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Preface

During the last two decades, there was an intensive discussion of a statistical
methodology for clinical trials that generalized the use and conduct of interim
analyses. Using a specific methodology, under control of the Type I error rate,
it was made possible to redesign the trial for the forthcoming stages in relevant
details including sample size, considered treatment arms, subgroups of patients, and
others. The use of such multi-stage adaptive designs was introduced in an article by
Peter Bauer entitled “Multi-stage testing with adaptive designs.” It appeared 1989 in
the German journal Biometrie und Informatik in Medizin und Biologie. Especially
the publication by Bauer and Köhne 1994 in Biometrics raised many controversial
discussions. In the meantime, the underlying concept is regarded as a relevant and
important generalization of the “classical” group sequential design methodology. It
has even found its way into a reflection paper entitled “Methodological Issues in
Confirmatory Clinical Trials Planned With an Adaptive Design” from the European
Medicines Agency (EMA 2007), a draft guidance on “Adaptive Clinical Trials for
Drug and Biologics” from the US Food and Drug Administration (FDA 2010), and
a draft guidance on “Adaptive Designs for Medical Device Clinical Studies,” also
from the US Food and Drug Administration (FDA 2015).

This book describes the adaptive design methodology from the standpoint of
confirmatory testing of statistical hypotheses. That is, the problem is to derive
procedures that control, at least approximately, the Type I error irrespective of the
data-driven redesign of the trial. We do not consider other very relevant “adaptive
topics” such as adaptive dose finding, response adaptive randomization, Bayesian
design methodology, or adaptive regression modeling. Here, Type I error rate control
is not the major issue, and the methodology is often applied in the exploratory
case only. This is said without diminishing its importance and relevance for clinical
trials. We also explicitly exclude the discussion of blinded sample size reassessment
which is one of the simplest adaptive designs and usually consists of two stages in
which the sample size for the second stage is determined based on the first-stage
data in a blinded way (for a review of these methods, see Friede and Kieser 2006).
We also do not explicitly discuss the regulatory perspectives and operation of data
monitoring committees (for this, see DeMets et al. 2006; Ellenberg et al. 2003; He
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et al. 2014; Herson 2009) although we briefly discuss some practical aspects for
adaptive designs at the end of the book.

The most relevant, comprehensive, and modern books on group sequential
methodology in clinical trials are Whitehead (1997), Jennison and Turnbull (2000),
Moyé (2006), Proschan et al. (2006), and Bartroff et al. (2013); we also refer to
overview articles of Whitehead (2001), Todd (2007), Mazumbdar and Bang (2008),
and Wassmer (2009). Books and collections on adaptive designs are Chang (2014),
Chin (2012), Chow and Chang (2006), He et al. (2014), Pong and Chow (2011),
Schmitz (1993), Vandemeulebroecke (2008), and Wassmer (2010). Recently, Bauer
et al. (2016) provide a critical overview and perspectives of 25 years of adaptive
designs.

In this monograph, we give an overview and a basic introduction into both, the
group sequential and the adaptive design methodology. Wassmer (1999c) already
gave an early attempt (in German) to summarize the approaches; the current book is
partly developed from the translation and the extension of this small book. It is also
Proschan et al. (2006), who already explicitly considered the adaptive extension
within a unified approach; in our book there will be the focus on the adaptive
designs.

The monograph consists of three parts. The first part provides the group
sequential methods that are necessary for the understanding and the application
of the generalization to the adaptive methodology supplied in Parts II and III of
the book. We try to provide the necessary details as well as an insight into the
complexity and richness of these designs including the estimation problem and more
flexible designs when using this “classical” approach. It is by no means intended
to give a complete survey of group sequential designs (or even sequential theory).
Especially the books of Jennison and Turnbull (2000) and Proschan et al. (2006)
provide a much deeper insight into this methodology, but we hope to provide an
elementary introduction in this area.

Part II is the core of the monograph. It derives the adaptive design methodology
as it was introduced in the mid-1990s of the last century. The two basic approaches
of Bauer and Köhne (1994) and Proschan and Hunsberger (1995), which are
the combination testing principle and the conditional error function approach,
respectively, are presented in Chap. 6 in a unified framework, together with some
relevant generalizations of the principles. Chapter 7 describes decision tools that
can be used for adaptive decision making where here we only consider the case
of sample size reassessment based on conditional power and related tools. In
Chap. 8, we describe solutions for the estimation problem in adaptive designs and
also discuss some open issues. Adaptive designs with survival data involve some
difficulties which are discussed in Chap. 9.

Primarily, the focus of flexible designs was on sample size reassessment although
from the very beginning it was already emphasized that the principle allows much
more general design adaptations including a data-driven selection of hypotheses
within a set of hypotheses. This is the topic of Part III where we describe the closed
testing principle and its use in adaptive multi-stage designs with multiple hypothe-
ses. It is the nowadays highlighted topic. The most prominent applications are



Preface vii

adaptive multi-arm trials or adaptive population enrichment designs. We describe
these in Chap. 11 together with some clinical trial examples. There is still ongoing
research in this area, and we hope to give an up-to-date review of the approaches that
were proposed in the literature. We admit that we were not able to include all the
different aspects in the considerations of these or even the more elementary adaptive
designs. Particularly, the references cannot consider all papers that were published
in this exciting area of the statistical methodology. Prophylactically, we apologize
that we missed to cite some important work. We were simply not able to cite all the
numerous articles that have been published in the last two decades.

We thank the many colleagues that went along with us in the last 20 years. 1995
and 1998 were the years when we (GW and WB, respectively) started research in the
adaptive design methodology. It is too much to explicitly name all of the colleagues
who contributed and discussed the topics with us; to name all of them is easier
and less problematic with respect to forgetting someone. We especially thank Frank
Bretz and Silke Jörgens for providing input on relevant topics for the book. We also
thank the publisher for his support on the manuscript. Last but not least, we want to
thank our wives, Anne and Stela, and our children for accepting and supporting our
work.

Cologne, Germany Gernot Wassmer
Bremen, Germany Werner Brannath
October 2015
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Chapter 1
Repeated Significance Tests

In this chapter, we describe the repeated significance tests approach which is the
conceptual background of the “classical” group sequential tests. These tests were
partly made feasible through a specific (recursive) integration formula, which is a
consequence of the independent increment structure of the underlying process of
data accumulation. This formula is due to Armitage et al. (1969) and McPherson
and Armitage (1971). We will briefly introduce it in Sect. 1.4. Note that this section
is quite technical and can be omitted for the first reading.

We start with a brief historical survey of group sequential tests. The notation
and the construction of statistical tests that are based on the repeated significance
testing approach are described in the following section. We then address the basic
issues—power and average sample size—for the assessment of these tests in order
to discuss the properties of group sequential test procedures that were proposed in
the literature.

1.1 Introduction

A statistical significance test is given by the decision regions for rejecting and
not rejecting the null hypothesis H0, respectively. After a preplanned number of
observations a test statistic is calculated. If the test statistic exceeds a critical value,
H0 is rejected, otherwise H0 cannot be rejected. If H0 is rejected, the alternative
hypothesis H1 is “statistically significant.” The probability of erroneously rejecting
H0 (which is the Type I error rate) is bounded by the significance level ˛ of the
test. In randomized controlled clinical trials hypotheses tests are mandatory since
they ensure that the probability of a false positive test result does not exceed a pre-
specified level ˛ and hence, in the long run, only a small proportion of actually
ineffective treatments were applied. This frequentist hypothesis testing principle
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4 1 Repeated Significance Tests

is widely used in practice, in particular, for clinical trials in later phases of drug
development. Practically, the calculation of p-values in standard statistical software
packages enables a very easy way to perform these tests: H0 is rejected if p � ˛.
But this is only one of the attractive features of the p-value. Another reason for the
widespread application of p-values in clinical trials is its explorative and descriptive
nature that enables the presentation of results in a very convenient manner.

In sequential sampling schemes, the finally achieved sample size is not fixed.
Typically, the study is continued as long as the underlying test statistic does not
exceed a specified boundary. If one uses the decision boundaries of a fixed sample
size test, the actual level of the test will be greater than ˛ due to the fact that
several tests at significance level ˛ are conducted on the accumulating data. The
concept of repeated significance testing, that is due to Armitage et al. (1969), is
based on this fundamental property. It involves finding appropriate adjusted decision
regions such that the actual significance level is not greater than ˛. This is possible
if a fixed schedule of inspections is determined in advance. In order to control a
specified significance level ˛ somewhat larger critical values than for fixed sample
size significance tests must be used.

In group sequential sampling schemes the schedule usually consists of accu-
mulating data in groups of observations, and fixing the maximum number of
stages. This is in contrast to fully sequential plans with continuous monitoring
of the accumulating data. Although Peter Armitage was the first who adapted the
sequential testing approach to clinical research (Armitage 1975; first published
1960), Pocock (1977, 1982) and O’Brien and Fleming (1979) gave the major
impetus for the development of group sequential test procedures that are nowadays
widely used, especially in clinical research. Their use in quality control goes back to
the work of Dodge and Romig (1929) and Shewhart (1931). For historical reviews
of the early work about group sequential procedures see Jennison and Turnbull
(1991b, 2000), §1.3, and Todd (2007). Ghosh (1991) provides a comprehensive
history of sequential analysis taking into account the developments beginning in
the seventeenth century.

The repeated significance testing approach is conceptually different from
approaches where typically Type I and Type II error probabilities are used to
determine the stopping boundaries of the sequential test procedure (see, for
example, Bauer et al. 1986; Ghosh 1970; Siegmund 1985; Wald 1947; Wetherill
1975; Whitehead 1997). The comprehensive theoretical development of these
procedures is much owing to the optimality of the sequential probability ratio test
(SPRT), and to the derivation of analytic expressions for the decision regions and
certain test characteristics. The SPRT is optimal in the sense that the average sample
size is minimum under both the null and alternative hypothesis. Theoretical research
on repeated significance tests was also done. A series of papers were concerned
with finding a bound for the critical value and approximations for the power and
the average sample size. Much of this work is due to the research group of David
Siegmund where many of the theoretical results were obtained from renewal theory.
Essential developments and results are presented in Siegmund (1985).
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An important part in the development of sequential designs was concerned with
“triangular plans” where the stopping region is defined by two straight lines which
cross by the end of the trial. These are “closed” or “truncated” plans where a
decision to stop the trial is fixed at some maximum amount of information. Much
of the theoretical development is concerned with the overshoot problem that occurs
when groups of observations are considered rather than continuous monitoring. In
this case it typically happens that the decision is not on the boundary. Mathematical
sophistication has led to the “Christmas tree correction” which turns out to be quite
accurate in many cases of practical importance (Whitehead and Stratton 1983).
Whitehead (1997) provides a comprehensive overview of sequential methods with
special reference to the triangular plans in clinical trials.

In a review article, Whitehead (2001) argues against the distinction of group
sequential methods from the wider family of sequential methods. Certainly this
is true, but the development and investigation of group sequential designs was in
some sense separated from the rigorous mathematical derivation of results within
the sequential theory. This is also due to the rapid development of computer power
which made the computations of the recursive numerical integral introduced by
Armitage et al. (1969) possible. Easy to use computer programs are available today
to investigate the characteristics of the procedures numerically.

In clinical research there is a great interest in interim analyses for ethical,
economical, and organizational reasons. A sequential design offers the possibility to
stop a trial early with a statistically significant test result. Hence, this trial is likely
to need less patients than the trial with a fixed sample size where a decision can be
made only by the end of the trial. If a therapy was shown to be superior to another
one, the inferior therapy can be replaced by the better one and the superior therapy
can then be applied earlier. In interim analyses one can also assess the quality of the
performance of the trial and possibly improve it when necessary. The observation
of serious adverse events can lead to an early stopping of the trial. The appointment
of a Safety and Data Monitoring Committee in a clinical trial is a recommended
constitution to perform these issues according to generally accepted standards of
good clinical practice (GCP) (see Armitage 1991; McPherson 1990; Sankoh 1999).
Another issue is the redesign of the trial (for example, sample size reassessment,
dropping treatment arms, and selecting subpopulations), but this was not intended
originally nor is it generally possible with “classical” group sequential test designs.
In Parts II and III of this book the methods specifically designed for these purposes
will be presented.

Pocock (1977) proposed two-sided tests for normal responses with known
variance assuming that the number of looks at the data is known in advance, and
the number of observations is equal between the stages. In a group sequential test
design the hypothesis concerning the mean can be rejected if the p-value is smaller
or equal than a value ˛0 where ˛0 is determined such that the overall probability of a
false rejection of H0 in the sequential scheme does not exceed ˛. Clearly, ˛0 depends
on ˛ and on the number of planned stages. Pocock’s design is characterized by
assuming constant adjusted significance levels ˛0 over the stages of the trial. O’Brien
and Fleming (1979) suggested an approach that requires more conservative bounds
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for very early stages and proposed an increasing sequence of adjusted significance
levels. As a consequence the final stage adjusted significance level comes near to the
unadjusted value ˛. It is interesting that in their original paper the adjusted bounds
were approximated using simulations and the testing procedure was proposed for
comparing two treatments with regard to a dichotomous response.

For the exact numerical calculation of the adjusted critical levels it was shown
that the quite restrictive assumption of normality and, more important, equal stage
sizes can be relaxed. The size and power requirement is fulfilled if these assumptions
are not grossly violated. Nevertheless, the importance of more flexible procedures
is obvious. Several approaches were proposed that do not require these restrictive
assumptions, of which the most prominent is the ˛-spending function or use
function approach (Lan and DeMets 1983). The idea is to specify the amount of
significance level spent up to an interim analysis rather than the shape of the adjusted
critical levels. Particularly, the sample size per stage may be an unknown quantity
that will be observed when the interim analysis is performed. With this approach
even the number of interim analyses needs not be fixed in advance. Instead, a
maximum amount of information must be specified which, in the simplest case,
is the maximum sample size of the trial. When conducting an interim analysis a
certain information, relative to the maximum amount of information, is observed.
Through the use of a specified use function, the significance level spent up to this
information is fixed in advance. This enables the calculation of the adjusted levels.
The use function approach is outstandingly attractive if the interim analyses are
planned at specific time points rather than after a specific number of observations.
An important application of group sequential designs is in trials where the endpoint
is the time to an event, for example, survival data. It was shown by several authors
that the usual log-rank test can be embedded into the group sequential design. The
information here is the observed number of events and the use function approach
turns out to be a very useful and flexible instrument for analyzing such trials in a
sequential design.

An important field of research was concerned with the parameter estimation
in group sequential test designs. Through the use of a stopping rule, i.e., the
possibility of early stopping a trial with the rejection (or acceptance) of the null
hypothesis, point estimates that are derived for the fixed sample size case (for
example, maximum likelihood estimates) are biased. In the long run, hence, one
is faced with the over- or underestimation of the true parameter. Point estimates
were proposed that correct for the estimation bias through numerical methods (for
example, Emerson 1993; Emerson and Fleming 1990; Emerson and Kittelson 1997;
Liu and Hall 1999; Pinheiro and DeMets 1997; Todd et al. 1996; Whitehead 1986).
These estimates try to correct for the overall estimation bias but do not take into
account the bias per stage of the test procedure. The correction for the (conditional)
bias per stage was proposed and investigated by Troendle and Yu (1999) and
Coburger and Wassmer (2001, 2003).
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Two conceptually different methods for the calculation of confidence intervals
were considered in the literature. The first method enables the calculation after the
trial has stopped and a final decision of rejection or acceptance of the null hypothesis
was reached (for example, Chang and O’Brien 1986; Coad and Woodroofe 1996;
Kim and DeMets 1987a; Rosner and Tsiatis 1988; Todd et al. 1996; Tsiatis et al.
1984). This approach requires the strict adherence to the stopping rule and depends
on the ordering in the sample space. This means, it has to be decided if, for
example, an observed effect leading to the rejection of the null hypothesis in the first
interim is “more extreme” than an effect that is larger but observed in the second
interim analysis. This ordering involves the earlier the stopping the stronger the
effect, but there are other orderings that are reasonable choices. The second method
merely takes into account the multiplicity that arises from the repeated looks at
the data. The resulting intervals are called Repeated Confidence Intervals which
were introduced by Jennison and Turnbull (1984) and Lai (1984). The application
of repeated confidence intervals was thoroughly discussed by Jennison and Turnbull
(1989). These confidence intervals are independent of the stopping rule and can also
therefore be calculated if the study is going on. If desired, they can be calculated at
each interim analysis and presented to the data monitoring committee.

1.2 Basics

In the non-sequential case, the sample size, nf , is fixed and one comes to a decision
after observing the complete sample. Consider independent and normally distributed
observations X1; : : : ;Xnf with unknown mean� and known variance �2. Let the null
hypothesis to be tested at significance level ˛ be given by

H0 W � D �0 :

This model is used, for example, for paired comparisons, but we will see in Chap. 5
that the resulting group sequential test designs can be used as a “prototype” for
many different testing situations. The test decision is based on the statistic

Z D
NX � �0

�

p
nf ;

which is standard normal under H0. Let H0 be tested against the two-sided
alternative, which is given by

H1 W � 6D �0 :
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H0 is rejected if the observed absolute value jzj of the test statistic Z exceeds the
critical value u D ˚�1.1 � ˛=2/, where ˚�1 denotes the inverse standard normal
cumulative distribution function (cdf). Since

PH0.jZj � u/ D ˛ ;

the test has level ˛.
Alternatively, given the observed value z of Z, one can compute the p-value which

is defined by

p D PH0 .jZj � jzj/ D minf.2 .1�˚.jzj//; 1g ;

where ˚.�/ is the standard normal cdf. If p � ˛, the null hypothesis H0 can be
rejected. That is, the test decision can be based on the observed z-value as well as
on the p-value, the latter with the advantage of having an attractive interpretation:
The lower the p-value the stronger the sample indicates evidence against H0.
Although this interpretation depends on the sample size, nf , it has gained widespread
acceptance in the (medical) literature.

In the group sequential setting, inspections are made after groups of observations.
Given a maximum number of inspections, K, let the sample sizes in the K sequences
of observations be given by n1; : : : ; nK . N D PK

kD1 nk is the maximum sample size
of the test procedure. The observations Xki are indexed by an additional index, k,
that refers to the stage in which the data were observed. With this notation, the
independent observations are given by

X11; : : : ;X1n1„ ƒ‚ …
n1 observations

;X21; : : : ;X2n2„ ƒ‚ …
n2 observations

; : : : ; XK1; : : : ;XKnK„ ƒ‚ …
nK observations

:

The cumulative mean of observations up to stage k is given by

NX.k/ D 1
Pk

QkD1 nQk

kX

QkD1
nQk NXQk ; (1.1)

where NXk denotes the mean of observations at stage k, k D 1; : : : ;K, i.e.,

NXk D 1

nk

nkX

iD1
Xki :

At stage k, a reasonable test statistic for testing H0 is

Z�
k D

NX.k/ � �0

�

v
u
u
t

kX

QkD1
nQk ; (1.2)
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which is standard normal under H0. One might as well consider the stage-wise test
statistic

Zk D
NXk � �0

�

p
nk ;

and calculate (1.2) through

Z�
k D

Pk
QkD1

p
nQkZQk

qPk
QkD1 nQk

: (1.3)

At stage k, the test statistic that summarizes the data up to stage k is then a weighted
sum of the stage-wise test statistics Zk. It is important to realize, however, that the
weights in (1.3) are not proportional to the sample sizes but to their square roots.
Furthermore, they do not sum up to one. The test statistic is thus not—in a classical
sense—a weighted average of the stage-wise Zk.

Obviously, the statistics Z�
1 ; : : : ;Z

�
K are stochastically dependent. The covariance

between Z�
k and Z�

k0 (k < k0) is given by

Cov.Z�
k ;Z

�
k0/ D 1

qPk
QkD1 nQk

qPk0

QkD1 nQk
Cov

0

@
kX

QkD1

p
nQkZQk;

k0

X

QkD1

p
nQkZQk

1

A

D 1
qPk

QkD1 nQk
qPk0

QkD1 nQk

kX

QkD1
nQk D

qPk
QkD1 nQk

qPk0

QkD1 nQk
: (1.4)

Since Var.Z�
k / D 1, k D 1; : : : ;K, the quantity (1.4) is also the correlation

coefficient between Z�
k and Z�

k0 .
The random vector Z� D .Z�

1 ; : : : ;Z
�
K/

T is multivariate normal with mean vector
# D .#1; : : : ; #K/

T where

#k D E.Z�
k / D �� �0

�

v
u
u
t

kX

QkD1
nQk D ı

v
u
u
t

kX

QkD1
nQk; k D 1; : : : ;K; (1.5)

and ı D .� � �0/=� is the standardized effect size. Because of (1.4), the elements
˙ kk0 of the covariance (correlation) matrix ˙ are given by

˙ kk0 D Cov.Z�
k ;Z

�
k0/ D

qPminfk;k0g
QkD1 nQk

qPmaxfk;k0g
QkD1 nQk

: (1.6)
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Z� is multivariate normally distributed since the random vector can be written in
the form

Z� D AU C a ; (1.7)

where U is a random vector consisting of K independent and standard normally
distributed random variables, A is a K � K matrix, and a is a K-dimensional vector.
This transformation yields, by definition, a multivariate normally distributed random
variable with mean vector and covariance matrix given by

# D a and ˙ D AAT ;

respectively. In our case, A and a are given by

A D

0

B
B
B
B
B
B
B
@

1 0 0 : : : 0p
n1p

n1Cn2

p
n2p

n1Cn2
0 : : : 0

: : : : : : : : : : : : : : :p
n1p

n1C:::CnK�1
: : :

p
nK�1p

n1C:::CnK�1
0p

n1p
n1C:::CnK

: : : : : : :
p

nKp
n1C:::CnK

1

C
C
C
C
C
C
C
A

and

a D
�
ı
p

n1; ı
p

n1 C n2; : : : ; ı
p

n1 C : : : nK

�T
;

respectively. One easily finds that, indeed, (1.7) yields the random vector Z�. Note
that, using this matrix notation, one alternatively finds the covariance matrix ˙ with
elements given by (1.6) through ˙ D AAT .

Consider a two-stage design (i.e., K D 2) with equal sample sizes n1 D n2 for the
two stages. In this case, from (1.4) one finds that Cov.Z�

1 ;Z
�
2 / D 1=

p
2. Suppose

one uses the unadjusted critical value u D ˚�1.1 � ˛=2/ in the interim analysis as
well as in the final analysis. Setting ˛ D 0:05, the hypothesis H0 is rejected in the
interim analysis if jz�

1 j � 1:96. If jz�
1 j < 1:96, the second stage data will be observed

and the test statistic z�
2 will be calculated; H0 is rejected if jz�

2 j � 1:96. The Type I
error rate of this procedure is given by

PH0 .jZ�
1 j � 1:96 or jZ�

2 j � 1:96/

D PH0.jZ�
1 j � 1:96/C PH0 .jZ�

1 j < 1:96 and jZ�
2 j � 1:96/

D 2PH0.Z
�
1 � �1:96/C 2

�
PH0 .jZ�

1 j < 1:96 and Z�
2 � �1:96/

D 2˚.�1:96/C 2
�
F.1:96;�1:96/� F.�1:96;�1:96/�

D 0:05C 0:0331 D 0:0831 > 0:05 : (1.8)
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Fig. 1.1 Illustration for the calculation of the probability of a Type I error at the second stage in
a two-stage group sequential test design with critical value 1.96 for both stages. The shaded areas
indicate the region for the integration, whereby the integral is the same for both shaded regions

where F denotes the bivariate standard normal cumulative distribution function with
correlation 1=

p
2. The calculation of the probability for the Type I error at the

second stage in (1.8) is geometrically illustrated in Fig. 1.1.
The probability of a false rejection of H0 is substantially above the significance

level ˛ D 0:05. Hence, using a nominal level of ˛ D 0:05 at both stages of the
test procedure increases the Type I error rate by a large amount such that a suitable
adjustment is necessary. One could use the Bonferroni correction to adjust for the
multiplicity that arises from the multiple looks at the data. Using this method, in
the interim as well as in the final analysis the p-value is compared with ˛=2 or,
equivalently, the critical value u0 D ˚�1.1 � ˛=4/ is used for the test decision. For
˛ D 0:05, the critical value is u0 D 2:241. One obtains

PH0 .jZ�
1 j � 2:241 or jZ�

2 j � 2:241/ D 0:0428 < 0:05 :

Using the Bonferroni correction is thus a valid though conservative solution to this
kind of multiplicity since the Type I error rate does not fully exhaust ˛. A better
solution is provided by using the critical value for which the Type I error rate is
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exactly equal to ˛. Using a numerical search, one finds that

PH0.jZ�
1 j � 2:178 or jZ�

2 j � 2:178/ D 0:05 ; (1.9)

and hence the adjusted critical value is given by u0 D 2:178. The adjusted nominal
level to be applied at each stage of the procedure is given by ˛0 D 0:0294. That is,
H0 can be rejected in the interim or in the final analysis if the p-value is smaller than
0.0294 in one of the two stages of the test procedure.

Using identical critical values for both stages, however, is only one possible
solution. For example, since

PH0 .jZ�
1 j � 2:797 or jZ�

2 j � 1:977/ D 0:05 ; (1.10)

one can also use the critical value u1 D 2:797 .D p
2 1:977/ for the interim

stage, and the critical value u2 D 1:977 for the final stage to obtain a valid level
˛ test. Of course, an infinite number of critical levels exist reflecting the different
choices of “spreading” the significance level ˛ over the stages. The use of constant
values at each stage of the test procedure is due to Pocock (1977) whereas the use
of monotonically decreasing critical values according to (1.10) was proposed in
O’Brien and Fleming (1979). We will thoroughly discuss these designs in Chap. 2.

Extending this to more than two stages is not straightforward since the calcula-
tion of the general multivariate normal integral is a difficult task. The calculation of
the Type I error rate is possible, though, through the use of the recursive integration
formula which is due to Armitage et al. (1969). With this formula, the complex
determination of the multivariate normal integral is avoided and replaced by a
successive calculation of univariate integrals. It is then possible to calculate the
multivariate normal integral in the group sequential setting for an arbitrary number
of stages, and hence to calculate, for example, the Type I error rate. In Table 1.1 the
Type I error rate when using the unadjusted critical value u D ˚�1.1 � ˛=2/ for
different values of ˛ and for K up to 50 is presented. It is assumed that the stage sizes
are equal, i.e., n1 D � � � D nK . The figures in this table were already presented in
Armitage et al. (1969) who also checked up on their theoretical results (obtained
with the recursive integration formula) by simulation. The recursive integration
formula will be presented later on in Sect. 1.4.

Armitage et al. (1969) pioneered the idea of controlling the Type I error rate at
a specified level by adjusting the critical values accordingly. They found critical
values analogously to (1.9) by inverse interpolation. We will discuss the different
choices of critical values applicable to the group sequential setting in Chaps. 2 and 3.

A group sequential test design consists of specifying the continuation regions C �
k

at the analysis stages k D 1; : : : ;K � 1, and the rejection region R�
K for the final

analysis. The study is continued if Z�
k 2 C �

k , k D 1; : : : ;K � 1, and H0 is rejected in
the final stage if Z�

K 2 R�
K . In the simplest case, the null hypothesis can be rejected
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Table 1.1 Type I error rate when using
the unadjusted critical value u D
˚�1.1 � ˛=2/ at each stage of the test
procedure in a two-sided test design

˛ 0:001 0:01 0:05

K u 3:291 2:576 1:960

1 0:00100 0:01000 0:05000

2 0:00186 0:01766 0:08312

3 0:00257 0:02366 0:10726

4 0:00319 0:02858 0:12617

5 0:00372 0:03274 0:14169

10 0:00569 0:04738 0:19336

15 0:00705 0:05692 0:22509

20 0:00808 0:06403 0:24791

25 0:00892 0:06971 0:26567

30 0:00963 0:07444 0:28016

35 0:01025 0:07849 0:29238

40 0:01079 0:08204 0:30293

45 0:01128 0:08519 0:31220

50 0:01172 0:08803 0:32045

The stage sizes are assumed to be equal

at stage k if Z�
k 2 C

�
k , k D 1; : : : ;K, where C

�
k denotes the complement of C �

k and

C
�
K D R�

K . In this case, any design fulfilling

PH0 .Z
�
1 2 C

�
1 or Z�

2 2 C
�
2 or : : : or Z�

K 2 C
�
K/

D PH0

 
K[

kD1
fZ�

k 2 C
�
k g
!

D 1 � PH0

 
K\

kD1
fZ�

k 2 C �
k g
!

D ˛ (1.11)

is a valid level-˛ test procedure. If f .z�
1 ; : : : ; z

�
K/ denotes the multivariate normal

density with zero mean vector and correlation matrix given by (1.6), the Type I
error rate can be written as

1 �
Z

C�

K

: : :

Z

C�

1

f .z�
1 ; : : : ; z

�
K/ dz�

1 : : : dz�
K :

It becomes clear again that the Type I error rate must be computed from the
multivariate normal distribution but the recursive integration, described in Sect. 1.4,
will do this task.

Note that an alternative expression for the left-hand side of (1.11) is

PH0 .Z
�
1 2 C

�
1 /C PH0 .Z

�
1 2 C �

1 ;Z
�
2 2 C

�
2 /C � � �

C PH0 .Z
�
1 2 C �

1 ; : : : ;Z
�
K�1 2 C �

K�1;Z�
K 2 C

�
K/ :

(1.12)



14 1 Repeated Significance Tests

This presentation enables a more general calculation of the Type I error rate of a
specified test procedure described as follows. Generally, the rejection region is not
the complement of the continuation region. Denoting the rejection regions at stage k
by R�

k , k D 1; : : : ;K, the Type I error rate must be computed as indicated in (1.12).
It is given by

PH0 .Z
�
1 2 R�

1 /C PH0 .Z
�
1 2 C �

1 ;Z
�
2 2 R�

2 /C � � �
C PH0 .Z

�
1 2 C �

1 ; : : : ;Z
�
K�1 2 C �

K�1;Z�
K 2 R�

K/ :
(1.13)

Using (1.13), the Type I error rate of any group sequential test design can be
calculated.

For example, consider a two-stage group sequential test design with n1 D n2. Let
the continuation region be given by

C �
1 D .�2:178I �1:0/[ .1:0I 2:178/ ;

and the rejection regions be defined by

R�
1 D R�

2 D .�1I �2:178�[ Œ2:178I 1/ :

That is, in the first interim analysis the study will be continued if, and only if, a more
or less substantial effect was observed that did not yet reach significance in the first
stage. Note that Z�

1 2 C �
1 is equivalent to the condition that the two-sided p-value is

smaller than 2.1 � ˚.1// D 31:7% (and larger than 2.1 � ˚.2:178// D 2:94%).
If the p-value is larger than 31.7 %, the study will be stopped for futility. We will
discuss this issue that is related to a futility stop in more detail in Chap. 2.

The Type I error rate of the test procedure is calculated as

PH0.Z
�
1 2 R�

1 /C PH0 .Z
�
1 2 C �

1 ;Z
�
2 2 R�

2 /

D
Z

R�

1

f .z�
1 / dz�

1 C
Z

R�

2

Z

C�

1

f .z�
1 ; z

�
2 / dz�

1dz�
2

D PH0 .jZ�
1 j � 2:178/C PH0 .jZ�

1 j 2 .1:0I 2:178/; jZ�
2 j � 2:178/

D 2˚.�2:178/C 2
�
F.2:178;�2:178/� F.�2:178;�2:178/

� F.1:0;�2:178/C F.�1:0;�2:178/� D 0:0458 ;

where the calculation of the bivariate normal integral is illustrated in Fig. 1.2.
Therefore, using the critical values 2.178 for both stages of the procedure yields
a conservative test. In order to fully exhaust the significance level ˛ of the test, the
critical values can be made somewhat smaller. Setting u1 D u2 D 2:140 yields a
test with constant critical values for both stages whose Type I error rate is equal to
0.05. This value is found by a numerical search.
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Fig. 1.2 Illustration for the calculation of the probability of a Type I error at the second stage in
a two-stage group sequential test design with critical value 2.178 for both stages and continuation
region C�

1 D .�2:178;�1:0/ [ .1:0; 2:178/. The shaded areas indicate the region for the
integration where the integral is the same for the lower shaded and the upper shaded regions

1.3 Power and Average Sample Size

After having defined the continuation and rejection regions of a group sequential
test procedure, it is of interest to assess the test procedure in terms of its power, i.e.,
the probability to reject H0 in one of the stages of the trial if the alternative is true.
For a specified alternative hypothesis H1 W � D �1 and specified stage sample sizes
n1; : : : ; nK the power is given by

PH1 .Z
�
1 2 R�

1 /C PH1 .Z
�
1 2 C �

1 ;Z
�
2 2 R�

2 /C � � �
C PH1 .Z

�
1 2 C �

1 ; : : : ;Z
�
K�1 2 C �

K�1;Z�
K 2 R�

K/ :

Under H1, the vector .Z�
1 ; : : : ;Z

�
K/ is multivariate normal with mean vector # D

.#1; : : : ; #K/ and correlation matrix (1.6), where #k is given by (1.5) setting� D �1.
Hence, .Z�

1 � #1; : : : ;Z�
K � #K/ is multivariate normal with zero mean vector, and

the calculation of the power is analogous to the calculation of the Type I error rate
with a shift of the continuation and rejection regions. That is, the power is given by

P.Z�
1 2 R�

1 � #1/C P.Z�
1 2 C �

1 � #1;Z
�
2 2 R�

2 � #2/C � � �
C P.Z�

1 2 C �
1 � #1; : : : ;Z�

K�1 2 C �
K�1 � #K�1;Z�

K 2 R�
K � #K/ ;

(1.14)
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where the random vectors are multivariate normal with zero mean vector, and the
subtraction of the intervals with #k, k D 1; : : : ;K, is understood element-wise.

The sample size necessary to achieve a test decision is not fixed but random. The
group sequential test procedure is therefore not only assessed by its power but also
by its expected or average sample size. The average sample size under H1, ASNH1 ,
is given by

ASNH1 D n1 C
KX

kD2
nkPH1

0

@
k�1\

QkD1
fZ�

Qk 2 C �
Qk g
1

A :

It only depends on the continuation regions of the test design since these regions
control how many stages will be actually performed. Since, as above, .Z�

1 �
#1; : : : ;Z�

K � #K/ is multivariate normal with zero mean vector, ASNH1 can be
calculated through

ASNH1 D n1 C
KX

kD2
nkP

0

@
k�1\

QkD1
fZ�

Qk 2 C �
Qk � #Qkg

1

A ;

where again the probability distribution is the multivariate normal distribution with
zero mean vector. Note that it might also be of interest to calculate the average
sample size if H0 is true. This provides information about the sample size if there is
no effect.

The calculation of the power and the average sample size can be performed, for
any K, with the recursive integration formula (see Sect. 1.4). Nevertheless, we will
first illustrate the calculation of the power and the average sample size in a two-stage
design for testing H0 assuming equal stage sample sizes. Let the continuation region
be given by

C �
1 D .�2:140I �1:0/[ .1:0I 2:140/ ;

and the rejection regions be defined by

R�
1 D R�

2 D .�1I �2:140�[ Œ2:140I 1/ :

This procedure has Type I error rate equal to 0.05, which was shown in the last
section. Suppose it is planned to make 20 observations per stage, i.e., n1 D n2 D 20.
The calculation of the power is performed with the bivariate normal integral and
suitably shifted continuation and rejection regions. The average sample size under
H1 is computed analogously. Using the common bivariate cdf F.�; �/with correlation
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1=
p
2 the expressions for the power and ASNH1 are

PH1 .Z
�
1 2 R�

1 /C PH1 .Z
�
1 2 C �

1 ;Z
�
2 2 R�

2 /

D ˚.�2:140� p
20ı/C 1 � ˚.2:140� p

20ı/

C˚.2:140 � p
20ı/� ˚.�2:140� p

20ı/ �˚.1:0 � p
20ı/

C˚.�1:0 � p
20ı/� �

F.2:140� p
20ı; 2:140� p

40ı/

�F.�2:140� p
20ı; 2:140 � p

40ı/ � F.1:0 � p
20ı; 2:140� p

40ı/

CF.�1:0 � p
20ı; 2:140 � p

40ı/
�C F.2:140� p

20ı;�2:140� p
40ı/

�F.�2:140� p
20ı;�2:140 � p

40ı/

CF.�1:0 � p
20ı;�2:140 � p

40ı/ (1.15)

and

n1 C n2 PH1

�
Z�
1 2 C �

1 / D 20C 20 .˚.2:140� p
20ı/ �˚.�2:140 � p

20ı/

� ˚.1:0 � p
20ı/C ˚.�1:0 � p

20ı/
�
;

respectively. Although the expression for the power is rather lengthy, we supply it
in order to clarify the necessary calculation for arbitrary ı. The second line in (1.15)
is the power of the first stage of the test which is calculated as for a fixed sample
size design. Compare Fig. 1.2 to understand the calculation of the integral for the
specified regions with the help of the bivariate standard normal cdf.

Figure 1.3 displays the power and the average sample size of this test procedure
for the standardized effect size ı within the range Œ�1I 1�. For comparison, Fig. 1.4
displays the power and the average sample size of the test procedure where the
study is stopped in the interim analysis only if the null hypothesis can be rejected.
A sequence of critical values which fully exhaust the 5 % level is u1 D u2 D 2:178,
as was shown in the last section. That is, the continuation region is given by

C �
1 D .�2:178I 2:178/ ;

and the rejection regions are defined by

R�
1 D R�

2 D .�1I �2:178�[ Œ2:178I 1/ :
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Fig. 1.3 Power (solid line) and average sample size (dashed line) of a two-stage group sequential
test design for testing H0 W � D �0 with critical value 2.140 for both stages and continuation
region C�

1 D .�2:140;�1:0/ [ .1:0; 2:140/. The stage sample sizes are n1 D n2 D 20

Fig. 1.4 Power (solid line) and average sample size (dashed line) of a two-stage group sequential
test design for testing H0 W � D �0 with critical value 2.178 for both stages and continuation
region C�

1 D .�2:178; 2:178/. The stage sample sizes are n1 D n2 D 20

The expressions for the power and the average sample size simplify to

PH1 .Z
�

1 2 R�

1 /C PH1 .Z
�

1 2 C �

1 ; Z
�

2 2 R�

2 /

D ˚.�2:178� p
20ı/C 1 � ˚.2:178� p

20ı/

C ˚.2:178 � p
20ı/� ˚.�2:178 � p

20ı/

� �
F.2:178� p

20ı; 2:178� p
40ı/� F.�2:178� p

20ı; 2:178� p
40ı/

�

C F.2:178� p
20ı;�2:178� p

40ı/ � F.�2:178� p
20ı;�2:178� p

40ı/
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and

n1 C n2PH1 .Z
�
1 2 C �

1 / D 20C 20
�
˚.2:178� p

20ı/� ˚.�2:178� p
20ı/

�
;

respectively.
We recognize that the power of the two procedures virtually coincide, but the

average sample size of the second procedure is much higher for effect sizes close to
H0. This is clear since for effect sizes close to H0 the probability to stop the trial and
not reject H0 is high for the first procedure. The second procedure does not stop the
trial in favor of H0 and hence the power is somewhat larger, which is true although
the critical values are slightly larger. For example, for ı D 0:50 the power values
are 0.818 and 0.853, respectively. The (small) gain in power refers to the probability
that the test rejects H0 in the second stage although the observed effect was small in
the first stage. For both procedures, if the effect size in absolute terms is large, the
probability to reject H0 after observation of the first stage data comes close to 1. In
this case, the average sample size then is close to the sample size of the first stage.

The calculation of the power and the average sample size was performed for
given stage sample sizes n1 D n2 and standardized effect size ı. Conversely, for
given ı, one finds the sample sizes n1 D n2 necessary to achieve a pre-specified
power 1 � ˇ. For example, consider the second procedure with critical values
u1 D u2 D 2:178 and continuation region C �

1 D .�2:178I 2:178/. Through the use
of (1.15) by implementing different values of n1 D n2 one finds that, for ı D 0:40,
the power is 79.7 % if n1 D n2 D 27. If n1 D n2 D 28, the power is 81:1%.
Hence, the sample sizes necessary to achieve power 1 � ˇ D 80% if ı D 0:4 are
n1 D n2 D 28. One can compare the maximum sample size n1 C n2 D 56 with the
sample size necessary in a fixed sample size design to achieve power 1� ˇ D 80%
if ı D 0:40. It is given by the smallest value of nf for which

PH1 .jZj � 1:96/ D ˚.�1:960� p
nf 0:40/C 1 � ˚.1:960� p

nf 0:40/ � 0:80 :

(1.16)

The smallest integer value for which (1.16) is fulfilled is nf D 50. The maximum
sample size of the group sequential test design is thus larger by 12 %. The average
sample size, on the other hand, is smaller. For n1 D n2 D 28 the average sample size
is 42:7. It is therefore expected that the two-stage test design needs less patients than
the fixed sample size design. Still, the maximum sample size is larger and one must
therefore balance the reasons for implementing a group sequential test design prior
to the start of the trial. In Chaps. 2 and 3 this will be discussed more thoroughly.

Note that one could also calculate the sample sizes n1 D n2 that yield a specified
average sample size, for example, under H1. Usually, however, when planning a trial,
one wants to find the necessary maximum sample size rather the average sample
size. Nevertheless, one might wish to find a group sequential plan with an average
sample size which is as small as possible. The way of how to define such optimum
plans will also be described in Chaps. 2 and 3.
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1.4 The Recursive Integration Formula

In this section, we will introduce the recursive integration formula for the calculation
of the multivariate normal integral involved in group sequential designs. This is a
bit technical description and on a first reading this section can be skipped.

Each stage of a group sequential test procedure adds one dimension to the
multivariate normal distribution of the random vector Z� D .Z�

1 ; : : : ;Z
�
K/

T .
Consequently, the calculations needed to determine the Type I error rate, the power
and the average sample size of a test design as detailed in the preceding sections
can become quite unwieldy. Armitage et al. (1969) expressed the multivariate
normal density for Z� by a recursive formula, sequentially dealing with one of the
dimensions at a time. So the calculation of the test characteristics for arbitrarily
chosen K becomes computationally feasible.

For technical reasons, we will express the decision regions in terms of the
variables

Sk D
kX

QkD1

r
nQk
n1

ZQk ; k D 1; : : : ;K: (1.17)

Note that for equal sample sizes Sk is just the sum of the stage-wise test statistics Zk

and is therefore often called the score statistic Sk. The variances of the variables Sk

are given by Var.S1/ D 1 and

Var.Sk/ D Var.Sk�1/C �k ;

where �k WD nk
n1 , k D 2; : : : ;K, denotes the standardized time interval between the

.k � 1/th and kth stage relative to n1. With this notation, the first interim analysis is
performed at time �1 � 1.

Q#k D E.Sk/ D � � �0
�

1p
n1

kX

QkD1
nQk D ı

p
n1

kX

QkD1
�Qk ; k D 1; : : : ;K;

defines the non-centrality parameter of the distribution for Sk under a specified
alternative H1 [see (1.5)]. The covariance between Sk and Sk0 is

Cov.Sk; Sk0/ D
k�

X

QkD1
�Qk, where k� D minfk; k0g :
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The relationship between the regions C �
k and R�

k for Z�
k and the corresponding

regions Ck and Rk for Sk is as follows:

Ck D
sPk

QkD1 nQk
n1

C �
k D

v
u
u
t

kX

QkD1
�Qk C

�
k ;

Rk D
v
u
u
t

kX

QkD1
�Qk R

�
k ; k D 1; : : : ;K;

with an element-wise multiplication. The reason for using Sk instead of Z�
k is that

it demands less technical details to derive a density for a (non-standardized) sum of
independent statistics. Evidently, using Sk with the continuation regions Ck will lead
to the same test procedure as using Z�

k with the continuation regions C �
k and is just

an alternative way to monitor the trial (Proschan et al. 2006).
Describing the density of Sk, note that the outcome of a group sequential

design is described by the realizations of two random variables: the test statistic
at the end of the trial, Sk, and the number of stages performed until reaching the
end of the trial, M. These are clearly highly dependent as the realization of Sk

determines at which stage the study stops. The outcome of a group sequential
design is therefore described by a bivariate random vector. One of its dimensions—
describing the behavior of Sk—is continuous, the other one—describing the number
of stages performed—is discrete. In the following, the two-dimensional density of
this bivariate random vector is derived iteratively, starting at the first stage and
continuing up to the Kth stage.

Consider S1, the test statistic for the first stage. S1 is normally distributed with
mean Q#1 and unit variance. It contributes solely to the outcome of the group
sequential design if s1 … C1. The first part of the recursive integration formula is
therefore given by

fı.s1; 1/ D
(
'.s1 � Q#1/ s1 … C1

0 else ,
(1.18)

where '.�/ denotes the standard normal density. Note that (1.18) is not a density
since it accounts only for one of the possible realizations of the number of stages
performed, namely the case that the study is stopped after the first stage. In order
to make (1.18) a density, a standardization would be needed; we would then obtain
the density of a truncated normal distribution (not truncated at the tails, as usual, but
rather truncated in the middle). Yet with such a standardization, the formula could
only describe the behavior of S1 and could not cover subsequent stages. The aim of
describing the behavior of the test statistic at the end of the trial would not be met.
We will nevertheless deal with such standardizations later on as they are of interest
in the context of point estimation.
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If s1 2 C1, (1.18) does not apply. The study is then continued and the weighted
sum S2 D S1 C p

�2Z2 is calculated, yielding the test statistic for the second stage.
This sum consists of two addends, which are the test statistic S1 from the first stage
and the increment S2 � S1 D p

�2Z2. These addends are independent due to the
preplanned sample sizes. Note that this independency assumption is true only for S1
and the increment S2 � S1 rather than for S1 and S2. The density of S2 is therefore
obtained by convoluting S1 and S2 � S1, where S2 � S1 is normally distributed with
mean Q#2 � Q#1 and variance �2. S2 in turn contributes solely to the outcome of the
group sequential design if s2 … C2. The second part of the density is therefore given
by

fı.s2; 2/ D
8
<

:

R
C1

1p
�2
'.

.s2�s1/�.Q#2�Q#1/p
�2

/ '.s1 � Q#1/ ds1 s2 … C2

0 else :
(1.19)

Again, for the same reasons as (1.18), (1.19) is not a density.
This approach to determine the partial densities continues for all stages k D

1; : : : ;K: The test statistic for the kth stage, Sk, can always be expressed as the
sum of the test statistic Sk�1 from the previous stage and the increment Sk � Sk�1 Dp
�kZk, the increment being independent of Sk�1 and normally distributed with mean

Q#k � Q#k�1 and variance �k. The group sequential density is therefore given by

fı.sk; k/ D
(

pı.sk; k/ sk … Ck _ k D K

0 else ;
(1.20)

where

pı.sk; k/ D
Z

Ck�1

pı.sk�1; k � 1/
1p
�k
'

 
.sk � sk�1/ � . Q#k � Q#k�1/p

�k

!

dsk�1 ;

(1.21)

k D 2; : : : ;K, and pı.s1; 1/ is given by

pı.s1; 1/ D '.s1 � Q#1/ :

The presentation (1.21) is due to Armitage et al. (1969). It involves a repeated
numerical integration technique which can be solved, for example, with the
Newton–Cotes method.
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As a density, (1.20) fulfills the condition

KX

kD1

Z

RnCk

fı.sk; k/ dsk D 1 :

That is, integrating every partial density over its domain, the complement of the
respective continuation region, and then summing up the results of those integrations
for all stages yields the total probability mass.



Chapter 2
Procedures with Equally Sized Stages

In this chapter, we describe group sequential test procedures that are designed for
equal sample sizes per stage of the group sequential trial, i.e., n1 D � � � D nK D n.
The procedures that were originally developed in the literature (which we refer
to as classical group sequential designs) make this assumption. In practice, the
situation with equally sized stages often occurs. Namely, in all cases when there
is no specific reason for assuming different stage sizes the sample sizes per stage
should be the same. Nevertheless, it might be questionable if equal sample sizes are
practically feasible. Particularly, regardless of whether equal stage sizes are planned,
the concrete implementation of an interim analysis will rarely be based on equally
sized groups of observations. A more or less slight departure will occur in nearly all
cases since usually observations at hand are used for the interim stage. Especially
from an organizational perspective, the theoretical requirement is therefore hard to
fulfill. We will see, however, that the assumption of equally sized stages can be
weakened, or other designs are perhaps better suited. These more general designs
will be studied in Chap. 3.

As in the last chapter, we assume independent and normally distributed obser-
vations with a known variance. The hypothesis to be tested is H0 W � D �0.
Assuming n observations per stage and a standardized effect size ı D .� � �0/=� ,
the expressions (1.3)–(1.5) simplify to

Z�
k D 1p

k

kX

QkD1
ZQk ;

Cov.Z�
k ;Z

�
k0/ D

r
k

k0 ; for k � k0;

#k D E.Z�
k / D ı

p
k n ; k D 1; : : : ;K:
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In the following, the procedures will be defined in terms of the continuation regions
C �

k for the standardized test statistics Z�
k rather than in terms of the continuation

regions Ck for the test statistic Sk as introduced in Sect. 1.4. Obviously, the two
modes of presentation are completely equivalent. In the literature, however, both
modes of presentation were used.

2.1 Classical Designs

2.1.1 Definition

Pocock (1977) and O’Brien and Fleming (1979) proposed group sequential plans for
the two-sided testing problem. That is, H0 is tested against the two-sided alternative
H1 W � 6D �0. These designs have found widespread acceptance in the scientific
community. In clinical research, they are often used and can hence be regarded as
standard techniques. In defining a group sequential plan, Pocock (1977) assumed
constant critical values u1 D � � � D uK DW u0 for Z�

k , k D 1; : : : ;K, over the stages
of the trial. That is, instead of using the unadjusted critical value u D ˚.1�˛=2/ at
each stage of the testing procedure, an adjusted critical value u0 > u has to be used
in order to obtain a level ˛ testing procedure. The latter constant critical value u0 of
Pocock’s design is chosen to give overall Type I error rate ˛ and hence it is defined
through

PH0.jZ�
1 j � u0 or : : : or jZ�

K j � u0/ D ˛ :

u0 depends on K and ˛ and is denoted by cP.K; ˛/. The procedure of O’Brien and
Fleming (1979), on the other hand, is characterized by monotonically decreasing
critical values defined by uk D cOBF.K; ˛/=

p
k, where cOBF.K; ˛/ is a constant that

ensures that

PH0 .jZ�
1 j � u1 or : : : or jZ�

K j � uK/ D ˛

is fulfilled. Formally, the continuation regions C �
k for Z�

k are given by

– C �
k D .�u0I u0/ with u0 D cP.K; ˛/, k D 1; : : : ;K, for Pocock’s design,

– C �
k D .�ukI uk/ with uk D cOBF.K; ˛/=

p
k, k D 1; : : : ;K, for O’Brien and

Fleming’s design.
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The study is stopped with the rejection of H0 if Z�
k 2 C

�
k for some k D 1; : : : ;K �

1, otherwise the trial is continued. At the Kth stage, H0 is rejected if Z�
K 2 C

�
K ,

otherwise it is not rejected. In other words, in this simple case the rejection regions
R�

k are given by the complement of C �
k , k D 1; : : : ;K.

The group sequential tests can also be defined by means of the adjusted nominal
significance levels ˛0 D 2 .1 � ˚.u0// and ˛k D 2 .1 � ˚.uk//, respectively. The
study is stopped with the rejection of H0 if the (two-sided) p-value of the test statistic
calculated at the kth stage, which is given by 2 .1 � ˚.jz�

k j// is below the level ˛0
and ˛k, respectively. This once again illustrates the idea of “repeated significance
tests”: Repeatedly, at each stage k, a significance test at the corresponding adjusted
significance level is performed.

The constants cP.K; ˛/ and cOBF.K; ˛/ can be computed numerically using the
recursive formula described in the last section. Table 2.1 supplies the constants
cP.K; ˛/ and cOBF.K; ˛/ for a number of values for K and ˛. For Pocock’s design,
at each stage k the standardized test statistic Z�

k is compared with u0 D cP.K; ˛/,
whereas, for O’Brien and Fleming’s design, the sequence of critical values is
calculated through uk D cOBF.K; ˛/=

p
k, k D 1; : : : ;K. Additionally, the last stage

critical value for O’Brien and Fleming’s design is provided in the table. The validity
of the constants cP.K; ˛/ and cOBF.K; ˛/ have been extensively proofed. They are
correct up to the stated decimal places.

The table shows that, as K increases, the necessary adjustment becomes stronger.
In O’Brien and Fleming’s design, for suitably large K, it is extremely unlikely to
terminate the trial at a very early stage but it is easier to reject H0 later on. As a
consequence, the last stage critical value is near to the critical value of the two-
sided fixed sample size design. For example, for ˛ D 0:05, the latter is given
by 1:960 whereas in a five-group design the critical value is given by 2:040.
In other words, the price to pay for interim looks in terms of having to use a
more conservative level of the Type I error rate is low when using O’Brien and
Fleming’s test design. The situation where the final test statistic comes up with
a p-value lower than ˛ but the null hypothesis cannot be rejected is therefore
unlikely to arise in O’Brien and Fleming’s design. Although this is clear from
the statistical point of view, it might be bothering to practitioners. Because it
is more likely in Pocock’s design, O’Brien and Fleming’s test design might be
preferred.

For illustrating the difference between the two designs, Table 2.2 presents the
critical values uk, k D 1; : : : ;K, and u0, together with the adjusted nominal
significance levels ˛k and ˛0 according to O’Brien & Fleming’s and Pocock’s
design, respectively, for ˛ D 0:05 and K D 2; 3; 4; 5. The decision regions of
the two designs for K D 5 and ˛ D 0:05 are illustrated in Fig. 2.1.
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Table 2.1 Constants cOBF.K; ˛/ and cP.K; ˛/ to determine the sequence of critical values
according to O’Brien & Fleming’s and Pocock’s design, respectively

K ˛ D 0:001 ˛ D 0:01 ˛ D 0:05 ˛ D 0:10

OBrien and 1 3.2905 2.5758 1.9600 1.6449

Fleming 2 4.6541 (3.2909) 3.6481 (2.5796) 2.7965 (1.9774) 2.3730 (1.6780)

3 5.7096 (3.2964) 4.4945 (2.5949) 3.4711 (2.0040) 2.9611 (1.7096)

4 6.6093 (3.3047) 5.2182 (2.6091) 4.0486 (2.0243) 3.4662 (1.7331)

5 7.4076 (3.3128) 5.8611 (2.6212) 4.5617 (2.0401) 3.9151 (1.7509)

6 8.1328 (3.3202) 6.4455 (2.6314) 5.0283 (2.0528) 4.3231 (1.7649)

7 8.8020 (3.3268) 6.9849 (2.6401) 5.4590 (2.0633) 4.6998 (1.7763)

8 9.4265 (3.3328) 7.4884 (2.6476) 5.8611 (2.0722) 5.0514 (1.7859)

9 10.014 (3.3381) 7.9623 (2.6541) 6.2395 (2.0798) 5.3824 (1.7941)

10 10.571 (3.3428) 8.4113 (2.6599) 6.5981 (2.0865) 5.6959 (1.8012)

11 11.101 (3.3472) 8.8390 (2.6651) 6.9396 (2.0924) 5.9946 (1.8074)

12 11.609 (3.3511) 9.2481 (2.6697) 7.2663 (2.0976) 6.2803 (1.8130)

13 12.096 (3.3547) 9.6408 (2.6739) 7.5799 (2.1023) 6.5546 (1.8179)

14 12.565 (3.3580) 10.019 (2.6777) 7.8820 (2.1065) 6.8187 (1.8224)

15 13.017 (3.3611) 10.384 (2.6812) 8.1736 (2.1104) 7.0737 (1.8264)

20 15.087 (3.3735) 12.053 (2.6951) 9.5062 (2.1257) 8.2391 (1.8423)

Pocock 1 3.2905 2.5758 1.9600 1.6449

2 3.4634 2.7718 2.1783 1.8754

3 3.5542 2.8730 2.2895 1.9922

4 3.6136 2.9387 2.3613 2.0674

5 3.6570 2.9863 2.4132 2.1217

6 3.6905 3.0231 2.4532 2.1635

7 3.7177 3.0528 2.4855 2.1973

8 3.7403 3.0775 2.5123 2.2253

9 3.7597 3.0986 2.5352 2.2492

10 3.7764 3.1169 2.5550 2.2699

11 3.7912 3.1329 2.5724 2.2881

12 3.8043 3.1472 2.5880 2.3043

13 3.8161 3.1601 2.6019 2.3189

14 3.8268 3.1718 2.6146 2.3321

15 3.8366 3.1824 2.6261 2.3441

20 3.8754 3.2247 2.6720 2.3921

In parentheses: last stage critical value for O’Brien and Fleming’s design

Pocock’s design requires less conservative levels for early stages and hence it
is more likely to terminate the trial early. Stopping early, however, depends on the
sample size chosen, and the probability of reaching a rejection of H0 at some stage
given a sequence of sample sizes (i.e., the power of the test) or at specific stages
will be the crucial point. The pros and cons for choosing a specific design will thus
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Table 2.2 Critical values uk and u0 for Z�

k in the designs of O’Brien & Fleming and Pocock,
respectively; ˛ D 0:05

K u1 u2 u3 u4 u5
O’Brien and 2 2.797 1.977

Fleming (0.0052) (0.0480)

3 3.471 2.454 2.004

(0.0005) (0.0141) (0.0451)

4 4.049 2.863 2.337 2.024

(0.00005) (0.0042) (0.0194) (0.0429)

5 4.562 3.226 2.634 2.281 2.040

(0.000005) (0.0013) (0.0084) (0.0226) (0.0413)

Pocock 2 2.178 2.178

(0.0294) (0.0294)

3 2.289 2.289 2.289

(0.0221) (0.0221) (0.0221)

4 2.361 2.361 2.361 2.361

(0.0182) (0.0182) (0.0182) (0.0182)

5 2.413 2.413 2.413 2.413 2.413

(0.0158) (0.0158) (0.0158) (0.0158) (0.0158)

In parentheses: corresponding adjusted nominal significance levels ˛k and ˛0, respectively

Fig. 2.1 Decision regions for O’Brien and Fleming’s (OBF) and Pocock’s (P) design for equal
stage sizes; K D 5, ˛ D 0:05
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be discussed more extensively after we have presented the power and the average
sample size characteristics of O’Brien & Fleming’s and Pocock’s design.

An interesting feature of O’Brien and Fleming’s test is the following. Since
Ck D p

kC �
k , the critical values for the non-standardized test statistic Sk are

constant in k. That is, H0 can be rejected until the sum of the stage-wise test statistics
exceeds a specified constant cOBF.K; ˛/. This corresponds to stop and reject H0 if the
likelihood ratio exceeds a constant boundary. Hence, it appears to be a reasonable
technique for defining a group sequential test design: As long as summing up the
test statistics does not exceed a constant threshold, H0 cannot be rejected and further
observations are needed for possibly rejecting H0.

2.1.2 Power and Average Sample Size

In a fixed sample size design with sample size nf , the power of the level-˛ test for
testing H0 is given by

PH1 .jZj � ˚�1.1 � ˛=2// D ˚.�˚�1.1 � ˛=2/� p
nf ı/C 1

�˚.˚�1.1 � ˛=2/� p
nf ı/ :

If one wants to find the necessary sample size to achieve a prespecified power 1�ˇ,
ı denotes the standardized effect which is worthwhile to detect and the interest lies
in either positive or negative values of ı. As a consequence, in practical cases, either
˚.�˚�1.1 � ˛=2/ � p

nf ı/ or 1 � ˚.˚�1.1 � ˛=2/ � p
nf ı/ is extremely small,

and the power requirement reads as

PH1 .jZj � ˚�1.1 � ˛=2// � 1 � ˚.˚�1.1 � ˛=2/� p
nf jıj/ D 1 � ˇ : (2.1)

From (2.1) one finds the (approximate) sample size formula

nf D
�
˚�1.1 � ˛=2/C ˚�1.1 � ˇ/

�2

ı2
(2.2)

for the fixed sample size design. In practical applications, the actual sample size is
the next integer greater than nf obtained from (2.2). For the following calculations,
however, the exact version of the sample size calculation will be used. That is, nf is
found through

˚.�˚�1.1 � ˛=2/� p
nf ı/C 1 �˚.˚�1.1 � ˛=2/� p

nf ı/ D 1 � ˇ ;

and the decimal number nf will be applied for further calculations.
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The power of a group sequential test considered in this section is given by

1 � P.Z�
1 2 C �

1 � #1; : : : ;Z
�
K 2 C �

K � #K/ ; (2.3)

where #k D ı
p

k n, k D 1; : : : ;K, and the substraction is understood element-wise
(see (1.14) in Sect. 1.3). The random vector .Z�

1 ; : : : ;Z
�
K/ in (2.3) is multivariate

normal with zero mean vector. Hence, at given ˛, 1�ˇ, and K, solving (2.3) through
the use of the recursive integration formula (with ı D 0), one finds the shift value
#� D #�.K; ˛; ˇ/ such that the power (2.3) with #k D #�p

k, k D 1; : : : ;K, equals
1�ˇ. The sample size per stage of the group sequential test design, n, is then given
by

n D n.K; ˛; ˇ/ D #�2

ı2
;

and the maximum sample size is

N D K n : (2.4)

The sample size formulas (2.2) and (2.4) are both inversely proportional in ı2. This
motivates the following definition: The inflation factor I D I.K; ˛; ˇ/ is the ratio

N

nf
; (2.5)

relating the sample size of a group sequential test to its corresponding fixed sample
size test. It is independent of the standardized effect size ı, and will serve as a basis
for sample size calculations in group sequential test designs under very different
testing situations (see Chap. 4). The average sample size under H1, ASNH1 , given
K, ˛, and 1 � ˇ, is inversely proportional to ı2, too. This easily follows from the
representation

ASNH1 D #�2

ı2
C

KX

kD2

#�2

ı2
P

0

@
k�1\

QkD1
fZ�

Qk 2 C �
Qk � #�pQkg

1

A :

That is, it suffices to calculate the average sample size for a specific value of ı, for
example, ı D 1. For ı 6D 1, ASNH1 is obtained by dividing the average sample size
calculated for ı D 1 by ı2. Furthermore, the ratio

ASNH1

nf
(2.6)

is also independent of ı and characterizes the average sample size reduction when
considering a group sequential test design as compared to the fixed sample size
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Table 2.3 Inflation factor I D I.K; ˛; ˇ/ and expected reduction in sample size under H1 relative
to nf , ASNH1=nf , (in parentheses) for the designs of O’Brien & Fleming and Pocock, respectively,
for different values of K, significance level ˛, and power 1� ˇ

1� ˇ D 0:80 1� ˇ D 0:90

K ˛ D 0:01 ˛ D 0:05 ˛ D 0:01 ˛ D 0:05

O’Brien and 1 1:000 (1.000) 1:000 (1.000) 1:000 (1.000) 1:000 (1.000)

Fleming 2 1:001 (0.947) 1:008 (0.902) 1:001 (0.912) 1:007 (0.851)

3 1:007 (0.886) 1:017 (0.856) 1:006 (0.837) 1:016 (0.799)

4 1:011 (0.862) 1:024 (0.831) 1:010 (0.806) 1:022 (0.767)

5 1:015 (0.847) 1:028 (0.818) 1:014 (0.789) 1:026 (0.750)

6 1:017 (0.838) 1:032 (0.809) 1:016 (0.777) 1:030 (0.739)

7 1:019 (0.831) 1:035 (0.802) 1:018 (0.769) 1:032 (0.732)

8 1:021 (0.826) 1:037 (0.798) 1:020 (0.763) 1:034 (0.726)

9 1:022 (0.822) 1:038 (0.794) 1:021 (0.758) 1:036 (0.721)

10 1:024 (0.819) 1:040 (0.791) 1:022 (0.754) 1:037 (0.718)

11 1:025 (0.817) 1:041 (0.789) 1:023 (0.752) 1:039 (0.715)

12 1:026 (0.815) 1:042 (0.787) 1:024 (0.749) 1:040 (0.713)

13 1:026 (0.813) 1:043 (0.786) 1:025 (0.747) 1:041 (0.711)

14 1:027 (0.812) 1:044 (0.784) 1:026 (0.745) 1:041 (0.709)

15 1:028 (0.810) 1:045 (0.783) 1:026 (0.744) 1:042 (0.708)

20 1:030 (0.806) 1:047 (0.779) 1:029 (0.739) 1:045 (0.703)

Pocock 1 1:000 (1.000) 1:000 (1.000) 1:000 (1.000) 1:000 (1.000)

2 1:092 (0.872) 1:110 (0.853) 1:083 (0.798) 1:100 (0.776)

3 1:137 (0.841) 1:166 (0.818) 1:125 (0.750) 1:151 (0.721)

4 1:166 (0.828) 1:202 (0.805) 1:152 (0.728) 1:183 (0.697)

5 1:187 (0.822) 1:228 (0.799) 1:171 (0.717) 1:206 (0.685)

6 1:203 (0.818) 1:249 (0.796) 1:185 (0.709) 1:225 (0.677)

7 1:216 (0.816) 1:265 (0.795) 1:197 (0.705) 1:239 (0.673)

8 1:226 (0.816) 1:278 (0.794) 1:206 (0.701) 1:251 (0.669)

9 1:235 (0.815) 1:290 (0.794) 1:214 (0.699) 1:262 (0.667)

10 1:243 (0.816) 1:300 (0.795) 1:222 (0.698) 1:271 (0.666)

11 1:250 (0.816) 1:309 (0.796) 1:228 (0.697) 1:279 (0.665)

12 1:257 (0.816) 1:317 (0.797) 1:234 (0.696) 1:286 (0.664)

13 1:262 (0.817) 1:325 (0.797) 1:239 (0.695) 1:292 (0.664)

14 1:267 (0.817) 1:331 (0.798) 1:243 (0.695) 1:298 (0.664)

15 1:272 (0.818) 1:337 (0.799) 1:247 (0.695) 1:304 (0.663)

20 1:291 (0.822) 1:362 (0.805) 1:264 (0.695) 1:325 (0.664)

design under the assumption that H1 is true. In Table 2.3 the quantities (2.5) and (2.6)
are provided for O’Brien & Fleming’s and Pocock’s design for K D 1; : : : ; 15; 20,
˛ D 0:01; 0:05, and 1� ˇ D 0:80; 0:90. The case K D 1 refers to the fixed sample
size design and is added for the sake of completeness.
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For both designs, Table 2.3 shows that the maximum sample size is increasing
in K. For O’Brien and Fleming’s design, the average sample size under H1 is
decreasing in K, whereas for Pocock’s design it is only decreasing in K for small and
moderate K whereas for large values of K it slightly increases again. The expected
reduction in the sample size increases with the postulated power and is more distinct
for Pocock’s design than for O’Brien and Fleming’s design. For Pocock’s design,
on the other hand, the maximum necessary sample is higher than for O’Brien and
Fleming’s design.

By an example, we illustrate the use of Table 2.3 for practical sample size calcu-
lations. Suppose, in a four-stage two-sided group sequential design at significance
level ˛ D 0:05, the necessary maximum and average sample size are to be calculated
for power 1�ˇ D 0:80 and a standardized effect jıj D 0:50. That is, the alternative
to be detected is H1 W jıj D 0:50. From (2.2), the sample size in a fixed sample size
design is

nf D .1:96C 0:842/2

0:502
D 31:4 :

If one wants to use O’Brien and Fleming’s design, the maximum sample size is

N D 1:024 � 31:4 D 32:2 ;

and hence one needs 32:2=4 D 8:05 observations per stage. Using Pocock’s design,
the maximum sample size is

N D 1:202 � 31:4 D 37:7 ;

and hence 37:7=4 D 9:4 observations per stage are necessary to achieve 80 %
power. If the alternative is true, the average sample size, under H1, for O’Brien
and Fleming’s design is

ASNH1 D 0:831 � 31:4 D 26:1 ;

and for Pocock’s design it is

ASNH1 D 0:805 � 31:4 D 25:3 :

To ensure the Type I error rate and the postulated power of the design, the sample
size per stage to choose in O’Brien and Fleming’s design is n D 9, and in Pocock’s
design it is n D 10. Clearly, the attained power is then slightly larger than the
postulated power, and the actual maximum sample size, especially in O’Brien and
Fleming’s design, exceeds N to a quite large amount. It might thus be desirable to
use, say, a maximum of 33 observations and to use slightly differing sample sizes
per stage, for example, n1 D 9, n2 D 8, n3 D 8, n4 D 8. Although the assumption
of equal group sizes is then (slightly) violated, we will see that this is of no practical
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concern. In this example, however, we proceed to use the exact values to provide
some insight into the theoretical performance of the procedures. For larger sample
size, of course, this problem is only of minor concern. We will also reconsider this
example when treating the unknown variance case (see Sect. 5.1).

Both designs are quite effective in reducing the expected sample size. To
understand why, under H1, Pocock’s design is expected to need less observations,
consider the probabilities to stop at one of the interim stages. For O’Brien and
Fleming’s design, under H1, the probabilities to stop at the first, second, and third
stage are given by 0.4 %, 19.1 %, and 35.7 %, respectively. The probability to reach
the maximum sample size is 44.8 % (and the probability to reach a significant result
at this stage is 22.8 %). For Pocock’s design, the corresponding probabilities are
20.5 %, 25.2 %, 20.3 %, and 34.0 % (14.0 %), respectively. Hence, it is much more
likely to stop at the first or the second stage for the latter design, resulting in a
smaller average sample size under H1 for Pocock’s design although the maximum
sample size is higher. We further note that the standard deviation of the sample size
is greater for Pocock’s design as compared to O’Brien and Fleming’s design. With
the above probabilities the standard deviations are calculated as

�
0:004 .8:05� 26:1/2 C � � � C 0:448 .32:2� 26:1/2

�1=2 D 6:24

and

�
0:205 .9:4� 25:3/2 C � � � C 0:340 .37:7� 25:3/2

�1=2 D 10:75 ;

respectively. Hence, in addition to the larger maximum sample size, the greater
variability of the sample size in Pocock’s design might be regarded as an unfavorable
feature of this test procedure but note that this is an intrinsic feature of stopping the
trial early.

It is also of interest to consider the average sample size under the assumption
that H1 is not true, i.e., for ı 6D j0:50j. The calculation is straightforward with the
recursive integration formula using #k D ı

p
k n, k D 1; : : : ;K, where n is the

sample size per stage necessary to achieve power at jıj D 0:50. That is, the average
sample is given by

ASN D #�2

ı2
C

KX

kD2

�
#�2

ı2

�

P

0

@
k�1\

QkD1
fZ�

Qk 2 C �
Qk � Qı

pQk ng
1

A ;

which can be calculated for different values of Qı. For example, Qı D 0 refers to the
average sample size if H0 is true. Figure 2.2 illustrates the average sample size for
values of Qı ranging from �1 to 1, where the sample size of the fixed sample size
design is added as a reference line.
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Fig. 2.2 Average sample size of O’Brien and Fleming’s (solid line) and Pocock’s (dashed line)
test. The sample size was calculated to achieve power 1 � ˇ D 0:80 at jıj D 0:50 (˛ D 0:05,
four-stage design). Horizontal line: sample size for fixed sample design

Pocock’s test has a smaller average sample size for values of j Qıj near and larger
than the assumed one. Due to the lower maximum sample size, however, O’Brien
and Fleming’s test has smaller average sample size if jıj is considerably smaller
than anticipated. The gain in average sample size of Pocock’s test increases for
jıj > 0:50, but, for very large values, both tests reject H0 at the first stage and hence
O’Brien and Fleming’s test is (slightly) better in terms of saving sample size due
to the smaller first stage sample size. It was already mentioned in Sect. 1.3 that the
average sample size can be reduced if the study is stopped for futility (i.e., stopping
with the non-rejection of H0) when only a small effect is observed. These designs
will be thoroughly discussed later on. For the moment, we recapitulate that Pocock’s
design turns out to be favorable in terms of the expected saving in sample size for
suitably chosen significance level and power. Despite this, users might be deterred
by the larger maximum sample size and perhaps are not even willing to stop the
trial in very early stages, for example, because of safety issues (see Sect. 2.3). That
is, the average sample size is not always the key issue, and O’Brien and Fleming’s
design is therefore often preferable.

Another important issue is the choice of the maximum number of stages, K, to
be performed. The most relevant expected reduction in the sample size is already
reached for a moderate number of stages, especially for Pocock’s design. This is
illustrated in Fig. 2.3 for power 1 � ˇ D 0:80 and significance level ˛ D 0:05. It
shows that for Pocock’s design it suffices to consider at most a maximum of, say,
K D 5 stages (Pocock 1982; McPherson 1982), whereas for O’Brien and Fleming’s
design it might be reasonable to consider up to, say, K D 8 stages in order to
receive a substantial reduction in the average sample size. Nevertheless, it is worth
mentioning that for both designs even the implementation of one or two interim
analyses is quite effective in reducing the average sample size.

Although an important issue in clinical trials is saving sample size, logistic
reasoning about the feasibility of interim analyses should influence the decision
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Fig. 2.3 Expected reduction in sample size under H1 relative to the sample size in a fixed sample
size design, ASNH1=nf , of O’Brien and Fleming’s (solid line) and Pocock’s (dashed line) test for
different K; power 1� ˇ D 0:80, significance level ˛ D 0:05

concerning the number of stages, too. The preparation of interim reports and
the organization of the meetings for the independent Data Monitoring Committee
(iDMC) might be time consuming and costly. One should also bear in mind that an
interim analysis potentially involves unblinding the data and therefore other than
permitted people could become aware of the results. As a consequence, the result of
the whole trial could then be biased. Sound practical reasons might therefore bring
about a decision of choosing, say, a four-stage design, or even a design with only
one or two interim analyses.

