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  Pref ace   

 The introduction of next-generation sequencing (NGS) technologies revolutionized 
the means by which scientists extract genetic information from biological systems, 
and revealed the virtually limitless insight that can be gained from the genome, 
transcriptome, and epigenome of various species. Following the lead of the ground-
breaking Human Genome Project, several additional large-scale genome studies 
have materialized all over the world with NGS being the cornerstone of these inves-
tigations. Furthermore, the application of modern NGS techniques in the clinical 
fi eld has led to major breakthroughs in the identifi cation of disease-related genes in 
various forms of cancer and other life-threatening ailments. 

 A remarkable feature of NGS technologies is their high throughput nature which 
results in hundreds of thousands or even millions of short-read sequences. Therefore, 
research in the NGS fi eld is interdisciplinary and requires integration between bio-
logical and computational knowledge and skills. In fact, the analysis of NGS data 
requires intensive computational power and skillful bioinformatics personnel. 

 However, NGS is not without its own challenges, requiring continuous development 
in sequencing technologies, computational infrastructure, and bioinformatics 
techniques to analyze the resultant raw data in order to assemble and annotate the 
full-length genome and transcriptome. Such developments have led to remarkable 
progress in efforts to enhance the performance and coverage of sequencing, and 
yielded a dramatic improvement in the quality of assembled sequences. Nevertheless, 
issues such as short-read lengths, sequencing and platform-specifi c errors, and 
large-scale memory requirements for the assembly process remain major challenges 
in the fi eld. 

 As part of the SpringerBriefs series, this book presents a brief overview of the 
history, development, methods, applications, and challenges of NGS, and is divided 
into three parts. Part I provides an introduction to the basics of molecular biology, 
algorithms, and data structures required to assist readers in understanding the more 
technical portions of this book (Chaps.   1     and   2    ). Part II discusses NGS methods 
and the associated platforms, applications, challenges, and recent advancements 
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(Chaps.   3    –  7    ). Lastly, Part III provides an overview of NGS assembly stages and the 
related assessments and evaluations, utilized tools and remaining challenges in the 
fi eld (Chaps.   8    –  11    ). 

 The primary audience intended for this book is newcomers to the fi eld of 
sequencing with either a biological or computer science background. We provide 
basic introduction to both these scientifi c areas in relation to sequencing to allow 
readers to appreciate the unique amalgamation between the two that has pushed 
forward modern developments in the area. Furthermore, the book will also be useful 
for readers with a seasoned background in sequencing, as Parts II and III include a 
comprehensive topical review of the fi eld including discussions on prevailing stum-
bling blocks in relation to technical complications, widespread availability, and the 
continuing need for various resources. In addition, Chap.   10     will present a unique 
glimpse into the recent, yet rapidly developing, fi eld of the assessment of the next- 
generation sequence assembly.  

    California, USA Sara     El-Metwally, M.Sc. 
      Michigan, USA Osama M.     Ouda, Ph.D. 
      Toronto, Canada Mohamed     Helmy, Ph.D.     

Preface

http://dx.doi.org/10.1007/978-1-4939-0715-1_3
http://dx.doi.org/10.1007/978-1-4939-0715-1_7
http://dx.doi.org/10.1007/978-1-4939-0715-1_8
http://dx.doi.org/10.1007/978-1-4939-0715-1_11
http://dx.doi.org/10.1007/978-1-4939-0715-1_10


vii

  Acknowledgments  

 We have been fortunate to have Melanie Tucker (the former Springer editor), 
Meredith Clinton, and Noreen Henson as managing editors to this book. The present 
book started life through an initial call for book proposals sent by Melanie. Following 
several email communications, we met at the 13th International Conference on 
Systems Biology (ICSB’12, Toronto, Canada), where the proposal was pushed for-
ward with her encouragement and enthusiasm. By the end of the project, Meredith 
and Noreen had also joined up to become editors of this book. Furthermore, we 
especially thank Dr. Suhail Asrar for language editing this whole book. 

 We are also grateful to the authors and developers of the methods, algorithms, 
and software tools in the fi eld of next-generation sequencing who responded to our 
email requests. Their generosity in sharing papers and technical details was a great 
help to formulate the comparisons and reviews found in this book. Furthermore, we 
acknowledge the various community resources (web pages, wiki pages, Wikipedia 
pages) developed by the authors or users of methods and software tools, which rep-
resent a dynamic source of valuable practical information that is otherwise diffi cult 
to obtain. In particular, we would like to mention the NGS Field Guide by Travis 
Glenn, which is updated annually online. 

 Finally, we thank our families for their endless love and support.  



wwwwwwwwwww



ix

 Contents

Part I  Introduction to Molecular Biology and Bioinformatics 
Basics in Next-Generation Sequencing

 1 Basics of Molecular Biology for Next- Generation Sequencing ........... 3
1.1  Molecular Biology ........................................................................... 3

1.1.1  Deoxyribonucleic Acid ........................................................ 5
1.1.2  Ribonucleic Acid .................................................................. 6
1.1.3  Proteins ................................................................................. 8

1.2  The Central Dogma of Molecular Biology ...................................... 9
1.2.1  Transcription ........................................................................ 9
1.2.2  Translation ............................................................................ 10

1.3  Genetic Information Sources Targeted by Sequencing .................... 10
1.3.1  The Genome ......................................................................... 11
1.3.2  The Transcriptome ............................................................... 11
1.3.3  The Exome ........................................................................... 12
1.3.4  The Metagenomes ................................................................ 12

References ................................................................................................. 12

 2 Algorithms and Data Structures in Next- Generation Sequencing ..... 15
2.1  Data Structures ................................................................................. 15

2.1.1  Strings .................................................................................. 15
2.1.2  Suffi x/Prefi x Trees ................................................................ 16
2.1.3  Suffi x Arrays ........................................................................ 16
2.1.4  Graphs .................................................................................. 17
2.1.5  Hash Tables .......................................................................... 19
2.1.6  Bloom Filters ........................................................................ 20

2.2  Algorithms ....................................................................................... 21
2.2.1  Alignment Algorithms ......................................................... 21
2.2.2  Greedy Algorithm ................................................................ 23

References ................................................................................................. 24



x

Part II  Next-generation Sequencing Methods, Platforms, 
Applications and Challenges

 3 First- and Next-Generations Sequencing Methods .............................. 29
3.1  Introduction ...................................................................................... 29
3.2  DNA Sequencing Methods .............................................................. 29

3.2.1  First Generation Sequencing Methods ................................. 30
3.2.2  Next-Generation Sequencing Methods ................................ 32

References ................................................................................................. 35

 4 Next-Generation Sequencing Platforms ............................................... 37
4.1  Introduction ...................................................................................... 37
4.2  Roche 454 Systems .......................................................................... 37
4.3  AB SOLiD Systems ......................................................................... 39
4.4  Illumina GA/HiSeq Systems ............................................................ 40
4.5  Compact Systems ............................................................................. 42

4.5.1  Illumina MiSeq..................................................................... 43
4.5.2  Ion Torrent PGM .................................................................. 43
4.5.3  The Open-Source Sequencing System ................................. 43

References ................................................................................................. 44

 5 Challenges in the Next-Generation Sequencing Field ......................... 45
5.1  Sanger Sequencing Versus Next-Generation Sequencing ................ 45
5.2  Effi ciency of Sanger Sequencing ..................................................... 46
5.3  Challenges in Next-Generation Sequencing .................................... 47

5.3.1  Sequencing Cost ................................................................... 47
5.3.2  Read Length ......................................................................... 47
5.3.3  Error Rates and Types .......................................................... 48

References ................................................................................................. 49

 6 New Horizons in Next-Generation Sequencing .................................... 51
6.1  Third-Generation Sequencing Methods ........................................... 51

6.1.1  Heliscope Single-Molecule Sequencing .............................. 51
6.1.2  Single-Molecule Real-Time Sequencing ............................. 52
6.1.3  Nanopore Sequencing .......................................................... 52

6.2  Third-Generation Sequencing Platforms ......................................... 53
6.2.1  HeliScope Single-Molecule Sequencer ................................ 53
6.2.2  PacBio RS II ......................................................................... 53
6.2.3  Oxford Nanopore GridION .................................................. 55

6.3  Sequencing Methods Under Development ....................................... 55
6.3.1  Solution-Based Hybridization Sequencing .......................... 56
6.3.2  Tunneling Current DNA Sequencing ................................... 56
6.3.3  Microscopy-Based DNA Sequencing .................................. 56
6.3.4  Mass Spectrometry-Based DNA Sequencing ...................... 57
6.3.5  RNA Polymerase Sequencing .............................................. 57

References ................................................................................................. 58

Contents



xi

 7 Novel Next-Generation Sequencing Applications ................................ 61
7.1  Introduction ...................................................................................... 61
7.2  Large-Scale Applications ................................................................. 62

7.2.1  Genome 10K Project ............................................................ 62
7.2.2  Tree of Life Sequencing Project ........................................... 63

7.3  Cell and Cell Compartments Applications ....................................... 63
7.3.1  Single-Cell Genome Sequencing ......................................... 63
7.3.2  Mitochondrial Genome Sequencing ..................................... 64

7.4  Disease-Targeted Sequencing .......................................................... 64
7.4.1  Sequencing in Cancer ........................................................... 65
7.4.2  Sequencing in Inherited Human Diseases ............................ 66
7.4.3  Sequencing in Complex Human Diseases ............................ 67

References ................................................................................................. 67

Part III  Next-generation Sequence Assembly Stages, 
Assessments, Tools and Challenges

 8 Next-Generation Sequence Assembly Overview .................................. 73
8.1  Introduction to Next-Generation Sequence Assembly ..................... 73
8.2  Sequence Assembly Framework ...................................................... 74

8.2.1  Error Correction Phase ......................................................... 75
8.2.2  Graph Construction Phase .................................................... 75
8.2.3  Graph Simplifi cation Phase .................................................. 76
8.2.4  Scaffolding Phase ................................................................. 76
8.2.5  Assembly Assessment Phase................................................ 76

References ................................................................................................. 77

 9 Approaches and Challenges of Next- Generation 
Sequence Assembly Stages ..................................................................... 79
9.1  Introduction ...................................................................................... 79
9.2  Error Correction Phase ..................................................................... 80

9.2.1  K-mer-Based Error Correction ............................................. 80
9.2.2  Suffi x Tree/Array-Based Error Correction ........................... 81
9.2.3  Alignment-Based Error Correction ...................................... 81

9.3  Graph Construction Phase ................................................................ 82
9.3.1 Overlap-Based Graph Construction Approach .................... 84
9.3.2 K-mer-Based Graph Construction Approach ....................... 85
9.3.3  Greedy-Based Graph Construction Approach ..................... 86

9.4  Graph Simplifi cation Phase .............................................................. 86
9.5  Scaffolding Phase ............................................................................. 87

9.5.1  Scaffolders ............................................................................ 88
References ................................................................................................. 91

Contents



xii

10 Assessment of Next-Generation Sequence Assembly ........................... 95
10.1  Introduction to Assembly Assessment ........................................... 95
10.2  Contiguity and Consistency Measures ........................................... 95

10.2.1  Contiguity Assessment ..................................................... 95
10.2.2  Consistency Assessment ................................................... 96

10.3  Accuracy Measures ........................................................................ 96
10.4  Assembler’s Performance Measures .............................................. 97
10.5 Assessment Tools and Evaluation Studies 

for Assessing Assembly Quality .................................................... 97
10.5.1  Evaluation Studies for Assessing Assembly Quality ....... 97
10.5.2  Assembly Assessment Tools ............................................ 98

10.6 Assessment of Transcriptome and Metagenomes 
Assembly Quality ........................................................................... 99

References ................................................................................................. 99

11 Next-Generation Sequence Assemblers ................................................. 103
11.1  Introduction .................................................................................... 103
11.2  Next-Generation Genome Assemblers ........................................... 106

11.2.1  Overlap-Based Assemblers .............................................. 106
11.2.2  K-Spectrum-Based Assemblers ........................................ 110
11.2.3  Greedy-Based Assemblers ............................................... 111
11.2.4  Hybrid Assemblers ........................................................... 112

11.3  Next-Generation Transcriptome Assemblers ................................. 113
References ................................................................................................. 114

Concluding Remarks ...................................................................................... 117

Contents



   Part I 
   Introduction to Molecular Biology and 

Bioinformatics Basics in Next-Generation 
Sequencing        



3S. El-Metwally et al., Next Generation Sequencing Technologies 
and Challenges in Sequence Assembly, SpringerBriefs in Systems Biology 7, 
DOI 10.1007/978-1-4939-0715-1_1, © The Authors 2014

          Abstract     Organisms can be divided into simple (or unicellular) organisms and 
complex (or multicellular) organisms. Both simple and complex organisms share 
major cellular and biological processes that are mediated through proteins and 
nucleic acids. Proteins are the molecules responsible for every structural or biologi-
cal process achieved inside living cells or living organisms, while nucleic acids 
encode the necessary information required for the building and regulation of proteins. 
In this chapter, we present some basics of molecular biology to provide readers 
without a biological background with an adequate introduction to the subject. These 
basics would greatly aid a lay audience in understanding this and other computa-
tional biology resources and textbooks. Readers with a fi rm biological background 
may choose to skip this chapter.  

1.1               Molecular Biology 

 Molecular Biology can be defi ned as the study of the molecular principles that 
govern and regulate biological processes. These biological processes, including the 
replication, transcription, and translation of genetic material, require the existence, 
interaction, and regulation of thousands of proteins and their corresponding genes. 
Thus, the focus of molecular biology starts at divulging and understanding the 
structure and function of these proteins/genes and continues with the study of the 
interactions and regulation processes between them. Additionally, the effects of 
their absence and mutational changes should also be understood [ 1 ,  2 ]. 

 There are major differences that exist between different organisms at the molecu-
lar level, which is critical to the diversity observed between simple and complex 
organisms. In general, organisms are classifi ed into two major classes according to 
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their cellular and genomic structures. Hence, simple organisms with a unicellular 
structure are called prokaryotes, while more complex organisms that are usually 
multicellular are called eukaryotes. The differences between prokaryotes and 
eukaryotes are not simply limited to the number of structure forming cells, but 
include several other aspects that are of great importance to the topic of this book. 
A major difference between them is highlighted by the structure of the genome, 
which is circular and protein-free with the noticeable absence of telomeres in pro-
karyotes. On the other hand, the eukaryotic genome may possess telomeres and 
proteins, which is vital for chromatin formation. These differences hold consider-
able infl uence in the processes of genome sequencing and the assembly of sequenced 
genomes, as will be discussed later. The major differences between prokaryotes and 
eukaryotes are summarized in Table  1.1  [ 1 ,  2 ].

   Since the fi eld of molecular biology concerns a comprehensive understanding of 
the structures of molecules and interactions between them, it overlaps with other 
fi elds such as biochemistry. Furthermore, with the advent of modern experimental 
and analytical tools such as next-generation genome sequencing (NGS) and liquid 
chromatography mass spectrometry (LC-MS/MS) that generate huge amounts of 
data due to its high-throughput nature [ 3 ], molecular biology developed the need for 
specialized computational and informatics tools to analyze and process this infor-
mation. As a result, molecular biology has since considerably overlapped with the 
fi eld of computational biology and bioinformatics [ 1 ,  2 ]. 

 To develop an understanding of the details of the cellular processes at the molec-
ular level, three particular types of molecules need to be better appreciated: deoxy-
ribonucleic acid (DNA), ribonucleic acid (RNA), and proteins. In the next sections, 
we will provide a brief introduction to each of these structures. 

   Table 1.1    Main differences between prokaryotes and eukaryotes   

 Prokaryotes  Eukaryotes 

 Nucleus  Absent  Present 
 Chromosomes number  One  More than one 
 DNA  Circular protein-free  Liner, with chromatin 
 Membrane bound nucleus  Absent  Present 
 Telomeres  Absent (not needed)  Present 
 Endoplasmic reticulum  Absent  Present 
 Mitochondria  Absent or rare  Present 
 Ribosome  Small  Large 
 Mitosis  No  Yes 
 Cell wall  Chemically complex and always present  Simple and only in plants 
 Cell size  Small (<5 μm)  Large (>10 μm) 
 Unicellular/multicellular  Always unicellular  Often multicellular 
 Cytoskeleton  Absent  Present 
 Reproduction  Always asexual  Asexual or sexual 
 Metabolic pathways  Varity of pathways  Common set of pathways 
 Examples  Bacteria and archaea  Plants, animals, fungi 

1 Basics of Molecular Biology for Next-Generation Sequencing
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1.1.1     Deoxyribonucleic Acid 

 DNA is one of the two nucleic acids that exist in living organisms and play a crucial 
role in cell biology. DNA is a double-stranded chain formed by the repetition of 
similar basic units called nucleotides. Each nucleotide consists of a sugar molecule 
called 2’-deoxyribose, phosphate residue, and a nitrogenous base. The sugar mole-
cule contains fi ve carbon atoms (arranged from 1′ to 5′). The phosphate residue is 
important for creation of the chain through the connecting the 3′ carbon atom of the 
sugar molecule of one nucleotide with the 5′ carbon atom of the sugar molecule of 
the next nucleotide. Therefore, the DNA molecule has an orientation that begins at 
the 5′ end and ends at the 3′ end (Fig.  1.1a ). This feature is especially important in 
DNA sequencing and during sequence assembly as will be discussed later. All DNA 
sequences available in databases, literature, or books are written from 5′ to 3′ unless 
otherwise mentioned [ 2 ,  4 ].

   The nitrogenous bases are attached to the 1’ carbon atom of the nucleotide. There 
are four types of bases: adenine (A), guanine (G), cytosine (C), and thymine (T). 
Consequently, there are four types of nucleotides described. Adenine and guanine 
belong to a group called purines, while cytosine and thymine belong to the pyrimi-
dine group (Fig.  1.1b ). When DNA forms the double strand, a nucleotide from the 
purine group is bound to a nucleotide from the pyrimidine group in the other strand. 
Adenine is always bound to thymine, while guanine is always bound to cytosine 

  Fig. 1.1    DNA structure. ( a ) Example of complementary bases of 12 base pairs (bp). ( b ) Schematic 
representation of the DNA nucleotides from purines ( single ring ) and pyrimidines ( double ring ). 
( c ) Structure of DNA double-stranded helix. ( r ) Deoxyribose sugar, ( P ) the phosphate group, and 
the  dotted lines  represent the hydrogen binds between the nucleotides of the two strands       
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with weak hydrogen bonds (Fig.  1.1c ). This allows the two strands to be tied 
together and keeps the distance between them the same, and as a result, the double 
strand forms the familiar DNA double helix shape. These nucleotide pairs are 
known as complementary bases or Watson-Crick base pairs, and are used as units to 
measure DNA length. For instance, a DNA sequence of 2,000 nucleotides is referred 
to as 2,000 base pairs (bp) or 2 kbp [ 2 ]. 

 In computational biology and bioinformatics, a DNA sequence is considered as 
a string (sequence of characters) consisting of a combination of the four letters A, 
G, C, and T. Therefore, from the complementary bases, the reverse strand of DNA 
(which starts at 3′ and ends at 5′) can always be predicted for any given DNA 
sequence by replacing A, T, C, and G with T, A, G, and C in the string, respectively. 
In fact, this is very similar to what occurs in the living cell, where each strand of the 
DNA molecule constructs its complementary strand. This process allows the DNA 
to replicate and make two identical copies of the total DNA during cell division to 
create two cells, each of which carry an identical copy of the genomic DNA [ 2 ,  4 ].  

1.1.2     Ribonucleic Acid 

 The second type of nucleic acid that exists in living cells is RNA. RNA has the same 
general structure and properties of DNA with certain major differences. Unlike 
DNA, RNA is single stranded with the sugar molecule in its nucleotides being 
ribose rather than 2’-deoxyribose. Furthermore, the thymine (T) base is absent and 
another base called uracil (U) exists instead. As a result, uracil (U) binds with ade-
nine (A) in a similar fashion to the thymine (T) binding observed in DNA. Therefore, 
the RNA sequence can be predicted from the DNA sequence and vice versa through 
the substitution of A, U, C, and G, by T, A, G, and C, respectively. However, a major 
difference between DNA and RNA is that the former performs one principle func-
tion (the encoding of the genetic information of the organism) while several differ-
ent types of RNA exist to accomplish a variety of tasks. It is also important to note 
that RNA can also exist in double strands. In some viruses, it has been observed that 
the genetic material is double-stranded RNA (ds-RNA) rather than DNA [ 2 ,  5 ]. This 
viral ds-RNA plays an important role in the detection of viruses by immune systems 
such as in humans [ 6 ]. 

 There are three main types of RNA that play a crucial role in the protein synthesis 
process: the messenger-RNA (mRNA), ribosomal-RNA (rRNA), and transfer- RNA 
(tRNA). Furthermore, several additional forms of RNAs exist in the cell to perform 
critical posttranscriptional modifi cations and regulatory functions (Table  1.2 ). Here, 
we will briefl y introduce the major types of RNA that are important to the next-
generation sequencing fi eld.

   The mRNA results from DNA transcription (Fig.  1.2a ), a process that creates a 
strand of RNA that complements a certain part of the genomic DNA (see below). 
This RNA is encoded such that it is actually carrying all the information needed to 
create the protein through the translation of the “encoded” RNA sequence into an 
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amino acid sequence as will be described in more detail later. In prokaryotes, the 
mRNA is directly translated into a protein under most circumstances, while in 
eukaryotes, the process is more complex due to the fact that the mRNA consists of 
coding regions called “exons” and noncoding regions called “introns”. The removal 
of introns from the mRNA is crucial for the creation of mature mRNA that will be 
translated to a protein, a process named mRNA splicing. Therefore, mRNA splicing 

    Table 1.2    Examples of RNAs with regulatory and posttranscriptional modifi cation functions   

 RNA type  Function(s)  Organism  References 

 Small nuclear RNA 
(snRNA) PTM  

 Splicing  Eukaryotes 
and archaea 

 [ 20 ] 

 Y RNA PTM   RNA processing, DNA replication  Eukaryotes (animals)  [ 21 ] 
 Telomerase RNA PTM   Telomere synthesis  Most eukaryotes  [ 22 ] 
 Small nucleolar RNA 

(SnoRNA) PTM  
 Nucleotide modifi cation 

of RNAs 
 Eukaryotes and 

archaea 
 [ 23 ] 

 Antisense RNA 
(aRNA) R  

 Transcriptional attenuation, 
mRNA degradation 
and stabilization 

 All organisms  [ 24 ] 

 CRISPR RNAs R   Resistance to bacteriophage, 
prevent plasmid conjugation 

 Bacteria  [ 25 ] 

 Trans-encoded base 
pairing sRNAs R  

 Regulation of translation and 
stability of target mRNAs 

 Bacteria  [ 25 ] 

 Cis-encoded base 
pairing sRNAs R  

 Expression regulation  Bacteria  [ 25 ] 

 Small interfering RNA 
(siRNA) R  

 Gene regulation  Eukaryotes  [ 26 ] 

   R Regulatory RNA 
  PTM  Posttranscriptional modifi cation RNA  

  Fig. 1.2    Types of RNA and Translation process. ( a ) messenger-RNA (mRNA). ( b ) transfer-RNA 
(tRNA). ( c ) ribosomal-RNA (rRNA)       
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is a major reason for next-generation sequence assembly to be more complicated in 
eukaryotes in comparison to prokaryotes, where the splicing process is almost 
absent. Following the process of splicing in eukaryotes, the mRNA is exported to 
the cytoplasm to be translated. Due to the absence of the nucleus and other cellular 
compartments, the translation of the mRNA in prokaryotes starts during the tran-
scription process [ 2 ,  5 ].

   The tRNA is responsible for the transfer of amino acids to the rRNA and mRNA 
during the translation process. It consists of a small chain of around 80 nucleotides 
with a special sequence called anticodon, and has another site for amino acid attach-
ment (Fig.  1.2b ). Each tRNA is specially bound with certain amino acids via its 
amino acid binding site, eventually transferring this amino acid for addition to the 
protein that is being created. Each three nucleotide sequence in the mRNA repre-
sents one codon that corresponds to a particular amino acid. The tRNA anticodon 
region represents the complementary sequence of these three nucleotides. The posi-
tion of the amino acid in the protein that is being translated is determined by the 
anticodon of the tRNA that complements the mRNA codon [ 2 ]. The mRNA codon 
and the tRNA anticodon regions bind with each other through hydrogen bonds, 
allowing the amino acids to form peptide bonds between each other and therefore, 
allowing the polypeptide chain (the protein being translated) to grow. tRNA bound 
to amino acids are termed charged tRNA or aminoacylated tRNA, while amino acid 
free tRNA are called uncharged tRNA [ 4 ,  5 ]. 

 The rRNA is formed in the nucleus and exported to the cytoplasm where it can 
bind to the mRNA for translation into protein (Fig.  1.2c ). Ribosomes can bind to 
multiple mRNA at the same time. rRNA is the most abundant type of RNA, num-
bering up to 80 % of the total RNA isolated from a typical eukaryotic cell [ 5 ,  7 ]. 

 In relation to other forms of RNA, Table  1.2  presents alternate types of these 
structures that have functions other than protein synthesis e.g., posttranscriptional 
modifi cations and regulatory function.  

