as follows: 

Modulus of elasticity E = 205 kN/mm2 
Poisson's ratio i-i = 0.30 
Coefficient of linear thermal expansion 12 x 10—6 per °C 

Density p = 7850 kg/rn3 
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(300 
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Stress 
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Fig. 1.1 Typical stress—strain curves for mild steel: (a) typical stress—strain 

curve; (b) simplified stress—strain curve. 
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Fig. 1.2 Typical initial stress—strain curves for structural steels''. 
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Table 1.1 Properties of structural steel grades. 

Introduction 3 

Design Thickness Design Minimum Minimum Minimum 
grade less than or 

equal to 
(mm) 

strength p 
(N/mm2) 

yield stress 
Y5 

(N/mm2) 

ultimate 
strength 
U 
(N/mm2) 

elongation 
on gauge 
length of 
5.65/So 

43 16 
40 
63 

100 

275 
265 
255 
245 

275 
265 
255 
245 

410 
410 
410 
410 

20—22% 

50 16 
40 
63 

100 

355 
345 
335 
325 

355 
345 
335 
325 

490 
490 
490 
490 

20—22% 

55 16 
25 
40 
63 

450 
430 
415 
400 

450 
430 
430 
415 

550 
550 
550 
550 

19% 

Notes: 1. In BS 5950, the design strength p is taken as equal to the yield stress 
Y5 but not greater than 0.84 U. 

2. The sub-grades A, B, C, refer to the resistance to brittle fracture as 
defined by Charpy impact tests. 

3. S0 is the original cross-sectional area of the gauge length. 
4. BS 5950: Part 2: 1992 specifies that all hot-rolled structural steel 

products shall comply with either BS 4360 or BS EN 10025 (grades 
Fe 360, Fe 430 or Fe 510 only) or with a number of performance 
requirements. 

5. BSEN 10025 uses different terminology to BS4360 to define the 
steel grades in terms of strength and other properties. 

Steel grades other than those described above may be used for plastic 
design to BS 5950: Part 1 provided that the following requirements are 
satisfied: 

(a) the stress—strain diagram has a plateau at the yield stress extending 
for at least six times the yield strain; 

(b) the ratio of the specified minimum ultimate tensile strength to the 
specified minimum yield strength is not less than 1.2; 

(c) the elongation on a gauge length of 5.65 /S0 is not less than 
15% where S0 is the original cross-sectional area of the gauge 
length. 



4 Plastic Design to BS 5950 

1.2 Basis of plastic design 

Plastic design is applicable to steel structures which carry load 
predominantly as a consequence of the resistance of their members to 
bending and is concerned with providing an adequate load factor 
against collapse of the structures. The basic principles may be illustrated 
by considering the behaviour of the simply supported beam shown in 
Fig. 1 .3 as the load is increased up to the level where the beam fails. 

If w represents the unfactored load per unit length and A the load 
factor, the relationship between A and the deflection under the load is 
shown in Fig. 1.4. The stress distributions at the centre of the beam at 
the various stages of loading are shown in Fig. 1.5. Figure 1.5(a) shows 
a typical cross-section which is assumed to have both horizontal and 
vertical axes of symmetry. At load levels below the yield load factor A, 
the stress distribution is linear with a maximum value f in the outermost 
fibres as shown in Fig. 1.5(b). As the load level is increased above A, the 
outer fibres yield and yield zones start to spread inwards as shown in 
Fig. 1.5(c). The load deflection curve is linear elastic up to A but above 

Aw per unit length 
1_LIllIllIllIlIlil 1111111111111111111 

I- Ii 
1' 1' 

L 

Fig. 1.3 Simply supported beam. 

Load 
factor Strain 
A hardening 

— — — — Collapse 

Plasticity spreads through section 

lnf1edlId 
Deflection at mid-span 

Fig. 1.4 Load-deflection curve for simply supported beam. 
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fYs vs vs 

Li: 
(a) (b) (C) (d) 

Fig. 1.5 Stress distributions at the centre of the beam. 

this value it starts to become non-linear as shown in Fig. 1.4. The 
inward spread of plasticity continues until the whole cross-section at 
mid-span has become plastic as shown in Fig. 1.5(d). At this stage, the 
beam can accept no more load and the load-deflection curve has become 
horizontal at the collapse value of the load factor 

It may be noted that if account is taken of the influence of strain 
hardening, the load-deflection curve may continue to show a small rise 
at large deflection as shown by the broken line in Fig. 1.4. However, this 
small beneficial effect is usually ignored. At collapse the region of the 
beam below the load behaves like a hinge with the result that the beam 
has effectively become a mechanism as shown in Fig. 1.6. 

This simple example illustrates the two basic principles of plastic 
theory: 

I In plastic design, structures are assumed to collapse by the 
formation of a collapse mechanism. 

Collapse mechanisms are brought about by the formation of one or 
more plastic hinges. At a plastic hinge, the cross-section has become 

fully plastic as shown in Fig.1.5(d) with the result that it can rotate 
at constant bending moment. The bending moment at a plastic hinge 
is termed the fully plastic moment of resistance or, more briefly, the 
full plastic moment. 

Consider now the same beam when its ends are built-in to rigid 
supports as shown in Fig. 1.7. As the load is increased through the elastic 

LUJ.JJLLLE.LULEI I I I ILLIJJ. .J 

Fig. 1.6 Collapse mechanism for simply supported beam. 
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Aw per unit length 
Ill_i 111111 1111111 I ii Iiiiiii 

Fig. 1.7 Beam with fixed ends. 

range, first yield will occur at the positions of maximum elastic bending 
moment adjacent to the rigid supports. As the load is increased further, 
plastic hinges will form at these positions but the centre of the span 
remains elastic and the beam cannot collapse. This state of affairs is 
shown in Fig. 1.8(a). As more load is applied, the bending moments at 
the supports remain constant at their fully plastic values but the moment 
at mid-span increases. Collapse finally occurs when the bending moment 
at mid-span reaches its fully plastic value as shown in Fig. 1.8(b). The 
load-deflection curve for this beam is shown in Fig. 1.9. 

(a) ii! 11111111 t IllIllItlIll ijii (b) 11IIII111IIII I I 111111 

Plastic hinges 

Fig. 1.8 Spread of plasticity in beam with fixed ends: (a) centre elastic, ends 
plastic; (b) collapse mechanism with three plastic hinges. 

Load factor 
A 

Collapse 
Final hinge forms at centre 

Approximately linear 

Deflection at mid-span 

Fig. 1.9 Load-deflection curve for beam with fixed ends. 
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Initially the curve is linear elastic but becomes non-linear as plasticity 
spreads through the section at the fixed ends. When the plastic hinges at 
the ends are fully formed, the curve becomes approximately linear again 
at a reduced slope as these hinges rotate and bending moments are 
redistributed towards the centre of the beam. When the third plastic 
hinge has formed at mid-span, a collapse mechanism exists and the 
load-deflection curve is horizontal. The structure can continue to 
deform at constant load. 

Much of the theory which follows will be concerned with the 
prediction of collapse mechanisms and the determination of the 
corresponding load factors at collapse. Figure 1.10 shows some typical 
collapse mechanisms. 

It is important to note that, in each of the collapse mechanisms shown 
in Fig. 1.10, sufficient plastic hinges have formed to transform at least 
part of the structure into a valid mechanism capable of deflecting 
indefinitely without any change in the loads. It is also important to note 
that we generally proceed direct to the collapse condition without 
considering the intermediate elastic-plastic conditions prior to collapse. 
Thus, plastic design provides consistency of the load factor against 
collapse whereas the ultimate strength of an elastically designed 
structure is variable depending on the elastic bending moment 
distribution. 

It is implicit in the above discussion that the structure is sufficiently 
robust for it to achieve a mechanism form of collapse without the 
adverse influence of any form of instability. Three separate forms of 

(a) (b) 

t]Iiiiiiiiiii 111111111 

(c) (d) 

Fig. 1.10 Typical collapse mechanisms: (a) built-in beam with off-centre point load; (b) simple portal 
frame; (c) alternative mechanism for portal frame (b); (d) pitched roof portal frame with uniformly 
distributed load. 

lLLIIJlIIlIuIIIlIllIIIlIJJ 

liii 111111 
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instability are possible in steel structures and each must be guarded 
against. Their particular characteristics are as follows: 

U Local instability may arise if the elements of the cross-section (flanges 
or web) are too slender for plastic hinges to form and rotate at 
constant bending moment without the occurrence of local buckling 
at the plastic hinge positions. Sections which are sufficiently compact 
for plastic hinge action are termed 'plastic sections' and simple rules 

defining plastic sections are given in Table 7 of BS 5950 Part 1. 

For the typical shapes shown in Fig. 1.11, the requirements for a 
plastic section may be summarised as follows: 

For rolled sections < 8.5€ 

For sections built up by welding 7.5€ 

d 79€ For webs generally — < 
0.4 + O.6 

where \/275/pV, p = design strength of steel (=Y), and = 
2y/d. 

U Lateral instability may arise in members which are insufficiently 
braced laterally so that they are relatively slender with regard to 

buckling about their minor axis. In plastic design, it is necessary to 
ensure that lateral instability is prevented by the choice of suitable 
sections and by the presence of adequate bracing. A particular 
requirement that should be noted in this connection is (clause 5.3.5) 
that torsional restraints should be provided at all plastic hinge 
locations or, if this is impracticable, within a distance of half the 
section depth of the plastic hinge location. 

Plastic 
neutral axis 

(c) 

Fig. 1.11 Typical plastic sections: (a) rolled section; (b) section built up by welding; (c) stress 
distribution. 

Compression 

(a) (b) 



Introduction 9 

U Frame instability occurs in the plane of the frame as a consequence 
of significant axial compressive loads together with finite defiections. 
In many structures designed by plastic theory, the axial compressive 
loads are relatively small and this effect can be discounted. In other 
structures, it is necessary to predict the reduction in the collapse load 
occasioned by frame instability (also termed second-order effects) 
and there are alternative ways of dealing with this which will be 
mentioned at appropriate places in the book. 

1.3 Evaluation of the full plastic moment 

In order to demonstrate the principles involved in the determination of 
the full plastic moment, M, a general section with a vertical axis of 
symmetry Y—Y will be considered as shown in Fig. 1.12(a). The section 
will be assumed to be subject to a pure bending moment with no axial 
load. Consider the spread of plasticity as the moment is increased to its 
full plastic value. 

Figure 1.12(b) shows the stress distribution in the elastic range of 
loading according to the engineer's theory of bending. The distribution 
is linear, having a zero value at the neutral axis and a maximum value at 
one or other of the outer fibres. As the bending moment increases, yield 
takes place in the region of maximum stress and the yielded zone starts 
to spread inwards until the yield stress is reached at the other extremity. 
Figure 1 .12(c) shows the stress distribution when there is a yielded zone 
in the lower part of the section and the yield stress has just been attained 
in the uppermost fibres. 

Further increases in bending moment result in the yielded zones 
spreading inwards until they meet, as shown in Fig. 1.12(d). At this 

Equal 
area axis—— 

Neutral axis— 

(a) (b) (c) 

Fig. 1.12 Illustrating the development of full plasticity in a singly symmetrical cross-section. 

Zero stress between 
E.A.A and N.A 

Iv max' Ys 
(d) 
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stage the section is fully plastic and the bending moment is equal to the 
fully plastic moment of resistance M. The stress distribution consists of 
a compressive stress block in the upper part of the cross-section and a 
tensile stress block in the lower part of the section, both blocks being at 
the yield stress Y. As the section is subject to pure bending with zero 
axial force, the forces F associated with each stress block must be equal 
and, furthermore, if the cross-sectional area is A, 

F=Y. (1.1) 

It also follows that, in Fig.1.12(d), the zero stress axis divides the 
cross-section into two equal areas so that it is usually termed the 'equal 
area axis' (EAA). As plasticity has spread through the section the zero 
stress axis has moved from the original neutral axis passing through the 
centroid of the section to the equal area axis. If 5i and Y2 are distances 
from this axis to the centroids of the individual stress blocks, it follows 
that the full plastic moment M is given by 

= is (Yi +y2) (1.2) 

Computationally, it is more convenient to consider the section to be 
divided into a number of elementary areas A each having a centroid 
distant y from the equal area axis. It then follows that 

M Ys>Aiyi (1.3) 

that is 

M = YS (1.4) 

where S, = first moment of area of the cross-section which is a section 
property termed the plastic section modulus. The plastic section moduli 
of all standard hot-rolled sections are tabulated in standard publica- 
tions such as Steelwork Design Guide to BS5950'2 so that for such 
sections the evaluation of M is trivial. 

It may be noted that the yield moment M at a cross-section is given by 

M = Y5Z (1.5) 

where Z = elastic section modulus. It follows that there is a further 
dimensionless section property termed the shape factor c which is 
defined by 

(1.6) Z M, 
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For Universal Beam sections bent about the major axis, generally lies 
within the range 1.15 to 1.2. For other sections considerably larger 
values are possible. 

Example 1.1 Find the shape factor of the Tee section shown in Fig. 1.13. 

(a) Determination of the elastic section modulus Z. 
Let the neutral axis be a distance 5 from the top of the flange. 

Area = 12.5(100 + 87.5) = 2344 mm2 

12 2 1002 

2344j=87.5x—-—--12.5x——— 

29.8 mm 

Second moment of area = 87.5 
12 

+ 87.5 x 12.5 x 23.332 

+ 12.5 

12 
+ 12.5 x 100 x 20.422 

= 2172400mm4 

.. z= 2 172400 = 30850mm3 

100 

hj.I.._ JT 
—. 12.5 

N.A 

100 

—12.5 

Fig. 1.13 Tee section. 
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(b) Determination of the plastic section modulus S. 
Let the equal area axis be a distance h from the top of the flange 
(it obviously lies just within the flange). Then 

lOOh = 87.5 x U.S + 100(12.5 — h) 

h=11.7mm 

and 

100 x 11.72 87.5 x 0.82 12.5 x 88.32 
SJ( = 

2 
+ 2 

+ 
2 

= 55600mm 

(c) Determination of shape factor c 

S 55600 = Z = 
30850 

= 1.80 

1.4 Reduction of the full plastic moment due to an axial thrust 

For sections with only one axis of symmetry, the theory describing the 
interaction between bending moment and axial force is extremely 

complicated so that consideration will be restricted to sections that are 

symmetrical about both horizontal and vertical axes. It is convenient to 

explain the procedure first for a rectangular cross-section and then to 

generalise the procedure for, for example, I-sections. 

Consider the rectangular cross-section shown in Fig. 1.14(a) which is 
assumed to be fully plastic under the combination of a compressive 
force P and a bending moment M, which is less than the full plastic 
moment M. 

Clearly, the greater part of the cross-section will be in plastic 
compression, as shown. The stress blocks are shown in Fig. 1.14(b) with 
the compressive block divided into a shaded portion resisting the 
moment and an unshaded portion of depth a resisting the axial force P 
so that 

P= Yba (1.7) 

We define the mean axial stress p by 

P=pbd (1.8) 

(1.9) 
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2 Compression a - 

/7/7 -;E 
// Tension / 

(a) (b) 

Fig. 1.14 Rectangular section subject to moment and axial force: (a) cross- 
section; (b) stress blocks. 

where n is the ratio of the mean axial stress to the yield stress and varies 
between 0 (for no axial force) and 1 (section fully plastic in 
compression). The effective plastic section modulus S' is the first 
moment of area of the shaded portions. 

S' = 
2b(f__) (d+a) 

= bd2 
— 2) (1.10) 

and 

M,= YES' (1.11) 

In Equation (1.10), the expression bd2/4 is the plastic section modulus 
of the rectangular cross-section and (1 — n2) is a reduction factor for 
axial thrust. Evidently, a considerable axial thrust is required before the 
reduction in M becomes significant. This is true for I-sections as well as 
rectangular sections so that in many low-rise framed structures, where 
the axial forces are not large, it may be permissible to ignore this effect. 

It may be noted that the result given in Equation (1.10) may 
alternatively be obtained by deducting from the section modulus of the 
gross section the section modulus of the portion resisting the axial 
thrust, i.e. 

bd2 b2 bd2' 2 a l a 
(112) 4 44kv d2 

This alternative technique is useful in dealing with I-sections as shown 
in the following example. 

b 4 VS)J 
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Example 1.2 Find the expressions for the reduction due to axial thrust 
for the I-section shown in Fig. 1.15. 

(a) Determination of the unreduced plastic section modulus S 
= 10 

x41402 
+ 2(100 x lOx 75) = 199000mm3 

(b) For the case where the plane of zero stress is in the web, let the 
axial thrust P (N) be carried by a depth a (mm) of the web as 
shown in Fig. 1.16. 

Gross area of cross-section = 3400 mm2 

P = 3400p = 10aY 

p a 
i.e. n = = 

Fig. 1.16 Stress distribution in an I-section carrying axial thrust. 

1 -J 

-4-— 10 

I I i 

10 

160 

10 

vs V 

50 
,4.4 

50 

Fig. 1.15 I-section. 

S 

Area carrying — 
thrust 

r T 

J2 
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I 

I I 

Fig. 1.17 Plane of zero stress in the flanges. 

The reduction in section modulus as a result of the axial thrust is 

10a2 10 x 3402n2 2 =289000n mm 

The reduced plastic section modulus S' is therefore given by 

S = 199000— 289 000n2 mm3 

(c) The above expression is valid as long as the plane 
remains in the web, i.e. for a < 140, i.e. for n < 140 

(d) When the plane of zero stress is in the flange, 
Fig. 1.17 

P = 3400p = (3400— 200c)Y 

• p 3400 — 200c 

3400 

c=17(1—n) 

of zero stress 

/340 = 0.412. 
as shown in 

The reduced plastic section modulus S . is therefore given by 

S, = lOOc(160 — c) = 1700(1 — n)(143 + 17n)mm3 

Obviously, it would be impractical to require calculations of the above 
nature for all Universal Beams and other I-sections. They are therefore 
tabulated for all doubly symmetrical rolled sections in precisely the 
form derived in the above example. 

Low axial stresses have a negligible effect on the full plastic moment 
and can usually be ignored in low-rise structures. In the above example, 
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if the mean axial stress p = 15 N/mm2 and the yield strength Py = 
275 N/mm2 

n = 0.0545 

S' = 199000— 289 000n2 

= 198 140mm3 

i.e., S' = 0.995S 

The effect of this quite typical axial stress on the full plastic moment, 
and therefore on the load factor, is of the order of one half of one 

per cent. 

1.5 Effect of shear 

The influence of shear on the full plastic moment of the cross-section 
can generally be neglected. BS 5950: Part 1 only requires a reduction 
when the shear force F is greater than 0.6 times the shear capacity of 
the cross-section. This will only be the case in highly loaded beams of 
relatively short span and relatively large depth. Clause 4.2.6 gives simple 

design expressions for such cases. 

1.6 Unsymmetrical sections 

BS 5950: Part 1, clause 5.3.4 specifically requires that where plastic 
hinges occur in a member, the cross-section should be symmetrical 
about its axis perpendicular to the axis of hinge rotation. 

1.7 Effect of holes 

In general, holes such as those required for bolts do not influence the 
design of members except where they coincide with the position of a 

plastic hinge (see BS 5950: Part 1, clause 3.3.3). Where they occur within 
a length equal to the member depth on either side of a plastic hinge 

location, the full plastic moment should be reduced accordingly. 
Furthermore, holes in the tension flange near hinge positions, or 
where local yield lines are assumed in the design of rigid connections, 
should either be drilled or else punched 2 mm undersize and reamed. 
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1.8 Loads and load factors 

Clause 5.3.2 of BS 5950 Part 1 states that plastic design may be used 
where the loading is predominantly static so that fatigue is not a design 
criterion. Otherwise, the loads and load factors are precisely the same as 
for any other design in structural steelwork as given in Table 2 of 
BS 5950 Part I and repeated, in part, in Table 1.2. 

Table 1.2 Load factors. 

Loading Load factor 

Dead load 1.4 
Dead load acting with wind and 1.2 

imposed loads combined 
Imposed load 1.6 
Imposed load acting with wind load 1.2 
Wind load 1.4 

Attention may be drawn at this point to the fact that BS 5950 is a 
limit state code but in a restricted sense, as described in clause 2.1.1. 

Strictly speaking, the design check at the ultimate limit state should 
include the following factors: 

U material strength 
U loading 
U structural performance Yp 

In BS 5950, the design strength of steel, p, is taken to be equal to the 
yield stress Y so that y = 1.0. Furthermore, 'y and 'y, are combined 
into the single load factor thus simplifying considerably the formal 
limit state concept. 

1.8.1 Snow loads 

Snow loads are imposed loads and are specified in BS 6399: Part 3: 1988. 

They are: 

(1) A uniformly distributed snow load over the complete roof. The 
intensity of this load depends on the location of the building and 
the roof slope. A value of 0.6 kN/m2 applies in many cases but it 
can be greater than this. 
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(2) Asymmetrically distributed snow caused by the wind transferring 
snow from one side of the ridge to the other. This need only be 
considered when the roof slope exceeds 150 and is also �0.6 kN/m2. 

(3) Exceptional snow, which represents infrequent drifting and depends 
on the roof profile and any abrupt changes in height. Typical 
situations where exceptional snow must be considered are perimeter 
parapets, the valleys of multi-span portal frames, and changes in 
eaves height extending across the width of the building or down the 
length of the building. This localised snow load frequently exceeds 

2.0 kN/m2 and is more likely to affect the design of the purlins and 
sheeting than the design of the members of the main frame. BS 6399 

recommends the use of a reduced load factor for exceptional snow 
and it is accepted practice to use a value of 1 .05 which is specified for 
other exceptional loadings in clause 2.4.5.4 of BS 5950. Exceptional 
snow is only considered at the ultimate limit state where it is 

combined with 1.4 times the dead load. 

1.8.2 Notional horizontal loads 

'Notional horizontal loads' are defined in clause 2.4.2.3 of BS 5950 and 
these should be applied to all structures in order to represent 
imperfections such as lack of verticality of the stanchions. They are 

equivalent to about double the usual erection tolerance. The horizontal 
loads are normally 0.5% of the factored vertical load and should be 

applied at each roof and floor level or their equivalent. Notional 
horizontal loads have been the cause of some confusion, mainly because 
of some unfortunate wording in the earlier (1985) edition of BS 5950. In 
the 1990 edition, the crucial clauses 2.4.2.3 and 5.1.2.3 include 

important changes which have clarified the position. 
It is now mandatory that the notional horizontal loads should be 

considered together with the full factored dead and live loads when 

considering the vertical load case and this is the critical load case in 

most pitched roof portal structures. However, these loads are quite 
small and generally have little effect on the design of low-rise portal 
frames. Possibly for this reason or perhaps in ignorance, most designers 
of portal frames do not include these loads when, according to BS 5950, 

they should. In any event, the notional horizontal loads are more 

significant in multi-storey construction. 
Further confusion may arise until it is realised that the same notional 

horizontal forces are used conveniently and quite separately in sway 

stability checks in clauses 5.1.3 and 5.5.3.2. 
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1.8.3 Crane loads 

The load factors for crane loads are given in Table 2 of BS 5950: Part I 
and some guidance on their application is given in clause 2.4.1.2. In 
general, a structure with overhead travelling cranes is likely to be 
designed for both crane loads and imposed loads and this gives rise to a 
large number of possible load combinations. Reference 1.3 lists no less 
than 15 of these and notes that there may be even more if the crane 
loads and imposed loads are not additive. The most important 
combinations are: 

(1) l.4D+ 1.61 

(2) 1.4D+1.4W 
(3) 1.4D+l.6V 
(4) l.4D+l.6H 
(5) l.4D+ l.4V+ 1.4H 
(6) 1.2D+ 1.61+ l.6V 
(7) l.2D+ 1.61+ l.6H 
(8) l.2D+ 1.61+ 1.4V+ 1.4H 

(9) 1.2D+ 1.21+ 1.2W+ l.2V+ l.2H 

where D=dead load, W=wind load, V=vertical crane load (static 
wheel loads plus allowance for dynamic effects), and H=horizontal 
crane load (three alternatives). 

Evidently, especially when using manual design methods, the engineer 
should use some judgement in order to avoid processing obviously non- 
critical load combinations. 

Note.14 It is not correct to separate the crane wheel loads into 
components due to the lifted load and the dead weight of the 
crane, applying a load factor of 1.6 only to the lifted load and 
1.4 to the dead weight. The factor of 1.6 for the vertical crane 
load in Table 2 should be applied to the total wheel loads 
from the crane. 

1.9 Deflections 

Strictly speaking, deflection is only one of a number of factors which 
should be checked at the serviceability limit state. However, in practice, 
deflection is the only serviceability limit that is significant in the vast 
majority of structures which may be designed using plastic theory. 
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Generally, the serviceability loads are the unfactored imposed loads. 
However, when considering the case of dead plus imposed plus wind 
load, only 80% of the imposed and wind loads need be considered. 

BS 5950 Part 1, clause 2.5.1, includes the following statement: 

'The deflection under serviceability loads of a building or part should 
not impair the strength or efficiency of the structure or its com- 
ponents or cause damage to the finishings.' 

It then proceeds (in Table 5) to give recommended deflection limits for 
certain structural members. However, pitched roof portal frames are 
specifically excluded and no guidance is given for these particular 
structures. The reason for this is presumably because, in a low-rise 

portal frame clad with profiled sheeting, there may be no deflection 

requirements. The structure and its cladding are able to accept any 
reasonable deflections that are compatible with the stability require- 
ments. However, the designer can never ignore deflections completely 
and it would be very unwise to design any portal frame structure 
without an estimate of the likely deflections. Some situations where 
deflections may influence the design are: 

U crane buildings; 
U buildings with masonry walls; 
U in large span buildings, the relative vertical deflection between the 

gable and the first frame may be excessive for light gauge steel 

purlins; 
U in tall buildings, the relative sway between the gable and the first 

frame may set up unacceptable stressed skin forces in the cladding 
and its fasteners. 

It should also be realised that, if a structure is too flexible, second- 
order effects become significant. Portal frames are not exempt from this 
general rule and, particularly in frames with slender rafters, the 
reduction in the plastic collapse load cannot be ignored. This important 
point will be considered in more detail in Section 3.2. 

Additional guidance on deflections is given in References 1.5 and 1.6. 

This is subject to continuing discussion within the industry and may, in 

time, be subject to revision. 

1.10 Economy gained by using BS 5950 

There are several reasons why the use of BS 5950, and the other related 
British Standards mentioned in this chapter, result in more economical 
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design than was obtained previously with BS 449. These show to 
particular effect in the type of structure considered in this book. Thus, 
BS 5950 has introduced lower load factors, namely 1.4 for dead load 
and 1.6 for live load, compared with the global factor of 1.7 used 
previously. Furthermore, as a consequence of changes in BS 4360, the 
yield stress of mild steel has increased so that the design strength of 
Grade 43 steel has moved up from 250 N/mm2 to 275 N/mm2. For a 
structure in which the imposed load is three times the dead load, these 
two changes alone result in a reduction in required bending strength of 

0.25 x 1.4 + 0.75 x 1.6 (250 — 0 83 
1.7 k275 

-. 
In many low-rise structures, further savings arise because of the 

reduction in the intensity of uniformly distributed snow from its former 
value of 0.75 kN/m2 to the value of 0.6kN/m2 discussed in section 
1 .8.1. It follows that designs are becoming ever more slender and 
designers need to pay more careful attention to such factors as frame 
stiffness, frame stability and member stability when designing to the new 
codes. 
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Chapter 2 

Principles of Plastic Design 

2.1 Criteria for a valid collapse mechanism 

In Section 1.2, it has been shown that the basis of plastic design is that 
structures are assumed to collapse by the formation of sufficient plastic 
hinges to create a collapse mechanism. The fundamental problems of 
plastic design are therefore: 

U prediction of the correct collapse mechanism; 
U determination of the load factor at collapse; 
U determination of the bending moment diagram at collapse. 

In this chapter, the basic methods of solving these problems will be 
described. Common to all methods is the fundamental requirement that, 
at collapse, the following three conditions must be satisfied: 

(1) Equilibrium condition: The bending moments must represent a 
state of equilibrium between the internal forces in the structure and 
the applied loads. 

(2) Mechanism condition: At collapse, the bending moment must be 
equal to the full plastic moment of resistance of the cross-section at 
a sufficient number of sections of the structure for the associated 

plastic hinges to constitute a mechanism involving the whole 
structure or some part of it. 

(3) Yield condition: At every cross-section of the structure, the bending 
moment must be less than, or equal to, the full plastic moment of 
resistance. 

These conditions are obvious and largely self-explanatory. They 
correspond to the conditions of equilibrium and compatibility in the 
elastic analysis of statically indeterminate structures. It is one of the 
great advantages of plastic theory that it is not necessary to consider 

continuity and this generally makes the plastic analysis considerably 
easier than the elastic analysis of any given structure. 

22 
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In many structures, there are a number of alternative collapse 
mechanisms and the correct mechanism is not immediately obvious. It is 
therefore necessary to approach the correct solution in a series of steps. 
The following theorems assist the analyst to work towards an 
acceptable solution. They will merely be stated and illustrated as the 
proofs are complicated and outside the scope of a practical design 
manual. 

(a) Kinematic Theorem or Minimum Principle 

'In the analysis of a structure, an arbitrary choice of collapse mechanism 
will lead to an estimate of the collapse load which is greater than or 
equal to the correct one.' 

In other words, if we do not know the correct collapse mechanism and 
make a guess, the solution obtained only represents an upper bound on 
the collapse load factor A and is potentially unsafe. Methods based on 
assumed collapse mechanisms generally satisfy only the equilibrium and 
mechanism conditions. 

(b) Static Theorem or Maximum Principle 

'An arbitrary equilibrium condition which also satisfies the yield 
condition will lead to an estimate of the collapse load which is less than 
or equal to the correct one.' 

In other words, satisfying the equilibrium and yield conditions without 
necessarily obtaining a mechanism is essentially a safe procedure. 

(c) Uniqueness Theorem 

'The value of the collapse load which satisfies the three conditions of 
equilibrium, mechanism and yield is unique.' 

It is impossible to obtain for any other load a bending moment 
diagram which also satisfies these three conditions. 

The following simple example serves to illustrate the above theorems. 

Example 2.1 If the full plastic moment M is 78.0 kNm, find the load 
factor against collapse for the beam shown in Fig. 2.1. 
There are two distinct approaches to this problem. 

Method 1 combines free and reactant bending moment diagrams to 
obtain solutions that satisfy the equilibrium and yield conditions as 
shown in Fig. 2.2. 
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2OkN 3OkN 

4m 2m 4m 

Fig. 2.1 Beam. 
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(b) (c) 

Fig. 2.2 Solution using free and reactant bending moment diagrams: (a) Free bending moments + 
(b) Reactant bending moments = (c) Actual moments. 

In this case it is trivial to also satisfy the mechanism condition with 

plastic hinges at the ends of the beam where M1 = M2 = M and with a 
third plastic hinge under the larger load. It follows that 104A = 
2M = 156 kNm, i.e. A = 1.5, and that the bending moment diagram at 

collapse and the collapse mechanism are as shown in Fig. 2.3. 

Method 2 considers all possible collapse mechanisms and chooses the 
one with the smallest load factor. Equilibrium between bending 

78 

(b) 

Fig. 2.3 Collapse of single span beam: (a) Bending moments at collapse; 

(b) Collapse mechanism. 

78 

66 
(a) 78 
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Fig. 2.4 Mechanism (a). 

moments and applied loads is satisfied by using the virtual work method 
shown in Fig. 2.4. 

Here the correct mechanism is obvious but, for illustrative purposes, 
we also consider the improbable alternative. The method considers a 
virtual displacement of the mechanism that is under investigation 
assuming that all internal strain is concentrated in the plastic hinges. 
The members between the plastic hinges are assumed to be perfectly 
rigid and to make no contribution to the internal work. Thus, for the 
improbable mechanism: 

For compatibility, 
40 = 

By virtual work, external loads x corresponding displacements = hinge 
moments x rotations: 

20A x 40+30A x 4çb=78(20+2çb) 

i.e. l2O)u + l2OAç = 78 x 5 
i.e. A = = 1.625 

Similarly, for the other possible collapse mechanism shown in Fig. 2.5: 

For compatibility 

40 = 6çb 

20A 301. 

Fig. 2.5 Mechanism (b). 
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•. by virtual work 

30A x 40+ 20A x 4ç = 78(20 + 2q) 

i.e. l80Aç5 + 80Aq = 78 x 5çb 

390 
i.e. A=0= 1.5 

We have now considered all possible collapse mechanisms and, by 
appealing to the minimum principle, can confidently choose the 
mechanism with the lowest load factor giving, as before, A = 1.5. 

It should be noted that no design calculation is complete until the 
bending moment diagram at collapse has been drawn. For this problem, 
once the load factor and collapse mechanism are known, this is 
elementary and the resulting bending moment diagram has already been 
given with method 1. 

2.2 Plastic analysis of continuous beams 

It has already been stated that one of the advantages of plastic theory is 
that there are no compatibility conditions in the analysis. As plastic 
hinges form, they destroy the continuity of the deflection profile and an 
important consequence of this in continuous beams is that the collapse 

of any span is independent of the adjacent spans. 
Consider the important case of a uniform beam that is continuous 

over several equal spans as shown in Fig. 2.6. As before, w is the 
unfactored load which is multiplied by a load factor A and it is required 
to find the value of A at collapse. 

There are only two collapse cases to consider as shown in Fig. 2.7. 

Each of the internal spans has exactly the same collapse mechanism and 
collapse load as shown in Fig. 2.7(a). One end span is the mirror-image 
of the other as shown in Fig. 2.7(b). 

Load Aw per unit length _________________ 
FFIL 11111111111 1111111 L..:: :: TI 11111111111 II ._:: iiiiii i 

.44 
L L 

Fig. 2.6 Uniformly loaded continuous beam. 
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Aw Aw liii 111111111111111111111 i i_' 11111111111111111 t i £ i 
(a) (b) 

L/2 L/2 x 4Lx 
Fig. 2.7 Alternative collapse cases for continuous beams: (a) collapse of interior span; (b) collapse of 
end span. 

For the interior span, using the work equation method (although the 
method using free and reactant bending moment diagrams is equally 
simple), 

M(O+29+9) 

i.e. M = 

if it is a design calculation that is required 
1 6M, or 
wL2 

if an analysis of an existing design is required. 
The left-hand side of the work equation, representing the virtual work 

done by the uniformly distributed load, sometimes causes problems for 
those unfamiliar with the method. It is important to remember that we 
are considering a virtual mechanism in which the members remain 
perfectly straight between plastic hinges. The distributed load can 
therefore be considered to be concentrated at the centroids of the 
straight lengths of member as shown in Fig. 2.8. The derivation of the 
external work term is then obvious. 

The collapse conditions in the end span are not so obvious because it 
is not clear where the internal plastic hinge is located. The kinematic 
theorem implies that we must consider all possible positions of this 

AwL AwL 

___ 2 
LU 

L/4+ L/444 L/4L 
Fig. 2.8 Illustrating the derivation of the external work term. 
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hinge and choose the one which gives the lowest load factor (or the 
highest value of M in a design calculation). This can be conveniently 
done by choosing an arbitrary hinge position defined by the variable x, 
as shown in Fig. 2.7(b), and using the methods of calculus. 

The rotations 9 and q in Fig. 2.7(b) are related by considering the 
vertical deflection at the hinge position, that is 

x9 = (L — x)q 

The work equation can then be written down including the variable x: 

AwL = M(29+)= MP(2+Lx)O 
AwL x(L—x) i.e. 

M—_-—-— 2L—x 

The critical value of x is that which maximises M, i.e. 

dx 

and the condition for this is 

(2L — x)(L — 2x) — x(L — x)( —1) = 0 

i.e. x2 — 4xL + 2L2 = 0 

i.e. x=L(2+/2) 
This gives a unique root within the span (0 x L) of 

x = L(2 — /2) = 0.586L 

Hence, by back-substitution into the above equation for M, 
AwL2 

M 11.66 

11 .66M 
or 

wL2 

As the end-bay condition arises regularly in practical design, this is a 
useful result that should be noted for future reference. 

It is immediately clear that if a beam is designed to be fully 
continuous over several spans, the end bays require a considerably 
stronger section than the internal bays (M = AwL2/11.66 compared 
with AwL2/16). The fabrication of connections that are adequate to 
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Fig. 2.9 Alternative design to save fabrication costs. 

ensure full continuity is expensive and a fully continuous uniform beam 
may well not be the optimum practical solution. There are several 

possibilities, including the following: 

(1) Design a uniform beam based on the end spans accepting that the 
internal spans will be over-designed. This may be the best solution 
if deflections are important and detailing difficulties preclude the 
use of different sections within the length of the beam. 

(2) Design the beam as a series of double spans, as shown in Fig. 2.9. 

Although this may result in extra costs for the material, these may 
be more than offset by the savings in fabrication. 
Note. It should be appreciated that this arrangement will give 
rise to reactions which will be alternately 0.75w! and 1.25w!. This 
may have undesirable consequences in terms of the sizes of the 
supporting members and foundations. 

(3) Use a stronger section for the end span. With this solution, care 
needs to be exercised with the positioning of the splice. Ideally, the 
splice should be positioned at the point of contraflecture in the 
penultimate span, as shown in Fig. 2.10(a). If it is necessary to 

(a) Splice 
11111111111 IllIllIllIll liii 11111111 IlIllIlIllIll 

1' . 

L -k L 

M2 
(b) 

M1 

Fig. 2.10 Continuous beam with stronger end span: (a) Splice at point of 
contraflecture; (b) Illustrating the consequences of a splice at the support. 
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splice at the penultimate support, it must be appreciated that the 
plastic hinge at the support will form in the weaker span, as shown 
in Fig. 2.10(b). The design calculations must be amended to take 
account of this. 

(4) Adjust the length of the end bay (L1) relative to the internal bays 
(L2). This will occasionally be possible and, when it is, it provides a 
neat solution. The condition for the end bays to collapse under the 
same load as the internal bays is 

AwLf — ,\wL 
11.66 16 

L2 i.e. 

For more general cases of unequal spans or more complex loading, 
the designer has the option of using either the work equation method or 
using free and reactant bending moment diagrams. In either case, the 

procedure involves considering one span at a time and it will be 
illustrated by means of the following example using free and reactant 
bending moment diagrams. 

Example 2.2 The continuous beam ABCD in Fig. 2.11 has a uniform 
section. If collapse just occurs under the loads shown, 
determine the value of the full plastic moment. 

If real hinges are inserted at the supports, the free bending moment 
diagram can be drawn (in kNm) as shown in Fig. 2.12. As each span is 

30 kN 
lOkN lOkN lOOkN 

3OkN 3OkN 

IIIIIIIIIItIIIIIlIIIIllIIII!!IIIJ I 

A 
4m 4m 6m 2m2m,j2m, 

Fig. 2.11 Continuous beam. 

80 

Fig. 2.12 Free bending moment diagram. 
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::E ::E 
Fig. 2.13 Bending moment diagrams at collapse of individual spans. 

simply supported, and therefore statically determinate, this is elemen- 

tary. The collapse of each span in turn can be considered by drawing a 
reactant line that is compatible with a mechanism in that span. This will 
involve a hogging hinge (real or plastic as appropriate) at each support 
and a sagging plastic hinge somewhere in the span as shown in Fig. 2.13. 

The technique of subtracting an inverted reactant diagram from the 
free diagram should be noted. It is immediately clear that the right-hand 
span requires the largest full plastic moment (45 kNm) and, by the 
kinematic theorem, this is the required solution. 

It is now possible to draw a whole range of bending moment 
diagrams for the complete beam which satisfy the uniqueness theorem 
as shown in Fig. 2.14. The bending moment diagram in the right-hand 
span is fixed, but in the other two spans, the free and reactant line 
method automatically satisfies the equilibrium conditions and any 
reactant line which does not violate the yield condition is admissible. 
The reactant line for these two spans may therefore lie anywhere in the 
shaded region. 

It should now be possible to appreciate that the collapse conditions in 

any span are the same regardless of whether there is any settlement of 
supports or other changes from the assumed 'perfect' structure. This is 
in contrast to the elastic conditions which can be strongly influenced by 
movements of supports, lack of rigidity in joints or imperfect fit of 
component parts and provides one of the merits of plastic analysis. The 
reason for this is that the formation of plastic hinges systematically 
releases the compatibility constraints so that each span is statically 
determinate at collapse. 

Note, however, that the settlement of supports or flexibility in the joints 
will influence the deflections at the serviceability limit. Though not 

45 

Fig. 2.14 Bending moment diagram(s) at collapse. 
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directly relevant to 'simple' plastic theory, these factors also influence the 
plastic hinge history and the elastic-plastic bending moment diagram. 

2.3 Simple portal frames 

When plastic analysis is extended to portal frames, the collapse 
mechanism is no longer immediately obvious and it is usually necessary 
to consider several possibilities. For simple rectangular frames, the 
work equation method is generally the most advantageous although the 
method of free and reactant moment diagrams will be reintroduced later 
when pitched roof portal frames are considered. The considerations will 
be introduced with reference to a simple example. 

Example 2.3 The frame shown in Fig. 2.15 has a uniform full plastic 
moment of 20 kNm. The loads shown are unfactored, 
find the load factor A against collapse. 

5 kN 

m 

Fig. 2.15 Frame. 

Fig. 2.16 Sway mechanism. 

____ 

m 

10 kN 

C B 

A 

3.75 m 3.75 m 

10 A 

5A 
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The only possible locations for plastic hinges are at A, B, C, D and E 
where there is a change of slope in the bending moment diagram. It is 

impossible for plastic hinges to form between these points which are 
termed critical sections. It then follows that there are only three valid 
mechanisms which have plastic hinges at the critical sections. These are: 

(1) Sway mechanism (Fig. 2.16) 

For a small, rigid-link, movement of the mechanism, the beam 
moves bodily sideways and there is no downward movement of the 
lOkN load. The work equation is therefore 

5Ax 50=20(0+0+0+0) 

i.e. A==3.2 
Note. In plastic collapse mechanisms, the bending moment at a 

plastic hinge is always related to the direction of rotation of that 
hinge with the result that plastic hinges always do positive virtual 
work. 

(2) Beam mechanism (Fig. 2.17) 

For a small movement of the mechanism, the stanchions remain 
vertical and there is no movement of the 5 kN load. The work 

equation is therefore 

bA x 3.750=20(0+20+0) 

A = = 2.13 

(3) Combined mechanism (Fig. 2.18) 

As the name suggests, this is a combination of (1) and (2). It is 
essential to carry out this com-bination in such a way that the two 

5A— 

Fig. 2.17 Beam mechanism. 

1 OA 

[.4 
3.75 m4 3.75 
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Fig. 2.18 Combined mechanism. 

hinges at B are eliminated and replaced by a rigid joint. If this were 
not the case, the mechanism would have two degrees of freedom 
and it would be impossible to relate all the movements in the 
virtual mechanism to a single variable 0. The work equation is 
therefore 

SAx 50-i-- lOAx 3.750=20(0+20-i--20-i--0) 

A = = 1.92 

As all possible mechanisms have been considered, it follows from 
the minimum principle that combined mechanism (3), with the 
lowest load factor, is the correct collapse mechanism and that the 
load factor against collapse is 1.92. 

However, in more complex cases, with more than one bay or more 
than one storey it is not possible to be so confident that the correct 
mechanism has been obtained. It is therefore regarded as essential to 
draw an admissible bending moment diagram at collapse in order to 
confirm the result using the uniqueness theorem. The known situation at 
collapse is as shown in Fig. 2.19. 

19.2 kN 

9.6kN) +) 
('T2OkNm 

20 kNm 

20 kNm r '\ 20 kNm 

7777 77/7 
Fig. 2.19 Bending moments at collapse. 

1OA 20 
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I 
V 

MB 
19.2 kN 20 kNm 119.2—V 

9.6kN H H ." H H 

B 
I VI 119.2—V 

3.75 m 44 3.75 m m 

20 kNm'-- 
IV 

Fig. 2.20 Equilibrium of individual members at collapse. 

In this instance, but not generally, the frame is statically determinate 
at collapse and the single unknown bending moment MB can be deter- 
mined in one of two ways. 

The first method is to consider the equilibrium of the individual 
members as shown in Fig. 2.20. The requirements of horizontal and 
vertical equilibrium have been satisfied by inserting the forces in the 
diagram and the three unknowns, H, V and MB can be readily 
determined from moment equilibrium as follows: 

From moment equilibrium of the right-hand stanchion 

H = 8 kN 

From moment equilibrium of the left-hand stanchion 

MB + 5(9.6 — 11) — 20 = 0 

MB=20—5x1.6=l2kNm 
For completeness, from moment equilibrium of the beam 

7.5V+ 20 — MB — 19.2 x 3.75 = 0 

... V=72120=8.53kN 
The bending moment diagram at collapse is therefore as shown in Fig. 
2.21 (kNm) and the correct collapse mechanism is confirmed. 

In the second method, the value of MB can be determined much more 
quickly by using virtual work. However, when using this method it is 

necessary to consider carefully the signs of the internal work terms on 
the right-hand side of the equation as it can no longer be assumed that 
they are automatically positive. We assume a virtual mechanism 
movement of the beam inserting the known conditions at collapse. 
This is standard use of the virtual work method whereby an arbitrary 
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20 

19.2 kN 

Fig. 2.21 Bending moment diagram at collapse. 

but compatible system of displacements is combined with the real 
internal and external force system in order to obtain an equilibrium 
condition. Here the displacement system is chosen to be a rigid-link 
mechanism as shown in Fig. 2.22. 

The virtual work equation is 

19.2 x 3.750 = MBO + 20(20 + 0) 

i.e. MB = 19.2 x 3.75 —60 = 12.0 kNm as before. 

Note. If there was good reason to believe the combined mechanism (3) 
to be the correct collapse mechanism, it would have been 
possible to proceed directly to this mechanism and to confirm 
the result by drawing the bending moment diagram without 
considering all other mechanisms. 

9.6 kN 

Fig. 2.22 Determination of MB using virtual work. 

9.6kN 12 - 
t 8.53 kN tb.67 kN 

MB 
19.2 kN 

20 kNm 

3.75 m 3.75 m 
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2.4 Partial and overcomplete collapse 

The frame considered in Example 2.3 above collapsed in a combined 
mechanism with four plastic hinges and was statically determinate at 
collapse. The frame was a simple rectangular frame with three degrees 
of redundancy. This simple observation can be generalised into the 
following definitions: 

A complete collapse mechanism is such that the structure is statically 
determinate at collapse and contains one more plastic hinge than the 
degree of redundancy of the structure. 
A mechanism with more plastic hinges than are necessary for complete 
collapse is termed overcomplete. 
A mechanism with less plastic hinges than are necessary for complete 
collapse is termed a partial collapse mechanism. 

These definitions are of considerable practical significance and the 
following points should be carefully noted: 

I An overcomplete mechanism has more than one degree of freedom 
and should never be analysed. Overcomplete mechanisms are 
invariably the result of two or more alternative mechanisms arising 
simultaneously and it is the component mechanisms that must be 
considered. 

D Complete collapse is not essential. The beam mechanism in Example 
2.3 was an example of partial collapse and many other structures 
collapse without forming sufficient plastic hinges for complete 
collapse. Figure 2.23 shows a more comprehensive example of 
partial collapse in which: 

Degree of redundancy r = 9 
Number of plastic hinges n = 6 

n <r+1 
partial collapse 

In a statically determinate structure, the first plastic hinge causes 

complete collapse. 
Li When a frame suffers partial collapse it is not possible to draw a 

unique bending moment diagram at collapse. It is, however, still 

possible to satisfy the uniqueness theorem. This is illustrated by 
Example 2.4 below. 

Example 2.4 The frame shown in Fig. 2.24 has a uniform full plastic 
moment of 40 kNm. The loads shown are unfactored, 
find the load factor A against collapse. 
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Fig. 2.23 Example of partial collapse. 

Fig. 2.24 Frame to be analysed. 

Fig. 2.25 Beam mechanism. 
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From comparison with Example 2.3, it is reasonably obvious that the 
correct collapse mechanism is a beam mechanism and that the load 
factor can be readily calculated using Fig. 2.25. 

20A x 3.750=40(0+20+0) 

A = = 2.13 

The bending moments in the beam are fixed by the collapse 
mechanism but, in order to draw the bending moment diagram at 
collapse, it is necessary to know the bending moments at both A and E. 
However, the frame is not statically determinate at collapse, and these 
moments cannot be determined uniquely. It is, nevertheless, possible to 
determine an equilibrium relationship that they must satisfy and this is 
best done by virtual work. 

Consider the virtual sway mechanism shown in Fig. 2.26 under the 
collapse conditions determined above: 

10.67 x 50=MAO—400—400+MEO 

MA+ME=53.3kNm 

There are numerous bending moment distributions which satisfy this 
condition and also satisfy the yield condition. The bending moment 
diagram at collapse can therefore lie anywhere between the two 
extremes shown in Fig. 2.27. Despite the fact that a unique bending 
moment diagram at collapse cannot be drawn, the presence of any 
bending moment diagram satisfying the conditions of equilibrium, 
mechanism and yield is sufficient to satisfy the uniqueness theorem and 
to confirm the above result. 

MA 

Fig. 2.26 Virtual sway mechanism. 

42.6 kN 

m 

10.65 kN 40 kNm 

40 kNm 
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40 13331. 

Fig. 2.27 Limiting bending moment diagrams at collapse (kNm). 

2.5 Further considerations in the analysis of portal frames 

Practical frames are generally subject to uniformly distributed loads, 
rather than the point loads that were used to illustrate some basic 
principles in Sections 2.3 and 2.4. Furthermore, frames may have more 
than one span or more than one storey. In such cases, it is generally too 
complicated to work with exact positions for the plastic hinges which 
form in beams below distributed loads and it is sufficient to work with 
approximate hinge positions provided that the implications are fully 
understood. 

The essential consideration is that, unless the solution obtained is 
corrected using the static theorem, an unsafe answer will be obtained. 
The principles involved are illustrated by the following example. 

Example 2.5 Figure 2.28 shows the loads and dimensions of a pinned 
based frame. The stanchions have a full plastic moment 
of 20 kNm and the beams have a full plastic moment of 
36 kNm. Obtain an estimate of the load factor against 
collapse. 

In the first instance, it is assumed that plastic hinges within the span 
of the beams form at mid-span. All reasonable mechanisms are 
considered, as shown in Figs 2.29(a)—(e), and the one with the lowest 

5 kN/m I—IIIuIIIIIII1IIIIIuIIIF—I---1 

Fig. 2.28 Pinned base frame. 
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load factor is chosen in accordance with the kinematic theorem. The 
bending moment diagram for this frame is then drawn and the impli- 
cations of the assumed plastic hinge positions examined. 

It should be carefully noted that where two unequal members meet, 
as in the eaves connections between the stanchions and the beam, the 
bending moment in both members is the same and the plastic hinge will 

always form in the weaker member. 

(a) Beam mechanism 

3OAx l.50=200+36x30 

A = 2.844 

5A kN/m 
_1 III I 111111 I I I liii I I I Ill 

bA kN 

3m 3m 6m 

Fig. 2.29(a) Beam mechanism. 

(b) Sway mechanism 

10A x 30 = 20 x 30 

5A kN/m II 11111111111111111 
1OA kN 

jmj 
Fig. 2.29(b) Sway mechanism. 

(c) Combined mechanism No. 1 

30A x 1.50 + bA x 30 = 20 x 20 + 36 x 30 

(45 + 30)A = 148 

A=l.973 
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5A kN/m 
11111111111111111111111 1 

e 1OAkN 

Fig. 2.29(c) Combined mechanism No. 1. 

(d) Combined mechanism No. 2 

30A x 1.50+ 10A x 30=20 x 30+36 x 30 

(45 + 30)A = 168 

A=2.240 

5A kN/m 
I—Il ii I III I I I I I I 1 1 1 I I I I JI 

1O. kN 

Fig. 2.29(d) Combined mechanism No. 2. 

(e) Combined mechanism No. 3 

2x30.\xl.50+lOAx3O=20x20+36x60 

(90-i-30)A=256 

A=2.l33 

5A kN/m I—1—IIIIIIIIIIIIIIIIIIIIII__1 bA kN 
U —4', 

Fig. 2.29(e) Combined mechanism No. 3. 

Thus, combined mechanism No. 1 is critical with a load factor against 
collapse of 1.973. There are four plastic hinges in the collapse mech- 
anism, which is one more than the degree of redundancy, so that the 
frame is statically determinate at collapse. 

U 

U 

U 
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1 

2 35 _7 

Fig. 2.30 Critical sections. 

It is now necessary to draw the bending moment diagram at collapse 
and, in order to do this, it is necessary to determine the bending moment 
at the seven critical sections numbered in Fig. 2.30. 

Before we proceed any further, it is necessary to pause for a moment to 
consider the number of independent equilibrium equations which are 
available to draw this bending moment diagram. There is a simple rule 
for this which can be illustrated with reference to the portal frame 
considered in the previous section. In order to draw the bending moment 
diagram, it is necessary to determine the bending moment at the five 
numbered locations in Fig. 2.31. The frame is three degrees redundant 
and can be made statically determinate by introducing a cut at one base. 
This requires the insertion of the three redundant forces, M, H and V. 

The bending moments at the five critical sections can now be written 
down in terms of the known applied loads, W1 and W2, together with 
the three unknowns M, H and V, e.g. 

M1 = W1h+ W2L—M—2LV 

M2= W2L—M+hH—2LV 

etc. 

Eliminating M, H and V from the above equations leaves two 
independent equilibrium equations in the critical section bending 

Wi 

___ 

h 

1 
M 

7777 
I ILt 1v 

Fig. 2.31 Redundant forces in a single-bay frame. 
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5A = 9.867 kN/m 
U-I I I I I I I I I I I I 1 I I I I I I I I I III 

19.73 kN 

Fig. 2.32 Left-hand beam virtual mechanism. 

moments. Regardless of the exact form of these equations, the number 
of them is precisely determined by the above argument. It is easy to see 

that this argument can be generalised. 

Let n = number of critical sections (where the bending moment 
must be determined in order to draw the bending 
moment diagram) 

r = degree of redundancy 
n — r = number of independent equilibrium equations. 

Returning to the two-bay example under consideration, the frame has 
seven critical sections and is three degrees redundant so that there are 
7 — 3 = 4 independent equilibrium relationships which must be satisfied 

by the bending moment diagram. One of these has been used above in 

obtaining the solution for the mechanism (c) under examination. This 
leaves three equations available for continuing the analysis which can 
now proceed as follows. 

(1) Determine M1 using a virtual mechanism in the left-hand beam as 
shown in Fig. 2.32. 