2.1.3 Wang and Tsiatis Power Family

Wang and Tsiatis (1987) proposed a class of boundaries indexed by a power
parameter�. The continuation regions C �

k for Z�
k are given by

C �
k D .�ukI uk/; where uk D cWT.K; ˛;�/ k��0:5; k D 1; : : : ;K: (2.7)

As above, the rejection regions are the complement of C �
k , i.e., R�

k D C
�
k , k D

1; : : : ;K. The�-class of boundaries as given in (2.7) yields O’Brien and Fleming’s
test for � D 0 and Pocock’s test for � D 0:50. The constants cWT.K; ˛;�/ are
tabulated in Table 2.4 for a number of values �, ˛, and K. Values for K > 10 were
omitted since from the above discussion it follows that even K > 5will hardly occur
in practice. We mention that the constants provided in Table 2.4 slightly differ from
the constants provided in Table 1 of Wang and Tsiatis (1987). Nevertheless, we feel
confident that our figures are correct up to the stated decimal places (Wassmer and
Bock 1999).
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Table 2.4 Constants cWT.K; ˛; �/ for the Wang and Tsiatis design

K ˛ D 0:001 ˛ D 0:01 ˛ D 0:05 ˛ D 0:10

� D 0:10 1 3:2905 2:5758 1:9600 1:6449

2 4:3447 3:4136 2:6314 2:2425

3 5:1276 4:0496 3:1442 2:6943

4 5:7743 4:5752 3:5692 3:0690

5 6:3341 5:0304 3:9371 3:3936

6 6:8327 5:4356 4:2645 3:6823

7 7:2851 5:8034 4:5614 3:9442

8 7:7012 6:1415 4:8344 4:1848

9 8:0878 6:4557 5:0879 4:4082

10 8:4500 6:7500 5:3253 4:6174

� D 0:25 1 3:2905 2:5758 1:9600 1:6449

2 3:9331 3:1131 2:4239 2:0777

3 4:3860 3:4906 2:7411 2:3674

4 4:7420 3:7873 2:9887 2:5915

5 5:0385 4:0341 3:1941 2:7767

6 5:2943 4:2468 3:3708 2:9357

7 5:5204 4:4344 3:5265 3:0756

8 5:7237 4:6030 3:6662 3:2011

9 5:9089 4:7564 3:7932 3:3151

10 6:0792 4:8975 3:9099 3:4198

� D 0:40 1 3:2905 2:5758 1:9600 1:6449

2 3:6115 2:8837 2:2625 1:9465

3 3:8146 3:0709 2:4395 2:1197

4 3:9642 3:2062 2:5651 2:2412

5 4:0829 3:3124 2:6624 2:3349

6 4:1813 3:4000 2:7420 2:4110

7 4:2655 3:4745 2:8093 2:4752

8 4:3391 3:5393 2:8676 2:5306

9 4:4045 3:5968 2:9191 2:5794

10 4:4634 3:6484 2:9651 2:6230

� D 0:70 1 3:2905 2:5758 1:9600 1:6449

2 3:3203 2:6364 2:0590 1:7676

3 3:3260 2:6529 2:0917 1:8113

4 3:3277 2:6592 2:1068 1:8327

5 3:3282 2:6622 2:1149 1:8449

6 3:3285 2:6637 2:1198 1:8526

7 3:3286 2:6645 2:1229 1:8578

8 3:3286 2:6650 2:1250 1:8615

9 3:3286 2:6653 2:1265 1:8641

10 3:3286 2:6655 2:1275 1:8661
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Fig. 2.4 Decision regions of Wang and Tsiatis test (WT) for � D 0:25 (solid line) as compared
to O’Brien and Fleming’s (OBF) and Pocock’s (P) design (dashed lines); K D 5, ˛ D 0:05

The sequence of critical values is increasing if� > 0:50 whereas it is decreasing
for � < 0:50. � < 0 refers to still stricter criteria for stopping the trial early than
the stopping criteria resulting from O’Brien and Fleming’s design. For 0 < � <

0:50, the boundaries have an intermediate shape between O’Brien & Fleming and
Pocock type boundaries. For example, if K D 5, ˛ D 0:05, and � D 0:25, uk D
3:1941 k�0:25; k D 1; : : : ;K, and the sequence of critical values is 3.1941, 2.6859,
2.4270, 2.2586, 2.1360. The corresponding decision regions for Z�

k are illustrated in
Fig. 2.4.

The calculation of the maximum sample size and the average sample size under
H1 is straightforward. Table 2.5 supplies the inflation factor I D I.K; ˛; ˇ;�/ and
the expected reduction in sample size under H1 relative to nf , ASNH1=nf , of the
Wang and Tsiatis design for � D 0:10; 0:25; 0:40. This covers practically relevant
situations. The table can be used for the sample size calculation as described for the
O’Brien & Fleming and Pocock tests (see Table 2.3). It is interesting that the choice
of� D 0:40 in the cases considered here yields better values for the inflation factor
and the expected reduction in the sample size. Hence, a Wang and Tsiatis design
with � D 0:40 is preferable.

Wang and Tsiatis (1987) found that the �-class of boundaries is approximately
optimal in terms of minimizing the average sample size under H1. That is, when
searching for a design which minimizes ASNH1 , ASNH1 is only slightly higher
within the �-class as compared to ASNH1 when searching under all possible
critical values that define a K-stage group sequential test at level ˛. The latter
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Table 2.5 Inflation factor I D I.K; ˛; ˇ;�/ and expected reduction in sample size under H1,
relative to nf (in parentheses) for the Wang and Tsiatis family of tests, for different values of
�; K, significance level ˛, and power 1� ˇ

1� ˇ D 0:80 1� ˇ D 0:90

K ˛ D 0:01 ˛ D 0:05 ˛ D 0:01 ˛ D 0:05

� D 0:10 1 1:000 (1.000) 1:000 (1.000) 1:000 (1.000) 1:000 (1.000)

2 1:005 (0.924) 1:016 (0.882) 1:004 (0.880) 1:014 (0.825)

3 1:013 (0.872) 1:027 (0.841) 1:012 (0.818) 1:025 (0.777)

4 1:018 (0.847) 1:035 (0.818) 1:017 (0.786) 1:032 (0.749)

5 1:022 (0.833) 1:040 (0.804) 1:021 (0.769) 1:037 (0.732)

6 1:025 (0.824) 1:044 (0.796) 1:024 (0.758) 1:041 (0.721)

7 1:028 (0.817) 1:047 (0.789) 1:026 (0.750) 1:044 (0.713)

8 1:030 (0.812) 1:050 (0.785) 1:028 (0.744) 1:046 (0.707)

9 1:032 (0.809) 1:052 (0.781) 1:030 (0.739) 1:048 (0.703)

10 1:033 (0.806) 1:054 (0.779) 1:031 (0.736) 1:050 (0.700)

� D 0:25 1 1:000 (1.000) 1:000 (1.000) 1:000 (1.000) 1:000 (1.000)

2 1:019 (0.891) 1:038 (0.860) 1:017 (0.835) 1:034 (0.795)

3 1:030 (0.848) 1:054 (0.820) 1:028 (0.784) 1:050 (0.745)

4 1:039 (0.825) 1:065 (0.799) 1:036 (0.755) 1:059 (0.719)

5 1:044 (0.812) 1:072 (0.787) 1:041 (0.738) 1:066 (0.704)

6 1:049 (0.803) 1:077 (0.778) 1:045 (0.727) 1:071 (0.693)

7 1:052 (0.797) 1:081 (0.772) 1:049 (0.719) 1:075 (0.685)

8 1:055 (0.792) 1:084 (0.768) 1:051 (0.714) 1:078 (0.680)

9 1:057 (0.789) 1:087 (0.765) 1:053 (0.709) 1:081 (0.675)

10 1:059 (0.786) 1:089 (0.762) 1:055 (0.706) 1:083 (0.672)

� D 0:40 1 1:000 (1.000) 1:000 (1.000) 1:000 (1.000) 1:000 (1.000)

2 1:052 (0.872) 1:075 (0.851) 1:048 (0.805) 1:068 (0.778)

3 1:076 (0.834) 1:108 (0.812) 1:070 (0.755) 1:099 (0.724)

4 1:091 (0.815) 1:128 (0.793) 1:084 (0.730) 1:117 (0.699)

5 1:101 (0.803) 1:142 (0.783) 1:093 (0.714) 1:129 (0.684)

6 1:108 (0.795) 1:152 (0.776) 1:099 (0.704) 1:138 (0.674)

7 1:113 (0.790) 1:159 (0.771) 1:105 (0.697) 1:145 (0.667)

8 1:118 (0.786) 1:165 (0.767) 1:109 (0.691) 1:151 (0.662)

9 1:122 (0.783) 1:170 (0.765) 1:112 (0.687) 1:155 (0.658)

10 1:125 (0.780) 1:174 (0.763) 1:115 (0.684) 1:159 (0.655)

designs were already presented by Pocock (1982). He found optimum decision
regions with minimum ASNH1 subject to given K, ˛, and power 1 � ˇ using a
(multidimensional) grid search over all possible decision regions. For example, for
˛ D 0:05, 1 � ˇ D 0:90, and K D 5, the sequence of optimum critical values is
given by

.u1; u2; u3; u4; u5/ D .2:597; 2:390; 2:390; 2:390; 2:310/
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with minimizing ASNH1=nf D 0:681. For ˛ D 0:05, 1 � ˇ D 0:50, and K D 5,

.u1; u2; u3; u4; u5/ D .3:671; 2:884; 2:573; 2:375; 2:037/

minimizes the average sample size with ASNH1=nf D 0:929.
This means, for 1 � ˇ D 0:90, a design with roughly constant boundaries yields

the minimum ASNH1 (see Table 2.3), whereas, for 1 � ˇ D 0:50, a design with
decreasing critical values is optimum. In other words, for small postulated power an
O’Brien and Fleming type design is optimum whereas for higher power a Pocock
type design is preferable.

On the other hand, searching for � D �� which minimizes ASNH1 yields, for
1 � ˇ D 0:90,

�� D 0:445 and cWT.5; 0:05; 0:445/ D 2:542;

.u1; u2; u3; u4; u5/ D .2:542; 2:446; 2:392; 2:354; 2:325/

with minimizing ASNH1=nf D 0:682, and, for 1 � ˇ D 0:50,

�� D 0:077 and cWT.5; 0:05; 0:077/D 4:071;

.u1; u2; u3; u4; u5/ D .4:071; 3:036; 2:558; 2:265; 2:061/

with minimizing ASNH1=nf D 0:932. That is, the optimum average sample is
virtually the same when considering the one-parameter minimization as compared to
the multidimensional search. Hence, the critical values found within the �-class of
boundaries approximately minimize ASNH1 . This is true for all practically relevant
situations.

Table 2.6 contains the optimum ��, the constants c.K; ˛;��/, the optimum
average sample size (expressed relative to nf ), and the inflation factor I D
I.K; ˛; ˇ;��/ for ˛ D 0:05, 0.01, 1 � ˇ D 0:50, 0.80, 0.90. We mention that,
again, the optimum�� slightly differ from the figures presented in Table 4 of Wang
and Tsiatis (1987). This is partly due to the fact that the average sample size to
minimize is fairly flat over the range of values of � and, hence, ASNH1 for slightly
differing� is roughly the same.

As it can be seen from Table 2.6, ASNH1 is minimized for � near 0 only if a
moderate power (1 � ˇ D 0:50) is guaranteed. For practically more relevant cases
(i.e., 1 � ˇ D 0:80 or 1 � ˇ D 0:90), an optimum design is far from assuming
strongly decreasing critical values (as is the case for O’Brien and Fleming’s test).
We illustrate the use of Table 2.6 for planning a trial by an example. Suppose it
is desired to perform a sample size calculation for a four-stage test design at level
˛ D 0:05 assuming a standardized effect jıj D 0:30. To guarantee a power of 80 %,
from Table 2.6 one finds that the design with �� D 0:366 minimizes the average
sample size under H1 W jıj D 0:30. Since cWT.4; 0:05; 0:366/ D 2:648, the sequence
of critical values for this design is 2.648, 2.413, 2.286, 2.199. The sample size in a



2.1 Classical Designs 41

T
ab

le
2.

6
O

pt
im

um
�

�
an

d
co

ns
ta

nt
s

c
D

c.
K
;˛
;�

�
/

in
th

e
�

-c
la

ss
of

bo
un

da
ri

es

K
�

�
c

I
�

�
c

I
�

�
c

I

˛
D
0
:0
1

1
�
ˇ

D
0
:5
0

1
�
ˇ

D
0
:8
0

1
�
ˇ

D
0
:9
0

2
0
:2
5
8

3
:0
9
9

1
:0
2
4

(0
.9

70
)

0
:4
5
0

2
:8
2
4

1
:0
7
0

(0
.8

71
)

0
:5
1
1

2
:7
6
1

1
:0
8
8

(0
.7

98
)

3
0
:2
0
8

3
:6
3
4

1
:0
2
8

(0
.9

52
)

0
:4
0
8

3
:0
5
3

1
:0
8
0

(0
.8

34
)

0
:4
8
2

2
:9
0
4

1
:1
1
3

(0
.7

50
)

4
0
:1
8
3

4
:1
1
4

1
:0
3
2

(0
.9

43
)

0
:3
8
5

3
:2
5
5

1
:0
8
3

(0
.8

14
)

0
:4
5
7

3
:0
4
2

1
:1
1
7

(0
.7

27
)

5
0
:1
6
7

4
:5
5
1

1
:0
3
5

(0
.9

38
)

0
:3
7
4

3
:4
1
8

1
:0
8
6

(0
.8

02
)

0
:4
4
1

3
:1
6
4

1
:1
1
9

(0
.7

12
)

6
0
:1
5
6

4
:9
4
9

1
:0
3
7

(0
.9

34
)

0
:3
6
8

3
:5
5
2

1
:0
9
0

(0
.7

94
)

0
:4
3
1

3
:2
6
7

1
:1
2
0

(0
.7

03
)

7
0
:1
4
6

5
:3
3
6

1
:0
3
8

(0
.9

32
)

0
:3
6
4

3
:6
6
9

1
:0
9
2

(0
.7

88
)

0
:4
2
5

3
:3
5
3

1
:1
2
2

(0
.6

96
)

8
0
:1
4
0

5
:6
7
9

1
:0
4
0

(0
.9

30
)

0
:3
6
1

3
:7
7
3

1
:0
9
4

(0
.7

84
)

0
:4
2
0

3
:4
3
1

1
:1
2
3

(0
.6

91
)

9
0
:1
3
4

6
:0
1
7

1
:0
4
1

(0
.9

29
)

0
:3
5
9

3
:8
6
5

1
:0
9
6

(0
.7

81
)

0
:4
1
7

3
:4
9
7

1
:1
2
4

(0
.6

87
)

10
0
:1
3
0

6
:3
2
4

1
:0
4
2

(0
.9

28
)

0
:3
5
8

3
:9
4
3

1
:0
9
8

(0
.7

78
)

0
:4
1
4

3
:5
6
0

1
:1
2
5

(0
.6

84
)

˛
D
0
:0
5

1
�
ˇ

D
0
:5
0

1
�
ˇ

D
0
:8
0

1
�
ˇ

D
0
:9
0

2
0
:1
7
6

2
:5
2
0

1
:0
3
1

(0
.9

62
)

0
:4
1
7

2
:2
4
7

1
:0
8
0

(0
.8

50
)

0
:4
8
5

2
:1
9
0

1
:0
9
5

(0
.7

76
)

3
0
:1
2
7

3
:0
6
4

1
:0
3
6

(0
.9

46
)

0
:3
8
8

2
:4
6
0

1
:1
0
3

(0
.8

12
)

0
:4
8
0

2
:3
1
6

1
:1
3
9

(0
.7

21
)

4
0
:0
9
4

3
:5
9
6

1
:0
4
0

(0
.9

37
)

0
:3
6
6

2
:6
4
8

1
:1
1
0

(0
.7

93
)

0
:4
6
0

2
:4
3
6

1
:1
5
3

(0
.6

96
)

5
0
:0
7
6

4
:0
7
7

1
:0
4
3

(0
.9

32
)

0
:3
5
3

2
:8
0
8

1
:1
1
3

(0
.7

81
)

0
:4
4
4

2
:5
4
3

1
:1
5
9

(0
.6

82
)

6
0
:0
6
5

4
:5
1
5

1
:0
4
5

(0
.9

29
)

0
:3
4
4

2
:9
4
8

1
:1
1
6

(0
.7

73
)

0
:4
3
1

2
:6
4
2

1
:1
6
0

(0
.6

73
)

7
0
:0
5
5

4
:9
4
3

1
:0
4
7

(0
.9

26
)

0
:3
3
9

3
:0
6
5

1
:1
1
9

(0
.7

68
)

0
:4
2
2

2
:7
2
8

1
:1
6
2

(0
.6

67
)

8
0
:0
4
8

5
:3
4
0

1
:0
4
9

(0
.9

25
)

0
:3
3
5

3
:1
7
2

1
:1
2
1

(0
.7

64
)

0
:4
1
6

2
:8
0
2

1
:1
6
3

(0
.6

62
)

9
0
:0
4
3

5
:7
1
2

1
:0
5
0

(0
.9

24
)

0
:3
3
2

3
:2
6
8

1
:1
2
3

(0
.7

61
)

0
:4
1
0

2
:8
7
4

1
:1
6
3

(0
.6

58
)

10
0
:0
3
8

6
:0
7
9

1
:0
5
1

(0
.9

23
)

0
:3
3
0

3
:3
5
3

1
:1
2
4

(0
.7

58
)

0
:4
0
6

2
:9
3
6

1
:1
6
4

(0
.6

55
)

T
he

in
fla

ti
on

fa
ct

or
I

D
I.

K
;˛
;ˇ
;�

�
/

ca
n

be
us

ed
fo

rs
am

pl
e

si
ze

ca
lc

ul
at

io
ns

.I
n

pa
re

nt
he

se
s:

m
in

im
iz

ed
ex

pe
ct

ed
re

du
ct

io
n

in
sa

m
pl

e
si

ze
un

de
r

H
1
,r

el
at

iv
e

to
n f



42 2 Procedures with Equally Sized Stages

fixed sample size design is given by

nf D .1:96C 0:842/2

0:302
D 87:2 ;

and the maximum sample size is

N D 1:110 � 87:2 D 96:8 :

Hence, a design with n D 96:8=4 D 24:2 observations per stage fulfills the
requirements. The average sample size under H1 is

ASNH1 D 0:793 � 87:2 D 69:1 :

We note that ASNH1 of Pocock’s test is only slightly above this value. From
Table 2.3 one finds that the latter is 0:805 � 87:2 D 70:2, but the maximum sample
size of Pocock’s test given by 1:202 � 87:2 D 104:8 is considerably larger. That
is, the Wang and Tsiatis family can be used to reduce both, the maximum sample
size and the average sample size under H1. Nevertheless, it is not guaranteed that
the average sample size is still smallest if some other value in the alternative is true.

Table 2.6 can be used for planning a trial with minimum ASNH1 if a standardized
effect ı can be defined which explicitly refers to the minimum clinically relevant
different and the assumed true state of nature. In other cases, for example, if the
sample size calculation was based on the minimum clinically relevant different but
the true state of nature is assumed to be larger (in term of ı) the use of Table 2.6 is
questionable.

It is also possible to use an alternative optimality criterion. For example, one
might find a �� that minimizes

N C ASNH1

or a �� that minimizes

ASNH0 C ASNH01 C ASNH1 ;

where ASNH01 denotes the expected sample size calculated midway between H0 and
H1, i.e., for ı=2. It is clear that these criteria yield designs which are some kind of
compromises between the Pocock and the O’Brien and Fleming case.

2.1.4 Other Designs

Even stricter criteria for interim looks were earlier independently proposed by
Haybittle (1971) and Peto et al. (1976). They suggested using u1 D � � � D uK�1 D 3
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and uK D z˛=2. The actual Type I error rate of this procedure exceeds the nominal
level ˛, but the excess is small, and one can simply adopt the approach to adjust the
critical value uK such that the Type I error rate of the procedure is maintained. For
example, for K D 5 and ˛ D 0:05, the adjusted critical level for the Kth stage is
given by 1:990 which only slightly exceeds 1:960 and is considerably smaller than
the values 2.413 and 2.040 required by the Pocock and the O’Brien and Fleming
design, respectively.

In Köpcke (1984, 1989) a “mixed strategy” was proposed which is a trade-off
between the designs of O’Brien & Fleming and Pocock. For the first stages of
the trial, critical values of the O’Brien and Fleming type and for the latter stages
constant critical values were used, and vice versa. These designs also balance
the pros and cons of the two competing claims to minimize the expected and the
maximum sample sizes, respectively.

2.2 Symmetric Designs

In this section we focus on the two-sided version of a test design described by
Pampallona and Tsiatis (1994). They proposed a group sequential test procedure
that allows the early rejection of H0 as well as the early rejection of H1. The
procedure involves a controlled acceptance of H0, which is an essential difference
to the procedures described so far. With these designs a symmetric consideration
of both error rates will be possible. Early stopping in favor of the alternative (i.e.,
rejection of H0) is under control with a specified Type I error probability ˛, early
stopping in favor of the null hypothesis (i.e., controlled acceptance of H0) is under
control with a specified Type II error probabilityˇ or a power 1�ˇ at some specified
alternative H1. Pampallona and Tsiatis (1994) generalized the approach proposed by
Emerson and Fleming (1989) who considered the case where the Type I and Type II
error probabilities are equal (see also Gould and Pecore 1982).

In the two-sided case, the continuation regions consist of two intervals at each
stage k of the trial, k D 1; : : : ;K � 1. The study is continued if

Z�
k 2 .u0kI u1k/ or Z�

k 2 .�u1k I �u0k/ ;

where 0 < u0k < u1k, k D 1; : : : ;K � 1; are pairs of critical values that define the
regions for the two test decisions. One further assumes that by the end of the trial a
decision for either H0 or H1 is ensured. This is fulfilled by the condition

u0K D u1K : (2.8)

With this notation, H0 is rejected at stage k if jZ�
k j � u1k, and H1 is rejected at stage

k if jZ�
k j � u0k , k D 1; : : : ;K. Pampallona and Tsiatis (1994) considered critical

values u0k and u1k within the�-class of critical values according to Wang and Tsiatis
(1987). The constants to determine will depend on K, ˛, �, and additionally on the
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Type II error probability ˇ. u0k and u1k , k D 1; : : : ;K; are given by

u0k D #k � c0.K; ˛; ˇ;�/ k��0:5 (2.9)

and

u1k D c1.K; ˛; ˇ;�/ k��0:5 ; (2.10)

respectively. Recall that #k D E.Z�
k / D ı

p
k n and therefore the critical values u0k

specify to what extent, under H1, the test statistic must fall below its expectation in
order to reach a decision for H0. Equivalently, the test statistic Z�

k � #k is standard
normal under H1 and hence (2.9) defines �-class critical values for Z�

k � #k, k D
1; : : : ;K.

From (2.8)–(2.10) one finds that

#K D .c0 C c1/K��0:5 ;

where c0 D c0.K; ˛; ˇ;�/ and c1 D c1.K; ˛; ˇ;�/, and the sample size n per stage,
from #K D ı

p
K n , is given by

n D .c0 C c1/2 K2.��1/

ı2
: (2.11)

Since, using this sample size,

#k D p
k.c0 C c1/K��1 ; (2.12)

the constants c0 and c1 can be calculated, independently of ı, at given K, ˛, ˇ, and
� from

KX

kD1
PH0

0

@jZ�
k j � u1k \

k�1\

QkD1
fjZ�

Qk j 2 .u0QkI u1Qk/g
1

A D ˛ and

KX

kD1
PH1

0

@jZ�
k j � u1k \

k�1\

QkD1
fjZ�

Qk j 2 .u0QkI u1Qk/g
1

A D 1 � ˇ

using a bi-dimensional linear search algorithm. It is an important characteristic of
the procedure that there might be no u0k such that (2.9) is fulfilled for the first few
k. That is, it might happen that it is not possible at all to reach a decision for the
acceptance of H0 at an early stage of the test procedure. This is a reasonable feature
of the test procedure since at an early stage the sample size might be too small to
reach evidence for H0.
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From (2.11) it becomes clear that the sample size per stage can be calculated,
without loss of generality, for ı D 1. The sample size per stage for ı 6D 1 is obtained
from dividing n by ı2. This is along the lines described in the last section. The same
is true for the average sample size under H1. It is obtained from dividing the average
sample size calculated for ı D 1 by ı2. Alternatively, it is possible to supply the
maximum and the average sample size under H1 relative to the sample size, nf , in a
fixed sample size design.

In Pampallona and Tsiatis (1994), c0 and c1 were tabulated for ˛ D 0:01,
0.05, ˇ D 0:05, 0.10, 0.20, � D 0:0; 0:1; : : : ; 0:5, and K D 2; : : : ; 5; 10. The
average sample size was calculated under the assumption that H0 is true, under the
assumption that H1 is true and under the assumption that the intermediate value
between H0 and H1 is true. In Tables 2.7 and 2.8 we provide the constants c0 and
c1 together with the value k� which indicates the first interim analysis where H0

can be accepted. In order to characterize the procedures in terms of the maximum
and the average sample size we tabulate these values relative to nf . Following
§5.2 in Jennison and Turnbull (2000), we also consider a negative value of �
(� D �0:25) and provide the constants and the test characteristics for ˛ D 0:01,
0.05,� D �0:25, 0, 0.25, 0.50, and K D 2; : : : ; 5. Tables 2.7 and 2.8 refer to power
1 � ˇ D 0:80 and 1 � ˇ D 0:90, respectively. Note that the entries for c0 and c1

in the corresponding tables in Jennison and Turnbull (2000) are different since they
used a different parametrization of the testing problem which is defined in terms of
information levels. This is not the approach considered here.

We illustrate the use of the tables by an example. Suppose it is desired to use a
four-stage design at significance level ˛ D 0:05, 1�ˇ D 0:80, and boundary shape
parameter� D 0. From Table 2.7, the constants c0 and c1 are given by

c0 D 1:9892 and c1 D 3:9055 :

Since, from (2.12),

#k D p
k .1:9892C 3:9055/=4 D p

k 1:4738 ;

the values u0k are given by

u01 D 1:4738� 1:9892 < 0 ;
u02 D p

2 1:4738� 1:9892=
p
2 D 0:678 ;

u03 D p
3 1:4738� 1:9892=

p
3 D 1:404 ;

u04 D p
4 1:4738� 1:9892=

p
4 D 1:953 :
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Table 2.7 Constants c0 D c0.K; ˛; ˇ;�/, c1 D c1.K; ˛; ˇ;�/, inflation factor I D I.K; ˛; ˇ;�/,
and expected reduction in sample size, relative to nf , for the two-sided Pampallona and Tsiatis
family of tests, for different values of �; K, significance level ˛, and power 1� ˇ D 0:80

K c0 c1 k� I

˛ D 0:01

� D �0:25 2 1:5203 4:2926 1 1:023 (0.693, 0.835, 0.974)

3 2:1201 5:7896 2 1:031 (0.727, 0.831, 0.902)

4 2:7182 7:1608 2 1:045 (0.641, 0.777, 0.869)

5 3:2690 8:4578 2 1:053 (0.635, 0.766, 0.850)

� D 0:00 2 1:3473 3:5918 1 1:044 (0.659, 0.807, 0.930)

3 1:7191 4:3940 1 1:067 (0.654, 0.781, 0.861)

4 2:0150 5:0819 2 1:078 (0.627, 0.759, 0.831)

5 2:3113 5:6861 2 1:095 (0.591, 0.733, 0.811)

� D 0:25 2 1:2035 3:0505 1 1:096 (0.648, 0.791, 0.868)

3 1:4232 3:3971 1 1:149 (0.593, 0.741, 0.813)

4 1:5752 3:6738 1 1:180 (0.585, 0.728, 0.785)

5 1:6596 3:9091 1 1:187 (0.578, 0.718, 0.769)

� D 0:50 2 1:0755 2:7242 1 1:236 (0.680, 0.811, 0.849)

3 1:1974 2:8165 1 1:380 (0.589, 0.750, 0.795)

4 1:2777 2:8793 1 1:480 (0.555, 0.725, 0.767)

5 1:3343 2:9258 1 1:554 (0.540, 0.714, 0.751)

˛ D 0:05

� D �0:25 2 1:5169 3:2561 1 1:026 (0.833, 0.899, 0.942)

3 2:1087 4:4048 2 1:040 (0.788, 0.858, 0.869)

4 2:6946 5:4592 2 1:059 (0.747, 0.824, 0.838)

5 3:2046 6:4679 3 1:066 (0.748, 0.820, 0.822)

� D 0:00 2 1:3402 2:7360 1 1:058 (0.783, 0.860, 0.884)

3 1:6539 3:3768 1 1:075 (0.785, 0.847, 0.836)

4 1:9892 3:9055 2 1:107 (0.722, 0.802, 0.802)

5 2:2730 4:3792 2 1:128 (0.710, 0.788, 0.784)

� D 0:25 2 1:1891 2:3572 1 1:133 (0.759, 0.839, 0.840)

3 1:3937 2:6439 1 1:199 (0.732, 0.809, 0.790)

4 1:4980 2:8770 1 1:219 (0.718, 0.793, 0.765)

5 1:6265 3:0620 2 1:252 (0.688, 0.769, 0.746)

� D 0:50 2 1:0578 2:1190 1 1:286 (0.772, 0.851, 0.839)

3 1:1748 2:2164 1 1:465 (0.715, 0.807, 0.781)

4 1:2488 2:2837 1 1:590 (0.695, 0.791, 0.753)

5 1:2930 2:3348 1 1:677 (0.684, 0.784, 0.737)

k� denotes the first stage where H0 can be accepted. In parentheses: expected reduction in sample
size under H0, the value midway between H0 and H1, and H1, respectively
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Table 2.8 Constants c0 D c0.K; ˛; ˇ;�/, c1 D c1.K; ˛; ˇ;�/, inflation factor I D I.K; ˛; ˇ;�/,
and expected reduction in sample size, relative to nf , for the two-sided Pampallona and Tsiatis
family of tests, for different values of �; K, significance level ˛, and power 1� ˇ D 0:90

K c0 c1 k� I

˛ D 0:01

� D �0:25 2 2:1900 4:3202 1 1:007 (0.798, 0.917, 0.972)

3 3:0313 5:8345 2 1:017 (0.735, 0.866, 0.874)

4 3:8158 7:2306 2 1:025 (0.693, 0.835, 0.844)

5 4:5487 8:5477 3 1:031 (0.691, 0.826, 0.823)

� D 0:00 2 1:8979 3:6211 1 1:024 (0.711, 0.869, 0.909)

3 2:3595 4:4403 2 1:036 (0.733, 0.851, 0.833)

4 2:7876 5:1313 2 1:054 (0.650, 0.804, 0.798)

5 3:1555 5:7471 2 1:065 (0.642, 0.791, 0.779)

� D 0:25 2 1:6750 3:0731 1 1:071 (0.669, 0.836, 0.831)

3 1:9220 3:4277 1 1:110 (0.647, 0.801, 0.777)

4 2:0656 3:7126 2 1:122 (0.641, 0.787, 0.746)

5 2:2377 3:9432 2 1:148 (0.598, 0.760, 0.726)

� D 0:50 2 1:5021 2:7348 1 1:206 (0.681, 0.841, 0.803)

3 1:6178 2:8294 1 1:329 (0.606, 0.794, 0.743)

4 1:6924 2:8932 1 1:413 (0.584, 0.777, 0.714)

5 1:7384 2:9404 1 1:471 (0.576, 0.771, 0.697)

˛ D 0:05

� D �0:25 2 2:1761 3:2914 1 1:006 (0.956, 0.972, 0.922)

3 3:0207 4:4532 2 1:023 (0.808, 0.885, 0.835)

4 3:7815 5:5374 2 1:033 (0.813, 0.874, 0.804)

5 4:5158 6:5550 3 1:043 (0.772, 0.848, 0.785)

� D 0:00 2 1:8894 2:7686 1 1:032 (0.854, 0.912, 0.848)

3 2:3430 3:4142 2 1:051 (0.797, 0.867, 0.794)

4 2:7626 3:9583 2 1:075 (0.758, 0.836, 0.760)

5 3:0962 4:4490 3 1:084 (0.758, 0.829, 0.741)

� D 0:25 2 1:6621 2:3815 1 1:100 (0.793, 0.871, 0.794)

3 1:8718 2:6804 1 1:139 (0.785, 0.850, 0.741)

4 2:0413 2:9108 2 1:167 (0.735, 0.814, 0.711)

5 2:2089 3:0992 2 1:199 (0.714, 0.797, 0.693)

� D 0:50 2 1:4880 2:1325 1 1:247 (0.780, 0.870, 0.790)

3 1:5987 2:2338 1 1:398 (0.740, 0.836, 0.723)

4 1:6581 2:3035 1 1:494 (0.727, 0.826, 0.691)

5 1:6730 2:3564 1 1:545 (0.714, 0.815, 0.672)

k� denotes the first stage where H0 can be accepted. In parentheses: expected reduction in sample
size under H0, the value midway between H0 and H1, and H1, respectively



48 2 Procedures with Equally Sized Stages

Therefore, the first facility to reject H1 is at the second interim analysis (i.e., k� D
2). The values u1k are given by

u11 D 3:9055 ;

u12 D 3:9055=
p
2 D 2:762 ;

u13 D 3:9055=
p
3 D 2:255 ;

u14 D 3:9055=
p
4 D 1:953 :

Analogously, for K D 4, ˛ D 0:05, 1 � ˇ D 0:80, and boundary shape parameter
� D 0:50, the critical values are given by

.u01; u
0
2; u

0
3; u

0
4/ D .0:517; 1:249; 1:810; 2:284/ and

.u11; u
1
2; u

1
3; u

1
4/ D .2:284; 2:284; 2:284; 2:284/ :

The corresponding sample size characteristics are as follows. Suppose the sample
size should be calculated for a standardized effect jıj D 0:50. The sample size in a
fixed sample size design is

nf D .1:96C 0:842/2

0:502
D 31:4 :

If one wants to use a Pampallona and Tsiatis design with � D 0, the maximum
sample size is (see Table 2.7)

N D 1:107 � 31:4 D 34:8 ;

and hence one needs 34:8=4 D 8:7 observations per stage. Note that this value can
also directly be achieved by (2.11). Using the design with � D 0:5, the maximum
sample size is

N D 1:590 � 31:4 D 49:9 ;

and hence 49:9=4 D 12:5 observations per stage are necessary to achieve 80 %
power. The decision regions at the calculated cumulative sample sizes for these
designs are illustrated in Fig. 2.5.

If the alternative is true, the average sample size for the design with � D 0 is

ASNH1 D 0:802 � 31:4 D 25:2 ;

for� D 0:5 it is

ASNH1 D 0:753 � 31:4 D 23:6 :
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Fig. 2.5 Continuation and decision regions for the two-sided design of Pampallona and Tsiatis;
K D 4, ˛ D 0:05, 1� ˇ D 0:80, ı D 0:5, � D 0 (upper graph) and � D 0:50 (lower graph)

Due to the early stopping in favor of H0, the average sample size under H0 is
considerably reduced, too. The reduction is 72.2 % and 69.5 % of nf for � D 0 and
� D 0:5, respectively. For� D 0:5, however, the maximum sample is much higher
than the sample size in a fixed sample size design, which might prevent someone
from using a design with � D 0:5.
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Compared to the critical values for the designs of O’Brien and Fleming (1979)
and Pocock (1977) the critical values for rejecting H0 of the Pampallona and Tsiatis
design are somewhat smaller (see Table 2.2). Note that, for � D 0, the last stage
critical value can be even smaller than the critical value in a fixed sample size design.
The reason is that a rejection at this stage requires evidence against H0 also for the
earlier stages in the sense that the absolute value of the test statistic may not fall
short of the lower boundary. This is a general feature of sequential testing and will
be discussed further on in Sect. 2.3. For increasing power, a smaller critical value is
required for the acceptance of H0. As a consequence, roughly speaking, the Wang
and Tsiatis critical values for rejecting H0 result from considering the case where
the power approaches 100 %.

Some extensions of the procedure are obvious. First, it is possible to find an
optimal�� that minimizes the average sample size under, say, H1. Wassmer (1999c)
provides the minimizing �� together with the maximum sample size. This is
in accordance to the optimum regions found in Wang and Tsiatis (1987). Under
reasonable assumptions, a design that minimizes ASNH1 is for values of� between
0.4 and 0.5. These optimum designs with respect to the average sample size under
H1 implicate a large increase in the necessary maximum sample size. It is therefore
questionable if these designs are appealing for practical use.

It is also possible to consider different shapes for rejecting H0 and accepting
H0. In the simplest case, two values, �0 and �1, are specified which determine the
rejection regions for H0 and H1, respectively. In this case, the critical values are
given by

u0k D #k � c0.K; ˛; ˇ;�0;�1/ k�0�0:5

and

u1k D c1.K; ˛; ˇ;�0;�1/ k�1�0:5 ;

respectively, and it is straightforward to calculate the two constants such that the
resulting test procedure preserves the significance level and the required power.

2.3 One-Sided Designs

The issues involved in the question of whether a test should be two-sided or
one-sided are getting more complex when considering group sequential designs
(O’Brien 1998). Nevertheless, it is conceptually straightforward to define one-sided
tests for this case. Thereby, one-sided testing means, without loss of generality,
testing H0 W � � �0 against the one-sided alternative

H1 W � > �0 :
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We note that in all cases considered here this is equivalent to testing the null
hypothesis H0 W � D �0 which is tested against the one-sided alternative H1, i.e.,
all relevant calculations are performed on the boundary of H0 W � � �0.

In the simplest case, the continuation (and acceptance) regions C �
k for Z�

k are
given by

C �
k D .�1I uk/; k D 1; : : : ;K;

and the rejection regions R�
k are given by the complement of C �

k , i.e.,

R�
k D ŒukI 1/; k D 1; : : : ;K:

In this case, a set of critical values u1; : : : ; uK satisfying

PH0 .Z
�
1 � u1 or : : : or Z�

K � uK/ D ˛ (2.13)

defines a one-sided group sequential test design. The critical values can be found, as
for the two-sided case, within the �-class of critical values due to Wang and Tsiatis
(1987) with critical values given by

uk D cWT.K; ˛;�/ k��0:5; k D 1; : : : ;K:

The test characteristics in terms of the inflation factor and the average sample size
can be computed along the lines described in Sect. 2.1. The (exact) sample size
formula for the fixed sample size design is

nf D
�
˚�1.1� ˛/C ˚�1.1 � ˇ/�2

ı2
:

The sample size and the expected sample size for the group sequential design are
found numerically.

It turns out that the critical values and the test characteristics of the one-sided test
at level 2 ˛ are the same as those already displayed in Tables 2.1, 2.3, 2.4, and 2.5
for the two-sided test at level ˛. This is in analogy to the fixed sample size case.
Note, however, that it is a only numerical coincidence which is accurate at the given
decimal places for K � 10. To understand this, consider the case K D 2. If the
critical values were exactly the same, the two probabilities

P1 D 1 � PH0.jZ�
1 j < u; jZ�

2 j < u/ and

P2 D 2.1� PH0 .Z
�
1 < u; Z�

2 < u//

must coincide at given u. Numerically, this is indeed the case, but only if u is
sufficiently large. Below are the values for P1 and P2 for some u which were
calculated with the use of bivariate standard normal cdf with correlation 1=

p
2:
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u 0:4 0:8 1:2 1:6 2:0 2:4

P1 0:8699 0:5978 0:34704 0:174531 0:0759732 0:0285025575

P2 0:9189 0:6021 0:34720 0:174533 0:0759732 0:0285025575

The numerical identity for u > 1:6 is due to the fact that under the bivariate nor-
mal distribution with positive correlation the probability of “significantly opposed
effects” is extremely small if the critical value u is sufficiently large. That is, for
sufficiently large u, the probability

PH0 .Z
�
1 < �u; Z�

2 > u/ ;

which is taken into account in the two-sided case, but not for the one-sided case,
is negligibly small. The difference in terms of the corresponding power (and
the average sample size) is even smaller and, for commonly used values of K,
˛, and ˇ, negligible too. Our calculations showed that for up to K D 10 the
maximum difference in the critical values is smaller than 0.00005 and therefore
of no practical concern (see Proschan 1999; Wassmer 1999c). Hence the figures
in Tables 2.1, 2.3, 2.4, and 2.5 with 2 ˛ can be used for a one-sided test design
at significance level ˛. Nevertheless, particularly if it is desired to use a plan with
many stages, the decision regions and the test characteristics should be specifically
calculated for the one-sided case in order to achieve precise results.

DeMets and Ware (1980, 1982) considered the issue of stopping the trial for
futility, which becomes evident in the one-sided setting. If, for example, the one-
sided p-value at some stage k is greater than 0.50, the effect is directed opposed to
the alternative. Hence, there might be no reasonable chance to obtain a significant
result at the end of the trial. In the planning phase of the trial it can be decided that
in this case the trial will be stopped. DeMets and Ware considered various choices
of stopping for futility options, including the “asymmetric method” which involves
a constant boundary for stopping for futility. Using this method, the continuation
regions C �

k are given by

C �
k D .uLI uk/; k D 1; : : : ;K � 1;

i.e., the trial is stopped for futility if Z�
k falls short of a constant uL. The rejection

regions R�
k are, as above, given by

R�
k D ŒukI 1/; k D 1; : : : ;K:

Taking into account this stopping for futility option, the critical values are different
as compared to the original design defined through (2.13). Indeed, the critical values
are somewhat smaller and, most importantly, if the null hypothesis is true, the
average sample size reduces considerably. This is shown in Table 2.9 which extends
Tables 1 and 2 in DeMets and Ware (1980). In Table 2.9, the critical values are
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Table 2.9 Constants c D cWT.K; ˛; �/ in the one-sided test design due to DeMets and Ware with
stopping in favor of H0 if Z�

k < uL

K uL D 0:5 uL D 0 uL D �0:5 uL D �1
˛ D 0:005

O’Brien/ 2 3.6397 (1.31) 3.6469 (1.50) 3.6480 (1.69) 3.6481 (2.00)

Fleming 3 4.4478 (1.51) 4.4823 (1.87) 4.4921 (2.27) 4.4945 (3.00)

4 5.1177 (1.66) 5.1867 (2.19) 5.2103 (2.79) 5.2182 (4.00)

5 5.6974 (1.78) 5.8046 (2.46) 5.8451 (3.27) 5.8611 (5.00)

6 6.2125 (1.89) 6.3601 (2.70) 6.4194 (3.72) 6.4455 (6.00)

7 6.6785 (1.98) 6.8679 (2.93) 6.9471 (4.14) 6.9849 (7.00)

8 7.1057 (2.06) 7.3375 (3.14) 7.4376 (4.54) 7.4884 (8.00)

9 7.5012 (2.14) 7.7760 (3.33) 7.8976 (4.93) 7.9623 (8.99)

10 7.8702 (2.21) 8.1884 (3.52) 8.3318 (5.30) 8.4113 (9.99)

Pocock 2 2.7698 (1.31) 2.7715 (1.50) 2.7718 (1.69) 2.7718 (2.00)

3 2.8646 (1.50) 2.8710 (1.87) 2.8726 (2.27) 2.8730 (2.99)

4 2.9226 (1.65) 2.9341 (2.18) 2.9377 (2.78) 2.9387 (3.99)

5 2.9625 (1.77) 2.9787 (2.45) 2.9844 (3.26) 2.9863 (4.99)

6 2.9919 (1.87) 3.0124 (2.69) 3.0201 (3.70) 3.0231 (5.99)

7 3.0146 (1.97) 3.0391 (2.91) 3.0487 (4.12) 3.0528 (6.98)

8 3.0327 (2.05) 3.0608 (3.12) 3.0724 (4.53) 3.0775 (7.98)

9 3.0476 (2.12) 3.0789 (3.31) 3.0923 (4.91) 3.0986 (8.98)

10 3.0600 (2.19) 3.0943 (3.50) 3.1094 (5.28) 3.1169 (9.97)

˛ D 0:025

O’Brien/ 2 2.7615 (1.31) 2.7897 (1.50) 2.7956 (1.69) 2.7965 (2.00)

Fleming 3 3.3566 (1.50) 3.4370 (1.87) 3.4631 (2.27) 3.4711 (2.99)

4 3.8345 (1.64) 3.9763 (2.17) 4.0283 (2.78) 4.0486 (3.99)

5 4.2365 (1.76) 4.4442 (2.44) 4.5256 (3.25) 4.5617 (4.98)

6 4.5845 (1.86) 4.8609 (2.68) 4.9736 (3.69) 5.0283 (5.98)

7 4.8914 (1.94) 5.2384 (2.90) 5.3838 (4.11) 5.4590 (6.97)

8 5.1660 (2.02) 5.5849 (3.10) 5.7638 (4.51) 5.8611 (7.97)

9 5.4142 (2.08) 5.9061 (3.29) 6.1190 (4.89) 6.2395 (8.96)

10 5.6404 (2.14) 6.2061 (3.47) 6.4535 (5.26) 6.5981 (9.95)

Pocock 2 2.1683 (1.29) 2.1765 (1.49) 2.1781 (1.68) 2.1783 (1.99)

3 2.2639 (1.48) 2.2826 (1.84) 2.2880 (2.24) 2.2895 (2.97)

4 2.3203 (1.61) 2.3484 (2.14) 2.3580 (2.75) 2.3613 (3.95)

5 2.3580 (1.72) 2.3942 (2.40) 2.4078 (3.21) 2.4132 (4.94)

6 2.3851 (1.81) 2.4285 (2.63) 2.4457 (3.64) 2.4532 (5.92)

7 2.4056 (1.89) 2.4552 (2.84) 2.4759 (4.05) 2.4855 (6.91)

8 2.4217 (1.95) 2.4769 (3.03) 2.5006 (4.43) 2.5123 (7.89)

9 2.4347 (2.01) 2.4948 (3.21) 2.5215 (4.81) 2.5352 (8.87)

10 2.4455 (2.07) 2.5100 (3.38) 2.5393 (5.16) 2.5550 (9.85)

O’Brien and Fleming: � D 0; Pocock: � D 0:5. In parentheses: expected number of performed
stages under the assumption that H0 is true
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Fig. 2.6 Continuation and decision regions for the one-sided design of DeMets and Ware with
O’Brien and Fleming type boundaries; K D 4, ˛ D 0:025, uL D �0:5

supplied for ˛ D 0:005, 0.025, and stopping for futility bounds uL D 0:5, 0,
�0:5, �1. Note that uL D 0:5, 0, and �0:5 are related to the cases where the
trial is terminated if the p-value at some stage exceeds 0.3085, 0.50, and 0.6915,
respectively. uL D �1 refers to the case where no early stopping in favor of H0 is
taken into account, and is added for the sake of completeness although the constants
c are the same (at the given decimal places) as those provided in Table 2.1. Table 2.9
also contains the expected number of stages under the assumption that H0 is true.
Note that this quantity does not depend on the sample size n per stage and hence on
the power of the test. In Fig. 2.6 the decision regions are illustrated for an O’Brien
and Fleming type design when considering early stopping for futility if Z�

k < �0:5.
Table 2.9 shows that the critical values are quite insensitive to changes in the

stopping for futility bound uL. Only for uL D 0:5 the upper critical values are
considerably smaller than for uL D �1, and hence it is more likely to reject H0

at some stage k. Therefore, the “profit” using critical values which are adjusted for
the stopping for futility option is quite small. Furthermore, positive values of uL are
not recommended for practical applications since it is likely to terminate the trial
for futility also if the alternative is true. On the other hand, the expected number
of performed stages is sensitive to the choice of uL. This effect even increases for
increasing K.

The considered strategy enforces to stop the trial if the test statistic falls short
of uL. In this sense, the futility bounds are binding. One has to bear in mind,
however, that the termination of the trial (i.e., uncontrolled acceptance of H0) is
always possible under control of the significance level ˛. Hence one can use the
boundaries that do not take into account stopping for futility and stop the trial if it
is unlikely to reject H0 at the subsequent stages of the trial. If one performs futility
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stops in this way the corresponding futility bounds are non-binding. From a practical
perspective, the non-binding bounds have advantages because, in practice, often a
weak study result should not force the study to be stopped. It is even true that an
early rejection should not force the study to be stopped. For example, although a
formal rejection is already reached, in a clinical trial more safety issues may be
of interest and the trial should then proceed. This is possible with the rejection
boundaries that do not account for the futility stopping because the Type I error
rate is not influenced by this. Consequently, in the non-binding futility case both
rejection and futility bounds are treated the same. Note that clearly the Type II error
is not under control with such a flexible futility rule.

A further disadvantage of the asymmetric method is that it generally needs a
higher maximum number of observations under H1 at given power 1 � ˇ when
considering various choices of uL. Although there is no such strong effect for uL �
�0:5, it is more pronounced for larger uL. This is illustrated in Table 2.10. It supplies
the inflation factor I D I.K; ˛; ˇ/ and the average sample size under H1 for O’Brien
& Fleming’s and Pocock’s design relative to the sample size in a fixed sample size
design for power 1 � ˇ D 0:80. Again, the case uL D �1 is added although these
figures were already provided in Table 2.3. The table shows that there is a distinct
increase in the maximum sample size which is also increasing in K. Although there
are cases where the average sample size under H1 is even smaller than for the one-
sided test design without provision for early stopping in favor of H0 (particularly,
for Pocock type boundaries) the necessary increase in the maximum sample size can
be large. Note that this of course is true for both the bonding and the non-binding
case because also for the non-binding case the power will be calculated for the
considered rejection and futility bounds and the former are somewhat larger under
the non-binding case.

DeMets and Ware also proposed the “constant likelihood group sequential
method” which uses stopping for futility bounds which were motivated by the work
of Wald (1947). These bounds explicitly depend on the power 1�ˇ of the trial. They
compared the test characteristics of the two methods which were applied for Pocock
type test designs (DeMets and Ware 1980) as well as for O’Brien and Fleming type
test designs (DeMets and Ware 1982). This method, however, also does not allow
for the acceptance of H0 that controls the Type II error rate.

On the other hand, Pampallona and Tsiatis (1994) proposed the symmetric
approach also for the one-sided test design. As already described in Sect. 2.2, this
procedure controls the acceptance of H0 by a prespecified Type II error rate ˇ. The
lower and upper critical values are defined within the�-class of critical values, i.e.,
as for the two-sided case, they are given by

u0k D #k � c0.K; ˛; ˇ;�/ k��0:5

and

u1k D c1.K; ˛; ˇ;�/ k��0:5 ;
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Table 2.10 Inflation factor I D I.K; ˛; ˇ/ and expected reduction in sample size under H1,
relative to nf , for the one-sided test design due to DeMets and Ware with stopping in favor of
H0 if Z�

k < uL

K uL D 0:5 uL D 0 uL D �0:5 uL D �1
˛ D 0:005

O’Brien/ 2 1.007 (0.936) 1.002 (0.943) 1.002 (0.946) 1.001 (0.947)

Fleming 3 1.049 (0.865) 1.016 (0.876) 1.008 (0.883) 1.007 (0.886)

4 1.115 (0.837) 1.039 (0.844) 1.017 (0.855) 1.011 (0.862)

5 1.197 (0.826) 1.068 (0.825) 1.028 (0.837) 1.015 (0.847)

6 1.292 (0.825) 1.101 (0.813) 1.040 (0.824) 1.017 (0.838)

7 1.400 (0.833) 1.136 (0.804) 1.052 (0.815) 1.019 (0.831)

8 1.519 (0.847) 1.174 (0.799) 1.065 (0.808) 1.021 (0.826)

9 1.652 (0.866) 1.214 (0.797) 1.079 (0.802) 1.022 (0.822)

10 1.795 (0.889) 1.255 (0.797) 1.093 (0.797) 1.024 (0.819)

Pocock 2 1.096 (0.862) 1.092 (0.869) 1.092 (0.871) 1.092 (0.872)

3 1.173 (0.815) 1.145 (0.831) 1.138 (0.838) 1.137 (0.841)

4 1.255 (0.785) 1.190 (0.808) 1.171 (0.821) 1.166 (0.828)

5 1.344 (0.764) 1.233 (0.792) 1.198 (0.811) 1.187 (0.822)

6 1.439 (0.749) 1.276 (0.779) 1.222 (0.803) 1.203 (0.818)

7 1.541 (0.738) 1.318 (0.769) 1.244 (0.796) 1.216 (0.817)

8 1.650 (0.729) 1.361 (0.760) 1.265 (0.791) 1.226 (0.816)

9 1.766 (0.723) 1.405 (0.752) 1.286 (0.786) 1.236 (0.815)

10 1.892 (0.719) 1.449 (0.745) 1.305 (0.782) 1.243 (0.816)

˛ D 0:025

O’Brien/ 2 1.035 (0.884) 1.012 (0.893) 1.008 (0.899) 1.008 (0.902)

Fleming 3 1.143 (0.838) 1.050 (0.838) 1.024 (0.848) 1.017 (0.856)

4 1.286 (0.825) 1.099 (0.809) 1.043 (0.819) 1.024 (0.831)

5 1.457 (0.832) 1.157 (0.794) 1.063 (0.801) 1.028 (0.818)

6 1.653 (0.852) 1.220 (0.787) 1.085 (0.790) 1.032 (0.809)

7 1.869 (0.879) 1.287 (0.785) 1.108 (0.781) 1.035 (0.802)

8 2.103 (0.909) 1.359 (0.787) 1.131 (0.775) 1.037 (0.798)

9 2.347 (0.940) 1.435 (0.793) 1.154 (0.771) 1.038 (0.794)

10 2.599 (0.971) 1.516 (0.800) 1.178 (0.768) 1.040 (0.791)

Pocock 2 1.133 (0.833) 1.114 (0.844) 1.111 (0.850) 1.110 (0.853)

3 1.273 (0.780) 1.193 (0.797) 1.172 (0.811) 1.166 (0.819)

4 1.427 (0.752) 1.267 (0.771) 1.218 (0.791) 1.202 (0.805)

5 1.594 (0.735) 1.340 (0.754) 1.258 (0.779) 1.229 (0.799)

6 1.775 (0.726) 1.413 (0.741) 1.295 (0.770) 1.249 (0.796)

7 1.970 (0.721) 1.487 (0.731) 1.330 (0.762) 1.265 (0.795)

8 2.179 (0.719) 1.562 (0.723) 1.363 (0.757) 1.279 (0.795)

9 2.401 (0.719) 1.638 (0.717) 1.395 (0.752) 1.291 (0.795)

10 2.634 (0.720) 1.716 (0.712) 1.427 (0.747) 1.301 (0.795)

Power 1� ˇ D 0:80. In parentheses: expected reduction in sample size under H1
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respectively. At stage k, the trial is continued if

Z�
k 2 .u0k I u1k/ ;

where u0k < u1k , k D 1; : : : ;K �1. Note that the condition u0k > 0 that was postulated
for the two-sided case is not met. Consequently, requiring

u0K D u1K

as for the two-sided case, at each stage k of the test procedure a decision in favor
of H0 is possible, and one yields a decision for either H0 or H1, at the latest, at
stage K. In analogy to the two-sided case, the constants c0 and c1 can be calculated,
independently of the specified standardized effect size ı, at given ˛, ˇ, K, and �
from (see Sect. 2.2)

KX

kD1
PH0

0

@Z�
k � u1k \

k�1\

QkD1
fZ�

Qk 2 .u0Qk I u1Qk/g
1

A D ˛ and

KX

kD1
PH1

0

@Z�
k � u1k \

k�1\

QkD1
fZ�

Qk 2 .u0Qk I u1Qk/g
1

A D 1 � ˇ :

In Pampallona and Tsiatis (1994), c0 and c1 were tabulated for one-sided ˛ D
0:01, 0.05, ˇ D 0:05, 0.10, 0.20, � D 0:0; 0:1; : : : ; 0:5, and K D 2; : : : ; 5; 10,
with the average sample size calculated under the assumption that H0 is true, under
the assumption that H1 is true and under the assumption that the intermediate value
between H0 and H1 is true. In Tables 2.11 and 2.12 we provide the constants c0

and c1 for the one-sided significance levels ˛ D 0:005 and ˛ D 0:025 since these
are the one-sided levels which are commonly used in practice. Following §4.2 in
Jennison and Turnbull (2000) we also consider a negative value of � (� D �0:25)
and provide the constants and the test characteristics for � D �0:25, 0, 0.25, 0.50,
and K D 2; : : : ; 5. The constants c0 and c1 differ from the constants provided in the
tables in Jennison and Turnbull (2000) since they use a different parametrization.
As for the two-sided case, Tables 2.11 and 2.12 refer to power 1 � ˇ D 0:80 and
1 � ˇ D 0:90, respectively.

We illustrate the use of the tables by an example. Suppose it is desired to use
a one-sided four-stage design at significance level ˛ D 0:025, 1 � ˇ D 0:80, and
boundary shape parameter � D 0. From Table 2.11, the constants c0 and c1 are
given by

c0 D 2:0191 and c1 D 3:8989 :
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Table 2.11 Constants c0 D c0.K; ˛; ˇ;�/, c1 D c1.K; ˛; ˇ;�/, inflation factor I D
I.K; ˛; ˇ;�/, and expected reduction in sample size, relative to nf , for the one-sided Pampallona
and Tsiatis family of tests, for different values of �; K, significance level ˛, and power 1� ˇ D
0:80

K c0 c1 I

˛ D 0:005

� D �0:25 2 1:5203 4:2925 1:023 (0.602, 0.827, 0.974)

3 2:1396 5:7843 1:035 (0.555, 0.789, 0.898)

4 2:7214 7:1601 1:045 (0.539, 0.763, 0.868)

5 3:2718 8:4571 1:054 (0.519, 0.746, 0.848)

� D 0:00 2 1:3473 3:5918 1:044 (0.590, 0.802, 0.930)

3 1:7249 4:3924 1:068 (0.506, 0.750, 0.858)

4 2:0431 5:0765 1:085 (0.478, 0.725, 0.827)

5 2:3248 5:6838 1:098 (0.464, 0.710, 0.809)

� D 0:25 2 1:2035 3:0505 1:096 (0.598, 0.788, 0.868)

3 1:4238 3:3970 1:149 (0.488, 0.725, 0.812)

4 1:5879 3:6716 1:184 (0.442, 0.696, 0.782)

5 1:7208 3:9007 1:210 (0.418, 0.678, 0.763)

� D 0:50 2 1:0755 2:7242 1:236 (0.649, 0.810, 0.849)

3 1:1975 2:8165 1:380 (0.525, 0.745, 0.795)

4 1:2781 2:8792 1:480 (0.463, 0.713, 0.767)

5 1:3373 2:9255 1:556 (0.426, 0.694, 0.749)

˛ D 0:025

� D �0:25 2 1:5191 3:2548 1:027 (0.674, 0.865, 0.939)

3 2:1287 4:3986 1:045 (0.633, 0.822, 0.865)

4 2:6993 5:4578 1:060 (0.611, 0.798, 0.836)

5 3:2388 6:4579 1:071 (0.592, 0.781, 0.818)

� D 0:00 2 1:3409 2:7356 1:059 (0.656, 0.838, 0.882)

3 1:7086 3:3626 1:092 (0.586, 0.789, 0.828)

4 2:0191 3:8989 1:116 (0.560, 0.765, 0.797)

5 2:2944 4:3744 1:133 (0.544, 0.750, 0.780)

� D 0:25 2 1:1893 2:3571 1:133 (0.663, 0.826, 0.839)

3 1:4038 2:6416 1:204 (0.569, 0.769, 0.786)

4 1:5644 2:8652 1:250 (0.528, 0.741, 0.757)

5 1:6945 3:0513 1:283 (0.506, 0.724, 0.739)

� D 0:50 2 1:0578 2:1190 1:286 (0.707, 0.845, 0.839)

3 1:1756 2:2162 1:466 (0.602, 0.788, 0.780)

4 1:2548 2:2830 1:595 (0.548, 0.759, 0.750)

5 1:3133 2:3326 1:694 (0.515, 0.743, 0.731)

In parentheses: expected reduction in sample size under H0, the value midway between H0 and H1,
and H1, respectively
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Table 2.12 Constants c0 D c0.K; ˛; ˇ;�/, c1 D c1.K; ˛; ˇ;�/, inflation factor I D
I.K; ˛; ˇ;�/, and expected reduction in sample size, relative to nf , for the one-sided Pampallona
and Tsiatis family of tests, for different values of �; K, significance level ˛, and power 1� ˇ D
0:90

K c0 c1 I

˛ D 0:005

� D �0:25 2 2:1903 4:3201 1:007 (0.651, 0.903, 0.971)

3 3:0334 5:8340 1:017 (0.634, 0.856, 0.874)

4 3:8160 7:2306 1:025 (0.595, 0.827, 0.844)

5 4:5549 8:5462 1:032 (0.570, 0.810, 0.822)

� D 0:00 2 1:8980 3:6211 1:024 (0.611, 0.863, 0.909)

3 2:3813 4:4360 1:041 (0.557, 0.817, 0.832)

4 2:7938 5:1303 1:055 (0.534, 0.791, 0.797)

5 3:1593 5:7464 1:066 (0.516, 0.775, 0.778)

� D 0:25 2 1:6750 3:0731 1:071 (0.602, 0.833, 0.831)

3 1:9251 3:4272 1:112 (0.509, 0.781, 0.776)

4 2:1153 3:7069 1:139 (0.473, 0.755, 0.745)

5 2:2710 3:9399 1:159 (0.454, 0.739, 0.726)

� D 0:50 2 1:5021 2:7348 1:206 (0.642, 0.841, 0.803)

3 1:6179 2:8294 1:329 (0.525, 0.788, 0.743)

4 1:6942 2:8930 1:414 (0.469, 0.763, 0.713)

5 1:7500 2:9398 1:478 (0.437, 0.749, 0.695)

˛ D 0:025

� D �0:25 2 2:1892 3:2859 1:009 (0.734, 0.925, 0.919)

3 3:0228 4:4526 1:024 (0.701, 0.874, 0.834)

4 3:7944 5:5333 1:035 (0.662, 0.846, 0.802)

5 4:5225 6:5533 1:044 (0.641, 0.830, 0.784)

� D 0:00 2 1:8920 2:7674 1:033 (0.686, 0.884, 0.847)

3 2:3657 3:4094 1:058 (0.637, 0.839, 0.793)

4 2:7704 3:9568 1:077 (0.611, 0.814, 0.759)

5 3:1294 4:4422 1:091 (0.593, 0.798, 0.740)

� D 0:25 2 1:6626 2:3813 1:100 (0.672, 0.857, 0.794)

3 1:9072 2:6744 1:153 (0.593, 0.809, 0.739)

4 2:0939 2:9040 1:189 (0.559, 0.784, 0.710)

5 2:2469 3:0947 1:214 (0.540, 0.768, 0.692)

� D 0:50 2 1:4880 2:1325 1:248 (0.702, 0.864, 0.790)

3 1:6009 2:2336 1:399 (0.604, 0.817, 0.723)

4 1:6763 2:3018 1:506 (0.556, 0.794, 0.689)

5 1:7317 2:3521 1:587 (0.528, 0.781, 0.670)

In parentheses: expected reduction in sample size under H0, the value midway between H0 and H1,
and H1, respectively
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Since, from (2.12),

#k D p
k .2:0191C 3:8989/=4 D p

k 1:4795 ;

the values u0k are given by

u01 D 1:4795� 2:0191 D �0:540 ;
u02 D p

2 1:4795� 2:0191=
p
2 D 0:665 ;

u03 D p
3 1:4795� 2:0191=

p
3 D 1:397 ;

u04 D p
4 1:4795� 2:0191=

p
4 D 1:949 :

The values u1k are given by

u11 D 3:899 ;

u12 D 3:8989=
p
2 D 2:757 ;

u13 D 3:8989=
p
3 D 2:251 ;

u14 D 3:8989=
p
4 D 1:949 :

Analogously, for K D 4, ˛ D 0:025, 1 � ˇ D 0:80 and boundary shape parameter
� D 0:50, the critical values are given by

.u01; u
0
2; u

0
3; u

0
4/ D .0:514; 1:247; 1:809; 2:283/ and

.u11; u
1
2; u

1
3; u

1
4/ D .2:283; 2:283; 2:283; 2:283/ :

We recognize that the critical values (except u01 for � D 0) are very similar to
the two-sided case. Nevertheless, the difference can be more pronounced for other
choices of the design parameters. Hence it is important to decide if the design should
be one-sided or two-sided, and the calculation must take this into account.

The corresponding sample size characteristics are similar but not equal to the
two-sided case, too. Suppose the sample size is to be calculated for a standardized
effect jıj D 0:50. The sample size in a fixed sample size design at one-sided level
˛ D 0:025 is then same as that for two-sided ˛ D 0:05, namely (see Sect. 2.2)

nf D 31:4 :
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If one wants to use the one-sided Pampallona and Tsiatis design with � D 0, the
maximum sample size is

N D 1:116 � 31:4 D 35:0 ;

which is slightly above the corresponding value for the two-sided case. Similarly,
using the design with � D 0:5, the maximum sample size is

N D 1:595 � 31:4 D 50:1 :

The decision regions for these one-sided designs are illustrated in Fig. 2.7.
Due to the stopping criterion in favor of the acceptance of H0 the critical values

are somewhat smaller than for the pure one-sided case. The “profit” of using such
a method is generally larger as compared to the asymmetric method of DeMets and
Ware (1980, 1982). This is due to the different decision region which dictates the
acceptance of H0 and the termination of the study (see Fig. 2.6). Pampallona and

Fig. 2.7 Continuation and decision regions for the one-sided design of Pampallona and Tsiatis;
K D 4, ˛ D 0:025, 1� ˇ D 0:80, ı D 0:5, � D 0 (upper graph) and � D 0:50 (lower graph)
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Tsiatis also compared their approach with the constant likelihood method which
also depends on the power of the test. Concerning the average sample size, however,
the approach considered here is favorable and thus recommended.

A fully symmetric approach is obtained in the one-sided case for ˛ D ˇ. In
this case, c0 D c1, and the decision regions for rejecting H0 when using the test
statistic Z�

k at stage k and the decision regions for rejecting H1 when using the test
statistic Z�

k �#k at stage k are the same. Recall that Z�
k �#k is standard normal under

H1 and hence H1 is rejected if a standard normal variable falls short of �c0k��0:5,
k D 1; : : : ;K. This procedure exactly coincides with the one-sided test proposed by
Emerson and Fleming (1989).

As for the two-sided case, it is straightforward to search for optimum designs
within the �-class of critical values, or to specify two different shapes for rejecting
and accepting H0. Optimum designs for the one-sided case were also found by
Jennison (1987) and Eales and Jennison (1992) who extended optimization to the
average over several values of the parameter space and to a Bayesian optimality
criterion (see also, Barber and Jennison 2002; Anderson 2007).

2.4 A Note on Two-Sided Designs

In single stage designs a two-sided test at level ˛ can usually be understood as two
one-sided tests at level ˛=2. This is also possible for a group sequential design,
however, it is not as straightforward as in the single stage case.

A two-sided group sequential design without a (binding) futility boundary, for
instance, has to be understood as two one-sided designs with binding futility
boundaries. This follows from the observation that rejection of H0 W � D �0 at stage
k with Z�

k < �uk cannot be understood as rejection of H.C/
0 W � � �0, since this null

hypothesis is completely in line with the data. It has to be understood as rejection
of H.�/

0 W � � �0 and acceptance of H.C/
0 . Similarly, Z�

k � uk implies rejection of

H.C/
0 and a futility stop for H.�/

0 . Note that the Type I error rate condition (1.11)
implies that the one-sided futility boundaries are binding. The two one-sided tests
of a two-stage design with binding futility boundary are more obvious. In this case
C �;C

k D .u0kI u1k/ is the continuation region of the one-sided test for H.C/
0 W � � �0

and C �;�
k D .�u1k I �u0k/ the continuation region for H.�/

0 W � � �0.
Note that understanding a two-sided test as two one-sided tests implies that the

approximate power formula (2.1), which is the power of a one-sided test, is the more
correct formula than the traditional two-sided one. The latter counts rejections in the
“wrong direction” as success even though they are obviously erroneous, since the
actually true one-sided null hypothesis has been rejected. The same is true for group
sequential designs. As mentioned, the numerical differences between the two- and
one-sided power formula are usually negligible, however, the one-sided version is
not only more correct but also more simple and hence preferable. Finally, only the
two one-sided tests permit decisions on the direction of the treatment effect and
hence are essential for all clinical trials.



Chapter 3
Procedures with Unequally Sized Stages

The assumption of equally sized stages is quite restrictive. For example, although
it might be planned to perform the interim analyses after stages of equal size,
the schedule of interim analyses can often at best ensure that the stage sizes are
roughly the same. Furthermore, the accomplishment of an interim analysis requires
the definition of the population to be analyzed and the actual size of this population
will be rarely exactly equal to the planned one. Thus, due to practical constraints the
sample size will slightly vary between the stages. Pocock (1977, 1982) showed that
the critical values which are designed for equally sized stages can also be used for
unequal stages sizes if the assumption of equal sample sizes is not grossly violated.
The effect on the size and the power of the test procedure is small in this case and
might be neglected for practical purposes. Nevertheless, there are cases where the
influence is not negligible and it is imperative to find procedures especially designed
to account for this effect. It might also be desired from the outset to plan the interim
analyses at some prespecified number of observations without the restriction of
equally sized stages. For example, one might wish to drop the first interim analysis
in an O’Brien and Fleming design to increase the probability for a positive test
result in the first stage. The critical values will then differ from the original O’Brien
and Fleming critical values. Furthermore, it might be more attractive to perform the
interim analyses at given time points of analyses rather than after the observation of
a specified number of subjects. This will typically lead to unequally sized stages as
well.

In the following we will present group sequential test procedures that are
specifically designed for unequally sized stages. We adopt the basic notation

© Springer International Publishing Switzerland 2016
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introduced in Sect. 1.2. That is, at stage k of the group sequential test the statistic

Z�
k D

Pk
QkD1

p
nQkZQk

qPk
QkD1 nQk

; k D 1; : : : ;K;

summarizes the information obtained in the data up to stage k. The expectation and
the elements of the correlation matrix are given by (1.5) and (1.6), respectively.
Since

Z�
k D

Pk
QkD1

p
tQk � tQk�1 ZQkp

tk
; k D 1; : : : ;K; (3.1)

where tk D Pk
QkD1 nQk=N, k D 1; : : : ;K, and t0 D 0, the statistic Z�

k depends on
the sample sizes per stage only through tk, k D 1; : : : ;K. Thus, it is possible to
characterize a group sequential design in terms of the information rates tk. These
values express how much information, relative to the maximum sample size, N, is
obtained up to stage k. In our prototype case, the information rates are expressed in
terms of the sample sizes but this is not necessarily the case (see Chap. 5). Note that,
alternatively, one might express the information rates in terms of the parameters

�k D tk � tk�1
t1

; k D 2; : : : ;K;

which were introduced in Sect. 1.4 and denote the standardized time interval
between the .k � 1/th and kth stage relative to n1. In terms of the sample sizes,
this is simply nk=n1, k D 2; : : : ;K.

We first describe the effect of using the decision boundaries designed for equally
sized stages to the more general case and briefly describe a worst case scenario
adjustment procedure. We then sketch the use of designs with prefixed sample sizes
that need not to be equal to each other. A more general approach is provided by the
use of the ˛-spending function or use function approach. This more sophisticated
approach can handle unpredictable sample sizes per stage and we will see that even
the maximum number of stages, K, needs not be fixed in advance when using
this approach. The extension to the ˇ-spending function approach is also briefly
discussed.

3.1 Effect of Using Boundaries for Equally Sized Stages

As already mentioned, Pocock (1977, 1982) suggested the use of the critical values
calculated for equal sample sizes also for the more general case where departures
from this assumption may occur. That is, the test statistic Z�

k given by (1.2) is
calculated from the observations recorded at each stage and the test is conducted
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Table 3.1 Type I error rate (size) and power for
using the two-sided O’Brien & Fleming’s and
Pocock’s boundaries, respectively, for unequally
sized stages

n1; n2; n3; n4 Size Power

O’Brien and 20; 20; 20; 20 0:050 0:800

Fleming 18; 18; 18; 26 0:052 0:801

16; 16; 16; 32 0:053 0:801

22; 22; 22; 14 0:048 0:799

24; 24; 22; 10 0:047 0:797

10; 10; 10; 50 0:057 0:801

40; 20; 10; 10 0:046 0:796

Pocock 20; 20; 20; 20 0:050 0:800

18; 18; 18; 26 0:051 0:798

16; 16; 16; 32 0:052 0:795

22; 22; 22; 14 0:049 0:802

24; 24; 22; 10 0:047 0:803

10; 10; 10; 50 0:055 0:787

40; 20; 10; 10 0:041 0:804

The standardized effect ı is chosen such that the
test has power 1� ˇ D 0:80 for N D 80

with critical regions as if the stage sizes were equal. In fact, it turns out that this
simple way has a negligible influence on the Type I error rate and the power of the
test as long as there are only slight departures from the intended sample sizes.

In Table 3.1, the size and the power are shown for this strategy using the original
two-sided O’Brien & Fleming’s and Pocock’s boundaries, respectively, for K D 4

and ˛ D 0:05. These are given by .u1; u2; u3; u4/ D .4:049; 2:863; 2; 337; 2:024/

and .u1; u2; u3; u4/ D .2:361; 2:361; 2:361; 2:361/, respectively (see Table 2.2). The
standardized effect ı is chosen such that the test has power 1 � ˇ D 0:80 for N D
80 and equal sample sizes between the stages, i.e., n1 D n2 D n3 D n4 D 20.
For O’Brien and Fleming’s test, ı D 0:317, and, for Pocock’s test, ı D 0:344.
The values in the table are obtained by numerical integration where the recursive
integration formula was applied to the general case of arbitrarily sized stages as
shown in Sect. 1.4. Different sample size allocations are presented ranging from
slight departures to halving and doubling the preplanned sample sizes, if possible.
For all considered cases, the maximum sample size, N, is set equal to its design
value.

By definition, for n1 D n2 D n3 D n4 D 20 the size is equal to 0.05 and the
power is equal to 0.80. The effects on the Type I error rate and the power are small
for the sequences of sample sizes considered in this example. The effects on the
Type I error rate are similar for O’Brien and Fleming’s and for Pocock’s test, but for
both tests they are very small. This is true for many practically relevant situations
and one can conclude that the use of the methods that assume equally sized stage
for the more general case of unequal spacings will be satisfactory. Clearly, from a
theoretical point of view this approximate consideration is unsatisfactory.
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From a more theoretical point of view, Proschan et al. (1992) examined the
maximum possible increase in Type I error rate considering all possible sequences
of information rates. In the one-sided case,

1 � P

 
K\

kD1
fZ�

k < ukg
!

� 1 �
KY

kD1
P.Z�

k < uk/ ; (3.2)

which follows from Slepian’s inequality (Slepian 1962) for multivariate normally
distributed observations with mean vector 0 and pairwise positive correlation.
Hence, the right-hand side in (3.2) is an upper bound for the Type I error rate when
using the critical values u1; : : : ; uK in a group sequential test design with arbitrary
information rates. Similarly, from Šidák’s inequality (Sidák 1967) it follows for the
two-sided case that

1 � P

 
K\

kD1
fjZ�

k j < ukg
!

� 1 �
KY

kD1
P.jZ�

k j < uk/ ; (3.3)

since Šidák’s inequality is valid for multivariate normal random vectors with mean
vector 0 and any variance–covariance matrix.

