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Preface to the First Edition
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Great art is found wherever man achieves an understanding of self and is able to express
himself fully in the simplest manner.

Odysseas Elytis (1911–1996)
1979 Nobel Laureate in Literature

The Magic of Papadiamantis

Biopharmaceutics, pharmacokinetics, and pharmacodynamics are the most
important parts of pharmaceutical sciences because they bridge the gap between the
basic sciences and the clinical application of drugs. The modeling approaches in all
three disciplines attempt to:

• Describe the functional relationships among the variables of the system under
study.

• Provide adequate information for the underlying mechanisms.

Due to the complexity of the biopharmaceutic, pharmacokinetic, and pharmaco-
dynamic phenomena, novel physically physiologically based modeling approaches
are sought. In this context, it has been more than ten years since we started
contemplating the proper answer to the following complexity-relevant questions:
Is a solid drug particle an ideal sphere? Is drug diffusion in a well-stirred disso-
lution medium similar to its diffusion in the gastrointestinal fluids? Why should
peripheral compartments, each with homogeneous concentrations, be considered
in a pharmacokinetic model? Can the complexity of arterial and venular trees be
described quantitatively? Why is the pulsatility of hormone plasma levels ignored
in pharmacokinetic–dynamic models? Over time we realized that questions of
this kind can be properly answered only with an intuition about the underlying
heterogeneity of the phenomena and the dynamics of the processes. Accordingly,
we borrowed geometric, diffusional, and dynamic concepts and tools from physics
and mathematics and applied them to the analysis of complex biopharmaceutic,
pharmacokinetic, and pharmacodynamic phenomena. Thus, this book grew out of
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our conversations with fellow colleagues, correspondence, and joint publications.
It is intended to introduce the concepts of fractals, anomalous diffusion, and
the associated nonclassical kinetics and stochastic modeling, within nonlinear
dynamics, and illuminate with their use of the intrinsic complexity of drug processes
in homogeneous and heterogeneous media. In parallel fashion, we also cover in
this book all classical models that have direct relevance and application to the
biopharmaceutics, pharmacokinetics, and pharmacodynamics.

The book is divided into four sections, with Part I, Chapters 1–3, presenting
the basic new concepts: fractals, nonclassical diffusion-kinetics, and nonlinear
dynamics; Part II, Chapters 4–6, presenting the classical and nonclassical models
used in drug dissolution, release, and absorption; Part III, Chapters 7–11, presenting
empirical, compartmental, and stochastic pharmacokinetic models; and Part IV,
Chapters 12 and 13, presenting classical and nonclassical pharmacodynamic mod-
els. The level of mathematics required for understanding each chapter varies.
Chapters 1 and 2 require undergraduate-level algebra and calculus. Chapters 3–
8, 12, and 13 require knowledge of upper undergraduate- to graduate-level linear
analysis, calculus, differential equations, and statistics. Chapter 11 requires knowl-
edge of probability theory.

We would like now to provide some explanations in regard to the use of some
terms written in italics below, which are used extensively in this book starting
with homogeneous vs. heterogeneous processes. The former term refers to kinetic
processes taking place in well-stirred, Euclidean media where the classical laws
of diffusion and kinetics apply. The term heterogeneous is used for processes taking
place in disordered media or under topological constraints where classical diffusion-
kinetic laws are not applicable. The word nonlinear is associated with either the
kinetic or the dynamic aspects of the phenomena. When the kinetic features of
the processes are nonlinear, we basically refer to Michaelis–Menten-type kinetics.
When the dynamic features of the phenomena are studied, we refer to nonlinear
dynamics as delineated in Chapter 3.

A process is a real entity evolving, in relation to time, in a given environment
under the influence of internal mechanisms and external stimuli. A model is an
image or abstraction of reality: a mental, physical, or mathematical representation or
description of an actual process, suitable for a certain purpose. The model need not
be a true and accurate description of the process, nor need the user have to believe so,
in order to serve its purpose. Herein, only mathematical models are used. Either pro-
cesses or models can be conceived as boxes receiving inputs and producing outputs.
The boxes may be characterized as gray or black, when the internal mechanisms
and parameters are associated or not with a physical interpretation, respectively.
The system is a complex entity formed of many, often diverse, interrelated elements
serving a common goal. All these elements are considered as dynamic processes and
models. Here, deterministic, random, or chaotic real processes and the mathematical
models describing them will be referenced as systems. Whenever the word “system”
has a specific meaning like process or model, it will be addressed as such.

For certain processes, it is appropriate to describe globally their properties using
numerical techniques that extract the basic information from measured data. In
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the domain of linear processes, such techniques are correlation analysis, spectral
analysis, etc. and in the domain of nonlinear processes, the correlation dimension,
the Lyapunov exponent, etc. These techniques are usually called nonparametric
models or, simply, indices. For more advanced applications, it may be necessary to
use models that describe the functional relationships among the system variables in
terms of mathematical expressions like difference or differential equations. These
models assume a prespecified parameterized structure. Such models are called
parametric models.

Usually, a mathematical model simulates a process behavior, in what can be
termed a forward problem. The inverse problem is, given the experimental measure-
ments of behavior, what is the structure? A difficult problem, but an important one
for the sciences. The inverse problem may be partitioned into the following stages:
hypothesis formulation, i.e., model specification, definition of the experiments,
identifiability, parameter estimation, experiment, and analysis and model checking.
Typically, from measured data, nonparametric indices are evaluated in order to
reveal the basic features and mechanisms of the underlying processes. Then, based
on this information, several structures are assayed for candidate parametric models.
Nevertheless, in this book we look only into various aspects of the forward problem:
given the structure and the parameter values, how does the system behave?

Here, the use of the term “model” follows Kac’s remark, “models are caricatures
of reality, but if they are good they portray some of the features of the real
world” [1]. As caricatures, models may acquire different forms to describe the
same process. Also, Fourier remarked, “nature is indifferent toward the difficulties
it causes a mathematician”; in other words the mathematics should be dictated
by the biology and not vice versa. For choosing among such competing models,
the “parsimony rule,” Occam’s “razor rule,” or Mach’s “economy of thought”
may be the determining criteria. Moreover, modeling should be dependent on the
purposes of its use. So, for the same process, one may develop models for process
identification, simulation, control, etc. In this vein, the tourist map of Athens and the
system controlling the urban traffic in Marseille are both tools associated with the
real life in these cities. The first is an identification model and the second, a control
model.

Over the years we have benefited enormously from discussions and collabora-
tions with students and colleagues. In particular we thank P. Argyrakis, D. Barbolosi,
A. Dokoumetzidis, A. Kalampokis, V. Karalis, K. Kosmidis, C. Meille, E. Rinaki,
and G. Valsami. We wish to thank J. Lukas whose suggestions and criticisms greatly
improved the manuscript.

Piraeus, Greece P. Macheras
Marseille, France A. Iliadis
August 2005
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The objectives and scope of this book remain the same as in the first edition: to
present the homogeneous and heterogeneous approaches used in the modeling work
of biopharmaceutics, pharmacokinetics, and pharmacodynamics. However, in the
ensuing ten years from the first publication of the book, significant changes took
place in the modeling and simulation work in the field of drug development and
research. The prominent drug agencies US FDA and EMA have taken specific steps
toward the utility of modeling and simulation in drug development and registration
of medicinal products. Moreover, the latest EMA guideline on investigation of
bioequivalence introduced several new concepts including alternative possibilities
for the clinical design, the statistical analysis, the moiety to be analyzed, and
the application of classification of drugs using the biopharmaceutic classification
system (BCS) as well as the biopharmaceutic drug disposition classification system
(BDDCS). As a result of all these developments, this edition contains two new
chapters “Fractional Pharmacokinetics” (Chapter 9) and “Modeling and Simulation
in Bioequivalence” (Chapter 10) written by Dr. Aristides Dokoumetzidis and Dr.
Vangelis Karalis, respectively. Chapter 9 presents the mathematical formalism based
on fractional calculus for the analysis of pharmacokinetics of drugs following
anomalous kinetics. Chapter 10 presents an overview of the modeling and sim-
ulation methods, which are applied to many areas of bioequivalence assessment.
Besides, new material has been added in Chapters 5 and 6 based on recent
developments in reaction-limited dissolution models and supersaturated dissolution
data as well as the recent advances related to BCS and BDDCS. Also, new sections
regarding the time-varying models and analysis of nonlinear mechanisms were also
added to Chapters 7 and 13, respectively. Almost all models and procedures were
implemented within MATLAB, the commonly used software for numerical analysis
purposes.

The first edition of the book was awarded a prize in “Sciences” of the Academy
of Athens in 2007. The authors wish to thank Athanassios S. Fokas, Academician
and Professor in Nonlinear Mathematical Science at the University of Cambridge,
UK, for his support in proposing the book for this award.
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Finally, we thank the readers of the first edition for the excellent feedback and
stimulus to produce an updated version. We would also like to thank S. Benay, R.
Bies, N. Frances, and N. Pispa for their helpful discussions and suggestions.

Piraeus, Greece P. Macheras
Marseille, France A. Iliadis
October 2015
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Part I
Basic Concepts

Biopharmaceutics, pharmacokinetics, and pharmacodynamics have been developed
and expanded, as have many other scientific subjects, based on the concepts of
homogeneity and linearity.

Homogeneity is a presupposition in almost all research in these fields. Some
typical examples can be quoted. The shape of a drug particle is assumed to
be an ideal sphere and its surface smooth. The permeability of the intestinal
complex membrane is considered constant along the gastrointestinal tract while the
concentration of drug is postulated to be homogeneous in the gastrointestinal fluids.
Homogeneous conditions are assumed for each one of the hypothetical compart-
ments of pharmacokinetic models and the effect compartment of pharmacokinetic-
dynamic models. However, common intuition and scientific knowledge tell us
that the drug particle is not an ideal sphere, and its surface is not smooth: the
permeability of the gastrointestinal wall is position- and time-dependent. Moreover,
the assumed concentration homogeneity of drug in .1ı/ the gastrointestinal tract,
.2ı/ the peripheral compartments of compartmental systems, and .3ı/ the biophase
at receptor’s level, is synonymous with a well-mixed system.

Linearity is the basic assumption behind classical biopharmaceutics, pharma-
cokinetics, and pharmacodynamics. Formally, a system is linear if the output of
an operation is proportional to the input. This property of proportionality along
with the property of independence, i.e., the response of the system to an input is
equal to the sum of the outcomes, is the fundamental feature of linear systems. In
contrast, nonlinear kinetic phenomena are frequently observed in pharmacokinetic
and pharmacodynamic studies, when the output (e.g., the area under the time–
concentration curve) is nonlinearly related to the input (e.g., the dose). However,
we deal with complicated biological systems consisting of a large number of
interrelated components and processes. Linear approaches neglect these intrinsic
relations and therefore are not complete.

In various fields of research, e.g., physics, chemistry, and physiology, scientists
are increasingly finding that at the research level it is the nonlinear phenomena that
control the game; physical or physiological heterogeneity is everywhere, while het-
erogeneous conditions prevail in numerous physical, physiological, and biochemical
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Table 1 Classical and
nonclassical considerations of
the in vitro and in vivo drug
processes.

Fields Classical Nonclassical

Geometry Euclidean Fractal

Topology Ordered media Disordered media

Diffusion Regular Anomalous

Kinetics Deterministic Stochastic

Dynamics Linear Nonlinear

processes. Today, science shows that the real world is relentlessly nonlinear, and
therefore the techniques of nonlinear dynamics are required to analyze the nonlinear
phenomena. In parallel, structural and functional heterogeneities can be described
and understood with the concept of fractals.

Kinetic processes in various scientific fields are traditionally treated with classi-
cal kinetics. The latter is quite satisfactory for reactions and processes in well-stirred
media, i.e., under homogeneous conditions. In fact, the kinetics of diffusion-
controlled processes and reactions in three-dimensional homogeneous systems obey
the classical laws of diffusion where the rate constant of the process is linearly
proportional to the diffusion coefficient. However, this proportionality is not valid
for systems with smaller dimensions, fractal spaces, or disordered systems since the
laws of transport are different in these media. Accordingly, fractal kinetics has been
developed since classical kinetics was found to be unsatisfactory under dimensional
constraints, e.g., phase boundaries, understirred media, or membrane reactions.

The concepts delineated above are quoted in Table 1 in a comparative manner.
The clear message of the middle column of Table 1 is that classical behavior
is expected when the phenomena are taking place in Euclidean spaces and/or
ordered media (e.g., well-stirred systems) since the classical laws of diffusion and
kinetics are valid. According to the third column of Table 1, deviations from the
normal behavior appear when the processes take place in fractal spaces and/or
under topological constraints since neither diffusion nor kinetics follow the classical
pattern in that case. Finally, the dynamics of the systems are linear when the variable
of interest is considered to be detached from the remainder of the system. On the
contrary, nonlinear dynamic behavior exists when the interaction of the studied
variable with the other variables constituting the system is taken into account.

We do believe that it is only through the understanding of underlying principles
that adequate exploration in the fields of biopharmaceutics, pharmacokinetics, and
pharmacodynamics can be carried out. To this end, in this first, introductory part of
the book we deal with the basic nonclassical concepts. Chapter 1 gives the essentials
of fractals such as self-similarity, scaling laws, and fractal dimension. Chapter 2
deals with the basics of diffusion-kinetics in either Euclidean or disordered media.
The concepts of nonlinear dynamics are discussed in Chapter 3, where reference is
made to a number of characteristics of dynamic systems, e.g., phase space, attractor,
bifurcation.



Chapter 1
The Geometry of Nature

The proper route to an understanding of the world is an
examination of our errors about it.

Euclid (325-265 BC)

Our understanding of nature has been based on the classical geometric figures of
smooth line, triangle, circle, cube, sphere, etc. Each of these regular forms can be
determined by a characteristic scale. For example, the length of a straight line can
be measured with a ruler that has a finer resolution than the entire length of the line.
In general, each Euclidean object has a unique value for its characteristics (length,
area, or volume). It is also known that when these objects are viewed at higher
magnification they do not reveal any new features.

In the real world, however, the objects we see in nature and the traditional
geometric shapes do not bear much resemblance to one another. Mandelbrot [2]
was the first to model this irregularity mathematically: clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark is not smooth, nor does
lightning travel in a straight line. Mandelbrot coined the word fractal for structures
in space and processes in time that cannot be characterized by a single spatial or
temporal scale. In fact, the fractal objects and processes in time have multiscale
properties, i.e., they continue to exhibit detailed structure over a large range of
scales. Consequently, the value of a property of a fractal object or process depends
on the spatial or temporal characteristic scale measurement (ruler size) used.

The physiological implications of the fractal concepts are serious since fractal
structures and processes are ubiquitous in living things, e.g., the lung, the vascular
system, neural networks, the convoluted surface of the brain, ion channel kinetics,
and the distribution of blood flow through the blood vessels. Besides, many
applications of fractals exist for the morphology of surfaces, e.g., the surface area
of a drug particle, surface reactions on proteins. Thus, fractal geometry allows
scientists to formulate alternative hypotheses for experimental observations, which
lead to more realistic explanations compared to the traditional approaches. These
fractal hypotheses can be expressed in terms of quantifying the fractal properties of
the system under study as delineated below.
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4 1 The Geometry of Nature

1.1 Geometric and Statistical Self-Similarity

The most interesting property of fractals is geometric self-similarity, which means
that the parts of a fractal object are smaller exact copies of the whole object.
Replacement algorithms are used to generate geometric fractals. For example, the
Koch curve shown in Figure 1.1 can be produced after four successive replacements
according to the following replacement rule: two lines of the same length replace
the middle third of the length of the line at each step. Infinite recursions can be
applied resulting in a continuous increase of the “line” length by a factor of 4=3
at each successive step. This continuous ramification of the Koch curve leads to a
surprising result if one attempts to measure the length of its perimeter: the length is
dependent on the ruler size used for its measurement. In fact, the smaller the ruler
size used, the longer the perimeter. Accordingly, when we deal with fractal objects
or processes we say that their characteristics (length in this case) “scale” with the
measurement resolution.

Similar algorithms for area and volume replacement can be used to create fractals
from two- or three-dimensional objects. The fractals shown in Figure 1.2 are called
the Sierpinski triangle (gasket) and Menger sponge. They have been generated
from an equilateral triangle and a cube, respectively, by applying the following
replacement algorithms:

• Sierpinski triangle: At each step an equilateral triangle with area equal to one-
quarter of the remaining triangle is removed.

• Menger sponge: At each step one-third of the length of the side of each cube
is removed taking care to apply this rule in 3 dimensions and avoiding removal

Fig. 1.1 The first four
iterations of the Koch curve

0=i

1=i

2=i

3=i

4=i
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Fig. 1.2 Generation of the (A) Sierpinski triangle (gasket) (the first three iterations are shown),
(B) Menger sponge (the first two iterations are shown) from their Euclidean counterparts

of corner cubes. This means that if the original cube has been constructed from
3 � 3 � 3 D 27 small cubes, after the first iteration 20 small cubes are remaining
(6 are removed from the center of the faces and one is removed from the center
of the cube).

These line, area, and volume replacement rules give fractal structures
(Figures 1.1 and 1.2), which are quite different from the original Euclidean objects.
This obvious difference in shape has implications when one considers physical
measurements or (bio)chemical processes taking place in Euclidean vs. fractal
spaces. For example, surface and/or surface/volume ratios are extremely important
for reactions or transport processes taking place at interfaces of different phases like
liquid–solid boundaries, e.g., drug dissolution, drug uptake from the gastrointestinal
mucosa. In general, objects with fractal surfaces are very efficient for surface
reactions.

Replacement rules are expressed mathematically by difference equations, which
can be used to generate the fractal structures. These equations are usually called
maps and have the form

ziC1 D g .zi/ , (1.1)

where zi and ziC1 are the input and output, respectively, at two successive steps,
while the functional form of g in (1.1) depends on the exact features of the recursion
process. The discrete nature of (1.1) allows for a recursive creation of the fractal
object utilizing the output ziC1 as the next input zi. In this respect, (1.1) operates
like a copy machine, which produces the self-similar object in accord with the rule
imposed on g.
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The replacement rules used for the generation of fractal objects ensure the
geometric self-similarity discussed above. However, the fractal objects or processes
we encounter in nature are not generated by exact mathematical rules. For example,
some biological objects with fractal structure like the venular and arterial tree cannot
be characterized by geometric self-similarity; rather they possess statistical self-
similarity. The fractal is statistically self-similar since the characteristics (such as
the average value or the variance or higher moments) of the statistical distribution
for each small piece are proportional to the characteristics that concern the whole
object. For example, the average rate at which new vessels branch off from their
parent vessels in a physiological structure can be the same for large and small
vessels. This is due to the fact that portions of fractal biological objects resemble
the whole object instead of being exact copies of the whole. The term random
fractal is used for these fractal structures to underline their statistical character. Also,
statistical self-similarity can be observed when time series data are recorded for
physiological processes, e.g., the electroencephalogram or the electrocardiogram.
In this case, we speak of statistical self-similarity in time and not in space.

At this point, a distinction should be made between geometrically and statisti-
cally self-similar fractals. The pure mathematical basis of geometric fractals does
not impose any restriction on the range of application of their scaling laws. In
contrast, scaling laws for statistically self-similar fractals adhering to biological
objects or processes are subject to the limitations imposed by the physiology and/or
the resolution of the measurement technique. In other words, experimental data
usually obey scaling laws over a finite range of resolution measurements. This
important aspect of scaling laws, with regard to the range of their application, should
be carefully considered when one is applying scaling principles for the analysis of
experimental data.

1.2 Scaling

The issue of scaling was touched upon briefly in the previous section. Here, the
quantitative features of scaling expressed as scaling laws for fractal objects or
processes are discussed. Self-similarity has an important effect on the characteristics
of fractal objects measured either on a part of the object or on the entire object. Thus,
if one measures the value of a characteristic � .!/ on the entire object at resolution
!, the corresponding value measured on a piece of the object at finer resolution
� .r!/ with r < 1 will be proportional to � .!/

� .r!/ D k� .!/; (1.2)

where k is a proportionality constant that may depend on r. When statistical self-
similarity in time for recordings of an observable is examined, the scale r! is a finer
time resolution than scale !. Relation (1.2) reveals that there is a constant ratio k
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between the characteristic � .!/ measured at scale ! and the same characteristic
� .r!/ measured at scale r!.

The above-delineated dependence of the values of the measurements on the
resolution applied suggests that there is no true value of a measured characteristic.
Instead, a scaling relationship exists between the values measured and the corre-
sponding resolutions utilized, which mathematically may have the form of a scaling
power law

� .!/ D ˇ!˛ , (1.3)

where ˇ and a are constants for the given fractal object or process studied.
Equation (1.3) can be written as

ln � .!/ D lnˇ C ˛ ln!.

This equation reveals that when measurements for fractal objects or processes are
carried out at various resolutions, the log–log plot of the measured characteristic
� .!/ against the scale ! is linear. Such simple power laws, which abound in nature,
are in fact self-similar: if ! is rescaled (multiplied by a constant), then � .!/ is still
proportional to !a, albeit with a different constant of proportionality. As we will see
in the rest of this book, power laws, with integer or fractional exponents, are one of
the most abundant sources of self-similarity characterizing heterogeneous media or
behaviors.

1.3 Fractal Dimension

The objects considered are sets of points embedded in a Euclidean space. The
dimension of the Euclidean space that contains the object under study is called the
embedding dimension, de, e.g., the embedding dimension of the plane is de D 2 and
of three-dimensional space is de D 3.

One is accustomed to associating topological dimensions with special objects:
dimension 1 with a curve, dimension 2 with a square, and dimension 3 with a cube.
Because there are severe difficulties for the definition of the topological dimension
dt, it is convenient to associate the topological dimension of an object with its cover
dimension do.

A curve in the plane is covered with three different arrangements of disks
(Figure 1.3 center). In the right part of the figure there are only pairs of disks with
nonempty intersections, while in the center part there are triplets and in the left
part even quadruplets. Thus, one can arrange coverings of the curve by only one
intersection of each disk with another, and the cover dimension of a line is defined
as do D dt D 1.

A set of points (Figure 1.3 top) can be covered with disks of sufficiently small
radius so that there is no intersection between them. Their covering dimension is
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Fig. 1.3 The cover dimension

do D dt D 0. A surface (Figure 1.3 bottom) has covering dimension do D dt D 2,
because one needs at least two overlapping spheres to cover the surface. The same
ideas generalize to higher dimensions.

Similarly, the degree of irregularity of a fractal object is quantified with the
fractal dimension, df . This term is used to show that apart from the Euclidean
integer dimensions (1 or 2 or 3) for the usual geometric forms, fractal objects have
noninteger dimensions. The calculation of df using the concept of self-similarity
requires in essence the knowledge of the replacement rule, which dictates how many
similar pieces m are found when the scale is reduced by a given factor r at each step.
Thus, if we count the number m of the exact copies of the entire geometric fractal
that are observed when the resolution of scale is changed by a factor of r, the value
of df can be derived from

df D ln m

ln r
(1.4)

after logarithmic transformation of

m D rdf . (1.5)

For example, the fractal dimension of the Koch curve is 1:2619 since four (m D 4)
identical objects are observed (cf. levels i D 0 and i D 1 in Figure 1.1) when the
length scale is reduced by a factor r D 3, i.e., df D ln 4= ln 3 � 1:2619. What
does this noninteger value mean? The Koch curve is neither a line nor an area since
its (fractal) dimension lies between the Euclidean dimensions, 1 for lines and 2 for
areas. Due to the extremely ramified structure of the Koch curve, it covers a portion
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of a two-dimensional plane and not all of it and therefore its “dimension” is higher
than 1 but smaller than 2.

Similarly, the first iteration in the generation of the Sierpinski gasket (Figure 1.2
A) involves the reduction of the scale by a factor r D 2 and results in 3 identical
black equilateral triangles (m D 3); thus, df D ln 3= ln 2 � 1:5815. For the Menger
sponge (Figure 1.2B), the reduction of the scale by a factor r D 3 results in m D 20

identical cubes, i.e., df D ln 20= ln 3 � 2:727. Both values of df are consistent with
their dimensions since the Sierpinski gasket lies between 1 and 2, while the Menger
sponge lies between 2 and 3.

Equations (1.4) and (1.5) are also valid for Euclidean objects. For example, if
one creates m D 16 identical small squares in a large square by reducing the length
scale by one-fourth, r D 4, the value of df is ln 16= ln 4 D 2, which is the anticipated
result, i.e., the topological dimension dt D 2 for a plane.

1.4 Estimation of Fractal Dimension

Irrespective of the origin of fractals or fractal-like behavior in experimental studies,
the investigator has to derive an estimate for df from the data. Since strict
self-similarity principles cannot be applied to experimental data extracted from
irregularly shaped objects, the estimation of df is accomplished with methods that
unveil either the underlying replacement rule using self-similarity principles or the
power-law scaling. Both approaches give identical results and they will be described
briefly.

1.4.1 Self-Similarity Considerations

In principle, the object under study is covered with circles for one- and two-
dimensional objects or spheres for three-dimensional objects. This process is
repeated using various sizes ! for circles or spheres, while overlapping may be
observed. Then, the minimum number of “balls” (circles or spheres) m.!/ of size
! needed to cover the object is calculated. Finally, the fractal dimension, which in
this case is called the capacity dimension, dc is calculated from the relationship

dc D lim
!!0

ln m .!/

ln .1=!/
. (1.6)

Note that (1.6) relies on the self-similarity concept since the number of identical
objects m and the scale factor r in (1.5) have been replaced by the number of “balls”
m.!/ and the reciprocal of the size 1=!, respectively. The limit (! ! 0) is being
used to indicate the estimation of dc at the highest possible resolution, i.e., as the
“ball” size ! decreases continuously.
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The reference situation implied in this definition is that at ! D 1, one “ball”
covers the object. A clearer definition of dc is

dc D ln Œm .!/ =m .1/�

ln .1=!/
,

or in general, if at ! D 1, k “balls” cover the object,

dc D ln Œm .k!/ =m .k/�

ln .k=k!/

and

dc D �d ln Œm .!/�

d ln!
. (1.7)

The capacity dimension tells us how the number of “balls” changes as the size of the
“balls” is decreased. This method is usually called box counting since the method
is implemented in computers with a variety of algorithms utilizing rectangular
grids instead of “balls.” Dimensions df and dc are quite similar, and the differences
between them are usually much smaller than the error of estimates [3].

1.4.2 Power-Law Scaling

When the scaling law (1.3) of the measured characteristic � can be derived from
the experimental data .!; �/, an estimate of the fractal dimension df of the object
or process can be obtained as well. In order to apply this method one has first to
derive the relationship between the measured characteristic � and the function of
the dimension g.df /, which satisfies

� / !g.df /, (1.8)

where ! represents the various resolutions used. Then, the exponents of (1.3)
and (1.8) are equated,

g.df / D ˛, (1.9)

and (1.9) is solved in terms of df to derive an estimate for df .
The form of the function g.df / in (1.9) depends on the measured characteristic �

[4]. For instance:

• When the characteristic is the mass of the fractal object, the exponent of (1.8)
corresponds to the value of df , df D ˛.



1.6 More About Dimensionality 11

• When the characteristic is the average density of a fractal object, df D de C ˛,
where de is the embedding dimension.

• For measurements regarding lengths, areas, or volumes of objects, a simple
equation can be derived using scaling arguments, df D de � ˛.

Apart from the estimation of df from experimental data for mass, density, and
purely geometric characteristics, the calculation of df for a plethora of studies
dealing with various characteristics like frequency, electrical conductivity, and
intensity of light is also based on the exact relationship that is applicable in each
case between df and the scaling exponent ˛ (1.9).

1.5 Self-Affine Fractals

The replacement rule we have used so far to generate geometric fractals creates
isotropic fractals. In other words, the property of geometric self-similarity is the
same in all directions. Thus, a unique value for the fractal dimension df is being
used to quantify an irregular structure. When either the replacement algorithm
or the actual physical object exhibits an asymmetry in different directions, then
the anisotropic fractal is characterized as a self-affine fractal. For example, if one
divides a large square into 6 identical small parallelograms and discards 3 of
them in an alternate series at each iteration, the result is a disconnected self-affine
fractal. Obviously, the unequal horizontal and vertical sides of the parallelograms
produced with the successive replacements follow different scaling laws in accord
with the dimensions of the sides. The basic difference between self-similarity and
self-affinity lies in the fact that self-similar fractals become identical upon simple
magnification (classical scaling), while to become identical, self-affine fractals
should be scaled by different amounts of the spatial directions. Accordingly, there
is no single value of df for self-affine fractals; it varies with the ruler size used
for measurements. Usually, the box-counting method is applied in conjunction
with (1.6) with limits ! ! 0 and ! ! 1; two estimates for df are derived, namely,
df ;local and df ;global, respectively, and used to characterize a self-affine fractal. Both
values indicate limiting values of the fractal dimension: the former is relevant when
the size of the boxes decreases infinitely, while the latter corresponds to the largest
length scale used for measurements.

1.6 More About Dimensionality

The concept of fractals has helped us to enrich the notion of dimensionality. Apart
from the classical systems with dimensions 1, 2, and 3 there are disordered systems
with noninteger dimensions.
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In the simplest case, a system is called Euclidean or nonfractal if its topological
dimension dt is identical to the fractal dimension df . This means dt D df D 1 for
a curve, dt D df D 2 for a surface, and dt D df D 3 for a solid. The following
relationship holds for the three expressions of dimensionality

dt � df � de.

Although we have used the value of the fractal dimension df as a means to quantify
the degree of disorderliness, it is the magnitude of the difference df � dt that in
essence reflects how irregular (disordered) the system is. Geometrically speaking,
this difference df �dt allows the disordered system to accommodate structure within
structure, and the larger this difference is, the more disordered the system.

The above-defined df and dt are structural parameters characterizing only the
geometry of a given medium. However, when we are interested in processes like
diffusion or reactions in disordered media, we need functional parameters, which
are associated with the notion of time in order to characterize the dynamic behavior
of the species in these media. The spectral or fracton dimension ds and random-walk
dimension dw are two such parameters, and they will be defined in Section 2.2.

1.7 Percolation

The origins of percolation theory are usually attributed to Flory and Stockmayer
[5–8], who published the first studies of polymerization of multifunctional units
(monomers). The polymerization process of the multifunctional monomers leads to
a continuous formation of bonds between the monomers, and the final ensemble of
the branched polymer is a network of chemical bonds. The polymerization reaction
is usually considered in terms of a lattice, where each site (square) represents a
monomer and the branched intermediate polymers represent clusters (neighboring
occupied sites), Figure 1.4 A. When the entire network of the polymer, i.e., the
cluster, spans two opposite sides of the lattice, it is called a percolating cluster,
Figure 1.4B.

In the model of bond percolation on the square lattice, the elements are the
bonds formed between the monomers and not the sites, i.e., the elements of
the clusters are the connected bonds. The extent of a polymerization reaction
corresponds to the fraction of reacted bonds. Mathematically, this is expressed by
the probability p for the presence of bonds. These concepts can allow someone
to create randomly connected bonds (clusters) assigning different values for the
probability p. Accordingly, the size of the clusters of connected bonds increases as
the probability p increases. It has been found that above a critical value of pc D 0:5

the various bond configurations that can be formed randomly share a common
characteristic: a cluster percolates through the lattice. A more realistic case of a
percolating cluster can be obtained if the site model of a square lattice is used with
probability p D 0:6, Figure 1.5. Notice that the critical value of pc is 0:593 for the
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Fig. 1.4 A 6� 6 square lattice site model. The dots correspond to multifunctional monomers. (A)
The encircled neighboring occupied sites are clusters (branched intermediate polymers). (B) The
entire network of the polymer is shown as a cluster that percolates through the lattice from left to
right

Fig. 1.5 A percolation cluster derived from computer simulation in a 300� 300 square site model
with p D 0:6. Only the occupied sites that belong to the percolating cluster are shown

two-dimensional site model. Also, the percolation thresholds vary according to the
type of model (site or bond) as well as with the dimensionality of the lattice (2 or 3).

The most remarkable properties of percolation clusters arise from their sudden
inception when the bond concentration (probability) reaches the critical threshold
value p D pc. At this specific value the emerged cluster spans two opposite sides of
the lattice and if one conceives of the bonds as channels, the cluster allows a fluid
to flow through the medium from edge to edge. Accordingly, the terms percolation
and percolation transition have been coined in an attempt to capture the sudden
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change in the geometry and the phase transition. In the same vein, the probability
p1 that a bond belongs to the percolating cluster undergoes a sharp transition, i.e.,
p1 D p D 0 for p1 D p < pc, while p1 becomes finite following a power law
when p > pc

p1 / .p � pc/
� ,

where � is an exponent usually called the critical exponent. According to the
findings in this field of research the critical exponent � depends exclusively on the
dimensionality of the system. This independence from other factors is characterized
as universality.

Important characteristics of the clusters like the mass q and the typical length �
of the clusters, usually called the correlation length, obey power laws too

q / jp � pcj�� , � / jp � pcj�� ,

where � and � are also critical exponents. These laws allow reconsideration of the
fractal properties of the clusters. According to the last equation the clusters are
self-similar as long as the length scale used for measurements is shorter than � .
For example, the giant cluster shown in Figure 1.5 is a random fractal and as such
has a characteristic value for its fractal dimension df . However, the calculation of
the fractal dimension for the percolating cluster of Figure 1.5 should be performed
with radii 	 shorter than � . In other words, when 	 < � the self-similar character
of the cluster is kept and the scaling law holds. Indeed, when the box-counting
method is applied, the scaling law q / 	1:89 between the mass q (calculated from
the mass of ink or equivalently from the number of dots) and the radius 	 of the
box is obtained. This means that df D 1:89 for the percolating cluster of Figure 1.5
since the characteristic measured is the mass for various radii 	, and no further
calculations are required in accord with (1.8). On the contrary, for measurements
with 	 > �, self-similarity no longer exists.



Chapter 2
Diffusion and Kinetics

Everything changes and nothing stands still.

Heraclitus of Ephesus (544-483 BC)

The principles of physical and chemical laws are essential for the understanding of
drug kinetics in mammalian species. This also applies to pharmacodynamics since
the interaction of drug with the receptor(s) relies on the physicochemical principles
of the law of mass action. In reality one can consider the entire course of drug in
the body as consecutive and/or concurrent processes of diffusion and convection.
For example, the oral administration of a drug may include, among many others, the
following processes:

• dissolution in the gastrointestinal fluids (diffusion),
• transport in the chyme by intestinal peristalsis (convection),
• transcellular uptake (diffusion),
• transport with the blood to organs (convection),
• transfer from the bloodstream into the interstitial and intracellular spaces (diffu-

sion),
• interaction with receptors at the effect site (diffusion),
• transfer from tissues back into blood (diffusion),
• glomerular filtration (convection),
• transport with the urine into the efferent urinary tract (convection),
• reabsorption from the tubular lumen to the peritubular capillary (diffusion).

The above convection processes are the result of the movement of a liquid in bulk,
i.e., the flow of the biological fluid. Consequently, convection processes are partic-
ularly dependent on physiology. For example, the glomerular filtration of a drug is
extremely important from a therapeutic point of view, but it is solely determined by
the physiological condition of the patient, e.g., the glomerular filtration rate. This is
so, since a common translational velocity is superposed on the thermal motions of all
drug molecules in any element of volume. On the other hand, convection processes
for the dissolved and undissolved drug in the gastrointestinal tract are much more
complicated. Here, physiology still plays a major role but dietary conditions and the
type of formulation are important too. The picture becomes even more complicated
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if one takes into account the oscillatory nature of intestinal motility, which is
related to the food intake. Despite the complexity involved, the term convection
implies that both dissolved drug molecules and undissolved drug particles along
with the gastrointestinal fluid molecules are transported together without separation
of individual components of the solution/suspension.

On the other hand, diffusion is the random migration of molecules or small
particles arising from motion due to thermal energy. Here, drug diffusive fluxes are
produced by differences in drug concentrations in different regions. Thus, diffusion
is one of the most significant process in all fields of pharmaceutical research either
in vitro or in vivo. This is justified by the fact that everything is subject to thermal
fluctuations, and drug molecules or particles immersed in aqueous environments are
in continuous riotous motion. Therefore, understanding of these random motions is
crucial for a sound interpretation of drug processes.

2.1 Random Walks and Regular Diffusion

Particles under the microscope exhibiting Brownian motion demonstrate clearly that
they possess kinetic energy. We are also familiar with the diffusional spreading
of molecules from the classical experiment in which a drop of dye is carefully
placed in an aqueous solution. Fick’s laws of diffusion describe the spatial and
temporal variation of the dye molecules in the aqueous solution. However, before
presenting Fick’s differential equation, attention will be given to a proper answer
for the fundamental question: How much do the molecules move on average during
diffusional spreading?

The correct answer to the above question is a law of physics: “the mean square
displacement is proportional to time.” We can intuitively reach this conclusion with
particles executing an imaginary one-dimensional random walk. A simple model is
presented in Figure 2.1, ignoring the detailed structure of the liquid and temperature
effects and assuming no interaction between particles. The particles are placed at
z D 0 and start their random walk at t D 0 moving at a distance ı either to the right
or to the left once every tı units of time; thus, the particles execute i steps in time
t D itı. Equal probabilities (1=2) are assigned for each movement of the particles
(either to the right or to the left). This means that the successive jumps of particles
are statistically independent and therefore the walk is unbiased. We say that the
particles are blind since they have no “memory” of their previous movement(s).

Fig. 2.1 A one-dimensional random walk of particles placed at z D 0 at t D 0. The particles
occupy only the positions 0, ˙ı, ˙2ı, ˙3ı, ˙4ı
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The question arises: How far will a particle travel in a given time interval? The
average distance a particle travels is given by mean square displacement evaluated
as follows: The position of a particle along the z-axis after i steps zi is

zi D zi�1 ˙ ı, (2.1)

where zi�1 is the position of the particle at the previous .i � 1/-th step. Taking the
square of (2.1) we get the square displacement

z2i D z2i�1 ˙ 2ızi�1 C ı2,

which if averaged for the total number of particles, provides their mean square
displacement

˝
z2i
˛
:

˝
z2i
˛ D ˝

z2i�1
˛˙ 2ı hzi�1i C ı2 D ˝

z2i�1
˛C ı2. (2.2)

The second term in the brackets vanishes since the plus sign corresponds to half
of the particles and the minus sign to the other half. Given that z0 D 0 and
applying (2.2) for the successive steps 1; 2; : : : ; i, we get

˝
z21
˛ D ı2,

˝
z22
˛ D 2ı2, : : : ,

˝
z2i
˛ D iı2. (2.3)

Since as previously mentioned the number of steps is proportional to time (i D
t=tı), we can express the positioning of particles as a function of time t using (2.3):

˝
z2 .t/

˛ D
�
ı2=2tı

�
t. (2.4)

The use of 2 in the denominator of the previous equation will be explained in
Section 2.4. The last expression shows that the mean square displacement of the
particles is proportional to time, t:

˝
z2 .t/

˛ / t. (2.5)

The same result is obtained if one considers a simple random walk in two
dimensions, i.e., the walk is performed on a two-dimensional lattice. Here, the
walker (particle) moves either vertically or horizontally at each time step (tı units
of time) with equal probabilities. Two configurations for eight-time-step random
walks are shown in Figure 2.2A, along with the trail of a random walk of 10;000
steps, Figure 2.2B. In the general case and assuming that the lattice spacing is ı, the
position of the walker on the plane after i steps zi is

zi D ı

iX

jD1
uj,
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Fig. 2.2 (A) Two configurations of eight-step random walks in two dimensions. The numbers
correspond to the successive eight steps and the arrows indicate the direction of movement. (B) A
random walk of 10; 000 steps

where uj is a (unit) vector pointing to a nearest-neighbor site; it represents the j-th
step of the walk on the two-dimensional lattice. The mean displacement hzii of the
walker can be obtained if zi is averaged for the total number of walkers, hzii D 0.
This equation is obtained from the previous one since

˝
uj
˛ D 0. Moreover, the mean

square displacement can be obtained from the previous equation if one takes into
account that

˝
ujuj

˛ D 1, and
˝
ujuk

˛ D 0:

˝
z2i
˛ D

*2

4ı
iX

jD1
uj

3

5

2+

D ı2 h.u1 C u2 C : : :C ui/ .u1 C u2 C : : :C ui/i

D ı2
iX

jD1

˝
ujuj

˛C ı2
iX

jD1
k¤j

˝
ujuk

˛ D iı2. (2.6)
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Substituting i D t=tı in the last equation, (2.4) is recovered using the factor 1
2

for
the derivation once again.

The theory for motion in three dimensions results in the same law if the
same assumptions are applied and motions in the three directions are statistically
independent. The important result for regular diffusion is that its time dependence is
universal regardless of the dimension of the medium. This square root relation (2.5)
has striking consequences for the distance covered by diffusing molecules. It takes
four times as long to get twice as far while a particle can cover half the distance in
a quarter of the time. Thus, transport by diffusion is very slow if there is far to go,
but very rapid over very short distances. For example, the exchange and transport of
solutes within cells and between cells and capillaries can be effectively maintained
by diffusion due to the small size and close spacing of cells and capillaries in the
body of mammals. On the contrary, the slowness of diffusion over large distances
points to the necessity for a circulatory system to bring oxygen, for example, from
the lungs to the brain or glucose from the liver to the muscles of the arms. To permit
these exchanges, the bulk flow of blood carries a large number of solutes around the
body in the vascular system by convection.

Equation (2.4) will help us to define and understand the meaning of the diffusion
coefficient D. This term corresponds to the proportionality constant of (2.4),

D , ı2

2tı
, (2.7)

has dimensions of area�time�1 and takes different values for different solutes in a
given medium at a given temperature. Hence, the value of D is characteristic for a
given solvent (or better, medium structure) at a given temperature of the diffusing
tendency of the solute. For example, a small drug molecule in water at 25 ıC has
D � 10�5 cm2= s, while a protein molecule like insulin has D � 10�7 cm2= s.
Using these values one can roughly calculate the time required for the drug and
protein molecules to travel a distance of 1mm; it takes .0:1/2=10�5 � 1000 s �
16:6min for the drug and 1666:6min for insulin. Hence, the value of D is heavily
dependent on the size of the solute molecules. These numerical calculations are
very useful in obtaining insight into the rapidity or slowness of a solute migration,
e.g., drug release from controlled release formulations when regular diffusion is the
operating mechanism.

2.2 Anomalous Diffusion

In the previous section we analyzed the random walk of molecules in Euclidean
space and found that their mean square displacement is proportional to time (2.5).
Interestingly, this important finding is not true when diffusion is studied in fractals
and disordered media. The difference arises from the fact that the nearest-neighbor
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sites visited by the walker are equivalent in spaces with integer dimensions but are
not equivalent in fractals and disordered media. In these media the mean correlations
between different steps

˝
ujuk

˛
are not equal to zero, in contrast to what happens

in Euclidean space; cf. derivation of (2.6). In reality, the anisotropic structure of
fractals and disordered media makes the value of each of the correlations ujuk

structurally and temporally dependent. In other words, the value of each pair ujuk

depends on where the walker is at the successive times j and k, and the Brownian
path on a fractal may be a “fractal of a fractal” [9]. Since the correlations ujuk do not
average out, the final important result is

˝
ujuk

˛ ¤ 0, which is the underlying cause
of anomalous diffusion. In reality, the mean square displacement does not increase
linearly with time in anomalous diffusion and (2.5) is no longer exact.

To characterize the dynamic movement of particles on a fractal object, one needs
two additional parameters: the spectral or fracton dimension ds and the random-
walk dimension dw. Both terms are quite important when diffusion phenomena are
studied in disordered systems. This is so since the path of a particle or a molecule
undergoing Brownian motion is a random fractal. A typical example of a random
fractal is the percolation cluster shown in Figure 1.5.

The definition of spectral dimension ds refers to the probability p.t/ of a random
walker returning to its origin after time t:

p .t/ / t�ds=2. (2.8)

According to (2.8), the value of ds governs the decrease of the probability p.t/ with
time. When diffusion is considered in Euclidean spaces the various dimensionality
terms become identical: dt D ds D df . However, in fractal spaces the following
inequalities hold: dt < ds < df < de, where de is the embedding dimension. For
example, we found for the Sierpinski gasket (Figure 1.2A) df D 1:5815, while
ds D 1:3652 and the embedding dimension in this case is de D 2. The meaning
of ds can be understood if one considers a walker executing a random walk on a
ramified system, like the Sierpinski gasket with df D 1:5815, Figure 1.2A. Due
to the system’s ramification, the walker has many alternatives of movement in the
branched system, and therefore the probability of the walker being back at the origin
is small. Hence, the value of ds goes up in accord with (2.8) and is higher than one
(ds > 1), i.e., the topological dimension of a curve. In actual practice, the calculation
of ds is accomplished numerically. Analytical solutions for ds are available when the
recursion algorithm of the system is known, e.g., Sierpinski gasket.

Finally, a stochastic viewpoint may be associated with the relation (2.8) since the
spectral dimension also characterizes the number n .t/ of distinct sites visited by the
random walker up to time t:

n .t/ / tds=2. (2.9)

The random-walk dimension dw is useful whenever one has a specific interest
in the fractal dimension of the trajectory of the random walk. The value of dw is
exclusively dependent on the values of df and ds:
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dw D min

�
2

df

ds
; df

�
.

The type of the random walk (recurrent or nonrecurrent) determines the minimum
value of the two terms in the brackets of the previous equation. If the walker does
not visit the same sites (nonrecurrent), then dw D 2df=ds. If the walk is of recurrent
type, then the walker visits the same sites again and again and therefore the walker
covers the available space (space-filling walk). Consequently, the meaning of dw

coincides with df (dw D df ). The mean square displacement in anomalous diffusion
follows the pattern

˝
z2 .t/

˛ / t2=dw , (2.10)

where dw is the fractal dimension of the walk and its value is usually dw > 2.
The exponent dw arises from the obstacles of the structure such as holes, bottlenecks,
and dangling ends, i.e., the diffusional propagation is hindered by geometric hetero-
geneity. The previous equation is the fundamental relation linking the propagation
of the diffusion front to the structure of the medium, and it recovers also the classical
law of regular diffusion when dw D 2.

In conclusion, the dynamic movement of particles on a fractal object may be
described by functional characteristics such as the spectral dimension ds and the
random-walk dimension dw. This anomalous movement of the molecules induces
heterogeneous transport and heterogeneous reactions. Such phenomena present a
challenge to several branches of science: chemical kinetics, surface and solid state
physics, etc. Consequently, one may argue that all mechanisms involved in drug
absorption, metabolism, enzymatic reactions, and cell microscopic reactions can be
analyzed in the new heterogeneous context since these processes are taking place
under topological constraints.

2.3 Fick’s Laws of Diffusion

Apart from the above considerations of diffusion in terms of the distance traveled
in time, the amount of substance transported per unit time is useful too. This
approach brings us to the concept of the rate of diffusion. The two considerations
are complementary to each other since the diffusion of molecules at the microscopic
level results in the observed “flux” at the macroscopic level. Fick’s laws of diffusion
describe the flux of solutes undergoing classical diffusion.

The simplest system to consider is a solution of a solute with two regions of
different concentrations cl and cr to the left and right, respectively, of a boundary
separating the two regions, Figure 2.3. In reality, the rate of diffusion is the net flux,
i.e., the difference between the two opposite unidirectional fluxes. There will be a
net movement of solute molecules to the right if cl > cr or to the left if cl < cr.
When cl D cr, the unidirectional fluxes are equal and the net flux is zero. Since the
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Fig. 2.3 A solute diffuses
across a plane. (A) Solute
diffusion from two regions of
different concentrations cl

and cr; the plane indicates the
boundary of the regions. The
transfer rate of material is
proportional to concentrations
cl and cr . (B) At a given time
t there are n.z; t/ and
n.z C ı; t/ molecules at
positions z and z C ı,
respectively
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two fluxes across the boundary from left to right and vice versa are proportional to
cl and cr, respectively, the net flux is proportional to the concentration difference
across the boundary.

The derivation of Fick’s first law of diffusion requires a reconsideration of
Figure 2.3A in terms of the one-dimensional random walk as shown in Figure 2.3B.
Let us suppose that at time t, there are n.z; t/ molecules at the left position z and
n.zCı; t/molecules at the right position zCı, Figure 2.3B. Since equal probabilities
(1=2) are assigned for the movement of the molecules (either to the right or to the
left), half of the n.z; t/ and n.z C ı; t/ molecules will cross the plane at the next
instant of time t C tı, moving in opposing directions. The net number of molecules
crossing the plane to the right is � 1

2
Œn .z C ı; t/ � n .z; t/� and the corresponding net

flux J of the diffusate is

J .z; t/ D � 1

2Atı
Œn .z C ı; t/ � n .z; t/� ,

where A is the area of the plane and tı is the time interval. Multiplying and dividing
the right part by ı2 and rearranging, we get

J .z; t/ D � ı2

2tı
1

ı

�
n .z C ı; t/

Aı � n .z; t/

Aı

�
.