9.867x 6x 1.50=M19+3x360 

M1 = —19.2 kNm 

(2) Determine M5 from equilibrium of the central joint. 

M5=36—20= l6kNm 

(3) Determine M6 using a virtual mechanism in the right-hand beam 
as shown in Fig. 2.33. 

9.867 x 6 x 1.50= (16H-20)OH-2M60 

M6=26.4kNm 

The bending moment diagram at collapse can now be drawn as shown 
in Fig. 2.34. 
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9.867 kN/m 
I_I I I I I I I I I I I 111111 I I I I I Fl 

Fig. 2.33 Right-hand beam virtual mechanism. 

19.2 

Fig. 2.34 Bending moment diagram at collapse. 

19.73 kN 

It is obvious that the full plastic moment of 36 kNm is exceeded 
within the left-hand beam. It is therefore necessary to determine the 
position and magnitude of the maximum bending moment within this 

span. This is elementary structural mechanics. The relevant forces are 
shown in Fig. 2.35 and it follows from simple equilibrium that: 

RA = (9.867 x 6 x 3 — 36 — 19.2) = 20.4kN 

M = 19.2 + 20.4x — 9.867 kNm 

The maximum bending moment is where the shear force is zero, i.e. at 
20.4 x = — = 2.0675m 

9.867 kN/m 
11111 iii ii I I liii 11111 

4119.2 x 

6m 

f 
Fig. 2.35 Equilibrium of left-hand beam. 

36 
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so that 

2 06752 
Mmax = 19.2 + 20.4 X 2.0675 — 9.867 X 

2 
= 40.29 kNm 

This is significantly in excess of the full plastic moment of 36 kNm. 
However, using the static theorem, it can be stated that a lower bound 
on the load factor is given by 

= 1.973 x = 1.763 

so that 

1.763 < ) < 1.973 

If this is not sufficiently accurate, the analysis can be repeated with the 
more precise plastic hinge position obtained above. 

2.5.1 The implications of partial collapse in more complex frames 

At first sight it might appear that the procedure illustrated in Example 2.5 

could break down if the critical collapse mechanism turns out to be a case 

of partial collapse so that the frame is not statically determinate at 

collapse. This is not the case because, in order to satisfy the uniqueness 

theorem, it is not necessary to draw the precise bending moment diagram, 
merely one that satisfies the yield criterion and all the independent 
equilibrium equations. As the requisite number of equilibrium equations 
can be readily determined as shown in the previous section (n — r) the 

problem of partial collapse is not significantly more difficult than the case 
of complete collapse considered in Example 2.5. Example 2.6 illustrates 
this point. 

4OkN 6OkN 

34! 4 6 

2M 5 2M 

M M 

10 

3m j 3m13m I 3mj T 1 

Fig. 2.36 Frame for Example 2.6. 
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Example 2.6 Partial collapse. 

It is required to design the frame shown in Fig. 2.36 for the factored 
loads shown with the full plastic moment of the beam twice that of the 
stanchions. 

Because, in a severe case of partial collapse, it is useful not merely to 

identify the critical mechanism (in this case a beam mechanism) but also 
other near-critical mechanisms, we will again systematically consider all 
possible mechanisms. As by now the work equation method should be 
familiar, these will be analysed with the minimum of explanation. Note, 
however, that the stanchions are weaker than the beams and that the 
eaves hinges will always form in the weaker stanchions. 

6 

Fig. 2.37 Left-hand beam mechanism. 

Left-hand beam mechanism (Fig. 2.37) 

1200 = 7M0 

M=l7.2kNm 

-7- 

40 60 

U 

Fig. 2.38 Right-hand beam mechanism. 
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Right-hand beam mechanism (Fig. 2.38) 

1800 = 7M0 

M=25.7kNm 

Fig. 2.39 Sway mechanism. 

Sway mechanism (Fig. 2.39) 

1200 = 6M0 

M= 20.0 kNm 

40 

Fig. 2.40 Combined mechanism No. 1. 

Combined mechanism No. 1 (Fig. 2.40) 

3000 = 12M0 

M=25.0kNm 

60 

40 

4 

20), 



Fig. 2.41 Combined mechanism No. 2. 
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Combined mechanism No. 2 (Fig. 2.41) 

2400= llM0 

M=21.8kNm 

Fig. 2.42 Combined mechanism No. 3. 

Combined mechanism No. 3 (Fig. 2.42) 

4200 = l7M0 

M= 24.7 kNm 

It is therefore concluded that the correct collapse mechanism is a 
partial collapse involving only the right-hand beam with 

25.7 kNm 

40 

20 •60 

20 *60 
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Fig. 2.43 Conditions 

4OkN 6OkN 
51.4 I 

51.4 

at collapse with M = 25.7 kNm. 

This can be confirmed by finding any bending moment which satisfies: 

D all independent equilibrium equations; 
the mechanism condition found above; 

Li the yield condition (the full plastic moment is nowhere exceeded). 

Because the mechanism found has only three plastic hinges compared 
with the seven required for complete collapse, this is tricky. The 
information available at this stage is summarised in Fig. 2.43. 

We first note that there are r = 10 critical sections where plastic 
hinges may form (numbered on Fig. 2.36) and that the degree of 
redundancy n = 6. It follows that there are n — r = 4 independent 
equilibrium equations which must be satisfied. We have used one of 
these in determining M = 25.7 kNm so that there are only three more to 
be satisfied in drawing the bending moment diagram. 

Fig. 2.44 Plastic hinges in the next most critical mechanism. 

20 kN 4? 25.7 

6m 

I 
T 

6m 6m 
1 

40 2 60 
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40 kN 

M3 

Fig. 2.45 Virtual mechanism in left-hand beam. 

Principles of Plastic Design 51 

We now note that the next most critical collapse mechanism is 
combined mechanism No. 1 with the plastic hinge positions shown in 

Fig. 2.44. As this mechanism required M = 25.0 kNm compared with 
the final solution of M = 25.7 kNm, it may be expected that most, 
though not all, of the plastic hinges shown in Fig. 2.44 will be present at 
collapse. This observation removes most of the guesswork in establish- 
ing a statically admissible bending moment distribution which satisfies 
the yield condition. 

If we first assume plastic hinges at both ends of the left-hand beam, as 
suggested by Fig. 2.44, we can determine the bending moment M3 at the 
centre of this beam from the equilibrium of the beam. The easiest way to 
do this is by virtual work. From Fig. 2.45, observing the signs of the 
bending moments: 

40 x 39 = (—25.7 + 51.4 + 2M3)O 

M3=47.l5kNm 

We now have equal and opposite bending moments in the beam on 
either side of the central joint. Equilibrium at this joint indicates that the 
bending moment at critical section number 5 must be zero as indicated 
in Fig. 2.46. 

We have now used three of the four available equilibrium equations. 
The final equilibrium equation can be obtained by considering a sway 

Fig. 2.46 Joint equilibrium. 

51.4 51.4 

M5 = 0 

51.4 
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M, 

Fig. 2.47 Virtual sway mechanism. 

25.7 

virtual work mechanism as shown in Fig. 2.47. The equilibrium 
equation obtained in this way includes the remaining unknown bending 
moments at the column bases, thus: 

20 x 60 = (25.7 + 0 + 25.7 + M1 + M10 + M9)0 

M + M10 + M9 = 68.6 kNm 

Although this equation does not allow these bending moments to be 
determined uniquely, it does allow a reasonable guess to be made, e.g. 

M9 = M10 = 25.7kNm, M1 = 17.lkNm 

and, on this basis, a bending moment diagram can be drawn as shown in 

Fig. 2.48. 

Although this diagram is not unique, it satisfies all the available 

equilibrium conditions and does not violate the yield condition. It 
therefore provides valid confirmation that the correct collapse mechan- 
ism has been obtained. It is also sufficiently accurate to enable the 

25.7 

17. 

Fig. 2.48 Bending moment distribution at collapse. 

25.7 

20 kN 

40 kN 60kN 

M10 M9 
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member stability checks to be carried out as will be described in the next 
chapter. Indeed, Fig. 2.48 is very close to the exact solution determined 
by elastic-plastic computer analysis (which is the only way to obtain a 
more accurate bending moment distribution). 

2.6 Frames with sloping members 

When a frame includes one or more sloping members, no new 
considerations are introduced other than the possibility of alternative 
collapse mechanisms and a certain additional difficulty in determining 
the rotations and displacements in the virtual work equation. These 
additional factors will be illustrated by means of a further example. 

Example 2.7 The frame shown in Fig. 2.49 has a uniform section with 
a full plastic moment of 300 kNm. Find the load factor at 
collapse. 

As no loads are applied within the lengths of the members, plastic 
hinges can only form at sections ABCDE because the bending moment 
diagram must be linear between these points. There are, therefore, only 
three valid mechanisms with hinges at these sections and these will be 
considered in turn. By the minimum principle, the correct collapse 
mechanism will be the one having the lowest load factor. 

Mechanism No. 1 (Fig. 2.50) 
Figure 2.50 shows a valid collapse mechanism with plastic hinges at B, 
C, D and E. 

Fig. 2.49 Pitched roof frame to be analysed. 

—*.. 20A kN 



Using the virtual work method, it is necessary to relate all of the 
rotations and displacements to a single rotational variable 9. There is a 
convenient method for doing this that is applicable to all problems of 
this type and this involves a procedure that will be more familiar to 
mechanical engineers. The collapse mechanism involves three moving 
bars and the first step is to determine the instantaneous centre of 
rotation of the middle bar CD. This point is 'CD in Fig. 2.51. 

'CD is easily located by noting that, for a small initial movement of 
the mechanism, C moves to C' along a line at right angles to BC. The 
instantaneous centre of rotation of CD must therefore be somewhere 

along BC produced. Similarly, D moves to D' along a line at right 
angles to ED so that 'CD must be on ED produced. 'CD must therefore 
lie at the meeting point of BC and ED produced and member CD can 
move from its original position to its new position C'D' by a pure 
rotation about 'CD 

We now consider a movement of the mechanism characterised by a 
small rotation 0 of member CD about 'CD• The other rotations shown 
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D 

Fig. 2.50 Collapse mechanism No. 1. 
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Fig. 2.51 Movement of mechanism No. 1. 
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on Fig. 2.51 follow directly by similar triangles. The virtual work 
equation is therefore 

20A>< 30+60A x 90+20A x 60=300(0+20+20+0) 
i.e. A = 2.50 

Readers who find difficulty in visualising the displacements at C may 
find it easier to draw an additional diagram, as shown in Fig. 2.52. 

Triangle CC'X is similar to triangle ICDCY though rotated by 900 and 
scaled by 0. It follows directly that the horizontal component of 
displacement at C is 30 and the vertical component is 90 as included in 
the above virtual work equation. 

Mechanism No. 2 (Fig. 2.53) 
Here, Fig. 2.53 shows an alternative valid collapse mechanism with 
plastic hinges at A, C, D and E. 

The instantaneous centre of rotation 'CD of the middle of the three 
moving bars is found by noting that ABC is a rigid arm rotating about A 
so that C moves to C' at right angles to the broken line joining A to C. 
'CD therefore lies on AC produced. It also lies, as before, on ED 
produced so that the position of 'CD lies at the intersection of AC and 
ED as shown in Fig. 2.53. The mechanism movement is again defined by 
a small rotation 0 of member CD about 'CD and the remaining rotations 
of ABC and ED follow as shown. 

The virtual work equation for this mechanism is therefore 

20A x 60 + 20A x 90 + 60A x 90 + 20A x 120 

= 300(0+20+30+20) 

i.e. A = 2.22 
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'CD 
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Fig. 2.52 Horizontal and vertical components of movement at C. 
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1CD 

0 / i'0 // I 'i 9m 
60A,/ ' I, / / '. / I _____ -/ '/.- 20A I 

9m 9m 

Fig. 2.53 Movement of mechanism No. 2. 

Mechanism No. 3 (Fig. 2.54) 
The third possible collapse mechanism is the sway mechanism shown in 

Fig. 2.54 with plastic hinges at A, B, D and E. The rafter BCD sways 

bodily sideways without any vertical movement so that the work 

equation is comparatively simple and can be written down directly. 

Thus 3 x 20A x 60 = 300 x 40 

i.e. A = 3.33 

It therefore follows that the correct collapse mechanism is No. 2 

which has the lowest load factor namely A equal to 2.22. 

In order to complete the problem, it is necessary to determine the 

bending moment at B at collapse and to draw the bending moment 

diagram. This too is best done by using the method of virtual work. 

160A 

C 4' 20A 

3 
—k' 20A 

6 

Fig. 2.54 Sway mechanism No. 3. 
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133.2 kN 

A 44.4 kN 
T 

3mJ 300kNm 
44.4 kN 44.4 kN 

6m1 LMB 
300 kNm 300 kNm 

Fig. 2.55 Virtual sway mechanism. 

300 

Fig. 2.56 Bending moment diagram at collapse. 

Consider a virtual sway mechanism and insert the load factor and 
bending moments at collapse found for mechanism No. 2, as shown in 

Fig. 2.55. 

3 x 44.4 x 60= 300 x 30+MBO 

MB = -100 kNm 

The minus sign indicates that MB in Fig. 2.55 is drawn in the wrong 
direction so that the bending moment diagram at collapse is as shown in 
Fig. 2.56 (kNm). 

2.6.1 Pitched roof portal frames using free and reactant bending moment diagrams 

Pitched roof portal frames are frequently analysed using a semi- 

graphical method that involves combining free and reactant bending 
moment diagrams in much the same way that was demonstrated earlier 
for beams. This method avoids the complexities of instantaneous 
centres of rotation and has other benefits which will be apparent when 
haunched frames and more complex loading conditions are dealt with 
later. However, for many frames, the choice between the two alternative 
methods is mainly a matter of personal preference. 

300 



The method will first be illustrated by repeating the analysis of the 
critical mechanism in Example 2.7. 

Example 2.8 Alternative analysis of mechanism No. 2 of Example 2.7. 

This mechanism is shown in Fig. 2.57 which includes all the 
information necessary for this method of analysis. 

In this method of analysis, it is convenient to use a sign convention in 

which bending moments causing tension on the outside of the frame are 
considered positive and the moments shown in Fig. 2.57 have been 

given signs on this basis. 

This frame can be made statically determinate by cutting it at the 

apex. The actual conditions at any state of loading can then be 
considered to be the sum of the two cases shown in Fig. 2.58(a) and (b). 

Figure 2.58(a) shows the actual loads taken on the statically 
determinate (cut) frame and gives rise to the free bending moment 

diagram shown in Fig. 2.59(a). The cut at the apex releases three forces 

M, H and V which give rise to the reactant bending moment diagram 

430A 

C,7L*cL 
Fig. 2.58 Internal forces in frame as the sum of free and reactant systems: (a) applied loads on 

statically determinate frame; (b) forces released by cutting frame. 
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Fig. 2.57 Alternative analysis of a pitched roof portal frame. 
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shown in Fig. 2.59(b). Provided that values of the four unknowns, M, 
H, V and A have been determined, the actual bending moment diagram 
for the structure under any condition of loading can always be obtained 
by adding together these two component diagrams. In order to simplify 
the presentation, the bending moments are shown on a horizontal base 
by 'unwrapping' the frame. Positive bending moments put the inner 
flange into compression so that the free bending moment diagram is 
mainly on the positive side of the horizontal axis and the reactant 
moment diagram on the negative side. 

The determination of M, H, V and A requires four equations. Here, 
these four equations are obtained by equating the bending moment at 
the four plastic hinge positions shown in Fig. 2.53 to the full plastic 
moment of resistance of the members (300 kNm) while observing the 
consistent sign convention described above. Thus: 

atA: 390A—M—9H+9V 300 

atC: 0 —M = —300 

atD: 210A—M—3H—9V = 300 

atE: —30A--M--- 9H— 9V = —300 

—M-9H-9V 

Fig. 2.59 Free and reactant bending moment diagrams: (a) free bending moment diagram (kNm); (b) 
reactant bending moment diagram. 

2IOA 

A B C 
-30A 



60 Plastic Design to BS 5950 

These four simultaneous equations can be readily solved to give 

A =2.222 
M=300kNm 
H = 11.11 kN 
V= —18.52kN 

The bending moment MB at B also follows immediately by substituting 
the above values into the following equation: 

MB = 270A - M- 3H+9V 

i.e. MB = 100.0 kNm 

The bending moment diagram can then be drawn to verify that the 
correct collapse mechanism has been analysed. This has been given 
previously as Fig. 2.56. 

2.6.2 Pitched roof portal frames subject to uniformly distributed load 

The most important single case with which designers of low-rise steel 

structures may be confronted is probably the pitched roof portal 
frame subject to a vertical uniformly distributed load. Frames of this 

type are almost always designed by plastic theory and wind loads 

rarely govern the design so that this is a case of frequent practical 
importance. For this reason it will be considered in some detail, first 

using the virtual work method and then using the alternative semi- 

graphical method. 
Figure 2.60 shows a typical haunched portal frame and the most 

usual symmetrical collapse mechanism. There are a number of general 
points to note. 

U Strictly speaking, this mechanism is overcomplete and should not be 

analysed. However, if the constraint of symmetry is applied so that 
the apex moves down vertically without rotating, this mechanism 
becomes 'complete'. 

U The position of the rafter hinges is unknown. In the example which 

follows, these plastic hinge positions will be treated as variables and 
the critical positions found by calculus. In practice, the uniformly 
distributed load from the roof is usually applied to the frame as a 
series of point loads through purlins. When this is the case, the rafter 
hinges invariably form under the first or second purlin down from 
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Fig. 2.60 Symmetrical collapse mechanism. 

the apex. An alternative procedure is therefore to consider the hinges 
in these positions from the outset. The analysis is then similar to, 
and simpler than, the more general approach which follows. 
The method is essentially the same whether the frame has pinned or 
fixed feet. 

The design of a typical haunched frame will now be illustrated by means 
of an example. 

Example 2.9 The loads shown in Fig. 2.61 are factored loads. The 
frame is to be designed on the assumption that the full 
plastic moment of the stanchion is 1.5 times the full 
plastic moment of the rafters and that the haunch is of 
sufficient length to ensure that the plastic hinge at the 
eaves forms in the stanchion below the haunch and not in 
the rafter. 

5.5 m 

The plastic collapse mechanism is shown in Fig. 2.62. For a solution 
using the virtual work method the following points should be noted. 

Fig. 2.61 Symmetrical frame to be designed. 

10 kN/m 

1.0 m 
0.5m 

4.Om 

uJuuuIuuuuuuIIIIuIIuIIIIIIuuuuIuIIuJuuuuuuf 

F— 
11.25 m 11.25 m 
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fx 
k11.25 

x 

Fig. 2.62 Collapse mechanism for a symmetrical pitched roof portal frame. 

The position of the rafter hinge is unknown. The horizontal distance 
x from the stanchion to this hinge will therefore be treated as a 
variable and its value determined as part of the solution. 

J Symmetry conditions require that the apex of the frame moves down 

vertically without lateral movement or rotation. It follows that the 
whole centre section of the rafter descends bodily. 
The central bar of the mechanism between the plastic hinges is a 
rigid section which rotates about the instantaneous centre denoted 
by I in Fig. 2.62. The rotation of this section is denoted 8. 

The rotation q of the stanchion follows by considering the horizontal 
displacement of the plastic hinge in the stanchion which can be 
expressed in terms of 0 or çi: 

4c= (+os)o 
Ix 1\ 

i.e. 

The virtual work equation can then be written down for half of the 
frame: 

lOx + 10(11.25 — x)xO = 1.5M(0 + )+ M0 

i.e. 5x2+ 112.5x— lOx2 =2.5M+ l.5M(+) 
112.5x — 5x2 i.e. M = 

x 
2.6875-i---— 

30 

The critical value of M is the maximum value as the rafter hinge moves. 

I 0 

M 

J 
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This can be found by calculus, the requirement being 

dx 

i.e. 
(2.6875 +)(112.s 

— lOx) — (112.5x — 5x2) = 0 

i.e. x2 + 161.25x — 1814.06 = 0 

—l6l.25±'l6l.252+4x 1814.06 
i.e. x= 

2 

i.e. x = l0.56m or — 171.8m 

Of these two solutions, the only one within the rafter is x = 10.56 m. The 
required value of M is therefore 

112.5 x 10.56—5 x 10.562 
M= 

2.6875+!6 
= 207.4 kNm 

It follows that a suitable design for the frame could be obtained by 
choosing members with full plastic moments close to the following 
values: 

stanchion 311.1 kNm 
rafter 207.4 kNm 

0.5 35O 205.0 

4.O 

207.4 

10.56 0.69 

Fig. 2.63 Bending moment diagram at collapse (kNm). 
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As the frame is statically determinate at collapse, the bending 
moment diagram can be readily drawn and the required haunch length 
determined as shown in Fig. 2.63. 

The eaves moment is given by 311.1 x = 350.0 kNm 

The equation for the bending moment in the rafter can be obtained by 
considering the length between the eaves and the plastic hinge position 
where the moment is 207.4. Thus: 

M = —350.0 + 
(350.0±207.4) 

x + lOx 
(10.56 

— 

x) 
= —350.0 + 105.58x — 5x2 

when x = 11.25 m, the bending moment at the apex is given by 

M1125 = —350.0 + 1187.8 —632.8 = 205.0 kNm 

The minimum length of the haunch is given by the condition that the 
end of the haunch remains elastic. If a shape factor of 1.15 is assumed, 
this gives 

M = — 207.4/1.15 = —180.3 kNm 

i.e. — 5x2 ± 105.58x — 350.0 = —180.3 

i.e. x2 — 21.12x + 33.94 = 0 

21.12 ± V'21.122 —4 x 33.94 
i.e. x=+ 

2 

i.e. x = 1.75m or 19.37m 

The minimum haunch length is therefore 1.75 m. 

Note: The method described above is equally valid if the frame has 
fixed feet. There is then merely an extra term of 1.5M on the 
right-hand side of the virtual work equation. 

The work equation method becomes rather more complicated if 
either the frame or loading are not symmetrical. For this reason, many 
engineers prefer to use semi-graphical methods for the plastic design of 
pitched roof portal frames. In order to further illustrate the principles 
involved, the above example will be reworked using the semi-graphical 
method. 
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10 kNm 
1111111111111111111111 Iii 

_I5 
(a) (b) 

Fig. 2.64 Internal forces as the sum of free and reactant systems: (a) applied loads on the statically 
determinate structure; (b) forces released by cutting the frame. 

Example 2.10 Alternative analysis of Example 2.9 using free and 
reactant bending moment diagrams. 

The frame is again made statically determinate by introducing a cut at 
the apex so that the actual internal forces under any conditions of 
loading are given by the sum of the two situations shown in Figs 2.64(a) 
and (b). Here it should be noted that because both the frame and 
loading are symmetrical it is only necessary to consider one half of the 
structure and there is no need to include a vertical force at the cut in Fig. 
2.64(b). 

The bending moment diagrams arising from the two force systems 
shown in Fig. 2.64 can be readily drawn as shown in Fig. 2.65. Once 
again, the diagrams are drawn on a horizontal base by 'unwrapping' the 
frame. 

(a) (b) 
632.8 

l25pla:J 
-M-5.5H 

-M-1.5H 

4.0 ii - 11.25 in plan 
I — — I— — I 
0.5 0.5 

Fig. 2.65 Free and reactant bending moment diagrams: (a) free bending moment diagram (kNm); 
(b) reactant moment diagram. 
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As there is a pinned base, the bending moment there must be zero so 

that, whatever conditions exist in the frame, the following equation 
must always be satisfied: 

632.8 — M — 5.5H = 0 

The remaining equations necessary to complete the solution follow from 
the plastic collapse mechanism. The only feasible mechanism is shown 
in Fig. 2.62 and if it is again assumed that the full plastic moment of the 
rafter is M and that of the stanchion is I .5Mg we have 

632.8 —M— l.5H= l.5M 

5x2_M_-5= —M 

Eliminating the redundant forces M and H gives 

632.8 — 5x2 M= 
3.0625— 

Following the same procedure that was described in Example 2.9, the 
critical hinge position is given by 

dM 0 dx 

i.e. x = 0.690m 

and the requisite value of M is again 

M = 207.4 kNm 

which is, of course, precisely the same solution that was obtained 
previously. 

However, the semi-graphical method described above is rather more 
versatile than the virtual work method when adjustments to accom- 
modate such practicalities as the choice of discrete member sizes from 
section tables and variations in the dimensions of the haunch have to be 
made. 

If we make the reasonable assumption that the plastic hinge in the 
rafter forms at the first purlin point distant (say) 1.5 m from the apex, 
the basic equations can be simplified. We also take advantage of the fact 
that the bending moment at the hinged base must always be zero to 
eliminate M from the equations but retain complete freedom of choice 
of the values for the full plastic moments of the rafter and stanchion as 



0.5 

Principles of Plastic Design 67 

Fig. 2.66 Combined free and reactant bending moment diagram. 

Mpr and Mp,c respectively. Then, the three equations 

632.8 —M— 5.5H=O 

632.8 — M — l.5H = 

H 
ll.25—M——= Mpr 

4H = 
reduce to 

621.55— 5.367H Mpr 

Mpr 

The bending momemt diagram is as shown in Fig. 2.66 and adjusting it 
according to the above equations in order to accommodate alternative 
values of and Mpr is extremely simple. 

2.6.3 Pitched roof portal frames subject to wind load 

When pitched roof portal frames are subject to wind or other more 

irregular loadings, the same basic methods of analysis remain available. 

The procedure will be illustrated by analysing the frame shown in Fig. 2.61 

for a typical case of vertical load together with wind. 

Example 2.11 The frame shown in Fig. 2.67 was designed in the 
previous section for vertical load and found to require 
the following full plastic moments: 
stanchion 311.1 kNm 
rafter 207.4 kNm 
It is required to check that it is adequate under the 
factored combined load case shown. 

4.0 
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E 
z 
Co 

Fig. 2.67 Pitched roof frame subject to vertical and wind load. 

The problem will be tackled by applying a load factor A to the above 
loads and determining the value of A at collapse. 

The frame is again cut at the apex as shown in Fig. 2.58 so that a free 
bending moment diagram can be drawn as shown in Fig. 2.68(a) and a 
reactant bending moment diagram as shown in Fig. 2.68(b). 

Combining these two diagrams qualitatively, noting that the pinned 
bases give rise to a zero moment, gives an impression of the likely shape 
of the resulting bending moment diagram as shown in Fig. 2.69. It is 

M = (468.O_O.6y—O.15y2)A 

468.OA"\__468.8A 

t.7Ox7I 

8 

U) 0 

L 1125 m - 11.25 m J 

(a) 

M = (251.1—4y+3y2)A 

251 U 

(b) 

Xl 

—M—5.5H--1 1 .25V 

Fig. 2.68 Free and reactant bending moment diagrams: (a) free bending 
moment diagram; (b) reactant bending moment diagram. 
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immediately obvious that the most likely positions for plastic hinges 
are near the top of the right-hand rafter and below the right-hand 
haunch. 

If we assume that the rafter hinge forms at the first purlin point at a 
distance of (say) 1.5 m from the apex, then the following equations can 
be written down for the bending moments at the pinned bases and the 
plastic hinge positions: 

(left-hand base) 
(rafter hinge) 
(stanchion hinge) 
(right-hand base) 

293.9A — M— 5.5H+ 11.25V = 
8.3A—M—H/7.5— 1.5V = 

467.7A—M— 1.5H— 11.25V= 
468.3A—M—5.5H— 11.25V= 

0 
—207.4 kNm 

311.1 kNm 
0 

These four simultaneous equations can be solved to give 

A = 1.629 
M= 191.6 kNm 
H= 78.O2kN 
V= 12.62kN 

The final bending moment diagram can then be drawn as shown in 
Fig. 2.70 and the solution obtained is thus confirmed by the uniqueness 
theorem. The value of A obtained is much greater than unity so that the 
load case considered is not critical. 

Note: The particular version of the semi-graphical method presented 
here is equally applicable to pinned or fixed base frames and has 
the advantage of generality. For pinned based frames, which 
have only one degree of redundancy, simpler solutions can often 
be obtained by making the frame statically determinate by 
releasing the horizontal restraint at one base. The horizontal 

Fig. 2.69 General shape of bending moment diagram at collapse. 

Haunch 
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478.7 

shear at this base then becomes the single redundant force in the 
solution. This alternative method will be introduced later. 
However, the method presented here is of more general 
application and becomes essential when multi-bay frames are 
considered in Chapter 8. 

1.5 m 

762.2 761.7 762.7 

Fig. 2.70 Bending moment diagram at collapse (kNm). 

2.6.4 Geometry of the reactant diagram 

In many instances, it is useful to be able to adjust the reactant line in 
order to accommodate such practical factors as discrete member sizes 
and in order to investigate the effect of, for instance, varying the haunch 
dimensions. It is therefore often useful to be able to work on an entirely 
graphical basis. In such cases, the geometric constraints on the reactant 
diagram can be reduced to two simple rules. 

Fig. 2.71 Forces released by cutting the frame. 

409.0 

311.1 

207.4 

191.6 

V 

B 

L L 
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Consider the general case shown in Fig. 2.71. In order to draw the 
reactant diagram we need to know the values of the bending moment at 
the five sections A, B, C, D, E. The equations for these moments are: 

MA = -M-(a+b)H+LV 

MB = MaH+LV 
M = —M 

MD = —M-aH—LV 

ME= -M-(a+b)H-LV 

These five equations include three unknown forces, M, H and V and 
eliminating these unknowns gives two equilibrium conditions which the 
reactant bending moment diagram must always satisfy, namely: 

MB - MA = MD - ME 

Mc — O.5(MB + MD) — a 

MB—MA b 

These two conditions are easy to satisfy geometrically, as shown in 
Fig. 2.72. The first requires that the two dimensions 'y' are equal. The 
second requires that the dimension 'x' is given by 

x a 
yb 

If the free bending moment diagram is drawn to scale, it is relatively 
simple to try various reactant diagrams that satisfy these two necessary 
and sufficient conditions. 

The fully graphical method will now be illustrated by means of an 
example. 

Fig. 2.72 Geometric constraints on the reactant diagram. 

ME 

I 
A B C D E 

X Mc — 
1/2 (MB + MD) 
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Example 2.12 The frame used in Example 2.9 is to be redesigned: 
(a) with fixed bases 
and 
(b) incorporating a point load from a runway beam as 

shown for factored loads in Fig. 2.73. It is required 
to choose suitable sections for the rafters and 
stanchions. 

(0 

>.. 

The free bending moment follows from Fig. 2.65(a) modified for the 
additional point load. Because the diagram is no longer symmetrical it is 
necessary to draw it in full and this is done, to scale, in Fig. 2.74. 
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10 kN/m 

5.5 m 

Fig. 2.73 Frame to be designed. 

1200 

y 

0.5 m 

Fig. 2.74 Free and reactant bending moment diagrams for frame in Fig. 2.73. 

10% haunch 
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Figure 2.74 also shows a reactant bending moment diagram and 
therefore constitutes a solution which is obtained as follows. 

It is necessary first to draw the two sloping lines of the reactant 
diagram for the columns and in order to do this it is necessary to guess a 
section size for these members. Here we guess a 457 x 152 x 52 kg UB 
with a full plastic moment of 1096 x O.275=301.4kNm. Recalling that 
we merely need to draw any reactant line that satisfies the three 
conditions of equilibrium, mechanism and yield and that, here, the 
equilibrium conditions are completely satisfied by the two simple rules 

developed in Section 2.6.4, we assume plastic hinges in both stanchions 
at the base and below the haunch. This automatically gives equal end 

slopes with 

y = 2 x 301.4 x = 678.1 kNm 

It then follows that 

ay l.0x678.1 
4.5 

= 150.7kNm 

The remainder of the reactant line can now be added as shown on 
Fig. 2.74. 

The full bending moment diagram for the frame is shown shaded and 
the required full plastic moment for the rafter follows by scaling the 
maximum bending moment between the haunches. This is approxi- 
mately 220 kNm so that the required plastic section modulus is given by 
220/0.275 = 800 cm3. A suitable section is therefore a 406 x 140 x 46 UB 
(S = 889 cm3). The length of the haunch can also be adjusted at this 
stage to suit the members chosen. 

An experienced designer would immediately suspect that the above 
design may not be optimum and would question whether a better design 
may be obtained by increasing the column size and reducing the rafter. 
If the columns are increased to 457 x 152 x 6OUB with M= 1283 x 
0.275 = 352.8 kNm, the alternative bending moment diagram shown in 

Fig. 2.75 follows with 

x 352.8 x 793.8kNm 

and 

x 
1.0 

93.8 = 176.4 kNm 
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Fig. 2.75 Alternative solution for the frame in Fig. 2.73. - 

The maximum sagging bending moment in the rafter is approximately 
135 kNm requiring a member with a plastic section modulus of 
135/0.275=491cm3. A suitable section is therefore a 356 x 127 x 33UB 

(S = 539 cm3). The right-hand part of the bending moment diagram 
indicates that the length of the haunch would have to be increased 

beyond the 10% length (2.25 m) shown in order to accommodate this 
combination of sections. The required length is easily obtained by 
scaling from the diagram. 

It should be noted that having chosen tentative member sizes on the 
above basis there are a number of stability checks that must be 

completed before the design can be confirmed. These are considered 

later. 

2.7 Alternative graphical method for pinned-based portal frames 

Single-bay portal frames with pinned bases are only one degree 
redundant and this permits a particularly simple graphical method to 
be used. This is based on the reasoning shown in Fig. 2.76 in which the 
frame is made statically determinate by releasing the horizontal force at 
the right-hand support. 

c) 0) 

>. 

0.5 m 

10% haunch 



(b) 

Fig. 2.76 Basis of the alternative graphical method: (a) actual frame and loading = (b) free (with 
actual loads) + (c) reactant. 

Because the structure is only one degree redundant, the reactant 
diagram involves the single unknown H, the horizontal thrust at the 
base, and it is convenient to work in terms of this quantity. The reactant 
bending moment diagram has the magnitude Hy at any point on the 
frame where y is the height of that point above the base. 

The free bending moment diagram is, of course, statically determinate 
and it is not difficult to construct it, even for quite complex load cases. 
The two bending moment diagrams can be superimposed on a single 
diagram as shown is Fig. 2.77 where the shape of the frame is 
'unwrapped' for simplicity. 

We will therefore illustrate the use of this method by repeating the 

analysis of the portal frame subject to wind load that was considered as 

Example 2.11. This method will also be used for the comprehensive 
design example in Chapter 5 and some frames with other shapes and 

loading conditions in Chapter 7. 

Example 2.13 Figure 2.78 shows a pinned-based frame subject to 
factored vertical and wind loads. Draw the bending 
moment diagram at collapse. 

Fig. 2.77 Bending moment diagram for the graphical method. 

reactant B.M.D. 
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E z 
CD 

Fig. 2.78 Pitched roof portal frame subject to wind and vertical load. 

The first step in the analysis is to find the values of the reactions and 
the easiest way to do this is to replace the distributed loads by 

equivalent horizontal and vertical point loads as shown in Fig. 2.79. 

The free bending moment diagram can now be drawn. Thus, between 
A and B with x measured from A to B 

6x2 
MAB = 22.25x — 

2 

From B to C with x measured from B to C in plan 

MBC 52.75x27 
(2.25 +) +22.25 (4.s+5)2 

x2 4 
—(8—4) + (x 

k\11.25 

= 39.37 + 52.33x — 1.984x2 

Fig. 2.79 Determination of the reactions at A and E (loads in kN). 
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Fig. 2.80 Bending moment diagram for the pinned-based frame (kNm). 
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From E to D with x measured from E to D 
0.3x2 

MED = 

and from D to C with x measured from D to C in plan 

MDC = 75.5x — 1.35 
(2.25 

+ — (8 — 0.6) 

2 

+;&i:L5) 
= — 3.04 + 75.38x — 3.698x2 

The resulting free bending moment diagram is shown drawn to scale in 

Fig. 2.80. This can be combined with a reactant diagram drawn for any 
convenient value of the horizontal force H. Here it is drawn for 
H=47.l6kN. This value is not arbitrary, it is in fact the value implicit 
in the solution to Example 2.11 divided by the load factor of 1.629. It is 
then easy to see that the shaded bending moment diagram in Fig. 2.80 is 
the same as that in Fig. 2.70 scaled by 1.629. 

2.8 Optimum plastic design 

Example 2.12 illustrated that there is often more than one feasible 

design and it is of interest to enquire whether it is possible to optimise 
the design in any way. In this section, a procedure is described that is 

377.0 
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Fig. 2.81 Frame to illustrate minimum weight design. 

available whenever there are just two independent member sizes to be 
chosen. Once again it is convenient to illustrate the method with 
reference to an example while noting that it is of more general 
application. 

Example 2.14 The fixed based pitched roof structure shown in Fig. 2.81 
is to be designed to carry the factored loads shown. 
Choose optimum values for the full plastic moment M1,,1 

of the stanchions and M2 of the rafters. 

If we are to attempt to optimise the design, the first question to be 
addressed is that of the criterion for optimality. The cost of a steel frame 
is a complex interaction between the cost of basic material together with 
such matters as fabrication and erection. These latter factors tend to be 
imponderable outside a particular fabricator's design office. For the 
purpose of this exercise, therefore, it will be assumed that it will be 
sufficient to minimise the weight of steel in the members of the frame. 

In order to proceed, in a reasonably simple fashion, it is necessary 
also to assume that there is a continuous spectrum of section sizes 
available and that, within the members of a particular frame, the 
relationship between weight per unit length and plastic section modulus 
or full plastic moment is approximately linear. The validity of these 

assumptions is illustrated in Fig. 2.82, where the available Universal 
Beam sections, over a wide range of sizes, are plotted on a graph of area 
of cross-section versus plastic section modulus. 

It can be seen that the mean curves are approximately linear over 
much of the range shown. However, there is a considerable scatter and, 
more seriously, the cross-sectional areas of the various sections change 
in quite large steps which can be as much as 10% of the area. It is 

L tOrn - 1 1Gm 
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Fig. 2.82 Section properties of Universal Beams. 

necessary therefore, to recognise that much of the economic advantage 
of minimum weight design is likely to be lost when the resulting 
idealised design is translated into available sections. However, as will be 
shown later, minimum weight design is not difficult to program for a 
computer and it then has the additional merit of providing a rational 
method of automatic design. This aspect is at least as important as the 
attempt to minimise material consumption. 

If the equation of the line relating weight to full plastic moment has 
the form 

Weight = a + bM 
where a and b are constants and if the lengths of member associated 
with full plastic moments M1 and M2 are L1 and L2 respectively, then 
the weight of steel in the frame, W1, is given by 

W1= Li(a+bMi)+L2(a+bM2) 
= a(Li + L2) + b(L1M1 + L2M2) 

It follows that, regardless of the actual values of a and b, the structure of 
least weight can be found by minimising the weight function 

Z = L1M1 + L2M2 
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In the case of the structure shown in Fig. 2.81, ignoring the length of the 
haunches, L1 =8m and L2= 15.3m so that 

Z = 8M + 15.3M2 

We now consider the two alternative collapse mechanisms shown in 

Fig. 2.83. In Fig. 2.83(a), for simplicity, the effect of the finite haunch 
depth on the position of the plastic hinge in the stanchion is ignored. 
The work equation for this mechanism is 

4x2ç + 8x(10 — x)ç = M1(2O + ç5) + Mq 

with 

giving (10 + x)Mi + 10M2 = 40x(20 — x) (2.1) 

As the plastic hinge in the rafter must fall below a purlin, this equation 
is valid for x = 10,8.75,7.5 etc. 

The alternative mechanism shown in Fig. 2.83(b) is a little more 
complicated. By considering the two possible expressions for the height 
of the instantaneous centre of rotation above the plastic hinge at the end 
of the haunch, we obtain 

4.5y x+y 
givingx=8y 

By equating the two expressions for the horizontal movement of this 

hinge, we obtain 

4.5O=ç givingç=ç 

8kN/m 8kN/m 
111111 III IIII 11111 IIIIII 11111 IlIllIlIllIll II Ill_i_Ill -__ I0 21 

— x 

(b) 

Fig. 2.83 Alternative collapse mechanisms for the pitched roof frame. 
(a) 
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The work equation can now be written down as 

8 
(_2.5 

+ 9y x 3.5y + (7.5 — 

9Y)8Y) 

=M1 +M2(2+) 
giving yM1 + (5 +y)M2 = lOOy(ll.75 — 8.ly) (2.2) 

which is valid for 9y= 7.5,6.25,5,... ,etc. 
There is also a feasible beam mechanism, which is not shown as it 

turns out to be not critical. This gives 

M2 = 28.l25kNm 

By the kinematic theorem (Section 2.1) each of the above mechan- 
isms, with the various possible positions of the plastic hinge near the 
apex, gives a lower bound on the required values of M1 and M2. If we 

plot the various possible equations on a graph of M1 versus M2 we 
obtain Fig. 2.84. The designations alongside the various lines indicate 
the relevant equation. Thus, la is equation 2.1 with x= 10, lb is 
equation 2.1 with x = 8.75, etc. As we move out from the origin in any 
direction, the last line encountered must give rise to a family of safe 

designs and the shaded region of Fig. 2.84 contains all of the permissible 
designs. Economical designs must evidently lie on the boundary of this 
feasible region. It now remains to decide which point on this boundary 
gives the design of minimum weight. 

It has already been shown that the weight function to be minimised is 
given by 

Z = LM — L2M2 = 8M1 + l5.3M2 

which is the equation of a straight line on Fig. 2.84. Consider now the 
arbitrary value of Z = 2000 which is shown as a chain-dotted line on 
Fig. 2.84. All designs lying on this line have equal weight. However, no 
part of this line is within the feasible region so that all of these designs are 
unsafe and it is necessary to increase the weight of the structure by 
choosing a larger value of Z. As Z varies, a series of alternative weight 
lines are generated which are mutually parallel. Therefore, having drawn a 
typical weight line, it is simply necessary to move out from the origin 
parallel to this line until the weight line just touches the permissible region 
in order to obtain the minimum weight structure which will carry the 
design loads. The result of this process is the 'tangent weight line' shown in 
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Fig. 2.84 which meets the feasible region at the intersection of lines ic and 
2c. The equations of these lines reduce to 

(ic) 1.75Mi +M2 = 375kNm 

(2c) l.75Mi + l7.5M2 = 1268.8 kNm 

2c 
300 

M1 (kNm) 

200 

100 

0 

Fig. 2.84 Graphical method of design for minimum weight. 

1 b, 
la,lc 
ld 

100 
M2 (kNm) 

200 



Principles of Plastic Design 83 

so that the minimum weight frame has 

M1 = 183.3 kNm 

M2 = 54.2kNm 

The geometry of Fig. 2.84 indicates that the ratio of M1 to M2 for 
minimum weight is quite critical. Alternative practical designs lying 
along line ic to the right of the critical vertex become increasingly heavy 
as the ratio of M2 to M1 is increased. 

The graphical method of minimum weight design illustrated by 
Example 2.14 can be used for any structure where the number of 
independent values of full plastic moment to be chosen is precisely two. 
The solution will always lie at a vertex of the permissible region where 
two alternative collapse mechanisms exist simultaneously. For the more 
general case, where more than two full plastic moments are to be 
chosen, recourse must be made to mathematical programming as 
described in the next section. 

2.8.1 General method of minimum weight design 

The solution given above for Example 2.14 can be expressed in more 
formal mathematical terms. The fact that each of the work equations 
provided a lower bound to the values of M1 and M2 can be expressed 
mathematically by writing the equations in the form of inequalities. The 
problem then becomes: 

Minimise Z = 8M1 + 15.3M2 

subject to: 

(la) 2OM1 + 1OM2 � 4000 

(ib) 18.75M1 + 1OM2 > 3937.5 

(2a) 0.833M1 + 5.83M2 � 416.7 

etc. 

This is a formal statement of a typical 'linear programming' problem 
and the graphical solution given to Example 2.14 is an application of the 
well-known graphical method of solution for such problems when there 
are only two variables. However, linear programming problems are 
particularly amenable to computer solution and standard software is 
available for the solution of problems with many variables and 
constraint equations. 
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Commercial packages for computer-aided plastic design generally use 
linear programming with automatic equation generation in order to 
arrive at their initial designs. These designs are then modified in the light 
of the available range of discrete section sizes and (possibly) also 
stability requirements. 



Chapter 3 

Further Considerations in 
Plastic Design 

3.1 Elastic-plastic analysis 

Nowadays, more and more structural analysis is being carried out 
by computer and plastic analysis is no exception. The foundations of 
the available theories for elastic-plastic analysis were laid in the 1960s 
and are outside the scope of this book. However, the arrival of the 
personal computer together with the requirements of modern codes of 
practice has led to renewed interest in elastic-plastic structural analysis, 
and commercial packages of use to the practising designer are now 
appearing on the market. At the very least, the reader of this book needs 
to know in general terms the sort of product that is on offer. 

An elastic-plastic structural analysis usually commences with a 
conventional elastic analysis using the matrix displacement method. 
This gives the complete pattern of internal forces (axial force, shear force 
and bending moment) and displacements under each specified load 
combination. It then considers each load combination in turn, under 
increasing load factor, and traces the formation of plastic hinges from 
first yield to collapse. In the practical packages available to designers, 
plastic hinges are assumed to form instantaneously when the bending 
moment at the cross-section reaches its full plastic value (i.e. the 
members are assumed to have unit shape factor, see Section 1.3). The 
load-deflection curve is made up of a series of straight lines between 
plastic hinge formations and the analysis is terminated when the load- 
deflection curve for some part of the structure becomes horizontal. At 
this stage, the structure has zero resistance and this implies that a plastic 
collapse mechanism has been formed. 

The load-deflection curve arising from a typical elastic-plastic 
analysis is shown in Fig. 3.1. As each plastic hinge forms, the designer 
has available a complete set of information regarding the state of the 
structure including bending moments, axial forces, shear forces and 

85 
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Load factor - 

/ Frame of uniform E 
section 

10 m 

I I 

Deflection LI 

Fig. 3.1 Typical load-deflection curve from elastic-plastic analysis. 

deflections. Information regarding intermediate points on the load 
deflection curve can be obtained by linear interpolation. 

The detail arising from such an analysis is, strictly speaking, 
unnecessary for practical design because the design can be based 
solely on the bending moment diagram at collapse and the deflections 
arising from an elastic analysis. Bearing in mind that, with a suitably 
programmed personal computer, the full analysis can be obtained with a 
minimum of effort, the advantages of a full elastic-plastic analysis are as 
follows. 

(1) With a complex frame, establishing the correct collapse mechan- 
ism by hand is not always easy and errors are not unknown. An 
elastic-plastic analysis proceeds directly to the critical mechanism. 

(2) In the frequently arising circumstances of partial collapse (see 
Section 2.4), the bending moment diagram at collapse is obtained 
directly without guesswork or approximation. 

(3) The plastic hinge history prior to collapse is known and can be 
used beneficially. In general, the choice of discrete sections from 
the available range of Universal Beams, etc. results in a structure 
that is stronger than is strictly necessary in order to satisfy the 
design requirements at the ultimate limit state. Elastic-plastic 
analysis allows the state of the structure to be determined at the 
specified design load. This means that only plastic hinges present 
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at this load need to be provided with torsional restraint and that 
member stability checks can be carried out more precisely. Both of 
these factors can be used advantageously by the designer. 

A further advantage of elastic-plastic computer analysis is that 
second-order effects can be incorporated relatively easily. The advan- 
tage of this will become apparent in the next section. 

3.1.1 False mechanisms 

Even a brief account of elastic-plastic analysis would be incomplete 
without mention of the 'false mechanism'. Many designers of steel 
frames are unaware of this phenomenon and not all the software on the 
market has facilities for recognising and correcting false mechanisms. 

A typical manifestation of the false mechanism arises in the elastic- 

plastic analysis of a symmetrical pitched roof portal frame subject to 
uniformly distributed loading. Plastic hinges form in symmetrical pairs 
and, when either of the hinge arrangements shown in Fig. 3.2 arises, the 
computer program halts. Sufficient plastic hinges have been formed to 
constitute a mechanism and the structure has lost its stiffness. 

However, the mechanisms shown in Fig. 3.2 are false because the 
direction of rotation of one of the plastic hinges in the mechanism is in 
the opposite sense to the bending moment causing the hinge. Sway 
movement cannot take place without one of the hinges unloading and 
becoming locked. A robust computer program should be capable of 

1111111111 11111 I I I I I I I I I I III III II II Ill I liii Ill I I 
(a) 

(b) 

Fig. 3.2 False mechanisms in pinned base portal frames: (a) symmetrical hinge 
pairs showing direction of bending moment; (b) antisymmetrical sway 
mechanisms detected by computer. (Plastic hinges shown thus: .). 
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Fig. 3.3 Correct complete collapse mechanisms. 

Fig. 3.4 More complex false mechanism. 

identifying that these mechanisms are false and of finding the correct 

'complete' mechanisms shown in Fig. 3.3. 

Figure 3.2 shows two relatively simple manifestations of the false 

mechanism whose correct collapse mechanisms are shown in Fig. 3.3. 

There are numerous others and, when multibay portal frames are 
considered, an almost infinite variety of false mechanisms may arise — 

Fig. 3.4 shows a typical example. It is therefore of vital importance that 

engineers using elastic-plastic computer analyses are aware of this 

phenomenon and that the designers of relevant software include 

appropriate measures to overcome it. 

3.1.2 Transient plastic hinges 

Another phenomenon in elastic-plastic analysis which is related to the 
false mechanism but which requires separate treatment is the transient 
or 'unloading' plastic hinge. It is possible that, at some stage in an 

analysis, a plastic hinge tries to reverse its direction of rotation. When 
this happens, it is necessary to make provision for this hinge to revert to 
its elastic state while retaining its locked-in plastic rotation. Computa- 
tionally, this is not trivial but computer programs which do not make 

provision for this are likely to give wrong answers. 

LIII II II LIII III 



Further Considerations in Plastic Design 89 

l3kN 7kN 

3000 1 1000 1 1000 1 1000 

Fig. 3.5 Two-span beam with transient plastic hinge. 

The following simple example shows how an elastic-plastic computer 
program should treat a transient plastic hinge and provides a useful 
benchmark for checking such programs. It also provides a further 
illustration of a false mechanism. 

Example 3.1 Trace the plastic hinge history of the two-span beam 
shown in Fig. 3.5 if the full plastic moment of the 
members is 6.75 kNm and their second moment of area is 
400 000 mm4. 

The analysis for the elastic bending moments can easily be done by 
hand and the resulting bending moment diagram is shown in Fig. 3.6(a). 
The first plastic hinge forms under the 13 kN load at a load factor of 
0.893. 

Similarly, the analysis for the bending moment diagram at collapse 
is trivial using one of the methods given in Chapter 2. As shown in 

4.62 
(a) 

675 6.50 

6.75 (b) 

NJV 
6.50 6.75 

Fig. 3.6 Bending moment diagrams (kNm) for the two span beam: (a) bending 
moment diagram at first plastic hinge (.\ = 0.893); (b) bending moment diagram 
at collapse ( = 1 .0). 



Fig. 3.6(b), collapse takes place at a load factor of 1.0 with plastic hinges 
over the support and below the 7 kN load. 

Evidently, during the elastic-plastic phase, the hinge below the 13 kN 
load must first form and then unload. Figure 3.7 shows the load- 
deflection curve produced by an elastic-plastic analysis. The first hinge 
forms at a load factor A equal to 0.893 and this hinge undergoes plastic 
rotation until the next plastic hinge forms under the 7 kN load at 
A = 0.964. At this stage, the determinant of the stiffness matrix is zero 

indicating the existence of a collapse mechanism. However, testing this 
mechanism indicates that it is a false mechanism with the first hinge to 
form rotating in the opposite sense to its bending moment. This hinge is 
therefore locked with its current rotation (0.000 345 rad) and the 

analysis continued. The next plastic hinge then forms over the support 
at a load factor of 1.0 to produce the correct collapse load and 
deflection. 

Unloading plastic hinges do not necessarily coincide with spurious 
mechanisms and, in order to identify transient hinges, it is necessary to 
continually check that plastic hinges are rotating in the same sense as 
their bending moments. 
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Fig. 3.7 Load-deflection curve for the two-span beam. 
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3.1.3 Shakedown 

Although building structures are conventionally designed as though the 
loading is static, in practice no building ever enjoys static loading. 
Instead, it is subject to random fluctuations of load throughout its 
working life. It has been known for many years that when a structure is 

subjected to variable repeated loading in the elastic-plastic range, 
repeated applications of the peak loads can cause unlimited plastic flow 
at load levels below the collapse load of the structure. This plastic flow 
can take one of two forms. 

(1) When a condition of alternating plasticity exists in a structure, one 
or more of the sections of the structure are bent back and forth so 
that yield of the fibres occurs alternately in tension and 
compression. Failure by alternating plasticity is therefore a 
rather severe case of fatigue. 

(2) Incremental collapse occurs when cyclic application of different 
combinations of loads causes the progressive development of 
excessive deflections. When regular cycles of load are applied at a 
load level above a certain limit, equal increments of load are 
applied during each cycle of load. These deflection increments are 
small movements of an incremental collapse mechanism. In these 
circumstances, a few cyclic applications of the peak loads may be 
sufficient to render the structure useless. 

There is a unique limiting load, termed the shakedown load, which lies 
between the yield load and the static collapse load of the structure. 
Below this load plastic flow is limited but, above this load, cyclic 
loading can cause one or other of the above forms of unlimited plastic 
flow. 

Shakedown and incremental collapse were the subject of a great deal 
of research in the formative days of plastic theory and a general method 
of calculating the shakedown load of a structure was discovered31. 

Evidently, this could be used instead of the plastic collapse load in order 
to define the ultimate limit state of the structure. However, this would 
be to the considerable disadvantage of plastic theory because not only is 
some of the economic advantage lost thereby but, more seriously, the 
shakedown load is much more difficult to calculate. 

Fortunately, shakedown analysis is not usually considered to be 
necessary in building structures and the phenomena of alternating 
plasticity and incremental collapse have been quietly forgotten. The 
main reason for this is that it has been demonstrated by an argument 
based on probability theory32 that a structure is more likely to collapse 
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as the result of a single large overload than as the result of the combined 
effect of several somewhat smaller overloads. 

Furthermore33'34, it has proved to be difficult to devise practical 
loading sequences for building structures which lower the shakedown 
load significantly below the plastic collapse load, and it has been found 
that strain hardening is particularly beneficial in restricting the 

continuing movement of incremental collapse mechanisms. However, 
this latter point should be qualified by the observation that, in 

structures where frame instability dominates over strain hardening, 
the reverse is true. A single cycle of overload can weaken the structure 
with regard to subsequent overloads and cyclic loading can cause 
'acceleration to collapse'. 