The upper bounds defined in (3.2) and (3.3) are least upper bounds, which can be
shown as follows. In terms of the information rates the correlation matrix reads as

Cov.Z�
k ;Z

�
k0/ D

r
tk
tk0

; k < k0:

Setting tk D �K�k and letting � ! 0 (i.e., considering the border case tk D 0 for
k < K and tK D 1), it follows that

lim
�!0

Cov.Z�
k ;Z

�
k0/ D lim

�!0

r
�K�k

�K�k0
D lim

�!0

p
�k0�k D 0

for k < k0. Hence, the distribution of .Z�
1 ; : : : ;Z

�
K/ converges to the distribution of

K independent standard normal variates as � ! 0. Therefore,

sup
0<t1<t2<:::<tKD1

1 � PH0

 
K\

kD1
fZ�

k < ukg
!

D 1 �
KY

kD1
˚.uk/

and

sup
0<t1<t2<:::<tKD1

1 � PH0

 
K\

kD1
fjZ�

k j < ukg
!

D 1 �
KY

kD1
.2˚.uk/� 1/ :
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For example, if one uses the unadjusted bounds in the two-sided case for ˛ D
0:05, then

lim
K!1 sup

0<t1<:::<tKD1
1 � PH0

 
K\

kD1
fjZ�

k j < 1:96g
!

D lim
K!1 1� .1 � ˛/K D 1 :

That is, the actual Type I error rate is arbitrarily close to 1 if the number of stages
increases. Proschan et al. (1992) showed that this result is also true when using the
adjusted bounds of O’Brien and Fleming or Pocock. If there are many looks close
to the information time 0, the Type I error rate can considerably exceed ˛. This
effect can be reduced if one agrees not to perform an interim analysis before some
minimum information time.

By fixing K, a simple method to achieve valid bounds for arbitrarily sized stages
is given by the calculation of critical values uk, k D 1; : : : ;K, that fulfill

1 �
KY

kD1
˚.uk/ D ˛ (3.4)

in the one-sided case and

1 �
KY

kD1
.2˚.uk/ � 1/ D ˛ (3.5)

in the two-sided case. These critical values are termed worst case scenario adjusted
critical values as they anticipate the maximum possible increase in the Type I error
rate which can result from using different stage sample sizes. Wassmer (1999a)
provided tables for different boundary shapes and examined the characteristics of
the resulting test procedures. For example, for O’Brien & Fleming and Pocock type
boundaries, the critical values are defined through

uk D QcOBF.K; ˛/=
p

k ; k D 1; : : : ;K;

and

uk D QcP.K; ˛/ ; k D 1; : : : ;K;

respectively, where the constants QcOBF.K; ˛/ and QcP.K; ˛/ are determined such
that (3.4) or (3.5) is fulfilled. Some constants QcOBF.K; ˛/ and QcP.K; ˛/ are supplied
in Table 3.2 for different K and ˛. For comparison, the original constants designed
for equal stage sizes are also provided in the table.
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Table 3.2 Constants QcOBF.K; ˛/ and QcP.K; ˛/ for the one-sided and the two-sided testing problem
assuming the independence case

Two-sided test

K ˛ D 0:001 ˛ D 0:01 ˛ D 0:05 ˛ D 0:1

O’Brien and 2 4.655 (4.654) 3.655 (3.648) 2.828 (2.797) 2.427 (2.373)

Fleming 3 5.725 (5.710) 4.545 (4.494) 3.580 (3.471) 3.111 (2.961)

4 6.655 (6.609) 5.326 (5.218) 4.247 (4.049) 3.724 (3.466)

5 7.493 (7.412) 6.035 (5.861) 4.856 (4.562) 4.286 (3.915)

10 10.91 (10.57) 8.956 (8.411) 7.394 (6.598) 6.643 (5.696)

Pocock 2 3.481 (3.464) 2.806 (2.772) 2.236 (2.178) 1.949 (1.875)

3 3.588 (3.555) 2.934 (2.873) 2.388 (2.289) 2.114 (1.992)

4 3.662 (3.614) 3.022 (2.939) 2.491 (2.361) 2.226 (2.067)

5 3.719 (3.657) 3.089 (2.987) 2.569 (2.413) 2.311 (2.122)

10 3.890 (3.774) 3.289 (3.117) 2.800 (2.555) 2.560 (2.270)

One-sided test

K ˛ D 0:001 ˛ D 0:01 ˛ D 0:05 ˛ D 0:1

O’Brien and 2 4.373 (4.371) 3.315 (3.300) 2.431 (2.373) 1.997 (1.899)

Fleming 3 5.389 (5.367) 4.148 (4.077) 3.118 (2.961) 2.613 (2.391)

4 6.276 (6.217) 4.882 (4.740) 3.735 (3.466) 3.172 (2.814)

5 7.076 (6.971) 5.549 (5.330) 4.299 (3.915) 3.688 (3.191)

10 10.35 (9.961) 8.312 (7.670) 6.665 (5.696) 5.865 (4.686)

Pocock 2 3.290 (3.269) 2.575 (2.531) 1.955 (1.875) 1.632 (1.527)

3 3.403 (3.363) 2.712 (2.636) 2.121 (1.992) 1.818 (1.650)

4 3.481 (3.424) 2.806 (2.704) 2.234 (2.067) 1.943 (1.730)

5 3.540 (3.468) 2.877 (2.754) 2.319 (2.122) 2.036 (1.787)

10 3.719 (3.591) 3.089 (2.889) 2.568 (2.270) 2.309 (1.943)

In parentheses: critical values assuming equally sized stages

The worst case adjusted critical values do not differ very much from the original
bounds. Only for large K (K � 5) there is a substantial effect and hence the
use of the worst case adjusted critical values yields considerably conservative test
procedures when the test is applied for “usual” scenarios. This property is a little
more pronounced for O’Brien and Fleming’s test as compared to Pocock’s test. To
illustrate this, consider a five-stage design at two-sided significance level ˛ D 0:05.
From Table 3.2 the adjusted nominal significance levels ˛k and Q̨k from the original
and the worst case adjusted test procedure, respectively, are given by

˛1 D ˛2 D ˛3 D ˛4 D ˛5 D 0:0158 ,
Q̨1 D Q̨2 D Q̨3 D Q̨4 D Q̨5 D 0:0102

for Pocock’s test and

.˛1; ˛2; ˛3; ˛4; ˛5/ D .0:000005; 0:0013; 0:0084; 0:0226; 0:0413/ ,

. Q̨1; Q̨2; Q̨3; Q̨4; Q̨5/ D .0:000001; 0:0006; 0:0051; 0:0152; 0:0299/
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for O’Brien and Fleming’s test. Hence the latter test is a bit more sensitive with
respect to this kind of adjustment. However, in Wassmer (1999a) it was shown
that the worst case adjusted O’Brien & Fleming and Pocock tests perform nearly
identically with respect to the loss of power that is due to the adjustment of the
critical values.

The method that is based on the independence case provides a conservative
solution to the problem of unequally sized stages in group sequential testing.
Nevertheless, it yields a valid level ˛ test procedure. The most important application
is given if the interim analyses are performed at specific but arbitrary time points
rather than after a specified number of observations. For example, the study protocol
might contain a schedule of inspection times for the interim analyses during the
course of the trial. In this case, the group sizes are unpredictable and the test
procedure that is based on the worst case adjusted critical values can be used. An
alternative, more sophisticated procedure that is based on the specification of an
˛-spending function will be presented in Sect. 3.3.

3.2 Sample Sizes Fixed in Advance

Generally, group sequential plans can be derived for any sequence of sample
sizes n1; : : : ; nK . As already mentioned the test statistic depends on the sample
size only through the information rates t1; : : : ; tK . That is, by specifying a vector
V D .t1; : : : ; tK/ of preplanned information rates it is possible to define decision
regions C �

k and R�
k for the statistic (3.1) such that the Type I error rate of the test

is ˛.
As for equally sized stages, it is possible to define decision regions within

the �-class of Wang and Tsiatis (1987). Two different modes of calculating the
continuation regions for unequally planned stage sizes can be defined. The first
mode is that the critical values within the �-class of boundaries be the same for
unequally and equally sized stages. That is, the critical values are given by

uk D c.K; ˛;�;V/k��0:5 ; k D 1; : : : ;K; (3.6)

where c D c.K; ˛;�;V/ is a constant resulting from the chosen design that depends
on the maximum number K of stages to be performed, the significance level ˛, the
shape parameter �, and on the vector V. In the second mode, the critical values uk

are calculated through

uk D c.K; ˛;�;V/
�

tk
t1

���0:5
; k D 1; : : : ;K; (3.7)

where the constant c is defined analogously. Note that the first version which is
based on critical values defined by (3.6) yields critical values that are “stage-wisely”
similar to the original ones but account for the specific choice of the information rate
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Fig. 3.1 Decision regions for O’Brien and Fleming’s design (� D 0) for fixed, unequally spaced
information rates using critical values defined by (3.6) and (3.7). Critical values defined by (3.7)
are graphically indistinguishable from the five-stage design critical values (see text); ˛ D 0:05,
two-sided

vector V. The second version, on the other hand, provides critical values that are
similar to the original ones at the given information rates. For � D 0:5, of course,
both methods coincide. The difference of the two modes of specifying the critical
values is illustrated in Fig. 3.1 for a two-sided design with critical values according
to O’Brien and Fleming, i.e., � D 0. The decision regions are displayed for four
different information rate vectors V, namely V D .0:20; 0:40; 0:60; 0:80; 1/ (equally
sized stages), V D .0:40; 0:60; 0:80; 1/, V D .0:60; 0:80; 1/, and V D .0:80; 1/.

An important characteristic of the O’Brien and Fleming design with critical
values defined by (3.7) is that they are nearly identical to the respective stage-wise
critical values of the five-stage design with equally sized stages. The critical values
.u1; : : : ; uK/ are given by

(4.562, 3.226, 2.634, 2.281, 2.040) for V D .0:20; 0:40; 0:60; 0:80; 1/ ,

(3.226, 2.634, 2.281, 2.040) for V D .0:40; 0:60; 0:80; 1/ ,

(2.631, 2.278, 2.038) for V D .0:60; 0:80; 1/ ,

(2.260, 2.021) for V D .0:80; 1/ ;

and hence the critical values of the five-stage design are nearly the same for the
different V (omitting the first interim analysis even yields the same critical values
up to the given decimal places). The other way round: Inserting an interim analysis
has nearly no effect if one uses the critical values according to (3.7). This is
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particularly true for conservative bounds for the first few stages, which is the case
for O’Brien and Fleming’s design. Note that this determination of critical values
requires the stage sizes to be fixed in advance. We will see in the next section that
the determination of critical values with unequally sized stages can be generalized
obtaining valid bounds for arbitrarily sized stages and a flexible number of interim
analyses.

Given K, ˛,�, V, power 1�ˇ, and standardized effect ı D .���0/=� , one finds,
as for equally sized stages, the sample sizes n1; : : : ; nK to achieve a prespecified
power 1�ˇ. The calculation can be performed as follows. For given decision regions
the power does only depend on the shift parameter # D .#1; : : : ; #K/ where #k D
ı
p

tkN, k D 1; : : : ;K (see (1.14) in Sect. 1.3). Hence, it is possible to determine the
shift value #� such that the power with #k D #�ptk=t1, k D 1; : : : ;K, equals 1�ˇ.
Note that, with this parametrization, the shift #� in equally sized designs is obtained
by setting tk D k=K. The maximum sample size, N, is therefore given by

N D N.K; ˛; ˇ;�;V/ D #�2

t1ı2
;

the vector of accumulated sample sizes is

.n1; n1 C n2; : : : ;N/ D V N ;

and the stage-wise sample sizes, nk, k D 1; : : : ;K, can be easily obtained.
Particularly, it suffices to provide the shift for a specific ı, for example, ı D 1.
The same is true for the average sample size under H1, ASNH1 , or under a different
assumption for ı (for example, ı D 0). This is completely analogous to the group
sequential design with equally sized stages, and the fixed sample size design.

As for equally sized stages, N and ASNH1 are inversely proportional in ı2.
Therefore, the inflation factor I D I.K; ˛; ˇ;�;V/ D N=nf relates the maximum
sample size to its corresponding fixed sample size. The expected reduction in sample
size relative to nf , ASNH1=nf , is defined accordingly and can be calculated also
under different values of ı.

Apparently, the information rates of a group sequential test can be optimized
with respect to a chosen criterion. That is, one might search for the optimum vector
V� D .t�1 ; : : : ; t�K/ where t�K D 1 such that the test has, say, minimum ASNH1 .
Alternatively, the test can be optimal with respect to another optimization criterion
Q, for example, Q D ASNH1=nf C I. Generally, this involves a multidimensional
minimization routine. Brittain and Bailey (1993) and Müller and Schäfer (1999)
found optimized information rates for different designs where even the critical
values are optimized. In Table 3.3 we present optimized design parameters of two-
sided tests for up to a maximum of K D 4 stages, where we found optimum
information rates t�1 ; : : : ; t�K and optimum �� for decision regions within the �-
class of boundaries defined by (3.7). This is reasonable since the �-class yields
approximately optimum designs (see Sect. 2.1). The results of the table are obtained
by a K-dimensional minimization routine that minimizes ASNH1 , given K, ˛, and
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Table 3.3 Optimum�� and information rates t�1 ; : : : ; t
�

K with constants c D c.K; ˛; ��;V�/ and
minimum ASNH1 , relative to nf , in the �-class of boundaries for the two-sided testing problem

K t�1 ; : : : ; t
�

K �� c I ASNH1 =nf

˛ D 0:01

1� ˇ D 0:50

2 0.71, 1 0.12 (0.26) 2.983 1.018 (1.024) 0.955 (0.970)

3 0.60, 0.78, 1 0.11 (0.21) 3.223 1.025 (1.028) 0.941 (0.952)

4 0.54, 0.68, 0.82, 1 0.10 (0.18) 3.396 1.030 (1.032) 0.935 (0.943)

1� ˇ D 0:80

2 0.59, 1 0.41 (0.45) 2.833 1.054 (1.070) 0.862 (0.871)

3 0.47, 0.71, 1 0.39 (0.41) 2.988 1.072 (1.080) 0.822 (0.834)

4 0.40, 0.58, 0.77, 1 0.38 (0.39) 3.102 1.082 (1.083) 0.804 (0.814)

1� ˇ D 0:90

2 0.53, 1 0.49 (0.51) 2.777 1.077 (1.088) 0.796 (0.798)

3 0.41, 0.66, 1 0.47 (0.48) 2.902 1.102 (1.113) 0.742 (0.750)

4 0.35, 0.53, 0.73, 1 0.46 (0.46) 2.987 1.116 (1.117) 0.717 (0.727)

˛ D 0:05

1� ˇ D 0:50

2 0.68, 1 0.02 (0.18) 2.417 1.022 (1.031) 0.951 (0.962)

3 0.57, 0.76, 1 0.01 (0.13) 2.677 1.031 (1.036) 0.937 (0.946)

4 0.51, 0.65, 0.80, 1 0.00 (0.09) 2.866 1.036 (1.040) 0.930 (0.937)

1� ˇ D 0:80

2 0.55, 1 0.38 (0.42) 2.257 1.067 (1.080) 0.848 (0.850)

3 0.42, 0.68, 1 0.36 (0.39) 2.434 1.090 (1.103) 0.806 (0.812)

4 0.35, 0.54, 0.74, 1 0.35 (0.37) 2.562 1.103 (1.110) 0.786 (0.793)

1� ˇ D 0:90

2 0.49, 1 0.49 (0.49) 2.188 1.098 (1.095) 0.776 (0.776)

3 0.36, 0.63, 1 0.46 (0.48) 2.335 1.128 (1.139) 0.718 (0.721)

4 0.30, 0.49, 0.70, 1 0.45 (0.46) 2.428 1.146 (1.153) 0.691 (0.696)

The inflation factor I D I.K; ˛; ˇ;��;V�/ of the optimum design can be used for sample size
calculations. In parentheses: minimizing��, and its corresponding I and ASNH1 for equally sized
stages

power 1� ˇ of the test. The optimum designs have minimum ASNH1 within the�-
class. In Table 3.3, we also supply the corresponding optimum�� for equally sized
stages from Table 2.6 together with the minimized ASNH1 and its inflation factor I.

First of all, notice that the minimized average sample size is only slightly below
the average sample size of the optimum design with equally spaced information
rates. In most cases, hence, the gain of using an optimized design is small and of
merely theoretical importance. This becomes even more important as, in practical
applications, the sample sizes must be integers, and hence the reduction in ASNH1
might actually completely vanish. Also, it is interesting that the maximum sample
size is nearly unchanged in all considered cases and, in most cases, is even somewhat
smaller than the maximum sample size of the design with equally sized stages.
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Although practically less important, the optimum parameters provide some
interesting insight into the “mechanism” of a group sequential test design. For
example, for moderate power (1 � ˇ D 0:50), it is beneficial to look at the data
at some later time points rather than at equally spaced time points, i.e., t�k > k=K,
k D 1; : : : ;K � 1. This is also true for the first information rate t�1 when considering
power 1 � ˇ D 0:80 or 0.90. Moreover, the smaller ��’s (as compared to the
design with equally sized stages) indicate that ASNH1 is reduced if the condition for
rejecting H0 at early steps becomes stronger. It can be observed, however, that the
deviation of the design with optimized information rates from the optimum design
with equally spaced looks gets smaller and is even negligibly small for 1�ˇ D 0:90.

The figures provided in Table 3.3 can be used to determine the critical values
and the stage-wise sample sizes that minimize ASNH1 subject to given K, ˛, and
1 � ˇ. As an illustration, suppose one wants to determine the optimum two-sided
four-stage design at significance level ˛ D 0:05 and power 1� ˇ D 0:80. From the
table, one finds t�1 D 0:35, t�2 D 0:54, t�3 D 0:74, �� D 0:35, and c D 2:562. This
yields the optimum critical values

u1 D 2:562 ;

u2 D 2:562 .0:54=0:35/0:35�0:5 D 2:401 ;

u3 D 2:562 .0:74=0:35/0:35�0:5 D 2:290 ;

u4 D 2:562 .1=0:35/0:35�0:5 D 2:189 :

The maximum sample size 1.103 times the sample size of a fixed sample size design.
For example, if the fixed sample size is 76, the maximum sample size is 1:103 �
76 D 83:8, and the sample sizes per stage are given by n1 D 0:35 � 83:8 D 29:3,
n2 D .0:54 � 0:35/ 83:8 D 15:9, n3 D .0:74 � 0:54/ 83:8 D 16:8, and n4 D
.1 � 0:74/ 83:8 D 21:8. The average sample size under H1 of this test procedure
is 0:786 � 76 D 59:7. Of course, as for the designs with equally sized stages the
sample sizes must be suitably rounded to the next integer, and the test characteristics
slightly differ from the theoretical ones.

Group sequential designs can be specified for arbitrarily fixed sample sizes per
stage, and the performance of the tests can be studied. The calculation of decision
regions for unequally sized stages can be performed for one-sided and two-sided
testing situations. For one-sided testing, it is possible to consider a stopping for
futility option, as was described in Sect. 2.3. It is even straightforward to derive
symmetric designs, for example, those due to Pampallona and Tsiatis (1994), to the
more general case of unequally sized stages. Note that all of these designs require
the maximum number of stages, K, to be fixed at the designing phase of the trial.

Generally, the decision regions and the test characteristics derived for unequally
sized stages differ from those of the standard methods. For all designs it is
possible to search for designs that are optimum with respect to a chosen criterion.
Interestingly, the gains are modest, which is true for all considered types of designs,
providing justification for using designs with equally sizes stages. Nevertheless,
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from an organizational perspective if might be reasonable to plan with unequal
information rates, and the choice of decision regions and sample sizes should
account for this.

3.3 The ˛-Spending Function Approach

The ˛-spending function or use function approach was introduced by Lan and
DeMets (1983). Similar but less general approaches were proposed by Slud and
Wei (1982) and Fleming et al. (1984), see also Kim and DeMets (1987b). The
conceptual design of the ˛-spending function approach is to provide a test procedure
that enables interim analyses at arbitrary time points of analyses. Specifically, this
approach can be used if the interim analyses are not scheduled at the observation of
a specific number of observations but at fixed calendar times. It is accomplished by
the use of a function ˛�.tk/ that specifies the cumulative Type I error rate spent at the
information rate tk of the kth analysis. In our context, tk is given by tk D Pk

QkD1 nQk=N,
k D 1; : : : ;K, and represents the information rate that arises from the specific course
of the study (see Lan and DeMets 1989b; Lan et al. 1994; DeMets and Lan 1994).
˛�.tk/ can be any non-decreasing function with ˛�.0/ D 0 and ˛�.1/ D ˛. This
function must be specified in advance and laid down in the study protocol. The
information rates tk need not to be prespecified but are observed during the actual
course of the trial. Consequently, neither the number of observations at the kth
analysis nor the maximum number of analyses, K, must be specified in advance.
The maximum sample size, N, however, must be fixed when implementing this
approach.

Given the maximum sample size, N, and the function ˛�.tk/, the Type I error
spent at the first stage is ˛�.t1/, where t1 D n1=N denotes the information rate of
the first stage of the trial. In the two-sided case the critical value for the first analysis,
u1, is determined by

PH0.jZ�
1 j � u1/ D ˛�.t1/ ;

which yields u1 D ˚�1.1 � ˛�.t1/=2/ (the one-sided case is treated analogously).
For the second stage, given the information rate t2 D .n1 C n2/=N, the condition for
u2 reads as

PH0 .jZ�
1 j < u1; jZ�

2 j � u2/ D ˛�.t2/� ˛�.t1/ ;

which can be solved numerically by the use of the recursive integration formula.
Thus, at the second stage of the test procedure the Type I error spent up to this stage
is ˛�.t2/, and the increment ˛�.t2/ � ˛�.t1/ represents the amount of the Type I
error rate that is spent at the second stage. The calculation of the critical values is
continued in this manner. That is, the critical values for the remaining stages are



3.3 The ˛-Spending Function Approach 75

computed successively through

Pk D PH0

0

@
k�1\

QkD1
fjZ�

Qk j < uQkg; jZ�
k j � uk

1

A D ˛�.tk/� ˛�.tk�1/ ;

until the overall significance level ˛ is completely spent, i.e., until tK D 1. This
corresponds to a partition of the overall significance level ˛ by

P1 C : : :C PK D ˛ ;

and hence the overall Type I error rate is exactly equal to ˛. The successive
calculation of the critical values is possible since, under H0, the distribution of
the vector .Z�

1 ; : : : ;Z
�
k /

T , conditional on the observed sequence of sample sizes
n1; : : : ; nk depends only on the information rates t1; : : : ; tk. Specifically, it does not
depend on the yet unobserved information rates tkC1; : : : ; tK .

In this way, the overall significance level ˛ is maintained if the study proceeds
whenever tk < 1. Specifically, the number of stages actually performed, K, results
from the smallest k, for which tk � 1. Since at the last stage the actually observed
number of observations usually exceeds N, the ˛-spending function

Q̨�.tk/ D
(
˛�.tk/ if 0 � t � 1

˛ if t > 1

should be used in place of ˛�.tk/ to account for this kind of “random overrunning”.
If, on the other hand, the study stops with a smaller maximum sample size than
anticipated, i.e., tK < 1, then setting Q̨�.tK/ D ˛ forces the procedure to fully
exhaust the level ˛ up to the last stage (see Kim et al. 1995). We will later provide
an example that describes in some more detail how this calculation is performed.

A number of proposals were made in the literature for the form of the function
˛�.tk/. The ˛-spending functions

˛�
1 .tk/ D

(
2 .1�˚.˚�1.1 � ˛=2/=

p
tk// (one-sided case)

4 .1�˚.˚�1.1 � ˛=4/=
p

tk// (two-sided case)

and

˛�
2 .tk/ D ˛ ln.1C .e � 1/tk/

approximate Pocock’s and O’Brien and Fleming’s group sequential boundaries,
respectively. ˛�

1 .tk/ is derived from the crossing probabilities of a Brownian motion
(see Proschan et al. 2006) whereas ˛�

2 .tk/ is intuitively derived from the logarithmic
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shape of the significance level spent over the stages when using constant boundaries
for equally sized stages (note that ˛�

2 .0/ D 0 and ˛�
2 .1/ D ˛).

Kim and DeMets (1987b) proposed a family of ˛-spending functions indexed by
a parameter % > 0:

˛�
3 .%; tk/ D ˛ t%k :

Hwang et al. (1990) introduced the one-parameter family

˛�
4 .�; tk/ D

(
˛ 1�e�� tk

1�e�� for � 6D 0

˛ tk for � D 0 ;

and showed that the use of ˛�
4 .�; tk/ yields approximately optimal plans similar to

the �-class of Wang and Tsiatis (1987). Alternatively, Jennison (1987) proposed
a four-parameter family of approximately optimal ˛-spending functions. Li and
Geller (1991) investigated general conditions for ˛-spending functions and sug-
gested the use of piecewise linear convex functions (see Geller 1994).

The ˛-spending functions ˛�
1 , ˛�

2 and ˛�
3 .%/ are illustrated in Fig. 3.2. ˛�

3 .%/ is
displayed for % D 1:0, 1.5, and 2.0. These functions lie in between the functions ˛�

1

and ˛�
2 that approximate O’Brien & Fleming’s and Pocock’s designs, respectively.

Notice that the ˛-spending function ˛�
2 is not linear in tk, which means that constant

boundaries do not correspond with a linear shape of the ˛-spending function.

Fig. 3.2 Examples of ˛-spending functions. ˛�

1 and ˛�

2 approximate O’Brien & Fleming’s and
Pocock’s design, respectively. ˛�

3 .%/ is plotted for % D 1:0, 1:5, and 2:0; ˛ D 0:05
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We illustrate the successive calculation of the critical values by the use of the ˛-
spending function ˛�

1 . Suppose, in a two-sided design at significance level ˛ D 0:05,
the first interim analysis is conducted after having performed n1 D 30 observations
from a maximum of N D 100 observations. Hence, t1 D 0:30 and ˛�

1 .0:3/ D
0:00009, and therefore u1 D ˚�1.1 � 0:00009=2/ D 3:929 is the critical value
for the first interim analysis. If the second interim analysis is placed at t2 D 0:60

(i.e., after having observed a total of 60 patients), the second stage critical value is
u2 D 2:670. This value is obtained numerically under the requirement that the Type
I error rate at the second stage should be ˛�

1 .0:6/�˛�
1 .0:3/ D 0:00762�0:00009D

0:00753. If, at the next stage, t3 D 1, then the critical value is u3 D 1:981. Recall
that the critical values are determined successively and the information rates are not
fixed prior to the start of the study. If, for example, there were only 90 observations
available for the third interim analysis, then t03 D 0:90 and the critical value for the
third interim analysis would be u0

3 D 2:121. In this case, if t04 D 1, the last stage
critical value is u0

4 D 2:063. Hence, although the interim analyses can be performed
at arbitrary time points of analyses, the number of actually performed stages has an
impact on the critical values. We will see below how the calculation of the critical
values is performed if the last information is not equal to one.

The sequence of critical values u1 D 3:929, u2 D 2:670, u3 D 2:121, u4 D
2:063 corresponds to a four-stage group sequential test performed at information
rates t1 D 0:30, t2 D 0:60, t3 D 0:90, t4 D 1:0. The sequence of critical values
obtained by (3.7) with � D 0 and V D .0:30; 0:60; 0:90; 1/ is given by u1 D
3:735, u2 D 2:641, u3 D 2:157, u4 D 2:046. Therefore, indeed, the ˛-spending
function ˛�

1 approximates the classical group sequential boundaries also for the case
of unequally spaced stages. Table 3.4 shows that the ˛-spending function ˛�

1 yields
critical values close to those of O’Brien and Fleming’s test for some “typical” V
yielding K D 2, 3, and 4, respectively. This is true for a wide range of information
rates. Thus, it is reasonable to use this function to produce boundaries very similar

Table 3.4 Critical values uk for Z�

k for different K and information rates t1; : : : ; tK using the
critical values defined by (3.7) as compared to critical values obtained from the ˛-spending
function ˛�

1 (O’Brien and Fleming type); significance level ˛ D 0:05, two-sided

Sample sizes fixed ˛-spending approach

K t1; : : : ; tK u1; : : : ; uK u1; : : : ; uK

2 0.30, 1 3.581, 1.961 3.929, 1.960

0.50, 1 2.797, 1.977 2.963, 1.969

0.90, 1 2.135, 2.026 2.094, 2.053

3 0.30, 0.90, 1 3.700, 2.136, 2.027 3.929, 2.094, 2.053

0.33, 0.67, 1 3.471, 2.454, 2.004 3.710, 2.511, 1.993

0.80, 0.90, 1 2.300, 2.168, 2.057 2.250, 2.177, 2.072

4 0.20, 0.40, 0.90, 1 4.539, 3.209, 2.140, 2.030 4.877, 3.357, 2.097, 2.054

0.25, 0.50, 0.75, 1 4.049, 2.863, 2.337, 2.024 4.333, 2.963, 2.359, 2.014

0.30, 0.60, 0.90, 1 3.735, 2.641, 2.157, 2.046 3.929, 2.670, 2.121, 2.063
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Table 3.5 Critical values uk for Z�

k for different K and information rates t1; : : : ; tK using constant
critical values as compared to critical values obtained from the ˛-spending function ˛�

2 (Pocock
type); significance level ˛ D 0:05, two-sided

Sample sizes fixed ˛-spending approach

K t1; : : : ; tK u1; : : : ; uK u1; : : : ; uK

2 0.30, 1 2.206, 2.206 2.312, 2.124

0.50, 1 2.178, 2.178 2.157, 2.201

0.90, 1 2.072, 2.072 1.989, 2.241

3 0.30, 0.90, 1 2.263, 2.263, 2.263 2.312, 2.162, 2.342

0.33, 0.67, 1 2.289, 2.289, 2.289 2.279, 2.295, 2.296

0.80, 0.90, 1 2.152, 2.152, 2.152 2.021, 2.271, 2.332

4 0.20, 0.40, 0.90, 1 2.362, 2.362, 2.362, 2.362 2.438, 2.427, 2.224, 2.376

0.25, 0.50, 0.75, 1 2.361, 2.361, 2.361, 2.361 2.368, 2.368, 2.358, 2.350

0.30, 0.60, 0.90, 1 2.334, 2.334, 2.334, 2.334 2.312, 2.321, 2.318, 2.412

to O’Brien and Fleming’s test. It is also worth mentioning that using the one-sided
version of ˛�

1 for the one-sided cases improves this approximation.
The approximation of the constant boundaries for Pocock’s design when using

the ˛-spending function ˛�
2 is somewhat worse if unequally spaced information

rates are considered. This is illustrated in Table 3.5. We already mentioned that,
for Pocock’s test, the critical values defined by (3.6) and (3.7) coincide, and the ˛-
spending function ˛�

2 should produce constant critical values for any information
rate vector V. This, however, is only true in a limited sense. Especially, for later
looks at the data as compared to equal spacing, i.e., tk > k=K, the function ˛�

2

even produces (slightly) increasing boundaries which are difficult to justify. Indeed,
for unequal stage sizes, certain values of %, for example, % D 0:80, for the Kim
and DeMets (1987b) ˛-spending function ˛�

3 .%/ provide a better approximation to
Pocock’s constant boundaries. Nevertheless, the approximation for equally sized
stages behaves quite well.

We will now describe how a design with an ˛-spending function approach is
implemented if random overrunning or random underrunning takes place. This
happens if the maximum information is not met exactly but tK < 1 or tK > 1,
respectively. This tK and the other observed information rates need to be random
in the sense that they are not allowed to be data-driven. To illustrate, imagine if
close to the end of the trial it is observed that significance is not reached by far and
hence the next stage is planned a long time after the maximum number of patients
is expected to reach. As expected the Type I error rate is not controlled any more
(see Proschan et al. 1992). The same holds true if, say, a result is near to showing
significance and therefore it is decided that the next analysis is performed very soon
and declared to be the final one. If the reason for not exactly meeting the planned
maximum information is not data-driven, however, one can exactly account for this
by defining ˛�.tK/ D ˛ even if tK 6D 1. To obtain a valid sequence of rejection
boundaries the updated correlation structure must be taken into consideration. This
is illustrated by an example.
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Assume as above (page 76) that ˛�
1 was chosen at two-sided ˛ D 0:05 and a

maximum of N D 100 observations were planned. We saw that u1 D 3:929 at
t1 D 0:30 and ˛�

1 .0:30/ D 0:00009, and u2 D 2:670 at t2 D 0:60 and ˛�
1 .0:60/ D

0:00762 were derived from this. Now suppose the next stage is performed after 120
patients instead of the planned 100. That is, tK > 1 and obviously the covariances
between the test statistic at this stage (which is based on 120 observations) and the
others are different from the ones that were obtained if tK D 1. A solution is to
“adjust” the information rates tk observed so far as follows.

Set t01 D 30=120 D 0:25 and t02 D 60=120 D 0:5 for a newly defined ˛-spending
function with ˛�0

1 .0:25/ D 0:00009 and ˛�0

1 .0:5/ D 0:00762. This produces the
same rejection boundaries u1 D 3:929 and u2 D 2:670 for the first two stages
since the covariance between Z�

1 and Z2	 depends only on the ratio between the
information rates which is the same for both situations. The final rejection boundary
at t03 D 120=120D 1 is u0

3 D 1:989, i.e., somewhat larger than u3 D 1:981. In other
words, one must account for the fact that an overrunning took place.

For random underrunning, the same way of adjusting the information rates yields
valid critical values u0

3. These are smaller than the ones for tK D 1. For example,
if it is decided to terminate the study after 80 observations then, as above, a newly
defined ˛-spending function with ˛�0

1 .0:375/ D 0:00009 and ˛�0

1 .0:75/ D 0:00762

yields the same rejection boundaries for the first two stages, but u0
3 D 1:969. That

is, the use of the boundaries with tK D 1 yields conservative bounds which can
be improved. It is worth mentioning that in this case it might be difficult from an
organizational perspective to use such improved bounds because it is difficult to
authenticate that this stage was fixed to be the final one, for example, through a
protocol amendment or an amendment of the Statistical Analysis Plan.

A group sequential test using the ˛-spending function approach is implemented
using the sequence of information rates actually observed. However, when inves-
tigating the spending function approach in terms of, say, power and ASNH1 , the
information rates tk and the maximum number of stages, K, must be given. That
is, when planning such a trial, K and a specific choice of the information rate
vector V are fixed where, conveniently, one can assume equally spaced information
rates. Given K and a specific ˛-spending function ˛�.tk/, the shape of the decision
boundaries and hence the test characteristics can be calculated as described in
the last section. Consequently, given the overall power 1 � ˇ and the vector of
information rates V the maximum and average sample size can be calculated to
achieve power 1 � ˇ. Like for the other test designs, the inflation factor I can be
used for sample size calculations and the expected reduction in sample size under
H1, ASNH1 , can be used to assess the performance of the test. Table 3.6 shows I and
ASNH1 relative to the fixed sample size design for different K, ˛ D 0:01 and 0.05,
1 � ˇ D 0:80 and 0.90, and for the ˛-spending function ˛�

1 (O’Brien and Fleming
type), ˛�

2 (Pocock type), and ˛�
3 .%/ for % D 1:0; 1.5, 2.0. The values in the table

were calculated assuming equally spaced information rates.
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Table 3.6 Inflation factor I and expected reduction in sample size under H1, relative to nf , for
different K, significance level ˛, and power 1�ˇ using the ˛-spending functions ˛�

1 (O’Brien and
Fleming type), ˛�

2 (Pocock type), and ˛�

3 .%/ under the assumption of equally spaced information
rates

1� ˇ D 0:80 1� ˇ D 0:90

K ˛ D 0:01 ˛ D 0:05 ˛ D 0:01 ˛ D 0:05

O’Brien and 1 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

Fleming 2 1.001 (0.959) 1.004 (0.921) 1.001 (0.930) 1.003 (0.877)

type 3 1.005 (0.894) 1.013 (0.866) 1.004 (0.847) 1.012 (0.811)

4 1.009 (0.868) 1.020 (0.839) 1.008 (0.815) 1.018 (0.777)

5 1.012 (0.853) 1.025 (0.824) 1.012 (0.796) 1.023 (0.759)

10 1.022 (0.822) 1.038 (0.794) 1.021 (0.758) 1.035 (0.722)

% D 2:0 1 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

2 1.028 (0.882) 1.028 (0.867) 1.025 (0.822) 1.025 (0.805)

3 1.045 (0.839) 1.045 (0.823) 1.042 (0.768) 1.041 (0.750)

4 1.056 (0.817) 1.056 (0.801) 1.052 (0.740) 1.051 (0.722)

5 1.064 (0.804) 1.063 (0.788) 1.059 (0.723) 1.058 (0.705)

10 1.082 (0.780) 1.081 (0.762) 1.076 (0.692) 1.075 (0.672)

% D 1:5 1 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

2 1.045 (0.874) 1.047 (0.856) 1.041 (0.808) 1.042 (0.788)

3 1.068 (0.834) 1.070 (0.814) 1.062 (0.757) 1.064 (0.734)

4 1.082 (0.815) 1.085 (0.794) 1.075 (0.731) 1.077 (0.707)

5 1.091 (0.803) 1.094 (0.782) 1.084 (0.716) 1.086 (0.692)

10 1.112 (0.780) 1.116 (0.759) 1.103 (0.686) 1.106 (0.662)

% D 1:0 1 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

2 1.076 (0.871) 1.082 (0.850) 1.070 (0.799) 1.075 (0.777)

3 1.108 (0.836) 1.117 (0.812) 1.099 (0.750) 1.107 (0.722)

4 1.126 (0.820) 1.137 (0.795) 1.116 (0.727) 1.124 (0.698)

5 1.138 (0.810) 1.150 (0.785) 1.126 (0.714) 1.136 (0.684)

10 1.163 (0.792) 1.177 (0.766) 1.150 (0.688) 1.161 (0.657)

Pocock 1 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

type 2 1.111 (0.875) 1.123 (0.855) 1.101 (0.798) 1.111 (0.777)

3 1.153 (0.845) 1.170 (0.819) 1.140 (0.751) 1.154 (0.721)

4 1.176 (0.831) 1.196 (0.804) 1.160 (0.730) 1.178 (0.697)

5 1.190 (0.823) 1.212 (0.796) 1.173 (0.717) 1.192 (0.684)

10 1.220 (0.808) 1.247 (0.780) 1.201 (0.694) 1.224 (0.660)

In parentheses: expected reduction in sample size

The effect on the inflation factor and on ASNH1 when actually using unequally
spaced information rates is only moderate and hence Table 3.6 can be used for
planning a trial that is based on the ˛-spending function approach (see Jennison
and Turnbull 2000; §7.2). A comparison with Tables 2.3 and 2.5 shows that the
properties of the tests based on the respective ˛-spending function are very similar.
The Wang and Tsiatis �-class tests with � D 0:10, 0.25, and 0.40 have properties
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similar to the Kim and DeMets ˛-spending function with % D 2:0, 1.5, and 1.0,
respectively. Furthermore, % D 3 yields values very near to O’Brien and Fleming’s
design and, as it was shown for the Wang and Tsiatis �-class test with � D 0:40,
it turns out that ˛�

3 .%/ with % D 1:0 even yields better test characteristics than the
Pocock type test. Hence, there is little reason to use ˛�

1 or ˛�
2 .

The ˛-spending function approach can be generalized in several ways. First, it
is easy to implement an asymmetric procedure for the determination of an upper
and a lower bound in a two-sided test situation. Then, two ˛-spending functions
must be given specifying the Type I error rate for the lower and the upper bounds,
respectively. Second, for planning purposes, it is quite natural to consider a function
describing how the power of the procedure should be spent during the stages of the
study. This yields the power-spending approach that was proposed by Bauer (1992).
A similar ˇ-spending function approach was proposed by Chang et al. (1998) and
Pampallona et al. (2001), see also Anderson and Clark (2010). Here, the Type II
error rate is controlled. Essentially, these designs provide an alternative method for
deriving futility bounds as it was described in the last chapter. Finally, Cook (1996)
describes “coupled error spending functions” for, say, multiple endpoint testing
where each outcome variable is marginally monitored by specified ˛-spending
functions.

It is tempting to use the results of an interim analysis to modify the schedule of
interim looks. This is particularly true for the ˛-spending function approach since
the time points of analyses and even the maximum number of analyses needs not to
be prespecified. For example, if the test result is very near to showing significance,
it could be decided to plan the next interim analysis earlier than originally planned
and hence change the frequency of future analyses (Lan and DeMets 1989a). From a
theoretical point of view, however, a data-driven analysis strategy is not allowed for
the ˛-spending function approach. Indeed, there are cases in which the Type I error
rate is seriously inflated, as was shown by several authors (Jennison and Turnbull
1991b; Proschan et al. 1992). In this case, therefore, one should use adaptive or
flexible designs that are designed specifically for a data-driven analysis strategy and
offer an even larger degree of flexibility. Part II of this book contains a description
of these methodologies.



Chapter 4
Confidence Intervals, p-Values, and Point
Estimation

It is generally agreed that the result of a clinical trial should not consist solely in a
decision to reject (or not to reject) the null hypothesis, but also in further measures of
evidence against the null hypothesis and in measures of the effect size. This dictum
certainly applies for group sequential designs as well. The acceptability of such
measures, however, is affected by the repeated significance testing nature of group
sequential designs. This influence is not surprising when p-values are considered.
Where the decision rules for the rejection of the null hypothesis are dictated by
repeated significance testing, p-values will have to be chosen accordingly. This also
holds true for confidence intervals, as they are directly linked to significance testing.
Additionally, confidence intervals based on a point estimate of the effect size suffer
from the poor performance of usual estimators when employed in group sequential
test designs. In this context, even estimators which fulfill certain optimality criteria
in fixed sample size designs usually show a considerable lack of accuracy. A
prominent example is the maximum likelihood (ML) estimate for a normal mean.
The sample mean does not lose its ML property in a group sequential design but it
will no longer be unbiased.

Various approaches have been made to overcome these difficulties. As p-values,
point estimators and confidence intervals should serve as conjoint means for
interpreting study results, it is desirable that they are chosen coherently. There
is a conceptual difference between confidence intervals and p-values which are
intended to be used only once after the end of a trial and such measures that can
be calculated at each stage of the trial. The latter are therefore called repeated
confidence intervals and p-values. Point estimators are not categorized in this way
as they do not suffer from multiplicity restrictions. Thus, generally there is no
need to distinguish between repeated and non-repeated point estimates. Still, due
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to construction there can be limitations on their applicability. In Sect. 4.1, we will
present confidence intervals and p -values both for analyses at the end of trial as well
as a means for monitoring a group sequential trial. Point estimates, which mainly
can be used in both situations, will be presented in Sect. 4.2.

4.1 Confidence Intervals and p-Values

This section deals with various approaches to construct confidence intervals and
p-values at the end and during the course of a group sequential trial. We will first
deal with analyses based on orderings of the sample space—being the most famous
approach to confidence interval construction in this setting—which are designated
for use after a trial has been terminated, be it due to early rejection or non-rejection
of H0 or due to reaching the last planned stage. We will then introduce another type
of confidence intervals which can be employed for monitoring a group sequential
trial and p -values associated with them.

4.1.1 Sample Space Orderings

When constructing confidence intervals and p-values, sample space orderings
become necessary as their construction involves the task of determining the
probability of obtaining a value from the sample space more extreme than a given
one. In fixed sample size designs, this task is easily fulfilled if there is only
one outcome variable. In this case, the sample space is one-dimensional, and the
ordering underlying the construction of confidence intervals is simply the ordering
on the real numbers. In group sequential designs, the sample space becomes two-
dimensional, one of its dimensions describing the test statistic and the other the
number of stages performed (see Sect. 1.4). Therefore, no intrinsic ordering on the
sample space is given. Various suggestions have been made for imposing an ordering
on such a two-dimensional sample space. The simplest, of course, is to ignore the
discrete dimension of the sample space and to order the outcomes in terms of the
test statistic only. Even in this simple case, however, there is a difference between
ordering by the test statistic Sk and by its standardized version Z�

k , as we will see
further on. In the following, we will first describe the general procedure of deriving
overall p-values and confidence intervals from an ordering and then introduce the
most common orderings in the context of group sequential test designs. For an
overview of the procedures, see also Jennison and Turnbull (2000), Chap. 8, and
Proschan et al. (2006), Chap. 7.
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One-sided overall p-values for H0 can be calculated as follows. Recall that in the
fixed sample design the p-value is given by PH0 .Z � z/ or PH0 .Z � z/ depending on
which direction the hypothesis is formulated for the one-sided case, or as twice
the minimum of these numbers in the two-sided case. The ordering on the real
numbers enters this definitions evidently through the conditions of Z � z and Z � z,
respectively.

The same scheme works for group sequential designs as well, replacing Z
by .Z�

M;M/ where M denotes the stage number as a random variable. For the
determination of an overall p-value an ordering on the two-dimensional sample
space .R;NC/ is needed to determine whether a given observation .z�0

k0 ; k0/ is more
or less extreme than another observation .z�

k ; k/. Accordingly, the one-sided p-value
is obtained by calculating

PH0 ..Z
�
M;M/ 
 .z�

k ; k// (4.1)

or

PH0 ..Z
�
M;M/ � .z�

k ; k// (4.2)

(Emerson and Fleming 1990), the two-sided p -value being given by twice the
minimum of (4.1) and (4.2) (Chang et al. 1995) in analogy to the fixed sample size
design.

In much the same way, confidence intervals can be constructed. Consider a fixed
sample size design testing a normal mean where H0 W � D �0 is tested against
H1 W � ¤ �0. For convenience, throughout this section we will derive confidence
intervals for the standardized effect ı D .� � �0/=� instead of � as ı. A .1 �
˛/100% confidence interval for ı is then given by .ıL.z/I ıU.z// where ıL.z/ and
ıU.z/ are determined such that

PıL.z/.Z � z/ D ˛=2 (4.3)

and

PıU.z/.Z � z/ D ˛=2 ; (4.4)

where Z D p
n . NX � �0/=� . Solving (4.3) and (4.4) yields the usual interval ..Nx �

�0/=� ˙ u=
p

n/ with u D ˚�1.1 � ˛=2/. This procedure is applicable to all fixed
sample size designs with a one-dimensional normally distributed test statistic T.

Again, in order to solve (4.3) and (4.4), an ordering in the sample space is needed.
If such an ordering is defined, a .1 � ˛/ 100% confidence interval for ı can be
obtained by finding .ıL.z�

k ; k/I ıU.z�
k ; k// such that

PıL.z�

k ;k/
..Z�

M;M/ 
 .z�
k ; k// D ˛=2
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and

PıU.z�

k ;k/
..Z�

M;M/ � .z�
k ; k// D ˛=2

(see Tsiatis et al. 1984; Chang 1989), where .z�0
k0 ; k0/ 
 .z�

k ; k/ denotes that .z�0
k0 ; k0/

is larger or equal than .z�
k ; k/. Note that both probabilities must be monotone in ıL

and ıU , respectively, otherwise there is no unique determination of the confidence
interval.

It is also possible to define point estimators on the basis of orderings of the
sample space. These point estimators can be defined in two ways: Whitehead (1997)
proposed to choose Qı.z�

k ; k/ such that

PQı.z�

k ;k/
..Z�

M;M/ 
 .z�
k ; k// D PQı.z�

k ;k/
..Z�

M;M/ � .z�
k ; k// D 0:5 : (4.5)

Point estimators obtained by this method fulfill the criterion of median unbiased-
ness. Kim (1988) alternatively suggested to use the midpoint of a confidence interval
as a point estimate. With this approach, different confidence levels can lead to
slightly different point estimates in the case of asymmetry.

Stage-Wise Ordering

A quite intuitive stage-wise ordering was originally proposed by Armitage (1957),
and later by Siegmund (1978), Fairbanks and Madsen (1982), and Tsiatis et al.
(1984). It basically attributes a higher level of evidence against the null hypothesis to
rejection in earlier stages and a lower level of evidence against the null to stopping
in later stages of the trial. For a K-stage group sequential trial with continuation
regions C �

k D .akI bk/ for k D 1; : : : ;K � 1, .z�0
k0 ; k0/ is said to be larger than .z�

k ; k/
if one of the following conditions is fulfilled:

1. k0 D k and z�0
k0 > z�

k , i.e., within the stage the ordering is determined by the values
of z�0

k0 and z�
k ;

2. k0 < k and z�0
k0 � bk0 , i.e., crossing the upper bound at an earlier stage is

considered a larger outcome than stopping at a later stage;
3. k0 > k and z�

k � ak, i.e., crossing the lower bound at an earlier stage is considered
a smaller outcome than stopping at a later stage.

This ordering is illustrated in Fig. 4.1 for the example of a four-stage two-sided
O’Brien and Fleming design with critical values uk, i.e., with .akI bk/ D .�ukI uk/,
k D 1; : : : ;K, arrows pointing from smaller to larger values. Following the arrows
explains why this ordering is also known as the anti-clockwise ordering. Note that
the definition of the stage-wise ordering does not cover group sequential plans with
non-interval continuation regions, as, for example, those arising from the two-sided
design of Pampallona and Tsiatis (1994).
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Fig. 4.1 Illustration of the stage-wise ordering of the sample space in a two-sided group sequential
design with O’Brien and Fleming’s boundaries (K D 4, nk � n for k D 1; : : : ; 4). The elliptical
arrow illustrates the anti-clockwise direction of the ordering

Consider a four-stage design for testing H0 W � D 0. The continuation regions are
given by C �

k D .�ukI uk/ D .�4:049=pkI 4:049=pk/, k D 1; : : : ; 4, in the O’Brien
and Fleming case and by C �

k D .�ukI uk/ D .�2:361I 2:361/, k D 1; : : : ; 4, in the
Pocock case. Let the variance be known as � D 1 and let nk � 22, yielding a
power of approximately 1 � ˇ D 0:80 for ı D 0:31 using O’Brien and Fleming
type boundaries and for ı D 0:33 using Pocock type boundaries, respectively.
Suppose the study continues after the first stage and the second stage yields Z�

2 D 3,
permitting the rejection of H0 for both designs as 3 > 4:049=

p
2 D 2:863 and

3 > 2:361. In order to derive a 95 %-confidence interval for ı, we need to find ıL

and ıU such that

PıL.3;2/..Z
�
M;M/ 
 .3; 2// D 0:025

and

PıU.3;2/..Z
�
M;M/ � .3; 2// D 0:025: (4.6)

PıL.3;2/..Z
�
M;M/ 
 .3; 2// consists of two addends: The first addend is the

probability of stopping in stage 1 with positive Z�
1 and second one is the probability

of stopping in stage 2 with Z�
2 > 3. Writing the equation in terms of the group
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sequential density (see Sect. 1.4) leads to the sum of integrals

Z 1

u1

fıL.3;2/.s1; 1/ ds1 C
Z 1

p
2 3

fıL.3;2/.s2; 2/ ds2 D 0:025 (4.7)

(recall that the density is expressed in terms of Sk and that Sk D p
k Z�

k in the case
of equal stage sizes). Solving this for ıL.3; 2/ yields 0:157 for O’Brien and Fleming
type boundaries and 0:0737 for Pocock type boundaries.

PıU .3;2/..Z
�
M;M/ � .3; 2// consists of more addends. The first part is given by the

probability of stopping in stage 2 with Z�
2 positive but smaller than 3. The second

part consists of the probability of stopping in stages 3 or 4. The third part is given
by the probability of stopping in stages 1 or 2 with negative Z�

2 . Altogether, (4.6) is
given by

Z p
2 3

u2

fıU.3;2/.s2; 2/ ds2

C
Z 1

�1
fıU.3;2/.s3; 3/ ds3 C

Z 1

�1
fıU.3;2/.s4; 4/ ds4

C
Z �u1

�1
fıU.3;2/.s1; 1/ ds1 C

Z �u2

�1
fıU.3;2/.s2; 2/ ds2 D 0:025

(4.8)

(note that the second integral has a discontinuous integration domain, consisting of
the upper and lower parts of the rejection regionR3). Solving this for ıU.3; 2/ yields
0:748 for the O’Brien and Fleming case and 0:729 for the Pocock case. Considering
that, given we are in stage 2, stopping in stages 3 or 4 is equivalent to not stopping
at stage 2, (4.8) reduces to two integrals, leaving the equation

Z �u1

�1
fıU.3;2/.s1; 1/ ds1 C

Z p
2 3

�1
fıU .3;2/.s2; 2/ ds2 D 0:025

to be solved. This transformation makes it clear why confidence intervals following
the stage-wise ordering can be derived independently of the subsequent information
levels and even independently of the number of subsequent interim analyses.
Therefore, this ordering enables obtaining confidence intervals not only for fixed
boundaries at given information levels but also for the ˛-spending approach and
other types of flexible monitoring (Kim and DeMets 1987a). This property is limited
to the stage-wise ordering and does not apply to the other orderings presented below.
Putting the results of solving (4.7) and (4.8) together, we obtain the confidence
intervals .0:157I 0:748/ (OBF) and .0:074I 0:729/ (P), respectively. Note that the
OBF-boundaries are more conservative at stage 2 than the P-boundaries are and
therefore stopping at this stage in an OBF-design implies a stronger evidence against
the null, represented here by a smaller confidence interval that is more shifted to the
right.
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For the O’Brien and Fleming design, the upper one-sided p -value is given by
PH0 ..Z

�
M;M/ 
 .3; 2// D 0:0014 and the lower one-sided p -value is given by

PH0 ..Z
�
M;M/ � .3; 2// D 0:9986, both probabilities consisting of the same integrals

as the probabilities in (4.7) and (4.8) (again, (4.8) can be simplified as shown above).
The two-sided p -value is 2 � 0:0014 D 0:0028. For the Pocock design, the one-
sided p -values are 0:0098 and 0:9902, respectively, and the two-sided p -value is
2 � 0:0098 D 0:0196. Again, the evidence against the null is stronger in the OBF
case.

As to point estimates, in the O’Brien and Fleming case both the midpoint of the
confidence interval .0:157I 0:748/ and the median unbiased estimate following (4.5)
take the value of 0:452. For the Pocock case, we find different estimates, the
midpoint of the confidence interval being 0:401 and the median unbiased estimate
0:419. Consistently with the remarks above, both estimates are smaller than 0:452.

We finally note that the calculated confidence intervals and point estimates can
also be provided in a form that is independent of an actually realized sample size.
Recall that the focus was on the estimation of the standardized effect size .� �
�0/=� , as mentioned earlier, and the estimates in the example were calculated with
n1 D n2 D n D 22. Corresponding estimates for other n0

1 D n0
2 D n0 are easily

obtained through multiplying the values with
p

n0=
p

n. Equivalently, a possible way
is to provide the estimates for

E.Z�
k / D � � �0

�

r
Xk

QkD1 nQk ;

and retransform these for the parameter of interest. In our example, the confidence
intervals for E.Z�

k / are .1:038I 4:959/ (OBF) and .0:489I 4:836/ (P), and the median
unbiased point estimates for E.Z�

k / are 2.999 (OBF) and 2.776 (P). This is always
possible and opens a more general way for providing estimates for the parameter of
interest.

Likelihood Ratio Ordering

Chang and O’Brien (1986) proposed an ordering based on the likelihood ratio test
for a binomial proportion which was extended to the normal case by Chang (1989)
and Rosner and Tsiatis (1988). For the normal case, the likelihood ratio test (LRT)
statistic for testing H0 W � D �0 against H1 W � ¤ �0 is given by Z�

k . Two pairs
of observations .z�0

k0 ; k0/ and .z�
k ; k/ can then be ordered according to the values of

the test statistic Z�
k itself, not considering the relation between k and k0. While for

the stage-wise ordering all results of subsequent stages are rated equally as giving
weaker evidence against H0 than z�

k , they are viewed in a more differentiated way
here, assessing whether or not they lie below or above z�

k , the final value of the test
statistic when stopping at stage k. Therefore, deriving estimates for this ordering is
only possible if the critical boundaries of subsequent stages are known.
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Simulations by Emerson and Fleming (1990) showed that the interval based on
the likelihood ratio ordering tends to be wider than the interval that is based on
the stage-wise ordering for O’Brien and Fleming’s design but shorter for Pocock’s
design. Chang et al. (1995) showed that the two-sided likelihood ratio based p -
values for stopping at earlier stages and with a small overshot (test statistic only
slightly above the critical value) are larger than the respective two-sided stage-wise
order based p -values, whereas the order is reversed in cases of later stopping or
larger overshot.

Sample Mean Ordering

Emerson and Fleming (1990) proposed a one-parameter family of orderings. For
normally distributed observations, this ordering defines .z�0

k0 ; k0/ to be more extreme
than .z�

k ; k/ if

z�0
k0

.
Pk0

QkD1 nQk/�� 1
2

>
z�

k

.
Pk

QkD1 nQk/�� 1
2

:

Emerson and Fleming (1990) proposed choosing � D 1 which they report to have
found optimal with respect to certain criteria. This choice leads to ordering by the
(standardized) difference between the sample mean and �0 in the case of normally
distributed observations and hence is based on the maximum likelihood estimate for
normally distributed data.

While the stage-wise ordering is mainly based on the stopping time, this ordering,
like the likelihood ratio ordering, relies mainly on the extremity of the observed
effect and less on the stage it was obtained at. Emerson and Fleming (1990)
showed the resulting confidence intervals to be of shorter expected length than those
obtained by the stage-wise ordering in a variety of settings and in many, though not
all, cases to be of shorter expected length than the likelihood ratio ordering. For the
same reasons as for the likelihood ratio ordering, critical boundaries of subsequent
stages have to be fixed in order to calculate confidence intervals.

Score Test Ordering

Due to the fact that the sample mean is not always covered by the confidence
intervals obtained by the stage-wise ordering, Rosner and Tsiatis (1988) proposed
an ordering that is based on the score test statistic Sk (see Sect. 1.4). This ordering
is quite similar to the likelihood ratio ordering, including the fact that the statistic
to be ordered has to be computed anew for each hypothesized parameter value.
Chang et al. (1995) reported that in early stages of the trial, a rejection of the null
hypothesis is often accompanied by an inconsistent p -value based on this ordering
when Pocock boundaries are used, i.e., the p -value may be larger than ˛ even if
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the study stopped with rejection of H0. In this case the corresponding confidence
interval would cover �0 in spite of rejecting H0. For later stages, such discrepancies
are rarer. Generally they do not occur for O’Brien and Fleming boundaries with
constant critical boundaries for Sk.

Which ordering to choose for a given analysis is a difficult question. Many
comparisons have been made on this behalf, but there is no unanimous answer.
Emerson and Fleming (1990) compared the stage-wise, likelihood ratio, and
sample mean orderings for one-sided procedures with respect to the length of the
resulting confidence intervals. They showed that the stage-wise ordering yields
wider confidence intervals than the sample mean ordering, the rank of the likelihood
ratio ordering depending on the chosen type of boundaries. On the other hand,
results of Chang (1989) show a slight advantage for the likelihood ratio intervals
as compared to the stage-wise ordering intervals in terms of length in the case of
two-sided designs. In addition to such a comparison, Rosner and Tsiatis (1988)
compared the probabilities of covering a wrong mean for the stage-wise and the
likelihood ratio ordering. They found a slight advantage for the likelihood ratio
ordering but not for all combinations of true and hypothesized means. Chang et al.
(1995) and Cook (2002) compared the p -values obtained by all four orderings
presented in this section. Both agreed on preferring the likelihood ratio ordering
to the other orderings. Both Chang et al. (1995) and Cook (2002) recommended
refraining from the score test ordering because of its possible inconsistency with
the test decision. We think a decisive advantage of the stage-wise ordering is its
independence of future outcomes and its applicability for more flexible designs such
as the ˛-spending function approach. In Part II of this book we will see that this
property actually enables the use of this technique in adaptive designs.

4.1.2 Monitoring a Trial

In addition to analyzing the results of a group sequential trial after its completion,
it will be monitored along its interim analyses. The confidence intervals presented
in the last section cannot be used for this purpose as they are only intended for
use after the completion of a group sequential trial and therefore their validity is
also restricted to this situation. Other approaches to obtain confidence intervals and
also p -values have been proposed for monitoring purposes. The concept of repeated
confidence intervals (RCIs) was introduced by Jennison and Turnbull (1984, 1989)
and Lai (1984). It exploits the duality of statistical tests and confidence intervals,
including such values of the parameter of interest in a confidence interval which
do not lead to the rejection of the null hypothesis. Since this is done in compliance
with the group sequential testing procedure, the resulting confidence intervals ensure
protection of the multiple significance level. They can therefore be calculated at each
interim analysis allowing an accompanying analysis tool in the course of the trial.
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Formally, repeated confidence intervals with confidence level 1 � ˛ form a
sequence of intervals Ik fulfilling

Pı

 
K\

kD1
fIk 3 ıg

!

D 1 � ˛ ;

ı denoting the parameter of interest. This condition ensures that the overall coverage
probability 1 � ˛ is protected in spite of the multiple looks. The intervals Ik

are constructed using all observations obtained up to stage k. The easiest way
of obtaining such a sequence of confidence intervals is by inverting the group
sequential plan employed to conduct the trial. That is, the null hypothesis is shifted
and all values of ı which do not lead to a rejection of the shifted null hypothesis up
to the current stage are included in the confidence interval.

Consider the one-sample case with normally distributed observations and con-
sider employing a two-sided group sequential plan with continuation regions C �

k D
.�ukI uk/ for testing the hypothesis H0 W � D �0 at overall significance level ˛.
After each stage k, the null hypothesis is not rejected if

�uk <

Pk
QkD1

p
nQk ZQk

qPk
QkD1 nQk

< uk ;

(see (1.3) in Sect. 1.2). Inverting this sequence of tests yields the sequence of
confidence intervals

NX.k/ � �0
�

˙ uk=

r
Xk

QkD1 nQk ; k D 1; : : : ;K; (4.9)

for the standardized effect .�� �0/=� with a global coverage probability of 1 � ˛.
Note that . NX.k/ � �0/=� will always be the midpoint of the confidence interval,
in contrast to the confidence intervals based on orderings of the sample space (see
above) where it may occur that the sample mean is not included in the resulting
confidence interval. A one-sided confidence interval can be obtained in much the
same way using the critical value of a one-sided group sequential test design
(without stopping for futility) instead of the two-sided one as above.

The confidence interval defined by (4.9) has the same structure as a confidence
interval for the fixed sample size test, replacing a normal quantile by the critical
value for the underlying group sequential test and the fixed sample size n byPk

QkD1 nQk. Replacing the normal quantile by the larger group sequential critical
boundary reflects the price to be paid for the multiple inference. The difference
in width as compared to the fixed sample size confidence interval varies, of course,
with the type of group sequential boundaries employed: For example, for earlier
stages, a Pocock design will yield much smaller confidence intervals than an
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O’Brien and Fleming design, and vice versa for later stages, according to the
allocation the Type I error rate to the stages.

Every sequence of continuation regions maintaining a Type I error rate ˛ is
suitable for constructing a sequence of repeated confidence intervals with global
coverage probability 1 � ˛. There is no restriction with respect to the ˛ -spending
approach or flexible monitoring as the continuation regions of subsequent stages
are not needed for the calculation of (4.9). The possibility of freely choosing
the employed critical values even ensures the repeated confidence intervals to be
independent from the test decision and therefore to be valid however the decision
to terminate the trial was reached. They are valid at each stage of the trial, even if
the stopping rule was not adhered to. This, again, is in contrast to the confidence
intervals based on the ordering of the sample space as those require strict adherence
to the stopping rules set beforehand.

As a disadvantage, repeated confidence intervals are prone to be conservative:
They include all parameters which do not lead to a rejection of the null hypothesis
up to the current stage, but as the future development of the trial is unknown,
they inevitably will also include parameters which would have led to a rejection
of the null hypothesis in subsequent stages and therefore should not have been
included in the confidence interval in the first place. This problem is largest in early
stages, where there are many stages to follow, and diminishes in later stages of the
trial. Another problem may occur when using the sequence of repeated confidence
intervals obtained over the stage of the trial: It may happen that the intersection of
the confidence intervals is empty which will be difficult to interpret. It will, however,
be only the case for very heterogeneous results over the stages.

A further monitoring instrument associated with the use of repeated confidence
intervals is the use of repeated p-values as proposed by Jennison and Turnbull
(2000). They are defined as the largest level ˛ for which the .1 � ˛/100% RCI
at stage k contains the hypothesized value of the null hypothesis. Equivalently, it
is the smallest overall significance level for which the group sequential test with
the data obtained so far reaches rejection of H0 provided the same class of critical
values is used.

Consequently, a repeated p-value is lower than ˛ if and only if the parameter of
the null hypothesis is not within the .1 � ˛/100% RCI or, equivalently, if the test
leads to the rejection of H0 at the given stage. It can therefore be used to make the
test decision and provides some measure of evidence for or against the hypothesis
that is adjusted for the multiple looks effect. Furthermore, they can also be used
for making test decisions in one-sided or two-sided equivalence tests (Jennison and
Turnbull 2000, Chap. 6). As the RCIs they can be calculated repeatedly at each
stage of the trial irrespective of whether the hypothesis was rejected at (or before)
the given stage.

In practice, repeated p-values are generally found by varying the significance
level of the group sequential procedure employed (adhering to the chosen type of
boundary) until rejection regions are found that only just allow the rejection of the
null hypothesis using the actual test statistic (for more details, see Sect. 8.1). If the
group sequential test is defined through the shape of the rejection boundaries (for



94 4 Confidence Intervals, p-Values, and Point Estimation

example, the Wang and Tsiatis power family including the Pocock and O’Brien &
Fleming design) it can be accomplished by one integral calculation. For example,
if z�

k0 was observed at stage k0 in a K stage design with equally sized stages, the
repeated p-value is

PH0

 
K[

kD1

�

jZ�
k j �

� k

k0
���0:5

z�
k0

	!

:

So if k0 D 1 we have

PH0

�jZ�
1 j � z�

1 or jZ�
2 j � z�

1 2
��0:5 or : : : or jZ�

K j � z�
1 K��0:5� ;

for k0 D 2 we have

PH0

�jZ�
1 j � z�

2 2
0:5�� or jZ�

2 j � z�
2 or : : : or jZ�

K j � z�
2 K��0:5 20:5��

�
;

and so on. Finally for k0 D K

PH0

�jZ�
1 j � z�

K K0:5�� or jZ�
2 j � z�

K 2
��0:5 K0:5�� or : : : or jZ�

K j � z�
K

�

needs to be calculated. Note that it is important to keep in mind that the same �-
class of critical values is used for deriving these p-values. It becomes clear that the
repeated p-value at stage k0 exactly corresponds with the rejection rule of the group
sequential design. By definition, if z�

k0 D uk0 , i.e., the test statistic coincides with
the rejection boundary at stage k0, the repeated p-value equals ˛. This is in contrast
to, for example, the stage-wise ordering which takes into account at which stage a
rejection of the null hypothesis was possible. To illustrate, in a three-stage O’Brien
and Fleming design at two-sided ˛ D 0:05, if the first stage p-value yields 0.0005,
the repeated p-value is 0.05 whereas the stage-wise p-value is 0.0005 (see Table 2.2).
This is a somewhat strange result but illustrates the idea behind two very different
approaches.

The repeated p-value is consistent with the repeated confidence interval in the
following sense: whenever the repeated p-value is less than ˛, the confidence
interval excludes all parameter values of the null hypothesis. Repeated p-values
also define an ordering in the sample space as do repeated confidence intervals. It
is interesting to recognize, however, that these two orderings are not the same. This
was shown in Posch et al. (2008). They illustrated for the one-sided testing situation
that the following property does not hold in general: the smaller the repeated p-value
the larger is the lower bound of the RCI. So there are inconsistencies, a solution is
to define ordering consistent repeated p-values having a different family of stopping
boundaries as the ones from where the test was derived.
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4.2 Point Estimation

We will now briefly consider the problem of point estimates for the unknown
parameter in the group sequential context. Since the stopping boundaries have no
influence on the derivation of the maximum likelihood (ML) estimate (see Chang
1989), ML estimates known from the fixed sample size settings retain their ML
property. They do, however, not retain other properties in the group sequential
setting: The ML estimate for, for example, one sample of normally distributed
variables is a uniformly minimum variance unbiased estimate in fixed sample size
designs, but it is not even unbiased in group sequential designs. The reason for the
biasedness of the ML estimate lies in the selective nature of the sampling procedure:
Samples leading to the termination of a group sequential trial are always selected if
they are extreme.

To illustrate, consider the two-sided group sequential design with continuous
rejection regions for testing H0 W � D �0 in the one-sample case. Again, similar
as in Sect. 4.1, we will consider point estimates for ı D .� � �0/=� rather than
for � itself. It can easily be shown that the ML estimate is given by (see (1.17) in
Sect. 1.4)

OıML D
p

n1Sk
Pk

QkD1 nQk
D

NX.k/ � �0
�

: (4.10)

Although all individual observations follow a normal distribution, the distribution
of OıML is generally not normal and its mean is unequal to ı. This is because only
samples yielding a mean with an extremely large absolute value allow an early
termination of the trial, whereas samples leading to a moderate mean stipulate
continuation of the trial and therefore do not entail a final point estimation. OıML

will therefore overestimate the true ı when the upper boundary is crossed and it will
underestimate the true ı when the lower boundary is crossed.

Figure 4.2 shows the bias of the ML estimate in a four-stage group sequential
design with both Pocock and O’Brien & Fleming type boundaries for testing H0 W
� D �0 and n1 D � � � D n4 D n D 10 in the case of �0 D 0 and � D 1. This
bias is calculated using the group sequential density from Sect. 1.4 using the fact
that OıML can be expressed in terms of a function h.Sk/ of the test statistic Sk as given
in (4.10). The global bias can then be calculated by

Bı. OıML/ D
K�1X

kD1

Z

RnCk

h.sk/fı.sk; k/ dsk C
Z

R

h.sK/fı.sK ;K/ dsK � ı : (4.11)

For both curves in Fig. 4.2 we note a positive bias for positive values of ı and a
negative bias for negative values of ı although for extreme values of ı, the bias
disappears. The reason for the bias is as explained above: For moderate values
of ı, only extreme samples (extreme being defined relatively to the mean of the
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Fig. 4.2 Bias of the ML estimate in a two-sided four-stage design for testing H0 W � D 0 with
continuation regions C�

k D .�2:361I 2:361/ (solid lines) and C �

k D .�4:049=pkI 4:049=pk/
(dashed lines), k D 1; : : : ; 4. Sample sizes are nk � 22, � D 1

distribution) will lead to early stopping of the trial and thereby to an extreme
point estimate. However, the more extreme the true parameter value is, the less
extreme (relative to the true parameter) a sample has to be in order to allow the
trial to be terminated and a point estimation to be performed. The bias of the ML
estimate therefore becomes smaller for absolutely large values of ı. The smaller
bias for parameter values near to 0, in comparison, is kind of an artefact: If the
true parameter value is 0, in the first stages there can be no precise estimation of
ı as a test statistic with values close to 0 would not lead to termination of the
trial. Instead, overestimation and underestimation cancel out in this situation as it
is equally probable to stop because of crossing the upper boundary as it is because
of crossing the lower boundary. In the last stage, however, a precise estimation is
possible in this situation. As ı becomes more extreme, the probability shifts to one
of the sides and the bias becomes more and more pronounced until reaching its
extreme value and then decaying to 0 again. The symmetry of the bias is a result of
the symmetry of the continuation regions in this two-sided situation. The shape of
the boundaries is reflected in the shape of the bias: Since the O’Brien and Fleming
continuation regions C �

k are non-constant in k, there is no constant increase in the
bias as opposed to that belonging to the Pocock boundaries.

Figure 4.2 tells only half the tale of the bias in group sequential estimation.
Looking deeper inside the mechanism of the estimation at termination it becomes
clear that the bias of the ML estimate consists of a weighted mean of the conditional
biases of every stage, the weight being the probability to stop at a given stage. Those
single stage-wise biases exhibit a quite different behaviour as is shown in Fig. 4.3
for Pocock boundaries. The calculation of stage-wise bias again utilizes the fact that
the ML estimate can be specified in terms of a function h.Sk/. In contrast to (4.11)
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Fig. 4.3 Conditional stage-wise bias of the ML estimate in a two-sided four-stage design for
testing H0 W � D 0 with continuation regions C�

k D .�2:361I 2:361/, k D 1; : : : ; 4. Sample
sizes are nk � 22, � D 1

here the conditional density of Sk is needed, yielding

B.k/ı .
OıML/ D

R
RnCk

h.sk/ fı.sk; k/ dsk
R
RnCk

fı.sk; k/ dsk
� ı (4.12)

for k D 1; : : : ;K � 1, and

B.K/ı . OıML/ D
R
R

h.SK/ fı.SK ;K/ dsK
R
R

fı.SK ;K/ dsK
� ı : (4.13)

The shape of the stage-wise bias is most similar to the global bias for the first
stage as in the first stage the mechanism of bias induction is exactly as described
above: Extreme observations lead to termination of the trial and therefore to point
estimation to be performed, leading to biased estimates if the true parameter value
is moderate. In the second and third stages, another mechanism is added to that
first one: for extreme values of ı no bias was induced in the first stage because no
selection of samples has to take place in order to allow termination of the trial. Yet,
if the true parameter is extreme and the trial was nevertheless continued, there must
have been a selection of moderate samples which led to overly moderate estimation
in the second and third stages, resulting in an overestimation of negative parameter
values and an underestimation for positive ones. The resulting bias for the second
and third stages is a mixture of these two mechanisms: the first one for moderate
parameter values and the second for extreme parameter values. In the forth stage,
only the second mechanism plays a role as the termination of the trial is independent
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from the sample here (although, of course, rejection of the null is not). Therefore,
the bias is a decreasing function in the true parameter

We will now consider methods of reducing the bias of the ML estimate. A widely
investigated approach has been suggested by Whitehead (1986). In the case of
triangular designs, he proposed using the bias adjusted estimate

Oıadj D OıML � BOıadj
. OıML/ (4.14)

with Bı. OıML/ given by (4.11). Considering that the expected value Eı. OıML/ is given
by

Eı. OıML/ D ı C Bı. OıML/ ;

Eq. (4.14) corresponds to choosing the adjusted estimate Oıadj such that the expected

value Eı. OıML/ would take the value OıML if the true parameter value was Oıadj.
Equation (4.14) can be solved, for example, by the Newton–Raphson algorithm (see
Whitehead 1986). This approach has been transferred to group sequential designs
by Todd et al. (1996). They show that there is a considerable reduction in global
bias although some bias remains. This is mainly due to the fact that Oı will not vary
symmetrically about its expected value due to the distribution being cut off at one
side by the critical boundary.