The terms in the brackets express the concentration of molecules per unit volume
Aı, i.e., c.z C ı; t/ � cr .t/ and c.z; t/ � cl .t/ at positions z C ı and z, respectively,
while the term ı2=2tı is the diffusion coefficient D; the presence of 2 in the
denominator explains its use in (2.4). We thus obtain

J .z; t/ D �D c .z C ı; t/ � c .z; t/

ı
.
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Since the term in the brackets in the limit ı ! 0 is the partial derivative of c .z; t/
with respect to z, one can write

J .z; t/ D �D@c .z; t/

@z
. (2.11)

The minus sign indicates that the flow occurs from the concentrated to the dilute
region of the solution. Equation (2.11) is Fick’s first law, which states that the net
flux is proportional to the gradient of the concentration function (at z and t). Flux
has dimensions of mass�area�1�time�1.

Since the flux J is the flow of material
�
q .z; t/ from the left to the right through

the surface A, (2.11) is rewritten as follows:

�
q .z; t/ D �DA@c .z; t/

@z
. (2.12)

From this relationship it is clear that the force acting to diffuse the material q through
the surface is the concentration gradient @c=@z. This gradient may be approximated
by differences

@c .z; t/

@z
� �c .z; t/

�z
D c .z C ı; t/ � c .z; t/

ı
D cr .t/ � cl .t/

ı
, (2.13)

and the previous expression becomes

�
q .t/ , Rlr D �DA

ı
Œcr .t/ � cl .t/� , (2.14)

where Rlr is the transfer rate of material. This equation usually takes one of two
similar forms:

�
q .t/ D �CLlr Œcr .t/ � cl .t/� or

�
q .t/ D �PA Œcr .t/ � cl .t/� . (2.15)

The new introduced parameter CLlr , DA=ı is called clearance, and it has
dimensions of flow, volume�time�1. The clearance has a bidirectional use and
indicates the volume of the solution that is cleared from drug per unit of time
because of the drug movement across the plane. For an isotropic membrane,
structural and functional characteristics are identical at both sides of the membrane,
CLlr D CLrl. In practice, the term “clearance” is rarely used except for the
irreversible removal of a material from a compartment by unidirectional pathways of
metabolism, storage, or excretion. The other new parameter P , D=ı characterizes
the diffusing ability of a given solute for a given membrane, and it is called
permeability. Permeability has dimensions of length�time�1.

We now write a general mass conservation equation stating that the rate of change
of the amount of material in a region of space is equal to the rate of flow across the
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boundary plus any that is created within the boundary. If the region is z1 < z < z2
and no material is created

@

@t

z2Z

z1

dq .z; t/ D @

@t

z2Z

z1

c .z; t/ dz D J .z1; t/ � J .z2; t/ .

Here, if we assume D constant in (2.11) and z2 D z1 C�z, at the limit�z ! 0, this
relation leads to

@c .z; t/

@t
D D@

2c .z; t/

@z2
. (2.16)

This is the second Fick’s law stating that the time rate of change in concentration
(at z and t) is proportional to the curvature of the concentration function (at z and t).
There is a clear link between the two laws (2.11) and (2.16).

In order to examine the relevance of the two laws, let us consider that the
layer separating the two regions in Figure 2.3A is not thin but has an appreciable
thickness ı, while z is the spatial coordinate along it. According to (2.11), if
@c=@z is constant, then the flux J is constant. This happens when c is a linear
function of z. Consequently, @2c=@z2 D 0 in (2.16) and this implies the steady-
state condition @c .z; t/ =@t D 0, where the concentration is stationary in time.
Under these conditions, as many drug molecules diffuse in from the side of
higher concentration as diffuse out to the side of lower concentration. This can be
accomplished experimentally if the concentrations cl and cr in the two regions of
Figure 2.3A are maintained constant. With boundary conditions c.0; t/ D cl and
c.ı; t/ D cr, and initial condition c.z; 0/ D 0, the solution of (2.16) is given by [10]

c .z; t/ D cl � .cl � cr/
z

ı

�4cl



1X

iD1

1

2i � 1 sin
h
.2i � 1/

z

ı

i
exp

"

� .2i � 1/2 2

ı2
Dt

#

C2 .cl � cr/
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iD1
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i
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�

i
z

ı

�
exp

�
� i22

ı2
Dt

�
: (2.17)

By using the above relationship, Figure 2.4 simulates the distance–concentration
profiles c .z; t/ at times t D 15 min, 1 and 5 h with D D 0:1 cm2= h, ı D 1 cm,
cl D 10 and cr D 2 g= l. Since there is no solute inside the layer initially (c.z; 0/ D
0), for early times (e.g., t D 15 min) the solute molecules undergo diffusion with
two opposite directions, from the boundaries to the interior of the layer (@c=@z < 0
and J .z; t/ > 0 for 0 � z < z�; @c=@z > 0 and J .z; t/ < 0 for z� � z < 1 cm
with z� � 0:6 cm according to Figure 2.4). As time grows, the diffusion becomes
unidirectional with @c=@z < 0 and J .z; t/ > 0 because cl > cr. As time goes by
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Fig. 2.4 Simulation of distance–concentration profiles c .z; t/ at times t D 15 min, 1 and 5 h with
D D 0:1 cm2= h, ı D 1 cm, cl D 10 and cr D 2 g= l

(e.g., t D 5 h), the steady state is reached, the solution of the partial differential
equation 2.16 is c .z; :/ D cl � .cl � cr/

z
ı

and according to the definition 2.11 the
net flux

J .:; :/ D D
ı
.cl � cr/

is constant.
If we postulate that molecules move independently, the concentration c .z; t/ at

some point z is proportional to the probability density p .z; t/ of finding a molecule
there. Thus, the diffusion partial differential equation (2.16) holds when probability
densities are substituted for concentrations:

@p .z; t/

@t
D D@

2p .z; t/

@z2
. (2.18)

If a molecule is initially placed at z D 0, then the solution of the previous equation is

p .z; t/ D .4Dt/�1=2 exp

�
� z2

4Dt

�
.

For t � 1 at any z, we obtain p .z; t/ / t�1=2. This behavior in a homogeneous
medium corresponds to (2.8), giving the probability density in a fractal medium
with spectral dimension ds.
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2.4 Classical Kinetics

Pharmacy, like biology and physiology, is wet and dynamic. Drug molecules
immersed in the aqueous environment of intravascular, extravascular, and intra-
cellular fluids participate in reactions, such as reversible binding to membrane or
plasma proteins; biotransformation or transport processes, e.g., drug release from
a sustained release formulation; drug uptake from the gastrointestinal membrane;
and drug permeation through the blood–brain barrier. This classification is very
rough since some of these processes are more complex. For example, drug release
is basically a mass transport phenomenon but may involve reaction(s) too, e.g.,
polymer dissolution and/or polymer transition from the rubbery to the glassy state.
However, irrespective of the detailed characteristics, the common and principal
component of the underlying mechanism of numerous drug processes is diffusion.
This is the case for the ubiquitous passive transport processes that rely on diffusion
exclusively. The value of D depends on the nature of the environment of the
diffusing species. If the environment changes from one point to another, the value of
D may depend on position. Usually, we deal with systems in which the environment
of the diffusing species is the same everywhere, so that D is a constant. The
diffusion coefficient is constant for diffusion of dilute solute in a uniform solvent.
This case takes in a large number of important situations, and if the dilute solute is
chemically the same as the solvent but is isotopically tagged, then the diffusion is
termed self-diffusion. In contrast, chemical reactions can be either reaction-limited
or diffusion-limited. In the following sections we will discuss them separately.

2.4.1 Passive Transport Processes

There appear to be two main ways for solutes to pass through cell membranes,
namely, transcellular and paracellular. The most important is the transcellular route,
whereby compounds cross the cells by traversing the cell membrane following either
passive diffusion or carrier-mediated transport. Undoubtedly, the transcellular pas-
sive diffusion is the basic mechanism of solute permeation through cell membranes.
According to this mechanism the solute leaves the fluid bathing the membrane,
dissolves in the substance of the membrane, diffuses across in solution, and then
emerges into the intracellular fluid. Accordingly, the mathematical treatment of
drug diffusion across a membrane can be based on (2.12), which is a very useful
expression of Fick’s first law of diffusion. This equation is used extensively in the
pharmaceutical sciences. It describes the mass (number of molecules, or moles, or
amount) transported per unit time,

�
q, across an area A with a concentration gradient

@c=@z at right angles to the area. According to this definition, the numerical value
of the diffusion coefficient D, expressed in mass units, corresponds to the amount
of solute that diffuses per unit time across a unit area under the influence of a unit
concentration gradient.
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For a passive transport process, the concentration gradient across the membrane
can be considered constant and therefore the gradient can be approximated by
differences as in (2.13) to obtain

�
q .t/ D D0A

ı
Œcl .t/ � cr .t/� ,

where D0 is a modified diffusion coefficient, for restricted diffusion inside the
membrane. The value of D0 is much smaller than the diffusion coefficient D in
free solution. The minus sign is not used in the previous equation since the rate
of transport corresponds to the solute transfer from the external to the internal site
(cl > cr). Furthermore, if sink conditions prevail (cl � cr), the previous equation
can be simplified to

�
q .t/ D CLc .t/ D PAc .t/ . (2.19)

The last equation reveals that estimates for P can be obtained in an experimental
setup if the permeation rate

�
q .t/ and the total membrane area A available for

transport are measured and the drug concentration c .t/ in the donor compartment
remains practically constant. What is implicit from all the above is that the diffusion
coefficient D0 is at the origin of the definition of the clearance CL and permeability
P, and these parameters are incorporated into the global rate constant of the rate
equations used in pharmacokinetics. For example, the first-order absorption rate
constant ka in the following equation is proportional to the diffusion coefficient D0
of drug in the gastrointestinal membrane:

�
cb .t/ D kacGI .t/ ,

where cb .t/ and cGI .t/ denote drug concentration (amount absorbed/volume of
distribution) in blood and in the gastrointestinal lumen (amount dissolved in
the gastrointestinal fluids/volume of gastrointestinal fluids), respectively. In other
words, D0 controls the rate of drug absorption from the gastrointestinal tract.

2.4.2 Reaction Processes: Diffusion- or Reaction-Limited?

Pharmacokinetics has been based on the concepts of classical chemical kinet-
ics. However, the applicability of the rate equations used in chemical kinetics
presupposes that the reactions are really reaction-limited. In other words, the typical
time for the two chemical species to react when placed in close proximity (reaction
time treac) is larger than the typical time needed for the two species to reach each
other (diffusion time tdiff) in the reaction space. When the condition treac > tdiff is
met, then one can use the global concentrations of the reactant species in the medium
to obtain the classical rate equations of chemical kinetics. This is so since the rate of
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the reaction is proportional to the global concentrations of the reactant species (law
of mass action). The inequality treac > tdiff underlines the fact that the two reactant
species have encountered each other more than one time previously in order to react
effectively.

The opposite case, treac < tdiff, indicates that the two reactant species actually
react upon their first encounter. The diffusion characteristics of the species control
the rate of the reaction, and therefore these reactions are called diffusion limited.
Consider, for example, a system consisting of species A and B with nA and nB

molecules of A and B, respectively. The problem of the reaction rate between A
and B is in essence reduced to the rate at which A and B molecules will encounter
one another. The principal parameters governing the reaction rate are the diffusion
coefficients DA and DB of the reactant species since they determine the diffusing
tendency of the species. Focusing on B molecules, it can be proven that the rate of B
molecules diffusing to an A molecule is proportional to the diffusion coefficient
of B, the number of B molecules, and the distance between A and B, namely,
4DB.	A C 	B/nB, where 	A C 	B is the distance between the centers of A and B
molecules; accordingly, the total rate of A and B encounters is 4DB.	A C	B/nBnA.
In an analogous manner the total rate of A and B encounters, viewed in terms of the
A molecules, is 4DA.	A C 	B/nBnA. The mean of these separate rates provides a
reasonable expression for the rate per unit volume for A and B molecules separately:

Rate of A and B encounters D 2.DA C DB/.	A C 	B/nAnB.

Although the previous equation signifies the importance of the diffusion charac-
teristics of the reactant species, it cannot be used to describe adequately the rate of
the reaction. The reason is that the concept of global concentrations for the nA and
nB molecules is meaningless, since a unit volume cannot be conceived due to the
local fluctuations of concentrations. Hence, the local concentrations of the reactants
determine the rate of the reaction for diffusion-limited reactions. Accordingly, local
density functions with different diffusion coefficients for the reactant species are
used to describe the diffusion component of reaction–diffusion equations describing
the kinetics of diffusion-limited reactions.

2.4.3 Carrier-Mediated Transport

The transport of some solutes across membranes does not resemble diffusion
and suggests a temporary, specific interaction of the solute with some component
(protein) of the membrane characterized as “carrier,” e.g., the small-peptide carrier
of the intestinal epithelium. The rate of transport increases in proportion to concen-
tration only when this is small, and it attains a maximal rate that cannot be exceeded
even with a large further increase in concentration. The kinetics of carrier-mediated
transport is theoretically treated by considering carrier–solute complexes in the
same manner as enzyme–substrate complexes following the principles of enzyme-
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catalyzed reactions in Michaelis–Menten kinetics. In both biotransformation and
carrier-mediated transport, unrestricted diffusion is considered for the reactant
species. Due to the analogous formulation of the two processes, the equations
describing the rates of biotransformation,

�
c .t/ D Vmaxc .t/

kM C c .t/
, (2.20)

and carrier-mediated transport,

�
c .t/ D Rmaxc .t/

kM C c .t/
, (2.21)

are similar. In these expressions, c .t/ is the solute (substrate) concentration,
kM is the Michaelis constant, Vmax is the maximum biotransformation rate, and
Rmax is the maximum transport rate. Both equations indicate that the rate of
biotransformation or carrier-mediated transport becomes independent of substrate
(solute) concentration when this is large. In this case, the rate of biotransformation
or carrier-mediated transport is said to exhibit saturation kinetics. The graphical
representation of the previous equations is shown in Figure 2.5.
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Fig. 2.5 The rate of biotranformation or carrier-mediated transport vs. solute concentration. The
plateau value corresponds to Vmax or Rmax. kM and Vmax were set to 1 and 10, respectively, with
arbitrary units
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2.5 Fractal-like Kinetics

The undisputable dogma of chemistry whether in chemical synthesis or classical
chemical kinetics is to “stir well the system.” The external stirring re-randomizes
the positioning of the reactant species, and therefore the rate of the reaction
follows the classical pattern imposed by the order of the reaction. However, many
reactions and processes take place under dimensional or topological constraints
that introduce spatial heterogeneity. A diffusion process under such conditions is
highly influenced, drastically changing its properties. A general well-known result
is that in such constrained spaces, diffusion is slowed down and diffusion follows
an anomalous pattern. Obviously, the kinetics of the diffusion-limited reactions
(processes) are then sensitive to the peculiarities of the diffusion process. In other
words, the transport properties of the diffusing species or the reactants largely
determine the kinetics of the diffusion-limited processes. Under these circumstances
one can no longer rely on classical rate equations and a different approach is
necessary. The drastic and unexpected consequences of nonclassical kinetics of
diffusion-limited reactions are called fractal-like kinetics. An extensive review on
the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences
has been published recently [11]; the essentials for this “understirred” type of
kinetics are delineated below.

2.5.1 Segregation of Reactants

Classical homogeneous kinetics assumes that the reactants are located in a three-
dimensional vessel, and that during the reaction process the system is constantly
stirred, thus causing the positions (locations) of the reactants to be constantly re-
randomized as a function of time. However, there are important chemical reactions,
which are called “heterogeneous,” in which the reactants are spatially constrained by
either walls or phase boundaries, e.g., liquid–solid boundaries. This is the case for
in vivo drug dissolution as well as for many bioenzymatic and membrane reactions.
Due to dimensional or topological constraints these heterogeneous reactions take
place under understirred conditions. The most dramatic manifestation of such highly
inefficient stirring is the spontaneous segregation of reactants in A C B reactions
[12–14]. This means that correlations begin to develop between the reactants’
positions, which subsequently have a profound effect on the rate of a diffusion-
controlled reaction. The build-up of such correlations is strongly dependent on
the dimensionality, being more pronounced the further one goes below three-
dimensional spaces. This is so because quantitatively the parameter values in the
diffusion laws are very different in different dimensions. In addition, if the space
where the reaction takes place is not smooth, but highly irregular, this has an added
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effect on the building of such correlations. This happens if the space is a fractal
structure characterized by its own dimensionality, which as discussed in Chapter 1
could be different from the integer 1, 2, or 3.

An important segregation effect is related to the violation of Wenzel’s old law for
heterogeneous reactions; this law states that the larger the interface, the higher the
reaction rate [15]. Thus, the most classical way to speed up a heterogeneous process,
e.g., drug dissolution, is to grind the material in order to increase the surface area.
At the macroscopic level, this law has been verified in numerous physicochemical
studies [16] as well as in in vitro drug dissolution studies and in vivo bioavailability
studies using micro instead of macro drug particles. However, violation of Wenzel’s
law has been observed in simulation studies [17, 18] at the microscopic level.
Simulations for the catalytic reaction A C B ! AB ", which takes place only on
the rims of surfaces, indicate that the steady-state rate per unit surface area is not
constant but rather depends on the size of the sample. In reality, lower reaction rates
were observed for a connected catalyst compared to a disjointed one despite the fact
that equal lengths for both designs were used. This is due to the lower segregation
of the reactants on the rims of the disjointed catalyst, which results in a higher rate
coefficient for the catalytic reaction. The clear message taken from these results is
that shredding a sample not only increases the surface area but can also increase the
reactivity per unit area. The latter observation violates Wenzel’s law.

2.5.2 Time-Dependent Rate Coefficients

The spatial reactant correlations result in building a depletion zone around each
reactant, which grows steadily with time. This means that in the close neighborhood
of each reactant there is a void, a space that is empty of reactants. The net result
is that the reactant distribution for the two-reactant case (A C B ! C) shows clear
segregation of unlike species (A from B) and aggregation of like species (either A
or B). Naturally, the diffusion-controlled reaction slows down, since as reactants get
further apart, they must travel longer distances to find another reactant to react with
(cf. equation 2.9). A curious effect now is that the rate constant k of the reaction
is no longer “constant,” but depends on the growth of this depletion zone and
consequently is time-dependent:

k .t/ D kıt�� .t > tı/,

where k .t/ is the instantaneous rate coefficient since it depends on time t, and �
is the fractal kinetics exponent with 0 � � < 1. In fact, k .t/ crosses over from
a constant regime at short times, t < tı, to a power-law decrease at longer times,
t > tı. The switching time tı depends on the experimental conditions. This behavior
is the hallmark of fractal kinetics [17].

Under homogeneous conditions (e.g., vigorous stirring), � D 0 and therefore
k .t/ is a constant giving back the classical kinetics result. The previous equation
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has been applied to the study of various reactions in fractals as well as in many
other nonclassical situations. For instance, theory, simulations, and experiments
have shown that the value of � for ACA reactions is related to the spectral dimension
ds of the walker (species) as follows [9, 19]:

� D 1 � ds

2
.

From this relationship, we obtain � D 1=3 since the value of ds is � 4=3 for A C A
reactions taking place in random fractals in all embedded Euclidean dimensions
[9, 20]. It is also interesting to note that � D 1=2 for an A C B reaction in a square
lattice for very long times [13]. Thus, it is now clear from theory, computer sim-
ulation, and experiment that elementary chemical kinetics are quite different when
reactions are diffusion limited, dimensionally restricted, or occur on fractal surfaces
[9, 12, 21–23].

We emphasize that the fractal-like kinetic characteristics are not observed only
under “bing-bang” type conditions (also called batch) as discussed above but also
under quasi-steady-state conditions (cf. Section 8.5.1). Consider, for example, the
homodimeric reaction with two molecules of a single substrate reacting to form
product (A C A ! C). Under homogeneous conditions the rate at quasi-steady
state will be proportional to substrate concentration squared, c2 .t/, i.e., it is time-
independent (by definition). However, the rate for the bimolecular A C A diffusion-
limited reaction under topological or dimensional constraints will be proportional
to c� .t/. Surprisingly, the effective reaction order � is higher than 2 and is related
to the spectral dimension ds and in turn to the fractal kinetics exponent � [9]:

� D 1C 2

ds
D 1C .1 � �/�1 ,

with ds � 2. Typical values for the Sierpinski gasket and the percolation cluster are
� D 2:46 and � D 2:5, respectively. If ds D 1, so that diffusion is compact, then
� D 3 for the bimolecular A C A reaction. In all these cases, the mechanism of
diffusion is bimolecular. However, the increase in the effective reaction order arises
from the distribution of the species, which as time goes by becomes “less random,”
i.e., it is actually more ordered.

Before we close this section some major, unique kinetic features and conclusions
for diffusion-limited reactions that are confined to low dimensions or fractal
dimensions or both can now be derived from our previous discussion. First, a
reaction medium does not have to be a geometric fractal in order to exhibit fractal
kinetics. Second, the fundamental linear proportionality k / D of classical kinetics
between the rate constant k and the diffusion coefficient D does not hold in fractal
kinetics simply because both parameters are time-dependent. Third, diffusion is
compact in low dimensions and therefore fractal kinetics is also called compact
kinetics [24, 25] since the particles (species) sweep the available volume compactly.
For dimensions ds > 2, the volume swept by the diffusing species is no longer



2.5 Fractal-like Kinetics 33

compact and species are constantly exploring mostly new territory. Finally, the
initial conditions have no importance in classical kinetics due to the continuous
re-randomization of species but they may be very important in fractal kinetics [17].

2.5.3 Effective Rate Equations

The dependence of kinetics on dimensionality is due to the physics of diffusion.
This modifies the kinetic differential equations for diffusion-limited reactions,
dimensionally restricted reactions, and reactions on fractal surfaces. All these
chemical kinetic patterns may be described by power-law equations with time-
invariant parameters like

�
c .t/ D ��c� .t/ , c .t0/ D c0, (2.22)

with � 	 2. Under these conditions, the traditional rate law for the A C A
reaction with concentration squared exhibits a characteristic reduction of the rate
constant with time:

�
c .t/ D �k .t/ c2 .t/ , c .t0/ D c0, (2.23)

where k .t/ D kıt��. Conversely, (2.23) is equivalent to a time-invariant rate
law (2.22) with an increased kinetic order � . New parameters � and kı are given by

� D .� � 2/ = .� � 1/ and kı D �1=.��1/ .� � 1/.2��/=.��1/

with 0 � � < 1.
In traditional chemical kinetics � D 0, the rate constant is time-invariant,

and the effective kinetic order � equals molecularity 2. As the reaction becomes
increasingly diffusion-limited or dimensionally restricted, � increases, the rate
constant decreases more quickly with time, and the kinetic order in the time-
invariant rate law increases beyond the molecularity of the reaction. When the
reaction is confined to a one-dimensional channel, � D 3:0, or it can be as large
as 50 when isolated on finely dispersed clusters or islands [9, 22]. The kinetic order
is no longer equivalent to the molecularity of the reaction. The increase in kinetic
order results in behavior with a higher effective cooperativity. The kinetic orders
in some cases reflect the fractal dimension of the physical surface on which the
reaction occurs.

This anomaly stems from the nonrandomness of the reactant distributions in low
dimensions. Although in a classical reaction system the distribution of the reactants
stays uniformly random, in a fractal-like reaction system the distribution tends to
become “less random.” Similar changes take place in other reactions and other
spaces. Such findings are well established today, and they have been observed
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experimentally and theoretically. Also, results from Monte Carlo simulations
(a powerful tool in this field) are in very good agreement with these findings.

The solution of the differential equations above is a power function of time,
namely c .t/ D ˇt˛ with parameters ˇ and ˛ satisfying the initial condition
c .t0/ D c0. Usually ˇ and ˛ are estimated by curve fitting on experimental data,
and the parameters of (2.22) and (2.23) are obtained by

� D �˛ˇ1=˛ and � D 1 � 1=˛

and

kı D �˛=ˇ and � D 1C ˛,

respectively. Since we have assumed � 	 2 or 0 � � < 1, the parameter ˛ satisfies
�1 � ˛ < 0.

2.5.4 Enzyme-Catalyzed Reactions

In the same vein and under dimensionally restricted conditions, the description of
the Michaelis–Menten mechanism can be governed by power-law kinetics with
kinetic orders with respect to substrate and enzyme given by noninteger powers.
Under quasi-steady-state conditions, Savageau [26] defined a fractal Michaelis
constant and introduced the fractal rate law. The behavior of this fractal rate law
is decidedly different from the traditional Michaelis–Menten rate law:

• the effective kM decreases as the concentration of enzyme increases, and
• the kinetic order of the overall reaction with respect to total enzyme is greater

than unity.

These properties are likely to have an important influence on the behavior of
intact biochemical systems, e.g., within the living cell, enzymes do not function
in dilute homogeneous conditions isolated from one another. The postulates of the
Michaelis–Menten formalism are violated in these processes and other formalisms
must be considered for the analysis of kinetics in situ. The intracellular environment
is very heterogeneous indeed. Many enzymes are now known to be localized within
two-dimensional membranes or quasi-one-dimensional channels, and studies of
enzyme organization in situ [27] have shown that essentially all enzymes are found
in highly organized states. The mechanisms are more complex, but they are still
composed of elementary steps governed by fractal kinetics.

Power-law formalism was used by Savageau [28] to examine the implications of
fractal kinetics in a simple pathway of reversible reactions. Starting with elementary
chemical kinetics, that author proceeded to characterize the equilibrium behavior
of a simple bimolecular reaction, then derived a generalized set of conditions
for microscopic reversibility, and finally developed the fractal kinetic rate law
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for a reversible Michaelis–Menten mechanism. By means of this fractal kinetic
framework, the results showed that the equilibrium ratio is a function of the amount
of material in a closed system, and that the principle of microscopic reversibility
has a more general manifestation that imposes new constraints on the set of fractal
kinetic orders. So, Savageau concluded that fractal kinetics provide a novel means
to achieve important features of pathway design.

2.5.5 Importance of the Power-Law Expressions

Power-law expressions are found at all hierarchical levels of organization from
the molecular level of elementary chemical reactions to the organismal level of
growth and allometric morphogenesis. This recurrence of the power law at different
levels of organization is reminiscent of fractal phenomena. In the case of fractal
phenomena, it has been shown that this self-similar property is intimately associated
with the power-law expression [29]. The reverse is also true; if a power function of
time describes the observed kinetic data or if a reaction rate higher than 2 is revealed,
the reaction takes place in fractal physical support.

The power-law formalism is a mathematical language or representation with a
structure consisting of ordinary nonlinear differential equations whose elements
are products of power-law functions. Power-law formalism meets two of the most
important criteria for judging the appropriateness of a kinetic representation for
complex biological systems: the degree to which the formalism is systematically
structured, which is related to the issue of mathematical tractability, and the degree
to which actual systems in nature conform to the formalism, which is related to the
issue of accuracy.

2.6 Fractional Diffusion Equations

Before closing this chapter we would like to mention briefly a novel consideration
of diffusion based on the recently developed concepts of fractional kinetics [30].
From our previous discussion it is apparent that if ds � 2, diffusion is recurrent.
This means that diffusion follows an anomalous pattern described by (2.10); the
mean squared displacement grows as

˝
z2 .t/

˛ / t� with the exponent � ¤ 1. To deal
with this, a consistent generalization of the diffusion equation (2.18) could have a
fractional order temporal derivative such as

@�p .z; t/

@t�
D D�

@2p .z; t/

@z2
,

where D� is the fractional diffusion coefficient and the fractional order � depends
on dw, the fractal dimension of the walk. The previous fractional diffusion equation



36 2 Diffusion and Kinetics

generalizes Fick’s second law, and therefore it allows scientists to describe complex
systems with anomalous behavior in much the same way as simpler systems [30].

Also, in order to appreciate the extent of spatial heterogeneity, Berding [31]
introduced a heterogeneity function for reaction–diffusion systems evolving to spa-
tially inhomogeneous steady-state conditions. The same author discusses particular
applications and compares specific reaction–diffusion mechanisms with regard to
their potential for heterogeneity.



Chapter 3
Nonlinear Dynamics

A wonderful harmony arises from joining together the seemingly
unconnected.

Heraclitus of Ephesus (544-483 BC)

Series of measurements from many physiological processes appear random. On the
other hand, we are used to thinking that the determinants of variability cannot be
known because of the multiplicity and interconnectivity of the factors affecting the
phenomena. This idea relies on the classical view of randomness, which requires
that a complex process have a large (perhaps infinite) number of degrees of freedom
that are not directly observed but whose presence is manifested through fluctuations.
However, over the last two decades, scientists from various fields of research have
shown that randomness generated by deterministic dynamic processes exhibits
spectra practically indistinguishable from spectra of pure random processes. This
is referred to as chaotic behavior, a specific subtype of nonlinear dynamics, which
is the science dealing with the analysis of dynamic systems [32, 33].

The paradox with the term “chaos” is the contradiction between its meaning in
colloquial use and its mathematical sense. Routinely, we use the word chaos in
everyday life as a synonym for randomness having catastrophic implications. In
mathematics, however, “chaos” refers to irregular behavior of a process that appears
to be random, but is not. Accordingly, this apparent random-looking behavior poses
a fundamental dilemma regarding the origin of randomness in a set of irregular
observations from a dynamic process: Is the system chaotic or not? In other words,
does the irregular behavior of the observations arise from noise or chaos?

Figure 3.1 illustrates the difference between random and chaotic systems:

• Subplot (A) shows a series of uniformly distributed random numbers between 0
and 1.

• In (B), the plot was generated by the logistic map, a deterministic model of the
form yiC1 D 4yi .1� yi/.

It is impossible to distinguish the two models visually. The subplots C and D are
the so-called pseudophase plots of the two sequences of plots A and B, respectively:
each yi is plotted against its consequent yiC1. The random sequence (A) produces
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Fig. 3.1 The difference between random (A, C) and chaotic (B, D) processes pictured as a series
of numbers (A, B) and as pseudophase plots (C, D)

scattered points (C) showing that there is no correlation between successive points.
In contrast, the points of the deterministic sequence (B) lie in a well-formed line (D).

The key property in this complex, unpredictable, random-like behavior is
nonlinearity. When a system (process, or model, or both) consists only of linear
components, the response is proportional to its stimulus and the cumulative effect of
two stimuli is equal to the summation of the individual effects of each stimulus. This
is the superposition principle, which states that every linear system can be studied
by breaking it down into its components (thus reducing complexity). In contrast, for
nonlinear systems, the superposition principle does not hold; the overall behavior of
the system is not at all the same as the summation of the individual behaviors of its
components, making complex, unpredictable behavior a possibility. Nevertheless,
not every nonlinear system is chaotic, which means that nonlinearity is a necessary
but not a sufficient condition for chaos.

The basic ideas of chaos were introduced more than a hundred years ago;
however, its significance and implications were realized relatively recently because
chaos was studied in detail after the wide dissemination of computers in the 1970s.
Although its study started from the fields of mathematics, astronomy, and physics,
scientists from almost every field became interested in these ideas. The life sciences
are good candidates for chaos due to the complexity of biological processes,
although many consider the advanced mathematics and modeling techniques used a
drawback. However, during the last 20 years the science of chaos has evolved into
a truly interdisciplinary field of research that has changed the way scientists look at
phenomena.
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3.1 Dynamic Systems

A dynamic system is a deterministic system whose state is defined at any time by the
values of several variables y.t/, the so-called states of the system, and its evolution
in time is determined by a set of rules. These rules, given a set of initial conditions
y.0/, determine the time evolution of the system in a unique way. This set of rules
can be either

• differential equations of the form

�
y .t/ D g

�
y; t; �

�
,

and the system is called a flow, or
• discrete equations in which every consequent generation of the variables y is

given by an equation of the form

y
iC1 D g

�
y

i
; �
�

,

where y
i

stands for the i-th generation of the variable y, and then the system is
called a map.

In the above definitions, � represents a set of parameters of the system, having
constant values. These parameters are also called control parameters. The set of
the system’s variables forms a representation space called the phase space [33]. A
point in the phase space represents a unique state of the dynamic system. Thus,
the evolution of the system in time is represented by a curve in the phase space
called trajectory or orbit for the flow or the map, respectively. The number of
variables needed to describe the system’s state, which is the number of initial
conditions needed to determine a unique trajectory, is the dimension of the system.
There are also dynamic systems that have infinite dimension. In these cases, the
processes are usually described by differential equations with partial derivatives
or time-delay differential equations, which can be considered as a set of infinite
in number ordinary differential equations. The fundamental property of the phase
space is that trajectories can never intersect themselves or each other. The phase
space is a valuable tool in dynamic systems analysis since it is easier to analyze the
properties of a dynamic system by determining topological properties of the phase
space than by analyzing the time series of the values of the variables directly.

Stable limit sets in the phase space are of supreme importance in experimental
and numerical settings because they are the only kind of limit set that can be
observed naturally, that is, by simply letting the system run (cf. Appendix A).

3.2 Attractors

Dynamic systems are classified in two main categories: conservative and nonconser-
vative systems. Conservative systems have the property of conserving the volume
that is formed by an initial set of points in phase space as time goes by, although
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Fig. 3.2 A schematic representation of various types of attractors. Reprinted from [34] with
permission from Springer

the shape of the volume may change. In other words, a volume in phase space
resembles an incompressible liquid. On the other hand, nonconservative systems do
not possess this property and an initial volume in phase space, apart from changing
its shape, may also grow or shrink. In the latter case (when the volume shrinks)
the system is called dissipative. Most processes in nature, including biological
processes, are dissipative.

The trajectories of dissipative dynamic systems, in the long run, are confined in
a subset of the phase space, which is called an attractor [33], i.e., the set of points
in phase space where the trajectories converge. An attractor is usually an object of
lower dimension than the entire phase space (a point, a circle, a torus, etc.). For
example, a multidimensional phase space may have a point attractor (dimension 0),
which means that the asymptotic behavior of the system is an equilibrium point,
or a limit cycle (dimension 1), which corresponds to periodic behavior, i.e., an
oscillation. Schematic representations for the point, the limit cycle, and the torus
attractors are depicted in Figure 3.2. The point attractor is pictured on the left:
regardless of the initial conditions, the system ends up in the same equilibrium point.
In the middle, a limit cycle is shown: the system always ends up doing a specific
oscillation. The torus attractor on the right is the two-dimensional equivalent of a
circle. In fact, a circle can be called a one-torus, the two-dimensional torus can
be called a two-torus, and there is also the three-torus and generally the m-torus.
The trajectory on a two-torus is a two-dimensional oscillation with the ratio of the
frequencies of the two oscillations being irrational. Because the trajectory never
passes through the same point twice, in infinite time it fills the entire surface of the
torus. This type of trajectory is called quasi-periodic. Being an attractor, the torus
attracts all trajectories to fall on its surface.

Even the states of systems with infinite dimension, like systems described by
partial differential equations, may lie on attractors of low dimension. The phase
space of a system may also have more than one attractor. In this case the asymptotic
behavior, i.e., the attractor where a trajectory ends up, depends on the initial
conditions. Thus, each attractor is surrounded by an attraction basin, which is the
part of the phase space where the trajectories from all initial conditions end up.
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3.3 Bifurcation

A dynamic system may exhibit qualitatively different behavior for different values
of its control parameters � . Thus, a system that has a point attractor for some value
of a parameter may oscillate (limit cycle) for some other value. The critical point
where the behavior changes is called a bifurcation point, and the event a bifurcation
[33]. More specifically, this kind of bifurcation, i.e., the transition from a point
attractor to a limit cycle, is referred to as Hopf bifurcation.

Consider the one-dimensional map

yiC1 D g .yi; �/ D �yi .1 � yi/ . (3.1)

This difference equation is called a logistic map, and represents a simple determin-
istic system, where given a yi one can calculate the consequent point yiC1 and so
on. We are interested in solutions yi 	 0 with � > 0. This model describes the
dynamics of a single species population [33]. For this map, the fixed points y� on
the first iteration are solutions of

y�
1 D �y�

1

�
1 � y�

1

	
,

namely

y�
1A D 0 y�

1B D .� � 1/ =� ,

with the corresponding characteristic multipliers (cf. Appendix A)

�1A D � �1B D 2 � � .

As � increases from zero but with 0 < � < 1, the only realistic fixed point that is
nonnegative is y�

1A, which is stable since 0 < �1A < 1. The first bifurcation of y�
1A is

observed for � D 1. When 1 < � < 3, on the one hand, the fixed point y�
1A becomes

unstable since �1A > 1, and on the other hand, the positive fixed point y�
1B is stable

since �1 < �1B < 1. Although there are two steady states, for any initial condition
different from y D 0, the system will end up after a few steps in y�

1B (Figure 3.3A,
fixed point of period 1 for � D 2:7). The second bifurcation comes at y�

1B at � D 3

where �1B D �1, and so locally, near y�
1B, we have a periodic solution.

To see what is happening when � passes through the bifurcation value � D 3, we
examine the stability at the second iteration. The second iteration can be thought of
as a first iteration in a model where the iterative time step is 2. The fixed points are
solutions of

y�
2 D �2y�

2

�
1 � y�

2

	 

1 � �y�

2

�
1 � y�

2

	�
.
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Fig. 3.3 The logistic map, for various values of the parameter � . (A) � D 2:7, (B) � D 3:2, (C)
� D 3:5, (D) two chaotic trajectories for � D 4 are coplotted. The initial condition for all solid
line plots (A to D) is y0 D 0:1

This equation leads to the following solutions:

y�
2A D 0, y�

2B D ��1
�

, y�
2C D �C1�

p
�2�2��3
2�

, y�
2D D �C1C

p
�2�2��3
2�

,

when 3 < � < 1C p
6. The corresponding characteristic multipliers are

�2A D �2, �2B D .2 � �/2 , �2C D �2D D ��2 C 2� C 4.

Hence, �2A > 1, �2B > 1, �1 < �2C < 1, and �1 < �2D < 1. Thus, the y�
2C

and y�
2D of the second iteration are stable. What this means is that there is a stable

equilibrium of the second iteration, i.e., if we start at y�
2C or y�

2D, for example, we
come back to it after 2 iterations. What happens now is that for any initial condition,
except y D 0 and y D .� � 1/ =� , the system after a few steps will end up forming a
never-ending succession of the two values of y�

2C and y�
2D (Figure 3.3B, fixed points

of period 2 for � D 3:2).
As � continues to increase (1C p

6 < �), the characteristic multipliers �2C and
�2D pass through � D �1, and so these 2-period solutions become unstable. At this
stage, we look at the fourth iterate and we find, as might now be expected, that a
4-cycle periodic solution appears (Figure 3.3C, fixed point of period 4 for � D 3:5).
The period doubles repeatedly and goes to infinity as one approaches a critical point
� c at which instability sets in for all periodic solutions, e.g., for the model (3.1),
� c � 3:5699456. Above � c all fixed points are unstable and the system is chaotic.
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Fig. 3.4 The bifurcation diagram of the logistic map

The bifurcation situation is illustrated in Figure 3.4, where the stable fixed
points y� are plotted as a function of the parameter � . These bifurcations are
called pitchfork bifurcations, for obvious reasons from the picture they generate
in Figure 3.4. For example, if 3<� <1Cp

6, then the periodic solution is between
the two y� that are the intersections of the vertical line through the � value and the
curve of equilibrium points. From Figure 3.4, we note that the difference between
the values of � at which two successive bifurcations take place decreases. It was
actually found that the ratio of two successive intervals of � between successive
bifurcations is universally constant, namely ı D 4:66920161, not only for this
specific system, but for all systems of this kind, and it is referred to as the
Feigenbaum constant [33]. Although we have concentrated here on the logistic map,
this kind of behavior is typical of maps with dynamics like (3.1); that is, they all
exhibit bifurcations to higher periodic solutions eventually leading to chaos.

So, apart from the regular behavior, which is either steady-state, periodic, or
quasi-periodic behavior (trajectory on a torus, Figure 3.2), some dynamic systems
exhibit chaotic behavior, i.e., trajectories follow complicated aperiodic patterns that
resemble randomness. Necessary but not sufficient conditions in order for chaotic
behavior to take place in a system described by differential equations are that it must
have dimension at least 3, and it must contain nonlinear terms. However, a system
of three nonlinear differential equations need not exhibit chaotic behavior. This kind
of behavior may not take place at all, and when it does, it usually occurs only for a
specific range of the system’s control parameters � .
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3.4 Sensitivity to Initial Conditions

As pointed out, for � > � c there exist infinitely many unstable steady states of
period 1, 2, 4, 8, . . . and no stable steady states. This means that almost any initial
condition leads to an aperiodic trajectory that looks random as in Figure 3.3D,
but actually the behavior is chaotic. In this figure, two chaotic orbits for � D 4

are coplotted. Only the initial conditions of the two trajectories differ slightly. For
the solid line the initial condition is y D 0:1, whereas for the dashed line it is
y D 0:10001. Although the difference is extremely small, the effect is not at all
negligible. The orbits follow an indistinguishable route only for the first 10 steps.
Thereafter, they deviate dramatically. Thus, sensitivity to the initial conditions,
together with its main consequence of long-term unpredictability, is exhibited.

Hence, the main characteristic of chaotic behavior is the sensitivity to initial
conditions. This means that nearby trajectories, whose initial conditions are only
slightly different, follow completely different evolutions in time. This property
has the implication of unpredictability of the time evolution of the system in the
long run due to our inability to know the initial conditions with infinite accuracy.
The deviation of two initially neighboring trajectories increases exponentially with
time, i.e., proportional to exp .�t/, where the exponent � is called the Lyapunov
exponent [33, 35]. Lyapunov exponents are a generalization of the eigenvalues at
an equilibrium point and of characteristic multipliers. They depend on the initial
conditions and they can be used to determine the stability of quasi-periodic and
chaotic behavior as well as of equilibrium points and periodic solutions. For
a flow, the Lyapunov exponents are equal to the real parts of the eigenvalues
at the equilibrium point, and for a map, they are equal to the magnitudes of
the characteristic multipliers at the fixed point. A dynamic system has the same
number of Lyapunov exponents as its dimension. The Lyapunov exponents express
the deviation of initially nearby trajectories in each “direction.” So, a Lyapunov
exponent may be negative for a stable “direction,” which expresses the exponential
approach of two nearby trajectories, and positive for exponential deviation, which
expresses the divergence of two nearby trajectories. A system of high dimension
may have Lyapunov exponents of all signs and is considered chaotic if at least one
of them is positive, which states that at least in one “direction” there exists sensitivity
to the initial conditions.

Because chaotic systems may have both negative and positive Lyapunov expo-
nents, their asymptotic behavior can be limited in an attractor as well, where
the negative exponents express the convergence to the attractor and the positive
the exponential divergence (chaotic behavior) within the attractor. These chaotic
attractors are not elementary topological entities with integer dimensions like a
point, a circle, or a torus. Instead they have a fractal dimension, which defines an
extremely complicated object of infinite detail, though confined in a finite space.
This kind of attractor is called a strange attractor [33], and the integer dimension of
the entire phase space in which the attractor lives is called the embedding dimension
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of the attractor. The two concepts, exponential divergence of initially neighboring
trajectories and confinement in a compact space, appear contradictory. However, the
fractal structure of the strange attractor makes their coexistence feasible.

3.5 Reconstruction of the Phase Space

The concepts of nonlinear dynamics do not apply only to abstract mathematical
models that are described by maps or flows. Useful results can be obtained from
observations gathered from real processes as well. Real-life observations, like
biological signals, are usually time series of measured quantities. Instead of studying
a time series statistically, the idea is to consider it as if it came out of a dynamic
system. Then, one tries to reconstruct its phase space (pseudophase space in the
case of observed data, when the state variables are unknown) and see whether any
structure is detectable, either visually or using certain mathematical and numerical
tools [36–38]. The absence of any structure in phase space (e.g., a scatter of points)
means that the system is random (Figure 3.1C). However, the presence of structure
is evidence of the dynamic origin of the time series and the existence of an attractor
(Figure 3.1D). The dimension of the attractor can give us information about the
dynamic behavior of the whole system. If, for example, the dimension of the
attractor is not an integer, it corresponds to a strange attractor and the system exhibits
chaotic behavior. The embedding dimension of the attractor, which is actually the
dimension of the reconstructed phase space and in the case of a strange attractor
should be the next greater integer of the fractal dimension, gives the least number of
independent variables, or states, needed to describe the system.

The phase space reconstruction of a time series is accomplished by the method
of delays. An embedding dimension de is chosen, plus a time delay tı, and then the
phase space is constructed using as variables y .t/, y .t C tı/, . . . , y .t C .de � 1/ tı/,
for all t. It is evident that the choice of de and tı is crucial for the reconstruction.
There are certain theorems and tests that help in the proper choice of these param-
eters, but experience and trial are also valuable tools. It must be mentioned though
that due to the automated character of the algorithms, the danger of misleading
results always exists. During the past years an overuse of these techniques was
noticed and many of the results obtained by this rationale were either wrong or led
to erroneous conclusions due to poor application of the techniques and algorithms.

Example 1. The Rössler Strange Attractor

Figure 3.5 illustrates the model of the Rössler strange attractor [33]. The set of
nonlinear differential equations is

�
y1 D �y2 � y3, y1 .0/ D 3;
�
y2 D y1 C 0:2y2, y2 .0/ D 3;
�
y3 D 0:4C y1y3 � 5:7y3, y3 .0/ D 0:
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Fig. 3.5 The Rössler strange
attractor. (A) The phase
space. (B) The state variable
y1 .t/. (C) Reconstruction in
the pseudophase space
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The single trajectory plotted in the three-dimensional phase space never passes
through the same point a second time, yet it never leaves a compact volume, thus
forming a fractal object of infinite detail (fractal dimension � 2:07), Figure 3.5A.
The state variable y1 plotted in Figure 3.5B as a function of time exhibits obvious
aperiodicity. In Figure 3.5C, the Rössler attractor is reconstructed in pseudophase
space with the method of delays, making use only of the data from the y1 variable,
as if y1 were an observable quantity and nothing more of the underlying dynamics
were known. Of course, here the dimension of the system is also known and one
does not have to try other values for the dimension. Every value of y1.t/ is plotted
against y1.t C tı/ and y1.t C 2tı/ with lag time tı D 1. The reconstructed phase
space is not identical to the original one; however, the main topology and features
are depicted adequately. �
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3.6 Estimation and Control in Chaotic Systems

Parameter estimation is a key factor in modeling. We usually fit the established
model to experimental data in order to estimate model parameters both for
simulation and control. However, a task so common in a classical system is quite
difficult in a chaotic one. The sensitivity of the system’s behavior with respect to
the initial conditions and the control parameters makes it very hard to assess the
parameters using tools such as least squares fitting. Thus, efforts have been made to
deal with this problem [39]. For nonlinear data analysis, a combination of statistical
and mathematical tests on the data to discern inner relationships among the data
points (determinism vs. randomness), periodicity, quasiperiodicity, and chaos is
used. These tests are in fact nonparametric indices. They do not reveal functional
relationships, but rather directly calculate process features from time series records.
For example, the dimensionality of a time series, which results from the phase
space reconstruction procedure, and the Lyapunov exponent are such nonparametric
indices. Some others are also commonly used:

• Correlation dimension. The correlation dimension is calculated by measuring
the Hausdorff dimension according to the Grassberger method [37, 40]. The
dimension of the system relates to the fewest number of independent variables
necessary to specify a point in the state space [41]. With random data, the
dimension increases with an increase of the embedding space. In deterministic
data sets the dimension levels off, even though the presence of random noise
may yield a slow rise.

• Singular value decomposition and eigenvalues of the singular value matrix phase
plots. By applying singular value decomposition to the embedded matrix one
can improve the appearance of the trajectories in phase space by separating
out the noise and the different frequencies from each other, which is important
when one is working with experimental data [38, 42]. The eigenvalues give a
strong indication of the dimension of the system. A random system shows no
demarcation of values, whereas a deterministic system does, as the embedding
dimension increases. Each column of data is equivalent to an independent
variable; by plotting one column vector vs. another, one can construct the phase
space and observe the flows with arrows indicating the direction [43].