It is probably for this reason that BS 5950: Part 1, in clause 5.7.3.3(c), 
states that for multi-storey sway frames: 

'Under all combinations of unfactored loading (including the notional 
horizontal loads when wind loads are not included in the combina- 
tion) it should be possible by means of moment redistribution to 
produce sets of moments and forces throughout the frame which are 
in equilibrium with the applied loads and under which all members 

remain elastic.' 

This clause effectively states that the shakedown load should be 
considered to be a serviceability limit so that a multi-storey structure 
should not be subject to incremental collapse or alternating plasticity 
under the working loads. For the reasons given above, this is not an 
onerous requirement and it is unlikely to influence the design. Never- 

theless, it does not seem entirely logical to require this check under the 

'simple check for frame stability' and not in the general clause. 

Shakedown theory has therefore tended to vanish from the plastic 

theory syllabus and designers can ignore variable repeated loading with 
confidence. It does, however, still retain one feature which may prove 
useful. When using computer-aided design, the disadvantages of more 

complicated calculation procedures assume less importance. When there 
are several alternative load cases of roughly equal importance, automatic 

plastic design becomes problematical. Minimum weight design for the 
shakedown load35 provides a neat solution to this problem. 

3.2 Second-order effects 

Much of the important research into second-order effects dates back to 

the l950s and 1960s and only relatively minor refinements have been 
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added since then. The subject will be introduced in general terms and 
can be visualised in terms of (say) a low-rise rectangular framed 
structure. The important special case of the pitched roof portal frame 
will be considered in more detail later. 

Figure 3.8 shows six idealised load-deflection curves for a typical 
framed structure. Each of these curves is important and can be obtained 
analytically. Their particular characteristics are as follows. 

Fig. 3.8 Idealised load-deflection curves for framed structures. Key to curves: 
(I) Linear elastic; (2) Rigid plastic; (3) Linear elastic-plastic; (4) Second-order 
elastic; (5) Second-order rigid-plastic; (6) Second-order elastic-plastic. 

Load factor 
A 

(4) 

Plastic 

Failure 

Representative deflection 
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(1) Linear elastic. This curve is obtained in any conventional elastic 

analysis which ignores both yield of the material and second-order 
effects. 

(2) Rigid-plastic. This curve is implied in simple plastic theory in 
which it is assumed that deformation is confined to 'plastic hinges'. 
No movement of the structure takes place until sufficient hinges to 
constitute a mechanism have formed. Thereafter, unlimited 
deflections occur at constant load. 

(3) Linear elastic-plastic. If second-order effects are ignored and the 
load path of the structure is traced under increasing load allowing 
plastic hinges to form in turn until a complete mechanism is 
obtained, the result is a linear elastic-plastic load-deflection curve. 
In all but the simplest of structures, the determination of this 
curve requires the use of a computer as described in the previous 
section. The justification for the use of rigid plastic theory in 
practice lies, of course, in the fact that the same ultimate load is 
obtained whether rigid-plastic analysis or linear elastic-plastic is 
used. 

Curves (1) to (3) all ignore second-order effects. Curves (4) to (6) are the 
corresponding curves when second-order effects are involved. They are 
more difficult to calculate. 

(4) Second-order elastic. This curve is obtained when the second-order 
terms are included in an elastic analysis. The response becomes 
non-linear from the start and, in the vast majority of structures, 
axial compressive loads predominate so that it is inherently 
unstable and elastic failure (without any yielding) takes place at a 
certain load factor, "Cr. 

The predominant second-order effect in steel-framed structures 
is often termed the 'P—z effect' whereby axial compressive loads 
'P' in individual members, interacting with finite deflections 's', 
cause enhanced bending moments and deflections and a con- 
sequential loss of stability. This may be visualised as a general- 
isation of the more familiar behaviour of an axially compressed 
strut. 

Strictly speaking, a distinction should be made between the 
elastic failure load illustrated by curve (4) in Fig. 3.8 and the 
'elastic critical load' obtained when all the member loads are 
applied axially. The difference between the two is almost entirely 
academic and for convenience the load factor at elastic failure will 
be termed Acr. 
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(5) Second-order rigid-plastic. When the effect of member axial loads is 
included in rigid-plastic analysis by the work equation method, a 
drooping load-deflection curve results. This does not represent any 
possible physical behaviour of the structure but, largely because 
curve (6) is asymptotic to it, curve (5) can be used to obtain useful 
estimates of the true failure load. 

(6) Second-order elastic-plastic. This is, of course, the nearest 
analytical approach to the true behaviour of a framed structure 
and the highest point on the curve (load-factor A1) represents the 
best estimate of the actual failure load. 

A1 is exceedingly difficult to calculate by hand. However, as 
explained in Section 3.1, it can be calculated relatively easily by 
computer. Until recently, suitable computer programs have been 
few in number but they are now beginning to appear in increasing 
numbers on the commercial market. 

At first sight, it appears that the load factor at failure, A. will always 
fall below the load factor A calculated using simple plastic theory and 
that this therefore constitutes a serious obstacle in the practical 
application of plastic theory. Fortunately, this is not the whole story 
because there is a further beneficial second-order effect, namely strain 
hardening, which ensures that plastic hinges do not rotate at a constant 
moment but rather have a rising moment-rotation relationship. 
Practical structures for which plastic design is appropriate are not 
usually excessively slender and, in such cases, strain hardening is often 
sufficient to overcome the destabilising effect of axial compressive loads 
or at least to ensure that the shortfall of A1 below A is not excessive. 

However, the above discussion should be sufficient to cause loud alarm 
bells to ring if ever a slender structure designed by simple plastic theory 
is encountered. 

It follows that there is a need for methods allowing simple estimates 
of A1 (which may or may not take account of strain hardening) and these 
will be considered in the next section. As the word 'simple' in this 
context is relative, there will always be a use for the 'exact' computer 
analysis and this is recommended for unusual structures or for slender 
structures where the difference between A1 and A is significant. 

3.2.1 The Merchant—Rankine formula 

The Merchant—Rankine formula provides the most important approx- 
imate method of estimating the load factor Af at failure. It was first 
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suggested by Merchant on a purely empirical basis and has a form 
similar to the better known Rankine equation for struts, namely, 

(3.1) 

i.e. 

(3.2) 
1+ 

Much later, Home36 showed that the Merchant—Rankine formula 
had a theoretical basis provided that the plastic collapse mechanism and 
the lowest buckling mode had similar deflected shapes. If these deflected 

shapes were dissimilar, the Merchant—Rankine formula was likely to 

prove conservative. 
For relatively stocky frames, it is reasonable to make some concessions 

for the effect of strain hardening as discussed above. Furthermore, even a 
small amount of help from the cladding is sufficient to compensate for 
second-order effects in such frames. Consequently, in clause 5.7.3, which 
is concerned with the plastic design of multi-storey sway frames, BS 5950 
Part I includes, among other requirements, the following which is based 
on an augmented Merchant—Rankine approach. 

5.7.3.3 Simple check for frame stability 
Clause (d) In clad frames where no account is taken of the stiffening 
effect of wall panels the following relationship should be satisfied: 

(1) Acr > 4.6 

0.9A 
(2) when 4.6 < ''cr < 10: > 

— 1 

(3) when Acr> 10: A, > 1 

where Acr is the elastic critical load factor ) is the rigid plastic load factor of the overall frames but 
should not be less than 1 locally 

Clause (e) In unclad frames or in clad frames where the stiffness of 
the cladding is taken into account the following relationship should 
be satisfied: 

(1) Acr > 5.75 

0.95).cr 
(2) when 5.75 <A < 20: > 

A, — 1 
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(3) when '\cr � 20: A, > 1 

where Acr and are as in (d). 

The Merchant—Rankine equation and its BS 5950 modification are 
shown, together with some test results for slender model steel frames in 

Fig. 3937 
It is evident that any approach based on the Merchant—Rankine 

formula requires that a good estimate of the elastic critical load factor 
Acr can be made. For multi-storey frames, this is easier than many 
engineers realise and a number of accurate approximate methods exist. 
These include the delightfully simple method given in Appendix F2 of 
BS 5950 Part I which is due to Home38. The calculation proceeds as 
follows. 

An accurate linear elastic analysis of the frame is required under side 
loads applied at each floor level which are equal to 1/200 times the 
factored vertical loads applied at that level as shown in Fig. 3.10. 

At each storey level, the sway index is calculated from 

— 
— 

Vs h 

Results for 3,5 and 7 storeys 
o Frames with side load • Frames with no side load 

(a) Merchant-Rankine formula 
(b) clause 5.7.3.3(d) 
(c) clause 5.7.3.3(e) 

Fig. 3.9 Merchant—Rankine formula as a lower bound to test results. Results for 3, 5 and 7 storeys: 
Frames with side load, • Frames with no side load. (a) Merchant—Rankine formula, (b) clause 
5.7.3.3(d), (c) clause 5.7.3.3(e). 
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WI 

4,4,44,4,4,4, 4444 

44, 4, 4,4, 4,4, 4, 4, U4 + 4,4, 

(b) 

7/7 ;7/77; 

Fig. 3.10 Home method for calculating 
(b) analysis to determine the critical load. 

as illustrated in Fig. 3.10. The elastic critical load factor Ar,. is given by 

Acr 
200cmax 

where s.max is the largest value of the sway index for any storey of 
the frame. 

Unfortunately, the treatment of second-order effects in pitched roof 
portal frames is not so simple as will become apparent in the next 
section. 

3.2.2 Second-order effects in pitched roof frames according to BS5950 

Second-order effects in portal frames are covered in BS 5950, Part 1 by 
clause 5.5.3.2 which accepts three possibilities. 

3.2.2.1 A rigorous analysis of frame stability 
What is meant by this is not clearly defined but an elastic-plastic second- 
order analysis leading to the failure load A1 in Fig. 3.8 is evidently 
implied. This will give the most accurate assessment of the second-order 
effects and, in the light of what follows, this, or some other proven 
method, should be used in preference to the alternatives given in 
BS 5950 whenever there is any suspicion that second-order effects may 
be significant. For pitched roof portal frames, the equations given in 
Sections 3.2.3 to 3.2.8 of this chapter provide a simple solution which is 
sufficiently accurate for all practical purposes. 

(a) 

Wi+1 

W1 

WI 
200 

4, 

200 

'cr (BS 5950, Part 1, Appendix F2) (a) actual frame; 
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3.2.2.2 The fictitious side load method 
The paragraph detailing this method reads as follows: 

'The horizontal deflection 6, calculated by linear elastic analysis, at 
the top of any column due to notional horizontal loading given in 
clause 5.1.2.3 applied in the same direction at the top of each column 
should not exceed h/1000 where h is the height of the column. In 
calculating 6, allowance may be made for the restraining effect of 
cladding.' 

As with multi-storey frames considered previously, the notional 
horizontal forces given in clause 5.1 .2.3 are: 

'0.5% of the factored dead load plus vertical imposed load applied 
horizontally.' 

The interpretation of the above paragraph is illustrated by Fig. 3.11. 

According to BS 5950, second-order effects may be ignored provided 
that 

h1 6 and 62 

63 and 64 

This treatment appears to be based on two assumptions, namely (a) 
the elastic critical load factor A may be estimated with adequate 
accuracy by applying the method of Appendix F2 as previously 
described in Section 3.2.1, and (b) if > 5, there is no need to consider 
second-order effects in plastically designed portal frames. 

There does not appear to be any definitive study warranting the 
different treatment in (b) to the entirely reasonable provisions described 
earlier for multi-storey frames. However, assumption (a) is even more 
questionable. It presupposes that portal frames buckle elastically in a 
sidesway mode due solely to the axial forces in the columns whereas, in 

Fig. 3.11 Sway stability check to BS5950, Part 1, clause 5.5.3.2: (a) factored vertical loads; (b) 
notional horizontal loads. 

11' 

4001 
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practice, elastic buckling is invariably in a rafter mode as a consequence 
of the axial compressive force in these relatively longer and more slender 
members. The critical load for the rafter mode may often be only a 
small fraction of that for the sidesway mode. 

The authors of this clause appear to have compounded their error by 
allowing designers to include for the restraining effect of cladding in 

calculating 6. The cladding will generally have a profound effect in 

resisting sidesway but has little or no effect in resisting a rafter mode. It 
follows that the sidesway check in BS 5950 gives no useful information 
regarding the influence of second-order effects in pitched roof portal 
frames and that it should not be used. 

3.2.2.3 The empirical equation method 
The relevant paragraph of clause 5.5.3.2 states that irrespective of the 
effects of cladding, second-order effects may be ignored provided that in 
each bay of a portal frame 

_____V7 
D — h \4 + pLr/L) '\Pyr 

(2I\(L\ where p = 
y-—) ) for a single-bay frame 

p = - - for a multi-bay frame 

and L is the span of the bay; 
Lb is the effective span = either L or L — Lh according to the 

depth of the haunch; 
Lh is the length of the haunch; 
D is the minimum depth of the rafters; 
h is the column height; 
4 is the minimum second moment of area of the column for 

bending in the plane of the frame (taken as zero if the 
column is not rigidly connected to the rafter); 

'r is the minimum second moment of area of the rafters for 
bending in the plane of the frame; 

Pyr is the design strength of the rafter; 
Lr is the total developed length of the rafter; 

is the arching ratio Wr/W0 
Wr is the factored vertical load on the rafters; 
W0 is the maximum value of Wr which could cause plastic 

failure of the rafter treated as a fixed ended beam of span L. 
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The derivation of this equation is given in Reference 3.9. It is based 
on an estimated elastic critical load for sway buckling under the 
conditions shown in Fig. 3.12 together with the requirement that 
Acr > 5. It would therefore be expected to lead to similar requirements 
to the fictitious side load method discussed in Section 3.2.2.2 and to be 
subject to the same criticism. A detailed investigation of this clause3'0 
has verified that this supposition is correct. 

3.2.3 Improved treatment of second-order effects in portal frames 

It is clear from the foregoing that the elastic critical load Acr is the 
crucial parameter in any practical treatment of second-order effects and 
that the primary problem in BS 5950 is its use of an incorrect estimate of 
this quantity for pitched roof portal frames. Furthermore, it seems 

illogical to use different procedures for pitched roof frames and multi- 
storey frames in the absence of any compelling reason for doing so. For 
this reason, a more accurate and rational treatment of second-order 
effects in portal frames has been proposed in two recent papers310'3'1. 
The main points made in these papers are summarised here. 

The exact elastic critical load can be obtained from the second-order 
analysis of the model shown in Fig. 3.13. This structure can be analysed 
using the matrix stiffness method though this generally requires the use 

Fig. 3.13 Scheme for elastic critical load calculation. 

".-.... XPr 

Fig. 3.12 Sway buckling of portal frames. 
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of a computer. It is not suggested that this is a suitable method for 
practical design and here it is used as a yardstick whereby alternative 
methods may be evaluated. It will be shown later that the elastic critical 
loads calculated on this basis are generally an order of magnitude lower 
than those predicted by the methods implied in BS 5950. 

For a suitable approximate calculation of Acr for a single-bay pitched 
roof frame, it is sufficient to consider the half frame shown in Fig. 3.14. 
The critical mode is assumed to be an anti-symmetrical sway with a 
corresponding deflection of the rafter. For the present, it is assumed 
that the values of the axial thrusts P and Pr are known. It will be shown 
later that they can be easily estimated. The important point is that this 
model includes for the interaction between buckling of the rafter 
induced by Pr and sway buckling of the column as a result of P. 

Buckling is initiated by a small disturbing moment M at the eaves 
which gives rise to a rotation 0. It can be shown that the critical value of 
'cr, when the stiffness M/0 becomes zero, is given by the transcendental 
equation 

S'r'+R(nc_) 
0 

IcLr where R=-- 
and s", ii and o are stability functions312 with 
referring to the rafter and column respectively. 

subscripts r and c 

Fig. 3.14 Improved elastic critical load calculation for portal frames. 
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This equation includes A implicitly in the stability functions and can 
be solved by trial and error. As it is almost linear in the region of the 
solution, any reasonable procedure will converge immediately. How- 
ever, it can be simplified further by introducing approximations for the 
stability functions to give the following explicit expression for Acr. 

3EIr 

Lr [(i +)Pch+O.3PrLr] 
The corresponding transcendental equation for a fixed base frame is 

s'r' + Rn = 0 

which simplifies to 

— 5E(l0+R) — 
2 

2RPh2 
Jr 

+ 
Ic 

The above equations give rise to simple estimates of the elastic critical 
load which have been shown by parametric study to be close enough to 
the exact values for all practical purposes. 

An estimate of the axial loads P, and Pr that is also sufficiently 
accurate for practical design can be obtained as follows, using the 
notation given in Fig. 3.15. In this figure, M is the eaves moment at 
collapse which has been found during the plastic design. 

wL M 
P=-2- H=-- 
Pr = HcosO+ VsinO 

w per unit length [IIIIIIIIIIIIIJ Ill 11111 1111JT 

M 

Pct tPc 
L _____ 

Fig. 3.15 Estimation of the axial loads P and Pr at collapse. 
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Exact second-order solution 
20 - — — — — — Side load method in BS 5950 

w=lOkN/m — - — Empirical equation in BS 5950 

Equation in Section 3.2.3 

1 

.IITT-:.. 
o L. I 

10 20 30 40 
Span L (m) 

Fig. 3.16 Elastic critical loads for pinned based frames of 5 m height and 50 

roof pitch. 

A typical comparison of the elastic critical loads given by exact 
analysis, the above method and the approximate methods implied in 
BS 5950 is given in Fig. 3.16. It is immediately evident that the proposed 
method gives an adequate estimate of the critical load whereas BS 5950 
is grossly unsafe. 

3.2.4 Influence of partial base fixity 

In clause 5.1.2.4, BS 5950 recognises three types of base stiffness: 

(1) Where the column is rigidly connected to a suitable foundation, 
the stiffness of the base should be taken as equal to the stiffness of 
the column. 

(2) Where the column is nominally connected to the foundation, a 
base stiffness of 10% of the column stiffness may be assumed. 

(3) Where an actual pin or rocker is provided, the base stiffness should 
be taken as zero. 

It is also stated that it is necessary to be consistent in using the same 
base stiffness in all calculations. This includes: 

elastic frame analysis (for deflections); 
effective length of columns; 
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calculation of the elastic critical load; 
classification as sway or non-sway. 
It follows that BS 5950 does not recognise a fully fixed base and that, 

in general, it is not necessary to treat a nominally pinned base as having 
zero stiffness. The wider implications of this clause are discussed in 
Reference 3.13, here we concentrate on the consequences for the elastic 
critical load calculation. This is considered in Reference 3.14 as follows. 

In a global calculation, a nominally fixed base can be modelled as a 
spring with rotational stiffness equal to 4EIcoiumn/Lcoiumn. If the 
computer program being used cannot accept a rotational spring, the 
model shown in Fig. 3.17 may be used in which the base stiffness is 
modelled by a dummy member continuous with the column and pinned 
at the far end which has a stiffness equal to Elcoiumn and a length of 
O.7SLcoiumn. 

Similarly, a nominally pinned base can be modelled as a spring 
with rotational stiffness equal to O.4Elcoiumn/Lcoiumn. If the computer 
program being used cannot accept a rotational spring, the model shown 
in Fig. 3.17 may again be used but with the I of the dummy member 
reduced to 0.1 'columnS 

It should be noted that the model shown in Fig. 3.17 affects the 
reaction at the column base which should be corrected to be equal to the 
axial force in the column. Reference 3.14 also includes improved explicit 
expressions for the elastic critical load Acr which, with the notation of 
Section 3.2.3, are as follows. 

Nominally pinned base: 

(4.2+0.4R)EIr 

Lr[0.42PrLr+ (1.16+) Pch] 

Acr 

'column 'column 

Fig. 3.17 Alternative model for base flexibility. 
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Nominally fixed base: 

5E(10+0.8R) — 

[SPRLr2 
+ (2.6R +4) 

3.2.5 Stability of multi-span portal frames 

It has been shown3" that the simple equations for the calculation of the 
elastic critical load given in the previous sections are equally applicable 
to the overall stability of multi-span frames when applied to the outer 
spans. If the frame is irregular, as typified by Fig. 3.18, the equations 
should be applied to both outer spans and the lowest critical load so 
obtained should be taken as being applicable to the complete frame. 
This procedure will generally be conservative. The internal rafters of 
multi-span frames should also be checked according to Section 3.2.6. 

3.2.6 Stability of the internal rafters of multi-span frames 

In BS 5950: Part 1, the stability of internal rafters is considered in clause 
5.5.3.3 which is entitled 'Snap through stability of rafter'. This title is 
not strictly accurate as it is not a 'snap-through' that is critical but 
buckling of an internal rafter as illustrated by Fig. 3.19. Despite the 
confusion caused by the title, this clause has been found3" to provide 
an adequate basis for practical design. It contains a restriction on the 
rafter slenderness Lb/D where Lb is the effective span of the bay, and D 
is the minimum depth of the rafters. 

Fig. 3.18 Irregular multi-span portal frame. 
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Fig. 3.19 Buckling of the internal rafters of a pitched roof frame. 

The background to this clause is given in a paper by Home39 in 
which he first derives an approximate expression for the elastic critical 
load Acr and then imposes the restriction that )cr � 2.5S1 where is the 
arching ratio defined below. For practical frames, this can result in 
values of the critical load between 4 and 10. Within the philosophy upon 
which this chapter is based, this requirement is best expressed in the 
form of a calculation of Acr which can then be used in the same way as 
other values of the critical load found for other modes. Thus: 

(55(4+\ 
ID\I hill I\l275\ 

AL, = 
( J ( J(l +— it J tan2O Lb / \ — 1 / \ Jr / Pyr / 

where 0r is the slope of the rafter and the remaining symbols have all 
been defined in Section 3.2.2.3. 

It should be noted that it is possible to design frames with very low 
load factors with respect to this buckling mode so that this check is 
essential. 

3.2.7 Stability of portal frames with internal valley beams or props 

Before consideration of the stability of multi-span portal frames is 
complete, it is necessary to consider a situation which occurs 
occasionally in practice where some or all of the internal valleys are 
supported on valley beams or otherwise supported on non-moment- 
bearing props. The stability of these arrangements, which are illustrated 
in Fig. 3.20, will be covered by the checks described earlier unless a 
sidesway mode is critical. However, the reduced sidesway stiffness of 
these configurations means that they are much more susceptible to sway 
buckling and this must be checked. 



108 Plastic Design to BS 5950 

(a) 

h 
3 

L L L 

(b) 

Fig. 3.20 Frames with simply supported internal valleys: (a) frames supported 
on valley beams; (b) frames with internal props. 

It is important to realise that, although the two situations in Fig. 3.20 

give rise to similar plastic designs, they require separate consideration 
with regard to stability. The elastic critical loads will be quite different 
because the axial force carried by an internal prop will act as a 
'destabilising load' during sidesway buckling. Thus, configurations such 
as the one shown in Fig. 3.20(b) are far less stable than configurations 
like Fig. 3.20(a) and designers should realise this. An analysis is required 
which recognises this and this is given in Reference 3.11. 

With truly pinned bases, the elastic critical load may be estimated 
using 

3EIr 
'cr 

2Lr 
[(1 +)(N+ l)Pch+0.6PrLr] 

where N is the number of internal props (=0 for valley beams as in 
Fig. 3.20(a)) 

R — 
stiffness of column — 2IcLr — 

stiffness of rafter pair 
— 

Irh 

and the remaining symbols are as before. 
A parametric study of some typical frames of this type has revealed 

that the elastic critical load may be of the order of unity which indicated 
that these frames, even though rationally designed and of practical 
proportions, are potentially very unstable. A check such as the one given 
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above should therefore be regarded as essential. The side load method 
given in BS 5950; clause 5.5.3.2 is not adequate in this respect because, as 
before, it ignores the destabilising effect of the axial loads in the rafters 
and it also ignores the equally important destabilising prop loads. 

However, the stiffening effect of the cladding (stressed skin design) is 
particularly effective in resisting this form of instability. This is 
presumably the reason why there is no history of unexpected collapses 
of frames supported on valley beams, and stressed skin design may 
provide a design solution in cases where increasing the size of the 
members in order to avoid sway instability would be too expensive. 

3.2.8 The design of portal frames taking into account second-order effects 

The in-plane stability considerations in portal frames designed by 
plastic theory are similar to those for multi-storey frames and it is 
logical that they should both be treated in the same way. In the absence 
of a rigorous second-order analysis, the crucial parameter is the elastic 
critical load Acr. Simple equations have been given whereby Acr may be 
estimated for the following modes of instability: 

U buckling of outer rafter combined with column sway; 
U buckling of internal rafter (confusingly termed 'snap through' in 

BS5950); 
U sway of multi-bay frames supported on valley beams or props. 

The critical load of the frame is the lowest of these when all relevant 
modes are considered. It should be noted that the cladding (stressed skin 
or diaphragm effect) will only be of significant benefit with respect to the 
third of these. 

The value of )(r found in this way should then be used as follows. 
This is exactly the same as for multi-storey sway frames in clause 5.7.3 
of BS 5950: Part I. 

If Acr > 10, in plane instability effects may be ignored, i.e. the rigid- 
plastic load factor may be used without reduction. 
If 4.6 < )cr < 10, the required load factor for plastic design should be 
increased to 

� ( > 1) 

'cr < 4.6, in-plane instability effects should be taken into account 
by means of an elastic-plastic second-order analysis of the complete 
frame. 
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Load 

Ultimate 
limit state 

Fig. 3.21 Load-deflection curves showing plastic hinge history. 

Consideration of some typical portal frames suggests that well-designed 
frames of conventional proportions will generally have values of Acr 

round about 5 so that the design for second-order effects is very 
important. 

It follows that the majority of practical frames will fall into the 
intermediate case and that the approximate treatment of second-order 
effects will be widely used in practice. This requires that the load factor 
for plastic design should be increased according to the above equation 
for ), and that all of the internal forces obtained by first-order analysis 
should be amplified in proportion. It is not easy to see how this may be 
achieved when using plastic theory without exceeding the full plastic 
moment of the members! Reference 3.14 offers a solution. 

For many reasons, modern plastic design is best carried out with the 
aid of a first-order elastic-plastic analysis which gives rise to a plastic 
hinge history as shown by the upper curve in Fig. 3.21. Factoring the 
applied loads by 3, giving the lower curve, has the same effect as 
amplifying the internal forces by 3. Where this lower curve crosses the 
ultimate limit state design loads gives the conditions under which the 
member stability checks should be carried out. These can easily be 
extracted from the results of the analysis. 

3.3 Member stability 

It is essential that all members in a structure remain stable up to the 
required ultimate limit state loading condition. In structures that are 
designed to remain elastic at the ultimate limit state, this means ensuring 

Collapse mechanism 

First order 

Design moments 
and forces 

Deflection 
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that the members are stable against both in-plane and out of plane 
failure. In plastic design, the possible presence of plastic hinges at the 
ultimate limit state places greater emphasis on ensuring that there is not 
premature out of plane failure of any member. 

In structures that are designed using plastic theory, there is the 
overriding requirement given in BS 5950: Part 1, clause 3.5.2 that only 
Class I (plastic) sections may be used for plastic design. Class 1 sections 
are defined in Table 7 in terms of limiting width to thickness ratios for 
the various elements (compression flange outstands, webs, etc.) of a 
member. These serve to ensure that the element is sufficiently stocky for 
a plastic hinge to develop and to have adequate rotational capacity 
without premature loss of strength due to local buckling. Clause 5.3.4 
adds a further requirement that plastic hinges are only allowed in 
members which are symmetrical about an axis perpendicular to the axis 
of the hinge rotation. There is also the concession that members which 
do not contain plastic hinges need only be Class 2 (compact). 

The next critical requirement, specified in clause 5.3.5, is that 
torsional restraints should be provided at all plastic hinge locations. 
Where this is impractical, the restraint should be provided within a 
distance D/2 of the plastic hinge location along the member. There is 
then the further requirement that there should also be an adjacent 
restraint within a distance Lm of the hinge restraint. The calculation of 
Lm is important and will be considered in some detail later. These 
requirements for torsional restraints are also necessary in order to 
ensure that plastic hinges have adequate rotational capacity. 

These requirements may be relaxed when it can be demonstrated that 
there is no need for a particular plastic hinge to achieve a significant 
plastic rotation in order for the structure to reach its design strength. In 
clause 5.5.3.1, therefore, it is stated that in a portal frame it is not 
necessary to provide torsional restraints at the last hinge to form 
provided it can be clearly identified. In many portal frames, the 
dominant loading condition is 1.4 x Dead + 1.6 x Imposed + Notional 
Horizontal Loads and this usually results in the last hinge forming as a 
sagging hinge in the rafter adjacent to the apex. It is generally 
worthwhile confirming that the rafter hinge is the last hinge to form in 
order to reduce the number of costly bracing members and to allow a 
greater purlin spacing along the rafter. 

It follows that, in a member containing a plastic hinge, the distance 
between effective restraints must usually be less than it would be in a 
similar elastically designed member where there is no requirement for 
rotational capacity. This can be one of the more troublesome aspects of 
plastic design. 



112 Plastic Design to BS5950 

3.3.1 Overview of the clauses dealing with member stability 

In BS 5950: Part 1, there are various formulae of differing degrees of 
complexity for checking member stability. Usually the more complex 
formulae give more efficient solutions at the expense of the designer's 
time. The main justification for the more complex procedures is that the 
complexity is irrelevant once the formulae are included in computer 
programs. 

An overview of the available procedures for verifying member 
stability is given in Table 3.1. The three main factors that determine 
which approach is appropriate in a particular case are: 

Whether the member is restrained at intervals along the tension 
flange. This is an important feature which appeared in a design code 
for the first time in BS 5950. It is particularly applicable to the 
stanchions and haunch region of a portal frame where tension flange 
restraint is provided by the purlins and sheeting rails. 

LJ Whether the length of member under consideration contains a 
plastic hinge. As pointed out above, the requirements for member 
stability become more onerous in the vicinity of a plastic hinge. 
Whether the member is of uniform or non-uniform section. In general, 
the plastic design of tapered members is not encouraged. However, 
the haunch region of a portal frame is an important exception and 
most plastically designed portal frames contain non-uniform mem- 
bers even though the tapered section is itself designed to remain elastic. 

The salient features of the three relevant parts of BS 5950: Part I are 
as follows. 

Clause 4.8.3 which depends also on clause 4.3.7, is the general clause 
which is concerned solely with elastic conditions and is only 
appropriate for checking lateral torsional buckling when the length 
of member under consideration remains elastic or at most contains 
only the last hinge to form. 
Clause 5.3.5 contains a conservative formula for the spacing of 
restraints in a member containing a plastic hinge. 
Clause 5.5.3.5 contains simplified formulae for checking the stability 
of portal frame rafters with and without plastic hinges including 
restraints to the tension flange. 
Appendix G contains more elaborate formulae for checking the 
stability of members that have intermediate restraints along the 
tension flange. However, the calculations required by Appendix G are 
far from trivial and in practice it is mainly used when suitable 
computer software is available. 
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Table 3.1 Selection table for clauses or formulae for member stability. 

Clause or Notes 
formula 

Unrestrained No plastic Uniform 4.8.3 Standard 
length hinge present member elastic check 

Non-uniform 4.8.3 
member 

Plastic hinge Uniform 5.3.5 Conservative, for 
present member constant bending 

moment 

Non-uniform 5.3.5 A non-uniform 
member member containing 

a plastic hinge should 
be avoided 

Uniform Ref. 3.15 Most efficient. 
member Computer/calculator 

program required 

Alternative 3.3.3 of this Simplified 
formulae not book version of 
in BS 5950 Ref. 3.16 

Length No plastic Uniform G.2(a).(1) Purlin/rail centres 
restrained hinge present member to satisfy 4.8.3.3 
along the Non-uniform G.2(a).(2) tension flange member 

Plastic hinge Uniform G.2(b).(1) or Purlin/rail centres to 
present member (2) satisfy 4.8.3.3 

(Not 5.3.5 refer to 
Non-uniform G.2(b).(2) G.1 2.2) member 

Simple Uniform and 5.5.3.5 Purlin centres to 
formulae, with non-uniform satisfy 5.3.5 if a 
or without a members plastic hinge exists 
plastic hinge or 4.8.3.3 if not 

The member stability clauses in BS 5950 also make reference to 
several different length parameters and it is also helpful to identify and 
define these. 

'L' (clause 4.3.5) is the actual length, or portion of the length, of the 
member under consideration. For a beam, it can be the span or the 
distance between restraints. 
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'LE' (clause 4.3.5) is the effective length of a member which is required 
for the calculation of the bending capacity taking account of lateral 
torsional buckling. LE is dependent upon the amount of restraint that 
the member receives at its ends and also on the loading conditions. 
Guidance is given in Tables 9 and 10 of BS 5950: Part 1. The procedure 
for using LE is as follows. 

LE is used to obtain the slenderness ratio A = LE/r. This then gives 
rise to the equivalent slenderness ALT = nuvA. The bending strength 
Ph is then a function of ALT and the design strength p, according to 
Tables 11 and 12. The bending capacity of the section is then given by 
Mb = PhS where S is the plastic section modulus of the section. 

In the above: 

n is a slenderness correction factor which is described in clause 4.3.7.6 
and which is a function of the loading and restraint conditions on the 
member. n may be conservatively taken as unity. 
u is a buckling parameter which is tabulated for the standard sections. 
For rolled I or H sections, it may be conservatively taken to be 0.9. 
v is a slenderness factor which is a function of A and the section 
properties of the member. It may be determined using Table 14 of 
BS 5950 or conservatively taken to be equal to unity. 

'Lm' (clause 5.3.5) is the maximum permissible distance between the 
torsion restraint at a plastic hinge position and the nearest adjacent 
torsional restraint. Lm, as given in clause 5.3.5, is conservative and other 
more effective formulae are given in Section 3.3.3 of this book. 
'La' (clause 5.5.3.5 and Figure 10) is concerned with portal frame rafters 
and is the maximum permissible distance between restraints to the 
compression flange when there are restraints at intervals along the 
tension flange. The spacing of the tension flange restraints must satisfy 
the LE calculation described above. 
'Li' (Appendix G) is the maximum permissible distance between 
torsional restraints in members which are restrained at intervals along 
the tension flange. The calculation procedure in Appendix G is of rather 
more general application and includes non-uniform (tapered) members. 

3.3.2 Restraints 

BS 5950 makes reference to two distinct types of restraints although 
both are often loosely referred to as simply 'restraints'. It is important 
to distinguish between them and to be clear when one or the other is 
required. 
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Torsional restraints are required at and adjacent to plastic hinge 

positions. They are defined in clause 4.3.3 as follows. 

'A beam may be taken as torsionally restrained (about its long- 
itudinal axis) at any point in its length where both flanges are 
effectively held in position relative to each other by external means (in 
the lateral direction).' 

Clause 4.3.3 also describes how torsional restraint may be achieved. 

'Lateral restraints inhibit lateral movement of the compression flange 
of a member relative to the supports. The requirements for effective 
lateral restraint are given in some detail in clause 4.3.2. 

Unless a member is continuously restrained (e.g. by a concrete floor 
slab), lateral restraints are required in order to prevent the lateral 
torsional buckling of members. It is usually then necessary to check 
that the unrestrained length of the member is stable between points of 
lateral restraint.' 

As the requirements for torsional restraints are more onerous than those 
for lateral restraints, torsional restraints also provide lateral restraint 
(clause 4.3.1). 

The lateral restraint to the rafters of a portal frame is usually 

provided by the purlins and these are in turn restrained by the sheeting. 
Clause 4.3.2.4 makes the important point that in this circumstance, it is 
not necessary to check the purlins for the induced restraining forces 

provided that either: 

(1) there is bracing of adequate stiffness in the plane of the rafters; or 
(2) the roof sheeting is capable of acting as a diaphragm. 

Evidently, care is required here with some modern types of roof such as 
standing seam and clip-fix systems which offer only limited restraint to 
the purlins. 

3.3.3 Influence of the shape of the bending moment diagram 

Designers having experience of elastic design will know that the shape of 
the bending moment diagram has a considerable effect on the allowable 
distance between discrete lateral restraints. In BS 5950: Part 1, the 
elastic bending moment profile in uniform members is accounted for in 
the lateral torsional buckling clause 4.3.7 in one of two ways as 
summarised in Table 13. If the bending moment diagram is linear 
between adjacent lateral restraints, the maximum bending moment M is 
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reduced by a factor 'm' which in turn depends on the ratio '3' between 
the end moments. This procedure is illustrated in Fig. 3.22. 
If the bending moment diagram is non-linear between adjacent lateral 

restraints, there is an alternative procedure which results in a reduction 
factor 'n' on the slenderness ratio. It is not permitted to use both m 
and n. 

Discounting any slight curvature of the bending moment diagram 
caused by the self-weight of the member, it is unusual to find bending 
moment diagrams which are not at least approximately linear between 
restraints and therefore the equivalent moment factor m based on the 
end moment ratio /3 is used far more frequently than the slenderness 
reduction factor n. 

In BS 5950, there is no equivalent procedure based on the shape of the 
bending moment diagram for members containing plastic hinges. This is 
surprising since it is clear that a plastic hinge in a region of uniform or 
approximately uniform bending moment is potentially very unstable as 
both flanges of the member would be yielding over a significant length. 
Conversely, a plastic hinge in a region of rapidly changing bending 
moment is a much less serious matter as the plastic zones would be 
relatively confined. The relevant clause 5.3.5 is conservative because it 
determines the maximum restraint spacing Lm for the worst case, 

namely a constant bending moment. This is the reason that the 
restraints required by clause 5.3.5 are so close together. 

(a) (b) 
13M( I 

1.0 

M 

0 
1.0 0 

) 

f:J —1.0 

Fig. 3.22 Equivalent uniform moment factor 'm': (a) /3 positive; (b) /3 negative. 
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The much more complicated formulae given in Appendix G do take 
account of plastic hinges in members with non-uniform bending 
moment but these are only for members restrained at intervals along 
the tension flange. 

There is evidently a need for a relatively simple method for determining 
a less conservative value of Lm in members subject to a bending moment 
gradient. A suitable procedure is described in Reference 3.16 and this is 

advocated for general use. It is illustrated in Fig. 3.23 where the restraint 
spacing L'm is a function of the end moment ratio 3 defined in Fig. 3.22. 

In Fig. 3.23, Lm is determined using the formula given in clause 5.3.5 
of BS 5950: Part 1, namely 

2 2! 
fc (Py\(X 2 

130 275) 36 

where J, = the average compressive stress due to axial load (N/mm2) 

Py the design strength (N/mm2) 

r, = the radius of gyration about the minor axis (mm) 
x the torsional index 

This formula holds for values of3 between I and a limiting value given by 

x 
/3m for Grade 43 steel 

for Grade 50 steel 

0 ( —0.75 —1.0 

Fig. 3.23 Restraint spacing in a member subject to moment gradient. 

Lm = 38r 

x 
13m 

1.0 Pm 
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For values of 3 less than this, the restraint spacing can be increased up 
to a maximum of KLm at /3 = —0.75 where 

K=2.3+0.03x—&0 when 20<x< 30 

K = 0.8 + 0.08x — (x —1L when 30 <x < 50 

As can be seen in Fig. 3.23, the method provides for a bilinear transi- 
tion from the point with coordinates (13m, Lm) to (0.75, KLm) via 
(0, K0KLm), where 

180 + x 
K0= 300 

The required restraint spacing L is then: 

when 1.0>/3>/3m LLm 

/3m > /3 � 0 L'm = 
[i .0+ 

/3m/3 

/3 (K0K — 

1)] 

0 > /3 � —0.75 L', = 
K[KO 

— 
i3(lKo)] Lm 

—0.75 > 3 L'm = KLm 

The procedure described above is a simplification of a more exact 
analysis which was derived by Home3'6. It has been verified by 
comparison with Home's analysis over the whole range of Class 1 

Universal Beam sections, and a typical comparison is shown in Fig. 3.24 
for a 533 x 210 x 82UB withf = 15 N/mm2 and p = 275 N/mm2. 

Table 3.2 is a design aid which can be used to simplify the 
above calculation. The above method can be used for values off. up to 
80 N/mm2 provided thatf does not exceed the axial stress that changes 
the section classification from plastic to compact. 

Evidently, there has to be an appreciable moment gradient before the 
Lm condition in clause 5.3.5 of BS 5950: Part I can be relaxed. In the 
important case of the rafter hinge in a portal frame, the bending 
moment diagram is nearly constant and no relaxation is possible. This is 
a further incentive to ensure that the rafter hinge is the last to form so 
that this region can be designed elastically and the restrictions of clause 
5.3.5 avoided. 

Further information on this important subject of the lateral stability 
of steel beams and columns can be found in a Steel Construction 



Further Considerations in Plastic Design 119 

L 140 

r 
120 

100 

80 

60 

40 

20 

0 
1.0 0.50 

Fig. 3.24 Comparison of exact315 and approximate3'6 restraint spacings. 

Institute publication on the subject3'7. This details the common cases of 
restraint but has very little to say on the important subject of members 
containing a plastic hinge. 

3.3.4 Member stability calculations for beams 

3.3.4.1 Beams supporting concrete floors 
Beams supporting concrete floors, particularly non-composite precast 
concrete units, are a common form of construction. Reference 3.17 

gives recommendations for checking whether or not the friction 
between the concrete units and the top flange of the steel beam is 
sufficient to provide restraint. The precast units need to be adequately 
grouted, ideally with a top screed, in order to ensure that they 
function as one effective restraining slab rather than as individual 
concrete units. 

For a simply supported beam of span L carrying an unfactored 
uniformly distributed load W, the beam may be designed as fully 
restrained if 

WL 
WIL> r-yf 

where r = restraint force coefficient (ratio of the required bracing 
force to the maximum compression flange force in the 
beam) 

From formulae 
of Ref 3.16 

128.4 

96.1 

122.7 

0 

\ 
90.6 

From proposed 
formulae 

0 —0.75 —1.0 
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Table 3.2 Spacing of torsional restraints according to Section 3.3.3. 

(1) p=275N/mm2 f=0N/mm2 

X Lm/ry /3m L'ri/ry 

/3 = 0.25 3 = 0 3 = —0.75 

20 68.4 0.514 
25 54.7 0.533 
30 45.6 0.551 
35 39.1 0.570 
40 34.2 0.588 
45 30.4 0.607 
50 27.4 0.625 

101.2 
86.2 
76.5 
73.7 
72.2 
71.5 
71.4 

132.2 
114.0 
102.1 
100.8 
100.3 
100.3 
100.7 

198.4 
166.9 
145.9 
140.7 
136.8 
133.8 
131.3 

(2) Py = 275 N/mm2 J = 15 N/mm2 

Lm/ry /3m L/r 
/3 = 0.25 /3 = 0 3 = —0.75 

20 58.4 0.439 
25 49.2 0.458 
30 42.2 0.476 
35 36.9 0.495 
40 32.7 0.513 
45 29.3 0.532 
50 26.6 0.550 

80.1 
71.4 
65.0 
63.3 
62.4 
62.0 
62.1 

108.9 
98.2 
90.2 
90.2 
90.5 
91.0 
91.7 

163.4 
143.8 
128.8 
125.9 
123.5 
121.4 
119.6 

(3) Py = 275 N/mm2 J. = 30 N/mm2 

X Lm/ry 13m L'm/ry 

/3 = 0.25 /3 = 0 3 = —0.75 

20 51.7 0.364 
25 45.0 0.383 
30 39.5 0.401 
35 35.0 0.420 
40 31.4 0.438 
45 28.4 0.457 
50 25.9 0.475 

64.7 
59.2 
54.8 
53.6 
53.0 
52.9 
53.1 

93.1 
86.1 
80.2 
81.0 
81.7 
82.5 
83.3 

139.7 
126.0 
114.6 
113.0 
111.4 
110.0 
108.6 
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Table 3.2 Spacing of torsional restraints according to Section 3.3.3 (continued). 

(4) p=355N/mm2 f=0N/mm2 

X Lm/ry /3m L/r 
/3 = 0.25 /3 = 0 /3 = —0.75 

20 53.0 0.544 79.7 102.4 153.7 
25 42.4 0.563 67.9 88.3 129.3 
30 35.3 0.581 60.3 79.1 113.0 
35 30.3 0.600 58.2 78.1 109.0 
40 26.5 0.618 57.0 77.7 106.0 
45 23.5 0.637 56.4 77.7 103.6 
50 21.2 0.655 56.3 78.0 101.7 

(5) p=355N/mm2 f= 15 N/mm2 

X Lm/ry 13m L'ri/ry 

/3 = 0.25 /3 = 0 /3 = —0.75 

20 47.9 0.484 68.0 89.4 134.1 
25 39.6 0.503 59.5 79.2 115.9 
30 33.7 0.521 53.6 71.9 102.7 
35 29.2 0.540 51.9 71.5 99.7 
40 25.8 0.558 50.9 71.4 97.3 
45 23.0 0.577 50.5 71.5 95.3 
50 20.8 0.595 50.4 71.8 93.7 

(6) p=355N/mm2 f=30N/mm2 

X Lm/ry /3rn L'r/ry 

/3 = 0.25 /3 = 0 /3 = —0.75 

20 44.0 0.424 58.5 79.2 118.9 
25 37.4 0.443 52.2 71.5 104.6 
30 32.3 0.461 47.5 65.5 93.5 
35 28.3 0.480 46.0 65.4 91.2 
40 25.1 0.498 45.2 65.4 89.2 
45 22.6 0.517 44.8 65.6 87.5 
50 20.5 0.535 44.7 65.9 86.0 
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= the coefficient of friction between concrete and steel 
= the partial safety factor for load 

D = the depth of the steel beam. 

From BS5950: Part 1, clause 4.3.2.1, r = 2.5% = 0.025. In a typical 
beam with the live load approximately equal to the dead load and with a 
span to depth ratio L/D = 25, this gives 

(1.4+ 1.6) 25 
2 

=0.12 

It is stated (Reference 3.17) that for an unpainted steel flange, t is in the 
order of 0.3 while for a painted flange it usually exceeds 0.10. The 

requirements for member stability are therefore usually satisfied by this 
form of construction. 

3.3.4.2 Stability of semi-continuous beams 

Figure 3.25 shows a semi-continuous beam with both sagging and 
hogging bending moment zones. Usually the hogging plastic hinge M1 
at the support is the first hinge to form and requires a torsional 

1 1 I 

Fig. 3.25 Semi-continuous beam. Free bending moment curve 2 is for partial 
(pattern) loading; L1 is the sagging moment zone; L2 is the hogging moment 
zone for symmetrical loading; L3 is the hogging moment zone for pattern 
loading. 
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restraint. This can be provided by the beam web stiffeners and the beam 
connection to the column cap plate. A moment connection to the 
column flange would not normally be recommended because this 
connection would have to be designed to provide a plastic hinge with 
rotation capacity, or else sufficient strength to ensure that the hinge 
formed solely in the beam. 

The sagging hinge M2 is normally the second plastic hinge to form 
and does not need a torsional restraint. The second hinge may well not 
have formed at the required ultimate limit state load because the choice 
of discrete steel sections usually ensures some spare capacity, albeit 
small. To take advantage of this the designer has to show that the 
sagging hinge is the last hinge to form. This is a simple operation using 
an elastic analysis. 

As discussed in Section 3.3.3 above, the checking of the stability of 
the hogging moment length L2 is not adequately covered in BS 5950 

because in this case the bending moment diagram profile is advanta- 
geously not constant. Another point to bear in mind is that hogging 
moment length increases considerably under pattern loading. A realistic 
pattern loading should therefore be assumed. 

The positions of the points of contraflexure shown in Fig. 3.25 are as 
follows: 

Full loading on both spans L2=O.1715L 
Pattern loading Dead/imposed = 1.0 L3 = 0.3675L 

(imposed on only one span) Dead/imposed = 0.5 L3 = 0.5635L 

For each of these point of contraflexure positions, the shape of the 
bending moment diagram is basically the same. There is a plastic hinge 
at one end and zero bending moment at the other end with a slightly 
curved distribution in between. Assuming a linear bending moment in 
between is only a little conservative and the method given in Section 
3.3.3 can be used with /3, the ratio of smallest end moment to the largest 
end moment, equal to 0 (see Fig. 3.22). 

A lateral restraint is required at a position adjacent to the point of 
contraflexure. With a beam supporting precast concrete units, this can 
be provided by providing small vertical steel plates welded to the top 
flange of the beam together with utilisation of the local continuity 
reinforcement tying the units together. These vertical plates spaced 
regularly along the beam provide a good Health and Safety feature in 
that they help in the positioning of the precast concrete units and reduce 
the risk of the units slipping off one end bearing. Special steel restraint 
members would require fire protection to match that of the steel floor 
beams. 
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Table 3.3 Maximum allowable distance between restraints with /3 = 0. 

Torsional index 
(Universal Beam 

section) 

p, = 275 N/mm2 Py = 355 N/mm2 

Lm from L'm from Lm from L'm from 
clause 5.3.5 Section 3.3.3 clause 5.3.5 Section 3.3.3 

20 68r 132r 53r 102r 
25 55r 114r 42r 88r 
30 46r l02r 35r 79r 
40 34r 100r 26r 78r 
50 27r l0lr 21r 78r 

The verification of the stability of lengths L2 and L3 is best done 
starting with the simple and fast-to-use formulae and progressing to the 
more complicated ones if required as listed below. 

(1) Clause 5.3.5 of BS 5950: Part 1 This disadvantageously takes 
= 1.0 

(2) Section 3.3.3 in this book with /3 = 0 

(3) Reference 3.16 for non-linear bending moments 
(refer to Table 3.2) 

A comparison between (1) and (2) is given (for zero axial stress f) in 
Table 3.3. 

3.3.4.3 Example 3.1: Beam with discrete load points and 
restraint positions 

Figure 3.26 shows a semi-continuous beam with point loads at the third 
points. Restraints can be provided at the load positions. 

The three lengths AB, BC and CD have very different bending 
moment profiles. Assuming that the beam is of steel Grade 43 and 
has a torsional index x of 30, then the following conclusions can be 
drawn. Length AB has a bending moment profile similar to that con- 

sidered in the previous example with the end moment ratio /3 equal to 0. 

Hence, from Table 3.2, L'm 102r. Length BC has virtually a fairly 
constant bending moment profile with an end moment ratio /3 = 0.666. 
Hence a study of Section 3.3.3 will quickly show that Lm cannot be 
increased above the limit in clause 5.3.5 so that Lm <45.6r. Length CD 
has a better bending moment profile than AB and has an end moment 
ratio /3 of —0.666. The use of Section 3.3.3 with f = 0 gives the 
following: 
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K=2.3+0.03 x 30= 3.2 

180 + 30 
K0= 300 

=0.7 

L<K[K 
/3(l—K0)1 

— ° 0.75 ]Lm3.2 [0.7 
+0.666(1 

0.7)] 

= l4lr 
This result could, of course, have been obtained more easily by linear 
interpolation from Table 3.2. 

This example again emphasises the point that members like BC which 
have plastic hinges in zones of near constant bending moment have 
severe stability problems. It is easy to show that the plastic hinge at B is 
the last one to form and therefore it is practical to select a steel section 
that ensures that at the required design load the beam is still elastic at 
position B. Then member BC (and AB) could be checked for elastic 
stability to BS 5950: Part 1, clause 4.3.7. 

3.3.5 Portal frame member stability 

In general, the member stability checks should be carried out using the 
final plastic bending moment diagram for the IDading combination used 

1IP I D 

At 
B C 

- U3jU3 U3 

L L 

Partial 
(pattern) 
loading 

Fig. 3.26 Semi-continuous beam with discrete point loads. 
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to determine the member sizes. Usually, the critical loading combina- 
tion is 1.4 x Dead+ 1.6 x Snow+Notional horizontal loads (0.5% of 
the factored Dead + Snow loads). It is normal practice to use this 
combination for member sizing and for positioning the restraints. The 

resulting design is then checked for adequacy under other loading 
combinations, if considered necessary. The notional horizontal loads 
usually have a less than I % effect on the required plastic moments of 
resistance and can be ignored in member sizing. 

The other loading combinations most likely to require consideration 
for member stability checks are: 

1 .0 Dead + 1 .4 (transverse wind + internal pressure) 

and 1.0 Dead + 1.4 (longitudinal wind + internal pressure) 

These two cases can sometimes put the rafter under net uplift for at least 
half of the portal span so that a long length of the unrestrained bottom 
flange of the rafter is under compression. However, in these two cases it 
is also very likely that the frame will be completely elastic at the required 
ultimate limit state loading. 

When using rigid plastic design by non-computer methods, it is usual 
to produce a plastic bending moment diagram for the frame at collapse. 
This will reflect the excess capacity due to the choice of discrete member 
sizes in some arbitrary way. Ideally, the last plastic hinge to form should 
be identified. With the semi-graphical methods used in Chapters 5 and 
7, the reactant bending moment diagram can then be adjusted so that 
the excess capacity is associated with the last hinge to form. 

With elastic-plastic analysis, using a computer program, it is usual to 
produce an elastic-plastic bending moment diagram for the precisely 
required loading at the ultimate limit state. Hence only a partial collapse 
mechanism is likely to exist and there are fewer plastic hinges requiring 
torsional restraint. This also usually results in smaller bending moments 
in the centre span portion of the rafter, thus further alleviating the 
member stability situation. 

It is important to realise that the elastic-plastic bending moment 
diagram at the design load is not an exactly scaled down version of the 
diagram that gives the full collapse mechanism in conjunction with the 
excess member capacity. 

The eaves plastic hinge can form either in the column or in the rafter 
adjacent to the toe of the eaves haunch. Although it is not stated in 
BS 5950, it is not recommended to optimise the design in order to 
achieve both hinges occurring simultaneously because this adversely 
affects the stability of the haunch. If the designer chooses to optimise in 
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this way and to use a haunch length that achieves these two hinges, then 
the stability of the eaves haunch requires very careful consideration. 

It is recommended that designers use the procedures described in 
Chapters 5 and 7 whereby the eaves hinge is located in the column 
below the haunch and the length of the haunch is chosen so that the toe 
of the haunch is completely elastic. This minimises the sometimes 
troublesome problems of stabilising the haunch and rafter. 

3.3.5.1 The point of contrqflexure as a position of restraint 
It is no longer satisfactory to automatically assume that a point of 
contraflexure is a virtual position of lateral restraint. Before this can be 
done, it is necessary that all of the purlin-rafter connections comply with 
the requirements of clause 5.5.3.5.2, namely: 

Li every length of purlin has at least two bolts in each purlin-rafter 
connection; and 

Li the depth of the purlin section is not less than 0.25 times the depth of 
the rafter. 

This is to ensure a notional adequate torsional stiffness at every purlin 
connection and to reflect the situation in the structural tests from which 
the stability requirements were derived. 