Application to other settings than that of normally distributed observations is
also possible (see, for example, Todd and Whitehead 1997, for the case of binary
responses). The only requirement is a suitable initial estimate (as, for example,
. NX.k/ � �0/=� in the case of one sample of normally distributed data) which can be
expressed as a function of the test statistic and has therefore a calculable bias. The
(global) bias adjusting procedure for a parameter ı is then given by the following
procedure:

1. Calculate an initial estimate Oı
2. Calculate the bias Bı. Oı/ of the initial estimate
3. Calculate the adjusted estimate Oıadj following (4.14).

The prerequisite of an initial bias expressable in terms of a test statistic can even
be relaxed when considering evaluating the bias of the estimate using resampling
methods (see Pinheiro and DeMets 1997; Wang and Leung 1997).

Figures 4.2 and 4.3 suggest a slight modification to the bias adjusting procedure
by Whitehead (1986). Since the global bias is a somewhat rough instrument for
describing the behaviour of an estimate—ignoring which stage the estimate comes
from—the bias adjusting procedure can be refined using the stage-wise conditional
bias Bk

ı.
OıML/ from (4.12) and (4.13) instead of the global bias Bı. OıML/. The stage-

wise adjusted estimate is found by the equation

Oı.k/adj D Oı.k/ML � BOı.k/adj
. Oı.k/ML/ (4.15)
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(see Troendle and Yu 1999; Coburger and Wassmer 2001, 2003). The adjusting
procedure is therefore changed to

1. Calculate an initial estimate Oı.k/
2. Calculate the bias B.k/ı .

Oı.k// belonging to the specific stage k

3. Calculate the adjusted estimate Oı.k/ following (4.15).

Note that Oı and Oı.k/ are different in notation only. The ML estimate, for example,
can be chosen as an initial estimate for both estimation procedures.

This stage-wise adjusting procedure reduces the stage-wise conditional bias of
the initial estimate for all stages considerably (see Coburger and Wassmer 2001).
Yet it works best for the last stage and for extreme parameter values for stages
k D 2; : : : ;K � 1; for k D 1 and moderate parameter values in stages k D
2; : : : ;K � 1 it shows a similar improvement in stage-wise bias as the globally
adjusted estimate in global bias. Both adjustment procedures therefore reach their
aim: The global adjusted estimate shows a reduced global bias and the stage-wise
adjusted estimate achieves a reduction of the stage-wise conditional bias. Evaluating
the estimators crosswisely (i.e., considering the stage-wise conditional bias for the
global adjusted estimate and vice versa) shows that good performance with respect
to one bias type does not necessarily imply a similar behaviour with respect to the
other bias type: The global adjusted estimate shows an improvement as compared to
the initial estimate in the stage-wise conditional bias for k D 1 and a deterioration
for later stages, and there is an intermediate parameter range where the stage-wise
adjusted estimate has a larger global bias than the initial estimate. Still, considering
again Figs. 4.2 and 4.3, the stage-wise conditional bias can be considered a finer
instrument for judging the behaviour of an estimate as it is not an assembly of
different situations (i.e., different stopping stages) of which only one at a time can
occur.

Confidence intervals on the basis of adjusted estimators can be calculated in
different ways. Whitehead (1986) gives an approximation of the standard error
of the global bias adjusted estimate and constructs a classical confidence interval
around the adjusted estimate. He notes, however, that the distribution of the
adjusted estimate is non-normal and therefore this confidence interval may be
inaccurate sometimes. Due to the fact of the non-normality of the adjusted estimate,
Todd et al. (1996) make use of a proposal by Woodroofe (1992) and calculate a
double standardisation of the test statistic, yielding a quantity which they claim
to be normally distributed. A confidence interval around this quantity can then
be calculated following classical theory. This method does not utilize the adjusted
estimate but was proposed by Todd et al. (1996) as an accompanying interval for the
adjusted estimate. Another suggestion was made by Pinheiro and DeMets (1997).
They start with a naive confidence interval around the adjusted estimate and then
apply the adjusting procedure to the endpoints of this confidence interval. They
investigate their procedure and that of Whitehead (1986) but find no clear advantage
for one of them. Both of these suggestions, however, have the advantage that they
always include the bias adjusted estimate itself which may not be the case for the
proposal by Todd et al. (1996).
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A completely different approach for point estimation in group sequential trials
was followed by Emerson and Fleming (1990). They employed Rao–Blackwell’s
theorem (see Lehmann and Casella 1998) which states that, given an unbiased
estimate O# for an unknown parameter and a statistic T which is sufficient and
complete for # , the conditional expectation E. O#jT/ is a uniformly minimum
variance unbiased estimate. In the case of a group sequential trial with one sample
of normally distributed variables with mean �, taking . NX1 � �0/=� as an estimate
irrespective of whether the trial was stopped or not yields a globally unbiased
estimate for ı. As a sufficient and complete statistic, Emerson and Fleming (1990)
identify .SM;M/. They then propose the estimate

OıRB D E.
p

n1S1
n1

j.SM;M// D E.
NX1 � �0
�

j.SM;M// :

Emerson (1993) derived a computationally quite extensive formula for calculating
the conditional expectation, a faster algorithm was proposed by Emerson and
Kittelson (1997). As Liu and Hall (1999) point out, however, .SM;M/ is not
complete due to the curvature of the exponential family and therefore OıRB is not
a uniformly minimum variance unbiased estimate (see also, Proschan et al. 2006,
§7.1). It is, however, globally unbiased (the unbiasedness of . NX1��0/=� is not lost)
but its variance is sometimes higher than that of the ML estimate and sometimes
even higher than those of the stage-wisely unbiased estimators which generally tend
to have a higher variance than the ML estimate.

We finally note that bias is an important but not the only important statistical
property of a point estimate. An obviously more important property is precision,
often quantified in terms of the mean squared error (MSE). We all know that bias
may well be small while precision can be too large (as is, for example, the case for
the mean of the first stage data only). Therefore, every unbiased or conditionally
unbiased estimate should be investigated with regard to precision, for example,
by the consideration of the MSE. In the case that the bias reduction substantially
increases the mean squared error compared to the ML, the use of the bias reduced
estimate is more than questionable. We will come back to this issue in the second
part of this book (see Sect. 8.3).



Chapter 5
Applications

So far, we have considered the problem of testing the hypothesis H0 W � D �0
in a one-sample testing situation with normally distributed observations assuming
the variance, �2, to be known. We already mentioned that this situation serves as a
prototype for many other testing situations for which group sequential designs can
be applied. Particularly, the inflation factor I, introduced in Sect. 2.1, will be used
to perform the calculation of the maximum necessary sample size within a group
sequential design. I depends on

– the maximum number K of stages,
– the (one-sided or two-sided) significance level ˛,
– the power 1 � ˇ,
– the anticipated sequence of information rates summarized in the vector V,
– the chosen design, for example, on � when using a design within the Wang and

Tsiatis family of boundaries.

Tables of the inflation factor for different designs were supplied in Chaps. 2 and 3.
The average sample size either under H1 or under another parameter value of interest
can be calculated and used for the assessment of a specific design. As will be shown,
this is possible for many different designs which are practically relevant.

This chapter focuses on specific characteristics and properties of group sequential
tests in the most popular testing situation which we encounter in clinical trials. These
are one- and two-sample tests for normally distributed observations where �2 is
unknown, one- and two-sample tests for binary data, and statistical inference on
time-to-event (survival) data. For survival data analysis, we will slightly modify the
notation in order to account for the different meaning of “information” in this case.
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5.1 Normal Response

Consider testing the mean of normally distributed observations in the one-sample
design if �2 is unknown. As in the preceding sections, let the responses Xi be
independently N.�; �2/ distributed. In the fixed sample design with nf observations
X1; : : : ;Xnf , �

2 is estimated by

O�2 D 1

nf � 1
nfX

iD1
.Xi � NX/2 :

Let H0 W � D �0 be tested against the two-sided alternative H1 (the one-sided case
is treated analogously). The test statistic for testing H0 is given by

T D
NX � �0

O�
p

nf ;

which is central t distributed with nf � 1 degrees of freedom. Let G#;df .�/ denote the
cdf of the noncentral t distribution with non-centrality parameter # and df degrees
of freedom, and let G�1

df .�/ denote the inverse of the central t cdf with df degrees of
freedom. H0 is rejected if jTj > G�1

nf �1.1 � ˛=2/, or, equivalently, if the two-sided
p-value

p D minf2.1� G0;nf �1.jTj//; 1g

is smaller than or equal to ˛. In a fixed sample size design with unknown variance,
the sample size nf to meet the power 1 � ˇ is iteratively found by searching nf that
fulfills

G#;nf �1
� � G�1

nf �1.1 � ˛=2/�C 1 � G#;nf �1
�
G�1

nf �1.1 � ˛=2/� D 1 � ˇ ;

where # D p
nf .� � �0/=� . That is, by specifying the standardized effect size

ı D .� � �0/=� , the sample size nf necessary to achieve power 1 � ˇ subject to
the significance level ˛ can be calculated by use of the central and the noncentral t
distributions.

This test can be applied in the group sequential setting in an approximate sense
as follows. Let the sample sizes per stage be given by n1; : : : ; nK . At stage k, the test
statistic is

T�
k D

NX.k/ � �0

O�.k/

v
u
u
t

kX

QkD1
nQk ; (5.1)
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where NX.k/ denotes the cumulative mean up to stage k given by (1.1) (see Sect. 1.2),
and the sample variance, O�.k/2, is calculated from data obtained up to stage k through

O�.k/2 D 1
Pk

QkD1 nQk � 1

Pk
QkD1

nQkX

iD1
.Xi � NX.k//2 : (5.2)

Consider a group sequential test design with critical values u1; : : : ; uK which can
be any sequence of critical values defined in Chaps. 2 and 3. The hypothesis H0 is
rejected if the (two-sided) p-value calculated at stage k falls below or is equal to
the adjusted significance level, ˛k, of the group sequential test. Equivalently, H0 is
rejected if

jT�
k j � G�1Pk

QkD1
nQk�1.˚.uk// ; k D 1; : : : ;K:

This significance level approach was proposed by Pocock (1977). Since the
sequence of test statistics T�

1 ; : : : ;T
�
K fails to possess the independent and normally

distributed increments structure, the Type I error rate of this test is only approxi-
mately equal to ˛. It can be shown, however, that the approximation is stupendously
accurate. Particularly, it considerably improves the approach that directly compares
the test statistic (5.1) with uk, k D 1; : : : ;K.

The maximum sample size, N, necessary to achieve power 1 � ˇ is calculated
by multiplying the inflation factor, I, with the sample size of the fixed sample size
design, nf . The average sample size under H0 or under H1 is calculated analogously.
So the vector of accumulated sample sizes is

.n1; n1 C n2; : : : ;N/ D V I nf ;

and one is able to assess the design in terms of the expected and maximum sample
sizes.

We illustrate the sample size calculation in this testing situation by an example.
Suppose one wishes to plan a four-stage group sequential design with constant
bounds (Pocock’s design) and equally sized stages. Specifying ı D 0:50, ˛ D 0:05

and 1 � ˇ D 0:80 yields nf D 33:4 (for known variance, nf D 31:4, see Sect. 2.1),
and

V I nf D .0:25; 0:50; 0:75; 1/ 1:202� 33:4 D .10:0; 20:1; 30:1; 40:1/ ;

where I is found from Table 2.3. Hence, if interim analyses take place after each
n1 D � � � D n4 D n D 10 observations, the power is approximately equal to 80 %
when using the significance level approach. With this approach, H0 is rejected at
stage k if

jT�
k j � G�1

k 10�1.˚.2:361// D G�1
k 10�1.0:9909/ ; k D 1; : : : ; 4 ;
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or, equivalently, if the two-sided p -value at stage k is smaller than or equal to 0.0182
(see Table 2.2). If ı D 0:50, the average sample size under H1 is 0:805 � 33:4 D
26:9.

Occasionally, it could be of interest to calculate the power (and the ASN) at given
maximum sample size, N, for different standardized effect sizes ı. An approximate
solution is to fix

#k D ı

v
u
u
t

kX

QkD1
nQk ; k D 1; : : : ;K; (5.3)

for different ı, and to calculate the multiple integral with suitably shifted decision
regions. Since this does not account for the unknown variance it will overestimate
the power, especially for small to moderate sample sizes. A better solution is to find
the value 	 for which

G#;N�1
�
G�1

N�1.1 � ˛=2/
�� G#;N�1

� � G�1
N�1.1 � ˛=2/

�

D ˚
�
˚�1.1 � ˛=2/ � p

N	
�� ˚

� � ˚�1.1� ˛=2/� p
N	
�
;

where # D ı
p

N. This means finding the standardized effect size 	 for which the
test with known variance has the same power as the test assuming the variance to be
unknown. 	 can be found iteratively or can be well approximated by

	 D
sign.#/˚�1.1 � ˛=2/� ˚�1

�
G#;N�1

�
sign.#/G�1

N�1.1 � ˛=2/
��

p
N

; (5.4)

where sign.#/ denotes the sign of # . In the one-sided case, essentially, ˛=2 is
replaced by ˛. In order to obtain the power and the ASN, the multiple integral is
calculated by setting

#k D 	

v
u
u
t

kX

QkD1
nQk ; k D 1; : : : ;K:

This method provides a good approximation to the power in the group sequential
test design, which is illustrated in Table 5.1. For different ı, it compares the
power obtained with the approximation obtained from (5.3) with the approximation
obtained from (5.4) for different n1 D : : : D nK D n when using a two-sided four-
stage Pocock design at significance level ˛ D 0:05. Additionally, the true power is
estimated by simulation, using one million replicates, with standard error smaller
than 0.0005.

The table shows that the power approximation using (5.4) considerably improves
the estimation of the true power. Unless the sample size per stage, n, is very small
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Table 5.1 Approximate power for testing the mean of normally distributed observations when
the variance is unknown using formula (5.3) and (5.4), respectively, and true power, estimated by
simulation (one million replicates), for different ı and stage sample sizes n1 D � � � D n4 D n in
Pocock’s four-stage group sequential design, ˛ D 0:05 (two-sided)

Power Power Power

ı (5.3) (5.4) True (5.3) (5.4) True (5.3) (5.4) True

n D 3 n D 6 n D 10

0.0 0:050 0:050 0:055 0:050 0:050 0:053 0:050 0:050 0:052

0.3 0:146 0:129 0:126 0:250 0:233 0:226 0:390 0:374 0:366

0.4 0:227 0:196 0:185 0:413 0:383 0:370 0:626 0:603 0:592

0.5 0:333 0:284 0:265 0:596 0:558 0:539 0:824 0:803 0:793

0.6 0:457 0:390 0:361 0:762 0:724 0:704 0:939 0:927 0:920

0.7 0:587 0:507 0:469 0:883 0:852 0:836 0:985 0:980 0:977

0.8 0:709 0:624 0:582 0:952 0:933 0:923 0:997 0:996 0:995

0.9 0:812 0:731 0:689 0:984 0:975 0:969 1:000 0:999 0:999

1.0 0:889 0:820 0:782 0:996 0:992 0:990 1:000 1:000 1:000

ı D 0 refers to the Type I error rate

(n D 3), the estimated power comes close to the true power. But also for very small
n the difference between the true power and the estimated power is about one third
of the difference between the true power and the estimated power when using the
crude approximation (5.3). The table additionally shows that the departure from
the desired Type I error is quite small for all considered n. Since Pocock’s design
has the greatest chance to stop the trial at early stages when the sample sizes are
small and hence the estimate for � is more imprecise, the departure from the desired
Type I error rate becomes even smaller for other designs (for example, O’Brien
and Fleming’s design). For a more systematic view of this issue, see Jennison and
Turnbull (2000), §3.8. Note that the approximation of the power described in their
book is different from the approach considered here, though the results are quite the
same.

Confidence Intervals

It is straightforward to derive confidence intervals for � when �2 is unknown. Since
the estimation procedures described in Chap. 4 were essentially derived for the test
statistic Z�

k , the estimates for � can be found from replacing the unknown variance
�2 in Z�

k by its estimate (5.2). For example, the sequence of .1 � ˛/100% RCIs is
found by inverting the test statistic (5.1), which yields

NX.k/ ˙ G�1Pk
QkD1

nQk�1.˚.uk//
O�.k/

Pk
QkD1 nQk

; (5.5)
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where u1; : : : ; uK are the critical values of the two-sided test at significance level ˛.
Note that, at stage k, one might replace the term G�1Pk

QkD1
nQk�1.˚.uk// with the original

critical value uk to achieve an approximate .1 � ˛/100% RCI. The form (5.5),
however, directly corresponds with the test decision in the sense that, at stage k,
H0 is rejected exactly if and only if the RCI at stage k does not contain �0. Thus,
(5.5) is clearly preferable.

Paired Comparisons

In practice, the situation of testing the mean of normally distributed observations in
the one-sample design applies to the paired comparison design. Let the responses in
pair i be denoted by XiA and XiB for treatments A and B, respectively. The differences
Di D XiA � XiB, i D 1; 2; : : :, are assumed to be independently N. Q�; �2/ distributed,
where Q� D �A � �B. In this setting, one usually tests H0 W Q� D 0. At stage k, the
test statistic is

T�
k D ND.k/

O�.k/

v
u
u
t

kX

QkD1
nQk ;

where ND.k/ denotes the cumulative mean difference up to stage k given by

ND.k/ D 1
Pk

QkD1 nQk

Pk
QkD1

nQkX

iD1
Di ;

and the sample variance, O�.k/2, is calculated through

O�.k/2 D 1
Pk

QkD1 nQk � 1

Pk
QkD1

nQkX

iD1
.Di � ND.k//2 :

Since the differences Di play the same role as the observations Xi in the one-sample
t test design described above, the one-sample group sequential t test can be directly
applied.

Two-Sample Comparisons

Consider two samples with independent observations X1j;X2j; : : : ; which are
assumed to be N.�j; �

2
j / distributed, j D 1; 2. Usually, the two samples refer to

two treatment groups and one is interested in testing hypotheses concerning the
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means �1 and �2. Consider testing the hypothesis

H0 W �2 � �1 D 
0

against the one-sided and the two-sided alternative, respectively. This includes
testing equality of means as well as non-inferiority testing problems, for example, in
active-controlled trials (see, for example, Wang et al. 2001; D’Agostino et al. 2003;
Hung et al. 2003). In non-inferiority testing problems, 
0 needs to be predefined
and reflects the mean difference which is clinically meaningless and, hence, the
acceptable degree of inferiority. With such trials it is possible to establish that, say,
a new treatment is at most irrelevantly worse than the control.

Within a K-stage group sequential design with nj1; : : : ; njK observations per stage
and treatment j, j D 1; 2, the application of the two-sample t test is straightforward
and easy to use in practice. The usage of this test depends on the assumption about
the variances �21 and �22 . If the variances are assumed to be equal, i.e., �21 D �22 , the
usual two-sample t test can be applied whereas elsewhere the Welch approximation
is appropriate.

Equal Variances

Under the assumption of equal variances the test statistic at stage k, k D 1; : : : ;K,
is

T�
k D

NX.k/2 � NX.k/1 � 
0

O�.k/
 

1
Pk

QkD1 n1Qk
C 1
Pk

QkD1 n2Qk

!�1=2
;

where NX.k/j denotes the overall mean from treatment j, j D 1; 2, and

O�.k/2 D
�Pk

QkD1 n1Qk � 1
�

O�.k/21 C
�Pk

QkD1 n2Qk � 1
�

O�.k/22

Pk
QkD1.n1Qk C n2Qk/� 2

is the pooled variance, where O�.k/21 and O�.k/22 are the overall sample variances at stage
k from the two treatment groups. Disregarding the group sequential setting, at stage
k, the test statistic T�

k is, under H0, t distributed with df D Pk
QkD1.n1Qk C n2Qk/ � 2

degrees of freedom and the significance level approach can be applied with the
sequence of test statistics T�

1 ;T
�
2 ; : : : ; and properly chosen degrees of freedom.
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Welch Approximation

For unequal variances the Welch approximation for the degrees of freedom at stage
k, dfk, is

dfk D

�
O�.k/21Pk
QkD1

n1Qk
C O�.k/22Pk

QkD1
n2Qk

�2

1
Pk

QkD1
n1Qk�1

�
O�.k/21Pk
QkD1

n1Qk

�2
C 1

Pk
QkD1

n2Qk�1

�
O�.k/22Pk
QkD1

n2Qk

�2 ;

and the test statistic is given by

T�
k D

� NX.k/2 � NX.k/1 � 
0

�
 

O�.k/21
Pk

QkD1 n1Qk
C O�.k/22
Pk

QkD1 n2Qk

!�1=2
:

Under H0, T�
k is approximately t distributed with dfk degrees of freedom (disregard-

ing the group sequential setting), and the group sequential test can be conducted
with the adjusted significance levels obtained from a specific design.

For sample size calculations, we first assume balanced treatment groups over
the stages of the trial. Let nk denote the sample size per stage and treatment in the
balanced case, i.e., n1k D n2k D nk, k D 1; : : : ;K. Assuming equal sample sizes
in the treatment groups, in a fixed sample size design with unknown variance the
sample size nf per treatment group to meet the power 1 � ˇ is found by searching
nf that fulfills

1 � G#;2nf �2
�
G�1
2nf �2.1 � ˛/

� D 1 � ˇ

in the one-sided case, and

G#;2nf �2
� � G�1

2nf �2.1 � ˛=2/
�C 1 � G#;2nf �2

�
G�1
2nf �2.1� ˛=2/

� D 1 � ˇ

in the two-sided case, where # D p
nf=2 .�2 � �1 � 
0/=� . The solution for nf is

computed iteratively. As for the one-sample t test situation, the maximum sample
size of the group sequential design is I nf , and the vector of accumulated sample
sizes per treatment group is

.n1; n1 C n2; : : : ;N/ D V I nf ;

where I is calculated under a specific group sequential test design. The average
sample size can be computed analogously using the expected reduction in sample
size relative to the fixed sample size design, which can be obtained from the
respective tables.
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If a sample size allocation ratio r D n2k=n1k 6D 1 is specified, the total maximum
sample size and the average sample size are multiplied by

.1C r/2

4 r
;

which is in analogy to the fixed sample size design. This term is derived from
equating the non-centrality parameter # in the unbalanced design with the non-
centrality parameter in the balanced design. That is, from

�2 � �1 � 
0

�

r
r n1k

1C r
D �2 � �1 � 
0

�

r
nk

2

it follows that the sample size per stage in the unbalanced design is

n1k C r n1k D
�
1C r

2 r
C r.1C r/

2 r

�

nk D .1C r/2

4 r
2 nk ;

k D 1; : : : ;K. Note that the latter term is minimum for r D 1, which means that
equally sized treatment groups require the smallest number of observations.

Occasionally, it is more appropriate to express the non-inferiority margin in terms
of the ratio of the means �1 and �2. The hypothesis to be tested is then given by
H0 W �2=�1 D 
0; where 
0 is a properly chosen non-inferiority margin. In the non-
inferiority setting, H0 is tested against the one-sided alternative. In a single stage
design, it is straightforward to apply the two-sample t test (Hauschke et al. 1999),
and this can be easily extended to the group sequential setting. The confidence
intervals are found by finding the values 
0 that do not lead to a rejection of the
corresponding null hypothesis when using the appropriate test statistic. Note that,
generally, Fieller’s theorem (Fleiss 1986) applies, which means that there are cases
for which no finite interval exists. We also note that in this setting equally sized
treatment groups are, in general, not optimum and one can find an optimizing sample
size allocation rate r� that reduces the necessary total sample size (for an extension
to three-arm clinical trials in the fixed sample size situation, see Pigeot et al. 2003;
Röhmel and Pigeot 2010; Schlömer and Brannath 2013).

Extensions

There are many other situation for normally distributed data where the group
sequential t test can be applied. The most prominent example is the normal linear
model where a parameter vector ˇ D .ˇ1; : : : ; ˇp/

T is estimated from the data
using the maximum likelihood technique. In the fixed sample size case, it is well
known that for testing, say, H0 W ˇ1 D 0, the t test with appropriate chosen
degrees of freedom and properly estimated variance can be used. Under certain
regularity conditions, Jennison and Turnbull (1997a,b) showed that the sequence
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of test statistics obtained in a group sequential sampling scheme asymptotically
fulfills the independent and normally distributed increments structure and hence
the theory of the group sequential designs derived for the normal case with known
�2 can be applied. The normal linear model applies to, for example, the cross-over
design and it follows that the group sequential theory can be easily adopted for
this situation (for a two-stage crossover design, see Cook 1995). It also applies
to treatment comparisons that are adjusted for covariates, such as stratification
variables or confounding factors. The application of the group sequential theory is
even possible for the normal linear model with dependent observations or, more
generally, for generalized linear models where even different types of response
variables can be modelled (Jennison and Turnbull 1997a). The work of Jennison and
Turnbull hence serves as a basis for a wide range of applications in group sequential
testing. Exact critical values for the t test, the F test, and the �2 test situation were
also derived (Jennison and Turnbull 1991a). For further details, the reader is referred
to the respective chapters in Jennison and Turnbull (2000) and the references therein.

5.2 Binary Response

In many trials the primary endpoint is the occurrence of an event, for example,
the event that the treatment was successful. That is, the outcome is a dichotomous
measure and one wants to perform statistical tests on the proportion of an event. In
this section, we briefly describe some group sequential tests in proportion trials for
the one-sample and the two-sample testing situation.

5.2.1 Testing a Single Rate

If an event rate for one sample of observations is considered, the hypothesis is
specified through

H0 W � D �0 ;

where � denotes the probability that the event occurs. For testing H0, the exact
binomial test or an approximate test can be performed, and H0 can be tested against
a one-sided or a two-sided alternative. As an example, this case appears in the
situation of paired samples with dichotomous data where one wants to perform
a McNemar test. This testing situation is also common in Phase II clinical trials
(Fleming 1982).
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Consider first the case with a fixed number, nf , of observations. If the power is
directed towards � > �0, the exact (one-sided) upper p -value, pU, is computed as

pU D
nfX

iDm

B.i; nf ; �0/ ;

where m denotes the observed number of events, and

B.x; n; �/ D
 

n

x

!

�x.1 � �/n�x for 0 � x � n

is the binomial probability function. If the power is directed towards � < �0, the
exact lower (one-sided) p -value, pL, is

pL D
mX

iD0
B.i; nf ; �0/ :

In the two-sided case, the p -value can be calculated as p D 2minfpU; pLg. In the
one-sided and the two-sided case, H0 is rejected if the corresponding p -value falls
short of ˛.

The approximate test statistic Z for testing H0 is

Z D O� � �0
p
�0.1� �0/

p
nf ; (5.6)

where O� D m=nf is the observed event rate. H0 is rejected if Z exceeds the specified
critical value u D ˚�1.1 � ˛/ in the one-sided setting (or falls short of �u), or if
jZj exceeds u D ˚�1.1� ˛=2/ in the two-sided case.

Fixing the alternative H1 W � D �1, in a fixed sample size design the required
sample size nf to achieve power 1 � ˇ is approximately given by

nf D
�˚�1.1 � ˛/p�0.1 � �0/C ˚�1.1 � ˇ/

p
�1.1 � �1/

�1 � �0

�2
(5.7)

in the one-sided case, and ˛ replaced by ˛=2 in the two-sided case. This easily
follows from the approximate normality of (5.6) and

E.Z/ D �1 � �0
p
�0.1 � �0/

p
nf and Var.Z/ D �1.1 � �1/

�0.1 � �0/ :

Note that it is possible to calculate the exact power with the help of the binomial
cdf. Then, it is possible to “adjust” the necessary sample size, nf , accordingly. Even
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so, the approximation (5.7) works quite well, except if �0 comes very close to 0 or
1. Hence, (5.7) is reasonable and widely used in practice.

Adopting the approximate test to the group sequential design, at stage k the
standardized test statistic

Z�
k D O�.k/ � �0

p
�0.1 � �0/

v
u
u
t

kX

QkD1
nQk ; k D 1; : : : ;K;

where O�.k/ is the total success rate in the first k stages, is considered. As for
the prototype of normally distributed data with known variance, the test statistics
Z�

k , k D 2; : : : ;K, are weighted sums of the stage-wise test statistics which are
approximately normally distributed. Hence, approximately, the theory of the group
sequential tests derived for the prototype case directly applies. That is, the maximum
sample size, N, necessary to achieve power 1 � ˇ is calculated by multiplying the
inflation factor, I, with the sample size of the fixed sample size design, nf . The vector
of accumulated sample sizes is

.n1; n1 C n2; : : : ;N/ D V I nf ;

and the average sample size under H0 or under H1 is approximately given by
multiplying nf with the average sample size reduction relative to nf .

To illustrate these calculations, suppose we wish to plan a three-stage design with
O’Brien and Fleming boundaries and equally sized stages at one-sided significance
level ˛ D 0:025, yielding critical values uk D 3:4711=

p
k; k D 1; 2; 3 (see

Table 2.1). For power 1�ˇ D 0:80, the inflation factor I and the expected reduction
in sample size under H1 relative to nf are given by 1:017 and 0:856, respectively,
which is found from Table 2.3. Let H0 W � D 0:40, and the alternative of interest be
given by H1 W � D 0:20. Since

nf D
 
˚�1.1 � 0:025/p0:40 � 0:60C ˚�1.0:80/

p
0:20 � 0:80

�0:20

!2

D 42:0 ;

the vector of accumulated sample sizes in the group sequential design becomes

V I nf D .0:333; 0:667; 1/ 1:017� 42:0 D .14:2; 28:4; 42:7/ ;

and the ASN under H1 is 0:856 � 42:0 D 36:0. Hence, it might be reasonable to
conduct interim analyses after 15 and 29 observations, respectively, and the final
analysis after 43 observations. Note that, if no success was observed in the first 15
observations, the test statistic is Z�

1 D 3:1623 < 3:4711. It is therefore not possible
at all to reject H0 in favor of H1 in the first interim analysis under the prescribed
plan. Therefore, it could be wise to skip the first interim analysis, and to use a plan
with unequally sized stages (see Chap. 3).
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Alternatively, one might use the exact p-values for testing H0 and apply the
significance level approach introduced in the last section. That is, in the example the
p-values pL after 15, 29, and 43 observations are compared with 0:00026, 0:0071,
and 0:0225, respectively (see Table 2.2). Note that the differences are only small,
especially if �0 is not near 0 or 1. The decision regions differ slightly, if at all (due
to the discreteness of the test statistic), and it is reasonable to use the approximate
test.

For computing the power and the ASN at given maximum sample size N and rate
� , it is possible to compute the multiple integral at given

#k D 	

v
u
u
t

kX

QkD1
nQk ; k D 1; : : : ;K;

similarly as described in Sect. 5.1. In the two-sided case, the standardized effect 	 is
estimated by finding 	 for which

˚
�
˚�1.1 � ˛=2/� 	pN

� �˚� � ˚�1.1 � ˛=2/� 	pN
�

D ˚

 
˚�1.1 � ˛=2/� E.Z/

p
Var.Z/

!

�˚
 

�˚�1.1 � ˛=2/� E.Z/
p

Var.Z/

!

;

where

E.Z/ D � � �0
p
�0.1 � �0/

p
N ; Var.Z/ D �.1 � �/

�0.1 � �0/

are expected value and variance, respectively, of the test statistic

Z D O� � �0
p
�0.1 � �0/

p
N :

One can use the exact solution for 	, or 	 can be well approximated by

	 D
sign.� � �0/˚�1.1 � ˛=2/

�p
�.1 � �/ �p

�0.1 � �0/
�p

1=N C � � �0
p
�.1 � �/ ;

(5.8)

where, in the one-sided case, ˛=2 is replaced by ˛. This technique provides a
good approximation to the power (and the ASN) at given maximum sample size
N. Clearly, as N gets large,

	 � � � �0
p
�.1 � �/ ; (5.9)



114 5 Applications

which can also be used for the two-sided case. This is a simpler form, though the
approximation performs badly, especially for �0 close to 0 or 1.

In the binary case, exact power calculations are possible with only little effort.
For this purpose, let m.k/ denote the total number of successes observed in the first
k stages. The trial is continued if the approximate test statistic Z�

k D Z�
k .m

.k// lies
within the continuation region C �

k , k D 1; : : : ;K � 1, and H0 is rejected if Z�
k 62 C �

k
for some k, k D 1; : : : ;K. Thus,

P�.reject H0/ D 1 �
X

fiWZ�

K .i/2C�

K g
HK.i; �/ ; (5.10)

where

Hk.m
.k/; �/ D

X

fiWZ�

k�1.i/2C�

k�1g
Hk�1.i; �/B.m.k/ � i; nk; �/ ;

m.k/ D 0; : : : ; n1 C � � � C nk ; k D 2; : : : ;K;

and

H1.m
.1/; �/ D B.m.1/; n1; �/ ; m.1/ D 0; : : : ; n1;

recursively defines the function HK , analogous to the recursive formula (1.21) in the
normal case (see Elfering and Schultz 1973).

For illustrating the performance of using formula (5.8) and (5.9), respectively,
Table 5.2 supplies the approximation of the power together with the exact power for
some values of �0 and ı D � � �0. In the table, a two-sided four-stage design with
constant critical values at significance level ˛ D 0:05 is considered.

Table 5.2 illustrates that the Type I error rate is close to the nominal level even
for small n. Except for �0 D 0:05, the Type I error hardly exceeds ˛. Nevertheless,
by exact calculation it is possible to change the decision regions slightly in order to
achieve a valid level ˛ testing procedure. Note that this might involve a departure
from the original design (for example, a design with constant critical values), but
the obtained test might behave more satisfactory. The table also illustrates that the
approximation (5.9) is useless for small �0. Only if �0 comes close to 0.50, the
power approximation is satisfactory. On the other hand, although not optimal, the
approximation based on (5.8) behaves much better and might be used in practice.

Fleming (1982) supplied tables for binomial tests that have Type I error
probabilities and power close to ˛ and 1 � ˇ, respectively. Similar calculations for
binary data were also described in Schultz et al. (1973).
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Table 5.2 Approximate power for testing a single rate using formula (5.8) and (5.9), respectively,
and true power, calculated with the recursive formula (5.10), for different �0, ı D � � �0, and
stage sample sizes n1 D � � � D n4 D n in Pocock’s four-stage group sequential design, ˛ D 0:05

(two-sided)

Power Power Power

�0 ı (5.9) (5.8) True (5.9) (5.8) True (5.9) (5.8) True

n D 3 n D 6 n D 10

0.05 0:0 0:050 0:050 0:073 0:050 0:050 0:059 0:050 0:050 0:034

0:1 0:133 0:333 0:424 0:223 0:478 0:549 0:346 0:628 0:633

0:2 0:290 0:641 0:736 0:526 0:841 0:902 0:757 0:950 0:966

0:3 0:495 0:843 0:908 0:803 0:970 0:989 0:958 0:997 0:999

0:4 0:714 0:949 0:976 0:954 0:997 0:999 0:998 1:000 1:000

0:5 0:892 0:990 0:996 0:996 1:000 1:000 1:000 1:000 1:000

0:6 0:982 0:999 1:000 1:000 1:000 1:000 1:000 1:000 1:000

0.10 0:0 0:050 0:050 0:051 0:050 0:050 0:056 0:050 0:050 0:041

0:1 0:115 0:219 0:259 0:186 0:327 0:417 0:284 0:454 0:497

0:2 0:263 0:498 0:557 0:479 0:724 0:811 0:706 0:884 0:916

0:3 0:473 0:745 0:802 0:780 0:934 0:969 0:947 0:991 0:996

0:4 0:709 0:905 0:937 0:952 0:993 0:997 0:997 1:000 1:000

0:5 0:902 0:979 0:987 0:997 1:000 1:000 1:000 1:000 1:000

0:6 0:988 0:998 0:999 1:000 1:000 1:000 1:000 1:000 1:000

0.40 0:0 0:050 0:050 0:028 0:050 0:050 0:033 0:050 0:050 0:041

0:1 0:091 0:096 0:082 0:134 0:142 0:126 0:195 0:205 0:193

0:2 0:235 0:235 0:237 0:428 0:428 0:401 0:644 0:644 0:626

0:3 0:528 0:477 0:504 0:835 0:800 0:769 0:970 0:960 0:949

0:4 0:889 0:787 0:801 0:996 0:986 0:971 1:000 1:000 0:999

0:5 1:000 0:988 0:975 1:000 1:000 1:000 1:000 1:000 1:000

ı D 0 refers to the Type I error rate

Confidence Intervals

As for the normal case it is straightforward to derive confidence intervals from the
test statistic Z�

k . Since (5.6) is monotone in �0, it is easy to calculate parameter
values from the corresponding conditions for Z�

k D Z�
k .�0/. For example, the

.1 � ˛/100% RCI is defined by the values �0 that do not lead to a rejection of
the corresponding null hypothesis at stage k when using the critical values uk,
k D 1 : : : ;K, from the group sequential test with two-sided level ˛. That is, the
sequence of RCIs is given by

Ik D f�0 W Z�
k .�0/ 2 .�ukI uk/g ; k D 1; : : : ;K;
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which involves a quadratic inequality. Approximately,

Ik D
 

O�.k/ ˙ uk

s
O�.k/.1 � O�.k//
Pk

QkD1 nQk

!

; k D 1; : : : ;K:

Note that, when using the significance level approach with the exact p -values
introduced at the beginning of this section, the RCIs are Clopper–Pearson type
intervals which can also be solved analytically.

Different types of RCIs were compared by Coe and Tamhane (1993). Jennison
and Turnbull (1983) and Duffy and Santner (1987) proposed exact confidence
intervals and p -values upon termination of the trial. Some of these approaches are
briefly described in Jennison and Turnbull (2000), §12.1.

5.2.2 Parallel Group Design

Consider now comparing two treatment arms in a parallel group design. Let the
hypothesis to be tested be given by

H0 W �1 D �2 ;

where �j, j D 1; 2, are the event rates in treatment j. Let H0 be tested against the
one-sided or two-sided alternative. Consider first the fixed sample size case with
sample size nfj in treatment j, j D 1; 2. The approximate test statistic for testing H0

is

Z D O�2 � O�1
q

ON�.1 � ON�/

�
1

nf1
C 1

nf2

��1=2
; (5.11)

where O�1 and O�2 are the observed rates in the two treatment groups and NO� D
.nf1 O�1 C nf2 O�2/=.nf1 C nf2/ is the observed overall rate. This test statistic coincides
with the �2-test in four-fold tables for the two-sided case and is an extension of it
for the one-sided case. Z is approximately standard normal distributed. Hence, one
can use the standard normal percentiles as for the one-sample case.

If a sample size allocation ratio r D nf2=nf1 is specified, the required sample size
nf1 for the first treatment group to achieve power 1 � ˇ is approximately given by
(see Machin and Campbell 1987)

nf1 D
 

˚�1.1 � ˛/
s�

1C 1

r

�

N�.1 � N�/

C˚�1.1 � ˇ/
r

�1.1 � �1/C �2.1 � �2/

r

!2.
.�2 � �1/2

(5.12)
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in the one-sided case, and ˛ replaced by ˛=2 in the two-sided case. The sample
size of the second treatment group is nf2 D r nf1. As for the one-sample case,
formula (5.12) follows from the approximate normality of (5.11) and from the fact
that E.Z/ and Var.Z/ are approximately given by

E.Z/ D �2 � �1
p N�.1� N�/

r
r nf1

r C 1

and

Var.Z/ D r�1.1 � �1/C �2.1 � �2/
N�.1 � N�/.1C r/

;

where N� D .�1 C r�2/=.1C r/.
Note that the sample size formula (5.12) depends on both parameters, �1 and

�2. For sample size calculations, it is therefore necessary to specify not only the
effect ı D j�2 � �1j which is worthwhile to detect, but also the rate �1 (or �2).
For example, when comparing a new treatment with a control, besides the clinically
meaningful improvement in the success rate, the success rate in the control group
must be specified. This is associated with the problem that the test statistic Z
depends, under H0, on the nuisance parameter � D �1 D �2.

Furthermore, equal sample sizes for each treatment group, i.e., r D 1, does not
result in a minimum sample size requirement. In fact, it can be shown that unequally
sized treatment groups may yield a smaller required total sample sizes nf1 C nf2.
This is due to the fact that the variances of the success rate differ between the
two treatment groups. Nevertheless, for most cases, the gain when searching for
optimum designs with respect to this issue is only very small and hardly practically
relevant.

Within a K-stage group sequential design with nj1; : : : ; njK observations at stage
k, k D 1; : : : ;K, and treatment j, j D 1; 2, consider the test statistic

Z�
k D O�.k/2 � O�.k/1q

ON�.k/.1 � ON�.k//

 
1

Pk
QkD1 n1Qk

C 1
Pk

QkD1 n2Qk

!�1=2
; (5.13)

where ON�.k/ is the overall rate in the first k stages. It must be recognized that—as
for the t test situation—the sequence of test statistics Z�

1 ;Z
�
2 ; : : : fails to possess the

independent increment structure since Z�
k cannot be written as a sum of independent

test statistics. Nonetheless, the theory of the group sequential tests derived for the
normal case with known variance can be applied in an approximate sense and it
can be shown that the test behaves quite well. That is, the maximum sample sizes,
Nj, j D 1; 2, necessary to achieve power 1 � ˇ are calculated by multiplying the
inflation factor, I, with the sample sizes of the fixed sample size design, nfj, j D 1; 2.
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The vectors of accumulated sample sizes are

.nj1; nj1 C nj2; : : : ;Nj/ D V I nfj ; j D 1; 2 ;

and the average sample size under H0 or under H1 per treatment group is approxi-
mately given by multiplying nf1Cnf2 with the average sample size reduction relative
to nf provided in the respective tables.

As an example, consider a four-stage group sequential design with O’Brien and
Fleming boundaries and equally sized stages at one-sided significance level ˛ D
0:025 yielding critical values uk D 4:0486=

p
k; k D 1; : : : ; 4 (see Table 2.1). For

power 1 � ˇ D 0:90, the inflation factor I and the expected reduction in sample
size under H1 relative to nf are given by 1:022 and 0:767, respectively, which is
found from Table 2.3. Suppose it is desired to find the necessary sample size if the
minimum clinically relevant effect is ı D �2 � �1 D 0:30 and �1 D 0:10. If r D 1,
the sample sizes nf1 D nf2 D nf per treatment group in a fixed sample size design
are given by

nf D
 
˚�1.0:975/

p
2 � 0:25 � 0:75C ˚�1.0:90/

p
0:10 � 0:90C 0:40 � 0:60

0:20

!2

D 41:5 :

The vector of accumulated sample sizes per treatment group in the group sequential
design becomes

V I nf D .0:25; 0:50; 0:75; 1/ 1:022� 41:7 D .10:7; 21:3; 32:0; 42:6/ ;

and it is reasonable to perform interim analyses after each 11 observations per
treatment group. The ASN per treatment group under H1 is 0:767 � 41:7 D 32:0.
In this example, an optimum allocation rate r� is found to be 0:92 yielding a total
sample size in the fixed design of nf1Cnf2 D 43:4C39:8 D 83:2. This is essentially
the same as for r D 1, though it might be desirable to have fewer observations in
the second treatment group.

Similar to the one-sample case, exact power calculations are possible through
the use of a recursive formula. Let m.k/

j denote the total number of successes in
treatment group j, j D 1; 2, observed in the first k stages. The trial is continued if the
approximate test statistic Z�

k D Z�
k .m

.k/
1 ;m

.k/
2 / lies within the continuation region

C �
k , k D 1; : : : ;K � 1, and H0 is rejected if Z�

k 62 C �
k for some k, k D 1; : : : ;K.

Thus,

P�1;�2 .reject H0/ D 1 �
X X

fi1;i2WZ�

K .i1;i2/2C�

K g
HK.i1; i2; �1; �2/ ; (5.14)
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where

Hk.m
.k/
1 ;m

.k/
2 ; �1; �2/

D
X X

fi1;i2WZ�

k�1.i1;i2/2C�

k�1g
Hk�1.i1; i2; �1; �2/B.m.k/

1 � i1;m
.k/
2 � i2; n1k; n2k; �1; �2/ ;

m.k/
1 D 0; : : : ; n11 C � � � C n1k ; m.k/

2 D 0; : : : ; n21 C � � � C n2k ; k D 2; : : : ;K;
(5.15)

and

H1.m
.1/
1 ;m

.1/
2 ; �1; �2/ D B.m.1/

1 ; n11; �1/ B.m.1/
2 ; n21; �2/ ;

m.1/
1 D 0; : : : ; n11; m.1/

2 D 0; : : : ; n21;

recursively defines the function HK . Since, from (5.14), the Type I error rate depends
on the nuisance parameter � D �1 D �2, the actual size of the test is defined as

sup
�2.0I 1/

P�1;�2.reject H0/ ; (5.16)

which can be found numerically. This technique enables the assessment of a group
sequential test found from approximate considerations.

By fixing the total sample sizes Nj, j D 1; 2, it is possible to approximate the
power and the ASN at given �1 and �2. Assume that the total sample size, N, is equal
between the two treatment groups, i.e., N D N1 D N2. Using the same argument as
in the one-sample case, the standardized effect 	 is estimated, in the two-sided case,
by

	 Dsign.�2 � �1/

�
˚�1.1 � ˛=2/

�q�
�1.1� �1/C �2.1 � �2/

�
=2�p N�.1 � N�/

�p
2=N

q�
�1.1 � �1/C �2.1 � �2/

�
=2

C �2 � �1
q�
�1.1 � �1/C �2.1 � �2/

�
=2

;

(5.17)

and ˛=2 replaced by ˛ in the one-sided case. If N gets large,

	 � �2 � �1
q�
�1.1 � �1/C �2.1 � �2/

�
=2

; (5.18)



120 5 Applications

which can be used as an approximation for large N, analogously to the one-sample
case. Then, the multiple integral is calculated at given

#k D 	

v
u
u
t

kX

QkD1
nQk=2 ; k D 1; : : : ;K:

We illustrate the approximate use of the standardized effect 	 in the two-sample
binomial case and compare it to the exact values calculated with the use of (5.14).
Table 5.3 contains the power for a two-sided four-stage group sequential design
with Pocock boundaries (˛ D 0:05) and some values �1 and ı D �2 � �1. Note
that, although conceptually not different, the calculation of the exact values is much
more time consuming in the two-sample case as compared to the one-sample case
because of the double sum in (5.15) for each recursive step.

Table 5.3 Approximate power for testing rates in two independent samples using formula (5.17)
and (5.18), respectively, and true power, calculated with the recursive formula (5.14), for different
�1, ı D �2 � �1, and stage sample sizes n1 D � � � D n4 D n per treatment group in Pocock’s
four-stage group sequential design, ˛ D 0:05 (two-sided)

Power Power Power

�1 ı (5.18) (5.17) True (5.18) (5.17) True (5.18) (5.17) True

n D 3 n D 6 n D 10

0.05 0:0 0:050 0:050 0:001 0:050 0:050 0:004 0:050 0:050 0:006

0:1 0:109 0:105 0:017 0:173 0:167 0:109 0:263 0:254 0:193

0:2 0:239 0:216 0:107 0:436 0:406 0:385 0:654 0:625 0:620

0:3 0:421 0:366 0:290 0:720 0:668 0:689 0:915 0:889 0:906

0:4 0:633 0:541 0:520 0:913 0:868 0:893 0:992 0:984 0:989

0:5 0:830 0:722 0:732 0:988 0:969 0:976 1:000 0:999 0:999

0:6 0:956 0:877 0:884 1:000 0:997 0:997 1:000 1:000 1:000

0.10 0:0 0:050 0:050 0:005 0:050 0:050 0:021 0:050 0:050 0:025

0:1 0:091 0:088 0:033 0:134 0:131 0:104 0:195 0:191 0:164

0:2 0:195 0:180 0:125 0:352 0:330 0:321 0:544 0:520 0:516

0:3 0:359 0:315 0:285 0:636 0:589 0:603 0:857 0:826 0:840

0:4 0:569 0:487 0:489 0:869 0:818 0:834 0:981 0:969 0:972

0:5 0:784 0:677 0:694 0:977 0:952 0:955 0:999 0:998 0:998

0:6 0:939 0:851 0:858 0:999 0:995 0:993 1:000 1:000 1:000

0.40 0:0 0:050 0:050 0:064 0:050 0:050 0:056 0:050 0:050 0:046

0:1 0:070 0:070 0:089 0:092 0:090 0:096 0:121 0:119 0:112

0:2 0:138 0:131 0:160 0:235 0:223 0:225 0:365 0:351 0:343

0:3 0:274 0:246 0:285 0:499 0:463 0:464 0:728 0:697 0:689

0:4 0:499 0:429 0:467 0:807 0:754 0:758 0:959 0:941 0:935

0:5 0:784 0:677 0:694 0:977 0:952 0:955 0:999 0:998 0:998

ı D 0 refers to the Type I error rate
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Table 5.3 shows that the use of the approximation (5.18) performs better than
in the one-sample case although, again, (5.17) is preferable. Except for n D 3 and
small ı, the power approximation using (5.17) is satisfactory and might be used for
practical purposes. For small �1, the Type I error rate is very small for all considered
n. On the other hand, the actual size of the test defined by (5.16) can by found by
a grid search. These are given by 0:0683, 0:0562, and 0:0484 for n D 3, 6, and 10,
respectively. That is, the actual size of the test only slightly exceeds ˛ for n D 3 and
6 (and might exceed ˛ for n > 10), and hence the test is adequate. Clearly, if one can
exclude values �1 > 0:10, the decision regions can be modified in order to better
exhaust the significance level. In all other cases, one must accept the conservatism
of the test procedure for small nuisance parameter values � .

Confidence Intervals

When comparing two event rates in independent samples, the determination of
confidence intervals for the difference �2 ��1 and for the relative risk �2=�1 might
be of interest. One way to derive confidence intervals is to define appropriate test
statistics Z�

k D Z�
k .ı0/ for H0 W �2 � �1 D ı0 and H0 W �2=�1 D ı0, respectively.

Then, the confidence interval is given by solving the condition for Z�
k .ı0/, valid in

the group sequential context, for ı0. Note that the corresponding tests also apply to
non-inferiority designs where the non-inferiority margin is expressed in terms of the
difference and the relative risk, respectively.

A number of approaches were proposed for defining a test statistic Z�
k .ı0/ for

testing the difference and the risk ratio, respectively. One of these is the application
of the maximum likelihood technique for estimating the unknown rates, �1 and
�2, under the respective null hypothesis. This technique was originally proposed
by Koopman (1984) and Miettinen and Nurminen (1985). Explicit formulas for the
maximum likelihood estimates were supplied by Farrington and Manning (1990).
In a review article, Gart and Nam (1988) showed that this method is preferable
compared to other techniques (see also, Newcombe 1998a,b, 2013). Generally, the
confidence intervals can be found by iterative methods. Nonetheless, closed form
analytical expressions for the lower and upper confidence limits of the confidence
interval for the relative risk in single stage designs were found by Nam (1995).
Interestingly, unlike for Fieller’s intervals, there always exists a solution for the
confidence interval, which is also the case for the group sequential situation.

Other approaches for calculating the confidence interval (and p -values) based on
exact calculations are provided in Lin et al. (1991) and Coe and Tamhane (1993).
These are briefly described in Jennison and Turnbull (2000), §12.2, where also some
extensions of the binomial two-sample situation to case-control and stratified studies
are discussed.
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5.3 Survival Data

The analysis of survival data comprises a wide field of statistical techniques. It is
concerned with the time elapsed from some fixed starting point to the occurrence
of a particular event. In clinical trials, survival analyses are often conducted in
oncological studies, where the event is the death of a patient or a relapse. As usual
we use the term “survival” although the event needs not to be the death of the patient.
The starting point is, for example, the surgery (i.e., the date of randomization in
case of the comparison between two types of surgery) or the date of diagnosis. In
the latter case, it might be of interest if different diagnoses have influence on the
survival time. Typically, survival times are censored, which means that for some or
many patients the survival time was not (yet) observed. This might be due to “loss
to follow-up” or simply to the fact that the period of observation was at the end
of the study before the event occurred. For these patients it is only known that the
time is at least as long as the difference between the end date and the starting point
date of that patient. The number of uncensored data increases with study duration,
therefore these trials typically take a long time. Hence, it is desirable to plan interim
looks to possibly shorten the trial providing a statistically significant result before
the planned end of the trial.

Before we will be describing the group sequential test for survival data, we
illustrate the pattern of patient entries within a survival trial. Typically, patients are
recruited successively yielding different start times per patient. Figure 5.1 illustrates
the different ways how ten (hypothetical) patients can enter and proceed through
the study. It is assumed that the patients approximately enter the study at uniformly
distributed time points (dashed bisecting line) though the third and the fourth patient

Fig. 5.1 Schematic diagram of patient entries at different times in a survival trial with censored
observations. Times: occurrence of an event; right arrow: censored survival time
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enter the study at the same time. The survival time of the third patient is right
censored due to loss to follow-up, five survival times are right censored since
patients are still alive (i.e., no event occurred) by the end of the trial.

A survival time X is a positive real-valued random variable with density function
f .x/. The survival function is defined as

S.x/ D P.X > x/ D
Z 1

x
f .u/ du ;

and the hazard function is


.x/ D lim
"!0

P.x < X � x C " j X > x/

"
D f .x/

S.x/
D @ log.S.x//

@x
:

The hazard function at time x specifies the instantaneous risk of the event, given the
event did not occur up to time x. It follows that

S.x/ D exp
� �

Z x

0


.u/ du
�
:

Hence, the hazard function determines the survival function (and vice versa), which
clarifies the prominent role of the hazard function in survival analysis. Particularly,
one can define characteristics for 
.x/ to obtain modeling assumptions for survival
data. For example, a constant hazard function 
 results in exponentially distributed
survival times. In this case, the maximum likelihood estimate for 
 is given by

O
 D d
Pd

iD1 xi

;

if d events and hence d uncensored survival times x1; : : : ; xd were observed. If an
estimate O� of the event rate in a period of length l is given, 
 is estimated by

O
 D � log.1 � O�/
l

: (5.19)

One can also estimate 
 from the (estimated) median survival time, Om, by

O
 D log.2/

Om :

As another example, when comparing two treatment groups, a proportional hazards
assumption declares that the hazard ratio

!.x/ D 
2.x/


1.x/

is constant over time (i.e., !.x/ D !).
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Of particular interest in survival trials is the comparison of two survival functions.
The hypothesis to be tested is H0 W S1.x/ D S2.x/ for all x. Under the proportional
hazards assumption, this hypothesis is equivalent to H0 W ! D 1 and a rejection of
H0 can be interpreted in terms of the hazard ratio being smaller or greater than 1. The
most commonly used test for H0 is the log-rank test. Let nj patients be randomized to
treatment group j, j D 1; 2. Assume that only different survival times were observed,
i.e., there were no ties. Let d be the number of occurred events, and let n1i, n2i be
the number of patients at risk in treatment groups 1 and 2, respectively, when the ith
event occurred. The test statistic of the log-rank test is then given by

LR D
Pd

iD1
�

I2i � n2i
n1iCn2i

�

qPd
iD1

n1in2i
.n1iCn2i/2

; (5.20)

where I2i D 1 if the ith event was in the treatment group 2 and I2i D 0 otherwise.
This is a standardized and one-sided version of the log-rank test statistic which is
sensitive for rejecting H0 against H1 W ! > 1. Note that there also exist quadratic
forms of the test statistic LR, which are �2 distributed, but the test statistic (5.20)
directly fits into the group sequential approach. This will be shown below. Note
that the log-rank test is a non-parametric test since (5.20) does not depend on the
observed survival times x1; : : : ; xd, it only depends on the number of patients who
were at risk at the ith event.

For the moment, let d be fixed and let the patients be recruited until d events were
observed. Then the log-rank test statistic is approximately normally distributed with

E.LR/ D p
d

p
r

1C r
log.!/ and Var.LR/ D 1 ; (5.21)

where! denotes the true hazard ratio, and r D n2=n1 is the allocation rate specifying
the proportion of patients randomized to treatment group 1 and 2, respectively
(Schoenfeld 1981).

Sample size calculations in a fixed sample size design can be performed as
follows. The first step is to determine the required number of events. From (5.21)
it follows that, in order to achieve power 1 � ˇ for H1 W ! D !1 at two-sided
significance level ˛, the total number of events, df , required in a fixed sample size
design is approximately given by

df D
�
˚�1.1 � ˛=2/C ˚�1.1 � ˇ/

�2

r=.1C r/2
�

log.!1/
�2 ; (5.22)

where ˛=2 is replaced by ˛ in the one-sided case.
The total sample size nf1 C nf2 D nf1.1C r/ required is df= , where  denotes

the combined probability of an event in the two treatment groups. There are several
methods to estimate  under reasonable assumptions concerning the accrual time a
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and follow-up time f of patients (see Fig. 5.1). For example, assume exponentially
distributed survival times and assume that patients enter the trial uniformly over the
recruitment period a. That is, at time s 2 .0I a C f / the time under observation,
C, is uniformly distributed on the interval .maxf0; s � agI s/ with density function
g.c/ D 1=a if c > 0 and P.C D 0/ D 1 � s=a. Hence, for s < a, the distribution of
C is a mixture of a continuous and a discrete random variable. Given 
j, j D 1; 2,
the probability of an event is

 
j .s/ D P
j.X < C/

D
Z s

maxf0;s�ag
P
j.X < c j C D c/ g.c/ dc

D
Z s

maxf0;s�ag
�
1 � exp.�
j c/

� 1

a
dc :

Simple integration calculus yields

 
j.s/ D

8
ˆ̂
<

ˆ̂
:

s

a
� 1 � exp.�
j s/


j a if s � a

1 � exp.�
js/
exp.
j a/� 1


j a if s > a :

(5.23)

Particularly, by the end of the trial,

 
j .a C f / D 1 � exp.�
j.a C f //
exp.
j a/� 1


j a
:

The combined probability of an event under H1 is

 D  .1/.a C f / D �
 
1.a C f /C r 
2.a C f /

�
=.1C r/ ;

where 
j, j D 1; 2, are the assumed hazards under H1 (see Schumacher and Schulgen
2002). So the sample size for the first treatment group is given by

nf1 D
�
˚�1.1 � ˛=2/C ˚�1.1� ˇ/

�2

 r=.1C r/
�

log.!1/
�2 ; (5.24)

and the sample size for the second treatment group is nf2 D r nf1.
Before we proceed to the group sequential setting, we illustrate the sample size

calculation in the fixed design by an example. Suppose in a trial with exponentially
distributed survival times it is assumed that the probabilities of an event after 12
months are 30 % and 50 % in treatment group 1 and 2, respectively. From (5.19),
this translates to hazards 
1 D 0:0297, 
2 D 0:0578, and to a hazard ratio !1 D
1:943. The required total number of events to achieve power 80 % at one-sided level



126 5 Applications

˛ D 0:025 is 4 � 2:8022=
�

log.1:943/
�2 D 71:1. Assume now that the accrual

period is 6 months and the follow-up time is 3 months in a balanced design. That
is, r D 1, a D 6 and f D 3, yielding  0:0297.9/ D 0:162,  0:0578.9/ D 0:289, and
 D  .1/.9/ D 0:226. From (5.24), the required sample size per treatment group
is 157:3, and hence a total of 2 � 158 D 316 patients are required. Of course, with
increasing length a C f of the study, the required total sample size decreases and,
given any a, it converges to d.

In the group sequential setting, it is planned to recruit a maximum number Nj

of patients in treatment group j, j D 1; 2, yielding a total maximum sample size
N D N1 C N2. At observation times sk 2 .0I a C f /, k D 1; : : : ;K, interim analyses
are conducted. These analyses can take place in the accrual period (i.e., sk 2 .0I a/)
or in the follow-up period (i.e., sk 2 .aI a C f /) (see Fig. 5.1). In the latter case,
the maximum sample size is already reached, hence the stopping rule of a group
sequential design can only reduce the duration of the trial. At each interim analysis,
a specific number of events is recorded. Specifically, during the stages of the trial, a
sequence of accumulated events d1; : : : ; dK can be observed. At each stage k of the
test procedure the log-rank test statistic

LRk D
Pdk

iD1.I2ik � N2ik
N1ikCN2ik

/
qPdk

iD1
N1ikN2ik

.N1ikCN2ik/2

; k D 1; : : : ;K;

is calculated, where N1ik and N2ik are the number of patients at risk at stage k in
treatment groups 1 and 2, respectively, when the ith event occurred. I2ik D 1 if the
ith event until the end of stage k was observed in treatment group 2 and I2ik D 0

otherwise. This is simply to calculate the log-rank test statistic with all data available
at stage k. Approximately, for fixed dk, LRk has unit variance and

E.LRk/ D
p

dk

p
r

1C r
log.!/ ; k D 1; : : : ;K; (5.25)

where r D N2=N1 is the allocation rate. Most notably, it was shown by several
authors that the sequence of test statistics LR1; : : : ;LRK approximately has the
independent and normally distributed increments structure (Jones and Whitehead
1979; Sellke and Siegmund 1982; Tsiatis 1981, 1982; Olschewski and Schumacher
1986). Therefore, the group sequential test designs described in Chaps. 2 and 3 can
be applied in the usual way.

Reconsider the example from above to illustrate this. Suppose it is planned to
conduct a four-stage O’Brien and Fleming design at one-sided significance level
˛ D 0:025 yielding critical values uk D 4:0486=

p
k; k D 1; : : : ; 4 (see Table 2.1).

Hence, the test stops with the rejection of H0 at stage k if

LRk > uk ; k D 1; : : : ; 4 :
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For power 1 � ˇ D 0:80, the inflation factor I is 1:024 (see Table 2.3). As for the
fixed sample size case, the relevant information is contained in the number of events
which is the “effective sample size” preserving the power. Since 1:024 � 71:1 D
72:8, with the assumptions from the above example a total of d D dK D 73 events
are required by the end of the study to fulfill the power requirement. Translating this
to the maximum number of patients, a total of N D 324 patients are needed by the
end of the trial since 1:024 � 2 � 157:3 D 322:1 . Using the stopping criteria of the
group sequential design, the expected number of events under H1 is 0:831� 71:1 D
59:1 :

This test has Type I error rate close to 0.025 and power close to 80 % if the
interim analyses take place after equally spaced information rates, and if 73 events
occurred by the end of the study. The information levels, however, are formulated
in terms of the observed events rather than in terms of the recruited patients. It is a
valid test if the information rates are given by

tk D k

K
d ; k D 1; : : : ; 4 ;

since then the correlation between LRk and LRk0 .k < k0/ is
p

k=k0. Otherwise, the
correlation is

p
dk=dk0 and this does not ensure that the test keeps the level nor that

it has the desired power.
If the interim analyses take place after equally spaced calendar times, it will

hardly be the case that the information rates are equally spaced. We will see below
that it is possible to choose analysis times and patient recruitment such that it can
be expected to produce the desired information rates. But also in this case, in a
concrete application the actually observed events need not to produce the desired
information rates. An elegant and attractive solution is the use of the ˛-spending
approach (see Sect. 3.3). The information rates are determined during the stages of
the trial yielding a specific sequence of critical values. This test keeps the Type I
error rate, given the observed pattern of events. We note that it is also possible to
define the ˛-spending approach in terms of calendar time. For a discussion of these
conceptually different approaches, we refer to DeMets and Gail (1985), Lan and
DeMets (1989b), Lan and Lachin (1990), and Kim et al. (1995).

In the following, we briefly present a strategy to estimate the observation times
such that the information rates are equal to a sequence of specified information
rates t1; : : : ; tK . We thereby closely follow the lines of Kim and Tsiatis (1990) who
provide a unified design procedure for exponentially distributed survival response
and uniform patient entry. Under these assumptions, given the maximum sample
size N of a group sequential design, at time s the expected number of events, under
H1, is

N  .1/.s/ D N
�
 
1.s/C r 
2.s/

�
=.1C r/ ;

where 
j .s/ is defined by (5.23). Having fixed a, by the end of the trial the expected
number of events should be equal to number of events d required by the power



128 5 Applications

condition. That is,

N  .1/.a C f / D d :

So the follow-up time f can be determined by

f D  �1
.1/ .d=N/� a ; (5.26)

where  �1
.1/ .�/ denotes the inverse of the function  .1/.�/.

Due to the linearity of the information rates to the number of events, the real
(calendar) times sk, k D 1; : : : ;K, when the kth analyses should take place are,
under H1, given by

sk D  �1
.1/

�
.tk  .1/.a C f /

�
: (5.27)

Together with the stopping probabilities of a specific design, this enables the
calculation of the expected study duration. Finally, the expected patient accrual at
calendar time sk, k D 1; : : : ;K, is given by

a.sk/ D
8
<

:

N

a
sk if sk < a

N if sk � a ;

and a.sk/ together with the stopping probabilities of a specific design can be used to
calculate the expected number of patients.

To illustrate this, we again reconsider the example. It was found that 73 events
are necessary by the end of the trial to achieve power 80 %. With accrual time
a D 6 and follow-up time f D 3, the maximum necessary sample size was
N D 324. Equation (5.27) yields the observation (calendar) times s1 D 4:1,
s2 D 5:8, s3 D 7:3, and s4 D 9. This sequence results in the expected number
of events 324 .1/.4:1/ D 18:2, 324 .1/.5:8/ D 36:4, 324 .1/.7:3/ D 54:6, and
324 .1/.9/ D 72:8, which indeed corresponds with equally spaced information
rates. The expected study duration, under H1, is found to be 7:8. Furthermore, from
the stopping probabilities of the chosen design and the sample sizes a.s1/ D 222,
a.s2/ D 314, a.s3/ D 324, and a.s4/ D 324, one finds the expected number of
patients to be 320:2. This sample size is only slightly smaller than the maximum
sample size N D 324.

Suppose now that it is desired to recruit only a maximum of 2�100 patients in the
trial. To achieve power 80 %, from (5.26) one finds that the follow-up time should
be f D 7:7. Equation (5.27) now yields the observation times s1 D 5:2, s2 D 7:7,
s3 D 10:5, and s4 D 13:7. Due to the later analyses times, the maximum sample
size, 200, is already reached at stage 2. Nevertheless, although the expected number
of patients under H1 is 199.9 and hence lower than in the first case, the expected
study duration, under H1, is found to be 11:4 and hence substantially larger than in
the first case.
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Table 5.4 Approximate power for the log-rank test using the observation times defined by (5.27)
with a D 6 and f D 3, and true power, estimated by simulation (one million replicates), for
different �1, �2 at time l D 12, hazard ratio ! D log.1��2/= log.1��1/, and maximum sample
sizes N in an O’Brien and Fleming four-stage group sequential design, ˛ D 0:025 (one-sided)

Power Power Power

�1 �2 ! Approximate True Approximate True Approximate True

N D 2� 20 N D 2� 40 N D 2� 100

0.10 0:10 1:000 0:025 0:006 0:025 0:019 0:025 0:021

0:20 2:118 0:095 0:055 0:150 0:120 0:309 0:279

0:30 3:385 0:236 0:172 0:419 0:334 0:795 0:733

0:40 4:848 0:446 0:342 0:734 0:615 0:984 0:960

0:50 6:579 0:680 0:539 0:931 0:844 1:000 0:998

0.30 0:30 1:000 0:025 0:024 0:025 0:023 0:025 0:024

0:40 1:432 0:071 0:066 0:103 0:095 0:194 0:187

0:50 1:943 0:164 0:150 0:284 0:264 0:596 0:578

0:60 2:569 0:324 0:292 0:568 0:532 0:922 0:908

0:70 3:376 0:552 0:497 0:842 0:805 0:997 0:995

0.50 0:50 1:000 0:025 0:024 0:025 0:023 0:025 0:024

0:60 1:322 0:071 0:067 0:104 0:099 0:197 0:192

0:70 1:737 0:179 0:168 0:313 0:302 0:646 0:637

0:80 2:322 0:394 0:371 0:669 0:651 0:967 0:964

0:90 3:322 0:736 0:707 0:957 0:949 1:000 1:000

! D 1 refers to the Type I error rate

Finally suppose that a maximum of 2 � 100 patients should be observed with
a maximum follow-up of f D 3. The calculation of the test characteristics is
straightforward. Clearly, the power is reduced. Using  .1/.9/ D 0:226, the expected
number of events at the final analysis is 2 � 100 � 0:226 D 45:2. Consequently,
equally spaced information levels dk D k=4 � 45:2, k D 1; : : : ; 4, can be used
in (5.25) to find the standardized effect size for computing the power which, in this
case, is 59.6 %.

In Table 5.4 we illustrate the accuracy of the power calculation at given maximum
sample size, N, for different N and some values �1 and �2 in the one-sided O’Brien
and Fleming design. Depending on �1 and �2, the choice of a D 6 and f D 3 results
in different patterns of observation times. The true power is estimated by simulation
with uniform patient entry, using one million replicates (standard error smaller than
0.0005).

Table 5.4 shows that, except for very small event rates and sample sizes, the
power calculation using the recursive integration formula is quite accurate. Note
that for small event rates the (maximum) number of observed events is small, too,
and hence the “effective sample size” is too small to produce a satisfactory behavior
of the log-rank test. There is a trend towards overestimating the true power but, for
suitably large event rates, this effect is not dramatic. We also realize that in these
cases the Type I error rate is almost accurately equal to the desired level. This is
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even more impressive since, as before, the number of events is considerably smaller
than N.

By varying the design, the information rates, the time of accrual, and the
follow-up observation time one finds different operating characteristics of the group
sequential design. Kim and Tsiatis (1990) gave illustrative examples and show
how this might help to select an appropriate design. However, it is difficult to find
optimizing strategies. This becomes even more important as these considerations do
not account for losses to follow-up or competing risks.

Extensions

There is a huge literature on sample size determination in survival studies for the
fixed sample size situation. For a comprehensive overview, we refer to Oellrich
et al. (1997). Much work is dealing with special survival distributions, effects of
losses to follow-up, other patient accrual patterns, and so on. When using the log-
rank test, many techniques for sample size calculation in the fixed sample size
situation can also be applied to the group sequential setting. There are situations,
however, where the log-rank test should not be used and other tests for testing the
equality of survival curves are perhaps better suited. For example, if differences
between survival curves are expected to be more pronounced at the beginning of
the observation time, a weighted log-rank statistic with higher weights at early time
points might be appropriate. For example, the G family due to Harrington and
Fleming (1982) places more weight on early time points if  > 0. Some caution is
necessary as Slud and Wei (1982) showed that such weighted test statistics possibly
fail to possess the independent increments structure when patient entry is staggered.

An important issue in survival trials is the stratified analysis. In the fixed sample
size design, for stratified analyses one can use the Mantel–Haenszel version of the
log-rank test or a generalization of it. More generally, the proportional hazards
regression model (Cox 1972) enables taking into account several factors including
quantitative covariables. It was shown in a very general sense that the sequence
of test statistics or the sequence of estimates obtained from this model can be
embedded in the independent and normally distributed increments structure (for
example, Tsiatis et al. 1985, 1995; Jennison and Turnbull 1997b; Scharfstein et al.
1997). This shows that the theory of group sequential tests derived for the prototype
case can be applied to a wide range of testing situations. Particularly, it also enables
the determination of estimation procedures for the parameters of interest. For some
further details, the reader is referred to Chap. 13 in Jennison and Turnbull (2000)
and the references therein.



Part II
Confirmatory Adaptive Designs with

a Single Hypothesis



Chapter 6
Adaptive Group Sequential Tests

The calculation of the sample size in clinical trials requires the specification of the
treatment effect for which the study is powered for. This treatment effect must be a
realistic projection of the treatment’s efficiency in order to avoid an underpowered
study. At the same time it must correspond to a clinically relevant change in the
primary endpoint such that overly large sample sizes and statistically significant
but clinically irrelevant study results are avoided. The treatment for the sample size
calculation is often specified from previous clinical trials or pilot studies. If the prior
experience with the study treatments is insufficient for a persistent pre-specification
of relevant and realistic treatment effects, the effect and corresponding sample sizes
may be reassessed at an interim analysis from unblinded interim data. In this case
designs are required that guarantee Type I error rate control even though the sample
size is adjusted based on unblinded interim treatment effect estimates. Bauer (1989),
Bauer and Köhne (1994), on the one hand, and Proschan and Hunsberger (1995), on
the other hand, have independently suggested designs that control Type I error rates
after such data-driven types of sample size adjustments.

A major advantage of these methods is that any sample size adaptation rule can be
used and no specific rule needs to be assumed for Type I error control. This permits
an update of the relevant and realistic treatment effects in an arbitrarily complex
manner and not only based on the interim data, but also on emerging new external
information and expert knowledge. This is particularly valuable in long term clinical
trials. Additionally, the sample size can also be adjusted to meet other issues than
the power of the primary hypothesis test. For instance, one can increase the sample
size to obtain more information on important secondary efficacy or safety endpoints.
Such issue may have not been foreseen and could come up only while reviewing the
unblinded interim data in an independent Data Monitoring Committee (iDMC) (see
Sect. 11.4).
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We note that blinded sample size recalculation is an important topic in adaptive
sample size recalculation, too. It was introduced as the “internal pilot design”
(Wittes and Brittain 1990; Birkett and Day 1994). The blinded sample size
reassessment design determines the sample size of the second stage using only the
estimate of nuisance parameters such as the variance, the overall response rate,
or the overall survival pattern (see, for example, Gould 1992, 1995; Kieser and
Friede 2000). For a review of these methods, see Friede and Kieser (2006). No
unblinding of the data is necessary, and no effect size is calculated. Hence, no early
assessment of efficacy is possible which makes this design conceptually different
from an adaptive extension of group sequential designs. Although these designs are
clearly considered as adaptive, we do not consider them in this monograph.

The current chapter is devoted to adaptive designs as suggested by these
pioneering papers as well as newer developments and investigations. We will focus
in this chapter on two-stage adaptive designs with an adaptation of the sample size,
although the method allows for other types of adaptations, such as changing test
statistics or changing hypotheses, as well as for the multi-stage generalization. Such
types of adaptations and the multi-stage case will be considered later in this book.
Nevertheless, this chapter provides the foundation of all the remaining chapters
inclusive Part III where adaptive designs with multiple hypotheses will be discussed.

6.1 Basic Principle and Assumptions

The two approaches introduced by Bauer (1989) and Bauer and Köhne (1994), on
the one hand, and Proschan and Hunsberger (1995), on the other hand, are often
denoted as combination test and conditional error function approach, respectively.
Many of the later approaches follow or extend these approaches. Although different
in their appearance, combination tests and the conditional error function approach
are based on a common principle which is called the conditional invariance
principle (see, for example, Brannath et al. 2007).