The above indices contrast with those destined for linear data analysis:

• The autocorrelation (or correlation) function is obtained by multiplying each
y .t/ by y .t � tı/, where tı is a time delay, and summing the products over all
points [44]. Examination of the sum plotted as a function of tı reveals the level
of dependency of data points on their neighbors. The correlation time is the value
of tı for which the value of the correlation function falls to exp .�1/. When
the correlation function falls abruptly to zero, that indicates that the data are
without a deterministic component; a slow fall to zero is a sign of stochastic
or deterministic behavior; when the data slowly drop to zero and show periodic



48 3 Nonlinear Dynamics

behavior, then the data are highly correlated and are either periodic or chaotic in
nature [38, 44].

• Following a fast Fourier transform of the data, the power spectrum shows the
power (the Fourier transform squared) as a function of frequency. Random and
chaotic data sets fail to demonstrate a dominant frequency. Periodic or quasi-
periodic data sets will show one or more dominant frequencies [38].

Chaotic systems are characterized by extreme sensitivity to tiny perturbations.
This phenomenon is also known as the butterfly effect. This famous term was
coined by Lorenz [45], who noticed that long-term prediction of the weather using
his system of differential equations was impossible. Lorenz observed that tiny
differences in the initial conditions start to grow at a greater and greater speed, until
the predictions become nonsense. In an analogous manner, the flapping of a single
butterfly’s wing today will produce a tiny change in the state of the atmosphere,
which in the long run will diverge from that which would otherwise exist in the
unperturbed state.

The butterfly effect is often regarded as a troublesome property, and for many
years it was generally believed that chaotic motions are neither predictable nor
controllable. Von Neumann around 1950 first reported a differing view that small,
carefully chosen, preplanned atmospheric disturbances could lead after some time
to desired large-scale changes in the weather. Using this chaotic sensitivity, recent
work demonstrates that the butterfly effect permits the use of tiny feedback pertur-
bations to control trajectories in chaotic systems, a capability without counterpart
in nonchaotic systems [46]. Indeed, it is possible to accomplish this only because
the chaotic systems are characterized by exponential growth of small disturbances.
This exponential growth implies that we can reach any accessible target extremely
quickly, using only a small perturbation.

The relevant research fits broadly into two categories [47]. First, one may ask to
select a desired behavior among an infinite variety of behaviors naturally present in
chaotic systems, and then stabilize this behavior by applying only tiny changes to an
accessible system parameter. Second, one can use the sensitivity of chaotic systems
to direct trajectories rapidly to a desired state and steer the system to a general target
in state space (not necessarily a periodic orbit). This means that chaotic systems can
achieve great flexibility in their ultimate performance.

The presence of chaos may be a great advantage for control in a variety of
situations. Typically, in a nonchaotic system, small controls can only change the
system dynamics slightly. Short of applying large controls or greatly modifying
the system, we are stuck with whatever system performance already exists. In a
chaotic system, on the other hand, we are free to choose among a rich variety of
dynamic behaviors. Thus, we anticipate that it may be advantageous to design chaos
into systems, allowing such variety without requiring large controls or the design of
separate systems for each desired behavior.
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3.7 Physiological Systems

The application of nonlinear dynamics in physiological systems offers a new
basis in the way certain pathological phenomena emerge. The main characteristic
is that a pathological symptom is considered as a sudden qualitative change in
the temporal pattern of an illness, such as when a bifurcation takes place. This
change can be caused either by endogenous factors or by an exterior stimulus
that changes one or more critical control parameters. According to this rationale,
therapeutic strategies should aim to invert the progress of the disease and restore
normal physiological conditions by interfering with the control parameters. This is
in contrast to the classical approach, which focuses on eliminating the symptoms
with a linear rationale that relates the therapeutic stimulus to the effect through
a proportionality. This is a general concept also referred to as dynamical disease,
a term introduced by Mackey and Glass [32, 48–50] (cf. also Section 13.1.3).
It is widely appreciated that chaotic behavior dominates physiological systems.
Moreover, periodic or other nonchaotic states are considered pathological, whereas
chaotic behavior is considered to be the normal, healthy state. The reason for this
should be associated with a fundamental advantage of nonlinear over classical
systems. Indeed, small variations of the control parameters may offer finer, more
rapid, and more energy-efficient controllability of the system compared to linear
systems [51]. This may explain why nature prefers chaos to regularity, and of
course the latter is a good enough reason for applied biological sciences such as
biopharmaceutics, pharmacokinetics, and pharmacodynamics to adopt this rationale
to a greater extent.



Part II
Modeling in Biopharmaceutics

Most drugs on the market today are taken orally. Provided a drug is well absorbed,
this route of administration results in effective therapy with a minimum of incon-
venience to the patient. Therefore, much effort in pharmaceutical research has been
devoted to developing oral dosage forms that can deliver the drug to the systemic
circulation in a timely and efficient manner. Biopharmaceutics refers to the study
of the effect of formulation characteristics, the physicochemical properties of the
drug, and the physiology of drug absorption. The main object of this discipline
is to close the gap between the in vitro data collected in the laboratory and the
in vivo performance of the pharmaceutical formulation. Since drug molecules can
penetrate the epithelial barrier of the gastrointestinal tract only if they are in solution,
drug dissolution and release are the most important biopharmaceutical processes
for oral drug delivery. In parallel, the physiological conditions prevailing in the
gastrointestinal tract play a significant role and should be taken into account when
drug absorption is studied.

Most research on gastrointestinal absorption is based on the concept of homo-
geneity, that is, the description of average behavior. Some of the most often
used paradigms are those borrowed from chemical engineering literature to model
hydrodynamics, permeability, and absorption. For example, in the field of disso-
lution testing, a well-stirred (homogeneous) dissolution medium is used to mimic
the in vivo conditions [52]. Calculations associated with the effective intestinal
permeability or the unstirred water layer thickness in permeability studies assume
that the hydrodynamics of the solution in the intestinal segment obey the well-
stirred model [53]. The tank and tube models, often used for the analysis of drug
dissolution and uptake in the gastrointestinal tract [54–56], are accompanied with
the assumptions of perfect mixing and homogeneous flow, respectively.

One can argue, however, that the assumptions of homogeneity and well-stirred
media are not only obvious, but that they are also in fact contrary to the evidence,
given the anatomical and physiological complexity of the gastrointestinal tract.
In vivo drug dissolution, release, and uptake are heterogeneous processes since
they take place at interfaces of different phases, e.g., liquid–solid and liquid–
membrane boundaries, while diffusion, which is the principal mechanism of all
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processes, operates under topological constraints. In addition, all processes occur
in heterogeneous environments, e.g., variable stirring conditions in the lumen.

Therefore, a proper analysis of drug dissolution, release, and uptake should
take into account the heterogeneous character of these processes. In this second
part of the book, we consider these important biopharmaceutical processes, placing
emphasis on their heterogeneous features.



Chapter 4
Drug Release

An equation relating the rate of release of solid drugs suspended
in ointment bases into perfect sinks is derived. . . . The amount
of drug released . . . is proportional to the square root of time.

Takeru Higuchi
School of Pharmacy, University of Wisconsin, Madison
Journal of Pharmaceutical Sciences 50:874–875 (1961)

The term “release” encompasses several processes that contribute to the transfer
of drug from the dosage form to the bathing solution (e.g., gastrointestinal fluids,
dissolution medium). The objective of this chapter is to present the spectrum
of mathematical models that have been developed to describe drug release from
controlled-release dosage forms. These devices are designed to deliver the drug
at a rate that is governed more by the dosage form and less by drug properties
and conditions prevailing in the surrounding environment. The release mechanism
is an important factor in determining whether both of these objectives can be
achieved. Depending on the release mechanism, the controlled-release systems can
be classified into

1. diffusion-controlled,
2. chemically controlled, and
3. swelling-controlled.

By far, diffusion is the principal release mechanism, since apart from the
diffusion-controlled systems, diffusion takes place at varying degrees in both chem-
ically and swelling-controlled systems. The mathematical modeling of release from
diffusion-controlled systems relies on the fundamental Fick’s law (2.11), (2.16) with
either concentration-independent or concentration-dependent diffusion coefficients.
Depending on the formulation characteristics of the device, various types of
diffusion can be conceived, i.e., diffusion through an inert matrix, a hydrogel,
or a membrane. For chemically controlled systems, the rate of drug release is
controlled by

• the degradation and in some cases the dissolution of the polymer in erodible
systems or
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• the rate of the hydrolytic or enzymatic cleavage of the drug–polymer chemical
bond in pendant chain systems.

For swelling-controlled systems the swelling of the polymer matrix after the
inward flux of the liquid bathing the system induces the diffusion of drug molecules
toward the bathing solution.

In the following sections of this chapter we present the mathematical models used
to describe drug release from hydroxypropyl methylcellulose (HPMC) controlled-
release dosage forms. HPMC is the most widely used hydrophilic polymer for
oral drug delivery systems. Since HPMC exhibits high swellability, drug release
from HPMC-based systems is the result of different simultaneously operating
phenomena. In addition, different types of HPMC are commercially available and
therefore a universal pattern of drug release from HPMC-based systems cannot be
pointed out. Accordingly, a wide spectrum of models has been used to describe
drug release kinetics from HPMC-based matrix tablets. The sequential presentation
below of the mathematical models presented attempts to provide hints to their
interrelationships, along with their time evolution, and avoids a strict classification,
e.g., empirical vs. mechanistically based models. The last part of the chapter is
devoted to the rapidly emerging applications of Monte Carlo simulation in drug
release studies. Finally, a brief mention of applications of nonlinear dynamics to
drug release phenomena is made at the end of the chapter.

4.1 The Higuchi Model

In 1961 Higuchi [57] analyzed the kinetics of drug release from an ointment
assuming that the drug is homogeneously dispersed in the planar matrix and the
medium into which drug is released acts as a perfect sink, Figure 4.1. Under these
pseudo-steady-state conditions, Higuchi derived (4.1) for the cumulative amount
q .t/ of drug released at time t:

q .t/ D A
p
D .2c0 � cs/ cst, c0 > cs, (4.1)

where A is the surface area of the ointment exposed to the absorbing surface, D
is the diffusion coefficient of drug in the matrix medium, and c0 and cs are the
initial drug concentration and the solubility of the drug in the matrix, respectively.
Although a planar matrix system was postulated in the original analysis [57],
modified forms of (4.1) were published [58–60] for different geometries and matrix
characteristics, e.g., granular matrices.

Equation (4.1) is frequently written in simplified form:

q .t/

q1
D k

p
t, (4.2)



4.1 The Higuchi Model 55

C0

h

tt+Δt
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Direction of drug release

Epidermis
(perfect sink)

Fig. 4.1 The spatial concentration profile of drug (solid line) existing in the ointment containing
the suspended drug in contact with a perfect sink according to Higuchi’s assumptions. The broken
line indicates the temporal evolution of the profile, i.e., a snapshot after a time interval �t. For
the distance h above the exposed area, the concentration gradient .c0 � cs/ is considered constant
assuming that c0 is much higher than cs

where q1 is the cumulative amount of drug released at infinite time and k is
a composite constant with dimension time�1=2 related to the drug diffusional
properties in the matrix as well as the design characteristics of the system. For a
detailed discussion of the assumptions of the Higuchi derivation in relation to a
valid application of (4.2) to real data, the reader can refer to the review of Siepmann
and Peppas [61].

Equation (4.2) reveals that the fraction of drug released is linearly related to
the square root of time. However, (4.2) cannot be applied throughout the release
process since the assumptions used for its derivation are not obviously valid for the
entire release course. Additional theoretical evidence for the time limitations in the
applicability of (4.2) has been obtained [62] from an exact solution of Fick’s second
law of diffusion for thin films of thickness ı under perfect sink conditions, uniform
initial drug concentration with c0 > cs, and assuming constant diffusion coefficient
of drug D in the polymeric film. In fact, the short-time approximation of the exact
solution is

q .t/

q1
D 4

s
Dt

ı2
D k0pt, (4.3)

where k0 D 4

q
D=ı2. Again, the proportionality between the fraction of drug

released and the square root of time is justified (4.3). These observations have led
to a rule of thumb, which states that the use of (4.2) for the analysis of release data
is recommended only for the first 60% of the release curve (q .t/ =q1 � 0:60).
This arbitrary recommendation does not rely on strict theoretical and experimental
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findings and is based only on the fact that completely different physical conditions
have been postulated for the derivation of the equivalent (4.2) and (4.3), while the
underlying mechanism in both situations is classical diffusion. In this context, a
linear plot of the cumulative amount of drug released q .t/ or the fraction of drug
released q .t/ =q1 (utilizing data up to 60% of the release curve) vs. the square root
of time is routinely used in the literature as an indicator for diffusion-controlled drug
release from a plethora of delivery systems.

In 2011, an issue of the International Journal of Pharmaceutics (Vol. 418, No. 1,
pp. 1–148, 10 October 2011) entitled “Mathematical modeling of drug delivery
systems: Fifty years after Takeru Higuchi’s models” was published commemorating
the 50-th anniversary of the Higuchi’s publication [57].

4.2 Systems with Different Geometries

One of the first physicochemical studies [63] dealing with diffusion in glassy
polymers published in 1968 can be considered as the initiator of the realization
that two apparently independent mechanisms of transport, a Fickian diffusion and
a Case II transport, contribute in most cases to the overall drug release. Fick’s law
governs the former mechanism, while the latter reflects the influence of polymer
relaxation on the molecules’ movement in the matrix [64]. The first studies on this
topic [65, 66] were focused on the analysis of Fickian and non-Fickian diffusion
as well as the coupling of relaxation and diffusion in glassy polymers. The models
used to describe drug release from different geometries are quoted below:

1. Fickian diffusional release from a thin polymer film. Equation (4.3) gives the
short-time approximation of the fractional drug released from a thin film of
thickness ı.

2. Case II release from a thin polymer film. The fractional drug release q .t/ =q1
follows zero-order kinetics [67, 68] according to

q .t/

q1
D 2k0

c0ı
t, (4.4)

where k0 is the Case II relaxation constant and c0 is the drug concentration, which
is considered uniform.

3. Case II radial release from a cylinder. The following equation describes the
fractional drug released, q .t/ =q1, when Case II drug transport with radial
release from a cylinder of radius 	 is considered [68]:

q .t/

q1
D 2k0

c0	
t �

�
k0

c0	
t

�2
. (4.5)
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4. Case II one-dimensional radial release from a sphere. For a sphere of radius
	 with Case II one-dimensional radial release, the fractional drug released,
q .t/ =q1, is given [68] by

q .t/

q1
D 3k0

c0	
t � 3

�
k0

c0	
t

�2
C
�

k0
c0	

t

�3
. (4.6)

5. Case II radial and axial release from a cylinder. We quote below a detailed
analysis of Case II radial and axial release from a cylinder [69] since (4.4)
and (4.5) are special cases of the general equation derived in this section.

The analysis of Case II drug transport with axial and radial release from the
cylinder depicted in Figure 4.2 is based on two assumptions:

• a boundary is formed between the glassy and rubbery phases of the polymer, and
• the movement of this boundary takes place under constant velocity.

First, the release surface is determined. A cylinder of height 2L that is allowed to
release from all sides can be treated as a cylinder of height L that can release from
the round side and the top only, Figure 4.2. This second case is easier to analyze
and is also implied in [68] for the release of drug from a thin film of thickness
L0=2. If the big cylinder of Figure 4.2 is cut in half across the horizontal line, two
equal cylinders, each of height L, are formed. If drug release from the two newly
formed areas (top and bottom) of the two small cylinders is not considered, the two
cylinders of height L0 exhibit the same release behavior as the big cylinder, i.e.,
q .t/2L D 2q .t/L and q1;2L D 2q1;L; consequently,

Fig. 4.2 Case II drug
transport with axial and radial
release from a cylinder of
height 2L and radius 	 at
t D 0. Drug release takes
place from all sides of the big
cylinder. The drug mass is
contained in the gray region.
After time t the height of the
cylinder is reduced to 2L0 and
its radius to 	0 (small
cylinder)

ρ

L2
'2L

'ρ
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q .t/2L

q1;2L
D q .t/L

q1;L
.

This proportionality demonstrates that the analysis of the release results can describe
both of the following cases: either a cylinder of height L that releases from the round
and top surfaces or a cylinder of height 2L that releases from all sides, Figure 4.2.

At zero time, the height and radius of the cylinder are L and 	, respectively,
Figure 4.2. After time t the height of the cylinder decreases to L0 and its radius to 	0
assuming Case II drug transport for both axial and radial release. The decrease rate
of radius 	0 and height L0 of the cylinder can be written

�
	

0 D �
L

0
D �k0

c0
, (4.7)

where k0 is the Case II relaxation constant and c0 is the drug concentration
(considered uniform). The assumed value of the penetration layer speed is implied
from the analysis of the cases studied in [67, 68], which are simpler than the present
case. Initial conditions for the above equations are simply 	0 .0/ D 	 and L0 .0/ D L.

After integration of (4.7), we obtain the following equations as well as the time
for which each one is operating:

	0 D 	 � .k0=c0/ t, t � .c0=k0/ 	,
L0 D L � .k0=c0/ t, t � .c0=k0/ L.

(4.8)

This means that the smaller dimension of the cylinder (	 or L) determines the
duration of the phenomenon.

The amount of drug released at any time t is given by the following mass balance
equation:

q .t/ D c0
�
	2L � 	02L0	 . (4.9)

Substituting (4.8) into (4.9), the following expression for mass q .t/ as a function of
time t is obtained:

q .t/ D c0

"

	2L �
�
	 � k0

c0
t

�2 �
L � k0

c0
t

�#

.

And for the mass released at infinite time, we can write

q1 D c0	
2L.

From the previous equations, the fraction released q .t/ =q1 as a function of time t
is obtained:
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q .t/

q1
D
�
2k0
c0	

C k0
c0L

�
t �

�
k20

c20	
2

C 2k20
c20	L

�
t2 C k30

c30	
2L

t3. (4.10)

This equation describes the entire fractional release curve for Case II drug transport
with axial and radial release from a cylinder. Again, (4.10) indicates that the smaller
dimension of the cylinder (	 or L) determines the total duration of the phenomenon.
When 	 � L, (4.10) can be approximated by

q .t/

q1
D k0

c0L
t,

which is identical to (4.4) with the difference of a factor of 2 due to the fact that the
height of the cylinder is 2L . When 	 
 L, (4.10) can be approximated by

q .t/

q1
D 2k0

c0	
t �

�
k0

c0	
t

�2
,

which is also identical to (4.5). These results demonstrate that the previously
obtained (4.4) and (4.5) are special cases of the general solution (4.10).

4.3 The Power-Law Model

Peppas and coworkers [66, 70] introduced a semiempirical equation (the so-called
power law) to describe drug release from polymeric devices in a generalized way:

q .t/

q1
D kt�, (4.11)

where k is a constant reflecting the structural and geometric characteristics of the
delivery system expressed in dimensions of time��, and � is a release exponent
the value of which is related to the underlying mechanism(s) of drug release.
Equation (4.11) enjoys a wide applicability in the analysis of drug release studies
and the elucidation of the underlying release mechanisms. Apart from its simplicity,
the extensive use of (4.11) is mainly due to the following characteristics:

• Both Higuchi equations (4.1) and (4.3), which describe Fickian diffusional
release from a thin polymer film, are special cases of (4.11) for � D 0:5;
also, (4.4) is a special case of (4.11) for � D 1.

• It can describe adequately the first 60% of the release curve when (4.5) and (4.6)
govern the release kinetics [68, 69].

• The value of the exponent � obtained from the fitting of (4.11) to the first 60%
of the experimental release data, from polymeric-controlled delivery systems of
different geometries, is indicative of the release mechanism, Table 4.1.
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Table 4.1 Values of the exponent � in (4.11) and the corresponding release mechanisms from
polymeric-controlled delivery systems of various geometries [65].

Exponent � Release
Thin film Cylinder Sphere mechanism

0:5 0:45 0:43 Fickian diffusion

0:5 < � < 1:0 0:45 < � < 0:89 0:43 < � < 0:85 Anomalous transport

1:0 0:89 0:85 Case II transport

From the values of � listed in Table 4.1, only the two extreme values 0:5
and 1:0 for thin films (or slabs) have a physical meaning. When � D 0:5,
pure Fickian diffusion operates and results in diffusion-controlled drug release. It
should be recalled here that the derivation of the relevant (4.3) relies on short-time
approximations and therefore the Fickian release is not maintained throughout the
release process. When � D 1:0, zero-order kinetics (Case II transport) are justified
in accord with (4.4). Finally, the intermediate values of � (cf. the inequalities in
Table 4.1) indicate a combination of Fickian diffusion and Case II transport, which
is usually called anomalous transport.

It is interesting to note that even the more realistic model adhering to the Case II
radial and axial drug release from a cylinder (4.10) can be described by the power-
law equation. In this case, pure Case II drug transport and release is approximated
(Table 4.1) by the following equation:

q .t/

q1
� kt0:89. (4.12)

A typical example of comparison between (4.10) and (4.12) when 	 < L is shown
in Figure 4.3. One should note the resemblance, along the first 60% of the curves,
to the kinetic profiles derived from these equations.

4.3.1 Higuchi Model vs. Power-Law Model

Drug release data are frequently plotted as percent (or fractional) drug released vs.
t1=2. This type of plot is usually accompanied by linear regression analysis using
q .t/ =q1 as dependent and t1=2 as independent variable. This routinely applied
procedure can lead to misinterpretations regarding the diffusional mechanism, as
is shown below using simulation studies [71].

Simulated data were generated from (4.11) using values for � and k ranging
from 0:4 to 0:65 and from 0:05 to 0:5, respectively. The range of � values is
the neighborhood of the Higuchi exponent 0:5, which is the theoretical value
for a diffusion-controlled release process. Moreover, values of � in the range
0:4� 0:65 are frequently quoted in the literature for the discernment of drug release
mechanisms (pure diffusion, anomalous transport, and combination) from HPMC
matrix devices of different geometries [67, 68]. The values assigned to k are similar
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Fig. 4.3 Fractional drug release q .t/ =q1 vs. time (arbitrary units) for Case II transport with axial
and radial release from a cylinder. Comparison of the solutions presented by (4.10) with k0 D 0:01,
c0 D 0:5, 	 D 1, L D 2:5 (dashed line) and (4.12) with k D 0:052 (solid line)

to the estimates obtained when (4.3) is fitted to drug release data, whereas k has
dimension of time�1=2. The constraint q .t/ =q1 � 1was used for each set generated
from (4.11). The duration of the simulated release experiment was arbitrarily set
equal to 8 (t � 8). Therefore, the number of the simulated data generated from (4.11)
varied according to the specific value assigned to k using in all cases a constant
time step, 0:01. The pairs of data .q .t/ =q1; t/ generated from (4.11) were further
analyzed using linear regression analysis in accord with (4.3).

Table 4.2 shows the results of linear regression analysis (q .t/ =q1 vs. t1=2) for
the data generated from (4.11). As expected, the theoretically correct sets of data
(� D 0:5) exhibited ideal behavior (interceptD 0, R2 D 1). Judging from the
determination coefficient R2 values in conjunction with the number of data points
utilized in regression, all other sets of data with � ¤ 0:5 are also described nicely if
one does not apply a more rigorous analysis, e.g., plot of residuals. It is also worthy
of mention that the positive intercepts were very close to zero and only in two cases
(k D 0:4, � D 0:4; k D 0:5, � D 0:4) were they found to be in the range 0:10�0:11.
In parallel, any negative intercepts were very close to the origin of the axes.

These observations indicate that almost the entire set of data listed in Table 4.2
and generated from (4.11) can be misinterpreted as obeying (4.3). Under real
experimental conditions the discernment of kinetics is even more difficult when
linear regression of q .t/ =q1 vs. t1=2 is applied. This is so if one takes into account
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Table 4.2 Results of linear
regression q.t/=q1 vs. t1=2

for data generated
from (4.11). (a) Estimates not
statistically significant
different from zero were
obtained. (b) Number of data
points utilized in regression.

k � Intercept Slope R2 Nb

0.05 0.40 0:01287 0.03668 0.9970 800

0.45 0:006719 0.04305 0.9993 800

0.50 0a 0.05 1 800

0.55 �0:00576 0.05760 0.9994 800

0.60 �0:01545 0.06571 0.9976 800

0.65 �0:02436 0.07501 0.9950 800

0.30 0.40 0:0772 0.02201 0.9970 800

0.45 0:04031 0.2583 0.9993 800

0.50 0a 0.3 1 800

0.55 �0:04418 0.3456 0.9994 800

0.60 �0:08866 0.3925 0.9976 743

0.65 �0:1258 0.4349 0.9949 637

0.40 0.40 0:1030 0.2935 0.9970 800

0.45 0:05270 0.3451 0.9993 766

0.50 0a 0.4 1 625

0.55 �0:04676 0.4513 0.9994 529

0.60 �0:08829 0.4987 0.9976 460

0.65 �0:1253 0.5422 0.9948 4409

0.50 0.40 0:1117 0.3800 0.9969 565

0.45 0:05243 0.4424 0.9993 466

0.50 0a 0.5 1 400

0.55 �0:04649 0.5525 0.9993 352

0.60 �0:0878 0.6002 0.9975 317

0.65 �0:1245 0.6432 0.9947 290

• the usually small number of experimental data points available,
• the constraint for the percentage of drug released, q .t/ =q1 � 0:60,
• the experimental error of data points,
• the high variability or lack of data points at the early stages of the experiment,

and
• the possible presence of a delay in time.

Therefore, it is advisable to fit (4.11) directly to experimental data using
nonlinear regression. Conclusions concerning the release mechanisms can be based
on the estimates for � and the regression line statistics [71].

4.4 Recent Mechanistic Models

Although the empirical and semiempirical models described above provide adequate
information for the drug release mechanism(s), better insight into the release process
can be gained from mechanistic models. These models have the advantage of being
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more accurate and predictive. However, mechanistic models are more physically
realistic and therefore mathematically more complex since they describe all concur-
rent physicochemical processes, e.g., diffusion, dissolution, swelling. Additionally,
they require the use of time- and/or position-, direction-dependent diffusivities. This
mathematical complexity is the main disadvantage of the mechanistic models since
explicit analytical solutions of the partial differential equations cannot be derived.
In this case, one has to rely on numerical solutions and less frequently on implicit
analytical solutions.

Although the emphasis of this section will be on the most recent mechanistic
approaches, the work of Fu et al. [72] published in 1976 should be mentioned
since it deals with the fundamental release problem of a drug homogeneously
distributed in a cylinder. In reality, Fu et al. [72] solved Fick’s second law equation
assuming constant cylindrical geometry and no interaction between drug molecules.
These characteristics imply a constant diffusion coefficient in all three dimensions
throughout the release process. Their basic result in the form of an analytical
solution is

q .t/

q1
D 1 � 8

h2	2

" 1X

iD1
˛�2

i exp
��D˛2i t

	
#2

4
1X

jD1
ˇ�2

j exp
�
�Dˇ2j t

�
3

5 ,

where ˇj D .2j C 1/ = .2h/, ˛i are the roots of the equation J0 .	˛/ D 0, and J0
is the zero-order Bessel function. Here, h denotes the half-length, 	 the radius of
the cylinder, and i and j are integers. Note that for small t the series is very slowly
converging. Even keeping 100 terms of the above series is still not a good enough
approximation of q .t/ =q1, for t � 0. For long times all terms with high values of
˛ and ˇ decay rapidly and only the term with the lowest value survives. The series
reduces to a simple exponential after some time.

Gao et al. [73, 74] developed a mathematical model to describe the effect of
formulation composition on the drug release rate for HPMC-based tablets. An
effective drug diffusion coefficient D0 was found to control the rate of release as
derived from a steady-state approximation of Fick’s law in one dimension:

q .t/

q1
D A

V

r
D0t


,

where A is the surface area and V the volume available for release, while D0
corresponds to the quotient D=� , where D is the classical drug diffusion coefficient
in the release medium and � is the tortuosity of the diffusing matrix.

In a series of papers Narasimhan and Peppas [75–77] developed models that
take into account the dissolution of the polymer carrier. According to the theory,
the polymer chain, at the surface of the system, disentangles (above a critical water
concentration) and diffuses into the release medium. The kinetics of the polymer
mass loss is controlled by the dissolution rate constant of the polymer and the
decreasing with time surface area of the device. Symmetry planes in axial and radial



64 4 Drug Release

direction, placed at the center of the matrix, for the water and drug concentration
profiles allow the development of an elegant mathematical analysis. Fick’s second
law of diffusion for cylindrical geometry is used to model both water and drug
diffusion. Since both the composition and the dimensions of the device change with
time while the diffusion coefficients for both species are considered to be dependent
on the water content, the complex partial differential equations obtained are solved
numerically. The model has been used successfully to describe the effect of the
initial theophylline loading of HPMC-based tablets on the resulting drug release
rate.

Recently, a very sophisticated mechanistic model called the sequential layer
model was presented [78–83]; the model considers inhomogeneous polymer
swelling, drug dissolution, polymer dissolution, and water and drug diffusion with
nonconstant diffusivities and moving boundary conditions. The raptation theory
was used for the description of polymer dissolution, while water and drug diffusion
were described using Fick’s second law of diffusion. An exponential dependence
of the diffusion coefficients on the water content was taken into account. Moving
boundaries were considered since the polymer swells, the drug and the polymer
dissolve, thereby making the interface matrix/release medium not stationary. The
model was applied successfully in the elucidation of the swelling and drug release
behavior from HPMC matrices using chlorpheniramine maleate, propranolol HCl,
acetaminophen, theophylline, and diclofenac as model drugs.

4.5 Monte Carlo Simulations

In a Monte Carlo simulation we attempt to follow the time evolution of a model that
does not proceed in some rigorously predefined fashion, e.g., Newton’s equations
of motion. Monte Carlo simulations are appropriate for models whose underlying
mechanism(s) are of a stochastic nature and their time evolution can be mimicked
with a sequence of random numbers, which is generated during the simulation. The
repetitive Monte Carlo simulations of the model with different sequences of random
numbers yield results that agree within statistical error but are not identical. The goal
is to understand the stochastic component of the physical process making use of the
perfect control of “experimental” conditions in the computer-simulation experiment,
examining every aspect of the system’s configuration in detail. Since the mass
transport phenomena, e.g., drug diffusion and the chemical processes, e.g., polymer
degradation encountered in drug release studies, are random processes, Monte Carlo
simulations are used to elucidate the release mechanisms. In the next section we
demonstrate the validity of the Higuchi law using Monte Carlo simulations and in
the following two sections we focus on the use of Monte Carlo simulations for the
description of drug release mechanisms based on Fickian diffusion from Euclidean
or fractal spaces. Finally, the last portion of this section deals with Monte Carlo
simulations of drug release from bioerodible microparticles.
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4.5.1 Verification of the Higuchi Law

The presuppositions for the application of the Higuchi law (4.2) have been discussed
in Section 4.1. However, it is routinely quoted in the literature without a rigorous
proof that only the first 60% of the release curve data should be utilized for a valid
application of (4.2). Recently, this constraint has been verified for the Higuchi model
using Monte Carlo computer simulations [84] (cf. Appendix B).

To mimic the conditions of the Higuchi model, a one-dimensional matrix of
200 sites has been constructed, Figure 4.4. Each site is labeled with the number of
particles it currently hosts. Initially all sites have 10 particles, i.e., the total number
n0 of particles monitored is 2000. Drug molecules move inside the matrix by the
mechanism of Fickian diffusion and cannot move to a site unless this site is empty.
Thus, the system is expected to behave as if its “concentration” was much higher
than its “solubility,” which is the basic assumption made in the theoretical derivation
of the Higuchi equation. The matrix can leak only from the site at its edge in full
analogy with Figure 4.1. The diffusive escape process is simulated by selecting a
particle at random and moving it to a randomly selected nearest-neighbor site. If
the new site is an empty site, then the move is allowed and the particle is moved to
this new site. If the new site is already occupied, the move is rejected. A particle is
removed from the lattice as soon as it migrates to the leak site. After each particle
move, time is incremented by arbitrary time units, the Monte Carlo microSteps
(MCS), during which the movement takes place. One MCS is the smallest time
unit in which an event can take place. The increment is chosen to be 1=n .t/, where
n .t/ is the number of particles remaining in the system. This is a typical approach in
Monte Carlo simulations. The number of particles that are present inside the cylinder
as a function of time is monitored until the cylinder is completely empty of particles.
Figure 4.5 shows the simulation results for the first 60% of the release data; the slope
of the line is 0:51 very close to the value 0:50 expected by the Higuchi equation.

The simulation results presented in Figure 4.5 provide an indirect proof of the
valid use of the first 60% of the release data in line with (4.2). Needless to say,
the Monte Carlo simulations in Figure 4.5 do not apply to the diffusion problem
associated with the derivation of (4.3).

B

A

Fig. 4.4 Schematic of a system used to study diffusion under the Higuchi assumptions. (A) Initial
configuration of the system, (B) evolution after time t. Particles are allowed to leak only from the
right side of the system. Reprinted from [84] with permission from Springer
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Fig. 4.5 Log-log plot of 1� n .t/ =n0 vs. time. Simulation results are indicated as points using the
first 60% of the release data. The slope of the fitted line is 0:51 and corresponds to the exponent of
the Higuchi equation. The theoretical prediction is 0:50

4.5.2 Drug Release from Homogeneous Cylinders

The general problem that we will focus on in this section is the escape of drug
molecules1 from a cylindrical vessel. Initially, theoretical aspects are presented
demonstrating that the Weibull function can describe drug release kinetics from
cylinders, assuming that the drug molecules move inside the matrix by a Fickian
diffusion mechanism. Subsequently, Monte Carlo simulations will be used to
substantiate the theoretical result and provide a link between the Weibull model
and the physical kinetics of the release process [84].

4.5.2.1 Theoretical Aspects

A simple approximate solution is sought for the release problem, which can be used
to describe release even when interacting particles are present. The particles are
assumed to move inside the vessel in a random way. The particle escape rate is
expected to be proportional to the number n .t/ of particles that exist in the vessel
at time t. The rate will also depend on another factor, which will show how “freely”
the particles are moving inside the vessel, how easily they can find the exits, how
many of these exits there are, etc. This factor is denoted by g. Hence, a differential
equation for the escape rate can be written

1The terms “drug molecule” and “particle” will be used in this section interchangeably.
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�
n .t/ D �agn .t/ ,

where a is a proportionality constant and the negative sign means that n .t/ decreases
with time. If the factor g is kept constant, it may be included in a and in this case
the solution of the previous equation is

n .t/ D n0 exp .�at/

using the initial condition n .0/ D n0. The last equation is similar to the asymptotic
result derived by Fu et al. [72] for pure Fickian diffusion inside a cylinder for long
times (cf. Section 4.4).

It stands to reason to assume that the factor g should be a function of time since
as time elapses a large number of drug molecules leave the vessel and the rest can
move more freely. Thus, in general one can write that g D g .t/ and the previous
differential equation becomes

�
n .t/ D �ag .t/ n .t/ . (4.13)

A plausible assumption is to consider that g .t/ has the form g .t/ / t��.
We are interested in supplying a short-time approximation for the solution of the

previous equation. There are two ways to calculate this solution. The direct way is
to make a Taylor expansion of the solution. The second, more physical way, is to
realize that for short initial time intervals the release rate

�
n .t/ will be independent of

n .t/. Thus, the differential equation (4.13) can be approximated by
�
n .t/ D �ag .t/.

Both ways lead to the same result.

• For � D 1=2, (4.13) leads to n .t/ / p
t (as a short-time approximation) exactly

as predicted by the Higuchi law.
• For � D 0 we obtain, again as a short-time approximation, the result n .t/ D

n0 � at corresponding to ballistic exit (zero-order kinetics).

The above imply that choosing g .t/ D t�� is quite reasonable. In this case (4.13)
will be

�
n .t/ D �at��n .t/ .

Solving this equation we obtain

n .t/ D n0 exp
��atb

	
, (4.14)

where b D 1 � �.
The above reasoning shows that the stretched exponential function (4.14), or

Weibull function as it is known, may be considered as an approximate solution of
the diffusion equation with a variable diffusion coefficient due to the presence of
particle interactions. Of course, it can be used to model release results even when
no interaction is present (since this is just a limiting case of particles that are weakly
interacting).
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It is clear that it cannot be proven that the Weibull function is the best choice of
approximating the release results. There are infinitely many choices of the form g .t/
and some of them may be better than the Weibull equation. This reasoning merely
indicates that the Weibull form will probably be a good choice. The simulation
results below show that it is indeed a good choice. The above reasoning is quite
important since it provides a physical model that justifies the use of the Weibull
function in order to fit experimental release data.

4.5.2.2 Simulations

A brief outline of the Monte Carlo techniques used for the problem of drug release
from cylinders is described in Appendix B. The results obtained for cylinders of
different dimensions are shown in Figure 4.6. In all cases it is possible to achieve
a quite accurate fitting of the simulation results for n .t/ using the Weibull function
[84]. It turns out that the exponent b takes values in the range 0:69 to 0:75. Figure 4.7
shows that the fitting is very accurate especially at the beginning, and it remains
quite good until all of the drug molecules are released. The number of particles that
have escaped from the matrix is equal to
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Fig. 4.6 Number of particles inside a cylinder as a function of time. (1) Cylinder with height of
31 sites and diameter 16 sites. Number of drug molecules n0 D 1750. (2) Cylinder with height 7
sites and diameter 31 sites. Number of drug molecules n0 D 2146. (3) Cylinder with height 5 sites
and diameter 41 sites. Number of drug molecules n0 D 2843: (4) Cylinder with height 51 sites and
diameter 21 sites. Number of drug molecules n0 D 6452
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Fig. 4.7 Number of particles inside a cylinder as a function of time with initial number of drug
molecules n0 D 2657. Simulation for cylinder with height 21 sites and diameter 21 sites (dotted
line). Plot of curve n .t/ D 2657 exp

��0:049t0:72
	
, Weibull model fitting (solid line). Plot of curve

n .t/ D 2657
�
1� 0:094t0:45

	
, power-law fitting (dashed line)

Qn .t/ D n0 � n .t/ D n0


1 � exp

��atb
	�

, (4.15)

where a and b are parameters that have to be experimentally determined.
Ritger and Peppas [67, 68] have shown that the power law (4.11) describes

accurately the first 60% of the release data. It is easy to show that the two
models (4.11) and (4.14) coincide for small values of t. Note that Qn .t/ =n0 is directly
linked to q .t/ =q1. From the Taylor expansion of exp .��/, we can say that for
small values of � we have exp .��/ � 1��. From (4.15), setting � D atb, one gets

Qn .t/ =n0 D atb

for small values of atb, which has the same form as the power-law model. For
this approximation to hold, the quantity atb has to be small. This does not mean
that t itself must be small. As long as a is small, t may take larger values and the
approximation will still be valid.

A comparison of the simulation results and fittings with the Weibull and the
power-law model is presented in Figure 4.7. Obviously, the Weibull model describes
quite well all release data, while the power law diverges after some time. Of course
both models can describe equally well experimental data for the first 60% of the
release curve.
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4.5.2.3 The Physical Connection Between a, b and the System Geometry

The parameters a and b are somehow connected to the geometry and size of the
matrix that contains the particles. This connection was investigated by performing
release simulations for several cylinder sizes and for several initial drug concentra-
tions [84]. The Weibull function was fitted to the simulated data to obtain estimates
for a and b. If one denotes by Nleak the number of leak sites and by Ntot the total
number of sites, in the continuum limit the ratio Nleak=Ntot is proportional to the leak
surface of the system. Plots of a vs. Nleak=Ntot (not shown) were found to be linear
and independent of the initial drug concentration; this implies that a is proportional
to the specific leak surface, i.e., the surface to volume ratio. The slopes of the straight
lines were found to be in the range 0:26 � 0:30 [84]. The value of the slope can
be related to the mathematical model presented in the theoretical section since the
number of particles escaping at time dt was assumed to be proportional to an .t/;
thus, the simulation results can be summarized as an .t/ D 0:28 .Nleak=Ntot/ n .t/.
Assuming a uniform distribution of particles, Nleak=Ntot is the probability that a
particle is at a site that is just one step from the exit. Accordingly, .Nleak=Ntot/ n .t/
is the mean number of particles that are able to escape at a given instant of time.
Since there are 6 neighboring sites in the three-dimensional space, the probability
for a particle to make the escaping step is 1=6 (� 0:17). It is quite close to the
0:28 value of the simulation. The difference is due to the fact that after some time,
the distribution of particles is no longer uniform. There are more empty cells near
the exits than inside, so the mean number of particles that are able to escape at a
given instant is rather less than .Nleak=Ntot/ n .t/. This explains the higher value of
the slope.

The plot of b values obtained from release simulations for several cylinder
sizes and initial drug concentrations vs. Nleak=Ntot (not shown) was also linear
[84] with a slope practically independent of the initial concentration, b D 0:65 C
0:4 .Nleak=Ntot/. There are two terms contributing to b; one depends on Nleak=Ntot

and the other does not. Actually b is expected to be proportional to the specific
surface, since a high specific surface means that there are a lot of exits, so finding
an exit is easier. The constant term depends on the ability of the particles to move
inside the matrix, the interaction between the particles, etc. The linear relationship
yields the value of b D 0:69 when the exits cover the entire surface of the cylinder
(Nleak D Ntot).

4.5.3 Release from Fractal Matrices

Apart from the classical mechanisms of release, e.g., Fickian diffusion from a
homogeneous release device (cf. Sections 4.5.1 and 4.5.2) or Case II release there
are also other possibilities. For example, the gastrointestinal fluids can penetrate the
release device as it is immersed in the gastrointestinal tract fluids, creating areas
of high diffusivity. Thus, the drug molecules can escape from the release device
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through diffusion from these high diffusivity “channels.” Now, the dominant release
mechanism is diffusion, but in a complex disordered medium. The same is true
when the polymer inside the release device is assuming a configuration resembling
a disordered medium. This is a model proposed for HPMC matrices [85]. Several
diffusion properties have to be modified when we move from Euclidean space to
fractal and disordered media.

4.5.3.1 The Pioneering Work of Bunde et al.

The problem of the release rate from devices with fractal geometry was first
studied by Bunde et al. [86]. This study was based on a percolation fractal-
cluster at the critical point, assuming cyclic boundary conditions, embedded on
a two-dimensional square lattice. The concentration of open sites is known to be
approximately p D 0:593 (cf. Section 1.7). The fractal dimension of the percolation
fractal is known to be 91=48. The simulation starts with a known initial drug
concentration c0 D 0:5 and with randomly distributed drug molecules inside the
fractal matrix. The drug molecules move inside the fractal matrix by the mechanism
of diffusion. Excluded volume interactions between the particles, meaning that two
molecules cannot occupy the same site at the same time, were also assumed. The
matrix can leak from the intersection of the percolation fractal with the boundaries
of the square box where it is embedded. Bunde et al. [86] specifically reported that
the release rate of drug in a fractal medium follows a power law and justified their
finding as follows: “the nature of drug release drastically depends on the dimension
of the matrix and is different depending on whether the matrix is a normal Euclidean
space or a fractal material such as a polymer, corresponding to the fact that the basic
laws of physics are quite different in a fractal environment.”

4.5.3.2 Can the Power Law Describe the “Entire” Release Curve?

Based on the findings of Bunde et al. [86], one can also conceive that the entire,
classical % release vs. time curves from devices of fractal geometry should also
follow a power law with (a different) characteristic exponent. Although the power
law has been extensively used for the description of the initial 60% of the release
data, it has also been shown that the power law can describe the entire drug release
profile of several experimental data [71]. Typical examples of fittings of (4.11) to
experimental data of drug release from HPMC matrices along with the estimates
obtained for k and � are shown in Figures 4.8, 4.9, and 4.10 [71]. In all cases,
the entire release profile was analyzed and the fitting results were very good. All
these experimental results were explained [71] on the basis of the Bunde et al. [86]
findings. However, it will be shown below that the conclusion that the release rate
follows a power law is accurate only for infinite problems. For problems in which
the finite size is inherent, as happens to be the case in drug release studies, a power
law is valid only in the initial stages of the release process.
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Fig. 4.8 Fitting of (4.11) to the entire set of fluoresceine release data from HPMC matrices [87]

( )ht

( ) ∞qtq /

( )
( )0.00416072.0
0.00151203.0

9993.02

=
=
=

λ
k
R

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4.9 Fitting of (4.11) to the entire set of buflomedil pyridoxal release data from HPMC
matrices [88]

4.5.3.3 The Weibull Function Describes Drug Release from Fractal
Matrices

Kosmidis et al. [89] reexamined the random release of particles from fractal polymer
matrices using the percolation cluster at the critical point, Figure 4.11, following
the same procedure as proposed by Bunde et al. [86]. The intent of the study was
to derive the details of the release problem, which can be used to describe release
when particles escape not from the entire boundary but just from a portion of the
boundary of the release device under different interactions between the particles that
are present.
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Fig. 4.10 A typical example of fitting (4.11) to chlorpheniramine maleate release data from
HPMC K15M matrix tablets (tablet height 4mm; tablet radius ratio 1 W 1) [83]

Fig. 4.11 A percolation fractal embedded on a 2-dimensional square lattice of size 50�50. Cyclic
boundary conditions were used. We observe, especially on the boundaries, that there are some
small isolated clusters, but these are not isolated since they are actually part of the largest cluster
because of the cyclic boundary conditions. Exits (release sites) are marked in dark gray, while all
lighter gray areas are blocked areas. Reprinted from [89] with permission from American Institute
of Physics

The release problem can be seen as a study of the kinetic reaction A C B ! B
where the A particles are mobile, the B particles are static, and the scheme describes
the well-known trapping problem [90]. For the case of a Euclidean matrix the entire
boundary (i.e., the periphery) is made of the trap sites, while for the present case of
a fractal matrix only the portions of the boundary that are part of the fractal cluster
constitute the trap sites, Figure 4.11. The difference between the release problem and
the general trapping problem is that in release, the traps are not randomly distributed
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inside the medium but are located only at the medium boundaries. This difference
has an important impact in real problems for two reasons:

• Segregation is known to play an important role in diffusion in disordered media
(cf. Section 2.5.1). In the release problem the traps are segregated from the
beginning, so one expects to observe important effects related to this segregation.

• The problem is inherently a finite-size problem. Results that otherwise would be
considered as finite-size effects and should be neglected are in this case essential.
At the limit of infinite volume there will be no release at all. Bunde et al. [86]
found a power law also for the case of trapping in a model with a trap in the
middle of the system, i.e., a classical trapping problem. In such a case, which is
different from the model examined here, it is meaningful to talk about finite-size
effects. In contrast, release from the surface of an infinite medium is impossible.

The fractal kinetics treatment of the release problem goes as follows [89]. The
number of particles present in the system (vessel) at time t is n .t/. Thus, the particle
escape rate will be proportional to the fraction g of particles that are able to reach
an exit in a time interval dt, i.e., the number of particles that are sufficiently close to
an exit. Initially, all molecules are homogeneously distributed over the percolation
cluster. Later, due to the fractal geometry of the release system segregation effects
will become important [17]. Accordingly, g will be a function of time, so that g .t/
will be used to describe the effects of segregation (generation of depletion zones),
which is known to play an important role when the medium is disordered instead of
homogeneous [17].

We thus expect a differential equation of the form of (4.13) to hold, where a is
a proportionality constant, g .t/ n .t/ denotes the number of particles that are able to
reach an exit in a time interval dt, and the negative sign denotes that n .t/ decreases
with time. This is a kinetic equation for an A C B ! B reaction. The constant trap
concentration ŒB� has been absorbed in the proportionality constant a. The basic
assumption of fractal kinetics [17] is that g .t/ has the form g .t/ / t��. In this case,
the solution is supplied by (4.14).

The form of this equation is a stretched exponential. In cases in which a system
can be considered as infinite (for example, release from percolation fractals from
an arbitrary site located at the middle of the volume) then the number of particles
n .t/ inside the system is practically unchanged. Treating n .t/ as constant and letting
g .t/ / t�� in the right-hand side of (4.13) will lead to a power law for the quantity�
n .t/. Since most physical problems belong to this class it is widely believed that the
release rate from fractal matrices follows a power law. In the case of release from
the periphery and if we want to study the system until all particles have escaped, as
is often the case for practical applications, then (4.14) is of practical importance.

The above reasoning shows that the stretched exponential function (4.14), or
Weibull function as it is known, may be considered as an approximate solution of
the release problem. The advantage of this choice is that it is general enough for
the description of drug release from vessels of various shapes, in the presence or
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absence of different interactions, by adjusting the values of the parameters a and b.
Monte Carlo simulation methods were used to calculate the values of the parameters
a and (mainly) the exponent b [89].

4.5.3.4 Simulations

The drug molecules move inside the fractal matrix by the mechanism of diffusion,
assuming excluded volume interactions between the particles. The matrix can leak
at the intersection of the percolation fractal with the boundaries of the square box
where it is embedded, Figure 4.11.