When the above criteria are not met then an effective lateral restraint 
to the bottom flange must be used if a position of restraint is to be 
assumed in the member stability calculations. 

It should be remembered that the position of the point of contra- 
flexure varies continuously as the frame changes from elastic behaviour 
through the formation of successive plastic hinges into a plastic collapse 
mechanism. Care should be taken to ensure that the position chosen, 
and the corresponding bending moment diagram, represent the worst 
design conditions for the member being considered. 

3.3.5.2 Restraints in portal frame construction 
Purlins and sheeting rails are assumed to provide lateral restraint to the 
flange to which they are connected. On their own, they do not provide 
either torsional restraint to the section or lateral restraint to the remote 
flange if this flange is in compression. 

The most usual way of achieving either of these forms of bracing is to 
use a knee brace (otherwise known as a fly brace) connected to a purlin 
or sheeting rail as shown in Fig. 3.27. Research318 indicates that each 
knee brace should be designed for a compression load equal to 2% of 
the compression flange yield load and should have a stiffness that is 
given by a slenderness ratio of at least 100. 
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Lap varies according to span 

Fig. 3.27 Typical knee brace. 

It should not be assumed that knee braces connected to cold- 
formed purlins or rails provide adequate restraint irrespective of the size 
of the restrained member. Large rafters or columns (in the order of 
686 x 254 UB) require substantial direct bracing systems. On the other 
hand, small rafters and columns (in the order of 254 x 146 UB), as an 
alternative to knee braces, probably only need full depth web stiffeners 

adjacent to the purlin-rafter connections (which should comply with 
clause 5.5.3.5.2 as described above). 

3.3.5.3 Procedures for checking member stability in portal frames 
An overview of the relevant clauses and formulae has been given in 
Section 3.3.1. This section outlines how these are usually applied to the 
members of portal frames. 

Torsional restraints are required at all plastic hinge locations except 
at the last hinge to form, provided that it can be clearly identified. 
Under uniform vertical loading of a single bay frame, hinges usually 
form in symmetrical pairs and this statement applies to the last pair to 
form. When an elastic-plastic analysis is available, it is not necessary to 
provide torsional restraint at any hinge which forms at a load above the 
factored design load. The advantages of identifying plastic hinges which 
are part of the collapse mechanism but which do not require torsional 
restraint cannot be overstressed. 

There are then three different regions of the frame which require 
checking and it is convenient to consider these one at a time. 

The apex region of the rafter contains a length of almost uniform 
bending moment and this is the most difficult distribution to stabilise. 
However, the most critical load condition places the outer flange in 

compression and this is laterally restrained by the purlins. The 

Purlin 

Single angle 

Rafter 
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requirements therefore depend critically on whether it has been possible 
to prove that this part of the frame is entirely elastic at the ultimate limit 
state. If this part of the rafter contains a plastic hinge, then the purlin 
spacing is limited to Lm in clause 5.3.5. If this part of the rafter is elastic, 
and in any event for parts of the rafter remote from the plastic hinge, 
then the standard requirements for elastic design given in Section 4.8.3 
of BS 5950 apply. The purlin spacing is then restricted to a value of LE 
satisfying this part of the Standard. 

In the haunch region of the rafter the purlins restrain the tension 
flange. If this region contains a plastic hinge, then the purlin spacing in 
the vicinity of the hinge is again limited by Lm but, according to clause 
5.5.3.5.2, knee braces or other braces to the inside flange are only 
required at a spacing given conservatively by L in this clause. Provided 
that the conditions described in Section 3.3.5.1 above are satisfied, the 
bottom flange can also be assumed to be restrained at the point of 
contraflexure. If this does not result in a satisfactory design, then 
Appendix G can be tried. 

If the advice given in this book has been followed, then the haunch 
region of the rafter will generally be elastic. In this case the maximum 
purlin spacing can be increased to that which results in a value of LE 
which satisfies Section 4.8.3 of BS 5950. The requirements for the 
spacing of restraints to the inside compression flange remain as either L 
according to clause 5.5.3.5.2 or a value which satisfies the requirements 
of Appendix G. 

Under the dominant load condition, the column will also usually be 
restrained at intervals along the tension flange by the sheeting rails. In a 
plastically designed frame, there will almost always be a plastic hinge 
below the haunch. This will, of course, require a torsional restraint. 
According to BS 5950, the distance to the next restraint should be Lm in 
clause 5.3.5. However, the bending moment profile is not constant and a 
better answer may be given by using L'm according to Section 3.3.3 of 
this book. 

Turning now to the stanchion region, strictly speaking, clause 5.5.3.5 
should only be applied to portal frame rafters but there seems to be 
no rational reason why it should not also be applied to stanchions 
restrained by sheeting rails. If this is accepted, then clause 5.5.3.5 states 
that the required restraints can either be torsional restraints or they can 
be tension flange restraints satisfying clause 4.8.3.3.1. In any case, a 
torsional restraint is, of course, required within a distance L, of the 
plastic hinge. As an alternative, if there are rails present, Appendix G 
provides a more detailed approach to the design of this part of the 
structure. 
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If the column is elastic at the ultimate limit state, and for the lengths 
which are remote from the plastic hinge, the procedure is again similar 
to that described above with the difference that the distance between 
restraints is not governed by Lm or L but rather by LE in section 4.8.3 
of BS 5950. 

3.3.6 The stability of members in multi-storey frames 

The stability of beams in multi-storey construction can be checked by 
the methods described in Section 3.3.4 of this book. Columns should be 
checked in accordance with clause 4.8.3 if they are shown to be elastic 
by the frame design requirements in BS 5950. Refer to Chapter 6 in this 
publication. 

Columns containing plastic hinges cannot be effectively checked 
because clause 5.3.5 is too conservative. Reference 3.15 is probably the 
best available method. It should be noted that the method described in 

Section 3.3.3 is also appropriate but only for Universal Beams. It cannot 
be used for multi-storey frames that have Universal Columns as 
stanchions. 
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Chapter 4 

Plastic Design of Beams 

4.1 General 

Many floor and roof beams support uniformly distributed dead and 
imposed loads. The design depends crucially on whether the beam is 
restrained or unrestrained. A restrained beam will have its compression 
flange restrained against lateral movement so that the section can 
develop its full plastic bending moment capacity. An unrestrained beam 
may be subject to lateral torsional buckling and therefore may not be 
able to develop its full plastic moment of resistance. 

Clause 4.2.2 of BS 5950: Part 1: 1990 defines the requirements for full 
lateral restraint such that lateral torsional buckling need not be 
considered as follows: 

'Full restraint exists if the frictional or positive connection of a floor or 
other construction to the compression flange of the member is capable 
of resisting a lateral force of not less than 2.5% of the maximum 
factored force in the compression flange of the member under factored 
loading. 
This load should be considered as distributed uniformly along the 
flange, provided that the dead load of the floor and the imposed load it 
supports together constitute the dominant loading on the beam. The 
floor construction should be capable of resisting this lateral force.' 

The requirements for a frictional connection between a beam and the 
floor that it supports have been considered in Section 3.3.4.1 of this 
book. It follows that, in general, a beam that continuously supports a 
floor or roof will be restrained. Conversely, all other types of bending 
member are likely to require checking for lateral stability. 

The plastic design of beams is straightforward using the procedures 
described in Chapter 2 together with consideration of member stability 
according to Chapter 3. This chapter will therefore concentrate on two 
examples which will draw together the above points and introduce some 
secondary considerations. 

132 
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From the point of view of practical design, continuous beams can be 
advantageously designed by combining the free bending moment 
diagrams of each individual span with a suitable reactant moment 
diagram to give a collapse mechanism in the most critical span. The 
collapse mechanism is partly under the control of the designer because 
variations in beam section sizes and splice positions will help to 
determine the critical span and the collapse mechanism. 

4.2 Example 4.1. Continuous beam of uniform section 

The continuous beam shown in Fig. 4.1 will be designed as one 
continuous section. It is unrestrained except at the load points. 

The point loads P at the ultimate limit state arise as follows: 

Dead load 
Imposed load 

Total design load 

= 100 (unfactored) x 1.4 
= 150 (unfactored) x 1.6 

= l4OkN 
= 240 kN 

=380kN 

Hence the free bending moment diagram shown in Fig. 4.2(a) can be 
drawn. 

For span AB, 

For span BC, 

4.2.1 Choice of section size 

= 380x 6 = 570 kNm 

= 380x 6 = ll4OkNm 

Once the free bending moment diagram has been drawn, the use of one 
continuous beam section means that the critical span can usually be 

; ; C 

Fig. 4.1 General arrangement of the continuous beam. 
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Fig. 4.2 Bending moment and shear force diagrams for continuous beam: 
(a) bending moment diagram (kNm); (b) shear force diagram (kN). 

found by inspection bearing in mind that the end spans are simply 
supported at one end and the reactant moment must reduce to zero at 
the two ends of the structure. Here, it is clear that the centre span BC is 
critical with plastic hinges at B and C and a long region of full plasticity 
between the loads. 

The reactant bending moment line can now be added to Fig. 4.2(a) for a 
member with a plastic moment of resistance given by M = 1140/2 = 
570 kNm. Assuming a steel design grade 43, then p, = 275 N/mm2 
(or less for thicker sections) and the required section plastic modulus 
S = 570/0.275 = 2073 cm3. Hence a suitable Universal Beam section is 
a 533 x 210 x 92UB with S = 2366 cm3. This is a Class 1 section in 
accordance with clause 3.5.2. 
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4.2.2 Effect of shear forces 

From the combined free and reactant bending moment diagrams in 
Fig. 4.2(a), the net bending moments are available and the correspond- 
ing reactions at A,B,C and D are statically determinate. The shear force 

diagram can therefore be derived as shown in Fig. 4.2(b). 
Clauses 4.2.5 and 4.2.6 of BS 5950: Part I define shear loads as either 

low shear loads or high shear loads. It is only the high shear loads that 
reduce the plastic moment of resistance of the beam. 

Clause 4.2.3 defines the shear load capacity P of the section where 

P = 0.6pDt 

and where D is the overall depth of the section 
t is the thickness of the web 

Values for P, are tabulated in Steelwork Design41 where, on page 139, for 
a 533 x 210 x 92UB, P = 897kN. 

An applied shear load F is classified as a low shear load if F 0.6P 
and here, 

0.6P = 0.6 x 897 = 538 kN 

It can be seen that this is not exceeded anywhere on the shear force 

diagram in Fig. 4.2(b) so that no reduction in the moment capacity of 
the beam section is necessary. 

4.2.3 Plastic hinge history 

It is neither usual nor necessary to determine the plastic hinge history 
but, if this can be done, it does give the advantage of checking the 

stability of the beam members at the minimum required ultimate limit 
state loading rather than at the usually higher collapse mechanism 

loading. 
In this example, member BC has a plastic hinge along the entire 

length between the loads and, as mentioned in Section 3.3 of Chapter 3, 
this creates a severe instability problem. However, if this hinge is the last 

hinge to form, or if it can be shown that it has not formed at the 
minimum required ultimate limit state loading, then the stability criteria 
are less severe. 

A simple elastic analysis carried out for the arbitrary load P = 100 kN 
gives the bending moment diagram shown in Fig. 4.3. The largest 
bending moment is at supports B and C and is 173.1 kNm. 
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Fig. 4.3 Elastic bending moment diagram (kNm) for P = 100 kN. 

Therefore the first plastic hinges form simultaneously at B and C. The 

plastic moment of resistance of the chosen section is 

M = pS = 0.275 x 2366 = 650.6 kNm 

a result which could also have been obtained from page 129 of 
Reference 4.1. It follows that the load at which the first hinge forms is 

= 100x650.6 = 375.9 kN 

If the loading is increased further, positions B and C behave as pins 
while retaining the fully plastic moment of the section. Beams AB, BC, 
and CD then act as though they were simply supported as far as any 
additional load is concerned and additional sagging moments are added 
to the potentially critical hinge positions under the loads. It can be seen 

that the total moment at mid-span of BC will reach the full plastic 
moment of the section before any additional plastic hinge forms in the 
outer spans AB and CD. Hence the next hinge results in a beam 
mechanism in span BC, as shown in Fig. 4.4. The load at which the 
second hinge forms is 

= 650.6 x 2 = KN 

The mid-span deflection of beam BC at the yield load P = 375.9 kN 

given by the elastic analysis is 27.7 mm. The deflection & at collapse is 

1st hinge 1st hinge 

Fig. 4.4 Collapse mechanism for continuous beam. 



4.2.4 Member stability 

Plastic Design of Beams 137 

0 10 20 30 40 50 60 

Central deflection (mm) 

Fig. 4.5 Load-deflection curve for continuous beam. 

found by adding to this value the deflection of the middle span acting as 
a simply supported beam under the additional load of 433.7 — 375.9 = 
57.8 kN, thus 

23 x 57.8 x (l.5L)3 = 27.7+ 
648E1 

23 x 57.8 x 9000 
=27.7+ =40.8mm 

648 x 205 x 5.533 x 108 

Hence the load deflection curve and plastic hinge history are as shown 
in Fig. 4.5. The bending moment at the design load of P = 380 kN, 
which will be used for the member stability checks, is shown in Fig. 4.6. 

4.2.4.1 Left-hand half of member AB 
This length of member remains elastic throughout and can be checked 
in accordance with clause 4.3.7. Under the load, 

380 x 6 650.6 
MAB = ______ — = 244.7 kNm 

P(kN) 433.7 

375.9 

500 

400 

300 

200 

100 

2nd hinge in 
span BC 

1st hinge 
at B and C 

40.8 27.7 



138 Plastic Design to BS 5950 

:: 

ABC_ 

Fig. 4.6 Bending moment diagram at the design load (kNm). 

From Table 18, for an end moment ratio 3 = 0, m = 0.57, so that 

M = mMAB = 0.57 x 244.7 = 139.5 kNm 

This must be less than Mb SXPb where Ph is from Table 11 and is 
based on ALT where 

ALT flUVA 

From Table 13, n = 1.0 and from Steelwork Design4' for a 533 x 
210 x 92UB, u=0.871. 

0.85 x 3000 
A = minor axis slenderness ratio = 

45 0 
= 56.7 

From Reference 4.1, x= 36.4 and hence A/x = 1.56 giving, from Table 
14, v=0.97 and hence 

ALT = 1.0 x 0.871 x 0.97 x 56.7 = 47.9 

The required value of the bending strength Ph now follows by entering 
Table 11 for p, = 275 N/mm2, giving Pb = 243 N/mm2. 

It follows that the buckling resistance moment Mb = 2366 x 0.243 = 
575.0 kNm which is greater than the equivalent uniform bending 
moment of 139.5 kNm and the member is stable. This same value of 
Mb = 575 kNm can also be obtained directly by linear interpolation of 
the table on page 129 of Reference 4.1. 

4.2.4.2 Right-hand half of member AB 
This member has a plastic hinge (the first to form) at end B and will 
therefore be checked in accordance with Section 3.3.3 of this book. 
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= —0.376 and the axial stressf = 0.0 

38r 38 x 45.0 
Lm = =1691mm 

2 2 0.5 f ( p) \ (X \ 36.4 
130 k275) 36) k\ 36 

13m =0.44+j—=O.44+=O.575 

K = 0.8 + 0.08x — _______ = 0.8 + 0.08 x 36.4 = 3.7 12 

180+x 180+36.4 
K0 = 

300 
= 

300 
= 0.721 

/ ,3(1—K0) LmKK0 075 Lm 

=3.712[0.721 _(0.3760.721)]1691 
= 5403mm 

As this is greater than the length of 3000mm between restraints, the 
member is stable. 

4.2.4.3 Left-hand portion of member BC 
This member is similar to the right-hand half of member AB and has a 
better 3 ratio. 

—(1140— 650.6) 0752 
650.6 

Therefore from Section 3.3.3, L = KLm 3.712 X 1691 = 6276 mm 
which is greater than 3000mm and the member is stable. 

4.2.4.4 Central portion of member BC 
In the presence of a complete collapse mechanism, this part of the 
member would have a plastic hinge along its complete length. From the 
checks carried out on other members, it is obvious that the stability of 
this member at collapse could not be justified and therefore there is an 
advantage to be gained by checking it at the minimum required design 
loading for the ultimate limit state. This takes advantage of the excess 

capacity due to the choice of a discrete size of Universal Beam and the 
fact that the first plastic hinges to form are elsewhere at supports B 

and C. 
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At the minimum required design loading, this part of the member 
has a constant bending moment along its complete length of 
1140—650.6 = 489.4 kNm and this can be checked in accordance 
with clause 4.3.7 of BS5950. From Table 18, for an end moment ratio 
/3 = 1.0, m = 1.0 and therefore mM = 489.4 kNm. 

From the calculations for member AB, Mb = Spb = 575 kNm which 
is greater than 489.4 kNm and therefore the central part of member BC 
is stable. 

4.2.5 Effect of settlement at a support 

Settlement at one or more supports affects the plastic hinge history but 
not the collapse load or the final collapse mechanism. Consider, as an 
illustration of this, the effect of settlement at support B on the hinge 
history of the continuous beam of Example 4.1. In the elastic range of 
loading, the deformation pattern shown in Fig. 4.7(a) and the 
corresponding bending moments shown in Fig. 4.7(b) are superimposed 
on the results of a conventional analysis without settlement. 

For the state of affairs shown in Fig. 4.7, it can be shown that 

M1 = 0.3ORL 

M2 = 0.48RL 

— 0.195RL 
El 

A 
(a) 

611 A41D 
15L L 

(b) 

Fig. 4.7 Settlement of support B: (a) deflected shape; (b) bending moment 
diagram. 

L 

M1 
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Fig. 4.8 Effect of settlement at B on the elastic bending moments (kNm). 

For the beam under consideration, 1=55330cm4, L = 6000mm and 
E=205000N/mm2 and it follows that for a settlement 6 = 10mm, 
R=26.9kN, M1=48.5kNm and M2=77.6kNm. 

Hence, in Fig. 4.8, the free and reactant bending moments are shown 
at the serviceability load of P = 250 kN for the beam without settlement 
and for 20 mm increments of 6. As the settlement at B increases, the 
bending moment at C increases. In order for a plastic hinge to occur at 
C at the serviceability limit (unfactored load) of P = 250 kN the 
settlement S is given by 

(650.6 — 432.7'\ 
6 

t\ 48.47 )10=45.Omm 

For higher values of settlement than this, the first plastic hinge can 
form at loads below the serviceability load of the structure. 

Pursuing the hinge history for this value of 6 by a series of elastic 
analyses as summarised in Fig. 4.9, the behaviour up to collapse can be 
traced. Further details of this analysis are given in Table 4.1. 

Comparing Table 4.1 with Fig. 4.5, it can be seen that the settlement 
causes a completely different plastic hinge history but the final collapse 
load and collapse mechanism are unchanged. 

4.3 Example 4.2. Non-uniform section beam 

The geometry and loading for this example will be exactly the same as 
were used for Example 4.1. However, the critical central region of span 
BC will be strengthened by flange plates resulting in a more economical 

750 
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(a) Case I. Elastic analysis with settlement until the first plastic hinge forms at C 

4 1 4 Hinge 4 

4f 

(b) Case 2. Elastic analysis with a pin at C until second hinge forms at B' 

4 __ 
Hinge 

(c) Case 3. Elastic analysis with pins at B' and C until final hinges form at B and C' 

(d) Case 4. Plastic collapse mechanism as before 

Fig. 4.9 Steps in following the hinge history after settlement at support B. 

section for the remainder of the beam. The beam and its design loading 
for the ultimate limit state are shown in Fig. 4.10. 

The free bending moment diagram is unchanged from Example 4.1 
and the design is started by adding the reactant moment diagram that 
achieves collapse mechanisms in the end spans as shown in Fig. 4.11. It 
can then be seen where the beam has to be strengthened in order to 
carry the bending moments which exceed the capacity of the section. 

From Fig. 4.11, a steel beam with a full plastic moment of 380 kNm is 

required and, if steel design Grade 43 is used, the required plastic 

Table 4.1 Plastic hinge history of continuous beam with settlement of B. 

Step LP P MB M'B M' Mc 

1 250.0 250.0 —84.0 477.1 288.2 —650.6 
2 115.7 

365.7 
—260.3 
—344.3 

173.5 
650.6 

260.3 
548.5 

0 
—650.6 

3 68.0 
433.7 

—306.3 
—650.6 

0 
650.6 

102.1 
650.6 

0 
—650.6 



380 kN 380 380 kN 

+ Bi 3 

B C D 

Fig. 4.11 Bending moment diagram (kNm) for collapse of the end spans. 

modulus is 380/0.275 = 1382cm3. Hence a suitable Universal Beam 
section is a 457 x 191 x 67 with S 1472 cm3. This is a Class 1 section 
in accordance with clause 3.5.2. The plastic moment of resistance = 
0.275 x 1472 = 404.8 kNm. 

The shear force diagram is shown in Fig. 4.12. 
From page 139 of Steelwork Design41, the shear load capacity of the 

chosen section is P = 636kN and for low shear load classification 

according to clause 4.2.5 the applied load F should be less than 
0.6P 0.6 x 636 = 381.6kN. This load is not exceeded anywhere in 
the shear force diagram and therefore there is no reduction in the beam 
moment capacity due to shear loads. 

From Fig. 4.11, the strengthened beam section requires a full plastic 
moment of 760 kNm and therefore the required plastic section modulus 
is 760/0.275 = 2764 cm3. 
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Fig. 4.10 Non-uniform continuous beam. 
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Fig. 4.12 Shear force diagram (kN) for non-uniform continuous beam. 

Flange plates are required to achieve S = 2764 cm3. A minimum 
width plate has to accommodate rolling and straightness tolerances and 
welds. It should be readily available and economic and should therefore 
be chosen from the standard range. Hence a width of 250 mm is 
selected. 

The minimum plate thickness has to achieve Class 1 to Table 7 of 
BS 5950 which means that b/T < 7.5 for outstand elements and <23 for 
internal elements respectively. Hence a thickness of 12mm is selected. 
The chosen flange plate arrangement is shown in Fig. 4.13. The b/T 
ratio of the internal element is 189.9/12 = 15.8. The outstand element is 
clearly not critical. 

1 250 

I 
1—_ 

x 1 91x67 

189.9 

Fig. 4.13 Flange plate. 
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253 

380 

12* 

453.6,j 

Fillet weld 
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The section properties of the strengthened section are as follows: 

S = 1472+2 x 25 x 1.2 x 23.28=1472+1396=2868cm3 

I = 29410 +2 x 25 x 1.2 x 23.282 = 29410+ 32517 = 61 927cm4 

The available section modulus of 2868 cm3 is greater than the required 
value of 2764 cm3 and therefore strength of the plated section is 
adequate. 

4.3.3 Flange plate curtailment position 

Figure 4.14 shows part of the preliminary bending moment diagram at 
collapse from which the flange plate curtailment position is determined. 

A plastic hinge is not desirable in the basic beam section at the 
curtailment position because it would require restraints that are not 
readily available. Hence the bending moment at that position will be 
limited to the yield moment of the section at the required design load of 
P=380kN. 

Me =pZ = 0.275 x 1297 = 356 kNm 

(1140—380—356) hence C = 
1140 

x 3.0 = 1.063m 

The flange plates have to extend past the theoretical curtailment 
position given by C and this extension length can be determined from 
the weld strength calculations. 

1140 

3m I I 
Fig. 4.14 Part of the bending moment diagram at collapse (kNm). 
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From Fig. 4.12, the relevant shear load in the beam is Q = 380 kN 

the weld shear load = 

380 x 250 x 12 x 227 = 
61927x104 

0.42 kN/mm = 0.21 kN/mm per weld 

A 6mm leg fillet weld has a capacity of 0.903kN/mm (page 245 of 
Reference 4.1) and is more than adequate. 

The load in the flange plate at the curtailment position is the load that 
the plate attracts from the bending moment of Me = 356 kNm. 

Thus the flange load = x plate area 

356x239x250x 
12—4l2kN 

61 927 x 10 

Based on two 6 mm fillet welds the required extension length 

412 
2 x 0.903 

= 228 mm 

Hence the total length that the flange plates must extend past the point 
loads in span BC is 1063 + 228 1291 mm. They can therefore 

conveniently be continued to the middle of the 3 m length. 

4.3.4 Plastic hinge history 

As in Example 4.1, the plastic hinge history is useful for reasons of 
member stability and therefore economy. Figure 4.15 shows the beam 
which must be analysed in order to determine the first plastic hinge to 
form. It is more complicated than the beam in Example 4.1 because it is 
necessary to take account of the non-uniform sections. 

For the basic beam Ii,, 29410cm4 and for the plated beam I =61 927 cm4. The value of the support moment M is relatively 
insensitive to the value of C, thus: 

C = 0.333L M = 0.243 P L 
0.4L 0.242 P L 
0.5L 0.241 P L 

If the plates are conveniently curtailed midway between the loads and 
the supports, as determined above, C = 0.5L and M = 0.24 1PL = 
0.241 x 250 x 6=361.5kNm under the unfactored loads. 



Fig. 4.15 Elastic analysis of plated beam. 
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The first plastic hinges form simultaneously at supports B and C at a 
load factor of 

Basic beam M 404.8 — 112 
M 361.5 

There are therefore no plastic hinges at the serviceability limit state. 
For subsequent loading, the plastic hinges at B and C behave like pins 

and the three spans are independent of each other. At the minimum 
ultimate limit state loading of P = 380 kN, no further plastic hinges have 
formed and the bending moment diagram is as shown in Fig. 4.16. It is 
this bending moment diagram which will be used for the member 
stability checks. 

PL 
2 

1500 (Actual length of flange plates) 

A Bt± C D 
0 

200 

400 

600 

800 

1000 

1200 

Fig. 4.16 Bending moment diagram (kNm) at ultimate limit state. 

1140 
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4.3.5 Member stability 

4.3.5.1 Left-hand half of member AR 
This length of member remains elastic throughout and can be checked 
in accordance with clause 4.3.7. Under the load, 

380 x 6 404.8 
MAB= 

—-—--—=367.6kNm 

From Table 18, for an end moment ratio /3 = 0, m = 0.57, so that 

M = mMAB = 0.57 x 367.6 = 209.6 kNm 

This must be less than Mb = Spb where Pb is from Table 11 and is 
based on ALT where 

ALT = nuv,\ 

From Table 13, n = 1.0 and from Steelwork Design4' for a 457 x 
191 x 67UB, u = 0.872. 

0.85 x 3000 
A = minor axis slenderness ratio = 

41 2 
= 61.9 

From Reference 4.1, x = 37.9 and hence A/x = 1.633 giving, from 
Table 14, v = 0.97 and hence 

ALT = 1.0 x 0.872 x 0.97 x 61.9 = 52.4 

The required value of the bending strength Pb now follows by entering 
Table 11 for p = 275 N/mm2 giving Pb = 232 N/mm2. 

It follows that the buckling resistance moment Mb = 1472 x 0.232 = 
341.5 kNm which is greater than the equivalent uniform bending 
moment of 209.6 kNm and the member is stable. 

This same value of Mb = 341.5 kNm can also be obtained directly by 
linear interpolation of the table on page 130 of Reference 4.1. 

4.3.5.2 Right-hand half of member AB 
This member has a plastic hinge (the first to form) at end B and will 
therefore be checked in accordance with Section 3.3.3 of this book. 

/3 = 367.6 = —0.908 and the axial stressf = 0.0 

38r 38 >< 41.2 
Lm = =1487mm f + (Py 2(x 2 (37.9 

130 k275) k36) 36 

13m = not relevant 
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K = 0.8 + 0.08x (x = 0.8 + 0.08 x 37.9 = 3.832 

K0 = not relevant 

L'm = KLm = 3.832 x 1487 = 5698mm 

As this is greater than the length of 3000mm between restraints, the 
member is stable. 

4.3.5.3 Left-hand portion of member BC 
This is a non-uniform member with a plastic hinge (the first to form) at 
end B. 

Clause 5.3.5 of BS 5950: Part 1 is conservative for uniform members 
and is even more conservative for non-uniform members because it 
specifies that the worst section properties should be used in the equation 
for Lm. 

A comparison with the calculations for the right-hand half of member 
AB is sufficient to indicate the nature of the problem that arises here. 
For a uniform member AB, Lm is only 1487 mm whereas 3000 mm is 
required. However, for AB with 3 at the most advantageous value of 
—0.908, L = 5698 mm. 

It is apparent that a decision based on engineering judgement has to 
be made in order to justify the stability of the left-hand part of BC and 
this would have to be agreed with the checking engineer. Various 
calculations might sufficiently indicate that the beam is stable. The 
options could be, for example: 

(1) The /3 ratio could be based on stresses, not bending moments, as 
shown in Fig. 4.17. In this case, the non-uniform member with a 
linear bending moment produces a non-linear stress distribution. 
Based on stresses, the 3 ratio is —256/275 = —0.93. 

The r of the plated section is 5.61 cm compared with 4.12cm for 
the basic Universal Beam. On the other hand the x value of the 
plated section is 38.1 (based on Appendix B.2.5 of BS5950) 
compared with 37.9 for the basic Universal Beam. However, 
accounting for the non-linear stress distribution along the length 
of the member is not covered in BS 5950 and, although it appears 
to give a sensible answer, the use of the above values has no 
rigorous justification. 

(2) Formulae from other codes or sources may indicate the beam 
member is stable. 
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(a) B (b) 

404.8 
275 

735.2 ....412 j56 
- 

4 0.5L=3000 

Fig. 4.17 Bending moments (kNm) and stresses (N/mm2) in member BC: (a) 
bending moment diagram (kNm); (b) stress diagram (N/mm2). 

(3) Intermediate restraints could be introduced. 
(4) The flange plates could be carried through to the support positions 

B and C. 

Solutions (3) or (4) are, of course, more readily justifiable. 

4.3.5.4 Central portion of member BC 
At the minimum required ultimate limit state loading of P = 380 kN this 
length of member has a constant bending moment along its length of 
735.2kNm (from Fig. 4.16). The plastic moment of resistance of the 
plated beam = 2868 x 0.275 = 788.7 kNm and, as the member 
does not contain a plastic hinge requiring rotational capacity, it can be 
checked in accordance with clause 4.3.7 of BS 5950. 

For a member under uniform bending moment, /3 = 1.0 and therefore 
m = 1.0 and n 1.0. From BS 5950, Appendix B.2.5, u = 0.9 14 and 
x = 38.1 

0.85x 3000 A 
A = = 45.5 and — = 1.20 

56.1 x 

It follows from Table 14 that v = 0.98 

ALT = nuvA = 1.0 x 0.914 x 0.98 x 45.5 = 40.3 

and from Table 12, for p = 275, Pb = 247.2 N/mm2 

.. M, = Spb = 2868 x 0.2472 = 709.0 kNm 

The available buckling resistance moment Mb is therefore only 96% 
of the required value of 735.2 kNm. The reduced ultimate limit state 
load P which is available from Mb = 709.0 kNm is given by 

709.0+404.8 i.e. P= 11118 x 2 = 371.3kN 
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Thus, the available capacity is only 97.7% of the required capacity of 
P = 380 kN. At this stage, the designer would reconsider the loading to 
see whether a 2.3% reduction could be justified. If a reconsideration of 
the required minimum loading does not achieve a suitable reduction, 
then the flange plates would have to be increased from 250 x 12 to 
250x 15. 

4.3.6 Effect of settlement 

The first plastic hinges occur at the supports B and C at 1.115 times the 
unfactored loads whereas with the uniform section this factor was 1.503. 
Hence the non-uniform section has less capacity for settlement before a 
plastic hinge forms at the unfactored loading. It is acceptable to have a 
plastic hinge occurring at less than the unfactored loading provided that 
the loading is predominantly static and rarely occurring as is usual in 

building structures. Furthermore, strictly speaking, the reduced stiffness 
caused by the hinge has to be taken into account in the calculation of 
deflections at the serviceability limit state. 

4.4 Alternative non-uniform section design for Example 4.2 

An alternative design is to have the 457 x 191 x 67 section only in the end 

spans AB and CD and to have a larger section in span BC. This would 
entail site bolted connections at B and C designed to enable a plastic 
hinge to form. It should be noted when designing such an arrangement 
that the bending moment will be the same on either side of the connection 
and that the plastic hinge will always tend to form in the weaker member. 

Site connections can be useful on a congested site. Alternatively, the 
connections could be full-strength welded connections made in the 
fabrication shop or even on site. The sizing of the larger beam is easily 
done on the basis of stability calculations because the centre part of 
member BC is the design criterion with a constant bending moment along 
its length of 735.2 kNm. The beam has to be justified to clause 4.3.7 of 
BS 5950 and this can be done quickly from page 139 of Reference 4.1, thus: 

Effective length = 0.85 x 3000 = 2500 mm and n = 1.0 

Mb > 735.2 kNm 

From the tables the lightest suitable section is a 610 x 229 x 113 UB 
with 

Mb = 807 — 0.05(807— 745) = 800 kNm 
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4.5 Comparison of designs (Table 4.2) 

Unless the beam depth or site congestion is critical the uniform section 
is likely to be the most economical solution. However, the fabrication 
shop and the site have to accommodate a beam 21 m long. 

Table 4.2 Comparison of designs. 

U ni form section Non-uniform sections 
Plated beam Different I beams 

Beam depth (mm) 533 478 454 and 608 

Beam weight (kg) 1932 1690 1821 

Additional cost factors Intermediate Full strength 
restraints, or connections at 
flange plates B and C 
9m long. 

Flange plate welds 

Additional Design and Drawing 
office time 

4.1 Steel Construction Institute. Steelwork Design: Guide to BS 5950: Part 1: 
1990. Volume 1 — Section properties and member capacities. 3rd ed. 

Reference 



Chapter 5 

Plastic Design of a Pitched Roof 
Portal Frame Building 

5.1 Introduction 

This chapter will illustrate some of the procedures described in the 
earlier chapters by giving an example of the design of the main frames of 
a complete portal frame building. The general arrangement of the 
building is shown in Fig. 5.1. The calculations cover the design of the 
primary structural members and the main connections. 

5.2 Design of the main frames 

The dimensions and loading of the main portal frames are shown in 
Fig. 5.2. They will be designed by plastic theory according to BS 5950: 
Part 1. 

Dimensions 
Span 22.5m 
Frame centres 6.0 m 
Height to eaves 4.5m 
Height to underside of haunch 3.9 m assumed at this stage 
Roof slope 6.0° 

Typical purlin spacing on slope l.6m assumed at this stage 
Typical purlin spacing in plan= l.6cos6° 1.591 m 

5.2.1 Downward loads (on plan area) 

Dead load Characteristic Load factor Ultimate 
Sheets (PVC coated steel) 0.072 
Insulation 

(30mm polyurethane foam) 0.0 10 
Steel liner tray 0.040 (continued on p. 156) 

153 
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CLADDING: PVC coated galvanised steel sheets; 

Cold-rolled 
eaves beam 

30mm rigid polyurethane foam insulation; 
PVC coated galvanised steel liner tray 

PART CROSS-SECTION 1-1 

11250 

1600 

2100 

Boo: ______ 

Fig. 5.1 General arrangement of portal frame building. 

11250 
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SECTION 3-3 

GABLE ELEVATION 4-4 

Fig. 5.1 Continued. 
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Gable posts 
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1.405 kN/m2 = 8.43 kN/m 
I I I I I I I I I I I I I I I I I I I I I Ii 

m 

Cold-rolled purlins 
Rafter self-weight 
Services 

Total dead load 

Live load (snow) 

Total vertical load 

Total load per frame 

0.026 
0.070 
0.100 

0.318 x 1.4 

0.600x 1.6 

0.918 

1.405 x 22.5 x 6.0 

= 0.445 kN/m2 
= 0.960 kN/m2 
= 1.405 kN/m2 
= 189.7 kN 

The notional horizontal loads to be combined with the vertical load case 
according to clause 2.4.2.3 of BS 5950: Part 1 are: 

0.005 x 189.72=0.474kN applied horizontally at each eave. 

Manchester area 
Topography factor 
Height = 5.68 m + purlins etc. 6 m, condition 3, class B 
Statistical factor 

= S1S2S3V= 45 x 1.0 x 0.668 x 1.0 = 30.06m/s 

q = 0.613 x 30.062 = 553 N/rn2 

Note: Wind is not usually a criterion in the design of low-rise portal 
frames. It is therefore usual to design the frames on the basis of 
vertical load only (with the notional horizontal loads — see 

below) and then to check that the frame is safe under wind 
conditions. 

Fig. 5.2 General arrangement of frame. 

5.2.2 Notional horizontal loads 

5.2.3 Wind load 

V= 45 rn/s 
SI = 1.0 

S2 = 0.668 

S3 = 1.0 
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5.2.4 Choice of the main frame members 

There are a number of methods available for the choice of Mr,, (for the 
stanchion) and Mpr (for the rafter), e.g., 

U Use computer-aided design. 
U Use the work equation method 

(I) with a preselected ratio of Mr to M5 (e.g. M=O.6M,); 
(2) to find a minimum weight design semi-graphically. 

U Use the approximate method for single-bay frames given in 
Appendix 5A. 

Here we use a fourth possibility, the semi-graphical method, which was 
described in Section 2.7 and which is based on the reasoning shown in 
Fig. 5.3. This method takes advantage of the fact that a pinned base 
portal frame is only one degree redundant and it is convenient to work 
with the single unknown H. 

Under vertical load only, the free bending moment diagram is the 
same as that for the rafter treated as a simply supported beam in plan. 
The reactant bending moment diagram has the magnitude Hy at any 
point where y is the height of that point above the base. Superimposing 
these two bending moment distributions on a single diagram, where the 
shape of the frame is 'unwrapped' for simplicity gives the distribution 
shown shaded in Fig. 5.4. 

The part of the frame strengthened by the haunch can be easily 
identified on the diagram. Plastic hinges will not form within the haunch 
and we can extend the length Lh to ensure that no plastic hinge forms at 
the rafter end of the haunch. It follows that plastic hinges can only form 
at the symmetrical positions indicated on the diagram. To choose M,r 
and we simply try different values of H until we obtain a reasonable 
fit with the available range of Universal Beam sections. For practical 

Fig. 5.3 Basis of the semi-graphical method. 

w_per_unit_length ___________________ IUI—uIIIIIIIIIIII1 I_1__1__I_IIIIIIIIuIII 

actual frame = 'free' 

H 

+ 'reactant' 
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Hh 

reasons, Mpr should not be allowed out of the following range and well- 

proportioned designs will usually be towards the middle of this range. 

<M <M 
For a symmetrical frame with symmetrical loading, it is only 

necessary to draw half of the above diagram. This is shown drawn to 
scale on graph paper in Fig. 5.5. The choice of sections proceeds as 
follows: 

Try, as stanchion, 406 x 140 x 46 UB with M = 244 kNm 

Note: (1) Sections must be chosen which are classified as Class (1) 
'plastic' according to BS 5950: Part 1, clause 3.5.2. 

(2) The choice is usually based on the lightest section with the 
required full plastic moment Me,. 

(3) The reduction of M1, due to axial thrust can usually be 
ignored in portal frames. 

With a plastic hinge just below the haunch, this gives: 

H= = 62.56kN 

The reactant bending moment at the eaves is then 

4.5H= 281.5 kNm 

and at the apex is 5.682H = 355.5 kNm 

h L/2 L/2 h 

wL2 
8 

Fig. 5.4 Bending moment diagram using the semi-graphical method. 



so that the reactant line can be drawn on Fig. 5.5 as shown. The 
maximum bending moment in the rafter scales approximately 181 kNm. 

We therefore choose, as rafter, 406 x 140 x 39 UB with M,r = 198 kNm. 

As the rafter section is a little greater than the minimum required, the 
actual load factor at collapse will be greater than unity. This is necessary 
to allow for second-order effects. The actual load factor at collapse can 
be estimated quite accurately by first plotting the actual rafter strength 
on Fig. 5.5 at the rafter hinge position as shown. This corresponds to a 
free bending moment diagram ordinate of about 548 kNm compared 
with the value of 531 kNm in the free bending moment diagram as 
drawn at unit load factor. It follows that the load factor against plastic 
collapse is about 548/53 1 = 1.03. 

The above choice of members has been carried out deliberately neg- 
lecting the influence of notional horizontal loads despite the fact that 
BS 5950: Part 1, clause 2.4.2.3 requires that they should be combined 
with the factored vertical loads. The advantage of neglecting these 
rather small additional loads is that the load case becomes symmetrical 
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Fig. 5.5 Bending moment diagram for the design of the frame shown in Fig. 5.2. 

Actual rafter strength' 

5.2.5 Influence of notional horizontal loads 
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and it is only necessary to consider half of the bending moment 
diagram. However, neglecting the requirements of a British Standard 
should not be done without justification! 

The notional horizontal forces are intended to take account of 
practical imperfections such as lack of verticality. However, lack of 
verticality only has a significant influence on the design of structures 
which are sensitive to second-order sway effects. It has already been 
argued in this publication that typical portal frames are not particularly 
sensitive to such sway effects but are much more influenced by second- 
order effects in the rafters. It would be more logical, therefore, to 
require consideration of notional forces which more directly aggravate 
the bending moments in the rafters. 

This is the theoretical argument. The pragmatic argument is that the 
notional horizontal forces have little effect on the design. Figure 5.6 
shows the design forces for the vertical load case taking into account the 
notional horizontal loads. These have their most significant effect on the 
eaves bending moment which now has free moment values of 4.27 kNm 
at B and zero at E whereas both were zero under vertical load alone. 
The free bending moment at the apex C increases from 533.5 to 
535.6 kNm. In percentage terms, these changes are very small and their 
effect on the design is minimal. 

The difference caused by the notional horizontal loads is too small to 
show on a figure such as Fig. 5.5. In terms of member selection, if the 
stanchion below the haunch is considered first, the notional horizontal 
loads are favourable at B and therefore consideration of the moments at 
D gives rise to precisely the same reactant bending moment diagram as 
before. The maximum bending moment in the rafter increases from 181 

to 183 kNm; less than I %. It is not considered that these effects are 
sufficiently significant to influence the design. 

It is therefore suggested that, provided designers carry out an 
approximate check to demonstrate that the notional horizontal loads 

8.43 kN/m L' • • I I I I I I I I I F 1 

1.182m 

0.474 kN 

4.5 m 

94.65 kNf.- 
- 

Fig. 5.6 Vertical load case with notional horizontal loads. 

B 

4.27 kNm 535.6 kNm 

11.25 m I 11.25 m 
95.03 kN 
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have an insignificant effect on the bending moments, it is not necessary 
to formally include them in the design calculations for low rise portal 
frames. 

5.3 Check for second-order effects 

Strictly speaking, second-order effects should be checked according to 
BS 5950: Part 1, clause 5.5.3.2 'sway stability'. However, this has been 
shown to be unsafe and the check will be carried out using the method 

given in Section 3.2. 

Using Fig. 5.7 and the formula given in Section 3.2.3, the procedure is 
as follows: 

At the ultimate load, 

P = 94.84kN and H = 62.56kN 

Pr = HcosO+Psin9= 72.l3kN 

so that 

I = 156.7 x 106 mm4 (406 x 140 x 46UB) 

Jr = 124.1 x 106 mm4 (406 x 140 x 39UB) 

Lr = 11.2SsecO= 11.312m 

R — — 156.7 x 106 x 11.3123 174 — 
Ih 

— 
124.1 x 106 x 4.5 

— 

Fig. 5.7 Verification of sway stability. 

Ir 

H 

PC 
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The elastic critical load Acr is then given by 

3EIr 
Acr = ________________________ 

Lr [(i +)Pch+O.3PrLr] 
3 x 205 x 125.7 x 106 

113l2[(1+4)x94.84x450O+O.3x72.13x 11312] 
= 8.10 

The required load factor for plastic collapse (� 1.0) taking account of 
frame instability is 

A 
9ACr 

(4.6 < Ar < 10) = 1.027 

As the actual value of A1, is 1.03, the frame is safe with respect to second- 
order effects. 

5.4 Length of haunch 

The haunch should be sufficiently long to ensure that there is no plastic 
hinge at its rafter end. For this to be the case, the bending moment at 
the end of the haunch should be not greater than 0.87M = 
0.87 x 198 = 172.3 kNm. Scaling off the bending moment diagram gives 
a minimum haunch length of 1.35 m. 

Note: The factor of 0.87 arises from the consideration that the shape 
factor of a Universal Beam is approximately 1.15. If the rafter is 
to remain elastic, the limiting bending moment is M,r/1.15 = 
O.87Mpr. 

5.5 Elastic-plastic computer analysis 

This chapter is based on manual analysis. However, if an elastic-plastic 
computer analysis is available, it opens up some useful options when 
dealing with member stability. Such an analysis is given in Appendix 5B. 
This confirms the frame design that has been achieved so far. It may 
also be noted that it demonstrates that the last plastic hinge forms in the 
rafter at a load factor greater than unity and that there are no rafter 
hinges at the design loads. If this is known to the designer, it is not 
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necessary to stabilise the rafter hinges for plastic rotation according to 
clause 5.3.5 of BS 5950: Part 1. Useful savings can then follow. 

A single-bay frame, such as is being considered here, is only one 

degree redundant and therefore requires only two plastic hinges for 

complete collapse, one below the eaves haunch and one near the apex. In 
this case, the first hinge to form can be identified by an elastic analysis 
and the other hinge must therefore be the last. 

It may be thought that an elastic analysis would be required in any 
case in order to determine the deflections. This is so as the designer 
needs this information even though BS 5950: Part 1, clause 2.5.1, and 

particularly Table 5, specifically excludes pitched roof portal frames 

from any deflection limitations. 

5.6 Bracing of portal frame rafters 

The outer flange of a portal frame is braced at intervals by the purlins 
and sheeting rails. Within the length of the rafter, the bending moment 

changes sign so that near the apex it is the compression flange which is 
restrained. Less helpfully, in the vicinity of the eaves it is the tension 

flange which is restrained. Sophisticated methods have been included in 

BS 5950: Part 1: Appendix G in order to take account of this periodic 
restraint to the tension flange. However, these are not easy to apply 
without the help of a computer and here we will confine ourselves to the 
simpler methods given in section 5.3 of the Standard. 

Purlins provide positional restraint to the outer flange but not torsional 
restraint to the complete section. Where such torsional restraint is 

required, or where the purlin is attached to the tension flange and 

Fig. 5.8 Typical fly brace. 

Lap varies according to span 

r Purlin 

Single angle 

Rafter —I 
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compression flange restraint is required, it is customary to provide 'fly 
braces', otherwise known as 'knee braces' as shown in Fig. 5.8. These 
important members are discussed in more detail in Section 3.3.5.3 of this 
book. 

It is important to appreciate that a fly brace is only effective if the sizes 
of the frames and purlins are in proportion. In the authors' experience, 
this is not always the case. Thus a small purlin of say 125 mm depth can 
be used to stabilise a 356mm deep rafter. However, it is no use at all to 
stabilise a 914 mm Universal Beam. Indeed, for large span frames which 
use hot-rolled sections at the heavier end of the available range, fly 
braces to cold-formed purlins are not usually adequate and a separate 
bracing system (usually using tubular members) may be required. 

Another misconception that arises from time to time concerns the 
provision of heavy eaves beams as shown in Fig. 5.9. Some designers 
provide these as a matter of course but they serve no useful purpose. A 
light gauge steel eaves beam which supports the gutter and the edge of 
the roof sheeting as shown in Fig. 5.1 is all that is required. 

A final point to note here is that, provided certain conditions are met, 
clause 5.5.3.5.2 allows a virtual lateral restraint to the bottom flange to 
be assumed at the point of contraflexure. 

5.6.1 Rafter stability based on manual analysis 

Ensuring the stability of the upper region of the rafter in the vicinity of 
the plastic hinge is one of the more troublesome aspects of the design of 
portal frames based on plastic theory. This is because: 

Fig. 5.9 Heavy eaves beams are not required. 
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Li The plastic hinges in the rafters must be provided with torsional 
restraints both at the hinge position and within a specified distance 

adjacent to it. 
Li The presence of a plastic hinge means that the rafter must be 

designed to carry the full plastic moment of the cross-section. It is 
not possible to de-rate the rafter to a lower bending moment unless it 
can be demonstrated that no rafter plastic hinge is present at the 

required design load. 
Li The bending moment diagram in the vicinity of the hinge is almost 

uniform. This means that in calculations for lateral torsional 

buckling the factors m and n (see BS 5950: clause 4.3.7) are both 

equal to unity which is the worst possible condition. 

In interpreting the above points, the crucial factor is that the design 

bending moment for rafter stability must include a plastic hinge in the 

upper region of the rafter unless the designer can prove that it is not 
there. Simple plastic theory offers no such proof. The bending moment 
for rafter design is therefore slightly different from that shown in 

Fig. 5.5 and the requirement is shown in Fig. 5.10 where the reactant 
line is drawn with the same free bending moment diagram as before but 
with the full plastic moment of the rafter (M,r = 198 kNm) at the rafter 

Bending moment (kNm) 

Fig. 5.10 Bending moment diagram for rafter stability. 

C A 
0 
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hinge position. This second reactant line would normally be drawn on 
the original diagram. It is shown on a separate diagram here for clarity. 

The required reactant line is simply drawn as follows. At the plastic 
hinge position, the free bending moment is 531 kNm and therefore the 
required ordinate of the reactant line is 531 — 198 = 333 kNm. The 

height of the rafter at this point is 4.5 + 10.5 tan 6° = 5.60 m so that the 
horizontal thrust associated with this bending moment distribution is 

given by 

5.6OHr = 333 kNm 

i.e. Hr 59.46kN 

This allows the reactant line to be drawn with an eaves ordinate of 
4.5Hr267.6kNm and an apex ordinate of5.682Hr=337.8kNm. This 
diagram will be required to check other aspects of rafter stability once 
the purlin positions have been determined. 

In general, the spacing of purlins in the vicinity of the rafter hinges 
should be determined using BS 5950: clause 5.3.5. This requires that the 
maximum distance Lm from the torsional restraint at the plastic hinge to 
an adjacent restraint should not exceed 

38r 
Lm 

2 21 L (Py\[X\ 2 

130 275) 36) 
where J. = the average compressive stress due to axial load (N/mm2) 

= the design strength (N/mm2) r = radius of gyration about the minor axis (mm) 
x = torsional index of the rafter section 

Pr 72.13 X iø 2 Here f = = 
4920 

= 14.66 N/mm 

Ar = 49.2 cm2 

r = 28.9 mm section properties of 
x=47.6 406 x 140 x 39UB 

giving Lm = 805 mm. 

This means that purlins with fly braces should be provided at the 
plastic hinge position and within a maximum distance of 805 mm 

adjacent to it. This is quite an onerous requirement and some designers 
make strenuous efforts to improve upon it. 
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5.6.2 An important improvement when the rafter hinge is the last to form 

When it has been shown, by computer analysis or otherwise, that there 
is no plastic hinge in the rafter at the design load, it is advantageous to 
design the rafter using the actual bending moment distribution at the 
design load. This will usually allow the rafter to be designed to a lower 
bending moment than M,r with a consequent relaxation of the 
requirements of BS 5950: section 4. 

Here, the required bending moment distribution is the one shown in 
Fig. 5.5 where the reduced value of the maximum rafter bending 
moment is 181 kNm. Noting that the plastic section modulus of the 
rafter is equal to 718 cm3, the corresponding design stress is 

= 252 M/mm2 

Reading down the third column of Table 11 of BS 5950: Part 1, or 
more simply using Fig. 5.11 which is plotted from Table 11, this is 
achieved at a value of ALT = 44.1 and therefore, for stability, 

LE 44.1r nuv-—<44.1 or LE< r nuv 

Inserting the values appropriate to a 406 x 140 x 39 UB rafter, namely 

n = 1.0 (almost uniform bending moment) 
u = 0.859 (tabulated buckling parameter) 
v = 1.0 (conservative: a slightly better value may be obtained 

using Table 14 with N=0.5) r = 28.9mm 

gives the limiting value of the purlin spacing as: 

Lm = 1484mm 

Obviously, when this approach is to be used, it may be advantageous 
not to be too ambitious when pruning the frame members to the 
minimum in order to achieve greater flexibility with the purlin spacing 
in this critical region. It may be noted that the more sophisticated 
computer-aided design packages on the market use the above approach. 
They carry out an elastic-plastic analysis to failure, noting the bending 
moment diagram at the design load and the plastic hinge history, and 
use these as the basis for member design. Thus they achieve the 
maximum economy with regard to the requirements of member 
stability. 
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Fig. 5.11 Bending stresses as a function of slenderness from BS 5950, Part 1, 
Table 11. 

5.6.3 Layout of purlins along the rafter 

Having completed the stability checks for the upper part of the rafter, it 
is now necessary to lay out the purlin positions along the rafter. In 
doing this, the aim should be to minimise the number of purlins within 
the limitation of the spanning capability of the sheeting while arriving at 
a sensible arrangement at the eaves. Here, we will ignore the fact that we 
have used the results of an elastic-plastic computer analysis to justify a 
purlin spacing of 1484 mm and restrict ourselves to the maximum 
spacing of 805 mm justified by manual analysis. It may be noted here 
that, strictly speaking, the bending moment diagram is a series of 
straight lines between the purlin points rather than the parabola that we 
have been using for convenience up to this point. This means that, as we 

30 40 50 
ALT 
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move the purlins about on the rafter, the plastic hinge position will 
follow one of the purlins. Here, the shape of the bending moment 
diagram indicates that the plastic hinge will form at the first purlin 
below the apex purlin. We should also note that the bending moment 
diagram is almost uniform near the apex and it is therefore advisable to 
stabilise the apex purlin as well as the first purlin from the apex. 

A suitable purlin layout is then shown in Fig. 5.12. 

Note: It is true that the last plastic hinge generally forms near the ridge 
and that it is industry practice not to stabilise purlins in this 

region because designers assume that the last hinge always 
forms there. To the best of the authors' knowledge, this has 
never been proved and therefore this book demonstrates what is 
considered to be current good practice unless the designer takes 
the trouble to confirm the location of the last hinge to form. 
Purlin stays may also be required in this region to cater for wind 
uplift. 

The bending moments at the purlin positions near the apex can now be 
scaled off the graph or evaluated using 

M Hr(4.5+xtanO)+x(22.5x) 
with Hr59.46kN 

This gives the following values: 

Purlin number 

Fig. 5.12 Purlin layout to satisfy rafter stability. 

6 x= 7.27m M=153.7kNm 
7 x= 8.86m M=186.5kNm 
8 x= 9.66m M=194.9kNm 
9 x=1O.45m M=197.9kNm 

10 x=1l.25m M=195.6kNm 

312 

1 

0 = 60 Stay Stay 
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At this point, the stability of each segment of the upper region of the 
rafter should be checked using section 4 of BS 5950. Here, in view of the 
preceding calculations, it is sufficient to verify that, when the purlin 
spacing has increased to 1.6 m between purlins 6 and 7, the bending 
moment has reduced sufficiently for this segment to be stable. Thus: 

= = 0.824 

m = 0.910 (Table 18) 

.. equivalent uniform moment mM = 0.910 x 186.5 = 169.7 kNm. 