The conditional invariance principle is as follows. Assume that we want to test
a null hypothesis H0, for example, non-superiority of an experimental treatment to
a control. Think of a trial with two sequential stages, where design characteristics
of the second stage are chosen at an interim analysis based on the data from the
first stage as well as external information. The design of the first stage is pre-fixed
and remains unaltered. Assume further that the first and second stage data are from
independent cohorts of patients. If the trial continues to the second stage, let T2 be
the statistics for H0 from the second cohort recruited after the interim analysis. Due
to the data-driven choice of design features, the null distribution of T2 will in general
depend on the interim data. However, we can often transform T2 in a way that the
conditional null distribution of T2 given the interim data and the second stage design
equals a fixed pre-specified null distribution, and hence is invariant with respect to
the interim data and mid-trial design adaptations.
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An invariant conditional distribution is typically achieved by transforming T2 to
a p-value p2 which is uniformly distributed under H0 conditionally on the interim
data and second stage design. If T2 is normally distributed with mean 0 and known
standard error �T2 , invariance of the conditional distribution can also be achieved by
standardizing T2 to Z2 D T2=�T2 which is always standard normal.

The invariance of the conditional null distribution of p2 or Z2 implies that they
are stochastically independent from the interim data. Since the null distribution of
the interim data is usually known (as the first stage design is fixed), the common
distribution of the interim data and p2 is known and invariant with respect to the
(often unknown) mid-trial adaptation rule. Hence, we can specify a level ˛ rejection
region in terms of the interim data and invariant second stage test statistic p2. This
gives a test with Type I error rate ˛ independently from the adaptation rule. For
a mathematical rigorous verification of the conditional invariance principle, see
Brannath et al. (2012) (see also Hommel 2001; Liu et al. 2002). The combination
test and conditional error function approach just differ in the way how the invariant
rejection region is specified.

In most parts of the book we will assume as above that the second stage test
statistic T2 is computed from a cohort of patients that is independent from the first
stage cohort whose observations are used at the interim analysis for the design
adaptations. We will discuss the relaxation of this assumption in later chapters.

6.2 Combination Tests

With a combination test we combine a p-value from the first and a p-value from
the second stage by a pre-specified combination function. This method, which is a
convenient way to implement the conditional invariance principle, will be the topic
of the following sections.

6.2.1 General Methodology

As for the conditional invariance principle, we consider a null hypothesis H0 which
is tested in a trial with two stages where the data in the first and second stage are
from independent cohorts of patients. Unless otherwise noted, H0 is assumed to be
one-sided. Note that we do not make any distributional assumptions nor assumptions
on the type of design. That is, we can apply this method for testing means, rates,
hazard ratios, etc., in a parallel group design, a repeated measures designs, or
whatever. We will also be able to apply this method if nuisance parameters (for
example, an unknown variance) are present.
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Let p1 and p2 denote the one-sided p-values for H0 computed from the first
and second stage cohort, respectively. A two-stage combination test is defined by
a combination function C.p1; p2/ which is non-decreasing in both arguments and
continuous in p2, boundaries ˛1 and ˛0 for early stopping, and a critical value c for
the final analysis. The trial is stopped in the interim analysis if either p1 � ˛1 or
p1 > ˛0, whereby H0 is rejected if p1 � ˛1 and retained if p1 > ˛0. This is similar
to a group sequential design where the null hypothesis can be rejected or retained
at the interim analysis as well. Retainment of H0 at the first stage is often denoted
by stopping for futility (see Sect. 2.3). The trial proceeds to the second stage if
˛1 < p1 � ˛0. In this case the null hypothesis H0 is rejected at the end of the second
stage if C. p1; p2/ � c. Figure 6.1 provides a schematic illustration of combination
tests. Note that ˛1 D 0 implies that the trial is never stopped with a rejection of H0

and ˛0 D 1 means that no stopping for futility is foreseen.
Usually p1 is uniformly distributed under H0 and p2 has the same conditional

distribution for given stage 1 data and second stage trial design. Since this is true
for any interim data under H0, p1 and p2 are independent and uniformly distributed.
Therefore, in order to achieve Type I error control the boundaries ˛1 < ˛0 and c
must satisfy the condition

˛1 C
Z ˛0

˛1

Z 1

0

1fC.p1;p2/�cgdp2 dp1 D ˛ ; (6.1)

where the indicator function 1f�g equals 1 if C.p1; p2/ � c and 0 otherwise.

Fig. 6.1 Two-stage combination tests. For the planning, fix first stage sample sizes, test, ˛1, ˛0,
and the combination function C.p1; p2/ with critical value c. After stage 1, compute the p-value p1
from the stage 1 data. Then, either stop or fix the design for stage 2 based on data from stage 1.
After stage 2, compute the p-value p2 from the stage 2 data and reject H0 if C.p1; p2/ � c
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According to the invariance principle the p-values p1 and p2 are independent
and uniformly distributed irrespective of the sample size adaptation, and so the
combination test has Type I error rate ˛ for all sample size adaptation rules.

The Type I error control remains true if under H0 the distribution of p1
is (unconditionally) stochastically larger than the uniform distribution, and the
conditional distribution of the second stage p-value p2 given p1 is stochastically
larger than or equal to the uniform distribution as well. More formally, if PH0 denotes
the probability distribution of p1 and p2 under H0, then

PH0.p1 � u/ � u and PH0.p2 � ujp1 D v/ � u for all 0 � u; v � 1 (6.2)

is sufficient for Type I error rate control of the adaptive two-stage design. We will
denote this property p-clud (Brannath et al. 2002). Property (6.2) is satisfied if, for
example, the stage-wise cohorts are independent and conservative tests are used
for pk at each stage k, k D 1; 2. A mathematical rigorous discussion of the p-clud
condition and a prove of Type I error control with the p-clud property can be found
in Brannath et al. (2012).

At the planning stage of an adaptive clinical trial one has to specify the
combination function, the decision boundaries ˛1, ˛0, and c, and the design for
the first stage, including the first stage sample size and first stage test statistic. The
second stage design does not have to be specified in advance, but it must at the latest
be specified at the interim analysis.

6.2.2 Fisher’s Product Test

In Bauer (1989) and Bauer and Köhne (1994), Fisher’s product test (Fisher 1932)
was proposed as combination test for use in adaptive designs. With this test the
combination function is C.p1; p2/ D p1 p2. The choice of this type of combination
function was motivated by meta-analysis where p-values from different studies are
combined to an overall significance test (see, for example, Hedges and Olkin 1985;
Sonnemann 1991).

Combining significance tests has been a research topic already in the 1930s.
Since p-values from independent studies are independent and uniformly distributed
under the null hypothesis the distribution of their product is easily determined. For
a uniformly distributed p-value U, �2 log.U/ has the exponential distribution with
rate parameter 
 D 1=2 which corresponds to the �2-distribution with two degrees
of freedom. Since the sum of two independent �2-distributed random variables is
�2-distributed as well, we obtain that

�2 log.p1p2/ D �2 log.p1/� 2 log.p2/
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is �2-distributed with 4 degrees of freedom. Hence, the rejection rule is

�2 log.p1p2/ � �24;1�˛ ;

where �24;1�˛ denotes the .1 � ˛/-quantile of the �2 distribution with 4 degrees of
freedom. Equivalently, the rejection rule

p1p2 � c˛ with c˛ D exp.��24;1�˛=2/ (6.3)

provides a level ˛-test. Fisher’s product test is also named the “inverse chi-squared
method” (Hartung 2001; Hartung and Knapp 2003).

To understand an important feature of Fisher’s product test let us consider an
interim sample point with p1 � c˛. Then p1 p2 � c˛ for any 0 � p2 � 1. Hence,
we will reject H0 at stage 2 with any second stage p-value p2 and therefore can stop
the trial and reject H0 already at stage 1. This shows that Fisher’s product test has
a built-in early rejection boundary, namely ˛1 D c˛ . This phenomenon is denoted
as non-stochastic curtailment because the stopping rule is based on non-stochastic
reasoning.

Generally, with Fisher’s product combination function and c � ˛1 < ˛0 the level
condition (6.1) becomes

˛1 C c � � log.˛0/ � log.˛1/
� D ˛ : (6.4)

This follows from

Z ˛0

˛1

Z 1

0

1fp1p2�cgdp2 dp1 D
Z ˛0

˛1

.c=p1/dp1 D c � � log.˛0/ � log.˛1/
�
:

Hence, any triple set of values ˛1, ˛0, and c that fulfills (6.4) can be used within the
two-stage adaptive approach and provides a valid level-˛ test.

For example, if c D c˛ D 0:0087 and ˛0 D 0:50 is chosen, a simple
numerical root finding yields ˛1 D 0:0233. Figure 6.2 illustrates the rejection
region of Fisher’s product test for this case. The shaded area is equal to ˛ and the
determination of ˛1 can be geometrically interpreted as shifting the area under the
curve where p1 > ˛0 to the top area under the curve where p1 � ˛1. The area which
is defined through the condition “p1 � ˛1” can be the more enlarged the larger the
area defined through “p1 > ˛0” is.

Several ways to choose the boundaries ˛0, ˛1, and c have been suggested in the
literature. Bauer and Köhne (1994) considered at first the case where no futility
stopping is foreseen (˛0 D 1) and ˛1 D c˛ as defined in (6.3). This corresponds
to using the full level ˛ for the second stage critical value while accounting for the
non-stochastic curtailment phenomenon. Bauer and Köhne (1994) also considered
designs with c D c˛ and a pre-planned futility stopping rule ˛0 (c˛ < ˛0 < 1). ˛1 >
c˛ is found by a numerical search such that level condition (6.4) is met for the chosen
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Fig. 6.2 Rejection region (dashed region) for the two-stage design of Bauer and Köhne; ˛ D 0:05,
˛0 D 0:50, ˛1 D 0:0233

Table 6.1 First stage rejection level ˛1 at different significant levels ˛
with different futility boundaries ˛0 D 0:1; 0:15; : : : ; 1:00 and the second
stage critical value c˛ D exp.��24;1�˛=2/ of Fisher’s product test

˛ D 0:05 ˛ D 0:025 ˛ D 0:01 l˛ D 0:005

˛0 c˛ D 0:00870 c˛ D 0:00380 c˛ D 0:00131 c˛ D 0:00059

0.10 0.0426 0.0186 0.0064 0.0029

0.15 0.0381 0.0166 0.0057 0.0026

0.20 0.0348 0.0152 0.0052 0.0024

0.25 0.0321 0.0140 0.0048 0.0022

0.30 0.0299 0.0131 0.0045 0.0020

0.40 0.0263 0.0115 0.0040 0.0018

0.50 0.0233 0.0102 0.0035 0.0016

0.60 0.0207 0.0090 0.0031 0.0014

0.70 0.0183 0.0080 0.0027 0.0012

0.80 0.0159 0.0069 0.0024 0.0011

0.90 0.0133 0.0058 0.0020 0.0009

1.00 0.0087 0.0038 0.0013 0.0006

The row ˛0 D 1:0 corresponds to the non-stochastic curtailment case

˛0. In Table 6.1 the critical values ˛1 are provided for ˛0 D 0:1; 0:15; : : : ; 1:00 and
several ˛.
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We illustrate the method with a numerical example. Consider Fisher’s product
test at level ˛ D 0:025 with c D c˛ D 0:00380 and futility boundary ˛0 D 0:7.
From Table 6.1 we get the first stage rejection boundary ˛1 D 0:0080. Assume now
that we observe at the first stage the p-value p1 D 0:015. Then ˛1 < p1 � ˛0
which means that we cannot reject H0 at the interim analysis. As a consequence, we
will continue the trial to the second stage. Assuming that we observe the p-value
p2 D 0:02 at the second stage we get for the product criterion p1 � p2 D 0:003 which
is below the critical value c˛ D 0:00380 and hence implies rejection of H0.

Another choice of boundaries was suggested by Bauer and Röhmel (1995).
They considered only designs without futility stopping (˛0 D 1) but where ˛1
is manually set to a larger value than the non-stochastic curtailment minimum
c˛. The corresponding second stage critical value c which follows from level
condition (6.4) is necessarily smaller than c˛ but can easily be determined by the
formula c D �.˛ � ˛1/= log.˛1/. It is straightforward to extend this method to
cases with ˛0 < 1. In these cases, level condition (6.4) leads to the second stage
boundary c D d˛;˛0;˛1 where

d˛;˛0;˛1 D .˛ � ˛1/=
�

log.˛0/ � log.˛1/
�
:

Simple algebra shows that the non-stochastic curtailment property ˛1 � d˛;˛0;˛1
requires the constraint ˛1 C ˛1flog.˛0/ � log.˛1/g � ˛ for ˛, ˛0, and ˛1. As an
example, assume again ˛ D 0:025 and ˛0 D 0:7. In order to increase the chance
for a rejection at the interim analysis we choose now the larger ˛1 D 0:01. The
corresponding second stage rejection boundary is then d0:025;0:7;0:01 D .0:025 �
0:01/=.log.0:7/� log.0:01// D 0:015=4:25 D 0:0035.

It is convenient to consider the second stage local level, ˛2, of Fisher’s product
test, i.e., the level ˛2 defined by the identity c˛2 D d˛;˛0;˛1 . This level is given
by ˛2 D 1 � F�24.�2 log.d˛;˛0;˛1// where F�24.�/ is the cumulative distribution

function of the �2-distribution with 4 degrees of freedom. For instance, the
boundary d0:025;0:7;0:01 D 0:0035 corresponds to the second stage level ˛2 D
1 � F�24 .�2 log.0:0035// D 0:023.

Following this idea, Bauer and Röhmel (1995) and Wassmer (1999b) considered
another choice for ˛1 and ˛2 for pre-specified ˛ and ˛0. In analogy to Pocock’s
design for group sequential trials (see Chap. 2), they suggested to use the same
local level at both stages ˛1 D ˛2. Accordingly, they define ˛1 D ˛� and
c D c˛� D exp.��24;1�˛�=2/ where ˛� is determined by numerical root finding
from level condition (6.4) for the given ˛ and ˛0. Some values of ˛� for different ˛
and ˛0 can be found in Table 6.2.

To illustrate this method with an example we consider again a design at level
˛ D 0:025 with futility boundary ˛0 D 0:7. According to Table 6.2 we obtain
the first and second stage levels ˛1 D ˛2 D 0:0163. This ˛2 corresponds to the
second stage boundary c˛2 D exp.��24;1�0:0163=2/ D 0:00231. The first stage p-
value p1 D 0:015 is now below the first stage level ˛1 D 0:0163. Hence, we can
reject H0 at stage 1 and stop the trial.
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Table 6.2 First and second stage rejection levels ˛� D ˛1 D
˛2 with Fisher’s product test (c D c˛� D expf��24;1�˛�=2g)
for different significant levels ˛ and different futility boundaries
˛0 D 0:3; 0:4; : : : ; 1:00

˛0 ˛ D 0:05 ˛ D 0:025 ˛ D 0:01 ˛ D 0:005

0.30 ˛1 0.0373 0.0178 0.0068 0.0033

c˛2 0.00611 0.00255 0.00084 0.00037

0.40 ˛1 0.0359 0.0173 0.0066 0.0032

c˛2 0.00585 0.00246 0.00082 0.00036

0.50 ˛1 0.0349 0.0169 0.0065 0.0032

c˛2 0.00566 0.00240 0.00080 0.00036

0.60 ˛1 0.0342 0.0166 0.0064 0.0032

c˛2 0.00552 0.00235 0.00079 0.00035

0.70 ˛1 0.0336 0.0163 0.0063 0.0031

c˛2 0.00540 0.00231 0.00078 0.00035

0.80 ˛1 0.0331 0.0161 0.0063 0.0031

c˛2 0.00531 0.00227 0.00077 0.00034

0.90 ˛1 0.0327 0.0159 0.0062 0.0031

c˛2 0.00522 0.00225 0.00076 0.00034

1.00 ˛1 0.0323 0.0158 0.0062 0.0030

c˛2 0.00515 0.00222 0.00075 0.00034

6.2.3 Weighted Fisher’s Product Test

Fisher’s product criterion assigns equal weights to the stage-wise p-values p1 and
p2. This is reasonable if the two stages are expected to have approximately equal
sample sizes. If the stage-wise sample sizes are rather different, then it appears
more efficient to use the weighted Fisher’s product test C.p1; p2/ D p1pw

2 for some
positive w 6D 1 (Fisher 1932; Brannath et al. 2002). The larger the second stage
sample size in comparison to the first stage sample size, the larger we would choose
the weight w. Because of a similar non-stochastic curtailment phenomenon as for
the equally weighted Fisher’s product test we can only choose ˛1 � c. With the
rejection and acceptance boundaries c � ˛1 < ˛ < ˛0 and weight w > 0 with
w 6D 1 the level condition (6.1) becomes

˛1 C cw�1
.˛1�w�1

0 � ˛1�w�1

1 /

1 � w�1 D ˛ (6.5)

because
Z ˛0

˛1

Z 1

0

1fp1p
w
2 �cgdp2 dp1 D

Z ˛0

˛1

cw�1

pw�1

1

dp1 D cw�1
.˛1�w�1

0 � ˛1�w�1

1 /

1 � w�1 :
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Table 6.3 Second stage rejection boundaries c˛Iw of the
weighted Fisher’s product test for different levels and
different weights including the case of equal weights w D
1:0 from Sect. 6.2.2

w ˛ D 0:05 ˛ D 0:025 ˛ D 0:01 ˛ D 0:005

0.5 0.02532 0.01258 0.00503 0.00250

0.6 0.02098 0.01030 0.00405 0.00202

0.7 0.01709 0.00826 0.00319 0.00157

0.8 0.01378 0.00646 0.00244 0.00117

0.9 0.01100 0.00500 0.00184 0.000848

1.0 0.00870 0.00380 0.00131 0.000593

1.1 0.00686 0.00287 0.000931 0.000404

1.2 0.00537 0.00214 0.000650 0.000268

1.3 0.00418 0.00158 0.000447 0.000175

1.4 0.00324 0.00115 0.000304 0.000112

1.5 0.00248 0.000839 0.000204 0.000071

In the special case without futility stopping (˛0 D 1) and with the smallest possible
first stage rejection level ˛1 D c, the level condition becomes

c C cw�1
.1 � c1�w�1

/

1 � w�1 D c C cw�1 � c

1 � w�1 D ˛ : (6.6)

Equation (6.6) can be solved numerically for c. Table 6.3 gives numerical examples.
We denote the resulting c by c˛Iw because it corresponds to the case where we assign
maximum (or full) level to the second stage. This generalizes the rejection boundary
c˛ defined in (6.3) for the equally weighted Fisher’s product test. Accordingly, we
can define c˛I1 D c˛.

Following the philosophy of Bauer and Köhne (1994), we can also account for
an early rejection boundary ˛0 < 1 by keeping the second stage boundary c˛;w
and adjusting ˛1 to meet the general level condition (6.5). For example, with the
weight w D 1:5, overall level ˛ D 0:025 and futility boundary ˛0 D 0:7 we obtain
˛1 D 0:00622.

An alternative approach is generalizing the method of Bauer and Röhmel (1995)
and to fix ˛1 < ˛ < ˛0 and solve (6.3) for c (Brannath et al. 2002). This gives the
second stage boundary

d˛;˛0;˛1Iw D
 
.1 � w�1/.˛ � ˛1/

˛1�w�1

0 � ˛1�w�1

1

!w

:

As an example, we fix the weight w D 1:5, ˛ D 0:025, ˛0 D 0:7, and ˛1 D 0:001

which leads to the second stage rejection boundary d0:025;0:7;0:001I1:5 D 0:00064.
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6.2.4 Inverse Normal Combination Test

Bauer and Köhne (1994) already noted that there are many ways of choosing a
combination test for applying the principle. Fisher’s product criterion was explicitly
used just as one example. Lehmacher and Wassmer (1999) considered the weighted
inverse normal combination function

C.p1; p2/ D 1 �˚�w1 ˚�1.1 � p1/C w2 ˚
�1.1 � p2/

�
; (6.7)

where w1 and w2 denote pre-specified positive weights such that w21 C w22 D 1 and
˚�1 denotes the inverse of the standard normal cdf˚.�/. This combination function
is known from meta-analysis as well (Hedges and Olkin 1985; Sonnemann 1991).
A possible choice for the weights is w1 D w2 D 1=

p
2, however, if the sample sizes

of the two stages are expected to be quite different, it is more efficient to choose
unequal weights.

If the p-values are independent and uniformly distributed, then Z1 D ˚�1.1�p1/
and Z2 D ˚�1.1 � p2/ are independent and standard normal. Hence, also

QZ2 D w1 � Z1 C w2 � Z2

is normally distributed with mean 0 and variance w21 C w22 D 1. As a consequence,

C.p1; p2/ D 1 � ˚
�
w1 ˚

�1.1 � p1/C w2 ˚
�1.1 � p2/

� D 1 � ˚.Qz2/

is uniformly distributed, like the p-value of the usual z-test. Note that the standard
normal distribution of QZ and uniform distribution of C.p1; p2/ holds independently
from the adaptation rule, a property that is not satisfied for the usual z-test (Proschan
and Hunsberger 1995).

Since C.p1; p2/ is uniformly distributed, we obtain a level ˛ test when using the
decision boundaries ˛0 D 1, ˛1 D 0, and c D ˛. This mimics the usual z-test,
although, the stage-wise p-values p1 and p2 themselves may not come from z-tests.
In the case of an early rejection (˛1 > 0) and/or futility stopping (˛0 < 1) the
decision boundaries must be specified to meet the level condition (6.1).

Note that Z1 and QZ2 D w1 � Z1 C w2 � Z2 have the same bivariate distribution
as the sequential test statistics of a group sequential test with two stages and
information times t1 D p

w1 and t2 D 1; see Chap. 3 in Part I. Hence, we achieve
Type I error control if we choose from the family of the boundaries introduced
for group sequential designs. Due to this property, the rejection boundaries ˛1,
˛0, and c of the weighted inverse normal test can be chosen equal to the local
levels of a two-stage group sequential test with information rate t1 (Lehmacher and
Wassmer 1999). So we could, for instance, use boundaries according to O’Brien and
Fleming (1979) or Pocock (1977), or use boundaries that take into account early
stopping in favor of H0. Notably, this implies that we can use standard statistical
software for group sequential designs to design an adaptive design with the weighted
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inverse normal combination function. In particular, the calculation of sample sizes
is straightforward and can be performed as described in Part I of this book. It
might be regarded as a decisive advantage of using the inverse normal method as
the combination function that all proposals and results from the classical group
sequential theory can be used.

In contrast to Fisher’s combination test, there is no intrinsic early rejection
boundary associated with the weighted inverse normal combination function.
Although we cannot consider non-stochastic curtailment as for Fisher’s combination
test, we can consider stopping for futility if p1 > ˛0 and can calculate the
significance level ˛1 for the first stage p-value such that the overall significance
level is met. That is, we proceed similar to the Fisher’s combination test design with
full level ˛ spent in the second stage. Numerically we can obtain ˛1 such that

˛1 C
Z ˛0

˛1

Z 1

0

1fC.p1;p2/�˛gdp2 dp1 D ˛ :

With the use of the bivariate standard normal distribution cdf F.�; �/with correlation
1=

p
2 (see Sect. 1.2), this can be achieved by solving

˛1 C PH0 .u1�˛1 < Z1 � u1�˛0 ; QZ2 > u1�˛/

D ˛1 C ˚.u1�˛1/� ˚.u1�˛0/ � F.u1�˛; u1�˛1/C F.u1�˛; u1�˛0/

D ˛0 � F.u1�˛; u1�˛1 /C F.u1�˛; u1�˛0/ D ˛

(6.8)

for ˛1, where u1�x D ˚�1.1�x/ refers to the .1�x/-quantile of the standard normal
cdf. As an example, for ˛ D 0:05 and ˛0 D 0:5 one obtains ˛1 D 0:0044. So the
trial can be stopped at interim with the rejection of H0 if p1 � 0:0044, and the second
stage can be performed at full level ˛. The condition is that one has to adhere to the
stopping rule, i.e., to stop the trial for futility if p1 exceeds ˛0. Figure 6.3 provides
a graphical illustration of the rejection region of the inverse normal combination
function in comparison to Fisher’s product test for this example and the comparison
with the case where no stopping for futility is foreseen.

The comparison of the rejection regions between Fisher’s product test and the
inverse normal method in Fig. 6.3 shows that for large p1 it is typically easier at the
second stage to reject with Fisher’s product test than with the inverse normal test.
As a consequence the resulting first stage rejection boundary is larger for Fisher’s
product test than for the inverse normal method. Also, the influence of ˛0 on the first
stage boundary ˛1 is higher for Fisher’s combination test, for the inverse normal it
is only very small. The reason is the small area under the curve for p1 � ˛0 for the
inverse normal method and the relatively large area for Fisher’s combination test. So
the gain for shifting the area where p1 > ˛0 to the top where p1 � ˛1 is higher for
Fisher’s combination test. We will call this the “heavy-tailed” property of Fisher’s
combination test.
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Fig. 6.3 Comparison of rejection regions of the adaptive two-stage designs according to Fisher’s
combination test (solid line) and inverse normal combination method (dashed line) for significance
level ˛ D 0:05. The left graph shows the rejection region of the inverse normal combination
function without early decision boundaries, i.e., with ˛1 D 0 and ˛0 D 1. Fisher’s product test is
with ˛0 D 1 and intrinsic first stage rejection boundary ˛1 D c˛ D 0:0087. In the right graph,
˛0 D 0:5 for both combination tests with the same second stage rejection boundary as in the
left panel and ˛1 such that the respective level condition is met (see text). For the inverse normal
method, ˛1 D 0:0044; for Fisher’s combination test, ˛1 D 0:0233

A consequence of this observation is that with the inverse normal method we
will have less often contradicting first and second stage p-values when we reject
H0. The p-values appear contradictory if one p-value is large while the other one
is small. Such results will cause difficulties in the interpretation of the results and
may be taken as indication that there is a systematic difference between the two
stages with regard to the efficacy of the study treatments. Such inhomogeneity
of treatment effects is denoted as treatment-stage interaction. It can be caused
by hidden systematic differences in the recruitment process or study conditions
between the stages. The exclusion of hidden inhomogeneities is generally difficult
and hence it is desirable to avoid results that (with rejection of H0) indicate
treatment-stage interactions.

As another example we illustrate the situation where a design according to
Pocock (1977) is used for the inverse normal combination test. In this case,

˛� C
Z ˛0

˛�

Z 1

0

1fC.p1;p2/�˛�gdp2 dp1 D ˛

is the condition for finding the rejection region for the first and the second stage of
the trial. This is to reject H0 at the first stage if Z1 � u1�˛� or reject H0 at the second
stage if QZ2 � u1�˛� and thus describes a one-sided design with constant boundaries
u1 D u2 D u D u1�˛� taking into account a (binding) stopping for futility rule (see
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Fig. 6.4 Comparison of rejection regions of the adaptive two-stage designs according to Fisher’s
combination test (solid line) and inverse normal combination test (dashed line) for significance
level ˛ D 0:05 and stopping for futility boundary ˛0 D 0:50; ˛1 D 0:0233 for Fisher’s
combination test, u D 1:871 for inverse normal combination test

Sect. 2.3). For ˛ D 0:05 and ˛0 D 0:50, one numerically finds ˛� D 0:0307 with
u D 1:871. In Fig. 6.4 the rejection regions of this design are displayed together
with the rejection region of a Bauer and Köhne (1994) design with ˛1 D 0:0233

and c˛ D 0:0087.
Figure 6.4 shows that the two decision regions yield quite similar rejection rules

for Fisher’s combination test and the inverse normal method, respectively. As above,
due to the heavy tailed area of Fisher’s combination test for p1 � ˛0 it is more
difficult for the inverse normal method that contradicting first and second stage p-
values yield a significant test result at the end of the trial.

6.2.5 Sample Size Adaptations in Group Sequential Designs

The weighted inverse normal method can be used to introduce data-dependent
sample size adaptations to group sequential designs. To illustrate this, let us consider
a two-stage group sequential design with an experimental treatment and a control
group. We assume a normally distributed endpoint with mean �1 under the control
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and �2 under the experimental treatment. The null hypothesis

H0 W �2 � �1 D 0 (or � 0)

is tested against

H1 W �2 � �1 > 0 :

For simplicity, we assume that the variance �2 of the outcome is known and the
same in both treatment groups. Furthermore, we assume that the sample sizes of the
two treatment groups are balanced and equal to nk at stage k D 1; 2.

We present the group sequential test in terms of the stage-wise z-test statistics
(z-scores)

Zk D
NXk2 � NXk1

�

r
nk

2
;

where nk is the per group sample size of the cohort at stage k, and NXkj are the stage-
wise averages at stage k in treatment group j, j; k D 1; 2. According to Chap. 3 a
group sequential design for H0 W �2 � �1 D 0 with first stage n1 would use the test
statistics Z1 at stage 1 and stage 2 the cumulative z-score

QZ2 D w1 � Z1 C w2 � Z2 ; where wk D
r

nk

n1 C n2
; k D 1; 2 :

The weighted z-score statistics QZ2 can be rewritten as

QZ2 D w1 � ˚�1.1 � p1/C w2 � ˚�1.1 � p2/ ;

where p1 D 1 � ˚.Z1/ and p2 D 1 � ˚.Z2/ are the p-values from the stage-wise z-
tests. Furthermore, uL � Z1 < u1 is equivalent to ˛1 < p1 � ˛0 with ˛0 D 1�˚.uL/

and ˛1 D 1 � ˚.u1/. Hence, the group sequential test with early rejection bound
u1 and lower stopping for futility bound uL can be rewritten as (and is equivalent
to) an inverse normal combination test. This observation provides the opportunity
for adaptations of the sample sizes at the interim analysis of the two-stage group
sequential test. Following the inverse normal combination method we keep using
QZ2 D w1 � Z1 C w2 � Z2 at the second stage also when the sample size n2 is changed
to Qn2 and the stage-wise test statistics Z2 is adapted to the new sample size, i.e.,
Z2 D . NX22 � NX21/=�

pQn2=2.
A group sequential test can be reformulated in terms of the weighted inverse

normal method. In a sense, the reverse holds true as well. More precisely, the inverse
normal method can always be reformulated in terms of the independent and standard
normally distributed z-scores Z1 D ˚�1.1 � p1/ and Z2 D ˚�1.1 � p2/ computed
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from independent cohorts of patients. In this formulation we stop at stage 1 and
reject H0 if Z1 � u1 D ˚�1.1 � ˛1/, stop for futility and retain H0 if Z1 � uL D
˚�1.1�˛0/, and otherwise continue to stage 2 where we reject H0 if QZ2 D w1 �Z1C
w2 �Z2 � u2 D ˚�1.1�c/. We will refer to this formulation of the weighted inverse
normal method as the two-stage weighted z-score test, although, both formulations
are equivalent. Cui et al. (1999) have independently proposed the weighted z-score
test for adaptive sample size reassessments.

The crucial point in the above consideration is that the weights w1 and w2 for
Z1 and Z2 remain fixed also when changing the second stage sample size. For this
reason the cumulative statistic QZ2 has also be named weighted z-score. Note that
after such a change the weights wj D p

n1=.n1 C n2/ do not reflect the actual stage
2 sample size Qn2 and differ from the weights that are used in the classical z-test
statistic which ignores the adaptive nature of the design. Hence, when adapting the
sample size, we either over- or underweight Z2 in QZ2 (compared to the classical z-
test), depending on whether we increase or decrease the sample size. It can be shown
that this miss-weighting is unavoidable in adaptive designs that equal classical group
sequential designs in the non-adaptation case of staying with the pre-fixed sample
sizes (Posch et al. 2003).

Lehmacher and Wassmer (1999) have shown that the loss in power due to over-
or underweighting of the stage-wise z-scores is rather limited if extreme sample size
adaptations are avoided. This can be illustrated by a comparison of the weighted
z-score

QZ2 D w1 � Z1 C w2 � Z2

with the unweighted z-score

Z?2 D
p

n1p
n1 C Qn2

Z1 C
pQn2p
n1 C Qn2

Z2 ;

which would have been used when the sample Qn2 would have been the pre-planned
one. Power is directly related to the non-centrality parameters of the test statistics.
The non-centrality parameter of the weighted z-test is

Q# D E.Z?2 / D w1E.Z1/C w2E.Z2/

D .w1
p

n1 C w2
p

Qn2/ �2 � �1p
2�

;

and the non-centrality parameter of the unweighted z-score test is

#� D
r

n1
n1 C Qn2E.Z1/C

s
Qn2

n1 C Qn2E.Z2/

D
p

n1 C Qn2 �2 � �1p
2�

;
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Fig. 6.5 Power of the weighted z-score test in comparison to the unweighted test. The solid line
shows the power of the weighted z-score test when the power of the usual (unweighted) z-score
test is 90 %. The dashed horizontal lines are at 90 and 87.5 %. No early stopping, ˛ D 0:05

and thus

Q# D w1 C w2
pQn2=n1

p
1C Qn2=n1

#� � #� :

Hence, we can illustrate the power loss which is due to using the statistic QZ2 instead
of Z?2 in dependence of Qn2=n1. Figure 6.5 provides a plot of the power with the
weighted z-score test in dependence of Qn2=n1 for w1 D w2 D 1=

p
2, i.e., under

the assumption of initially equal stage-wise sample sizes, and with #� such that the
power of the unweighted z-score test is 90 %. Furthermore, ˛ D 0:05 and no early
stopping is considered.

The figure shows that when Qn2 is between n1=4 and 4n1 the power loss is less
than 3 % points. The same can be observed for all practically relevant significance
and power values. That is, for not dramatic changes in the sample size the use of the
weighted z-score test does not result in a relevant loss in power as compared to the
test that is based on the usual global test statistic Z2	. The use of this test statistic is
thus reasonable taking into account the advantage of the possibility for redesigning
the trial in a data-driven way.

One should note that in Fig. 6.5 the sample sizes are fixed and data independent
also in the case Qn2 6D n2. Of course, this is an unrealistic assumption for the adaptive
design and hence the conclusion drawn from Fig. 6.5 should also be verified in
examples where the sample sizes follow specific data-dependent rules.

The use of the inverse normal method or the weighted z-score test has been
discussed and criticized a lot (for example, Burman and Sonesson 2006; Emerson
2006; Jennison and Turnbull 2003; Tsiatis and Mehta 2003). A large part of the
criticism is concerned with the fact that the weighted z-score statistic is used instead



150 6 Adaptive Group Sequential Tests

of the optimum statistic Z�
2 . Certainly the use of QZ2 instead of Z�

2 might look
curious, however, allowing only for small to moderate changes in the sample size
weakens this criticism a lot and justifies the use of QZ2 in a two-stage adaptive design
(Brannath et al. 2006a). One should also note that sample size reassessment is not
the only application of the adaptive principle and thus the essential advantage or an
alternative justification might become clear when discussing these applications (see
Part III of this book).

A decisive (second) advantage of the inverse normal method over other combi-
nation testing methods is the following: If the weights are chosen according to the
planned sample sizes and if no adaptation were performed, the inverse normal test
statistic coincides with the test statistic Z�

2 . Hence, the inverse normal method can
be regarded as a generalization of the classical group sequential methodology.

The choice of a futility boundary ˛0 < 1 has the advantage to increase power
when the study has sufficient chance to proceed to the second stage, and if ˛0 < 1 is
accounted for in (6.1) when choosing ˛1 and c (Posch and Bauer 1999; Bretz et al.
2009a). The reason for this is that a decrease in ˛0 leads to an increase in c and/or
˛1 and thereby to an increase in the chance to reject. However, it must be noted that
such choice leads to a binding futility boundary in the sense that the study must be
stopped if p1 > ˛0, because otherwise, the Type I error rate may be inflated.

Alternatively, we might set ˛0 D 1 in (6.1) for the determination of ˛1 and c.
By doing so, we can still stop and retain H0 if p1 is large, since stopping the trial
with retainment of H0 cannot inflate the Type I error rate. We call an ˛0 that is not
accounted for in determination of ˛1 and c a non-binding futility boundary. A non-
binding futility rule has the advantage to allow for some flexibility with regard to
early retainment of H0: the futility stopping can be an unforeseen act which needs
not be pre-planned.

The disadvantage of a non-binding futility rule is that it inflates the Type II error
rate, i.e., it will always deflate power if not accounted for in the power analysis.
Therefore it appears advisable to pre-specify some minimal ˛0 and to account for
this boundary in the power analysis. If the trial is continued when ˛1 < p1 �
˛0, then the anticipated Type II error rate is maintained as well. As a result, we
determine Type I and Type II error rates under different assumptions with regard to
the futility stopping rule.

In summary, we have seen that the weighted inverse normal combination method
can be used to introduce data-driven sample size adaptations to group sequential
designs. The attractive feature of this method is that without an adaptation we just
follow the classical group sequential test. As a consequence, designing a trial might
be performed in the same way as it is done for the non-adaptive case. Only if an
adaptation is performed, this requires a change in the test statistic used at the second
stage.
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6.3 Conditional Error Function Approach

Proschan and Hunsberger (1995) introduced another way to specify the rejection
region of an adaptive two-stage test design. They proposed to define such a
design with the use of the so-called conditional error function thereby allowing
for recalculating the sample size based on the observed effect. It turns out that
this approach can be extended to a general principle called the Conditional
Rejection Probability (CRP) principle as proposed by Müller and Schäfer (2004).
Furthermore, there is a direct relationship between the conditional error function
and the combination testing approach. In this section, we introduce the principles,
describe the connections between them and discuss applications.

6.3.1 Proschan and Hunsberger’s Method

Like in combination tests, one pre-specifies first stage rejection and acceptance
levels ˛1 < ˛0 and in addition a non-increasing function A.p1/ with values in the
unique interval Œ0; 1� where p1 is the first stage p-value for H0 computed from the
first stage cohort. The function A.p1/ is called the conditional error function of the
design. The trial is stopped at stage 1 with rejection of H0 if p1 � ˛1 and with
retainment of H0 if p1 > ˛0. If ˛1 < p1 � ˛0 the trial is continued to stage 2
where H0 is rejected if p2 � A.p1/. See Fig. 6.6 for a graphical illustration of the
conditional error function approach.

Fig. 6.6 Conditional error function approach. For the planning, fix first stage sample sizes, test,
˛1, ˛0, and the conditional error function A.p1/ with 0 � A.p1/ � 1. After stage 1, compute the p-
value p1 from the stage 1 data. Then, either stop or fix the design for stage 2 based on the data from
stage 1. After stage 2, compute the p-value p2 from the stage 2 data and reject H0 if p2 � A.p1/
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If p2 is independent from p1 and uniformly distributed, the conditional prob-
ability to reject H0 given p1 equals A.p1/. If p1 and p2 are p-clud (as defined in
Sect. 6.2.1) the conditional Type I error rate is smaller or equal to A.p1/. Hence,
A.p1/ determines the conditional Type I error rate given the interim data. As a
consequence, the overall Type I error rate is the expectation of A.p1/ over the
continuation region ˛1 < p1 � ˛0 plus the probability to reject at stage 1. In order
to meet the overall level ˛ the conditional error function should therefore satisfy the
level condition

˛1 C
Z ˛0

˛1

A.p1/dp1 D ˛ : (6.9)

Proschan and Hunsberger (1995) suggested the circular conditional error func-
tion

A.p1/ D

8
<̂

:̂

1; p1 � c

1 �˚
�pf˚�1.1 � ˛1/g2 � f˚�1.1� p1/g2

�
; ˛1 < p1 � ˛0

0; p1 > ˛0 ;
(6.10)

where ˛0 � 0:5 is fixed and ˛1 is determined numerically to meet condition (6.9).
Examples of ˛1 for ˛0 D 0:1; 0:15; : : : ; 1:00 and several ˛ are given in Table 6.4
below.

The conditional error function (6.10) is denoted circular because y D p
u2 � x2

is the equation of a circle and A.p1/ D 1 � ˚.
p

u2 � x2/ for u D ˚�1.1 � ˛1/ and
x D ˚�1.1�p1/. Note the constraint that the futility boundary ˛0 is below 0:5. One
reason for this is that A.p1/ would become increasing for p1 > 0:5. We will come
back to the circular conditional error function and its derivation later in Sect. 6.3.4.

By intuition, a conditional error function should be non-decreasing in p1, because
rejection of H0 at stage 2 should be easier the stronger the first stage evidence against
H0. Note further that the early decision boundaries are included in the conditional
error function. Obviously, A.p1/ D 1 implies that we reject for all p2, and hence we

Table 6.4 Rejection level ˛1 for the circular conditional
error function (Proschan and Hunsberger test) at different
significant levels ˛ with different futility boundaries ˛0 D
0:1; 0:15; : : : ; 0:50

˛0 ˛ D 0:05 ˛ D 0:025 ˛ D 0:01 ˛ D 0:005

0.10 0.03812 0.01641 0.00570 0.00262

0.15 0.03433 0.01512 0.00533 0.00247

0.20 0.03204 0.01428 0.00508 0.00236

0.25 0.03040 0.01366 0.00489 0.00228

0.30 0.02911 0.01316 0.00473 0.00221

0.40 0.02711 0.01235 0.00448 0.00210

0.50 0.02551 0.01170 0.00427 0.00201
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can stop and reject H0 already at stage 1. Similarly, A.p2/ D 0 implies that we retain
for all p2 and therefore stop and retain H0 at stage 1.

We finally note that Proschan and Hunsberger (1995) originally defined con-
ditional error functions as functions of a first stage z-score z1 and the circular

conditional error function as A.z1/ D 1�˚.
q

u2 � z21/ for˚�1.1�˛0/ � z1 < u D
˚�1.1 � c/. However, this is just another way to formalize the same adaptive test.
Since any z-score can be transformed to the p-value p1 D 1�˚.z1/, we can always
redefine a non-increasing conditional error function A.z1/ to the non-decreasing
conditional error function QA.p1/ D A

�
˚�1.1 � p1/

�
in p1.

6.3.2 Relationship Between Conditional Error Functions
and Combination Tests

The combination testing and the conditional error function approach were proposed
independently and did not refer to each other. However, there is a strong relationship
between the two approaches. The rejection region of any combination test can be
expressed in terms of a conditional error function A.p1/ such that C.p1; p2/ � c is
equivalent to p2 � A.p1/, namely by the function whose graph borders the rejection
region in the .p1; p2/-plane, see, for example, Figs. 6.2 and 6.3. More formally, the
conditional error function of a combination test is defined as

A.p1/ D maxfy 2 Œ0; 1� W C.p1; y/ � cg
for ˛1 < p1 � ˛0, A.p1/ D 1 for p1 � ˛1 and A.p1/ D 0 for p1 > ˛0. The
level condition (6.9) of the conditional error function is then equivalent to the level
condition (6.1) of the combination test.

For instance, Fisher’s product test is equivalent to p2 � A.p1/ with

A.p1/ D
8
<

:

1; if p1 � ˛1

c=p1; if ˛1 < p1 � ˛0
0; if p1 > ˛0 :

This follows from the equivalence of p1 p2 � c and p2 � c=p1 for p1 > 0. Similarly,
the rejection region of the weighted inverse normal test (or weighted z-score test) is
given by the conditional error function

A.p1/ D

8
<̂

:̂

1; if p1 � ˛1

1 �˚
�

u1�c�w1˚�1.1�p1/
w2

�
; if ˛1 < p1 � ˛0

0; if p1 > ˛0 ;

(6.11)
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Fig. 6.7 Different conditional error functions. The figure shows the conditional error function and
corresponding rejection region for the circular conditional error function, Fisher’s product test, and
the inverse normal combination function. All three conditional error functions are at level ˛ D 0:05

with ˛0 D 0:5 and ˛� D ˛1 D ˛2 such that the level condition is met. ˛� D 0:0349 for Bauer
and Köhne, ˛� D 0:0307 for inverse normal, ˛� D 0:0255 for Proschan and Hunsberger

since C.p1; p2/ � c is equivalent to p2 � 1 � ˚
�
.u1�c � w1˚�1.1 � p1//=w2

�
. In

Proschan and Hunsberger (1995), this function was proposed as linear conditional
error function.

Figure 6.7 provides a graphical illustration of the circular conditional error
function together with the conditional error functions of Fisher’s product test and
the inverse normal method. For illustrative purposes we have fixed ˛ and ˛0 and
determined ˛1 D ˛2 for each of the methods to meet the level condition. This is the
only choice that has been suggested for all three methods. Note that different ˛1 are
required for the different conditional error functions to meet the level condition. Of
course, the comparison of different conditional error functions will depend on the
choice of ˛0, ˛1, and ˛2.

As seen in Fig. 6.7 the circular conditional error function yields a heavy-tailed
rejection region similarly to Fisher’s product test. In this case (˛1 D ˛2) this
property is even more pronounced for the circular conditional error function.
Generally, there is a tendency that these two procedures behave quite similarly and
no large differences with respect to necessary maximum and expected sample size
are expected (see Wassmer 1998).

We note that the relationship between a combination function and its conditional
error function is the same as the relationship between a two-dimensional function
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and a single level curve of this function. Whereas every two-dimensional function
has a unique level curve for a given value c, a single level curve does not uniquely
determine the function. The strong relationship between conditional error functions
and combination test has been notified by several authors (Posch and Bauer 1999;
Wassmer 1999c; Proschan 2003; Vandemeulebroecke 2006).

We finally note that for any conditional error function A.p1/ the combination
function C.p1; p2/ D p2�A.p1/with second stage boundary c D 0 leads to the same
rejection region in the .p1; p2/-plane as the conditional error function A.p1/. This
combination function is, however, not the only one that gives the rejection region
of the conditional error function, and there might be more natural combination
functions associated with A.p1/. Examples are the Fisher’s product and the inverse
normal combination test. The circular conditional error function is more naturally
obtained from the combination function

C.p1; p2/ D 1 � ˚
�
˚�1.1 � p1/

2 C ˚�1.1 � p2/
2
�
:

Optimal conditional error functions were derived in Brannath and Bauer (2004).
Liu et al. (2002) and other authors consider more general conditional error functions
which depend on more information from the interim data than just a single z-score
or p-value. With a one-parameter family of distributions and for the sake of sample
size reassessments it is to a large extend sufficient to consider conditional error
functions that depend only on a single statistic. There are, however, examples where
the conditional error function may depend on more than a single first stage statistic.
Such examples occur in trials with nuisance parameters where the conditional error
function can also depend on a first stage estimate of nuisance parameters (Posch
et al. 2004; Timmesfeld et al. 2007; Gutjahr et al. 2011) or in adaptive trials with
several hypotheses (König et al. 2008). The latter will be discussed later in Part III
of the book. In the most extreme case the conditional error function could depend
on all interim data. However, for the control of the overall Type I error rate the null
distribution of the conditional error function must be known or be stochastically
bounded by some known distribution. This implies that we need to know or estimate
the null distribution of the arguments in the conditional error function.

6.3.3 The CRP Principle

Müller and Schäfer (2001, 2004) suggested to start with a conventional non-adaptive
test design at level ˛, for example, a fixed sample size or group sequential design,
and to use at the interim analysis its conditional Type I error rate as conditional error
function when data-driven design adaptations will be performed. This approach has
several advantages which will be discussed below.

To give a first illustration of the Müller and Schäfer method we consider a trial
that starts with the conventional one-sample z-test. Let� be the mean of independent
and normally distributed responses Xi and assume that we plan to test H0 W � � 0
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with the conventional z-test at sample size n. The test decision function of the pre-
planned z-test is ' D 1fZ�u1�˛g where Z D Pn

iD1 Xi=
p

n and u1�˛ D ˚�1.1� ˛/.
Assume that an interim analysis is performed after n1 < n observations, and it

is decided there to change the sample size to Qn > n1, Qn 6D n. Since the sample size
was changed based on the interim data, we cannot exclude an inflation of the Type I
error rate when testing H0 with the usual z-test at the modified sample size Qn. With
the method of Müller and Schäfer we first need to compute the conditional Type I
error rate

A D A.interim data/ D EH0 .'jinterim data/

of the pre-planned z-test with sample size n, where EH0 . � j interim data / is the
conditional expectation under the null hypothesis, H0. If we denote by x1; : : : ; xn1
the observations from the interim analysis, then simple algebra yields

A D PH0

0

@
nX

iDn1C1
Xi=

p
n � n1 � u1�˛

p
n=.n � n1/ �

n1X

iD1
xi=

p
n � n1

1

A ;

where the probability is with respect to Xi, i D n1 C 1; : : : ; n, and x1; : : : ; xn1 are
viewed as fixed numbers. Furthermore,

Pn
iDn1C1 Xi=

p
n � n1 is standard normal and

independent from x1; : : : ; xn1 . This implies

A D 1 �˚
 

u1�˛
p

n=.n � n1/�
n1X

iD1
xi=

p
n � n1

!

;

which can also be written as function of the first stage z-score z1 D Pn1
iD1 xi=

p
n1,

namely as

A.z1/ D 1 �˚�u1�˛
p

n=.n � n1/� z1
p

n1=.n � n1/
�
: (6.12)

In order to preserve the Type I error rate, we now have to apply a test Q' whose
conditional Type I error rate is not larger than A.z1/. The simplest way to preserve
the conditional Type I error rate A.z1/ is to compute a p-value p2 for the independent
second stage cohort and to reject H0 if p2 � A.z1/. If, for given z1, the p-value p2
is uniformly distributed or has a conditional distribution that is stochastically larger
than the uniform distribution, then

EH0. Q'jinterim data/ D PH0 .p2 � A.z1/jinterim data/ � A.z1/ :

In our example, p2 could be the p-value of the z-test applied to the second stage
data, namely p2 D 1�˚. QZ2/ where QZ2 D PQn

iDn1C1 Xi=
pQn � n1 is the second stage

z-score of the adapted trial.
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The above considerations are not restricted to the one-sample z-test and can be
applied to other z-tests as well. However, Type I error rate control is then typically
achieved only asymptotically. Consider the null hypothesis H0 W � � 0 where � is
an efficacy parameter for an experimental treatment compared to a control. We can
think, for example, at a parallel group design with � being the mean difference of
some metric response variable or the log-odds ratio of a binary response. If in these
(and many other) cases the pre-planned test is the score or Wald-test for H0, then
the pre-planned test is of the above form ' D 1fZ�u1�˛g where Z is asymptotically
standard normal.

Moreover, if Z1 is the standardized score or Wald test statistic from the interim
data, then also Z1 is asymptotically normal and the asymptotic correlation between
Z1 and Z is Corr.Z1;Z/ D p

I1=I where I1 and I are the amounts of information
from the interim and pre-planned full data, respectively. This implies that for � D 0

the conditional distribution of Z given Z1 D z1 is the normal distribution with meanp
I1=Iz1 and variance 1� I1=I D .I � I1/=I. For the pre-planned test, this yields the

conditional Type I error rate

A.z1/ D PH0 .Z � u1�˛jZ1 D z1/ D 1 � ˚
�
u1�˛

p
I=.I � I1/ � z1

p
I1=.I � I1/

�
:

(6.13)

For the design with adapted sample size we can again apply a test to the second
stage data only (typically also a score or Wald test) which leads to a p-value p2 that
has a uniform or a stochastically larger conditional null distribution. Hence, the test
Q' D 1fp2�A.z1/g has a conditional Type I error rate equal to or below A.z1/.

For the z-test the Müller and Schäfer method leads to an adaptive test that is
equivalent to the inverse normal or z-score method with ˛1 D 0 and ˛0 D 1. This
follows from the identity of the conditional error functions (6.11) and (6.12) with
˛1 D 0, ˛0 D 1 and w1 D p

I1=I, w2 D p
.I � I1/=I. Moreover, when starting

with a two-stage group sequential design for H0 (instead of the z-test) then the
same arguments as above show that the Müller and Schäfer method also leads to
the conditional error function (6.11) now with ˛1 D 1�˚.u1/ and ˛0 D 1�˚.uL/

where u1 and uL are the group sequential rejection and acceptance boundaries for
stage 1. However, for a group sequential test with more than two stages and sample
size adaptations before the last interim analysis, the Müller and Schäfer method
leads to a conditional error function which is more complex than (6.12) or (6.13)
and needs numerical integration.

The above approach can be formulated in rather general terms and is called a
principle, the CRP principle (Müller and Schäfer 2004). Let ' be the test decision
function of the initial conventional non-adaptive test, i.e., ' D 1 if the initial test
rejects and ' D 0 if it retains H0. Assume that we perform an interim analysis
after recruitment of a part of the initially anticipated sample. Assume further that
we learn from the interim data and/or external information that we should change
design features, for example, the sample size. As above, we compute the conditional
rejection probability of the initial test given the interim data A.interim data/ D
EH0 . ' j interim data /.
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If we change the design, for example, increase or decrease the sample size, then
we choose a new test Q' for the new design that has the property

QA D EH0 . Q' j interim data / � A.interim data/ : (6.14)

Note that QA is like A the conditional rejection probability under H0 given the interim
data, however, now for the altered design and new test Q'. Should we decide at the
interim analysis that no change of the original design is required then we can follow
the pre-specified design and use the original test ' which also satisfies (6.14) by
definition of A.

Following this principle, the conditional Type I error rate will never exceed
A.interim data/, whether we alter or stay with the initial design. Hence, the overall
Type I error rate will be bounded by

EH0

�
A.interim data/

� D EH0

�
EH0 .'jinterim data/

� D EH0 .'/ � ˛ ;

where the outer EH0 denotes the unconditional expectation under H0. This implies
Type I error rate control at level ˛. A rigorous mathematical prove of Type I error
rate control with the CRP principle can be found in Brannath et al. (2012).

The possibility to stay with the conventional design and conventional test
procedure in the “no adaptation” case is the main advantage of the CRP principle.
It allows us to plan a trial as usual based on classical arguments, although, the
design may be changed in course of the trial. It also allows us to introduce design
adaptations to trials for which no adaptations have been foreseen, as long as the
conditional Type I error rate of the pre-planned test can be computed. Of course,
such unscheduled design adaptations should be done only in exceptional cases and
with great care, because they can question the confirmatory character of the trial
and introduce complications that are beyond Type I error rate control. Nevertheless,
unforeseen design adaptations are not that uncommon in clinical trials and the effect
on the Type I error is often unclear such that an inflation cannot be ruled out
when doing conventional tests. In this case, the application of the CRP principle,
if possible, would improve the quality and validity of the trial because Type I error
rate control is then out of question.

The CRP principle can be applied to any design, whether non-adaptive or
adaptive, to permit additional adaptations not anticipated in advance. To apply
the CRP principle we must, however, be able to compute (or at least estimate)
the conditional Type I error rate of the initial test ' which can become difficult
in complex designs or in the presence of nuisance parameters (Posch et al. 2004;
Timmesfeld et al. 2007; Gutjahr et al. 2011). The CRP principle is also particularly
helpful in the context of multi-stage group sequential trials or in adaptive trials with
several hypotheses (König et al. 2008). For binary response, an application was
provided by Englert and Kieser (2012, 2015).

As mentioned before, the CRP principle permits us to do adaptations at an
unplanned interim analysis. This has the important implication that the interim
sample size can be a random number. In this case we can apply the same method as
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if the interim sample size would have been known in advance. With the CRP method
we need also not to be concerned about correlations between efficacy data and the
interim sample size. The method even allows us to repeatedly look into the data and
to decide at each look whether to change or not yet change the sample size. We
know, if the sample size is not (yet) changed, then no adjustment is required. Hence
the conditional Type I error rate of future interim analyses remains unchanged as
well.

It is important to note that the CRP principle does not allow us to reject H0 at
an interim analysis where such rejection has not been foreseen. This is because
early rejection requires the conditional Type I error rate to be equal to 1 which is
impossible without a pre-specified interim test. If the interim sample size is random
and independent from the interim efficacy estimate, then early rejection can be
achieved by combining the error spending function method with the inverse normal
or the CRP principle (Denne 2001). We can pre-specify a spending function and use
the group sequential boundaries that result from the spending function and observed
interim information fraction when applying the inverse normal or the Müller and
Schäfer method. A similar approach is possible also with other combination tests.

6.3.4 Type I Error Maximization Method

We are now prepared to present the method of Proschan and Hunsberger (1995)
which leads to the circular conditional error function. The method follows a general
principle which we call the Type I error rate maximization method and which can be
extended to other situations (for example, Graf and Bauer 2011; Graf et al. 2014).
We note that this principle was already proposed in the “early days” of adaptive
designs in papers such as Case et al. (1987) and Gugerli et al. (1993).

Before we present the derivation of the circular conditional error function, we
consider a simplified scenario where we can choose only among two different total
sample sizes n < m, for example, n D 100 and m D 200. The choice is made at
an interim analysis with n1 < n observations, for example, n1 D 50, and it can be
based on all information accumulated so far. We furthermore assume that the way
how we choose the sample size has not been pre-specified in advance such that the
sample size adaptation remains unknown.

We ask the question whether we can adjust the rejection boundary u for the
classical (unweighted) z-test such that the Type I error rate is preserved even though
the sample size adaptation rule remains undetermined. A positive answer seems
difficult because there is no way to determine the distribution of the unweighted
z-test statistic when the sample size rule is unknown. However, the concept of the
conditional error function allows us to determine the rule under which the Type I
error rate is maximal. Adjusting the critical boundary such that the Type I error rate
is preserved under this rule guarantees Type I error rate control with any other rule.

To determine the worst case rule that maximizes the Type I error rate we compute
the conditional functions of the two z-tests with sample sizes n and m, respectively,
and arbitrary rejection boundary u. From (6.12) we know that the conditional error
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Fig. 6.8 Two conditional error functions An and Am according to different samples sizes n and m.
The gray line indicates the maximum of the two functions

functions are

An.z1I u/ D 1 � ˚
�
u
p

n=.n � n1/ � z1
p

n1=.n � n1/
�

and

Am.z1I u/ D 1 � ˚
�
u
p

m=.m � n1/ � z1
p

n1=.m � n1/
�
;

where z1 is the z-score computed from the interim data. Figure 6.8 provides a plot
of the two conditional error functions in dependence of z1 for n D 100, m D 200,
n1 D 50, and u D 2.

Since each of the conditional error functions equals the conditional probability
to reject H0 with the corresponding sample size, we maximize the Type I error
rate by choosing for each z1 the sample size with larger conditional error function.
This maximizes the conditional and thereby also the unconditional Type I error
rate. The resulting conditional rejection probability equals the maximum of the two
conditional error functions

Amax.z1I u/ D maxfAn.z1I u/;Am.z1I u/g ;
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which is indicated by the gray line in Fig. 6.8. Accordingly, the maximum Type I
error rate is the probability under the gray line or the integral

Errmax.u/ D
Z 1

�1
Amax.z1I u/ �.z1/ dz1 :

In order to preserve the Type I error rate, we now choose Qu such that Errmax.Qu/ D ˛.
For our numerical example in Fig. 6.8 and ˛ D 0:025we obtain Qu D 2:0537. Hence,
whatever sample size Qn 2 fn;mg we choose at interim (and whatever the reasons we
have for our choice), the level is under control if we reject H0 with z.Qn/ � 2:0537

where z.Qn/ denotes the unweighted (classical) z-test statistic with sample size Qn.
Of course, the procedure of maximizing the Type I error rate leads to a

conservative test if we follow another rule than the worst case rule which maximizes
the Type I error rate. In practice, investigators rarely aim to maximize Type I error
rates (even though their action must be expected to inflate them) and hence will
usually not follow the worst case rule. Hence, using the unweighted z-tests with
critical value Qu such that Errmax.Qu/ D ˛ leads, in general, to a strictly conservative
test.

However, using the conditional error function Amax.p1/ we can construct a test
that exhausts the level: rejecting H0 if p2 � Amax.p1/ gives a test with Type I error
rate

Z 1

0

Z 1

0

1fp2�Amax.p1/gdp1 dp2 D
Z 1

0

Amax.p1/dp1 D Errmax.Qu/ D ˛ :

Hence, it appears more efficient to reject H0 with the rejection rule p2 � Amax.z1I Qu/
than with the rule z.Qn/ � Qu.

The conservatism of the usual z-test at level u is an indication for the inefficiency
of the unweighted z-test (with adjusted critical boundary) in comparison to the
adaptive test with rejection region p2 � Amax.z1I u/. To confirm this suspicion note
that with a fixed sample size n the z-test z.n/ � u is equivalent to the adaptive test
with rejection rule p2 � An.z1/. Hence, the z-test z.Qn/ � u is equivalent the adaptive
test with rejection region p2 � AQn.z1/. Since

AQn.z1/ � maxfAn.z1; u/;Am.z1I u/g D Amax.z1I u/

with AQn.z1I u/ D Amax.z1I u/ only if we choose the sample size with larger
(conditional) Type I error rate, we obtain that the adaptive test with conditional
error function Amax.z1I u/ rejects either as often or more often than the unweighted
z-test. This shows that the adaptive test with conditional error function Amax.z1I u/
provides a uniform improvement of the usual z-test.

We finally note that the above observation has a remarkably fundamental
consequence. It shows that the likelihood ratio test principle, which leads to the
adjusted z-test z.Qn/ in the above testing situation, does not provide the most efficient
test when sample sizes are changed in an unspecified way. It appears that in
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adaptive trials with an unspecified adaptation rule, tests based on the likelihood
ratio principle can be uniformly improved by tests which follow the conditional
invariance principle (see Sect. 6.1). In our example, this is the adaptive test with
conditional error function Amax.z1I u/.

We are now coming back to the derivation of the circular conditional error
function. Proschan and Hunsberger (1995) consider not only two but also any
sample size n � 0. Moreover, they express the conditional error function An.z1I u/
in terms of the ratio .n � n1/=n1. We prefer to use the reciprocal R D n1=.n � n1/
and then obtain for An.z1I u/ the simple expression

AR.z1I u/ D 1 � ˚.u
p
1C R � z1

p
R/ :

The circular conditional error function is obtained by maximizing AR.z1I u/ with
respect to R � 0 including the case R D 1 which corresponds to n D n1, i.e.,
the possibility of stopping the trial at interim. Maximizing with regard to all real
positive R, even though for given n1 only specific rational numbers (and infinity) are
possible, has the advantage to obtain an upper bound that is independent from n1.
Now, maximizing AR.z1I u/ is equivalent to minimizing

f .R/ D u
p
1C R � z1

p
R :

Now,

f 0.R/ D 1

2

�
up
1C R

� z1p
R

�

:

If z1 � u, then f 0.R/ < 0 for all R � 0 and therefore the minimum is attained for R D
1. This gives the maximum conditional error function Amax.z1I u/ D 1�˚.�1/ D
1 and means to stop the trial with rejection of H0 at interim. It is intuitively clear that
stopping (and rejecting H0) is the optimal “fishing for significance” strategy when
z1 exceeds or meets the fixed rejection boundary u.

When z1 < 0 then f 0.R/ > 0 for all R � 0 and hence the minimum of f .R/
is achieved for R D 0 in which case f .R/ D u and Amax.z1; u/ D 1 � ˚.u/.
This conditional level is obtained by either increasing the second stage sample size
to infinity (which is practically impossible) or discarding the first stage data and
starting a new trial at level 1 � ˚.u/.

In the remaining cases, 0 � z1 < u, we have f 0.R/ D 0 for R D z21=.u
2 � z21/

giving the minimum

f .R/ D u

s
u2

u2 � z21
� z1

s
z21

u2 � z21
D
q

u2 � z21 :
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Therefore Amax.z1I u/ D 1 � ˚.

q
u2 � z21/ for 0 � z1 � u. Summarizing, the

maximum conditional Type I error rate is

Amax.z1I u/ D

8
<̂

:̂

1 � ˚.u/ if z1 � 0

1 � ˚.

q
u2 � z21/ if 0 � z1 < u

1 if z1 � u :

Therefore, the maximum Type I error rate is

Errmax.u/ D �
1 �˚.u/� � ˚.0/C

Z u

0

�

1 � ˚

�q
u2 � z21

��

�.z1/ dz1 C 1 � ˚.u/

D 3

2

�
1 �˚.u/�C

Z u

0

�

1 �˚.
q

u2 � z21/

�

�.z1/ dz1 :

The following observation leads to a simple analytical expression: If U and V
are independent and standard normal, then X2 C Y2 is �2-distributed with 2 degrees
of freedom which is the exponential distribution with rate parameter 
 D 1=2.
Therefore

exp

�

�u2

2

�

D P.X2 C Y2 � u2/

D P.jXj � u/C
Z u

�u
P.jYj �

p
u2 � x2/�.x/dx

D 2
�
1 �˚.u/�C 4

Z u

0

�
1 � ˚.

p
u2 � x2/

�
�.x/dx :

Hence

Errmax.u/ D 1 �˚.u/C 1

4
exp

�

�u2

2

�

:

Plugging in, for instance, the critical boundary u D 1:96 of the z-test at level ˛ D
0:025 gives Errmax D 0:056. This is more than twice as large as the nominal level ˛.

Instead of starting a new trial when z1 < 0, Proschan and Hunsberger assume
stopping the trial for futility. For this reason they consider futility boundaries ˛0 �
0:5. With such a boundary ˛0 the maximum Type I error rate is

Errmax.u; ˛0/ D
Z u

z˛0

�

1 � ˚

�q
u2 � z21

��

�.z1/ dz1 C 1 � ˚.u/ : (6.15)
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If ˛0 D 0:5 then

Errmax.u; 0:5/ D Errmax.u/� 1

2

�
1 �˚.u/� D 1

2

�
1 � ˚.u/

�C 1

4
exp

�

�u2

2

�

:

For the unadjusted boundary u D u1�˛ this still leads to an inflated level, for
example, with ˛ D 0:025 we have Err.u1�˛; 0:5/ D 0:045. Hence, in order to meet
the nominal level ˛ we need to increase the rejection boundary u to avoid a Type
I error inflation with the unweighted z-test. The corresponding u can be obtained
through u D ˚�1.1 � c/ from Table 6.4.

Expression (6.15) is identical to the Type I error rate of the adaptive test with
circular conditional error function and boundaries c D ˛1 D 1 �˚.u/ and ˛0. Like
in the case with only two optional sample sizes this adaptive test is uniformly more
powerful than the z-test with adjusted boundary u.

6.4 Two-Sided Adaptive Tests

Up to now we have only considered one-sided hypotheses. However, in practice,
often two-sided hypotheses are considered, either for ethical reasons or because
both sides of the alternative hypothesis are of scientific relevance. For an adaptive
trial a test for a hypothesis H0 W � D 0 against the two-sided alternative H1 W � 6D 0

can be obtained by the application of a combination test to the stage-wise two-sided
p-values. Since for � D 0 the two-sided p-values satisfy the p-clud condition (at
least asymptotically), application of a combination test to these p-values provides
Type I error rate control for H0.

Using two-sided p-values can, however, lead to difficulties in the interpretation
of the trial outcome when H0 is rejected. In this case, we usually want to decide
which side of the alternative hypothesis (� > 0 or � < 0) is true. The answer
appears clear if the data of the two independent cohorts from the two stages
consistently indicate the same side of the alternative. Often, the two-sided p-values
are pk D 2 f1 � ˚.jzkj/g where zk D O�k=sek is the z-test statistic based on the
maximum likelihood estimate O�k of � from stage k, and sek is an estimate of its
standard deviation. When using t-tests instead of z-tests then the standard normal
distribution function is replaced by a t-distribution, and the arguments below apply
similarly.

Consistency between the results from the two stages means that the two z-score
z1 and z2 from the two stages have the same sign. In this case rejection of H0 can
easily be interpreted in terms of the sign of � . However, when the sign of z1 and
z2 differs then rejection of the two-sided null hypothesis does not allow a claim on
the sign of � . A discussion of this issue can be found in Bauer and Köhne (1994).
It can be avoided by retaining H0 if the stage-wise data are inconsistent. This leads
to a strictly conservative test and to some loss in power. If the stage-wise sample
sizes are both sufficiently large, then conflicting directions will be rare under the
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alternative, and the loss in power will be small. However, if one (or both) of the
stages is small, the loss in power can be of relevance. We refer to Bauer and Köhne
(1994) for more details.

A better approach to deal with conflicting directions is to perform a separate
adaptive test at level ˛=2 for each of the two one-sided hypotheses

H.�/
0 W � � 0 and H.C/

0 W � � 0

(Wassmer 1999c; Müller and Schäfer 2001). Rejecting the two-sided hypothesis
if one of the one-sided hypotheses is rejected provides a level ˛ test for H0 W
� D 0. Logical consistency requires that we can never reject both one-sided null
hypotheses. This is achieved by disjoint rejection regions for the two one-sided
tests: with two disjoint one-sided tests we can always make a claim of the sign of �
when H0 is rejected. Furthermore, futility stopping with retainment of H0 W � D 0

must imply the simultaneous acceptance of both one-sided hypotheses. This implies
constraints on the critical regions of the two one-sided tests.

Disjoint rejection regions can be best described in terms of their conditional error
functions. Assume that the two one-sided adaptive tests have rejection rules

p.�/2 � A.�/ and p.C/2 � A.C/ ;

where A.�/, A.C/ are conditional error functions, and

p.�/2 D 1 �˚.z2/ and p.C/2 D 1 � ˚.�z2/ D ˚.z2/

are the one-sided second stage p-values for H.�/
0 and H.C/

0 , respectively. Since,

p.C/2 D 1�p.�/2 we have that p.C/2 � A.C/ is equivalent to p.�/2 � 1�A.C/. Hence, the
rejection regions are disjoint if and only if A.�/ < 1�A.C/ for all interim outcomes.
In plot(a) of Fig. 6.9 the rejection regions are not disjoint whereas in plot (b) they
are.

If both conditional error functions are below 1, then A.�/ < 1�A.C/ is equivalent
to A.�/ C A.C/ < 1, otherwise one conditional error function can be equal to 1 and
the other equal to 0, i.e., maxfA.�/;A.C/g D 1 and minfA.�/;A.C/g D 0. Hence,
logical consistency is achieved if and only if at all interim sample points

A.�/ C A.C/ < 1 or
�

minfA.�/;A.C/g;maxfA.�/;A.C/g� D .0; 1/ :

There are several possibilities for the choice of logically consistent A.�/ and A.C/.
One way is to require

˛
.�/
0 D 1 � ˛

.�/
1 and ˛

.C/
0 D 1� ˛

.C/
1 ; (6.16)
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Fig. 6.9 Rejection regions of two one-sided combination tests for H.�/
0 and H.C/

0 , for illustrative
purposes, both at two-sided level ˛ D 0:25. Panel (a) is for Fisher’s product test with ˛1 D c˛=2 D
exp.���2

4;1�˛=2=2/ D 0:0271 and ˛0 D 1, panel (b) is for the inverse normal combination test with
˛1 D 0 and ˛0 D 1. The choice in (a) does not provide logically consistent tests, since the rejection
regions for the two hypotheses are not disjoint. In panel (b) the regions are disjoint and hence the
tests are consistent

where ˛.C/1 ; ˛
.�/
1 and ˛.C/0 ; ˛

.�/
0 denote the early rejection and acceptance bound-

aries of the two one-sided combination tests. This requirement is illustrated in
Fig. 6.10 for Fisher’s combination test, two-sided ˛ D 0:25, and ˛.�/0 D ˛

.C/
0 ,

i.e., identical decision rules for H.�/
0 and H.C/

0 .
Note that the requirement (6.16) has an only small influence on the critical values

for reasonably chosen (two-sided) significance level ˛. This is due to the fact that
the probability of conflicting decision is c2˛=2 in this case and thus very small for
reasonable ˛.

For the inverse normal method and an early rejection boundary ˛1 there is also
an area where p1 < ˛1 or p1 > 1� ˛1 such that (6.16) is a meaningful requirement.
However, also in this case for reasonable significance level ˛ and commonly used
designs the effect of adjusting for this is negligibly small and corresponds to the
fact that the critical levels of a group sequential design at one-sided level ˛=2 are
virtually identical to critical levels at two-sided level ˛ (see Sect. 2.3).
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Fig. 6.10 Rejection regions of two one-sided Fisher’s product tests for H
.�/
0 and H

.C/
0 , two-sided

˛ D 0:25. It is illustrated with c˛=2 D exp.���2
4;1�˛=2=2/ D 0:0271 and ˛1 D 0:035 and ˛0 D

1� ˛1 such that the level condition is met

6.5 The Multi-Stage Case

In the seminal papers of Bauer and Köhne (1994) and Proschan and Hunsberger
(1995) adaptive designs were introduced essentially for a design with two stages.
Lehmacher and Wassmer (1999) and Müller and Schäfer (2001) considered the more
general case of adaptive designs as a generalization of the classical group sequential
designs (see also, Cui et al. 1999). On the one hand, the inverse normal combination
testing principle is not restricted to two stages only, and the decision boundaries for
the group sequential designs can also be used for more than two stages. On the other
hand, the CRP principle can be used for any designs, including fixed sample and
group sequential designs with an arbitrary number of stages. The general principle
simply states that the conditional rejection probability can be calculated at any time
point during the course of the trial. This can be done even iteratively and is not
restricted to the two-stage case.

If one decides to use the inverse normal method, one can use any group sequential
design that is defined for the sequence of overall test statistics Z�

1 ; : : : ;Z
�
K , as

described in Part I of this book. Any sequence of valid boundaries u1; : : : ; uK can
then be applied for the sequence of the inverse normal test statistics. At stage k, this
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is simply to use the weighted inverse normal combination function

C.p1; : : : ; pk/ D 1 �˚

0

B
@

w1 ˚�1.1 � p1/C � � � C wk ˚
�1.1 � pk/

q
w21 C � � � C w2k

1

C
A (6.17)

for the adjusted significance levels 1� ˚.uk/, or, equivalently, the transformation

QZk D w1 ˚�1.1 � p1/C � � � C wk ˚
�1.1 � pk/

q
w21 C � � � C w2k

(6.18)

for the original critical values uk, k D 1; : : : ;K. In most cases, the weights will be
according to the planned sample sizes n1; : : : ; nK and we know from Chap. 3 of this
book how to derive valid decision regions for (6.17) or (6.18). It is also possible
to include futility stopping boundaries u01; : : : ; u

0
K�1. So, for example, the designs

according to Pampallona and Tsiatis (1994) are valid choices, too.
We note that it is even possible to use critical boundaries that are defined through

the use of an ˛-spending function where the maximum number of stages, K, is
pre-fixed. Clearly, this is not the application the ˛-spending function approach was
intended for originally, but it defines a valid set of boundaries. Finally, problems as
described in Sect. 6.4 for the definition of overall two-sided tests do not occur for the
inverse normal combination function as it was described for Fisher’s combination
test. At least, there is no such practically relevant effect (see the remark in the last
paragraph in this section). Hence, it is even possible to define corresponding overall
two-sided tests which might be preferable from a regulator’s point of view.