1.1.3     Proteins 

 Proteins are the result of mRNA translation and form a signifi cant portion of the 
structures within living cells. Almost all the structural, functional, and regulatory 
tasks in the cell are performed through the action of proteins. A protein is a chain of 
amino acids that are joined together with chemical bonds called peptide bonds or 
amide bonds. Each amino acid consists of a central carbon atom, a hydrogen atom, 
an amino group (NH 2 ), a carboxyl group (COOH), and a side chain which distin-
guishes each of the 20 naturally existing amino acids from each other. The peptide 
bond is formed between the carboxyl group of one amino acid and the amino group 
of the other, releasing a water molecule. During the translation process, protein is 
synthesized through the arrangement of amino acids next to each other as encoded 
in the genetic information, and then peptide bonds are formed between them sequen-
tially. A short chain of amino acids is called a peptide, where the amino acids are 
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referred to as residues. Therefore, a protein of 200 amino acids can be described as 
a polypeptide chain with 200 residues [ 2 ,  7 ]. 

 Similar to DNA and RNA having directions (5′ and 3′), a protein also possesses 
direction as one of its ends will always end with an amino group while the other ends 
with a carboxyl group. The end with the amino group is called the N-terminal while 
the end with the carboxyl group is called the C-terminal. The nitrogen atoms, carbon 
atoms, and CO- form the protein’s backbone, a line that begins from the N-terminal 
through the C-terminal. Unlike DNA and RNA, proteins are not linear starches of 
sequences. In fact, a protein’s sequence (amino acid order) represents the protein’s 
primary structure. The interactions between the backbone atoms forms a “local 
structure” termed the protein’s secondary structure. An additional layer of folding 
gives the protein a unique three-dimensional structure called the protein’s tertiary 
structure. In a similar manner, yet another level of packing of the protein or with a 
group of different proteins is known as the protein’s quaternary structure [ 2 ,  7 ].   

1.2     The Central Dogma of Molecular Biology 

 The central dogma of molecular biology is a description of the information fl ow in 
biological systems. It was fi rst introduced in the middle of the twentieth century by 
Francis Crick, and then published in 1970 [ 8 ]. The central dogma explains a frame-
work of information fl ow from genetic material to the synthesis of proteins that 
perform both functional and structural roles in cells. With developments and 
advancements in biological research methods, analysis instruments, and imaging 
devices, the details of the original central dogma had been altered (e.g., the addition 
of the RNA splicing step). Nevertheless, its main description of the basic framework 
remains valid today. The central dogma states three levels of information fl ow, from 
DNA (genes) to RNA (transcripts) to amino acids (proteins) in sequential steps [ 8 ]. 
Here, we will describe two basic steps of the central dogma, transcription and trans-
lation, as they are crucial for understanding the subsequent chapters in this book. 

1.2.1     Transcription 

 DNA is the main source of genetic information in organisms, with some notable 
exceptions where the genetic material may be composed of RNA as in the case of 
certain viruses [ 9 ]. In accordance with the central dogma of molecular biology, 
genetic information transferred from one cell to another through DNA replication 
process, which is the fi rst level of information transfer. The next step is transcrip-
tion, which is the process of creating a piece (sequence or stretch) of mRNA that 
contains the genetic information stored in corresponding DNA [ 8 ]. Transcription is 
an enzymatic process that is managed by RNA polymerase that sequentially attaches 
nucleotides to the end of the newly synthesized RNA molecule. Furthermore, the 
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process is regulated by a group of proteins known as transcription factors that bind 
to specifi c DNA sequences and control the transcription process [ 10 ]. 

 As mentioned in the RNA section above, in prokaryotes the mRNA is directly 
translated into protein, while in eukaryotes, the transcription process is more com-
plex. The genetic structure in eukaryotic cells is more complicated in comparison to 
prokaryotes due to the existence of exons, entrons, and untranslated regions (UTRs). 
Thus, another process termed mRNA splicing follows transcription. The mRNA 
splicing process removes introns from the mRNA and joins the exons to create 
mature mRNA that is ready for translation into protein [ 11 ]. Splicing can also result 
in several mature mRNAs from one mRNA, resulting in several proteins from a 
single gene accordingly termed alternative splicing variants [ 12 ].  

1.2.2     Translation 

 The translation process, also known as the protein synthesis process, involves 
“translating” the genetic code, which was transferred as nucleotides from the DNA 
to mRNA into a chain of amino acids (protein). The translation process requires 
three types of RNA: mRNA, tRNA, and rRNA. The mRNA, as explained above, 
carries the information required to build the target protein. The tRNA transfers the 
amino acids sequentially one by one following the encoding of information into the 
mRNA. Lastly, the rRNA is a complex of two subunits that reads the mRNA code 
and adds the amino acids in the same order encoded in the DNA (Fig.  1.2 ) [ 13 ]. 

 Genetic information is encoded into the mRNA in triplet codons, where three 
nucleotides in the mRNA correspond to a specifi c amino acid. Typically, the reading 
initiates with an AUG (adenine–uracil–guanine) or imitator methionine codon and 
ends with a UAA, UGA, or UAG stop codon. Therefore, the rRNA reads the triplet 
codons and attaches the aminoacylated tRNA (tRNA with added amino acid) to the 
matching triplet anticodon. Subsequently, a peptide bond joins the newly added 
amino acid with the preceding one. As the amino acid chain grows, it starts to fold 
in a specifi c conformation that confers a three-dimensional shape to the fi nal pro-
tein. The translation of mRNA to protein in prokaryotic cells usually occurs in the 
same vicinity as the transcription process due to the fact that prokaryotic cells do 
not possess a nucleus. In contrast, transcription takes place in the nucleus of eukary-
otic cells after which the mRNA is transferred to the cytoplasm where the transla-
tion process can be achieved [ 1 ,  13 ].   

1.3     Genetic Information Sources Targeted by Sequencing 

 The main target of sequencing technologies is to decode the genetic information 
stored in the molecules of the organisms. With modern sequencing technologies, 
the genetic information sources became increasingly ubiquitous, involving a 

1 Basics of Molecular Biology for Next-Generation Sequencing



11

myriad of molecules that lead to the development of an organism. Furthermore, 
special techniques have been utilized to decode the nucleotide sequences that 
interact/bind with other non-DNA or RNA molecules such as proteins. However, in 
the following paragraphs we will introduce four major types of genetic information 
sources that are the primary targets of available sequencing methods and platforms. 
In later chapters, we will also elaborate on the details of several other sources and 
applications. 

1.3.1     The Genome 

 The genome represented the main target of sequencing efforts as it contained the 
entire genetic information of an organism. Most genomes are DNA with the excep-
tion of certain viral genomes that are RNA-based. In prokaryotes, the genome sim-
ply consists of one circular chromosome with most of its sequence represented by 
coding sequence which can be transcribed to RNA and then translated to proteins. 
In eukaryotes, the genome is far more complex, existing inside a nucleus and con-
sisting of several pieces each of which is a separate chromosome. In most cases, the 
eukaryotes carry two copies of each chromosome in each cell except for the gam-
etes in sexually reproductive organisms, which carry only a single copy. Furthermore, 
the genomes of eukaryotes contain noncoding regions and long intragenic stretches 
that are not known to encode any genetic information. Such complications bring 
greater challenges to whole genome sequencing (WGS) technologies and methods 
as well as the assembly and annotation of the sequenced genomes [ 1 ,  4 ].  

1.3.2     The Transcriptome 

 The transcriptome is the entire set of RNA molecules within a single cell or popula-
tion of cells. It includes the three main types of RNA (mRNA, tRNA, and rRNA) as 
well as the short and noncoding RNAs [ 1 ,  5 ]. The transcriptome represents the 
genes expressed at a given time (such as the time of sample collection). Therefore, 
it may dynamically change based on age, surroundings, media condition, and treat-
ment of the cell/cell population. Traditionally, gene expression or the transcriptome 
is measured using DNA microarray techniques that allow for the measurement of a 
large number of genes simultaneously [ 14 ]. However, transcriptome sequencing, 
also known as RNA sequencing or RNA-seq, became the technology of choice for 
gene expression studies as its coverage is broader and allows the investigation of 
known and new transcripts, unlike DNA microarray techniques [ 15 ]. Similar to 
DNA sequence, there are two methods to assemble transcriptome sequence reads in 
the next-generation environment. These include the utilization of reference 
sequences or de novo transcriptome assembly, both of which will be discussed later 
on in this book.  

1.3  Genetic Information Sources Targeted by Sequencing
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1.3.3     The Exome 

 WGS identifi es the sequences of all genomic DNA in the organism, including 
 coding and noncoding sequences. In many cases, the noncoding regions of the 
genome are not important to a particular study. For instance, in studies targeting the 
identifi cation of mutation-based diseases, the investigation of noncoding regions are 
less critical since 85 % of mutations exist in the coding regions (exons). Therefore, 
methods for sequencing the total number of exons of the genome were developed to 
target the whole transcribed exons (or exome) while excluding the entire population 
of introns. The human exome, for instance, represents 1 % of the human genome 
[ 16 ], which is refl ective of the time and costs involved for sequencing as well as the 
complexity of the analysis required for the assembly and annotation of the associ-
ated reads. Therefore, several studies rely on whole exome sequencing (WES) 
instead of WGS to identify mutations in cancer and inherited human disorders such 
as Mendelian disorders [ 17 ].  

1.3.4     The Metagenomes 

 The Metagenomes are the genomes of several organisms that coexist in a certain 
environment. They are mainly used during environmental studies such as sequencing 
and identifi cation of organisms in an environmental sample (e.g., water or soil). 
Additionally, they may also be utilized in health investigations such as the study of 
the gut fl ora of humans and other organisms [ 18 ]. Typically, this fi eld is referred to 
as metagenomics or environmental genomics where the study targets the sequencing 
and identifi cation of all genes of all member organisms that exist in an environmental 
or biological sample. Since the standard sequencing procedures of model organisms 
normally employ cultured clones, metagenomics represents an opportunity to 
explore the biology and diversity of wild microorganisms in a culture- independent 
environment [ 19 ]. Despite the availability of several types of metagenome sequenc-
ing in the fi rst- and next-generation methodology, the sequencing, assembly, and 
annotation of metagenomes remain a formidable challenge.      
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          Abstract     This chapter provides an overview of prevalent data structures and algo-
rithms that are commonly utilized in bioinformatics. In particular, we place empha-
sis on data structures and algorithms that are employed in bioinformatic techniques 
during next-generation sequence assembly.  

2.1               Data Structures 

 From a computational point of view, DNA, RNA, and proteins can be regarded as 
merely strings that consist of a fi nite set of letters (comprising of individual four let-
ter alphabets for DNA and RNA, and a 20-letter alphabet for proteins). The effi cient 
processing of these strings is necessary for almost all assembly and error correction 
techniques that are applied to bioinformatics sequences. Therefore, such techniques 
make extensive use of several data structures such as suffi x/prefi x trees, suffi x arrays, 
graphs, hash tables, and Bloom fi lters. In this section, we will briefl y describe these 
data structures and explain their applications in bioinformatics algorithms. 

2.1.1     Strings 

 A string is a fi nite sequence of elements, typically characters, which are chosen 
from a   set     called an   alphabet    . For example, if Σ is a nonempty fi nite set that denotes 
an alphabet, then elements of Σ are called symbols or characters and any fi nite 
sequence of characters from Σ is called a string over Σ [ 1 ]. Thus, DNA sequences 
can be considered as strings over Σ = {A, G, C, T} while RNA sequences can be 
regarded as strings over Σ = {A, G, C, U}. 

 The string length is a nonnegative number that indicates the number of characters 
in the string. A string that does not contain any characters is called an empty string 
(denoted by  ε ). The length of an empty string is 0. Certain sets of strings are of 
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special interest. For example, the set of all strings over Σ (denoted as Σ * ) is the 
  Kleene closure     of Σ whereas the set of all strings over Σ that have a specifi c length  n  
is denoted as Σ  n   (Σ 0  = { ε } for any alphabet Σ). In the context of bioinformatics, sub-
sequences of a fi xed length  n  are usually called  k -mers. These  k -mers can be used to 
identify regions of interest within bioinformatics sequences. They are also very use-
ful in the determination of sequence alignment and assembly algorithms. Consider 
the following case for DNA where Σ = {A, G, C, T}, then Σ 2  = {AA, AG, AC, AT, 
GA, GG, GC, GT, CA, CG, CC, CT, TA, TG, TC, TT}, and Σ *  = Σ 0  ∪ Σ 1  ∪ Σ 2  ∪ … 

 Defi ning an order in a set of strings is vital for some applications. For example, 
strings in suffi x arrays (see below) are ordered lexicographically. Under this order-
ing scheme, strings are arranged based on the alphabetical order of their component 
characters. For example, if Σ = {A, G, C, T}, strings over Σ are ordered lexico-
graphically based on the relationship  ε  < A < AA < AAA < … < AAAC < AAAG < A
AAT < AAC … 

 A string of length  n  has  n  suffi xes/prefi xes varying in length from 1 to  n . For 
example, the string ACGT has four prefi xes (A, AC, ACG, and ACGT) and four 
suffi xes (T, GT, CGT, ACGT).  

2.1.2     Suffi x/Prefi x Trees 

 Suffi x/prefi x trees for a string, or a set of strings, are created by entering all the suffi xes/
prefi xes of this string(s) into a tree structure [ 2 ]. Suffi x trees in particular are very 
useful in solving complex string problems. A suffi x trie, also called a keyword tree 
[ 3 ], is a special kind of suffi x tree. In a suffi x trie, every edge is labeled by a single 
character. A suffi x tree is formed by concatenating all the internal nodes in the suffi x 
trie. Figure  2.1  shows an example that illustrates the difference between the suffi x trie 
and suffi x tree for the string ACTAG. In this fi gure, each leaf is labeled by a number 
that indicates the starting position  i  of the corresponding suffi x in the string.

   In one of many benefi cial applications, suffi x trees can be used effi ciently to 
search for a specifi c string pattern in a large collection of strings [ 3 ]. In fact, using 
only  O ( n ) time, a string of length  n  can be searched for in any collection of strings 
regardless of the size of the collection. For this reason, several assembly and error 
correction techniques for NGS data make use of suffi x trees. The usage of suffi x 
trees is limited, however, due to its large space requirement. As such, a suffi x tree 
requires  O ( n  |Σ| log  n ) bits to represent a string of length  n  over an alphabet Σ [ 2 ].  

2.1.3     Suffi x Arrays 

 Suffi x arrays have similar functionality as suffi x trees but with reduced space 
requirements. A suffi x array requires  O ( n  log  n ) bits only to store a string of length 
 n  over an alphabet Σ, regardless of the size of Σ [ 2 ]. 
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 In a suffi x array, suffi xes are sorted lexicographically in increasing order. 
Figure  2.2  shows the suffi x array (SA) of the same string in Fig.  2.1 . Note the cor-
respondence between the order of the suffi xes in the suffi x array and the leaves in 
the suffi x tree.

   Since the suffi x array stores only the start positions of the ordered suffi xes of a 
string of length  n , each entry in the array needs log  n  bit of space, and since there 
are  n  entries (number of suffi xes) in a suffi x tree, the space requirement of a suffi x 
array is  O ( n  log  n ).  

2.1.4     Graphs 

 A graph is a set of nodes, also called vertices, that are connected by edges. Graphs 
can be categorized as directed or undirected. Edges in directed graphs have a 

  Fig. 2.1    Suffi x trie versus suffi x tree. ( a ) The suffi xes, ( b ) suffi x trie, ( c ) suffi x tree for the string 
ACTAG       

  Fig. 2.2    Suffi x array versus suffi x tree. Suffi x array for the string in Fig.  2.1        
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specifi c direction whereas edges in undirected graphs have no direction [ 4 ]. 
Figure  2.3  shows examples of both types of graphs.

   A path from one vertex to another in a graph is called a  walk . A closed walk is a 
walk that starts and ends at the same vertex. A closed walk that has no repeated 
edges or vertices (other than the starting and ending vertex) is called a  cycle , e.g., 
the walk A–G–G–T–C–A in Fig.  2.3b  represents a cycle. 

 There are two types of cycles that are very useful for genome sequence assembly, 
namely,  Hamiltonian  cycles and  Eulerian  cycles. In a Hamiltonian cycle, every 
node of the graph is visited exactly once, whereas in an Eulerian cycle, every edge 
of the graph is visited exactly once. 

 Genome sequence assembly techniques which are based on Sanger sequencing 
make use of graphs to reconstruct long contiguous sequences from shorter reads by 
representing each read by a vertex and representing overlap between reads by edges 
that connect each pair of reads as illustrated in Fig.  2.4a . Therefore, the problem of 
assembling reads represented by graph vertices is reduced to fi nding a Hamiltonian 
cycle in the graph [ 5 ].

   In the next-generation sequencing environment, the instruments utilized produce 
billions of short sequencing reads. As such, fi nding a Hamiltonian cycle in a graph 
that contains a very large number of nodes is a challenging computational problem. 
Therefore, the method described above for representing reads in a graph is not suit-
able for next-generation sequencing data. 

 Fortunately, discovering the location of an Eulerian cycle is much more effi cient. 
However, this requires representing next-generation sequence reads as edges rather 
than vertices. To realize this, modern next-generation sequence assemblers utilize 
De Bruijn graphs. De Bruijn graphs were originally designed to fi nd the shortest 
circular superstring that contains all possible substrings of a specifi c length  k  over a 
given alphabet [ 5 ]. This problem is referred to as the superstring problem. The anal-
ogy between the superstring problem and the problem of assembling billions of 
short sequencing reads into a single genome has attracted several researchers to De 
Bruijn graphs. 

 An important factor in the assembly of next-generation sequence short reads 
using De Bruijn graphs is that every distinct  k  − 1 prefi x or suffi x of each  k -mer is 
represented by a node. Accordingly, each pair of nodes is then connected with a 

  Fig. 2.3    Graph types: ( a ) Undirected graph. ( b ) Directed graph       
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directed edge if a  k -mer whose prefi x is one of the two nodes and whose suffi x is the 
other node exists. For example, AGCTGTAG is a small genome sequence from 
which the following three short reads can be sequenced: AGCT, CTGT, and GTAG. 
In splitting these reads into all possible  k -mers of length  k  = 3, 6 different 3-mers are 
obtained: AGC, GCT, CTG, TGT, GTA, and TAG. For these 3-mers, we are able to 
list all possible  k  − 1 prefi xes and suffi xes: AG, GC, CT, TG, GT, TA, and AG. As 
illustrated in Fig.  2.4b , a De Bruijn graph is constructed by representing these suf-
fi xes and prefi xes as nodes and representing the corresponding  k -mers (those having 
prefi xes and suffi xes as nodes in the graph) as edges. Therefore, rather than perform 
the computationally expensive process of fi nding a Hamiltonian cycle in a graph, 
modern assemblers prefer to identify an Eulerian cycle in De Bruijn graphs during 
genome reconstruction.  

2.1.5     Hash Tables 

 The identifi cation of repeats in a DNA sequence is critical for many applications, 
including the study of genome evolution and divulging the characteristics of differ-
ent types of tumors. A hash table is a data structure that is commonly utilized to 
effi ciently locate repeats within a sequence. Moreover, certain error correction tech-
niques for next-generation sequencing, such as RACER [ 6 ], employ the use of hash 
tables to achieve effi cient storage of  k -mers. The basic idea behind hashing is simple. 
In a given collection of data, each data entry  x  is stored as a record in an array. The 
location of this record is computed using a hashing function  h ( x ) that assigns each 
data entry to a unique integer that stands for a key to that particular location in the 

  Fig. 2.4    Genome assembly using graphs. ( a ) Nodes and edges represent reads and overlap 
between reads, respectively. ( b ) An example of a De Bruijn graph where suffi xes and prefi xes of 
reads are represented as nodes and the corresponding  k -mers as edges       
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array. Accordingly, a hash table is used to preserve the set of keys that index differ-
ent records in the array. Understandably, a hashing function would map similar data 
entries (or  k -mers in the case of genome sequences) to the same index in the hash 
table. In other words, repeated  k -mers are collected under a single slot (chained 
records) that is indexed using a unique key stored in a hash table [ 3 ]. 

 Figure  2.5  shows a simple example of hashing functions. In this case, each entry 
( k ) is stored in the hash table at position ( k  modulo  n ), where  n  (=10) represents the 
size of the hash table. A similar hashing function was used for storing  k -mers in 
RACER [ 6 ].

2.1.6        Bloom Filters 

 Counting  k -mers is a crucial preprocessing step for several bioinformatics applica-
tions such as genome/transcriptome sequence assembly, error correction techniques 
for next-generation sequence reads, and metagenomic sequencing. Several  k -mer 
counting and abundance analysis software packages have been presented recently 
[ 7 ,  8 ]. In order to ensure rapid and memory-effi cient counting of  k -mers, these pack-
ages depend on memory-effi cient data structures such as Bloom fi lters. A Bloom 
fi lter is an effi cient probabilistic data structure that tells us whether an element is 
present or not in a data set. Bloom fi lters do not return false negatives. However, the 
effi ciency of Bloom fi lters comes at the expense of a controlled amount of false 
positives. In other words, if a Bloom fi lter tells us that an element does not exist in 
a data set, we can be assured that the element is defi nitely not present. However, a 
Bloom fi lter may inaccurately indicate that an element is present in a particular data 
set when it does not. 

 Figure  2.6  illustrates how Bloom fi lters work. A Bloom fi lter is simply an array 
of bits that are initially set to zeroes as shown in Fig.  2.6a . To store an element in a 
Bloom fi lter, the element is hashed several times using multiple hashing functions 

  Fig. 2.5    Example hash tables       
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to obtain different hash values. These hash values should lie in a range between 0 
and the size of the Bloom fi lter. Bits located at positions indicated by the resulting 
hash values are set to 1. Figure  2.6b–e  illustrates how elements are inserted in a 
Bloom fi lter of three hash functions, and shows examples of a true positive, true 
negative, and false positive, respectively.

2.2         Algorithms 

 Bioinformatics is a fi eld of science that studies how to relate the principles of com-
puter science to tackle important biological questions. This can be accomplished by 
transforming biological queries into computational models and searching for 
(or developing) effi cient algorithms in terms of accuracy and complexity to broach 
these subjects. An algorithm is a step-by-step description of a procedure of calcula-
tion, data processing, or automated reasoning [ 9 ]. In this section, we briefl y discuss 
how a popular biological problem such as biological sequence alignment can be 
formulated as a computer science problem. Additionally, we will introduce algo-
rithms and give a brief overview of a commonly utilized computer science algorithm 
that has been applied to a variety of biological problems, i.e., the greedy algorithm. 

2.2.1     Alignment Algorithms 

 A typical approach to understand the functionality of a newly discovered gene is to 
search for close matches in a previously stored database of known genes. In order to 

  Fig. 2.6    Example of a Bloom fi lter of three hashing function. ( a ) A Bloom fi lter initialized to 
zeros, ( b ) two elements are inserted into the Bloom fi lter, ( c ) an example of true positive, ( d ) an 
example of true negative, and ( e ) an example of false positive       
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measure how close two genes are, they should be aligned with respect to each other 
so that the number of matches between corresponding characters in the aligned 
sequences is optimized. This biological problem is analogous to the well-known 
computer science problem of string edit distance, which aims to measure the dis-
tance between two strings through aligning or matching them up [ 9 ]. For instance, 
the following alignment of the two DNA strings  x  = CTGCG and  y  = ACCGCT show 
that the number of matches between them is 3.

  − −C T G CG    

  A C CG C T−    

  The alignment score is calculated based on a scoring matrix that specifi es the 
scores of matches, mismatches, insertions, and deletions. Figure  2.7  shows an 
example of a scoring matrix. According to this matrix, the alignment score of the 
above alignment is

   
δ δ δ δ δ δ δ−( ) + ( ) + −( ) + −( ) + ( ) + ( ) + ( ) =,T C,C T, ,C G,G C,C G,T 7

   

  There are two main classes of biological sequence alignments:  global  alignments 
and  local  alignments. In contrast to local alignments where only portions of sequences 
are aligned, the entire sequences are aligned in global alignments. Therefore, global 
alignments are useful for aligning closely related sequences whereas local align-
ments are more suitable when comparing distantly related sequences [ 4 ]. 

 According to the number of sequences to be aligned, sequence alignment 
algorithms can be categorized into two categories; namely,  pairwise  alignment 
algorithms and  multiple  alignment algorithms. Pairwise alignment algorithms aim 
at fi nding the optimal alignment of only two sequences. On the other hand, the goal 
of multiple sequence alignment algorithms is to fi nd the best alignment of three or 
more sequences. Figure  2.8  shows a general classifi cation of sequence alignment 
algorithms.

   For next-generation sequence reads, aligners take into account the application 
areas of next-generation sequencing technologies (e.g., metagenomics [ 10 ], cancer 
genomics [ 11 ], or analysis of mRNA expression [ 12 ]) as well as their unique char-
acteristics (such as short read lengths, the large number of short reads to be mapped, 
and platform-dependent sequencing error rates) [ 13 ]. Therefore, such aligners have 

  Fig. 2.7    Example of a 
scoring matrix       
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extra features compared to general alignment techniques. For example, performing 
alignment for short reads generated from certain next-generation sequencing tech-
nologies is computationally more intensive than the alignment of longer reads. 
Several short read alignment algorithms and software packages have been proposed 
in the last few years. Out of these aligners, Novoalign [ 14 ], SHRiMP [ 15 ], Bowtie 
[ 16 ], SOAP [ 17 ], Burrows-Wheeler Alignment (BWA) [ 18 ], mrFAST [ 19 ], mrs-
FAST [ 20 ] are among the most popular.  