The diffusion process is simulated by selecting a particle at random and moving it
to a randomly selected nearest-neighbor site. If the new site is an empty site, then the
move is allowed and the particle is moved to this new site. If the new site is already
occupied, the move is rejected since excluded volume interactions are assumed. A
particle is removed from the lattice as soon as it migrates to a site lying within
the leak area. After each particle move, time is incremented. As previously, the
increment is chosen to be 1=n .t/, where n .t/ is the number of particles remaining
in the system. This is a typical approach in Monte Carlo simulations, and it is
necessary because the number of particles continuously decreases, and thus, the
time unit is MCS characterizing the system is the mean time required for all n .t/
particles present to move one step. The number of particles that are present inside the
matrix as a function of time until a fixed number of particles (50 particles) remain
in the matrix is monitored. The results are averaged using different initial random
configurations over 100 realizations. The release rate

�
q .t/ is calculated by counting

the number of particles that diffuse into the leak area in the time interval between t
and t C 1.

Figure 4.12 shows simulation results (line) for the release of particles from a
fractal matrix with initial concentration c0 D 0:50, on a lattice of size 50 � 50.
The simulation stops when more than 90% of the particles have been released from
the matrix. This takes about 20; 000 MCS. In the same figure the data by Bunde et
al. [86] (symbols), which cover the range 50 � 2; 000 MCS, are included. Because
of the limited range examined in that study, the conclusion was reached that the
release rate

�
q .t/ is described by a power law, with an exponent value between 0:65

and 0:75 [86]. With the extended range examined, Figure 4.12, this conclusion is
not true, since in longer times

�
q .t/ deviates strongly from linearity, as a result of the

finiteness of the problem.
In Figure 4.13, n .t/ =n0 is plotted as a function of time for different lattice sizes.

The data were fitted with a Weibull function (4.14), where the parameter a ranges
from 0:05 to 0:01 and the exponent b from 0:35 to 0:39. It has been shown [84]
that (4.14) also holds in the case of release from Euclidean matrices. In that case the
value of the exponent b was found to be b � 0:70.

These results reveal that the same law describes release from both fractal and
Euclidean matrices. The release rate is given by the time derivative of (4.14). For
early stages of the release, calculating the derivative of (4.14) and performing a
Taylor series expansion of the exponential will result in a power law for the release
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Fig. 4.12 Plot of the release rate
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q .t/ vs. time. The lattice size is 50 � 50 and the initial
concentration of particles is c0 D 0:50. Points are the results given in [86], while the line is
the result of the simulation in [89]

rate, just as Bunde et al. [86] have observed. If we oversimplify the release problem
by treating it as a classical kinetics problem, we would expect a pure exponential
function2 instead of a stretched exponential (Weibull) function. The stretched
exponential arises due to the segregation of the particles because of the fractal
geometry of the environment. Concerning the release from Euclidean matrices [84],
it has been demonstrated that the stretched exponential functional form arises due
to the creation of a concentration gradient near the releasing boundaries. Note that
although the functional form describing the release is the same in Euclidean and
fractal matrices, the value of the exponent b is different, reflecting the slowing
down of the diffusion process in a disordered medium. However, these results
apparently point to a universal release law given by the Weibull function. The above
considerations substantiate the use of the Weibull function as a more general form
for drug release studies.

4.6 Discernment of Drug Release Kinetics

In the two previous sections the Weibull function was shown to be successful
in describing the entire release profile assuming Fickian diffusion of drug from
fractal as well as from Euclidean matrices. Since specific values were found for

2The classical kinetics solution is obtained by solving (4.13) in case of g .t/ D 1.
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Fig. 4.13 Plot of the number of particles (normalized) remaining in the percolation fractal as a
function of time t for lattice sizes 100 � 100, 150 � 150, and 200 � 200. n .t/ is the number of
particles that remain in the lattice at time t and n0 is the initial number of particles. Simulation
results are represented by points. The solid lines represent the results of nonlinear fitting with a
Weibull function

the exponent b for each particular case, a methodology based on the fitting results
of the Weibull function (4.14) to the entire set of experimental %-release-time
data can be formulated for the differentiation of the release kinetics[91]. Basically,
successful fittings with estimates for b higher than one (sigmoid curves) rule out the
Fickian diffusion of drug from fractal or Euclidean spaces and indicate a complex
release mechanism. In contrast, successful fittings with estimates for b lower than
one can be interpreted in line with the results of the Monte Carlo simulations of
Sections 4.5.2 and 4.5.3. The exponent b of the Weibull function using the entire set
of data was associated with the mechanisms of diffusional release as follows:

• b < 0:35: Not found in simulation studies [84, 89]. May occur in highly
disordered spaces much different from the percolation cluster.

• b � 0:35 � 0:39: Diffusion in fractal substrate morphologically similar to the
percolation cluster [89].

• 0:39 < b < 0:69: Diffusion in fractal or disordered substrate different from the
percolation cluster. These values were not observed in Monte Carlo simulation
results [84, 89]. It is, however, plausible to assume this possibility since there has
to be a crossover from fractal to Euclidian dimension.
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• b � 0:69 � 0:75: Diffusion in normal Euclidean space [84].
• 0:75 < b < 1: Diffusion in normal Euclidean substrate with contribution of

another release mechanism. In this case, the power law can describe the entire
set of data of a combined release mechanism (cf. below).

• b D 1: First-order release obeying Fick’s first law of diffusion; the rate constant
a controls the release kinetics, and the dimensionless solubility–dose ratio
determines the final fraction of dose dissolved [92].

• b > 1: Sigmoid curve indicative of complex release mechanism. The rate of
release increases up to the inflection point and thereafter declines.

When Fickian diffusion in normal Euclidean space is justified, further verifica-
tion can be obtained from the analysis of 60% of the release data using the power
law in accord with the values of the exponent quoted in Table 4.1. Special attention
is given below for the values of b in the range 0:75�1:0, which indicate a combined
release mechanism. Simulated pseudodata were used to substantiate this argument
assuming that the release obeys exclusively Fickian diffusion up to time t D 90

(arbitrary units), while for t > 90 a Case II transport starts to operate too; this
scenario can be modeled using

q .t/

q1
D 1 � exp

��0:05t0:70
	C

�
0 for t � 90,
0:004 .t � 90/0:89 for t > 90.

(4.16)

Also, the following equation was used to simulate concurrent release mechanisms
of Fickian diffusion and Case II transport throughout the release process:

q .t/

q1
D 1 � exp

��0:05t0:70
	C 0:004t0:89. (4.17)

Pseudodata generated from (4.16) and (4.17) are plotted in Figure 4.14 along
with the fitted functions

y .t/ D 0:0652t0:5351 and y .t/ D 0:0787t0:5440.

The nice fittings of the previous functions to the release data generated from (4.16)
and (4.17), respectively, verify the argument that the power law can describe the
entire set of release data following combined release mechanisms. In this context,
the experimental data reported in Figures 4.8 to 4.10 and the nice fittings of the
power-law equation to the entire set of these data can be reinterpreted as a combined
release mechanism, i.e., Fickian diffusion and a Case II transport.
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Fig. 4.14 (A) Points are simulation data produced using (4.16). The solid line is the fitting of the
power law (4.11) to data. Best-fitting parameters are k D 0:0652 for the proportionality constant
and � D 0:5351 for the exponent. (B) Points are simulation data produced using (4.17). The solid
line is the fitting of the power law (4.11) to data. Best-fitting parameters are k D 0:0787 for the
proportionality constant and � D 0:5440 for the exponent. Time is expressed in arbitrary units
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4.7 Release from Bioerodible Microparticles

In bioerodible drug delivery systems various physicochemical processes take place
upon contact of the device with the release medium. Apart from the classical
physical mass transport phenomena (water imbibition into the system, drug dis-
solution, diffusion of the drug, creation of water-filled pores) chemical reactions
(polymer degradation, breakdown of the polymeric structure once the system
becomes unstable upon erosion) occur during drug release.

The mathematical model developed by Siepmann et al. [93] utilizes Monte Carlo
techniques to simulate both the degradation of the ester bonds of the polymer
poly-lactic-co-glycolic acid (PLGA) and the polymer’s erosion (cleavage of the
polymer chains throughout the PLGA matrix). Both phenomena are considered
random, and the lifetime of the pixel representing the polymer’s degradation is
calculated as a function of a random variable obeying a Poisson distribution. The
modeling of the physical processes (dissolution and diffusion) takes into account
the increase of porosity of the matrix with time because of the polymer’s erosion.
This information is derived from the Monte Carlo simulations of the polymer’s
degradation–erosion and allows the calculation of the time- and position-dependent
axial and radial diffusivities of the drug. Further, the diffusional mass transport
processes are described using Fick’s second law with spatially and temporally
dependent diffusion coefficients. The numerical solution of the partial differential
equation describing the kinetics of the three successive phases of drug release
(initial burst, zero-order- and second rapid release) was found to be in agreement
with the experimental release data of 5-fluorouracil loaded PLGA microparticles,
Figure 4.15 [93]. This model has been further used to investigate the effect of the
size of the biodegradable microparticles on the release rate of 5-fluorouracil [94].
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Fig. 4.15 Triphasic drug release kinetics from PLGA-based microparticles in phosphate buffer
pH 7:4: experimental data (symbols) and fitted theory (curve). Reprinted from [93] with permission
from Springer



4.8 Dynamic Aspects in Drug Release 81

4.8 Dynamic Aspects in Drug Release

Although the development of controlled drug delivery systems is usually based on
the simple notion “a constant delivery is optimal,” there are well-known exceptions.
For example, drug administration in a periodic, pulsed manner is desirable for
endogenous compounds, e.g., hormones [95]. The most classical example is the
administration of insulin to diabetic patients in order to maintain blood glucose
levels at an approximately constant level [96]. In reality, the pancreas behaves as
a feedback controller, which changes its output with time in response to food intake
or changes in metabolic activity. Hence, the delivery system should not simply
maintain insulin levels within an acceptable physiological range to counterbalance
the failure of the patient’s pancreas to secrete sufficient insulin, but it should also
mimic the normal pancreas’s feedback controlling function. In other words, the
delivery system should secrete insulin according to the (bio)sensed glucose levels in
an automatic, periodic manner. These two steps, sensing and delivery, are the basic
features of all self-regulated delivery systems regardless the variable, e.g., glucose,
temperature, pressure, that is monitored to control the delivery of a pharmacological
agent [97].

Since all these systems behave like autonomous oscillators fueled either directly
or indirectly by the variable monitored, the factors involved in the production of
pulsatile oscillations have been studied thoroughly. One of the most studied means
for driving the periodic delivery of drugs is the utilization of chemical pH oscillators
[98, 100, 101]. It was demonstrated that periodic drug delivery could be achieved as
a result of the effect of pH on the permeability of acidic or basic drugs through
lipophilic membranes. The model system of Giannos et al. [100] comprises a
thin ethylene vinyl-acetate copolymer membrane separating a sink from an iodate-
thiosulfate-sulfite pH oscillator compartment into which drugs like nicotine or
benzoic acid are introduced. In the work of Misra and Siegel [98, 101] a model
system consisting of the bromate-sulfite-marble pH oscillator in a continuously
stirred tank reactor is used, along with acidic drugs of varying concentration.
Figure 4.16 provides a schematic for the periodic flux of a drug through the
membrane according to the pH oscillations. In one of the studies, Misra and Siegel
[98] provided evidence that low concentrations of acidic drugs can attenuate and
ultimately quench chemical pH oscillators by a simple buffering mechanism. In the
second study, Misra and Siegel [101] demonstrated that multiple, periodic pulses of
drug flux across the membrane can be achieved when the concentration of the drug
is sufficiently low.

Another approach for periodically modulated drug release is based on an
enzyme–hydrogel system, which, due to negative chemomechanical feedback
instability, swells and de-swells regularly in the presence of a constant glucose
level [102]. The enzyme glucose oxidase catalyses the conversion of glucose to
gluconate and hydrogen ions; the latter affect the permeability of the poly(N-
isopropylacrylamide-co-methacrylic acid) hydrogel membrane to glucose since the
hydrogel swells with increasing pH and de-swells with decreasing pH, Figure 4.17.
This system has been studied extensively from a dynamic point of view [99, 103].
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Fig. 4.16 Illustration of
conversion of pH oscillations
to oscillations in drug flux
across a lipophilic membrane.
Reprinted from [98] with
permission from Wiley–Liss
Inc., a subsidiary of John
Wiley and Sons, Inc
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Fig. 4.17 Schematic of pulsating drug delivery device based on feedback inhibition of glucose
transport to glucose oxidase through a hydrogel membrane. Changes in permeability to glucose
are accompanied by modulation of drug permeability. Reprinted from [99] with permission from
American Institute of Physics

It was found that the model allows, depending on system parameters and external
substrate concentration, two separate single steady states, double steady state, and
permanently alternating oscillatory behavior.



Chapter 5
Drug Dissolution

The rate at which a solid substance dissolves in its own solution
is proportional to the difference between the concentration of
that solution and the concentration of the saturated solution.

Arthur A. Noyes and Willis R. Whitney
Massachusetts Institute of Technology, Boston

Journal of the American Chemical Society 19:930–934 (1897)

The basic step in drug dissolution is the reaction of the solid drug with the fluid
and/or the components of the dissolution medium. This reaction takes place at
the solid–liquid interface and therefore dissolution kinetics are dependent on three
factors, namely the flow rate of the dissolution medium toward the solid–liquid
interface, the reaction rate at the interface, and the molecular diffusion of the
dissolved drug molecules from the interface toward the bulk solution, Figure 5.1. As
we stated in Section 2.4.2, a process (dissolution in our case) can be either diffusion
or reaction-limited depending on which is the slower step. The relative importance
of interfacial reaction and molecular diffusion (steps 2 and 3 in Figure 5.1,
respectively) can vary depending on the hydrodynamic conditions prevailing in
the microenvironment of the solid. This is so since both elementary steps 2 and
3 in Figure 5.1 are heavily dependent on the agitation conditions. For example,
diffusion phenomena become negligible when externally applied intense agitation
in in vitro dissolution systems gives rise to forced convection. Besides, the reactions
at the interface (step 2) and drug diffusion (step 3) in Figure 5.1 are dependent
on the composition of the dissolution medium. Again, the relative importance can
vary according to the drug properties and the specific composition of the medium.
It is conceivable that our limited knowledge of the hydrodynamics under in vivo
conditions and the complex and position- and time-dependent composition of the
gastrointestinal fluids complicates the study of dissolution phenomena in particular
when one attempts to develop in vitro–in vivo correlations.

Early studies in this field of research formulated two main models for the
interpretation of the dissolution mechanism: the diffusion layer model and the
interfacial barrier model. Both models assume that there is a stagnant liquid layer
in contact with the solid, Figure 5.2. According to the diffusion layer model
(Figure 5.2A), the step that limits the rate at which the dissolution process occurs

© Springer International Publishing Switzerland 2016
P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics
and Pharmacodynamics, Interdisciplinary Applied Mathematics 30,
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Fig. 5.1 The basic steps in the drug dissolution mechanism. (1) The molecules (ı) of solvent
and/or the components of the dissolution medium are moving toward the interface; (2) adsorption–
reaction takes place at the liquid–solid interface; (3) the dissolved drug molecules (�) move toward
the bulk solution
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Fig. 5.2 Schematic representation of the dissolution mechanisms according to: (A) the diffusion
layer model and (B) the interfacial barrier model

is the rate of diffusion of the dissolved drug molecules through the stagnant liquid
layer rather than the reaction at the solid–liquid interface. For the interfacial barrier
model (Figure 5.2B), the rate-limiting step of the dissolution process is the initial
transfer of drug from the solid phase to the solution, i.e., the reaction at the solid–
liquid interface.

Although the diffusion layer model is the most commonly used, various alter-
ations have been proposed. The current views of the diffusion layer model are
based on the so-called effective diffusion boundary layer, the structure of which
is heavily dependent on the hydrodynamic conditions. In this context, Levich [104]
developed the convection–diffusion theory and showed that the transfer of the solid
to the solution is controlled by a combination of liquid flow and diffusion. In other
words, both diffusion and convection contribute to the transfer of drug from the solid
surface into the bulk solution. It should be emphasized that this observation applies
even under moderate conditions of stirring.
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5.1 The Diffusion Layer Model

Noyes and Whitney published [105] in 1897 the first quantitative study of a
dissolution process. Using water as a dissolution medium, they rotated cylinders of
benzoic acid and lead chloride and analyzed the resulting solutions at various time
points. They found that the rate

�
c .t/ of change of concentration c .t/ of dissolved

species was proportional to the difference between the saturation solubility cs of the
species and the concentration existing at any time t. Using k as a proportionality
constant, this can be expressed as

�
c .t/ D k Œcs � c .t/� c .0/ D 0. (5.1)

Although it was not stated in the original article of Noyes and Whitney, it should
be pointed out that the validity of the previous equation relies on the assumption
that the amount used, q0, is greater than or equal to the amount required to saturate
the dissolution medium, qs. Later on, (5.1) was modified [104, 106] and expressed
in terms of the dissolved amount of drug q .t/ at time t while the effective surface
area A of the solid was taken into account:

�
q .t/ D DA

ı

h
cs � q.t/

V

i
q .0/ D 0, (5.2)

where D is the diffusion coefficient of the substance, ı is the effective diffusion
boundary layer thickness adjacent to the dissolving surface, and V is the volume of
the dissolution medium. In this case, the first-order rate constant k (dimension of
time�1) appearing in (5.1) and governing the dissolution process is

k D DA
ıV

. (5.3)

The integrated form of (5.2) gives the cumulative mass dissolved at time t:

q .t/ D csV Œ1 � exp .�kt/� . (5.4)

The limit t ! 1 defines the total drug amount, qs D csV , that could be eventually
dissolved in the volume V assuming that the amount used q0 is greater than qs. Thus,
we can define the accumulated fraction of the drug in solution at time t as the ratio
q .t/ =qs. Equation (5.4) expressed in terms of concentration (c .t/ D q .t/ =V) leads
to the most useful form for practical purposes:

c .t/ D cs Œ1 � exp .�kt/� . (5.5)

Equation (5.5) is the classical equation quoted in textbooks indicating the expo-
nential increase of concentration c .t/ approaching asymptotically the saturation
solubility cs.
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Also, (5.1) indicates that initially (t ! 0) when c .t/ is small (c .t/ � 0:15cs) in
comparison to cs:

�
c .t/

ˇ
ˇ
ˇ
t!0

D kcs.

If this applies then we consider that sink conditions exist. Under sink conditions the
concentration c .t/ increases linearly with time,

c .t/ D kcst t ! 0, (5.6)

and the dissolution rate is proportional to saturation solubility:

�
q .t/

ˇ̌
ˇ
t!0

D Vkcs.

5.1.1 Alternative Classical Dissolution Relationships

The aforementioned analysis demonstrates that these classical concepts are in
full agreement with Fick’s first law of diffusion and the equivalent expressions
in Sections 2.3 and 2.4. However, there are obvious deficiencies of the classical
description of dissolution since the validity of (5.3) presupposes that all terms in
this equation remain constant throughout the dissolution process. For example, the
drug surface area A of powders and immediate release formulations is decreasing
as dissolution proceeds. In fact, a dramatic reduction of the surface area takes
place whenever the dose is not used in large excess, i.e., the drug mass divided
by product of the volume of the dissolution medium and the drug’s solubility is
less than 10. This problem has been realized over the years and equations that take
into account the diminution of the surface area have been published. For example,
Hixson and Crowell [107] developed the following equation, which is usually called
the cube-root law, assuming that dissolution occurs from spherical particles with a
mono-disperse size distribution under sink conditions:

q1=30 � Œq .t/�1=3 D k1=3t, (5.7)

where q0 and q .t/ are the initial drug amount and the drug amount at time t after
the beginning of the process, respectively, and k1=3 is a composite cube-root rate
constant. Alternatively, when sink conditions do not apply, the following equation
(usually called the law of 2=3) can be used:

Œq .t/��2=3 � q�2=3
0 D k2=3t, (5.8)

where k2=3 is a composite rate constant for the law of 2=3.
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Although these approaches demonstrate the important role of the drug material’s
surface and its morphology on dictating the dissolution profile, they still suffer
from limitations regarding the shape and size distribution of particles as well as
the assumptions on the constancy of the diffusion layer thickness ı and the drug’s
diffusivity D throughout the process implied in (5.5), (5.6), (5.7), and (5.8). In
reality, the parameters ı and D cannot be considered constant during the entire
course of the dissolution process when poly-disperse powders are used and/or an
initial phase of poor deaggregation of granules or poor wetting of formulation is
encountered. In addition, the diffusion layer thickness appears to depend on particle
size. For all aforementioned reasons, (5.5), (5.6), (5.7), and (5.8) have been proven
adequate in modeling dissolution data only when the presuppositions of constancy
of terms in (5.3) are fulfilled.

5.1.2 Fractal Considerations in Drug Dissolution

Drug particles are classically represented as ideal smooth spheres when dissolution
phenomena are considered. The surface area of a spherical smooth object is a
multiple of the scale, e.g., cm2, and has a topological dimension dt D 2. If one
knows the radius 	, the surface area of the sphere is 4	2. However, many studies
indicate that the surfaces of most materials are fractal [108]. The measured surface
areas of irregular and rough surfaces increase with decreasing scale according to the
specific surface structure. These surfaces have fractal dimensions df lying between
the topological and the embedding dimensions: 2 < df < 3.

Since the surface area of solids in dissolution studies is of primary importance,
the roughness of the drug particles has been the subject of many studies. For
example, Li and Park [109] used atomic force microscopy to determine the fractal
properties of pharmaceutical particles. Moreover, analysis of the surface ruggedness
of drugs, granular solids, and excipients using fractal geometry principles has been
applied extensively [110–113]. Most of these studies underline the importance of
surface ruggedness on dissolution. It is also interesting to note that considerations of
the surface roughness are not restricted to the macroscopic level. The same concepts
can also be applied to microscopic levels. A typical example is the importance of
the surface roughness of proteins in binding phenomena [114].

Farin and Avnir [115] were the first to use fractal geometry to determine effects
of surface morphology on drug dissolution. This was accomplished by the use of
the concept of fractal reaction dimension dr [116], which is basically the effective
fractal dimension of the solid particle toward a reaction (dissolution in this case).
Thus, (5.7) and (5.8) were modified [115] to include surface roughness effects on
the dissolution rate of drugs for the entire time course of dissolution (5.9) and under
sink conditions (5.10):

Œq .t/��˛ � q�˛
0 D ˛k�

1=3t, (5.9)

q1�˛0 � Œq .t/�1�˛ D qs .1 � ˛/ k�
1=3t, (5.10)
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where ˛ D dr=3 and qs is the drug amount that could be dissolved in the volume
of the dissolution medium and k�

1=3 is the dissolution rate constant of the modified
cube-root. Although the previous equations describe quantitatively the dissolution
of solids with fractal surfaces, their application presupposes that the value of dr is
known.

According to the classical scaling laws, an estimate of dr can be obtained from

the slope of a log–log plot of the initial rate of dissolution
�
q .t/

ˇ
ˇ̌
t!0

vs. the radius

	 of the various particle sizes. This kind of calculation relies on the fundamental
proportionality

�
q .t/

ˇ
ˇ
ˇ
t!0

/ A / 	dr�3,

where A is the effective surface area; the slope of log
�
q .t/

ˇ
ˇ
ˇ
t!0

vs. log 	 corresponds

to dr � 3, in agreement with the relationship for measurements regarding areas in
Section 1.4.2. However, this approach for the calculation of dr requires the execution
of a number of experiments with a variety of particles of well-defined size and shape
characteristics, which can also exhibit different dr values.

For the aforementioned reasons, a simpler method requiring only a dissolution
run with particles of a given size has been proposed for the estimation of dr [117].
As can be seen from (5.9) and (5.10), on plotting the values of the left-hand side
against time t, one can obtain the value of k�

1=3 from the slope of the straight line.
In practice, this involves choosing a starting value for dr, e.g., 2, and, using an
iterative method, searching for the linearity demanded by the previous equations for
the experimental data pairs .q .t/ ; t/. When this has been found, one knows values
both for k�

1=3 and dr.

5.1.3 On the Use of the Weibull Function in Dissolution

In 1951, Weibull [118] described a more general function that can be applied
to all common types of dissolution curves. This function was introduced in the
pharmaceutical field by Langenbucher in 1972 [119] to describe the accumulated
fraction of the drug in solution at time t, and it has the following form:1

q .t/

q1
D 1 � exp Œ� .�t/�� , (5.11)

1In the pharmaceutical literature the exponential in the Weibull function is written as exp .��t�/
and therefore � has dimension time��. In the version used herein (equation 5.11), the dimension
of � is time�1.
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Fig. 5.3 Accumulated fraction of drug dissolved, q .t/ =q1 as a function of �t according to the
Weibull distribution function (5.11)

where q1 is the total mass that can be eventually dissolved and �, � are constants.
The scale parameter � defines the time scale of the process, while the shape
parameter � characterizes the shape of the curve, which can be exponential (� D
1), S-shaped (� > 1), or exponential with a steeper initial slope (� < 1), Figure 5.3.

It is also worthy of mention that a gamma distribution function proposed by
Djordjevic [120] for modeling in vitro dissolution profiles implies a relevant type of
time dependency for the amount of drug dissolved.

The successful use of the Weibull function in modeling the dissolution profiles
raises a plausible query: What is the rationale of its success? The answer will be
sought in the relevance of the Weibull distribution to the kinetics prevailing during
the dissolution process.

The basic theory of chemical kinetics originates in the work of Smoluchowski
[121] at the turn of the twentieth century. He showed that for homogeneous
reactions in three-dimensional systems the rate constant is proportional to the
diffusion coefficient. In dissolution studies this proportionality is expressed with
k / D, where k is the intrinsic dissolution rate constant. In addition, both D and
k are time-independent in well-stirred, homogeneous systems. However, that is not
true for lower dimensions and disordered systems in chemical kinetics. Similarly,
homogeneous conditions may not prevail during the entire course of the dissolution
process in the effective diffusion boundary layer adjacent to the dissolving surface.
It is very difficult to conceive that the geometric and hydrodynamic characteristics
of this layer are maintained constant during the entire course of drug dissolution.
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Accordingly, the drug’s diffusional properties change with time and the validity of
use of a classical rate constant k in (5.1) is questionable. It stands to reason that an
instantaneous yet time-dependent rate coefficient k .t/ governing dissolution under
inhomogeneous conditions can be written as

k .t/ D kı
�

t

tı

���
with t ¤ 0, (5.12)

where kı is a rate constant not dependent on time, tı is a time scale parameter,
and � is a pure number. In a simpler form (tı D 1), the previous relation is
used in chemical kinetics to describe phenomena that take place under dimensional
constraints or understirred conditions [17]. It is used here to describe the time
dependency of the dissolution rate “constant” that originates from the change of
the parameters involved in (5.3) during the dissolution process, i.e., the reduction
of the effective surface area A and/or the inhomogeneous hydrodynamic conditions
affecting ı and subsequently D.

Using (5.12) to replace k in (5.1), also changing the concentration variables to
amounts Vc .t/ D q .t/, Vdc .t/ D dq .t/, and using, instead of csV D qs, for
generality purposes c1V D q1 (which applies to both q1 D qs and q1 D q0), we
obtain

�
q .t/ D kı

�
t

tı

���
Œq1 � q .t/� , q .t0/ D 0,

and after integration,

q .t/

q1
D 1 � exp

(

� kıtı
1 � �

"�
t

tı

�1��
�
�

t0
tı

�1��#)
.

Taking the limit as t0 approaches zero, for � < 1 we get the following equation:

q .t/

q1
D 1 � exp

"

� kıtı
1 � �

�
t

tı

�1��#
. (5.13)

This equation is identical to the Weibull equation (5.11) for

� D 1

tı

�
kıtı
1 � �

�1=.1��/
and � D 1 � � .

Furthermore, (5.13) collapses to the “homogeneous” (5.4) when � D 0. These
observations reveal that the parameter � of (5.11) can be interpreted in terms of
the heterogeneity of the process. For example, an S-shaped dissolution curve with
� > 1 in (5.11) for an immediate release formulation can now be interpreted as
a heterogeneous dissolution process (with � < 0 in equation 5.13), whose rate
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increases with time during the upwards, concave initial limb of the curve and
decreases after the point of inflection. This kind of behavior can be associated with
an initial poor deaggregation or poor wetting.

Most importantly, it was shown that the structure of the Weibull function captures
the time-dependent character of the rate coefficient governing the dissolution
process. These considerations agree with Elkoski’s [122] analysis of the Weibull
function and provide an indirect, physically based interpretation [123] for its
superiority over other approaches for the analysis of dissolution data. In other words,
drug dissolution is a typical example of a heterogeneous process since, as dissolution
proceeds, homogeneous conditions cannot be maintained in the critical region of
the microenvironment of drug particles. Thus, drug dissolution exhibits fractal-
like kinetics like other heterogeneous processes (e.g., adsorption, catalysis) since
it takes place at the boundary of different phases (solid–liquid) under topological
constraints.

5.1.4 Stochastic Considerations

The dissolution process can be interpreted stochastically since the profile of the
accumulated fraction of amount dissolved from a solid dosage form gives the
probability of the residence times of drug molecules in the dissolution medium.
In fact, the accumulated fraction of the drug in solution, q .t/ =q1, has a statistical
sense since it represents the cumulative distribution function of the random variable
dissolution time T, which is the time up to dissolution for an individual drug
fraction from the dosage form. Hence, q .t/ =q1 can be defined statistically as
the probability that a molecule will leave the formulation prior to t, i.e., that the
particular dissolution time T is smaller than t:

q .t/ =q1 D Pr Œleave the formulation prior to t� D Pr ŒT < t� .

Conversely,

1 � q .t/ =q1 D Pr Œsurvive in the formulation to t� D Pr ŒT 	 t� .

Since q .t/ =q1 is a distribution function, it can be characterized by its statistical
moments. The first moment is defined as the mean dissolution time (MDT) and
corresponds to the expectation of the time up to dissolution for an individual drug
fraction from the dosage form:

MDT D E ŒT� D
Z 1

0

t
dq .t/

q1
D ABC

q1
, (5.14)

where q1 is the asymptote of the dissolved amount of drug and ABC is the area
between the cumulative dissolution curve and the horizontal line that corresponds
to q1, Figure 5.4.
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Fig. 5.4 The cumulative dissolution profile q .t/ as a function of time. The symbols are defined in
the text

Since the fundamental rate equation of the diffusion layer model has the typical
form of a first-order rate process (5.1), using (5.4) and (5.14), the MDT is found
equal to the reciprocal of the rate constant k:

MDT D 1

k
. (5.15)

As a matter of fact, all dissolution studies, which invariably rely on (5.1) and do not
make dose considerations, utilize (5.15) for the calculation of the MDT. However,
the previous equation applies only when the entire available amount of drug (dose)
q0 is dissolved. Otherwise, the mean dissolution time of the dose is not defined, i.e.,
MDT is infinite.

In fact, it will be shown below that MDT is dependent on the solubility–dose ratio
if one takes into account the dose q0 actually utilized [92]. Also, it will be shown
that the widely used (5.15) applies only to a special limiting case. Multiplying both
parts of (5.1) by V=q0 (volume of the dissolution medium/actual dose), one gets
the same equation in terms of the fraction of the actual dose of drug dissolved,
' .t/ , q .t/ =q0:

�
' .t/ D k



1
�

� ' .t/
�

, ' .0/ D 0, (5.16)

where � is the solubility–dose ratio

� , q0
csV

D q0
qs

(5.17)
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expressed as a dimensionless quantity. Equation (5.16) has two solutions:

• When � � 1 (q0 � qs), which means that the entire dose is eventually dissolved:

' .t/ D
�
1
�
Œ1 � exp .�kt/� for t < tı,

1 for t 	 tı,

where tı D � ln.1��/
k is the time at which dissolution terminates (' .tı/ D 1).

Similarly to (5.14), the MDT is

MDT D
Z tı

0

td' .t/ D � C .1 � �/ ln .1 � �/
k�

. (5.18)

This equation reveals that the MDT depends on both k and � . Figure 5.5 shows
a plot of MDT as a function of � for three different values of the rate constant
k. Note that (5.15) is obtained from (5.18) for � D 1 (the actual dose is equal to
the amount needed to saturate the volume of the dissolution medium). In other
words, the classically used (5.15) is a special case of the general equation (5.18).

• When � > 1 (q0 > qs), which means that only a portion of the dose is dissolved
and the drug reaches the saturation level 1=� :

' .t/ D 1

�
Œ1 � exp .�kt/� .
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Fig. 5.5 Plot of MDT vs. � using (5.18) for different values of k
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The MDT is infinite because the entire dose is not dissolved. Therefore, the
term mean saturation time, MDTs, [124] has been suggested as more appropriate
when we refer only to the actually dissolved portion of dose, in order to get a
meaningful time scale for the portion of the dissolved drug dose:

MDTs D
Z 1

0

t
d' .t/

1=�
D 1

k
, (5.19)

which is independent of � .

This analysis demonstrates that when � � 1, solubility–dose considerations
should be taken into account in accord with (5.18) for the calculation of MDT;
the MDT is infinite when � > 1. Equation (5.15) can be used to obtain an estimate
for MDT only in the special case � D 1. Finally, (5.19) describes the MDTs of the
fraction of dose dissolved when � > 1.

5.2 The Interfacial Barrier Model

In the interfacial barrier model of dissolution it is assumed that the reaction at
the solid–liquid interface is not rapid due to the high free energy of activation
requirement and therefore the reaction becomes the rate-limiting step for the
dissolution process (Figure 5.1), thus, drug dissolution is considered as a reaction-
limited process for the interfacial barrier model. Although the diffusion layer model
enjoys widespread acceptance since it provides a rather simplistic interpretation
of dissolution with a well-defined mathematical description, the interfacial barrier
model is not widely used because of the lack of a physically based mathematical
description.

In recent years three novel models [124–126] have appeared that were proposed
to describe the heterogeneous features of drug dissolution. They are considered here
as continuous (in well-stirred media) or discrete (in understirred media) reaction-
limited dissolution models. Their derivation and relevance are discussed below.

5.2.1 Continuous Reaction-Limited Dissolution Models

Lansky and Weiss [124] proposed a novel model by considering the reaction of the
undissolved solute with the free solvent yielding the dissolved drug complexed with
solvent:

Œundissolved drug�C Œfree solvent� ! Œdissolved drug complexed with solvent� .
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Further, global concentrations as a function of time for the reactant species of the
above reaction were considered, assuming that the solvent is not in excess and
applying classical chemical kinetics. The following equation was found to describe
the rate of drug dissolution in terms of the fraction of drug dissolved:

�
' .t/ D k� Œ1 � ' .t/� Œ1 � �' .t/� , ' .0/ D 0, (5.20)

where ' .t/ denotes the fraction of drug dissolved up to time t, and � is the
dimensionless solubility–dose ratio (5.17); k� is a fractional (or relative) dissolution
rate constant with dimensions time�1. The fractional dissolution rate is a decreasing
function of the fraction of dissolved amount ' .t/, as has also been observed for
the diffusion layer model (5.16). However, (5.20) reveals a form of second-order
dependency of the reaction rate on the dissolved amount ' .t/. In reality, a classical
second-order dependency is observed for � D 1. These are unique features, which
are not encountered in models dealing with diffusion-limited dissolution. All the
above characteristics indicate that (5.20) describes the continuous–homogeneous
character of the reaction of the solid with the solvent or the component(s) of the
dissolution medium, i.e., a reaction-limited dissolution process in accord with the
interfacial barrier model.

The solution of (5.20) for � ¤ 1 yields the monotonic function

' .t/ D exp Œk� .1 � �/ t� � 1

exp Œk� .1 � �/ t� � � , (5.21)

and for � D 1,

' .t/ D k�t

k�t C 1
,

with the same asymptotes as found above for the diffusion layer model, i.e.,
' .1/ D 1 for � � 1 and ' .1/ D 1=� for � > 1. It is interesting to note
that both MDT and MDTs for the model of the previous equation depend on the
solubility–dose ratio � when � ¤ 1. Thus, the MDT for � < 1 is

MDT D � 1

k��
ln .1 � �/ , (5.22)

while the MDTs for � > 1 is

MDTs D 1

k� ln

�
�

� � 1

�
. (5.23)

For � D 1 the MDT is infinite. It should be noted that the MDT for the diffusion
layer model depends also on � for � < 1 while the MDTs is equal to 1=k when
� 	 1, (5.18) and (5.19). However, this dependency is different in the two models,
cf. (5.18), (5.19), and (5.22), (5.23).



96 5 Drug Dissolution

In 2008Dokoumetzidis et al. [126] published a complete analysis of a continuous
reaction-limited model of dissolution based on a bidirectional chemical reaction of
the undissolved drug species with the free solvent molecules yielding the dissolved
species of drug complex with solvent. This bidirectional reaction governed by the
kC1 and k�1 rate constants can be considered in either sink conditions, where it
corresponds to the unidirectional case and the entire drug amount is dissolved, or
reaching chemical equilibrium, which corresponds to saturation of the solution. The
model equation derived for the drug concentration y .t/ in mass per volume units is

�
y .t/ D kC1 .w0/b

hq0
V

� y .t/
ia � k�1y .t/ (5.24)

where q0 is the initial quantity (dose) in mass units, w0 is the initial concentration
of the free solvent species, a and b are exponents dependent on the stoichiometry of
the reaction and/or the geometry (surface) of the solid particles, and V is the volume
of the dissolution medium.

Simpler, special cases of the above equation can be considered. For example,
when a D 1 the undissolved species have equal probability to dissolve, implying
that they are in a form of a well-mixed dispersion. Upon integration of the above
equation for a D 1 one ends up

' .t/ D 1

qss

˚
1 � exp


� �kC1 .w0/b C k�1
	

t
�

where ' .t/ is the fraction of dose dissolved and

qss D kC1 .w0/b C k�1
kC1 .w0/b

is a dimensionless constant. Other simpler cases are also considered in [126]. The
models derived were fitted successfully to dissolution experimental data sets. On the
contrary, functions based on the diffusion layer model fitted to experimental data,
failed to reveal the governing role of saturation solubility in the dissolution process.
One of the most important results of this study is that the rate of dissolution of a
reaction-limited approach is driven by the concentration of the undissolved species
and solubility is considered to be the concentration when the reaction equilibrium is
reached.

5.2.2 A Discrete Reaction-Limited Dissolution Model

Dokoumetzidis and Macheras [125] developed a population growth model for
describing drug dissolution under heterogeneous conditions. In inhomogeneous
media, Fick’s laws of diffusion are not valid, while global concentrations cannot
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Fig. 5.6 A discrete, reaction-limited dissolution process interpreted with the population growth
model of dissolution

be used in the dissolution rate equation. In order to face the problem of complexity
and circumvent describing the system completely, the reaction of the solid with
the solvent or the component(s) of the dissolution medium was described as the
“birth” of the population of the dissolved drug molecules from the corresponding
population of solid drug particles, Figure 5.6. In this context, only instants of the
system’s behavior are considered and what happens in the meanwhile is ignored.
The jump from one instant to the next is done by a logical rule, which is not
a physical law, but an expression that gives realistic results based on logical
assumptions. The variable of interest (mass dissolved) is not considered as a
continuous function of time, but is a function of a discrete time index specifying
successive “generations.”

Defining si and yi as the populations of the drug molecules in the solid state and
in solution in the i-th generation (i D 0; 1; 2; : : :), respectively, the following finite
difference equation describes the change of yi between generations i and i C 1:

yiC1 D yi C ksi D yi C k .q0 � yi/ , y0 D 0,

where k is a proportionality constant that controls the reaction of the solid particles
with the solvent or the components of the dissolution medium, and q0 is the pop-
ulation of the drug molecules in the solid state corresponding to dose (Figure 5.6).
The growth of yi is not unlimited since the solubility of drug in the medium restricts
the growth of yi. Thus, the rate of dissolution decreases as the population of the
undissolved drug molecules decreases as reaction proceeds. For each one of the
drug particles of the undissolved population, the solubility qs (expressed in terms
of the amount needed to saturate the medium in the neighborhood of the particle)
is used as an upper “local” limit for the population growth of the dissolved drug
molecules. Accordingly, the growth rate is a function of the population level and
can be assumed to decrease with increasing population in a linear manner:

k ! k .yi/ D k

�
1 � yi

qs

�
,
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where qs is the saturation level of the population, i.e., the number of drug molecules
corresponding to saturation solubility. Thus, the previous recursion relation is
replaced with the nonlinear discrete equation:

yiC1 D yi C k .q0 � yi/
�
1 � yi

qs

�
, y0 D 0.

This equation can be normalized in terms of dose by dividing both sides by q0
and written more conveniently using yi=q0 D ' i, yiC1=q0 D 'iC1, and � D q0=qs:

' iC1 D 'i C k .1 � 'i/ .1 � �' i/ , '0 D 0, (5.25)

where ' i and 'iC1 are the dissolved fractions of drug dose at generations i and iC1,
respectively. The previous discrete equation, if written as

' iC1 � 'i D k .1 � ' i/ .1 � �' i/ , '0 D 0, (5.26)

becomes equivalent to its continuous analogue (5.20). As expected, (5.26) has the
two classical fixed point, '�

A D 1 when � � 1 and '�
B D 1=� when � > 1,

Figure 5.7. All discrete features of (5.26) are in full analogy with the fractional
dissolution rate differential equation (5.20), and it is for this reason that the two
approaches are considered counterparts [124].
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Fig. 5.7 Plot of the dissolved fraction ' i as a function of generations i using (5.25) with k D 0:5,
� D 0:83 (solid line); k D 0:7, � D 1:82 (dashed line); k D 0:2, � D 2:22 (dotted line)
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Since difference equations exhibit dynamic behavior [127, 128], the stability of
the fixed points of (5.25) is explored according to the methodology presented in
Appendix A. The absolute value of the derivative of the right-hand side of (5.25) is
compared with unity for each fixed point. There are the following cases:

• If � < 1, the derivative is equal to 1� k .1 � �/ and the condition for stability of
the fixed point '�

A D 1 is

0 < k <
2

1 � �
.

• If � > 1, the derivative is equal to 1� k .� � 1/ and the condition for stability of
the fixed point '�

B D 1=� is

0 < k <
2

� � 1
.

• If � D 1, the derivative is equal to unity and therefore the fixed point '�
A D 1 is

neither stable or unstable.

Because of the discrete nature of (5.26), the first step always gives '1 D k; hence,
k is always lower than 1, i.e., the theoretical top boundary of ' i. Comparing the
second step '2 D k C k .1 � k/ .1 � �k/ with the first one '1 D k, one can obtain
the conditions k > 1=� and � > 1, which ensure that the first step is higher than the
following steps (Figure 5.7B). The usual behavior encountered in dissolution
studies, i.e., a monotonic exponential increase of ' i reaching asymptotically 1, or
the saturation level 1=� , is observed when � � 1 (Figure 5.7A) or when k < 1=�

for � > 1 (Figure 5.7C), respectively.
As previously pointed out, when one uses (5.25) for � > 1 and values of k in the

range 1=� < k < 2= .� � 1/, the first step is higher than the plateau value followed
by a progressive decline to the plateau (Figure 5.8A, B). For 1=� and k values
close enough, the descending part of the dissolution curve is smooth, concave either
upward (Figure 5.8B) or initially downward and then upward (Figure 5.8A); this
decline can also take the form of a fading oscillation when k is close to 2= .� � 1/
(Figure 5.8C, D). When k exceeds 2= j� � 1j, the fixed points become unstable,
bifurcating to a double-period stable fixed point. So we have both the unstable
main point and the generated double-period stable point. This mechanism is called
bifurcation and is common to dynamic systems (cf. Chapter 3).

Equation (5.26) can be used to estimate the proportionality constant k and �
from experimental data by plotting the fraction dissolved ('i) as a function of the
generations i. Prior to plotting, the sampling times are transformed to generations
defining arbitrarily a constant sampling interval as a “time unit.” By doing so, an
initial estimate for k can be obtained by reading the value of 'i corresponding to the
first datum point. When � > 1 an initial estimate for � can be obtained from the
highest value of the dissolved fraction at the end of the dissolution run. However, an
estimate for � cannot be obtained from visual inspection when � � 1 since '�

A D 1
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Fig. 5.8 Plots of the dissolved fraction ' i as a function of generations i using (5.25) with k and
� values satisfying the inequality 1=� < k < 2= .� � 1/: (A) k D 0:97, � D 1:79; (B) k D 0:8,
� D 2:0; (C) k D 0:97, � D 2:94; (D) k D 0:7, � D 3:57

in all cases. The initial estimates for k and � can be further used as starting points in
a computer fitting program to obtain the best parameter estimates.

The population growth model of dissolution utilizes the usual information
available in dissolution studies, i.e., the amount dissolved at certain fixed intervals
of time. The time points of all observations need to be transformed to equally
spaced values of time and furthermore to take the values 0; 1; 2; : : :. Since the model
does not rely on diffusion principles it can be applied to both homogeneous and
inhomogeneous conditions. This is of particular value for the correlation of in vitro
dissolution data obtained under homogeneous conditions and in vivo observations
adhering to the heterogeneous milieu of the gastrointestinal tract. The dimensionless
character of k allows comparisons to be made for k estimates obtained for a drug
studied under different in vitro and in vivo conditions, e.g., various dissolution
media, fasted, or fed state.

Example 2. Danazol Data

For the continuous model, a fitting example of (5.21) to actual experimental data of
danazol [129] is shown in Figure 5.9. For the discrete model, a number of fitting
examples are shown in Figure 5.10 for danazol dissolution data obtained by using
15 minutes as a “time unit.” Table 5.1 lists the estimates for k and � obtained
from the computer analysis of danazol data utilizing an algorithm minimizing the
sum of squared deviations between experimental and theoretical values obtained
from (5.25). �
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Fig. 5.9 The fraction of dose dissolved as a function of time for the danazol data [129]. Symbols
represent experimental points and the lines represent the fittings of (5.21) to data. Key (% sodium
lauryl sulfate in water as dissolution medium): � 1.0; � 0.75; N 0.50; H 0.25; � 0.10
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Fig. 5.10 The fraction of dose dissolved ' i as a function of generations i, where the solid line
represents the fittings of (5.25) to danazol data [129]. Symbols represent experimental points
transformed to the discrete time scale for graphing and fitting purposes assigning one generation
equal to 15 minutes. Key (% sodium lauryl sulfate in water as dissolution medium): � 1.0; � 0.75;
N 0.50; H 0.25; � 0.10
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Table 5.1 Estimates for k
and � obtained from the
fitting of (5.24) to danazol
data, Figure 5.10. (a)
Percentage of sodium lauryl
sulfate in water, (b)
Determination coefficient.

Dissolution mediuma k � R2b

0.10 0.06 10 0.993

0.25 0.23 1.82 0.9993

0.50 0.45 0.75 0.9999

0.75 0.56 0.08 0.9995

1.00 0.71 0.47 0.9996

5.2.3 Modeling Supersaturated Dissolution Data

The dissolution data are basically of monotonic nature (the drug concentration or the
fraction of drug dissolved is increasing with time) and therefore the corresponding
modeling approaches rely on monotonic functions. However, nonmonotonic dis-
solution profiles are frequently observed in studies dealing with co-precipitates of
drugs with polymers and solid dispersion formulations [130, 131]. The dissolution
profiles in these studies usually exhibit a supersaturation phenomenon, namely,
an initial rapid increase of drug concentration to a supersaturated maximum
followed by a progressive decline to a plateau value. This kind of behavior cannot
be explained with the classical diffusion principles in accord with the diffusion
layer model of dissolution. It seems likely that the initial sudden increase is
associated with a rapid reaction of the solid particles with the dissolution medium.
The dynamics of the difference equation for the population growth model of
dissolution, (5.25), can capture this behavior and therefore can be used to model
supersaturated dissolution data [132].