The application of Fisher’s combination test principle to a three-stage adaptive
design was described in Bauer and Köhne (1994) and Bauer and Röhmel (1995).
Principally, there is no difficulty performing an adaptive design with Fisher’s com-
bination test for more than two stages. As for the two-stage case, all information may
be used to plan the subsequent stages if the decision is based on the combination of
the separate p-values. Considering the general case, let a study be performed with at
most K stages. Applying Fisher’s combination test, the study stops with the rejection
of H0 at stage k if p1p2 : : : pk � c˛k WD exp.��22k;1�˛k

=2/, where 2k refers to the
degrees of freedom (df) of the �2-distribution. The study stops with the acceptance
of H0 at stage k if pk � ˛

.k/
0 , k 2 f1; : : : ;K � 1g, where ˛.k/0 are preassigned values

which are not necessarily constant in k. The Type I error rate at stage k is given by

Pk D
Z ˛

.1/
0

˛1

Z ˛
.2/
0

c˛2 =p1

Z ˛
.3/
0

c˛3 =.p1p2/
� � �
Z ˛

.k�1/
0

c˛k�1 =.p1p2���pk�2/

�
Z c˛k =.p1p2���pk�1/

0

dpk dpk�1 � � � dp1 ;

(6.19)
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and the overall Type I error rate of the procedure is
PK

kD1 Pk. There exists a closed
form solution of (6.19) that is provided in Wassmer (1999b). This formula can be
used to find the “local” significance levels ˛k, such that the procedure meets the
overall level ˛. Wassmer (1999b) considered some possible choices of ˛k and ˛.k/0 .
We note that in these proposals the futility bounds are defined for the stage-wise
p-values and not—as for the group sequential designs—for the overall test statistic
at stage k.

Finally, the recursive combination tests were introduced by Brannath et al.
(2002) for generalizing the combination testing principle of Bauer and Köhne
(1994) using Fisher’s combination test. The idea is simple and not restricted to
Fisher’s combination test only. Consider a two-stage combination test with rejection
rule (6.3). For example, if ˛ D 0:025, H0 is rejected at the second stage if

p1p2 � 0:0038 :

Now suppose the first stage p-value is, say, 0.08, yielding no rejection of H0 at the
first interim analysis. For the second stage this means to reject H0 if

p2 � 0:0038=0:08D 0:0475 :

In other words, the significance level to be used for the remainder of the trial is
4:75%. The remainder of the trial needs not to consist of one stage only, it can
also be, for example, a two-stage trial at level 4:75%. This means that one can
“introduce” an additional interim stage, and this can be done even iteratively. Note
that this is equivalent to calculating the conditional Type I error rate when using the
two-stage Fisher’s combination test as initial test.



Chapter 7
Decision Tools for Adaptive Designs

Adaptive designs incorporate interim analyses where the interim data are used to
decide whether to terminate or to continue the trial, and, if the trial is continued,
how to design the remainder of the trial. This raises the important question of
how to make the decisions on potential design modifications. On the one hand,
such decisions require suitable methods and statistics to summarize the relevant
information from the interim data, and there is often a priori or external information
which one would like to combine with the information from the interim data. On the
other hand, we need rules or at least guidance on how to use this information for the
interim decisions, for example, a guidance when a sample size modification should
take place.

In this chapter we remain focused on designs with a single null hypothesis and
adaptations of the sample sizes. Note that a change in sample size includes the
possibility of stopping the trial at the interim analysis by setting the second stage
sample size equal to zero.

7.1 Conditional Power

In order to decide whether to stop the trial or to change the pre-specified trial design
at an interim analysis, it appears natural to ask for the chance of a success if the
trial is continued as pre-planned. This chance is best quantified by the conditional
probability for a rejection of the null hypothesis given the observed interim data and
the test design. This quantity is called conditional power. By conditioning on the
interim result, one restricts attention to those future outcomes that are possible under
the observed interim data and disregards those that are impossible. This would not
be the case when recomputing the unconditional power at the interim analysis which
is the power based on a reestimated effect size. With the unconditional power we
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would also include those outcomes that are impossible under the observed interim
data and thereby disregard important information from the interim analysis.

The true conditional power depends (like the unconditional power) on the true
parameter value. Since the true parameter value is unknown we need to make a
specification. As we will see below, the choice of the alternative is crucial for
the performance of the adaptive design. Since the choice of the parameter value
in the conditional power calculation is still controversial, we will discuss several
possibilities. Before this we will show how one can compute the conditional power
for combination tests.

7.1.1 The Conditional Power of Combination Tests

For the computation of the conditional power with a combination test we need to
know the distribution of the first and second stage p-values for parameter values
of the alternative hypothesis. This requires assumptions on the null and alternative
hypothesis as well as the test statistics used for the first and second stage p-values.
We therefore focus here on specific but commonly encountered situations.

We assume, like in Sect. 6.2.5, that H0 W � D 0 is tested against the one-sided
alternative H1 W � > 0 where � D �2 � �1 and �1, �2 refer to the means of
independent and normally distributed responses (for example, in a control and a
treatment group) with common variance �2, and where larger values of � correspond
to a more beneficial experimental treatment. We furthermore assume that the first
and second stage p-values are of the form

pk D 1 � ˚. O�k

p
Ik/ ; k D 1; 2 ; (7.1)

where O�k D NXk2 � NXk1 is the mean difference and Ik D nk=.2�
2/ the information

(i.e., the reciprocal of the variance of O�k) from the stage k data. Therefore,

Zk D O�k

p
Ik � N.�

p
Ik; 1/ for all � :

Consider now an adaptive two-stage design with conditional error function A.p1/.
This means that we reject H0 at the second stage if p2 � A. p1/. We know
from Sect. 6.3 that every combination test has such a conditional error function.
According to the above assumptions, we have that H0 is rejected if and only if

˚�1.1 � p2/ D Z2 � ˚�1�1 � A.p1/
�
:

Since the conditional power is the conditional probability to reject H0, and O�2 is
independent from the first stage data, we obtain the formula

CP� D P�
�
Z2 � ˚�1.1 � A.p1//

� D 1 � ˚
�
˚�1.1 � A.p1// � �

p
I2
�

(7.2)
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for the conditional power CP� . In this formula p1 is considered as a fixed number
(not as a random variable) because we condition on the interim data. Note that we
need only consider the conditional power and conditional error function for ˛1 <
p1 � ˛0.

From (7.2) we see that for given p1 the conditional power increases with
increasing � . Under the alternative, � > 0, the conditional power is increasing in
I2 D n2=.2�2/, converging to 1 when n2 becomes infinity. We can alternatively write
the conditional power in terms of the interim estimate O�1 instead of p1 by plugging
in expression (7.1). This yields

CP� D 1 � ˚
�
˚�1�1� A.1 �˚. O�1

p
I1//

� � �
p

I2
�

D ˚
�
˚�1�A.1 �˚. O�1

p
I1//

�C �
p

I2
�
:

(7.3)

It can be seen from this and formula (7.2) that for any given � the conditional power
is decreasing in p1 and increasing in O�1 because A.�/ is decreasing in its argument.
Hence, the conditional power increases with increasing evidence for the alternative
hypothesis, and it decreases with increasing evidence for the null hypothesis.

In practice, we will have to replace the information �2 by an interim estimate O�21
in the computation of the p-value p1 and the conditional power CP� . For sufficiently
large sample sizes this will provide a reasonable approximation to the unknown true
conditional power.

We finally note that formulas (7.1)–(7.3) hold in a much broader context for
suitable Ik. For instance, with unequal per group sample sizes njk at stage k and
treatment group j they are valid for

n1k n2k

.n1k C n2k/ �2

Another example is time to event data for which the formulas hold asymptotically.

7.1.2 Conditional Power with Fisher’s Product Test and Inverse
Normal Method

Formula (7.3) becomes more explicit for specific combination tests. For instance,
with Fisher’s product test we can insert A.p1/ D c=p1 where c is the critical value
for the second stage test, see Sects. 6.2.2 and 6.3.2. This yields

CP� D 1 �˚
 

˚�1
 

1 � c

1 �˚. O�1pI1/

!

� �
p

I2

!

:
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According to (6.11), for the inverse normal combination test we obtain

˚�1.1 � A.p1// D u1�c � w1˚�1.1 � p1/

w2
D u1�c � w1 O�1pI1

w2
;

and thus

CP� D 1 �˚
�u1�c � w1 O�1pI1

w2
� �

p
I2
�
:

Note that I1 D n1=.2�2/ and I2 D n2=.2�2/ depend on the actual sample sizes n1
and n2 whereas w1 and w2 are fixed numbers.

Figure 7.1 compares the conditional power for Fisher’s product test and the
inverse normal combination test at (one-sided) level ˛ D 0:05 in a two-stage design
with ˛0 D 0:5 and w1 D w2 D 1=

p
2. For Fisher’s combination test the full level

˛ is located in the second stage which yields ˛1 D 0:0233 (see Table 6.1). The
same ˛1 and ˛0 is used for the inverse normal combination test. With the use of the

Fig. 7.1 Comparison of the conditional power of two-stage designs according to Fisher’s product
test (solid line) and inverse normal combination method (dashed line) at one-sided level ˛ D 0:05

in a two-stage design with ˛0 D 0:5, ˛1 D 0:0233, and I1 D I2 . The conditional power is
computed for the parameter value �� for which a classical z-test with information I1 C I2 would
have power 90%
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bivariate standard normal cdf [equivalent to (6.8)] and a numerical search we obtain
u1�c D 1:779. The conditional power is computed for values of n1 D n2, � , and �
for which a classical z-test with total sample size n1 C n2 would have power 90%
(this is for the “shift” �

p
I2 D .1:645 C 1:282/=

p
2 D 2:069). The figure shows

that with identical first stage levels, Fisher’s product test has a larger conditional
power than the inverse normal test if the first stage p-value is large and a smaller
conditional power if the p-values are small. Note that this corresponds to the heavy
tailed property of Fisher’s combination test described earlier.

7.2 Futility Stopping Based on Conditional Power

If the conditional power is inadequately small, then one could stop the trial for
futility. This has been suggested by Halperin et al. (1982) and Lan et al. (1982) in
the context of group sequential trials (for a review of related methods, see Lachin
2005). Due to the monotonicity of the conditional power in p1, stopping the trial if
the conditional power is below a specific threshold cp0 is equivalent to stopping the
trial if p1 is above some level ˛0.

Formula (7.2) shows that the thresholds cp0 and ˛0 are related by the identities

cp0 D 1 � ˚
�
˚�1.1 � A.˛0//� �

p
I2
�

and

˛0 D A�1�˚.˚�1.cp0/ � �
p

I2/
�
:

From Fig. 7.1 explicit values can be obtained if the effect size is assumed to be
equal to its original estimate. For example, for the inverse normal method and the
design described in the last section, stopping for futility if p � 0:50 corresponds to
stopping the trial if the conditional power falls below 33 %, for Fisher’s combination
test the boundary is around 48 %. Especially the latter case might be considered
as problematic because a relatively large power dictates the stopping of the trial
without the rejection of the null hypothesis. A problematic issue here is that the
effect size is set equal to the originally assumed one. It is clear that this assumption
might be inappropriate and—for example—the conditional power should be con-
sidered for a range of plausible parameter values. This more complex consideration
might also be used to perform a sample size recalculation for the second stage of
the trial. We consider this and related issues in the following sections.
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7.3 Sample Size Modification Based on Conditional Power

An alternative to stopping the trial is to increase the conditional power by increasing
the number of observations during the forthcoming stages. Often a combination
of these strategies is appropriate where we stop the trial if an extreme outcome is
observed at the interim analysis (with rejection or acceptance of the null hypothesis)
like in group sequential designs, and otherwise recalculate the second stage sample
size to achieve a sufficiently large conditional power (see Proschan and Hunsberger
1995; Lan and Trost 1997; Cui et al. 1999; Lehmacher and Wassmer 1999; Chi and
Liu 1999; Posch and Bauer 2000; Denne 2001; Liu and Chi 2001; Shun et al. 2001;
Friede and Kieser 2001).

Mehta and Pocock (2011) proposed the promizing zone approach which means to
increase the sample size only for “promising” interim effects. They and Chen et al.
(2004) showed that one can still use a conventional analysis if a suitable rule based
on conditional power is applied. Jennison and Turnbull (2015) showed that this rule
is inefficient and can be improved, but the inverse normal method instead of the
conventional analysis needs to be used for the general control of the Type I error
rate, see also Emerson et al. (2011) and Glimm (2012). Interestingly, the optimum
rule is more symmetric and kind of inverse U shaped, with a maximum increase
in sample size around the midpoint of the continuation region. We will discuss the
issue of assessing overall design characteristics a bit more at the end of Sect. 7.4.

To illustrate how to choose the second stage sample size based on conditional
power, like in the previous section we assume that we test the one-sided null
hypothesis H0 W � � 0 for the parameter � and that the stage-wise p-values are
given by pk D 1�˚. O�k

p
Ik/ for the stage-wise estimates O�k � N.�; 1=Ik/, k D 1; 2.

Furthermore, we assume that we aim on a target conditional power, cp, at some
alternative � D �a > 0. Typical values for cp are 0:80 or 0:90. The conditional
power cp can then be achieved by the choice of the second stage information I2:
choose I2 such that the equation

CP�a D 1 � ˚
�
˚�1.1 � A.p1// � �a

p
I2
� D cp

is satisfied. This yields the formula

I2 D
�
˚�1.cp/C ˚�1.1 � A.p1//

�2

�2a
; (7.4)

and choosing I2 by formula (7.4) guarantees that H0 is rejected at the end of the
second stage with a probability of at least cp if � � �a.

Note that a sample size reassessment with formula (7.4) is reasonable only if the
anticipated conditional power cp is larger than the conditional error function A.p1/.
Hence, if we use the same target value cp for all ˛1 < p1 � ˛0, then we should have
cp � A.˛1/. Note also that (7.4) is just the well-known sample size formula of the
z-test with the overall significance level replaced by the conditional error A.p1/.
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Fig. 7.2 Second stage shift I2�2a with Fisher’s product test (solid line) and inverse normal
combination method (dashed line) at one-sided level ˛ D 0:05 for conditional power cp D 0:8 for
the designs as in Fig. 7.1

Figure 7.2 shows the squared shift I2�2a D �
˚�1.cp/ C ˚�1.1 � A.p1//

�2
for

the designs from Fig. 7.1. This quantity can easily be used to perform a sample size
calculation for the second stage based on conditional power at given parameter value
�a. One can see that the maximum sample size appears for the largest first stage p-
value with which the trial continues to the second stage, i.e., at p1 D ˛0, and that
the maximum is larger with the inverse normal method than with Fisher’s product
test. However, the inverse normal method provides smaller sample sizes for small
first stage p-values.

In the common situation where � D �2 � �1 for means �1 and �2 of normally
distributed responses of two balanced treatment groups with a common variance � ,
we have that I2 D n2=.2�2/ where n2 is per group second stage sample size. In this
case formula (7.4) leads to the following reassessment formula for n2:

n2 D 2�2
�
˚�1.cp/C˚�1.1 � A.p1//

�2

�2a
: (7.5)

In practice, the determination of the second stage sample size from (7.4) requires
the estimation of nuisance parameters. For example, in (7.5) we need to estimate
� . If the interim sample size is sufficiently large, we can estimate the nuisance
parameters from the interim data and thereby obtain a sample size with which
the target conditional power is achieved at least approximately. Alternatively, we
could use a one-sided confidence limit for the nuisance parameters such that the
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target conditional power is achieved with some pre-specified probability (Kieser
and Wassmer 1997). In general, however, this would lead to larger sample sizes.

7.4 On the Parameter Value Used in the Conditional Power
and Sample Size Calculation

An important question is which parameter value should be used in the conditional
power and sample size calculation. We will consider here three different possibilities
for the parameter estimate and the Bayesian concept of predictive power.

7.4.1 Using a Minimal Clinically Relevant Effect Size

Sometimes one can identify the smallest effect size �min that is considered clinically
relevant or worthwhile to be identified in the clinical trial. Such minimal effect size
is then used in the initial sample size calculation where we then aim to guarantee
that the unconditional power is above some target value (for example, 90 %) for all
� � �min.

An overall sample size calculation will in general not provide control of the
conditional power: at the interim analysis the conditional probability of rejecting
H0 given the interim data may well be below this target value, although, the
targeted power is achieved overall. This can be seen from Fig. 7.1 where the
conditional power function of the inverse normal test (slashed line) also represents
the conditional power of the usual z-test with unconditional power 90 %. The interim
analysis was assumed to be at 50 % of the total sample size.

The concept of a minimal clinically relevant alternative can also be applied at the
interim analysis in the conditional power and corresponding sample size calculation.
In this case we compute (7.2) and (7.4) with some minimal value �a D �min for �
and thereby assure that the conditional probability of rejection H0 at the end of the
second stage is at least cp whenever � � �min.

The minimal value �min can be determined at the time of the interim analysis
using the interim data and all other current information and expert knowledge
available so far. In some instances we may even use (7.4) with the initially pre-
specified effect size. This could be the case, for instance, if the data do not provide
(sufficient) evidence for a change of the a priori assumptions, but investigators aim
on a sufficiently high change to reject H0 after the interim analysis. As argued
above, this chance is best quantified by the conditional power and reaching a
specific conditional power will often require an increase in sample size, although,
the assumption on the effect size remains constant.
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The use of the pre-specified �min may also be appropriate if the interim analysis
is done for other reasons than reestimation of the sample size. Examples are the
verification of safety issues or the selection of treatment arms or subpopulations.
The latter examples require multiple testing and will be discussed later in Part III.

7.4.2 Using the Interim Estimate

A natural and often made suggestion is to use the interim estimate O�1 for �a in the
calculation of conditional power and second stage sample size. Since conditional
power is defined only for positive �a we should use O�C

1 D maxf O�1; 0g instead of
O�1. In practice, we need to modify sample size formula (7.4) when using �a D O�C

1

because otherwise we could obtain an infeasible large (or even infinite) sample size.
Too small second stage sample sizes may also be problematic. Hence, a reasonable
modification of (7.4) is

OI2 D max

(

I2;min;min

(

I2;max;

�
˚�1.cp/C˚�1.1 � A.p1//

�2

. O�C
1 /

2

))

; (7.6)

where I2;max and I2;min are minimum and maximum information numbers.
One can see from this formula that OI2 and hence the required second stage sample

size becomes large if I2;max is large and O�C
1 is close to 0. Since values of O�1 close to

0 are likely under the null hypothesis (or for � close to 0), one may then obtain large
expected sample sizes. This unfavorable property has been noted by Jennison and
Turnbull (2003) and Tsiatis and Mehta (2003). It has caused strong concerns against
adaptive sample size adjustments. In practice, we should therefore be careful in our
choice of I2;max.

Since (7.6) produces large sample sizes for large p1, too, large second stage
sample sizes may also be avoided by a suitable choice of ˛0. Another way to avoid
too large second sample sizes is to impose a lower bound �a;min for the effect size
used in the conditional power and sample size calculation. Lastly, a possibility
for a reduction of the excess sample size is to use a biased corrected estimate
instead of the maximum likelihood estimate in the sample size recalculation formula
(Coburger and Wassmer 2003). This is because a bias correction in tendency avoids
extreme and thus small values of O�C

1 , at least under reasonable assumptions.
Bauer and König (2006) discuss the probability distribution of the conditional

power at an interim analysis when using the interim estimate. Using this distribution,
a median unbiased estimate for the unknown true conditional power can be obtained.
However, the distribution is markedly skewed to the left more than to the right.
Therefore there is a tendency for an underestimation of the conditional power in the
mean. As a consequence we overestimate the required sample size in average. This
provides another explanation for the observed inefficiency of designs with adaptive
sample size adaptations. Using the initial effect size produces more stable sample
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sizes, however, also leads to a generally systematic miss estimation, because the
true effect size will rarely equal the initially assumed one. Hence, neither estimation
method seem to work perfectly.

7.4.3 Using the Bayesian Posterior Mean

Often some prior information is available which provides us with some initial effect
size estimate. Bayesian methods enable us to combine such priori information with
the interim data and can therefore be helpful for mid-trial sample size recalculations.
More specifically, specify a normal prior distribution � for � and use the posteriori
mean for the conditional power and sample size calculation. Using the posterior
mean then provides a compromise between the two previous approaches of using
the initial and interim estimate.

If �0 is the mean and 1=I0 the variance of the normal prior density �0.�/, then
the posterior mean is the weighted sum (for example, Berger 1985)

O��0 D �0
I0

I0 C I1
C O�1 I1

I0 C I1
: (7.7)

Clearly, the smaller the variance of �0.�/ the larger is I0 and the stronger is O��0
influenced by the prior mean �0. The prior mean could be the initial efficacy estimate
and I0 the information of � in the pilot data, often the sample size, which lead to
the estimate �0. When there are differences between the pilot and study population
(which is often the case), a smaller I0 and also a smaller �0 could be more reasonable.

Using the posterior mean we obtain the conditional power estimate

CP O��0 D 1 �˚�˚�1.1 � A.p1//� O��0
p

I2
�

D 1 �˚
�
˚�1.1 � A.p1//� �0I0 C O�1I1

I0 C I1

p
I2
�

(7.8)

and the sample size recalculation formula

OI2 D max

(

I2;min;min

(

I2;max;

�
˚�1.cp/C˚�1.1 � A.p1//

�2

. O�C
�0
/2

))

;

where O�C
�0

D maxf O��0; 0g.
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7.4.4 Bayesian Predictive Power

In the latter section we used the Bayesian posterior mean to account for prior
knowledge in the conditional power calculation. This approach does not utilize
the variance of the posterior distribution, although, the variance reflects our current
uncertainty with regard to the treatment effect. The posterior variance can be utilized
by adopting the Bayesian point of view more consequently and computing the
Bayesian predictive power (Spiegelhalter et al. 1986; Dmitrienko and Wang 2006;
Wang 2007; Lan et al. 2009). For a review of this approach, see also Dallow and
Fina (2011).

To detail the concept of predictive power assume again a prior distribution with
density �0.�/. Given the interim data the density of the posterior distribution for �
is

�1.� j O�1/ D �0.�/ �.. O�1 � �/pI1/
R1

�1 �0.� 0/�.. O�1 � � 0/
p

I1/ d� 0 ;

where I1 is the first stage information, i.e., the reciprocal of the standard deviation
of the estimate O�1. The predictive power is defined as the average of the conditional
power with respect to the posterior distribution for � . It is given by

PP�0 . O�1/ D
Z 1

�1
CP� . O�1/ �1.� j O�1/ d� :

Plugging in

CP� . O�1/ D
Z 1

�1
1.z2�˚�1f1�A.p1// �.z2 � �

p
I2/ dz2 ;

we obtain the double integral

PP�0. O�1/ D
Z 1

�1

Z 1

�1
1fz2�˚�1.1�A.p1//g �.z2 � �

p
I2/ �1.� j O�1/ dz2 d�

D
Z 1

�1
1fz2�˚�1.1�A.p1//g

�Z 1

�1
�.z2 � �

p
I2/ �1.� j O�1/ d�

�

dz2

D
Z 1

˚�1.1�A.p1//
f .z2j O�1/ dz2 ;

where

f .z2j O�1/ D
Z 1

�1
�.z2 � �

p
I2/ �1.� j O�1/ d�
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is the density of the second stage z-score z2 D O�2pI2 given that the parameter � is
a random variable with density �1.� j O�1/.

The density f .z2j O�1/ has been called predictive distribution (Berger 1985). It
equals the convolution between the standard normal density and the posterior
density of �

p
I2 because z2 is the sum of �

p
I2 and the standard normally distributed

random variable z2 � �
p

I2. Using a normal prior with mean �0 and variance 1=I0
the posterior distribution �1.� j O�/ of � is normal with mean O��0 defined in (7.7) and
variance .I0 C I1/�1 (Berger 1985). Therefore, �

p
I2 is normal with mean O��0

p
I2

and variance I2=.I0 C I1/ and f .z2j O�1/ is the normal density with mean O��0
p

I2 and
variance 1 C I2=.I0 C I1/ D .I0 C I1 C I2/=.I0 C I1/. Hence, the predictive power
becomes

PP�0. O�1/ D 1 � ˚

 s
I0 C I1

I0 C I1 C I2

�
˚�1.1 � A.p1// � O��0

p
I2
�
!

:

It is interesting to note that the predictive power is different to the conditional
power (7.8) with the posterior mean O��0 plugged in for �a. The two expressions
differ by the factor

p
.I0 C I1/=.I0 C I1 C I2/ in the argument of the function 1 �

˚.�/ that is not present in the conditional power and is always smaller than 1. As
a consequence the argument is shrinked to 0 and thereby the predictive power is
always closer to 0:5 than the conditional power.

Setting I0 D 0 we obtain the predictive power from the (improper) flat prior,
namely

PP�0. O�1/ D 1 �˚
 s

I1
I1 C I2

�
˚�1.1 � A.p1//� O�1

p
I2
�
!

:

A comparison to the conditional power with plug-in estimate �a D O�1 shows that
the predictive power is always closer to 0.5 than this type of conditional power.
The arguments are the same as in previously discussed general case. Note that the
shrinkage is now stronger since .I0 C I1/=.I0 C I1 C I2/ decreases for decreasing
I0. Hence, using the full Bayesian framework results in a shrinkage towards 0.5 (see
Spiegelhalter et al. 2004; Proschan et al. 2006).

The predictive power can be used for the reassessment of the second stage sample
size n2, or more general the information I2. It appears natural to reassess I2 such that
PP�0. O�1/ reaches some target value pp, for example, pp D 0:8. One can expect this
reassessment method to be more robust with regard to the alternatives.

Sample size reassessment with the predictive power is more complex than with
conditional power since PP�0. O�1/ is not always monotone in I2 and it is bounded by
some number below 1. This can be best seen from the expression

PP�0. O�1/ D ˚
�p

1 � v2 ˚
�1.A.p1//C p

v2 O��0
p

I0 C I1
�
; (7.9)
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where v2 D I2=.I0 C I1 C I2/ is increasing in I2. If ˚�1.A.p1// > 0 and O��0 > 0,
then we obtain from Cauchy’s inequality that

max
I2�0

PP�0. O�1/ D ˚
�q�

˚�1.A.p1//
�2 C � O��0

�2
.I0 C I1/

�
;

and the maximum is attained for v2 equal to

v2;max D
� O��0

�2
.I0 C I1/

� O��0
�2
.I0 C I1/C �

˚�1.A.p1//
�2 :

In all other cases we have

max
I2�0

PP�0. O�1/ D ˚
�

maxf˚�1.A.p1//; O��0
p

I0 C I1 g � :

If maxI2�0 PP�0. O�1/ < pp, then there is no possibility to reach the target
predictive power and stopping for futility is most reasonable. This is, for example,
the case when maxf˚�1.A.p1//; O��0

p
I0 C I1 g < 0 and pp > 0:5. Therefore, the

case ˚�1.A.p1// < 0 and O��0 < 0 provides no solution for v2.
If ˚�1.A.p1// > 0, O��0 > 0, and (7.9) is larger than pp for v2;max, then we

obtain the target I2 by searching for v2 2 .0; v2;max� such that PP�0. O�1/ equals pp.
Since (7.9) is increasing on Œ0; v2;max� there is only one such v2.

If maxI2�0 PP�0. O�1/ > pp and O��0
p

I0 C I1 > 0 � ˚�1.A.p1//, then PP�0 . O�1/
is increasing in I2 and the maximum is attained for v2 D 1. Hence, we also find a
unique I2 > 0 for which PP�0. O�1/ D pp.

If O��0
p

I0 C I1 � 0 < ˚�1.A.p1//, then the maximum is attained for I2 D 0 and
PP�0. O�1/ is decreasing in I2. If in addition maxI2�0 PP�0. O�1/ > pp, then we will find
some I2 > 0 for which the target predictive power is attained. However, this I2 may
be too small for practical purposes.

Fortunately, O��0
p

I0 C I1 � 0 < ˚�1.A.p1// is a rare event that in most exam-
ples is even impossible. For instance, if I0 D 0 and A.p1/ is the conditional error
function of the inverse normal method with weights w1;w2, then O��0

p
I0 C I1 D

O�1pI1 D z1 � 0 implies˚�1.A.p1// D z1.w1=w2/�u1�˛2=w2 � 0 for all ˛2 � 0:5.
Moreover, it appears reasonable to stop the trial for futility if O��0 � 0 because O��0 is
the posteriori mean of the treatment effect which represents our “expectation” based
on our prior knowledge and the interim data.

The reason for the non-monotonicity and boundedness of PP�0. O�1/ in I2 is
that not only the posterior mean but also the posterior variance of the non-
centrality parameter �

p
I2 increases with increasing I2. Non-monotonicity occurs if

˚�1.A.p1// > 0 and O��0 > 0. Note that ˚�1.A.p1// > 0 implies that A.p1/ > 0:5

which corresponds to a large observed effect in the first stage. This usually requires
only small additional information to reach significance at the second stage. On the
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Fig. 7.3 Predictive power for flat prior, i.e., v2 D I2=.I1 C I2/ and inverse normal combination
test at one-sided level ˛ D 0:05 and no futility stop. The four lines refer to different observations
at interim with I1 D 25

other hand, v2;max is typically almost 1 such that the non-monotonicity does not
cause problems in practical situations.

In Fig. 7.3, we illustrate the predictive power calculation for a flat prior, i.e.,
I0 D 0. The graph shows PP�0. O�1/ in dependence of v2 D I2=.I1 C I2/ for different
effect sizes O�1 at interim with I1 D 25. The calculation of A.p1/ assumes the inverse
normal combination test with equal weights w1 D w2. A one-sided significance
level ˛ D 0:05 and no early stopping rules are assumed, i.e., u1�c D 1:645.

The graph shows that a predictive power of, say, 80% can be achieved for all
situations except for the one with the smallest effect and p1 D 0:3632. For p1 D
0:1587, however, this requires a huge sample size increase because v2 is near to 1.
The situation with p1 D 0:0401 achieves predictive power around 80% for v2 D
0:5, i.e., I1 D I2. Note that only the situation with p1 D 0:0062 yields˚�1.A.p1// >
0 and indeed a local maximum is found at v2 D 0:995. This situation, however,
actually requires a sample size decrease for reaching 80% predictive power such
that the local maximum is of no concern. We finally note that this is a bit different
in the non-adaptive case, i.e., in the situation where the usual overall test statistic is
used and the weights are not fixed. Here, non-monotonicity is likely to happen for
small (and reasonable) v2 such that this might cause real problems. Dallow and Fina
(2011) illustrate this and warn against the misuse of predictive power.
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7.4.5 Discussion

We believe that conditional power is a useful tool for decision making at the interim
analysis. The effect size used for the conditional power calculation, however, should
not always be considered a realistic estimate of the true effect size. It should rather
be triggered by the question of which effect sizes are considered worth the future
efforts of rejecting the null hypothesis at the end of the trial. Such worthy effect
sizes may be the same as at the beginning of the trial but may also change due to
new evidence on clinical relevance, safety, and cost from in and outside the trial.

A reasonable alternative to computing a single conditional power is to draw
a graph of the conditional power in dependency of the effect size parameter
and discuss the trial perspective based on this graph and the current opinion
on clinical relevance, benefits, and costs. Such a graph is comparable to the
operating characteristics of a significance test but is with conditional (rather than
unconditional) rejection probabilities. Hence, we call it the conditional operating
characteristics.

Adding to the graph of the conditional operating characteristics a plot of
the interim data’s likelihood function, i.e., of the density of the interim data in
dependence of the effect parameter, allows for a judgment of which effect sizes
�a appear reasonable (and which unreasonable) for the given interim data. This is
illustrated in Fig. 7.4 for the inverse normal design used for Fig. 7.1. The likelihood

Fig. 7.4 Conditional power (solid line) and likelihood function (dashed line) for the inverse
normal combination test design as in Fig. 7.1 (one-sided level ˛ D 0:05, ˛0 D 0:5, and
u1�c D 1:779). O�1 D 0:3 is the interim observation at I1 D 20, I1 D I2 is assumed for the
conditional power calculation
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function is arbitrarily scaled to have its maximum value equal to 1 which is achieved
for � D O�1 D 0:3. The conditional power for � D 0:3 is 56:6% which is near to
the predictive power with flat prior of 54:7% (note the small shrinkage to 50%).
The plot shows, however, that it is not perfectly clear to increase the sample size
because conditional power of 80%, say, is achieved for parameter values with quite
high likelihood.

We already noted that the process of the data-driven sample size recalculation
was criticized due to the inefficiency of the resulting adaptive design as compared
to a conventional group sequential design (Jennison and Turnbull 2003; Tsiatis and
Mehta 2003). The use of conditional power was also criticized elsewhere (Bartroff
and Lai 2008; Jennison and Turnbull 2006, 2015; Levin et al. 2013) yielding
different sample size reestimation rules or even the rejection of data-driven sample
size adjustments in general. The crucial point is the evaluation of overall design
characteristics. Indeed, one might often find a classical group sequential designs
that beats an adaptive design in terms of expected sample at given overall power
curve and maximum sample size.

In response to this, first of all, we think that the evaluation of unconditional
design characteristics like overall power and expected sample size remains impor-
tant for adaptive designs. Particularly, in many cases extensive simulations are
needed for evaluating these quantities because for many practical sample size
reestimation rules no analytical formulae are available. Generally, if only a sample
size increase is foreseen, there is an increase in overall power but this comes with
the price of an increased overall sample size. In an adaptive design the different
choices of recalculation rules (including limits for the maximum sample size) need
to be rigorously evaluated and compared.

It is important to understand, however, that the actually selected sample size
needs not to adhere to a pre-specified rule when using the combination testing or the
CRP principle. This kind of flexibility can be regarded as an advantage in principle,
too, not only because there might be unexpected facts arising at interim stages, and
the adaptive design methodology allows for an adequate reaction on it. So the trial
might start with a small sample size and there is the possibility to increase the
sample size if at an interim stage it turns out that the originally planned sample
size would yield an underpowered trial. The assessment of the conditional power
can in this case be regarded as some kind of “updated” overall power that can be
calculated under a range of effect size, and interim information on the effect size is
summarized in the likelihood function. Particularly, the inverse normal combination
test has the advantage that, if no adaptations were made and if the weights are chosen
according to the planned sample sizes, the same statistic is used as if a common
group sequential test was performed.

We even think that a sample size decrease might be reasonable, as shown in the
following case study.
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7.5 A Case Study

The following example that was also reported in Bauer et al. (2016) illustrates
the implementation of an adaptive group sequential design with sample size
reestimation in a Phase III clinical trial MUSEC (MUltiple Sclerosis and Extract
of Cannabis, Trial Registration Number NCT00552604; for details see Zajicek
et al. 2012) that investigated a standardized oral cannabis extract (CE) for the
symptomatic relief of muscle stiffness and pain in adult patients with stable multiple
sclerosis (MS) and ongoing troublesome muscle stiffness. The primary outcome
measure was a 11 point category rating scale (CRS) measuring patient reported
change in muscle stiffness from baseline to 12 weeks of treatment.

The pre-planned sample size calculations were based on the observed proportion
of subjects with relief from muscle stiffness (0–3 categories on the CRS) in the
CE and placebo arms in a previously conducted study on cannabinoids in MS: 0.42
and 0.27, respectively. A Fisher exact test for comparing such two proportions with
5 % significance level and power 80 % requires 170 evaluable subjects per arm.
Adjusting for a dropout rate of 15 %, the pre-planned total sample size was 400
subjects.

An unblinded interim analysis was planned after the first 200 subjects had
completed the 12 weeks treatment. An early stopping for superiority using the
O’Brien and Fleming boundary was considered as well as an unblinded sample size
reestimation procedure based on conditional power considerations for the second
stage. The adjustment for these adaptations was implemented using the inverse
normal p-value combination method with equal weights. At the time of the interim
analysis, 101 subjects randomized to CE arm and 97 subjects to placebo had finished
their 12 weeks treatment. The numbers of subjects with relief from muscle stiffness
in the CE and placebo arms were 27 and 12, respectively. The first stage one-
sided p-value was 0.0055. Early rejection was almost reached considering the first
stage adjusted significance level of the O’Brien-Fleming design being 0.0026. At
the time of the interim analysis 250 subjects had already been randomized and
the conditional power calculations (using the pre-planned or the observed effect
as true effect) for a reduced total of 300 subjects still achieved values above 90 %.
Therefore, the iDMC made the recommendation to reduce the patient number from
400 to 300. Note that by sticking to the original plan the analogous conditional
power calculations revealed values above 97 %, hence also very small (irrelevant)
observed effect differences in a large second stage would have caused a rejection at
the final statistical analysis.

The study continued enrolling new subjects and the final analysis was conducted
when 143 subjects in the CE and 134 in the placebo arm completed their treatment.
This was slightly below the planned target number. Overall, the rate of relief from
muscle stiffness after 12 weeks was almost twice as high with CE than with placebo,
0.294 vs 0.157, the stage 2 rates were 0.357 vs. 0.243. This yielded an inverse
normal test statistic of 2.573 exceeding the critical boundary 1.977 of the final
analysis. Hence, the difference was statistically significant.
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There was an increase in the control rate from the first to the second stage
whereas the effect size slightly decreased from stage 1 to stage 2. Due to the small
patient number in stage 2 this was considered as due to chance, a test for difference
between the stages was not significant for both treatment groups. Also, it could
be at least partly be explained by more patients with severe disease in stage 1.
Nevertheless, this kind of treatment-stage interactions might be problematic since it
indicates a possible time trend or even a bias introduced by the experimenter. It is
not a specific problem of confirmatory adaptive designs but appears to happen when
performing interim analysis.

An issue arises from decreasing rather than increasing the sample size. From the
guidelines and current practice, a sample size increase seems to be appropriate, a
decrease is usually discouraged. However, if early rejection was considered a valid
option in the first place, adding additional data in a second stage should allow both
options—an increase, but also a decrease of the planned total sample size. But we
understand that statisticians must be rather brave to reduce the sample size because
in case that a rejection cannot be reached in the final analysis she or he could be
blamed for having reduced the sample size.

The study shows that a decrease in sample size might be a reasonable option.
The decrease was additionally justified by the fact that safety was not of a major
concern, so that there was no demand for a larger safety sample. From a company’s
perspective, the smaller necessary patient cohort seems to be attractive mainly due
to the reduction in costs and time. Note also that this might be regarded as an
alternative to adaptively adding interim analyses or pre-planning group sequential
trials with more stages from the beginning. In these cases, a similar reduction in
patients might have been achieved, however, with the cost of doing more interim
stages. We also note that the conditional error approach allows to add an additional
interim look and so it would have been possible to stick to the original sample size
400, but to add an additional look at 300 patients. However, this was not foreseen in
the study protocol and regulators required to pre-specify the types of adaptation to
be performed.



Chapter 8
Estimation and p-Values for Two-Stage Adaptive
Designs

With unblinded sample size adaptations the usual estimate such as the overall
treatment difference can be biased and the usual confidence intervals may not
have correct coverage probabilities. Thus, when providing naïve (unadjusted) point
estimates and/or confidence intervals in journals or reports, one must be aware of the
poor behavior of these quantities. In adaptive designs, this is even more problematic
because, for example, the coverage probability of a fixed sample confidence interval
can decrease dramatically, like the Type I error rate increases as described in
Sect. 6.3.4. In this chapter we discuss the construction of valid confidence intervals
that have correct coverage probabilities. We will also discuss point estimates for
adaptive designs that account for potential estimation bias. Specifically, we start by
showing how to construct overall p-values for adaptive designs. In a sense, this is
the generalization of the approaches discussed in Chap. 4 for the adaptive case. The
focus of this chapter is on adaptive designs with a single interim analysis. This can
be easily extended for the multi-stage case.

8.1 Overall p-Values for Adaptive Two-Stage Designs

It has become common standard to report an overall p-value at the end of a clinical
trial. A p-value provides a quantitative measure of how plausible the null hypothesis
is for the given trial data. The smaller the p-value the less plausible the null
hypothesis. The p-value is usually defined as the largest significance level under
which the null hypothesis must be retained. Hence, a p-value smaller than or equal
to the nominal level ˛ implies that we can reject the null hypothesis at level ˛.
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A p-value larger than ˛ implies that we must retain H0. If the p-value is only
slightly larger than ˛ (say 0:0255 where ˛ D 0:025), then the data still provide
some evidence against the null hypothesis, although, the evidence is not compelling
enough to formally reject H0. Under specific circumstances such evidence may be
sufficient to confirm efficacy of a new treatment. Hence, reporting p-values besides
the decision on H0 can be of high value.

The computation of a p-value requires the definition of a significance test for each
significance level 0 � � � 1. In a fixed sample size design such significance tests are
most naturally defined via the sufficient test statistic T and a family of critical values
u� such that fT � u�g provides the critical region of a level � test. As we have seen in
Chap. 4 there is no similarly natural family of hypothesis tests for group sequential
designs. The reason is that the sufficient statistic in a group sequential design is
two-dimensional, namely involves the data-dependent sample size and the overall
z-score. Consequently, there exists more than one single construction method for
p-values. We have discussed, among others, two main suggestions, namely p-values
based on the stage-wise ordering and the repeated p-values. Both suggestions have
merits and drawbacks. As we will see in this section both concepts can be extended
to adaptive designs.

8.1.1 Stage-Wise Ordering and Related p-Values

In Sect. 4.1 we have introduced the stage-wise ordering for group sequential designs.
With this ordering, rejection of H0 at an early interim analysis is considered to
provide more evidence against H0 than rejection or acceptance of H0 at a later stage.
A sample point with acceptance of H0 at an early stage is considered to provide less
evidence against H0 than a sample point where the trial stops at a later stage. Within
stages, sample points are ordered according to the overall sufficient test statistic.

Stage-Wise Ordering for Two-Stage Combination Tests

We can introduce a similar ordering on the outcome space of a two-stage combi-
nation test. Like in Sect. 6.2.1 we denote by ˛1 and ˛0 the first stage rejection and
acceptance levels, by C. p1; p2/ the combination function and by c the critical value
for C.p1; p2/. Recall that p1 and p2 are the first and second stage p-values, and that
the combination test rejects H0 if either p1 � ˛1 at stage 1, or ˛1 < p1 � ˛0 and
C.p1; p2/ � c at stage 2. In all other cases, i.e., when p1 > ˛0, or ˛1 < p1 � ˛0
and C.p1; p2/ > c, the test retains H0. Recall further that the combination test stops
at the interim analysis when either p1 � ˛1 or p1 > ˛0, otherwise, it continues
with the second stage; see Fig. 6.1. The level ˛ of this combination test is given by
formula (6.1) in Sect. 6.2.1.
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The stage-wise ordering would order two different trial outcomes x and x0
according to the first stage p-values p1; p0

1 whenever both outcomes imply that the
trial stops at the interim analysis. If both outcomes imply that the trial continues
to the second stage, then the trial outcomes x and x0 are ordered according to the
combination functions C.p1; p2/ and C.p0

1; p
0
2/. In both cases, lower values provide

more evidence against H0 than larger values. If the trial continues to the second stage
for the sample point x and stops at the interim analysis for the other sample point x0,
then the ordering depends on p0

1: if p0
1 � ˛1, then x0 is considered to provide more

evidence against H0 than x, if p0
1 > ˛0, then x0 is thought of providing less evidence

against H0 than x.
The stage-wise ordering can alternatively be summarized as follows: for two

sample points x and x0, the second, x0, provides more evidence against H0 than the
first, x, by short x0 
 x, if either of the following three cases applies:

1. either p1 � ˛1 or p1 > ˛0, and p0
1 � p1 ,

2. ˛1 < p1 � ˛0 and p0
1 � ˛1 ,

3. ˛1 < p1 � ˛0 and ˛1 < p0
1 � ˛0 and C.p0

1; p
0
2/ � C.p1; p2/ .

In all other cases x  x0. Note that cases 1. to 3. are exclusive.

Overall Exact p-Value Based on the Stage-Wise Ordering

The stage-wise ordering can be used to define an overall p-value, denoted by
Q.p1; p2/, that can be reported at the end of the trial. This p-value is defined as
the probability under H0 to observe a similar or more extreme outcome x0 than the
outcome x observed in our trial. This probability can be computed by consideration
of the cases 1. to 3. and computation of the probability with respect to the outcome x0
while keeping x fix. Under the assumption of independent and uniformly distributed
p-values p0

1 and p0
2 this yields

Q.p1; p2/ D
8
<

:

p1 if p1 � ˛1 or p1 > ˛0

˛1 C R ˛0
˛1

R 1
0

1fC.x;y/�C.p1;p2/gdy dx if ˛1 < p1 � ˛0 .
(8.1)

In more detail, the first line follows from case 1. and the fact that under the uniform
distribution the probability of p0

1 � p1 is at most p1. The second line follows from
adding the probabilities of cases 2. and 3. and assuming independent and uniformly
distributed p-values.

Like in a group sequential design, the overall p-value equals the first stage
p-value p1 whenever the trial stops at the interim analysis. Hence, at the first
stage the overall p-value is independent from the combination function. If the trial
continues to the second stage, then expression (8.1) equals the Type I error rate
of a combination test with interim levels ˛1, ˛0, combination function C.x; y/ and
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second stage critical value equal to C.p1; p2/. As a consequence, the p-value (8.1)
could also be determined by the nested family of adaptive significance tests that
have rejection region R� D fp1 � �g for � � ˛1 and � > ˛0, and rejection region
R� D fp1 � ˛1g [ f˛1 < p1 � ˛0; C.p1; p2/ � c�g for ˛1 < � � ˛0 where c�
solves level condition (6.1) with ˛ replaced by �.

It is shown in Brannath et al. (2002) that under the p-clud assumption (6.2)
the p-value (8.1) is in distribution larger or equal to the uniform distribution, i.e.,
PH0 .Q.p1; p2/ � �/ � � for all 0 � � � 1. Hence, q is a valid p-value of the
adaptive combination test. Moreover, if the p-values are independent and follow
exactly the uniform distribution, i.e., are not strictly conservative, then also q follows
the uniform distribution exactly, i.e., PH0 .q � �/ D � for all �.

Overall Exact p-Value for Fisher’s Product Test

With Fisher’s product combination function, C.p1; p2/ D p1p2, formula (8.1) can be
made explicit and becomes

Q.p1; p2/ D

8
ˆ̂
<

ˆ̂
:

p1 p1 � ˛1 or p1 > ˛0

˛1 C p1p2
�

log.˛0/� log.˛1/
�

˛1 < p1 � ˛0 and p1p2 � ˛1

p1p2 C p1p2
�

log.˛0/� log.p1p2/
�
˛1 < p1 � ˛0 and p1p2 > ˛1

(8.2)

(see Brannath et al. 2002). Formula (8.2) can be verified in the same way as we have
verified formula (6.4) in Sect. 6.2.2, and from the identity

Z ˛0

˛1

Z 1

0

1fxy�p1p2gdy dx D p1p2 � ˛1 C p1p2
�

log.˛0/� log.p1p2/
�

for p1p2 > ˛1. The second line in (8.2) follows from the non-stochastic curtailment
property of Fisher’s product test, namely the fact that

f.x; y/ 2 Œ0; 1�2 W x � p1p2g � f.x; y/ 2 Œ0; 1�2 W xy � p1p2g :

Figure 8.1 shows a plot of the p-value function for Fisher’s combination test,
for illustrative reasons with ˛1 D 0:2 and ˛0 D 0:6. As already mentioned the
p-value equals p1 if the trial stops at the first stage. For ˛1 < p1 � ˛0 and 0 �
p2 � 1 we have ˛1 < Q.p1; p2/ � ˛0 and Q.p1; 0/ D ˛1, and we have Q.˛0; 1/ D
˛0. This means that when proceeding to the second stage the overall p-value can
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Fig. 8.1 Overall exact p-value for Fisher’ product test with ˛1 D 0:2 and ˛0 D 0:6

never fall below ˛1 and is never larger than ˛0. This property (which holds for
other combination functions as well) may be questioned if at the second stage a
considerably larger sample size is used. However, it is a favorable property that the
p-value equals p1 in case of stopping at the first stage and the previous unfavorable
property mentioned first is a consequence.

Overall Exact p-Value for Inverse Normal Method

If we use the inverse normal combination function (6.7) or z-score combination
method (see Sect. 6.2) with weights w1 and w2, then the p-value (8.1) equals
the stage-wise ordering p-value of a group sequential test discussed in Sect. 4.1,
with interim information fraction t1 D w21 and sequential z-scores z1 and Qz2 D
w1 z1 C w2 z2 where z1 and z2 are the stage-wise z-scores. In particular, if the
weights are according to the pre-planned information fraction t1 (w1 D p

t1 and
w2 D p

1 � t1) and the actual information fraction is as pre-planned, then the overall
exact p-value (8.1) coincides with the stage-wise ordering p-value of the pre-planned
group sequential design (see Sect. 4.1.2).

8.1.2 Repeated p-Values for Two-Stage Combination Tests

Repeated p-values for group sequential tests were introduced in Sect. 4.1.2. Such p-
values are not directly defined via a sample space ordering. Instead they are defined
via a family of sequential boundaries for different significance levels 0 � � � 1.
Of course, given only the boundaries at the fixed level ˛ such family is not uniquely
defined.
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If the group sequential boundaries at level ˛ are of a common type, like Wang
and Tsiatis boundaries for a specific �, or the boundaries are determined from
a specific family of spending functions (for example, O’Brien and Fleming type
spending functions), then it appears natural to use group sequential boundaries at
different significance levels � of the same type; see Sect. 4.1 for details. Due to the
close relationship to group sequential tests, this approach can directly be extended to
the inverse normal or weighted z-score combination method. We will first illustrate
such a type of p-value with an example. Afterwards, we discuss how to extend the
repeated p-value method for other combination tests.

Repeated p-Value for Inverse Normal Combination Tests

To illustrate the above mentioned construction method for repeated p-values of an
inverse normal combination test, assume that we use the inverse normal combination
function C.p1; p2/ D 1 � ˚fp0:5˚�1.1 � p1/ C p

0:5˚�1.1 � p2/g, without
a binding futility rule (˛0 D 1), and with first and second stage rejection levels
according to the Wang and Tsiatis family

˛1 D 1 �˚.cWT .˛;�// and c D 1 �˚.cWT.˛;�/ � 2��0:5/ ;

where � is fixed and cWT.˛;�/ is such that the corresponding group sequential
test has Type I error rate ˛. Recall, that these boundaries will meet the level
condition (6.1) for the combination test. Using the same type of rejection boundaries
(and combination function) for all significance levels 0 � � � 1, we let

˛1;� D 1 �˚.cWT .�;�// and c� D 1 �˚.cWT.�;�/ � 2��0:5/ ;

where cWT .�;�/ is such that level condition (6.1) is satisfied with ˛ replaced by
�. Obviously, cWT.�;�/ is decreasing in �. Hence, the supremum of significance
levels for which H0 is retained, is obtained by solving in � the equation p1 D 1 �
˚.cWT.�;�// if the trial stops at the first stage, and the equation C.p1; p2/ D 1 �
˚.cWT.�;�/ �2��0:5/ if the trial continues to the second stage (see Sect. 4.1.2 where
a direct calculation of the overall repeated p-value is described).

Construction of Repeated p-Values for General Combination Tests

To construct a repeated p-value for a combination test with combination function
C.x; y/, we need a family of first stage rejection levels ˛1;� < �, � 2 Œ0; 1�, a family
of first stage acceptance levels ˛0;� > �, � 2 Œ0; 1�, and a family of second stage
critical values c� such that

˛1;� C
Z ˛0;�

˛1;�

1fC.x;y/�c�g dy dx D � : (8.3)
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Given the levels ˛1;� , ˛0;� , and c� , the repeated p-value is defined as the largest � for
which the trial outcome is known to be outside the rejection region

R� D f p1 � ˛1;�g [ fp1 � ˛0;� ;C.p1; p2/ � c�g : (8.4)

If the trial stops at the first stage, then the repeated p-value can be computed as the
supremum of those � where p1 > ˛1;� . We denote this first stage repeated p-value
by q1. If ˛1;� is strictly increasing and continuous in �, then q1 is the unique root
of p1 � ˛1;� which can easily be computed by numeric root finding. If ˛1;� fails
to be increasing in �, then q1 must be determined by a grid search which is more
elaborative and requires continuity of ˛1;� in �.

If the trial continues to the second stage, then the p-value is determined as the
supremum of � where p1 > ˛0;� or C.p1; p2/ > c� . If ˛0;� and c� are both strictly
increasing and continuous in �, then we can compute the unique root �0 of p1 �˛0;�
and the unique root �2 of C.p1; p2/ � c� and define the p-value as the maximum
q2 D maxf�0; �2g. If ˛0;� or c� fail to be increasing (but both are continuous in �),
then �0 and/or �2 can be determined by a grid search.

By continuity of the left side of (8.3) in ˛1;� , ˛0;� , and c� , all three boundaries will
be continuous in � whenever two of them are continuous. However, monotonicity
in � is not implied in the same way and may be difficult to achieve for all three
quantities simultaneously. That such choice can be possible has been seen in the
example for the inverse normal method and will be illustrated later for Fisher’s
product test.

Note that if �0 > �2, then the second stage p-value q2 equals �0 which depends
only on the first stage p-value p1. This may be viewed as a disadvantage of repeated
p-values because the second stage data are not utilized in this case. However, the
larger ˛0;� , � 2 Œ0; 1�, the less frequent we will have �0 > �2, and q2 will equal
�2 (which depends on both stage-wise p-values) in most cases. Moreover, without a
binding futility rule (˛0 D 1) we can choose ˛0;� D 1 for all 0 � � � 1, and then
the second stage repeated p-value always equals �2.

Monitoring Property of Repeated p-Values

A remarkable feature of the repeated p-value is that it provides p-values for both
stages, and that both p-values, q1 and q2, can be reported independently from the
stopping rule. More precisely, we can compute (and report) q1 at the interim analysis
and then freely decide whether we want to stop or continue the trial. If we decide
to stop, then we report q1 as final p-value, if we decide to continue, then we can
compute and report q2 at the end of the second stage as final p-value. The decision of
whether to stop or continue can be made independently of any pre-specified stopping
rule, and it can be based on all data or any other information from in and outside
the trial. In summary, if S 2 f1; 2g denotes the stage at which the trial was stopped,
then qS is a valid p-value independently of how and for which reasons the trial was
terminated at stage S.
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The above flexibility with regard to the stopping rule follows from the fact that
by (8.3) the critical regions R� defined in (8.4) have Type I error rate less than or
equal to � also in the (unrealistic) case where we always continue to the second
stage and reject H0 at level � whenever the first or second stage data fall into R� .
Obviously, always going to stage 2 is the “stopping rule” which maximizes the
Type I error rate for all � 2 Œ0; 1� simultaneously. Hence, under this and any other
stopping rule S 2 f1; 2g, the H0-probability that qS > � is at most �.

By the same arguments it can be easily shown that reporting the minimum
minfq1; q2g instead of q2 at stage 2, also gives a valid p-value. However, in practice,
one would not like to let q1 overrule q2, since the latter is based on more data than
the first. Hence, one would always report q2 at stage 2, even if q1 is smaller.

The price for the flexibility with regard to the stopping rule is that the p-value qS

and even the less conservative p-value minfq1; q2g is strictly conservative whenever
we do not follow the maximal rule of always going to stage 2. This is the case,
in particular, if we follow the pre-specified stopping rule S D 1 C 1f˛1<p1�˛0g. Its
strict conservatism is often viewed as a disadvantage of repeated p-values. The p-
value based on the stage-wise ordering (see Sect. 8.1.1) does not have this property
and is exact under the pre-specified stopping rule. However, the latter p-value does
not allow us to deviate from the pre-specified stopping rule and does not have the
monitoring property. One can show (see, for example, Brannath et al. 2003) that
the conservatism of the repeated p-value cannot be removed without restrictions on
the stopping rule. Hence the conservatism of the repeated confidence interval is an
inevitable price that has to be paid for the flexibility with regard to the stopping rule.

Fisher’s Product Test

Repeated p-values for Fisher’s product test have not yet been considered in full
generality. As a consequence, this section will contain some new suggestions. The
question is how to choose ˛1;� , ˛0;� , and c� for � 6D ˛ for which computations
remain simple.

Assume at first that ˛0 D 1 and ˛1 D c D exp.��24;1�˛=2/ where, as in
Sect. 6.2.2, �24;1�˛ is the .1�˛/-quantile of the �2-distribution with 4 df. In this case,
a natural choice for the ˛i;� ’s are the continuous and non-decreasing boundaries
˛0;� D 1 and ˛1;� D c� D exp.��24;1��=2/ for all � 2 Œ0; 1�. The resulting first and
second stage p-values are

q1 D 1 � F�24
� � 2 log.p1/

�
and q2 D 1 � F�24

� � 2 log.p1p2/
�
; (8.5)

where F�24.�/ is the distribution function of the �2-distribution with df D 4. Similar
p-values are used in meta-analyses. Note that q2 is equal to p1p2 � p1p2 log.p1p2/
because P.X � x/ D exp.�x=2/.1C x=2/ if X is �2-distributed with df D 4 (see
Johnson and Kotz 1970; p.173). Therefore, if p1p2 > ˛1 the repeated p-value of the
second stage is equal to the overall exact p-value from (8.2).
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If ˛1 > c and/or ˛0 < 1, then there are several possibilities of extending the first
stage levels to families ˛1;� < � < ˛0;� , � 2 Œ0; 1�. Often the first stage levels ˛1 and
˛0 are chosen according to some specific type of group sequential boundaries, for
example, O’Brien and Fleming or other boundaries of the Wang and Tsiatis family,
and the second stage level is then determined as

c D ˛ � ˛1
log.˛0/ � log.˛1/

to meet level condition (6.4). As discussed in Sect. 6.2.2, the boundaries should
satisfy the non-stochastic curtailment property c � ˛1. The same type of first stage
boundaries could now be applied to levels � for which

c� D � � ˛1;�
log.˛0;�/� log.˛1;�/

� ˛1;� :

However, if c� > ˛1;� , then we cannot use ˛1;� as first stage rejection level because
of the non-stochastic curtailment phenomenon. Instead, we can use the common
first and second stage rejection boundary c� D ˛1;� which solves

c� � �1C log.˛0;�/ � log.c�/
� D � : (8.6)

The left side of Eq. (8.6) is the level of Fisher’s combination test where first and
second stage rejection boundaries are both equal to c� . The boundary c� can be
determined by numerical root finding. Since the resulting first and second stage
rejection boundaries may fail to be increasing in � (but are continuous), a grid search
must be applied to determine q1 and q2.

There is another method to extend ˛1 and ˛0 to families ˛1;� < � < ˛0;� which
can also be applied if the first stage levels are not chosen according to a specific type
of group sequential boundaries and which guarantees increasing boundaries ˛0;� ,
˛1;� , c� that satisfy the non-stochastic curtailment constraint c� � ˛1;� for all �. The
method is to fix the ratios �1 D ˛1=˛ and �0 D ˛0=˛ and to apply ˛1;� D ��1,
˛0;� D ��0 and

c� D � � ˛1;�
log.˛0;�/� log.˛1;�/

D �.1� �1/

log.�0/ � log.�1/
D �c

˛

for all � where ˛0;� D ��0 < 1. Obviously, the condition ˛0;� < 1 is equivalent
to � < $0 D ��1

0 . Since c < ˛1 implies c� D �c=˛ � �˛1=˛ D ˛1;� , the
above boundaries will automatically meet the non-stochastic curtailment constraint.
Hence, level condition (8.3) is satisfied for all � < $0. For � � $0 we apply
˛0;� D 1, ˛1;� D ��1, and c� D �.1 � �1/=

� � log.��1/
�

for all � where the non-
stochastic curtailment constraint c� < ˛1;� D ��1 is satisfied. The non-stochastic
curtailment constraint can easily seen to be equivalent to � < $1 D ��1

1 e.1���1
1 /.

Finally, for � � $1 we let ˛0;� D 1 and ˛1;� D c� D exp.��24;1��=2/. In summary,
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we can use the boundaries

˛1;� D
(
��1 if � < $1

exp.��24;�=2/ if � � $1

; ˛0;� D
(
��0 if � < $0

1 if � � $0

and

c� D

8
ˆ̂
<

ˆ̂
:

�c=˛ if � < $0

.1� �1/ �=
� � log.�1�/

�
if $0 � � < $1

exp.��24;1��=2/ if � � $1 :

These boundaries are continuous and strictly increasing in � by construction. If
˛0 D 1, then we can use the same boundaries but now with $0 D 0.

Since the above boundaries are increasing and continuous in �, the repeated p-
values can be determined by solving the equations p1 D ˛1;� and C.p1; p2/ D c� .
This gives the first stage repeated p-value

q1 D
(

p1��1
1 if p1 < $1�1

1 � �24
�� 2 log.p1/

�
if p1 � $1�1 :

If we let the function h W x 2 Œ0;1/ 7! h.x/ 2 Œ0; 1/ be the inverse of the strictly
increasing function � 2 Œ0; 1/ 7! �=

� � log.�/
� 2 Œ0;1/, then the second stage

repeated p-value becomes

q2 D

8
ˆ̂
<

ˆ̂
:

maxfp1p2˛=c; p1��1
0 g if p1p2 < $0c=˛

��1
1 h

�
p1p2 =.��1

1 � 1/
�

if $0c=˛ � p1p2 < exp.��24;1�$1
=2/

1 � �24
� � 2 log.p1p2/

�
if p1p2 � exp.��24;1�$1

=2/ :

The maximum in the first line of q2 follows from the second stage rejection rule
p1 � ˛0;� and C.p1; p2/ � c� for levels � < $0 D ˛=˛0. If ˛0 D 1 and we use the
above boundaries with $0 D 0, then we get the same repeated p-values but with
$0 D 0 and hence without the first line in q2.

8.1.3 Numerical Examples

We illustrate the different methods to calculate an overall p-value in a two-stage
adaptive design by giving some numerical examples. We start by considering the
inverse normal combination case. Suppose the critical values were chosen according
to the Wang and Tsiatis class with � D 0:25. With a one-sided significance level
˛ D 0:025 the constant cWT D 2:4239 from Table 2.4 can be used because it is
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numerically identical to the two-sided constant for ˛ D 0:05. This yields the critical
levels

˛1 D 1 �˚.2:4239/ D 0:00768 and

c D 1 �˚.2:4239 � 2�0:25/ D 1 � ˚.2:0382/ D 0:0208

for the test with inverse normal combination function and equal weights.
If the first stage yields a p-value that allows the rejection of H0, i.e., p1 <

0:00768, then the overall p-value that is based on the stage-wise ordering is p1 itself.
If p1 > 0:00768 and the inverse normal test statistic C.p1; p2/ yields the value,

say, 0.023 (for example, p1 D 0:06 and p2 D 0:1026), with the use of the bivariate
standard normal cdf F.�; �/ with correlation 1=

p
2 (see Sect. 1.2) the overall exact

p-value

0:00768C PH0 .p1 > 0:00768;C.p1; p2/ � 0:023/

D 1 � F.˚�1.1 � 0:00768/; ˚�1.1 � 0:023// D 0:0271

is obtained.
The repeated p-value for the first stage is the smallest significance level for which

the test allows the rejection of the null hypothesis at a given stage. For example, if
p1 is equal to the boundary 0.00768, the overall p-value is equal to ˛ or, if the first
stage p-value p1 is 0:008, the overall p-value is 0.0258, and considerably larger than
the first stage p-value itself. The value 0.0258 is obtained from the calculation of

1 � F.˚�1.1 � 0:008/; ˚�1.1� 0:008/ � 2�0:25/

(see Sect. 4.1.2 and Sect. 8.1.2). The first stage repeated p-value is remarkably
different to the p-value that is based on the stage-wise ordering. For the second
stage the difference is smaller. The same second stage result as above produces the
overall repeated p-value 0.0278 which is only slightly larger than 0.0271. This is
obtained from

1 � F.˚�1.1 � 0:023/ � 20:25; ˚�1.1 � 0:023// :

Note that both types of overall p-value are consistent with the test decision, i.e., the
overall p-value is smaller than ˛ if and only if the test allows the rejection of H0 at a
given stage. The repeated p-value has the advantage that it can be calculated at both
stages and also in the case that the first stage did not produce a significant test result.

For Fisher’s combination test the calculations are as follows. We only consider
the simplest case with ˛0 D 1 and ˛1 D c D exp.��24;1�˛=2/. For ˛ D 0:025 this
yields ˛1 D c D 0:0038.

If the first stage test result allows the rejection of H0, i.e., p1 < 0:0038, then the
overall p-value that is based on the stage-wise ordering is p1 itself.

If p1 > 0:0038 and, as above, p1 D 0:06 and p2 D 0:1026, the Fisher’s
combination function C.p1; p2/ is p1p2 D 0:00616 > 0:0038 D ˛1 and
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formula (8.2) yields the overall p-value

p1p2 � p1p2 log.p1p2/ D 0:0374 :

Using (8.5) the repeated p-values for Fisher’s combination test for p1 D 0:06 and
p2 D 0:1026 are

q1 D 0:2288 and q2 D 0:0374 :

Again, both can be interpreted as the smallest significance levels for which the test
rejects H0 at a given stage. As already mentioned, in this case (p1p2 > c) the exact
overall and repeated overall p-values at stage 2 coincide. If p1p2 � c the exact p-
value that is based on the stage-wise ordering is always larger than the repeated
p-value. This is because x � x log.x/ � ˛1 � x log.˛1/ if x � ˛1.

8.2 Adaptive Confidence Intervals

According to the ICH guideline E9 on statistical principles for clinical trials,
estimates and confidence intervals should be provided in addition to p-values at least
for the primary efficacy parameters. The usual confidence intervals which ignore the
sequential and adaptive nature of the trial will in general be invalid and hence cannot
be applied. Like for group sequential designs, however, valid confidence intervals
can be constructed by applying a suitable family of adaptive hypothesis tests to all
possible parameter values. Again, there is no unique or most natural family of such
hypothesis tests, and hence several construction methods are possible (see Chap. 4).

We will discuss two approaches for the construction of one-sided confidence
intervals for two-stage combination tests. These approaches follow similar methods
for group sequential designs as described in Chap. 4. The first method provides
confidence intervals with exact coverage probabilities (under specific assumptions)
that can be reported at the end of the adaptive trial when following the pre-specified
stopping rule. The second method yields repeated confidence intervals which can be
reported at each stage of the trial independently of when and for which reason the
trial has been stopped.

To discuss the construction of confidence intervals we need to make additional
assumptions which are frequently satisfied. We assume a real valued efficacy
parameter � such that � > 0 if the treatment meets the target goal (typically efficacy
or non-inferiority) and the null hypothesis H0 W � � 0 is the one of primary interest.
A typical example is � D �2 � �1 where �1 and �2 are the means of normally
distributed responses in a control and treatment group, respectively, where the goal
is to verify that �2 > �1, and the primary null hypothesis is H0 W �2 � �1. If the
goal is to show non-inferiority with non-inferiority margin �0 < 0, i.e., to test the
null hypothesis H0 W �2 � �1 � �0, then we define � D �2 � �1 � �0 such that the
null hypothesis can again be written as H0 W � � 0.
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We will construct confidence intervals by consideration of all null hypotheses
Hı
0 W � � ı with �1 < ı < 1 exploiting the duality between confidence intervals

and hypothesis tests. In most parts of this section, we will assume that each Hı
0

(including H0) is tested using one-sided and stage-wise p-values pk;ı D 1�˚.. O�k �
ı/=sek/, where k D 1; 2 indicate the stage, O�k is an estimate of � from stage k, and
sek is the standard error of O�k or an estimate thereof. The estimate O�k and eventually
also sek are assumed to be computed from independent cohorts of patients. Note
that the p-values pk;ı are non-decreasing in ı at every sample point, i.e., pk;ı � pk;ı0

for all ı � ı0 and all trial outcomes. The latter property of p1;ı and p2;ı is the crucial
one, and most of the constructions below will hold when this property is satisfied.

8.2.1 Exact Confidence Bounds for Combination Tests

In Sect. 4.1 we have seen how the stage-wise ordering can be used to define
confidence intervals for group sequential trials that have exact coverage probability
and are consistent with the final test decision. In this section, we use a slight
modification of the stage-wise ordering for combination tests (see Sect. 8.1.1) to
define a consistent and exact lower confidence bound lek;� which can be reported at
the end of the confirmatory adaptive trial.

As mentioned before, the construction of lek;� will be based on stage-wise p-values
pk;ı. The confidence intervals .lek;� I 1/will be “exact” in the sense that the coverage
probability of .lek;� I 1/ is exactly equal to 1 � ˛ if under � D ı the p-values p1;ı,
p2;ı are independent and uniformly distributed. The latter property will usually not
be satisfied for finite samples, however, in many examples it is valid asymptotically
when the number of observations (of both stages) converges to infinity. In this case
the p-values p1;ı , p2;ı will be approximately independent and uniformly distributed
when the sample sizes are large which is usually the case in confirmatory trials.
Furthermore, we will focus on confidence intervals that are consistent with the
combination test in the sense that lek;� > 0 if and only if the combination test rejects
H0 at stage k.

As before, we consider the null hypothesis H0 W � � 0 and an adaptive design
with combination function C.p1; p2/ and decision boundaries ˛1, ˛0, and c meeting
level condition (6.1). Recall that the stage-wise ordering from Sect. 8.1.1 considers
a sample point x0 to provide more evidence against H0 than the sample point x if

1. p1 � ˛1 or p1 > ˛0, and p0
1 � p1, or

2. ˛1 < p1 � ˛0 and p0
1 � ˛1, or

3. ˛1 < p1 � ˛0 and ˛1 < p0
1 � ˛0 and C.p0

1; p
0
2/ � C.p1; p2/ .

Brannath et al. (2003) used a modification of this ordering for Hı
0 with ı 6D 0. The

ordering “
ı” for Hı
0 is defined like the ordering “
” for H0 but with

3. replaced by the condition
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4. ˛1 < p1 � ˛0 and ˛1 < p0
1 � ˛0 and C.p0

1;ı; p
0
2;ı/ � C.p1;ı; p2;ı/ . Note that this

means to replace p0
k, pk by p0

k;ı, pk;ı in the combination function but to keep p0
k, pk

in all other conditions. The reason for the replacement is that it is natural to apply
the combination function C.x; y/ to pk;ı instead of pk when testing Hı

0 because pk;ı

is known to be (asymptotically) uniformly distributed under � D ı. The reason
for keeping p0

k and pk in all other conditions is to achieve exact coverage.

It is interesting to note that 3. and 4. are equivalent for the weighted z-score
or inverse normal combination method when applied to stage-wise z-scores zk;ı D
. O�k � ı/=sek or p-values pk;ı D 1 � ˚.zk;ı/. This is because

Qz2;ı D w1z1;ı C w2z2;ı D w1z1 C w2z2 �
�

w1
se1

C w2
se2

�

ı

D Qz2 �
�

w1
se1

C w2
se2

�

ı ;

(8.7)

and hence the z-scores Qz2 and Qz2;ı (and corresponding inverse normal combination
functions) imply the same second stage ordering. As a consequence, all orderings
“
ı” are identical to the original ordering “
” from Sect. 8.1.1. Another important
consequence is that when the weights wk are chosen according to pre-planned
sample sizes (or information numbers) and the samples sizes are as pre-planned,
then the exact confidence interval of the combination test will coincide with the
exact confidence interval of the group sequential test based on the stage-wise
ordering (see Sect. 4.1).

Let us now turn back to general combination tests. Let pk;ı D 1�˚.. O�k �ı/=sek/

and define

˛1;ı D 1 �˚.˚�1.1 � ˛1/ � ı=se1/ and ˛0;ı D 1 �˚.˚�1.1 � ˛0/ � ı=se1/ :

One can easily show that then 1., 2. and 4. are equivalent to

1:0 p1;ı � ˛1;ı or p1;ı > ˛0;ı , and p0
1;ı � p1;ı ,

2:0 ˛1;ı < p1;ı � ˛0;ı and p0
1;ı � ˛1;ı ,

4:0 ˛1;ı < p1;ı � ˛0;ı and ˛1;ı < p0
1;ı � ˛0;ı and C.p0

1;ı; p
0
2;ı/ � C.p1;ı; p2;ı/ ,

whereby all conditions are now formulated in terms of pk;ı. This shows that Pı.x0 
ı

x/ D Qı.p1;ı; p2;ı/ for the p-value function

Qı.p1;ı; p2;ı/ D
8
<

:

p1;ı if p1 � ˛1 or p1 > ˛0

˛1;ı C R ˛0;ı
˛1;ı

R 1
0

1fC.x;y/�C.p1;ı;p2;ı /g dy dx if ˛1 < p1 � ˛0 :

(8.8)

In the expressions Pı.x0 
ı x/, x denotes the observed sample point, and x0 a random
variable that represents the distribution of the data under � D ı. Correspondingly,
the observed p-values p1;ı , p2;ı for Hı

0 are considered as fix numbers, whereas the
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p-values p0
1;ı , p0

2;ı of the hypothetical sample point x0 are independent and uniformly
distributed random variables.

Note that the right side of (8.8) equals the overall exact p-value (8.1) of the
combination test for Hı

0 with combination function C.x; y/ and early rejection and
acceptance boundaries ˛1;ı and ˛0;ı , applied to the stage-wise p-values p1;ı and p0;ı.
Note that all ˛1;ı and ˛0;ı are (or can be viewed as) fixed numbers if se1 is fixed or
independent from p1;ı. In this case, we do apply a combination test if we reject Hı

0

at level ˛ when Pı.x0 
ı x/ � ˛. Consequently, the region fı W Pı.x0 
ı x/ > ˛g is
a .1 � ˛/-confidence region for the parameter � . The phrase “adaptive” means that
the coverage probability is at least 1� ˛ for every adaptation rule where the second
stage sample size is chosen based on the (fully unblinded) interim data or any other
information from the interim analysis.

The independence of p1 and se1 may not hold exactly but is typically satisfied
approximately for sufficiently large interim sample sizes, and then the coverage
probability is expected to be close to 1 � ˛. A thorough investigation of the impact
of a dependence between pk and sek on the coverage probability has, however, not
been undertaken yet.

Since ˛1;ı is increasing in ı, and

˛1;ı C
Z ˛0;ı

˛1;ı

Z 1

0

1fC.x;y/�C.p1;ı;p2;ı/g dy dx D
ZZ

Rı

dy dx

for increasing regions Rı D fx � ˛1;ıg [ fx � ˛0;ı; C.x; y/ � C.p1;ı; p2;ı/g,
the right side of (8.8) is increasing in ı at all sample points x. Hence, the adaptive
confidence region fı W Pı.x0 
ı x/ > ˛g is a one-sided interval .le2;� I 1/ where the
lower boundary le2;� is the unique solution of the equation Pıfx0 
ı xg D ˛ in ı.
This solution can be determined by numerical integration, to compute the right side
of (8.8), and numerical root finding.

If the trial stops at the first stage (p1 � ˛1 or p1 > ˛0), then the lower confidence
bound le1;� is the solution of p1;ı D ˛ which is the usual .1 � ˛/-lower confidence

bound computed from the first stage sample, namely le1;� D O�1 � ˚�1.1 � ˛/ se1.
An important point to be noticed is that the lower confidence bound lek;� can be

computed only if the experimenter adheres to the pre-specified stopping rule, i.e.,
he stops the trial at the interim analysis if and only if either p1 � ˛1 or p1 > ˛0.
This is because the order relation “x0 ı x” remains undefined for sample points x
that violate the stopping rule.