Therefore, from tables of buckling resistance moment with n = 1, or from 
section 4 of BS 5950, this segment is stable (permissible LE = 1.74 m). 

5.7 Stability of the haunch region 

The next check to be made concerns the stability of the section of the 
haunched rafter between the eaves and the point of contraflexure. In 
this region, the purlins provide intermittent restraint to the tension 

flange but the compression flange is only restrained where stays are 

provided. However, clause 5.5.3.5.2 allows us to also assume an effective 

lateral restraint to the compression flange at the point of contraflexure 
(see Section 3.3.5.2 of this book). 

The general arrangement of the haunch region is shown in Fig. 5.13. 

A stay at purlin number 2 is inevitable. Also inevitable is a stayed 
sheeting rail below the haunch in order to stabilise the plastic hinge in 

Stayed 
rail 

Fig. 5.13 Stability of the haunch region. 
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the stanchion at this position. This stayed rail will also serve to stabilise 
the inside of the haunch. 

The requirements for the stability of this region are again given in 
clause 5.5.3.5.2 of BS5950: Part 1. Figure 10 of the Standard shows the 
typical situations covered by this clause. There are two requirements, 
the first of which is that the length L5 between restraints to the 
compression flange should not exceed 

K1r x L = for Grade 43 steel 
(72x2 — I 0') 

where, here, the ratio of the depth of the haunch to the depth of the 
rafter may be assumed to be 2, giving K1 = 495, so that 

495 x 28.9 x 47.6 L = = 1740mm 
(72 x 47.62 — I0) 

which is satisfactory. 
In addition, this region must be checked according to section 4 with 

LE equal to the spacing of the tension flange restraints. For this 
calculation, the critical bending moment diagram is the original one 
shown in Fig. 5.5 with a plastic hinge in the column and H= 62.56 kN. 
This gives the following bending moments at the critical locations: 

Purlin number I x = 0.20 m (face of column) M = —264.0 kNm 
Purlin number 2 x=0.91 m M= —204.7 kNm 
Purlin number 3 x=2.50m M= —87.2 kNm 

/3 = ______ = 0.775 

m = 0.886 (Table 18) 

.. equivalent uniform moment mM = 0.886 x 264.0 
= 234.0 kNm 

In order to investigate whether this moment is acceptable, we need first 
to consider the section properties of the haunch. 

5.7.1 Section properties of the haunch 

The section properties of the haunch are not tabulated and must be 
calculated from first principles. Before we can do this, it is necessary to 
define the geometry of the haunch and this is done in Fig. 5.14. 
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Fig. 5.14 Geometry of the haunch. 

The middle flange of the haunch has little effect on the bending 
properties and, for simplicity, it can be ignored and the section assumed 
to be made up of three plates. However, the middle flange does have a 
beneficial effect on the minor axis radius of gyration and it should be 
included in the calculation of this property, even if it is omitted from the 
remainder of the calculation. Here, in order to demonstrate the 

procedure, all of the section properties will be calculated for the 
complete section shown on the right-hand side of Fig. 5.14. 

The haunch will be fabricated from an offcut from the rafter section, 

namely a 406 x 140 x 39 UB. For maximum economy, the full avail- 
able depth is utilised and this defines the dimension C in Fig. 5.14 as the 
clear distance between the flanges, namely 397.3 — 2 x 8.6 = 380.1 mm. 
The length of the haunch from the column centre line was calculated 
in Section 5.4 as 1350mm. Deducting half the depth of the column 
and the thickness of the end plate gives the plan length L as 
1350 — 201 — 20 = 1129mm. The remaining dimensions in Fig. 5.14 
are then simply a matter of geometry. Thus 

D 397.3 
=399.49mm cosa cos6 

B = 141.8 I = 8.6 

T 
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/380.1 =tan )=tan ll35.2) 
19.56° 

y=a+/3=6+ 19.56=25.56° 

(380.1 + 8.6) =430.87mm 
cos 'y 

M = 
(g 

— tan c) tan/3 = (1135.2— 198.65 tan 6°) tan 19.56° 

= 395.96 mm 

C N=—= =9.13mm 
cos,@ cos 19.56 

Bearing in mind that Appendix B3 of the Standard requires that the 
bending strength Pb is determined using the properties of the section at 
the point of maximum moment, the required properties are determined 
on the normal to the centre line of the rafter through the point Z. 

For elastic bending about the major axis, 

A = 4920 + 395.96 x 6.3 + 141.8 x 9.13 

= 4920 + 2494.6 + 1294.6 = 8709.2 mm2 

AYG = 4920 
(--)+2494.6 

x 595.28 + 1294.6 x 797.83 

= 3494 900mm3 

3494900 
YG = 

8709.2 
= 401.3mm 

For elastic bending about the minor axis, 

I = 12410+49.2 x 20.2652 

+ 0.63 x39.5963 + 24.946 x 19.3982 

+ 
141.8 

12 
+ 12.942 x 39.6522 

= 12410+20205.0+3259.2+9386.7+9.0+20348.5 

= 65 618.4cm4 
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I = [2 x 8.6 x 141.8+9.13 x 141.8 

+ (380.1 + 395.96)6.3] 

= 6272 200 mm4 

/1 /6 272 200 
8709.2 

=26.84mm 

and for plastic bending about the major axis, 

= 4354.6mm 

(4920 — 4354.6) = 
2 x 141.8 

= 395.3 mm 

... S = 49.2(39.53 — 19.865) + 24.946(0.20 — 19.798) 

+ 12.942(0.20 + 39.596 + 0.456) 

= 1987.4cm3 

The design moment Mb then follows conservatively using u = v = 1: 

LE 710 
ALT = nuv = 1.0 x 1.0 x 1.0 x = 26.4 r 26.84 

Pb = 275 N/mm2 (Table 11) 

:. Mb = 0.275 x 1987 = 546 kNm 

As this is greater than the equivalent uniform moment mM = 
234.0 kNm, the first segment of the rafter is safe. 

Note: Provided that the individual components making up the haunch 
have been chosen to be compact to clause 3.5.4 of BS 5950, it is 
not necessary to check the full depth of the web with regard to 

section classification. The middle flange of the haunch acts as a 
web stiffener and divides the web into two parts so that local 

buckling over the full depth of the web is not possible. 

Unless purlin number 3 is stayed, the second segment of the rafter 
extends from purlin number 2 to the point of contraflexure, a distance 
of 3.04 m. Here, the section is uniform so that, in the calculation of L5, 
K1 = 620. This gives: 

620 x 28.9 x 47.6 L= =2180mm 
(72 x 47.62 — 10) 
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It follows that a stay is also required at purlin number 3. It is then 
obvious that the rafter between purlins 2 and 3 is stable so that this 
completes the verification of rafter stability. 

5.8 Stanchion stability 

The first requirement for stanchion stability has already been discussed 
in connection with Fig. 5.13. There is a plastic hinge in the stanchion 
below the haunch and this requires a torsional restraint. This is 
provided in the form of a sheeting rail and fly brace. 

It is also necessary to provide a second torsional restraint within a 
specified distance of this plastic hinge. As in the case of the rafter hinge, 
this distance may be calculated conservatively as Lm in clause 5.3.5. 
However, here there is a bending moment gradient so the more 
favourable method given in Section 3.3.3 is also applicable. Never- 
theless, the BS 5950 method suffices and is used to demonstrate that the 
stanchion is stable: 

38r 
Lm — ________________ 

/ / \2/ \2 I L (Py\(X 2 

k13O k\275) 36 
94.84 x i03 2 where = 

5900 
= 16.07 N/mm 

= 275 N/mm2 

x = 38.8 (406 x 140 x 46 UB) 

r = 30.3 mm 

38.8 x 30.3 
i.e. Lm = = 1015 mm 

/16.07 (38.8\2\\ 

An additional braced rail is therefore required 1.Om below the bottom 
of the haunch. 

It is now necessary to check the 2.9 m length of stanchion below this 
second rail. As the bending moment diagram is linear, the bending 
moment at the position of the rail is 244.0 x 2.9/3.9 = 181.4 kNm. 

= 0 (pinned at base) 

m = 0.57 (Table 18) 
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equivalent uniform moment = mM = 0.57 x 181.4 = 103.4 kNm 

2900 
ALT = nuvA = 1.0 x 0.87 x 1.0 x = 83.3 

.. Pb = 157.7 N/mm2 (Table 11) 

.. M,, = Sxpb = 889 x 157.7 x i0 = 140.1 kNm 

Pc = 148 N/mm2 
(Table 

27(b) with A = 2900 = 
957) 

Therefore, the overall buckling check to clause 4.8.3.2 gives 

F mM 94.84 103.408 
Agpc 

+ 
Mb 

— 
5900 X 0.148 

+ 
140.1 

Therefore the lower section of the stanchion is satisfactory. 
Having chosen the member sizes for the frame and verified their 

stability, we now turn our attention to the design of the connections. 
The procedure for connection design which follows is both simple and 
conventional. A more rigorous approach is given in Reference 5.1. 

5.9 Design of the eaves connection 

A flush end-plate connection will be used with the tentative design 
shown in Fig. 5.15. The following details in this design require to be 
checked: 

Capacity of the bolt group to resist moment (5.9.1) 

Capacity of the bolt group to resist shear (5.9.2) 
Shear capacity of the column web (5.9.3) 
Strength of the end-plate in bending (5.9.4) 
Capacity of the flange of the stanchion to resist tensile forces (5.9.5) 

Bearing and buckling of the stanchion web in compression (5.9.6) 

Strength of the welds connecting the haunch to the end-plate (5.9.7) 

Capacity of the web of the stanchion to resist tensile forces (5.9.8) 

Capacity of the web of the rafter to resist tensile forces (5.9.8) 

The design bending moment is the bending moment at the face of the 
column which has already been determined. The design shear force is 
half of the total vertical load. The bolts are M20 grade 8.8 bolts in 

clearance holes. 
It should be noted that, for frames of larger span with deeper 

sections, the alternative connection design with an extended end-plate, 
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Fig. 5.15 Eaves connection. 
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as shown in Fig. 5.16, may be advantageous. However, this extended 
end-plate cannot be used in a number of frequently occurring situations 
such as when boundary wall gutters or curved eaves sheets are used. 

5.9.1 Capacity of the tensile bolt group 

It is assumed that the centre of rotation of the bolt group is at the centre 
of the compression flange. It is assumed that the top two rows of bolts 
reach their design strength and that other rows of bolts reach a reduced 
strength based on a linear strain distribution. 

All shear is transmitted through the bottom row of bolts of the 
compression flange. 

The tensile capacity of a single bolt = 110 kN 

.. moment capacity of connection=2 x 110 (0.7661 + 0.6761) 

= 317.3 kNm 

Therefore the tensile bolt group is satisfactory. 

60L 
904 

399.5 

60t 

rafter 
section 

406 x 140 x 46 UB 

1350 I 
I 
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Full bolt strength 

IJN 
Fig. 5.16 Typical extended end plate connection. 

When there are more than two rows of tension bolts, as shown in 
Fig. 5.16, it is common practice to assume that oniy the rows of bolts 
within the top 10% of the lever arm reach their full design strength. The 
other rows of bolts are assumed to reach a reduced strength based on a 
linear strain distribution extending from zero at the centre of rotation to 
full strength at 90% of the lever arm. 

5.9.2 Capacity of the shear bolt group 

Capacity of two M20 grade 8.8 bolts in single shear (tensile area A = 
245 mm2) 

=2 x 245 x 0.375= 184kN (clauses 6.3.1 and 6.3.2) 

Therefore the shear bolt group is satisfactory. 

5.9.3 Shear capacity of the column web 

The combined action of the tensile force in the upper bolt group and the 
compressive bearing at the lower flange of the haunch causes a 
considerable shear force in the haunch region of the stanchion web. This 
frequently requires a shear stiffener to be incorporated in this region as 
shown in Fig. 5.17. However, it is often more economic to increase the 
depth of the haunch until this stiffener becomes unnecessary. 

¶ 
I 
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Fig. 5.17 Web shear stiffener. 

The lever arm for this shear force is de = 826.1 — 105 = 721.1 mm. 
Therefore the design shear force is 

F = 264x iO = 366.1 kN 

and the shear strength is (clause 4.2.3) 

= 0.6tDp 

= 0.6 x 6.9 x 402.3 x 0.275 = 458 kN 

Therefore the web is satisfactory in shear without a stiffener. 
If a shear stiffener is required, the arrangement shown in Fig. 5.17 is 

generally advantageous, combining a tension stiffener (see Fig. 5.19) 
and a shear stiffener in one member. Page 219 of Reference 5.2 gives 
guidance on the design of this arrangement. The principle is to design 
the shear stiffener as a diagonal bracing member carrying the excess 
shear force which cannot be accommodated by the web of the 
stanchion. 

5.9.4 Thickness of the end-plate 

There is no single agreed method for checking the thickness of the end- 
plate. However, a good starting point is to make the end-plate thickness 
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at least equal to the bolt diameter. A reasonable model for carrying out 
an approximate numerical check is as shown in Fig. 5.18. Then: 

where F = force carried by four bolts 
= 4P,, 

Le = length of the end-plate along which the bolt load is carried 
=lesser ofc+3.5m or 7m 

m = length across the end-plate over which double curvature 
occurs 

= yield stress of the end-plate 
= 275 N/mm2 for the plate material (265 N/mm2 when 

t> 16mm) 

Here, therefore 

= = 366kN 

142.4 — 70 a= = 36.2mm 

70 6.3 
m = — - -6=25.85 mm 

10 _ _ ——-- p 

4 

Fig. 5.18 Plastic collapse of end-plate. 
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7m = 180.95 mm; 3.5m+90= 180.5mm 

I 366 x 25.85 = 
V 0.275 x 180.5 

= 13.8 mm so that 

A 15 mm thick end-plate will, therefore, suffice. 

5.9.5 Strengthening of the flange of the stanchion in tension 

The thickness of the stanchion flange (11.2 mm) is less than that of 
the end-plate (15 mm). It may be assumed, therefore, that the flange of 
the stanchion requires strengthening with a stiffener in order to prevent 
it from being overstressed by the tensile bolt force. It is usual to make 
this stiffener of thickness similar to the flange of the rafter (8.6 mm) and 
to carry it through at least the centre line of the stanchion as shown in 
Fig. 5.19. 

It may be noted that the web shear stiffener shown in Fig. 5.17 also 
combines the function of a tension stiffener. The welds between this 
stiffener and the stanchion should be fillet welds of throat thickness 
comparable with the elements being connected. Here an 8 mm thick 
plate is used with 6 mm fillet welds to the flanges and 6mm welds to the 
web. 

If the reader requires a more rigorous check of the adequacy of the 
flange of the stanchion, a suitable design expression is given on page 218 

of Reference 5.2. The calculation proceeds as follows: 

Fig. 5.19 Flange stiffener (tension). 
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Stiffening is required if 

F1 � T 
[C 

+ w + w + (I +1) (m + 
n)] 

Pyc m w w 

where, in addition to quantities defined above 

T = thickness of column flange = 11.2mm (406 x 140 x 46 UB) 

70 6.9 20.4 
m =—--—-----= 21.35mm 

B—A 142.4—70 = =36.2mm 

A = centres of holes = 70 mm 

B = width of holes = 142.4 mm 

w = /m(m + n) = ./21.35(21.35 + 36.2) = 35.05 mm 

w = 70mm < 2w = 70mm 

This results in a right-hand side value of: 

11.22 
[90 

+ 35.05 + 70 + + (21.35 + 
36.2)] 

0.275 

= 400.2kN 

which is greater than F1 = 366 kN so that the more rigorous check 

indicates that a tension stiffener is not, in fact, required. 

Note: With larger rafter sections, it is usual to proportion the tension 
stiffeners on the basis of an estimate of the proportion of the 
bolt load carried by the stiffeners. This is based on the bolt 
horizontal and vertical cross centres, thus: 

Load in the pair of stiffeners= 336.1 x = 160.2kN 
70 + 90 

366.1 — 160.2=205.9kN goes into the stanchion web 

Using two No. 60 x 8 stiffeners and allowing for a corner mitre 
gives a stress of 

160.2 X 10 2 
2 x 50 x 8 

= 200.3 N/mm 



Plastic Design of a Pitched Roof Portal Frame Building 183 

The welds to the stanchion web can be sized in accordance with 
Fig. 15 of BS 5950: Part 1: hence use 6 mm fillet welds. 

The length of the stiffeners can be twice their width = 120mm 
with 6mm fillet welds to the web of the stanchion. 

5.9.6 Bearing and buckling of the stanchion web in compresssion 

A similar check is required at the bottom of the haunch where the 
compressive force from the lower flange of the haunch bears on the 
flange of the stanchion. This compressive force is tending to cause 
bearing and buckling of the web of the stanchion and a check of these 
conditions is essential. 

The horizontal component of the compressive force in the flange of 
the haunch is 

264x = 366.1 kN 

The relevant clauses in BS 5950: Part 1 are 4.5.2 for buckling and 4.5.3 
for bearing. Thus, the buckling resistance of the unstiffened web is 

= (b1 + ni)tp 
where b1 is the stiff bearing length (equal here to the thickness of the 

flange of the haunch) 
n1 is the length obtained by dispersion at 45° through half of 

the depth of the section 
t is the web thickness 
Pc is the compressive strength assuming a web slenderness of 

2.5d/t and using the appropriate strut table 27(c). 

Thus here, b1 = 8.6 mm 

n1 = 402.3mm 

t = 6.9 mm 

= 2.5 x359.7 = 130.3 

p= 86 N/mm2 

= (8.6 + 402.3) x 6.9 x 86 x i0 = 243.8 kN 

As this is less than the applied compressive force of 366.1 kN, a stiffener 
is required. 
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Similarly, the bearing resistance is Pwb = (b1 + n2)tp where, in 
addition to the quantities defined above 

n2 is the length obtained by dispersion through the flange to the 
flange-to-web connection at a slope of 1: 2.5 to the plane of 
the flange 

Pyw is the design strength of the web 

Thus here l2 = 2 x 2.5 x (11.2+10.2) = 107.0mm 

Pyw 275 N/mm2 

.. = (8.6 + 107.0) X 6.9 X 275 X i0 = 219.4kN 

and the stanchion web also fails in bearing. 
As we are concerned with buckling of the stanchion web as a strut 

of length equal to the depth of the section, it is necessary to pro- 
vide a stiffener extending over the full depth of the section as shown in 

Fig. 5.20. This stiffener should be designed for both buckling and 
bearing. 

Fig. 5.20 Flange stiffener (compression). 
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The design of load-carrying stiffeners is considered in BS 5950: 
Part 1: clause 4.5.4. The first requirement is a bearing check which 
necessitates a stiffener whose area A in contact with the flange is given 
by 

A > 01'X 
Pys 

where F = external load 

Pys = design strength of stiffener 

Thus here, A = 0.8x366.l = 1065 mm2 

Bearing in mind that part of the stiffener needs to be cut away in 

order to clear the root radius, try two No. 60 x 12 plate stiffeners, one 

on either side of the stanchion web. These will be fully effective 

according to clause 4.5.1.2. The buckling resistance is then given in 
clause 4.5.1.5 with the effective cross-section shown in Fig. 5.21. 

AE = 276 x 6.9 + 120 x 12 = 3344.4mm2 

12 x 126.9 (276 — 12) x 6.9 
12 

+ 12 

= 2050.8 x mm4 

/050.8 x 10 
ry=V 33444 

=24.76mm 

L = D —2T = 402.3—2 x 11.2 = 379.9mm 

LE = 0.7L = 0.7 x 379.9 = 265.9 mm 

LE 265.9 
107 r 24.76 

For pS), 
= 275 N/mm2, Pc = 275 N/mm2 (Table 27(c)) 

.. P =PCAE = 275 x 3344.4 x i0 = 919.7kN 

which is greater than the required value of 366.1 kN and therefore 
amply safe. 
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20 t = 138 

12 4. I _____ 

20 t = 138 

60j 
= 6.9 

Fig. 5.21 Cross-section of stiffener. 

5.9.7 Strength of the welds connecting the haunched rafter to the end-plate 

The strength of the welds connecting the rafter and haunch to the end- 
plate is critical. Fillet welds rather than butt welds are generally used in 
order to reduce the risk of delamination within the end-plate. Fillet 
welds are also preferred because butt welds shrink on cooling and the 
resulting distortions are generally disadvantageous and may reduce the 
effective lever arm of the connection. Butt welds also have more severe 

inspection requirements. 
The stress distribution at the upper end of this connection is complex 

and empirical design is appropriate. A simple rule, which has been 
justified by tests, is to make the combined throat thickness of the welds 
at least equal to the thickness of the plate element being connected. 
Therefore: 

Tb 8.6 
Leg length of flange weld = = = 6.1 mm top and bottom 

Leg length of web weld = = = 4.5 mm both sides 

Therefore adopt 8 mm fillet welds for the flanges and 6 mm fillet welds 
for the web. The heavier weld must be continued down the web on the 
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tension side for at least 50 mm in order to prevent tension cracking in 
the region of high stress concentration. 

Note: Here also it is possible to adopt a more formal approach to weld 

sizing based on Fig. 15 of BS5950: Part 1 and the bolt cross 
centres as described in the note to Section 5.9.5. 

5.9.8 Rafter and stanchion webs in tension 

Using a procedure similar to that described in Section 5.9.5: 

The rafter web load = 
(1 

+ = 294.9 kN 

294.9 x io 2 Hence the web stress = = 222 N/mm 211 x 6.3 

where the effective web length = 60 + 90 + 1.75 x 35 = 211 mm. 

From Section 5.9.5, the stanchion web load is 205.9 kN. 

5. xlO 2 Hence the web stress = = 142 N/mm 211 x 6.9 

5.10 Design of the ridge connection 

The design bending moment at the ridge can be scaled from Fig. 5.10 
and is 197 kNm. 

Note: The bending moments are usually almost constant in the region 
of the apex and there is little loss of economy if the connection 
is designed for the full plastic moment of the rafter (here 
= 198 kNm). 

The design of the ridge connection is much easier than that of the eaves 
connection. The haunch is only necessary in order to increase the lever 
arm of the bolts in order to obtain a sensibly sized bolt group in the 
tension region. Shear is nominally zero under symmetrical vertical load 
though two bolts are invariably included on the compression side. These 
serve to carry the shear force in an unsymmetrical load condition and to 
cater for any bending moment reversal under wind uplift. 

With the dimensions shown in Fig. 5.22, the lever arm of the bottom 
tension bolts from the centre of the compression flange is 400 + 60+ 
90 — 15 — 4.3 = 530.7 mm. The lever arm of the upper tension bolts is 

therefore 530.7 — 90=440.7 mm. 
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610 x150 x l5end plate 
6 no. M20 8.8 bolts 

Fig. 5.22 Ridge connection. 

The tensile capacity of a single M20 8.8 bolt is 110 kN and, bearing in 
mind that the 10% rule described in Section 5.9.1 is not satisfied, it is 

conservative to assume a force in the upper bolts based on a linear 
distribution of strain. The moment capacity of the connection is 
therefore: 

/ 0.44072'\ 2x 110 0.5307+ = 197.3kNm 

The tensile bolt group is therefore just satisfactory. 
The calculation of the thickness of the end-plate is as before (Section 

5.9.4 and Fig. 5.18) so that 

/i /4x110x25.85 
tP = 

pyLe 
= 

V 0.275 x 180.5 
= 15.1mm 

A 15 mm end-plate will therefore suffice, bearing in mind that the rafter 
and cutting flanges will give rise to a stronger yield line mechanism than 
the one assumed. 

The empirical rules for the weld sizes are also the same as before so 
that: 

leg length of flange weld = 8 mm (carried 50mm up the web from the 
tension flange) 

leg length of web weld =6mm 

The inclined flange of the ridge 'haunch' applies a tensile force to the 
bottom flange of the rafter. If there are no rafter stiffeners at the 
junction, the full flange width weld length will not be fully effective. 

Assuming that the stiff weld length is based on a 1:2.5 bevel off the root 
radius of the rafter section, the effective weld length is: 

web thickness + 1.615 x root radius + 5 x flange thickness 

= 6.3 + 1.615 x 10.2 + 5 x 8.6 = 66mm 
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The inclined flange force resolves into a shear force parallel to the flange 
of the rafter and a tensile force perpendicular to it. Sixty-six millimetres 
of the weld takes the tensile force and the remaining 130 mm is avail- 
able to carry the shear force. Assuming that the load from one bolt goes 
into the inclined flange, then the shear force is (say) 0.85 x 110 = 
93.5 kN = 93.5/130 = 0.7 19 kN/mm and the tensile force is (say) 
0.55 x 110 = 60.5kN = 60.5/66 = 0.917kN/mm. The resultant force in 
the weld is therefore: 

/0.7192+0.9172 = 1.l7kN/mm 

Therefore use an 8mm fillet weld= 1.21 kN/mm. 

5.11 Design of the base plate 

As the base is nominally pinned, and as the horizontal shear has been 
taken out by tie rods cast into the floor slab (see Fig. 5.1), the base has 
to carry vertical load only. 

The design of base plates is covered in BS 5950: Part 1: clause 4.13.2. 

However, it will be found that, if the formula given in this clause is 

applied to the compact base plates usually used for nominally pinned 
connections, the minimum thickness given is impractically small. Once 
again, therefore, the design is empirical. 

A practical design approach is to make the base plate thickness 
at least equal to the thickness of the flange of the stanchion (11.2 mm). 
The design shown in Fig. 5.23 can therefore be adopted without 
calculation. 

Note: A four-bolt connection is shown. Two bolts on the centre line of 
the stanchion would suffice and such a detail is often used. 
However, four bolts makes for easier erection and may in fact 
be required by the Health and Safety Executive if the erection 
sequence requires the stanchions to act temporarily as free 

standing cantilevers. A four-bolt detail may also be necessary if 
the frame is to be designed for boundary fire conditions. 

5.12 Check under wind loads 

Unless the frame is unusually high, or unless other unusual conditions 
prevail, wind loads are not usually critical in the UK in the design of 
pitched roof portal frames for the ultimate limit state. In other parts of 



190 Plastic Design to BS 5950 

150 

150 

Tie rod in floor 
slab to carry 
shear 

5.12.1 Wind load cases 

Fig. 5.23 Base plate design. 

the world, where snow is not the dominant load case, the reverse may be 
true and the wind load cases become dominant. 

However, wind load deflections may be critical, for instance where 
masonry walls are used (see also Section 1.9). 

The dynamic pressure has been calculated previously as q = 553 N/mm2. 
The external pressure coefficients Cpe follow from CP3: Chapter V: 

Part 2: Tables 7 and 8 and are shown in Fig. 5.24. The internal pressure 
coefficients C1 = +0.2 or —0.3 are for normal permeability as given in 

Appendix E of CP3. 
It is usually sufficient to consider two transverse wind load cases A 

and B below. Note, however, that longitudinal wind can sometimes 

406 x 140 x 46 UB 
Portal leg 

4 no. M20 H.D. 
bolts 

Base plate 420 x 300 x 15 
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Fig. 5.24 Pressure coefficients. 

02 h_ 4.5 —02 
w 22.5 

=1.07 
w 22.5 

produce the critical case for wind uplift on the rafters and determine the 
requirements for rafter stability: 

Case A: Full vertical and wind loads with all partial load factors = 1.2. 

Internal suction is considered in order to give rise to the 
maximum side load on the windward stanchion. 

Case B: Dead load with a partial load factor of 1.0 and wind load with 
a partial load factor of 1 .4. Internal pressure is considered in 
order to give rise to maximum uplift on the rafters. 

The resultant pressure coefficients (Cpe — Cr1) for these two cases are 
shown in Fig. 5.25. 

The uniformly distributed loads for these two cases can be calculated 
as follows: 

Case A: vertical load = 0.918 x 1.2 x 6=6.6lOkN/m 
wind load AB = 1.0 x 0.553 x 1.2 x 6=3.982kN/m 

BC =0.66 x 0.553 x 1.2 x 6=2.628kN/m 
CD=0.1 x 0.553 x 1.2 x 6=0.398kN/m 
DE=0.l x 0.553 x 1.2 x 6=0.398kN/m 

1.0 

0.66 0.1 

Fig. 5.25 Resultant pressure coefficients. 

0.1 0.5 

1.16 0.6 

0.96 0.4 

4.5 

t 

C1 = +0.2 or —0.3 

22.5m 

Case A 

t 

Case B 



Case B: vertical load = 0.3 18 x 1.4 x 6 = 2.671 kN/m 
wind load AB =0.5 x 0.553 x 1.4 x 6=2.323kN/m 

BC =1.16x0.553 x 1.4x6=5.388kN/m 
CD=0.6 x 0.553 x 1.4 x 6=2.787kN/m 
DE=0.4x0.553x 1.4x6=1.858kN/m 

It is evident that Case A is likely to be the most critical and this will be 
analysed in full. The analysis for Case B would follow a similar course. 
A computer analysis for both cases is given in Appendix 5C. 

5.12.2 Manual analysis of wind Case A 

There are several manual methods available for this analysis. The work 
equation method provides an equally convenient alternative to the 
one used. Here we will adopt a procedure similar to that used for the 
initial design and illustrated in Fig. 5.3. The main difference is that 
drawing the free bending moment diagram is now a little more tedious. 
Figure 5.26 is a line diagram of the case to be considered where the 
uniformly distributed loads are those calculated above. The reactions 
arise from consideration of equilibrium as follows. 

From horizontal equilibrium: 

H = 17.92— 1.79 —(29.73— 4.50) sin 6° = 13.49kN 
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74.36 kN 74.36 kN 

6.61 kN/m 6.61 kN/m w----w',w 
29.73 kN 

E 

17.92 
kN (N 

cv, 

6° 

H = 13.49 kN 

11250 11250 
I 1 

Fig. 5.26 Case to be considered when drawing the free bending moment diagram. 

RE = I 64.63 kN 

L 
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From moment equilibrium about A: 

RE =[(17.92 — 1.79)2.25—29.73 cos6° x 5.625 — 4.SOcos6° 

x 16.875—29.73 sin6° x 5.091 +4.5Osin6° 

x 5.091 + 148.72 x 11.251/22.5 

=64.63kN 

and from vertical equilibrium 

RA = 74.36 x 2 — (29.73 + 4.50) cos 6° — 64.63 = 50.05 kN 

193 

The free bending moment diagram shown in Fig. 5.27 can now be 
drawn as follows: 

With x measured from A to B 

3.982x2 
MAB = —13.49x+ 

2 

With x measured from B to C 

MBC =17.919(2.25+xtan6°)+6.61 
— RAX — 13.49(4.5 + xtan6°) 

= — 20.385 — 49.585x + 1.9765x2 

2.628x2 — 
2 cos2 6° 

Fig. 5.27 Free and reactant bending moment diagrams for wind case A. 

A B 
0 

100 

C E 

300 

180 

328 
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With x measured from E to D 

0.398x2 
MED = 

and finally, with x measured from D to C 

MDC =1.79(2.25 + xtan6°)+ 
6.61x2 

— 
0.398x2 

64.63x 
2 2cos6 

=4.030 — 64.44x + 3.104x2 

It is a simple matter to check that the equations for MBC and MDC both 

give values of —328.1 kNm for x = 11.25 m at C. 
Having drawn the free bending moment diagram to scale, as shown 

on Fig. 5.27, it is now only necessary to check that a statically 
admissible reactant line can be drawn that satisfies the yield criterion 
(no bending moment greater than the full plastic moment of the 
associated member). Only if wind should prove to be near-critical is it 
necessary to consider checking member stability under wind loading. 

An arbitrary reactant line has been drawn on Fig. 5.27 for H =40 kN. 
The only criterion for this choice of a value for H is that it gives a 
sensible looking bending moment diagram! The corresponding max- 
imum bending moments scaled from the resulting diagram are: 

For the stanchion: Mmax 185 kNm 

For the rafter: Mmax 105 kNm 

These are much smaller than the available capacities (M,5 = 244 kNm 
and M,,,. = 198 kNm) so that no further check is necessary. 
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Appendix 5A Approximate method for single-bay frames 

This method considers the frame shown in Fig. 5A.l and is taken from: 

A D Weller. Portal frame design. Lecture 14 in Introduction to Steel- 
work Design to BS 5950: Part 1, Steel Construction Institute, reprint 
with Addendum, 1994. 
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w per unit length cv 
Fig. 5A.1 Symmetrical single-bay frame considered in the design method. 

The graphs which follow have been produced to enable simple pinned 
based frames to be sized quickly. They are based on the following 
assumptions: 

(1) Plastic hinges are formed at the bottom of the haunch in the leg 
and near the apex of the rafter, the exact position being determined 
by the frame geometry. 

(2) The depth of the rafter is approximately span/55 and the depth of 
the haunch below the eaves intersection is 1.5 times the rafter 
depth. 

(3) The haunch length is 10% of the span of the frame, a limit 

generally regarded as providing a balance between economy and 
stability. 

(4) The moment in the rafter at the tip of the haunch is 0.87Mg, so that 
it is assumed that the haunch remains elastic. 

(5) The calculations assume that the calculated values of M are 
provided exactly by the available sections and there are no stability 
problems. Clearly, these conditions will not be precisely met and it 
is the responsibility of the designer to ensure that the chosen 
sections are checked for all aspects of behaviour. 

The graphs cover the range of span/eaves height between 2 and 5 and 
rise/span of 0 to 0.2 (where 0 is a flat roof). Interpolation is permissible 
but extrapolation is not. 

The three graphs give: 

Fig. 5A.2 The horizontal thrust at the base of the frame as a 
proportion of the total factored load wL, where w is the 
load per unit length of rafter and L is the span of the frame. 

j 
-1 

I 
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Fig. 5A.2 
eaves height. 

Span/Eaves height 

Fig. 5A.3 The required moment capacity of the rafters as a 
proportion of wL2. 

Fig. SA.4 The required moment capacity of the stanchions as a 
proportion of wL2. 

Span/Eaves height 

5.0454.03.53.02.5 2.0 

Fig. 5A.3 Rise/span versus required A1 of rafter for various values of span/ 
eaves height. 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

Horizontal force at base —,. 
Rise/span versus horizontal base force for various values of span/ 

M required for rafter —. 



Fig. 5A.4 Rise/span versus required Mi,, of stanchion for various values of span/ 
eaves height. 

The graphs are used as follows: 

(1) Determine the ratio span/height to eaves (L/h). 
(2) Determine the ratio rise/span (r/L). 
(3) Calculate wL (total load) and wL2. 

(4) Determine the following values from the graphs: 

Appendix 5B Elastic-plastic analysis of the designed frame 

The analysis given in this Appendix was carried out using the core 
module of the market leading software package 'FASTRAK 5950'. The 

output is in the internal format of the program rather than the more 
graphically orientated information supplied by the post-processor 
available with the complete package. 

The output provided by the program is in Courier font in order to 

preserve the tabulation and to distinguish it from the added notes. The 
first part of the output is a repeat of the input data for the purposes of 
identification and checking. 

All of the data is in units of kN and mm. 
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Span/Eaves height 

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 

M required for leg —w 

Horizontal thrust at base 

M, required for rafter 

M1, required for stanchion 

= wL x value from Fig. 5A.2. 
= wL2 x value from Fig. 5A.3. 
= wL2 x value from Fig. 5A.4. 



198 Plastic Design to BS 5950 

0 0 

m 
5 members thus:- 

6 joints thus:- 

Note: As a consequence of symmetry, for the vertical load case it is 
only necessary to consider half of the frame. 

JOB NUMBER 1 PORTAL FRAME IN CHAPTER 5 (analysis case) 

6 JOINTS 5 MEMBERS 0 YIELDING TIES 

ALPHA-T E 
.000012 205.00 

X Y 

0.00843 kN/mm 

03 

11250 I. 

Fig. 5B.1 Line diagram for analysis. 

Line diagram for analysis (Fig. 5B.1) 

Computer output 

Joint data 

0 LOADEDJOINTS 1 LOADCASE 3 MEMBERS WITHUDL 

GLOBAL PARAMETERS IF RELEVANT 

The joint data is in the form of the degrees of freedom and the 
coordinates. The degrees of freedom are specified by the total number 
followed by an indication, in binary form and in the order x, y, 0, of the 
degrees of freedom which are active. 

JOINTNO 1 FREEDOM 1 1 COORDINATES 0.00 5682.00 
JOINT NO 2 FREEDOM 3 111 COORDINATES 0.00 1782.00 
JOINT NO 3 FREEDOM 3 111 COORDINATES 0.00 1182.00 
JOINT NO 4 FREEDOM 3 111 COORDINATES 1350.00 1040.00 
JOINTNO 5 FREEDOM 3 111 COORDINATES 6300.50 520.00 
JOINTNO 6 FREEDOM 1 10 COORDINATES 11250.00 0.00 
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Member data 

Members are specified by the joint numbers at 'end 1' and 'end 2' 

indicated by the arrows in the line diagram. The member data also 
specifies the 'critical sections' (C/S) where plastic hinges may form. 3 

indicates a critical section that may move in order to locate a plastic 
hinge at the section of maximum bending moment. The length L and the 
inclination are calculated by the program as a check on the input data. 

The member data also indicates a type number which identifies the 
relevant section properties from the member property table which 
follows. 

MEMBER JOINTS C/S TYPE L INCL 
1 1 2 0 2 1 3900.00 —90.000 
2 2 3 0 0 1 600.00 —90.000 
3 3 4 0 0 1 1357.45 —6.005 
4 4 5 2 3 2 4977.24 —5.997 
5 5 6 0 2 2 4977.24 —5.997 

4 CRITICAL SECTIONS 

MEMBER PROPERTIES 

TYPE A I MP 
1 5900.00 156700000.0 244000.00 
2 4920.00 124100000.0 198000.00 

Note: For illustrative purposes, the eaves haunch is modelled rather 
crudely by a single member with the same inertia as the 
stanchion. As no plastic hinge is allowed to form in this 

member, this is accurate for the strength calculation but rather 

approximate for the calculation of defiections. In practice, the 
haunch would be modelled more accurately by a small number 
of slices, each with an average inertia. 

Load data 

The program can accept a wide variety of forms of load data. This 
example only requires uniformly distributed vertical load which is 
applied to specified members as a load per unit length. 

DISTRIBUTED LOADS 

VERTICALONMEMBER 3 .8430E—02 
VERTICALONMEMBER 4 .8430E—02 
VERTICALONMEMBER 5 .8430E—02 
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Displacement output in the elastic-plastic phase 

The user of the program has to specify which displacements are to be 
printed out during elastic-plastic analysis. Here we choose the hori- 
zontal eaves deflection and the vertical apex deflection specified by the 
joint number and degree of freedom. 

2 LOCATIONS 

Output from the analysis 

31 62 

Before the program enters the elastic-plastic analysis module, it first 
carries out an elastic analysis at unit load factor (i.e. at 1.0 times the 
required ultimate limit state loads). The deflections at the serviceability 
limit state can be determined from these pro rata. 

DISPLACEMENTS AT JOINTS - LOAD CASE 1 

MEMBER FORCES - LOAD CASE 1 

Elastic-plastic phase of analysis 

The program then traces the successive formations of plastic hinges as 
the global load factor is varied. The global load factor is a simple 
multiplier on the loads specified in the input data. For hinges which 
relocate at the section of maximum bending moment, ALPHA gives the 
hinge position as a proportion of the total length of the member 
measured from the left-hand end. 

X Y 
JOINT 1 .00000E+OO .00000E+OO —. 12157E—O1 
JOINT 2 —.26766E+02 .3O58OE+OO .37252E—O2 
JOINT 3 —.22990E+02 .35285E+OO .89880E—02 
JOINT 4 —.21007E+02 .20016E+02 .19350E—O1 
JOINT 5 —.71233E+O1 .15564E+03 .26468E--O1 
JOINT 6 .00000E+OO .2267OE+03 .00000E+OO 

END1 END2 
MEMBER AXIAL SHEAR MOMENT AXIAL SHEAR MOMENT 

1 .9484E+02 .67091+02 .0000E+OO —.9484E+O2 —.67O9E+O2 .2616E+06 
2 .9484E+02 .67O9E+02 —.2616E+06 —.9484E+O2 —.67O9E+O2 .3O19E+O6 
3 .7664E+O2 —.873OE+02 —.3O19E+06 —.7545E+O2 .7598E+02 .1911E+06 
4 .7544E+02 —.7599E+O2 —. 1911E+O6 --.71O8E+02 .3449E+02 —.8388E+O5 
5 .71O8E+02 —.3449E+O2 .8388E+O5 —.6672E+02 —.7009E+01 —. 1523E+O6 
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SETHINGE 1 LOADFACTOR .932575E+00 

CURRENT BENDING MOMENTS AT 4 CRITICAL SECTIONS 

MP M UNIT MOMENT 
1 .244000E+06 —.244000E+06 —.261641E+O6 
2 .198000E+06 —. 178188E+06 —. 191071E+06 
3 .198000E+06 .782220E+05 .838774E+05 
4 .198000E+06 .142003E+06 .152270E+06 

AXIAL 
• 88443E+02 
.7035 3E+02 
• 662 87E+02 
• 62222E+02 

SHEAR FORCE 
• 62564E+02 

—. 70868E+02 
—. 32166E+02 

• 65364E+01 

DISPLACEMENTS AT FORMATION OF FIRST HINGE 
—.2144E+02 .2114E+03 

TRAVELLING HINGE, ALPHA= .91639 MP=198000 .0000 

SET HINGE 3 LOAD FACTOR . 103294E+O1 

CURRENT LIMITING BENDING MOMENTS AT THE CRITICAL SECTIONS 

MP M AXIAL 
1 .244000E+06 —.244000E+06 .979612E+02 
2 .198000E+06 —.166110E+06 .712281E+02 
3 .198000E+06 .198000E+06 .629747E+02 
4 .198000E+06 .195543E+06 .622217E+02 

DISPLACEMENTS FOR EACH LOAD SYSTEM AS SPECIFIED 
—.3313E+02 .3230E+03 

CURRENT ROTATIONS OF THE PLASTIC HINGES 
.2124E—01 .0000E+00 

MECHANISM CRITERION SATISFIED 

THE FINAL MECHANISM IS CONFIRMED AS VALID 
FAILURE LOAD=1 .0329 

SHEAR FORCE 
62 564 1E+02 
79 197 7E+02 
63 176 1E+OO 
653642E+O1 

Plastic hinges at collapse (Fig. 5B.2 showing critical section numbers) 

Fig. 5B.2 Plastic hinges at collapse. 

(4) 
3 

Movable hinge 
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Appendix 5C Elastic-plastic analysis for the wind load cases 

The general details of the analysis used are given in Appendix SB. 
Additional details are given here only when they are additional to those 
given previously. 

Line diagram for analysis 

Computer output 

Here it is necessary to analyse the whole frame, as shown in Fig. 5C.l, 
because the wind load cases are not symmetrical. 

JOB NUMBER 2 PORTAL FRAME IN CHAPTER 5 (wind load cases) 

11 JOINTS 10 MEMBERS 

0 LOADED JOINTS 

GLOBAL PARAMETERS IF RELEVANT 

JOINT DATA 

ALPHA-T E 

0.000012 205.00 

0 YIELDING TIES 

2 LOAD CASES 16 MEMBERS WITHUDL 

x Y 
JOINTNO 1 FREEDOM 1 1 COORDINATES 0.00 5682.00 
JOINT NO 2 FREEDOM 3 111 COORDINATES 0.00 1782.00 
JOINT NO 3 FREEDOM 3 111 COORDINATES 0.00 1182.00 
JOINTNO 4 FREEDOM 3 111 COORDINATES 1350.00 1040.00 
JOINT NO 5 FREEDOM 3 111 COORDINATES 6300.00 520.00 
JOINTNO 6 FREEDOM 3 111 COORDINATES 11250.00 0.00 
JOINTNO 7 FREEDOM 3 111 COORDINATES 16200.00 520.00 
JOINTNO 8 FREEDOM 3 111 COORDINATES 21150.00 1040.00 
JOINT NO 9 FREEDOM 3 111 COORDINATES 22500.00 1182.00 
JOINTNO 10 FREEDOM 3 111 COORDINATES 22500.00 1782.00 
JOINTNO 11 FREEDOM 1 1 COORDINATES 22500.00 5682.00 

x 
V 

0 

11250 11250 

10 members thus:- 
11 joints thus:- 

Fig. 5C.1 Line diagram for elastic-plastic computer analysis. 



7 CRITICAL SECTIONS 

MEMBER PROPERTIES 

For this analysis, the load data includes uniformly distributed loads 
which are either vertical or normal to the member. Both are in units of 
kN/mm. The loads for the two load cases are expressed columnwise. 

DISPLACEMENTS OUTPUT IN ELASTIC-PLASTIC PHASE 
3 LOCATIONS 3 1 6 2 9 1 

MEMBER DATA 
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MEMBER JOINTS C/S TYPE L INCL 
1 1 2 0 2 1 3900.00 —90.000 
2 2 3 0 0 1 600.00 —90.000 
3 3 4 0 0 1 1357.45 —6.005 
4 4 5 2 3 2 4977.24 —5.997 
5 5 6 0 2 2 4977.24 —5.997 
6 6 7 0 3 2 4977.24 5.997 
7 7 8 0 2 2 4977.24 5.997 
8 8 9 0 0 1 1357.45 6.005 
9 9 10 0 0 1 600.00 90.000 

10 10 11 2 0 1 3900.00 90.000 

TYPE A I MP 
1 5900.00 156700000.0 244000.00 
2 4920.00 124100000.0 198000.00 

Load data 

LOAD CASE 1 LOAD CASE 2 
VERTICALONMEMBER 3 .6610E—O2 .1908E—O2 
VERTICALONMEMBER 4 .6610E—O2 .19O8E—O2 
VERTICALONMEMBER 5 .661OE—O2 .19O8E—O2 
VERTICALONMEMBER 6 .6610E—O2 .19O8E—O2 
VERTICALONMEMBER 7 .6610E—O2 .19O8E—O2 
VERTICALONMEMBER 8 .661OE—O2 .19O8E—O2 

NORMALONMEMBER 1 .3982E—02 .2323E—O2 
NORMALONMEMBER 2 .3982E—02 .2323E—O2 
NORMALONMEMBER 3 —.2628E—02 —.5388E—O2 
NORMALONMEMBER 4 —.2628E—02 —.5388E—O2 
NORMALONMEMBER 5 —.2628E—02 —.5388E—02 
NORMALONMEMBER 6 —.398OE—03 —.2787E—02 
NORMALONMEMBER 7 —.3980E—03 —.2787E—O2 
NORMALONMEMBER 8 —.3980E—03 —.2787E—02 
NORMALONMEMBER 9 .398OE—03 —.1858E—O2 
NORMALONMEMBER 10 .398OE—03 —.18581—02 
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Output from the analysis 

DISPLACEMENTS AT JOINTS - LOAD CASE 1 

DISPLACEMENTS AT JOINTS -- LOAD CASE 2 

MEMBER FORCES - LOAD CASE 1 

MEMBER FORCES - LOAD CASE 2 

X Y 
JOINT 1 .00000E+00 .00000E+00 
JOINT 2 —.15771E+02 .16140E+00 
JOINT 3 —. 14106E+02 .18623E+0O 
JOINT 4 —.13110E+02 .10194E+02 
JOINT 5 —. 53510E+01 .86360E+02 
JOINT 6 —.58111E+00 .13391E+03 
JOINT 7 .30278E+01 .97463E+02 
JOINT 8 .11641E+02 .13222E+02 
JOINT 9 .12950E+02 .24046E+00 
JOINT 10 .15570E+02 .20839E+00 
JOINT 11 .00000E+00 .00000E+00 

ROTATION 
—. 65989E—02 

• 13723E—02 
• 42647E—02 
• 10149E—01 
• 15764E—01 
• 17446E—02 

—. 15563E—01 
—. 12607E—01 
—. 60857E—02 
— . 27258E—02 
• 73360E—02 

ROTATION 
• 35658E—02 

—. 17799E—02 
—. 34048E—02 

642 79E—02 
— . 66179E—02 
• 20346E—02 
• 68520E—02 
.356 12E—02 
• 12819E—02 
• 20166E—03 

— . 27042E—02 

JOINT 
JOINT 
JOINT 
JOINT 
JO I NT 
JOINT 
JOINT 
JOINT 
JOINT 
JOINT 
JOINT 

X 

1 .00000E+00 
2 .67248E+01 
3 .51783E+01 
4 .448145+01 
5 .43328E+00 
6 — . 67448E+00 
7 —. 31361E+01 
8 —. 61885E+01 
9 —. 65193E+01 

10 —. 695455+01 
11 •00000E+00 

Y 
00000E+00 

—. 10647E+00 
—. 12285E+00 
—. 69485E+01 
— . 46394E+02 
—. 578965+02 
—. 33445E+02 
—. 34176E+01 
—. 59597E—01 
—. 51649E—01 

00000E+00 

END 1 
MEMBER AXIAL SHEAR 

1 .5005E+02 .2849E+02 
2 .5005E+02 .4402E+02 
3 •5139E+02 —.4492E+02 
4 .5046E+02 —. 3962E+02 
5 .4704E+02 —. 20165+02 
6 .4252E+02 —. 9751E+01 
7 .4594E+02 .2081E+02 
8 .4936E+02 .5136E+02 
9 .6463E+02 — .4378E+02 

10 .6463E+02 —.4354E+02 

MOMENT 
3183E—10 

—. 1414E+06 
—. 1685E+06 
—. 1112E+06 
• 3762E+05 
8955E+05 
620 3E+05 

—. 1176E+06 
—. 1930E+06 
—. 16685+06 

MOMENT 

—. 3638E—11 
•8217E+05 
9168E+05 
5248E+05 

—. 3608E+05 

AXIAL 
—. 5005E+02 
—. 5005E+02 
—. 5046E+02 
— . 4704E+02 
— . 4362E+02 
— . 4594E+02 
— . 4936E+02 
—. 5030E+02 
— . 6463E+02 
— . 6463E+02 

AXIAL 
3302E+02 
3302E+02 
187 9E+02 
197 7E+02 

.207 65+02 

END 2 
SHEAR 

— . 4402E+02 
— . 4641E+02 

• 3962E+02 
• 2016E+02 
702 3E+00 
208 1E+02 

—. 5137E+02 
— . 5970E+02 
• 4354E+02 
.4199E+02 

END 2 
SHEAR 

1654E+02 
• 1515E+02 
• 2650E+02 

— . 9081E+01 
8344E+01 

MEMBER AXIAL 
1 —. 3302E+02 
2 —. 3302E+02 
3 —. 1852E+02 
4 -. 1878E+02 
5 —. 19775+02 

MOMENT 
• 1414E+06 
1685E+06 
1112E+06 
3762E+05 

— . 8955E+05 
— . 6203E+05 
• 1176E+06 
1930E+06 
1668E+06 

• 4434E—10 

MOMENT 

—.82175+05 
—. 9168E+05 
—. 5248E+05 

3608E+05 
• 3792E+05 

END 1 
SHEAR 

—. 2560E+02 
—. 1654E+02 

• 3125E+02 
•2651E+02 
• 9081E+01 
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ENTER ELASTIC-PLASTIC PHASE OF THE ANALYSIS 

LOAD CASE 1 

SETHINGE 7 LOADFACTOR .146312E+O1 

CURRENT BENDING MOMENTS AT 7 CRITICAL SECTIONS 

MP 
1 .244000E+06 
2 .198000E+06 
3 .198000E+O6 
4 .198000E+O6 
5 .198000E+O6 
6 .198000E+06 
7 .244000E+06 

N 
— . 206897E+06 
—. 162641E+06 

• 550454E+05 
• 131017E+O6 
• 9O7564E+05 

—. 172047E+06 
• 244000E+06 

UNIT MOMENT 
—. 141409E+O6 
—. 111161E+06 

• 37622OE+05 
• 895465E+05 
.6202 95E+05 

—. 117589E+06 
—. 166767E+O6 

AXIAL 
.732 33E+O2 
• 73822E+O2 
• 68820E+O2 
.63819E+02 
.67214E+02 
• 72215E+02 
945 60E+02 

SHEAR FORCE 
644 12E+O2 

—. 57973E+O2 
— . 29500E+O2 
—. 1O275E+O1 
• 30445E+02 
• 75157E+02 

—. 63701E+O2 

DISPLACEMENTS AT FORMATION OF FIRST HINGE 
—.2064E+O2 .1959E+O3 .1895E+02 

TRAVELLING HINGE ALPHA=O. 15882 

SETHINGE 5 LOADFACTOR .163014E+O1 

CURRENT LIMITING BENDING MOMENTS 

NP 
1 .244000E+O6 
2 .198000E+O6 
3 .198000E+O6 
4 .198000E+06 
5 .198000E+06 
6 .198000E+06 
7 .244000E+06 

N 
— . 202661E+06 
—. 148053E+06 

981988E+05 
18655 7E+06 
198000E+06 

—. 158532E+06 
— . 244000E+06 

AXIAL 
815936E+02 
75146OE+02 
6957 36E+02 

.6400 11E+02 
• 654868E+02 
• 733559E+O2 
• 105355E+O3 

SHEAR FORCE 
.64622 3E+O2 
— . 653371E+02 
—. 336140E+02 
—. 189099E+01 

1182 70E+02 
84483 2E +02 

— . 6383O8E+O2 

DISPLACEMENTS AS SPECIFIED 
.5489E+O2 .3125E+03 

CURRENT PLASTIC HINGE ROTATIONS 
.0000E+00 •4506E—01 

MECHANISM CRITERION SATISFIED 

THE FINAL MECHANISM IS CONFIRMED AS VALID 

FAILURE LOAD=l .6301 

NEW LOAD CASE 2 

SETHINGE 1 LOADFACTOR .296933E+O1 

1189E+03 

6 —.22O4E+02 —.3848E+O1 —.3792E+O5 .21O5E+O2 .8327E+01 .7617E+04 
7 —.21O5E+02 —.8327E+O1 —.7617E+O4 .2006E+O2 .1281E+O2 —.4497E+O5 
8 —.2007E+02 —.128OE+O2 •4497E+O5 .198OE+O2 .14O2E+O2 —.6318E+05 
9 —.16O2E+02 •1822E+02 •6318E+05 .16O2E+O2 —.1711E+O2 —.5258E+05 

10 —.16O2E+02 .1711E+02 .5258E+05 .16O2E+O2 —.986OE+O1 —.1910E—10 

MP= 198000.0 
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CURRENT PLASTIC ROTATIONS 
—.4576E—O1 .0000E+OO 

THE FINAL MECHANISM IS CONFIRMED AS VALID 

FAILURE LOAD=3 .314 

SHEAR FORCE 
— . 49113E+02 
• 78703E+02 
• 26964E+O2 
— . 24775E+O2 
— . 24725E+O2 

3802 4E+02 
.507 93E+O2 

CURRENT BENDING MOMENTS 
MP M UNIT MOMENT 

1 .244000E+O6 .244000E+06 .821733E+05 
2 .198000E+O6 •155824E+06 .524779E+05 
3 •198000E+O6 —.107139E+O6 —.36O817E+05 
4 .198000E+06 —.112584E+O6 —.379157E+05 
5 .198000E+06 —.22617OE+O5 —.761687E+04 
6 .198000E+06 .133541E+O6 .449732E+05 
7 •244000E+06 .156132E+O6 .525817E+05 

AXIAL 
—.98O49E+O2 
—.55774E+O2 
—.58704E+O2 
—.61634E+O2 
—.62507E+O2 
—.59577E+02 
—.47563E+02 

DISPLACEMENTS AT FORMATION OF FIRST HINGE 
.1538E+02 —. 1719E+03 —. 1936E+O2 

TRAVELLING HINGE ALPHA=O. 76120 MP= —198000.0 

SETHINGE 3 LOADFACTOR •331361E+O1 

CURRENT LIMITING BENDING MOMENTS 
MP M AXIAL 

1 .244000E+O6 •244000E+06 —. 109417E+03 
2 .198000E+O6 .14O219E+06 —.55O268E+02 
3 .198000E+06 —.198000E+06 —.600045E+02 
4 .198000E+06 —.166854E+06 —.615661E+02 
5 .198000E+O6 —.626839E+05 —.6254O4E+02 
6 .198000E+O6 •115351E+O6 —.5927O8E+02 
7 .244000E+O6 •145946E+O6 —.530782E+02 

SHEAR FORCE 
—.47554OE+02 

•85855E+O2 
•685635E+OO 

—.268900E+O2 
—.283496E+O2 
—.431901E+02 
.494281E+02 

DISPLACEMENTS AS SPECIFIED 
.1165E+03 —.2875E+O3 .5749E+02 



Chapter 6 

Plastic Design of 
Multi-storey Buildings 

6.1 General 

Clause 5.1.3, BS 5950, Part 1 makes a fundamental distinction between 
sway and non-sway multi-storey frames. This is potentially confusing 
because this distinction is nothing to do with the way the frame is 

braced, it is rather a matter of the sway stiffness of the frame. A multi- 
storey frame may be classed as non-sway, whether or not it is braced, if 
its sway stiffness is sufficient for second-order effects to be neglected. A 
simple rule is given for making this distinction: 

'A rigid jointed multi-storey frame may be considered as a non-sway 
frame if in every individual storey the deflection 5 in storey height h, 
due to the notional horizontal loading given in 5.1.2.3 (0.5% of the 
factored dead plus vertical imposed load at each storey applied 
horizontally) satisfies the following criteria, 

(I) For clad frames where the stiffening effect of the cladding is not 
taken into account in the deflection calculations: 

< — 2000 

(2) For unclad frames or clad frames where the stiffening effect of 
the cladding is taken into account in the deflection calculations: 

— 4000 

A rigid jointed multi-storey frame which does not comply with the 
above criteria should be classed as a sway frame even if it is also 
braced.' 