2.2.2     Greedy Algorithm 

 Although dynamic programming can fi nd optimal solutions for many optimization 
problems such as the pairwise sequence alignment issue discussed in the previous 
subsection, it is not always the strategy of choice for a wide range of optimization 
problems, especially large-scale ones, due to its high computational cost. Fortunately, 
the greedy algorithm provides a viable alternative strategy with reduced computa-
tional requirements. The basic idea behind this strategy is to adopt the best (optimal) 
choice at each possible (local) stage in the hopes that a global optimum is reached 
at the fi nal stage [ 1 ]. Due to the fact that it chooses the best local solution, the greedy 
algorithm is also called the best fi rst search algorithm [ 21 ]. This can be explained 
using the example shown in Fig.  2.9 . As may be inferred from the fi gure, the prob-
lem here is to fi nd the shortest path from node A to node E. Since there is no direct 
path from A to E, an initial decision should be made regarding the move from A to 
one of the three nodes B, C, or D. As shown in Fig.  2.9b , the greedy algorithm 
choice (dashed line) for this local step is to move to B since the distance from A to 
B is the shortest (best) among the three choices. It should be noted that obtaining the 
optimal solution using the greedy strategy is not guaranteed. This is because 
the greedy algorithm considers only the stage at hand and does not look ahead to the 
following stages. It is clear from this example that the fi rst choice made by the algo-
rithm does not lead to the optimal solution shown in Fig.  2.9c . Taking the next 

  Fig. 2.8    Classifi cation of sequence alignment algorithms       
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stages into consideration, one should choose node C instead of B since the distance 
from A to E through C is 17 (12 + 5) while the distance from A to E thorough B is 
30 (10 + 20). However, the greedy algorithm often fi nds near-to-optimal solutions in 
relation to several types of optimization problems [ 9 ].

   Greedy algorithms are utilized in several applications in different areas of bioin-
formatics. These applications include genome rearrangement and locating regula-
tory motifs in DNA sequences [ 3 ]. Furthermore, several recently proposed alignment 
and assembly algorithms for next-generation sequence data greatly benefi t from the 
greedy algorithm. In fact, the fi rst short read genome assemblers are based on the 
greedy algorithm [ 22 – 28 ]. The notion of applying the greedy algorithm to the next- 
generation sequence assembly problem is straightforward. To decide which read or 
contig should be added to the current one, the read (or contig) are sorted according 
to their overlap scores and the one with highest score is chosen [ 29 ]. However, it 
should be noted that next-generation sequence assemblers based on the greedy algo-
rithms can easily get stuck at local maxima, and therefore some researchers recom-
mend employing greedy algorithms to simple genomes only when the available 
computer processing power is limited.      
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          Abstract     Ever since the double helix structure of DNA was fi rst described by 
James Watson and Francis Crick, decoding the sequence of DNA nucleotides has 
been a primary focus for biologists. Therefore, methodology for DNA sequencing 
has undergone rapid development, particularly since the 1970s. In this chapter, we 
will provide an overview of the majority of sequencing methods including tech-
niques from the fi rst- and next-generation of DNA sequencing.  

3.1               Introduction 

    DNA Sequencing is the precise process that determines the accurate ordering of the 
nucleotides in a DNA molecule. Following the sequencing of the fi rst complete 
gene in 1972 [ 1 ], several different groups have worked diligently to develop 
approaches in order to sequence the DNA molecules, automate the sequencing pro-
cess, enhance throughput, and increase commercialization, respectively. The year 
1977 was a particularly landmark period as two major rapid DNA sequencing tech-
niques were unveiled by Frederick Sanger from Cambridge (Sanger sequencing) 
and the team of Walter Gilbert and Allan Maxam from Harvard (Maxam–Gilbert 
sequencing) [ 2 ,  3 ]. In the ensuing years, a rapid pace followed in relation to the 
development of DNA sequencing applications. The fi rst genome to be fully 
sequenced was the bacteriophage φX174 in 1977 by Sanger, while the fi rst “long” 
genome to be fully sequenced was Epstein–Barr virus (170 Mbp) in 1984 [ 4 ].  

3.2     DNA Sequencing Methods 

 DNA sequencing methods were non-automated techniques until the announcement 
of the fi rst fully automated DNA sequencing platform by Applied Biosystems in 
1987. This heralded a major boom in the fi eld which led to the sequencing of several 
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model organisms and the great human genome-sequencing project [ 5 ]. In the fol-
lowing decade, DNA sequencing was pushed to the next level by the development 
of next-generation sequencing techniques. These included the establishment of 
DNA pyrosequencing [ 6 ], colony sequencing [ 7 ], massively parallel signature 
sequencing    (MPSS) [ 8 ], and the parallelized version of pyrosequencing in the 1990s 
and early 2000s. However, the fi rst commercialized DNA sequencing instrument 
from the next-generation of sequencers was the MPSS in the year 2000, followed by 
the parallelized version of pyrosequencing in 2004. This presented another land-
mark in DNA sequencing history as it speeded up analysis time and reduced the 
involved costs by sixfold [ 9 ]. Here, we will present the principles behind the major 
sequencing methods in the fi rst- and next-generation sequencing fi elds. 

3.2.1     First Generation Sequencing Methods 

 Amid the great discoveries in biology, the description of the structure of DNA by 
James Watson and Francis Crick is still considered among the most groundbreak-
ing breakthroughs in biology. Undoubtedly, DNA sequencing has opened a 
window of virtually unlimited opportunity in relation to research and applications. 
In this section, we will briefl y describe the Sanger and Maxam–Gilbert sequencing 
methods respectively, which together represent the fi rst generation of genome-
sequencing methods. Furthermore, we will introduce the concept of fl orescent 
DNA sequencing. 

    Sanger Sequencing 

 The Sanger sequencing method (also known as the chain-termination DNA sequenc-
ing method) was developed by the laboratory of Frederick Sanger (Cambridge, UK) 
and became the method of choice for DNA sequencing experiments for over two 
decades. The method was developed on the basis of synthesizing a complementary 
DNA strand, where a single strand of DNA molecule is sequenced through the use 
of chemically modifi ed nucleotides. These chemically modifi ed nucleotides are 
altered through the replacement of the hydroxyl group of its 3′ by a hydrogen atom 
(termed dideoxynucleotides). Since the hydroxyl group is required for the formation 
of the phosphodiester bond between the nucleotides, the presentation of these modi-
fi ed nucleotides prevents the elongation of the synthesized DNA. Accordingly, we 
are left with DNA fragments that end with one of the dideoxynucleotides. These 
fragments can be separated by size through the utilization of a gel slab. By supplying 
labeled dATP molecules with  32 P, the fragments can also be visualized and read on 
exposed X-ray fi lm. While the Sanger sequencing method is slow and labor- intensive, 
it is still one of the most accurate DNA sequencing techniques to date. [ 2 ,  9 – 11 ].  
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    Maxam–Gilbert Sequencing 

 Two years after the publication of Sanger’s methods, Allan Maxam and Walter 
Gilbert (Harvard, USA) put forward their own sequencing method known as Maxam–
Gilbert Sequencing or DNA Chemical Sequencing. The Maxam–Gilbert method 
requires radioactive labeling at the 5′ of the DNA molecule by  32 P via kinase reaction 
through the utilization of gamma- 32 P ATP. The purifi ed double-stranded DNA is 
chemically treated to generate breaks of one or two nucleotides (G, A + G, C, C + T) 
and by controlling the concentration of the applied chemicals. The resulting modifi -
cations to DNA molecules can be averaged as one modifi cation per molecule. These 
processes result in a series of labeled fragments that can be size-separated using elec-
trophoresis via denaturing acrylamide gels and subsequently visualized on exposed 
X-ray fi lm [ 3 ]. The capability of directly sequencing purifi ed double-stranded DNA 
without the need to clone single-stranded DNA provides the Maxam–Gilbert method 
with an obvious advantage over the Sanger technique. However, continuous develop-
ment and progressive improvements in the Sanger method made it the method of 
choice in most laboratories, especially in light of the chemical complexities and 
 hazardous material associated with the Maxam–Gilbert technique.  

   Florescent DNA Sequencing 

 The two methods of DNA sequencing developed by Sanger and Maxam–Gilbert 
were based on radiolabeled nucleotides that could be detected by exposing the dried 
gel to X-ray. In the middle of the 1980s, an alternative labeling method was intro-
duced. This new labeling method was invented by Leroy Hood (California Institute 
of Technology, USA) and utilized fl orescent-labeling instead of radiolabeling [ 12 ]. 
In this method, a fl uorescently labeled primer replaces the radiolabeled primer of 
the former methods with a different fl our for each of the four nucleotides. Instead of 
X-ray exposure, a raster scanning laser beam is used to provide the excitation 
required to detect the differentially labeled nucleotides. This alteration provided the 
advantage of eliminating multiple labor intensive processes and abolished several 
potential sources of error such as gel drying, X-ray fi lm exposure, manual sequence 
reading from the gel and manual entry of the fi nal sequence [ 13 ]. 

 The fl orescent DNA sequencing method was implemented in the fi rst commer-
cialized and automated sequencing instrument (by Applied Biosystems Inc., USA). 
A number of laboratories migrated to this new technology due to the benefi ts of 
increased daily throughput and minimization of error sources relative to the former 
methods. Additionally, several laboratories utilized an automated pipetting station in 
conjunction with this sequencer to automate the upstream pipetting steps, further 
reducing labor and manual sources of error [ 13 ,  14 ]. The implementation of the poly-
merase chain reaction (PCR) [ 15 ] and the introduction of terminators (fl uorescent 
dye-labeled dideoxynucleotides) [ 16 ] contributed to improvements in fl orescent 
DNA sequencing in the following years. PCR integration into the sequencing process 
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provided the ability to perform cycled sequencing reactions using thermostable 
sequencing polymerases [ 13 ]. Furthermore, the terminators reduced the sequencing 
costs signifi cantly as the four separate reactions could now be combined into a single 
reaction [ 13 ]. Despite these signifi cant improvements in scalability and cost effi -
ciency, the fl orescent DNA sequencing method still comprises of certain manual 
steps and error sources, such as manual sample loading and gel casting [ 13 ].   

3.2.2     Next-Generation Sequencing Methods 

 For two decades, the Sanger sequencing method and its progressively improved vari-
ations were the favored techniques in most laboratories. This changed upon the 
announcement of the fi rst commercialized DNA sequencing instrument by Applied 
Biosystems Inc., which greatly enhanced the scale of sequencing signifi cantly [ 12 ]. 
The year 2005 marked the start of a new era in DNA sequencing, as developments in 
the fi eld advanced rapidly in four parallel directions: (1) reducing sequencing costs, 
(2) speeding up the sequencing process, (3) automating the remaining manual pro-
cesses, and (4) increasing the sequencing accuracy. In the following years, all four 
goals were remarkably achieved through the advent of next-generation sequencing 
(also known as massively parallel sequencing). For instance, the sequencing of the 
fi rst human genome required about 10 years and hundreds of millions of dollars, a 
task that can now be achieved in a single day at a cost of around 5,000 dollars [ 17 ] or 
less with the new MiSeq X Ten sequencing platform announced by Illumina that will 
reduce the cost complete human genome sequencing to about 1,000 dollars [ 18 ]. 
Furthermore, the Food and Drug Administration (FDA) recently authorized a next-
generation sequencing instrument (MiSeqDx by Illumina) for the fi rst time, which 
will allow for the development of countless tests and applications in the domains of 
clinical and medical care [ 17 ]. In this section, we will briefl y describe the major 
developments in next-generation DNA sequencing techniques in chronological order. 

   Massively Parallel Signature Sequencing 

 MPSS is a complicated DNA sequencing method that appeared in the late 1990s by 
Lynx Therapeutics (a company that later merged with Solexa). It is a bead-based 
method that utilizes complex steps involving adapter ligation and subsequent 
adapter encoding, with the sequences being read in increments of four nucleotides. 
The complexity of this method made it diffi cult to be commercialized, and the com-
pany failed to make an automated version of the sequencers that would allow the 
technique to be adopted by individual laboratories. Therefore, the utilization of the 
method was largely limited as DNA sequencing had to be accomplished at the com-
pany, with the technique being largely used to measure gene expression levels 
through cDNA sequencing. In addition to its complexity, MPSS suffers from several 
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drawbacks, including the loss of specifi c sequences and sequencing bias. However, 
MPSS and its output resembled the properties of next-generation methods that 
appeared years later, such as the generation of hundreds of thousands of short DNA 
sequences. Subsequently, the acquisition of Solexa by Illumina in 2004 led to the 
development of a simpler sequencing approach, making MPSS largely obsolete [ 8 ].  

   Polony Sequencing 

 One of the earliest next-generation sequencing methods utilized to sequence the 
whole genome was the polony sequencing method developed by George M. Church 
(Harvard, USA). The involved processes can be broken into three main steps. 
Firstly, a paired-end tag library is constructed through the attachment of two tags to 
the 5′ and 3′ ends of the randomly sheared DNA to be sequenced. A 5′-phosphorylated 
and blunt-ended DNA is attached to any incomplete or damaged 5′ end, and an A is 
added to the 3′ end through a process called A-tailing treatment. Secondly, an emul-
sion PCR is used to amplify the template DNA obtained from the paired-end tag 
library created during the fi rst step. Finally, ligation-based sequencing chemistry 
(which relies on the discriminatory capacities of ligases and polymerases) is used to 
sequence the amplifi ed DNA fragments. Polony sequencing was initially used 
to sequence the genome of  E. coli  and demonstrated an accuracy greater than 
99.9999 %. Furthermore, its cost effi ciency is outstanding (being almost one-tenth 
of the cost associated with Sanger sequencing). Therefore, the invention of polony 
sequencing represented a promising technology that could be commercialized and 
become widely available to laboratories in the fi eld [ 19 ].  

   Pyrosequencing 

 Pyrosequencing technology was initially invented by Mostafa Ronaghi and Pål 
Nyrén (The Royal Institute of Technology, Sweden) in 1996. It relies on a principle 
of “sequencing by synthesis”, where a single-stranded DNA is taken and its compli-
mentary strand is enzymatically synthesized [ 20 ]. Although the Sanger sequencing 
method also relies on the same principle, the pyrosequencing technique detects the 
activity of DNA polymerase (the release of pyrophosphate on nucleotide incorpora-
tion) rather than the detection of radiolabeled nucleotides in the termination sites. 
Later on, a paralleled version of the pyrosequencing method was developed to join 
the ranks of other next-generation sequencing methods by using emulsion PCR for 
DNA amplifi cation. Emulsion PCR performs the amplifi cation within water drop-
lets inside an oil solution where each droplet contains one primer-coated bead 
attached to a single DNA template. To identify the newly added nucleotides in the 
synthesized DNA strand, the pyrosequencer uses luciferase to generate light for 
individual nucleotide detection [ 9 ]. Paralleled pyrosequencing technology was ini-
tially developed by 454 Life Sciences (later acquired by Roche).  
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   Reversible Dye-Terminators Sequencing 

 The reversible dye-terminators sequencing technology (or Illumina Sequencing) is a 
fl orescent-labeling method that is based on the amplifi cation of DNA molecules to 
form DNA clusters (local colonies of DNA on a slide) and the utilization of engineered 
nucleotides and enzymes [ 21 ]. The nucleotides are engineered through the addition of 
reversible terminate bases that are individually fl uorescently labeled and attached in 
conjunction with a blocking group. The sequencing is accomplished in cycles, where 
the nucleotides compete to bind to the terminal of the newly formed DNA strand while 
the non-incorporated nucleotides are washed away during each cycle. A laser camera 
captures the fl orescent labels to identify the newly added nucleotide, following which 
the blocking group is removed to allow the start of the next cycle. 

 The reversible dye-terminators sequencing technology has several advantages over 
other next-generation sequencing methods. For instance, it utilizes only one enzyme 
while pyrosequencing technology requires several costly enzymes. Furthermore, it 
has optimal throughput allowing for maximum sequencing capacity due to the fact 
that the enzymatic reaction and fl orescent label capturing are decoupled. Therefore, 
the reversible dye-terminators sequencing technology is useful in sequencing diffi cult 
regions such as repetitive sequences and homopolymers, as well as the sequencing of 
large molecules and whole genomes [ 22 ]. 

 Reversible dye-terminators sequencing technology was initially developed by 
Manteia Predictive Medicine, which was later acquired by Solexa. Solexa itself was 
later acquired by Illumina, which is now the primary developer of the methodology.  

   Sequencing by Ligation and Detection 

 In 2007, Applied Biosystems provided the DNA sequencing fi eld with a new range 
of commercialized sequencers that implemented a technology called Sequencing by 
Oligonucleotide Ligation Detection (SOLiD). SOLiD is also known as the two-base 
encoding method since it uses a two-base color encoding schema for better differ-
entiation between true sequence variations such as single nucleotide polymorphism 
(SNP) and sequencing errors. Similar to polony sequencing, SOLiD is a ligation 
sequencing method. However, it utilizes probes with dual base encoding (employ-
ing fl uorescent labeled 8-mer probes to discern the two 3′ most bases). 

 Before the initiation of sequencing, an amplifi cation step is completed using 
emulsion PCR, following which a library/pool of DNA sequences of fi xed length is 
created. This library contains all possible oligonucleotides sequences of that par-
ticular fi xed length. Using a DNA ligase, the sequences in the library are ligated to 
the amplifi ed DNA. The ligation preference favors the nucleotide in the ligation 
position [ 23 ]. The quality and length obtained during SOLiD sequencing are com-
parable with Illumina sequencing. Furthermore, this method involves each base to 
be read twice, which signifi cantly reduces the SNP calling error rate and affords it 
an advantage in detecting variations during resequencing [ 24 ,  25 ]. However, a 
recent report revealed shortcomings in the use of ligation methods when sequencing 
palindromic sequences [ 26 ].  

3 First- and Next-Generations Sequencing Methods
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   Semiconductor Sequencing 

 Semiconductor sequencing technology, also known as Ion Torrent semiconductor 
sequencing technology, is a member of the sequencing by synthesis methodologies 
as the sequencing takes place during the construction of the complementary strand 
of the single-stranded DNA molecule in question. It involves standard sequencing 
chemistry but implements a novel nucleotide detection approach. Instead of detect-
ing nucleotides through radioactive or fl orescent labels, Ion Torrent semiconductor 
sequencing detects the hydrogen ions released through the DNA polymerization 
process [ 27 ]. Thus, no chemically modifi ed nucleotides, optical devices, or special 
enzymes are required. Instead, an ion-sensitive fi eld-effect transistor (ISFET) is 
needed to detect the released hydrogen ion. The ISFET acts as a hypersensitive ion 
sensor that measures the concentration of H +  ions. Changes in the concentration of 
H +  ions alter the current passing through the ISFET in a corresponding manner. 

 Certain sequencing methods have overcome the challenge of distinguishing 
between the four different types of nucleotides by labeling them with different 
labels. However, since semiconductor sequencing technology detects released H +  
during DNA polymerization, it is not possible to discern the specifi c type of nucleo-
tide released based on this criterion. Instead, the template DNA is placed in a 
microwell and fl ooded with a single type of nucleotide. Thus, the detection of ions 
from the microwell will indicate that the newly added nucleotide matches the type 
of the nucleotides added to the microwell. The Ion Torrent semiconductor sequencer 
was released in early 2010 by Ion Torrent Systems Inc., a company that was later 
acquired by Life Technologies. This technology provides an inexpensive bench-top 
sequencing method with the limitation of relatively short reads.       
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          Abstract     The next-generation sequencing methods that we described in Chap.   3     
were implemented into several commercial instruments in order to make the 
sequencing technologies available to individual laboratories. In this chapter, we will 
overview the major DNA sequencing platforms and present several comparisons for 
their advantages, disadvantages, sequencing costs, and other aspects.  

4.1               Introduction 

 In Chap.   3    , we described several next-generation sequencing methods. These meth-
ods have been implemented into several commercialized sequencing platforms that 
allowed DNA sequencing to become a laboratory-based task, contrasting with pre-
vious models where the sequencing required specialized laboratories, centers, or 
companies. Several reports and studies have reviewed, compared, and benchmarked 
the various sequencing platforms. These studies evaluated the chemistry involved, 
read length, accuracy, coverage, machine price, sequencing costs, and other factors 
for comparisons [ 1 – 3 ]. Other studies assessed bioinformatics complications during 
data analysis and sequence assembly as measures for the usefulness of each plat-
form [ 4 ]. Here, we will briefl y introduce commonly utilized sequencing platforms 
as well as more recently available systems. In subsequent chapters, the bioinformat-
ics and data analysis of these platforms will be also discussed in detail.  

4.2     Roche 454 Systems 

 The Roche 454 systems utilize pyrosequencing technology, which detects the 
released pyrophosphate during nucleotide incorporation (see Chap.   3    ). The fi rst 
commercially successful next-generation sequencer was the pyrosequencing plat-
form that was developed by 454 Life Sciences in 2005 (454 Life Sciences was later 
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acquired by Roche). This system had a read length of 100–150 bp and output reads 
that exceeded 200,000 reads and 20 MB/run [ 1 ,  5 ]. The next system launched in 
2008 (454 GS FLX Titanium) increased the read length to 700 bp and the output to 
0.7 GB with 99.9 % accuracy, taking less than 1 day per analysis. In the following 
year, Roche launched a bench-top sequencing system called GS Junior with simpli-
fi ed library preparation and elevated output up to 14 GB/run [ 6 ]. Recently, Roche 
launched its latest system, the GS FLX+ which featured a read length up to 1,000 bp 
and ~1,000,000 shotgun reads/run [ 7 ]. In summary, the main advantages of Roche 
systems are the increased read lengths and high speed while the main disadvantages 
are the relatively high error rates and expensive costs of the reagents [ 1 ]. Other 
characteristics of Roche 454 systems are listed in Tables  4.1 ,  4.2 ,  4.3 , and  4.4 .

     Table 4.1    Comparison of major next-generation sequencers advantages and disadvantages a    

 Instrument  Primary advantages  Primary disadvantages 

 ABI 3730xl 
(capillary) 

 Low cost for very small studies  Very high cost for large amounts 
of data 

 454 FLX Titanium  Long read length  High cost per MB 
 454 FLX+  Double the maximum read length of 

Titanium 
 High capital cost; high cost per MB; 

reagent issues; upgrade issues 
 454 GS Jr. 

Titanium 
 Long read length; low capital cost; low 

cost per experiment 
 High cost per MB 

 Illumina GAIIx  Lower capital cost than HiSeqs  Slightly higher cost per MB than 
HiSeq; not as scalable in the 
future 

 Illumina 
HiSeq 1000 

 Lower instrument cost than HiSeq 
2000; same number of reads/lane 
and cost/lane as HiSeq 2000; fi eld 
upgradable to HiSeq 2000; future 
scalability 

 Not as fl exible as HiSeq 2000 due 
to having only one fl ow cell 

 Illumina 
HiSeq 2000 

 Same as HiSeq 1000, but runs two fl ow 
cells simultaneously; most reads, 
GB per day and GB per run, lowest 
cost per MB of all platforms a  

 High capital cost; high 
computation needs 

 Illumina 
HiSeq 2500 

 Same as HiSeq 2000, but can also run 
two 2 lane miniFlowCells to 
achieve much faster run times and 
longer read lengths 

 miniFlowCell will likely have a 
higher cost per read than 
standard HiSeq Flow Cell; can’t 
run miniFlowCell and standard 
Flow Cell at the same time 

 Illumina 
HiScanSQ 

 Versatile instrument for full catalog 
of Illumina arrays and sequencing; 
scalable in future 

 Higher cost/MB than HiSeq for 
large amounts of data 

 Illumina MiSeq  Moderate cost instrument and runs; low 
cost per MB for a small platform; 
fastest Illumina run times and 
longest Illumina read lengths 

 Relatively few reads and higher 
cost per MB compared to 
HiSeq 

 Ion Torrent—
314 chip 

 Low cost per sample for small studies; 
short time needed on instrument; 
suitable for microbial sequencing 
and targeted sequencing 

 High cost per MB; sample prep 
takes longer than time on the 
instrument; far fewer reads 
and slightly shorter total read 
length than MiSeq 

(continued)
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Table 4.1 (continued)

 Instrument  Primary advantages  Primary disadvantages 

 Ion Torrent—
316 chip 

 Same as 314, upgraded due to higher 
density chip; lower cost per read 
and MB allows more applications 

 Similar to 314, but more reads 

 Ion Torrent—
318 chip 

 Same as 316, upgraded due to higher 
density chip; lower cost per read 
and MB allows more applications 

 Similar to 316, but more reads 

 Ion Torrent—
PGM 

 Low cost instrument upgraded through 
disposable chips (the chip is the 
machine); very simple machine 
with few moving parts; clear 
trajectory to improved performance 

 Higher error rate than Illumina; 
more hands-on time and fewer 
reads at higher cost per MB 
relative to MiSeq 

 Ion Torrent—
Proton 

 Moderately low-cost instrument for high 
throughput applications; similar cost 
to MiSeq, but PII and PIII chips will 
give more reads than MiSeq 

 Higher error rate than Illumina; 
more hands-on time and 
shorter reads than MiSeq or 
HiSeq 2500 Rapid Run 

 Ion Torrent—
Proton-I chip 

 Similar to PGM chips, but with many 
more sensors (wells); more reads 
than MiSeq at similar cost/MB; 
single contiguous read similar in 
length to HiSeq total length 

 Higher cost/MB than HiSeq; 
shorter reads than MiSeq; 
higher error rate than Illumina; 
more analysis tools needed 

 Ion Torrent—
Proton-II chip 

 Same as Proton-I chip, but with more 
sensors (wells); similar or possibly 
lower cost/MB than HiSeq 

 Same as Proton I but more reads 
and lower cost per MB 

 Ion Torrent—
Proton-III chip 

 Same as Proton-II chip, but with more 
sensors (wells); similar or possibly 
lower cost/MB than HiSeq 

 Same as Proton II but more reads 
and lower cost per MB 

 SOLiD—5500xl  Each lane of Flow-Chip can be run 
independently; high accuracy; 
output in bases (not color-space); 
ability to rescue failed sequencing 
cycles; 96 validated barcodes per 
lane; throughput of 20–30 GB/day 

 Longevity of platform; relatively 
short reads; more gaps in 
assemblies than Illumina data; 
less even data distribution than 
Illumina; high capital cost 

   a  The data is derived from 2013 NGS Field Guide update [ 3 ,  18 ]  

4.3           AB SOLiD Systems 

 SOLiD sequencing systems are based on Sequencing by Ligation and Detection 
technology (see Chap.   3    ). In 2007, Applied Biosystems Inc. (ABI) acquired SOLiD 
and launched a sequencing system with a read length of 35 bp and output of 3 GB/
run with 99.85 % accuracy [ 1 ]. In the following 3 years, ABI released fi ve upgrades 
to the system before the release of SOLiD 5500xl in 2010. The SOLiD 5500xl came 
with outstanding features in all respects. The read length was extended to 85 bp and 
the output increased to 30 GB/run with 99.99 % accuracy, though it took about 
1 week to complete a run. Recently, ABI unveiled the 5500 W Series Genetic 
Analyzers that demonstrate a signifi cant reduction in sequencing costs (~50 %), 
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simplifi ed workfl ow, and increased throughput, though their read length remains 
short (max. 75 bp) [ 8 ]. To conclude, the main advantages of SOLiD systems are the 
reasonable cost and enhanced accuracy while the main disadvantages are the shorter 
read lengths and the requirement of advanced computational resources as well as 
skilled bioinformatics personnel to analyze the 4 Tb of data that are generated from 
each run [ 1 ]. In general, SOLiD systems are suitable for whole genome and tran-
scriptome studies. Other characteristics of Roche 454 systems are listed in 
Tables  4.1 ,  4.2 ,  4.3 , and  4.4 .  