Let us finally consider the special case where ˛1 D 0, ˛0 D 1 and the trial always
continues to the second stage. In this case, we can set ˛1;ı D 0 and ˛0;ı D 1 for
all ı and then get the overall p-values Qı.p1;ı; p2;ı/ D R 1

0
1fC.x;y/�C.p1;ı;p2;ı/gdy dx.

This together with level condition (6.1) implies that Qı.p1;ı; p2;ı/ D ˛ is equivalent
to C.p1;ı; p2;ı/ D c. Hence, solving the latter equality, which does not require
numerical integration, is a simpler alternative to obtain the exact lower bound le2;�
when ˛1 D 0 and ˛1 D 1.



204 8 Estimation and p-Values for Two-Stage Adaptive Designs

8.2.2 Repeated Confidence Bounds for Combination Tests

Lehmacher and Wassmer (1999) and Brannath et al. (2002) adopted the repeated
confidence interval approach to combination tests. Recall from Sect. 4.1 that
repeated confidence intervals are obtained by applying the same group sequential
boundaries to all hypotheses Hı

0 but to the shifted sequential z-statistics Qzk;ı D
Qzk � ı

p
Ik. A similar idea can be applied to combination tests, namely to apply

the same first stage rejection and acceptance levels ˛1, ˛0, combination function
C.x; y/ and critical value c, to all Hı

0 and corresponding shifted p-values pk;ı D
1 �˚.. O�k � ı/=sek/.

Following this approach, we reject Hı
0 at the first stage if p1;ı � ˛1. This gives

the one-sided first stage repeated confidence interval

.lr1;� I 1/ with lr1;� D O�1 � ˚�1.1 � ˛1/ se1 :

Note that lr1;� is like the usual lower confidence bound, but at adjusted level 1 � ˛1
and computed from the first stage data only.

At the second stage we reject Hı
0 if p1;ı � ˛0 and C.p1;ı; p2;ı/ � c. If ˛0 < 1,

then solving p1;ı D ˛0 gives the lower bound

Ql0;� D O�1 �˚�1.1 � ˛0/se1 : (8.9)

Since pk;ı is increasing in ı, and C.x; y/ is increasing in both arguments x and y, the
equation C.p1;ı; p2;ı/ D c in ı has a unique solution which we denote by Ql2;� , and
which can easily be determined by numerical root finding if no analytical solution
is available. Hence, the second stage repeated confidence set, which consists of all
ı where p1;ı < ˛0 or C.p1;ı; p2;ı/ > c, is the interval

.lr2;� I 1/ where lr2;� D
( Ql2;� if ˛0 D 1

minfQl0;� ; Ql2;� g if ˛0 < 1 :

Note that when ˛1 D 0, ˛0 D 1 and the trial is never stopped at stage 1, then the
repeated confidence bound lr� coincides with the solution Ql2;� of C.p1;ı; p2;ı/ D c,
and also with the exact lower confidence bound le� from the previous subsection,
which is then also given by Ql2;� . Hence, the repeated confidence interval has exact
coverage probability when early stopping is not an option.

Repeated Confidence Interval for Inverse Normal Method

The solution Qlr2;� of C.p1;ı; p2;ı/ D c becomes explicit if the combination function
is of inverse normal or weighted z-score type,

C.p1; p2/ D 1 � ˚
�
w1˚

�1.1 � p1/C w2˚
�1.1 � p2/

�
;
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and the shifted p-values are of the common form

pk;ı D 1 �˚
 O�k � ı

sek

!

; k D 1; 2 ;

where O�k is an estimates of � , and sek is the standard error estimate of O�k, both
computed from the data of the individuals recruited for stage k. By simple algebra
one can see that

Qlr2;� D Q��˚�1.1�c/=

�
w1
se1

C w2
se2

�

with Q� D
�

O�1 w1
se1

C O�2 w2
se2

�

=

�
w1
se1

C w2
se2

�

:

(8.10)

An interesting special case of (8.10) is obtained when ˛1 D 0 and ˛0 D 1, i.e.,
no rejection or acceptance is possible at the interim analysis. In this case˚�1.1�c/
equals the .1 � ˛/100%-percentile u1�˛ of the standard normal distribution, since
z D w1˚�1.1�p1/Cw2˚�1.1�p2/ is standard normally distributed for independent
and uniformly distributed p-values p1, p2. Hence the lower confidence bound (8.10)
becomes the standard lower confidence bound Qlr

2;� D Q� � u1�˛se Q� of the normally

distributed estimate Q� that has standard error se Q� D .w1=se1 C w2=se2/�1. Recall
that this lower bound is also exact (when ˛1 D 0 and ˛0 D 1), i.e., it provides an
interval with exact coverage probability. We will later discuss the properties of Q� as
point estimate for � . This computation of the RCI can also be extended to the case
where an early rejection is possible. Simply replace the .1 � ˛/100%-percentile
u1�˛ by the corresponding adjusted critical level (Lehmacher and Wassmer 1999).

Monitoring Property

The repeated confidence interval has the same monitoring properties as its group
sequential counter part. This means that we can report at each stage k the confidence
interval .lrk;� I 1/, irrespective of the stage and the reason the trial will or has been
stopped. Like for group sequential tests, this follows from the correct coverage
probability of the intersection of the first and second stage interval.

8.2.3 Two-Sided Confidence Intervals

One-sided intervals that provide a lower efficacy bound will be sufficient for most
confirmatory clinical trials. However, there might be cases where two-sided intervals
are required. Examples are (among others) equivalence trials or post-marketing
superiority trials where two proved treatments are compared with regard to efficacy.
In such trials the major goal is to test a hypothesis H0 W � D 0 against the two-
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sided alternative H1 W � ¤ 0. It is also quite natural and usual to provide a finite
interval .lI u/ with a lower and an upper bound l and u, respectively, in a report or an
article. If a one-sided test at level ˛ is performed, a consistent two-sided confidence
interval would be a .1� 2˛/100 % interval. Particularly, it is widely accepted to test
at a one-sided significance level 2.5 % but to provide two-sided 95 % confidence
intervals.

A straightforward way to derive these intervals is to consider an adaptive two-
stage design as two one-sided adaptive tests for

H.�/
0 W � � 0 and H.C/

0 W � � 0

(see Sect. 6.4). The calculation of the lower bound is performed as described above
in this section, whereas the calculation of the upper bound is achieved through the
calculation of the p-value for H.C/

0 and applying the same principles as described for

the p-values for H.�/
0 . We will illustrate this by a numerical example in the following

section.

8.2.4 Numerical Examples

We illustrate the described ways to calculate exact confidence intervals for the
inverse normal case. As above, we use the critical values according to the Wang and
Tsiatis class with � D 0:25 and a one-sided significance level ˛ D 0:025. These
are given by ˛1 D 0:00768 and c D 0:0208 (or u1 D 2:4239 and u2 D 2:0382) for
the test with inverse normal combination function and equal weights. We consider
testing the mean � of normally distributed observations with the variance, �2,
assumed to be known. We assume that the study was planned with sample size
n1 D n2 D 20 per stage of the trial for testing H0 W � < 0, i.e., w1 D w2 D 1=

p
2.

For testing

Hı
0 W � � ı against Hı

1 W � > ı ;

the shifted p-values

pk;ı D 1 � ˚
� Nxk � ı

�

p
Qnk

�
; k D 1; 2 ;

where Qnk are the realized sample sizes per stage, are exactly uniformly distributed
under Hı

0. Note that always Qn1 D n1 and thus the first stage sample size should be
unchanged.

If the trial stops at the first stage with the rejection of the null hypothesis, i.e.,
p1;0 � 0:00768, the lower confidence bound is the solution of p1;le1;ı D ˛ and is
given by
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le1;ı D Nx1 � ˚�1.1 � ˛/ �pQn1
;

which is the usual .1 � ˛/100 % lower confidence bound.
If the trial proceeds to the second stage, from (8.7) and (8.8) with ˛0;ı D 1 we

have to solve in ı the equation

˛1;ı C
Z 1

˛1;ı

Z 1

0

1fC.x;y/�C.p1;ı;p2;ı/gdy dx

D P.Z1 � u1 � ı

�

p
Qn1/C P

�

Z1 < u1 � ı

�

p
Qn1; QZ2 � Qz2 � ı

�

pQn1 C pQn2p
2

�

D 1 � F

�

u1 � ı

�

p
Qn1; Qz2 � ı

�

pQn1 C pQn2p
2

�

D ˛ ; (8.11)

where Qz2 D .˚�1.1�p1;0/C˚�1.1�p2;0//=
p
2 and F.�; �/ is the bivariate standard

normal cdf with correlation 1=
p
2.

For example, with Nx1 D 0:32, Nx2 D 0:35, �2 D 1 and Qn1 D 20 and Qn2 D 20 (i.e.,
no sample size change, and the observed sample sizes are exactly the planned ones)
one finds p1;0 D 0:0762, p2;0 D 0:0588, and Qz2 D 2:1187. Solving (8.11) yields
le2;ı D 0:0102. A corresponding upper bound is found by solving

F

�

u1 � ı

�

p
Qn1; Qz2 � ı

�

pQn1 C pQn2p
2

�

D ˛

for ı which yields the value 0:641. So the two-sided 95 % confidence interval that
is based on the stage-wise ordering is given by .0:0102I 0:641/.

In this case, the calculation is identical to the calculation of a confidence interval
that is based on the stage-wise ordering in the classical group sequential design
(see Sect. 4.1.1). This is because the sample sizes are equal to the planned ones.
Importantly, the calculation can be extended here to the adaptive case where the
sample size for the second stage can be recalculated in a data-driven way. For
example, assume that the second stage sample size was changed to, say, Qn2 D 60.
The same observed mean values for the first and second stage as above yield the
95 % confidence interval .0:0738I 0:5650/ which is different to the confidence
interval that is calculated under the assumption that Qn1 and Qn2 were the originally
assumed sample sizes.

We now consider the calculation of the repeated confidence intervals. Since sek D
�=

p
nk, from (8.10) the formulae for the lower repeated confidence bounds are

lr1;ı D Nx1 � u1
�pQn1

and

lr2;ı D
pQn1Nx1 C pQn2Nx2pQn1 C pQn2

� u2

p
2�pQn1 C pQn2

;
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where, as above, Qnk refer to the realized sample sizes at stage k, and u2 D ˚�1.1�c/.
For Qn1 D Qn2 D 20, this yields

lr1;ı D �0:222 and lr2;ı D 0:0127 ;

whereas for Qn1 D 20 and Qn2 D 60 we obtain

lr1;ı D �0:222 and lr2;ı D 0:103 ; respectively .

The corresponding upper bounds are simply

ur
1;ı D Nx1 C u1

�pQn1
and

ur
2;ı D

pQn1 Nx1 C pQn2Nx2pQn1 C pQn2
C u2

p
2�pQn1 C pQn2

;

and for Qn1 D 20, Qn2 D 20 and Qn2 D 60 given by

ur
1;ı D 0:862 ;

ur
2;ı D 0:657 and ur

2;ı D 0:575 ; respectively .

So the first stage repeated confidence interval is considerably larger than the exact
confidence interval from above. For the second stage, the lower bounds are larger for
the repeated confidence intervals, for Qn2 D 20 the length of the repeated confidence
interval is slightly larger, too, but for Qn2 D 60 the length of the repeated confidence
interval is slightly smaller than the exact confidence interval.

We finally consider the case, where a (binding) futility bound was included for
the first stage. Suppose it was decided to stop the trial for futility if p1 > 0:30. The
critical values are found to be u1 D 2:4006 and u2 D 2:0187. For Qn1 D 20 and
Qn2 D 20 the two-sided repeated confidence intervals are

.�0:217I 0:856/ and .0:0158I 0:654/

for the first and the second stage, respectively. That is, both are smaller than those
where no stopping for futility was considered. Note that the second stage lower
bound is bounded by (8.9) which is

Qlı;0 D Nx1 �˚�1.1 � ˛0/
�pQn1

D 0:203 :

Specifically, there is a bound for the second stage mean value such that at given Qn2
the lower bound of the repeated confidence interval does not change any more. In
our case, this is the value 0:724 and the interval for Nx2 D 0:724 is .0:203I 0:841/.
For Nx2 D 2, say, the interval is .0:203I 1:48/ and so only the upper bound changes
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for Nx2 > 0:724. This is the “price” for using somewhat smaller critical values u1
and u2 for the calculation of the confidence intervals at the two stages of the trial.
Note that this might become problematic if the critical bound that is adjusted for
the futility stop becomes smaller than the usual critical level derived for the fixed
sample case. In this case the RCI at the end of the trial would be smaller than the
usual .1 � ˛/100 % fixed sample confidence interval.

8.3 Point Estimation in Adaptive Designs

Because of the stopping rule and the data-driven sample size in an adaptive design,
we must expect that the usual maximum likelihood estimate (ML-estimate) is biased
and might therefore be an inappropriate estimate. Furthermore, the ML-estimate is
not necessarily contained in an adaptive confidence interval like the ones discussed
in the previous section. For these reasons, several alternative estimates have been
suggested in the literature. We will review in this section the most important
suggestions and compare them to the ML-estimate with regard to bias and mean
square error (MSE).

In most of the literature (including regulatory guidelines) large emphasis is put
on bias of point estimates, in particular, when dealing with sequential or adaptive
designs. “Bias” is typically quantified as deviation of the mean or median of the
estimate from the true parameter value. Bias is an important concept as it describes
the systematic deviation of the estimate from the truth parameter value. Variance
is another important quantity which also effects estimation precision, often more
severe than bias. Hence, a “good” point estimate should not only have a reasonably
small bias but also a reasonably small variance. A mean (or median) unbiased
estimate with a large variance is similarly inappropriate as an estimate with a large
bias. For instance, the mean of the first stage data alone, which is computed from a
sample with pre-specified sample size, is mean and median unbiased, but is hardly
acceptable as final estimate, because a large part of the data is disregarded and hence
the variance is unreasonably large.

Most methods to remove bias will lead to an increase in variance (compared to
the ML-estimate). Hence, bias reduction methods must carefully be assessed with
regard to their overall precision, as, for example, quantified by the MSE, which is
the sum of variance and square of mean bias. For these reasons, we will focus on the
MSE (or its square root) in our comparison and its conclusions (see also the remark
at the end of Sect. 4.2), but will also consider bias.

8.3.1 Maximum Likelihood Estimate

The likelihood of the data of a two-stage adaptive design is
Qn1CQn2

iD1 f� .xi/ where
f� .xi/ is the density of the i-th observation, n1 the first stage sample size, and Qn2 is



210 8 Estimation and p-Values for Two-Stage Adaptive Designs

the adaptively chosen second stage sample size. In the simple case of estimating the
mean � D � of a normal response with variance �2, the ML-estimate is the overall
mean Nx D .n1 Nx1 C Qn2Nx2/=.n1 C Qn2/ D .Nx1 C QrNx2/=.1C Qr/ where Nxk is the mean of
the data from stage k and Qr D Qn2=n1 the second stage sample size as multiple of the
first stage sample size n1.

If there is a stopping rule and/or the sample size is reassessed based on the first
stage data, then Nx will in general exhibit some type of mean (and median) bias.
Setting v D 1=.1C Qr/ and recognizing that the conditional mean of Nx2 given Nx1 and
Qn2 is E�.Nx2jNx1; Qn2/ D �, the mean bias of Nx is given by

E�.Nx/� � D E�
�
vNx1/C E�

�
.1 � v/Nx2/� �

D E�
� Qv .Nx1 � �/

� D Cov�. Qv; Nx1/ D Cov�

�
1

1C Qr ; Nx1
� (8.12)

(Liu et al. 2002). This formula is helpful for the understanding of the effects of
adaptive sample size reassessments on the mean of the ML-estimate.

If, for example, the sample size Qn2 becomes smaller for increasing Nx1, i.e., the
covariance Cov�

�
1=.1 C Qr/; Nx1

�
is positive, then the bias will be positive as well.

A negative relationship between second stage sample size and first stage estimate
occurs, for instance, in group sequential designs where the trial is stopped early if a
sufficient large first stage estimate is observed. It also occurs when the second stage
sample size is reassessed for achieving a target conditional power of, say, 90%.
This is because the conditional power is larger for larger first stage estimates, see
Sect. 7.1.

In other examples, the relationship between first stage estimate and second stage
sample size is positive such that the mean bias is negative. A positive relationship
between sample size and first stage estimate is typically caused by futility rules
where the trial is stopped early when the first stage estimate is small, or by treatment
selection where treatment arms are terminated when the treatment effect is too small.
Often the dependence between the first stage estimate and second stage sample size
is neither positive nor negative (for example, in a group sequential or adaptive trial
with early rejection and acceptance). In this case the correlation between Qv and Nx1
and thereby the mean bias can have different sign for different�. As a consequence,
it is usually difficult to quantify the mean bias.

To determine or estimate the bias, we would need to know or estimate � and
the second stage sample size Qn2 at all interim outcomes. However, confirmatory
adaptive designs are intended to deal with cases where Qn2 does not necessarily
follow a pre-specified rule and in this case the mean bias will be unknown even
for given �. Since the rule for Qn2 can (in general) not be estimated, the bias cannot
be estimated in a reliable way. However, based on formula (8.12), an absolute upper
bound for the mean bias of Nx that applies to every sample size adaptation rule can be
derived (Brannath et al. 2006b). This bound follows from the sample size rule that
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maximizes the conditional bias. The maximum bias is

jE�.Nx/� �j � 0:4
�p
n1

�
1

1C rmin
� 1

1C rmax

�

; (8.13)

where rmin and rmax are pre-specified upper and lower bounds for the second stage
sample size as multiple of n1. They must be set to 0 and 1, respectively, if no such
bounds have been pre-specified. Note that according to (8.13) the mean bias is at
most 40 % of the standard deviation of the first stage mean.

As mentioned before, the MSE is another important property of an estimator.
The following formula for the MSE of the overall ML-estimate has been derived in
Brannath et al. (2006b):

E�.Nx � �/2 D E�

�
.Nx1 � �/2
.1C Qr/2

�

C �2

n1
E�

� Qr
.1C Qr/2

�

:

From this formula one can see that the MSE also depends on the rule for Qn2 and
hence is in general unknown as well. A similar conclusion holds for the variance for
which a formula can also be found in Brannath et al. (2006a)

Similar results can be expected to hold at least approximately for any maximum
likelihood estimate O� of a parameter � if Nxk are replaced by stage-wise maximum
likelihood estimates O�k and n1, n2, and Qn2 by Fisher informations I1, I2, and QI2, where
I1 is the information of the first stage sample, I2 is the information of the second
stage sample (excluding the first stage sample) under the pre-planned sample size,
and QI2 the second stage information under the actual (adapted) sample size.

8.3.2 Fixed Weighted ML-Estimate

Let us assume for a moment that the trial is always continued to the second stage,
i.e., Qn2 > 0 for all interim outcomes, and that the only goal of the interim analysis
is to recompute the total sample size. In this case we can define estimates that are
mean unbiased independently of the sample size adaptation rule. We focus again on
estimates for the mean of i.i.d. responses. However, the same conclusions hold for
any mean unbiased stage-wise estimates O�k, k D 1; 2.

At first we note that the first stage ML-estimate Nx1 and the second stage ML-
estimate Nx2 are both mean unbiased estimates. The first stage estimate is unbiased
because the first stage sample sizes are fixed, and hence Nx1 has the same statistical
properties as in a fixed sample size design. The second stage ML-estimate is
unbiased because the sample sizes are chosen based on the first stage data, and
these data are not used for Nx2. This means that we are in the same situation as if the
sample size would have been determined from an independent trial like a pilot study
or from historical data. More formally speaking, if Qn2 > 0, then the second stage
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estimate Nx2 is conditionally unbiased given the first stage data and decision on the
second stage sample size.

First and second stage maximum likelihood estimate have the disadvantage to
utilize only part of the data. For this reason, Liu et al. (2002) and Proschan et al.
(2003) suggested to prefix a number 0 < � < 1 and to compute the weighted mean

Ox� D � Nx1 C .1 � �/ Nx2 :

Since the weight � is fixed a-priori, we call Ox� fixed weighted ML-estimate. The
reason for the unbiasedness of Ox� is that Nx1 and Nx2 are unbiased and E�.Ox� / D � �C
.1� �/ � D �. Certainly, the latter conclusion holds only if � is a fixed number that
is specified independently of Nx1 and Nx2.

If a number n D n1 C n2 has been pre-specified for the total sample size, and the
weight � D n1=.n1Cn2/ is according to the pre-planned n2, then keeping the sample
size as pre-planned, i.e., Qn2 D n2, implies that Ox� equals the overall ML-estimate Nx.
However, if Qn2 6D n2, then Ox� and Nx are different. Since Ox� is unbiased its MSE equals
its variance. As shown in Brannath et al. (2003), the variance is

Var�.Ox� / D .�2=n1/
�
�2 C .1 � �/2 E�.1=Qr/� ;

which depends on the sample size adaptation rule Qr.

8.3.3 Median Unbiased Point Estimation

Another suggestion for point estimation is to use an estimate which has median
equal to � independently from the adaptation rule (Brannath et al. 2003; Lawrence
and Hung 2003; Proschan et al. 2003). Median unbiased point estimates can be
obtained from one-sided exact confidence intervals I0:5 D .le0:5; 1/ that have
coverage probability equal to 0:5. Since P� .� 2 I0:5/ D P� .� > le0:5/ D 0:5, the
estimate le0:5 is larger than the true � only with probability 0:5. If le0:5 has a continuous
distribution, then P� .� < le0:5/ D 0:5 which implies that its median is equal to the
unknown true � . By a similar reasoning, the upper confidence bound of an exact
one-sided 50%-confidence interval I0:5 D .�1; le0:5/ provides a median unbiased
estimate as well.

Median unbiasedness of l0:5 requires that the coverage probability of the interval
.le0:5; 1/ is exactly equal to 0:5. We have defined one-sided confidence intervals
with exact coverage probability for combination tests in Sect. 8.2.1. The correspond-
ing lower confidence bound le0:5 is the solution of the equation

Qı.p1;ı; p2;ı/ D 0:5
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in ı where Qı.p1;ı; p2;ı/ is the p-value (8.8) from the stage-wise ordering of
combination tests. The solution gives a median unbiased estimate. This estimate
can be calculated only once at the end of the trial (at the stage the trial stops).

The lower bound l0:5 of a strictly conservative one-sided confidence interval
I0:5 D .l0:5;1/ at nominal level 0.5 may also provide an acceptable estimate even
though it will be median biased because the coverage probability of I0:5 can be
larger than 0:5. Such lower bound is, for instance, the lower bound of the repeated
confidence interval at level 0:5. A strictly conservative lower bound l0:5 is larger
than the true value � only with a probability that is smaller than 0:5 because
� < l0:5 implies � 62 I0:5. If larger values of � correspond to higher efficacy
of the experimental treatment, this means that overestimation of efficacy is less
likely than underestimation. Such a conservative estimate would prevent systematic
overestimation of the treatment effect and hence could be acceptable, in particular, if
the probability for underestimation is not too large. In general, the conservatism (for
example, of the 50% repeated confidence bound) will depend on the true parameter
value and the adaptation rule, and its investigation will in general require numerical
simulations.

8.3.4 Adaptively Weighted ML-Estimate

Several authors (Brannath et al. 2006b; Cheng and Shen 2004; Lawrence and Hung
2003) have suggested using the following weighted mean of first and second stage
maximum likelihood estimates O�1 and O�2

Q� D Q� O�1 C .1 � Q�/ O�2 with Q� D w1=se1
w1=se1 C w2=se2

; (8.14)

where sek is the standard error of O�k, and wk (k D 1; 2) are fixed positive numbers
that satisfy w21 C w22 D 1. Note that the weight Q� of O�1 in (8.14) depends on the data,
in general, for two reasons. On the one hand, se2 depends on the first stage data via
the data-driven second stage sample size, and on the other hand, sek usually involves
some variance estimates which depend on the data of the respective stage.

We will denote Q� as adaptively weighted maximum likelihood estimate. There
are several ways to introduce this estimate. Cheng and Shen (2004) derived (8.14)
by the method of moments. Recall from Sect. 8.2.2 that Q� equals the estimate in
expression (8.10) of the repeated lower confidence bound that results from the
inverse normal combination test with weights wk and p-values pk;ı D 1 � ˚

� O�k �
ı/=sek

�
.

If ˛1 D 0, ˛0 D 1 and ˛ D 0:5, then the repeated lower confidence bound
coincides with the estimate Q� . Recall also that the repeated confidence interval has
exact coverage if ˛1 D 0 and ˛0 D 1, and hence Q� is a median unbiased estimate,
according to the previous subsection. With a sufficiently large first stage sample
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size, we would expect that the median bias of the estimate Q� is small also when
early stopping is possible (˛1 > 0 or ˛0 < 1). This is because the trial could always
be continued with only one (or two) more observations (if the stopping rule applies)
which, as we expect, would not effect Q� much (if se1 is sufficiently small) but would
make Q� median unbiased. Mean and median bias as well as mean square of this and
the other estimates will be investigated in the next subsection.

8.3.5 Comparison of Point Estimates

The maximum likelihood, the fixed and adaptively weighted maximum likelihood,
and the median unbiased estimates are consistent if both, the first and second stage
sample sizes, converge to infinity and both stage-wise estimates are consistent. If the
trial is never stopped at the interim analysis (˛1 D 0 and ˛0 D 1), then the maximum
likelihood and adaptively weighted maximum likelihood estimates are consistent
also if only one of the sample sizes (for example, the second stage sample size)
increases and the other (for example, of the first stage) remains finite. This stronger
consistency property is not satisfied for the fixed weighted maximum likelihood
estimate because the weights are independent from the sample size. In trials with
˛1 > 0 and/or ˛0 < 1, consistency of any estimate requires that both sample sizes
converge to infinity because the probability to stop the trial at the interim analysis
is either constant (under H0 or when the first stage sample size remains fixed) or
converges to one (for positive treatment effects) or zero (for negative treatment
effects).

We show the results of a simulation study comparing the performance of the
different estimates. Like in Lawrence and Hung (2003) and Brannath et al. (2006b),
where similar investigations were done, we assume normally distributed responses
with mean � and variance � , and consider estimates for �. In contrast to Brannath
et al. (2006b) and Lawrence and Hung (2003) we consider trials with and without
early stopping. We simulated under four different scenarios. In all scenarios the
second stage sample size is reassessed in order to achieve a conditional power of
80 % with the z-test for H0 W � � 0 versus H1 W � > 0 at an overall one-sided
significance level ˛ D 0:025. The alternative is estimated by the positive part of
the interim estimate. Given this rule (which could result in an infinite sample size)
the second stage sample size is truncated at a given multiple rmax of the first stage
sample size. We furthermore assume a specific minimal second stage sample size
when the trial continues to the second stage. The minimal second stage sample size
is also specified as a multiple rmin of the first stage sample size. We used the weights
w1 D w2 D 1=

p
2 for the adaptively weighted ML-estimate, and the inverse normal

combination test in the computation of the median unbiased estimate.
For all simulated scenarios, rmin D 0:1 and rmax D 5. In the first scenario,

Scenario A, we let ˛1 D 0, ˛0 D 1 such that the trial is never stopped at the interim
analysis. In two further scenarios, Scenarios B and C, we assume ˛1 D 0:005 and
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futility boundaries ˛0 D 0:5 (Scenario B) and ˛0 D 1 (Scenario C). In Scenario D
we set ˛1 D 0 and ˛0 D 0:5. One can show for all four scenarios and for each of the
estimates that when dividing the estimate by se1 D �=

p
n1 the distribution becomes

independent from n1 and �2 for� D 0. For� 6D 0 the distribution depends on n1, �2

and � only via the non-centrality parameter ı1 D �=se1 of Nx1. Hence, we consider
the distribution of the estimates divided by standard error se1 in dependence on the
parameter ı1.

The results are displayed for 100,000 simulation runs. Figure 8.2 illustrates the
mean bias of the four previously introduced estimates divided by se1. Note that
in Scenario A the adaptively weighted maximum likelihood estimate is median
unbiased and coincides with the median unbiased estimate from the inverse normal
combination function with weights w1 D w2 D 1=

p
2 as defined in Sect. 8.3.3. The

figure illustrates that the fixed weighted ML-estimate is mean unbiased only when
there is no early stopping (Scenario A) and exhibits a mean bias in all other scenarios
with early stopping. In Scenarios B to D the median unbiased estimate seems to have
the smallest maximum mean bias whereas all other estimates are comparable with

Fig. 8.2 Mean bias of the estimates explained in the text divided by standard error of the first stage
estimate se1 D �=

p
n1 in dependence of ı1 D �=se1, for the four scenarios explained in the text
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Fig. 8.3 Square root of the MSE of the estimates explained in the text divided by standard error
of the first stage estimate se1 D �=

p
n1 in dependence of ı1 D �=se1, for the four scenarios

explained in the text

regard to mean bias. Note that in Scenario A the adaptively weighted ML-estimate
has a smaller mean bias than the usual ML-estimate. However, the mean bias of
the two estimates is similar in all other scenarios. This shows that the adaptively
weighted ML-estimate has the potential to reduce the bias from the sample size
adaptation rule but fails to reduce the bias resulting from the stopping rule.

Figure 8.3 illustrates the square root of the MSE of the estimates divided by se1.
Recall that the MSE is the sum of variance and squared mean bias. The figure clearly
shows that the fixed weighted ML-estimate is inferior to all other estimates with
regard to the MSE, in particular, in Scenario A (˛1 D 0 and ˛0 D 1) where it is mean
unbiased. This implies that the fixed weighted ML-estimate has a too large variance
and hence cannot be recommended for practical use even in the case where no early
stopping is considered. One can also see that the ML- and adaptively weighted ML-
estimates perform best with regard to the MSE. Also the median unbiased estimates
appears to have an acceptable MSE, although, the median bias corrections seem to
come for the price of somewhat increased MSE as well. Note that the mean bias is
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Fig. 8.4 75 %-, 50 %- and 25 %-percentiles of the estimates explained in the text minus � divided
by the standard error of the first stage estimate se1 D �=

p
n1 in dependence of ı1 D �=se1, for

the four scenarios explained in the text

much smaller than the square root of the MSE. This shows that variance should be
a major concern as well.

Figure 8.4 is a plot of the median as well as first and third quartiles of the
estimates minus � (i.e., the residuals) divided by se1. It shows the tendency of
the maximum likelihood estimate to overestimate efficacy. The weighted maximum
likelihood estimate appears to be less biased. The median unbiased estimate does
not only perform well with regard to the median but also with regard to first and
third quartile. Note that the fixed weighted ML-estimate exhibits a median bias for
all four scenarios, also in Scenario A where its median bias is mainly negative. The
unsmooth behavior of the quartiles is caused by the stopping rule and appears only
in Scenarios B to D.

In summary, the median unbiased estimate seems to perform best and be most
suitable at least for trials where sample sizes are reassessed based on conditional
power. The ML- and adaptively weighted ML-estimates could be considered as
reasonable estimate as well, because of their good performance with the regard to
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the MSE and their computational simplicity. However, these estimate are expected
to exhibit some kind of mean and median bias. Since the distribution of an estimator
depends on the adaptation rule, we recommend investigating mean and median bias
as well as MSE (or quartiles of the residuals) in the planning phase of the trial for
the most reasonable adaptation rules.

8.4 Extensions

So far the derivation of overall p-values and especially confidence intervals was
based on the known variance assumption. The p-value combination approach,
however, only assumes the p-values to be p-clud, so testing means for normally
distributed observation can also be performed with p-values obtained from t-tests
that do not assume the variance to be known. This includes testing a single mean, or
testing the difference and the ratio of two means in the parallel group design. Using
these p-values per stage of the trial, overall p-values can directly be obtained. Note
that this provides an exact solution to the unknown variance problem for normally
distributed observations. The overall p-values are exact also in the sense that the
hypothesis is rejected at level ˛ if and only if the overall p-value is smaller than ˛.

Using this principle, one can also easily derive exact RCIs for one mean and the
difference or the ratio of two means by considering the p-values pk;ı for testing the
hypothesis

Hı
0 W � D ı ; (8.15)

where � D �, � D �2��1, or � D �2=�1. The p-values for Hı
0 are calculated with

the use of the t-distribution with appropriate df and variance estimate (see Sect. 5.1).
The values ı for which the test does not reject Hı

0 can be found numerically and
it is easy to see that due to the monotonicity of the p-values in ı there is always
a unique solution. The extension of the exact confidence intervals to the case
of unknown variance is less straightforward. For the normal case with unknown
variance an exact solution has not been provided yet and appears difficult or even
impossible. However, there a two ways to obtain confidence intervals that are at
least asymptotically exact. The first approach is to simply replace the unknown
variance by the actual overall estimate of the variance in both, the two stage-wise p-
values and the early rejection boundaries ˛j;ı , j D 0; 1, that depend on the unknown
variance as well (see Sect. 8.2.1.) An alternative, somewhat better (but still only
asymptotically valid) approach is to replace the stage-wise p-values by the exact
p-values of the t-test, in order to not rely on the normal approximation at this place.
This approach is not fully exact because we still do not account for the fact that
˛j;ı is data dependent due the variance estimate. Obviously, the second approach
controls the confidence level better than the first. Unpublished simulation results
indicate that the latter approach provides intervals that are more or less exact also
for moderate sample sizes.
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In the same way on can derive overall p-values and confidence intervals for
binary observations. If � denotes the unknown rate in a one-sample situation, �1, �2
the unknown rates in a two-sample situation the problem is to define tests for (8.15)
with � D � , � D �2 � �1, or � D �2=�1. Appropriate tests were described
in Sect. 5.2. For example, through the approximate approach of Farrington and
Manning (1990) there is always a unique solution and the exact correspondence
between the test decision and the RCIs is generally fulfilled (see Wassmer 2003).

Recall that in this section we considered overall p-values and confidence intervals
for two-stage adaptive designs. If we use the combination testing principle, however,
it is easy to see that most of the techniques derived for the two-stage case can also
be applied for more than two stages. Specifically, if the inverse normal combination
test is used, the calculation of exact and repeated overall p-values is straightforward
since the same formulas as for the group sequential case with the group sequential
test statistic replaced by the inverse normal test statistic can be used. This is also true
for more general testing situation, for example, the unknown variance or the binary
case. If Fisher’s combination test is used, the calculation of exact and repeated
overall p-values might be a bit more complicated (see Sect. 8.1.2) but possible in
principle.

RCIs can be derived for any combination tests as long as suitable tests for (8.15)
can be derived. The derivation is finding those ı that do not lead to the rejection
of Hı

0 at a given stage k possibly taking into account a (binding) stopping for
futility boundary (see Sect. 8.2.4). The calculation of exact confidence intervals
for multi-stage combination tests is not solved in general yet. A solution has been
given for recursive combination tests where two-stage combinations test are applied
recursively to the overall p-values of combination tests (Brannath et al. 2002). We
note that there is a solution for deriving exact confidence intervals when using the
CRP principle (Brannath et al. 2009a). There might be cases, however, where the
confidence limit is the solution of a function in ı that is not monotone in ı. It is in
fact easier to derive RCIs when using the CRP principle (Mehta et al. 2007) because
here such monotonicity problems do not occur. We further refer to the “backward
mapping” approach of Gao et al. (2013a,b) which also provides confidence intervals
for multi-stage designs that are based on the stage-wise ordering. Finally, Liu
and Anderson (2008) proposed a new ordering yielding sequential p-values and
confidence intervals that is applicable in the adaptive setting.



Chapter 9
Adaptive Designs with Survival Data

The previously reviewed methods for designs with adaptive sample size modifi-
cations have been extended to survival data by Schäfer and Müller (2001), Shen
and Cai (2003), Wassmer (2006), Desseaux and Porcher (2007), Jahn-Eimermacher
and Ingel (2009), and Irle and Schäfer (2014). Schäfer and Müller (2001) and Irle
and Schäfer (2014) extend the conditional error rate principle. Wassmer (2006) and
Jahn-Eimermacher and Ingel (2009) consider the inverse normal and Desseaux and
Porcher (2007) Fisher’s combination test approach. Shen and Cai (2003) extend
the variance spending method of Shen and Fisher (1999). Most of the mentioned
approaches were developed in the multi-stage context. In this chapter we focus on
the combination testing approach and briefly describe some problems that might
arise in survival trials.

9.1 Combination of p-Values from Log-Rank Tests

Consider a trial where two treatment groups are compared with regard to a
survival endpoint, for example, overall survival. As described in Sect. 5.3 a common
assumption in survival studies is that the hazard ratio ! D 
2.x/=
1.x/ or the log
hazard ratio � D log.!/ is constant over the time x. Typically, one is then interested
in the null hypothesis H0 W � D 0 versus the alternative H1 W � > 0. In a randomized,
parallel group design with fixed sample sizes it is common to use the one-sided log-
rank test for testing H0. As we have outlined in Sect. 5.3 this log-rank test can be
extended to group sequential designs.

If at an interim analysis the number of individuals or the target number of events
is changed based on the interim data, then the usual log-rank test may not keep
the nominal Type I error rate. It has been illustrated by Wassmer (2006), Desseaux
and Porcher (2007), and Jahn-Eimermacher and Ingel (2009) that in this case the
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combination test approach can be applied. The main difficulty with this approach
is the definition of the stage-wise data and the p-values. The problem is that some
interim subjects may not have their event until the end of the first stage and then will
also be followed up after the interim analysis. These subjects provide information
for both sequential stages. At the end of the first stage we know that these subjects
have survived the time from their entry to the interim analysis. At the end of the
second stage we know the times they survive from the interim analysis to the end
of the study, and so on. Hence, the event data observed before and after an interim
analysis are not from independent cohorts of patients.

9.1.1 Use of Independent Increments

One approach to deal with this difficulty is to use similar arguments as for group
sequential survival trials. For illustration, in a two-stage design this leads us to
consider the following two log-rank statistics. The first statistic is computed from
the information observed until the end of the first stage. The first stage information
can formally be viewed as the survival times of the patients recruited before the
interim analysis right censored at the time point of the interim analysis. This
means that we view the first stage as an individual survival study that ends at
the interim analysis. We use the corresponding log-rank test for the first stage
p-value. The second statistic is the log-rank statistic for all the survival information
observed in the two-stage trial and the second stage p-value is build from a weighted
difference between the first and second log-rank statistics. Like for group sequential
trials, this approach (under mild regularity assumptions) leads to p-values that are
approximately independent (or p-clud) for sufficiently large number of events.

To describe the approach in the more general multi-stage setting, assume that
we observe d1 events until the end of the first interim analysis and, when the trial
continues to the second stage, the cumulative number of events d2 at the second
interim analysis of the trial, and so on. We assume that there are no ties and denote
the ordered event times observed until the end of stage k D 1; : : : ;K by x1k < x2k <

� � � < xdkk. We further define I2ik D 1 if the event observed until the end of stage k at
time xik occurs in the second treatment group and I2ik D 0 otherwise. We further let
Njik be the number of subjects recruited until the end of stage k in treatment group
j that are at risk at time xik. As in Sect. 5.3, the one-sided log-rank statistics are
defined as

LRk D
Pdk

iD1
�

I2ik � N2ik
N1ikCN2ik

�

qPdk
iD1

N1ikN2ik
.N1ikCN2ik/2

; k D 1; : : : ;K:
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It is known that Z1 D LR1 is approximately standard normally distributed under H0.
Furthermore, with constant treatment allocation ratio the statistic

Zk D
p

dkLRk � p
dk�1LRk�1p

dk � dk�1
; (9.1)

where LR0 D d0 D 0 is approximately standard normal, too, and Zk�1 and Zk

are approximately independent (see Sect. 5.3). We can therefore use the stage-wise
p-values pk D 1 �˚.Zk/ and the inverse normal test statistic reads as

Z�
k D

0

@
kX

QkD1
w2Qk

1

A

�1=2
kX

QkD1
wQk

p
dQk LRQk �p

dQk�1 LRQk�1p
dQk � dQk�1

: (9.2)

Let the weights be fixed through

w1 D
p
	1 ; wk D

p
	k � 	k�1 ; k D 2; : : : ;K; (9.3)

where 	k denote the planned (or expected) number of accumulated events at stage k.
Then, if dk D 	k, k D 1; : : : ;K,

Z�
k D 1

p
	k

kX

QkD1

q
	Qk � 	Qk�1

p
	Qk LRQk �p

	Qk�1 LRQk�1p
	Qk � 	Qk�1

D LRk :

That is, if the observed number of events equals the planned number, the inverse
normal test statistic is the same as the usual log-rank test statistic. Therefore, it is
reasonable to use the test statistic (9.2) and to specify the weights according to (9.3)
in the planning phase.

9.1.2 Applying Left Truncation at the Second Stage

Jahn-Eimermacher and Ingel (2009) consider an alternative approach to build the
second stage p-value p2. In this approach the second stage p-value is directly
from the events observed at the second stage. This is achieved by left truncation
and right censoring. The approach goes back to Keiding et al. (1987) which
consider the possibility of reusing subjects from an exploratory survival study
in a subsequent confirmatory study (see also Parner and Keiding 2001; Keiding
2006). The possibility of using this approach for combination tests has already been
mentioned in Bauer and Köhne (1994).

To describe the approach in more detail let Ri be the calendar time of entry for
individual i. Let further Xi be its time from entry to the event and Ci its time from
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entry to censoring. We assume that Xi, Ri, and Ci are independent and we denote by
ri, xi, and ci the observed outcomes of Ri, Xi, and Ci, respectively.

The multi-stage data are distinguished by different survival data and risk intervals
as follows. As in the previous approach, the first stage data of individual i consists
of the time and status variable yi;1 D minfxi; ci; t1 � rig and ıi;1 D 1fxi�minfci;t1�rigg,
whereby we consider only individuals recruited before the interim analysis (ri < t1).
The risk interval for individual i is .0I yi;1/, which means that individual i belongs
to the risk set at the event time xj D yj;1 if minfci; t1 � rig � xj.

The second stage data consists of the survival data yi;2 D minfxi; ci; t2 � rig and
ıi;2 D 1fxi�minfci;t1�rigg from individuals with ri C minfxi; cig > t1, i.e., restricted to
events that are observed after the interim analysis. The risk interval is .t1 � riI yi;2/

which means individual i belongs to the risk set at xj D yj;2 � t1 � rj if t1 �
ri < xj � yi;2. The subsequent stages are defined analogously. Keiding et al. (1987)
demonstrate by a factorization of the empirical likelihood that the above defined
stage-wisely defined data are independent (see also Jahn-Eimermacher and Ingel
2009). Hence, the resulting log-rank tests and stage-wise p-values are independent
as well.

For illustrating this approach consider a two-stage design. Subjects of this trial
can be divided into three groups. The first group consists of the subjects which are
recruited before the interim analysis and have their event or are censored during the
first stage. This group contributes data only to the first stage data. The second group
are the subjects which are recruited after the interim analysis. They provide survival
data only at the second stage. The third group consists of the subjects that are
recruited before the interim analysis and have their event after the interim analysis.
These subjects provide information to both sequential stages.

The first stage information of subjects in the third group is the survival time right
censored at the interim analysis. Hence, the first stage log-rank statistic LR1 and p-
value p1 can be computed as in the previous subsection. Events from patients in the
third group may either occur during the second stage or after the end of the study.
In the latter case the survival time is censored at the study end. The second stage
information is the time from the interim analysis to the event or end of the second
stage (whatever comes first) plus the censoring status at the end of the study. For the
second stage they are considered at risk only for time points between the interim and
final analysis. This risk interval can easily be implemented in statistical software that
supports the counting process style (like SAS and R) by defining appropriate start
and stop variables. For the first stage subjects from the second stage are considered
at risk only for time points before the interim analysis, whereas for the second stage
this restriction does not apply.

9.2 Restriction of the Information Used for the Adaptations

Since event or censoring times of interim subjects observed after the interim analysis
are part of the second stage data, we must be careful in using information other
than the interim survival status of these patients. It has been described by Bauer
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and Posch (2004) that there is a major limitation in adaptive survival trials with
regard to the information that may be used for the adaptations at the interim analysis.
Although the arguments have been given for the conditional error rate method these
restrictions also apply to combination tests.

Bauer and Posch (2004) noted that for survival designs only the censored
survival times or the log-rank statistic from the confirmatory phase may be used
for subsequent planning, no other information from patients under risk can be used.
The reason is that such interim information may be correlated with the survival time
observed at the second stage data, and with the presence of such a correlation the
occurrence of an event can be predicted for the patients under risk. Adaptations
based on such information could lead to inflations of the Type I error rate and
control of Type I error rate cannot be guaranteed any more. Bauer and Posch (2004)
show that in extreme cases the inflated Type I error rate could be as large as twice
the nominal level. Since their example is based on a worst case scenario where a
surrogate endpoint is used which is perfectly correlated to survival, and the sample
size adaptations directly intend to maximally inflate the Type I error rate, a less
pronounced inflation is expected to appear in practice. However, to preserve the trial
from potential inflation we should avoid using information, for example, baseline
characteristics, secondary, surrogate, and safety endpoints from patients that are
recruited before the interim analysis but are event free until then.

The design adaptations can always be based on the censored survival times from
all first stage subjects and, in particular, on the first stage log-rank statistic. If some
limited information other than the survival data shall be used for the adaptation
decisions, then the second stage p-value must be from a test that is conditional
on this information. Such a p-value can be obtained by stratification if the utilized
information is categorial (see Brannath et al. 2009b) or from a regression model. In
the latter case Type I error rate control relies on the correctness of the regression
model.

Suggestions have also been made to construct valid adaptive test statistics
including as much information as possible and allowing interim decision making
on all collected data for multi-arm and population enrichment designs (Friede et al.
2011; Jenkins et al. 2011; Mehta et al. 2014; Irle and Schäfer 2014; Carreras et al.
2015). We describe these very important applications of adaptive designs in more
detail in Part III of this book. Recently, Magirr et al. (2014a) show that the proposals
have the common disadvantage that the final test statistic may ignore a substantial
subset of the observed survival times. They show if the goal is to use all the data, a
worst case adjustment of the critical boundaries guarantees Type I error control for
the price of reduced power.

Other methods require assumptions regarding the joint distribution of survival
times and short-term secondary endpoints (Di Scala and Glimm 2011; Stallard
2010). Note that related problems arise in overrunning, for example, patients having
been recruited before or during the interim analysis such that their data could not be
used for interim decision making (Faldum and Hommel 2007). Such kind of delayed
responses were also considered by Hampson and Jennison (2013) in the context of
classical group sequential designs.
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9.3 Sample Size Reassessment Rules

Sample size calculation for the log-rank test is usually performed in two steps. In the
first step the required number of events is determined for a specific power and hazard
ratio. In the second step the number of patients for achieving the event number is
estimated from assumptions on the survival distributions, see Sect. 5.3. Schäfer and
Müller (2001), Wassmer (2006), and Desseaux and Porcher (2007) apply similar
methods for sample size reassessments at the interim analysis. As discussed in
Chap. 7 sample size reassessments are most naturally based on conditional power
(rather than overall power) under specific assumptions on the treatment effect, here
the hazard ratio, which can but need not be influenced by the interim data and
external information. According to the restrictions mentioned in the previous section
such estimate can depend on the survival data of all interim patients, however, not
on other information from the yet event free and uncensored subjects.

The conditional power at a given interim stage is the probability of a significant
outcome in one of the subsequent stages given the results observed so far under a
specified parameter value of interest. If only one stage is left or one is interested in
the conditional power for the subsequent stage, the necessary number of events to
reach a specified power can easily be found by considering the univariate standard
normal cdf with an appropriate shift of the decision region. For example, when
using the inverse normal statistic (9.2), for given allocation ratio r, from (7.4) in
Sect. 7.3 the number of additional events for the next (kth) stage of the trial to reach
conditional power cp for this stage given the results up to stage k � 1 is found to be

dk � dk�1 D .1C r/2

r

�
˚�1.cp/C �

.
Pk

QkD1 w2
Qk/

1=2 uk �Pk�1
QkD1 wQk zQk

�
=wk

�2

�
ln.!a/

�2 ;

(9.4)

where !a is the assumed hazard ratio, in accordance with Schoenfeld (1981) sample
size estimation formula (see Wassmer 2006).

In the general case, the multivariate normal integral can be used to calculate the
overall power at given number of events. For specified overall conditional power the
necessary number of events during the stages is found by a linear search. For this
calculation, as a shortcut it is also possible to use the last stage critical value, uK ,
in place of uk in (9.4). In most cases this supplies an adequate approximation (more
precisely, a lower bound) to the required number of events.

Given the observed data, the conditional power can be calculated in two different
ways: Either !a is set equal to an overall estimate O! of the hazard ratio at given
stage k � 1, or !a is set equal to a pre-specified value, for example, the minimum
relevant hazard ratio that is worthwhile to detect. It is also possible to compute
the conditional power for a range of parameter values ! in order to reassess the
necessary amount of information. How to estimate ! is considered next.
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9.4 Estimation of the Hazard Ratio

As an estimate O! for ! at stage k, k D 1; : : : ;K, given the log-rank test statistic,
the number of events dk, and the allocation ratio rk, one might use the unadjusted
estimate

O! D exp

�
LRkp

dk

1C rkp
rk

�

; (9.5)

that is based on

E.LRk/ D
p

dk

p
rk

1C rk
log.!/ (9.6)

(see Sect. 5.3). This estimate is reasonable if the hazard ratio is not too far from 1
and if the number of patients at risk is roughly equal in the treatment groups.

Based on (9.6), an approximate solution to the computation of repeated confi-
dence intervals for the hazard ratio is easily derived. Consider an adaptive group
sequential design with no provision for early stopping in favor of H0. Given
the critical values u1; : : : ; uK at two-sided level ˛ (or one-sided level ˛=2), the
approximate two-sided .1 � ˛/100% RCI for ! is computed as
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with zQk from (9.1), and h is given by
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where d0 D r0 D 0. Formula (9.7) is derived by finding the values ! for which
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where, given dQk,
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At stage k, these intervals are merely based on the observed values of the log-rank
test statistics LRQk, the observed number of events dQk, and the allocation ratios rQk
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specifying the proportion of patients randomized to treatment group 1 and 2 at
analysis stage Qk, Qk D 1; : : : ; k. Similar intervals were proposed by Jennison and
Turnbull (1989) for group sequential tests. Wassmer (2006) showed by simulation
that the confidence level of the RCIs as given by (9.7) is satisfactory fulfilled for
exponentially distributed survival times. Note that usually the number of patients at
risk is not a constant during the course of the trial. The proposed intervals account
for this change in the allocation ratios.

The midpoint of the confidence interval (9.7) might serve as a reasonable point
estimate for the hazard ratio, too (see Sect. 8.3). The performance of the different
estimates, including (9.5) and the ones described in Sect. 8.3, were evaluated in
Ligges (2012). She also extended the simulation result for many practically relevant
situations includes dropouts, ties, and different survival time distributions. As a final
note, there might be difficulties to supply the final analysis confidence intervals and
median unbiased estimates based on the stage-wise ordering, at least for the general
multi-stage case (see Sect. 8.4).



Part III
Adaptive Designs with Multiple

Hypotheses



Chapter 10
Multiple Testing in Adaptive Designs

In the first two parts of this book we have focused on group sequential and adaptive
designs for a single hypothesis. In many clinical trials multiple study objectives
are investigated, leading to multiple hypotheses of interest. Sometimes the wish
is then to use the information available up to an interim analysis to adapt the
hypotheses under investigation. We consider two examples to motivate the need
for adaptive designs with multiple hypotheses. Other applications and case studies
will be described and discussed in detail later in Chap. 11.

As a first example, we consider a prospectively planned adaptive clinical study
described by Posch et al. (2005), which consisted of two stages. The first stage
aimed at comparing efficacy and safety of three treatments with placebo. An interim
analysis after the end of the first stage was planned to select the treatment with
the best benefit/risk ratio for the second stage of the study. The final analysis then
aimed at the comparison of efficacy and safety for the single treatment selected at
interim with placebo while using the combined information from both stages. In this
example, the hypotheses adaptation consists of selecting a treatment at interim such
that for the final analysis we are left with testing a single hypothesis out of initially
three hypotheses (one corresponding to each treat-control comparisons).

Brannath et al. (2009b) described a clinical trial for the comparison of a new
treatment with an active comparator. The new treatment was hypothesized to be a
targeted treatment, i.e., a treatment which possibly had a higher benefit in a specific
patient subgroup. Nevertheless, the new treatment could also have a substantial
effect in the full population. In this example, an adaptive design was envisaged to
test a targeted therapy for a selected population. An interim analysis was therefore
planned to (1) validate the added benefit in the pre-specified patient subgroup, (2)
decide whether the study is warranted to continue to the next stage, or should be
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stopped for futility, and, in case that the study continues, and (3) decide whether to
include only patients from the specific subgroup or patients from the full population.
If it is decided at interim to continue with the full population, it is then determined
whether to test the hypothesis of a treatment effect in the specific subpopulation in
addition to that of the full population.

In this chapter we introduce the basic statistical methods to design and analyze
clinical trials with hypotheses adaption at an interim analysis. In Sect. 10.1 we
describe the various sources of multiplicity which can arise in such trial designs.
To avoid an inflation of the overall Type I error rate beyond a pre-specified
significance level ˛, such considerations have to be taken into account. So far, we
have concentrated on those sources of multiplicity that arise in group sequential
and adaptive designs. In this part of the book we additionally are faced with
more “traditional” multiplicity problems such as comparing multiple treatment
with a control or identifying a suitable (sub-)population. The rest of this chapter
is organized as follows. In Sect. 10.2 we review the closure principle, which is a
powerful and flexible method to construct multiple test procedures controlling the
overall Type I error rate for a given family of null hypotheses in a fixed sample
design. In Sect. 10.3 we then describe the core methodology to test adaptively
multiple hypotheses by using adaptive combination tests, which essentially apply
the methods described in Part II to the closure principle. The resulting methods are
very general and allow for flexible adaptations of hypotheses at interim. Much of
the material in this chapter is based on the review papers from Bretz et al. (2006,
2009a). In Chap. 11 we will describe how the general principle can be applied to
the most important application of confirmatory adaptive designs which are adaptive
treatment selection and adaptive population enrichment designs. We also provide
some examples on other types of adaptation.

10.1 Sources of Multiplicity

The principal differentiation of adaptive designs compared to traditional designs
without adaptations is the ability to perform interim analyses in order to take
decisions affecting the further conduct of the trial. This leads to repeatedly testing
of one or multiple hypotheses and the possibility to change design features based
on interim data. Since the same interim data is subsequently used for hypothesis
testing and estimation such approaches may cause bias in estimation and inflation
of the Type I error rate if not adequately controlled.

Table 10.1 summarizes the key sources of multiplicity and how to control
the overall Type I error rate in each case. As described in Part I of this book,
repeatedly looking at the data with the option to stop the trial early for success
by rejecting the null hypothesis may inflate the overall Type I error rate beyond
the pre-specified significance level ˛. Consequently, proper statistical methods have
to be employed, for example, group sequential methods or ˛-spending function
approaches. Similarly, the possibility of adapting design and analysis features
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Table 10.1 Sources of multiplicity and control of Type I error rate inflation (adapted from Maurer
et al. 2010)

Related techniques to control the overall
Sources of multiplicity Type I error rate

Repeated hypothesis testing with early
rejection of null hypotheses at an interim
analysis

Group sequential methods; ˛ spending
function approaches

Adaptation of design and analysis features
with combination of information across trial
stages

Combination of p-values; conditional error
function approaches; methods conditional on
known adaptation rules

Testing multiple hypotheses testing (for
example, because of comparing multiple
treatment with a control or identifying a
suitable population)

Traditional multiple testing methods, such as
the closure principle

while combining the accrued information across the various trial stages in the
final analysis may also inflate the overall Type I error rate. In Part II we have
described related approaches to control the overall Type I error rate, such as the
methods that are based on a p-values combination function or the conditional
error function. Finally, when testing more than one null hypothesis (for example,
because of comparing multiple treatment with a control or identifying a suitable
population), traditional multiple testing methods, such as the closure principle, have
to be employed.

In the following sections we demonstrate how to design and analyze adaptive
designs involving multiple null hypotheses with possible adaptations at interim,
such that the overall Type I error rate is strictly controlled by combining different
elements from Table 10.1.

10.2 The Closure Principle

In this section we briefly review the closure principle due to Marcus et al. (1976),
which is a common technique to construct powerful multiple test procedures.
The closure principle provides a large degree of flexibility to map the difference
in importance as well as the relationship between the various study objectives
onto an adequate multiple test procedure. This flexibility will be the key for the
considerations in the subsequent sections. Note that in this section we do not
consider adaptive testing.

Assume that G directional (i.e., one-sided) null hypotheses Hg
0 , g D 1; : : : ;G,

are to be tested (for example, the comparison of G treatments with a control).
Performing an ˛-level test for each of the G hypotheses Hg

0 may lead to a substantial
inflation of the overall Type I error rate. That is, the probability to reject at least
one true null hypothesis may be larger than the pre-specified significance level
˛. However, it is mandatory for confirmatory clinical trials that the probability to
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declare at least one ineffective treatment as effective is bounded by ˛. Hence the
need of multiple test procedures which strongly control the familywise error rate
(FWER) at level ˛ are needed, where the strong control of the FWER is defined as
the maximum probability of rejecting at least one true null hypothesis being lower
than ˛, irrespective of the configuration of true and false null hypotheses (Hochberg
and Tamhane 1987).

The closure principle is a general methodology to construct multiple test proce-
dures controlling the FWER in the strong sense. We define the global hypothesis as

H0 D
G\

gD1
Hg
0 :

Intersection hypotheses are, for example,

Hf2;3g
0 D H2

0 \ H3
0 :

The closure principle considers all intersection hypotheses which are constructed
from the initial set of elementary null hypotheses H1

0 ; : : : ;H
G
0 . To control the FWER,

an intersection null hypothesis HI
0 , I � f1; : : : ;Gg, can only be rejected if all

intersection hypotheses implying HI
0 are rejected, too, at level ˛. The resulting

closed test procedure is operationally defined as follows:

1. Define a set of elementary hypotheses H1
0 ; : : : ;H

G
0 of interest.

2. Derive the corresponding closed system of hypotheses consisting of all possible
intersection hypotheses HI

0 D T
g2I Hg

0 ; I � f1; : : : ;Gg.
3. For each of the hypotheses in the closed system of hypotheses find a suitable

local level-˛ test.
4. Reject HI

0 at FWER ˛, if all hypotheses HJ
0 with HJ

0 � HI
0 are rejected, each

at (local) level ˛.

It can be shown that this procedure strongly controls the FWER at level ˛ (Marcus
et al. 1976). It can be seen (intuitively) as follows: whatever collection I of null
hypotheses is true, in order to reject any of them, we need to reject their intersection
HI
0 with the given (local) level ˛ test. Hence, the probability to reject any true null

hypothesis is necessarily bounded by ˛. Note that we can specify any ˛-level test
for the intersection hypotheses. In particular, different tests can be used for different
hypotheses. This property will be exploited when constructing adaptive tests based
on the closure principle.

An elementary hypothesis Hg
0 is rejected if Hg

0 itself and all hypotheses con-
taining (i.e., implying) Hg

0 are rejected, too, each at level ˛. For G D 3, the closed
system of hypotheses is illustrated in Fig. 10.1 indicating the way of how rejection of
an elementary hypothesis is reached: Only if the global hypothesis can be rejected,
hypotheses consisting two elementary hypothesis are tested, only if an intersection
hypothesis is rejected, subsequent elementary hypotheses are tested.
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Fig. 10.1 Closed test procedure for three null hypotheses H1
0 , H2

0 , and H3
0

10.3 Closed Testing in Adaptive Designs

In this section we discuss how to test adaptively multiple hypotheses by combining
the techniques from the previous sections. The following results are rather general
and allow flexible adaptations of hypotheses at interim analyses, as illustrated later
in this section with two generic examples.

Assume that we are interested in testing G hypotheses H1
0 ; : : : ;H

G
0 using a two-

stage design with a single interim analysis. The generalization of the subsequent
methods and results to more than two stages is mostly straightforward. The general
rule is to apply the closure principle by constructing all necessary intersection
hypotheses and testing each of them with a suitable combination test (Bauer and
Kieser 1999; Kieser et al. 1999; Lehmacher et al. 2000; Hommel 2001). Following
the closure principle, a null hypothesis Hg

0 is rejected if all hypotheses implying
Hg
0 are also rejected. In the sequence we call the resulting closed test procedure as

“adaptive closed test.”
Consider Fig. 10.2 for an example of adaptively testing G D 2 hypotheses.

As before, let H1
0 ;H

2
0 , and Hf1;2g

0 denote the hypotheses to be tested according to
the closure principle. Let further pJ

k denote the one-sided p-value for hypothesis
HJ
0 ;J 2 f1; 2; f1; 2gg at stage k D 1; 2. Finally, let C. pJ

1 ; p
J
2 / denote the

combination function C applied to the p-values pJ
k from stage k D 1; 2, as

introduced in Sect. 6.2. Note that different combination functions as well as different
stopping boundaries could be used for the different intersection hypotheses (for
simplicity we omit this generalization here). According to the closure principle,
H1
0 (say) is rejected while strongly controlling the FWER at level ˛ if H1

0 and Hf1;2g
0

are both rejected each at local level ˛. In terms of the combination function C, H1
0

is rejected if C.p11; p
1
2/ � c and C.pf1;2g

1 ; pf1;2g
2 / � c for the critical value c for

which (6.1) is satisfied. In other words, H1
0 is rejected if the combination function

test is significant when applied to the first stage and second stage p-values for H1
0

and Hf1;2g
0 , respectively.

Recall from Sect. 6.3 that the combination function approach is closely related
to the conditional error function approach, i.e., the CRP principle. Accordingly, the
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Fig. 10.2 Closure principle for testing adaptively G D 2 null hypotheses H1
0 and H2

0 . Top: stage-

wise p-values for the hypotheses H1
0 ;H

2
0 , and Hf1;2g

0 . Bottom: combination function C.pJ1 ; p
J
2 /

applied to the stage-wise p-values and the underlying closed test procedure (adapted from Bretz
et al. 2006)

rejection rules derived from Fig. 10.2 can also be expressed in terms of conditional
error functions A.p1/. Following this alternative formulation, H1

0 is rejected if p12 �
A.p11/ and pf1;2g

2 � A.pf1;2g
1 /. An analogous rejection rule applies also to H2

0 .
Note that the rejection rules simplify if early rejection or non-rejection of any

hypothesis is achieved at the interim analysis. Following the notation from Sect. 6.2,
let ˛0 and ˛1 denote early stopping boundaries such that a null hypothesis is rejected
(retained) early at the interim analysis if its associated p-value is less (greater) than
or equal to ˛1 (˛0). Assume now that for the intersection hypothesis Hf1;2g

0 the first

stage p-value pf1;2g
1 � ˛1. By definition, the associated conditional error function

becomes A.pf1;2g
1 / D 1 and the condition pf1;2g

2 � A.pf1;2g
1 / D 1 is always satisfied.

Thus, Hf1;2g
0 is already rejected at the interim analysis, irrespective of the second

stage data. As a consequence, the rejection rules for the elementary hypotheses H1
0

and H2
0 simplify since now they depend only on the associated conditional error

functions A.p11/ and A.p21/, respectively. For example, H1
0 is rejected if p12 � A.p11/

as long as pf1;2g
1 � ˛1. Conversely, if pf1;2g

1 � ˛0, then A.pf1;2g
1 / D 0 and H1

0 cannot
be rejected irrespective of the second stage data. In practice, this would lead to an
early futility stop of the entire trial after the interim analysis, since by the closure
principle neither H1

0 nor H2
0 could be rejected. Finally, note that if both pg

1, g 2 f1; 2g,

and pf1;2g
1 are less than or equal to ˛1, Hg

0 is already rejected at the interim analysis
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and there is no need to continue testing Hg
0 . Kieser et al. (1999) gave a flow chart to

depict graphically the complete decision process for G D 2 hypotheses.
In the following we consider two generic examples of adaptively modifying

multiple hypotheses after an interim analysis. The first example illustrates the
selection of a treatment at interim. The second example considers a treatment switch
at interim.

Generic Example 1: Treatment Selection

Assume a two-stage design to compare two treatments with a control. At the interim
analysis it is decided which of the two treatments to carry forward to the second
stage. The final analysis for the selected treatment includes the patients from both
stages by applying an adaptive combination test. Assume without loss of generality
that one decides at the interim analysis to continue with treatment 1 and let H1

0 be
the related null hypothesis. No data is therefore available for treatment 2 from the
second stage. Consequently, the intersection hypothesis Hf1;2g

0 for the second stage
needs to be tested with the test for H1

0 . This is possible because the test for H1
0 can

also be used for Hf1;2g
0 : if H1

0 is rejected, Hf1;2g
0 is rejected in particular. Figure 10.3

depicts the closed test procedure associated with the two null hypotheses H1
0 and H2

0

together with the related stage-wise p-values as well as the resulting combination of
both stages in terms of conditional error functions.

From the closure principle it follows that we have to reject H1
0 and Hf1;2g

0 in order
to declare treatment 1 to be significantly different from the control. As seen from

Fig. 10.3 Closed test procedure with treatment selection at interim. Top: stage-wise p-values for
the hypotheses H1

0 ;H
2
0 , and Hf1;2g

0 , assuming that treatment 1 is selected at the interim analysis.
Bottom: rejection rule for H1

0 in the final analysis in terms of conditional error functions (adapted
from Bretz et al. 2006)
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Fig. 10.3, we thus require that

p12 � minfA.p11/;A.p
f1;2g
1 /g :

Equivalently, we require

C.pf1;2g
1 ; p12/ � c and C.p11; p

1
2/ � c

for both combination tests for rejecting H1
0 .

Note that the approach above also applies to other adaptive selection problems
involving two hypotheses, such as, selecting a suitable population from two pre-
specified populations. We will generalize and discuss these approaches in Sects. 11.1
and 11.2.

Generic Example 2: Treatment Switch

Assume that a study is planned to investigate a single treatment (1, say) in
comparison with a control. Assume further that at the interim analysis safety
problems are detected and it is decided to discontinue the present treatment arm.
Instead, it is decided to continue the study with a new treatment (2, say, which
could, for example, be a lower dose of treatment 1) being investigated at the second
stage. Figure 10.4 depicts the resulting closed test procedure associated with the two
null hypotheses H1

0 and H2
0 being tested in the course of the study.

Fig. 10.4 Closed test procedure with treatment switch at interim. Top: stage-wise p-values for the
hypotheses H1

0 ;H
2
0 , and Hf1;2g

0 , assuming that treatment 1 is discontinued at the interim analysis
and treatment 2 is investigated instead during the second stage. Bottom: rejection rule for H2

0 in the
final analysis in terms of conditional error functions (adapted from Bretz et al. 2006)
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Since at stage 1 no data is available for treatment 2, and vice versa at stage 2
no data is available for treatment 1, the related stage-wise p-values for the inter-
section hypothesis Hf1;2g

0 are just the corresponding p-values from the elementary
hypotheses H1

0 and H2
0 , respectively. As concluded from Fig. 10.4, H2

0 is rejected if
p22 � minfA.p11/; ˛g, i.e., if the second stage p-value p22 associated with treatment 2
is less than ˛ and less than the conditional error resulting from the first stage p-value
p11 associated with treatment 1.

Note that in this example we use the constant conditional error function ˛ for
H2
0 while we use A.p11/ for Hf1;2g

0 . Hence, we have here an example where we
use different conditional error functions for the different null hypothesis. Note also
that, in practice, the treatment switch example will probably never be applied as
described here. One would rather stop the entire study after the interim analysis
and start a second (seemingly independent) study investigating treatment 2 at full
level ˛. The above considerations are not only instructive for illustrating adaptive
combination tests, but they also put the current statistical practice into a different
perspective.



Chapter 11
Applications and Case Studies

As noted at the beginning of Chap. 10, we will now apply the general principle of
adaptive combination tests to two important situations in clinical trial designs. The
first is the design with multiple treatment arms where, based on interim results,
one or more arms are selected. The second is the design where one or more pre-
specified subsets of a population are selected for further investigation, the latter
designs are called adaptive enrichment designs. The combination testing principle
together with the closed testing principle can be used in both settings. We will
describe the procedures in detail, particularly, which intersection tests can be used
for specific situations and provide examples for the assessment of these designs.
We also provide real trial examples to illustrates how these designs were used in
practice. We then discuss other types of adaptations that were discussed in the
literature. In the last section of this chapter, we briefly discuss the added logistical
and regulatory complexity when performing adaptive designs.

11.1 Adaptive Treatment Selection in Multi-Arm Clinical
Trials

Group sequential pairwise comparisons in multi-arm clinical trial designs were
already considered by Follmann et al. (1994) and Proschan et al. (1994). They
derived critical values for the overall test statistic through simulation and showed
that, in the all-pairs comparison setting, the procedure preserves the FWER in a
strong sense if a treatment arm is dropped at some stage k of the trial if it was shown
to be inferior. Hellmich (2001) showed that otherwise (for example, if a superior
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treatment arm is dropped due to severe side effects) the FWER indeed is no more
preserved. An alternative approach, where the number of selected treatment arm
needs to be specified, was proposed by Stallard and Todd (2003) (see also, Kelly
et al. 2005). Friede and Stallard (2008) and Stallard and Friede (2008) compared
adaptive designs to group sequential designs with treatment selection. A fully
flexible approach is derived from the flexible combination testing (or the CRP)
principle together with the closed testing procedure which we will now describe
in detail (see also, Chap. 10).

Historically, multiple hypotheses testing within adaptive designs was first devel-
oped for the many-to-one comparison setting (Bauer and Kieser 1999; Hommel
2001; Lehmacher et al. 2000; Posch et al. 2005). Multi-arm clinical trials designs
with an adaptive interim analysis in order to select treatment arms have also been
referred to as adaptive seamless designs (Bretz et al. 2006; Jennison and Turnbull
2007; Maca et al. 2006; Posch et al. 2005; Schmidli et al. 2006; Wassmer 2011;
Hampson and Jennison 2015). Recently, the classical group sequential approach has
been made flexible using the closed testing and conditional error principle (Magirr
et al. 2014b), see also Gao et al. (2014). Furthermore, König et al. (2008) proposed
a procedure that is based on the conditional error of the single stage Dunnett test. In
the following, these procedures will be described.

11.1.1 Test Procedure

We consider the many-to-one comparison setting, where G experimental treatment
groups are tested against a control group. We consider testing means�g of normally
distributed variables, i.e., we are considering G elementary (null) hypotheses

Hg
0 W �0 D �g; g D 1; : : : ;G;

where �0 is the mean of the control group and �g, g D 1; : : : ;G; refer to the means
in the active treatment groups. The global hypothesis is

H0 D
G\

gD1
Hg
0 W �0 D � � � D �G :

When performing the closed test we will also consider intersection hypotheses

HJ
0 D

\

g2J
Hg
0 ; J � f1; : : : ;Gg ;
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which are, for example,

H23
0 D H2

0 \ H3
0 W �0 D �2 D �3 ;

and all elementary hypotheses Hg
0 (see Sect. 10.2).

The problem of adaptive treatment arm selection is essentially stated as follows:
If one or more treatment arms were dropped in an interim analysis and hence the
set of initial hypotheses was reduced, usually no data is available from the excluded
treatment arm(s). In this case, we define tests for intersection hypotheses involving
excluded treatment arms as tests for hypotheses for the non-excluded treatment
arms. For example, if one treatment arm, s, is selected out of G treatment arms,
all intersection hypotheses contained in Hs

0 can be tested with a level alpha test for
Hs
0. This is a valid test procedure since HJ

0 � Hs
0 for all s 2 J or equivalently: if

Hs
0 is rejected, HJ

0 with s 2 J is rejected in particular, under control of the Type I
error rate (compare Generic example 1 and 2 in Sect. 10.3).

Generally, denoting E � f1; : : : ;Gg the index set of all excluded Hg
0 , a test for

HJ
0 with J \ E 6D ; is performed as a test for HJ nE

0 . For example, when using
Bonferroni tests, the adjusted p-value for the hypothesis HJ

0 at stage k of the group
sequential test procedure is given by

padj
J ;k D minfjJ nE j min

g2J nE
fpg;kg; 1g ;

where pg;k denotes the p-value for Hg
0 at stage k. This, in general, reduces the degree

of adjustment that is necessary for testing HJ
0 . As a consequence, it increases the

power of the test procedure when deselecting one or more treatment arms. Note that
the use of the Bonferroni test together with the inverse normal combination function
is problematic because the adjusted p-value can be equal to 1 which means that the
inverse normal combination test cannot reject a hypothesis at a subsequent stage and
hence produces an implicit futility rule.

Applying this testing procedure, at the first interim analysis, it is possible to
stop the trial while showing significance of one (or more) treatment arms. This
might be possible if the closed testing procedure already shows significance for
these treatment arms using early efficacy bounds ˛1 (see Sect. 10.2). In an interim
analysis, it is also possible to stop the trial due to futility arguments. This is usually
based on conditional power calculations (see Sect. 7.2). It is expected, however, that
the first stage is specifically used to select a treatment arm to be considered in the
subsequent stages of the trial and/or to reassess the sample size for the subsequent
stages.

Given a combination function C, at the second stage the decision rule can be
formulated as follows. Let padj

J ;1 and padj
J ;2 denote the first and second stage p-values
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for elementary or intersection hypotheses tests. At the second stage, the hypotheses
belonging to a selected treatment arm s is rejected if

max
J3s

C.padj
J ;1; p

adj
J nE ;2/ � c ; (11.1)

where c denotes the critical value for the combination test (see Sect. 6.2). This can
be easily extended to designs with three or more stages. With this procedure, it is
possible to deselect treatment arms at any stage of the trial. Additionally, other types
of adaptation, e.g., a recalculation of the necessary sample size, can be performed.
Note that inconsonance can occur which means that after the rejection of the global
null hypothesis no subset or single hypothesis can be rejected (Friede and Stallard
2008). We illustrate this later on by an example.

If one treatment arm, s, is selected, condition (11.1) reduces to

max
J3s

C.padj
J ;1; ps;2/ � c : (11.2)

For G D 3 and s D 3, the latter case is illustrated in Fig. 11.1, the curved arrows
indicating which combination tests have to be carried out and showing (11.2) in
order to show significance of the selected treatment arm.

This procedure can be easily generalized for the multi-stage case using appro-
priate more general combination functions (see Sect. 6.5). We also note that this
procedure might come with a loss in power as compared to a procedure which
is based on the intersection tests for the pooled data (not a combination test of
intersection tests) if no adaptation were performed. It has the advantage, however,
to enable design adaptations (including treatment arm selection), thereby reducing
the necessary adjustment for the subsequent stages and improving power.