Example 3. Nifedipine Data

An example of fitting (5.25) to experimental data of a nifedipine solid dispersion
formulation [131] is shown in Figure 5.11. Initially, the drug concentration values
are transformed to the corresponding dissolved fractions of dose ' i and plotted as
a function of the generations i, obtained by using a “time unit” of 5 minutes. The
transformation of sampling times to generations i is achieved by adopting the time
needed to reach maximum concentration (equivalent to maximum fraction of dose
dissolved) as the time unit of (5.25). Reading the maximum and lowest values of ' i,
one obtains initial estimates for parameters k and 1=� , respectively. These values are
further used as starting points in a computer program minimizing the sum of squared
deviations between observed and predicted values to determine the best parameter
estimates. The estimated parameter values for k and � were found to be 0:323 and
4:06, respectively. The value of k denotes the maximum fraction of dose that is
dissolved in a time interval equal to the time unit used. The value of � corresponds
to the reciprocal of the plateau value, which is the fraction of dose remaining in
solution at steady state. �

However, the use of (5.25) should not be considered as a panacea for modeling
nonmonotonic dissolution curves. Obvious drawbacks of the model (5.25) are
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Fig. 5.11 Plot of the dissolved fraction 'i as a function of generations i (time step 5min) using
(5.25) for the dissolution of nifedipine solid dispersion with nicotinamide and polyvinylpyrrolidone
(1 W 3 W 1), in 900ml of distilled water. Fitted line of (5.25) is drawn over the experimental data

1. The data on the ascending limb of the dissolution curve, if any, should be ignored.
2. The time required to reach the maximum value of the dissolved fraction of drug

should be adopted as the time interval between successive generations.
3. The time values of the data points that can be used for fitting purposes should be

integer multiples of the time unit adopted.

Further, when k takes values much larger than 1=� , (5.25) exhibits chaotic
behavior following the period-doubling bifurcation (cf. Chapter 3). For exam-
ple, (5.25) leads to chaos when 1=� D 0:25 and k is greater than 0:855. Despite
the aforementioned disadvantages, the model offers the sole approach that can be
used to describe supersaturated dissolution data. In addition, the derivation of (5.25)
relies on a model built from physical principles, i.e., a reaction-limited dissolution
model. Other approaches based on empirical models, e.g., polynomial functions,
could provide better fittings for supersaturated dissolution data but these approaches
will certainly lack in physical meaning.

In 2011 Charkoftaki et al. [133] modified the continuous reaction-limited model
of dissolution [126] to describe classical experimental supersaturated dissolution
data of carbamazepine in presence of d-alpha-tocopheryl polyethylene glycol 1000
succinate (TPGS). The model developed was based on a time-dependent expression
for the forward microconstant of the bidirectional reaction carbamazepine-TPGS
at the solid–liquid interface. The following modified version of equation 5.24 was
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Fig. 5.12 Fitings of equation 5.27 to three data sets of carbamazepine tablets in presence of TPGS
at 10ı C exhibiting supersaturated dissolution profiles. Key: (A) 0.5 mM TPGS; (B) 2 mM TPGS;
(C) 4 mM TPGS

fitted to the experimental data of carbamazepine dissolution in presence of TPGS
at 10ı C:

�
y .t/ D k



�C .1C t/�h�

hq0
V

� y .t/
ia � k�1y .t/ (5.27)

where k is a constant in .time/b�1 units and � is a constant in .time/�h units.
Figure 5.12 shows the fittings of the above equation to three data sets of carba-
mazepine dissolution.

5.3 Modeling Random Effects

In all previous dissolution models described in Sections 5.1 and 5.2, the variability
of the particles (or media) is not directly taken into account. In all cases, a unique
constant (cf. Sections 5.1, 5.1.1, and 5.1.2) or a certain type of time dependency in
the dissolution rate “constant” (cf. Sections 5.1.3, 5.2.1, and 5.2.2) is determined
at the commencement of the process and fixed throughout the entire course of
dissolution. Thus, in essence, all these models are deterministic. However, one can
also assume that the above variation in time of the rate or the rate coefficient can
take place randomly due to unspecified fluctuations in the heterogeneous properties
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of drug particles or the structure/function of the dissolution medium. Lansky and
Weiss have proposed [134] such a model assuming that the rate of dissolution k .t/
is stochastic and is described by the following equation:

k .t/ D k C �� .t/ ,

where k is the deterministic part of the dissolution rate “constant,” � .t/ is Gaussian
white noise, and � > 0 is its amplitude. According to the definition of this equation,
the “constant” k represents the mean of k .t/.

The stochastic nature of k .t/ allows the description of the fraction of dose
dissolved, ' .t/, in the form of a stochastic differential equation if coupled with
the simplest dissolution model described by (5.16), assuming complete dissolution
(� D 1):

d' .t/ D k Œ1 � ' .t/� dt C �� .t/ Œ1 � ' .t/� dB .t/ , (5.28)

where the symbol ' .t/ is used here to denote the random nature of the process,
while dB .t/ comes from the Brownian motion since the noise � .t/ is the formal

derivative of the Brownian motion,
�
B .t/. The solution of (5.28) gives

' .t/ D 1 � exp

�
�
�

k C 1

2
�2
�

t � �B .t/

�
.

A discretized version of (5.28) can be used to perform Monte Carlo simulations
using different values of � and generate ' .t/-time profiles [134]. The random
fluctuation of these profiles becomes larger as the value of � increases.

Stochastic variation may be introduced in other models as well. In this context,
Lansky and Weiss [134] have also considered random variation for the parameter k�
of the interfacial barrier model (5.20).

5.4 Homogeneity vs. Heterogeneity

Lansky and Weiss defined [135] the classical dissolution first-order model in terms
of the fraction of dose dissolved, ' .t/ (equation 5.16 assuming � D 1),

�
' .t/ D k Œ1 � ' .t/� , ' .0/ D 0,

as the simplest homogeneous case, since the fractional dissolution rate function k.t/
derived from the above equation,

k.t/ D
�
' .t/

1 � ' .t/
,
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is constant throughout the dissolution process. In physical terms, the homogeneous
model dictates that each drug molecule has equal probability to enter solution during
the entire course of the dissolution process. Plausibly, the various dissolution models
have different time-dependent functional forms of k.t/. Accordingly, all these
models were termed heterogeneous since the time dependence of the functions k.t/
denotes that the probability to enter solution is not identical for all drug molecules.
To quantify the departure from the homogeneous case, Lansky and Weiss proposed
[135] the calculation of the Kullback–Leibler information distance Dist .f ; '/ as a
measure of heterogeneity of the function f .t/ from the homogeneous exponential
model ' .t/ derived from the previous equation:

Dist .f ; '/ D
Z 1

0

f .t/ ln
f .t/

' .t/
dt.

This measure of heterogeneity generalizes the notion of heterogeneity as a departure
from the classical first-order model initially introduced [123] for the specific case
of the Weibull function. In addition, the above equation can also be used for
comparison between two experimentally obtained dissolution profiles [135].

The comparison of dissolution curves based on the calculation of Dist .f ; '/
is model-independent; however, other model-dependent comparative approaches
have been proposed [136]. Caution should be exercised, though, when comparison
of estimates of the parameters obtained from various models is attempted in the
context of heterogeneity assessment. For example, the valid use of (5.15) for the
homogeneous case presupposes that the amount needed to saturate the medium is
exactly equal to the dose used in actual practice, i.e., � D 1 [136]. Recently, Lansky
and Weiss presented [137] in a concise form the results of their recent studies
[124, 134]. The empirical and semiempirical models for drug dissolution were
reviewed and classified in five groups: first-order model with a time lag, models for
limited solubility of drug, models of heterogeneous compound, Weibull and inverse
Gaussian models, and models defined on a finite time window. In this contribution,
the properties of models were investigated, the parameters were discussed, and the
role of drug heterogeneity was studied.

5.5 Comparison of Dissolution Profiles

The comparison of dissolution profiles is of interest for both research and regulatory
purposes. Several methods, which can be roughly classified as .1ı/ statistical
approaches, .2ı/ model-dependent, and .3ı/ model-independent methods, have
been reported in the literature for the comparison of dissolution profiles [138–
140]. The statistical approaches are based on the analysis of variance, which
is used to test the hypothesis that the two profiles are statistically similar. The
model-dependent methods are mainly used for clarifying dissolution or release
mechanisms under various experimental conditions and rely on the statistical
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comparison of the estimated parameters after fitting of a dissolution model (e.g.,
the Weibull model) to the raw data. The model-dependent methods can be applied
to dissolution profiles with nonidentical dissolution sampling schemes, while the
model-independent methods require identical sampling points since they are based
on pairwise procedures for the calculation of indices (factors) from the individual
raw data of two profiles. Two of these factors, namely, the difference factor f1 and
the similarity factor f2, have been adopted by the regulatory agencies and have been
included in the relevant dissolution Guidances for quality control testing [141–143].
Each one of these factors is calculated from the two mean dissolution profiles and
is being used as a point estimate measure of the (dis)similarity of the dissolution
profiles.

The difference factor f1 [141] measures the relative error (as a percentage)
between two dissolution curves over all time points:

f1 D 100

Pm
iD1 jRi � TijPm

iD1 Ri
. (5.29)

where m is the number of data points, Ri and Ti are the percentage of drug dissolved
for the reference and test products at each time point i, respectively.

The similarity factor f2 [141–143] is a logarithmic reciprocal transformation of
the sum of squared errors and is a measurement of the percentage similarity in the
dissolution between the two dissolution curves:

f2 D 50 log

8
<

:
100

"

1C 1

m

mX

iD1
.Ri � Ti/

2

#�0:59=

;
. (5.30)

Both factors take values in the range 0�100 assuming that the percentage dissolved
values for the two products are not higher than 100%. When no difference between
the two curves exist, i.e., at all time points Ri D Ti, then f1 D 0 and f2 D 100. On
the other hand, when the maximum difference between the two curves exists, i.e., at
all time points jRi � Tij D 100, then f1 D 100 and f2 D 0.

The calculation of the factors from the mean profiles of the two drug products
presupposes that the variability at each sample time point is low. Thus, for
immediate release formulations, the FDA guidance [141] allows a coefficient of
variation of no more than 20% for the early data points (e.g., 10 or 15min), while a
coefficient of variation less than 10% is required for the other time points. According
to the guidances [141, 143], when batches of the same formulation are compared,
a difference up to 10% at all sample points is considered acceptable. On the basis
of this boundary, the acceptable range of values derived from (5.29) and (5.30) for
f1 is 0 � 15 [141] and for f2 is 50 � 100 [141, 143]. From a technical point of
view, the following recommendations are quoted in the guidances [141, 143] for the
calculation of f1 and f2 as point estimates:
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1. a minimum of three time points (zero excluded),
2. 12 individual values for every time point for each formulation,
3. not more than one mean value of > 85% dissolved for each formulation.

Note that when more than 85% of the drug is dissolved from both products
within 15 minutes, dissolution profiles may be accepted as similar without further
mathematical evaluation. For the sake of completeness, one should add that some
concerns have been raised regarding the assessment of similarity using the direct
comparison of the f1 and f2 point estimates with the similarity limits [144–146].
Attempts have been made to bring the use of the similarity factor f2 as a criterion for
assessment of similarity between dissolution profiles in a statistical context using a
bootstrap method [145] since its sampling distribution is unknown.

Although there are some differences between the European [143] and the US
guidance [141, 142], e.g., the composition of the dissolution media, it should be
pointed out that both recommend dissolution studies as quality assurance tests as
well as for bioequivalence surrogate inference. The latter aspect is particularly well
developed in the FDA guidance [142] in the framework of the Biopharmaceutics
Classification System (BCS), which is treated in Section 6.6.1.



Chapter 6
Oral Drug Absorption

The right drug for the right indication in the right dosage to the
right patient.

Anonymous

The understanding and the prediction of oral drug absorption are of great interest
for pharmaceutical drug development. Obviously, the establishment of a compre-
hensive framework in which the physicochemical properties of drug candidates
are quantitatively related to the extent of oral drug absorption will accelerate the
screening of candidates in the discovery/preclinical development phase. Besides,
such a framework will certainly help regulatory agencies in developing scientifically
based guidelines in accord with a drug’s physicochemical properties for various
aspects of oral drug absorption, e.g., dissolution, in vitro–in vivo correlations,
biowaivers of bioequivalence studies.

However, the complex interrelationships among drug properties and processes in
the gastrointestinal tract make the prediction of oral drug absorption a difficult task.
In reality, drug absorption is a complex process dependent upon drug properties
such as solubility and permeability, formulation factors, and physiological variables
including regional permeability differences, pH, luminal and mucosal enzymes,
and intestinal motility, among others. Despite this complexity, various qualitative
and quantitative approaches have been proposed for the estimation of oral drug
absorption. In all approaches discussed below the drug movement across the
epithelial layer is considered to take place transcellularly since transcellular passive
diffusion is the most common mechanism of drug transport.

The absorption models described in this chapter can be divided as follows:

• pseudoequilibrium models,
• mass balance approaches,
• dynamic models,
• heterogeneous approaches, and
• models based on chemical structure.

The last section of this chapter is devoted to the regulatory aspects of oral drug
absorption and in particular to the BCS and the relevant FDA guideline. The recent
regulatory-scientific advances related to BCS as well as the Biopharmaceutics Drug

© Springer International Publishing Switzerland 2016
P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics
and Pharmacodynamics, Interdisciplinary Applied Mathematics 30,
DOI 10.1007/978-3-319-27598-7_6

109



110 6 Oral Drug Absorption

Disposition Classification System (BDDCS) are described too. At the very end of
the chapter, we mention the difference between randomness and chaotic behavior as
sources of the variability encountered in bioavailability and bioequivalence studies.

6.1 Pseudoequilibrium Models

These models assume that oral drug absorption takes place under equilibrium
conditions. Spatial or temporal aspects of the drug dissolution, transit and uptake
and the relevant physiological processes in the gastrointestinal tract are not taken
into account. Only drug-related properties are considered as the key parameters
controlling the absorption process.

6.1.1 The pH-Partition Hypothesis

Back in the 1940s, physiologists were the first to realize that in contrast to the capil-
lary walls, with their large and unselective permeability, cell membranes present
a formidable barrier to the diffusion of small molecules. A prominent scientist,
M.H. Jacobs, in 1940 [147] was the first who studied the cell permeability of
weak electrolytes and described quantitatively the nonionic membrane permeation
of solutes. This observation initiated a number of specific studies [148–153] during
the 1950s on the mechanisms of gastrointestinal absorption of drugs. The results
of these studies formed the basis for the pH-partition hypothesis, which relates
the dissociation constant, lipid solubility, and the pH at the absorption site with
the absorption characteristics of various drugs throughout the gastrointestinal tract.
Knowledge of the exact ionization of a drug is of primary importance since the un-
ionized form of the drug, having much greater lipophilicity than the ionized form,
is much more readily absorbed. Consequently, the rate and extent of absorption are
principally related to the concentration of the un-ionized species. Since the pH in the
gastrointestinal tract varies, the Henderson–Hasselbach equations for the ionization
of acids,

pH D pKa C log

�
ionized-concentration

un-ionized-concentration

�
,

and bases,

pH D pKa C log

�
un-ionized-concentration

ionized-concentration

�
,

relate the fraction of the un-ionized species with the regional pH and the pKa of the
compound.
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Most of the gastrointestinal absorption studies were found to be in accord with
the principles of the pH-partition hypothesis. However, several deviations were
noted and attributed to the unstirred water layer, the microclimate pH, and the mucus
coat adjacent to the epithelial cell surface [154–156].

Although the pH-partition hypothesis relies on a quasi-equilibrium transport
model of oral drug absorption and provides only qualitative aspects of absorption,
the mathematics of passive transport assuming steady diffusion of the un-ionized
species across the membrane allows quantitative permeability comparisons among
solutes. As discussed in Chapter 2, (2.19) describes the rate of transport under sink
conditions as a function of the permeability P, the surface area A of the membrane,
and the drug concentration c .t/ bathing the membrane:

�
q .t/ D PAc .t/ . (6.1)

The proportionality between the rate of transport and permeability in (6.1) shows
the importance of the latter parameter in the transcellular passive gastrointestinal
absorption of drugs. Strictly speaking, one should utilize an estimate of the
effective permeability (Peff ) [157] in (6.1) for predicting oral absorption potential of
compounds. However, the methods for the estimation of Peff are invasive, laborious,
and time-consuming. Alternatively, various measures of lipophilicity such as the
octanol/water partition coefficient (log Pc) [158] and the distribution coefficient
(log D) [159] have been used as surrogates for predicting the oral absorption
potential of compounds since permeability is mainly dependent on membrane
partitioning.

6.1.2 Absorption Potential

In 1985 a major step in the theoretical analysis of oral drug absorption phenomena
took place [160], when solubility and dose were also taken into account for the
estimation of the absorption potential AP of a drug apart from the pH-partition
hypothesis related parameters (lipophilicity, and degree of ionization). According
to this concept, the AP is related proportionally to the octanol/water partition
coefficient Pc, the fraction of the un-ionized species fun, at pHD 6:5, and the
physiological solubility cs of the drug and inversely proportional to the dose q0:

AP D log

�
PcfuncsV

q0

�
D log

�
Pcfun

�

�
. (6.2)

The logarithmic expression in the definition of AP has no physicochemical basis
and is used for numerical reasons only; pHD 6:5 was selected as the representative
pH of small intestines, where most of the absorption of drugs takes place. The
incorporation of the terms Pc and fun in the numerator of (6.2) means that the
pH-partition hypothesis governs gastrointestinal absorption. Plausibly, AP was
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considered proportional to solubility and inversely proportional to the dose in
accord with classical dissolution–absorption considerations. The volume term V
corresponds to the small-intestinal volume content, which was set arbitrarily equal
to 250ml; moreover, the use of the term V makes the AP dimensionless. The ratio
q0=csV was defined as the dimensionless solubility–dose ratio in Section 5.1.4 and
it was denoted by � .

The validity of the approach based on (6.2) was proven when the fraction of dose
absorbed, Fa, was found to increase with AP for several drugs with a wide variety
of physicochemical properties and various degrees of extent of absorption [160].
Additional support for the AP concept was provided by a three-dimensional plot of
Fa as a function of the ionization–solubility/dose term (fun=�) and the octanol/water
partition coefficient Pc [161]. In fact, because of the recent interest in the apparent
permeability estimates Papp measured in the in vitro Caco-2 monolayer system, it
was suggested that Papp can replace the octanol/water partition coefficient Pc in (6.2)
[161].

Although the AP concept is a useful indicator of oral drug absorption, its
qualitative nature does not allow the derivation of an estimate for Fa. A quantitative
version of Fa as a function of AP was published in 1989. It was based on the
equilibrium considerations used for the derivation of AP and the fundamental
physicochemical properties in (6.2) with the implied competing intestinal absorption
and nonabsorption processes [162]. This quantitative AP concept relies on (6.3),
where a nonlogarithmic expression for AP is used:

Fa D .AP/2

.AP/2 C fun .1 � fun/
. (6.3)

Based on physiological-physicochemical arguments, constraints were proposed
for Pc, i.e., to be set equal to 1000 when Pc > 1000 and � equal to 1 when � < 1.
Equation (6.3) is, in reality, the first ever published explicit relationship between
Fa and physicochemical drug properties. It was used to classify drugs according
to their solubility, permeation, and ionization characteristics [162]. Moreover, (6.3)
was monoparameterized:

Fa D Z2

1C Z2
, (6.4)

where

Z D AP
p

fun .1 � fun/
.

Equation (6.4) was used for fitting purposes using AP and Fa data reported in
the literature and applying the constraints mentioned above for Pc and � in the
calculation of AP, Figure 6.1.
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Fig. 6.1 Plot of the fraction of dose absorbed for various drugs as a function of Z. Key: A,
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A number of modifications in the solubility and the partition coefficient terms of
the AP have also been proposed in the literature [163–165]. According to these
authors the modified absorption potential expressions can be considered better
predictors of the passive absorption of drugs than the original AP. The most recent
approach [165] relies on a single absorption parameter defined as the ratio of the
octanol/water partition coefficient to the luminal oversaturation number. The latter
is equal to the solubility-normalized dose for suspensions and equal to unity for
solutions.

A relevant simple model was used to estimate the maximum absorbable dose
(MAD) [166]. It takes into account the permeability, expressed in terms of a first-
order rate constant ka, the solubility cs of the drug, and two physiological variables,
the dissolution-intestinal volume V arbitrarily set to 250ml, and the duration of
gastrointestinal absorption ta for 6 h:

MAD D Vcskata.

This model assumes gastrointestinal absorption from a saturated solution of the drug
(hypothetically maintained at a constant saturated value) for a time period equal
to 6 h.
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6.2 Mass Balance Approaches

These approaches place particular emphasis on the spatial aspects of the drug
absorption from the gastrointestinal tract. The small intestine is assumed to be
a cylindrical tube with fixed dimensions where the drug solution or suspension
follows a homogeneous flow. Mass balance relationships under steady-state assump-
tions are used to estimate the fraction of dose absorbed as a function of the drug
properties and of physiological parameters.

6.2.1 Macroscopic Approach

In the early 1990s the research group of G. Amidon in Ann Arbor applied mass
balance approaches to the analysis of drug intestinal absorption [55, 56]. The
small intestine is assumed to be a cylindrical tube with physiologically relevant
dimensions (radius R and length L), while a constant volumetric flow rate Q
describes the transit process of the intestinal contents, Figure 6.2. The macroscopic
approach [55] refers mainly to highly soluble compounds. The incorporation of
the dissolution step as an important part of the absorption process is treated in
Section 6.2.2 under the heading microscopic approach [56].

The macroscopic approach under the steady-state assumption provides estimates
for the fraction of dose absorbed Fa for the three cases, which refer to the magnitude
of c0 and cout in Figure 6.2 relative to drug solubility cs, namely:

1. Case I: c0 � cs and cout � cs (the drug is in solution throughout the transit
process);

2. Case II: c0 > cs and cout � cs (solid drug at inlet; concentration reaches solubility
at a certain point and diminishes thereafter);

3. Case III: c0 > cs and cout > cs (solid drug exists at both ends of the tube).

Fig. 6.2 The small intestine is modeled as a homogeneous cylindrical tube of length L and radius
R. c0 and cout are the inlet and outlet drug concentrations, respectively. The other symbols are
defined in the text
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Irrespective of the specific case considered, the general mass balance relationship
for the system depicted in Figure 6.2 under the steady-state assumption is

Q .c0 � cout/ D 2RPeff

Z L

0

c .z/ dz,

where Peff is the effective permeability of drug and dz the infinitesimal axial length.
The fraction of dose absorbed Fa can be expressed in terms of c0 and cout using the
previous equation:

Fa D 1 � cout

c0
D 2RPeff

Qc0

Z L

0

c .z/ dz

D 2RPeff L

Q

Z 1

0

c� �z�	 dz� D 2An

Z 1

0

c� �z�	 dz�. (6.5)

The last two integrals of the previous equation are expressed in dimensionless
variables, c� D c=c0, z� D z=L with normalized limits .0; 1/, while the symbol
An is the absorption number of the drug:

An , RL

Q
Peff D hTsii Peff

R
. (6.6)

The first fraction of the previous equation shows that An is exclusively determined by
the effective permeability Peff of drug since all other variables are species-dependent
physiological parameters. In terms of characteristic times, the An of a drug can also
be defined as the ratio of the mean small-intestinal transit time hTsii, to its absorption
time R=Peff .

For the calculation of Fa, one should first express the dimensionless concentra-
tion c� .z�/ as a function of z�, for each one of the three cases considered above,
and then integrate (6.5).

1. For case I, the concentration profile c� .z�/ diminishes exponentially as a
function of distance z� assuming the complete radial mixing model [167] in the
tube,

c� �z�	 D cout

c0
D exp

��2Anz�	 ,

and for the fraction of dose absorbed,

Fa D 1 � exp .�2An/ .

This last equation shows that when the drug is in solution throughout the transit
process and c0 � cs and cout � cs, then Fa is dependent exclusively and
exponentially on An. According to this equation, large values of An ensure
complete absorption for this type of drugs.
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2. For case III, the concentration cout can be considered equal to the solubility since
c0 > cs and cout > cs; therefore

c� �z�	 D cs

c0
D 1

�
, (6.7)

and for the fraction of dose absorbed,

Fa D 2An

�
. (6.8)

Although this equation indicates that Fa is proportional to An and inversely
proportional to � , this should be judged with caution since the conditions of
case III, expressed in terms of concentration, are physically irrelevant (c0 > cs

and cout > cs). In addition, the use of (6.7) for the derivation of (6.8) assumes
instantaneous dissolution in order to maintain the value of cs constant throughout
the transit process.

3. Case II can be viewed as a hybrid of cases I and III. As long as c0 > cs, the
conditions assumed for case III are prevailing. Then, using a simple mass balance
equation up to the temporal (spatial) point when c0 reaches solubility (c0 D cs)
and (6.7), the fraction absorbed Fa1 can be calculated as

Fa1 D c0V � csV

c0V
D 1 � 1

�
.

Beyond this spatiotemporal point until the drug exits from the tube, the inequality
c0 < cs holds and therefore the fraction absorbed Fa2 in this region follows the
results obtained for case I conditions:

Fa2 D 1

�
Œ1 � exp .�2An C � � 1/� .

Consequently, the total fraction of dose absorbed Fa is the sum of Fa1 and Fa2:

Fa D 1 � 1

�
exp .�2An C � � 1/ .

The most significant result of the macroscopic approach was derived from the
analysis of case I conditions. It was found that the absorption number An and in
particular its major determinant, the effective permeability, control the intestinal
absorption of drugs. This observation triggered a large number of studies, and in
recent years several attempts have been made to model the fraction of dose absorbed,
Fa, with experimental in situ and in vitro models such as cell cultures (Caco-2,
HT-29, and MDCK) [168–170] and artificial membranes (IAM, PAMPA) [171].
The aim of these studies is to find a correlation between the apparent permeability
estimates Papp measured in these systems and the experimental Fa values. The most
popular among these systems is the in vitro Caco-2 monolayer system [172], which
is a donor–receptor compartment apparatus separated by a cell monolayer grown
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Fig. 6.3 Plot of the fraction of dose absorbed (in %) of various drugs as a function of the
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on a porous polycarbonate filter and is used to estimate the apparent permeability
of compounds. In reality, an estimate for Papp is obtained from the experimental

permeation data using (6.1) and solving it in terms of P; the flux rate
�
q .t/ is obtained

from the slope of the receptor chamber solute mass vs. time plot, while A is the
cross-sectional area of cell surface and c .t/ D c0 is the initial solute concentration in
the donor compartment. Extensive research in the passive transport mechanisms of
a great number of compounds in cell culture monolayers indicates that an apparent
permeability estimate in the range of 2 � 10�6 � 10�5 cm s�1 [172–174] ensures
complete absorption of the solute provided that absorption is not solubility- and/or
dissolution-limited, Figure 6.3.

6.2.2 Microscopic Approach

This approach deals with the analysis of intestinal absorption of poorly soluble
drugs, administered as suspensions, assuming that drug particles are spheres of the
same initial radius size 	0. The resulting mathematical model [56] assumes complete
radial mixing, takes into account drug dissolution, transit, and uptake, and relies
on the homogeneous cylindrical intestinal tube depicted in Figure 6.2. Under the
steady-state assumption, mass balance relationships for the drug processes in both
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solid and solution phase are considered in a volume element of the intestine of axial
length dz. Two differential equations expressed in dimensionless variables govern
the reduction of the radius 	 .z/ of the particles from their initial value 	0and the
change of the luminal concentration of the drug c .z/:

d	�.z�/

dz� D � Dn
3
1�c�.z�/

	�.z�/ 	� .0/ D 1,

dc�.z�/

dz�
D �Dn	

� .z�/ Œ1 � c� .z�/� � 2Anc� .z�/ c� .0/ D 0,
(6.9)

where z� D z=L, c� .z�/ D c .z�/ =cs, 	� .z�/ D 	 .z�/ =	0, and Dn is the dissolution
number defined by the following relationship:

Dn ,
.D=	0/ cs

�
4	20

	 �
R2L

	

Q
�
4	30%

	 ,

where D is the diffusivity and % is the density of the drug. Using a mass balance
relationship for the solid and solution phases at the outlet of the tube (	� D 1), the
following equation is obtained for the fraction of dose absorbed, Fa:

Fa D 1 � �
	�jz�D1

	3 � 1

�

�
c�jz�D1

	
.

This equation can be used in conjunction with (6.9) for the estimation of Fa.
The microscopic approach points out clearly that the key parameters controlling
drug absorption are three dimensionless numbers, namely, absorption number An,
dissolution number Dn, and � . The first two numbers are the determinants of
membrane permeation and drug dissolution, respectively, while � reflects the ratio
of the dose administered to the solubility of drug.

6.3 Dynamic Models

These models are dependent on the temporal variable associated with the drug
transit along the small intestine. Drug absorption phenomena are assumed to take
place in the time domain of the physiological mean transit time. For those dynamic
models that rely on diffusion/dispersion principles both the spatial and temporal
variables are important in order to simulate the spatiotemporal profile of the drug in
the intestinal lumen.

6.3.1 Compartmental Models

The compartmental approach to the process of a drug passing through the gas-
trointestinal tract has been used to simulate and explain oral drug absorption. The
simplest approach relies on a single mixing tank model of volume V where the
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drug has a uniform concentration while a flow rate Q is ascribed to the contents of
the tank. Thus, the ratio V=Q corresponds to the time period beyond which drug
dissolution and/or absorption is terminated. In other words, it is equivalent to the
small-intestinal transit time for the homogeneous tube model. Similarly, the ratio
Q=V indicates the first-order rate constant for drug removal from the absorption
sites. One or two mixing tanks in series have been employed for the study of various
oral drug absorption phenomena [54, 175, 176].

Mixing tanks in series with linear transfer kinetics from one to the next with the
same transit rate constant kt have been utilized to obtain the characteristics of flow
in the human small intestine [177, 178]. The differential equations of mass transfer
in a series of m compartments constituting the small intestine for a nonabsorbable
and nondegradable compound are

�
qi .t/ D ktqi�1 .t/ � ktqi .t/ , i D 1 W m, (6.10)

where qi .t/ is the amount of drug in the i-th compartment. The rate of exit of the
compound from the small intestine is

�
qm .t/ D �ktqm .t/ . (6.11)

Solving the system of (6.10) and (6.11) in terms of the fraction of dose absorbed,
we obtain

Fa D qm .t/

q0
D 1 � exp .�ktt/

"

1C ktt C .ktt/
2

2
C : : :C .ktt/

m�1

.m � 1/Š

#

. (6.12)

Analysis of experimental human small-intestine transit time data collected from
400 studies revealed a mean small-intestinal transit time hTsii D 199min [177].
Since the transit rate constant kt is inversely proportional to hTsii, namely, kt D
m= hTsii, (6.12) was further fitted to the cumulative curve derived from the distri-
bution frequency of the entire set of small-intestinal transit time data in order to
estimate the optimal number of mixing tanks. The fitting results were in favor of
seven compartments in series and this specific model, (6.10) and (6.11) with m D 7,
was termed the compartmental transit model.

The incorporation of a passive absorption process in the compartmental transit
model led to the development of the compartmental absorption transit model (CAT)
[179]. The rate of drug absorption in terms of mass absorbed qa .t/ from the small
intestine of the compartmental transit model is

�
qa .t/ D ka

7X

iD1
qi .t/ ,

where ka is the first-order absorption rate constant. Then, the fraction of dose
absorbed Fa, using the previous equation, is
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Fa D qa .t/

q0
D ka

q0

7X

iD1

Z 1

0

qi .t/ dt. (6.13)

The solution of (6.12) and (6.13) yields

Fa D 1 �
�
1C ka

kt

��7
.

Recall that kt is equal to 7= hTsii, while ka can be expressed in terms of the effective
permeability and the radius R of the small intestine [56]:

ka D 2Peff

R
. (6.14)

The previous equation can be written as

Fa D 1 �
�
1C 2Peff hTsii

7R

��7
.

The CAT model presupposes that dissolution is instantaneous and therefore the
kinetics of the permeation step control the gastrointestinal absorption of drug. This
is reflected in the previous equation, which indicates that the effective permeability
is the sole parameter controlling the intestinal absorption of highly soluble drugs.

Due to its compartmental nature, the CAT model can easily be coupled with
the disposition of drug in the body using classical pharmacokinetic modeling. In
this respect the CAT model has been used to interpret the saturable small-intestinal
absorption of cefatrizine in humans [179].

The CAT model was further modified to include pH-dependent solubility,
dissolution/precipitation, absorption in the stomach or colon, first-pass metabolism
in gut or liver, and degradation in the lumen. Physiological and biochemical factors
such as changes in absorption surface area, transporter, and efflux protein densities
have also been incorporated. This advanced version of CAT, called ACAT [180],
has been formulated in a commercially available simulation software product under
the trademark name GastroPlusTM. A set of differential equations, which is solved
by numerical integration, is used to describe the various drug processes of ACAT as
depicted in Figure 6.4.

6.3.2 Convection–Dispersion Models

The use of convection–dispersion models in oral drug absorption was first proposed
in the early 1980s [181, 182]. The small intestine is considered a one-dimensional
tube that is described by a spatial coordinate z that represents the axial distance
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Fig. 6.4 Schematic of the ACAT model. Reprinted from [180] with permission from Elsevier

velocity

Fig. 6.5 The velocity of the fluid inside the tube is larger near the axis and much smaller near the
walls. This is considered to be the main factor for the dispersion of the distribution of the drug

from the stomach. In addition, the tube contents have constant axial velocity v and
constant dispersion coefficient D, which arises from molecular diffusion, stirring
due to the motility of the intestines, and Taylor dispersion due to the difference of
the axial velocity at the center of the tube compared with the tube walls (Figure 6.5).
The small-intestine transit flow for a nonabsorbable and nondegradable compound
in this type of model is described by [177, 182]

@c .z; t/

@t
D D

@2c .z; t/

@z2
� v @c .z; t/

@z
, (6.15)

where c .z; t/ is the concentration. An analytical solution of this equation can be
obtained if one assumes that the stomach operates as an infinite reservoir with
constant output rate in terms of concentration and volume. Under these assumptions,
the following analytical solution was obtained [182]:
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where erf c is the complementary error function defined by

erf c .x/ , 1 � 2p


Z x

0

exp
��z2

	
dz.

Equation (6.16) allows one to generate the axial profile of normalized concentration
c .z; t/ =c0 at different times, Figure 6.6A. The second term in the parentheses
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Fig. 6.6 Axial profile snapshots of normalized concentration (with respect to the constant input
concentration) inside the intestinal lumen, at various times. (A) (6.16) is used, with D D
0:78 cm2 s�1, v D 1:76 cm min�1, and a constant-concentration infinite reservoir input. (B) the
analytical solution of (6.17) with initial condition c .z; 0/ D 0 is used, with D D 0:78 cm2 s�1,
v D 1:76 cm min�1, ka D 0:18 h�1, and a constant-concentration reservoir input, applied only for
the first hour, tı D 1 h
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of (6.16) is relatively small compared to the first; therefore, (6.16) can be approxi-
mated by the following:
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By replacing the spatial coordinate z with the length of the tube L in the previous
equation, the fraction of dose exiting the small intestine as a function of time is
obtained:

c .L; t/

c0
D 1

2
erf c

�
L � vtp
4Dt

�
.

This equation allows one to consider the cumulative distribution of small-intestinal
transit time data with respect to the fraction of dose entering the colon as a function
of time. In this context, this equation characterizes well the small-intestinal transit
data [177, 178], while the optimum value for the dispersion coefficient D was found
to be equal to 0:78 cm2 s�1. This value is much greater than the classical order of
magnitude 10�5 cm2 s�1 for molecular diffusion coefficients since it originates from
Taylor dispersion due to the difference of the axial velocity at the center of the tube
compared with the tube walls, as depicted in Figure 6.5.

For absorbable substances, a first-order absorption term can be coupled with
the convection–dispersion (6.15) to model both the fluid flow and the absorption
process:

@c .z; t/
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@2c .z; t/
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� v

@c .z; t/

@z
� kac .z; t/ , (6.17)

where ka is the first-order absorption rate constant. Although the previous equation
is solved numerically, an analytical solution can be obtained [183] for appropriate
initial and boundary conditions. More specifically, with a zero initial condition
c .z; 0/ D 0 and boundary conditions that correspond to a constant reservoir for
an initial period tı only,
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the analytical solution of (6.17) is
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and

˛ D v
p
1C 4kaDv�2, ˇ D 2

p
Dt.

Profiles of the analytical solution of (6.17) were plotted in Figure 6.6B.
In this category of dispersion models, one can also classify a “continuous plug

flow with dispersion” model for the simulation of gastrointestinal flow and drug
absorption [184]. In this model, the drug is passively absorbed, while the intestinal
transit is described via a Gaussian function. The drug solution moves in a concerted
fashion along the intestines, but with an ever-widening distribution about the
median location in contrast to the time-distribution theoretical profiles of classical
dispersion–convention models shown in Figure 6.6. The model described nicely the
dose-dependent absorption of chlorothiazide in rats [184], and it has been used for
the development of a physiologically based model for gastrointestinal transit and
absorption in humans [185].

Recently, a novel convection–dispersion model for the study of drug absorption
in the gastrointestinal tract, incorporating spatial heterogeneity, was presented [186].
The intestinal lumen is modeled as a tube (Figure 6.7), where the concentration
of the drug is described by a system of convection–dispersion partial differential
equations. The model considers:

wolftuowolfni

flowsolid drug ( )tzc ,1( )φ−10q

wolftuowolfni

flowdissolved drug ( )tzc ,2φ0q

Blood compartment ( )tc

dissolution

uptake

elimination

spatial coordinate z

Fig. 6.7 A dispersion model that incorporates spatial heterogeneity for the gastrointestinal
absorption processes. q0 denotes the administered dose and ' is the fraction of dose dissolved
in the stomach
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• two drug concentrations, for the dissolved and the undissolved drug species, and
• spatial heterogeneity along the axis of the tube for the various processes included,

i.e., axial heterogeneity for the velocity of the intestinal fluids, the constants
related to the dissolution of the solid drug, and the uptake of the dissolved drug
from the intestinal wall.

The model includes more realistic features than previously published dispersion
models for the gastrointestinal tract, but the penalty for that is that it can be solved
only numerically and includes a large number of parameters that are difficult to be
estimated based solely on blood data.

6.4 Heterogeneous Approaches

The approaches discussed in Sections 6.1, 6.2, and 6.3 were based on the concept
of homogeneity. Hence, the analysis of drug dissolution, transit, and uptake in
the gastrointestinal tract was accompanied by the assumption of perfect mixing
in the compartment(s) or the assumption of homogeneous flow. In the same vein,
the convection–dispersion models [177, 178, 181–184, 186] consider the small
intestine as a uniform tube with constant axial velocity, constant dispersion behavior,
and constant-concentration profile across the tube diameter. The heterogeneous
approaches attempt to incorporate the geometrically heterogeneous features of the
internal structure of the intestinal tube, e.g., microvilli as well as the inhomogeneous
flow of drug toward the lower end of the intestinal tube.

The assumptions of homogeneity and/or well-stirred media used in Sections 6.1
to 6.3 are not only not obvious, but they are also in fact contrary to the evidence
given the anatomical and physiological complexity of the gastrointestinal tract. Both
in vivo drug dissolution and uptake are heterogeneous processes since they take
place at interfaces of different phases, i.e., the liquid–solid and liquid–membrane
boundaries, respectively. In addition, both processes occur in heterogeneous envi-
ronments, i.e., variable stirring conditions in the lumen. The mathematical analysis
of all models described previously relies furthermore on the assumption that an
isotropic three-dimensional space exists in order to facilitate the application of
Fick’s laws of diffusion. However, recent advances in physics and chemistry, as
discussed in Chapter 2, have shown that the geometry of the environment in which
the processes take place is of major importance for the treatment of heterogeneous
processes. In media with topological constraints, well-stirred conditions cannot
be postulated, while Fick’s laws of diffusion are not valid in these spaces. Most
of the arguments questioning the validity of the diffusion theory in a biological
context seem to be equally applicable in the complex media of the gastrointestinal
tract [187, 188]. However, advances in heterogeneous kinetics have led to the
development of fractal-like kinetics that are suitable for processes taking place in
heterogeneous media and/or involving complicated mechanisms. In the light of the
above-mentioned gastrointestinal heterogeneity, the drug gastrointestinal processes
are discussed below in terms of fractal concepts [189].
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6.4.1 Heterogeneous Gastrointestinal Transit

Since gastrointestinal transit has a profound effect on drug absorption, numerous
studies have focused on the gastric emptying and the intestinal transit of different
pharmaceutical dosage forms. Gastric emptying is totally controlled by the two
patterns of upper gastrointestinal motility, i.e., the interdigestive and the digestive
motility pattern [190]. The interdigestive pattern dominates in the fasting state and
is organized into alternating phases of activity and quiescence. Studies utilizing
gamma scintigraphy have shown that gastric emptying is slower and more consistent
in the presence of food [191, 192]. The transit through the small intestine, by
contrast, is largely independent of the feeding conditions and physical properties
of the system [191, 192], with an average transit time of � 3 h [177]. Thus,
normal transport seems to operate in the various segments of the small intestine and
therefore a linear evolution in time of the mean position of the propagating packet
of drug molecules or particles can be conceived.

Several studies with multiparticulate forms have indicated that the movement of
pellets across the ileo–caecal junction involves an initial regrouping of pellets prior
to their entrance and spreading in the colon [193–195]. According to Spiller et al.
[196] the ileocolonic transit of 1ml solution of a 99mTc-diethyl triamine-pentaacetic
acid (DTPA) in humans is rapid postprandially and slow and erratic during fasting.
Under fasting conditions the ileum is acting as a reservoir in several cases and
the colonic filling curves of DTPA exhibit long plateaus and low slopes that are
indicative of episodic colonic inflow and wide spreading of the marker in the colon
[196]. Similarly, Krevsky et al. [197] have shown that an 8ml bolus containing
111In-DTPA installed into the cecum was fairly evenly distributed throughout all
segments of the colon after 3 h. Finally, the colonic transit of different-sized tablets
has also been shown to follow the same spreading pattern [198]. This type of marker
movement is most likely due to the electrical activity of the proximal and distal
parts of the colon [190]. The electrical waves in these regions are not phase locked
and therefore random contractions of mixing and not propulsion of contents is
observed. From a kinetic point of view, the wide spreading of the marker in the
colon is reminiscent of what is known in physics as dispersive transport [199]. This
conclusion can be derived if one compares time distribution analysis data of colonic
transit (cf., for example, the data of the first 3 hours in Figure 3 of [197]) with
the general pattern of dispersive transport (Figure 4 in [199]). These observations
substantiate the view that dispersive transport [199] operates in the large intestine
and therefore the mean position of the propagating packet of drug particles is a
sublinear function of time. However, dispersive transport is a scale-invariant process
with no intrinsic transport coefficients; in other words, a mean transit time does
not exist since transport coefficients become subject- and time-dependent [199].
These observations provide an explanation for the extremely variable whole-bowel
transit, i.e., 0:5 � 5 d [198], since the greater part of the transit is attributable to
residence time in the large intestine.
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6.4.2 Is in Vivo Drug Dissolution a Fractal Process?

In the pharmaceutical literature there are several reports that demonstrate that flow
conditions in the gastrointestinal tract do not conform to standard hydrodynamic
models. Two investigations [200, 201] assessed the gastrointestinal hydrodynamic
flow and the mechanical destructive forces around a dosage form by comparing the
characteristics of in vitro and in vivo release of two different types of controlled-
release paracetamol tablets. The results [200] indicate that the hydrodynamic
flow around the dosage forms in the human gastrointestinal tract are very low,
corresponding to a paddle speed of 10 rpm in the paddle method of dissolution
or a velocity of about 1 cm min�1 (1–2ml min�1 flow rate) in the flow-through
cell method. In parallel, low and high in vitro destructive forces were found
to be physiologically meaningful and essential for establishing a useful in vitro
dissolution testing system [200, 201].

Furthermore, data from gastrointestinal physiology have long since shown the
heterogeneous picture of the gastrointestinal contents as well as the importance of
mechanical factors in the gastrointestinal processes [190]. It is very well established
that the gastric contents are viscous, while shearing forces in the chyme break
up friable masses of food. Since chyme moves slowly down the intestine by
segmentation and short, weak propulsive movements, the flow is governed by
resistance as well as by pressure generated by contraction [190]. Thus, there is
a progressive reduction of the transit rate from duodenum to the large intestine
[202, 203].

All the above observations [190–203] substantiate the view that the flow is
forced in the narrow and understirred spaces of the colloidal contents of the lower
part of the gastrointestinal tract. Consequently, friction becomes progressively
more important than intermolecular diffusion in controlling the flow as the drug
moves down the intestine. The characteristics of this type of flow have been
studied [204, 205] with Hele–Shaw channels ensuring a quasi-two-dimensional
space using miscible fluids of different viscosities. These studies revealed that
when a less-viscous fluid moves toward a fluid with higher viscosity (polymer
solution or colloidal suspension), the interface ripples and very soon becomes
extremely meandering (fractal). These viscous, fractal fingers have been observed
in experiments mimicking the secretion of HCl and its transport through the mucus
layer over the surface epithelium [206]. Confirmation of this type of morphology
(channel geometry) in the mucus layer has been provided by an in vivo microscopic
study of the acid transport at the gastric surface [207]. The results obtained with the
dyes Congo red and acridine strongly suggest that secreted acid (and pepsin) moves
from the gastric crypts across the surface mucus layer into the luminal bulk solution
only at restricted sites [207].

In the light of these observations one can argue that the dissolution of sparingly
soluble drugs should be performed in topologically constrained media since the
drug particles traverse the larger part or even the entire length of the intestines and
attrition is a significant factor for their dissolution. However, one can anticipate poor
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Fig. 6.8 Geometric
representation of dissolution
under (A) homogeneous and
(B) heterogeneous conditions
at a given time t. Reprinted
from [189] with permission
from Springer

reproducibility of dissolution results in topologically constrained media [208, 209]
since the dissolution of particles will be inherently linked with the fractal fingering
phenomenon, Figure 6.8:

1. The square in Figure 6.8A represents geometrically all currently used well-stirred
dissolution media, which ensure at any time a homogeneous concentration of
drug throughout their volume. Due to homogeneity a sample taken from a well-
stirred dissolution medium can provide the amount of drug dissolved (white
squares) after separation of the undissolved drug (black squares).

2. Dissolution in topologically constrained media gives rise to fractal fingering,
Figure 6.8B (cf. also figures in [205, 208, 209]). The tree-like structure shown
here indicates the flow of liquid where dissolution takes place. This structure
is generated via the modified diffusion-limited aggregation (DLA) algorithm of
[209] using the law 	 D ˛ .m=N/ˇ . Here, N D 2; 000 (the number of particles of
the DLA clusters), ˛ D 10 and ˇ D 0:5 are constants that determine the shape of
the cluster, 	 is the radius of the circle in which the cluster is embedded, 	c D 0:1

is the lower limit of 	 (always 	c < 	), and m is the number of particles sticking
to the downstream portion of the cluster. This example corresponds to a radial
Hele–Shaw cell where water has been injected radially from the central hole.
Due to heterogeneity a sample cannot be used to calculate the dissolved amount
at any time, i.e., an average value for the percent dissolved amount at any time
does not exist. This property is characteristic of fractal objects and processes.

According to van Damme [205], fractal fingering is in many respects a chaotic
phenomenon because it exhibits a sensitive dependence on the initial conditions.
Although this kind of performance for a dissolution system is currently unaccept-
able, it might mirror more realistically the erratic dissolution of drugs with very low
extent of absorption.
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6.4.3 Fractal-like Kinetics in Gastrointestinal Absorption

Derivation of the equations used in linear compartmental modeling relies on the
hypothesis that absorption takes place from a homogeneous drug solution in the
gastrointestinal fluids and proceeds uniformly throughout the gastrointestinal tract.
Homogeneous gastrointestinal absorption is routinely described by the following
equation [210]:

�
qa .t/ D Faq0ka exp .�kat/ ,

where Fa is the fraction of dose (q0) absorbed, and ka is the first-order absorption
rate constant. Nevertheless, the maximum initial absorption rate (Faq0ka) associated
with the previous equation is not in accord with stochastic principles applied to
the transport of drug molecules in the absorption process [210]. Theoretically, the
absorption rate must be zero initially and increase to reach a maximum over a
finite period of time. This type of time dependency for the input rate has been
verified in deconvolution and maximum entropy studies of rapid-release dosage
forms [210–212]. To overcome the discrepancies between the above equation and
the actual input rates observed in deconvolution studies, investigators working in
this field have utilized a cube-root-law input [213], polynomials [214], splines
[212], and multiexponential [215] functions of time. In the same vein, but from
a pharmacokinetic perspective, Higaki et al. [216] have considered models for
time-dependent rate “constants” in oral absorption. Although these approaches
[210, 212–216] are purely empirical, their capability in approximating the real input
function indicates that power functions of time can be of value in describing the
gastrointestinal drug absorption.