4.4     Illumina GA/HiSeq Systems 

 Illumina systems are based on Reversible Dye-Terminators Sequencing, which is a 
sequencing-by-syntheses approach (see Chap.   3    ). Solexa initially developed and 
also launched the fi rst sequencer implementing this technology, the Genome 
Analyzed (GA), before being acquired by Illumina in 2007. Although the fi rst GA 
only had an output of 1 GB/run, the release of the GAIIx series after a period of 
3 years provided a drastic improvement with 85 GB/run and a read length of 150 bp 
[ 9 ]. Illumina launched the Illumina HiSeq 2000 system in 2010 with an initial out-
put of 200 GB/run. The output was soon increased to 600 GB/run, with each run 
taking about a week [ 1 ]. The most recent Illumina system is the HiSeq 2500/1500, 

     Table 4.2    Comparison of major next-generation sequencers run time, read length, and output data a    

 Instrument  Run time 
 Millions 
of reads/run 

 Read 
length 

 Yield 
MB/run 

 Data fi le 
sizes (   GB) 

 ABI 3730xl (capillary)  2 h  9.6 × 10 −5   650  0.06  0.03 
 454 FLX Titanium  10 h  1  400  400  20 images, 4 sff 
 454 FLX+  20 h  1  650  650  40 images, 8 sff 
 454 GS Jr. Titanium  10 h  0.1  400  50  <3 images, <1 sff 
 Illumina GAIIx  14 days  300  150 + 150  96,000  600 
 Illumina HiSeq 1000  8.5 days  ≤1,500  100 + 100  ≤300,000  ≤300 
 Illumina HiSeq 2000  11.5 days  ≤3,000  100 + 100  ≤600,000  ≤600 
 Illumina HiSeq 2500—rapid  40 h  ≤600  150 + 150  ≤180,000  [big] 
 Illumina iScanSQ  8.5 days  700  100 + 100  140,000  50 
 Illumina MiSeq—version 1  26 h  4  150 + 150  1,200  1 
 Illumina MiSeq—version 2  39 h  15  250 + 250  7,500  1 
 Ion Torrent—“314” chip  4 h  0.1  400  40  0.1 sff, 0.2 fastq 
 Ion Torrent—“316” chip  4 h  1.6  400  400  5 sff, 1 fastq 
 Ion Torrent—“318” chip  7 h  4  400  1,500  10 sff, 2.5 fastq 
 Ion Torrent—Proton I  ≤4 h  70  ≤200  10,000  120 sff, 30 fastq 
 Ion Torrent—Proton II  [>4 h]  [250]  [≤200]  [50,000]  [big] 
 Ion Torrent—Proton III  [>4 h]  [500]  [≤200]  [100,000]  [big] 
 SOLiD—5500xl  8 days  >1,410  75 + 35  155,100  148 

   a  The data is derived from 2013 NGS Field Guide update [ 3 ,  18 ]  

4 Next-Generation Sequencing Platforms

http://dx.doi.org/10.1007/978-1-4939-0715-1_3


41

     Ta
bl

e 
4.

3  
  C

om
pa

ri
so

n 
of

 m
aj

or
 n

ex
t-

ge
ne

ra
tio

n 
se

qu
en

ce
rs

 p
ur

ch
as

e 
an

d 
op

er
at

io
n 

co
st

s a   
  

 In
st

ru
m

en
t 

 R
ea

ge
nt

 
co

st
/r

un
 

 R
ea

ge
nt

 
co

st
/M

B
 

 M
in

im
um

 u
ni

t 
co

st
 (

%
 r

un
) 

 Pu
rc

ha
se

 
co

st
 

 A
dd

iti
on

al
 

in
st

ru
m

en
ts

 
 Se

rv
ic

e 
co

nt
ra

ct
 

 C
om

pu
ta

tio
na

l 
re

so
ur

ce
s 

 A
B

I 
37

30
xl

 (
ca

pi
lla

ry
) 

 $1
44

 
 $2

,3
08

 
 $6

 (
1 

%
) 

 $3
76

 
 – 

 $1
9.

80
 

 D
es

kt
op

 
 45

4 
FL

X
 T

ita
ni

um
 

 $6
,2

00
 

 $1
2 

 $2
,0

00
 (

12
 %

) 
 $2

9.
50

 
 – 

 – 
 $5

 (
de

sk
to

p)
 

 45
4 

FL
X

+
 

 $6
,2

00
 

 $7
 

 $2
,0

00
 (

12
 %

) 
 $4

50
 

 $3
0 

 $5
0 

 $5
 (

de
sk

to
p)

 
 45

4 
G

S 
Jr

. T
ita

ni
um

 
 $1

,1
00

 
 $2

2 
 $1

,5
00

 (
10

0 
%

) 
 $1

08
 

 $1
6 

 $1
2.

60
 

 $5
 (

de
sk

to
p)

 
 Il

lu
m

in
a 

G
A

II
x 

 $1
7,

57
5 

 $0
.1

9 
 $2

,5
00

 (
14

 %
) 

 $2
50

 
 $1

00
 

 $4
4.

50
 

 $2
22

 c
lu

st
er

 
 Il

lu
m

in
a 

H
iS

eq
 1

00
0 

 $1
0,

22
0 

 $0
.0

4 
 $2

,6
00

 (
12

 %
) 

 $5
60

 
 $5

5 
 $6

2 
 $2

22
 c

lu
st

er
 

 Il
lu

m
in

a 
H

iS
eq

 2
00

0 
 $2

3,
47

0 
 ≥$

0.
04

 
 $2

,4
00

 (
6 

%
) 

 $6
90

 
 $5

5 
 $7

5.
90

 
 $2

22
 c

lu
st

er
 

 Il
lu

m
in

a 
H

iS
eq

 2
50

0—
ra

pi
d 

 $6
,1

45
 

 $0
.0

5 
    N

A
 (

50
 %

) 
 $6

90
 

 $5
5 

 $7
5.

90
 

 $2
22

 c
lu

st
er

 
 Il

lu
m

in
a 

iS
ca

nS
Q

 
 $1

2,
75

0 
 $0

.0
9 

 $2
,5

00
 (

14
 %

) 
 $4

05
 

 $5
5 

 $4
1.

50
 

 $2
22

 c
lu

st
er

 
 Il

lu
m

in
a 

M
iS

eq
—

ve
rs

io
n 

1 
 $1

,0
40

 
 $0

.7
0 

 ~$
1,

40
0 

(1
00

 %
) 

 $1
25

 
 – 

 $1
2.

50
 

 D
es

kt
op

/c
lo

ud
 

 Il
lu

m
in

a 
M

iS
eq

—
ve

rs
io

n 
2 

 $1
,0

70
 

 $0
.1

4 
 $1

,4
00

 (
10

0 
%

) 
 $0

 
 – 

 – 
 D

es
kt

op
/c

lo
ud

 
 Io

n 
To

rr
en

t—
“3

14
” 

ch
ip

 
 $5

39
 

 $5
 

 ~$
75

0 
(1

00
 %

) 
 $4

9 
 $1

8/
32

 
 $7

.5
/9

.9
 

 $1
6.

5 
(d

es
kt

op
) 

 Io
n 

To
rr

en
t—

“3
16

” 
ch

ip
 

 $7
39

 
 $1

.2
0 

 ~$
1,

00
0 

(1
00

 %
) 

 $4
9 

 $1
8/

32
 

 $7
.5

/9
.9

 
 $1

6.
5 

(d
es

kt
op

) 
 Io

n 
To

rr
en

t—
“3

18
” 

ch
ip

 
 $9

39
 

 $0
.6

0 
 ~$

1,
20

0 
(1

00
 %

) 
 $4

9 
 $1

8/
32

 
 $7

.5
/9

.9
 

 $1
6.

5 
(d

es
kt

op
) 

 Io
n 

To
rr

en
t—

Pr
ot

on
 I

 
 $1

,0
50

 
 $0

.0
9 

 – 
 22

4 
 $1

9.
5/

3.
3–

8.
5 

 22
.4

 
 ($

75
) 

cl
us

te
r 

 Io
n 

To
rr

en
t—

Pr
ot

on
 I

I 
 [$

1,
00

0]
 

 [$
0.

02
] 

 – 
 22

4 
 $1

9.
5/

3.
3–

8.
5 

 22
.4

 
 ($

75
) 

cl
us

te
r 

 Io
n 

To
rr

en
t—

Pr
ot

on
 I

II
 

 [$
1,

00
0]

 
 [$

0.
01

] 
 – 

 22
4 

 $1
9.

5/
3.

3–
8.

5 
 22

.4
 

 ($
75

) 
cl

us
te

r 
 SO

L
iD

—
55

00
xl

 
 $1

0,
50

3 
 <

 $
0.

07
 

 $2
,0

00
 (

12
 %

) 
 $2

51
 

 $5
4 

 $4
4.

40
 

 $3
5 

cl
us

te
r 

   a   T
he

 d
at

a 
is

 d
er

iv
ed

 f
ro

m
 2

01
3 

N
G

S 
Fi

el
d 

G
ui

de
 u

pd
at

e 
[ 3

 ],
 s

om
e 

va
lu

es
 a

re
 f

ro
m

 2
01

1’
s 

gu
id

e 
[ 1

8 ]
. A

ll 
co

st
s 

ar
e 

in
 th

ou
sa

nd
s 

of
 U

S 
do

lla
rs

  

4.4  Illumina GA/HiSeq Systems



42

which provides a similar output in 2–11 days with up to six billion reads [ 10 ]. 
Moreover, Illumina announced the release of the new HiSeq X Ten sequencing sys-
tem in January 2014 which is specially adapted for analyzing large sample popula-
tions. The new system consists of ten ultra-high throughput sequencers that work in 
parallel. Interestingly, Illumina claims that the HiSeq X Ten system is the fi rst 
sequencing methodology to deliver full coverage human genomes at a cost of $1,000 
or less [ 11 ]. To summarize, the main advantages in Illumina systems are the high 
throughput and inexpensive costs involved while the main disadvantages are the 
short read length and advanced computational resources required to store and ana-
lyze the huge amount of data generated from each run [ 1 ]. Illumina systems are very 
suitable for whole genome, transcriptome, and personal genome applications. Other 
characteristics of Illumina systems are listed in Tables  4.1 ,  4.2 ,  4.3 , and  4.4 .  

4.5     Compact Systems 

 Roche, SOLiD, and Illumina provide the major sequencing platforms being used for 
genome and other sequencing applications in the next-generation fi eld. However, 
the continuous demand for cheaper and single-laboratory-based equipment led ven-
dors to develop compact versions of the above sequencers or other types of sequenc-
ers with novel technologies. These compact sequencers share the same features as 

     Table 4.4    Comparison of major next-generation sequencers errors and error rates a    

 Instrument  Data fi le sizes (GB) 
 Primary 
errors 

 Single-pass 
error rate (%) 

 Final error 
rate (%) 

 ABI 3730xl (capillary)  0.03  Substitution  0.1–1  0.1–1 
 454 FLX Titanium  20 images, 4 sff  Indel  1  1 
 454 FLX+  40 images, 8 sff  Indel  1  1 
 454 GS Jr. Titanium  <3 images, <1 sff  Indel  1  1 
 Illumina GAIIx  600  Substitution  ~0.1  ~0.1 
 Illumina HiSeq 1000  ≤300  Substitution  ~0.1  ~0.1 
 Illumina HiSeq 2000  ≤600  Substitution  ~0.1  ~0.1 
 Illumina HiSeq 2500—rapid  [big]  Substitution  ~0.1  ~0.1 
 Illumina iScanSQ  50  Substitution  ~0.1  ~0.1 
 Illumina MiSeq—version 1  1e  Substitution  ~0.1  ~0.1 
 Illumina MiSeq—version 2  1e  Substitution  ~0.1  ~0.1 
 Ion Torrent—“314” chip  0.1 sff, 0.2 fastq  Indel  ~1  ~1 
 Ion Torrent—“316” chip  5 sff, 1 fastq  Indel  ~1  ~1 
 Ion Torrent—“318” chip  10 sff, 2.5 fastq  Indel  ~1  ~1 
 Ion Torrent—Proton I  120 sff, 30 fastq  Indel  ~1  ~1 
 Ion Torrent—Proton II  [big]  Indel  ~1  ~1 
 Ion Torrent—Proton III  [big]  Indel  ~1  ~1 
 SOLiD—5500xl  148  A-T bias  ~5  ≤0.1 

   a  The data is derived from 2013 NGS Field Guide update [ 3 ,  18 ]  
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the full size versions except that they are smaller in size and lower in throughput, 
therefore being cheaper in the price. Their use is mainly targeted for personal 
genomics and clinical applications. 

4.5.1     Illumina MiSeq 

 MiSeq is a compact sequencing system developed by Illumina. It implements the 
sequencing by synthesis technology and resembles the Illumina HiSeq system. 
However, MiSeq combines the processes of cluster generation, sequencing by syn-
thesis, and data analysis into a single machine. Thus, it reduces the sequencer size 
to a bench-top machine and decreases the analysis time to as little as 4 h [ 1 ,  2 ]. 
Apart from its size, price, and speed, MiSeq comes with several other outstanding 
features. For instance, the read length of MiSeq is 300 bp, which signifi cantly 
reduces the data analysis effort [ 10 ]. Thus, MiSeq is suitable for several novel appli-
cations such as clinical applications, small genomes sequencing, clone checking, 
and ChIP-seq [ 1 ]. Furthermore, the Illumina MiSeqDx recently became the fi rst 
sequencer to be granted marketing authorization from the Food and Drug 
Administration (FDA) [ 12 ].  

4.5.2     Ion Torrent PGM 

 Life Technologies released the Ion Personal Genome Machine (PGM) in 2010. The 
PGM implements semiconductor sequencing technology that does not require fl uo-
rescence and camera scanning, resulting in an outstandingly fast machine (2 h/
analysis). Furthermore, the sample preparation is accomplished in parallel for eight 
samples and takes only 6 h. The PGM read length is 200 bp on average and can be 
up to 400 bp, which is another major advantage [ 1 ,  13 ]. The PGM is an ultra fast 
sequencer but with limited throughput (up to 2 GB per run), and is typically used for 
applications such as the identifi cation of microbial pathogens. During the 2011 out-
break of exceptionally virulent  Escherichia coli  that centered in Germany, the PGM 
was used in conjunction with HiSeq for whole genome sequencing to identify the 
type of  E. coli  involved. This information was particularly useful in helping scien-
tists understand the associated antibiotic resistance [ 14 – 16 ].  

4.5.3     The Open-Source Sequencing System 

 Complete Genomics, a wholly owned subsidiary of the Beijing Genome Institute 
(BGI)-Shenzhen, has its own sequencer named the Polonator G.007. The Polonator is 
based on the polony sequencing sequencer and represents an inexpensive, high per-
formance, and high throughput machine with open-source software and protocols [ 1 ]. 
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According to Complete Genomics, the accuracy of the system is 99.999 %, which 
is comparable to the accuracy of the HiSeq system [ 1 ]. Therefore, the Polonator 
would be suitable for the identifi cation of SNPs and indels. The high level of accu-
racy claimed by the makers was recently supported by the discovery of a point 
mutation responsible for Prader-Willi Syndrome (a rare genetic disorder). In this 
case, the authors obtained the whole genome sequence of two healthy parents and 
an affected son through the utilization of sequencing technology provided by 
Complete Genomics [ 17 ].      
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          Abstract     The next-generation sequencing fi eld has developed at such a rapid pace 
that the achievements of today exceed the challenges and limitations of the last few 
years. We have previously described how next-generation sequencing has advanced 
DNA sequencing from low throughput to high throughput and minimized labor- 
intensive practices to more automated processes. In this chapter, we will compare 
next-generation sequencing with the traditional Sanger method to demonstrate the 
remarkable recent developments in relation to improved speed, throughput, and 
accuracy. Lastly, we will provide an overview of lingering challenges that are still 
faced by next-generation sequencing.  

5.1               Sanger Sequencing Versus Next-Generation Sequencing 

 Descriptions of both Sanger sequencing and the major next-generation sequencing 
technologies have been provided in the previous chapters. However, we would like 
to highlight certain differences between the two technologies in terms of both prop-
erties and applications (Table  5.1 ). The fi rst major difference in relation to proper-
ties is that Sanger technology is based on cloning of the target molecule and the 
sequencing of smaller subclones of the original clone. The subclones are then joined 
together to construct the original clone, following which several clones are linked 
together using their overlapping ends to form a chromosome. In the next-generation 
technologies, rather than cloning, the target molecule is broken down into short 
fragments and DNA adapters are attached to the ends to construct a library of short 
DNA fragments that will be amplifi ed ahead of the sequencing process [ 1 ].

   Another principal difference between the two technologies is the read length of 
the resultant sequences. Since the Sanger method is clone-based, the resulting 
sequences are relatively long (800–1,000 bp), while the next-generation sequencing 
technologies vary from 75 to 700 bp [ 2 ]. This difference has a major impact in the 
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data analysis of the resultant sequence, especially in light of the exceptional high 
throughput of next-generation sequencing technologies. We will further discuss the 
computational challenges involved in the subsequent chapters.  

5.2     Effi ciency of Sanger Sequencing 

 Following the introduction of next-generation sequencing, Sanger sequencing started 
to lose its once dominant foothold in the sequencing fi eld. However, the utilization of 
the Sanger method still retains certain strengths [ 1 ]. At its inception, Sanger technol-
ogy was originally intended for the accurate sequencing of long DNA molecules 
rather than whole genome sequencing. To date, the Sanger technique is still widely 
utilized as a cost-effi cient methodology for sequencing constructs, PCR products, 
and individual genes. Furthermore, it remains one of the few technologies that offer 
accurate confi rmation of mutations and fi ndings during certain clinical applications, 
where it continues to hold an edge over next-generation methodologies. 

 One of the recent cases where Sanger sequencing demonstrated outstanding effi -
ciency and accurate sequencing capabilities was during the late phase of the self- 
replicating synthetic bacterial cell project (J. Craig Venter Institute, USA) [ 3 ]. In this 
project, scientists computationally designed the genome of a simple bacterial cell 
and then synthesized the whole genome in pieces. These pieces were then joined 
together in several phases through the utilization of  E. coli  and yeast cells [ 4 ]. 
However, in the fi nal stages of the project, the combined genome failed to boot-up 
after it had been transferred to the new host cell (a genome-free bacterial cell). It took 
a period of 2 years to attribute the causal factor behind this failure as an error during 
the genome synthesis process, where a single nucleotide was found to be missing. 
In this case, the Sanger method outdid the next-generation sequencers in uncovering 
this minute difference between the synthesized sequence and the design template [ 4 ].  

   Table 5.1    Features of Sanger and next-generation sequencing technologies   

 Sanger sequencing  Next-generation sequencing 

 Sample  Clones, PCR  DNA libraries 
 DNA cloning/amplifi cation  Cloning  Amplifi cation and tagging 
 Throughput  Low  High (massively parallel) 
 DNA synthesis and newly 

added nucleotide detection 
 Distinct processes  Simultaneously 

 Coverage  Low coverage depth  High coverage depth 
 Sequencing accuracy  Highly accurate  Relatively lower accuracy 
 Sample-read rate  One sample one read  One sample up to millions reads 
 Cost effi ciency  Expensive  Effi cient 
 Sequencing repetitive regions  More effective  Less effective 
 Read length  Longer  Shorter 
 Genome assembly in the absence 

of reference 
 Easier  Harder 
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5.3     Challenges in Next-Generation Sequencing 

 The accelerated pace of technological development is greatly exemplifi ed by 
 comparing the present day requirements for human whole genome sequencing with 
the groundbreaking Human Genome Project that was initiated over two decades 
ago. The associated spending costs of the Human Genome Project were an esti-
mated 100,000 million dollars, taking over a decade to complete. In contrast, mod-
ern methodologies may reduce expenses to around 5,000 dollars, with a required 
time period of 14 days [ 1 ] or less with the recently announced systems by Illumina 
[ 5 ,  6 ]. Furthermore, newer compact sequencers (such as the PGM from Ion Torrent 
and MiSeq from Illumina) combine template preparation, sequencing, imaging, and 
data analysis into a single bench-top machine, signifi cantly reducing required man-
power and related costs. Therefore, the next-generation sequencing fi eld is achiev-
ing rapid and remarkable progress to overcome previous limitations associated with 
technologies, methods, and protocols. However, three important challenges have yet 
to be overcome, i.e., costs, the read length, and the error rates and types. 

5.3.1     Sequencing Cost 

 Despite dramatic decreases in actual sequencing expenses in recent years, the initial 
costs of establishing sequencing facilities remain too high for such indispensable tech-
nology. The comparisons we showed in Chap.   4     (Table   4.3    ) illustrate the cost of the 
major available sequencing platforms. This can range from 0.7 million dollars to 
around 100,000 dollars for the least costly models, therefore putting next- generation 
sequencing out of the reach of most laboratories and hospitals. With relation to devel-
oping countries, the Human Genetics Programme (HGP) at the World Health 
Organization (WHO) published a report on the potential health impact of DNA 
sequencing technologies in these nations [ 7 ]. The report revealed the potential positive 
impact of the technology but identifi ed cost as a limiting factor in relation to its distri-
bution and application. Another recent WHO report on the spread of the poliovirus in 
the Horn of Africa revealed the indispensability of DNA sequencing in the confi rma-
tion of laboratory results and ascertaining the origin of isolated viruses [ 8 ]. Taking 
current expenses into consideration, the establishment of DNA sequencing facilities in 
developing countries for either health applications or research remains improbable.  

5.3.2     Read Length 

 Despite the numerous advantages of the next-generation sequencing technologies, 
limitations in the read length remains its major technical drawback [ 2 ]. Recent 
next- generation sequencers have demonstrated a range between 75 and 900 bp, 
though the average length is between 100 and 400 bp (Chap.   4    , Table   4.2    ) [ 9 ,  10 ]. 
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In this case, shorter read-lengths are known to require more diffi cult and complicated 
analyses. As will be discussed in more detail later, short reads are assembled together 
using overlapped ends to create longer stretches of DNA. Accordingly, the DNA 
stretches are attached to each other to elongate them further until the construction of 
an entire genome (for prokaryotes), a whole chromosome (for eukaryotes), or full 
DNA or RNA molecules occurs. In contrast, longer read-lengths greatly simplify the 
assembly process due to two major reasons. Firstly, short reads comprise of shorter 
overlapping ends, which makes the accurate determination of the preceding and fol-
lowing reads diffi cult. Secondly, longer reads require less rounds of the overall 
assembly process. For instance, a DNA molecule of 100,000 bp will have ~2,000 
reads of length 50 bp or ~110 reads of length 900 bp. Therefore, the analysis and 
assembly efforts required increases by several folds for short read-lengths in com-
parison to longer lengths [ 2 ].  