Fig. 11.1 Closed system of hypotheses for G D 3 if treatment arm 3 referring to hypothesis
H3
0 is selected for the second stage. The arrows indicate logical implications for hypotheses, the

solid curves indicate combination tests to be performed to show significance for H3
0 (adapted from

Wassmer 2011)



11.1 Adaptive Treatment Selection in Multi-Arm Clinical Trials 245

11.1.2 Intersection Tests

The choice of testing the intersection hypotheses is free. The resulting p-values of
the global and intersection tests will be used in the adaptive setting where they
will be combined over the stages. In the following, five tests for the intersection
hypotheses will be defined. We consider the first stage of the test procedure where
all G hypotheses are tested. For the following stage(s), the set of indices for the
selected treatment arms is a subset of G D f1; : : : ;Gg.

Let pg denote the p-value for testing Hg
0 , g D 1; : : : ;G and let p.1/ � : : : � p.G/

denote the ordered p-values of the G comparisons. Finally, let J � G, and jJ j be
defined as the number of all indices g 2 J .

Dunnett Test for Many-to-One Comparisons

Let Nx0 and Nxg denote the sample means in the control group and the experimental
treatment arm g, respectively, and let O� denote the residual standard deviation
estimate.

The adjusted p-value for testing the global hypothesis H0 is calculated through

padj D 1 � F
˙ ;
PG

gD0.ng�1/

 

max
g2G

Nxg � Nx0
O�p1=n0 C 1=ng

!

; (11.3)

where F
˙ ;
PG

gD0.ng�1/.�/ denotes the value of the cdf of the multivariate t distribution

with correlation matrix ˙ and
PG

gD0.ng � 1/ degrees of freedom when all G
arguments are equal. The elements of the correlation matrix ˙ are �gg0 D &g&g0

for g ¤ g0 where

&g D
r

ng

n0 C ng
; g D 1 : : : ;G: (11.4)

This specific multivariate t distribution (with correlation matrix having product
correlation structure) is known as the Dunnett distribution and the corresponding
test is the Dunnett test (Genz and Bretz 2009). The test can be used for normally
distributed observations with comparing means in the many-to-one comparisons
setting. The sample sizes in the treatment arms need not be the same. The
distribution was also derived for the known variance case. In an approximate sense,
the latter can also be used for comparing rates or time to event data in survival
designs (Follmann et al. 1994; Proschan et al. 1994).
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Corresponding adjusted p-values for a subset J � G are given by

padj
J D 1 � F

˙J ;
PG

gD0.ng�1/

 

max
g2J

Nxg � Nx0
O�p1=n0 C 1=ng

!

;

where ˙J is the corresponding submatrix of the matrix ˙ .

Bonferroni Test for Many-to-One Comparisons

Using the Bonferroni test, the adjusted p-value for testing a hypothesis HJ
0 , J � G,

is given by

padj
J D minfjJ j min

g2J fpgg; 1g :

We note that this adjusted p-value may become equal to 1. Hence, when using it with
the inverse normal method we may obtain combination test statistics (6.7) equal to
0 by just one of the two adjusted p-values. This implies, for example, an implicit
futility stopping criterion if the first stage adjusted p-value is equal to 1.

Šidák Method for Many-to-One Comparisons

With the Šidák test, the adjusted p-value for testing a hypothesis HJ
0 , J � G, is

given by

padj
J D 1 � .1 � min

g2J fpgg/jJ j :

With the Šidák test the adjusted p-values are always smaller than 1 and hence, even
not with the inverse normal combination function, no implicit early acceptance can
occur.

Simes Method for Many-to-One Comparisons

With the Simes intersection test, the adjusted p-value for testing a hypothesis HJ
0 ,

J � G, is given by

padj
J D min

g2J f jJ j
g

p.gJ /g ;

where p.1J / � : : : � p.jJ jJ / denote the ordered p-values from the subset J � G.
We note that both Simes and Šidák derived p-values for intersection hypotheses

yield valid level ˛ test procedures because the elements of ˙ are always positive. In
this case, under normality and if the residual standard deviation O� estimate is used
for calculating the p-values, the underlying inequalities hold (Sarkar and Chang
1997; Finner et al. 2015; Huque 2016).
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A Priori Hierarchical Test

This test assumes a fixed ordering of the hypotheses under consideration with regard
to their importance. It is a stepwise procedure starting with the hypothesis of highest
order. If this hypothesis is rejected, the hypothesis of second order is tested, and only
if this is rejected the next hypothesis is tested, and so on. Generally, a hypothesis
is rejected if all hypotheses with higher order are rejected as well. Assume that
hypotheses with higher indices have higher importance. Consequently, the adjusted
p-value for testing a hypothesis HJ

0 , J � G, is given by

padj
J D pmaxfg2J g ;

where maxfg 2 Jg corresponds to the hypothesis in J with the highest importance.

11.1.3 Overall p-Values and Confidence Intervals

In the multi-arm testing situation, overall (repeated) p-values for a hypothesis Hg
0

are defined as smallest significance level for which the test results yield rejection of
the considered (single) hypothesis Hg

0 (see Sect. 8.1):

pk
g D minf˛ W Hg

0 can be rejected at stage kg :

These are generally found by numerical root finding and can be calculated at any
stage of the trial with the full adaptive closed test at multiple level ˛. By definition,
at stage k, an overall p-value pk

g falls below the overall significance level ˛ if and
only if the corresponding hypothesis Hg

0 can be rejected at stage k. Hence, these p-
values account for the sequential adaptive and step-down nature of the closed testing
principle. By this they are completely consistent with the test decision.

The calculation of overall confidence intervals is more problematic. In general,
confidence intervals based on stepwise testing procedures are difficult to construct.
This is a specific feature of multiple testing procedures and not of adaptive or
sequential testing. On the other hand, Posch et al. (2005) proposed to construct
repeated confidence intervals based on the single-step adjusted overall p-values as
follows (see also, Bretz et al. 2009a):

Consider the hypotheses

Hg
0.ıg/ W �g � �0 D ıg; g D 1; : : : ;G;

with corresponding p-values pg;k.ıg/ at stage k. Essentially, adjusted p-values for
testing Hg

0.ıg/ are defined as functions of pg;k.ıg/ alone, without taking into account
the step-down nature of the testing procedure. For example, for the Bonferroni and
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Simes test,

padj
g;k.ıg/ D minf1; jSkj pg;k.ıg/g ;

where Sk denotes the set of active treatment arms that are selected at stage k (i.e.,
S1 D f1; : : : ;Gg). For the Šidák test,

padj
g;k.ıg/ D 1 � .1 � pg;k.ıg//

jSkj ;

and for Dunnett test

padj
g;k.ıg/ D 1 � F˙Sk ;

P
g2f0g[Sk

.ng�1/

 
Nxg;k � Nx0;k � ıg

O�p1=n0;k C 1=ng;k

!

:

For the a priori hierarchical intersection test, this p-value and hence the repeated
confidence interval are not defined.

The confidence intervals are computed separately for each treatment arm g that
was selected for stage k. By use of the given combination function C with critical
value c the lower bound of the repeated confidence interval for treatment arm g 2 Sk

at stage k is found by the values ık for which the test yields non-rejection at stage k,
i.e.,

C.padj
g;1.ıg/; : : : ; p

adj
g;k.ıg// � c : (11.5)

The upper bound can be found analogously.
For example, when using the unweighted inverse normal method, the Bonferroni

adjustment and one active treatment arm s 2 G selecting for the second stage,
the lower bound of the confidence interval for treatment arm s by using (11.5) is
obtained by

maxfıs W 1 �˚..˚�1.1 � minf1;G ps;1.ıs/g/C ˚�1.1 � ps;2.ıs///=
p
2
� � cg :

If a binding stopping for futility criterion is chosen, the determination is equivalent
to the way as described in Sect. 8.2.2.

These RCIs are not, in general, consistent with the test decision. It might happen
that, for example, a hypothesis is rejected but the lower bound of the CI is below 0.
If only the treatment arm with the smallest p-value was selected in the first stage of
the trial, however, the resulting confidence intervals are completely consistent with
the test decision. Simultaneous confidence intervals that are in general consistent
with adaptive closed tests are provided in Magirr et al. (2013). We further note that
these RCIs may fail to become narrower with increasing sample size for the second
or subsequent stages. This is the case if the adjustment leads to an implicit futility
stopping rule like with the Bonferroni adjustment and the inverse normal method.
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11.1.4 Numerical Example

We illustrate the performance of the test procedure and the way to calculate overall
p-values and confidence intervals for a two-stage adaptive design with the use of
the unweighted inverse normal method. As for the example in Sect. 8.2.4 we use
critical values according to the Wang and Tsiatis class with� D 0:25 at a one-sided
significance level ˛ D 0:025. These are given by ˛1 D 0:00768 and c D 0:0208

(or u1 D 2:4239 and u2 D 2:0382). We consider testing the mean � of normally
distributed observations in G D 3 active treatment arms and one control arm. The
variance, �2, is assumed to be unknown. Suppose the study was planned with sample
size n1 D n2 D 20 per stage and treatment arm and suppose that at the first stage of
the trial the observation as summarized in Table 11.1 were made.

The p-value of the Dunnett test for testing the global hypothesis H0 W �0 D
�1 D �2 D �3 is 0.0224 which is calculated from the Dunnett t distribution with
maxg2G tg D 2:442, df D 80, and &g D p

ng=.n0 C ng/ D 0.6708, 0.7149, 0.6988
from (11.4). This can be done, for example, with the R package mvtnorm (Genz
et al. 2014) using the syntax (note that a slightly different value can be obtained
which is due to the Monte Carlo integration error)

corr <- diag(3)
corr[2,1] <- 0.6708*0.7149
corr[3,1] <- 0.6708*0.6988
corr[3,2] <- 0.7149*0.6988
p <- 1 - pmvt(lower=-Inf, upper=2.442, delta=rep(0, 3),

df=80, corr = corr)

Since ˚�1.1 � 0:0224/ D 2:006 < u1, the global hypothesis cannot be rejected
and therefore none of the hypothesis Hg

0 W �0 D �g, g D 1; 2; 3.
Note that the same holds true if we would have pre-planned the Bonferroni,

Šidák, or Simes test, respectively, for testing the global intersection hypothesis. For
the Bonferroni test, the p-value for testing H0 is

padj
G D minf3 � 0:0084; 1g D 0:0252 ;

Table 11.1 First stage results (means Nxg, standard
deviation O�g, sample sizes ng, test statistics tg, and
p-values pg, p-values pg, g D 0; 1; 2; 3, the latter
two based on an overall estimate of the standard
deviation which is O� D 2:197) of a hypothetical
trial with three treatment arms and a control

Treatment arm 0 1 2 3

Nxg 1.1 1.4 2.7 2.6

O�g 1.8 2.1 2.5 2.3

ng 22 18 23 21

tg – 0.430 2.442 2.237

pg – 0.3343 0.0084 0.0140
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for the Šidák test, the p-value is

padj
G D 1 � .1 � 0:0084/3 D 0:0250 ;

and for the Simes test, the p-value is

padj
G D min

g2G f3 � 0:0084; 3=2� 0:0140; 0:3343g D 0:0210 :

For all these tests the p-value is larger than ˛1 or, equivalently, the inverse normal
transformation is smaller than u1. Note that even if the second treatment arm was
fixed as the arm that is related to the hypothesis with highest order, a hierarchical
test does not achieve significance at the first stage.

Obviously, the effect in the first treatment arm is so small that the arm should be
dropped for further analysis. The effects in the other treatment arms are of similar
magnitude such that there is no clear preference which treatment arm to select.
For example, if treatment arms refer to increasing doses of a drug, choosing the
second arm might be preferable because it is undesirable to administer unnecessarily
high doses. On the other hand, if there are no serious safety concerns, it might be
reasonable to select both treatment arms for stage 2. It is important to recognize
that the adaptive procedure allows a free selection of treatment arms and hence all
options are valid choices.

Assume that treatment arms 2 and 3 are selected for the second stage. Since the
effect sizes in both treatment arms yield small p-values there is no reason to increase
the sample size per treatment arm for the second stage. We therefore assume that the
sample sizes are again planned to be 20 per treatment arm at stage 2. Let us assume
the stage 2 results are as summarized in Table 11.2.

The p-value of the Dunnett test for the second stage data alone (for testing
the hypothesis H23

0 W �0 D �2 D �3) is 0.1219 which is calculated with
the Dunnett t cdf with maxg2GnE tg D 1:479, where E D f1g, df D 55, and
&g D p

ng=.n0 C ng/ D 0.7264, 0.7511 from (11.4).

Table 11.2 Second stage results (means Nxg,
standard deviation O�g, sample sizes ng , test
statistics tg, and p-values pg, g D 0; 2; 3, the
latter two based on an overall estimate of the
standard deviation which is O� D 2:026) of
a hypothetical trial with three treatment arms
and a control if treatment arm 1 is deselected

Treatment arm 0 1 2 3

Nxg 1.3 – 2.3 2.1

O�g 2.1 – 2.2 1.8

ng 17 – 19 22

tg – – 1.479 1.223

pg – – 0.0725 0.1133
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Now, .˚�1.1 � 0:0224/ C ˚�1.1 � 0:1219//=
p
2 D 2:242 > 2:038, and

therefore the global null hypothesis can be rejected. For performing the closed
testing procedure, we also calculate the inverse normal test statistics for testing the
hypotheses in the closed system of hypotheses. We obtain

– for the hypothesis H12
0 W �0 D �1 D �2:

.˚�1.1 � 0:0158/C ˚�1.1 � 0:0725//=p2 D 2:550,
– for the hypothesis H13

0 W �0 D �1 D �3:
.˚�1.1 � 0:0261/C ˚�1.1 � 0:1133//=p2 D 2:228,

– for the hypothesis H23
0 W �0 D �2 D �3:

.˚�1.1 � 0:0157/C ˚�1.1 � 0:1219//=p2 D 2:345,
– for the hypothesis H2

0 W �0 D �2:
.˚�1.1 � 0:0084/C ˚�1.1 � 0:0725//=p2 D 2:721,

– for the hypothesis H3
0 W �0 D �3:

.˚�1.1 � 0:0140/C ˚�1.1 � 0:1133//=p2 D 2:408.

Note that for the hypotheses H12
0 W �0 D �1 D �2 and H13

0 W �0 D �1 D �3 the
second stage p-value for testing H2

0 W �0 D �2 and H3
0 W �0 D �3, respectively,

are used. The first stage p-values 0.0158, 0.0261, and 0.0157 are obtained with
the Dunnett t distribution with df D 80 and appropriate correlation structure, for
example, 0.0158 is from the Dunnett t cdf with maxg2f1;2g tg D 2:442, df D 80, and
&g D p

ng=.n0 C ng/ D 0.6708, 0.7149.
All test statistics exceed the critical boundary, 2.038, and therefore the hypothe-

ses H2
0 W �0 D �2 and H3

0 W �0 D �3 can be rejected. We leave as an exercise to
check that the Simes test as well as the Bonferroni or the Šidák method yield the
same results.

The overall repeated p-values can be found by a bisection search yielding the
values p22 D 0:0147 for the hypothesis belonging to the second treatment arm, and
p23 D 0:0157 for the hypothesis belonging to the third treatment arm. Since both are
smaller than 0.025, this corresponds to the test decision. For an overall significance
level of 0.0147, the critical value for the second stage within the Wang and Tsiatis
class with � D 0:25 is u2 D 2:242. Thus, the global hypothesis’ test statistic
is on the boundary. Furthermore, all test statistics for hypotheses containing the
hypothesis belonging to the second treatment arm can be rejected, too. For an overall
significance level of 0.0157, u2 D 2:217 and thus the p-value for H13

0 W �0 D �1 D
�3 is also on the boundary. This illustrates that the overall p-value accounts for the
step-down nature of the closed testing procedure yielding an exact correspondence
to the test decision.

Unfortunately, this is not true for the repeated confidence intervals. Applying
the method described in Sect. 11.1.3, a bisection search yields the 95 % confidence
intervals .0:0925I 2:53/ and .�0:0602I 2:37/ for the second and third treatment arm
effect size, respectively. Although, using the closed test procedure, both related
hypotheses could be rejected, the confidence interval related to the third treatment
arm contains the null value. This is an undesirable property of the described
confidence intervals that follows from the step-down nature of the closed testing
approach.
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If one treatment arm with the largest test statistic is selected for the second stage,
the rejection of the global hypothesis implies the rejection of the hypothesis related
to the selected hypothesis. This is true for the Dunnett test as well as for the other
intersection tests (and clearly for the hierarchical test procedure, too). In general,
however, one has to calculate the p-values of all intersection tests within the closed
system of hypotheses in order to decide which hypotheses can be rejected. Brannath
and Bretz (2010) derived an algorithm to construct shortcuts and illustrated it with
several applications.

We finally note a property of the test procedure that might be considered as
undesirable. Suppose, for example, that the third treatment arm was dropped for
further analysis, for example, due to safety concerns. Suppose further that for
the third treatment arm and also for testing the intersection hypothesis H13

0 , p-
values less than 0.00768 = ˛1 were obtained. Furthermore, assume that significance
for testing the global hypothesis was not achieved yet. So we proceed to the
second stage as described before and obtain significance for testing the hypothesis
belonging to the second treatment arm. Because the global hypothesis can be
rejected now, and all intersection hypotheses belonging to the third treatment arm
can be rejected, too, at the second stage the hypothesis related to treatment arm 3
can be rejected although no additional data was observed. This looks curious but is
a described and well-known property of stepwise testing in multiple testing theory.

11.1.5 Adaptive Dunnett Test

König et al. (2008) proposed a procedure that is based on applying the CRP principle
as described in Sect. 6.3.3. They showed that this procedure uniformly improves the
Dunnett test if treatment arms where selected in an interim stage. The test coincides
with the classical Dunnett test if no treatment arm selections (or other adaptations)
were performed. Application within the closed testing procedure is straightforward.
The procedure is different to the inverse normal method, when a Dunnett test is
used for testing intersection hypotheses, and is generally more powerful. We will
see, however, that the gain in power is only small.

The proposed test is a two-stage procedure where in the interim analysis the
conditional Type I error rate for the Dunnett test is calculated. Assume that the
variance �2 is known and treatment means Nx.1/0 ; : : : ; Nx.1/G from the first stage data with
sample sizes n0; : : : ; nG are calculated. Assume that the information rates that relate
the first stage sample size to the pre-planned overall sample size Ng in treatment
group g are t1g D ng=Ng, g D 1; : : : ;G. The conditional Type I error rate is then
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given by

˛G D ˛G.z
.1/
1 ; : : : ; z

.1/
G /

D 1 �
Z 1

�1

Y

g2G
˚

0

B
@

cG.˛/ � p
t1gz.1/g Cp

1 � t1g &g x
q
.1 � t1g/.1� &2g /

1

C
A '.x/ dx ;

(11.6)

where

&g D
r

ng

n0 C ng
;

z.1/g D Nx.1/g � Nx.1/0
�.
p
1=ng C 1=n0/

D Nx.1/g � Nx.1/0
�

&g
p

n0 ; g D 1; : : : ;G;

and cG.˛/ is the critical value for performing the Dunnett test at level ˛ with G
active treatment arms.

Formula (11.6) needs to be computed with a numerical integration method.
Before we show (11.6) we first derive the formula for the overall Type I error rate
of the Dunnett test:

Unconditionally, under H0, for the maximum of standard normally distributed
test statistics Z.2/1 ; : : : ;Z

.2/
G , that are the summarized test statistics for the treatment

arms,
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We now turn to the proof of (11.6). Since

Z.2/g D p
t1gZ.1/g Cp

1 � t1gZ2g ; (11.7)

where Z2g is the observed test statistic from the second stage data and Z.2/g is the
observed overall test statistic for treatment arm g at the final stage, conditional on
the first stage test statistic,

˛G D P.maxfZ.2/1 ; : : : ;Z
.2/
G g � cG.˛/ j z.1/1 ; : : : ; z
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and therefore, by the same arguments as above, we obtain
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At the interim stage, treatment selection and/or sample size recalculation (for
example, based on conditional power) can be performed. If the second stage test
is a test at level ˛G , the procedure preserves the overall level. Assume a set S �
f1; : : : ;Gg of treatment arms were selected for the second stage. König et al. (2008)
proposed two tests for the global test of H0 \ HS

0 at the final stage. The first is to
perform a conditional second stage Dunnett test at level ˛G , the second is based on
a corresponding unconditional test.
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For the conditional second stage Dunnett test, the p-value at the final analysis is
given by

1 �
Z 1

�1

Y

g2S
˚

0

B
@

maxg2S z.2/g � p
t1gz.1/g Cp

1 � t1g &g x
q
.1 � t1g/.1 � &2g /

1

C
A '.x/ dx : (11.8)

(11.8) is similar to (11.6), with cG.˛/ replaced by the observed maximum statistic
maxg2S z.2/g where z.2/g is calculated as in (11.7) with the pre-planned weights t1g,
and the integration performed over the selected treatment arms.

If the unconditional test is used, the p-value is calculated from the second stage
data alone and given by

1 �
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maxg2S z2g C &g x
q
1 � &2g

1

C
A '.x/ dx ; (11.9)

where &g can be different from stage 1.
Application of the tests based on (11.6)–(11.9) within the closed testing pro-

cedure as described in Sect. 11.1.1 yields a multiple testing procedure for the
considered closed system of hypotheses. That is, for each intersection hypothesis
HJ
0 , J � G the conditional error ˛J is calculated. HJ

0 is rejected if the p-value is
smaller than ˛J where the test for HJ

0 with S � J is formally performed as test
for HJ\S

0 .
The test based on (11.8) coincides with the classical (single stage) Dunnett test if

no treatment arms were selected and no sample size adaptations were conducted. If
only one treatment arm is selected for the second stage, it is easy to see that (11.8)
coincides with (11.9) (König et al. 2008) and so the procedures are exactly the same.
If sample size recalculations were performed the test based on (11.8) assumes the
&g, g D 1; : : : ;G, to be constant over the stages, otherwise the test based on (11.9)
should be used (where &g in (11.9) is obtained from the second stage data). Both tests
require the variance to be known and therefore the sample sizes to be quite large
in order to obtain valid approximate results. If this is not the case the conditional
error rate is difficult to calculate and relies on additional assumptions (Posch et al.
2004; Timmesfeld et al. 2007; Gutjahr et al. 2011). Note also that no formal
stopping rules are foreseen, i.e., the interim analysis is carried out solely to perform
a data-dependent treatment arm selection and/or a sample size recalculation. If
stopping rules are taken into account it is straightforward though computationally
cumbersome to derive adjusted limits for the test decision. An alternative is to use
the separate stage p-values from the Dunnett test and combine them with the use of a
combination function. The latter procedure has the additional advantage to account
for the unknown variance case if the residual variance estimate per stage is used.
The use of both (11.3) and (11.9) provides exact Type I error control that can be
used within the closed test procedure.
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Power Comparison

An interesting question is whether the use of the CRP principle considerably
improves the power of the adaptive design. We will compare three procedures for
a multi-arm design with G D 3 treatment arms at the first stage at given overall
significance level ˛ D 0:025. For a more extensive comparison of the conditional
Dunnett test with other approaches, see Friede and Stallard (2008).

The first two procedures are the ones that use the conditional error rate (11.6)
and use either the conditional p-value (11.8) or the unconditional p-value (11.9).
We compare these two with the inverse normal combination test where at each stage
the Dunnett test is used (assuming the variance to be known) and no interim stops
are foreseen. We assume that the treatment arms are corresponding to a linear dose–
response relationship with standardized slope ı. That is, for example, if ı D 0:3,
the standardized treatment arm effects are 0:10, 0:20, and 0:30 for the first, second,
and third treatment arm, respectively; if ı D 0:6, the effects are 0:20, 0:40, and
0:60, and so on. We consider standardized slopes ı ranging from 0 to 1. For fixed
sample sizes n D 20 for each treatment arm and stage, this provides power values
(defined as the probability of declaring at least one treatment arm as effective) in a
reasonable range. We consider four rules for selecting the treatment arm(s) for the
second stage:

1. select the best,
2. select the best and the second best,
3. select all,
4. select the best and the arm(s) that are not worse than � D 0:25 than the best,

where “best” is defined in terms of the observed effect which is the difference
between the means. The last selection rule was proposed in Kelly et al. (2005)
and used in Friede and Stallard (2008). Here, the number of actually selected
treatment arms is flexible, and hence the overall sample size is random. Since no
other adaptation than treatment arm selection is performed, we use constant weights
for the inverse normal combination function and t1g � 0:50 in (11.6). Figure 11.2
illustrates the power of the three procedures for the four selection rules.

As shown in König et al. (2008), the conditional Dunnett test performs best for
all situations. However, for the considered situations, the gain in power as compared
to the other procedures is only small. If one treatment arm is selected, there is
even no remarkable difference at all as compared to the combination test (the two
conditional Dunnett tests coincide). Only if no treatment is dropped, the “pure”
conditional Dunnett test considerably outperforms the other two tests and it seems
that the combination test procedure is very similar to the separate stage conditional
Dunnett test. The last selection rule is some kind of mixture between the other three
selection rules and might represent a practically relevant situation. Accordingly, the
conditional Dunnett performs best though only to a small amount. We note that
the use of this procedure specifically assumes the allocation ratios to be the same
over the stages and the variance to known. It is therefore questionable if the smaller
power gain compensates the more relevant disadvantages in practicability.
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Fig. 11.2 Power (reject at least one hypothesis) in dependence of ı D �=� of three adaptive
multi-arm design procedures, for four selection rules as explained in the text

Here, we only consider one effect size pattern which is defined through a linear
relationship between treatment arms and effect sizes. We can also consider other
relationships, for example, defined through an exponentially shaped parameter
curve, an umbrella like shape, a logistic shape, a sigmoid Emax shape, or a
parameter shape with constant effect sizes for all treatment arms, for details see,
for example, Bretz et al. (2005, 2009a) or Dragalin et al. (2007). Generally, the
performance of the procedure depends also on other issues, such as the selection
rule for the selected treatment arm(s), or on the sample size reassessment rule at
the interim stages. We also note that we used a simple definition of power in this
simulation. If there are multiple hypotheses, there are different ways to define the
power (Senn and Bretz 2007).

An interesting selection rule is the r-s-selection rule which was originally
suggested by Bretz and Maurer (unpublished) (Bretz et al. 2009a). The number and
the way to select the treatment arms are not fixed, instead this is done according
to specified probabilities. The selection rule is defined by two probability vectors
r D .r1; : : : ; rG/ and s D .s1; : : : ; sG/ with

PG
gD1 rg D PG

gD1 sg D 1 and the
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element rg and sg, g D 1; : : : ;G defined by

rg D P(Select g treatment arms) ;

sg D P(Start selection at the gth best treatment arm) :

For example, rg D 1 and rg0 D 0 for g0 6D g, and s1 D 1 and sg0 D 0 for
g0 6D 1, results in the g best treatment arms selection rule. This rule might represent
the variety of selection rules applied in different clinical studies and hence might
realistically represent a company’s strategy to select treatment arms (Bretz and
Wang 2010).

11.1.6 Other Endpoints

So far, the described procedures assume normally distributed endpoints. In this
case, the individual intersection tests are either exactly exhausting the Type I error
rate (for example, when the Dunnett t test within the inverse normal combination
test is used) or conservative. For example, the Bonferroni, Simes, and Šidák based
procedures are generally conservative. Note that the estimation of the variance for
the conditional Dunnett test in Sect. 11.1.5 involves a slight anti-conservatism and
therefore assumes the sample sizes to be large enough in real applications.

As described in Sect. 5.2, the group sequential theory can be easily adapted for
the use of binary data where the test statistic (5.13) for testing

Hg
0 W �0 D �g; g D 1; : : : ;G;

can be repeatedly used for group sequential testing. This provides approximate Type
I error rate control. It is now straightforward to calculate the test statistic (5.13)
from the stage-wise data and to combine the stages with a suitable combination
test. Furthermore, for the many-to-one treatment arm comparison, this can be done
pairwisely such that this procedure can be used within the closed test procedure as
described above. It approximately controls the Type I error rate even for the Dunnett
intersection test if the correlation is calculated as in the normal case with the use
of (11.4), and df is set to infinity. Also, the conditional Dunnett test can be used
analogously. The calculation of confidence intervals is possible with the use of a
combination test and an appropriately defined test statistic or p-value padj

g;k.ıg/. As
already mentioned in Sect. 5.2, a number of approaches are available for this which
can be used for the adaptive combination test. Note also that it is possible to use
Fisher’s exact test for the pairwise comparisons per stage, however, this test turns
out to be very conservative within the combination test approach.
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For survival trials, in Sect. 9.1 we described how to use the combination testing
principle. For many-to-one comparisons this can be done pairwisely by testing

Hg
0 W !g D 1; g D 1; : : : ;G:

Denoting dg;k, g D 1; : : : ;G, k D 1; : : : ;K, the number of events in the comparison
of treatment group g with the control group up to stage k,

Zg;k D
p

dg;k LR�
g;k �p

dg; k�1 LR�
g; k�1

p
dg;k � dg; k�1

; g D 1; : : : ;G; k D 1; : : : ;K;

is the approximately independent increment of the log-rank statistic for analysis
set g in stage k. This test statistic can be used within the combination test yielding
approximate control of Type I error rate in the adaptive case (Wassmer 2006).

Therefore, in principle there is no problem to apply the methods as described
before for survival trials. Also the Dunnett test can be used with the stage-wise test
statistics, and a suitable estimate of the correlation is given by (11.4) where the
sample sizes are replaced by the corresponding stage-wise events. A problem arises
if not only the test statistic (or the p-value) itself but also a correlated endpoint
is used for the design adaptation at interim. We already described the problem
in Sect. 9.2 and gave some relevant literature. The use of correlated information,
however, is typical in survival trials with treatment arm selection. Here it often
happens that the selection of a treatment arm at an interim analysis is based on
the efficacy and safety for a surrogate parameter or some other correlated endpoint,
rather than the clinical (primary) endpoint alone. This is because the primary
outcome is usually assumed to be a long-term endpoint and hence the selection
procedure would only be performed at a late stage of the trial if based on this
endpoint. Hence, it is reasonable to use an endpoint with an earlier availability for
the selection of the treatment arm. Recently, some proposals were made to overcome
the problem that Type I error rate control cannot be guaranteed anymore with the
naïve use of the closed adaptive test. Essentially, proposals are either based on a
modification of the combination testing principle or the CRP approach (Jenkins et al.
2011; Magirr et al. 2014a; Mehta et al. 2014; Irle and Schäfer 2014; Stallard et al.
2014; Carreras et al. 2015) or requiring additional assumptions regarding the joint
distribution of the primary and the short-term endpoints (Di Scala and Glimm 2011;
Stallard 2010). There is intensive ongoing research in this area.

11.1.7 Case Studies

We briefly summarize some trials with adaptive treatment selection which we take
from a recent summary in Bauer et al. (2016). First of all, Zeymer et al. (2001) con-
ducted an international, prospective, randomized, double-blind, placebo-controlled
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Phase II trial in patients undergoing thrombolytic therapy or primary angioplasty
for acute ST-elevation myocardial infarction applying a two-stage adaptive design.
This is the first major clinical trial using adaptive design methodology for many-
to-one comparisons with dose-selection at an adaptive interim analysis. A two-stage
design with Fisher’s combination test and trend tests for the stage-wise p-values was
used. Two doses out of four were selected. Finally, no hypotheses could be rejected,
unfortunately, and so the trial did not succeed in showing that the drug was superior
to placebo at any of the investigated dose levels (for some more details, see Bauer
et al. 2016).

Other examples of adaptive treatment selection designs have been implemented
since then (Morgan et al. 2014): INHANCE (Donohue et al. 2010) was a multi-
national, multicenter, double blind, double dummy, two-stage adaptive, parallel
group study design with blinded formoterol, and open label tiotropium as active
controls in patients with chronic obstructive pulmonary disease (COPD). This trial
was one of two pivotal trials to support registration and label claims of indacaterol
as novel therapy for the treatment of COPD. The aim of the trial was to provide
pivotal confirmation of efficacy, safety, and tolerability of the selected doses of
indacaterol, where the dose selection is done at a pre-specified interim analysis.
In this case study, a two-stage Phase III adaptive design was an appropriate
option, because “dose” was the only major remaining question and a large body
of evidence was available at the end of Phase II. Overall, this design led to a
reduction of approximately 15 % in terms of development program length, number
of patients, and costs as compared to a more traditional design of two sequential
trials. INHANCE was included as a pivotal study in submissions to regulatory
agencies globally and indacaterol is now approved in all major markets globally
for once-daily maintenance bronchodilator treatment of airflow obstruction in adult
patients with COPD. The results of the interim analysis of INHANCE have been
published in full (Barnes et al. 2010), as have those of the final analysis (Donohue
et al. 2010). More details on the methodology employed in this trial can be found in
Lawrence and Bretz (2014) and Lawrence et al. (2014).

Hemangeol was developed as the treatment for proliferating infantile heman-
gioma requiring systemic therapy. It was developed for the use in pediatric
population following the guidelines of health regulatory agencies. The Phase III
development of Hemangeol was based on a two-stage confirmatory adaptive trial
with regimen selection at the end of the first stage, in order to identify the
appropriate dose and duration for further study in the second stage. Early stopping
for futility and sample size reestimation were also considered at the interim analysis.
The aim of this trial was to demonstrate the superiority of the selected dose(s) over
placebo and to document its safety profile. Marketing authorization of Hemangeol
was granted by both FDA and EMA in 2014. Heritier et al. (2011) provided
statistical details of this adaptive design.

Secretory diarrhea in HIV positive patients remains a serious unmet clinical need,
even and especially in the age of highly active anti-retroviral therapy. In late 2012
crofelemer was approved by the FDA as a first-in-class anti-diarrheal agent indicated



11.2 Adaptive Enrichment Designs 261

for the symptomatic relief of non-infectious diarrhea in adult HIV patients on anti-
retroviral therapy. The safety and efficacy of crofelemer were established through
ADVENT, a two-stage adaptive clinical trial with dose selection at the end of stage
1 (Chaturvedi et al. 2014).

11.2 Adaptive Enrichment Designs

Adaptive enrichment designs are applicable where studies of unselected patients
might be unable to detect a drug effect and it seems necessary to “enrich” the
study with potential responders, defined as a subpopulation of the unselected patient
population. If this is done in an adaptive and data-driven way (i.e., it is not
clear upfront whether to use the selected population and this is decided based on
data observed at an interim stage) we might use “adaptive population enrichment
designs” (Wang et al. 2007, 2009). We note that Temple (1994) was the first who
used the term “enrichment” for this and similar kinds of patient selection.

Adaptive population enrichment designs enable the data-driven selection of one
or more pre-specified subpopulations in an interim analysis, and the confirmatory
proof of efficacy in the selected subset(s) at the end of the trial. Sample size
reassessment and other adaptive design changes can be performed as well. As for the
adaptive treatment arm selection designs described in the last section, strong control
of the FWER is guaranteed by use of the combination testing principle together with
the closed testing procedure.

Enrichment factors may be predictive biomarkers, or they may be biomarkers
or clinicopathologic or demographic characteristics associated with a predictive
biomarker or with the target of a therapeutic agent. The lower the proportion
of truly benefiting patients, the more advantageous it is to consider studying an
enriched population. However, instead of limiting the enrollment only to the narrow
subpopulation of interest, prospectively specified adaptive designs may also be used
to consider the effect of the experimental treatment both in the wider entire patient
population under investigation and in various subpopulations.

In this section we briefly describe the general methodology that makes use of the
combination testing principle and the closed testing principle. This is equivalent
to the methodology described for adaptive treatment arm selection design (see
Sect. 11.1.1). It was first proposed in Brannath et al. (2009b) who used Bayesian
decision tools for the selection rule (see also, Götte et al. 2015; Graf et al. 2015;
Krisam and Kieser 2014). We describe the methodology and designing issues when
planning such a design, and give some clinical trial examples where such design can
be used. This will be along the lines of the presentation in Wassmer and Dragalin
(2015). We note that alternative approaches were proposed in the literature, for
example, the approach proposed by Rosenblum and van der Laan (2011). This
procedure is restricted to a two-stage design, a predefined selection rule, and the
normal case with known variance. As an essential feature, this restriction is not
required for the procedure described here (see also, Rosenblum 2015). A systematic
review of (also exploratory) procedures for enrichment designs is provided in Ondra
et al. (2016).
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11.2.1 Test Procedure

Assume there is a full population F with G � 1 pre-specified subpopulations of
interest denoted as S1; S2; : : : ; SG�1 such that Sg � F. Let SG denote the full
population F. We consider a set of G elementary hypotheses

H
Sg

0 W �g
0 D �

g
1; g D 1; : : : ;G;

where H
Sg

0 tests the effect of the experimental treatment �g
1 versus control �g

0 in
subpopulation Sg.

As before, the closed system of hypotheses consists of all possible intersection
hypotheses

HJ
0 D

\

g2J
H

Sg

0 ; J � f1; : : : ;Gg:

If each hypothesis is tested by a suitable local level ˛ test, a hypothesis HJ
0 can be

rejected with strong control of the FWER ˛ if all intersection hypotheses HI
0 with

J � I are rejected, each at local level ˛. Specifically, any elementary hypothesis
H

Sg

0 can be rejected if all intersection hypotheses HJ
0 with J 3 g are rejected at

local level ˛.
For a multi-stage design with no interim selection of subpopulations, the

complete set of intersection hypotheses is tested for each stage k, yielding p-
values pJ ;k for each intersection hypothesis HJ

0 . These p-values are combined
according to the specified combination test, for example, the inverse normal method
or Fisher’s combination test. As for the treatment arm selection case, we note that
this procedure might have a power disadvantage as compared to the procedure where
the p-values are obtained from the pooled data. However, we have the advantage
that data-driven adaptations including subgroups selection are possible, thereby
improving power.

In this case, the global test decision at stage k is determined based on testing the
global hypothesis

H0 D
G\

gD1
H

Sg

0

with the selected combination test.
If a subpopulation selection has been performed at an interim stage, the

same problem as described in Sect. 11.1.1 arises: not all tests of the intersection
hypotheses HJ

0 are available for the subsequent stages. As a solution, we define



11.2 Adaptive Enrichment Designs 263

tests for intersection tests involving excluded subpopulations as tests for the non-
excluded subpopulations. That is, if a subset Sk of analysis sets is selected for stage
k, the p-values for HJ

0 are replaced by the p-values for HJ\Sk
0 . The closed testing

procedure is then performed as described above, combining the p-values from the
earlier stage(s) with their counterparts, if they exist, or with the replaced p-values.

Formally, given a combination function C, at the second stage the hypotheses
belonging to a selected subpopulation s are rejected if

max
J3s

C.padj
J ;1; p

adj
J nE ;2/ � c ; (11.10)

where E � f1; : : : ;Gg denotes the index set of all excluded Hg
0 , and c denotes

the critical value for the combination test. If one subpopulation, s, is selected,
condition (11.10) reduces to

max
J 3s

C.padj
J ;1; ps;2/ � c :

For G D 3 and one selected subgroup, the procedure is illustrated in Fig. 11.3,
the curved arrows indicating which combination tests have to be carried out in order
to show significance of the selected subgroup S2.

Designing a population enrichment trial is a complex task since the trial consists
of many elements that influence the operating characteristics of the design. In the
following we briefly describe possible options for a population enrichment design.
These can be used to assess the benefits of such a design and help to decide whether
it is appropriate for the objectives of a specific trial.

Fig. 11.3 Closed system of hypotheses for G D 3 if subpopulation S2 referring to hypothesis HS2
0

is selected for the second stage. The arrows indicate logical implications for hypotheses, the solid
curves indicate combination tests to be performed to show significance for HS2

0 (from Wassmer and
Dragalin 2015)
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11.2.2 Intersection Tests

As described in the last section, for the closed testing procedure, several choices of
the intersection tests for testing the global and intersection hypotheses are available.
To describe these, let as before pg denote the p-value for testing Hg

0 , g D 1; : : : ;G
and let p.1/ � : : : � p.G/ denote the ordered p-values of the G comparisons. Finally,
let J � G, and jJ j be defined as the number of all indices g 2 J .

Bivariate t Test for One Subgroup of Interest

For enrichment designs, the choice of an intersection test that is based on the
maximum statistic similar to Dunnett’s test is possible for G D 2, i.e., for one
subpopulation S � F. This was proposed by Spiessens and Debois (2010) and
Friede et al. (2012) for the known variance case. More general, for normal responses
with a common unknown variance the adjusted p-value, padj, for testing the global
null hypothesis H0 is given by

padj D 1 � F˙ ;df
�

maxfZF;ZSg� ;

where F˙ ;df .�/ is the value of the cdf of the bivariate t distribution with correlation

�12 D
s

nS
0 C nS

1

nF
0 C nF

1

and df D nF
0 C nF

1 � 4 degrees of freedom when the two arguments are equal,

Zg D Nxg
1 � Nxg

0

O�
q
1=ng

0 C 1=ng
1

is the directional test statistic for analysis set g, and O�2 is the residual variance
estimate corresponding to a two-factorial ANOVA model.

This test provides exact Type I error rate control under the specified assumption
of normal responses with an unknown common variance. For G D 2, we note that
it is also possible to derive a test procedure that is based on the CRP principle.
This conditional procedure was proposed in Friede et al. (2012) who reported in
the correction that in realistic situation the difference in power as compared to the
combination test approach is only small and there is actually no power advantage of
the CRP methodology.

For a general number of subpopulation, the description of the Bonferroni, Šidák,
Simes, and the a priori hierarchical is the same as for the treatment arm selection
case:



11.2 Adaptive Enrichment Designs 265

Bonferroni Test for Many Subgroups

Using the Bonferroni test, the adjusted p-value for testing a hypothesis HJ
0 , J � G,

is given by

padj
J D minfjJ j min

g2J fpgg; 1g :

Šidák Method for Many Subgroups

With the Šidák test, the adjusted p-value for testing a hypothesis HJ
0 , J � G, is

given by

padj
J D 1 � .1 � min

g2J fpgg/jJ j :

Simes Method for Many Subgroups

With the Simes intersection test, the adjusted p-value for testing a hypothesis HJ
0 ,

J � G, is given by

padj
J D min

g2J f jJ j
g

p.gJ /g ;

where p.1J / � : : : � p.jJ jJ / denote the ordered p-values from the subset J � G.
We note that both Simes and Šidák derived p-values for intersection hypotheses

yield valid level ˛ test procedures since the elements of ˙ are always positive.
Therefore, Type I error rate control can be guaranteed in general (see Sect. 11.1.2).

A Priori Hierarchical Test

If an ordering of the hypotheses can be assumed (for example, the hypothesis
relating to the full population is considered first, then SG�1; SG�2, etc.), the adjusted
p-value for testing a hypothesis HJ

0 , J � G, is given by

padj
J D pmaxfg2J g;

where maxfg 2 Jg corresponds to the hypothesis in J with the highest importance.
Note that, of course, hierarchical testing in enrichment designs is often questionable
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and may be applied only in very specific situations (for example, showing a
subgroup effect is only of interest after showing an effect in the full population).

11.2.3 Effect Specification

In order to assess the statistical performance of an enrichment design (usually by
simulation), the operating characteristics depend on the effect sizes and prevalences
of the considered subpopulations Sg. If one subpopulation S is considered, this is to
specify the prevalence of S and the assumed effect sizes in S and FnS. The effect
in F is a weighted average of the effect sizes in the disjunct subgroups S and FnS,
respectively. There is typically a large number of possible configurations because
each effect size in S is combined with the effect sizes in FnS.

For G D 3, assume there are two dichotomous indicators I1 and I2 that classify
the patients in the full population as I�

1 or IC
1 and I�

2 or IC
2 . I1 may be a baseline

characteristic such as gender, race, performance status, or disease stage. I2 may be a
genomic biomarker (positive versus negative) or a genomic signature (good versus
poor). We may be interested in showing the treatment effect of a test drug versus
placebo in the full population and in IC

1 and IC
2 . In this case, we have three analysis

sets: S1 D IC
1 , S2 D IC

2 , and S3 D F.
Often, S1 \ S2 ¤ ; and therefore the operating characteristics of the test

procedure depend on the effect sizes in S1nS2, S2nS1, S1 \ S2 and Fn.S1 [ S2/ and
their assumed prevalences. S1 \ S2 D ; can be assumed if an investigation of effect
sizes is considered in different patients populations (for example, countries) besides
the effect in a full population. This reduces the number of necessary specifications
for the prevalences and the effect sizes. If we consider the nested case where
S1 � S2 � F, such as in Wang et al. (2009), S1 \ S2 D S1 and S1nS2 D ;.
Note that if we are also interested in showing an effect in S1 \ S2 (i.e., interaction
effects), then we specify G D 4 subpopulations S1 D IC

1 , S2 D IC
2 ; S3 D IC

1 \ IC
2 ,

and S4 D F. These four different situations are illustrated in Fig. 11.4.

11.2.4 Overall p-Values and Confidence Intervals

As in Sect. 11.1.3, overall (repeated) p -values are defined as smallest significance
level for which the test results yield rejection of the considered (single) hypothesis
H

Sg

0 at stage k. They can generally be found by a numerical search and can be
calculated at any stage of the trial. They account for the step-down nature of the
closed testing principle and are completely consistent with the test decision.

In analogy to Posch et al. (2005), overall confidence intervals can also be found
in an equivalent way as described in Sect. 11.1.3. The idea is to consider the shifted
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(a) (b)

(c) (d)

Fig. 11.4 Four different configurations of subpopulation, see text. (a) Two subpopulations of
interest. (b) Two non-overlapping subpopulations. (c) Two nested subpopulations. (d) Three
subpopulations of interest

hypothesis

H
Sg

0 .ıg/ W �g
1 � �g

0 D ıg; g D 1; : : : ;G;

with corresponding p-values pg;k.ıg/ at stage k and deriving the adjusted shifted
p-values with the use of the selected intersection test. Note that we have the same
difficulties with hierarchical testing as in adaptive designs with treatment selection
(see Sect. 11.1.3).

11.2.5 Other Endpoints

In the binary case, the derivation of closed adaptive tests for the set of G elementary
null hypotheses

H
Sg

0 W �g
0 D �

g
1 ; g D 1; : : : ;G;

is formally straightforward when using stage-wise adjusted p-values like the
Bonferroni, Šidák, or Simes test which do not account for the correlation structure
of the test statistics. However, one may need to modify the standard error estimates
in (5.13), for instance, in the full population, because of overdispersion effects
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from the mixture of (potentially) different binomial distributions in the different
subpopulations. If we wish to account for the correlation between the G test statistics
by using the asymptotic multivariate normal distribution of the effect estimates for
the adjusted stage-wise p-values additional problems may arise in the estimation
of the correlation matrix which depends on the different null proportions in the
different subpopulations. As far as we know, no research has been done on these
issues yet.

In the survival case, when testing

H
Sg

0 W !g D 1; g D 1; : : : ;G;

one needs to use the stratified log-rank test with the disjoint subgroups as strata in
order to achieve asymptotic Type I error rate control (see Brannath et al. 2009b).
Utilization of the approximate multivariate normal distribution for improving the
stage-wise p-values is more straightforward here but, as far as we know, has not
been published yet.

For the survival case it was described what problems can arise if the population
selection is based on a short-term rather than on the primary endpoint. A solution
specifically referring to the population enrichment case was given in Jenkins et al.
(2011).

11.2.6 A Clinical Trial Example

Different therapeutic areas for the application of adaptive enrichment designs have
been published recently (Mehta et al. 2009; Mehta and Gao 2011; Mehta et al.
2014; Tournoux-Facon et al. 2011a,b). Wassmer and Dragalin (2015) presented
typical case studies for designing enrichment designs for different kind of endpoints
and goals of the trial. We present one example from this article. It considers an
enrichment design with one subpopulation of interest for comparing rates. Note
that it is hypothetical because it has not been conducted in the described way.
Nevertheless, it illustrates how the described confirmatory adaptive enrichment
designs might be suitable alternatives to the traditional trial designs.

Investigation of Serial Studies to Predict Your Therapeutic Response with
Imaging And moLecular Analysis (I-SPY 2 TRIAL) is an ongoing clinical trial
in patients with high-risk primary breast cancer. It involves a randomized phase
II screening process in which a series of experimental drugs are evaluated in
combination with standard neoadjuvant chemotherapy which is given prior to
surgery. The primary endpoint is pathologic complete response (pCR) at the time
of surgery (for details, see Barker et al. 2009).

The screening process includes a magnetic resonance imaging to establish tumor
size at baseline and a biopsy to identify the tumor’s hormone receptor status (HR)
and the HER2/neu status (HER2). Triple negative breast cancer (TNBC) refers
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to breast cancer that does not express the genes for the estrogen receptor, the
progesterone receptor or HER2.

Assume that one of the experimental drugs has been identified from I-SPY
2 TRIAL not only with the biomarker signature of TNBC but also with some
promising effect in the HER2 negative (HER2�) biomarker signature. The sponsor
may consider a confirmatory Phase III trial in TNBC patients only. The prevalence
of TNBC, however, is only 34 %, while the prevalence of HER2� is 63 %.
Therefore, an alternative option is to run a confirmatory trial with a two-stage
enrichment design starting with the HER2� patients as the full population, but
with the pre-planned option of selecting the TNBC patients after the first stage if
the observed effect is not promising in the HER2� patients with positive hormone
receptor status HR+.

If a pCR rate in the control arm of 0.3 and a treatment effect of 0.2 is assumed (the
treatment effect is measured as the difference in pCR rates between the new drug and
control), the required total sample size for a conventional two-arm test with power
90 % and one-sided significance level 0.0125 (i.e., applying Bonferroni correction)
is 294. This can be found with formula (5.12) from Sect. 5.2. It will serve as a first
guess for the actually needed sample size and we illustrate the enrichment design
for this study assuming that a total sample size of 300 subjects will be enrolled in
the trial.

The interim analysis is planned after 150 subjects and no early stopping is
intended. A subpopulation selection using the �-selection rule with � D 0:1 will
be considered. That is, the decision at the interim analysis will be to either select the
TNBC subpopulation or going on with the full population of HER2� patients. If the
observed treatment effect difference exceeds 0.1 in favor of the TNBC population,
the TNBC subpopulation will be selected, otherwise no selection will be considered
and the test for the full population only will be conducted if the observed treatment
effect difference exceeds 0.1 in favor of the F population; otherwise the test for
both populations will be conducted. The inverse normal combination testing strategy
together with the Bonferroni intersection test will be used.

In I-SPY 1 TRIAL, a prevalence of TNBC patients in the HER2� population
of about 54 % and a control pCR rate in TNBC patients of 0.34 was observed.
The pCR rate in the HER2� patients with HR+ hormone receptor is 0.23. The
operating characteristics of the enrichment design are investigated for treatment
effect differences ranging from 0 to 0.3 by an increment of 0.05 in the TNBC
subpopulation and ranging from 0 to 0.2 by an increment of 0.10 in the HER2�
patients with HR+ hormone receptor. This yields 21 different scenarios for the effect
sizes resulting in different treatment effects for the full population F. The results of
10,000 simulations per scenario are reported in Table 11.3, the software ADDPLAN
PE (see Appendix) was used for the simulation.

The power of the design (the probability to reject at least one null hypothesis)
is greater than 90 % for scenarios 17–21, mainly corresponding to treatment effects
0.25 and 0.3 for S. Hence, in these cases a total sample size of 300 patients reaches
the desired power, and the rough estimate provided through the use of the Bonferroni
correction provides a good estimate for the necessary sample size. Note that the term
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Fig. 11.5 Power of enrichment design as compared to the power if no population selection takes
place. The solid line refers to the enrichment design, the dashed line to the classical design with
no selection of study population (from Wassmer and Dragalin 2015)

“power” is used here also for the cases where the null hypothesis is true (Scenario
1–3). This, however, illustrates strong control of FWER (see column “P(Reject S)”).

The table also shows that the power to reject in the full population is (except for
effect size � 0.2 and < 0:3 in both subsets, i.e., scenarios 15 and 18) smaller than
80 %, for largest effect sizes the power even decreases a bit. The latter is due to the
fact that in this case the probability to deselect F and to select S increases. For most
scenarios the probability to reduce the confirmatory proof to one hypothesis, HS

0 or
HF
0 , is quite small, see column “P(Select 1 set)”.
The case for enrichment, i.e., the selection of S at the interim stage, varies

between 1 and 70 % over the scenarios and can be derived from P(Select F):
P(Enrichment) = 1 � P(Select F). The question arises if this might reduce power
(defined as above) due to wrongly selecting a population. The answer is no, as
illustrated in Fig. 11.5. Here it is shown that for all effect sizes in NS there is no
decrease, for effect size 0 there is even a clear increase in power showing the
advantage of an adaptive enrichment design as compared to the non-adaptive case.

11.3 Other Types of Adaptations

When using the combination testing approach or the CRP principle, the class of
possible data-driven adaptations is rich. We have shown that not only a sample
size recalculation but also a selection of treatment arms or population subsets at
interim stages is possible. Generally, although the latter two applications might
be considered as a specific type of sample size recalculation (the sample size of
the deselected treatment arms or subsets is set equal to 0), it involves a change of
the hypotheses that are under consideration at the different stages. Hommel (2001)
showed that generally, using an adaptive test, the hypotheses within a predefined
class of hypotheses can be changed during the course of the trial. It is even possible
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to include a completely new hypothesis but this is mainly of theoretical interest
because this hypothesis should be tested with the data of the subsequent stages
only such that a completely new trial is always at least as good as the adaptive
procedure. The application of an adaptive change of hypotheses was illustrated by
several examples, including an adaptive modification of the hierarchy of hypotheses
(Hommel and Kropf 2001; Kropf et al. 2000; Kieser 2005).

Another attractive option is to select the way of testing a hypothesis, i.e., the
choice of the test statistic or the structure of the underlying test procedure in a
multiple testing situation. This application was illustrated for trend tests (Lang
et al. 2000) and non-parametric procedures (Neuhäuser 2001). Kieser et al. (2002)
proposed a bootstrap procedure for the adaptive selection of the test statistic.
Lawrence (2002) considered the change of the test statistic in survival trials.

The adaptive choice of test statistics might also be of interest in clinical trials
with multiple endpoints. These trials address several outcome variables within a
single confirmatory experiment and multiple tests are part of the confirmatory
statistical analysis. A range of possible ways to construct statistical test procedures
were proposed (for a review, see Wassmer et al. 1999) and it might be appropriate
to reselect a specific test based on interim outcomes, including the selection of
endpoints. It is often straightforward to define an adaptive closed test to get strict
error control for all considered endpoints. We illustrate this application in the
example below.

Finally, due to increase sophistication of multiple testing strategies the commu-
nication of the related multiple testing procedures and its interpretation to clinicians
and sometimes even to statistical colleagues gets complex. Hence graphical meth-
ods to visualize the logical structure have been suggested to facilitate planning,
execution, and interpretation of such complex multiple tests for conventional fixed
size sample designs (Bretz et al. 2009b, 2011; Burman et al. 2009). Recently,
adaptive graph based methods for multiple comparisons based on combination tests
(Sugitani et al. 2013, 2014) or the CRP principle (Klinglmüller et al. 2014) have
been proposed.

11.3.1 A Case Study with Adaptive Multiple Endpoint Selection

We describe a trial with adaptive endpoint selection that involved an adaptive change
of hypotheses where we take the report from Bauer et al. (2016). This placebo-
controlled multicenter trial was performed to test three co-primary endpoints—
two superiority and one non-inferiority hypotheses have been involved. It was
investigated whether clonidine as a co-medication with fentanyl and midazolam
is superior to fentanyl and midazolam alone in ventilated newborns, and infants
up to 2 years of age, as measured by the endpoints: total consumption of fentanyl
(superiority hypothesis 1) and midazolam (superiority hypothesis 2). Additionally,
non-inferiority to placebo with respect to the need for the rescue thiopentone use
has to be shown (hypothesis 3). It was a study of the PAED-Net which is a
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corporation of pediatric modules in six German university locations in a small and
vulnerable population. For details of the study conduct see Hünseler et al. (2014)
(Trial Registration Number ISRCTN77772144).

Regulatory authorities usually expect statistical significance in all three co-
primary endpoints simultaneously, which would mean that no further multiple
testing correction is needed. But in the setting of pediatric populations the inves-
tigator was convinced that under double blind conditions it would be worth to
achieve significance in at least one of the two superiority hypotheses. The non-
inferiority margin for thiopentone use was set to 20 %. The corresponding global
null hypothesis was tested using the ordinary least squares (OLS) test due to O’Brien
(1984), and a closed testing was planned in order to show significant differences in
specific endpoints (Lehmacher et al. 1991).

The study was planned in three stages with critical values according to O’Brien
and Fleming adjusted significance levels 0.0003, 0.0071, and 0.0225, respectively.
The results of the three stages were combined using the inverse normal method
together with the closed testing principle as described in Sect. 10.3. Under reason-
able assumption of the effect sizes and taking into account the correlation of the
endpoints, by simulation a sample size of 210 patients was estimated to achieve
80 % overall power at one-sided significance level ˛ D 2:5%. Overall power was
defined for detecting at least one significant difference. Considering the power to
reject all hypotheses required a lot more patients and was considered inappropriate.

Three types of adaptations were pre-specified in the study protocol:

1. a sample size reassessment based on the results observed at interim stages,
2. the possibility to redefine the test statistic if it turned out that the OLS test statistic

was clearly inferior to a better overall test,
3. dropping a superiority endpoint if the effect size in this endpoint was too low.

The last option seemed to be useful since it was not clear at the beginning if both
fentanyl and midazolam consumption could be reduced with clonidine.

The first interim analysis yielded very promising results: The overall p-value for
the OLS test was 0.0009, thus already near showing significance. The midazolam
result, however, was already weak (p D 0:0472) as compared to the others (p D
0:0051 for fentanyl and p D 0:0012 for thiopentone). This trend was dramatically
confirmed at the second interim analysis: a negative effect in midazolam was
observed for the second stage data, yielding a p-value of 0.678. Nevertheless,
the OLS test for the global multivariate hypothesis yielded a p-value of 0.0017.
This was statistically significant, though a study continuation was recommended
because superiority with regard to fentanyl was not very clear anymore. Particularly,
it was not significant within the closed test procedure, only non-inferiority with
regard to thiopentone was significant within the closed test procedure. The study
recommendation was also to drop midazolam consumption as a primary endpoint
from the further analysis since it might jeopardize an overall positive result of the
study.
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Although a positive result was likely for the reduced clinical question, at the final
analysis even fentanyl could not be shown to be significant. The main study results
were published in Hünseler et al. (2014).

The example shows the importance of keeping adaptive interim decisions
secretly. If the doctors had been aware of the fact that midazolam was dropped
from further confirmatory analyses this might have clearly influenced treatment
and medication of the patients. In order to exclude this possibility, only the
iDMC and the Independent Statistical Center who gave the recommendation were
aware of the study results. The head of the study was informed that there was a
recommendation, the decision on it was left to one representative of the sponsor
(Boehringer Ingelheim, Germany) which needed to be involved.

The study did not show the desired effect though especially the second interim
analysis illustrates the potential advantage of an adaptive way of analyzing data.
There were no strict stopping criteria and the continuation of the trial produced a
disappointing result but obviously reflects reality. We nevertheless think that this
study serves as an interesting example for an early attempt for an adaptation which
goes beyond sample size reassessment and treatment arm selection in a vulnerable,
small population (EMA 2006). The study was planned 2002 and finalized in 2008.
Publication of the non-convincing study results was a problematic issue. Another
issue with publishing complicated adaptive designs in medical journals is to have
space to communicate the statistical methodology (Bauer and Einfalt 2006). Indeed,
several details of the statistical study design were not provided in Hünseler et al.
(2014).

11.4 Regulatory and Logistical Issues

The repeated significance testing approach was proposed in the late 1960s. This
approach introduced an increased complexity as compared to a fixed design with
a single primary efficacy endpoint, a fixed sample size, and no interim looks.
Particularly, looking repeatedly for efficacy involves the potential for operational
bias, mainly due to unblinding the study results at interim. The increased flexibility
of adaptive designs deteriorates the problem and results in several regulatory and
logistical issues. It must be stated, however, that we already encounter many of
the issues in adaptive designs when we are applying the classical group sequential
methodology and so many problems are “inherited.”

We already noted in the Preface of this monograph that the adaptive design
methodology found its way into a Reflection Paper entitled “Methodological
Issues in Confirmatory Clinical Trials Planned With an Adaptive Design” from the
European Medicines Agency (EMA 2007), a draft guidance on “Adaptive Clinical
Trials for Drug and Biologics” from the US Food and Drug Administration (FDA
2010), and a draft guidance on “Adaptive Designs for Medical Device Clinical
Studies,” also from the US Food and Drug Administration (FDA 2015). We do
not review these documents but want to refer to a summary provided by Wang
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(2014) who reviews the EMA guideline as well as the FDA “Adaptive Clinical
Trials for Drug and Biologics” draft guidance (see also, Brannath et al. 2010;
Hung et al. 2011). As an overall summary, when applied carefully, the adaptive
design methodology serves as a useful tool for performing confirmatory trials with
registration potential. However, it is clearly not a remedy for the inability of making
clear design specification nor is it an excuse for poor study planning.

The FDA guidance defines an adaptive study as one that “includes a prospectively
planned opportunity for modification of one or more specified aspects of the study
design and hypotheses based on analysis of data (usually interim data) from subjects
in the study.” Hence, the type of adaptations needs to be prospectively planned,
where “the term prospective here means that the adaptation was planned (and details
specified) before data were examined in an unblinded manner by any personnel
involved in planning the revision.” (FDA 2010). The possible ways of doing it
should be thoroughly evaluated through extensive simulations, and all the details
extensively discussed with the regulator. From this, a guidance to perform the
adaptations is formulated and provided in a document that is available only for
the persons who actually are assessing the study results that eventually lead to
an adaptation. Usually, this is an iDMC charter of which the circulation is strictly
limited. Furthermore, it is absolutely required to have at hand prospectively written
standard operating procedures and working processes for implementing adaptive
designs. Furthermore, pharmaceutical companies are encouraged to engage contract
research organizations (CROs) that are experienced in running adaptively designed
trials.

As an important point, from a regulator’s point of view, it is therefore required
to specify all adaptive design elements at the planning stage of the study. This is
in some sense controversial to the possible options provided by the adaptive design
methodology. Specifically, the methodology theoretically allows for such decisions
at an interim stage, i.e., it allows that the type of an adaptation and the way of how
to conduct it need not to be pre-specified. For example, introducing—at interim—
a selection of endpoints in addition to a pre-specified sample size recalculation is
theoretically allowed; a sample size recalculation in addition to a treatment arm
selection design is possible too; or even introducing a formerly unspecified sample
size reassessment in a fixed sample size design is a possible option (for example,
using the CRP principle). From a regulatory point of view, all this should be avoided.
Otherwise, the integrity of the clinical trial cannot be maintained and the adaptive
design can merely be understood in a more exploratory way. It is important to say
this, because at the very beginning of the methodological investigation in the late
1990s from a part of users the adaptive design methodology was misunderstood in
the sense that “all is allowed now.” This is clearly not the case.

iDMCs were instituted to maintain the integrity of a trial, to ensure patient safety,
and to perform the interim analyses. DeMets et al. (2006), Ellenberg et al. (2003),
and Herson (2009) are excellent books that describe the role and definition of this
board of people thereby providing many study examples. Recently, Gallo et al.
(2014) gave a summary of the issues of iDMCs in adaptive trials. Most importantly,
in adaptive designs the question arises of who is doing the adaptation and how.
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Besides the fact that this problem already exists in conventional group sequential
trials (for example, an early stop for efficacy or futility can be regarded as a kind
of sample size reassessment) it clarifies the fact that at least the statistician in the
iDMC should possess specific knowledge on the adaptive design methodology.

The iDMC’s role is not to design or redesign the trial, its role is to apply specific
adaptation rules that are prospectively planned and evaluated, i.e., it is implementing
an adaptation. It is important to recognize, however, that the adaptation rules will
usually not serve as strict rules but more as a guideline and it is even the case that
the charter allows the iDMC to deviate from the guidelines. This is because it is
generally impossible to take into account all possible information that is achieved
at an interim analysis and formulate the rules accordingly. For example, it turns out
at an interim stage that only a combined evaluation of safety and efficacy can be
adequately used for performing an adaptation. An increase in sample size can also
be recommended to obtain more information on important secondary efficacy or
safety endpoints. As another example, we often do not know exactly the effect size
and variability at interim because usually some patients are already observed but not
yet in the data base. In this case, if the efficacy boundaries are crossed but only to
a small amount, the iDMC might recommend not stopping the study and awaiting
a confirmation of a significant result at the next interim (instead of running the risk
that the final data base does not achieve significance anymore).

It is also essential that an iDMC will never make a decision to redesign a trial, it
is only giving a recommendation. The decision is made by the sponsor. To maintain
the integrity of the trial, a (small) number of persons on sponsor’s site is required
who is allowed and responsible for making the decision and is not involved in any
other trial activities. If an adaptation is recommended by the iDMC these sponsor
representatives will be informed about the necessary details that resulted in the
recommendation, and make the decision. In a sense, this problem already exists
in conventional group sequential designs because also here knowledge of unblinded
interim data is provided to sponsor personal in case of major recommendations, such
as terminating the trial due to efficacy of futility.

As a last point, we consider the problem of “reverse engineering” of the
effect size that, for example, led to a change in the sample size. Based on an
increased sample size at interim, say, one is able to back calculate the effect
size. To reply on this, we note that this problem, at least partly, also exists if no
adaptations are planned because, for example, the continuation of the trial also
provides some information about the effect size. Second, if adaptive designs are
properly performed, a sample size recalculation will usually be based on multiple
information, for example, a combined evaluation of the effect size and a nuisance
parameter. Therefore, it is simply not possible to back calculate the effect size. At
least, this demagnifies the problem. Lastly and most importantly, it illustrates the
importance of adequate firewalls that are put in place to guarantee that personal
involved in the study conduct do not have access to any kind of unblinded study
information.
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The availability of software is a necessary condition for the applicability and
acceptance of a statistical methodology. Many of the procedures proposed for
adaptive designs additionally require high levels of computational performance such
that software should be able to perform complex computations in a relatively short
time. This kind of software is available today, and we briefly review the available
software in this chapter which is a bit more general review as the one provided
in Bauer et al. (2016). Up to now, the reviews of software packages concentrated
on packages specifically designed for group sequential methods (Emerson 1996;
Wassmer 2006; Zhu et al. 2011), the reason simply being that software for adaptive
designs was not available at that time. A review of software for adaptive designs is
provided in Tymofyeyev (2014).

One essential core of many if not all packages available for group sequential
design is the numerical computation of the multivariate normal integral as described
in Chap. 1. For group sequential designs it turns out that due to the independent
increment structure of the underlying stochastic process the multivariate integral can
be computed through the successive computation of univariate integrals. This is a
consequence of the well-known recursive integration formula described in Armitage
et al. (1969), and makes the computation feasible. It is interesting to recognize that
these authors were already able to provide accurate results for the problem for
up to 100 dimensions, i.e., stages of the trial. Due to the enormous growth in the
computational capacity many alternative algorithms are available today that make
the computation feasible. For an overview, see Genz and Bretz (2009).

A wide range of computations necessary in the context of the assessment of group
sequential designs is possible with the use of software programs freely available on
the homepage of Christopher Jennison: www.bath.ac.uk=�mascj. He provides the
Fortran code for all the tabulated results of the Jennison and Turnbull monograph on
group sequential designs in clinical trials (Jennison and Turnbull 2000). This might
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serve as a very valuable tool to find the source code for algorithms to be used in
group sequential designs.

Fortran programs for the computation of the use function approach are available
from the University of Wisconsin School of Medicine and Public Health site www.bi
ostat.wisc.edu/content/lan-demets-method-statistical-programs-clinical-trials Pro-
grams for Computing Group Sequential Boundaries Using the Lan-DeMets Method,
Version 2.1. It comes with a Microsoft Windows graphical user interface and hence
additionally provides a convenient way to perform the calculation. The last update
is from 11/2003. So this tool was not further developed, and it is restricted to the
use function approach. However, an R tool is available now (see below). R is free,
and it also compiles and runs on a wide variety of UNIX platforms, Windows,
and MacOS. This might be advantageous, and reason for its widespread use. We
checked CRAN (Comprehensive R Archive Network) cran.rstudio.com on January
20, 2015, and list the available packages which are available, together with a short
description and its potential use in adaptive designs. We hope to provide a more or
less complete list though it is emphasized that this is a dynamic development and we
expect a lot of more packages in the near future. We also note that we concentrate
on tools for confirmatory adaptive designs and not on tools especially developed for
early phase dose-finding trials.

– adaptTest: Adaptive two-stage tests (Vandemeulebroecke 2009). The functions
defined in this program serve for implementing adaptive two-stage adaptive tests
that are based on the combination testing principle.

– AGSDest: Estimation in adaptive group sequential trials (Hack et al. 2013).
This module enables the calculation of confidence intervals in adaptive group
sequential trials.

– asd: Simulations for adaptive seamless designs (Parsons 2013). This package
runs simulations for adaptive seamless designs with and without early outcomes
for treatment selection and population enrichment type designs.

– gMCP: Graph Based Multiple Comparison Procedures (Rohmeyer and
Klinglmüller 2014). This package provides functions and a graphical user
interface for adaptive (Klinglmüller et al. 2014) and non-adaptive (Bretz et al.
2009b) graph-based multiple comparison procedures.

– GroupSeq: A GUI-based program to compute probabilities regarding group
sequential designs (Pahl 2014). This program can be used for assessing the test
characteristics of group sequential design and providing the boundaries for a
group sequential approach or an inverse normal combination test approach.

– gsDesign: Group Sequential Design (Anderson 2014). gsDesign is a comprehen-
sive package that derives group sequential designs and describes their properties.
A graphical user interface gsDesignExplorer is available as well. The resulting
boundaries can be used for adaptive settings.

– interAdapt (Fisher et al. 2014). This is an interactive tool for designing and
evaluating certain types of adaptive enrichment designs.

– ldbounds Lan-DeMets method for group sequential boundaries (Casper and
Perez 2014) is based on the Fortran from the University of Wisconsin and can
also be used to provide the test characteristics of the use function approach.

http://www.biostat.wisc.edu/content/lan-demets-method-statistical-programs-clinical-trials
http://www.biostat.wisc.edu/content/lan-demets-method-statistical-programs-clinical-trials
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– PwrGSD: Power in a Group Sequential Design (Izmirlian 2014). This program
evaluates analysis plans for sequentially monitored trials on a survival endpoint.
It can also be used to perform power calculations in a group sequential setting.

– seqmon: Sequential Monitoring of Clinical Trials (Schoenfeld 2012). This
program elementarily computes the probability of crossing sequential boundaries
in a clinical trial and uses a method described by the author (Schoenfeld 2001).

There is also an R package called RCTDesign: Methods and Software for Clini-
cal Trials. This package builds on the formerly available S-Plus module S+SeqTrial.
RCTdesign is currently not available at CRAN but is freely available to users
through a joint agreement between Tibco, Inc. (the owners of the S-Plus software
system and the S-Plus code in the module S+SeqTrial) and Scott S. Emerson (the
developer of the C code that serves as the engine for S+SeqTrial). RCTdesign
makes the computation and evaluation of a wide range of commonly used designs
possible. It also comes with an add-on for adaptive methods. Furthermore, the book
(Chang 2014) contains R programs for adaptive designs. These are elementary
programs for performing sample size reassessment procedures and some basic
adaptive randomization designs. The book also comes with SAS macros, most of
them performing simulations for the adaptive design described in the book.

Since version 6, SAS comes with some function calls in SAS/IML for doing
groups sequential tests (SAS Institute Inc. 1995). Currently available are the SEQ,
SEQSCALE, and SEQSHIFT calls. These procedures provide accurate results for
computing decision regions, maximum and expected sample sizes, group sequential
densities, etc. Examples can be found in Wassmer (1999c), SAS Institute Inc.
(1995), Wassmer and Biller (1998), Dmitrienko et al. (2005). Within SAS/IML
it is straightforward to produce results for group sequential designs although the
calculation of, for example, bias adjusted estimates might become cumbersome.
New in SAS 9.2 are procedures for doing group sequential designs in a more com-
fortable way (SAS Institute Inc. 2009). Specifically, the SEQDESIGN procedure
designs interim analyses for clinical trials. It directly computes the boundary values
and required sample sizes for the trial within a wide range of possible designs.
The SEQTEST procedure performs the interim analyses (tests and confidence
intervals) based on design information produced by the SEQDESIGN procedure.
SAS currently does not provide any direct capabilities for doing confirmatory
adaptive designs as considered in this monograph.

Since the very beginning of adaptive designs the software ADDPLAN was
designed for doing confirmatory adaptive designs (www.addplan.com). It is com-
mercially available since 2002 as a tool for designing, simulating, and performing
analysis for group sequential designs with an emphasis on the confirmatory adaptive
technique. The MC module provides additional multiple comparison features for
more than two treatment arms in simulation and analysis, and the PE module
additional features for patient enrichment designs in simulation and analysis. There
is also the new DF module with capabilities for adaptive dose-finding designs
(MCPMod, CRM, etc.).

www.addplan.com
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East from Cytel (www.cytel.com) is a comprehensive tool for design, simulation,
and analysis of trials with interim analyses. In the current release, adaptive
extensions are provided with the EastAdapt and the EastSurv module. Recently, the
modules EastMultiarm and EastEndpoint provide extensions to multi-arm designs
and designs with multiple endpoints. An extension to dose finding trials comes with
EastEscalate and Cytel’s Compass.

We also mention the nQuery module for calculating designs for the group
sequential case in the nQuery package (www.statsols.com/products/nquery-advisor-
nterim) as well as corresponding capabilities in PASS from NCSS (www.ncss.
com). Both do not provide any adaptive extensions but can be used for performing
interim decisions and assessing group sequential designs, for example, with respect
to maximum and expected sample size.

To summarize, some software is free and hence attractive for statistical research.
This is particularly true for the increasing number of available R packages.
Simulation-based evaluation of operating characteristics of adaptive designs is
becoming increasingly important, some of the available adaptive R packages
typically address this issue. The R and SAS packages are available only within the
programming environment, whereas the ADDPLAN, EaSt, nQuery, and PASS pro-
grams come with a user-friendly graphical user interface (GUI). We note that a free
GUI is also available for gsDesign and some other R packages. Within commercially
available packages, only ADDPLAN, EastAdapt ,and EastSurv address the specific
requirements for confirmatory adaptive designs.

www.cytel.com
www.statsols.com/products/nquery-advisor-nterim
www.statsols.com/products/nquery-advisor-nterim
www.ncss.com
www.ncss.com
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