A more realistic approach to modeling drug absorption from the gastrointestinal
tract should take into account the geometric constraints imposed by the hetero-
geneous structure and function of the medium. A diffusion process under such
conditions is highly influenced, drastically changing its properties. For example,
for a random walk in disordered media, the mean square displacement

˝
z2 .t/

˛
of the

walker is given by (2.10):
˝
z2 .t/

˛ / t2=dw ,

where dw is the random-walk dimension (cf. Section 2.2). The value of dw is larger
than 2, typically dw D 2:8 (2 dimensions), and dw D 3:5 (3 dimensions), so
the overall exponent is smaller than 1. Furthermore, in understirred media, where
reactions or processes take place in a low-dimensional space, the rate “constant” is
in fact time-dependent at all times (cf. Section 2.5). Hence, the transit, dissolution,
and uptake of drug under the heterogeneous gastrointestinal conditions can obey
the principles of fractal kinetics [17, 217], where rate “constants” depend on time.
For these heterogeneous processes, the time dependency of the rate coefficient k is
expressed by

k D kıt�,
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where kı is a constant, while the exponent� is different from zero and is the outcome
of two different phenomena: the heterogeneity (geometric disorder of the medium)
and the imperfect mixing (diffusion-limit) condition. Therefore, k depends on time
since � ¤ 0 in inhomogeneous spaces while in three-dimensional homogeneous
spaces � D 0 and therefore k D kı, i.e., classical kinetics prevail and the rate
constant does not depend on time. For “ideal” drugs having high solubility and
permeability the homogeneous assumption (� D 0, gastrointestinal absorption pro-
ceeds uniformly from a homogeneous solution) seems to be reasonable. In contrast,
this assumption cannot be valid for the majority of drugs and in particular for drugs
having low solubility and/or permeability. For these drugs a suitable way to model
their gastrointestinal absorption kinetics under the inhomogeneous gastrointestinal
conditions is to consider a time-dependent absorption rate coefficient ka,

ka D k1t
˛ ,

and a time-dependent dissolution rate coefficient kd,

kd D k2t
ˇ .

In reality, the exponents ˛ and ˇ determine how sensitive ka and kd are in temporal
scale and the kinetic constants k1 and k2, determine whether the processes happen
slowly or rapidly. The dimensions of k1 and k2 are time�.1C˛/ and time�.1Cˇ/,
respectively. Thus, the absorption rate

�
qa .t/ is

�
qa .t/ D kaqa .t/ D k1t

˛qa .t/ ,

where qa .t/ is the dissolved quantity of drug in the gastrointestinal tract. Since
the change of qa .t/ is the result of dissolution and uptake, which are both taking
place under heterogeneous conditions (˛ ¤ 0 and/or ˇ ¤ 0), the previous
equation exhibits a nonclassical time dependency for the input rate. Consequently,
this equation provides a theoretical basis for the empirical power functions of time
utilized in deconvolution studies [210, 212–215].

The values of the parameters ˛ and ˇ for drugs exhibiting heterogeneous
absorption kinetics are inherently linked with the physicochemical properties of the
drug, the formulation, the topology of the medium (gastrointestinal contents), and
the initial distribution of drug particles in it [17]. It is worthy of mention that the
initial conditions (the initial random distribution of the reactants: solid drug particles
and gastrointestinal contents) are very important in fractal kinetics [17]. For all
these reasons, population parameters for drugs having ˛ ¤ 0 and/or ˇ ¤ 0 are
unlikely since the topology of the medium and the initial conditions are by no means
consistent or controlled, being dependent on subject and time of day. For the sake of
completion, one should add that under homogeneous conditions (˛ D ˇ D 0) both
ka and kd are independent of time and therefore classical kinetics can be applied.
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6.4.4 The Fractal Nature of Absorption Processes

Relying on the above considerations one can argue that drugs can be classified with
respect to their gastrointestinal absorption characteristics into two broad categories,
i.e., homogeneous and heterogeneous. Homogeneous drugs have satisfactory solu-
bility and permeability, and are dissolved and absorbed mostly prior to their arrival
to the large intestine. It seems likely that the gastrointestinal absorption charac-
teristics of the homogeneous group of drugs are adequately described or modeled
with the homogeneous approach, i.e., well-stirred in vitro dissolution systems and
classical absorption kinetics. In contrast, drugs with low solubility and permeability
can be termed heterogeneous, since they traverse the entire gastrointestinal tract,
and are most likely to exhibit heterogeneous transit, dissolution, and uptake and
therefore heterogeneous absorption kinetics. In this context, the following remarks
can be made for the heterogeneous drugs that exhibit limited bioavailability and
high variability, and most of them can be classified in categories II and IV of the
BCS [157] (cf. also Section 6.6.1):

• Mean or median values should not be given for the whole bowel transit since most
of the dissolved and/or undissolved drug traverses the entire gastrointestinal tract.
The complex nature of transit involving normal and dispersive transport [199] as
well as periods of stasis would be better expressed by reporting the range of the
experimental values.

• Dissolution testing with the officially used in vitro systems ensuring homoge-
neous stirring conditions, should be solely viewed as a quality control procedure
and not as a surrogate for bioequivalence testing. According to the current view
[157], limited or no in vitro–in vivo correlations are expected using conventional
dissolution tests for the category IV drugs and the drugs of category II used in
high doses. Since this unpredictability is routinely linked with our inability to
adequately mimic the in vivo conditions, one should also consider whether the
chaotic character of in vivo dissolution is a valid hypothesis for the failure of
the in vitro tests. It is advisable, therefore, to perform physiologically designed
dissolution experiments in topologically constrained media [205, 208, 209] for
drugs of categories II and IV [157] in order to determine potential cutoffs for
dose and solubility values as well as flow characteristics for drug classifications
(homogeneous and heterogeneous drugs). Further, these cutoffs could be used for
setting standards for in vitro drug dissolution methodologies of drugs classified
as heterogeneous.

• A notion that routinely accompanies oral absorption studies is that the mathemat-
ical properties of the underlying processes have a Gaussian distribution where the
moments, such as the mean and variance, have well-defined values. Relying on
this notion, drugs and/or formulations are categorized as low or highly variable.
Thus, any drug that generates an intraindividual coefficient of variation greater
than 30% as measured by the residual coefficient of variation (from analysis of
variance) is arbitrarily characterized as highly variable. The use of a statistical
measure of dispersion for drug classification is based on the law of large numbers,
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which dictates that the sample means for peak blood concentration, cmax, and
the area under the blood time–concentration curve, AUC, converge to fixed
values while the variances decrease to nonzero finite values as the number
used in averaging is increased. The conventional assessment of bioequivalence
relies on the analysis of variance to get an estimate for the intraindividual
variability prior to the construction of the 90% confidence interval between 80
and 125% for AUC and cmax. The basic premise of this approach is that errors
are normally distributed around the estimated mean values and two one-sided
t-tests can be performed. Although the validity of this assumption seems to
be reasonable for drugs following classical kinetics, concern is arising for the
parameters cmax and tmax (time corresponding to cmax) when fractal-like kinetics
govern absorption since for many fractal time-dependent processes [4, 199] the
mean and the variance may not exist. Under heterogeneous conditions, both
cmax and tmax will depend on ˛ and ˇ, and therefore mean values for these
parameters cannot be justified when fractal kinetics are operating. Apparently, a
significant portion of variability with the heterogeneous drugs can be mistaken as
randomness and can be caused by the time dependency of the rate coefficients of
the in vivo drug processes. These observations provide a plausible explanation
for the high variability in cmax values and the erroneous results obtained in
bioequivalence studies [218]. From the above it appears that is inappropriate to
apply rigorous statistical tests in bioequivalence studies for heterogeneous drugs
using parameter estimates for cmax and tmax that do not actually represent sample
means. The suggested [219] comparison of the time–concentration curve profiles
of test and reference products in bioequivalence studies seems to be in accord
with the reservations pointed out regarding use of specific parameters for the
assessment of the absorption rate.

6.4.5 Modeling Drug Transit in the Intestines

The small-intestinal transit flow is a fundamental process for all gastrointestinal
absorption phenomena. However, the structure of the gastrointestinal tract is highly
complex and it is practically impossible to explicitly write and solve the equations
of motion for the drug flow. Instead, numerical computer-simulation techniques that
incorporate the heterogeneous features of the gastrointestinal wall structure and of
the drug flow are used in this section to characterize the intestinal transit process in
humans.

An algorithm is built from first principles, where the system structure is recreated
and subsequently the drug flow is simulated via Monte Carlo techniques [220].
This technique, based on principles of statistical physics, generates a microscopic
picture of the intestinal tube. The desired features of the complexity are built in,
in a random fashion. During the calculation all such features are kept frozen in the
computer memory (in the form of arrays), and are utilized accordingly. The principal
characteristic of the method is that if a very large number of such units is built, then
the average behavior of all these will approach the true system behavior.
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A B

Fig. 6.9 (A) The cylinder used for the tube construction. (B) Cross section of the tube. Reprinted
from [220] with permission from Springer

6.4.5.1 Construction of the Heterogeneous Tube

The model is based on a cylinder whose length is several orders of magnitude
larger than its radius. Thus, any entanglements that are present are ignored, since
they do not influence the dynamics of the phenomena. Initially, a three-dimensional
parallelepiped with a square cross section, of size x W y W z equal to 31 W 31 W 3000 is
constructed, Figure 6.9A. Inside it a cylinder with a radius of 14 units is built, a cross
section of which appears in Figure 6.9B. Hence, the quotient of [radius/length]D
R=L D 14=3000 in the tube model is quite similar to the ratio of physiological data
1:3 cm=3m for the human small intestine.

For convenience in the calculations, an underlying lattice of discrete spacing
forming in effect a three-dimensional grid is used. This grid covers the entire
cylinder, while for all spatial considerations the grid sites are utilized. The interior
of the cylinder has a finite concentration of villi attached to the cylinder wall, which
have the property that they may absorb the dissolved drug particles flowing through
the cylinder. The villi have the usual random dendritic structure, and they are formed
by the DLA method [209]. The absorption of the drug particles in the model takes
place when a flowing particle happens to have a position right next to the villi
coordinates, implying that when a particle comes in contact with a villi structure it
can be absorbed. The probability for absorption by the villi or walls is pa. Since the
present model focuses on the tube structure and the characteristics of flow, pa D 0,
while the case of pa ¤ 0 is treated in the following section.

The villi have a random dendritic-type structure, and they are formed initially
by use of an algorithm based on the well-known DLA [209] model from solid-state
physics. At random positions, 2z seed particles (z the cylinder length, Figure 6.9A)
are placed on the cylinder surface by positioning 2 particles on each z value.
Following the DLA model, another particle, starting at a random point of each cross
section, makes a three-dimensional random walk (diffusion) inside the cylinder.
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Fig. 6.10 Cross sections of
the tube at random positions
for various concentrations of
villi, Nvilli D 50; 100; 150,
200. Reprinted from [220]
with permission from
Springer

The walk stops when the moving particle visits any of the neighbor sites of the
original seed particles. At this point it stops and becomes attached to the neighboring
seed particle. The particle is constrained to move inside the cylinder. Then a second
particle starts a random walk, until it meets either one of the seeds or the already
frozen particle. The process continues and the internal structure of the tube, which
can be of varying complexity, is built using a total of Nvilli particles per unit length.
The size of each villi cluster is limited to the value 1:5Nvilli. This is done in order to
achieve a uniform distribution of villi cluster sizes. The higher the Nvilli value, the
more ramified is the ensuing structure. Some examples for various values of Nvilli

are shown in Figure 6.10. This figure shows typical two-dimensional cross sections
of the cylinder, for four different Nvilli values, Nvilli D 50; 100; 150, and 200, at
random places. It is clearly seen how the villi complexity is built up with increasing
Nvilli. Some squares appear not to be connected to any others in these pictures. In
fact, these are indeed connected to adjacent (first neighbor) squares in the next or
previous cross section of the tube (i.e., with z0 D z C 1 or z0 D z � 1), which are not
shown in Figure 6.10.

6.4.5.2 Dynamics

The dynamics of the system are also followed utilizing the Monte Carlo technique.
This includes motion of the particles through the tube, dissolution in the solvent
flow, and absorption by the villi or the tube walls. Time is incremented by arbitrary
time units, the MCS, which is the time it takes for a particle to move to one of its
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neighbor positions. A “tablet” can be inserted in one end of the tube (input end)
at predefined time increments expressed in MCS. The “tablet” is modeled as an
aggregate of drug particles of mass q0 D 100. This means that one “tablet” can
later be broken down successively into 100 units, which represent the solid drug
particles. These can be further dissolved in the encompassing solution. But as long
as the “tablet” has a mass larger than one it cannot be dissolved in the solution. All
diffusing species (dissolved and undissolved) flow through the cylinder from the
input end toward the direction of the other end (output end). This is accomplished
by using a diffusion model of a biased random walk that simulates the fluid flow.

A simple random walk is the prototype model of the regular Brownian motion.
Such a model is modified here, by including a bias factor, which makes the motion
ballistic rather than simply stochastic. This bias factor, ", increases the probability
for motion in the z-direction, i.e., toward the output end, as compared to the
probabilities in all other directions. This makes the flow of the particles and the
dissolved drug molecules possible. If " D 0, there is a motion but it is rather
stationary and in all possible directions. If " > 0, this makes the flow possible. The
rate of the flow is also directly affected by the numerical value of ", with increasing
" values resulting in increasing flow rates. With this statistical model the diffusing
species can momentarily go against the flow, or sideways. This is a realistic feature,
but it occurs with reduced probability.

Two different models of the biased random walk were envisaged. In model I the
three directions of space, x, y, and z, are all equally probable, but in the z direction,
the probability toward the output end (zC) is now .1=z/C", while the corresponding
probability toward the input end (z�) is .1=z/�" (where z is the coordination number
of the underlying space, e.g., z D 6 in a three-dimensional space). This model has
the characteristic that diffusion is equally probable in all possible directions, the
species spending equal times in all of them, but due to the " factor, when the z
direction is chosen a positive flow drives the solution to the output end.

In a second model II, more emphasis is given to the motion toward the output and
less to the other directions. The probabilities for motion in the different directions
are now defined differently. While in the simple random walk the probability for
motion in a specific direction is 1=z, here the probability for motion in the output
direction is .1=z/C ", while the probability in any of the other five directions is

1 �
�
1
z C "

�

z � 1 :

Thus, the values that " can take are in the range

0 < " < 1 � 1

z
;

while the overall forward probability pf , i.e., the probability toward the output end,
is in the range

1

z
< pf < 1.
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At each time step there is a probability pd for the “tablet” to dissolve, i.e.,
0 < pd < 1. In the Monte Carlo method the “tablet” is tested at every step
to determine whether a fragment (one new particle) is to be released. When this
happens a fragment of the “tablet” with mass  D 1 breaks off, and gets separated
from the larger mass. It is understood that this  D 1 particle is immediately
dissolved, and it is never reattached to the original mass. This dissolved particle
now performs a random walk of its own, with the same characteristics (bias) as
the main “tablet.” The mass q0 of the “tablet” is then reduced by  . The virtual
experiment of the flow starts when a large number of drug particles (e.g., 10; 000)
with mass  D 1 are inserted simultaneously at time t D 0 in the tube and are
allowed to diffuse. To concentrate on the transit process exclusively, dissolution is
considered instantaneous and pd is set equal to 1, while absorption is not allowed
by setting pa D 0. When the fragments of the “tablet” reach the end of the tube,
they are discarded. At the end of the simulation time the mass that has exited from
the end of the tube is computed. The mean transit time is also computed by keeping
track of the time it took for the particles to reach the end of the tube.

When the diffusing species come in contact with a closed site (such as the villi
sites of the model) they have two options. In the first option, the particle does not
“feel” the presence of the closed site, and it may attempt, unsuccessfully, to go to
it. This model is called the blind ant model. In the second model, the particle feels
the presence of the closed site, and thus it never attempts to land on it. This is called
the myopic ant model. The difference between these two models is that the blind ant
consumes long times in unsuccessful attempts, and thus its motion is slower than
the myopic ant case.

6.4.5.3 Simulated vs. Experimental Data

The details of the flow of particles in the heterogeneous tube were studied using
a model II biased random walk. In Figure 6.11, the mean transit time of the drug
particles vs. the forward probability pf (i.e., the probability toward the output along
the z-axis) is plotted for various villi concentrations, for the two cases of the blind
ant (part A), and the myopic ant (part B). For no villi structures, Nvilli D 0, and for
Nvilli D 50we observe that for larger pf values the transit times of the particles were
shorter, as one would expect. For larger villi concentrations the transit time became
longer as pf was increased. This behavior may seem inconsistent, but can easily be
explained if we consider that when a drug fragment meets an obstacle (villi) then
its forward motion is hampered, and it must move in the x or y direction (sideways)
in order to circumvent it and continue moving toward the end of the tube. What
happens is that when pf values are large, then the probability for movement along
the x- or y-axis is reduced. This does not give the particle the freedom to easily pass
the obstacle, so it wastes time trying to move in the z direction. This explains the rise
in the transit times, which is larger for larger villi concentrations. This qualitative
picture is valid for both models in parts (A) and (B) of Figure 6.11. Plausibly, in
comparing the two figures, the transit times are always longer in the blind ant case,
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Fig. 6.11 Mean transit times vs. the forward probability for various concentrations of villi, (A)
blind ant model; (B) myopic ant model. Key (Nvilli): � 0; � 50; N 100; H 150; � 200

for any villi concentration. The system behavior as shown in Figure 6.11 implies that
the interplay of these two factors, namely the villi structure and the bias probability
(flow rate), is important in determining the dynamics of the flow.

The frequency of transit times that result from the simulations for various values
of villi and forward probability pf are also compared to experimental data [177].
Model I consistently produces narrower frequencies than do model II and the
experiments. This is because in model I, motion in the preferred z direction occurs
with the same frequency as motion in the other directions. The effect of the flow
along the tube length is downplayed, as opposed to the other model (II), in which it
is emphasized. In Figure 6.12 the results for model I of the biased diffusion, together
with the experimental data are presented. A wide range of variation for the two
parameters, i.e., the bias factor " and the villi concentration Nvilli, was used, and
the best resemblance between simulation and experimental data was achieved for
the values of Nvilli D 190 and forward probability pf D 0:65, Figure 6.12. The x-
axis here is in units of minutes. This is done by establishing a correspondence of
1 s D 1:5 MCS, since this is the value that produces the best possible fit.

Overall, the biased random walk, which places more emphasis on the motion
toward the output end and less on the other directions, mimics more closely the
transit profile of the experimental data. Both diffusion models, i.e., the blind and
the myopic ant models, can reproduce the basic features of the real small-intestinal
transit profile.
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Fig. 6.12 Frequency of mean transit times vs. time (min) using the diffusion model II for the blind
ant model positions for various concentrations of villi and forward probabilities pf values. Key: �
experimental data; solid line, Nvilli D 200 and pf D 0:6; dashed line, Nvilli D 200 and pf D 0:5;
dotted line, Nvilli D 180 and pf D 0:7; dashed-dotted line, Nvilli D 180 and pf D 0:5

6.4.6 Probabilistic Model for Drug Absorption

The probabilistic absorption model described herein [221] was based on the cylinder
built in [220] that incorporates all the random heterogeneities that make up the
gastrointestinal tube. The optimal heterogeneous characteristics found in [220] were
assigned to the number of villi and the type of the biased random walk. Thus, the
parameter number of villi Nvilli was set equal to 190, while the blind ant model for
the biased random walk with forward probability pf D 0:65 was used to simulate
the motion of the dissolved and undissolved drug species. The dissolved species
are tagged and continue the random walk and can be absorbed by the cylinder wall
structure, or exit the tube if they reach its end. The quantities input and exiting
through the tube, their transit time, and the fraction of the species absorbed and
dissolved during the flow are monitored.

6.4.6.1 Simulation of Dissolution and Uptake Processes

A “tablet,” which is modeled as an aggregate of drug particles of mass q0, is inserted
in one end of the tube (input end). At each time step a portion of the mass of the
“tablet” can be dissolved. The rate of dissolution is considered to be dependent on
three factors, which are all expressed in probability values.
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1. The first factor, kd, mimics the conventional dissolution rate constant; it is
inherent for every drug and takes values in the range 0 < kd < 1. A value close
to unity denotes a drug with rapid dissolution characteristics. Thus, a specific kd

value is conceived for a given drug under certain experimental conditions. As
a probability value, kd corresponds to pd and it expresses the number of events
occurring in a time unit. Consequently, kd has dimension of time�1.

2. The second factor, kc, is related to the first-order concentration dependence of
the dissolution rate. As dissolution proceeds the amount of drug in solution
increases exponentially and therefore the value of kc is reduced exponentially.
This reduction is controlled by the relative amount dissolved, q .t/ =qs, as defined
in Section 5.1.4, at each time point:

kc ! kc .t/ D exp Œ� ln .10/q .t/ =qs� ,

where q .t/ is the mass of the dissolved drug at any moment during the simulation
and qs is the dissolved mass at saturation. qs is computed by multiplying the
minimum physiologic solubility cs;min of the drug by the luminal volume, which
is assumed to be 250ml. The ln .10/ factor was chosen so that the magnitude
of kc, when the dissolved mass was equal to the dissolved mass at saturation,
should arbitrarily be one-tenth of the value of kc when the dissolved mass is equal
to zero. Thus, kc is reduced exponentially as dissolution proceeds. Of course, at
saturation (q .t/ D qs) no more material is allowed to dissolve.

3. The third factor, ks, depends on the surface area of the drug particles. It is known
that the reduction of the surface area is related nonlinearly to the reduction
of mass as dissolution proceeds. Since the nonlinear relationship between the
undissolved mass, q0 � q .t/, and surface area is dependent on the geometric
characteristics of the drug particles, the value of ks is considered to decrease
proportionally to exp fŒq0 � q .t/� =q0g D exp Œ1 � ' .t/� in order to avoid any
shape assumptions. Therefore, ks is not computed directly in the simulation, but is
calculated from the undissolved drug mass at any moment during the simulation.
The exact equation that gives ks is

ks ! ks .t/ D 0:01 exp f4:5 Œ1 � ' .t/�g .

The constants in the last equation are chosen so that ks arbitrarily equals 0:9
when q .t/ is close to zero and ks D 0:01 when q .t/ equals q0. In essence,
the probability factor ks is related to the diminution of the surface area of drug
particles during the dissolution process.

The quantities kc and ks in the last two equations result from a calculation of
an exponential, and thus have no physical dimensions. The effective dissolution
probability rate “constant” kd;eff is calculated by multiplying the above three factors,
so that kd;eff D kdkcks. Thus, kd;eff has dimension of time�1 and denotes the fraction
of the total number of drug particles that can be dissolved per MCS. The mass of
the “tablet” that will break off at any moment is given by multiplying the value
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of kd;eff by the undissolved mass of the tablet. If qd .t/ is this mass, then qd .t/ D
Œq0 � q .t/� kd;eff and qd .t/ = particles of the “tablet” with mass  will break off,
and will get separated from the larger mass. The dissolved particles now flow on
their own, with the same characteristics (forward probability) as the undissolved
particles. The mass q0 � q .t/ of the undissolved drug is then reduced by qd .t/.

Dissolved particles are tagged in the calculation at all times, so their location
relative to all other particles and the tube walls is known. When one of the dissolved
particles comes “in contact” (when it is in a lattice site adjacent to villi or tube
wall) with the tube walls or the villi there is a probability k0

a that it will be
absorbed. It is obvious that the higher the value of k0

a, the higher the probability of a
dissolved particle of being absorbed. This proportionality implies that only passive
mechanisms are considered. If a dissolved particle is absorbed it is immediately
removed from the system. If it is not absorbed, it remains on its site and continues
the flow. When a dissolved or undissolved particle reaches the end of the tube, it is
discarded.

At the end of the simulation time, the mass that was absorbed and the mass that
has exited from the end of the tube can be computed. Further, the dimensionless
absorption number An can be computed [157] from

An D 1

2
hTsii ka

using (6.6) and (6.14). In this relation hTsii is equal to 24; 500 MCS, i.e., the mean
intestinal transit time found in [220]. It must be noted that ka as it appears above
is not identical to the one used as a parameter in the simulation. While they both
describe probabilities, ka is a first-order macroscopic rate constant expressed in
dimension of time�1, while the k0

a in the simulations describes the microscopic
probabilistic events of the simulation model.

6.4.6.2 Absorption of Freely Soluble Drugs

The absorption of freely soluble drugs having various values of k0
a was studied.

Initially, the relationship between the simulated k0
a values and the corresponding

conventional ka values, which are computed from the simulation assuming first-
order absorption, was explored. An amount of instantly dissolved mass of q0 D
20; 000 was inserted in the input end of the tube and both profiles of the fraction
of the mass that was absorbed and exited the tube were recorded. To find out the
relationship between k0

a and ka, the following exponential equation was used to fit
the simulated data of the fraction of dose absorbed Fa vs. time:

Fa D 1 � exp .�kat/ ;

where the fitting parameter is ka in MCS�1 units, and time t is also expressed in
MCS. Focusing on k0

a values, which ensure that most of the drug is absorbed and
does not exit the tube, the following relation between k0

a and ka was found:

ka D 0:885k0
a:
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Fig. 6.13 Fraction of dose absorbed vs. An. The solid line represents results for 24; 500 MCS and
the points the experimental data. Key: A, D-glucose; B, ketoprofen; C, naproxen; D, antipyrine;
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This relationship shows the proportionality between the first-order macroscopic
rate constant ka and the k0

a that describes the microscopic probabilistic events (the
“successful” visits of the dissolved species to the villi). Similar simulations for
instantly dissolved 20; 000 drug particles were carried out using various values of
k0

a, and the fraction of the drug dose absorbed, Fa, at 24; 500 MCS was calculated.
The k0

a values were then translated to MCS�1 values using the last equation, and
the absorption number An was computed as delineated above. The fraction of the
dose that was absorbed vs. the absorption number An is shown in Figure 6.13. The
symbols represent the experimental data of various drugs [56], while the line gives
the simulation results obtained from the model by adjusting the intestinal transit
time to 24; 500 MCS. From the different intestinal transit times evaluated it was
found that 24; 500 MCS gave the best description of the experimental data. Using
the correspondence between MCS and real time units [220], the 24; 500 MCS are
16; 333 s or 4:5 h. The duration of 4:5 h is physiologically sound as an effective
intestinal transit time to study gastrointestinal drug absorption in the model.

6.4.6.3 Absorption of Sparingly Soluble Drugs

The model was also applied to the study of low-solubility drugs. Numerical results
of the system of differential equations reported in [56] were compared to the
simulations based on the heterogeneous tube. In the simulations the z� variable is
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Fig. 6.14 Three-dimensional graph of fraction dose absorbed vs. k0

a and kd . Dose and cs;min values
[157] correspond to those of digoxin (A) and griseofulvin (B)

computed using the mean transit time of the particles, hTsii D 24; 500 MCS, and
z� D t= hTsii, expressing both t and hTsii in MCS. The “tablet” was inserted in
the tube entrance as a bolus of a given weight q0 (e.g., 200 or 500mg) and it was
arbitrarily set that the bolus may break up eventually into a large number of particles,
each weighing 0:01mg. Thus, each “tablet” of mass q0 can be finally broken down
to q0=0:01 particles. The values of kc and ks were continuously computed during
the simulation–fitting procedure. Various values of the parameter kd were used to
get a good matching of the simulation and the theoretical curves obtained from the
solution of equations [56] for the normalized concentration profile in the tube.

Finally, a three-dimensional plot of the fraction of dose absorbed Fa at 24; 500
MCS for various values of the parameters k0

a and kd is shown in Figure 6.14 using
values for dose and cs;min corresponding to those of digoxin and griseofulvin. The
plots of Figure 6.14 are indicative of the effect of dose on the fraction of dose
absorbed for sparingly soluble drugs. For example, for a highly permeable drug
(k0

a � 0:5) given in a large dose (500mg) and having the dissolution characteristics
of griseofulvin, � 25% of the administered dose will be absorbed according to
Figure 6.14B. In contrast, a drug like digoxin, which exhibits the same permeability
and dissolution characteristics as griseofulvin, given at a low dose (0:5mg) will be
almost completely absorbed, Figure 6.14A.

6.5 Absorption Models Based on Structure

The ability to predict the fraction of dose absorbed Fa and/or bioavailability is a
primary goal in the design, optimization, and selection of potential candidates in the
development of oral drugs. Although new and effective experimental techniques
have resulted in a vast increase in the number of pharmacologically interesting
compounds, the number of new drugs undergoing clinical trial has not increased
at the same pace. This has been attributed in part to the poor absorption of the
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compounds. Thus, computer-based models based on calculated molecular descrip-
tors have been developed to predict the extent of absorption from chemical structure
in order to facilitate the lead optimization in the drug discovery process. Basically,
the physicochemical descriptors of drug molecules can be useful for predicting
absorption for passively absorbed drugs. Since dissolution is the rate-limiting step
for sparingly soluble drugs, while permeability becomes rate-controlling if the
drug is polar, computer-based models are based on molecular descriptors related
to the important drug properties solubility and permeability across the intestinal
epithelium.

A rapid popular screen for compounds likely to be poorly absorbed is Lipinski’s
[222] “rule of 5,” which states that poor absorption of a compound is more likely
when its structure is characterized by:

• molecular weight > 500,
• log P > 5,
• more than 5 H-bond donors expressed as the sum of NHs and OHs, and
• more than 10 H-bond acceptors expressed as the sum of Ns and Os.

However, compounds that are substrates for biological transporters are excep-
tions to the rule. Based on the analysis of 2; 200 compounds in the World Drug Index
that survived Phase I testing and were scheduled for Phase II evaluation, Lipinski’s
“rule of 5” revealed that less than 10% of the compounds showed a combination of
any two of the four parameters outside the desirable range. Accordingly, the “rule of
5” is currently implemented in the form “if two parameters are out of range, a poor
absorption is possible.” However, compounds that pass this test do not necessarily
show acceptable absorption.

Although various computational approaches for the prediction of intestinal
drug permeability and solubility have been reported [223], recent computer-based
absorption models utilize a large number of topological, electronic, and geometric
descriptors in an effort to take both aqueous drug solubility and permeability into
account. Thus, descriptors of “partitioned total surface areas” [172], Abraham
molecular descriptors [224, 225], and a variety of structural descriptors in combi-
nation with neural networks [226] have been shown to be determinants of oral drug
absorption.

Overall, the development of a robust predictor of the extent of absorption requires
a careful screening of a large number of drugs that undergo passive transport to
construct well-populated training and external validation test sets. The involvement
in the data sets of compounds with paracellular, active transport, carrier-mediated
transport mechanisms, or removal via efflux transporters can complicate the prob-
lem of in silico prediction of the extent of absorption. Another problem arises from
the fact that published drug data for Fa or bioavailability are skewed toward high
values (� 1), while the compounds in the training and external validation data sets
should evenly distributed across the complete range of oral absorption.
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6.6 Regulatory Aspects

Over the past fifteen years the advances described in the previous sections of this
chapter have enhanced our understanding of the role of:

• the physicochemical drug properties,
• the physiological variables, and
• the formulation factors in oral drug absorption.

As a result, the way in which regulatory agencies are viewing bioavailability
and bioequivalence issues has undergone change. In this section, we discuss the
scientific basis of the regulatory aspects of oral drug absorption.

6.6.1 Biopharmaceutics Classification of Drugs

As mentioned in Section 6.1.2, the first attempts to quantitatively correlate the
physicochemical properties of drugs with the fraction of dose absorbed were based
on the absorption potential concept in the late 1980s [160, 162]. The elegant analysis
of drug absorption by Amidon’s group in 1993 based on a microscopic model
[56] using mass balance approaches enabled Amidon and his colleagues [157] to
introduce the Biopharmaceutics Classification System (BCS) in 1995. According to
BCS a substance is classified on the basis of its aqueous solubility and intestinal
permeability, and four drug classes were defined as shown in Figure 6.15. The
properties of drug substance were also combined with the dissolution characteristics
of the drug product, and predictions with regard to the in vitro–in vivo correlations
for each of the drug classes were pointed out.

This important achievement affected many industrial, regulatory, and scientific
aspects of drug development and research. In this context, the FDA guidance [227]
on BCS issued in 2000 provides regulatory benefit for highly permeable drugs
that are formulated in rapidly dissolving solid immediate release formulations. The
guidance [227] defines a substance to be highly permeable when the extent of
absorption in humans is 90% or more based on determination of the mass balance
or in comparison to an intravenous reference dose. In parallel, the guidance [227]
classifies a substance to be highly soluble when the highest dose strength is soluble
in 250ml or less of aqueous media over the pH range 1�7:5, while a drug product is
defined as rapidly dissolving when no less than 85% of the dose dissolves in 30min
using USP Apparatus 1 at 100 rpm in a volume of 900ml in 0:1N HCl, as well as in
pH 4.5 and pH 6:8 buffers.

It has been argued [228] that the use of a single solubility value in the original
BCS article [157], Figure 6.15, for solubility classification is inadequate since
drugs are administered in various doses. Moreover, solubility is a static equilibrium
parameter and cannot describe the dynamic character of the dissolution process.
Both aspects are treated in the guidance on biowaivers [227]; solubility is related to
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Fig. 6.15 The Biopharmaceutics Classification System (BCS). The reader should note that the
original presentation of BCS [157] has been modified here and follows a kind of a "Cartesian
plot," i.e., Class I (high solubility, high permeability) lies in the upper right corner while Class IV
(low solubility, low permeability) lies at the lower left corner

dose, while dissolution criteria are specified. However, the reference of the FDA
guidance exclusively to “the highest dose strength” for the definition of highly
soluble drugs implies that a drug is always classified in only one class regardless
of possible variance in performance with respect to solubility of smaller doses
used in actual practice. This is not in accord with the dose dependency (non-
Michaelian type) of oral drug absorption, which consistently has been demonstrated
in early [160, 162] and recent studies [164, 165] related to the absorption potential
concept and its variants as well as in the dynamic absorption models [56, 184, 185].
Moreover, the dissolution criteria of the FDA guidance [227], which unavoidably
refer to a percentage of dose dissolved within a specific time interval:

• are not used as primary determinants of drug classification,
• have been characterized as conservative [229],
• have had pointed out suggestions for broadening them [230], and
• suffer from a lack of any scientific rationale.

In parallel, the current dissolution specifications [227] are not correlated with
the drug’s dimensionless solubility–dose ratio 1=� , which has been shown [92] to
control both the extent of dissolution and the mean dissolution time, MDT, which is
a global kinetic parameter of drug dissolution.

The latter finding prompted the development of the Quantitative Biopharmaceu-
tics Classification System (QBCS) [228] in which specific cutoff points are used for
drug classification in the solubility–dose ratio permeability plane, Figure 6.16. Unity
was chosen as the critical parameter for the dimensionless solubility–dose ratio axis
because of the clear distinction between the two cases of complete dissolution (when
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Fig. 6.16 The Quantitative Biopharmaceutics Classification System (QBCS) utilizes specific
cutoff points for drug classification in the solubility–dose ratio (1=� ), apparent permeability (Papp)
plane. Each class of the QBCS can be characterized on the basis of the anticipated values for the
fraction of dose absorbed, Fa and the fraction of dose dissolved, ˆ at the end of the dissolution
process assuming no interplay between dissolution and uptake. In essence the classification system
is static in nature

.1=�/ 	 1) and incomplete dissolution (when .1=�/ < 1) [92]. To account for
variability related to the volume content, a boundary region of 250 to 500ml was
assumed and thus a boundary region for 1=� was set from 1 to 2. The boundary
region of highly permeable drugs, Papp values in the range 2 � 10�6 � 10�5 cm s�1
on the y-axis of Figure 6.16, can ensure complete absorption. It was based on
experimental results [172–174], which indicate that drug absorption in Caco-2
monolayers can model drug transport in vivo.

In full analogy with BCS [157], the QBCS [228] classifies drugs into four
categories based on their permeability (Papp) and solubility–dose ratio 1=� values
defining appropriate cutoff points. For category I (high Papp, high 1=�), complete
absorption is anticipated, whereas categories II (high Papp, low 1=� ) and III (low
Papp, high 1=�) exhibit solubility–dose ratio- and permeability-limited absorption,
respectively. For category IV (low Papp, low 1=�), both permeability and solubility–
dose ratio are controlling drug absorption. A set of 42 drugs was classified into the
four categories of QBCS [228] and the predictions of their intestinal drug absorption
were in accord with the experimental observations, Figure 6.17. However, some of
the drugs classified in category II of the QBCS (or equivalently Class II of the BCS)
exhibit a greater extent of absorption than the theoretically anticipated value based
on a relevant semiquantitative analysis of drug absorption [228].
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Fig. 6.17 The classification of 42 drugs in the (solubility–dose ratio, apparent permeability) plane
of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the
borderline drugs. Key: 1; acetyl salicylic acid; 2; atenolol; 3; caffeine; 4; carbamazepine; 5; chlor-
pheniramine; 6; chlorothiazide; 7; cimetidine; 8; clonidine; 9; corticosterone; 10; desipramine;
11; dexamethasone; 12; diazepam; 13; digoxin; 14; diltiazem; 15; disopyramide; 16; furosemide;
17; gancidovir; 18; glycine; 19; griseofulvin; 20; hydrochlorothiazide; 21; hydrocortisone; 22;
ibuprofen; 23; indomethacine; 24; ketoprofen; 25; mannitol; 26; metoprolol; 27; naproxen; 28;
panadiplon; 29; phenytoin; 30; piroxicam; 31; propanolol; 32; quinidine; 33; ranitidine; 34;
salicylic acid; 35; saquinavir; 36; scopolamine; 37; sulfasalazine; 38; sulpiride; 39; testosterone;
40; theophylline; 41; verapamil HCl; 42; zidovudine

6.6.2 The Problem with the Biowaivers

According to the FDA guidance [227], petitioners may request biowaivers for high
solubility–high permeability substances (Class I of BCS) formulated in immediate
release dosage forms that exhibit rapid in vitro dissolution as specified above.
The scientific aspects of the guidance as well as issues related to the extension
of biowaivers using the guidance have been the subjects of extensive discussion
[229, 230]. Furthermore, Yazdanian et al. [231] suggested that the high solubility
definition of the FDA guidance on BCS is too strict for acidic drugs. Their
recommendation was based on the fact that several nonsteroidal anti-inflammatory
drugs (NSAID) exhibit extensive absorption and, according to the current definition
of the FDA guidance, are classified in Class II (low soluble–high permeable) of
the BCS. An important concluding remark of this study [231] is “an inherent
limitation in the solubility classification is that it relies on equilibrium solubility
determination, which is static and does not take into account the dynamic nature
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Table 6.1 Dose and human bioavailability data of NSAIDs [227].

no. Drug Highest Dose ( mg) Bioavailability (%)

1 Diclofenac 50 54

2 Etodolac 400 > 80

3 Indomethacin 50 98

4 Ketorolac 20 100

5 Sulindac 200 88

6 Tolmetin 600 > 90

7 Fenoprofen 600 85

8 Flurbiprofen 100 92

9 Ibuprofen 800 > 80

10 Ketoprofen 75 100

11 Naproxen 500 99

12 Oxaprozin 600 95� 100

13 Mefenamic acid 250 Rapidly absorbed

14 Acetylsalicylic acid 975 68 (unchanged drug)

15 Diflunisal 500 90

16 Salicylic acid 750 100

17 Meloxicam 15 89

18 Piroxicam 20 Rapidly absorbed

19 Celecoxib 200 -

20 Rofecoxib 25 93

of absorption.” Moreover, the measurement of intrinsic dissolution rates [232] or
the use of dissolution–absorption in vitro systems [233] appears more relevant than
solubility to the in vivo drug dissolution dynamics for regulatory classification
purposes. Also, the development of QBCS [228] is based on the key role of the
solubility–dose ratio for solubility classification, since it is inextricably linked to the
dynamic characteristics of the dissolution process [92]. All these observations point
to the need for involvement of the dynamics of dissolution and uptake processes for
the regulatory aspects of biopharmaceutical drug classification.

Recently, this type of analysis was attempted [234] for several nonsteroidal anti-
inflammatory drugs listed in Table 6.1, which are currently classified as Class II
drugs. The dynamics of the two consecutive drug processes, dissolution and wall
permeation, were considered in the time domain of the physiologic transit time
using a tube model that considers constant permeability along the intestines, a
plug flow fluid with the suspended particles moving with the fluid, and dissolution
in the small-particle limit. The radius of the spherical drug particles, 	, and
the concentration of dissolved drug in the intestinal tract, c .z/, are modeled as
suggested by Oh et al. [56] for the development of BCS [157] by a system of
differential equations, with independent variable the axial intestinal distance z,
which is considered to be proportional to time, since the fluid flow rate is constant:

d	.z/
dz D �DR2

Q%
cs�c.z/
	.z/ , 	 .0/ D 	0,

dc.z/
dz D D.n=V/42R2

Q 	 .z/ Œcs � c .z/� � 2PeffR
Q c .z/ , c .0/ D 0,
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whereD is the diffusion coefficient of the drug, % is the density of the solid drug, R is
the radius of the intestinal lumen, cs is the solubility of the drug, Q is the volumetric
flow rate, n is the number of drug particles in the dose, V is the luminal volume, and
Peff is the effective permeability of the drug.

These equations can be rewritten with respect to time if one multiplies both sides
by L=MITT (where L is the length of the tube and MITT is the mean intestinal transit
time) and simplifies:

�
	 .t/ D �D

%
cs�c.t/
	.t/ ,

�
c .t/ D 3D

%V
q0
	30
	 .t/ Œcs � c .t/� � 2Peff

R c .t/ ,

where q0 is the dose and 	0 is the initial radius of the drug particles.
Both sides of the last two equations are divided by q0=V , and c .t/ and cs

are substituted with the fraction ' .t/ of dose dissolved and the dimensionless
solubility–dose ratio � , respectively, yielding

�
	 .t/ D

(
�D
%

q0
V	.t/



1
�

� ' .t/
�

if 	 .t/ > 0,

0 if 	 .t/ D 0,
	 .0/ D 	0,

�
' .t/ D 3D

%V
q0
	30
	 .t/



1
�

� ' .t/
� � 2Peff

R ' .t/ , ' .0/ D 0.

(6.18)

The mass balance equation for the fraction Fa of dose absorbed at the end of the
tube is

Fa D 1

q0
Œq0 � qsolid � qdissolv� ,

where qsolid and qdissolv denote the mass of the undissolved and dissolved drug,
respectively, at the end of the intestine. This equation simplifies to the following:

Fa D 1 �
�
	 .MITT/

	 .0/

�3
ˆ, (6.19)

where 	 .MITT/, and ˆ refer to their values at t D MITT D 199min [177].
The system of (6.18) and (6.19) describes the intestinal drug absorption as

a function of four fundamental drug/formulation properties: dose q0, solubility–
dose ratio � , initial radius of the particles 	0, and effective permeability Peff .
Typical values can be used for constants D (10�4 cm2 min�1), % (1000mg ml�1),
V (250ml), and R (1 cm) [56]. Thus, one can assess, using (6.18) and (6.19), whether
practically complete absorption (Fa D 0:90) of category II drugs of the QBCS is
feasible by setting the permeability in (6.18) equal to Peff D 1:2 � 10�2 cm min�1,
which is equivalent [174] to the upper boundary limit Papp D 10�5 cm s�1 of
the apparent permeability borderline region of QBCS [228], Figure 6.16. The
correlations developed [174] between effective permeability Peff , values determined
in humans and the Caco-2 system allowed the conversion of the Caco-2 to Peff

estimates. Figure 6.18 shows the simulation results in a graph of q0 vs. 1=� for
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Fig. 6.18 Plot of dose q0 vs. the dimensionless solubility–dose ratio 1=� . The curves indicate
90% absorption for three radius sizes 10, 25, and 50�m assuming Peff D 1:2 � 10�2 cm min�1.
Since the value assigned to Peff corresponds to the upper boundary limit (expressed in apparent
permeability values, [174]) of the borderline permeability region of QBCS [228], compounds of
category II of QBCS exhibiting complete absorption are located above the curves

the three particle sizes 	0 D 10, 25, and 50�m. The areas above the lines, for each
of the particle sizes considered, correspond to drug/formulation properties q0, 1=� ,
ensuring complete absorption, i.e., Fa > 0:90 for drugs classified in category II of
the QBCS [228]. It is worth noting that for a given value of 1=� , a higher fraction of
dose is absorbed from a larger rather than a smaller dose. This finding is reasonable
since the common 1=� value ensures higher solubility for the drug administered in
a larger dose.

The underlying reason for a region of fully absorbed drugs in category II of the
QBCS, shown in Figure 6.18, is the dynamic character of the dissolution–uptake
processes. A global measure of the interplay between dissolution and uptake can be
seen in Figure 6.19, which shows the mean dissolution time, MDT, in the intestines
as a function of the effective permeability for a Class II drug (1=� D 0:2). Clearly,
the MDT value is reduced as effective permeability increases. Needless to say that
the MDT would be infinite for this particular drug (1=� D 0:2) if dissolution were
considered in a closed system (Peff D 0) [92]. The plot of Figure 6.19 verifies this
observation since MDT ! 1 as Peff ! 0.

According to Yazdanian et al. [231] most of the NSAIDs listed in Table 6.1
are classified in Class II based on their solubility data at pH 1:2, 5:0, and fed
state simulated intestinal fluid at pH 5:0. A series of simulations based on (6.18)
and (6.19) revealed that the extensive absorption (Table 6.1) of the NSAIDs can
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Fig. 6.19 The mean dissolution time MDT in the intestines as a function of Peff for parameter
values q0 D 10mg, .1=�/ D 0:2, and 	 .0/ D 10�m. MDT is calculated as the area under the

curve of the undissolved fraction of dose using the integral MTD D R
1

0

h
	.t/
	.0/

i3
dt in conjunction

with (6.18)

be explained using the solubility–dose ratio values in buffer or fed state simulated
intestinal fluid, both at pH 5:0, Figure 6.20. This plot shows the experimental data
along with the curves generated from (6.18) and (6.19) assuming Fa D 0:90, radius
sizes 10 and 25�m, and assigning Peff D 2 � 10�2 cm min�1, which corresponds
[174] to the mean of the apparent permeability values of the NSAIDs (Papp D
1:68�10�5 cm s�1) [231]. Visual inspection of the plot based on the solubility at pH
5:0, Figure 6.20A, reveals that only the absorption of sulindac (no.5, Fa D 0:88) can
be explained by the generated curve adhering to 25�m, while flurbiprofen (no.8,
Fa D 0:92) lies very close to the theoretical line of 10�m.

In contrast, the extensive absorption of tolmetin (no.6, Fa > 0:90), sulindac
(no.5, Fa D 0:88), etodolac (no.2, Fa > 0:80), diflunisal (no.15, Fa D 0:90),
ibuprofen (no.9, Fa > 0:80), using the corresponding doses listed in Table 6.1,
can be explained on the basis of the solubility data in fed state simulated intestinal
fluid at pH 5:0, in conjunction with the generated curve assigning 	 .0/ D 25�m,
Figure 6.20B. Also, the curve generated from 	 .0/ D 10�m and the solubility in
the biorelevant medium of indomethacin (no.3) and piroxicam (no.18) explain their
extensive absorption. Although naproxen (no.11, Fa D 0:99) lies very close and
meloxicam (no.17, Fa D 0:89) in the neighborhood of the theoretical line of 10�m,
oxaprozin (no.12, Fa D 0:95�1:00) is located far away from the simulated curve of
10�m, Figure 6.20B. Special caution is required in the interpretation for diclofenac
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Fig. 6.20 Plot of q0 vs. 1=� , for the experimental data of Table 6.1 classified in Class II. The
curves denote 90% absorption for two particle sizes (from left to right 10 and 25�m) assigning
Peff D 2� 10�2 cm min�1, which corresponds [174] to the mean, Papp D 1:68 � 10�5 cm s�1 of
the Caco-2 permeability values of the data [92]. Drugs located above the curves are fully absorbed
(Fa > 0:90) Class II drugs. Key (solubility values in): (A) buffer, pH 5:0; (B) fed state simulated
intestinal fluid, pH 5:0

(no.1, Fa D 0:54), which lies between the theoretical curves of 10 and 25�m in
Figure 6.20B. Some reports suggest that diclofenac undergoes first-pass metabolism
(Fa D 0:60), while some others refer to absolute bioavailability 0:90 [235]. Explicit
data for the extent of absorption of mefenamic acid (no.13), Figure 6.20B, are not
reported [231], while solubility data in the fed state simulated intestinal fluid (pH
5:0) for the two nonacidic NSAIDs, celecoxib (no.19) and rofecoxib (no.20), have
not been measured [231].