5.3.3     Error Rates and Types 

 In comparison with Sanger sequencing, the next-generation sequencing technolo-
gies have higher rates of errors of various types. The most common error type dur-
ing next-generation sequencing is substitution (Chap.   4    , Table   4.4    ), where a certain 
nucleotide is substituted with another type of nucleotide, making the identifi cation 
of SNP even more diffi cult [ 11 ]. The Indel (insertion deletion) error is another com-
mon type of error in the Ion Torrent and SOLiD next-generation sequencing plat-
forms (Chap.   4    , Table   4.4    ). In certain cases, error types appear to be platform-specifi c 
as the source of the error is technically related to the technology implemented in a 
particular sequencing platform. For instance, CG deletion errors are exclusive to the 
PacBio RS platform (which will be described in more detail later) at a high rate 
(13 %) while A-T bias errors are specifi c to SOLiD sequencers but at a more aver-
age rate (Chap.   4    , Table   4.4    ) [ 2 ,  12 ,  13 ]. Therefore, different next-generation plat-
forms may possess varying error rates. This situation can complicate direct 
comparisons between the platforms due to the differing error types and the various 
templates utilized for assessments [ 2 ,  12 ,  13 ]. As a general rule, the error rate is 
known to increase when the maximum read length of the platform is approached. 
Hence, this factor complicates efforts to improve upon the read length [ 12 ]. 

 Additional challenges in the next-generation fi eld include complexities in library 
preparation and other procedural steps [ 14 ]. However, these will not be discussed in 
detail as the rapid pace of development in the fi eld is known to overcome 
such  technical challenges in due course. Thus, it is our expectation that most of 
today’s technical challenges may be greatly diminished in the near future, espe-
cially with the introduction of third-generation sequencers. On the other hand, the 
associated computational challenges will likely become more complex in view of 
enhanced data generation from advancing sequencing methodology [ 2 ]. Therefore, 
we will focus on the discussion of such computational challenges and proposals to 
overcome them in the following chapters.      
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          Abstract     In the previous chapters, we described the most common and well- 
established next-generation sequencing technologies and platforms. However, sev-
eral methodologies and sequencers with outstanding features have also been 
released in the last few years. Furthermore, additional technologies demonstrating 
great promise are currently in development. In this chapter, we will briefl y describe 
these recent and ongoing developments that may have a profound impact on the 
future of sequencing.  

6.1               Third-Generation Sequencing Methods 

 Despite the advantages of next-generation sequencing methods, soaring expecta-
tions in the fi eld have driven the demand for even better technologies (see Chap.   5    ). 
Therefore, a new staple of sequencing methods known as third-generation sequenc-
ing or next-generation sequencing is being developed in the hopes of elevating the 
platform to a whole new dimension [ 1 ]. Ideally, third-generation sequencing meth-
odology should reduce or eliminate some or all of the three main challenges faced 
by the next-generation techniques, i.e., excessive machine costs, short read lengths, 
and signifi cant error rate. To date, three methods have been introduced that can be 
considered as third-generation methods or in the transitionary phase between the 
next-generation and third-generation tools. 

6.1.1     Heliscope Single-Molecule Sequencing 

 Heliscope Single-Molecule Sequencing (or Helicos Single-Molecule Fluorescent 
Sequencing) is the fi rst single-molecule sequencing (SMS) method that can directly 
identify the exact sequence of a given DNA stretch [ 2 ]. In this technique, the DNA 
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to be sequenced is sheared and the resulting fragments are then attached to Poly-A 
tails, which allow the fragments to be connected to a fl ow cell surface. A single type 
of fl uorescently labeled nucleotide is added in cycles to extend the DNA by one 
nucleotide per cycle. After the addition of each nucleotide, the reaction is paused 
using a terminating nucleotide in order to capture an image of the fl orescent label. 
Subsequently, the fl ow cell surface is washed and the blocking is removed to repeat 
the cycle [ 3 ]. This technology was developed by Helicos Biosciences and was used 
in 2009 to sequence whole human genome (the genome of Stephen Quake, Professor 
of Stanford University, USA and a co-founder of Helicos BioSciences) for less than 
50,000 dollars [ 2 ]. It was also used to sequence the genome of the M13 bacterio-
phage [ 4 ]. However, by the end of 2012, Helicos BioSciences shut its doors and 
fi led for bankruptcy.  

6.1.2     Single-Molecule Real-Time Sequencing 

 The single-molecule real-time (SMRT) sequencing technique is another SMS 
method that is based on the principle of sequencing by synthesis. It utilizes small 
well-like containers with a single DNA polymerase enzyme affi xed at the bottom of 
a structure called the zero-mode waveguide (ZMW) [ 5 ]. Each ZMW contains a 
polymerase enzyme and a DNA fragment as a template, and creates an observation 
volume that is suffi ciently illuminated to view a single nucleotide when being incor-
porated by DNA polymerase. This observation is accomplished through capturing 
the fl orescent label of the incorporated nucleotide by a detector [ 6 ]. The SMRT 
Sequencing technology was developed by Pacifi c Biosciences and is currently 
implemented in their commercial sequencing machines, where the actual sequenc-
ing is fulfi lled on a chip that contains several ZMVs (see below).  

6.1.3     Nanopore Sequencing 

 The Nanopore sequencing method was fi rst introduced in the middle of the 1990s as 
a technique for determining the nucleotide order in a DNA sequence [ 7 ]. The tech-
nique is based on the utilization of a surface comprising of 1 nm diameter pores. 
The passage of DNA through a pore alters its ion current. This effect is indicative of 
the types of nucleotides present as current changes depend on the shape, size, and 
length of the DNA molecules being sequenced. Thus, each nucleotide can be identi-
fi ed based on its corresponding ion blockage time. Nanopore sequencing is a prom-
ising and low-cost method that does not require modifi ed nucleotides, chemical 
labeling, or PCR amplifi cation [ 8 ]. 

 The major challenge of utilizing the nanopore method is the preparation involved 
in developing the nanopore surface, which can be either solid-state nanopore 
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surfaces or protein-based nanopore surfaces. Solid-state surfaces are used in solid-
state nanopore sequencing techniques such as sequencing with fl orescent labels [ 9 ]. 
On the other hand, protein-based nanopore sequencing employs proteins such as 
 Alpha hemolysin  and  Mycobacterium smegmatis porin A  (MspA) as nanopore sur-
faces [ 10 – 12 ]. Nanopore sequencing is still in the developmental stages, and thus 
far have not been commercially available [ 13 ,  14 ].   

6.2     Third-Generation Sequencing Platforms 

6.2.1     HeliScope Single-Molecule Sequencer 

 The Heliscope Single-Molecule Sequencer was the fi rst commercialized SMS devel-
oped by Helicos Biosciences in 2009. It implements the Heliscope SMS technology 
that was developed by the same company and represents a revolutionary sequencing 
paradigm that allows the sequencing of about one billion molecules in about 7 days, 
a rate 1,000-fold over the technology available when fi rst released [ 2 ]. It uses novel 
reagents that allow digital measurement of homopolymer sequences as well as a new 
alignment algorithm to perform whole genome assembly (reference- based assembly). 
The sequencer reads are between 24 and 70 bp, which are very short based on previ-
ous expectations from a third-generation product. However, the higher speed of 
sequencing and lower associated costs are the signifi cant strengths of the platform. 

 The Heliscope Single-Molecule Sequencer was used to sequence the genome of 
one of the co-founders of Helicos Biosciences (referred to as Patient Zero or P0 in 
the published article), with promising results [ 2 ]. Four sequencers were used to 
sequence the whole human genome and the results were mapped to ~90 % of the 
reference genome with a coverage depth near a Poisson distribution [ 2 ]. However, 
Helicos Biosciences closed down at the end of 2012 and, therefore, the Heliscope 
Single-Molecule Sequencer was excluded from comparisons in this chapter.  

6.2.2     PacBio RS II 

 PacBio RS is a DNA sequencing system developed by Pacifi c Biosciences. 
The PacBio RS systems (PacBio RS and PacBio RS II) are single-molecule sequencers 
that implement the SMRT sequencing technology developed by the same company. 
These can be considered as genuine third-generation sequencers with a read length 
that is >3,000 bp, which is one of the longest available read lengths to date. The 
sequencer is compact with a short run time (~10 h). However, it is very expensive 
and still suffers from high error rates and a low total number of reads per run 
(Tables  6.1 ,  6.2 ,  6.3 , and  6.4 ) [ 13 ,  14 ].
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   Table 6.1    Comparison of major third-generation sequencers advantages and disadvantages a    

 Instrument  Primary advantages  Primary disadvantages 

 Oxford Nanopore 
GridION 2000 

 Extremely long reads are feasible; 
low-cost instrument (node); nodes 
can be placed in standard computer 
racks; error rate doesn’t increase 
along the length of the read; hairpin 
on one end allows reading of the 
complementary strand 

 Not yet available; no data publicly 
available; 4 % error rates; 
errors are likely to be biased 
(thus multiple reads will lead 
to higher confi dence in the 
wrong answer) 

 Oxford Nanopore 
GridION 8000 

 Same as GridION 2000, but more reads 
per unit time; lower cost per GB 

 Same as GridION 2000 

 Oxford Nanopore 
minION 

 No Instrument; IT IS A USB DEVICE; 
can load “raw” samples 

 Not yet available; no data publicly 
available; high cost per MB 
relative to other Nanopore 
sequencers 

 PacBio  Single-molecule real-time sequencing; 
longest available read length; ability 
to detect base modifi cations; short 
instrument run time; random error 
profi le; modest cost per sample; 
many methods being developed 

 High error rates; low total number 
of reads per run; high cost per 
MB; high capital cost; many 
methods still in development; 
weak company performance 

   a  The data is derived from 2013 NGS Field Guide update [ 13 ,  33 ]  

   Table 6.2    Comparison of major third-generation sequencers run time, read length, and output data a    

 Instrument 
 Run 
time (h) 

 Millions 
of reads/run  Read length 

 Yield    
MB/run 

 Data fi le 
sizes (GB) 

 Oxford Nanopore 
GridION 2000 

 [NA]  [ 4 ]  [10,000]  [40,000]  [Variable] 

 Oxford Nanopore 
GridION 8000 

 [5]  [ 10 ]  [10,000]  [100,000]  [Variable] 

 Oxford Nanopore minion  ≤6  [0.1]  [9,000]  1,000  [Small] 
 PacBio RS  ≤2  0.03  >3,000  100–150  2 (basecalls, 

QV, kinetics) 

   a  The data is derived from 2013 NGS Field Guide update [ 13 ,  33 ]  

   Table 6.3    Comparison of major third-generation sequencers purchase and operation costs a    

 Instrument 
 Reagent 
cost/run 

 Reagent 
cost/MB 

 Minimum unit 
cost (% run) 

 Purchase 
cost 

 Service 
contract 

 Computational 
resources 

 Oxford Nanopore 
GridION 2000 

 Varies  [$0.04]  –  –  –  – 

 Oxford Nanopore 
GridION 8000 

 Varies  $0.02  –  –  –  – 

 Oxford Nanopore 
minion 

 ≤$900  $1  ~$1,100 (10 %)  –  –  Laptop 

 PacBio RS  ≥$300  $2–17  $500 (100 %)  $695  85  $65 cluster 

   a  The data is derived from 2013 NGS Field Guide update [ 13 ], some values are from 2011’s guide 
[ 33 ]. All costs are in thousands of US dollars  
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6.2.3           Oxford Nanopore GridION 

 The Oxford Nanopore GridION sequencers are sequencing machines that imple-
ment the Nanopore sequencing methodology. The sequencers are being developed 
by Oxford Nanopore Technologies Ltd. (UK), which had originally announced that 
their fi rst commercialized instrument would be available by the end of 2013 [ 15 ]. 
However, at the time of manuscript preparation, it had not yet launched. 

 The Oxford Nanopore GridION systems promise small, inexpensive and high- 
throughput sequencers with an unprecedented long read length of ~10,000 bp. 
According to the product page on the company website [ 15 ], the Oxford Nanopore 
GridION can be used as a single desktop machine or stacked in racks in a similar 
manner to computer servers. Furthermore, it is stated that the instrument does not 
require a dedicated server and utilizes a single-use disposable cartridge that contains 
all the reagents necessary for the experiment. The available information on the per-
formance of the Oxford Nanopore GridION systems shows a relatively high error 
rate (~4 %), though this rate does not rise upon increasing the read length [ 13 ,  14 ].   

6.3     Sequencing Methods Under Development 

 We have previously discussed the rapid rate at which methodology has been devel-
oped in the DNA sequencing fi eld, and how this fact has helped alleviate prior 
technical challenges. Moreover, several additional methods are currently in devel-
opment and hold the promise of making DNA sequencing cheaper, easier, faster, 
and more accurate. The ultimate goal of these developments is to make whole 
human genome DNA sequencing as simple and affordable as other standard labora-
tory procedures. This would allow its widespread utilization towards innumerable 
clinical applications such as personalized medicine, and would augment research to 
unprecedented levels [ 16 ]. In this section, we will discuss methodologies that are 
presently in the developmental phase as well as their expected outcomes. 

   Table 6.4    Comparison of major next-generation sequencers errors and error rates a    

 Instrument 
 Data fi le 
sizes (GB)  Primary errors 

 Single-pass 
error rate (%) 

 Final error 
rate (%) 

 Oxford Nanopore 
GridION 2000 

 [Variable]  Deletions  ≥4 a   4 a  

 Oxford Nanopore 
GridION 8000 

 [Variable]  Deletions  ≥4 a   4 a  

 Oxford Nanopore 
minion 

 [Small]  Deletions  ≥4 a   4 a  

 PacBio RS  2 (basecalls, QV, kinetics)  Indel  ~13  ≤1 

   a  The data is derived from 2013 NGS Field Guide update [ 13 ,  33 ]  
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6.3.1     Solution-Based Hybridization Sequencing 

 The idea behind sequencing by hybridization is not a new one and has been previ-
ously presented [ 17 ]. Sequencing by hybridization involves a nonenzymatic 
approach based on the creation of a hybrid between the DNA molecule of interest 
and another molecule of known sequence. When one short strand of DNA binds to 
its complementary strand, the binding become very sensitive to mismatches, even at 
the level of a single-base. Thus, the sequence of the complementary strand can be 
inferred from the sequence of its hybrid. The method requires a library of DNA 
probes (short single-stranded DNA sequences) based on the organism of interest, its 
variants or its single-base variations, and can be accomplished using DNA chips or 
microarrays [ 17 ]. The technique has several advantages including homogenous cov-
erage, though the preliminary requirement of DNA and the need for a signifi cant 
amount of chemicals limit its overall utility. However, the recent introduction of 
solution-based hybridization has drastically reduced the dependency on chemicals 
and expensive equipment [ 18 ,  19 ].  

6.3.2     Tunneling Current DNA Sequencing 

 The novel approach of identifying a DNA sequence and differentiating between the 
four types of nucleotides through the use of electrical signals was fi rst presented via 
nanopore sequencing [ 8 ]. Based on these fi ndings, the Tunneling Current DNA 
Sequencing method identifi es specifi c nucleotides through tunneling current con-
ducted by single-base molecules as they pass through a channel comprising of a pair 
of nanoelectrodes [ 10 ,  20 ,  21 ]. The differing structures of the nucleotides have var-
ied effects on the current during this process. Thus, differentiating between them is 
possible through the identifi cation of the characteristic changes in the current infl u-
enced by each nucleotide. A recent report also presented a hybrid method that com-
bined single-base electrical identifi cation and random sequencing to allow successful 
sequence reads from nine different DNA oligomers and microRNA [ 21 ]. The method 
promises an elevated sequencing speed in comparison to those currently available.  

6.3.3     Microscopy-Based DNA Sequencing 

 Microscopy-based DNA Sequencing utilizes an electron microscope to directly 
visualize the nucleotide sequence of intact DNA molecules. In this approach, nucle-
otides are enzymatically modifi ed to contain atoms with higher atomic number that 
can be directly visualized and identifi ed by the electron microscope. Using this 
technique, an intact synthetic molecule of length >3,200 bp and an intact viral DNA 
of length >7,000 bp were sequenced successfully, proving the potential of this 
 methodology in the sequencing of long intact DNA molecules [ 22 ].  
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6.3.4     Mass Spectrometry-Based DNA Sequencing 

 Mass Spectrometry is well known as the technology of choice in the study of pro-
teins and the identifi cation of amino acid sequences [ 23 ]. Additionally, it is utilized 
in the study of metabolites via the capillary electrophoresis mass spectrometry 
(CE- MS) approach [ 24 ]. For the purposes of DNA sequencing, electrospray ioniza-
tion time-of-fl ight mass spectrometry (ESI-TOF MS) and matrix-assisted laser 
desorption ionization time-of-fl ight mass spectrometry (MALDI-TOF MS) were 
used to determine the nucleotide sequence of DNA through the examination of 
nucleotide mass. This contrasted with previous methodology that employed the 
study of nucleotide size, structure, fl orescent labeling, or radioactive labeling [ 25 , 
 26 ]. Since each type of nucleotide has its own unique chemical structure, each of 
them also possesses a unique mass. Therefore, spectrometry can be used to identify 
the nucleotide sequences accurately and in high resolution. This method was found 
to be more effective with RNA, so the DNA is converted to RNA prior to the 
sequencing process. An early attempt to use MS for DNA sequencing showed that 
the longest read in the procedure could be 100 bp [ 27 ]. In more recent studies, 
MS-based DNA sequencing has been used to identify SNPs in pathogens [ 26 ] and 
the comparison of human mitochondrial DNA with DNA from the bones of dead 
soldiers during a forensic investigation [ 28 ].  

6.3.5     RNA Polymerase Sequencing 

 RNA polymerase (RNAP) Sequencing involves the utilization of an RNAP enzyme 
that is attached to a polystyrene bead while the DNA molecule to be sequenced is 
attached to another bead, following which the two beads are placed in optical traps. 
The sequencing information is obtained from the movement of the nucleic acid 
enzyme and the sensitivity of the optical trap. During transcription, the motion of 
the RNAP brings the two beads closer, which can be recorded in single nucleotide 
resolution (in Angstrom range). The differentiation between the four types of 
nucleotides is then accomplished using a Sanger approach-like method. The con-
centration displacement of the four types of nucleotides over the transcription time 
is compared and used to pinpoint the specifi c types of the nucleotides in the 
sequence [ 29 ,  30 ]. 

 In addition to the above, several other sequencing methods and instruments are 
currently either in the research phase or at the initial stages of commercialization. 
These include in vitro virus high-throughput sequencing [ 31 ] and microfl uidic 
Sanger sequencing [ 32 ], for instance. However, due to text limitations, it is not pos-
sible to discuss them all within the confi nes of this book. Reports that survey or 
compare upcoming methods and platforms are readily available [ 13 ,  30 ], though the 
rapid pace of the fi eld necessitates sources that are frequently updated such as the 
NGS Field Guide [ 33 ].      
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          Abstract     Next-generation sequencing technologies have pushed the envelope 
beyond the primary goal of identifying the sequence of nucleotides within a given 
DNA molecule to a whole new multitude of applications. In this chapter, we describe 
select novel applications of next-generation sequencing in relation to large-scale 
sequencing-based projects, cell and cell compartments sequencing and disease- 
targeted sequencing.  

7.1               Introduction 

 The applications of the next-generation sequencing technologies and the recently 
introduced third-generation sequencing methodologies are nearly limitless. The 
determination of the constituents of a DNA sequence itself was the primary aim of 
the fi rst-generation of sequencing methods. With the availability of next-generation 
technologies, sequencing of the genome went from being a research aim to an 
important discovery tool. Thus, the utilization of whole genome sequencing (WGS), 
which is the primary application of these technologies, experienced a remarkable 
growth in the last few years. For instance, the number of genome sequencing proj-
ects in the Genome Online Database (GOLD) increased from 10,420 projects in 
May 2011 to 37,540 projects in January 2014 [ 1 ,  2 ]. The completed and published 
genomes in the above periods were 1,700 and 12,720 genomes, respectively, which 
demonstrated an incredible 720 % increase in a span of just 3 years. Clearly, this 
increase refl ects the improved availability, affordability, and effi ciency of the exist-
ing sequencers and methods. 

 The increased ease at which genome sequencing could be acquired opened the 
fl oodgates for applications and discoveries that went well beyond the initial goals of 
identifying the order of nucleotides or gene structure. Next-generation sequencing 
is presently being used in the WGS of humans [ 3 ], animals [ 4 ,  5 ], plants [ 6 ,  7 ], 
microbes [ 8 ,  9 ] and viruses [ 10 ]. In addition to WGS, next- and third-generation 
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sequencing technologies are also employed in genome resequencing [ 11 ], 
RNA sequencing (RNA-seq) [ 12 ], whole exome sequencing (WES) [ 13 ], targeted 
sequencing [ 14 ], single-nucleotide variations discovery, analysis and validation 
[ 15 ], chromatin immunoprecipitation sequencing (ChIP-seq) [ 16 ], epigenetics [ 17 ], 
proteogenomics [ 18 ,  19 ], diseases and disorders targeted sequencing [ 20 ], muta-
tions discovery [ 21 ], cancer research [ 22 ,  23 ] and numerous other clinical and 
health applications [ 24 ]. Several reports have extensively reviewed the genome 
sequencing applications [ 25 ,  26 ]. Furthermore, Nature Reviews Genetics has dedi-
cated an ongoing article series to the applications of next-generation sequencing 
since 2009 [ 27 ]. Here, we will focus on the discussion of select novel applications 
that have been approached on a radically different scale since the advent of newer 
sequencing technologies.  

7.2     Large-Scale Applications 

 Scientists design their research projects based on the availability and affordability 
of research tools and technologies. Thus, the availability of faster, cheaper, and 
more accurate tools and technologies leads to the planning of projects at an even 
higher level. The developments in genome sequencing technologies over the last 
decade have led to massive strides in sequencing power at an affordable cost and 
within a reasonable timeframe. This success has encouraged more expansive 
research projects where next-generation sequencing is used as a tool to discover 
diversities among individuals within large populations and to understand the funda-
mentals of life and biological systems. Here, we will take a few examples of large- 
scale genome projects that only became possible through the inception of 
next-generation sequencing and its subsequent development. 

7.2.1     Genome 10K Project 

 In the year 2009, a group of genomics scientists established the Genome 10K 
Community of Scientists (G10KCOS) and announced the Genome 10K Project 
[ 28 ,  29 ]. The Genome 10K Project aims to sequence and annotate the genomes of 
about 10,000 vertebrate species that will amount to almost one species from each 
vertebrate genus. The project was inspired by the human genome project and the 
subsequent availability of 56 vertebrate (32 mammals and 24 nonmammalian) 
genomes that are appropriate for comparative genomic analyses [ 29 ]. The stated time-
frame for the  project is quite short as the community aims to assemble such a “genomic 
zoo” by 2015. The targeted species are distributed between all the vertebrates, includ-
ing mammals, birds, non-avian reptiles, amphibians, and fi shes. After 1 year, the 
G10KCOS announced the fi rst 101 species to be sequenced [ 30 ]. Since fi shes repre-
sent more than 50 % of extant vertebrates, the Genome 10K Project intends to sequence 
the genomes of about 4,000 fi sh species, 160 of which are currently in progress [ 31 ]. 
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It is likely that the Genome 10K Project may take longer than expected. Nevertheless, 
it is a staggering effort that promises unique comparative study opportunities that is 
only possible through the use of modern genome sequencing technologies.  

7.2.2     Tree of Life Sequencing Project 

 Another example of large-scale genome sequencing projects is the Tree of Life 
Sequencing Project that was announced by Beijing Genome Institute (BGI) in 2010. 
BGI has the most powerful sequencing capacity worldwide, and is the main con-
tributor to the 1000 Genomes and Genome 10K projects as well. The Tree of Life 
Sequencing Project is also known as the 1000 Plant & Animal Reference Genomes 
Project, a name that is more descriptive of the intended goals of the venture. The 
project aims to target 1,000 reference genomes from 500 animals and 500 plants of 
various economically and scientifi cally important species such as rice, silkworm, 
cucumber, panda, camel, oyster, ant, grouper, goose, crested ibis, and potato 
genomes. To date, 106 genomes have been completed and published while another 
200 are in progress, representing about 30 % of the targeted species [ 32 ].   

7.3     Cell and Cell Compartments Applications 

 The projects discussed in the previous section shared the tendency to sequence a 
huge number of organisms and provide their genomes as reference genomes. In 
contrast, we will now examine the application of next-generation sequencing on a 
much smaller scale, such as a single cell or even a cell compartment. The main aims 
of such applications are to sequence the genomes of species that are diffi cult to grow 
in the lab environment, or when the availability of samples is limited. Another inter-
esting possibility is the determination of the heterogeneity between single cells in 
normal or tumorous tissues. 