It may be noted that this rule effectively requires that the elastic critical 
load factor, calculated according to the deflection method given in 

207 
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BS 5950, Appendix F, should be greater than 10 for clad frames or 20 
for unclad frames. The background to this requirement is discussed in 
Section 3.2.1 of Chapter 3. 

The distinction between sway and non-sway frames is even more 
important in plastic design than in elastic design because, as successive 

plastic hinges form, the rotational stiffness at the plastic hinge position 
vanishes and therefore the frame displacements are increased and 
second-order effects enhanced. It follows that, in general, it is desirable 
to ensure that plastically designed multi-storey buildings are non-sway 
in the terms of the above clause. This can be achieved by ensuring that a 
frame which is free to sway is sufficiently stiff for it to be classed as non- 
sway. However, the required stiffness is more likely to be achieved by 
the provision of a triangulated vertical bracing system or by relatively 
rigid reinforced concrete shear walls or core walls around lift shafts and 
stairwells acting in conjunction with concrete floors acting as stiff 
horizontal diaphragms. Each frame must also be effectively braced 
against sidesway out of its plane. 

Beam-to-stanchion connections at plastic hinge positions must be 
designed to have adequate moment rotation characteristics or be de- 

signed to be over-strong so that the plastic hinges occur only in the basic 
beam cross-section. 

Designers of multi-storey buildings should also be aware of BS 5950, 
clause 2.4.5.3 'Additional requirements for certain multi-storey build- 
ings'. This clause draws attention to the fact that local or national 
regulations may stipulate that tall multi-storey buildings should be 
designed to localise accidental damage and gives guidance on how this 

may be achieved. 
Pattern loading in multi-storey buildings may pose particular design 

problems. For the purposes of this chapter, a pragmatic design 
approach is used whereby, for load combinations involving horizontal 
loads, pattern loading of vertical loads need not be considered. Without 
this realistic rule, it is necessary to have specialist computer programs 
for the plastic design of multi-storey frames. 

6.2 Non-sway frames 

If a multi-storey frame can be classified as non-sway, BS 5950: Part 1 

contains no design requirements other than that the buckling resistance 
of the members should be checked by reference to clause 4.8.3.3. This 
clause is only appropriate when it can be shown that the member being 
checked does not contain a plastic hinge that requires plastic rotational 
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capacity at frame loads below the required ultimate limit state loading. 
It is reasonable to argue that a plastic hinge history of the frame for 
each loading combination to determine the forming and unforming of 
any transient hinges is not required because such hinges are unlikely to 
require full plastic hinge rotational capacity and therefore 4.8.3.3 is still 

appropriate. However, in order to justify the use of clause 4.8.3.3, a 
permanent plastic hinge should not form in a stanchion at much below 
the required ultimate limit state load. Where plastic hinges do form in 
the stanchions at relatively low load levels, then they should be checked 
in accordance with more suitable criteria such as Reference 3.15. 
Reference 3.16, which is discussed in Section 3.3.3 of this book, gives a 
suitable simplified method for Universal Beam sections. 

Sub-frames are permitted in the elastic design of rigid frames under 
vertical load combinations as described in BS 5950, clause 5.6.4. There is 
no mention of sub-frames in the clauses concerned with the plastic 
design of multi-storey frames. However, there may be the need to 
analyse pattern loading combinations where member plastic hinge 
mechanisms occur adjacent to elastic members. Furthermore, a non- 
sway condition is one of the design checks required for sway frames and 
it is considered to be reasonable to use sub-frames in the analysis of 
non-sway frames subject to vertical load combinations. Sub-frame 
layouts, different from those used in elastic analysis, are recommended 
and have been included in the design example 6.1. 

6.3 Sway frames 

The plastic design of sway frames is permitted by BS 5950 provided 
proper allowance is made for frame instability effects. This may be done 
by carrying out a full elastic-plastic sway analysis or by using the 
simplified method in clause 5.7.3.3. 

Plastic hinges in stanchions are only acceptable if full elastic-plastic 
sway analyses are carried out. These analyses require the use of 
specialist computer programs which should produce a full plastic hinge 
history including transient hinges, moment rotational requirements, 
particularly at connection hinges, and include second-order effects by 
the use of stability functions or other appropriate theories. Specialist 
programs should be approved by expert third parties because the results 
are not readily verifiable by practising engineers. 

In the plastic design of sway frames the use of sub-frames should be 
limited to frames of four storeys or less. This means in practice that 
computer programs are recommended for frames with five or more 
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storeys. However, these programs need not include second-order effects 
if they are used with the simplified method. This chapter only deals with 
the simplified method. 

6.3.1 Design procedure for sway frames using the simplified method 

The following steps are required in the plastic design of a sway frame. 
These steps are then illustrated in the design example which follows. 

(1) Carry out a preliminary design of the frame in the absence of 
second-order effects taking into account all (reasonable) combina- 
tions of loading. Assume that the effective length of all stanchions 
in the plane of the frame is 1.0 x L. 

When considering vertical loading in the absence of wind load, 
then the notional horizontal loading should be applied. 

(2) The simplified check for frame stability given in BS 5950, clause 
5.7.3.3 should next be satisfied, thus: 

(a) The plastic hinge mechanism should be a sway mode with 
plastic hinges assumed in all beams and at the base of each 
stanchion. No other plastic hinges are allowed in the 
stanchions. 

(b) The individual beams should be checked to ensure that there 
are no local beam mechanisms at the design loads. 

(c) The lower lengths of the stanchions should be designed to 
remain elastic under the theoretical hinge moments assumed 
in (a). 

(d) Under all (reasonable) combinations of unfactored loading, it 
should be possible by means of moment redistribution to 
ensure that all members remain elastic. 

(e) Second-order effects are accounted for by increasing the 
minimum overall rigid-plastic load factor to satisfy (a) and (c) 
depending on the elastic critical load factor as determined 
using Appendix F of BS 5950. 

(3) Even though, for any reason, the strength of the frame may be 
increased above the minimum required for strength design, the 

stability of the stanchions may be checked using the factored loads 
(with bending moments and shear forces enhanced as necessary in 
accordance with 2(e)) rather than the actual collapse loads of the 
frame. 

(4) The stanchions should be checked under vertical pattern loading 
and, for this purpose, the frame may be assumed to be non-sway. 
The in-plane stanchion effective lengths can be derived from 
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Appendix E of BS 5950, but usually the out-of-plane slenderness 
will be critical if restraint is provided only at the floor levels. 

6.4 Example 6.1. Design of a sway frame 

6.4.1 General 

6.4.2 Loading 

A four-storey rigid frame is shown in Fig. 6.1. It has nominally pinned 
bases and a pin jointed roof structure, hence the roof is not part of this 
section of the design. The frames are at 6 m centres. 

6.4.2.1 General 
The unfactored loadings assumed are shown in Table 6.1. 

The reduction in imposed floor loading is in accordance with Table 3 
of BS6399: Part 1: 1984. A 6% reduction is permitted on each beam 
supporting an area of 60 m2. 

The unfactored weight of the side stanchions and wall construction 
has been taken as 12.5 kN per metre length of stanchion. 

6.4.2.2 Stanchion loading reductions 
Table 2 of BS 6399: Part 1 gives reductions in imposed loading of 30, 20, 10 
and 0% on the 1st, 2nd, 3rd and 4th storey stanchions respectively. This is 
not in addition to the 6% reduction on the floor beams indicated above. 

Fig. 6.1 Multi..storey sway frame in design example. 

4m 

4m 

4m 

5m 

1Om lOm 
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Table 6.1 Unfactored design loads for four-storey frame. 

kN/m2 kN/m kN/m 

Roof Imposed 
Dead 

0.75 
3.0 

4.5 
18.0 

Floors 
Partitions 

Imposed 
Imposed 
Dead 

so) 
i.of 
4.0 iö 

36.0 reduced to: 

24.0 
60M 

33.84 

24.0 
57.84 

6.4.2.3 Wind loading 
The wind loading has been derived from CP3: Chapter V: Part 2: 1972. 

Basic wind speed assumed =44 rn/s. 

S1= 1.0 

S2 based on Category 3 Class C with the 
factor calculated for each storey as 
given below. 

Statistical factor S3= 1.0 

The storey panel loads may be calculated as shown in Table 6.2. 
The wind loads at roof and floor levels are therefore: 

Roof 24.06 x say 0.6 = 14.44kN 
3rd floor (15.80+ 24.06 x 0.8)/2 = 17.S2kN 
2nd floor (12.90+ 15.80)/2 = 14.35kN 
1st floor (12.84+ 12.90)/2 = 12.87kN 

The wind loads on the roof have not been included in this design 
example. The loads on the frame are based on a force coefficient 

including windward and leeward walls of (0.7 + 0.3)q = 1 .Oq. 

Table 6.2 Calculation of storey panel loads. 

Storey Height S2 Design q Storey 
(m) wind (kN/m2) panel 

speed loads 
(m/s) (kN) 

1 5 0.600 26.40 0.428 12.84 
2 9 0.672 29.57 0.537 12.90 
3 13 0.744 32.74 0.658 15.80 

4 say 18 0.822 36.17 0.802 24.06 

Topography factor 
Ground roughness factor 



3.24 kN )— 0- 

8.78 kN 

8.78 kN 

8.78 kN 

2nd storey 

84/20 

726 + 29 = 755 
456 
—4 

—115 
70 

1162 

1202+58=1260 
912 

—230 
12 

1954 

732 + 29 = 761 
456 
+4 

—115 
70 

1176 

1St storey 

147/20 

1162+115=1277 
456 
—7 

—259 
88 

1555 

1954 + 230 = 2184 
912 

—518 
15 

2593 

1176+115=1291 
456 
+7 

—259 
88 

1583 
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-_)--- 
A B 

Fig. 6.2 Notional loads on frame for load case 1. 

Table 6.3 Axial loads in stanchions in kN for load case 1. 

(1— 
C 

A B C 

—1 

4th storey 
13/20 

3rd storey 

48/20 

162 324 162 
+1 

70 12 70 

231 336 233 
456 912 456 
-2 +2 

—29 —58 —29 
70 12 70 7 iö 
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6.4.2.4 Notional horizontal loads 
For load combinations with vertical loads, in the absence of wind loads, 
and in the derivation of the elastic critical load factor using clauses 

5.1.2.3, 5.6.3 and Appendix F, the notional horizontal load at each floor 
and roof level is 0.5% of the factored vertical loads applied at that level 
as shown in Fig. 6.2. 

For the roof Nr = 0.005(1.4 X 18.0+ 1.6 X 4.5)20 = 3.24kN 
For each floor Nf = 0.005(1.4 x 24.0 + 1.6 x 33.84) 20 8.78kN 

Loading summaries, including stanchion axial loads, are given in 
Tables 6.3 and 6.4 for the two ultimate limit state load cases: 

Case 1 1.4 x Dead + 1.6 x Imposed (all floors loaded) + Notional loads 
Case 2 1.2 x Dead + 1.2 x Imposed (all floors loaded) + 1.2 x Wind. 

Loading summary for Case 1, 1.4 x Dead + 1.6 x imposed + Notional 
horizontal loads (Fig. 6.2 and Table 6.3) 

Notional loads Notional load 
per storey shear moments 

per storey 

3.24kN l3kNm 

3.24 
8.78 

12M2 48kNm 

12.02 
8.78 

2ft80 84kNm 

20.80 
8.78 

29.58 147 kNm 

For the axial loads in the stanchions, the gross imposed load is used and 
the BS 6399 reductions are made later. 

Roof (1.4x 18+l.6x4.5)10=324kN 
Floor (1.4 x 24+ 1.6 x 36)lO=912kN 

The imposed component of floor load to be reduced is 1.6 x 36 x 10= 
576kN. 



Plastic Design of Multi-storey Buildings 215 

Table 6.4 Axial loads in stanchions in kN for load case 2. 

A B C 

4th storey 135 270 135 
69/20 —3 +3 

60 10 60 

3rd storey 192 280 198 
360 720 360 

154/20 —8 +8 
—21 —43 —21 

60 10 60 

2ndstorey 583+21=604 967+43=1010 605+21=626 
360 720 360 

222/20 —11 +11 
—86 —172 —86 

60 10 60 

927 1568 971 

1st storey 927+86=1013 1568 + 172= 1740 971+86=1057 
360 720 360 

355/20 —18 +18 
—194 —388 —194 

72 15 72 
1233 2087 1313 

3rd storey stanchion reduction = 10% of one floor =58 kN 
2nd storey =20% of two floors = 230 kN 
1st storey = 30% of three floors = 518 kN 

17.33 kN , oW— 0 O 

21.03 kN 

17.22 kN 

15.45 kN 

—0--- 
A B C 

Fig. 6.3 Wind loads on frame for load case 2. 
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The above stanchion reduction is for the centre stanchion, hence take 
50% of this for each side stanchion. 

The resulting design axial loads in the stanchions, calculated as 
1.4 x Dead + 1.6 x Imposed + Notional horizontal loads, are given in 

Table 6.3. 

Loading summary for Case 2, 1.2 x Dead + 1.2 x Imposed + 1.2 x Wind 

load (Fig. 6.3 and Table 6.4) 

The design wind loads for this load case are shown in Fig. 6.3. 

Wind loads Wind load 

per storey shear moments 
per storey 

17.33kN 69kNm 

17.33 
21.03 

3836 154 kNm 

38.36 
17.22 

55.58 222 kNm 

55.58 
15.45 

7L03 355 kNm 

For the axial loads in the stanchions, the gross imposed load is used and 
the BS 6399 reductions are made later. 

Roof (l.2x 18+l.2x4.5)10=270kN 
Floor (1.2 x 24+ 1.2 x 36)10 =720kN 

The imposed component of the floor load to be reduced is 
11.2 x 36 x 10=432 kN. 

3rd storey stanchion reduction = 10% of one floor =43 kN 
2nd storey = 20% of two floors = 172 kN 
1St storey = 30% of three floors = 388 kN 

The above reduction is for the centre stanchion, hence take 50% of this 
for each side stanchion. 

The resulting design axial loads in the stanchions, calculated as 
1.2 x Dead + 1.2 x Imposed + 1.2 x wind loads, are given in Table 6.4. 
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but (0+o)=(L)0 
so that 

dMb = 26047.9— 5268x = 0 dx 

i.e. x = 4.945m and Mpb = 561.0 kNm 

Fig. 6.4 Sidesway mechanism for member sizing, load case 1. 

4m 

m 

H 

6.4.3.1 General 
A sway mode plastic hinge mechanism can be used for preliminary 
member sizing with the requirement that all plastic hinges occur in the 
beams and, if nominally fixed bases are used, at the base of each 
stanchion. 

In Fig. 6.4, the assumed loading and mechanism are shown for load 
case 1, 1.4 x Dead + 1.6 x Imposed + Notional loads. 

A preliminary value for the required plastic moment of resistance of 
the beams can be found by solving the work equation for the sidesway 
mechanism shown. 

8.78(5+9+ 13)0+ 3.24 x 170+ 6 x 878 x = l2Mpb(0+) 

with L = lOm 

(292.14 + 2634x)(lO — x) 
Mpb 120 

The critical plastic hinge position is given by 

iO_x4 x4 10 — x 
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W = 878 kN 

Fig. 6.5 Virtual mechanism to calculate M1. 

The bending moment M1 at the left-hand end of each beam does not 
have a plastic hinge moment but it can be calculated by applying the 
virtual work equation to the mechanism shown in Fig. 6.5. 

W= M19+Mb(O+2a) 

Wx (L+x 
i.e. 

878 x 4.945 14.945 — ________ —561.Ox 
5.055 

=512.3kNm — 
2 

The value of M1 is less than Mpb = 561 kNm under this, the load case 
which subjects the beams to the greatest intensity of vertical load. This 
ensures that the structure is not subject to failure in a local beam 
mechanism. 

Similarly, for load case 2, namely 1.2 x Dead + 1.2 x Imposed + 
1.2 x Wind, the mechanism for member sizing is shown in Fig. 6.6 

15.45 kN 

Fig. 6.6 Sidesway 

x 
..j1O_x . x4io_x .j 

mechanism for member sizing, load case 2. 

4m 

4 m 

4m 

5m 

17.33k — 

21.03 kN 

17.22 kN 
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which gives the work equation 

15.45x5+17.22x9+21.03x 13+17.33x 
17+6x695x 

0 

l2Mb(0+c) 
so that 

(800.2 + 2085x)(L — x) 
Mph 2L 

with L 10 m 

and hence, x 4.808m, Mph = 468.4 kNm and M1 335.0 kNm. 

6.4.3.2 Beam sizing 
The required preliminary plastic moment of resistance for the beams is 
therefore 561.OkNm to which must be added some allowance for 
second-order effects which can be as much as an additional 15%. 

Adopt as beams 533 x 210 >< 92 UB in design Grade 43 steel which 
has a plastic moment of 651 kNm. This gives an additional load factor 
against collapse of 651/561 = 1 .16 according to first-order (rigid plastic) 
theory. It is shown later in Section 6.4.4 that this is sufficient to take 
account of second-order effects. 

6.4.3.3 Stanchion sizing 
When choosing appropriate section sizes for the stanchions, a decision 
has to be made as to whether or not to try to use smaller stanchion 
section sizes for the top two storeys. In making this decision, the points 
to consider are: 

(1) The stanchions in rigid frames attract large bending moments from 
the floor beams irrespective of the floor level in the frame. 

(2) Plastic hinges forming in the upper stanchions early in the hinge 
history may well allow a local mechanism to form at a load level 
below the required ultimate limit state loading. 

(3) Internal stanchions will attract bending moments from pattern 
loading. 

(4) Splices in the stanchions of rigid frames will have to have large 
bending moment and axial load capacities and will require non-slip 
connections. This almost certainly means the use of friction grip 
bolts together with all of the additional costs that such connections 
incur. 

(5) Extra design office and drawing office time and smaller tonnages of 
more different steel sections will also add to the costs. 
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(6) Beam-to-stanchion connections are moment resisting connections 
and therefore require reasonably large stanchion flange thicknesses 
in order to resist the high tensile loads from the bolts. 

(7) Splices increase the footprint of the stanchions. 

Conversely, however, 17m long stanchions will require careful 
consideration of the straightness and section tolerances and an 

Table 6.5 Plastic moment distribution of stanchion moments for load case 1. 

Shear moments 
per storey 

246 —14 —244 Final moments 
250 —10 —240 

l2kNm —4 —4 —4 

3rd floor A3 B3 C3 

—8 (—512) (49)—8 (561) —8 

12 —26 —248 

262 —62 
266 —34 —318 Final moments 

48kNm 
292 —8 —246 Final moments 

+62 
—8 —8 —8 

2nd floor A2 B2 C2 

—14 (—512) (49) —14 (561) —14 
22 —26 —208 
212 —94 
220 —40 —316 Final moments 

84 kNm 
286 --14 —220 Final moments 
300 0 —300 

+94 
—14 —14 —14 

1st floor Al BI Cl 

l47kNm —49(—512) (49) —49 (561) —49 
63 15 —290 

212 
226 —34 —339 Final moments 

Note. The net beam connection moments which have to be balanced with the 
adjacent stanchion moments are (—M1 = —512), (561—512=49) and 

(Mph = 561)kNm respectively. The method does not quite work at Cl 
where 220+339=559 not 561. 
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assessment must be made of the achievable erected frame tolerances and 
their compatibility with the wall construction details. 

The bending moments in the stanchions are indeterminate unless a 
computer program is used that can trace the plastic hinge history and 
give the resulting frame bending moments at the ultimate limit state. 

Table 6.6 Plastic moment distribution of stanchion moments for load case 2 (no 
pattern loading). 

Shear moments 
per storey 

157 —43 —163 Final moments 
160 —20 —140 

69kNm —23 —23 —23 

3rd floor A3 B3 C3 

—26 (—335) (133) —26 (468) —26 
49 —64 —160 

175 —119 
198 —90 —305 Final moments 

154 kNm 
224 —26 —157 Final moments 
250 0 —250 

+119 
—26 —26 —26 

2nd floor A2 B2 C2 

—37 (—335) (133) —37 (468) —37 
63 —70 —78 
85 —196 

111 —107 —311 Final moments 
222 kNm 

263 —37 —141 Final moments 
300 0 —300 

+ 196 
—37 —37 —37 

1st floor Al Bl Cl 

355kNm —118(—335) (133) —118 (468) —118 
155 22 —212 

35 

72 —98 —330 

Note: The net beam connection moments which have to be balanced with the 
adjacent stanchion moments are (—M1 = —335), (468 — 335 = 133) and 

(Mph = 468) kNm respectively. The method does not quite work at C1 
where 330+ 141 =471 not 468. 
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The simplified design method avoids the use of such programs and bases 
the analysis on manual calculations supported by linear (first-order) 
elastic analysis. 

The stanchion bending moments in each storey must be in 

equilibrium with the sway moments caused by horizontal loads such 
as notional horizontal loads or wind loads. However, with some 
engineering judgement and using the plastic moment distribution 
method described in Reference 6.1, reasonable stanchion moments 
can be derived. A major difference with the Reference 6.1 method is 
that, here, the beam moments have been determined and that all of the 
balancing is done within the stanchions. Two examples of the procedure 
are given in Tables 6.5 and 6.6. 

An inspection of Tables 6.3 to 6.6 indicates that the first storey 
stanchions on lines B and C are critical. The relevant member loads are 
shown in Table 6.7. 

A preliminary choice of stanchion section is 356 x 368>< 129 UC in 
design grade 43 steel: 

The stanchion effective length on its y-y axis is 0.85 x 5.0 = 4.25 m. 

From Steelwork Design62, the data for a stability check to clause 4.8.3.3 
are: 

Effective length 4m Sm 4.25m 
Page 80 PCYkN 3730 3430 3655 

Page 135 MbkNm 659 622 650 

From Table 18 of BS 5950, Part 1, for /3 0, m = 0.57. 

Hence the unity factor calculations: 

0.57 x 34 2593 

650 +-=0.739 

0.57 x 339 1583 

650 

Table 6.7 Critical member loads. 

Axial loads 
(kN) 

Bending 
(kNm) 

moments 
(kNm) 

Load case 1 from 2593 34 0 0 
Tables 6.3 and 6.5 1583 339 0 0 
Load case 2 from 2087 98 0 0 
Tables 6.4 and 6.6 1313 330 0 0 
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0.57 x 98 2087 
650 

0.57 x 330 1313 

650 +-=0.649 
Therefore the preliminary sections are satisfactory. 

6.4.4 Elastic critical load factor Acr and the required rigid-plastic load factor A1, 

The structural model and loadings for the consideration of second-order 
effects using the simplified method are shown in Fig. 6.7. 

The elastic critical load factor, Acr, is estimated in accordance with 
Appendix F2 of BS 5950. The preliminary section sizes calculated above 
with pinned bases were found to be inadequate and therefore alternative 
stanchion sizes with various base spring stiffnesses were analysed using a 
linear elastic analysis program and the results obtained are summarised 
in Table 6.8. The following sections were used in these analyses: 

Section 1 356 x 368 x 129 UC Section 2 356 x 368 x 153 UC 
Section 3 254 x 254 x 73 UC Section 4 203 x 203 x 60 UC 

where, in Table 6.8, 

Acr is always critical in the first storey and equals 
1 = > 4.6 

d1 d1 
200 x 

0.9XAcr 

(Acr — 
1) 

if .Xcr < 10, otherwise = 1.0 

3.24 kN 
—.- O O )— 0- 

8.78 kN I 
/d3 

8.78 kN I 
.__471 

d2 

8.78 kN / 
7fd, 

Sway 
kA kB kc deflections 

Fig. 6.7 Structural model for simplified second-order analysis. 
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k = 10% () for a nominally pinned base, and 

k = 100% () for a nominally rigid base. 

Inf= Infinity, i.e. a fully fixed base. 

These values for k are in accordance with Reference 6.3. The 
conclusions from the trial analyses may be summarised as follows: 

Trial 1 sections are inadequate 
Trial 2 sections are adequate with fully fixed bases. However, this 

requires large expensive bases and foundations, and also 
stanchion splices 

Trial 3 sections are inadequate 
Trial 4 sections are adequate but require a base fixity larger than that 

recommended for a nominally pinned base 
Trial 5 sections are adequate with nominally rigid bases and thus 

require large expensive bases and foundations 
Trial 6 sections are inadequate 
Trial 7 sections are just about acceptable with the nominal stiffness of 

pinned bases. 

It follows that the satisfaction of the requirements for second-order 
effects in sway frames is a non-trivial exercise and may require a 

significant increase in the section sizes of the stanchions. 

Table 6.8 Summary of trial analyses to satisfy second-order stability criteria. 

Trial 
No. 

Stanchions 
— 

Base 
stiff. 

d1 

(mm) 
d2 

(mm) 
d3 

(mm) 
d4 

(mm) 
Açr Required 

A 
Side Centre k 

Section k Section k used 

1 1,3 0 1,4 0 0 8.1 10.5 12.6 14.6 3.09 No good 
2 1,3 Inf 1,4 Inf Inf 2.1 3.8 5.8 7.8 11.96 1.0 

3 1 6609 1 6609 6609 6.2 8.3 9.5 10.4 4.02 No good 
4 1 1 12000 5.37 7.4 8.5 9.5 4.66 1.146 

5 1 66090 1 66090 66090 3.17 4.9 6.0 7.0 7.88 1.031 

6 1 6609 2 8000 6609 5.88 7.9 9.0 9.9 4.25 No good 
+8000 

7 2 8000 2 8000 8000 5.47 7.5 8.6 9.5 4.57<4.6 
but accept 

1.152 
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As a result of the above analyses, the preliminary stanchion section 
size chosen on the basis of a first-order (rigid-plastic) analysis needs to 
be increased and the required steel section sizes now are: 

All beams 533 x 210 x 92 UB in design grade 43 
All stanchions 356 x 368 x 153 UB in design grade 43 

The stanchion bases are nominally pinned but a notional base stiffness 
of 10% of the column stiffness according to BS 5950, clause 5.1.2.4 is 
necessary in order to ensure stability. 

Although there is no increase in the preliminary beam size, the 
original choice gave a rigid-plastic load factor of 1.16 which is greater 
than the required A of 1.152. The new design is therefore adequate with 
regard to second-order effects. 

6.4.5 Final check of the sway frame at the ultimate limit state 

Having modified the design in order to accommodate second-order 
effects, it is now necessary to carry out a final check of member stability 
under the bending moments associated with the required increase in ),. 

The loading combinations for this check are again: 

Case 1 1.4 x Dead + 1.6 x Imposed (not pattern) + Notional loads 
Case 2 1.2 x Dead + 1.2 x Imposed (not pattern) + 1.2 x Wind. 

The detailed calculation of bending moments given in Section 6.4.3 can 
be reused here. It is merely necessary to increase the moments by a 
factor of 1.152. The checks required are for beam and stanchion 
capacity and stanchion stability. However, the capacity of the beams 
has effectively been checked above. It may be noted in this respect that 
the end reaction shear load does not reduce the plastic moment of 
resistance of the beams. 

The member loads for the stanchion checks are shown in Table 6.9. 

Table 6.9 Member loads for stanchion checks. 

Axial loads 
(kN) 

Bending 
(kNm) 

moments 
(kNm) 

/3 

Load case 1 from 2593 39 0 
Tables 6.3 and 6.5 1583 391 0 0 

0 
Load case2from 2087 113 0 0 
Tables 6.4 and 6.6 1313 380 0 0 
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From Steelwork Design62, the data for an overall buckling check to 
clause 4.8.3.3 of BS 5950 are: 

356 x 368 x 153 UC in design grade 43 steel: 

Effective length 4m Sm 4.25m (as before) 
Page 80 PCYkN 4430 4070 4340 

Page 135 MbkNm 787 751 778 

Hence the unity factor calculations with 3 0, m = 0.57 from Table 18 
of BS 5950: Part 1, as before: 

0.57 x 39 2593 
778 +-=0.626 

0.57 x 391 1583 
778 +-=0.6S2 

0.57 x 113 2087 
—0564 

778 +4340_ 

0.57 x 380 1313 

778 +-=0.S81 
The stanchions also have to be checked for adequate local capacity 

and the data necessary for a check according to BS 5950, clause 
4.8.3.2(a) is available from page 176 of Steelwork Design62, thus: 

AgpySl8OkN and M=787kNm. 
The required unity factor calculations are therefore: 

39 2593 391 1583 
0.550 0.803 

113 2087 380 1313 
0.546 +-= 0.736 

and the stanchions are satisfactory with regard to both local capacity 
and overall buckling. These factors have sufficient excess capacity to 
allow for holes in the stanchion flanges. 

6.4.6 Final check of the non-sway frame at the ultimate limit state 

This check introduces pattern loading for the first time and is necessary 
in order to ensure that stability of the stanchions is achieved and in 

particular the internal stanchions. The methodology used is relatively 
unsophisticated and a more precise estimate of the bending moments 
and axial forces may be obtained if required. 
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Fig. 6.8 Non-sway pattern loading for stanchion design. 

The critical loading combination for this check is 1.4 x Dead + 1.6 x 
Imposed (including pattern loading) and a suitable loading arrangement 
is shown in Fig. 6.8 together with an indication of the out of balance 
bending moments on the centre stanchion at each floor level. 

The beam load of 878 kN shown in Fig. 6.8 includes the 6% reduction 
for beam design and this should be increased to 912 kN when 
calculating the axial loads in the stanchions. A suitable estimate of 
these bending moments is as follows: 

M1 = 878 x = 549 kNm (plastic collapse mechanism) 

M2 = 336 x = 280 kNm 

M3 = M1 — M2 = 269 kNm (out of balance moment at each 
floor level of the centre stanchion) 

A suitable model for the redistribution of M3 into the centre stanchion 
and the elastic floor beams is shown in Fig. 6.9. 

162 kN 324 kN 162 kN 

p. C 

336 kN 878 kN I 
M3 

M2 878 kN 
- 

336kN 
— 

. 
336kN 

I 
878kN 

• 

A 

—- 

(elastic bending moment 
distribution) 

Mu 

MB + 
M21 

ML 

4m 

4 or 5 m 

10 m 

Fig. 6.9 Model for the redistribution of the out of balance moment. 

10 m 
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Table 6.10 Moment distribution. 

Floor KB Ku KL K MB 
(kNm) 

M 
(kNm) 

ML 
(kNm) 

3 
55330 

5.53 
10000 

48640 = 12.16 
4000 

12.16 29.85 49 110 110 

2 5.53 12.16 12.16 29.85 49 110 110 

1 5.53 12.16 
48640 
5000 

27.42 54 119 96 

In Fig. 6.9, MB, Mu and ML are the changes in bending moment 
necessary to bring the joint into equilibrium. These are proportioned 
according to their individual stiffnesses, K = I/L as shown in Table 

6.10, so that 

M = K1M3 where K = KB, K or KL 
KB + Ku + KL 

and 'B = 55 330 cm4, 1c = 48 640 cm4. 

336 
624 
—29 

12 

943 kN 

943 
29 

624 
—115 

12 
1493 kN 

1493 
115 
624 

—259 
15 

1988 kN 

324 
12 
336 kN 

1 

0 

—29 kN 

—115 kN 

—259 kN 

324 kN 

4m 

168kN 456kN 

4m 

456kN 168kN 

4m 

168kN 456kN 

5m 

If 

(a) Loads from floor 
and roof 

Fig. 6.10 Axial loads (kN) 

12 kN 

12 kN 

12 kN 

15 kN 

(b) Stanchion (c) Reduction (d) Load (e) Bending 
self-weight in imposed load summation moments 

and bending moments (kNm) in the centre stanchion. 
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Hence the centre stanchion bending moments and axial loads are 
summarised in Fig. 6.10. 

The stability calculations are carried out in accordance with clause 
4.8.3.3.1 of BS 5950 and the required data is available in Steelwork 

Design 6•2: 

356 x368 x 153 UC design grade 43 steel 

Effective length 3.Om 4.Om 5.Om 3.4m 4.25m 
Page 80 PCYkN 4760 4430 4070 4628 4340 

Page 135 MbkNm 787 787 751 787 785 

1st storey MA=96kNm with /3 0 and m 0.57, F= l988kN. 

0.57 x 96 1988 

785 

2nd storey MA= 119 kNm with /3 = 110/119 = 0.9244 and m = 0.96, 
F= l493kN. 

0.96 x 119 1493 

787 +=0.468 <1.0 

and therefore the stanchions are satisfactory. 

6.4.7 Elastic analysis check under unfactored loads 

The final check that is required in order to confirm the member 
selection using the simplified method is given in clause 5.7.3.3 (c) of 
BS 5950, Part I. This states that: 

'Under all (reasonable) combinations of unfactored loading (including 
the notional horizontal loads when wind loads are not included in the 
combination) it should be possible by means of moment re- 
distribution to produce sets of moments and forces throughout the 
frame which are in equilibrium with the applied loads and under 
which all members remain elastic.' 

The background to this clause is given in Section 3.1.3 of this book. It is 
evidently intended to provide a simplified procedure to ensure that the 
structure has the capacity to shake down under the unfactored loads 
thus avoiding either alternating plasticity or incremental collapse under 
repeated fluctuations of load. 

The wording of the above clause appears to be imprecise and liable to 
cause confusion. No limit is placed on the amount of redistribution of 
bending moment that is allowed and therefore it does not exclude using 
plastic collapse distributions similar to those that were the basis of the 
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primary design calculations. On the face of it, bearing in mind that the 
design uses load factors greater than 1.2 for all loading cases and that 
UB and UC members have shape factors of the order of 1.15, 
satisfaction of this clause would appear to be a non-event. 

If this clause is intended to provide a shakedown check, then logically 
precisely the same redistribution should be applied to all loading cases. 
The clause does not appear to require this but the authors would suggest 
this as a reasonable interpretation of its requirements. This being the 
case, the easiest way to satisfy this clause is to carry out the necessary 

Table 6.11 Bending moments 'M' and axial loads 'F' in stanchions. 

Stanchion/ Dead + Dead + Dead + Dead + Dead + 
floor level Imposed Imposed Imposed (NP) Imposed (NP) Imposed (P) 

(NP) (P) + Notional + Wind + Notional 
Loads Loads 

M F M F M F M F M F 
(kNm) (kN) 

AlL 135 838 36 508 111 830 64 808 18 502 
1U 260 562 125 399 259 558 254 546 124 396 
2L 219 218 209 186 210 
2U 217 279 218 111 215 277 205 272 217 110 
3L 253 125 247 233 121 
3U 153 43 151 138 41 

B1L 0 1795 115 1270 31 1795 93 1795 92 1270 
1U 0 1191 * 843 13 1191 46 1191 * 843 
2L 0 86 19 60 100 

2U 0 600 91 425 7 600 28 600 96 425 
3L 0 * 10 38 * 
3U 0 132 5 27 129 

C1L 135 838 156 678 159 847 206 868 173 684 
1U 260 562 244 396 261 566 267 577 244 399 
2L 219 93 230 253 101 

2U 217 279 89 284 219 280 229 286 91 285 
3L 252 233 258 272 237 
3U 153 175 156 169 176 

* = smaller moment and giving single curvature in member 
P = Pattern loading 
NP = Non-pattern loading 
U = stanchion level just above floor beam 
L = stanchion level just below floor beam 
Additional axial loads in the stanchions are given in Table 6.12. 
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elastic analyses (by computer if possible) and then to carry out any 
redistribution manually if this is required. In general, a properly 
designed frame should be capable of sustaining the unfactored loads 
elastically without the need for significant redistribution. 

Bending moments and axial loads from linear elastic computer 
analyses are summarised in Tables 6.11, 6.12 and 6.13. A capacity check 
to clause 4.8.3.2(a) of BS 5950 is used to check the stanchions for elastic 
action and if a member fails the clause requirements then moment 
redistribution will have to be considered. From Section 6.4.5 above, 
Agpy = 5l80kN and M=787kNm. 

M F 
Hence check for —+————< 1.0 

Agpy 

By inspection of Tables 6.11 and 6.12 the stanchions are satisfactory, 
provided that the beams are satisfactory. The beams have a plastic 
moment of resistance of 651 kNm and this is not exceeded in Table 6.13 
and therefore the frame is satisfactory. 

6.4.8 Deflections at the serviceability limit state 

6.4.8.1 General 
In general, the calculation of the deflections of a plastically designed 
multi-storey structure requires the use of a linear elastic computer 

Table 6.12 Stanchion axial loads to be added to those given in Table 6.11. 

Stanchion! 
floor level 

Non-patt em loading Pattern loading 

Roof Self-wt./ Imposed Total Roof Self-wt./ Imposed Total 
Wall load red. (kN) Wall load red. (kN) 

A3U 113 50 0 163 113 50 0 163 
A2U/A3L 113 100 —7 206 113 100 0 213 

A1U/A2L 113 150 —50 213 113 150 —7 256 
AlL 113 200 —130 183 113 200 —7 306 

B3U 225 8 0 233 225 8 0 233 

B2U/B3L 225 16 —14 227 225 16 —7 234 

B1U/B2L 225 24 —100 149 225 24 —50 199 

B1L 225 34 —260 —1 225 34 —130 129 

C3U 113 50 0 163 113 50 0 163 

C2U/C3L 113 100 —7 206 113 100 —7 206 

C1U/C2L 113 150 —50 213 113 150 —7 256 
C1L 113 200 —130 183 113 200 —50 263 
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Table 6.13 Bending moments in floor beams. 

Loading Floor Span A—B Span B—C 

Line A Max Sag Line B Line B Max Sag Line C 

D+Imp 
(NP) 

3 

2 

1 

405 
436 
395 

265 
256 
267 

513 

499 

522 

513 

499 

522 

265 
256 
267 

405 
436 
395 

D+Imp 
(P) 

3 
2 
1 

167 
435 
160 

88 
285 

87 

262 
442 
272 

464 
265 
467 

288 
79 
291 

407 
182 
399 

D+Imp 
(NP)+NL 

3 

2 

1 

398 

423 

370 

266 

257 

269 

521 

512 

544 

506 
487 
500 

265 
256 
264 

414 
449 
419 

D+Imp 
(NP)+W 

3 

2 

1 

371 

390 

317 

268 

259 

276 

545 
543 
591 

482 

456 

453 

263 

255 

261 

441 

482 

472 

D+Imp 
(P)+NL 

3 
2 
1 

161 

426 
141 

89 
285 
90 

267 
451 
288 

459 
256 
451 

288 
78 

290 

413 
191 
417 

analysis. Here, the calculation includes the nominal stiffness of the pinned 
bases which has been assumed to be 10% of 4E1/h = 8000 kNm/rad. 

6.4.8.2 Wind sway 
The maximum horizontal deflections under wind loading are shown in 
Table 6.14. 

As the permissible storey height to deflection ratio is 300, these values 
are satisfactory. 

6.4.8.3 Floor beam deflections 
The maximum floor beam deflections under vertical load are shown in 
Table 6.15. 

Table 6.14 Maximum horizontal deflection. 

Sway (mm) Nett storey (mm) Storey/deflection 

Roof 21.4 3.0 1320 
3rd floor 18.4 2.9 1379 
2nd floor 15.5 4.4 921 

1st floor 11.1 11.1 448 



Plastic Design of Multi-storey Buildings 233 

Table 6.15 Maximum vertical deflections. 

mm Span/deflection 

Dead load 7.6 1315 
Imposed, non-pattern 10.7 934 
Imposed, Pattern 12.7 787 
Dead + Imposed, Pattern 20.3 493 

As the permissible span to deflection ratio under imposed load alone is 

360, these values are satisfactory. 

6.4.9 Design of the floor beam to stanchion connection 

6.4.9.1 General 
This connection is at a plastic hinge location and therefore should be 
designed to have a satisfactory moment rotation capacity or it should be 
over-designed in order to ensure that the plastic hinge occurs only in the 
beam member. Moment-rotation capacity would not be required if the 
connection was only at the last hinge to form or if it could be shown 
that plastic hinges at the connections only occurred at levels of loading 
above the required factored loading (enhanced by ), according to 
Section 6.4.4). 

In this example the connection will be over-designed by a factor of 1.2 
in order to ensure that any over-strength steel in the beam does not 
force the plastic hinge into the connection. 

The plastic moment of resistance of the beam =651 kNm, hence the 
connection will be designed to resist a moment of 1.2 x 651 = 781 kNm. 

The design vertical shear load on the connection is 

(1.4 x 24+ 1.6 x 33.84) x 4.82 x 1.2 = 508kN. 

The connection can be either site welded or site bolted. A site welded 
connection will keep the connection within the depth of the beam with 
no projection of material beyond the stanchion flange. 

A site bolted connection will need to be deeper than the beam depth 
in order to achieve a lever arm long enough to develop sufficient 

bending moment from the upper bolt group. The connection will also 
need to project outside the stanchion flanges for up to 300 mm so that 
the bolt loads and compression zone loads can be transferred gradually 
into the beam. The additional material in the connection will raise the 
beam strength above its basic plastic moment of resistance locally but 
this should not be of any concern because additional strength will not 
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weaken the structure. The stanchion will not become the weak link in 
the structure because the depth of the beam connection also reduces the 
bending moments that occur in the stanchion. It may be noted that the 
finite lengths and depths of haunches are relatively easily taken into 
account in the plastic design of portal frames whereas the lengths and 
depths of beam to stanchion connections in multi-storey frames cannot 
be included without using computer programs to carry out the 
necessary number processing. 

6.4.9.2 Connection design example 
A preliminary design for a site bolted connection is shown in Fig. 6.11. 
The details of such a connection should be discussed with the fabricator 
before the design is finalised. 

There are four pairs of bolts in the top bolt group and two pairs in the 
bottom group. The triangular stiffener on the top flange of the beam 
dissipates the bolt tensile loads into the beam flange. A pair of smaller 
triangular stiffeners are added to this larger stiffener in order to 

Fig. 6.11 Beam to stanchion connection. 

543 

j80 
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strengthen the end-plate and to reduce the prying action of the bolts. 
The latter effectively increases the allowable direct tensile loads in the 
bolts and hence the moment capacity of the connection. However, in 
this example the allowable bolt loads have been limited to the BS 5950 
standard values. The bottom stiffener is a cutting from the beam 
section. The sizes of these three stiffeners are chosen such that they will 
lie within the depth of the concrete floor. 

Bolts. The upper bolt group provides the tensile force and has a lever 
arm from the point of rotation which is taken to be adjacent to the 
flange of the lower stiffener as shown in Fig. 6.11. Assuming that each 
bolt has a tensile capacity TkN and that only the top two pairs of bolts 
are fully loaded, then the moment capacity equals: 

(0.863 
+ 0.763 + + 5.108T kNm = 781 

T=153kN 

Therefore, use M24 grade 8.8 bolts. From page 244 of Reference 6.2, the 
tensile capacity = 1 59 kN/bolt. 

Beam top flange stiffener. The part of the tensile load which is resisted 
by 100 mm depth of the stiffener is approximately 2 x 153 kN. Use a 
12mm thick stiffener with 10mm fillet welds. 

End-plate. The end-plate is 220mm wide with bolts at 120mm 
horizontal cross centres. From the formula used previously in Section 
5.9.4 of Chapter 5: 

with F=4x 153 =612kN 

m= 
(120—12)1044 
I 612x44 which gives t = 

V 0.265 x 100 
= 31.9 mm 

As this is impracticably thick, use two triangular stiffeners, 
90 x 10 x 150, to strengthen the end-plate as shown in Fig. 6.11 and 
hence use a 20 m thick plate. Strictly speaking, this should be justified, 
for instance by yield line analysis. However, here it will be adopted 
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without further justification. Similarly, stiffeners are also necessary to 

strengthen the 20.7mm thick flange of the stanchion where it too has to 
resist the bolt tensile forces. 

Shear load capacity of the lower bolt group. 
Design shear force = 508 kN. 
Shear capacity of M24 grade 8.8 bolt = 132 kN/bolt. 
Bearing capacity on 20mm grade 43 steel plate=221 kN/bolt. 
Therefore the capacity of the four bolt group is 4 x 132 = 528 kN which 
is adequate. 

Note: There is also some shear load capacity from the upper bolt 
group. 

Capacity of cutting used to stffen the lower flange. 

/ 0.643 0.543 Horizontal compressive force = 2 x 153 2 + 0763 + 
0.763 

= 1087kN 

/1802 + 3002 
Flange force = 1087 

300 
= 1268kN 

A cutting from the beam section has a flange compression capacity of 
15.6 x 209.3 x 0.275 = 898 kN. Hence the web of the cutting takes 
1268 — 898 = 370 kN. Theoretically, for the point of rotation to be 
correct, up to about 50% of the compression load could be taken by the 
web. 

Shear capacity of stanchion web. 

Design bending moment = 781 kNm 
Lever arm = 781/1087 = 0.718 m (1087 kN horizontal force - see above) 
Design shear force= 781/0.718 = 1088kN 
Design shear strength, F,, = 725 kN (Reference 6.2, page 141) 

The bending capacity of the stanchion is reduced if the shear force is 
greater than 0.6P,,. Therefore 'K' type web shear stiffeners are required 
to take the excess shear force of 1088 — 0.6 x 725 = 653 kN. The area of 
the required stiffeners is therefore 

653000 x(say)1.5 2 
275 

= 3562 mm 

Therefore use 2 No. 15 x 150 stiffeners. 
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Note. The connection design given above is simple and conven- 
tional. A more rigorous approach is given in Reference 6.4. 
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Chapter 7 

Miscellaneous Portals 

7.1 Introduction 

Chapter 2 introduced the reader to the general principles of plastic 
design and Chapter 5 described the detailed design of a single-bay 
building. Many other shapes of portal frame not considered in these 
earlier chapters can readily be designed using plastic theory. This 
chapter extends the earlier ideas to a wide range of different shapes of 
portal frame. Attention is confined to deriving the bending moment 
diagram at collapse and choosing suitable member sizes. Verifying 
member stability and designing the connections follows the same 
principles that have been described in the earlier chapters and is not 
considered further here. 

This chapter concentrates on graphical and semi-graphical analyses 
using bending moment diagrams drawn to scale. These methods have 
great advantages for the type of frames being considered here in 

locating the plastic hinges and 'seeing' the collapse mechanism. They 
have great versatility and can be applied to a wide variety of frames and 
load cases. Mathematical verification of a diagram can be used after- 
wards to improve its accuracy if this is considered necessary. 

As described in Chapter 2, there are two methods available for pinned 
based frames. The first cuts the frame at the apex and introduces three 
redundancies. For this method the reactant bending moment diagram 
can then be drawn using the two necessary and sufficient geometric 
conditions derived in Section 2.6.4 or by solving simultaneous equations 
for equilibrium at the hinge positions. Alternatively, the frame can be 
made statically determinate by releasing the horizontal restraint at one 
base. The reactant bending moment diagram can then be drawn very 
easily in terms of the single redundant horizontal force. 

For fixed based frames, only the first of these methods is available. 
However, the provision of fixed bases for single-storey portal frames is 

extremely expensive and it is usually found to be more economical to 

238 
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use pinned bases despite the extra material required in the frames. Both 
methods are then available and in many cases the choice is largely a 
matter of personal preference. In the first method, the drawing of the 
'free' bending moment diagram is much simpler but the manipulation of 
the reactant moment diagram rather more complicated. Conversely, 
with the second method, more effort may be required to draw the free 
bending moment diagram but then the reactant line can be drawn and 
adjusted very easily. 

Both of these methods will be used in this chapter but the authors 
would not claim that they have necessarily used the best method in each 
case. 

When using the first method, some of the portal frames considered 
here, such as tied portals and northlight portals, have a reactant 
bending moment diagram which follows the free diagram quite closely. 
The actual bending moment at any section is then the relatively small 
difference between two larger quantities. In such cases, a graphical 
analysis based on scaled bending moments should always be checked 

mathematically in order to eliminate the magnification of drawing 
inaccuracies. It is also doubly important to ensure that all reasonable 
load combinations are considered. 

The remainder of this chapter will illustrate these points by a series of 
examples. 

7.2 Crane buildings 

The dynamic loads and impact factors to be used in the design of 
crane buildings are specified in BS 5950: Part 1, clause 2.2.3. This 
clause simply refers the reader to BS 6399: Part 1. It also recommends 
that values for cranes of loading class Q3 and Q4 as defined in BS 2573: 
Part 1 should be established in consultation with the crane manufac- 
turer. 

Crane beams and other members directly supporting cranes of 
utilisation classes U4 to U9 as defined in BS2573: Part 1 need to be 
checked for fatigue. Clause 2.4.3 of BS 5950 refers the reader to BS 5400: 
Part 10. 

The load factors and load combinations for the design of structures 
supporting cranes are given in BS 5950: Part 1, clause 2.4.1.2 and Table 2. 
The serviceability limit state specified in clause 2.5.1 states that crane 
surge and wind need not be considered together in any loading 
combination. Deflection limits are given for individual crane gantry 
girders but nothing is specified for the variations in the horizontal 
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distances between the crane rails. Designers should build up their 
experience by learning from actual built designs and from discussions 
with crane manufacturers. In the absence of any other guidance, the 
following values can be used for cranes of loading classes Qi and Q2. 

The transverse horizontal deflection at the top of the column h/300. 

The theoretical spread between the crane rails at any point along the 
rails due to reasonable combinations of frame loads and crane loads 
<+20mm. 

Fixed bases are beneficial in reducing deflections but they can 
considerably increase the cost of the foundations especially when 
building on filled sites. If nominally pinned bases are used, then 
consideration should be given to taking advantage of the advice in 
clause 5.1.2.4(b) for nominal foundation stiffness. However, this should 
be used cautiously and should probably be limited to buildings where 
the cranes are of utilisation classes Ui to U3. 

7.2.1 Example 7.1. Design of a crane building 

5.0 

The dimensions of the building and the required loads at the ultimate 
limit state are shown in Fig. 7.1. 

The frame is cut at the apex and three redundancies, M, H and V 

introduced as shown in Fig. 2.58. The resulting free and reactant 
bending moment diagrams are shown superimposed in Fig. 7.2. 

10 kN/m = 250 kN 
I I I II I I I II I II 

1.25 

8.0 

Fig. 7.1 Dimensions and loads of crane building. 

0.54 
kN 

F 

—I 

8 G 

H 

J 
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5001— 

0 

1045 

Fig. 7.2 Bending moment diagram for crane building (kNm). 
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V 

The free bending moment diagram is drawn as follows. 

with x measured from 
E in plan 
constant 

In order to draw the reactant line, we need to make an assumption 
and it is usually easier to start by guessing a member size for the 
column. We will choose a 533 x 210 x 82UB in Grade 43 steel with a 
full plastic moment of 566 kNm. Inspection (or a trial reactant line if 
this is not sufficient) shows that the critical column bending moment 
is below the haunch at F. Fixing the actual bending moment (the 
difference between the free and reactant values) at this point = 566 kNm 
allows the reactant line between A and F to be drawn with a value 
below the haunch of 781 — 566=2l5kNm and a value at F of 
176 kNm. 