These results point out the importance of the dynamic nature of the absorption
processes for those drugs classified in Class II. It should also be noted that a
conservative approach was utilized for the interpretation of the NSAIDs’ extensive
absorption, Table 6.1. In fact, only the highest doses of drugs were analyzed, while
the duration of absorption was restricted to the mean intestinal transit time, 199min
[177], i.e., absorption from the stomach or the large intestine was not taken into
account. Moreover, the lower value for the volume of the intestinal content, 250ml
[228–230], was used in the simulations. This means that drugs like naproxen (no.11)
and meloxicam (no.17) in Figure 6.20B would also have been explained if higher
values of the two physiological parameters for time and volume had been used.

For the sake of completeness one should also add that Blume and Schug [236]
suggested that Class III compounds (high solubility and low permeability) are
better candidates for a waiver of bioavailability and bioequivalence studies since
bioavailability is not so much dependent on the formulation characteristics as on
the permeability of the compound. According to the European Medicines Agency
guidance [237], petitioners may request biowaivers for Class III compounds;
however, the most recent BCS-based FDA guideline issued in May 2015 adopts
the biowaiver status for Class III compounds.
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6.6.3 Biowaiver Monographs: BCS Considerations

Since the biowaiver status is a real alternative to in vivo pharmacokinetic bioequiv-
alence studies, its importance for the pharmaceutical industry is more than obvious.
The term “biowaivers” refers to all exceptions from the necessity to perform
clinical studies. Accordingly, a large number of papers were published in this area
of research after the publication of the FDA BCS guidance [227].

In fact, this guidance triggered off the development of biorelevant media in
particular for solubility–dissolution studies of Class II compounds. Several review
articles dealing with the use of biorelevant media for the in vitro testing of orally
administered dosage forms have been published recently, e.g., [238]. Although the
biorelevant media have not been officially adopted from the drug Agencies, they are
useful for the assessment of drug dissolution in specific cases, e.g., locally acting
drugs in the gastrointestinal tract.

In the same vein, twenty seven “biowaiver monographs” have published in the
literature (a complete list can be found in [239]). Each one of the “biowaiver
monographs” analyses a drug which can or cannot be considered as a Class I drug on
the basis of the strict regulatory definitions [227, 237]. The authors of the “biowaiver
monographs” use arguments based on the physicochemical and biopharmaceutical
properties of drug and its pharmacokinetic-dynamic characteristics to substantiate
drug’s (in)eligibility for a biowaiver status.

However, the most important developments in the regulatory and scientific
aspects of BCS are associated with the experimental–theoretical work exploring the
limitations of the static–binary classification of all drugs in the four BCS classes
as well as the definition of a Class I drug [240]. This review article provides
an overview of the recent developments of science and regulation in oral drug
absorption and focus on the various drug properties and processes in the milieu of
gastrointestinal lumen, e.g., dose, solubility, permeability, dissolution, precipitation
which are directly or indirectly associated with the application of BCS. One notable
example is the importance of dose for the biopharmaceutic classification of drugs
[92, 228, 231, 234, 241, 242]; thus, the WHO proposal on in vivo bioequivalence
requirements does not only allow biowaivers for BCS Class II substances but
also utilizes the solubility–dose ratio for biopharmaceutical classification purposes
[243]. It should be noted that one of the requirements of both the previous EMA
2001 Guideline and the current FDA 2000 Guideline [237] specifies that “the
(marketed) highest dosage strength” should be dissolved in 250 ml for getting the
biowaiver status regarding the solubility criterion. However, the recent revised EMA
2010 Guideline [227] defines dose as the “highest single oral immediate release
dose” recommended for administration in the summary of product’s characteristics.
The impact of this change has been analyzed recently [244] in terms of the biowaiver
monographs for 27 active pharmaceutical ingredients published in the literature.
Moreover, another recent study recommends that each dose strength be considered
separately, i.e., whether or not it meets the solubility–dissolution regulatory criteria
[239].
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Fig. 6.21 A pictorial view of the 59 compounds, which have been assigned to multiple BCS
classes in different papers [245]. The positioning of the encircled numbers of the plot corresponds
to the boundary of the classes for each one of the 59 compounds reported in the literature. The
numbers in the center of the rectangular for dual classification n D 3 and n D 2, refer to Classes
I-IV and Classes II-III, respectively

Another notable example is the dual biopharmaceutic classification of a great
number of drugs [245]. A pictorial view of the classification of 59 drugs in more than
one BCS Classes is presented in Figure 6.21. According to this study [245], a more
relevant pH restriction for acids and/or dissolution medium with lipids present better
forecast solubility-limited absorption in vivo than the presently used BCS solubility
criterion. Along these lines, Macheras and Karalis [246] introduced a non binary
biopharmaceutic classification system, the so-called AB� system, Figure 6.22.
This approach relies on the mathematical model used for the development of BCS
[157], appropriately modified, to estimate the limiting values of drug solubility
and permeability when the fraction of dose absorbed, Fa was 0:90 or 0:20. The
continuity of the biopharmaceutical classification is ensured since the first category
(A, alpha) includes drugs with Fa 	 0:90, the B (beta) category consists of drugs
with Fa � 0:20 while the area lying between the two boundaries of A and B defines
the third category � (gamma), (0:20 < Fa < 0:90), Figure 6.22. It was found that
most of the BCS classes II and III are included in category � which mainly consists
of drugs with properties like moderate or low solubility and permeability; besides,
the dynamic character of dissolution and uptake processes explains why category A
is expanded toward BCS Class II, Figure 6.22.
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Fig. 6.22 The AB� system [246] is coplotted with a continuous version of BCS using upper and
lower solubility limits 0:1 and 1 mg ml�1, for Classes II, IV and I, III, respectively, while the lower
and upper limits for permeability have been calculated numerically [246] applying the model used
for the development of BCS [157] and assigning Fa D 0:90 or Fa D 0:20. In all cases, ‘Dose’ was
equal to 10 mg, while the drug’s particle size radius was 0:010 mm

6.6.4 Biopharmaceutics Drug Disposition Classification
System

In the early-mid dates of 2000 decade, Professor Leslie Benet questioned, in a
number of talks, the ability of a single permeability estimate to predict the extent
of drug absorption along the lines of BCS. His arguments were based on the fact
that permeability (expressed in velocity units) is a rate and not an extent parameter
metric. As a matter of fact, a rate parameter like permeability can be also used
as a predictor of extent of absorption; however, the morphological–functional–
dynamical complexity of the gastrointestinal lumen and tract does not allow the
reliable use of permeability as a sole parameter of drug’s permeation across the
gastrointestinal tract [248]. Based on these concerns, Wu and Benet [247] developed
in 2005 the so-called Biopharmaceutics Drug Disposition Classification System
(BDDCS), Figure 6.23. According to this Figure, the extent of metabolism (either
low or high) replaces permeability in the four classes of BCS, Figure 6.15. It is
worthy to mention that the EMA 2010 Guideline [227] adopted and assigned the
“	 90% metabolized” as cut-off limit, namely, an alternative criterion for the extent
of absorption for Class I biowaivers. Strictly speaking the EMA 2010 Guideline
[227] specifies “following a single oral dose to humans, administered at the highest
dose strength, mass balance of Phase 1 oxidative and Phase 2 conjugative drug
metabolites in the urine and feces, account for 	 90% of the dose administered.”
In parallel, Benet and Larregieu [249] stated that “although FDA-approved BCS
Class I drugs are designated as high-permeability drugs, in fact, the criterion
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Fig. 6.23 The Biopharmaceutics Drug Disposition Classification System as proposed by Wu and
Benet [247]

utilized is high extent of absorption. This ambiguity should be eliminated, and the
FDA criterion should explicitly be stated as 	 90% absorption based on absolute
bioavailability or mass balance.”

The publication of BDDCS attracted the interest of scientists since it extends
BCS toward drug elimination phenomena and the effects of efflux and transporters
on oral drug absorption. Overall, the BDDCS is a useful tool in predicting .1ı/
drug disposition when transporter–enzyme interplay will yield clinically significant
effects, .2ı/ the direction, mechanism, and importance of food effects, and .3ı/
the transporter effects on post-absorption systemic drug concentration following
oral and intravenous dosing [250, 251]. A large number of studies followed the
publication of the seminal BDDCS paper [247]. For example, in silico approaches
were used in order to predict the BDDCS class for new compounds using molecular
structure and available molecular descriptors and software [252] while classification
of Class I marketed drugs was based on estimates of drug permeability vis a
vis extent of drug metabolism (	 90% metabolized) [253]. Most importantly,
Benet and coworkers [254, 255] classified over 900 drugs using BDDCS criteria
and also applied a computational approach to predict BDDCS class of new
molecular entities from molecular structures. Both studies revealed the importance
of solubility–dose ratio for BDDCS classification. This finding not only coincides
with the importance of dose for the classification of drugs in BCS mentioned above
[92, 228, 231, 234, 241–243] but also emphasizes the utility of the concepts of
critical dose, effective in vivo solubility, and dose-dependent BCS developed in
[242]. Although the complimentary role of BCS and BDDCS in the improvement,
simplification, and speed of drug development has been recognized [256], issues
associated with differences in the drug’s permeability considerations–mechanisms
of the two systems are still open [257, 258].
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6.7 Randomness and Chaotic Behavior

Pharmacokinetic studies are in general less variable than pharmacodynamic studies
because simpler dynamics are associated with pharmacokinetic processes. Accord-
ing to van Rossum and de Bie [259], the phase space of a pharmacokinetic system is
dominated by a point attractor since the drug leaves the body, i.e., the plasma drug
concentration tends to zero. Even when the system is as simple as that, tools from
the dynamic systems theory are still useful. When a system has only one variable a
plot referred to as a phase plane can be used to study its behavior. The phase plane is
constructed by plotting the variable against its derivative. The most classical phase
plane, quoted even in textbooks, is the

�
c .t/ vs. c .t/ plot of the ubiquitous Michaelis–

Menten kinetics. In the pharmaceutical literature the phase-plane plot was used
by Dokoumetzidis and Macheras [260] for the discernment of absorption kinetics,
Figure 6.24. The same type of plot was used for the estimation of the elimination
rate constant [261].

A topic in which dynamic systems theory has a potential use is the analysis
of variability encountered in bioavailability and bioequivalence studies with highly
variable orally administered formulations [262–264]. For example, the dissolution
of a sparingly soluble drug takes place in the continuously changing environment
of the gastrointestinal lumen. Due to the interactive character of the three principal
physiological variables that affect drug dissolution, i.e., the motility of intestines,
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Fig. 6.24 Phase plane plot for a drug obeying one-compartment model disposition with first-order
absorption and elimination. Time indexes each point along the curve. The time flow is indicated by
the arrows, while the x-axis intercept corresponds to cmax
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the composition and volume of gastrointestinal contents, a dynamic system of low
dimension can be envisaged. If this is a valid hypothesis, a significant portion
of the high variability encountered in the gastrointestinal absorption studies can
be associated with the dynamics of the physiological variables controlling drug
dissolution, transit, and uptake. However, the inaccessibility of the region and thus
the difficulty of obtaining detailed information for the variables of interest compel
one to infer that the observed variability originates exclusively from classical
randomness.

Despite the hypothetical character of the previous paragraph, recent findings
[265] have revealed the chaotic nature of the gastric myoelectrical complex. It seems
likely that the frequently observed high variability in gastric emptying data should
not be attributed exclusively to the classical randomness of rhythmic electrical
oscillation in the stomach. Plausibly, one can argue that this will have an immediate
impact on the absorption of highly soluble and permeable drugs from immediate
release formulations since their absorption is controlled by the gastric emptying rate.
Hence, the high variability of cmax values for this type of drug originates from both
classical experimental errors and the chaotic dynamics of the underlying processes.

Finally, the heterogeneous dynamic picture of the gastrointestinal tract becomes
even more complicated by the coexistence of either locally or centrally driven
feedback mechanisms, e.g., avitriptan controlling drug absorption. Experimental
observations indicate [266] that when avitriptan blood levels exceed a certain
threshold level, a centrally driven feedback mechanism that affects gastric emptying
is initiated. Consequently, the presence or absence of double or multiple peaks
of avitriptan blood levels is associated with the dynamic system describing the
dissolution and uptake of drug as well as the feedback mechanism controlling the
functioning of the pylorus.

It can be concluded that the use of nonlinear dynamics in gastrointestinal
absorption studies can provide a tool for:

• the interpretation of variability and
• the understanding of unpredictability in situations in which double, or multiple

peaks are observed and classical explanations, e.g., enterohepatic cycling, are not
applicable.



Part III
Modeling in Pharmacokinetics

The kinetic description of the overall disposition of drug in the body is based on
experimental observations, most frequently time–drug plasma concentration data.
In essence, the quantitative description of these kinetic patterns constitutes the
discipline of pharmacokinetics.

Pharmacokinetic models are, or at least should be, created through a repeated
seesaw process of monitoring against experimental evidence. Starting from a com-
paratively simple model, a comparison with experimental evidence will normally
point to modifications of the original model, which in turn will call for new
experimental evidence to assist a decision between alternative model modifications,
and so on.

Mathematical models are typically classified as phenomenological or empirical
[267, 268]. For the construction of phenomenological models, one must have some
knowledge of the processes in terms of structural connectivity and functional
mechanisms. On the other hand, when the underlying processes are unknown,
one often relies on mathematical functional forms for the observed profile. These
mathematical functions are empirical models. However, one can start with an
empirical model and incorporate some mechanistic assumptions so that the model
looks more “phenomenological.” For this reason, a clear borderline cannot be
drawn between phenomenological and empirical models. The full contrast between
phenomenological and empirical models can be exemplified by the physiologically
based and the input–output models. Neither of these extreme cases is suitable
because:

• in the physiologically based models the compiled information is highly complex
implying a decline in prediction performances and

• in the input–output models only a rough description of the external behavior of
the process is established.

We believe that current science is a dynamic process of knowledge requiring
updating the formal tools of analysis that are our mathematical models. For example,
the starting point may be a purely phenomenological or purely empirical model,
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but as the knowledge is accumulated, the phenomenological must become more
empirical, or the empirical more phenomenological.

Most models should be considered “temporary.” All require validation and many
will be subject to change. Modeling may be viewed either as a screening process that
employs variable selection methods to construct candidate models, or as a testing
tool that validates a specific model. From a mathematical point of view, the art of
good modeling relies on:

• a sound understanding and appreciation of the biological problem,
• a realistic mathematical representation of the important biological processes,
• finding useful solutions, preferably quantitative; and most importantly,
• a biological interpretation of the mathematical results in terms of insights and

predictions.

In this part of the book, we first present in Chapter 7 the empirical pharmacoki-
netic models used to fit the observed kinetic data, placing particular emphasis on the
relevance of power functions and the heterogeneous processes. The deterministic
compartmental approach is described in Chapter 8 as the standard technique to
analyze homogeneous processes. In Chapter 9, the application of fractional differ-
ential in equations in pharmacokinetics are presented. Chapter 10 focuses on the
application of Modeling and Simulation approaches in bioequivalence assessment.
The last chapter of this part, Chapter 11, is devoted to the stochastic modeling
techniques, a powerful tool in mathematical biology suitable for the analysis of both
homogeneous and heterogeneous processes.



Chapter 7
Empirical Models

It is through a few empirical functions that I am able to
approach contemplation of the whole.

William A. Calder III (1934–2002)
Size, function and life history

In experimental or clinical pharmacokinetics, the simplest experiment consists in
administering, in a rapid input, a large number of drug molecules having the same
pharmacological properties and then in the subsequent time interval, sampling
biological fluids in order to follow the decline in number of molecules or in drug
concentration. The investigators are primarily interested in describing the observed
decrease in time of the data by simple mathematical functions called empirical
models. The most commonly employed model profiles are the negative exponential,
the power-law, and the gamma profiles.

Exponential Profiles These have the form c .t/ D � exp .�ˇt/. Differentiating
with respect to time, one obtains

�
c .t/ D �ˇc .t/ , or

Œdc .t/ =c .t/�

dt
D d ln c

dt
D �ˇ, (7.1)

i.e., “the relative variation of the concentration c of the material divided by the
absolute variation of time t is constant,” which is the expression of Fick’s law
(cf. Section 2.3 and equation 2.14) under the assumption of constant volume of
distribution V of the material in the medium. The constant ˇ with dimension time�1
represents the ratio of the clearance CL to the volume V .

Power-Law Profiles These profiles follow the form c .t/ D � t�˛ . Differentiating
with respect to time, one obtains

�
c .t/ D �˛

t
c .t/ , or

Œdc .t/ =c .t/�

Œdt=t�
D d ln c

d ln t
D �˛, (7.2)

i.e., “the relative variation of the concentration c of the material divided by
the relative variation of time t is constant.” Similarly, we can argue that the
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dimensionless constant ˛ relates to how many new molecules are eliminated from
the experimental medium or from the body by a mechanism similar to the overall
process as the time resolution becomes finer. Attention will be given below to
clarifying the power law.

Gamma Profiles These profiles follow the form c .t/ D � t�˛ exp .�ˇt/, which is
reported in the literature as the gamma-function model [269]. This model was used
to fit pharmacokinetic data empirically [270, 271]. Differentiating with respect to
time, we obtain

�
c .t/ D �

�˛
t

C ˇ
�

c, (7.3)

i.e., the gamma profiles might be considered as the mixed exponential and power-
law profiles; the general expression for the behavior of the process in specific cases
becomes either exponential or power-law.

In the three profiles above, the coefficient � is set according to the initial
conditions. For instance, if c .t0/ D c0 at t0 ¤ 0, � is equal to

c0 exp .�ˇt0/ or c0 .t0/
˛ or c0 .t0/

˛ exp .�ˇt0/

for the exponential, power-law, or gamma model, respectively. Figure 7.1 illustrates,
in linear, semilogarithmic, and logarithmic scales, the behavior of these basic
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Fig. 7.1 Plots of the exponential, power-law, and gamma empirical models (solid, dashed, and
dotted lines, respectively)
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profiles with ˛ D 0:5, ˇ D 0:25, and c .0:1/ D 1. From these plots, we can decide
in practice which empirical model we need to use:

• The y-semilogarithmic plot distinguishes the exponential model, which is
depicted as one straight-line profile.

• The log–log plot distinguishes the power-law model, which is depicted as one
straight-line profile.

• Both y-semilogarithmic and log–log plots are needed to decide for the gamma
profile. It behaves like a power-law model in the early times (cf. the log–log plot)
and as an exponential model in the later times (cf. the y-semilogarithmic plot).

The linear and x-semilogarithmic plots are uninformative for such decisions.

7.1 Power Functions and Heterogeneity

In a more realistic context, the observed data usually decay according to a sum of m
negative exponentials

c .t/ D
mX

iD1
Bi exp .�bit/ ,

which correspond to a series of well-stirred tanks where drug administration is in
the first tank and the concentration is computed for the m-th tank.

In many cases, it was observed that when the fit of data improves as m increases,
they would also be well fitted by a function of a negative power of time. It does seem
extraordinary that the power function, with only two adjustable parameters, fits the
data nearly as well as the sum of three or more exponential functions [269]. In fact,
the scheme of the series of tanks corresponds to the states of a random walk that
describes the retention of the molecules by movement of elements between nearest-
neighbor sites from the administration to the sampling site. For large m, this random
walk can be thought of as approximating a diffusion in a single heterogeneous site
that is fitted by the empirical power-law model.

When the real process generates power-law data, alternatively a sum of exponen-
tials and power function models may be used. But:

• power functions are defined by fewer parameters than the sums of exponentials;
• power functions seem to yield better long-term predictions;
• furthermore, the exponential parameters have little or no physiological meaning,

under inhomogeneous conditions.

Overall, a large number of drugs that exhibit apparently multiexponential kinetics
obey power-law kinetics. The cogent question is why many of the observed
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time–concentration profiles exhibit power function properties. Although the origin
of the power function remains unclear, some empirical explanations could elucidate
its origin:

1. A power function can be related to the sum of an infinitely large number of
exponential functions:

t�˛ D 1

� .˛/

Z 1

0

u˛�1 exp .�ut/ du, ˛ > 0.

Therefore, within a given range of time, the power functions can always be fitted
by sums of negative exponentials within limits that are typical for experimental
error. But the converse is not true: one cannot fit power functions to data
generated by sums of negative exponentials.

2. Beard and Bassingthwaighte [272] showed that a power function can be repre-
sented as the sum of a finite number of scaled basis functions. Any probability
density function may serve as a basis function. They considered as basis function
a density corresponding to the passage time of a molecule through two identical
well-stirred tanks in series. The weighted sum of such m models leads to the
power function

t�˛ /
mX

iD1
k˛C1

i t exp .�kit/ , ˛ > 0.

This sum can also be viewed as the parallel combination of m pathways, each
characterized by a different rate constant and a uniform distribution of flow in
the input of these pathways. Then, the negative power function behavior can be
attributed to the heterogeneity of the flow in the system.

3. Power functions can arise if the administered molecules undergo random walks
with drift, as in the well-known Wiener process [273]. The concept of random
walk in series can be expressed in terms of compartments in series that have one-
way entrances and exits. Each series of compartments constitutes one region, and
according to the inhomogeneous assumption the administered molecules move
through such a region, while according to the homogeneous assumption they
move randomly within it. The inhomogeneous process could be related to active
transport, i.e., through membranes.

Therefore, it seems that when the response can be fitted by power-law empirical
models, the underlying process is rather heterogeneous. This probably occurs
because of inhomogeneous initial mixing and transport of the molecules by
bloodstream that is understirred [274], or because of elimination of molecules by
organs with structural heterogeneity. Perhaps the most obvious origin of the simple
power function is a diffusion process that constitutes a rate-limiting step for removal
of certain substances from the circulation [4]. Moreover, drug molecules can differ
in their kinetic behavior because of inherent variability in their characteristics
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such as molecular weight, chemical composition, or hepatic clearance involving a
large number of metabolites. All these features introduce functional heterogeneity.
Overall, homogeneity and heterogeneity can originate respectively when:

• Most substances intermix rapidly within their distribution spaces, and the rate-
limiting step in their removal from the system is biochemical transformation or
renal excretion. Substances of this nature are best described by compartmental
models and exponential functions.

• Conversely, some substances are transported relatively slowly to their site of
degradation, transformation, or excretion, so that the rate of diffusion limits their
rate of removal from the system. Substances of this nature are best described by
non-compartmental models and power functions.

7.2 Heterogeneous Processes

Description of distribution and elimination under homogeneous conditions can be
done using classical kinetics, while fractal kinetics should be applied to describe
distribution and elimination mechanisms under heterogeneous conditions. Classical
transport theories, and the resulting mass-action kinetics, applicable to Euclidean
structures do not apply to transport phenomena in complex and disordered media.
The geometric constraints imposed by the heterogeneous fractal-like structure of
the blood vessel network and the liver strongly modify drug dynamics [275].
Topological properties like connectivity and the presence of loops or dead ends play
an important role. Hence, it is to be expected that media having different dimensions
or even the same fractal dimension, but different spectral dimensions, could exhibit
deviating behavior from that described by classical kinetics.

7.2.1 Distribution, Blood Vessels Network

According to Mandelbrot [276], fractal bifurcating networks mimic the vascular
tree. Based on this observation, van Beek et al. [277] developed dichotomous
branching fractal network models to explain the regional myocardium flow hetero-
geneity. Even though the developed models give overly simple descriptions of the
fractal network, they describe adequately the dependence of the relative dispersion
of flow distribution on the size of the supplied region of myocardium. These findings
allow us to infer that such fractal approaches would be useful in describing other
systems with heterogeneous flow distributions.

From a drug’s site of administration, the blood is the predominant medium
of transport of the molecules through the body to the drug’s final destination.
Conventionally, the blood is treated as a simple compartment, although the vascular
system is highly complex and consists of an estimated 96; 000 km of vessels [278].
The key feature of the network is the continuous bifurcation of the parent vessels
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Fig. 7.2 A complete vascular dichotomous network used to describe the distribution of drug in the
body. The black circle represents the drug molecules. (a) The distribution of drug in well-perfused
tissues takes place under homogeneous (well-stirred) conditions. (b) The distribution of drug in
deep tissues takes place under heterogeneous (understirred) conditions. Reprinted from [281] with
permission from Springer

for many generations of branching. The vessels of one generation bifurcate to form
vessels of the next generation in a continuous process toward smaller and smaller
vessels. Some studies [279, 280] of the microvascular system have shown that the
dimensions for vessel radii, branch length, and wall thickness in the mesenteric and
renal arterial beds have fractal properties. The discovery of the fractal nature of the
blood vessels, however, indicated that the distribution of flow within an organ might
be fractal as well.

Building on the work of van Beek et al. [277], a dichotomous branching network
of vessels representing the arterial tree connected to a similar venous network can
be used to describe the distribution of the drug in the body, Figure 7.2. Thus, the
general pattern of distribution of flow can also be assumed for the complete vascular
system of Figure 7.2, envisaged for the distribution of drugs in the body. The flow
will diverge in the arterial tree and converge in the venous tree, while at the ends of
the arterial and venular networks the local flow will be slow and heterogeneous.

In the light of these network flow considerations, the distribution of drugs in the
body can be classified into two broad categories. The distribution process of the
drugs of the first category takes place under homogeneous (well-stirred) conditions.
For the second category of drugs a significant part of the distribution process
operates under heterogeneous (understirred) conditions.

• Drugs of the first category have physicochemical properties and permeability
characteristics that allow them to leave the arteriole network and diffuse to
the adjacent tissues under conditions of flow that ensure complete mixing
(Figure 7.2 a). These drugs reach only the well- perfused tissues and return
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rapidly to the venular draining network. The disposition of this category of
drugs can be modeled with the “homogeneous model,” which is identical
mathematically to what we call the “one-compartment model.” Obviously, the
drug molecules obeying the homogeneous model permeate the walls of vessels
prior to their arrival at the hugely dense ending of the networks; thus, the upper
part of the vascular system and the well-perfused adjacent tissues comprise a
homogeneous well-stirred “compartment.”

• Based on the considerations of flow in the network, it is reasonable to argue that
in close proximity with the terminal arteriolar ending, the blood flow and drug
diffusion in the adjacent deep tissues will be so slow that the principle of the
well-mixed system will no longer hold. Consequently, if a large portion of drug is
still confined in the arterial system near its ending, the drug diffusion in the deep
tissues will operate under heterogeneous (understirred) conditions (Figure 7.2 b).
Transport limitations of drug in tissues have been dealt with so far with the flow-
or membrane-limited physiological models [282] that maintain compartmental
and homogeneity concepts. Albeit not specifying transport limitations, the
previously developed description relies on the more realistic heterogeneous
conditions of drug diffusion.

7.2.2 Elimination, Liver Structure

The liver is the major site of drug biotransformation in the body [283]. It is the
largest composite gland of the body and weighs about 15 g kg�1 body weight. The
physical structure of the liver exhibits unusual microcirculatory pathways [284].
Circulation in the liver can be divided into macrocirculation and microcirculation.
The former comprises the portal vein, hepatic artery, and hepatic veins, while
the latter consists of hepatic arterioles and sinusoids [284]. The sinusoids are the
specialized capillaries of the liver that form an uninterrupted three-dimensional
network and are fully permeable by substances. This macrocirculation spans the
axes of the liver while branching into successively smaller vessels. At the anatomical
level, there exist small histological units, called lobules, made up of an interlacing
channel network of sinusoids supplied with blood and drug by the terminal ends of
the portal venules and hepatic arterioles. Between the individual sinusoids of the
interior of a lobule, one-cell-thick sheets of hepatocytes are interspersed [285, 286].

7.2.2.1 In Vitro–in Vivo Correlations in Liver Metabolism

The in vitro studies in this field of research attempt to assess the rate of metabolism
at an early stage of drug development in order to:

• identify problematic substances and
• allow extrapolation of the in vitro findings to in vivo conditions.
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The driving force for the execution of these studies is the reduction of cost,
which is related to expensive animal testing. However, replacement of in vivo
testing with in vitro approaches presupposes well-based understanding of the scaling
factors associating the in vitro with the in vivo measurements. The establishment
of relationships between in vitro and in vivo data are known as in vitro–in vivo
correlations.

Both isolated rat hepatocytes and rat liver microsomes [287–289] have been
advocated for the determination of the kinetic parameters Vmax and kM (cf. equa-
tion 2.20) under in vitro conditions. The development of in vitro–in vivo correlations
is based on two essential steps. Initially, the units of the in vitro intrinsic clearance
CLint (� l min�1 per 106 liver cells or � l min�1 per mg microsomal protein)
are converted to ml min�1 per standard rat weight of 250 g using scaling factors
reported in the literature [290]. Next, a liver model that incorporates physiological
processes such as hepatic blood flow, Q, and plasma protein binding is used to
provide the hepatic clearance CLh. Therefore, the liver modeling step of the in vitro–
in vivo correlations is crucial in the scaling process from the in vitro to the in vivo
estimates of clearances.

Due to its mathematical simplicity, most in vitro–in vivo correlations are based on
a homogeneous, “well-stirred” model for the liver such that all metabolic enzymes
in the liver are exposed to the same drug concentration [291]. Under steady-state
conditions, the predicted hepatic clearance CLh for this model is

CLh D QfuCLint

Q C fuCLint
,

where fu is the blood unbound fraction. Alternatively, liver has also been viewed
as a parallel tube model [292]. In this case, the liver is considered as an organ
receiving a series of parallel blood flows carrying the drug in identical parallel tubes
representing the sinusoids. Here, the hepatic clearance assuming linear kinetics and
steady-state conditions is

CLh D Q

�
1 � exp

�
� fuCLint

Q

��
.

However, these two models assume either perfect mixing conditions (well-
stirred model) or no mixing at all (parallel tube model) and cannot explain several
experimental observations. Therefore, other approaches such as the distributed
model [293], the dispersion model [294], and the interconnected tubes model
[295, 296] attempt to capture the heterogeneities in flow and an intermediate level
of mixing or dispersion. Despite numerous comparisons [289, 290, 297–299] of
the use of various liver models [291–296] for predicting the in vivo drug clearance
from in vitro measurements, there is still controversy regarding the most suitable
liver modeling approach. This is so since drug-specific factors, like high- or low-
cleared drugs, seem to have a major impact on the quality of the in vitro–in vivo
correlations. For example, low-clearance drugs are rather independent of blood-flow
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characteristics, while drugs with relatively higher clearance values show a more
pronounced dependence on blood-flow properties.

7.2.2.2 Fractal Considerations in Liver Metabolism

Observations of the liver reveal an anatomically unique and complicated structure,
over a range of length scales, dominating the space where metabolism takes place.
Consequently, the liver was considered as a fractal object by several authors [4, 273]
because of its self-similar structure. In fact, Javanaud [300], using ultrasonic wave
scattering, has measured the fractal dimension of the liver as approximately df � 2

over a wavelength domain of 0:15� 1:5mm.
While there is no performance advantage over a well-stirred classical compart-

ment, one with a rate constant due to a uniformly random distribution of drug and
enzyme, such a compartment may well be impossible to achieve under biological
designs, and the implied comparison is therefore an ill-posed one [301]. It may be
that the fractal liver design is the best design possible, so that comparisons against
nonideal theoretical models, like a poorly stirred sphere with enzymes adhered along
the inner wall, are favorable. For example, the fractal structure, with many layers of
membrane at its interface, allows the organ to possess a high number (concentration)
of enzymes, thus giving it a high reaction rate despite time-dependent (decay)
fractal kinetics. Indeed, the intricate interlacing of a stationary, catalytic phase of
hepatocytes with a liquid phase of blood along a fractal border is what reduces
the required diffusional distances for reactions to take place with any appreciable
celerity. Moreover, the complicated structure of the liver, which provides for a
huge interface between drug and hepatocytes, may be generated simply during
the growth of the liver. The fractal form may be parsimoniously encoded in the
DNA, indirectly specified by means of a simple recursive algorithm that instructs the
biological machinery on how to construct the liver. In this way, a vascular system
made up of fine tubing with an effective topological dimension of one may fill the
three-dimensional embedding space of the liver. These possibilities suggest that the
structure of the liver may be that of a fractal.

In this context, Berry [302] studied the enzyme reaction using Monte Carlo
simulations in two-dimensional lattices with varying obstacle densities as models
of biological membranes. That author found that the fractal characteristics of the
kinetics are increasingly pronounced as obstacle density and initial concentration
increase. In addition, the rate constant controlling the rate of the complex formation
was found to be, in essence, a time-dependent coefficient since segregation effects
arise due to the fractal structure of the reaction medium. In a similar vein, Fuite
et al. [303] proposed that the fractal structure of the liver with attendant kinetic
properties of drug elimination can explain the unusual nonlinear pharmacokinetics
of mibefradil [304, 305]. These authors utilized a simple flow-limited physiolog-
ically based pharmacokinetic model where clearance of the drug occurs in the
liver by fractal kinetics [303]. The analytical solution of the proposed model was
fitted to experimental dog data and the estimates for the spectral dimension ds of
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the dog liver were found to be in the range 1:78 � 1:91. This range of values is
consistent with the value found in ultrasound experiments on the liver, df � 2

[300]. Furthermore, special attention was given to mibefradil pharmacokinetics
by studying the effect of species segregation on the kinetics of the enzyme
reaction in fractal media using a microscopic pharmacokinetic model mimicking the
intravenous and oral administration of the substrate [306]. This mathematical model
coupled with Monte Carlo simulations of the enzyme reaction in a two-dimensional
square lattice reproduced the classical Michaelis–Menten kinetics in homogeneous
media as well as unusual kinetics in fractal media. Based on these findings, a
time-dependent version of the classic Michaelis–Menten equation was developed
for the rate of change of the substrate concentration in disordered media. This
equation was successfully used to describe the experimental time–concentration
data of mibefradil and to derive estimates for the model parameters.

7.3 Fractal Time and Fractal Processes

The concept of fractals may be used for modeling certain aspects of dynamics, i.e.,
temporal evolution of spatially extended dynamic systems in nature. Such systems
exhibit fractal geometry and may maintain dynamic processes on all time scales.
For example, the fractal geometry of the global cloud cover pattern is associated
with fluctuations of meteorological parameters on all time scales from seconds
to years. Temporal fluctuations exhibit structure over multiple orders of temporal
magnitude in the same way that fractal forms exhibit details over several orders of
spatial magnitude. Power-law behavior has been documented in the functioning of
physiological systems [307, 308]. Long-range spatial correlations have also been
identified at DNA level [309, 310]. Long-range correlations over time and space for
geophysical records have also been investigated by Mandelbrot and Wallis [311]
and, more recently, by Tang and Bak [312]. Recent studies have identified power
laws that govern epidemiological phenomena [313]. All the reported long-range
temporal correlations signify persistence or memory.

A major feature of this correlation is that the amplitudes of short-term and long-
term fluctuations are related to each other by the scale factor alone, independent
of details of growth mechanisms from smaller to larger scales. The macroscopic
pattern, consisting of a multitude of subunits, functions as a unified whole indepen-
dent of details of dynamic processes governing its individual subunits [314]. Such
a concept, whereby physical systems consisting of a large number of interacting
subunits obey universal laws that are independent of the microscopic details, is
acknowledged as a breakthrough in statistical physics. The variability of individual
elements in a system acts cooperatively to establish regularity and stability in the
system as a whole [315]. Scale invariance implies that knowledge of the properties
of a model system at short times or short length scales can be used to predict the
behavior of a real system at large times and large length scales [316].
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The spatiotemporal evolution of dynamic systems was not investigated as a
unified whole, and fractal geometry of spatial patterns and fractal fluctuations in
time of dynamic processes were investigated as two separate multidisciplinary areas
of research till as late as 1987. In that year, Bak et al. [317, 318] postulated that
fractal geometry in spatial patterns, as well as the associated fractal fluctuations
of dynamic processes in time, are signatures of self-organized phase transition in
the spatiotemporal evolution of dynamic systems. The relation between spatial and
temporal power-law behavior was recognized much earlier in condensed-matter
physics where long-range spatiotemporal correlations appear spontaneously at the
critical point for continuous phase transitions. The amplitude of large- and small-
scale fluctuations are obtained from the same mathematical function using an
appropriate scale factor, i.e., ratio of the scale lengths.

Conversely, the relationship (7.2) expresses a time-scale invariance (self-
similarity or fractal scaling property) of the power-law function. Mathematically, it
has the same structure as (1.7), defining the capacity dimension dc of a fractal object.
Thus, ˛ is the capacity dimension of the profiles following the power-law form that
obeys the fundamental property of a fractal self-similarity. A fractal decay process
is therefore one for which the rate of decay decreases by some exact proportion
for some chosen proportional increase in time: the self-similarity requirement is
fulfilled whenever the exact proportion, ˛, remains unchanged, independent of the
moment of the segment of the data set selected to measure the proportionality
constant.

Therefore, the power-law behavior itself is a self-similar phenomenon, i.e.,
doubling of the time is matched by a specific fractional reduction of the function,
which is independent of the chosen starting time: self-similarity, independent of
scale is equivalent to a statement that the process is fractal. Although not all power-
law relationships are due to fractals, the existence of such a relationship should
alert the observer to seriously consider whether the system is self-similar. The
dimensionless character of ˛ is unique. It might be a reflection of the fractal nature
of the body (both in terms of structure and function) and it can also be linked with
“species invariance.” This means that ˛ can be found to be “similar” in various
species. Moreover, ˛ could also be thought of as the reflection of a combination of
structure of the body (capillaries plus eliminating organs) and function (diffusion
characteristics plus clearance concepts).

7.4 Modeling Heterogeneity

From a kinetic viewpoint, the distribution of drugs operating under homogeneous
conditions can be described with classical kinetics. When distribution processes
are heterogeneous, the rate constant of drug movement in the tissues is not
linearly proportional to the diffusion coefficient of the drug. Then, modeling of
heterogeneity features should be based on fractal kinetics concepts [4, 9, 17].
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7.4.1 Fractal Concepts

A better description of transport limitations can be based on the principles of
diffusion in disordered media [319]. It has been shown [320] that in disordered
media the value of the first-order rate constant is related to the geometry of the
medium. In these media the diffusional propagation is hindered by its geometric
heterogeneity, which can be expressed in terms of fractal and spectral dimensions.
For our purposes, the propagation of the drug’s diffusion front in the heterogeneous
space of tissues can be viewed as a diffusion process in a disordered medium.
Both the diffusion coefficient of the drug and the rate constant are dependent
on the position of the radial coordinate of the diffusion front, and therefore both
parameters are time-dependent. In these lower-dimensional systems, diffusion is
inhibited because molecules cannot move in all directions and are constrained to
locally available sites.

The description of these phenomena in complex media can be performed by
means of fractal geometry, using the spectral dimension ds. To express the kinetic
behavior in a fractal object, the diffusion on a microscopic scale of an exploration
volume is analyzed [303]. A random walker (drug molecule), migrating within the
fractal, will visit n .t/ distinct sites in time t proportional to the number of random-
walk steps. According to the relation (2.9), n .t/ is proportional to tds=2, so that
diffusion is related to the spectral dimension.

The case ds D 2 is found to be a critical dimension value in the phenomena of
self-organization of the reactants:

• For ds > 2, a random walker has a finite escape probability-microscopic behavior
conducive to re-randomize the distribution of reactants around a trap and deplete
the supply of reactive pairs, and thus a stable macroscopic reactivity as attested
by the classical rate constant [321, 322]. The scale of the self-organization is
microscopic and independent of time, such that n .t/ / t (is linear) and k D �

n .t/
is a constant, so the reaction kinetics are classical.

• For ds � 2, a random walker (drug) is likely to stay at its original vicinity
and will eventually recross its starting point, a microscopic behavior conducive
to producing mesoscopic depletion zones around traps, e.g., enzymes. The
compactness of the low-dimensional random walk implies ineffective diffusion,
relevant mesoscopic density fluctuations of the drug, and an entailing aberrant
macroscopic rate coefficient. Subsequently, the macroscopic reaction rate, which
is given by the time derivative of n .t/, sometimes described as the efficiency of
the diffusing, reacting random walker, will be

k .t/ / �
n .t/ / t�.1�ds=2/ D t�� (7.4)

for transient reactions [303]. Since 0 < ds � 2, the parameter � has values
in the range 0 � � < 1. The minus sign in (7.4) is used to mimic the
decrease of k with time as the walker (drug) has progressively less successful
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visits. This time-dependent rate “constant” in the form of a power law is
the manifestation of the anomalous microscopic diffusion in a dimensionally
restricted environment leading to anomalous macroscopic kinetics [303].

The kinetic consequences that are associated with the time dependency of the
rate “constant” are delineated in Section 2.5 under the heading, coined by Kopelman
[9, 17], fractal-like kinetics.

7.4.2 Empirical Concepts

Heterogeneity could also be expressed and described by elementary operations with
empirical models. The only difference between (7.1) and (7.2) lies in the coefficient
of c .t/ on the right-hand side of the differential equations. This allows someone to
infer empirically that these equations could be unified as

�
c .t/ D �ˇ

�
ˇt

˛

���
c .t/ (7.5)

with initial condition c .t0/ D c0 at t0 ¤ 0. The exponent � takes integer 0 or 1
values corresponding to the exponential and power-law profiles, respectively, and ˛
and ˇ are as defined in (7.1) and (7.2). Since the gamma profile (7.3) is presented
as the additive mixture of the previous ones, one wonders whether � is allowed
to attain fractional values between 0 and 1. Indeed, the previous equation could
also be considered as a generalization of (7.1) and (7.2) assuming a fractional time
exponent � (0 � � � 1). Under this assumption, (7.5) is similar to what we reported
previously (equations 5 and 7 in [281]), obtained from the classical first-order rate
kinetics assuming that the rate coefficient is a time-varying rate coefficient.

The solution of (7.5) is

c .t/ D c0 exp

(

� ˛

1 � �

"�
ˇt

˛

�1��
�
�
ˇt0
˛

�1��#)
(7.6)

for � ¤ 1 and

c .t/ D c0 exp

�
�˛ ln

�
t

t0

��

for � D 1. Then, with fractional �, the transition in output response is continuous
between a homogeneous process (� D 0) and a heterogeneous one (� ¤ 1) (or
equivalently, how to generate multiexponential behavior starting from a monoexpo-
nential one). Inversely, after fitting observed data by empirical models such as (7.6),
the estimated value of � might help us classify drugs in two large groups:

• Homogeneous drugs with � � 0: their kinetics can be described homogeneously
with what we will call compartmental models. These drugs are characterized by
small or medium volumes of distribution.
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• Heterogeneous drugs with � ¤ 0: their kinetics are described with non-
compartmental modeling, and in reality they approximate the true heterogeneous
disposition, i.e., the time-dependent character of diffusion (flow). These drugs
are characterized by high volumes of distribution.

Moreover, combinations of these models can also be used to roughly describe
physiological considerations. For instance, if the drug is metabolized by the liver
and simultaneously eliminated by the kidney, a gamma profile is obtained as the
solution of (7.3), where the ˛=t term expresses the structural heterogeneity of the
liver, and the term ˇ, the homogeneous elimination process from the kidney.

7.5 Heterogeneity and Time Dependence

It has been stated that heterogeneous reactions taking place at interfaces, membrane
boundaries, or within a complex medium like a fractal, when reactants are spatially
constrained on a microscopic level, culminate in deviant reaction rate coefficients
that appear to have a sort of temporal memory. Fractal kinetic theory suggested the
adoption of a time-dependent rate “constant,” with power-law form, determined by
the spectral dimension. This time dependency could also be revealed from empirical
models.

In fact, empirical models involve parameters without any physiological meaning.
To obtain sound biological information from the observed data, these models
should be converted to some more phenomenological ones, parameterized by
volume of distribution, clearance, elimination rate constant, etc. In their simplest
form, phenomenological models are based on Fick’s first law (2.14), where the
concentration gradient is the force acting to diffuse the material q through a
membrane:

�
q .t/ D �CLc .t/ , (7.7)

where CL is the clearance. Concentration and amount of material are also linked via
the well-known relationship

q .t/ D Vc .t/ , (7.8)

where V is the volume of distribution of the material. We also explicitly denote the
time dependency in each parameter, CL .t/ and V .t/, and define the rate constant
k .t/ as

CL .t/

V .t/
, k .t/ . (7.9)
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Differentiating (7.8) with respect to t and using expressions (7.7) and (7.9) to
substitute

�
q .t/ and CL .t/, we obtain

c .t/
�

V .t/ D �k .t/ c .t/V .t/ � V .t/
�
c .t/ . (7.10)

According to the exponential, power-law, or gamma empirical model,
�
c .t/may take

the form of relation (7.1), (7.2), or (7.3), respectively. By introducing these relations
in (7.10) we get, respectively,

�
V .t/ D Œˇ � k .t/�V .t/ (7.11)

or

�
V .t/ D

h˛
t

� k .t/
i

V .t/ (7.12)

or

�
V .t/ D

h˛
t

C ˇ � k .t/
i

V .t/ . (7.13)

A time-invariant process has time-independent parameters. Therefore, a time-
invariant process is that for which both V and k are invariant in time. From the three
previous relationships, the only time-independent situation occurs in the exponential
empirical model when k .t/ D ˇ. In this case, from (7.11) one has V .t/ D V0, a
time-invariant volume. The processes fitted by the power-law and gamma empirical
models are necessarily time-varying processes, because when either V or k is kept
constant, the other becomes time-varying.

In these cases, two extreme situations may occur:

• k is time-invariant. If we assume k .t/ D ˇ in (7.12) and (7.13), the time courses
of the volume are

V .t/ D V0t
˛ exp .�ˇt/ and V .t/ D V0t

˛ ,

respectively, where V0 is set according to the initial conditions. Taking into
account this time dependence of volume, a unique form of the amount profile
is obtained, q .t/ D Q0 exp .�ˇt/, irrespective of the exponential, power-law, or
gamma concentration profiles.

• V is time-invariant. From (7.12) and (7.13) one obtains the time course of the
rate constant:

k .t/ D ˛

t
and k .t/ D ˛

t
C ˇ,

respectively. With time-invariant V , the amount profiles q .t/ will be proportional
to the concentration profiles c .t/.
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Fig. 7.3 Time courses of V .t/ =V0 (up) and of k .t/ =ˇ (down) associated with the exponential,
power-law, and gamma empirical models (solid, dashed, and dotted lines, respectively)

Figure 7.3 illustrates the time courses of the reduced volume of distribution
V .t/ =V0 and of the reduced rate constant k .t/ =ˇ with ˛ D 0:5 and ˇ D 0:25.
Certainly, mixed situations where both k .t/ and V .t/ are time-varying can be
thought of.

This preliminary analysis highlights the difference between regular and irregular
profiles associated with time-invariant and time-varying physiological parameters,
respectively. Some authors have attempted to associate a functional physiological
meaning to the gamma empirical model [323, 324] or to describe by stochastic
modeling the real processes leading to power-law outputs [325, 326]. In contrast,
in the case of calcium pharmacokinetics [281], the possible mechanisms underly-
ing (7.3), where renal elimination of calcium was associated with the parameter ˇ,
and the other elimination mechanisms, with parameter ˛ were discussed. Lastly, a
simple approach for including, within a multicompartment model, time dependence
of the transfer coefficients that vary continuously with the age of human patients
was described by Eckerman et al. [327], but time dependence was over periods
much greater than a single dose. This simplified the mathematics so that there
was no time dependence of coefficients during the time course of a single dose.
Within a physiological model, over a very long time scale of 98 days, Farris et al.
[328] introduce time-dependent compartment volume changes due to growth in the
studied rat model system.

Therefore, it is clear that when the outputs are optimally fitted by the power-
law and gamma empirical models, the underlying processes are rather time-varying.
The time-varying features of the observed processes are in fact the expression of
functional or structural heterogeneities in the body.
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7.6 Simulation with Empirical Models

The observed empirical models should now be employed to simulate and predict
kinetic behaviors obtained with administration protocols other than those used for
observation. Moreover, we must develop pharmacokinetics in a multicompartment
system by including the presence of a fractal organ. We have argued that the liver,
where most of the enzymatic processes of drug elimination take place, has a fractal
structure. Hence, we expect transport processes as well as chemical reactions taking
place in the liver to carry a signature of its fractality.

Little has been done so far to predict the effect of different modes of administra-
tion, in inhomogeneous conditions, on the observed c .t/ when this contains a power
function. In fact, the availability of the drug in the process was simply expressed by
an initial condition c .t0/ D c0. Later on, exponential, power-law, or gamma profiles
were observed according to the inherent heterogeneity of the process.