7.3.1     Single-Cell Genome Sequencing 

 Preparation of sequencing samples is initiated with a group of cells, e.g., cell cultures 
of bacteria or archaea. However, culturing attempts have failed in the case of several 
microorganisms, making full genome sequencing of such organisms unlikely [ 33 ,  34 ]. 
Thus, methods to sequence a single cell were developed using PCR-based amplifi cation 
of the single bacterial cell genome with accuracy approaching 97 % [ 35 ]. 
Another technique that increased accuracy to 99.6 % [ 36 ] involved PCR-based ampli-
fi cation with multiple displacement amplifi cation (MDA) [ 34 ] followed by post-
amplifi cation normalization and assembly with the reference genome. These methods 
can be used to sequence the genomes of either single cells or individual cells from a 
variety of samples (with different treatments or from different environmental sources). 
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 Single-cell sequencing applications have also expanded to include the study of 
diseases with genetic alterations and to fi nd variations (heterogeneity) between dif-
ferent cells in diseased tissue. For instance, the amount of cancer-related genomic 
mutations in the Catalogue Of Somatic Mutations In Cancer (COSMIC) database 
number over one million to date [ 37 ]. The heterogeneity of tumor cells can result in 
several complications such as developing rare chemo-resistant cells that can resist 
chemotherapy. Such cells can regrow and result in the formation of a chemo- 
resistant tumor [ 38 ]. Several attempts have been made to apply single-cell sequenc-
ing to cancer genomics, allowing the possibility to sequence up to 200 single cells 
independently during a single run [ 39 ]. The numerous single-cell sequencing appli-
cations in cancer can include the pinpointing of chemo-resistant cells, the early 
detection of tumor cells, measuring intratumor heterogeneity, monitoring of circu-
lating tumor cells (CTCs) and in drug target discovery [ 40 ,  41 ]. Furthermore, the 
techniques may also be utilized to develop a guided form of chemotherapy that is 
appropriate against the measured heterogeneity of the tumor [ 39 ]. In the later sec-
tions, we will discuss further details on the applications of sequencing in cancer.  

7.3.2     Mitochondrial Genome Sequencing 

 Mitochondria are cellular organelles that can be found in eukaryotic cells. They are 
responsible for producing most of the cell’s energy by supplying it with adenosine 
triphosphate (ATP) through the phosphorylation of adenosine diphosphate (ADP). 
Mitochondria have their own genome and genetics that are independent from the 
cell nucleus genome. Therefore, it has its own proteome that is about 615 proteins 
[ 41 ]. Most of the mitochondria are inherited from the mother, and there is group of 
diseases known as mitochondrial diseases that are caused by dysfunctional mito-
chondria or genes that are inherited through the mitochondrial genome [ 42 ,  43 ]. 
These structures are also attributed to play an important role in aging and cancer 
[ 44 ,  45 ]. Moreover, they have a special genetic code for tryptophan and methionine 
as well as a distinct stop codon. This allows the mitochondrial genome to be per-
fectly suited for forensic investigations and human phylogenic studies [ 44 ,  45 ]. 
Hence, advancements in next-generation sequencing [ 43 ,  46 ] have been aptly 
refl ected in the utility of human mitochondrial genome sequencing during forensic 
investigations and cancer [ 45 ,  46 ] as well as the study of plants [ 47 ] and fi sh [ 48 ].   

7.4     Disease-Targeted Sequencing 

 Several diseases are associated with genetic mutations or genetic disorders while 
others are inherited from carrier parents to their offspring. The ongoing discovery of 
disease-related genes has made disease-targeted sequencing tests an important diag-
nostic tool [ 49 ]. With Sanger sequencing, tests were designed for diseases with a 
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single causative gene in order to confi rm the diagnosis. On the other hand, design-
ing tests for diseases with enormous genetic heterogeneity is far more diffi cult [ 49 ]. 
With the introduction of next-generation sequencing, the signifi cant increase in 
throughput and reduction in technical costs greatly aid the design of tests for a wide 
spectrum of diseases and genetic disorders, as well as the discovery of new disease- 
related genes and mutations (Table  7.1 ). In this section, we will introduce some of 
the recent applications of next-generation sequencing in understanding inherited 
and complex diseases, including the study of disease-related genes and mutations.

7.4.1       Sequencing in Cancer 

 Cancer is widely known to be associated with somatic mutations [ 22 ]. The Sanger 
Institute launched the Cancer Genome Project (CGP) as one of the earliest attempts 
to identify cancer genes and mutations [ 50 ]. The CGP currently represents one of 
the main resources of cancer genomics and mutations with its several databases and 
resources, including the COSMIC database [ 51 ], the Cancer Gene Census [ 52 ], 
COSMIC whole genomes and the COSMIC cell-line project [ 37 ]. To date, over a 

   Table 7.1    Clinically available disease-targeted tests a    

 Disease area  Disease type 
 Number 
of genes 

 Cancer  Hereditary cancers (for example, breast, colon, and ovarian)  10–50 
 Cardiac diseases  Cardiomyopathies  50–70 

 Arrhythmias (for example, long QT syndrome)  10–30 
 Aortopathies (for example, Marfan’s syndrome)  10 

 Immune disorders  Severe combined immunodefi ciency syndrome  18 
 Periodic fever  7 

 Neurological, 
neuromuscular and 
metabolic disorders 

 Ataxia  40 
 Cellular energetics, metabolism  656 
 Congenital disorders of glycosylation  23–28 
 Dementia (for example, Parkinson’s disease 

and Alzheimer’s disease) 
 32 

 Developmental delay, autism, intellectual disability  30–150 
 Epilepsy  53–130 
 Hereditary neuropathy  34 
 Microcephaly  11 
 Mitochondrial disorders  37–450 
 Muscular dystrophy  12–45 

 Sensory disorders  Eye disease (for example, retinitis pigmentosa)  66–140 
 Hearing loss and related syndromes  23–72 

 Other  Rasopathies (for example, Noonan’s syndrome)  10 
 Pulmonary disorders (for example, cystic fi brosis)  12–40 
 Short stature  12 

   a  Data is derived from [ 49 ]  
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million identifi ed mutations in cancer have been cataloged in the COSMIC database, 
including all types of known genetic mutations such as single-nucleotide mutations, 
insertions, deletions, and chromosomal rearrangements [ 37 ,  51 ]. Although the pri-
mary technology utilized at the commencement of the CGP was Sanger sequencing, 
the project also utilized the power of next-generation sequencing in later phases. 

 Several other large-scale projects have been conceived through international 
consortiums aided by public and private funding. These projects also aim to identify 
cancer-related mutations and genes as well as categorize fi ndings based on impor-
tance and recurrence. For example, the International Cancer Genome Consortium 
(ICGC) is a huge publicly funded cancer genome-sequencing project. The ICGC 
aims to sequence the whole genome of 50 different types and subtypes of cancer 
that are clinically important [ 53 ]. The most recent data release from the project 
(Release 14) provides the results of 41 different cancer projects from over 8,500 
donors. In this case, sequencing studies resulted in the identifi cation of over two 
million mutations from 54,682 mutated genes. 

 With relation to privately funded projects, the Pediatric Cancer Genome Project 
(PCGP) was announced in 2010 by St. Jude Children’s Research Hospital and the 
Genome Institute at Washington University [ 54 ]. This project targeted the sequenc-
ing of 600 pediatric tumors and matched non-tumor germline samples (totaling 
1,600 genomes) with high resolution sequencing in an aim to catalog somatic muta-
tions of pediatric tumors and defi ne the major subtypes in pediatric cancers [ 54 ]. 
The most recent data release from the PCGP (June 2013) contained the whole 
genomes of 15 different cancer types from over 360 patients that were analyzed and 
revealed novel fi ndings [ 55 ].  

7.4.2     Sequencing in Inherited Human Diseases 

 Inherited human diseases are disorders that result from single-gene mutations. They 
are also known as monogenic disorders or Mendelian disorders. There are around 
5,000 known monogenic disorders though the genetic causes of most of them are 
still unknown [ 56 ]. Most of these cases resulted from exonic mutations (mutations 
that occur in the exon) or splice-site mutations (mutations that affect the splicing 
pattern of the mRNA). Both types of mutations affect the resulting protein sequence 
following translation of the affected gene [ 57 ]. Thus, whole exome sequencing 
(WES) using next-generation sequencing is an effi cient methodology to identify 
both these types of mutations without the need of whole genome sequencing (WGS). 
Furthermore, the utilization of WES saves time and reduces cost since the human 
exome represents ~1 % of the human genome. However, certain other mutations 
that cannot be identifi ed without sequencing the whole genome may also result 
from deletions [ 57 ]. The 1,000 Mendelian Disorders Project is a large-scale effort at 
the Beijing Genome Institute (BGI) that aims to sequence the genome of 1,000 
Mendelian disorders to identify the causative genes behind them using next- 
generation sequencing rather than traditional techniques such as positional cloning, 
physical mapping, and candidate-gene sequencing [ 56 ].  
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7.4.3     Sequencing in Complex Human Diseases 

 Next-generation sequencing has provided novel approaches in locating common 
and rare variants that infl uence the risk of developing complex diseases such as 
cancer, diabetes, cardiovascular disease, and psychiatric disorders [ 25 ]. Several 
Genome-Wide Association Studies (GWAS) have used next-generation sequencing 
technologies in examining complex trait genetics [ 58 ,  59 ]. Such studies demon-
strated the utility of next-generation sequencing applications in understanding com-
plex diseases such as hypertrophic cardiomyopathy [ 59 ], brain disease [ 60 ] and 
diabetes [ 61 ]. Moreover, the investigations provided novel insight into understand-
ing the genetics mechanisms behind disorders of sex development (DSD) [ 62 ].      
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          Abstract     Next-generation sequence assembly can be viewed as a fi ve-stage  process 
of data processing and computational challenges. These stages are error correction, 
graph construction, graph simplifi cation, scaffolding, and the assembly assessment 
stage. These stages communicate with each other to produce the fi nal assembled 
sequences. Each stage receives a set of inputs from the preceding one and passes its 
output to the following stage. In this chapter, we will briefl y introduce the basic 
functions of each stage and provide a coherent framework of the communications 
that occur between them.  

8.1               Introduction to Next-Generation Sequence Assembly 

 The sequence assembly process was developed to resolve the limitations of current 
technologies that prevent the sequencing of the whole genome/chromosome during 
a single read. In fi rst- and next-generation sequencing methods (see Chap.   3    ), the 
whole genome is sheared into short random fragments with short overlaps. Each 
fragment is sequenced independently and the resulting sequences are individually 
called a “read”. Hence, the process of repositioning these random reads to recon-
struct the whole genome is known as the “sequence assembly process” [ 1 ,  2 ]. 

 According to the sample and type of raw data generated by sequencing instru-
ments and the aim of the study, the assembly process may take many fl avors includ-
ing genome, transcriptome, or metagenome sequence assembly. If the raw data in 
the sequencing experiment is genomic DNA, the process is called genome assem-
bly. Likewise, if the raw data is mRNA, the process is called transcriptome  assembly, 
whereas assembling reads resulting from sequencing environmental samples that 
contain a mixture of organisms is called metagenome assembly. The ever- increasing 
number of applications in genomics, transcriptomics, metagenomics, and single-
cell sequencing exhibits the need to acquire sequences from the viral, microbial, 
bacterial, or eukaryotic communities [ 3 ]. While the details of the assembly process 
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and employed assembly tools are different in each case, the sequence assembly 
process always shares the same stages. 

 The process of sequence assembly starts with fi ltering the reads to remove or 
correct errors and then computing a set of overlaps among them to discover their 
arrangement. These overlaps are used to connect the reads together into long con-
tiguous structures called “contigs”. Similarly, contigs can also be connected together 
to form even longer sequence stretches called “scaffolds” [ 4 ]. 

 According to the availability of the reference sequences, the sequence assembly 
process has two main approaches, comparative sequence assembly and de novo 
sequence assembly. In comparative sequence assembly (also known as reference- 
based sequence assembly), reference sequences from the same organism or closely 
related species help to guide the reconstruction process [ 5 ]. On the other hand, de 
novo assembly does not involve reference sequences and consequently is a more 
complicated process [ 1 ].  

8.2     Sequence Assembly Framework 

 Sequence assembly is a multiphase process. These phases communicate together in 
order to produce the fi nal assembled sequence. Not only does the organization of 
these phases differ from one assembly to another, but some phases are completely 
missing in certain assembly processes in accordance with various issues (Fig.  8.1 ) [ 6 ].

   The fi rst phase, commonly known as the error correction phase, aims at fi ltering 
erroneous reads by removing or correcting sequencing errors. The fi ltered reads are 

  Fig. 8.1    Schematic representation of the fi ve stages of next-generation sequence assembly  process 
( Note :  G ″ is a repairing version of graph  G  with  N  nodes and  E  edges)       
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then fed into the second phase that formulates them into a graph of nodes with their 
relationships represented as graph edges. This representation overcomes the limita-
tion of available computational resources that are necessary to manage the high 
throughput nature of next-generation sequencers. However, the resulting graph may 
contain erroneous nodes or structures that were overlooked during the fi rst phase. 
Hence, these erroneous structures must be removed or resolved, in the so called 
graph simplifi cation phase, before the construction of the contigs. Following 
the graph simplifi cation phase, the contigs are produced by fi nding the paths on the 
graph that connect the reads together. Subsequently, the scaffolding phase involves 
the fi ltering of the contigs, the detection of misassembled contigs and uncovering 
the relationships between them to build scaffolds [ 6 ]. Finally, the assembly assess-
ment phase evaluates the assembled contigs/scaffolds in accordance with different 
metrics that refl ect the quality, consistency, and accuracy of the algorithm used in 
the reconstruction process [ 7 ,  8 ]. 

 There are many differing viewpoints when designing an assembler. Some design-
ers rely on the early correction of errors in order to facilitate the remaining phases 
of the assembly process (i.e., graph building and simplifi cation) [ 9 – 15 ]. Other 
designers propose to delay the error correction phase to the graph simplifi cation 
process since both these phases aim at removing errors. Moreover, merging these 
two phases would reduce the overall computation time [ 16 – 22 ]. Hence, there are 
stand-alone error correction tools, scaffolding tools, and assessment tools that per-
form these phases independently from the other assembly phases. Certain designers 
rely on these independent tools to complete the missing parts in their assemblers. 

8.2.1     Error Correction Phase 

 Correcting the errors that result from sequencing platforms represents one of the 
major challenges in the next-generation environment. These errors vary from the 
presence of simple ambiguous bases to the occurrence of substitution and indel 
errors (see Chap.   4    ). By detecting these errors early, the assembly process can be 
more effi cient during the latter stages. The general approach followed by most error 
correction algorithms is examining the richness of the reads (i.e., read coverage) 
produced by the next-generation sequencers as a key to distinguish between correct 
and incorrect reads. This approach can be disrupted by repeats and non-uniform 
sampling of genomic sequences, which can lead to ambiguous choices during error 
correction [ 23 ].  

8.2.2     Graph Construction Phase 

 There are diverse paradigms for graph construction in accordance with different 
graph models. These paradigms must overcome a host of computational challenges 
in relation to graph representation and path-fi nding algorithms for the contigs build-
ing (algorithms and challenges are discussed in detail in Chap.   9    ). Paradigms can 
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generally be categorized into four main categories: overlap-based construction, 
 k -mers-based construction, greedy-based construction, and hybrid-based construc-
tion [ 24 ,  25 ]. Each of these paradigms and their accompanying challenges are dis-
cussed in more detail in Chap.   9     as well.  

8.2.3     Graph Simplifi cation Phase 

 As mentioned previously, some errors are not recognized during the error correction 
phase and can subsequently complicate the efforts of path-fi nding algorithms that 
attempt to connect reads and assemble accurate contigs. These errors form diverse 
structures in the assembly graph which must be fi ltered through identifi cation and 
correction before the building of contigs is initiated.  

8.2.4     Scaffolding Phase 

 The process of creating scaffolds is not as simple as the process of creating contigs. 
The goal of the scaffolding process is to order and orient contigs that result from the 
assembly process. The scaffolding process is guided by paired-end reads that fi lter 
contigs, detect misassembled ones, and allow accurate contig extension into the 
repeated regions [ 6 ,  26 ].  

8.2.5     Assembly Assessment Phase 

 Assessing the performance of an assembler is dependent on the metric(s) used 
during the evaluation process. One of these approaches targets the contiguity of 
the resulting contigs/scaffolds and utilizes different statistical metrics to assess 
the fi nal assembled sequence [ 27 – 34 ]. Another approach scrutinizes the accuracy 
of the assembled contigs/scaffolds and uses one of the previously fi nished genomes 
as a reference to assess the draft sequence [ 29 ,  31 ]. Additional evaluative strate-
gies include examining the constraints imposed by paired-end libraries, the nature 
of the sequences being assembled and the sequencing experiments themselves 
[ 31 ,  35 ,  36 ]. 

 Since the assembler is a software program with a set of functionalities, it must be 
assessed not only in terms of its output but also in relation to other factors. These 
include responsiveness to user commands, the friendliness of the user interface 
components, and setup requirements. The evaluation of such functionalities allows 
the targeted assessment of the usability features of an assembler [ 37 – 39 ].      
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          Abstract     The process of sequence assembly in the next-generation environment is 
broken down into fi ve stages. We introduced all these stages in Chap.   8    . Here, 
we will discuss four of these stages in detail and present the different approaches 
followed in each of them. Additionally, we will debate the challenges that face each 
stage and their stage-specifi c implementation approaches. The fi fth stage, the 
assessment of the assembly, will be discussed separately in Chap.   10    .  

9.1               Introduction 

 Resolving the sequence assembly problem in the next-generation environment has 
involved a number of diverse approaches and faces many diffi cult challenges. These 
challenges can be viewed from the analogy of solving a jigsaw puzzle where increas-
ing the number of pieces requires a strengthened effort to develop a solution. 
In sequence assembly, the “effort” is represented by the computational resources 
required for the assembly. Furthermore, the various pieces of the puzzle are not the 
same; some pieces have distinct features that present a direct indication of their 
probable location (e.g., the corners and edges) while other pieces may be similar in 
appearance resulting in ambiguity when attempting to identify their precise posi-
tion. Moreover, trying to solve the puzzle without a picture of reference presents 
additional challenges when trying to bring the pieces together in a cohesive manner 
[ 1 ,  2 ]. From a sequence assembly perspective, these issues correspond to the process 
of assembling the high throughput short-reads that result from the next- generation 
sequencers. Potentially disturbed short-reads caused by sequencing errors as well as 
sequence repeats complicate the assembly process. Moreover, assembling these 
short-reads without a reference sequence (or de novo assembly) presents additional 
issues in comparison to the comparative assembly process [ 3 ,  4 ]. Here, we will dis-
cuss the various algorithms and challenges that are differentially involved in each 
phase of the sequence assembly process. Furthermore, we will provide examples of 
the different standalone tools that are implemented in each phase of the process.  
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9.2     Error Correction Phase 

 There are three approaches for correcting next-generation sequencing errors based 
on different algorithms and data structures that have been discussed in Chap.   2    ; 
these include  k -mer-based error correction, suffi x tree/array-based error correction, 
and alignment-based error correction. Additionally, some tools follow a hybrid 
approach where they combine two or more of these methodologies in order to obtain 
better error correction results. Since the implementation of each of these three 
approaches varies from one tool to another, we will discuss each of them with spe-
cifi c examples of their differential levels of implementation. 

9.2.1      K -mer-Based Error Correction 

 One of these types of approaches is based on extracting  k -mers from the reads, cal-
culating their scores, and using the high-scoring  k -mers to correct the low-scoring 
ones. The scores of  k -mers are calculated according to different factors such as their 
frequencies and the quality of their bases. This idea has been implemented in differ-
ent standalone error correction tools such as Quake [ 5 ]. Quake utilizes base quality 
values to compute the weights of  k -mers. Each  k -mer possesses a weight value 
which is computed as a weighted sum of all its base quality scores. Subsequently, 
Quake chooses a cutoff point ( M ) to differentiate between trusted and untrusted 
 k -mers. This is accomplished by modeling the weight histogram as a combination 
of Gaussian and Zeta probability distributions for trusted  k -mers, and Gamma prob-
ability distributions for untrusted  k -mers. Untrusted  k -mers in reads are located heu-
ristically, using low-weighted values as an indicator, and are corrected greedily until 
all reads become error-free. 

 Reptile [ 6 ] is another standalone tool for error correction, and is based on a 
slightly different concept. Instead of decomposing reads into a set of  k -mers and 
computing the frequency of each  k -mer, Reptile decomposes reads into tiles (two or 
more overlapping and non-overlapping  k -mers) and computes the frequency of each 
tile. Using tiles instead of  k -mers helps to retain the  k -mer context, which represents 
another factor that improves the quality of error correction methods. Each tile has a 
weight value, which is calculated using the quality score values and the context of 
 k -mers. If this value is lower than a specifi ed threshold, the tile is considered an 
erroneous tile. To correct erroneous tiles, Reptile builds a hamming graph where 
each node represents a tile and the edges represent the number of different charac-
ters between the tiles (hamming distance). A possible corrective solution for an 
erroneous node is detected if an edge connects this node to another with a hamming 
distance ≤ threshold, allowing the node to be converted into another. 

 Hammer [ 7 ] implements the same idea as Reptile’s hamming graph but from a 
different perspective through the utilization of a spaced seed. Hammer clusters 
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 k -mers according to their similarities and defi nes a consensus (a high-frequency 
error-free  k -mer) for each cluster. This reduces the search space into subspaces with 
each subspace having its own set of  k -mers. Furthermore, this idea can parallelize 
the subspace search, which helps to reduce the runtime.  

9.2.2     Suffi x Tree/Array-Based Error Correction 

 Another approach for correcting next-generation sequencing errors is based on 
using the suffi x tree/array (see Chap.   2    ) as a data structure to organize the variable- 
size  k -mers with their associated scores. This approach has been implemented in 
some software packages like SHREC [ 8 ], which is based on the suffi x tree approach. 
It stores all of the suffi xes of the reads in a weighted suffi x tree, where the frequency 
of each suffi x is included in each internal node. Using a defi ned formula based on 
the number, length, and suffi x size of the reads, SHREC computes the expected 
frequencies of each suffi x in the set of reads. Subsequently, the actual frequency of 
each suffi x in the set of reads is computed. If the expected values differ from the 
actual computed ones, the substrings that belong to these values are detected as 
containing errors. 

 HiTEC [ 9 ] utilizes a suffi x array data structure rather than a suffi x tree. It starts 
to correct erroneous positions in the reads by extracting the set of suffi xes from 
them. Next, it defi nes a cluster for each suffi x, which contains all of the instances of 
that suffi x followed by different characters. All of the suffi xes in one cluster are 
consecutive, allowing the construction of the suffi x array as well as the computation 
of the longest common prefi x (LCP) to be simpler. For each suffi x in the cluster, the 
supported value is computed. A suffi x with a highly supported value is chosen as a 
candidate solution to correct those with similar low support values.  

9.2.3     Alignment-Based Error Correction 

 The third approach of error correction uses alignment algorithms to detect errone-
ous bases centered on aligning high trusted reads (i.e., according to their  k -mer 
frequencies) to low trusted ones. This approach has been implemented in different 
standalone tools such as Coral [ 10 ], which stores a hash table of  k -mers and their 
associated reads in forward and backward directions. Coral aligns the reads by 
selecting each read as a base and searching for a set of reads which share at least 
one common  k -mer with the base read. These sets of reads represent the  k -mer 
neighbor list of the base read. Subsequently, Coral chooses one read from the 
 k -mer neighbor list and aligns it with a base read using a variant of the Needleman–
Wunsch algorithm [ 11 ]. The resulting consensus is used again to align the 
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remaining reads until the reads in the neighbor list are all aligned with the base read. 
The alignment procedure is used as the basis to correct errors and indicate indels 
and substitution points in the reads. 

 ECHO [ 12 ] is another error correction fi lter based on the alignment approach. 
This fi lter has two major stages, neighbor fi nding and maximum posteriori error 
correction. Unlike  k -mer-based error correction methods and their calculated fre-
quencies, ECHO relies on fi nding the overlap between reads, before setting the 
parameters automatically and estimating the error characteristics in each specifi c 
sequencing run using an expectation-maximization ( EM ) procedure. ECHO cor-
rects substitution errors in the reads using a maximum posteriori procedure, which 
relies on the construction of a position-dependent matrix that records the substitu-
tion error rate at position  i  between any two bases in the set {A, G, C, T} [ 13 ]. 
For each overlapping position, the consensus base is determined as the one with 
the maximum posteriori estimation using the quality scores of the bases and the 
overlap information. 

 Since the next-generation sequencing technologies are characterized with their 
high throughput short-reads distorted by different levels of sequencing errors and 
genomic repeats, detecting and correcting these errors early plays a crucial role in 
the success and quality of the assembly process. There are many challenges encoun-
tered during the error correction phase. These include choosing a set of suitable 
parameters according to the complexity of the data sets being corrected (e.g., 
genome, transcriptome, and metagenome) and their different characteristics (e.g., 
different levels of errors, read coverage, and length), differentiating single nucleo-
tide polymorphisms (SNP) from sequencing errors, improving the use of paired-end 
reads to detect and resolve genomic repeats early, and increasing the performance 
of error correcting algorithms in terms of their CPU time and memory to overcome 
the continuous deluge of data resulting from high throughput sequencers [ 14 ]. 

 Tables  9.1  and  9.2  summarize the technical and practical details of some stand-
alone error-correction tools.

9.3          Graph Construction Phase 

 The fi ltered reads that result from the error correction phase are the input for the 
graph construction phase that represents the second phase of the next-generation 
sequence assembly process. In this phase, the reads and the relationship between 
them (e.g., the overlap) are formulated as a graph of nodes where the sequence reads 
are represented by the nodes and their relationships by the edges. This representa-
tion was mainly selected to overcome the limitation of available computational 
resources that are necessary to process the high throughput nature of next- generation 
sequencers. Among the next-generation assembly tools and pipelines, three 
main paradigms are generally recognized in the construction of the graphs; these 
are overlap-based construction,  k -mers-based construction, and greedy-based 
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construction [ 15 ,  16 ]. Furthermore, a hybrid construction approach that combines 
two or more of these approaches is implemented in some tools [ 15 ,  16 ]. Here, 
we will discuss each of the three approaches as well as some of the challenges that 
face them. 