As shown in Section 2.6.4, the ordinate of the reactant diagram for 
the left-hand column between A and D must be the same as that 
between J and F. This ordinate is 'y' = 797 — 176 = 621 kNm so that 

1001 

781 
841 

797 

A C D E F G J 

AtE =0 
EtoDandEtoF =5x2 

D to C and F to G 
Below C=781.25+220 
At A= 1001.25+8 x 5.5 
Below G=781.25+60 
At J=841.25—8 x 5.5 

=781.25kNm 
= 1001.25 kNm 
= 1045.25 kNm 
=841.25kNm 
=797.25kNm 

with A to C a straight line 

with G to J a straight line 
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the reactant moment at D is 1045 — 621 = 424 kNm and the reactant 
line between A and D can be drawn as shown. The dimension 'x' (see 
Fig. 2.72) now follows as: 

= ay = 1.25 x 621 = 97kNm 

The remainder of the reactant line can now be drawn and the 
maximum bending moment in the rafter scaled at about 220 kNm. As 
here the scale drawing has been repeated numerically, it is easy to obtain 
an exact value of the maximum rafter moment by calculation. In the 
vicinity of the rafter hinge, with x measured horizontally from E, the 
equation of the free bending moment is 

MED = —5x2 

and the equation of the reactant bending moment is 

MED = 203 + (424 — 203) 125 

giving for the shaded region in Fig. 7.2 

MED = 203 + 17.68x — 5x2 

This has a maximum value when 

i.e. x=1.768m 
dx 

so that, substituting this value of x into the equation for MED, the 
maximum bending moment in the rafter is 

Mmax = 203 + 31.3— 15.6 = 218.7 kNm 

There are several suitable rafter sections and the lightest is a 
406 x 140 x 46 UB with A1 = 245 kNm. However, second-order effects 
are likely to be significant here and there is no virtue in being too 
miserly. For the moment, therefore, we will select a 457 x 1 52 x 52 UB 
with M 301 kNm. 

It is instructive to compare the two available graphical methods and, 
for this frame, the second method proceeds as follows. Releasing the 
horizontal force at the right-hand base makes the frame statically 
determinate and the vertical reactions VA and Vj at A and J respectively 
are determined first. By equilibrium of moments about A: 

2SVj=2SOx 12.5+120x24.5+440x0.5+16x 5.5 

= 6373 kNm 
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.. V = 254.9 kN 

VA = 250+560—254.9= 555.lkN 

The total applied horizontal load of 16 kN is all resisted at A and the 
free bending moments can now be calculated. Between A and C with x 
measured from A to C 

MAC = 16x 

Between C and D with x still measured from A 

MCD = 16x — 8(x — 5.5) + 220 = 264 + 8xkNm 

Thus, in the left-hand stanchion 

Mc =88 kNm below the crane rail and 308 kNm above it 
MD=328kNm 

Between D and E with x measured from D to E in plan 

MDE=(SSS.l —440)x+ l6(8+)_8(2.5+-) 
+ 220 - lOx2 

=328+ 115.9x—5x2kNm 

Thus, in the left-hand rafter 

ME=995kNm 

Between J and G the free bending moment is zero. Between G and F, 
with x measured from G 

MGF = 60+ 8x 

Thus, in the right-hand stanchion 

MG =0 below the crane rail and 60 kNm above it 
MF=8OkNm 

Between F and E, with x measured from F to E in plan 

MFE =(254.9— l20)x+8(2.5+)+60_-_ 
= 80+ 135.7x — 5x2 kNm 

Thus, in the right-hand rafter 

ME=995kNm 



244 Plastic Design to BS 5950 

The free bending moment diagram obtained in this way is drawn on the 
same diagram as the reactant diagram in Fig. 7.3. 

The reactant bending moment diagram is now constructed very 

easily. If we start, as before, by assuming a plastic hinge with moment of 
resistance 566 kNm below the haunch at F, the horizontal reaction H at 
J is given by 

7.5H= 76+ 566 

giving H = = 85.6 kN 

The ordinates of the reactant line are then given by 

MD=MF=8x85.6 =685kNm 
ME =9.25x85.6 =792kNm 

and the reactant line can be drawn as shown. The maximum bending 
moment in the rafter scales about 220 kNm as before. 

The actual load factor against collapse can also be estimated. At the 

plastic hinge position in the rafter, the magnitude of the free bending 
moment is 996 kNm and that of the reactant bending moment is 
777 kNm. If the moment capacity of the chosen rafter (301 kNm) is 
added to the reactant moment, as plotted on Fig. 7.3, the free moment 

capacity available is 777 + 301 = 1078 kNm. The ratio 1078/996 = 1.08 

provides a good estimate of the actual load factor and shows that there 
is about 8% overcapacity available to take account of second-order 
effects. 

Fig. 7.3 Bending moment diagram (kNm) obtained using method 2. 

Actual rafter strength + 995 
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With this method it is easy to investigate whether an alternative 
design may be better. The next lightest section to try for the stanchion 
would be a 457 x191 x 74UB with M=456kNm. This gives 

H (76 ±456) = 70.9 kNm 

and reactant line ordinates of 

MD=MF =8 x 70.9 =567.5kNm 
ME = 9.25 x 70.9 =656kNm 

With the reactant line drawn in this way, the maximum bending 
moment in the rafter scales about 340 kNm which requires at least a 
457 x 152 x 60 UB with M = 353 kNm. However, this would give no 
reserve of strength to counter second-order effects and it is necessary to 
anticipate a significant increase in rafter section. The rafter size would 
then become close to or even equal to the stanchion section and 
experience suggests that a uniform or near uniform frame is unlikely to 
be economic for a structure of this type. We will therefore continue with 
the original design using a 533 x 210 x 82UB for the stanchion and a 
457 x 1 52 x 52 UB for the rafter. 

This example illustrates perfectly the relative merits of the two 
alternative graphical methods. The two bending moment diagrams 
shown shaded in Figs 7.2 and 7.3 are the same but the routes to them 
are quite different. In Fig. 7.2, drawing the free bending moment 
diagram was relatively easy but the reactant line is rather more difficult 
to manipulate. In Fig. 7.3, most of the effort went into drawing the free 
bending moment diagram but once this had been done any number of 
reactant lines could be tried with little effort. 

There are two further tasks to carry out before the choice of member 
sizes is complete. The first is to check the stanchions for the effect of the 
rather large axial loads added at B and H. At position B, adding a 
further lOkN (say) of axial load for the weight of the side cladding 
and noting that the cross-sectional area of a 533 x 210 x 82UB is 

10500mm2, 

Bending moment = 5 x 85.6 — 88 x = 348 kNm 

Axial load = 555 ± 10 = 565kN 

p 565000 
10500x275°'96 

and M, = 0.275(2058 — 2853n2) = 536 kNm 



where the formula for the reduced plastic moment M' is found on page 
30 of Reference 7.1. As the reduced capacity of 536 kNm is greater than 
the bending moment of 348 kNm, the stanchion is satisfactory. 

Similarly, at position H, 

Bending moment = 5 x 85.6 = 428 kNm 

Axial load = 255 + 10 = 265 kN 

=0.091 265000 
10500 x 275 

and M' = 0.275(2058 — 2853n2) = 559 kNm 

As the reduced capacity of 559 kNm is greater than the bending moment 
of 428 kNm, the stanchion is satisfactory. 

The second remaining task is to check for second-order effects. 

However, this is problematical. 
The effect of the crane is to increase the sizes of the steel sections 

compared with a craneless building. However, the crane also increases 
the axial loads in both the columns and the rafters and particularly in 
the former. In general, the increase of axial loads has a greater effect 
than the increase in section sizes so that it is essential to check for 
second-order effects including the crane loads. 

In principle, the formulae given in Section 3.2.3 of this book can be 
used to check the frame for second-order effects provided that some 
conservative assumptions are made. Thus the axial loads at collapse 
arise directly from the plastic design as shown in Fig. 7.4. 

254.9 kN 

+ 
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5.7 11° 

85.6—16 
= 69.6 kN 

8 kN 

120 kN 

8 kN 

555.1 kN 
25m 

h=8rn 

Fig. 7.4 Axial loads at collapse. 

85.6 
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As indicated in Chapter 3, in order to use the simplified formulae it is 
necessary to ignore the beneficial effect of the haunches. It is also 
necessary to make some assumptions regarding the axial loads in the 
stanchions and it is conservative to assume that the high axial load 
below the crane support exists over the whole length of the stanchion. 
Finally, the two halves of the structure are not equally loaded and it is 
necessary to apply the formula to the most highly loaded half of the 
frame. In this case, it is the left-hand side that is most critical and, for 
this half of the frame, the calculation proceeds as follows: 

I = Second moment of area of column = 4.752 x 108 
= Second moment of area of rafter =2.137 x I 8 

P = Axial force in column = 551 kN 
Pr =Axial force in rafter=77.6cos5.7l1°+ 115.1 sin 5.711° 

= 88.7 kN 
IT A'7') iI8 

R Cr _________ 3492 
Jr/i 2.137x108x8 

3EIr 
Acr = 

Lr[(1 
+ )Ph + 

0.3PrLr] 

3 x 205 x 2.137 x 108 

12560[(1 +-2)x555.1 
x 8000+0.3 x 88.7 x 

12560] 

= 1.66 

This is, of course, an extremely low value and well below the 
threshold of 4.6 for the use of an approximate treatment of second- 
order effects as discussed in Section 3.2.1. Certainly, the calculation 
contains a number of safe assumptions and may therefore be regarded 
as primarily indicative. However, an 'exact' analysis for the elastic 
critical load of this frame gives Aer = 3.43 which is still too low to 
continue with an approximate calculation. There are therefore three 
alternatives: 

J Increase the member sizes until an elastic critical load factor greater 
than 4.6 can be reasonably justified (e.g. by relaxing one or more of 
the safe assumptions such as by taking account of the rotational 
stiffness of the nominally pinned bases, averaging the axial load in 
the column over its whole length or sharing the second-order 
destabilising effect of the crane between the two columns). 
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U Proceed on the basis of a second-order elastic-plastic analysis. For 
this frame and loading, such an analysis reveals that the failure load 
is Af = 0.93 so that the increase of section sizes to achieve security in 
this way is not great. 

U Revert to elastic analysis. 

The writers had not anticipated this problem when they started to 
write this section on crane buildings and, to the best of their knowledge, 
the low elastic critical loads of portals supporting cranes have not been 
discussed previously. This is evidently a subject worthy of further study 
and for the present it is only possible to point out the problem and to 
suggest caution when designing this type of structure, especially if the 
deflection calculation reveals that it is at all flexible. 

7.3 Portal frame with an intermediate floor 

This is a common type of structure but the advantages offered by the 
floor are not always recognised and used. A typical situation is shown in 
Fig. 7.5. Even though the floor beam is only nominally pinned to the 
stanchions, it effectively creates a fixed base portal frame with the fixed 

base at first floor level. This gives the advantage of: 

U a reduction in the size, and therefore cost, of the frame members; 
U double curvature in the upper length of the stanchion with 

consequent advantages for member stability. 

10 kN/m 

i25 

12.5m 12.5m 

Fig. 7.5 Portal frame with an intermediate floor. 
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As far as the portal frame is concerned, the floor beam merely serves 
as a tie between the stanchions. In order to fulfil this function: 

Li the floor beam has to be continuous between the stanchions with 
respect to tensile forces; 

Li it should have suitable connections to resist the induced tensile 

forces, as well as the shear forces from the floor loads, without 
slippage. Any connection slippage or distortion may put some of the 
tensile force into the concrete floor. 

Often, the floor construction will be sufficiently rigid to prevent 
sidesway of the portal frame at the floor level. When, and only when, 
this is the case a further significant advantage is obtained: 

Li A larger elastic critical load, making second-order effects insignif- 
icant. 

It should be appreciated that a different situation is created if the 
floor beam is provided with a moment connection to the frame. This is 

not precluded but it should be designed with care as the floor beam may 
become part of the frame mechanism and thereby reduce the frame 
strength. This situation should be avoided if the section size of the floor 
beam is significantly larger than the section size of the stanchions. 

The additional bending moment caused by the eccentricity of the 
connection to the floor beam can be beneficial in reducing the bending 
moments in the lower storey of the stanchions. However, this effect does 
depend on the floor beam layout and the resulting eccentricity about the 
x—x axis of the stanchion. This has not been included in Example 7.2 
which follows. 

The effective 'base fixity' in the stanchion at the first floor connection 
will not be equal to the gross plastic moment of the stanchion because of 
the holes in the column flange for the floor beam connection, and 
because of the reduction due to the axial load in the stanchion. As far as 
portal frame behaviour is concerned, there is no benefit in having fixed 
bases to the foundations. However, fixed bases would improve the 
stability of the lower length of the stanchion and help to counteract the 
negative effect of the large axial compressive loads. 

7.3.1 Example 7.2. Portal frame with an intermediate floor 

The frame and its loads at the ultimate limit state are shown in Fig. 7.5. 

Here, it will be assumed that the floor is able to prevent the frame from 
swaying at the level of the floor connection. If this was not the case, as 
far as second-order effects are concerned, the frame would act as though 
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it were a pinned-based frame of 10 m height to eaves and with a large 
additional axial load over the lower half of the stanchion. Such a frame 
would be extremely sensitive to second-order effects and a quite 
different design approach would be required. 

Because of the effective base fixity, this frame is best designed by the 
first of the graphical methods with a cut at the apex. The symmetry of 
the frame and loading means that there is no vertical redundant force at 
the cut. However, the floor beam introduces another redundancy T so 
that the forces contributing to the reactant diagram are as shown in 

Fig. 7.6. This additional force does not affect the geometry of the 
reactant diagram above B and it is this part of the diagram that 
controls the design. 

Because of the symmetry, it is only necessary to consider half of the 
frame. In order to draw the free bending moment diagram, we note that 
the axial force in the floor beam is released because this force is treated 
as a redundancy. The free bending moments are therefore exactly as for 
a portal frame without an intermediate floor as shown in Fig. 7.7, rising 
in a parabolic curve from zero at F to 10 x 252/8 = 781.25 kNm at C and 
then remaining constant at this value from C to A. 

The geometric constraints on the reactant diagram which were 
derived in Section 2.6.4 remain valid. In order to commence the design, 
we first guess a section size for the stanchion and a 457 x 152 x 60 UB 
with a full plastic moment of 353 kNm will be tried. As a conservative 
estimate, this value of M will be reduced to 0.75 x 353 = 265 kNm 
above B for the reasons outlined above. If a plastic hinge is also 
assumed below the haunch, the first part of the reactant diagram 
between B and C can be drawn as shown in Fig. 7.7. 

MA= 781 + 265= lO46kNm 
M' =781—353 =428kNm 

ALH 
Fig. 7.6 Redundant forces. 
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Fig. 7.7 Bending moment diagram for frame with intermediate floor (kNm). 

The value 'y' = MA — Mc = (1046 — 428) x 5.0/4.5 = 686 kNm, so that 
Mc = 1046 — 686 360 kNm. It then follows from Section 2.6.4 that 

= ay = 686 x 1.25 = 172 kNm 

and the second part of the reactant line can be drawn from Mc to 
MF = 360— 172 = 188 kNm. 

The maximum sagging bending moment between C and F now 
scales or calculates as 198 kNm. As a conservative judgement was 
made of the fixing moment above B, and as no significant reduction 
due to second-order effects is anticipated, a 406 x 140 x 39 UB with 

M = 198 kNm can be chosen for the rafter giving the precise capacity 
required. 

The remaining part of the reactant diagram between A and B can 
now be drawn without calculation as the tie force 'T' is chosen to bring 
the bending moment back to zero at A. The completed bending moment 
diagram is shown shaded in Fig. 7.7. 

As with all of these examples, a suitable haunch length to avoid 
plasticity at the rafter end of the haunch can be scaled off the bending 
moment diagram. 

1046 

781 

428 

3601 

Haunch--ø. 

A 

188 

EF 
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For the assessment of second-order effects, the frame can be 
considered as a fixed based frame with a height to eaves of 5 m. The 
calculation of the elastic critical load then proceeds as follows: 

I = Second moment of area of column = 2.545 x 108 mm4 
= Second moment of area of rafter = 1.241 x 108 mm4 
= Axial force in column = 125 kN 

H = Shear in column=y/5=137.2kN 
Pr =Axial force in rafter= 137.2cos5.711°+ 125sin5.711° 

= l49kN 

R — IcLr — 2.545 X 108 X 12.56 = 5 152 — 
Irh 

— 
1.241 X 108 X 5 

5E(10+R) 

5PrL + 2RPh2 
Jr 

5 x 205 x(10+5.152) 
5 x 149 x 125602 2 x 5.152 x 125 x 50002 

1.241 x 108 
+ 

2.545 x 108 

= 14.5 

As Acr is greater than 10, second-order effects can be neglected. An 
exact elastic critical load analysis with sway prevented at the level of the 
floor beam confirms this value. It should be carefully noted here that if 
the exact elastic critical load analysis is repeated with the frame free to 
sway at the floor level, the elastic critical load drops to 1.33. This result 

emphasises that the stability of the frame is very sensitive to the stiffness 

Fig. 7.8 Critical buckling mode of frame with intermediate floor. 

I I I I I I I I I I I I I I I I I I I I I I 
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of the horizontal restraint provided by the floor. Advantage should only 
be taken of this restraint if it is completely reliable. 

Some readers may find the above conclusion surprising but, although 
a tie at the intermediate floor level is very effective in preventing the 
columns from spreading apart at that level and thereby makes a 
significant contribution to the plastic design capacity under uniform 
vertical load, it is totally ineffective in resisting the critical buckling 
mode as shown in Fig. 7.8. A similar situation also arises in the next 
example. 

7.4 Tied portal frame 

Economy in portal frame construction is sometimes obtained at the 
expense of headroom by the provision of a light tie at eaves level. This 
tie is usually a steel angle or round bar and a typical arrangement is 
shown in Fig. 7.9. 

This arrangement turns the roof into a triangulated structure and 
induces high axial compressive forces in the rafters. In view of the 
conclusions reached in previous examples regarding second-order 
effects, this consideration should sound load alarm bells and it can be 
anticipated that tied portal frames will have very low elastic critical 
loads. This indeed proves to be the case and tied portals should not be 
designed by plastic theory. They should rather be designed by elastic 
theory taking due account of second-order effects. The example which 
follows is therefore included to demonstrate this conclusion and not as 
an example to. be followed in practice. 

10 kN/m 

3.75 m 

6m 

Fig. 7.9 Tied portal. 

I I I I I I I I III I 

25 m 
r 
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It is conventional wisdom that the roof slope of a tied portal should 
not be less than, say, 12° because the shallower the roof slope the larger 
the axial stresses in both the tie and the rafter, and designs with low roof 
slopes are impracticable. The stretching of the tie under axial load 
allows the eaves to spread and the apex to drop. Even with sufficient 

roof slope, it may be necessary to detail the structure to allow site 

adjustment so that the stanchions can be made to be near vertical under 
a predefined portion of the dead load. 

In any case, the connection of the tie at the eaves requires a detail that 
allows the length to be adjusted in order to accommodate the 
fabrication tolerances, particularly if it is connected to an eaves 

haunch cutting or if intermediate tie connections have bolts in shear in 

normal oversized holes. 

Under vertical loading, the stanchions do not carry large bending 
moments and therefore the bases can be either pinned or fixed and this 
will not affect the design. However, tied portals are very sensitive to 
transverse or asymmetric loading and fixed bases will significantly 

improve the stability. For the same reason, the notional horizontal 
loads are much more likely to influence the design than in conventional 

portal frame construction. Asymmetric snow loads on roof slopes 

greater than 15° and exceptional snow drifting in the valleys of multi- 

span structures also need consideration. 
Load combinations involving wind with no imposed load may well 

put the tie into compression. In such cases, the analysis should be 
repeated ignoring the tie and treating the structure as an open portal. 

7.4.1 Example 7.3. Tied portal 

The frame and its loads at the ultimate limit state are shown in Fig. 7.9 

and the single relevant collapse mechanism under uniform vertical 

loading is shown in Fig. 7.10. 

Tied portals are usually designed without long haunches and with the 
same section for the rafters and stanchions. The required full plastic 
moment M is given by 

125 x 3.1250 = 4M0 

M=97.66kNm 
For illustrative purposes, therefore, we will choose a 305 x 102 x 28 UB 
with M = 112 kNm although this section has a low lateral stability 
and, particularly in the presence of high axial load, would require close 

purlin centres in order to avoid lateral torsional buckling. Conversely, 



10 kN/m 

Miscellaneous Portals 255 

12.5m 12.5m 

Fig. 7.10 Collapse mechanism. 

the relatively deep section is advantageous with regard to the in-plane 

buckling associated with second-order effects. 

The forces on one half of the frame are shown in Fig. 7.11 and the 
unknowns, H, T and Pr, can be determined from considerations of 
equilibrium. 

125 
kNt 

I 

10 kN/rn I I I I I I I I- I I I I I I I I I I I I I 

12.5 m 

Fig. 7.11 Forces on one half of the frame. 

97.7 kNm 

3.75 m 

6m 

97.7 kNm 

H 

I 

H-I - 
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From moment equilibrium of the rafter 

125 x 6.25 — 97.7 + 97.7 — 3.75H 0 

.. H = 125x6.25 = 208.3 kN 

and Pr H__0=217.SkN cos 16.7 

and from moment equilibrium of the stanchion 

6(H— T) = 97.7kNm 

... T=208.3—-7-1=l92kN 

The elastic critical load can now be determined using the same 
equation as for the portal frame without the tie. This is because the tie is 
of no benefit as far as the critical buckling mode shown in Fig. 7.12 is 
concerned. Thus: 

h = Height to eaves =6m 
Lr = Length of rafter = 13.05 m I = Second moment of area of column = 0.5439 x 108 mm4 

= Second moment of area of rafter = 0.5439 x 108 mm4 
P = Axial force in column = l25kN 
Pr = Axial force in rafter = 217.5 kN 

R — IcLr — 0.5439>< 108 X 13.05 — 2 175 — 
1r17 

— 
0.5439 X 108 X 6 

— 

3EIr 
Acr = 

ir[(i +)Pch+O.3PrLr] 

3 x 205 x 0.5439 x 108 

l3050[(1+!5)x125x6OOO+O.3x217.5x 13050] 

= 1.27 

This elastic critical load is of course so low that plastic design is out of 
the question as anticipated in the introduction to this example. 
Logically, this will always be the case and hence the conclusion that 
tied portal frames are not suitable for plastic design. 
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Fig. 7.12 Critical buckling mode of tied portal frame. 

7.5 Monitor roof portal frame 

The monitor roof portal frame is popular where natural daylight is 
required but with limited direct sunlight penetration. It is therefore 
more suited to the tropical zones unless overhangs are incorporated in 
the roof. 

As a consequence of the vertical legs in the monitor roof, these frames 
have more complicated bending moment diagrams than conventional 
portal frames. This results in a greater number of potential plastic hinge 
positions and a greater variety of possible collapse mechanisms. 
However, these are not difficult to deal with when graphical methods 
of analysis are used. 

o.s4 

10 kN 

I I I I I I I I I I I II 

Fig. 7.13 Monitor roof portal frame. 
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7.5.1 Example 7.4. Monitor roof portal 

A monitor roof portal frame with its ultimate limit state loads is shown 
in Fig. 7.13. 

Because of the more complex geometry, it is easier to make this type 
of frame statically determinate by releasing the horizontal force at the 
base and working with the single redundant H as shown in Section 2.7 
and Fig. 2.76. The complete bending moment diagram is given in 
Fig. 7.14 which is constructed as follows. 

As this frame is only carrying vertical forces, the free bending moment 
diagram is the same as that of a simply supported beam. The vertical 
reactions at the bases are both 135 kN. As the frame and loading are 
both symmetrical, it is sufficient to consider half of the frame. 

Between A and B, MAB =0 
Between B and C, with x measured from B in plan, 

lOx2 
MAB = 135x————— 

2 

At C, x = 8.5 m and this gives a free bending moment of 786.25 kNm 
which remains constant between C and D. 

0 

500 - 

1000 

Fig. 7.14 Bending moment diagram for monitor portal (kNm). 
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Between D and E, with x measured from B in plan, 

MDE = l35x_!__ l0(x—8.5)= 85+ 125x—5x2 

At E, x = 12.5m and ME = 866.25 kNm. 
The reactant bending moment at any point is equal to the height of 

that point above the base multiplied by H. The design is initiated by 
guessing a size for the stanchion and here we choose a 457 x 191 x67 UB 
with M = 405 kNm. If we assume a plastic hinge below the haunch, 
where the height above the base is 5.5m 

73.64kN 

The remainder of the reactant line then follows: 

AtB 6H=441.8kNm 
At C 8.55H=629.6kNm 
At D and E 11.05H=813.7kNm 

It is easy to see that the design of the rafter is governed by the bending 
moment at C which equals 786.3—629.6= 156.7 kNm. We can there- 
fore choose a 406 x 140 x 39 UB with M = 198 kNm. The length of the 
haunch can now be calculated or scaled from the bending moment 
diagram in order to avoid plasticity at its rafter end. 

There are no simple formulae for checking second-order effects in 
monitor portals and it is necessary to adapt the equations given in 
Chapter 3 in order to obtain a reasonable estimate. The critical buckling 
mode is again a combined stanchion and rafter mode but the situation is 
complicated by the geometric effect of the monitor which inhibits the 
free buckling of the rafter and also dissipates some of the axial load 
in this member. If the rafter is 'unwrapped', its total length is 
Lr = 8.87 + 2.5 + 4.0 = 15.37m. However, to include this length with 
the full axial force Pr in the rafter, calculated at the eaves, would be 
excessively conservative. It is sufficient to consider Lr to comprise the 
sloping length of the rafter together with the vertical leg of the monitor 
and to combine this with the calculated value of Pr. The calculation then 
proceeds as follows. 

h = Height to eaves =6 m 

Lr = Effective length of rafter = 8.87+2.5= 11.37m 
I = Second moment of area of column = 2.94 1 x 108 mm4 

= Second moment of area of rafter = 1.241 x 108 mm4 
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P = Axial force in column = 135 kN 
H = Base shear = 73.64 kN 
Pr = Axial force in rafter = Hcos 16.7° + P sin 16.70 

= 109.3 kN 

R_Lr_2.94l X 108 X 11.37 
—4491 

Jr/i l.241x108x6 
— 

3EIr 
Acr = 

Lr[(1 
+ )Ph + 

0.3PrLr] 

3 x 205 x 1.241 x 108 

11 
370[(1 +i) x 135 x 6000+0.3 x 109.3 x 

11370] 

= 4.80 

The value calculated in this way is conservative with respect to the exact 
value of )cr = 5.30. 

It follows that second-order effects can be treated approximately and 
that the minimum value of the load factor ), at plastic collapse is given 
by 

0.9Acr 0.9 X 4.80 = 
AC — 1 

= 
3.80 

= 1.137 

As the actual value of provided by the proposed design is about 1.05, 
a stronger and stiffer rafter should be chosen and the stability check 
repeated. 

This example adds further evidence that irregular portal frames 
should be treated with respect as far as second-order effects are con- 
cerned. Prior to the study reported in this chapter, there had been no 
indication of just how sensitive to in-plane buckling these structures 
can be. 

7.5.2 Example 7.5. Monitor portal with exceptional snow load 

The monitor roof portal, with its abrupt change of roof levels, will have 
an exceptional snow load case to be considered. Figure 7.15 shows the 
frame of Example 7.4 with the loads assumed for this load case at the 
ultimate limit state. 

The frame is once more made statically determinate by releasing the 
horizontal reaction at the right-hand base and the free bending moment 
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ii 25m ii 
Fig. 7.15 Exceptional snow load on monitor portal frame. 

diagram for the roof members between B and H is again that of a simply 
supported beam of 25 m span subject to the same vertical loads as the 
roof. The vertical reactions VA and Vj at A and J can be determined by 
considering equilibrium: 

25V = 10(8.5+ 16.5)+75 x 12.5 +42.5 x 5.667 

VJ=25=57.l3kN 
and Vp, = 137.5—57.13 = 80.37kN 

The free bending moments are therefore as follows: 

Between A and B, MAB = 0 
Between B and C with x measured from B in plan 

MBC = 
80.37x—-— 

80.37x— 1.5x2 —0.l96x3kNm 

When x = 8.5, Mc = 454.3 kNm. 
Between C and D, MCD is constant. 
Between D and E, with x measured from B in plan as above 

M = 80.37x — 42.5(x — 5.67) — l0(x — 8.5) — 1.5x2 

= 325.8 +27.87x— 1.5x2kNm 

so that at E x = 12.5 m and ME = 439.8 kNm 

kN 

,1OkN 3 kN/m 
_I__ I 

D 
E 
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250 
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Fig. 7.16 Bending moment diagram for monitor with exceptional snow (kNm). 

and at F x = 16.5m and MF = 377.2 kNm. 
Between J and H, MJH = 0 
Between H and G, with x measured from H in plan 

3x2 
MHG = 

57.13x—---- 

so that at G, with x = 8.5m, MG = 377.2 kNm. 
Finally, between G and F, MGF is constant = 377.2 kNm and the 
calculations for the two halves of the frame agree. 

The free bending moment diagram can now be drawn as shown in 

Fig. 7.16. 
The reactant line can now be drawn for any suitable value of the base 

shear H and the one shown in Fig. 7.16 corresponds to H = 37.5kN 
giving 

MB =37.5x6 =225.OkNm 
Mc =37.5x 8.55 =320.6kNm 
MD=ME =37.5x11.O5=414.4kNm 

In comparison with Fig. 7.14, the bending moments in Fig. 7.16 are 
quite small and it is evident that the exceptional snow load case is not 
critical. This case need not, therefore, be pursued further. 

7.6 North light portal frames 

A north light portal frame is a non-symmetrical portal frame, a typical 
example being shown in Fig. 7.17. The asymmetry does not introduce 
any unexpected complexities except that the sag of the long rafter 
should be checked. 

454 
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lOkN/m=lOOkN 16kN 
I I I I I I I I I I I I I I I l2kN _______ 

6mI 3m 
lOm 2.5m 

Fig. 7.17 North light portal frame example. 

7.6.1 Example 7.6. North light portal frame 

The frame is shown in Fig. 7.17 together with its loading at the ultimate 
limit state. 

Because the frame is not symmetrical, it is again probably easier to 
make the frame statically determinate by releasing the right-hand base 
rather than making a cut at the apex. The vertical reactions at the base 
are easily determined by equilibrium: 

l2.SVR = 100 x 5+6 x 10+12 x 11.25 +6 x 12.5 

:. VR=-=61.60kN 
and VL = 124—61.60 = 62.4OkN 

The free bending moments then follow in much the same way as the 
previous example: 

Between A and B, MAB = 0 
Between B and C, with x measured from B in plan 

MBC = 62.40x — 
lOX 

At C, where x = lOm, M = 624—500 = 124 kNm. 
Between F and E, MFE = 0 
MD = 1.25(61.60—6) = 69.5 kNm 
M = 2.5(61.6—6)— 1.25 x 12 = 124 kNm as before. 
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The free bending moment diagram can now be drawn as shown in 
Fig. 7.18. 

This is a frame of relatively small span so that a uniform frame with 
only nominal haunches is appropriate. Once more, we commence the 
design by assuming a plastic hinge at the eaves (either B or E) and we try 
a 305 x 102 x 25 UB with a full plastic moment of 92.4 kNm. This gives 

H=?= l5.4kN 

and, for the reactant bending moment diagram, which is also drawn on 
Fig. 7.18, 

MD = 15.4 x 7.5 = 1l5.5kNm 
Mc = 15.4 x 9 = 138.6 kNm 

The maximum bending moment in the rafter scales about 74 kNm so 
that the plastic design of the uniform frame is satisfactory. In fact, the 
plastic collapse load factor is about 1.09. 

If required, the maximum bending moment in the rafter can be 
calculated exactly. If x is measured in plan from B, 

lOx2 

MBC=62.4x———— 15.4(6+) 
= —92.4 + 57.78x — 5x2 kNm 

0 

50 - 
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200 - 

Fig. 7.18 Bending moment diagram for north light portal frame. 
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The maximum bending moment is when 

i.e. x=5.778m 
dx 

which gives Mmax = —92.4 + 333.9 — 166.9 = 74.5 kNm 
Once again, it is necessary to consider second-order effects before the 

choice of member sizes can be considered to be complete and, once 
again, the methods given in Chapter 3 are not directly applicable and 
can be considered to give approximate guidance only. The most 
reasonable procedure here appears to be to apply the model shown in 
Fig. 3.11, and the associated equation given in Section 3.2.3, to the left- 
hand leg and the long rafter of the frame. As the right-hand rafter is 
relatively stocky, the right-hand half of the frame will be stiffer than the 
part considered and will offer it some additional restraint. This 
procedure is therefore likely to be conservative: 

h = Height to eaves =6 m 

Lr = Effective length of rafter = 10.44m I = Second moment of area of column = 0.4364 x 108 mm4 
= Second moment of area of rafter = 0.4364 x 108 mm4 
= Axial force in column = 62.4 kN 

H=Baseshear =15.4kN 
Pr = Axial force in rafter =Hcos 16.7° +P sin 16.7° 

=32.68kN 

R — — 0.4364 X 108 X 10.44 — 1 74 — 
Jr/i 

— 
0.4364 X 108 X 6 

— 

3EIr 
Acr = 

Lr[(l +)Pch+0.3PrLr] 

3 x 205 x 0.4364 x 108 

10440[(1 +-) x 62.4 x 6000+0.3 x 32.68 x 
10440] 

= 3.50 

This value is of course less than the limiting value of 4.6 (see Section 

3.2.6) and on this basis the approximate treatment is invalid and 
second-order effects should be treated more precisely. However, the 
value calculated in this way is conservative and the more precise value 
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of Acr calculated using exact analysis is 4.92. Nevertheless, even this 

higher value of Acr requires a plastic collapse load factor given by 
0.9Acr 0.9 X 4.92 

Acrl 3.92 
=1.13 

which is higher than the 1.09 provided. It follows that a uniform frame 
of 305 x 102 x 25 UB is not quite adequate and some strengthening is 
required. 

This example emphasises once again that irregular frames tend to be 
sensitive with regard to second-order effects and that these should 
always be carefully considered. The intelligent use of the approximate 
methods given in Chapter 3 will usually give an indication of the 
seriousness of the problem and will often also offer a sufficiently 
accurate solution to enable a safe design to be obtained. 

Thus, here, an increase in member size will both strengthen and stiffen 
the frame and make it possible to satisfy the conservative approximate 
treatment of second-order effects used above. Alternatively, fixed bases 
would reduce the slenderness of the relatively long columns and be very 
beneficial in increasing the elastic critical load to an acceptable level. 

7.7 Lean-to portal frames 

A lean-to portal structure is often built alongside or attached to an 
existing structure. A typical shape is shown in Fig. 7.19. The design 
procedures and other practical considerations are similar to those for 
the north light portal considered in the previous section. 

An upper eaves haunch can be beneficial in reducing the rafter sag. If 
the upper eaves is rigidly connected to a stronger, stiffer frame, it can 
also reduce the rafter size. However, in such a case, the bending 
moments arising from this attachment can be sufficiently large to cause 
a plastic hinge in the upper eaves zone early in the loading history. 

In the example shown in Fig. 7.19, which will be designed later, the 
long slender right-hand column indicates possible problems with 
second-order effects. Base fixity would be of considerable benefit here 
and would also produce an overall increase in stiffness and strength. 

7.7.1 Example 7.7. Lean-to portal frame 

The frame for this example is shown in Fig. 7.19. It is a stand-alone 
frame but the considerations would be similar if it were connected at the 
right-hand eaves to an existing structure. 
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Fig. 7.19 Lean-to portal frame. 

D 

8.5 m 

The procedure for plastic design is very similar to that used in the 
previous example of a north light portal, leading to the bending moment 
diagram shown in Fig. 7.20. When the right-hand base is released, the 
equation for the free bending moment in the rafter is 

MBD = (12.5 — x) 

If we assume a uniform frame with a plastic hinge below the small 
haunch at D, and guess a 305 x 102 x 28UB with M = 112 kNm, the 
base shear H is given by 

l3.66kN 

The reactant moment line is then drawn from 

MB=l3.66x6 =81.95kNm 
MD = 13.66 x 8.5 = 116.1 kNm 

and the resulting maximum bending moment in the rafter scales about 
96 kNm. The plastic collapse load factor given by this design is 1.08. 

A suitable approximate treatment for second-order effects is to 
assume a point of contraflexure in the middle of the rafter and to use the 
equations of Section 3.2.3. A moment's reflection is sufficient to make it 
clear that the columns will have much more influence than the rafter 
and that it is sufficient to consider only the right-hand half of the frame. 

B 

C 
0.3 m 

A 
12.5 m 

I 
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Fig. 7.20 Bending moment diagram for lean-to portal frame (kNm). 

This is likely to prove conservative as the 
frame will provide additional restraint: 

h = Height to eaves 

Lr = Length of rafter to mid-span I = Second moment of area of column 
= Second moment of area of rafter 
= Axial force in column 

H = Base shear 
Pr = Average axial force in rafter 

stiffer left-hand half of the 

=8.5m 
=6.37m 
= 0.5439 x 108 mm4 
= 0.5439 x 108 mm4 
=62.5kN 
= 13.66kN 
=Hcos 11.3° 
= 13.4kN 

IcLr 0.5439 X 108 X 6.37 R = = 
0.5439 x 108 x 8.5 

= 0.75 

3EIr 

Lr[(1 +)Pch+O.3PrLr] 
3 x 205 x 0.5439 x 108 

6370[(l +-) x 62.5 x 8500 +0.3 x 13.4 x 
6370] 

= 3.73 

A E 

82 

116 

Acr = 
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This value is again less than the limiting value of 4.6 (see Section 

3.2.6) and, on this basis, second-order effects require an increase in the 
member sizes. The exact elastic critical load is 5.37, which is a 
considerable improvement on the approximate value calculated above. 

However, it is difficult to suggest a better approximate treatment than 
the one used. Even the higher elastic critical load value would, strictly 
speaking, still require a redesign because the necessary value of the load 
factor is 

A — O.9Acr 0.9 X 5.37 

"Acrl 4.37 
— 

which is higher than the 1.08 provided. 

Reference 

7.1 Steel Construction Institute. Steelwork Design: Guide to BS5950: Part 1: 

1990, Volume 1 — Section properties and member capacities, 3rd ed. 1992. 



Chapter 8 

Multi-span Portal Frames 

8.1 General 

Multi-span portal frames are a common form of structure and can 
include a number of spans ranging from two to ten or more. The design 
effort and the level of rigour required to design structures of this type 
means that computer programs are now very desirable if not absolutely 
necessary. In particular, the increased complexity means that the plastic 
hinge history cannot be determined manually and the designer requires 
this information in order to 

U allow the member stability checks to be carried out at the minimum 
required ultimate limit state design loading rather than at the higher 
collapse mechanism loading; 

U check for any transient plastic hinges and to determine whether or 
not they should be considered in the member stability calculations; 

U determine if any plastic hinges have formed at the serviceability limit 
state loadings and whether these should be taken into account in the 
deflection calculations. 

However, blind faith in computer programs is a recipe for disaster 
and it is considered essential (Reference 8.1) to be able to carry out 
sufficient manual checks to verify the computer solution. This is only 
possible if the designer has sufficient understanding of the principles 
involved to be able to choose and analyse a suitable 'checking model'. It 
follows that even if the designer has available a computer program for 
elastic-plastic analysis, it may still be necessary to make reference to this 

chapter in order to carry out the necessary checks. 

Virtually all multi-span portal frames have valleys and therefore the 
design will include the exceptional snow loading case. Furthermore, 
frames with roof slopes greater than 150 will also have the asymmetric 
snow loading case. Hence there is the possibility of three separate snow 
loading cases. 

270 
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The natural behaviour of portal frames gives rise to eaves spread 
under vertical load. The presence of multiple bays tends to aggravate 
this tendency and it is necessary to give some consideration to the steel 
erection and roof cladding erection sequences. Steelwork erection 
sequences can sometimes require internal span members to act as 
temporary side span members and, if these members have less stiffness, 
then additional deflections may well occur during erection. These 
deflections can be increased by the early erection of the roof cladding 
and can then be locked in by the roof cladding acting as a stressed skin 
diaphragm. Frames with steeper roof slopes have a greater potential for 
eaves spread. 

Precambering the frames by changing the member connection angles 
and shortening the rafter lengths can help produce better verticality in 
the outer stanchions at the dead loading stage. Tight tolerances for 
portal frame side stanchion head positions should not be specified 
because small eaves movements occur all the time due to wind uplift 
loads and temperature changes as well as snow loading. 

The designer should also consider lateral deflections at the internal 
stanchion heads, particularly when some frames are on valley beams. 
In practice, transverse wind loads should not cause any problems 
because the diaphragm action of the roof cladding is particularly 
effective in this situation. However, it is difficult and time-consuming 
to prove roof diaphragm action and most designers prefer not to have 
to carry out this calculation. Those who do should refer to BS 5950: 
Part 98.2 In-plane roof bracing along some valley lines is a popular 
alternative method of minimising differential transverse deflections and 
also serves as an erection aid. As with diaphragm action, roof bracing 
also reduces the unfavourable influence of second-order effects. 

Notwithstanding the difficulties, this chapter describes the manual 
analysis of multi-span portal frames and the following principles will 

help the designer to understand the examples which follow. 

LI Unless the internal rafters are unreasonably small, the collapse 
mechanism under uniform vertical load will be an outer bay 
mechanism as illustrated in Fig. 8.1. Depending on the length of the 
haunch, the outer eaves hinge may form either in the stanchion 
below the haunch or at the rafter end of the haunch. However, the 
hinge associated with the internal haunch will always form at the 
rafter end of the haunch, regardless of its length. It follows that, in 
contrast to single-bay frames, with multi-bay frames it is impossible 
to avoid having plastic hinges in the rafters at the end of the 
haunches however undesirable this may be considered to be. 
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Fig. 8.1 Typical collapse mechanism in a multi-bay portal frame. 

U In general, an internal bay collapse mechanism will only form after 
the prior formation of an outer bay mechanism such as the one 
shown in Fig. 8.1. Any exception to this rule would require the 
formation of a rafter mechanism as shown for a tied portal in 
Fig. 7.10. However, as discussed in Section 7.3, portal frames which 
fail with this type of mechanism usually have to be rejected because 
of second-order effects. The 'snap-through' check in clause 5.5.3.3 of 
BS 5950: Part 1 is therefore important and should not be over- 
looked. 

U For design, a multi-bay frame is generally best made statically 
determinate by a series of apex cuts as shown in Fig. 8.2. The 
geometric conditions derived in Section 2.6.4 for the reactant 
bending moments in a single-bay frame can then be applied 
independently to each bay in turn and the internal stanchions will 
be subjected to reactant bending moments from the two adjacent 
bays superimposed upon each other. These often tend to cancel each 
other out with the result that the internal stanchions may be 
relatively lightly stressed. 

U There are a variety of ways of drawing the reactant bending moment 
diagram corresponding to the redundant forces shown in Fig. 8.2. 
The examples which follow illustrate some of the available 
procedures. There are two particular points to note: 

Fig. 8.2 Reactant forces in a multi-bay frame. 

H3 

I I I I I I I I I I I I I I I I I I l I I I I I I 

vi V2 V3 
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(1) It is essential to ensure moment equilibrium in the internal 
stanchions. In a pinned based structure, this means that either 
the base moment is zero in each individual bay or non-zero 
base moments in adjacent bays are designed to be in balance. 

(2) If the reactant line can be made to be symmetrical in a 
particular bay, V = 0 and it is much easier to satisfy the 
requirements of equilibrium. 

If there are no valley stanchions in a frame so that the valleys are 
supported on valley beams, then the horizontal redundancy H will be 
common across a series of spans until a stanchion or roof plane bracing 
occurs. Also the eaves bending moments adjacent to valley beams must 
balance each other because valley beams cannot support torsional 

bending moments. These considerations provide additional constraints 
to the reactant bending moment diagram. 

Frames supported on valley beams which have valley roof plane 
bracing should ideally be analysed as a three-dimensional structure. 
With a little ingenuity, this can be done using an elastic or elastic-plastic 
plane frame analysis program by arranging the frames side by side so 
that they occupy the same plane and by linking them at the bracing 
lines. This procedure has been explained in the context of stressed skin 
design83 and precisely the same principles apply here. 

If a computer program is not used to provide an elastic-plastic 
analysis, including determination of the hinge history, then it is 
recommended that no plastic hinges should be permitted to form at 
the serviceability limit state loadings. This can be verified by a linear- 
elastic analysis. In this case, the frame has to be checked for member 
stability at the collapse mechanism loading rather than at the minimum 
required design loading. 

8.2 Example 8.1. Three-span portal frame 

The general arrangement of this example is shown in Fig. 8.3(a) with its 
required ultimate limit state loading for the symmetrical snow case. The 
exceptional snow loading case is shown in Fig. 8.3(b). 

The symmetrical snow loading case is considered first. 

8.2.1 Design for symmetrical snow loading 

The frame is first made statically determinate by three apex cuts as 
shown in Fig. 8.2. The construction of the free bending moment diagram 
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Fig. 8.3 Three-bay portal frame: (a) general arrangement with symmetrical snow load; (b) exceptional 
snow load case. 

is then very simple and is unchanged from earlier single-bay examples. 
Because of symmetry, it is sufficient to consider half of the structure and 
the resulting bending moment diagram is shown in Fig. 8.4 with a free 
bending moment of 250 x 25/8 = 781.25 kNm at each eave and valley. 
There is no free bending moment in the internal stanchions. 

When the spans are identical it is worth considering making the rafter 
sections and eaves haunches identical in order to save on design office, 
drawing office and fabrication time unless the fabricator has sophisti- 
cated computer facilities that can accommodate the required variations. 
However, as the valley stanchions are almost certainly smaller than the 
side stanchions, then the haunch lengths on the bending moment 
diagram will not be identical. 

The construction of the reactant bending moment line in Fig. 8.4 can 
be a little tricky and there is more than one way to do it. We bear in 
mind that the side spans and centre span can have different apex 
redundancies as long as the resulting bending moments are in balance at 
the pinned bases of the internal stanchions. One possible method is first 
to choose a size for the outer stanchion with a plastic hinge just below 
the haunch as was done for a number of the examples considered in the 
previous chapter. This fixes point 'd' in Fig. 8.4. 



800 

600 

400 

200 

0 

Fig. 8.4 Bending moment diagram (kNm) for three-bay frame. 
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x = 103.6 

Here, we select a 457 x 191 x 74UB with a full plastic moment of 
456 kNm. Ordinate 'd' is then 

781.25—456 x — = 781.25—497.45 = 283.8 kNm 

This also fixes dimension 'x' (see also Fig. 2.72) as 

ay 1.25 x 497.45 

Xb 6.0 
=103.6kNm 

At this stage, only one further point is necessary in order to completely 
define the reactant bending moment diagram for the outer rafter. The 
easiest solution by far is to simply assume the bending moment diagram 
to be symmetrical as far as the outer bay is concerned as shown in 
Fig. 8.4. This is equivalent to assuming the vertical force at the apex cut 
(V1 in Fig. 8.2) to be zero. However, as we shall see later, this may not 
necessarily be the best solution though we will continue with it for the 
time being. 

This assumption gives the ordinate of point 'c' in Fig. 8.4 as 
283.8— 103.6= 180.2 kNm. Some designers may prefer to work with 

graphical constructions in the manner illustrated above. However, for 
the majority of the examples in this chapter, it is easier to work with the 
redundant forces M, H and V as unknowns in the equilibrium equations. 

781.25 781.25 

x = 103.6 

A BB C D E 
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Noting that Vi = 0 and that the calculation is carried out with the 
convention that moments causing tension on the outside of the frame are 
positive, the above calculation then becomes: 

At A 0 = —M1 —7.25H1 +78 1.25 
At B' 456= —M1 —1.75H1 +781.25 
giving: H1 =82.9kN 

M1 = 180.2 kNm 

The equation for the bending moment in rafter is now 

Mr = —M1 —0.1 x H1 +5x2 = —180.2—8.29x+5x2 

so that the maximum bending moment is where 

dMr - = 0 i.e. when —8.29+ lOx = 0 or x = 0.829m dx 

and the maximum bending moment in the rafter is 

MX = —180.2 — 8.29 x 0.829 + 5 x 0.8292 = —183.6 kNm 

Here, we could choose for the rafter section a 406 x 140 x 39 UB with 
a full plastic moment of 198 kNm but this would undoubtedly lead to 
problems when second-order effects are considered. A more suitable 
choice of rafter is therefore a 406 x 140 x 46 UB with a full plastic 
moment of 245 kNm. Conventional wisdom would now suggest that the 
bending moment at the end of the haunches should be restricted to 
0.87 x 245 = 213.2 kNm so that the haunch length could either be scaled 
off Fig. 8.4 or obtained as the solution of 

—180.2 — 8.29x + 5x2 = 213.2 kNm 

which gives x = 9.74 m and makes for rather long haunches with a 
length of 12.5 — x=2.76m. 

However, conventional wisdom would be wrong because, as explained 
in connection with Fig. 8.1, regardless of the length of the haunch, it is 
impossible to avoid a plastic hinge at the end of the valley haunch and 
there is no point whatsoever in sizing this haunch to maintain an elastic 

bending moment in the bending moment distribution of Fig. 8.4. This is a 
statically admissible bending moment distribution but, as drawn, it does 
not include a valid mechanism and, as explained earlier, the only valid 
mechanisms all include this plastic hinge. 

At the very least, the length of the valley haunch could be reduced to 
that given by the solution of the following equation with no 
disadvantage whatsoever. 

—180.2— 8.29x+ 5x2 = 245 kNm 
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This reduces the required length of the haunch to 2.41 m with a useful 
saving in fabrication costs. 

To complete this solution, it is necessary to consider also the bending 
moment distribution in the internal bay. This is trivial here as there is no 
reason to make this distribution any different from that already obtained 
for the end-bay and Fig. 8.4 has been drawn on the assumption that the 
internal rafter has the same bending moment distribution as the outer 
rafter. This assumption is statically admissible and has the advantage 
that the bending moments in the internal stanchions balance exactly to 
zero so that there is no need to give further consideration to the 
equilibrium of these members. 

The choice of a suitable member for the internal stanchions is then a 
matter for some judgement. The only primary design requirement is that 
these members should be stable under the relatively modest axial loads 
that they carry. However, a simple prop is not recommended and, 
indeed, designers are advised not to make the internal stanchions too 
small as this could aggravate second-order effects and the performance 
under asymmetrical loading. The internal stanchion head detail will, in 

many cases, determine the size of this stanchion. The flange and the web 
must be adequate for the rafter haunch tensile bolt loads and other local 
loads. Valley beams meeting at the same level as the rafter haunches 
may require an even deeper stanchion section in order to allow practical 
connection details, especially when the valley beams also require 
moment connections. 

It then follows that the design of all of the rafters is identical though 
there will be some detailing differences because the size of the internal 
stanchions will be less than that of the outer stanchions. Unless an 
elastic-plastic analysis is carried out in order to determine the hinge 
history, in addition to providing restraint to the plastic hinges in the 
outer stanchions below the haunches, it is also necessary to stabilise 

possible plastic hinges at the rafter ends of all of the haunches and near 
the apex in all of the spans. Taken together with the rather long 
haunches, this is unlikely to constitute an economic design. 

An alternative approach, which is likely to lead to a more favourable 
design, is to accept that there will be plastic hinges at the rafter ends of 
the haunches and to start by assuming a more suitable haunch length 
together with plastic hinges at these points. Let us therefore consider the 
effect of starting by assuming the same rafter, namely a 
406 x 140 x 46 UB with a full plastic moment of 245 kNm, and a 
haunch length of 2m. The bending moment diagram for this case is 
shown in Fig. 8.5. This procedure too has the advantage that the same 
bending moment diagram is used for both the internal and external bays 
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Fig. 8.5 Bending moment diagram for alternative design (kNm). 

of the structure. The bending moments in the internal stanchions are in 
balance and the same design is obtained for any number of spans 
greater than or equal to two. 

The free bending moment part of the diagram is the same as before 
and the fixed points for the construction of the reactant moment line 
are the moments of 551.25 — 245 = 306.25 kNm at the ends of the 
haunches. The reactant line could be drawn by trial and error or by a 
formal geometric construction but is best calculated using the relevant 
equilibrium equations noting that Vi = 0 as before: 

—M1 —7.25H1 +781.25 
—M —l.05H1 +551.25 
76.6kN 
225.8 kNm 
—M1 — l.25H1 + 781.25 
—225.8 — 1.25 x 76.6 + 781.25 = 459.7 kNm 

The equation for the bending moment in the rafter is: 

Mr = M1 0.1 X H1 +5x2 = —225.8—7.66x+5x2 

which has a maximum value of 228.7 kNm at x = 0.766 m. 
The design moment in the stanchion below the haunch is 459.7 x 

5.5/6.0 = 421.4 kNm which allows the same choice of stanchion as before, 
namely a 457 x 191 x 74UB with a full plastic moment of 456 kNm. 
However, this moment is greater than the yield moment of the member 
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(402 kNm) so that it will be necessary to give some consideration to the 
torsional restraints required to ensure the lateral torsional stability of the 
partially plastic member. This design process therefore leads to the same 
choice of members as the first but with shorter haunch lengths. 

Another alternative solution is obtained if the designer is prepared to 
wrestle with the additional complexities of a non-symmetrical bending 
moment diagram for the outer bay (V1 0 in Fig. 8.2). This is included 
here partly to illustrate these additional considerations for the benefit of 
the interested reader. 

We make the same start as in the first solution by assuming a 
457 x 191 x 74UB stanchion with a plastic hinge below the haunch. 
This fixes ordinate 'd' as 283.8 kNm and 'x' as 103.6 kNm as before and 
as shown in Fig.8.6. Again, only one further point is necessary in order 
to define the reactant bending moment diagram for the outer rafter. As 
a plastic hinge at the rafter end of the internal haunch is unavoidable, 
this point is chosen. If we use the same rafter section, namely a 
406 x 140 x 46 UB with a full plastic moment of 245 kNm and keep the 
reduced length of the valley haunch at 2.0 m, the ordinate on the 
reactant bending moment diagram of the point corresponding to this 
haunch length is 551.25 — 245 = 306.25 kNm. 