9.3.1     Overlap-Based Graph Construction Approach 

 This approach is also known as Overlap-Layout-Consensus (OLC) and aims to fi nd 
Hamiltonian cycles (see Chap.   2    ). There are three steps in this approach; (1) an 
overlap step that computes all pairwise alignments among reads to detect overlaps, 
(2) a layout step that is responsible for fi nding Hamiltonian cycles in the graph 
(these cycles correspond to created contigs from the set of reads being assembled), 
and (3) a consensus step that combines overlaps among the set of reads in the 
 assembly set. 

 The performance of the tools that implement this paradigm depends on the length 
of reads, since the overlap detection can be more effective in long reads (e.g., reads 
produced by Roche 454 or Pacifi c Biosciences systems) rather than shorter reads 

   Table 9.2    Practical comparison of in standalone error correction programs   

 Tool 
 Correcting 
approach  Targeted errors 

 Sequencing 
platform 

 Input fi le 
formats 

 Output 
fi le formats 

 Quake a    K -mer  Substitution  Illumina  fastq  fastq 
 Reptile a    K -mer  Substitution  Illumina  fastq  .fa, .errors b  
 Hammer a    K -mer  Substitution  Illumina  fastq  raw k-mers 
 Musket a    K -mer  Substitution  Illumina  fasta/fastq  fasta/fastq 
 SHREC  Suffi x tree  Substitution  Illumina  fastq [S]   fastq [S]  [ 8 ] 
 HiTEC a   Suffi x array  Substitution  Illumina  fasta/fastq  fasta 
 Coral a   Alignment  Substitution, insertion/

deletion 
 Any platform  fasta/fastq  fasta/fastq 

 ECHO a   Alignment  Substitution  Illumina  .txt  fastq 
 Hybrid- 

SHREC  
 Hybrid  Substitution, insertion/

deletion 
 Any platform  fasta c   fasta 

 PBcR a   Hybrid  Substitution, insertion/
deletion 

 PacBio RS  fastq d   FRG 
 454  SFF  fasta 
 Illumina  fasta  qual 

 fastq 

   a  Personal communications with authors 
  b  Files recording error positions and bases can be converted into fasta/fastq 
  c  Supported base or color space 
  d  Illumina and PacBio RS formats, also there are tools for converting fasta fi les to fastq-compatible 
fi les 
 [S] Speculated, based on sequencing platforms  
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(e.g., reads produced by Illumina or SOLiD sequencers) [ 1 ,  17 ]. Furthermore, the 
length of the overlap is another challenge that raises the question of how many char-
acters are suffi cient to detect overlaps among reads. Moreover, there are no effi cient 
algorithms to fi nd the optimal path through an assembly graph using all set of reads 
since the assembly problem is reported theoretically as NP-hard [ 16 ]. According to 
this classifi cation, different heuristics algorithms are used to fi nd an approximation 
of the optimal path with the most interesting one being the greedy algorithm 
(see Chap.   2    ). The greedy algorithm connects to the reads with maximum overlap 
length fi rst and then proceeds to the other reads [ 17 – 22 ]. 

 Another form of the overlap graph is the string graph [ 23 ] which overcomes 
previous concerns of overlap computation phase complexity during the classical 
OLC approach. By introducing FM-index, a string indexing structure, the set of 
overlaps among reads can be computed roughly in linear time, which improves the 
speed and performance of string-based assemblers for short-reads sequence 
assembly [ 24 – 26 ].  

9.3.2      K -mer-Based Graph Construction Approach 

 This paradigm is also known as the De Bruijn graph and aims to fi nd Eulerian cycles 
(see Chap.   2    ). This approach is met by many challenges, including fi nding relation-
ships among the set of  k -mers rather than reads which may result in information loss 
in the context of  k -mers. Additionally, an increase in hardware requirements in rela-
tion to the accurate processing and storage of these  k -mers may also be required. 
This paradigm also needs continuous refi nement in order to manage high-coverage 
 k -mers with high-error profi les. Moreover, this form of graph representation is still 
sensitive to the  k  parameter that must be chosen accurately to increase the chance of 
overlap among true  k -mers and decrease the chance of false overlaps [ 1 ,  27 – 34 ]. 

 A number of studies have addressed the issue of overcoming the large amount of 
memory needed to store a graph of  k -mers. Novel solutions to reduce memory 
requirements have included storing a subset of  k -mers in memory rather than the 
entire set. In this case, the select group of  k -mers being stored represented a 1/ g  
subsample of different  k -mers in the set of reads being assembled [ 35 ]. Additionally, 
Conway et al. proposed a concise bit map structure to represent a De Bruijn graph 
[ 36 ], Bowe et al. used an extension of the Burrows–Wheeler transform to effi ciently 
index and compress the set of graph nodes and edges [ 37 ], while Chikhi and Rizk 
used the Bloom fi lter to represent the De Bruijn graph effi ciently in memory [ 38 ]. 
Furthermore, Salikhov et al. improved graph representation in memory by using a 
combination of cascading Bloom fi lters [ 39 ]. 

 Another approach involves the paired De Bruijn graph, which incorporates 
paired-end reads early in the graph construction phase rather than incorporating 
them in the later stages during the scaffolding process. Paired-end reads have had a 
great impact on resolving most of the challenges facing current assemblers, 
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including genomic repeats and misassembled contigs. By employing a paired De 
Bruijn graph instead of the traditional version in the  k -mer based assembler, the 
information contained in paired-end reads can be utilized in each phase of the 
assembly process rather than only in the later scaffolding phase [ 40 ]. Moreover, a 
rectangle version of the De Bruijn graph was recently introduced to model the 
assembly problem in the two-dimensional space of the assembly process and to 
utilize paired-end reads as substrings of the originally reconstructed string [ 2 ].  

9.3.3     Greedy-Based Graph Construction Approach 

 The main idea behind this approach is to utilize the greedy algorithm that is 
described in Chap.   2     and the previous section. In this case, the greedy algorithm is 
used as a path-fi nding algorithm during sequence assembly problems. This approach 
is suitable for small-sized genomes but suffers from the non-optimal nature of 
the greedy algorithm which may resort to local solutions while tackling assembly 
problems [ 41 – 44 ].   

9.4     Graph Simplifi cation Phase 

 Approaches to graph simplifi cation can vary from the simple removal of low cover-
age nodes and their associated arcs to the correction of more complex erroneous 
structures on the graph [ 45 ]. One of these erroneous structures, which is a result of 
oversampling the sequencing technology, is transitive edges [ 23 ]. The edge  E  a  →  E  b  
is considered transitive if the graph contains this edge with another one  E  a  →  E  c  →  E  b  
and hence this transitive edge is included implicitly in the second edge. The graph 
simplifi cation phase (or graph simplifi er) resolves this error by removing transitive 
edges iteratively and hence reducing the graph complexity by a factor of  c  =  NL / G  
where  c  is the oversampling rate,  N  is the number of reads,  L  is the length of reads, 
and  G  represents the genome size [ 18 ,  46 ,  47 ]. 

 Other forms of erroneous structures include dead ends (also known as tips) that 
result from the low-depths of  k -mer coverage or sequencing errors that have pro-
duced a mixture of correct and incorrect  k -mers. The graph simplifi er resolves dead 
ends by removing them from the graph. The removal process is based on testing the 
depth of all paths on the graph according to the specifi ed minimum depth threshold, 
 k -mers coverage or based on the length of the  k  parameter [ 18 ,  21 ,  27 ,  28 ,  31 ,  34 ]. 

 Bubbles or bulges are erroneous structures that result from inexact repeat 
sequences. Their location is detected on the graph by tracing divergent paths that 
converge after the  k  points. The  k  parameter is a specifi ed threshold that is set 
according to the assembly strategy. Some assemblers do not use the  k -parameter to 
detect bubbles, instead tracing the graph forwards after each diverging point and 
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then stopping when the convergence point is reached. All paths between those two 
points are fi ltered according to their  k -mers coverage and quality scores, or aligned 
together to determine their shared consensus sequences [ 31 ,  34 ,  48 ]. 

 One of the most important challenges that face current assemblers in the next-
generation environment is repeats. Repeats allow more than one possible con-
struction of the target sequences. The length of the repeats greatly affects the 
process of repairing them. Repeats possessing a length shorter than the read 
length and a graph structure of nodes with equal incoming and outgoing edges  N  
are simplifi ed by removing the repeated nodes from the graph and expanding its 
edges into  N  parallel paths. These kind of repeats are called X-cuts or tangles [ 28 , 
 30 ,  31 ]. On the other hand, countering repeats which have a length longer than 
the read length require different heuristics techniques based on paired-end con-
straints [ 34 ,  49 ]. 

 Another form of simplifi cation involves a reduction in the large number of nodes 
in assembly graphs to decrease memory requirements and reduce costs. For each 
node Q that has one outgoing edge to another node G that has only one incoming 
edge, the two consecutive nodes will be merged in the simplifi ed graph to represent 
one node. This simplifi cation process corresponds to the concatenation of two char-
acter strings [ 21 ,  22 ,  30 ,  31 ].  

9.5     Scaffolding Phase 

 After the graph simplifi cation phase is completed, the corrected graph is traversed 
to build long contigs. These contigs are linked together in a further step to form 
scaffolds. By mapping paired-end reads to the set of contigs being joined, the cor-
rect contigs are linked together based on the position of the reads, their known ori-
entation, and the insert size. This information can also be used to detect chimeric 
contigs that result from misassembled contigs from two different genomic loca-
tions. Moreover, the frequency of paired-end reads can be used as a criterion to 
support the link between two contigs [ 49 ]. 

 There are many challenges that face the scaffolding process including distur-
bances due to sequencing errors that are not detected during the early error correc-
tion or graph simplifi cation phases. These errors can form erroneous structures in 
the contig-connectivity graph as well as the short-read assembly graph. Furthermore, 
misassembled and chimeric contigs represent erroneous nodes that can violate the 
constraints imposed by paired-end libraries. In addition, distortions in paired-end 
libraries that can result from sequencing experiments and chimeric paired-end reads 
represent erroneous links on the graph. These links must be detected and removed 
because they interrupt the solution of any scaffolding algorithm. Resolving repeat 
structures on the contig-connectivity graph and the mapping of paired-end reads to 
several locations in the set of contigs impose additional challenges on the scaffold-
ing modules [ 50 – 57 ]. 
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 The scaffolder is an independent tool or module in the assembly software that 
takes the set of contigs and the set of paired-end reads as input in order to connect 
them together to build longer sequence stretches (e.g., whole genome or chromo-
some). In this case, the orientation of paired-end reads and the separation distance 
between them is approximately known. The goal of any scaffolding algorithm is to 
take a majority of voting from a large number of paired-end reads to minimize 
inconsistencies that result from misassembled contigs. While achieving this goal is 
NP-hard, there are different heuristics that can approximate the solution to the scaf-
folding problem [ 58 ]. 

 Some assemblers use the previously created De Bruijn graph to build scaffolds 
after incorporating paired-end reads into the graph by aligning them against contig 
paths, or alternatively using heuristic approaches to locate them directly on these 
paths [ 27 ,  34 ,  59 ]. Other assemblers use the contig-connectivity graph to build scaf-
folds by assigning a node to each contig. In this regard, two contigs are linked 
together if they are satisfi ed with the constraints encoded by the paired-end reads. 
This graph may contain repeated nodes (contigs) as well as transitive, associative, 
and erroneous connections that need repairing before the scaffolding process begins. 
The greedy approach is usually used to fi nd the scaffold paths on the graph through 
maximizing the number of supporting paired-end constraints [ 56 ] or visiting contigs 
in order to increase their lengths [ 50 ]. 

 Some assemblers produce the assembled sequences as a set of contigs while 
 others may generate them as a set of scaffolds via their own scaffolding modules 
such as  Euler-SR ,  Velvet ,  ALLPATHS-LG ,  SOAPdenovo , and  Celera assembler  [ 47 ]. 

9.5.1     Scaffolders 

 The scaffolding process can be performed by standalone scaffolders independently 
from the other assembly phases. One of these standalone scaffolders is Bumbus 
[ 56 ], which was originally designated for Sanger sequence reads. A newer version 
of this scaffolder is called Bumbus2 [ 55 ] and is designed for next-generation 
metagenomic sequences. Generally, Bumbus involves three steps in building scaf-
folds: (1) determining the orientation of the contigs, (2) assessing their position, 
and (3) repairing the contig graph by reducing the graph size, removing erroneous 
edges, and resolving confl ict repeats. Bumbus and its successor build scaffolds 
based on creating contig-connectivity graphs. They collect the links between each 
pair of contigs based on paired-end reads and take the majority among these links 
to set the contig orientation. Subsequently, the distance constraints are checked 
among each pair of reads to determine valid and invalid links among the contigs. 
Two contigs are linked together if they share a maximum number of valid links. 
Additionally, the overlapping sequences among two contigs are used to link contigs 
in the graph. 
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 SCARPA [ 52 ] is another scaffolder that begins its pipeline with preprocessing 
paired-end reads, checking their contradictory links corresponding to assembled 
contigs and re-computing the insert size distribution of each paired-end library. 
Based on satisfying a maximum number of paired-end constraints, SCARPA 
assigns an orientation for each contig and discards erroneous and contradictory 
links as well as misassembled contigs from the contig graph. By using the linear 
programming model, SCARPA provides an exact order for each contig within a 
scaffold [ 52 ]. 

 SSPACE [ 50 ] starts its scaffolding process by removing paired-end reads that 
contain non-valid DNA characters and then aligns them against assembled contigs 
using the Bowtie aligner. The orientation and position associated to each pair is 
hashed so that they can be retrieved easily. SSPACE connects two contigs based on 
satisfying the maximum number of constraints imposed by their mapped paired-
end reads. Each scaffold is constructed greedily by combining contigs that have 
large lengths fi rst and share  k  supported links between them. The correct order 
of each contig within each scaffold is determined by the library insert size imposed 
by their mapped paired-end reads or specifi ed threshold in the case of multiple 
order choices. 

 SOPRA [ 51 ] is another scaffolding module that can be easily integrated with any 
of the existing assemblers in the next-generation environment. It formulates the 
scaffolding process as an optimization problem by statistically linking contigs based 
on satisfying a maximum number of paired-end constraints. The correct orientation 
and position of each contig is determined by the same approach utilized during the 
removal of links or contigs that violate these constraints. By removing erroneous 
nodes, the scaffolding graph can be partitioned into separate components. These 
components can be solved independently by optimizing the sets of paired-end con-
straints. Moreover, SOPRA can manage the color-space data produced by the 
SOLiD sequencer. 

 Opera [ 53 ] partitions the contigs graph from a different perspective based on 
graph contraction. By using a graph bandwidth formulation, Opera solves the scaf-
folding problem with a fi xed parameter tractable algorithm. 

 MIP Scaffolder [ 57 ] divides the contig-connectivity graph into subgraphs and 
tries to fi nd the local solution to each one using mixed integer programming. The 
fi nal scaffolding solution comes from integrating the information contained in these 
local solutions into the global one and removes unnecessary assembled contigs. 
Unlike other scaffolders, the size of each subgraph is restricted to exhibit accurate 
production of scaffolds. 

 GRASS [ 54 ] is another scaffolder that uses the concept of mixed integer pro-
gramming for creating scaffolds. It designs an objective function based on the ori-
entation, orders, and distances of the contigs and tries to optimize this function by 
satisfying a maximum number of paired-end constraints using an expectation- 
maximization approach. 

 Table  9.3  summarizes the technical and practical details of some standalone scaf-
folding tools.
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          Abstract     Although there are different measures to evaluate assembler performance 
and assembly quality, developing assessment tools that incorporate present mea-
sures and defi ning new ones for the various assembly types (genomic, transcrip-
tomic, and metagenomic) still remain a major challenge in the next-generation 
environment. In this chapter, we will introduce different approaches for assembly 
assessment as well as discuss upcoming assembly evaluation studies/tools.  

10.1               Introduction to Assembly Assessment 

 The assessment of the assembly process is mainly performed from two perspectives. 
The fi rst perspective is assembly quality, which evaluates the contiguity, consistency, 
and accuracy of the assembled genomes using different approaches [ 1 – 4 ]. The sec-
ond perspective is the performance and usability of the assembler, which includes 
numerous issues such as hardware and software requirements, ease of installation 
and execution, user-friendly interfaces, run time per analysis, required memory per 
1 GB of data, and the speed of responsiveness to user commands [ 5 – 8 ].  

10.2     Contiguity and Consistency Measures 

10.2.1     Contiguity Assessment 

 Statistics metrics are usually used to assess the contiguity of the assembled contigs/
scaffolds. These metrics include the distribution of their lengths, their maximum, 
minimum and average lengths, the number of resulting contigs/scaffolds, the total 
sum of the assembled contigs/scaffolds, the total length of their short reads, and the 
 N   x   score.  N  50  and  N  75  represent the most important metrics for measuring contig/

    Chapter 10   
 Assessment of Next-Generation Sequence 
Assembly 



96

scaffold contiguity. They are defi ned as the length of the contig/scaffold such that 
50 %/75 % of its bases are in contigs of greater or equal length [ 1 – 4 ,  9 – 12 ]. 
Although a large value of the  N   x   score indicates more contiguity in the assembled 
contigs/scaffolds, the misassembly of contig/scaffold sequences may also increase 
the score [ 13 ].  

10.2.2     Consistency Assessment 

 Due to the presence of abundant information in paired-end libraries, including the 
estimation of insert size among each pair of reads and their orientation, approaches 
assessing consistency can utilize this information in the evaluation process. Following 
the completion of the assembly process, read pairs can be located in the draft 
sequence. In this case, a comparison of the assembly process with the annotated 
information of the read pairs (such as separation distance or orientation) can occur. 
Based on the number of satisfying constraints, we can infer the validity of the assem-
bled sequence [ 14 ]. A recently introduced metric also utilizes the idea of aligning the 
paired-end reads to the assembled genome in generating Feature- Response Curves 
(FRC) to overcome the available tradeoff between the contiguity and accuracy of the 
assembly results [ 15 ,  16 ]. Other consistency methods target the type of sequence 
being assembled (such as haplotype sequences) [ 3 ] as well as the constraints imposed 
by the read coverage to assess the assembled sequences [ 17 ] or optical maps [ 18 ].   

10.3     Accuracy Measures 

 Comparing the draft sequence assemblies to ones that have been completed repre-
sents the most important metric in evaluating the assembly quality [ 3 ,  9 ]. This refer-
ence can be an assembled genome of the same species or of a closely related species. 
The comparative process takes different perspectives such as aligning the two 
sequences using one of the available alignment tools (i.e., tools that were mentioned 
in Chap.   2    ) that report the percentage covered by the assembled sequence [ 5 ,  19 ], 
the long-range contiguity of the assembled contigs/scaffolds [ 20 ], their accuracy 
and the introduction of modifi cation patterns in the assembled sequences such as 
insertions, deletions, and substitutions [ 21 ]. Furthermore, the comparison process 
assists in the identifi cation of core genetic components and novel genes [ 22 ]. The 
number of misassembled contigs/scaffolds (i.e., breaks) and the number of mis-
aligned bases (i.e., mis-calls) are also used as accuracy metrics in the context of 
alignment to a reference sequence [ 23 ]. Another perspective for assessment occurs 
during the unavailability of the reference genome. In this case, the comparative 
process requires independent genetic material from a public database. These genetic 
components (such as mRNA or cloned genes) can only be utilized if they and the 
assembled sequences belong to the same type of organism. When this criterion can-
not be met, the accuracy approaches enlist components from closely related organ-
isms or conserved sequences [ 1 ,  22 ].  
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10.4     Assembler’s Performance Measures 

 The runtime and memory usage of an assembler are the most important criteria for 
the usability measure. Depending on the available computational resources, current 
assemblers used in next-generation environments are classifi ed into two categories. 
In the fi rst category, the assemblers run on a single machine with very large memory 
requirements, e.g., to assemble human and mammalian genomes [ 19 ,  24 ]. In the 
other category, assemblers are run on tightly coupled cluster machines [ 25 ]. The 
high-throughput nature of next-generation sequencing technologies and the pres-
ence of short-read sequences and their quality scores imposes a major constraint on 
the system memory available. To ensure effi cient memory savings, most assemblers 
formulate the assembly problem as a set of graph nodes and rely on effi cient data 
structures to accommodate these nodes. These different graph models were dis-
cussed earlier (see Sect.   9.3    ), including their advantages and disadvantages with 
respect to computational resources and several studies that reformulated their repre-
sentations to ensure effi cient storage in memory. However, no memory-effi cient 
solution is presently available for next-generation sequence assemblers, creating a 
need for new tools and algorithms in this area.  

10.5     Assessment Tools and Evaluation Studies for Assessing 
Assembly Quality 

 There are several studies for evaluating assembly quality based on combining the 
approaches that we have discussed previously or defi ning novel strategies. 
Furthermore, there are tools that are especially designed for the assessment of the 
sequence assembly quality. However, the generation of assessment tools that con-
sider the complexity of the data sets being assembled, the assembly algorithms, 
different parameter settings, and the nature of sequencing experiments are still lack-
ing [ 21 ,  26 ]. It is also important to note that there is always a tradeoff between the 
different quality measures. For instance, trying to maximize the value of one mea-
sure (i.e., improve contigs/scaffolds connectivity) may decrease the value of another 
(i.e., contigs/scaffolds accuracy). Here, we will mention some studies that attempted 
to design assessment approaches and metrics that are applicable to wide range of 
next-generation sequence assembly techniques. Then, we will review the available 
assembly assessment tools. 

10.5.1     Evaluation Studies for Assessing Assembly Quality 

 Assemblathon [ 27 ] is one of the studies that defi ned its own statistical metrics in 
addition to existing ones. It uses the haplotype sequences as reference measures to 
newly defi ned metrics such as NG 50 , which is the same as  N  50  but uses an average 
length of haplotype sequences instead of contig/scaffold lengths during its 
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computation. Similarly, CPNG 50 /SPNG 50  denotes the average length of contigs/
scaffolds consistent with the haplotype sequences, while CC50 measures the con-
nectivity between any two randomly chosen points in the assembled genomes. The 
recently published version of the Assemblathon [ 28 ] addressed some practical 
issues during assembly evaluation, including the consideration of diverse assembly 
results from various assemblers with different parameter settings, the choice of 
assemblers based on metrics of interest and overlooking contiguity metrics when 
studying the genetic components of the assembled sequences. 

 E-size is yet another statistical metric introduced in GAGE [ 13 ]. E-size measures 
the expectation that a certain point (or base), which is chosen randomly from a ref-
erence genome, is located in the assembled contigs/scaffolds in terms of their 
lengths. Additionally, GAGE also discussed the different factors that can affect the 
evaluation process, such as the complexity of the genome being assembled and 
the employed assembler. It also reported that various statistical measures cannot be 
used alone in indicating assembly quality due to ineffi ciencies in representing 
the contiguity and accuracy of the assembled sequences. A more recent version of 
this study is called GAGE-B [ 29 ]. GAGE-B evaluated different bacterial genome 
assemblers using libraries with high coverage reads and studied the effect of the 
coverage and read lengths on the assembly quality. 

 Additionally, Haiminen et al. [ 30 ] reported that the assessment process can be 
affected by the nature of sequencing experiments, such as the average length of 
short reads, their coverage, and the rate of sequencing errors. Furthermore, they 
give a different score for each mis-call base according to diverse-modifi ed opera-
tions, such as substitutions, insertions, deletions, reordering, redundancy, and relo-
cations. The accuracy of the assembled sequence is determined by gathering these 
scoring values.  

10.5.2     Assembly Assessment Tools 

 QUAST [ 31 ] is an assessment tool that uses a combination of metrics which con-
sider the presence or absence of the reference genomes. It uses  N  50 , NG 50 , NA 50 , and 
NGA 50  in measuring the assembly quality in terms of aligned blocks rather than 
aligned contigs/scaffolds. QUAST also combines other discussed metrics such as 
the total number of misassembled contigs/scaffolds and genetic components. 
Moreover, it provides a full set of functionality to generate different statistical 
reports supplemented with plots and fi gures. 

 Computing Genome Assembly Likelihoods (CGAL) [ 32 ] introduced the likeli-
hood metric during de novo assembly evaluation based on the uniformity of the read 
coverage, errors in the sequenced reads, the distribution of insert sizes, and the size 
of unassembled reads. 

 REAPR [ 33 ] is another reference-free assessment tool that identifi es errors in the 
assembled sequences using paired-end reads and provides useful information to the 
end users that refl ects the quality of the algorithm used in the assembly process.   
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10.6     Assessment of Transcriptome and Metagenomes 
Assembly Quality 

 The assessment of assembled transcripts also represents a challenge in the next- 
generation environment since it relies on the abundance of reference transcripts, its 
length, its different splicing isoforms, and the existence of novel transcripts. Martin 
and Wang proposed different metrics for assessing transcriptome assembly at differ-
ent levels of complexity in the context of the abundance of reference transcripts that 
are well expressed and originate from the same transcriptome sequences [ 34 ]. These 
metrics include accuracy, completeness, contiguity, chimerism, and variant resolu-
tion. Although these metrics measure the assembled transcripts according to a set of 
reference transcripts, they provide useful insight regarding the correct number of 
assembled bases, the percentage of coverage with respect to reference transcripts, the 
number of chimeric transcripts that are introduced during the assembly process, and 
the percentage of resulting variations in the assembled transcripts [ 34 ,  35 ]. If the refer-
ence transcripts are not available, other complementary approaches may be utilized 
instead. This includes examining the encoding of full-length ORFs in different iso-
forms and performing subsequent validation through the use of proteomic assays [ 36 ]. 

 The evaluation of metagenomic sequence assemblies is another formidable chal-
lenge in the next-generation sequencing environment due to the presence of a vari-
ety of genetic materials from different microbial communities. Mende and 
colleagues [ 37 ] proposed a number of metrics for evaluative purposes, including the 
number of chimeric contigs, the accuracy of contigs based on their defi ned scoring 
scheme, and the variety of genetic components in the resulting assembly sequences. 

 Charuvake and Rangwala [ 38 ] presented the entropy metric to measure the degree 
of chimerism in contig sequences. Furthermore, they exploited the paired- end reads 
and sequence coverage to measure the assembly quality. Recently, Assembly 
Likelihood Evaluation (ALE) [ 39 ] announced a reference independent framework for 
assessing metagenomic and single-cell assemblies. ALE utilizes statistical methods 
that rely on different informational sources such as paired-end constraints and relevant 
factors during sequencing experiments (i.e., coverage, errors, and length). In addition, 
it reports various assembly errors such as base-call errors, misassembled chimeric 
sequences, as well as genome rearrangements that are a result of indel operations.     
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          Abstract     There are several assemblers employed in next-generation environment. 
These may be classifi ed according to their respective graph construction approaches 
(see Chap.   9    ) or their targeted data sets. In this chapter, we will present select examples 
of next-generation sequence assemblers and discuss their implementation approaches. 
The assemblers we discuss have been selected carefully to represent the available 
assembly approaches and the fi rst four stages of the assembly process. Tools related to 
assembly assessment, the fi fth stage, have been previously discussed in Chap.   10    .  

11.1               Introduction 

 Assemblers in the next-generation environment can be classifi ed according to their 
targeted data sets. Since the targeted next-generation data can be either genomic or 
transcriptomic; assemblers of these types of information can be classifi ed into 
genome assemblers and transcriptome assemblers respectively [ 1 ]. Furthermore, 
metagenomic assemblers that are specifi cally designed to assemble next-genera-
tion metagenomic data have also been developed, but are not discussed here due to 
text limitations. 

 From an implementation point of view, assemblers can be classifi ed according to 
their approaches to the graph construction process (see Chap.   9    ). In this respect, we 
can have overlap-based assemblers,  k -spectrum-based assemblers, greedy-based 
assemblers, and hybrid assemblers [ 1 ]. Furthermore, the distinct technical proper-
ties of each assembler can be used to defi ne a technical classifi cation based on the 
assembler’s platform, licencing options (free or commercial), availability of source 
code, and other such criteria. 

 Here, we will follow the implementation classifi cation of the assemblers and 
attempt to discuss most of the available implementation approaches. We will mainly 
focus on graph construction approaches in relation to each assembler and the dis-
tinct methods employed in transforming the graph representations into contigs. 
Moreover, we present two tables that list the practical (Table  11.1 ) and technical 
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(Table  11.2 ) features of about 30 different assemblers. Further information related 
to assembler implementation, classifi cation, and a comparison of features may be 
found in El-Metwally et al. [ 1 ].

11.2         Next-Generation Genome Assemblers 

11.2.1     Overlap-Based Assemblers 

 Newbler [ 2 ] is the assembler distributed by 454 Life Sciences and follows the OLC 
graph principle. It assembles short reads during two phases of the graphing process. 
The fi rst phase generates mini contigs (unitigs) by combining overlapping reads. 
These unitigs are used as bases to generate larger contigs in the second phase of 
graph construction. This phase uses Multialigner, which creates a layout contig by 
implementing pairwise alignments between the unitigs, and subsequently, produces 
a consensus sequence. Furthermore, Newbler creates a layout and consensus in a 
“fl ow space” using platform-based call signals associated with each nucleotide. The 
recent versions differ in their names and descriptions in comparison to the published 
algorithm. 

 Edena [ 3 ] is an OLC graph assembler for reads of uniform length from Illumina. 
The fi rst key step by Edena involves the preprocessing of the redundancy of the 
reads without loss of information. Owing to oversampling of the reads, Edena 
retains a single copy of each read. In this case, reads that contain (ambiguous) unre-
solved bases are discarded due to the fact that Edena operates with exact matching 
overlaps between the reads. Furthermore, the frequency of each read is recorded for 
computing coverage depth in the contigs for quality purposes. In the second step, 
Edena computes the overlap by indexing the reads in a suffi x array. The set of com-
puted overlaps are structured in a bidirectional graph, where each read represents a 
node and two overlapped reads (nodes) are connected by a bidirectional edge. The 
nodes in the graph are traversed in two directions corresponding to the reads and 
their reverse complements to build a valid assembly. The third step is the graph 
simplifi cation process, which reduces the graph complexity and repairs its unre-
solved bubbles and spurs. After the graph simplifi cation operations are completed, 
the contigs are produced by concatenating the simple paths on the graph. 

 The Celera [ 4 ] assembler implements the same methodology adopted by BLAST [ 5 ]. 
This involves the seed-and-extend algorithm and consists of several phases: 
(1) a screener phase which fi lters reads that are repeats from other reads, (2) an 
overlapper phase which compares each read with all other reads to detect suffi x-to-
prefi x overlaps, (3) a unitiger phase that combines reads by their overlaps to form 
mini- assemblies called unitigs, and (4) a scaffolder phase that combines unitigs to 
form scaffolds (supercontigs). In the fi nal step, Celera computes the optimal con-
sensus sequence by aligning reads according to consensus metrics and consensus 
base- calls. The Celera assembler was originally developed for Sanger reads but 
recent releases have also included the ability to assemble reads from the 454, 
Illumina, Pacifi c Biosciences, and Ion Torrent platforms. 

11 Next-Generation Sequence Assemblers
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 The CABOG [ 6 ] assembler is a specifi c variant of the Celera assembler [ 4 ] for 
454 short reads. It begins the assembly process through a fi ltering step which 
removes the reads that contain at least one unknown base, N, and trims the reads that 
have partial overlaps which do not span the ends of the reads being assembled. 
Subsequently, the anchor and overlap step utilizes a seed-and-extending algorithm 
to fi nd the exact match (overlapping) between the compressed reads. Each seed 
represents a  k -mer and the number of occurrences of a unique  k -mer is recorded to 
differentiate repetitive  k -mers from the others. Each read is treated as a reference 
and detects all other reads that share a suffi x-to-prefi x overlap with it by calculating 
pairwise alignment among them. The reads and overlaps are represented in a graph 
in which each read is indicated by a pair of nodes with an undirected edge between 
them. The pair of nodes represents the two pair ends of the read. The directed edge 
is the one that links two reads that have a suffi x-to-prefi x overlap. 

 Shorty [ 7 ] is a paired-end short read assembler for SOLiD that also uses the idea 
of a seed extending algorithm. Short read data sets are organized into a compressed 
trie data structure to allow the retrieval of reads easily. The pairs are inserted into the 
trie based on their left and right  k -mers. Each node in the trie represents a  k -mer, and 
Shorty can retrieve pairs of reads that contain this  k -mer in their left or right ends by 
searching the trie for  k -mers. Each  k -mer is used as a seed and is useful for deter-
mining a set of neighbors in one position of the assembly process. The set of reads 
that share one  k -mer is plotted in the graph where each node represents a read and 
each edge denotes overlaps between the reads. The greedy algorithm is used to tra-
verse nodes to fi nd the longest path in the graph that visits all nodes exactly once. 
The generated path represents a contig, and only paths with maximum length are 
kept as solution contigs for the assembly problem. The set of contigs resulting from 
each group is used again as seeds and for iteratively building a graph, where each 
node represents a contig and each edge signifi es an overlap between the contigs. 
The graph is greedily traversed again to fi nd a maximal path that visits all nodes 
exactly once. This process is repeated until no more contigs exist. Scaffolds have 
also been built using the same idea of traversing a graph for contigs. 

 Forge [ 8 ] is a hybrid approach assembler that assembles reads from the Sanger, 
Illumina, and 454 platforms. It has adaptive algorithms that are able to change their 
performance according to the characteristics of the reads being assembled, which 
may have diverse lengths and error models resulting from the different sequencing 
technologies. The fi rst step is the fi ltering and trimming of reads based on their 
length and the phred quality scores of their bases. Forge utilizes a classical OLC 
graph to fi nd a solution for the assembly problem and traverses graph nodes to 
locate contigs and scaffolds. 

 SGA [ 9 ] is a string graph assembler that exploits the FM-index data structure 
(see Chap.   2    ) [ 10 ] to store and correct sequence reads effi ciently. Furthermore, the 
FM-index is used to detect transitive edges early, which directly simplifi es the con-
struction of string graphs. The graph is cleaned by removing tips, resolving bubbles, 
and subsequently traversed to produce contigs and scaffolds. 

 Readjoiner [ 11 ] is another string graph assembler with three pipeline steps: 
(1) prefi lter, which involves the removal of reads that contain ambiguous bases and 
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partial overlaps, and the correction of reads that contain sequencing errors, (2) over-
lapper, which comprises of computing all irreducible suffi x-to-prefi x matches between 
reads and the indexing of an appropriate subset of them for effi cient storage and 
retrieval, and (3) assembler, which involves the building of a string graph of reads, the 
cleaning of tips and bubbles, and the traversing of the graph to build contigs.  

11.2.2      K -Spectrum-Based Assemblers 

 Euler-SR [ 12 – 16 ] is a short read De Bruijn graph assembler that implements a pre-
processing fi lter to fi lter erroneous reads based on their  k -mers. The  k -mers with 
high frequencies are trusted ones and become candidates for correcting less- frequent 
ones. Euler-SR builds De Bruijn graphs of different  k -mer sizes, and compares them 
to detect missing edges that are used to enlarge contigs in the assembly. Then, it 
applies heuristics to simplify and repair the graphs, and incorporates the A-Bruijn 
graph [ 17 ] as a repeated graph and classifi es repeats according to their similarities. 
Furthermore, Euler-SR uses paired-ends information to resolve long repeats in a 
process called mate threading, and identifi es erroneous links by aligning paired- 
ends against a De Bruijn graph. The maximum insert size between the two paired- 
end reads is used to detect the correct/incorrect paths between them. Euler-SR is 
used to assemble reads from the 454 and Illumina platforms with paired and 
unpaired read libraries. 

 ALLPATHS-LG [ 18 – 20 ] uses the same concept as the other De Bruijn graph 
assemblers but has its own preprocessing fi lter based on the  k -spectrum approach. 
The frequency of each  k -mer is recorded and used as a basis to fi lter erroneous 
reads. For each consecutive  k -mer in the genome, a corresponding number is 
assigned to it. Subsequently, the set of  k -mer intervals is computed, which corre-
sponds to the  k -mer paths in the graph. ALLPATHS-LG builds a unipath graph from 
the  k -mer paths and aims to fi nd the maximum branchless intervals of the  k -mer 
numbers. After determining the unipath intervals, these intervals are used to make 
larger ones by searching their successors and predecessors and joining them 
together. The process is iterated to produce larger unipaths. The three main func-
tions of the ALLPATHS-LG assembler are fi nding all paths across the graph nodes, 
choosing suitable ones to form unipaths, and localizing read pairs to detect the iso-
lated regions that can assemble them independently. ALLPATHS-LG is an improve-
ment over the original ALLPATHS [ 18 ,  20 ] algorithm in assembling large 
mammalian genomes that have an abundance of repetitive structures. In relation to 
specifi c platforms, ALLPATHS-LG is used to assemble reads from the Illumina and 
Pacifi c Biosciences systems. 

 Velvet [ 21 ] is a De Bruijn graph assembler that does not implement a preprocess-
ing fi lter, but applies a series of heuristics to simplify and reduce graph complexity. 
This assembler is a collection of algorithms that aim to correct graph errors and solve 
graph repeats. It utilizes the basic idea of De Bruijn graph construction 
and manipulation. Velvet iteratively removes the tips only if they are shorter than 2k 
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and have a lower coverage than other alternative paths on the graph. Furthermore, it 
can exploit long reads from other sequencing platforms to confi rm or reject the paths 
of low-coverage nodes. Velvet implements the Breadcrumb algorithm that uses 
paired- end reads to correctly extend contigs in the region of repeats, and integrates 
the Pebble and Rock Band algorithms to resolve more complex repeated structures 
[ 22 ]. Moreover, Velvet is the only assembler that can handle color space data from 
the SOLiD platform and can assemble reads from the Illumina and 454 platforms. 

 ABySS [ 23 ] is a multi-threaded assembler that allows a distribution of the De 
Bruijn graph and a parallel implementation of assembly algorithms across a net-
work of computers. The assembler has two phases: the fi rst phase includes extract-
ing  k -spectrum contained in the set of reads, constructing a De Bruijn graph that 
represents  k -mers and their correlation with each other, and deriving initial contigs 
using path traversing algorithms. The second phase includes building larger contigs 
(scaffolds) using mate-pairs information and closing the gaps between them. ABySS 
is used to assemble reads from the Illumina platform. 

 SOAPdenovo [ 24 ] is a short read assembler that is based on the idea of the De 
Bruijn graph and is used to assemble reads from the Illumina platform. This assem-
bler is integrated into SOAP (short oligonucleotide alignment program) [ 25 ] and the 
package is named SOAPdenovo, which provides useful analysis and detection of 
genetic variations such as SNPs, small insertions, and deletions in the genome. 
SOAPdenovo begins by preprocessing reads to detect and correct erroneous ones. 
Dynamic programming is used to fi nd a candidate solution for correction based on 
minimum number of changes (hamming distance). To overcome long computational 
times due to handling large data sets, thread parallelization is used to distribute a set 
of reads by sharing the same hash table data structure. This process subsequently 
builds a De Bruijn graph using  k -mers contained in the reads. After that, 
SOAPdenovo simplifi es and repairs the graph by removing short tips. Further-
more, SOAPdenovo also removes bubbles, chimeric connections, and resolves tiny 
repeats. Then, the assembler breaks paths on the graph at repeated regions to pro-
duce assembled contigs. These contigs are realigned later and used with paired-ends 
information to build scaffolds. A recently improved version of the assembler is 
called SOAPdenovo2, and provides effi cient memory usage, the resolving of repeats, 
and an increase in the assembly quality of large genomic sequences [ 26 ]. 

 To overcome the extensive hardware resources needed to manage a De Bruijn 
graph, a sparse  k -mer graph was introduced and implemented in the SparseAssembler 
[ 27 ]. This assembler constructs a sparse graph, simplifi es it by removing bubbles 
and tips, and traverses it to build contigs.  

11.2.3     Greedy-Based Assemblers 

 SSAKE [ 28 ] is a prefi x tree-based assembler for Illumina reads that greedily assem-
bles next-generation short reads. The fi rst step of the SSAKE assembler is to create 
a hash table that stores short reads, where the keys are unique reads and values 
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represent the frequency of the reads. Subsequently, the SSAKE constructs a prefi x 
tree to organize reads and their reverse complements. The reads are sorted in the tree 
according to their frequencies. After that, SSAKE creates a set of possible 3′  k -mers 
and uses them as keywords to fi nd possible overlaps between unassembled reads 
and the current contig extending in 5′-direction. The read with the maximum over-
lapping length is joined to the current contig and removed from the hash table and 
prefi x tree. When all the possibilities have been exhausted for the 5′ contig exten-
sion, the complementary strand is used to extend the contig on the 3′-end. The 
process is repeated until no more reads are used for the extension. 

 SHARCGS [ 29 ] employs three steps for assembling short reads from Illumina, 
which are fi lter, assembler, and merger. The goal of the fi lter step is to remove erro-
neous reads based on their frequencies, existence of overlap partners, and their qual-
ity scores. Before starting the assembly algorithm, SHARCGS retains only one 
copy of each read and generates a reverse complement for it. The assembler step is 
similar to the SSAKE algorithm. The setting of parameters is a critical task during 
assembly because stricter settings may lead to the removal of some reads, resulting 
in shorter contigs. On the other hand, more tolerant settings may lead to the incor-
poration of erroneous reads during the assembly. The merger step combines contigs 
that result from three different parameter settings, namely weak, medium, and 
strong. The goal of the merger is to incorporate contigs of varying lengths at differ-
ent confi rmation settings, which shares overlaps between them and combines them 
into one contig. 

 VCAKE [ 30 ] improves error handling over the SSAKE platform by exhibiting 
inexact matching during contig extension. Similar to SSAKE, the sequences are 
effi ciently retrieved from a lookup hash table. However, rather than extending the 
contigs based on the greedy approach or quality values, VCAKE considers all pos-
sible overlaps between the contig being extended (or seed) and the unassembled 
reads. The extension process occurs at a rate of one base at a time and uses a major-
ity of bases among a set of overlapped reads, allowing imperfect matching with a 
maximum of one base between the overlapped read and the extended contig. 

 QSRA [ 31 ] expands on the VCAKE [ 30 ] notion by combining quality scores in 
case the overlap length is not suffi cient during contig extension. This assembler uses 
minimum user-defi ned quality scores to fi nd overlaps between the extended contig 
and unassembled reads.  

11.2.4     Hybrid Assemblers 

 Taipan [ 32 ] is a hybrid assembler that combines the attributes of the OLC and 
De Bruijn graphs. This assembler chooses the most commonly occurring read in the 
assembly set <R> as a seed S and tries to extend it carefully in the 3′-direction, 
one base at a time, until there are inadequate overlaps or repeats. Following the same 
concept, it extends in the 5′-direction as well. The following steps are repeated for 
extending each contig; the set of overlapped reads are retrieved from a hash table and 
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Taipan creates a directed overlap graph. The created graph is simplifi ed by the removal 
of associative edges and the detection and resolving of repeats etc. The set of cleaned 
nodes are analyzed and used to determine a single base for extending the seed. After 
fi nishing the assembly of this contig, all reads that are exactly matched are removed 
from the read set and hash table. The process of extending the seeds is repeated to 
reconstruct another contig until no more reads are found in the assembly set. 

 Wang et al. [ 33 ] combined reads from the 454, SOLiD, and Illumina platforms 
and assembled them separately using a suitable assembler for each read data set. This 
step was called primary assembly and aimed to evaluate the results from different 
assemblers and determine suitable parameters for hybrid assembly during the second 
step. Subsequently, hybrid assembly begins by combining the resulting contigs that 
represent two or three sequencers. These contigs are fi ltered together to detect and 
correct systematic biases or errors produced by each sequencer. Finally, these contigs 
are aligned together to build scaffolds and close the gaps between them. 

 Cerdeira et al. [ 34 ] propose an alternate approach for hybrid assembly through 
the combination of contigs produced by different assemblers (i.e., Edena and Velvet) 
and constructed from different graph paradigms such as OLC and De Bruijn. These 
contigs are then used as the basis to produce larger and more accurate ones.   

11.3     Next-Generation Transcriptome Assemblers 

 Rnnotator [ 35 ] is an automated pipeline for transcriptome assembly that begins with 
prefi ltering a set of reads. This is accomplished by removing redundant and correct-
ing low quality reads based on  k -mer coverage. Then, the set of fi ltered reads are 
entered into the Velvet [ 21 ] assembler to continue the assembly. Rnnotator combines 
contigs from different Velvet assembly runs with various parameter settings using the 
Minimus2 assembler from the AMOS packages [ 36 ] to produce improved results in 
relation to the assembled transcripts. In the post-processing fi ltering stage, Rnnotator 
uses strand-specifi c sequencing reads to resolve the overlapping transcripts and deter-
mine the direction of the assembled transcripts. Furthermore, it aligns reads back to 
the contigs to detect single base sequencing errors and generate consensus sequences. 

 Oases [ 37 ] is another transcriptome assembler that uses Velvet to generate a set 
of contigs corresponding to the assembled transcripts. An adaptive version of the 
Tour Bus algorithm is used to detect bubbles on the graph, which merges low cover-
age paths with the higher ones when their sequences are suffi ciently similar. In 
addition, Oases removes local edges that have less coverage contribution to outgo-
ing nodes with respect to other neighboring edges, and fi lters repeated contigs using 
the coverage threshold. By using single reads or spanning paired-end reads, the 
estimation distance among contigs can be detected. Hence, contigs can be combined 
based on the number of supporting reads. The scaffolds are fi ltered according to 
different coverage and statistical factors and grouped into clusters according to sim-
ilarity in gene related components. These clusters are transitively reduced and the 
assembled transcripts are extracted from the fi ltered clustered sets. 
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 Trinity [ 38 ] is a modular transcriptome assembler that contains three stages: 
Inchworm, Chrysalis, and Butterfl y. The Inchworm step assembles short reads effi -
ciently using a greedy approach for detecting shared  k -mers among the reads. The 
Chrysalis step clusters contigs according to their related components corresponding 
to different splicing isoforms, and constructs a De Bruijn graph for each cluster. The 
Butterfl y step analyzes various paths on the De Bruijn graphs using reads and 
paired-end links as a fi lter to detect different overlaps among transcripts and their 
diverse splicing sequences.     
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                      Concluding Remarks 

 The fi eld of next-generation sequencing is a multidisciplinary fi eld that requires a 
fi rm background in molecular biology and computer science. Most individuals in 
the fi eld tend to have specialized in one of these areas before obtaining suffi cient 
knowledge in the other. With this in mind, we provided an introduction to both these 
fi elds (Chaps.   1     and   2    ) at the beginning of this book. This overview would greatly 
assist readers with limited background in either of these areas to understand the 
concepts discussed in this book and other next-generation sequencing literature. 

 With the rapid development of the next-generation sequencing fi eld in the last 
few years, the platform has experienced signifi cant advancements in all areas. 
Sequencing costs, time, and effort have dropped remarkably to allow more and 
more laboratories to adopt this indispensable technology. Furthermore, efforts dedi-
cated to the automation of library preparation have provided a drastic reduction in 
error sources and allowed the development of compact sequencing instruments that 
combine the library preparation, sequencing, and data analysis functions into a 
 single bench-top machine. 

 Parallel to the developments observed in sequencing technologies, the features of 
the resulting sequences themselves have experienced outstanding improvement. 
While initial reads comprised of lengths up to 35 bp, next-generation sequencing 
has allowed the development of instruments that output reads with lengths of 700 bp 
or even longer. The most recent sequencing instruments, considered to be third- 
generation sequencing technology, have expanded upon this number to produce 
reads exceeding 3,000 bp. The availability of increased read lengths has had the 
positive effect of reducing the amount of data analysis and computational resources 
required for assembling the sequence. 

 Despite the notable developments and advancements in next-generation sequencing 
technologies, the methodology continues to face certain challenges. While expenses 
related to sequencing have dropped dramatically to allow affordability for the average 
laboratory, the costs involved in establishing a new sequencing facility remain beyond 
the reach of most institutions. Furthermore, the establishment and maintenance of 
sequencing facilities in developing countries remain a major challenge. 
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 The size of the read length and signifi cant error rates are two additional chal-
lenges that need further development and improvement in relation to next- generation 
sequencing. However, read lengths have already experienced considerable increases 
with the utilization of recent sequencing instruments, and ongoing developments 
promise to augment these values even further. In contrast, the improvement in error 
rates has not been quite as substantial in these recent instruments. The second part 
of this book (Chaps.   3    –  7    ) has provided an overview of next-generation sequencing 
methods, platforms, applications, developments, and challenges. Here, we tried not 
to emphasize on current technical and procedural challenges as it is our contention 
that most of these obstacles will gradually be alleviated given the history and rapid 
pace of development in the fi eld. Therefore, other publications such as review arti-
cles may be more suitable for these purposes. 

 In addition to next-generation processes linked with the attainment of sequence 
reads, a major challenge in the form of attempting to assemble these structures into 
full genomes or chromosomes also awaits. Steps and associated challenges related 
to solving this sequence assembly puzzle in the next-generation environment 
involve a series of interleaved stages that are discussed in detail in the third part of 
this book (Chaps.   8     and   9    ). The assembly process encompasses a complex fi ve- 
phase process that includes the error correction phase, the graph construction phase, 
the graph simplifi cation phase, the scaffolding phase, and the assembly assessment 
phase. We have devoted an independent chapter (Chap.   10    ) to the assembly assess-
ment phase where we reviewed currently available methods and tools for the evalu-
ation of the quality of the assembled sequence. To the best of our knowledge, this is 
the fi rst attempt to review this topical subject. 

 The construction of an assembler in the next-generation environment is not a 
trivial task for developers in accordance with different stakeholders’ requirements. 
Non-expert users require more responsive    assemblers with user-friendly interfaces 
and easy installation packages. On the other hand, biologists prefer assemblers with 
different visualization, statistical and assessment tools to perform their analysis effi -
ciently. Hence, developers have attempted to fulfi ll these requirements with avail-
able computational resources to manage the ever-increasing data-generation rates 
from modern sequencing technologies. In Chap.   11    , we have reviewed over 30 tools 
for next-generation genome, transcriptome, and metagenome sequence assembly. 

 We believe that this book provides the reader with useful insight into the history, 
basic principles, methods, applications, and challenges related to the next- generation 
sequencing fi eld. In reviewing the above topics, the authors of this book eagerly 
anticipate the future scientifi c and technological outcomes of this exciting fi eld.        
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