The reactant line can now be drawn through 'd' and this ordinate 
while following the geometric constraint x/y = a/b obtained in Section 
2.6.4. This requires a small amount of trial and error or iteration or, 
alternatively, the reactant line can be obtained exactly by simple 
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Fig. 8.6 Bending moment diagram for second alternative design (kNm). 
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geometry. However, once again, the best method appears to be based on 

solving the equilibrium equations: 

At A 0 = —M1 —7.25H1 +12.5 V1 +78 1.25 

At B' 456 = —M1 —1.75H1 +12.5 V1 +78 1.25 

At D' 245 = —M1 —1.05H1 —10.5V1 +551.25 
giving: H1 =82.9kN 

V1 =1.7OkN 
M1 =201.4kNm 

and MB = —M1 — 1.25H1 + 12.5 V1 + 781.25 
= —201.4—1.25 x 82.9+12.5 x 1.70+ 781.25 
= 497.5 kNm 

MD= —M1 — 1.25H1 — 12.5 V1 + 781.25 
= —201.4— 1.25 x 82.9 — 12.5 x 1.70 + 781.25 
= 455.0 kNm 

The maximum sagging bending moment in the right-hand rafter can 
now be calculated or scaled as about 206 kNm so that the 245 kNm 

provided by the rafter section selected previously is still sufficient. In the 
left-hand rafter, the equation for the bending moment is: 

Mr201.4(0.l x82.9+1.70)x+5x2 

and equating this to 0.87 x 245 = 213.2 kNm gives the required haunch 

length at the outer eaves as 2.71 m. 
It is now necessary to address the requirements for the internal rafter 

and, in order to do this, we need also to consider the equilibrium of 

bending moments in the internal stanchion. 
In the left-hand bay, the bending moment at F is 

MF = —M1 — 7.25H1 — 12.5 V1 + 781.25 

= —201.4—7.25 x 82.9— 12.5 x 1.70 + 781.25 = —42.4 kNm 

For equilibrium, it is necessary that the reactant bending moments from 
the centre bay neutralise the base moment of 42.4 kNm resulting from 
the design of the outer bay. The requirements for equilibrium at F, 
including some values yet to be calculated, are summarised in Fig. 8.7. 

For the centre bay, our point of reference is once more the bending 
moment at the end of the haunch which is again assumed to have a 
length of 2.0 m. If, for the time being, we assume the same rafter section 
as before, the ordinate of the reactant line at the haunch is again 
306.25 kNm as shown in Fig. 8.6. The equations necessary to draw the 

symmetrical reactant line shown for the internal bay are 
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Fig. 8.7 Bending moments in internal stanchion (kNm): (a) from outer bay; 
(c) resultant moments. 

—42.4= —M2 
245 = —M2 

H2 =83.5kN 
M2 =218.6kNm 

and MD = —M1 — l.25H1 + 781.25 
= —218.6— 1.25 x 83.5 + 781.25 = 458.3 kNm 

The bending moment diagram for the centre bay shown in Fig. 8.6 is 
thus completed and the maximum bending moment in the rafter is 
found to be about 222 kNm. The rafter section chosen for the outer bay 
can therefore again be continued for the internal bay but this time with 
a considerably reduced haunch length. 

It is important to note here that, although we have not obtained a 
collapse mechanism in the internal bay, the design of the internal and 
external bays are unavoidably linked through the requirement for 
equilibrium of the common stanchion. In principle, the strength of the 
internal rafter could be reduced, taking advantage of the arching effect, 
until a rafter mechanism of the type illustrated for a tied portal in Fig. 7.10 
is obtained. However, arching is only obtained if the necessary thrust is 
available and this must come from the outer frame. Therefore, if the 
strength of the internal rafter is reduced, there is a penalty to be paid in the 
design of the outer frame and this only emerges in the calculations when 
the equilibrium of the internal stanchions is considered. 

There is no problem with the above design because of the order in 
which the decisions have been made and a well-balanced solution has 
been obtained with negligible bending moment in the internal stanchion. 
This is not necessarily always the case and the interested reader can try 
varying the design while still preserving the necessary equilibrium 
conditions for the reactant bending moment diagram. 

458.3 455.0 

42.4 42.4 F 

(a) (b) (c) 

(b) from internal bay; 

AtF 
At D" 
giving: 

—7.25112 +781.25 
—1.05H2 +551.25 
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With a balanced design, the internal stanchion is again little more 
than a simple prop. Nevertheless, although this member can be much 
lighter than the outer stanchions, it is recommended that a substantial 
member with a rigid connection to the rafter should be used in order to 
improve the stability of the structure as a whole and to take into 
account the possibility of unsymmetrical loading. 

The influence of second-order effects is now checked in accordance 
with Sections 3.2.3 and 3.2.4 of this book. Bearing in mind that the 
second alternative design (with a non-symmetrical bending moment for 
the outer bay and the necessity to balance the bending moments in the 
internal stanchions) was introduced primarily for illustrative purposes, 
this check will be carried out for the first alternative design which is 
considered to be the practical solution. The bending moment diagram 
for this design is shown in Fig. 8.5 and the available load factor for 
rigid-plastic collapse is given approximately by 

761.25 + 245—228.7 

761.25 
= 1.021 

The member axial loads are 

P= l25kN 
H = 459.65/6 = 76.6 kN 
Pr = 76.6cos 5.710+ 125 sin 5.71°= 88.7 kN 

and the chosen members are 

outer stanchion 457 x 191 x 74 UB I =33430cm4 
rafter 406 x 140 x 46 UB Jr = 15670cm4 

so that 

R _''—r 33430 X 12562 4467 
Jr/i 15670x 6000 

— 

3EIr 
)'cr = 

Lr[(1 +!ij)Pch+0.3PrLr] 

3 x 205 x 1.567 x 108 

12562[(1 +-7) 
x 125 x 6000 +0.3 x 88.7 x 

12562] 

= 5.97 

0.9Acr 0.9 X 5.97 
and the required ), = 

A — 1 
= 

4.97 
= 1.08 1 
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As this is greater than the available value of 1.021, a modest increase 
in the section sizes is necessary in order to satisfy the requirements of 
second-order sway stability effects. Alternatively, the effect of taking 
account of the stiffness of nominally pinned bases could be explored 
according to Chapter 3. 

A check is also required on the influence of second-order effects on 
the stability of the internal rafters in accordance with Section 3.2.5 of 
this book. For this check, it is necessary to assume a size for the internal 
stanchions which, though rigidly connected to the rafter haunches, act 
primarily as struts carrying an axial load of 250 kN. A suitable member 
is: 

internal stanchion 305 x 165 x 4OUB I = 8551 cm4 

so that 

55(4+\ /D\ ' h) / I\ /275\ Acr=1I (l+—J1———)tan2Or 
\LbJ — 1 \. 'rI \Pyr I 

25000 

= [6000)] (1+ ) tan 11.42° = 19.6 

where, in the above equation, the symbols are defined in Section 3.2.5 
with 

Lb = effective span of the bay = 25.0 — 2.0 = 23.0 m 

lOx(25—2x 2.0)2 Il = arching ratio = = 1.125 
16 x 245 

The above value of Aer is, of course, more than adequate. 

8.2.2 Design for exceptional snow loading 

This load case is shown in Fig. 8.3(b). The fact that the three spans are 
not equally loaded makes design for this case rather more complicated. 
Although it becomes apparent at an early stage that this case is not 
critical, the calculations will be completed in order to demonstrate the 
method. This again involves making the frame statically determinate by 
three cuts at the apices, as shown in Fig. 8.2. 



CtoB M=1.4x2 

BtoA M=218.75kNm 
C to D M = 1.4x2 +0.1893x3 

Mc 0 

M'B = 154.4 kNm 
(x = 10.5 m at haunch) 

MB =218.75kNm 
MA =218.75kNm 
M =0 
M'D =373.5kNm 

(x = 10.5 m at haunch) 
MD =588.5kNm 

(in sub-frame CDF) 
MF = 588.5 kNm 

(in sub-frame CDF) 
ME 0 

M'D=373.5kNm 
(x = 10.5 m at haunch) 

MD =588.5kNm 
(in sub-frame EDF) 

MF =588.5kNm 
(in sub-frame EDF) 

600 - 

400 

200 

0 
C 

Fig. 8.8 Bending moment diagram for exceptional snow load case. 
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Because of symmetry, it is only necessary to consider half of the 
structure. The equations for the free bending moments are: 

DtoF M=588.5kNm 

E to D M = 1.4x2+0.1893x3 

DtoF M=588.5kNm 

These are shown in Fig. 8.8. 

588.5 

218.75 

373.5 
373.5 

'7. 
224.6 

A 29.7 
B 

C. D" E 
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A reactant bending moment diagram is required for the side span and 
another for the centre span. It is important to ensure that the interaction 
between them results in zero bending moment at the pinned base of the 
internal stanchion. 

A suitable diagram is shown in Fig. 8.8. This can be drawn by trial 
and error, taking care to satisfy the necessary equilibrium conditions. 
Alternatively, and perhaps more reliably, it can be drawn by solving the 

following equations which are based on the collapse mechanism shown 

in Fig. 8.9. 

Noting that the sign convention is tension on the outside positive in 

the individual sub-frames and that symmetry requires that V2 = 0: 

At A 0 = —M1 —7.25H1 +12.5 V1 +218.75 
At B' Mpr = M1 1.05H1 +10.5 V1 +154.4 
At C' Mpr = —Mi 0.40H1 —4.0 V1 +34.5 
At F in CDF MF = —M1 —7.25H1 —12.5 V1 +588.5 
At F in EDF MF = —M2 —7.25H2 +588.5 
At D" Mpr = M2 1.05H2 +373.5 
At E' —Mpr= M2 0.2H2 +7.1 

These equations are not difficult to solve although a certain amount of 
trial and error may still be necessary in order to achieve acceptable 
plastic hinge positions in the rafters. 

The solution which was used to draw the reactant moment lines in 

Fig. 8.8 is based on slightly more accurate plastic hinge positions than 
those shown in Fig. 8.9 and is: 

M1 =110.7kNm 
H1 =41.4kNm 
V1 =15.4kNm 
Mpr= 161.6kNm 

1.25 

6.0 

2.8 kN/m 

14.2 kN/m 

10.5 

Fig. 8.9 Assumed collapse mechanism for exceptional snow load case. 

E 

M2= 145.8kNm 
H2 =63.OkNm 

C 

I I I I U_I 

2.04 8.5 U 
8.5 
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This value of Mpr is, of course, considerably less than the value of 
245 kNm used to draw Fig. 8.5 for the symmetrical snow load case, a 
fact that could have been anticipated once the magnitudes of the free 
bending moments were compared. Indeed, in practice, it may be more 
convenient to carry out an elastic analysis in such cases in order to 
demonstrate that the frame is elastic under the ultimate limit state loads 
and that plastic analysis is unnecessary. 

8.3 Example 8.2. Three-span portal frame supported on valley beams 

This example is virtually the same as Example 8.1, as shown in Fig. 8.3, 
except that alternate frames are supported on valley beams along lines 
D and G. 

8.3.1 Symmetrical snow loading 

The design for symmetrical snow loading shown in Fig. 8.5 for the 
conventional portal frame is also applicable to the comparable frame 
when the internal valleys are supported on valley beams. This is because 
the rafter thrusts and bending moments balance at the top of the 
internal stanchions and there are no out of balance horizontal forces or 
bending moments (applied as torsional moments) applied to the valley 
beam. 

However, in the valley beam frames, second-order effects can be more 
severe and they should be checked in accordance with Section 3.2.6 of 
this book: 

From Example 8.1, the member axial loads are: 

P= 125kN 
H = 459.65/6 = 76.6 kN 
Pr76.6cos5.71°+ 125sin5.71°=88.7kN 

and the member sizes are: 

outer stanchion 457 x 191 x 74 UB I = 33430cm4 
rafter 406x140x46UB Ir=15670cm4 

so that: 

R — 33430 X 
125624467 

Jr/i 15670x6000 
— 
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3EIr 
Acr = 

2Lr [(i + j)Pch + 
0.6PrLr] 

3 x 205 x 1.567 x 108 

2 x 
12562[(l +7) x 125 x 6000 +0.6 x 88.7 x 

12562] 

= 2.37 

This value of the elastic critical load Aer is very much less than the 
limiting value of 4.6 (see Section 3.2.7) and therefore the frame is 

unacceptable unless proven satisfactory by means of an elastic-plastic 
second-order analysis of the complete frame. 

A review of the formula indicates that for Acr to be increased to 4.6 
then the rafter I would have to be approximately doubled and this is 
likely to be commercially unacceptable. Other means of stffening the 
frame should therefore be considered such as bracing the valley beam 
frames back to the valley stanchion frames. This stiffening could be 
triangulated bracing in the roof plane which incorporates the valley 
beam itself as part of the bracing system or, alternatively, BS 5950: Part 
9 could be used to justify that the roof cladding acting as a diaphragm 
can provide the required additional stiffness. 

An examination of the calculation for internal rafter stability given 
in Section 8.2.1 for Example 8.1 shows that again this is not critical. 
If the value of I for the internal stanchion is taken to be zero, 

= 19.6/1.546 = 12.7 which is greater than the limiting value of 10. 

8.3.2 Exceptional snow loading 

Under exceptional snow loading, the final design for Example 8.1 
shown in Fig. 8.8 is not appropriate because it puts torsional moments 
into the valley beam. It is, therefore, necessary to recalculate the 
reactant bending moment diagram in order to obtain bending moments 
and horizontal thrusts which balance in the valleys. 

The resulting bending moment diagram is shown in Fig. 8.10. The 
corresponding values of the redundant forces are: 

M1 =38.lkNm M2=168.6kNm 
H1 =42.9kN H2 =42.9kN 
V1 =10.4kN 
Mpr = 180.8 kNm 
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600 

Fig. 8.10 Bending moment diagram for frame supported on valley beams. 

8.4 Example 8.3. Two-span portal frame with unequal spans 

This example, together with its required ultimate limit state loading, is 
shown in Fig. 8.11. 

Once again, the frame is made statically determinate by introducing 
cuts at C and E giving rise to six redundant forces H1, V1, Mi, H2, V2, 

M2. The free bending moments are then very much as in the previous 
examples, and the equation for each of the rafters is 

M = 5x2 

which gives rise to the free bending moment diagram shown in Fig. 8.13. 

10 kN/m r1ri i 

E 

25 15 

Fig. 8.11 Two-span portal frame. 
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c C 

i51. 8.0 

1.0 

6.0 10.0 2.5 1.5 

Fig. 8.12 Assumed collapse mechanism for the two-bay frame. 

In order to draw the corresponding reactant moment diagram, it is 
necessary to make some assumptions regarding the collapse mechanism 
and the one shown in Fig. 8.12 will be used. This takes note of the fact 
that it is again impossible to avoid plastic hinges at the ends of the 
valley haunches and, if hinges are assumed at the ends of all of the 
haunches, V1 = V2 = 0 and the reactant lines for the rafters are 
horizontal. Equilibrium in the internal stanchion is also automatically 
ensured. 

The plastic hinge positions shown in Fig. 8.12 for the apex hinges are, 
of course, estimates but small changes in these hinge positions will not 
have much effect on the solution and they can be adjusted later if 
necessary. The easiest way to draw the reactant moment diagram 
corresponding to this mechanism is probably to solve the equilibrium 
equations, thus. 

For the left-hand bay 

At A 0 = —M1 —8.5H1 +78 1.25 
At B' and D' Mpr = M1 2.0H1 +500 
At C' 
which gives 

Mpr = M1 
H1 = 71.4 kN 

0.4H1 +20 

M1 =174.3kNm 
Mpr =182.9kNm 

and the reactant line for the left-hand bay in Fig. 8.13 is drawn on this 
basis. A suitable choice of rafter is a 406 x 140 x 39 UB with a full plastic 
moment of 198 kNm. This gives a load factor of 198/182.9 = 1.083 and it 
will be checked later whether this is sufficient to overcome second-order 
effects. 

The bending moment below the haunch determines the size of the 
stanchion and this is 71.40 x 5.5 = 392.7 kNm. A suitable section is 
therefore a 457 x 191 x 67 UB with a full plastic moment of 405 kNm. 

B 

B 

A 

E E F 
F 
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800 

600 

200 

Fig. 8.13 Bending moment diagram for two-bay frame. 

For the right-hand bay 

At G 0 = —M2 —7.5H2 +28 1.25 

Mpr —M2 —1.2H2 

Mpr = —M2 —0.2H2 
H2 =27.8kN 
M2 =73.lkNm 
Mpr =73.6kNm 

and the reactant line for the right-hand bay in Fig. 8.13 is drawn on this 

basis. A suitable choice of rafter is a 305 x 102 x 25 UB with a full plastic 
moment of 92.4kNm. This gives a load factor of 92.4/73.6=1.255 to 
overcome second-order effects. 

The bending moment below the haunch again determines the size of 
the stanchion and this is 27.8 x 5.6 = 155.4 kNm. A suitable section is 

therefore a 356 x 127 x 39UB with a full plastic moment of 180 kNm. 
The influence of second-order effects is now checked in accordance 

with Section 3.2.4 of this book. Because the frame is irregular, it is nec- 

essary to check both outer bays. For the left-hand bay: 

The member axial loads are 

P= 125kN 
H =71.4kN 
Pr71.4cosll.3°+ l2Ssinll.3°=94.5kN 

781.25 781.25 

500 

400 

500 

352.9 

281.25 281.25 

A B C D E F G 

At D' and F' 
At E' 
which gives 

+ 180 

+5 
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and the chosen members are 

outer stanchion 457 x 191 x 67UB I = 29 410cm4 
rafter 406 x 140 x 39UB Jr = 12410 cm4 

so that 

R—'—29410>< 127485035 
Jr/1 12410x 6000 

— 

3EIr 
Acr 

Lr[(1 +)Pch+0.3PrLr] 

3 x 205 x 1.241 x 108 

12748[(1 +-) x 125 x 6000 +0.3 x 94.5 x 
12748] 

= 4.64 

0.9Acr 0.9 X 4.64 and the required A1 = 
Acr — 1 

= 
3.64 

= 1.147 

The above value of Acr is only just above the limiting value of 4.6 
below which a more precise treatment of second-order effects becomes 
mandatory. Bearing in mind that the approximate treatment is 
conservative, in this case it is better to use a more exact treatment if 
at all possible. This could advantageously take account of nominal 
partial base fixity. According to the approximate method, as the 
required value of Acr is greater than the available value of 1.083, an 
increase in the section sizes of the left-hand bay is necessary in order to 
satisfy the requirements of second-order sway stability effects. 

Similarly, in the right-hand bay: 

The member axial loads are 

P=75kN 
H =27.8kN 
Pr = 27.8 cos 11.3° + 75 sin 11.3° = 41.9 kN 

and the chosen members are 

outer stanchion 356 x 127 x 39UB J = 10100cm4 
rafter 305 x 102 x 25UB Jr = 4364cm4 
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so that 

— lOlOOx 7649 
—295 

Irh 4364x 6000 
— 

3EIr 
Acr= / 12 

Lr 
(\l +)Pch+0.3PrLr 

— 3 x 205 x 0.4364 x 108 — 

7649[(1 
+ x 75 x 6000 + 0.3 x 41.9 x 

7649] 

0.9Acr 0.9 X 4.81 
and the required A = 

A 1 
= 

3.81 
= 1.136 

Again, the above value of Acr is only just above the limiting value of 
4.6 below which a more precise treatment of second-order effects 
becomes mandatory. However, here the available reserve of safety in the 
preliminary design gave A = 1.255 so that no increase in section sizes is 
required. 

The bending moment below the haunch in the internal stanchion is 
392.7 — 152.9 = 239.8 kNm. Possibly, for design, this should be factored 
up by A = 1.147 to give 275.1 kNm though this is debatable and need 
not be insisted upon if the design were tight. A suitable section to carry 
this moment together with an axial load of 125+75=200 kN is a 
457 x 152 x 52 UB in design Grade 43 which has a gross plastic moment 
of 301 kNm and a net plastic moment of 294 kNm. However, this 
section size is subject to there being sufficient restraints to ensure 
member stability. Clients do not always accept intermediate restraints to 
internal stanchions because they reduce access between spans and, if this 
were the case, a larger member would be necessary dependent on the 
restraint available. 

8.5 Example 8.4. Buttressed multi-span portal frame 

This example, which is subject to a vertical uniformly distributed load of 
lOkN/m at the ultimate limit state, is shown in Fig. 8.14. From the 
point of view of the plastic design, the number of spans is not important 
as the design forces in the internal spans are all identical. 

The main principle in the buttress frame is to design the inner spans 
with relatively light rafters taking advantage of a high arching ratio and 
to design each side span as a buttress that has to hold up the internal 
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Fig. 8.14 Eight-bay portal structure with outer buttress bays. 

spans. In addition to possible economic benefits, the advantages of this 
are reduced eaves spread and no plastic hinges in the eaves zone of the 
side stanchions early in the hinge history. Another benefit is that 
temperature changes in the frame tend to cause the apices to move 

vertically rather than for all of the temperature movement to appear as 
eaves spread. 

There are various alternative ways of designing buttress frames. In 
the example which follows, the buttress frame is a pinned based 
structure with a larger side stanchion and with a larger rafter in the 
outer half span of the outer frame. An alternative is to use fixed base 
outer and inner stanchions with larger rafters in both halves of the span. 
A fixed base for the outer stanchions is particularly advantageous. The 
choice will depend on the frame size, geometry and loading and the 
performance criteria for deflections. 

The buttress effect results in a significant increase in the axial 

compressive force in the internal rafters so that it is particularly 
important to check these for 'snap-through' as covered in BS 5950: Part 
1, clause 5.5.3.3 or Section 3.2.5 of this book. 

Conversely, the buttress frames will be stiff and will be relatively less 
affected by second-order sway stability effects. However, unless more 
accurate calculations can be made, they should be checked by adapting 
the procedures given in Sections 3.2.3 and 3.2.4 of this book. 

This example only gives guidance on the procedures that may be used 
in order to make an initial choice of sections. The further working out 
of the design is then left to the interested reader. There is infinite scope 
for trial and error adjustment of the design in order to obtain a good fit 
with the available section sizes and the various constraints on the 
design. 

The internal spans are chosen first. We may observe here that if a 
balanced design were to be used, without taking advantage of buttress 
action, the initial calculation would be identical to that used for the left- 
hand span of the two-span frame considered in the previous section. 

Ignoring the possible influence of second-order effects, this would result 
in a requirement for the full plastic moment of the rafters of 
Mpr = 182.9 kNm with a horizontal thrust of H = 71.4kN. 
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I V2 = 0 

8.0 8.0 

(a) (b) 
Fig. 8.15 Plastic hinges for the internal span of a buttress frame: (a) plastic hinges; (b) redundant 
force system. 

We will assume that buttress action allows us to reduce Mpr2 in the 
internal rafters to 150 kNm and that a suitable section, with a full plastic 
moment a little greater than this to allow for second-order effects, is 
available. If we make each internal span statically determinate by means 
of an apex cut, as before, the bending moment diagrams for all of the 
internal spans will be identical with V2 = 0. If we further assume the 
plastic hinge positions shown in Fig. 8.15 (which also require plastic 
hinges in the outer spans before they constitute a valid mechanism), 
then: 

M2 = 125.0 kNm 

so that even a relatively modest reduction in Mpr2 from 182.9 to 
150 kNm requires a significant increase in H2 from 71.4 to 112.5 kN 
with a consequential increase in the strength of the buttressing members 
together with an increased tendency towards buckling of the internal 
rafters. It follows that this procedure has to be used with care. 

The bending moment diagram arising from this calculation is shown 
in the right-hand part of Fig. 8.16. Because we have not made any 
attempt to control the bending moment at the pinned bases of the 
penultimate stanchions, the implied bending moments have to be 
calculated and balanced by the corresponding bending moments in the 
outer buttress frames. 

Thus, at N, MN = —M2 — 8.5112 + 781.25 = —300.0 kNm 

For the outer bay, with the benefit of a little experience or trial and 
error, we may assume the plastic hinge positions shown in Fig. 8.17 

V2 =0 

H2 H2 

AtQ' —150=—M2 —0.4112 +20 
At P' and R' +150= —M2 —2.0H2 +500 
giving 112 = 112.5 kN 
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Fig. 8.16 Bending moment diagram for the outer spans of the buttress frame. 

125 

Mpr2l5O 

which, together with the hinges shown in Fig. 8.15, constitute a valid 
collapse mechanism for the frame. Noting that the bending moment at 
E must balance MN = —300 kNm calculated above, this leads to the 
following equations which include the required full plastic moment Mpri 
of the outer rafter as an unknown. 

At B' 
At C' 
AtE 

Fig. 8.17 Plastic hinge positions in the outer span. 

781.25 781.25 

451.25 
496.25 

= 277.5 

Mpr2 150 

A B C 

AtA 0 =-M1 + 12.5 V1 

+9.5 V1 

—2.5 V1 

—12.5 V1 

+78 1.25 

+451.25 
+3 1.25 

+78 1.25 

—8. 5H1 

Mpri 1.9H1 
—150 —0.5H1 
—300 —8.5H1 

C 

B 

A 

3.04 9.5 7.5 
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The first and last of these equations lead directly to V1 = 12.0 kN and 
the remaining equations are then easily solved to give: 

M1 =102.5kNm 
H1 =97.5kN 
V1 =12.OkN 

Mpri =277.5kNm 

The remainder of the bending moment diagram shown in Fig. 8.16 can 
now be drawn. 

The bending moment at B is 781.25 — 196.25 = 585 kNm so that the 
design bending moment for the outer stanchion below the haunch is 
585 x 5.5/6.0 = 536.3 kNm. 

The design moment below the haunch in the penultimate stanchion is 
(496.25 — 406.25) x 5.5/6.0 = 82.5 kNm. This gives a complete pattern 
of bending moments at collapse which can be used as the basis for a 
choice of members. The procedure used allows for easy adjustment in 
order to accommodate the available member sizes and the constraints of 
second-order effects, defiections, etc. 

An initial choice of sections can be based on the bending moment 
diagram shown in Fig. 8.16. The internal rafters can be 406 x 140 x 
39 UB with a full plastic moment of 198 kNm compared with the 
minimum of 150 kNm required. The reduction in bending capacity due 
to the axial load is of the order of I % and can be ignored. A check on 
second-order effects can be made assuming a 406 x 178 x 54 UB internal 
stanchion: 

Lb = effective span of the bay = 25.0 — 2.5 = 22.5 m 

lOx(25—2x 2.5)2 Il = arching ratio = = 1.278 
16 x 195.6 

so that 

Acr = ](1 + ) () tan 20r 

25000 

= (=) [ss( ] (i +__ tan 22.6° = 29.7 

and the internal span sections are satisfactory. 
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The outer span can comprise 

Outer stanchion: 
Requires = 536.3 kNm 533 x 210 x 92 UB gives 651 kNm 

Outer rafter: 
Requires Mpri = 277.5 kNm 457 x 152 x 60 UB gives 353 kNm 

Inner rafter: 
Requires Mpr2 = 150.0 kNm 406 x 140 x 39 UB gives 198 kNm 

The check for second-order effects in the outer spans then gives: 

H =97.5kN 
P= 125+12= 137.OkN 

Pr = Hcos 0+ P,, sin 0 = 122.5 kN 

R — IcLr 55330 X 12748 
—462 

1r11 25450x 6000 
— 

3EIr 
Acr = 

Lr 
[(1 

+ Pch + 
0.3PrLr] 

3 x 205 x 2.545 x 108 

12748[(1 +-) x 137 x 6000 +0.3 x 122.5 x 
12748] 

= 8.16 

0.9 x 8.16 The required is then 
8.16 1 

= 1.026 

It follows that the minimum requirements for the full plastic moments 
then become 

Outer stanchion: = 1.026 x 536.3 = 550.1 kNm 
Outer rafter: Mpri = 1.026 x 277.5=284.6kNm 
Inner rafter: Mpr2 = 1.026 x 150.0= 153.9 kNm 

and the initial sections are adequate for further detailed checks. 
It may be noted here that the above calculation of Acr is based on the 

stiffest outer members of a frame which includes members of disparate 
stiffness. It could be argued that this is potentially unconservative and, 
when other assumptions are tried, it is found that the value of Aer is 
quite sensitive to the assumptions made. In such cases, the use of a 
computer program to calculate an accurate value of Acr could be 
beneficial. 
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Chapter 9 

Design of Agricultural Buildings 

9.1 Introduction 

In principle, agricultural buildings are no different from any other low- 
cost low-rise buildings and can be designed using identical procedures. 
As agricultural buildings are frequently steel portal frames or similar 
structures, the relevant parts of the first eight chapters of this book are 
directly applicable. However, there are some additional factors to be 
considered and the purpose of this chapter is to outline some of these 
and the influence that they may have on the design. 

Agricultural buildings tend to be smaller in size than industrial 
buildings and designed to less demanding specifications. The main con- 
siderations to be addressed are therefore: 

U smaller design loads 
U smaller spans and steeper roof pitch 
U simpler details 
U loads from stored crops. 

As climatic loads, such as wind and snow, are unaware whether they 
are being applied to an agricultural or a conventional building, the use 
of smaller design loads implies reduced factors of safety. It is, therefore, 
particularly important to ensure that there is not a further erosion of the 
safety level because of inadequate detailing or a cavalier attitude to 
stability checks. Unfortunately, this is not always the case. 

9.2 Design code for agricultural buildings 

The reason why smaller design loads may be applied to agricultural 
buildings is the existence of a British Standard9' which is specific to this 
class of structures. BS 5502, however, merely adjusts the design load 
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and, in particular, it does not change any of the design procedures 
embraced in BS 5950. 

BS 5502 has numerous Parts and the structure of the complete 
standard is described in Part 0: Introduction. However, only Part 20: 

Code of Practice for general design considerations and Part 22: Code of 
Practice for Design, Construction and Loading are directly relevant to 
the subject of this book. 

9.2.1 Building classification 

BS 5502: Part 22: 1993 introduces the concept of design classification 

according to the density of human occupancy, the location of the 

building and the return period (design life) of the loadings. It should be 
noted that, in this context, the design life is concerned solely with the 
statistical likelihood of high levels of load being achieved and is not 
directly related to the durability of the materials of construction. Thus, 
in buildings which have a low level of human occupancy, the 
consequences of structural failure are less serious in terms of danger 
to life and such buildings can be designed to lower levels of load. The 

design classifications are given in Table 9.1 where the risk of collapse is 

greater in buildings or structures which have the higher classification 
numbers. 

Table 9.1 Design classification of buildings and structures for agriculture. 

Class Maximum normal human Minimum allowable Minimum 
occupancy within a building distance to a classified design 
or structure or its zone of highway or human life 
effect where applicable habitation (years) 
(person h/year) (m) 

I Unrestricted Unrestricted 50 
2 Not exceeding 6 h/day at a Either 10 or limit of zone 20 

maximum density of of effect if greater than 10 
2 persons/SO m2 (4380/50 m2) 

3 Not exceeding 2 h/day at a Either 20 or limit of zone 10 
maximum density of of effect if greater than 20 
1 person/SO m2 (730/50 m2) 

4 Not exceeding 1 h/day at a Either 30 or limit of zone 2 
maximum density of of effect if greater than 30 
I person/SO m2 (365/50 m2) 
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Table 9.2 Snow load conversion factor c. 

Building class w 

1 1.00 
2 0.78 
3 0.61 
4 0.22 

Having classified the building or structure, the characteristic imposed 
roof loads may then be modified from those given in BS 6399: Part 3: 
1988 according to either (a) or (b) as follows: 

(a) For class 1 buildings and structures and for classes 2, 3 and 4 where 
there is access to the roof, the minimum imposed load on a roof 
should be in accordance with BS 6399. For buildings of classes 2, 3 
and 4 where there is no access to the roof except for cleaning and 
repair, the minimum uniformly distributed load should be taken as 
0.3 kN/m2 measured on plan for roof slopes of less than 60°, or as 
zero for roof slopes greater than or equal to 60°. 

Snow loads given in BS 6399 should be assumed to be applicable 
to class I buildings. For other classifications, the derived snow 
load on the roof (Sd) should be modified by multiplying by the 
factor w given in Table 9.2. 

(b) Provided that the altitude is less than 100 m and that access to the 
roof is restricted to that necessary for cleaning and repair, the 
uniformly distributed load given in Table 9.3 is applied symme- 
trically to the full plan area of the roof. 

The wind loads given in CP3: Chapter V: Part 2: 1972 are not modified. 

Table 9.3 Generalised imposed roof load. 

Building class Load (kN/m2) 

1 0.64 
2 0.50 
3 0.40 
4 as in(a) 

Note: Care should be taken in using this table 
where localised conditions of climatolo- 
gical effects or drifting (e.g. where there 
are abrupt changes of building height) 
may give rise to higher loadings. 
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9.3 Design with simpler details 

This section briefly discusses the consequences of some typical current 
practices in the design of agricultural buildings. These follow from the 
illogical argument that lower levels of load can be associated with 
simpler details. A typical example of current practice is the omission of 
fly braces, as shown in Fig. 3.27, from the rafters of small portal frames. 
This assumes that the rafter members are sufficiently stocky for the 
purlins and purlin cleats to provide adequate restraint to the bottom 
flange. This is certainly possible in the case of the RSJ rafters which 
were used in the first of the case studies in Chapter 10. It is certainly not 
possible when relatively slender Universal Beams are used and the 
designer needs to be cautious here and not to omit fly braces without 
proper consideration of member stability. It is particularly important to 
note that the purlin to cleat to rafter connection requires at least two 
bolts if it is to provide torsional restraint to the rafter. 

Another frequent simplification with agricultural buildings is the 
omission of shear and bearing stiffeners in connections, particularly the 
haunch connections in pitched roof portal frames. Here again, this may 
be possible for frames of small span but it is not generally so. It is shown 
in the next chapter that this can lead to a significant reduction in the 
carrying capacity of a typical frame of small span. 

Small columns have relatively thin flanges and this can make it 
necessary to provide a cap plate at the top of the column in order to 
stiffen and strengthen the flange adjacent to the bolts in tension. If this is 
not done, one consequence of the deformation of the flange will be 
increased deflection at the apex and a likely decrease in the carrying 
capacity as a result of enhanced second-order effects. Another 
consequence is a reduction of the lever arm of the tension bolt group 
with a consequential increase in the shear and bearing stresses in the top 
of the column for a given bending moment. These are further reasons 
why the use of lightweight construction must not be allowed to reduce 
the attention to detail in the design. 

The bases of the smaller columns that are frequently used in 
agricultural buildings can be conveniently fixed by placing them in a 
socket in the concrete base block and relying on 'garden spade' action to 
provide the fixity. Guidance on the necessary foundation design can be 
found in the Steel Designers Manual92. Thus, the fixed base detail is 
often more appropriate to farm buildings than to the larger industrial 
buildings. However, this method requires considerably more concrete 
than in a comparable pinned base design and is only applicable when 
the ground can provide adequate bearing pressure. 
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The roof cladding of agricultural buildings is frequently fibre- 

reinforced cement sheets fastened to the supporting purlins with hook 
bolts through the crests of the profile. This is perfectly good practice but it 
does mean that such buildings do not have the benefit of any significant 
'stressed skin' effect which is available to provide additional stability in 
the case of conventional metal cladding fastened through the troughs. 
This is yet another reason for not taking too many liberties with the 

stability of agricultural buildings. 

9.4 Loads from stored crops 

Agricultural buildings are frequently designed to store crops and other 
bulk materials as illustrated by Fig. 9.1. The various parts of BS 5502, 
and notably Table 7 of BS 5502: Part 22: 1993, give a good deal of 
information regarding the loads imposed on the structure by the various 
materials that may be stored. 

This has two design consequences which should not be overlooked. 
The active pressure from the stored material leaning against the side of 
the building applies a significant point load to the frame at the height of 
the horizontal rail. This load tends to crush the web of the stanchion and 
this web should be checked for buckling and bearing. Second, and more 

important, the point load modifies the shape of the bending moment 

diagram, as shown in Fig. 9.2. The large region of approximately 
uniform bending moment above the load point may cause a significant 
reduction in the stability of the stanchion. In an extreme case, this entire 

region may be fully plastic at or near the collapse load and its stability 
will therefore require to be carefully checked in order to ensure that the 

design load can be achieved. 

r--1 t I I I I I I I I I I I I uTI 

Point load 
from stored 
material 

Fig. 9.1 Storage of bulk materials. 

Live load 
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Fig. 9.2 Bending moment diagram with stored materials. 



Chapter 10 

Performance of Agricultural 
Buildings — Two Case Studies 

10.1 Introduction 

A major research project was recently undertaken by the Universities of 
Manchester and Salford in which two 12m span pitched roof portal 
frames were designed to the Agricultural Code, built full size in the 

laboratory, and tested to destruction. It is significant that both frames 

were designed by practitioners outside the academic research project 
and that both incorporated design faults that resulted in a reduction in 
the carrying capacity. This chapter describes these tests and the lessons 

that can be learned from them. 

10.2 General arrangement for the tests 

The test procedures have been described in References 10.1 and 10.2 

and the description of the first test included in this chapter is taken 

largely from Reference 10.2. 

One of the fundamental decisions taken at the planning stage was that 
the tests should simulate, as realistically as possible, the actual load and 
restraint conditions existing in a portal frame within an actual structure. 
This meant that the 'snow' loading would have to be applied through 
the sheeting and thence onto the purlins. A three-dimensional test 

assembly was therefore developed which allowed a realistic degree of 
structural interaction between components to be reproduced. In 

particular, the restraint offered by secondary members to the main 
frame was modelled as accurately as possible. This was important, as 
one of the primary areas of interest was the lateral stability of members, 
particularly the haunched region. 

It was necessary to design the complete test assembly to fit into the 
available area of strong floor in the Structures Laboratory at the 
University of Salford (approximately 24m x lOm). Figure 10.1 shows 
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Horizontal 
jack 

the test rig which consisted of three 12 m span frames with the central 
test frame connected at rafter level by cold-formed purlins to the two 
'gable' frames. Lateral movement of the gable frames was restrained by 
bracing them back to the stanchions in the laboratory walls. 

The load was applied to the sheeting by hydraulic jacks through a 
system of beams, hangers and timber spreaders. Figure 10.2 is an 
interior view of the test set-up showing the arrangement of a hydraulic 
jack together with its associated beams and hangers positioned below 
the roof level, while Fig. 10.3 is an exterior view indicating the 
placement of the timber load-spreading members on the roof sheeting. 
Each spreader applied 6 load points locally to the sheeting so that a 
total of 96 load points were controlled by each jack to give a total of 384 
load points for the 12 m span frames. The loading system was designed 
to have a maximum test capacity of 2 kN/m2. This, together with the 
self-weight of the frame, purlins, sheeting and the loading system itself 
(approximately 1 kN/m2), was sufficient to ensure failure of the frames 
to be tested. 

Fig. 10.1 General arrangement for portal frame tests. 
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Fig. 10.2 Interior view with loading system. 

Fig. 10.3 Exterior view with roof loads. 
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If the two gable frames had been made rigid, loading through the roof 
sheeting and purlins could have given rise to parasitic stressed skin 
effects which would have significantly influenced the behaviour of the 
test frames. Considerable thought was given to methods of avoiding 
this, and it was finally decided that the gable frames should be fully 
articulated by arranging that the intersecting members of the gable 
frames were pin-jointed at the eaves and apices and that all the gable 
posts were located on knife-edge supports. This allowed the nodal 
deflections of these frames to be controlled precisely by means of two 
independent jacks. The principles involved can be visualised with the aid 
of Fig. 10.1. A hydraulic jack was positioned beneath the central gable 
post, and this controlled the vertical movement of the apex joint. The 
horizontal movement of the gable eaves was also controlled by a push- 
pull jack, as shown in Fig. 10.4. At each load increment, the nodal 
deflections of the test frame were measured and the articulated side 
frames were then adjusted until their corresponding nodal deflections 
coincided with those of the test frame. 

A secondary effect that could not be satisfactorily eliminated was the 
partial continuity of the purlins. This resulted in the central frame 
receiving more load than the two gable frames. The precise distribution 
of load on the frame could not be readily assessed by simple analysis, as 
it later became apparent that the distribution was varying during the 
tests. It was necessary, therefore, to measure accurately the gravity load 

Fig. 10.4. Eaves detail of gable frame. 
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Holding down bolts 
(grouted) 

Concrete slab 

Load cells 

Fig. 10.5. Base detail. 

being applied to the frames at each stage during the test and this was 
achieved by means of load cells positioned below the concrete base slabs 
of the test frame. 

It was decided that not only the loading system and restraints but also 
the base detail should be realistic. The frames were therefore detailed to 
have nominally 'pinned' bases sitting on concrete foundation blocks. 
Figure 10.5 shown the general arrangement of these bases and the 
positions of the four load cells used to monitor the horizontal load, the 
vertical load, and the bending moments acting on the concrete base. The 
bases were designed to be reused so they were cast with a central 
rectangular opening into which holding-down bolts could be grouted in 
a separate operation. 

In addition to the load cells mentioned above, the frames were fully 
instrumented by means of some 180 strain gauges and 20 deflection 
transducers. Data collection and processing was fully automated by 
means of data logging equipment and interlinked computers. 

10.3 Details of Frame I 

The fabricated details of the first frame are shown in Fig. 10.6. The 
frame was designed as an agricultural building to BS 550210.3 with an 
imposed load of 0.462 kN/m2 and a load factor of 1.7. As with each of 

Column base 
plate 

Void 
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the frames that were tested in this project, the design and detailing were 
undertaken by an experienced designer/fabricator within the steel 
construction industry without any interference from the academics 

directing the project, other than specifying the physical limitations of 
the laboratory space. 

It is interesting to note at the outset that each of the two tested frames 
had at least one poor design feature which caused some form of premature 
failure. In each case, adherence to the guidance given in BS 5950: Part I 
would have eliminated the problem. In the case of Frame 1, the poor 
design features were twofold. 

(I) the web of the column adjacent to the haunch was overstressed in 
shear and required shear stiffening, though none was provided; 

(2) the web of the column adjacent to the bottom flange of the haunch 
was overstressed in bearing and required horizontal compression 
stiffeners, though none was provided. 

These omissions can be seen in Figs 10.6 and 10.8. 
For this first test, bearing in mind the 'agricultural' nature of the 

design, fibre-reinforced cement sheets were used as roof cladding. 
Purlins for all of the tests were light gauge steel zed-sections fixed 

according to the manufacturer's recommendations. The purlins used 

End plates — 8 mm FW 
M16 HSFG bolts - 70% 
22 mm HO bolts — 100% 

L 

Fig. 10.6 Details of Frame 1. 

6000 
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I 
Haunch region 

Fig. 10.7 Instrumentation of Frame 1. 

were deliberately made approximately two sizes larger than the 
minimum indicated by the design calculations in order to ensure that 
the purlins did not fail before the frames. It may be noted that, in view 
of the relatively stocky members (RSJs) used in this particular test 
frame, the design did not include fly braces. 

All cross-sections that required a detailed examination were fully 
strain gauged, particularly in the haunched region as shown in Fig. 10.7. 
This figure also shows locations of the linear deflection transducers. In 
addition, critical regions where yield was anticipated were coated with a 
brittle lacquer so that the spread of plasticity during the test could be 
monitored and recorded photographically. 

As this was the first frame to be tested, considerable caution was 
exercised until the various control and measuring systems were proven. 
This meant initially loading the frame with relatively low intensities of 
load relative to the estimated failure load until the investigators were 
satisfied that all of the instrumentation was performing satisfactorily. 
Several preliminary tests were carried out before the loading was 
increased until the frame failed. 

Failure of the frame was due primarily to a bearing/buckling failure 
of the column flange local to the bottom flange of the haunch, followed 
by the formation of a shear hinge in the column web, as shown in 
Fig. 10.8. The flaking of the brittle lacquer in the web is clearly visible 

y Symmetrical 
about 

c. 

Transducer/dial gauge 

c. In plane deflection 
® Out-of-plane deflection 

Strain gauging of cross-section > — - - — 

I 
Uniform member 
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and indicated the extent of the yielded zones. These primary modes of 
failure induced a secondary mode, i.e. lateral-torsional buckling of the 
column member. At this stage, the test was terminated in order not to 
overstrain the test assembly. 

10.4 Theoretical analysis of Frame I 

Two theoretical analyses were carried out in comparison with the full- 
scale test. The first of these was an extremely detailed finite element 
analysis using eight noded isoparametric shell elements with second- 
order elastic-plastic capability. This is described in more detail in 
References 10.2 and 10.4 and will not be repeated here. 

The second theoretical analysis was a second-order, elastic-plastic 
plane frame analysis as outlined in Chapter 3. 

Fig. 10.8 Premature failure of Frame I at top of column. 



10.5 Behaviour of the first test frame 

The finite element analysis for the first frame was undertaken in 30 

displacement steps, assuming no previous load history. It finally 'failed' 
at a total load of 77.82 kN which is equivalent to a uniformly distributed 
roof load of l.297kN/m2. Figure 10.9 shows both experimental and 
theoretical load-deflection curves for the vertical deflection at the apex. 
The theoretical predictions given by a simple second-order plane frame 

analysis were based on the measured full plastic moments of the 
members, and a knowledge of the base moments and rotations 
observed during the test. Curve (b), which incorporates a shear hinge, 
assumes that, when the web of the column behind the haunch had fully 
yielded in shear, a hinge was formed which was directly analogous to a 
plastic hinge, though having a lower moment of resistance than the 
plastic resistance of the column member. Figure 10.10 shows the 
bending moment diagrams corresponding to the test results, the finite 
element analysis and the simple analysis (with shear hinge) for the frame 

just prior to failure. 
The following observations arise from the finite element analysis: 
All the physical evidence suggests that this gave a faithful account of 
the failure history of the tested frame. 

(1) The extensive compression yielding in the column webs immedi- 

ately behind the inclined compression flange of the haunch started 
when the load was approximately 0.55 kN/m2. Above this load, 

Performance of Agricultural Buildings — Two Case Studies 313 

Experimental 

Plastic hinge 
mechanism (a) 

Finite Shear hinge Failure element mechanism 

(b) 

1.60 

1.44 

1.28 

1.12 
z . 0.96 
0 
0 

0.64 

0.48 

< 0.32 

0.16 

0.00 
0 50 100 150 200 250 300 350 400 450 500 

Apex deflection (mm) 

Fig. 10.9 Load-deflection curves for Frame 1. 
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Fig. 10.10 Bending moment distribution near failure of Frame 1. 

these local areas of column webs showed signs of crushing and 
buckling, due to the absence of compression stiffeners. 

(2) As the geometric imperfections and material properties of the 
members were not uniform throughout the frame, the spread of 
plasticity on the weaker side caused the frame to sway in a non- 
symmetrical manner, though this trend reversed as failure was 
approached. 

(3) Shear yielding commenced in the web panel of the column head 
at a load of 0.75 kN/m2. Shear hinges formed in the two column 
heads at loads of 1.05 kN/rn2 and 1.08 kN/m2 respectively. This 
is reflected by the load-deflection curve in Fig. 10.9 where the 
slope of the curve changes noticeably in this region of load. The 
delay in the formation of the second shear hinge was due to the 
preceding non-symmetrical sway movement of the frame. 

(4) The development of a mechanism was curtailed because the 
initial out-of-straightness of the rafter induced lateral bending of 
the haunched regions and eventually twisting of the column. 

As noted, the test frame failed prematurely because of local web 
crushing/buckling and the formation of a shear hinge in the column 
head. The primary mode of failure was followed by lateral-torsional 
buckling in the column member itself. This resulted in a significant 
reduction in ultimate design capacity of the frame. The calculated 
failure of the column head is shown in Fig. 10.11 which displays a 
remarkable similarity to the physical failure shown in Fig. 10.8. The 
theoretical model clearly predicted both modes of failure. From the 
theoretical analysis, the yielded zones in various parts of the frame at 
failure can also be deduced, as shown in Fig. 10.12. The diagrams 
clearly emphasise the extensive shear yielding in the column web and the 
local compression failure of the column member adjacent to the bottom 
flange of the haunch. 
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Fig. 10.12 Calculated yielding of the column head at failure of Frame 1. 
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Fig. 10.11 Theoretical distortion of column head in Frame 1. 

It may be noted that the stress distribution in the inner flange of the 
column at failure is highly non-uniform. A web bearing/buckling 
stiffener in the column is beneficial in reducing the effects of rolling 
tolerances and column web eccentricity which contribute to this effect. 

The two load-deflection curves (a) and (b) in Fig. 10.9 obtained using 
plane frame analysis emphasise the influence of the unwelcome 'shear 
hinge'. Conventional plastic theory predicts a failure load of 1.58 kN/m2 
as shown by curve (a), whereas taking into account the reduced 
movement capacity of the shear hinge reduces the failure load to 
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1.25 kN/m2 as shown by curve (b). Clearly, curve (b) is very much closer 
to the experimental results which obviously demonstrate the deleterious 
effect of the shear hinge. 

Evidently it is important to carry out design checks on both the shear 
and bearing stresses in the haunch region and to incorporate the 
necessary stiffeners when the design checks indicate overstress. The tests 
reported here demonstrate that failure to do this may result in a 

significant reduction in the strength of the structure. 

10.6 Details of Frame 2 

The fabricated details of the second test frame are shown in Fig. 10.13. 
This frame was also designed as an agricultural building to BS 5502 with 
a total vertical load (dead plus imposed) of 0.67 kN/m2 and a load 
factor of 1.7 giving a factored vertical load of 1.14 kN/m2. However, 
this frame was also designed to resist a factored side load from stored 
grain of 40 kN acting horizontally at a height of 2.5 m above the base on 
one side only. This load tends to dominate the design and results in a 
significantly heavier frame. 

Fig. 10.13 Details of Frame 2. 
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Furthermore, the sponsors of the project specifically requested that 
the point of application of this side load should not be braced in the first 
instance as agricultural buildings are frequently built to accommodate 
such a load though with no bracing at the load point. The investigators 
thought that it would be interesting to comply with this request. 

Examination of the haunch arrangement suggests that the toe angle 
of the haunch is rather large and a bearing stiffener should probably 
have been provided in the rafter. This factor does not appear to have 
influenced the results of the tests. 

For this test, the roof cladding was a 32mm deep profiled steel sheet 
supported on Z purlins at 1.375 m centres. Again, there was no shear 
stiffener behind the eaves connection and no fly braces. As shown in 

Fig. 10.14, however, there was a compression stiffener in line with the 
bottom flange of the haunch. Detailed calculations show that, strictly 
speaking, a shear stiffener should have been provided but the 
requirement was marginal and certainly not as critical as in Frame 1. 

Fig. 10.14 Eaves detail of Frame 2. 
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Table 10.1 Test sequence for Frame 2. 

Load 
case 

Load applied Failure mode 
(if applicable) 

Maximum load 
applied 

I vertical only elastic range only 1.63 kN/m2 
2 side load only elastic range only 80 kN 
3 combined, jack on right lateral buckling of stanchion load factor 3.16 
4 combined, jack on left local buckling at load point load factor 2.82 
5 combined, jack on left plastic collapse mechanism load factor 3.33 

10.7 Test sequence for Frame 2 

The presence of the side load allowed a rather more comprehensive test 
series than was possible with Frame 1 which was loaded by vertical load 
only. The test series was further increased when premature local failures 
were repaired and reinforced before testing to failure in an alternative 
mode. The resulting test sequence is summarised in Table 10.1. 

10.8 Theoretical analysis of Frame 2 

Although both detailed finite element analysis and relatively simple 
plane frame analyses were also available for this test, it is generally 
sufficient to discuss the test results primarily with reference to elastic- 

plastic plane frame analyses. 

10.8.1 Load case 1 (vertical load only) 

The experimental and theoretical bending moment diagrams at the 
maximum applied load are shown in Fig. 10.15. This agreement is close, 
confirming that the load application and strain measuring equipment 
were in good order. 

10.8.2 Load case 2 (side load only) 

The experimental and theoretical bending moment diagrams at the 
maximum load applied are shown in Fig. 10.16. There are small 
differences between the two, possibly reflecting local yielding at the load 
point, but the agreement is acceptable. The relatively large bending 
moments caused by the side load (stored materials) should be noted. 



For this load case, both side load and vertical load were applied 
together. The bending moment diagrams at an intermediate stage of 
loading (1.20 kN/m2 vertical + 42.0 kN horizontal) are shown in 

Fig. 10.17. Evidently, the redistribution of the high bending moments 
around the load point and the right-hand eaves are more marked here. 
This could be a combination of local yielding at the point of application 
of the load and movement in the bolted connection at the eaves. The 

shape of the bending moment diagram should also be noted with high 
and almost uniform moment in the upper part of the right-hand 
column. 

This test was terminated when the right-hand column failed in lateral 
torsional buckling at a load factor of 3.16 (2.12 kN/m2 vertical + 74.4 kN 
horizontal). 
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Fig. 10.15 Bending moment diagram (kNm) for load case 1. 
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Fig. 10.16 Bending moment diagram (kNm) for load case 2. 



After the termination of the test to failure described for load case 3, it 
was observed that, apart from the right-hand column, the remainder of 
the frame was relatively undamaged. The shape of the bending moment 
diagram indicated that the left-hand half of the frame had been 
relatively lowly stressed. It was therefore decided that additional 
information could be obtained by continuing the test series. 

Accordingly, the buckled column was taken out of the frame, 
straightened and replaced. The load system was then transferred to the 
undamaged left-hand column. A fly brace was introduced at the load 
point in order to prevent torsional movement. 

When the combined loads were then increased together, a local 

buckling failure took place at the load point at a load factor of 2.82. 
This is, of course, a lower load level than was achieved in load case 3 
with an unrestrained column. 

Neither the bending moment diagram nor other measurements taken 
during the test gave any indication of why this should have occurred. 
Two possible reasons can be conjectured. Either the loading jack was 

misaligned or residual stresses locked into the frame as a result of load 
case 3 accelerated the failure. 

After completing load case 4, some further remedial work was under- 
taken. The local buckle was straightened and the buckled region 
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Fig. 10.17 Bending moment diagram (kNm) for load case 3. 

10.8.4 Load case 4 (combined loading) 
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10.8.5 Load case 5 (combined loading) 



heavily stiffened. Then the frame was again tested to failure. This time a 
plastic collapse mechanism was achieved with a load factor of 3.33. The 
bending moment diagram at collapse is shown in Fig. 10.18. 

The load-deflection curves for this final test to failure are shown in 
Fig. 10.19. After the introduction of the necessary additional bracing 
and strengthening, a ductile plastic collapse was obtained which could 
be adequately predicted by the usual analytical techniques. 
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Fig. 10.18 Bending moment diagram (kNm) at collapse. 
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10.9 Conclusions from the tests on Frame 2 

The tests on Frame 2 have been described in some detail because they 
are considered to be extremely instructive. Experience of structural 
failures indicates that it is generally the details which fail. Under-design 
of the primary members is rarely a factor and experience with the large- 
scale testing of steel structures confirms this view. In order to avoid 
premature failure, it is necessary to pay particular attention to what are 
often considered to be the less important aspects of the design such as 
joint details and bracing. 

Once the minimum amount of remedial work had been carried out, 
namely a fly brace and web stiffener at the load point, the relatively 
stocky frame was stable up to plastic collapse without any fly braces in 
the remainder of the structure. With agricultural buildings of small 
span, there is evidently some scope for judgement regarding the 
provision of bracing members. It is recommended that point loads of 
the order of magnitude of the crop load in this example should always 
be braced and stiffened. Fly braces should be introduced at points where 
rotational restraint is required except where RSJs or stocky Universal 
Beams at the smallest end of the range are used. 
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