Empirical models helped us recognize heterogeneity in the process and express
it simply by mathematical models with time-varying parameters V and k. Neverthe-
less, time in such time-varying parameters can be conceived only as a maturation
time or as an age a associated with each administered molecule, i.e., V .a/ and
k .a/. This time a must be distinguished from the exogenous time t associated with
the evolution of the overall process. Several hypotheses based on fractal principles
were formulated to explain heterogeneity and time dependency, but conceptual
difficulties persist in explaining the time profiles of V .a/ and k .a/. Volume may
represent the maximal space visited by a molecule and the elimination constant,
the fragility of a molecule while it remains in the process. These parameters are
dependent on the age a of each molecule, and they must be independent of the
drug administration protocol, e.g., the repeated dosages, which are scheduled with
respect to the exogenous time t of the process. Therefore, the relation between
a and t must be resolved before integrating in the model the usual routes of
administration. The heterogeneous process observed in several circumstances and
the resulting complexity of the molecular kinetic behaviors, with respect to the
actual experiments, required new techniques as well as modifications of Fick’s law
in order to comply with observations. In this way, two operational procedures may
be retained:

• First operate at a molecular level and establish a probabilistic model for the
behavior and the time spent by each molecule in the process. Second, take into
account statistically all the molecules in the process. This stochastic formulation
would be the most appropriate for capturing the structural and functional
heterogeneity in the biological media. The resulting models supply tractable
forms involving the time-varying parameters V .a/ and k .a/ [329]. This issue was
greatly addressed in biological systems and only recently in pharmacokinetics
[330, 331]. It will be developed, here, in Chapter 11.

• From a holistic point of view, the time-varying parameters V .t/ and k .t/ fitting
the observed data could represent the dynamic behavior of a complex system
involving feedback mechanisms implying the states q .t/. So, these parameters
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can be assumed to be complex functions of q .t/, namely V .q/ and k .q/,
leading to nonlinear kinetics (e.g., logistic saturable [332]), with time-varying
coefficients [281], etc. For decades, this approach has had numerous applications
in pharmacokinetics, and it allows any complex function to be assumed as V and
k. Time variation in the parameters is treated in the next section.

7.7 Time-Varying Models

The fundamental working hypothesis is that time-varying parameters are expres-
sions of feedback regulation mechanisms involving the process states. To reveal the
dependence of the time-varying parameters on the process states, we propose the
following procedure:

1. Roughly describe the process by means of a phenomenological continuous-time
model according to the underlying physiological structure. The reason is that
most physical laws are expressed in continuous time as differential equations.
For instance, use compartmental configuration to sketch the fundamental mech-
anisms. This results in a linear state-space dynamic model described by a set of
differential equations continuous in time

�
y .t/ D Ay .t/C bu .t/ , (7.14)

where y .t/ and u .t/ are the states and inputs, respectively. The matrix A and the
vector b involve the parameters x of this holistic description, e.g., exchange rates
and volumes of distribution. The parameters x, and therefore A and b, may be
constant or time varying.

2. Given a set of observed data, reveal the time dependency of x. If x is demonstrated
to be time-varying x .t/, the issue is to obtain the time profile of A .t/ and
b .t/ in (7.14). To perform this key operation, it is necessary to estimate the
model “on-line” at the same time as the input–output data are received [333].
Identification techniques that comply with this context are called recursive
identification methods. Other commonly used terms for such techniques are on-
line or real-time identification, or sequential parameter estimation [334]. Using
these techniques, it may be possible to investigate time variations in the process
in a real-time context. However, tools for recursive identification are available
for discrete-time models. Most common discrete-time models are difference-
equation descriptions, such as the Auto-Regression with eXtra inputs (ARX)
model. The basic relationship is the linear difference equation

y .t/C a1y .t � 1/C : : :C ana y .t � na/ D b1u .t � 1/C : : :C bnb u .t � nb/ ,

which relates the current output y .t/ to a finite number of past outputs y .t � i/
and inputs u .t � i/, with i D 1; : : : ; .na; nb/. State-space and ARX models
describe the functional relation between inputs and outputs. The order of the
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state-space model relates to the number na and nb of delayed outputs and inputs,
respectively, used in the corresponding difference ARX model.

3. Analyze the time profile of A .t/ and b .t/ against the states y .t/. For instance,
one looks at the dependence of ak .t/ on yj .t/ by plotting ak .t/ or log ak .t/ as a
function of yj .t/ or log yj .t/. This dependence can be expressed by a second-level

model of the form A
h
y .t/

i
and b

h
y .t/

i
resulting in the nonlinear differential

equation

�
y .t/ D A

h
y .t/

i
y .t/C b

h
y .t/

i
u .t/ . (7.15)

This second-level model of the feedback mechanisms involving the states leads
to nonlinear models for processes, which under some experimental conditions
may exhibit chaotic behavior.

The transformation procedure of a time-varying parameter model to a nonlinear
one has already been applied in other contexts. For instance in the simple case

�
y .t/ D �x .t/ y .t/ ; (7.16)

if it is possible to approximate log x .t/ linearly at any logarithmically transformed
state log y .t/, one obtains log x .t/ D � C � log y .t/. In terms of the original
variables, this results in a power-law approximation

x .t/ D �y� .t/ .

Subsequently, the differential equation with time-varying parameters (7.16) is
transformed into a differential equation of the form

�
y .t/ D ��y�C1 .t/ .

Another example is the diffusion-limited or dimensionally restricted homodimeric
reaction presented in Section 2.5.3. Equation 2.23 is the traditional rate law with
concentration squared and time-varying time “constant” k .t/, whereas (2.22) is the
power law (c� .t/) in the state differential equation with constant rate.

In the presence of multiple states, the right-hand-side term consists of sums,
products, and nesting of elementary functions such as y�, log y, exp y, and trigono-
metric functions, called the S-system formalism [335]. Using it as a canonical form,
special numerical methods were developed to integrate such systems [336].

In the case where the input u .t/ is piecewise constant over time intervals (this
condition is fulfilled in our context), then the conversion of (7.14) to a discrete-time
model is

• possible without any approximation or additional hypothesis, if x is revealed not
to be time-dependent;

• a very difficult task, if x is revealed to be time varying.
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The following sections present the conversion of continuous- to discrete-time
linear time-invariant (LTI) models. Finally, the recursive identification is presented
for a model with time-varying parameters.

7.7.1 Discrete- vs. Continuous-Time LTI Models

To emphasize the continuous-time character in equation 7.14, AC and bC were
introduced instead of A and b, respectively. The equation is re-written

�
y .t/ D ACy .t/C bCu .t/ : (7.17)

We assume state y .t/ to be m-dimensional, so that AC and bC are m � m matrix and
m�1 vector, respectively. This form can be converted in the following discrete-time
form:

y .tkC1/ D ADy .tk/C bDu .tk/

where the states y .t/ are assumed to be evaluated or observed at the sampling
times (not the biological sampling but the discretization sampling) tk D kT with
k D 1; 2; : : :. Also, T is the sampling interval, a sufficiently short time to obtain an
adequate representation of the kinetic profile. Finally, the input u .t/ is assumed to
be constant between two successive sampling times

u .k/ D u .t/ kT � t < .k C 1/T :

The AD and bD elements in the previous discrete version depend on the sampling
interval T and on the parameters x. They are given by the following relationships:

AD D exp .ACT/ (7.18)

and

bD D
TZ

0

exp .ACt/ bCdt:

By using the derivation rule

d exp .Xt/

dt
D X exp .Xt/

of a matrix exponentiation and, because bC is not time dependent, the following
holds:



7.7 Time-Varying Models 181

bD D A�1
C

2

4
TZ

0

d exp .ACt/

3

5 bC D A�1
C Œexp .ACT/ � I� bC: (7.19)

7.7.1.1 Closed-Form Solution of Discrete-Time Models

The commonly used expression of the discrete-time model is

y .k C 1/ D ADy .k/C bDu .k/ (7.20)

where the sampling number k was only reported instead of the explicit notation
tk D kT. Briefly, the states y .k C 1/ at the time k C 1 are expressed as a linear
combination of the states y .k/ and inputs u .k/ at the previous time k.

Nevertheless, the above form is useless because the states are implied in the same
relationship at different sampling times kT and kT CT. The use of the shift operator
q, defined by qu .t/ , u .t C T/ or q�1u .t/ , u .t � T/, converts the set 7.20 of
discrete-time equations to the following more relevant form:

ŒqI � AD� y .k/ D bDu .k/ :

The ratio

F .q; x/ ,
y .k/

u .k/
D ŒqI � AD�

�1 bD;

involves the shift operator q and it is named discrete-time transfer function of
a multi-output model. The above relationship represents a rational function with
polynomials in q for the numerator and denominator.

7.7.1.2 Discrete-Time Transfer Function

The elements AD and bD in the discrete-time transfer function are given by
relationships 7.18 and 7.19, respectively. So

F .q; x/ D ŒqI � exp .ACT/��1 A�1
C Œexp .ACT/ � I� bC: (7.21)

In order to develop calculus involved in the above, the factorization of the
exp .ACT/ is introduced. According to the second proposition in the Appendix G,
the Jordan factorization involves the matrix G of eigenvectors �.i/ of AC and the
diagonal matrix Z of eigenvalues � i of AC

exp .ACT/ D G exp .ZT/G�1 D Gdiag .exp .� iT//G�1

Here, exp .ZT/ D diag .exp .� iT// because Z is a diagonal matrix, Z D diag .� i/.



182 7 Empirical Models

By using the Jordan factorization and the matrix inversion lemma (cf.
Appendix G), the pre- and post-multiplying factors involved in 7.21 become

ŒqI � exp .ACT/��1 D 

qI � Gdiag .exp .�iT//G�1��1

D q�1
�

I � Gdiag

�
1

1 � q exp .��iT/

�
G�1

�

and

A�1
C Œexp .ACT/ � I� bC D GZ�1 Œdiag .exp .� iT// � I�G�1bC;

respectively. Given the above relationships, the transfer function 7.21 becomes

F .q; x/ D Gdiag .� i/G�1bC (7.22)

with

� i D ˇiq
�1

1C ˛iq�1 :

Here,

˛i D � exp .�iT/ and ˇi D �1 � exp .� iT/

� i

are dummy variables with i D 1 W m. Therefore, the final form of discrete-time
transfer function involves bC and, the eigenvectors and eigenvalues of AC. Since
AC and bC are defined on the basis of x, the transfer function depends on the shift
operator q and the parameters x.

7.7.2 Polynomial Form of Transfer Function

For a single-output discrete-time model, the transfer function 7.22 can be
expressed as

F .q; x/ , y .k/

u .k/
D B .q; x/

A .q; x/
(7.23)

where A .q; x/ and Bj .q; x/ are polynomials depending on the parameters x, and
k is the sampling number. Parametrization of the polynomials could be obtained
in several ways. The most popular is the ARX model whose parameters are the
coefficients of polynomial terms in the numerator

B .q; x/ D b1q
�1 C : : :C bnb q�nb (7.24)
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and denominator

A .q; x/ D 1C a1q
�1 C : : :C ana q�na : (7.25)

The order na of polynomial A .q; x/ is equal to the number of first-order differential
equations in the initial description 7.14. For the order nb of B .q; x/, nb � na holds in
general. In the above expressions, the polynomial coefficients ai and bi are the new
parametrization of the discrete-time model. These coefficients can be aggregated as
follows:

� D 

a1 : : : ana b1 : : : bnb

�T
:

Since polynomials 7.25 and 7.24 depend on x, the new polynomial parameters � also
depend on x. For LTI models, conversion formulas allow computation of � given x
or, inversely compute x given � . From the relationships 7.23, 7.24, and 7.25, and
after shifting by one the sampling interval

y .k/C a1y .k � 1/C : : :C ana y .k � na/ D b1u .k � 1/C : : :C bnb u .k � nb/ :

(7.26)

This discrete expression of the model is the famous ARX form and that will be
further used. The form advocates the designation “Auto-Regression” because the
prediction y .k/ is composed of the previous “predictions” y .k � i/.

By introducing the regression vector

' .k/ D Œ�y .k � 1/ : : : � y .k � na/ u .k � 1/ : : : u .k � nb/�
T ; (7.27)

the above relationship can be re-written as y .k/ D'T .k/� . Again, to emphasize
that the calculation of y .k/ depends on the parameters � , we will rather call this
calculated value

y .kj�/ D 'T .k/ �: (7.28)

Therefore, concentrations y .kj�/ are linear with respect both to the inputs u .k/
involved in the regression vector '.k/ and to the parameters � .

7.7.2.1 Parameter Estimation

Now suppose that we do not know the values of parameters in � , but that we have
recorded inputs u .k/ and measured outputsby .k/ over m samples (1 � k � m).
An obvious approach is to select b�.m/ in 7.28 so as to fit as well as possible the
calculated values y .kj�/ to the m measured outputs by .k/ by the weighted least
squares method

b� .m/ D arg min
1

m

mX

kD1
w .m; k/ Œby .k/ � y .kj�/�2 :
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The factor w .m; k/ in the above expression is a weighting function. A pragmatic
and useful way to use 7.28 is to view it as a way of determining the next predicted
outputs given the previous observations. Therefore, the definition of regression
vector 7.27 initially involving predictions now makes use of observations. So, for
estimation purposes, the observed regression vector

b' .k/ D Œ�by .k � 1/ : : : �by .k � na/ u .k � 1/ : : : u .k � nb/�
T

will be used instead of the predicted regression vector 7.27. The estimator will now
work as

b� .m/ D arg min
1

m

mX

kD1
w .m; k/

h
by .k/�b'T

.k/ �
i2
: (7.29)

In these developments, the measurement error in outputs was assumed negligible.

Off-Line Estimation Since predictions are linear with respect to parameters � , the
sum of weighted squared residuals is a quadratic form. Its minimum value can easily
be obtained by setting at zero the derivative of the sum with respect to parameters
� . The expression for the resulting estimate is

b� .m/ D Q�1 .m/ f .m/ (7.30)

with

Q .m/ D
mX

kD1
w .m; k/b' .k/b'T

.k/ f .m/ D
mX

kD1
w .m; k/b' .k/by .k/ : (7.31)

According to the previous discussion, observationsby .k/ are involved inb' .k/.
Consequently, the description of the real process by means of a linear discrete-

time model conveniently uses a single step estimation of parameters � and therefore,
the iterative algorithm that is needed for estimation of parameters x involved in the
nonlinear continuous-time model is circumvented. The inverse conversion formulas
allow computation of x given � for the LTI models.

On-Line Estimation The model should be based on observations up to the current
time. The on-line computation of the model must also be done in such a way that
the processing of the measurements from one sample can be completed during one
sampling interval. Such a recursive algorithm can be derived from an off-line version
using the philosophy of performing one iteration in the numerical search at the same
time as a new observation is included in the criterion. In this sense, apart from
possible initial-value effects, recursive estimates coincide with its off-line version.
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In the weighted least-squares criterion, relationships 7.30 and 7.31 hold for any k
among the m sampling times. For the recursive algorithm, we assume the weighting
sequence has the property

w .k; i/ D � .k/w .k � 1; i/ 0 � i � k � 1 w .k; k/ D 1: (7.32)

This implies recursive relationships

Q .k/ D � .k/Q .k � 1/Cb' .k/b'T
.k/ f .k/ D � .k/ f .k � 1/Cb' .k/by .k/

corresponding to the relationships 7.31. Also,b� .k/ D Q�1 .k/ f .k/ and taking into
account the above relationships

b� .k/ Db� .k � 1/C Q�1 .k/b' .k/
h
by .k/ �b'T

.k/b� .k � 1/
i
:

To avoid inverting Q .k/ at each step, it is convenient to introduce P .k/ D Q�1 .k/.
By applying the matrix inversion lemma, the algorithm is

z .k/ D � .k/Cb'T
.k/P .k � 1/b' .k/

P .k/ D
h
P .k � 1/� P .k � 1/b' .k/b'T

.k/P .k � 1/ =z .k/
i
=� .k/

L .k/ D P .k � 1/b' .k/ =z .k/
b� .k/ D b� .k � 1/C L .k/

h
by .k/ �b'T

.k/b� .k � 1/
i

: (7.33)

To use the recursive algorithms, initial values for their start-up are required. A
possibility is to start recurrence after the time instant t0 when Q .t0/ has become
invertible (typically t0

T > dim .�/). So starting conditions will be Q .t0/, f .t0/, and
b� .t0/ in accordance with the off-line relationships 7.30 and 7.31.

A reason for using recursive identification in practice is that the properties of the
system may be time-varying and that we want the identification algorithm to track
the variations. This is handled in a natural way in the weighting criterion 7.29 by
assuming less weight to older measurements that are no longer representative for
the system. In terms of 7.32, this means that we choose � .i/ < 1. In particular
for a system that changes gradually, the most common choice is � .i/ � �, then
w .k; i/ D �k�i and old measurements in the criterion are exponentially discounted.
In that case, � is often called the forgetting factor.

The forgetting factor is chosen slightly less than 1 so that

w .k; i/ D exp Œ.k � i/ ln .�/� � exp Œ� .k � i/ .1 � �/� :

This means that measurements that are older than T0 D 1= .1 � �/ samples are
included in the criterion with a weight that is exp .�1/ � 36% of that of the most
recent measurements. T0 could be called the memory time constant of the criterion.
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If the system remains approximately constant over T0 samples, a suitable choice of
� can be made from the previous relationship, i.e., � D 1 � 1=T0. Typical choices
of � are in the range between 0:96 and 0:995.

Conversely, if 64% of sampling times and measurements should be supported
over a time horizon h0 D TT0, the forgetting factor is � D 1 � T=h0. If � D 0:99 is
set, the sampling interval T must be the hundredth of horizon h0.

It is worth mentioning that the conversion formulas between x (continuous time)
and � (discrete time) based on the relationships 7.18 and 7.19 do not apply for the
on-line estimation because these relationships assume LTI models. For applications
with recursive identification, the starting model is the discrete-time model 7.26
and the time profiles of its parameters � are recursively obtained given the data.
At each sampling time k, the � .k/ are .1ı/ converted to parameters AD .k/ and
bD .k/ involved in the discrete-time form (equation 7.20) and .2ı/ AD .k/ and bD .k/
are converted to parameters AC .t/ and bC .t/ by fitting the frequency responses of
the discrete- and continuous-time models and applying model reduction techniques
[337].

7.7.3 Pharmacokinetic Application

Tracking the time-varying parameters for the one-compartment model associated
with intravenous route of administration is considered here. To unveil the depen-
dence of the time-varying parameters on the states, the proposed procedure is
used:

1. Roughly describe the process. To describe the time profiles of amounts of drug in
the compartments, the mass conservation law was applied for the compartment.
The elementary model of first-order process was used to describe the drug
elimination and a differential equation was obtained. The amount of drug implied
in this equation was converted in concentration by dividing amount by volume
of distribution. The so-obtained first-order differential equation is

dy1 .t/

dt
D �k10y1 .t/C u .t/

V1
and y1 .0/ D 0: (7.34)

The state variable y1 .t/ represents the concentrations of the drug in the compart-
ment and the input function u .t/ describes the drug administration protocol. The
parameters x involved in the model are the elimination rate constant k10 and the
volume of distribution V1 of compartment. For the intravenous infusion of total
dose D over an infusion time � , the input function is given by

u .t/ D D

�
ŒH .t/ � H .t � �/�
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where H .t/ is the step or Heaviside function. For the purposes of this simulated
application, the elimination rate constant k10 is assumed to be dependent on the
concentration y1 .t/ according to the Michaelis–Menten type relationship

k10 � k10 .t/ D Vm= ŒKm C y1 .t/� :

Therefore, k10 .t/ becomes a time-varying parameter in this application.
2. Reveal the time dependency of parameters. The observed data were generated by

using the above Michaelis–Menten relationship with

x D 

V1 Vm Km

�T D 

20 l 0:5 h�1 1 mg= l

�T

and administration protocol with D D 200 mg and � D 1 min. The obtained
reference profile is illustrated in Figure 7.4 by the solid line. The dashed
line represents the time profile of k10 .t/. Since the model is of first order,
na D nb D 1, and the polynomial form of the transfer function 7.23 is

F .q; x/ D b1q�1

1C a1q�1

and the ARX model 7.26 is

y .k/C a1y .k � 1/C : : :C ana y .k � na/ D b1u .k � 1/C : : :C bnbu .k � nb/ :
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Fig. 7.4 The reference profile of a nonlinear one-compartment model with infusion. The solid line
represents the kinetic profile and the dashed line, the time profile of ke .t/
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Fig. 7.5 Time-varying coefficients in transfer function (up) and pharmacokinetic parameters
(down) vs. time

In a complete reverse way, we attempt to track the k10 .t/ time variations from
the sampled every T D 1 min reference profile. The horizon supporting 64%
of sampling times and measurements was set at about h0 D 40 min, therefore,
� � 0:975 was used for the on-line estimation of algorithm 7.33. Figure 7.5
presents the time profiles of coefficients in the transfer function polynomials and
of pharmacokinetic parameters. The k10 .t/ is the highest variable parameter and
copies the time variations of ˛1 .t/. Inversely, the almost constant b1 .t/ ensures
negligible variations in V1 .t/.

3. Analyze the time profile of the time-varying parameters. Again, Figure 7.6
represents the time-varying pharmacokinetic parameters V1 .t/ and k10 .t/ vs.
y1 .t/. It is obvious from the down subplot that k10 .t/ is linked with y1 .t/ by
a saturable relationship of Michaelis–Menten type. Therefore, by means of the
on-line estimation algorithm, the postulated nonlinear relationship was revealed.

In conclusion, we obtain a set of differential equations in continuous time having
the form of equations 7.15. This kind of equation is called bilinear because of

the presence of the b
h
y .t/

i
u .t/ term and it is the general formalism for models

in biology, ecology, industrial applications, and socioeconomic processes [338].
Bilinear mathematical models are useful to real-world dynamic behavior because
of their variable structure. It has been shown that processes described by bilinear
models are generally more controllable and offer better performance in control
than linear systems. We emphasize that the unstable inherent character of chaotic
systems fits exactly within the complete controllability principle discussed for
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Fig. 7.6 Time-varying pharmacokinetic parameters vs. variations of concentration in the
compartment

bilinear mathematical models [338]; additive control may be used to steer the system
to new equilibrium points, and multiplicative control, either to stabilize chaotic
behavior or to enlarge the attainable space. Then, bilinear systems are of extreme
importance in the design and use of optimal control for chaotic behaviors. We can
now understand the butterfly effect, i.e., the extreme sensitivity of chaotic systems
to tiny perturbations described in Chapter 3.



Chapter 8
Deterministic Compartmental Models

This is Polyfemos the copper Cyclops whose body is full of
water and someone has given him one eye, one mouth and one
hand to each of which a tube is attached. Water appears to drip
from his body and to gush from his mouth, all the tubes have
regular flow. When the tube connected to his hand is opened his
body will empty within 3 days, while the one from his eye will
empty in one day and the one from his mouth in 2/5 of a day.
Who can tell me how much time is needed to empty him when all
three are opened together?

Metrodorus (331-278 BC)

Compartmental modeling is a broad modeling strategy that has been used in
many different fields, though under varying denominations. Virtually all current
applications and theoretical research in compartmental analysis are based on
deterministic theory. In this chapter deterministic compartmental models will be
presented. The concept of compartmental analysis assumes that a process may be
divided though it were occurring in homogeneous components, or “compartments.”
Various characteristics of the process are determined by observing the movement
of material. A compartmental system is a system that is made up of a finite
number of compartments, each of which is homogeneous and well mixed, and the
compartments interact by exchanging material. Compartmental systems have been
found useful for the analysis of experiments in many branches of biology.

We assume that compartment i is occupied at time 0 by qi0 amount of material
and we denote by qi .t/ the amount in the compartment i at time t. We also assume
that no material enters the compartments from the outside of the compartmental
system and we denote by Ri0 .t/ the rate of elimination from compartment i to the
exterior of the system. Let also Rji .t/ be the transfer rate of material from the j-
th to i-th compartment. Because the material is distributed in each compartment at
uniform concentration, we may assume that each compartment occupies a constant
volume of distribution Vi. The box in Figure 8.1 represents the i-th compartment of
a system of m compartments.

Mathematics is now called upon to describe the compartmental configurations
and then to simulate their dynamic behavior. To build up mathematical equations
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Fig. 8.1 The rates of transfer
for the i-th compartment ( )tRi0( ) ii Vtq ,( )tRji

expressing compartmental systems, one has to express the mass balance equations
for each compartment i:

�
qi .t/ D �Ri0 .t/C

mX

jD1
j¤i

Rji .t/ , (8.1)

with initial condition qi .0/ D qi0. Thus, we obtain m differential equations, one for
each compartment i.

8.1 Linear Compartmental Models

Now, some fundamental hypotheses, commonly called laws, were employed to
expand the transfer rates appearing in (8.1). Fick’s law is largely used in current
modeling (cf. Section 2.3 and equation 2.14). It assumes that the transfer rate of
material by diffusion between regions l (left) and r (right) with concentrations cl

and cr, respectively, is

Rlr .t/ D �CLlr .cr � cl/ . (8.2)

This law may be applied to the transfer rates Rji .t/ of the previous equation for
all pairs j and i of compartments corresponding to l and r and for the elimination
rate Ri0 .t/, where the concentration is assumed nearly zero in the region outside the
compartmental system. One has for the compartment i,

�
qi .t/ D �CLi0ci .t/C

mX

jD1
j¤i

CLji


cj .t/ � ci .t/

�
,

where CLi0 is the total clearance from compartment i and CLji is the intercompart-
mental clearance between i and j. We recall that the clearance has a bidirectional
property (CLji D CLij) and the subscript ij denotes simply the pair of compartments
referenced. The initial condition associated with the previous differential equation
is denoted by qi .0/ D qi0. Using the volumes of distribution Vi and the well-
known relationship qi .t/ D Vici .t/, we substitute the concentrations with the
corresponding amounts of material:

�
qi .t/ D �ki0qi .t/C

mX

jD1
j¤i

kjiqj .t/ �
mX

jD1
j¤i

kijqi .t/ .
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The constants k are called the fractional flow rates. They have the dimension of
time�1 and they are defined as follows:

CLi0

Vi
, ki0,

CLij

Vi
, kij,

CLij

Vj
, kji. (8.3)

In contrast to the clearance, the fractional flow rates indicate the flow direction, i.e.,
kji ¤ kij, the first subscript denoting the start compartment, and the second one, the
ending compartment. The fractional flow rates and the volumes of distribution are
usually called microconstants.

When the volume of the compartment being cleared is constant, the assumption
that the fractional flow rate is constant is equivalent to assuming that the clearance
is constant. But in the general case, in which the volume of distribution cannot
be assumed constant, the use of fractional flow rates k is unsuitable, because the
magnitude of k depends as much upon the volume of the compartment as it does
upon the effectiveness of the removal process. In contrast, the clearance depends
only upon the overall effectiveness of removal, and can be used to characterize any
removal process whether it be constant or changing, capacity-limited or supply-
limited [339].

Through the following procedure the equations for a deterministic model can be
obtained:

1. Represent the underlying mechanistic model with the desired physiological
structure through a set of phenomenological compartments with their intercon-
nections.

2. For each compartment in the configuration, apply the mass balance law to obtain
the differential equation expressing the variation of amount per unit of time. In
these expressions, constant or variable fractional flow rates k can be used.

3. Solve the system of differential equations obtained for all the compartments by
using classical techniques or numerical integration (e.g., Runge–Kutta) [340].

Therefore, Fick’s law, when applied to all elements of the compartmental
structure, leads to a system of linear differential equations. There are as many
equations as compartments in the configuration. If we set

kii D ki0 C
mX

jD1
j¤i

kij,

the equation for the i-th compartment is

�
qi .t/ D �kiiqi .t/C

mX

jD1
j¤i

kjiqj .t/ , (8.4)
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associated with initial conditions qi0. In the previous equation, the qi .t/ and qi0

amounts of material can be compiled in vector forms as q .t/ and q
0
, respectively. In

the same way, the fractional flow rates kij may be considered as the .i; j/-th elements
of the m � m fractional flow rates matrix K. Thus, the set of linear differential
equations can be expressed as

�
q

T
.t/ D qT .t/K,

and having the following solution:

qT .t/ D qT
0

exp .Kt/ , (8.5)

where the initial conditions are postmultiplied by exp .Kt/, which is defined by

exp .Kt/ , I C
1X

iD1

Kiti

iŠ
.

In most pharmacokinetic applications, one can assume that the system is open and
at least weakly connected. This is the case of mammillary compartmental models,
where the compartment no.1 is referred to as the central compartment and the other
compartments are referred to as the distribution compartments, characterized by
ki0 D 0 and kij D 0 for i; j D 2 W m. For open mammillary compartmental
configurations, the eigenvalues of K are distinct, real, and negative, implying that

qi .t/ D
mX

jD1
Bij exp

��bjt
	

,

the so-called formula of sum of exponentials, which is common in pharmacokinetics.
The Bij and positive bj are often called macroconstants, and they are functions of
the microconstants. The equations relating these formulations are given explicitly
for the common two- and three-compartment models in many texts [332, 341]. It
should be noted, however, that the addition of a few more compartments usually
complicates the analysis considerably.

8.2 Routes of Administration

In practice, it is unlikely to have compartmental models with initial conditions
unless there are residual concentrations obtained from previous administrations.
Drugs are administered either by extravascular, or intravascular in single or repeated
experiments. Extravascular routes are oral, or intramuscular routes, and intravascu-
lar are the constant rate short- and long-duration infusions.
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• For the extravascular route, the rate of administration is

uev .t/ D q0ka exp .�kat/ ,

where q0 is the amount of material initially given to the extravascular site of
administration and ka is the fractional flow rate for the passage of material from
the site of administration toward the recipient compartment; ka is the absorption
rate constant.

• For the intravascular route with constant rate, we have

uiv .t/ D q0
TE � TS

ŒH .t � TS/� H .t � TE/� ,

where q0 is the amount of material given at a constant rate in the venous
compartment between the starting time TS and the ending time TE . Here, H .t/
is the step Heaviside function.

Extravascular and intravascular routes can be conceived as concomitant or
repeated, e.g., delayed oral intake with respect to an intramuscular administration,
or piecewise constant rate infusions, etc. Applying the superposition principle, the
contribution of all administration routes in the same recipient compartment is given
by the following input function:

u .t/ D
mevX

iD1
q0ikai exp Œ�kai .t � Ti/�C

mivX

iD1

q0i

TEi � TSi

ŒH .t � TSi/� H .t � TEi/� ,

where the mev and miv administrations preceding the time t are associated with the
q0i amounts of material. Ti is the time of the i-th extravascular administration, and
TSi and TEi are the starting and ending times in the i-th intravascular administration.
The contribution of the input function u .t/ in the mass balance differential equation
for the recipient compartment is represented by an additive term in the right-hand
side of (8.1).

8.3 Time–Concentration Profiles

In (8.4), by dividing the amounts qi .t/ by non-time-dependent volumes of distribu-
tion Vi, one obtains the differential equations for the concentrations ci .t/:

�
ci .t/ D �kiici .t/C

mX

jD1
j¤i

Vj

Vi
kjicj .t/ . (8.6)

Additional assumptions further reduce the complexity of these equations. One
such assumption is the incompressibility of the volumes of distribution or, as usually
known, the flow conservation. This assumption applied to compartment j leads to
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mX

iD1
i¤j

Vikij D Vj

mX

iD1
i¤j

kji.

In the special case of a mammillary compartmental configuration, the above relation
allows one to express the volume of distribution in peripheral compartments as
functions of the fractional flow rates and the volume of distribution of the central
compartment Vj D 


k1j=kj1
�

V1 for j D 2 W m. Substituting this relationship in (8.6),
we obtain

�
ci .t/ D �kiici .t/C

mX

jD1
j¤i

kijcj .t/ .

This set of linear differential equations can be expressed as
�
c .t/ D Kc .t/, and it has

the following solution:

c .t/ D exp .Kt/ c0,

where the initial conditions are premultiplied by exp .Kt/ (instead of the postmulti-
plication in the case of amounts; cf. equation 8.5).

These equations are widely used to simulate simple or complex compartmental
systems and currently to identify pharmacokinetic systems from observed time–
concentration data. However, it is not always possible to write the equations in
terms of concentrations that represent true physical blood or plasma levels. In
practice, it may occur that some, say two, compartments exchange so rapidly on the
time scale of an experiment that they are not distinguishable but merge kinetically
into one compartment. If the two compartments represent material that exists at
different concentrations in two different spaces, or two forms of a compound in one
space, the calculated concentration may not correspond to any actual measurable
concentration and thus may be misleading. For this reason the development of
differential equations in terms of compartment amounts qi .t/ is more general. If
these equations are available, it is not difficult to convert to concentrations ci .t/
by assuming that Vi is a proportionality constant, called the apparent volume of
distribution, and to solve the equations as long as the volumes are constant in time
[342]. If the volumes are changing the problem becomes more difficult.

8.4 Random Fractional Flow Rates

The deterministic model with random fractional flow rates may be conceived on the
basis of a deterministic transfer mechanism. In this formulation, a given replicate
of the experiment is based on a particular realization of the random fractional flow



8.5 Nonlinear Compartmental Models 197

rates and/or initial amounts ‚. Once the realization is determined, the behavior of
the system is deterministic. In principle, to obtain from the assumed distribution
of ‚ the distribution of qi .t/, i D 1 W m, the common approach is to use the
classical procedures for transformation of variables. When the model is expressed
by a system of differential equations, the solution can be obtained through the theory
of random differential equations [343–345]. However, in practice, one can find the
moments directly using conditional expectations (cf. Appendix D):

E Œqi .t/� D E‚ Œqi .t j ‚/� ,
Var Œqi .t/� D Var‚ Œqi .t j ‚/� .

Besides the deterministic context, the predicted amount of material is subjected
now to a variability expressed by the second equation. This expresses the random
character of the fractional flow rate, and it is known as process uncertainty.
Extensive discussion of these aspects will be given in Chapter 11.

Example 4. One-Compartment Model

As an illustration of the procedure, consider the one-compartment model q .t/ D
q0 exp .�kt/. Assuming that k has a gamma distribution k �Gam.�; �/, one has the
solutions

E Œq .t/� D q0E Œexp .�kt/� D q0 .1C t=�/�� ,

Var Œq .t/� D q20Var Œexp .�kt/� D q20
h
.1C 2t=�/�� � .1C t=�/�2�

i
.

Figure 8.2 shows E Œq .t/� and E Œq .t/� ˙ p
Var Œq .t/� with q0 D 1 and

k �Gam.2; 2/. It is noteworthy that confidence intervals are present due to the
variability of the fractional flow elimination rate k. This variability is inherent to
the process and completely different from that introduced by the measurement
devices. �

8.5 Nonlinear Compartmental Models

Many systems of interest are actually nonlinear:

• A first formulation considers the transfer rates of material from compartment
i to j as functions of the amounts in all compartments q .t/ and of time t, i.e.,

Rij

h
q .t/ ; t

i
. In this case, Rij .t/ in (8.1) should be substituted with Rij

h
q .t/ ; t

i
.

If we expand the Rij

h
q .t/ ; t

i
in a Taylor series of q .t/ and retain only the linear

terms, the nonlinear transfer rates take the form kij .t/ qi .t/ and one obtains a
linear time-varying compartmental model.
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Fig. 8.2 One-compartment model with gamma-distributed elimination flow rate k �Gam.2; 2/.
The solid line represents the expected profile E Œq .t/�, and dashed lines, the confidence intervals
E Œq .t/�˙ p

Var Œq .t/�

• A second formulation considers the fractional flow rate of material as a function
of q .t/ and t, i.e., kij

h
q .t/ ; t

i
. In this case, kij in (8.4) should be substituted with

kij

h
q .t/ ; t

i
.

Therefore, the transfer rates and the fractional flow rates are functions of the
vector q .t/ and t. The dependence on t may be considered as the exogenous envi-
ronmental influence of some fluctuating processes. If no environmental dependence
exists, it is more likely that the transfer rates and the fractional flow rates depend
only on q .t/. Nevertheless, since q .t/ is a function of time, the observed data in the
inverse problem can reveal only a time dependency of the transfer rate, i.e., Rij .t/,
or of the fractional flow rate, i.e., kij .t/. Hence, the dependency of Rij .t/ and kij .t/
on q .t/ is obscured, and a second-level modeling problem now arises, i.e., how
to regress the observed dependency on the q .t/ and t separately. This problem is
mentioned in Section 7.7.

Until now, the compartmental model was considered as consisting of compart-
ments associated with several anatomical locations in the living system. The general
definition of the compartment allows us to associate in the same location a different
chemical form of the original molecule administered into the process. In other
words, the compartmental analysis can include not only diffusion phenomena but
also chemical reaction kinetics.

One source of nonlinear compartmental models is processes of enzyme-catalyzed
reactions that occur in living cells. In such reactions, the reactant combines with
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an enzyme to form an enzyme–substrate complex, which can then break down to
release the product of the reaction and free enzyme or can release the substrate
unchanged as well as free enzyme. Traditional compartmental analysis cannot
be applied to model enzymatic reactions, but the law of mass balance allows us
to obtain a set of differential equations describing mechanisms implied in such
reactions. An important feature of such reactions is that the enzyme is sometimes
present in extremely small amounts, the concentration of enzyme being orders of
magnitude less than that of substrate.

8.5.1 The Enzymatic Reaction

The mathematical basis for enzymatic reactions stems from work done by Michaelis
and Menten in 1913 [346]. They proposed a situation in which a substrate reacts
with an enzyme to form a complex, one molecule of the enzyme combining with
one molecule of the substrate to form one molecule of complex. The complex can
dissociate into one molecule of each of the enzyme and substrate, or it can produce
a product and a recycled enzyme. Schematically, this can be represented by

Œsubstrate�C Œenzyme�
kC1

�
k�1

Œcomplex� ,

Œcomplex�
kC2! Œproduct�C Œenzyme� .

(8.7)

In this formulation kC1 is the rate parameter for the forward enzyme–substrate
reaction, k�1 is the rate parameter for the backward reaction, and kC2 is the rate
parameter for the creation of the product.

Let s .t/, e .t/, c .t/, and w .t/ be the amounts of the four species in the reac-
tion (8.7), and s0 and e0 the initial amounts for substrate and enzyme, respectively.
The differential equations describing the enzymatic reaction,

�
s .t/ D �kC1s .t/ Œe0 � c .t/�C k�1c .t/ , s .0/ D s0;�
c .t/ D kC1s .t/ Œe0 � c .t/� � .k�1 C kC2/ c .t/ ; c .0/ D 0;
�
w .t/ D kC2c .t/ ; w .0/ D 0;

(8.8)

are obtained by applying the law of mass balance for the rates of formation and/or
decay, and the conservation law for the enzyme, e0 D e .t/C c .t/.

Relying on a suggestion by Segel [347], we make the variables of the above
equations dimensionless

x .�/ D s .t/

s0
, y .�/ D c .t/

e0
, z .�/ D w .t/

s0
,

� D kC2
kC1s0

, � D k�1 C kC2
kC1s0

, " D s0
e0

,
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Fig. 8.3 Profiles of dimensionless reactant amounts, substrate x .�/, complex y .�/, and
product z .�/

with � D kC1e0t and � > �. The set of differential equations becomes

�
x .�/ D �x .�/ Œ1 � y .�/�C .� � �/ y .�/ , x .0/ D 1,
�
y .�/ D " fx .�/ Œ1 � y .�/� � �y .�/g , y .0/ D 0,
�
z .�/ D �y .�/ , z .0/ D 0.

This system cannot be solved exactly, but numerical methods easily generate
good solutions. The time courses for all reactant species of reaction (8.7) generated
from the previous equations with .�; �/ D .0:015; 0:010/ and " D 2 are shown in
the semilogarithmic plot of Figure 8.3. We note that:

• The substrate x .�/ drops from its initial condition value, equal to 1, at a rapid
rate, but quickly decelerates. Progressively, and for � > 50, the substrate
decreases rapidly in a first phase and then slowly, in a second phase. This irregular
profile of substrate in the semilogarithmic plot is reflected as a concavity or
nonlinearity, as it is usually called.

• The intermediate compound complex y .�/ reaches a maximum (called quasi-
steady state in biology) that persists only for a time period and then decreases;
this time period corresponds to the period of nonlinearity for the substrate time
course. In fact, saturation of the complex form is responsible for the nonlinearity
in the substrate time course. During this period, there is no free enzyme to
catalyze the substrate conversion toward the product.

• The product z .�/ reaches the maximum plateau level asymptotically. In contrast
to the substrate profile, the nonlinear behavior along the saturation of the complex
is not easily defined on the product profile.
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Fig. 8.4 Influence of " on the substrate x .�/ profiles with fixed .�; �/ D .0:015; 0:010/ and
" D .0:5; 1; 2; 5/

Figure 8.4 shows the influence of " on the x .�/ shape. For fixed .�; �/, we
simulated the time courses for " D 0:5, 1, 2, 5. It is noted that the shape of the
substrate profiles varies remarkably with the values of "; thus profiles of biphasic,
power-law, and nonlinear type are observed. So, the sensitivity of the kinetic profile
regarding the available substrate and enzyme amounts is studied by using several "
values: for low substrate or high enzyme amounts the process behaves according to
two decaying convex phases, in the reverse situation the kinetic profile is concave,
revealing nonlinear behavior.

Other processes that lead to nonlinear compartmental models are processes
dealing with transport of materials across cell membranes that represent the transfers
between compartments. The amounts of various metabolites in the extracellular and
intracellular spaces separated by membranes may be sufficiently distinct kinetically
to act like compartments. It should be mentioned here that Michaelis–Menten
kinetics also apply to the transfer of many solutes across cell membranes. This
transfer is called facilitated diffusion or in some cases active transport (cf. Chap-
ter 2). In facilitated diffusion, the substrate combines with a membrane component
called a carrier to form a carrier–substrate complex. The carrier–substrate complex
undergoes a change in conformation that allows dissociation and release of the
unchanged substrate on the opposite side of the membrane. In active transport
processes not only is there a carrier to facilitate membrane crossing, the carrier
mechanism is somehow coupled to energy dissipation so as to move the transported
material up its concentration gradient.
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8.6 Complex Deterministic Models

The branching pattern of the vascular system and the blood flow through it
has continued to be of interest to anatomists, physiologists, and theoreticians
[4, 348, 349]. The studies focusing on the geometric properties such as lengths,
diameters, generations, orders of branches in the pulmonary, venular, and arterial
tree of mammals have uncovered the principles on which these properties are based.
Vascular trees seem to display roughly the same dichotomous branching pattern
at different levels of scale, a property found in fractal structures [350–352]. The
hydrodynamics of blood flow in individual parts of the dichotomous branching
network have been the subject of various studies. Recently, West et al. [353], relying
on an elegant combination of the dynamics of energy transport and the mathematics
of fractal geometry, developed a hydrodynamic model that describes how essential
materials are transported through space-filling fractal networks of branching tubes.

Although these advances provide an analysis of the scaling relations for mam-
malian circulatory systems, models describing the transport of materials along the
entire fractal network of the mammalian species are also needed. Pharmacokinetics
and toxicokinetics, the fields in which this kind of modeling is of the greatest
importance, are dominated by the concept of homogeneous compartments [354].
Physiologically based pharmacokinetic models have also been developed that define
the disposition patterns in terms of physiological principles [282, 354, 355]. The
development of models that study the heterogeneity of the flow and the materials
distribution inside vascular networks and individual organs has also been fruitful
in the past years [294, 356–358]. Herein, we present a simple model for the
heterogeneous transport of materials in the circulatory system of mammals, based on
a single-tube convection–dispersion system that is equivalent to the fractal network
of the branching tubes.

8.6.1 Geometric Considerations

We consider a fractal arterial tree that consists of several branching levels where
each level consists of parallel vessels, Figure 8.5A. Each vessel is connected to m
vessels of the consequent branching level [353]. We make the assumption that the
vessel radii and lengths at each level k follow a distribution around the mean values
	k and �k, respectively. The variance of the vessel radii and lengths at each level
produces heterogeneity in the velocities.

The total flow across a section of the entire tree is constant (conservation of
mass). This allows us to replace the tree with a single one-dimensional tube. Since
the tree is not area-preserving and the area of the cross section of the tube is equal to
the total area of the cross sections of each level of the tree, the total cross-sectional
area of subsequent levels increases, i.e., the tube is not cylindrical (Figure 8.5A–C).



8.6 Complex Deterministic Models 203

Fig. 8.5 (A) Schematic
representation of the
dichotomous branching
network. (B) Cross sections at
each level. (C) Single tube
with continuously increasing
radius. (D) Volume-
preserving transformation of
the varying radius tube to a
fixed radius tube. Reprinted
from [359] with permission
from Springer

A

D

B C

Based on the scaling properties of the fractal tree, the noncylindrical tube
is described in terms of a continuous spatial coordinate, z, which replaces the
branching levels of the fractal tree from the aorta to the capillaries. As suggested
by West [353], both the radii and the vessel lengths scale according to “cubic law”
branching, i.e., 	kC1=	k D �kC1=�k D m�1=3. These assumptions allow us to
obtain the expression for the area A.z/ of the noncylindrical tube (Figure 8.5C)
as a function of the coordinate z:

A.z/ D 	20�0em
z .1 �em/C �0em

, (8.9)

where 	0 and �0 are the radius and the length of aorta, respectively, andem D m1=3.
Further, a volume-preserving transformation allows the replacement of the

varying radius tube with a tube of fixed radius 	0 and fixed area A0 D 	20
(Figure 8.5D). This is accomplished by replacing z with a new coordinate z� with
the condition that the constant total flow of the fluid across a section is kept invariant
under the transformation:

z D �0em
em � 1

�
1 � exp

�
z� .1 �em/
�0em

��
. (8.10)

8.6.2 Tracer Washout Curve

The disposition of a solute in the fluid as it flows through the system is governed by
convection and dispersion. The convection takes place with velocity

v .z/ D A0

A.z/v0, (8.11)
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where v0 is the velocity in the aorta andA.z/ is given by (8.9). If molecular diffusion
is considered negligible, dispersion is exclusively geometric and consists of two
components originating from the variance of the path lengths and of the vessel
radii. Because the components are independent of each other, the global form of
the dispersion coefficient is

D .z/ D
�

k1�
2
10 C 2k2�

2
20

�0

	0

� � A0

A.z/

�2
v0, (8.12)

where k1 and k2 are proportionality constants, and �210 and �220 are the variances
of the radius and the length of aorta, respectively [357, 360, 361]. The equation
that describes the concentration c .z; t/ of solute inside the tube is a convection–
dispersion partial differential equation:

@c .z; t/

@t
D @

@z

�
D .z/

@c .z; t/

@z

�
� v .z/ @c .z; t/

@z

with D .z/ and v .z/ given by (8.12) and (8.11), respectively. Applying the trans-
formation (8.10), the previous equation becomes a simple convection–dispersion
equation with constant coefficients:

@c .z�; t/
@t

D D�
0

@2c .z�; t/
@z�2 � v�

0

@c .z�; t/
@z� , (8.13)

where

D�
0 D k0v0, v�

0 D
�
em k0
�0

C 1
�
v0, k0 D k1�210 C 2k2�220

�0
	0

.

These forms relate the dependence on the system characteristics. Equation (8.13)
describes the concentration c .z�; t/ of a solute in a tree-like structure that corre-
sponds to the arterial tree of a mammal. Considering also the corresponding venular
tree situated next to the arterial tree and appropriate inflow and outflow boundary
conditions, we are able to derive an expression for the spatiotemporal distribution of
a tracer inside a tree-like transport network. We also make the assumption that the
arterial and venular trees are symmetric, that is, have the same volume V; then, the
total length is L D V=A0. The initial condition is c .z�; 0/ D 0 and the boundary
conditions are:

• Inflow at z� D 0:

�
�D�

0

@c .z�; t/
@z� C v�

0 c
�
z�; t

	�
ˇ
ˇ
ˇ
ˇ
z�D0

D q0
a0
ı .t/

where q0 is the dose, and ı .t/ is the Dirac delta function.
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• Outflow at z� D L:

@c .z�; t/
@z�

ˇ
ˇ
ˇ̌
z�DL

D 0:

The outflow concentration c .L; t/ of the above model describes tracer washout
curves from organs that have a tree-like network structure, and it is given by an
analytic form reported in [359].

8.6.3 Model for the Circulatory System

Based on the above, an elementary pharmacokinetic model considering the entire
circulatory system was constructed. Thus, apart from the arterial and venular
trees, a second set of arterial and venular trees, corresponding to the pulmonary
vasculature, must be considered as well. These trees follow the same principles
of (8.10) and (8.13), i.e., tubes of radius 	0 are considered with appropriate length
to accommodate the correct blood volume in each tree.

8.6.3.1 Structure

An overall tube of appropriate length L is considered and is divided into four sequen-
tial parts, characterized as arterial, venular, pulmonary arterial, and pulmonary
venular, Figure 8.6.

We assign the first portion of the tube length from z� D 0 to z� D z�
c to the

arterial tree, the next portion from z� D z�
c to z� D z�

p to the venular, and the rest
from z� D z�

p to z� D L to the two symmetrical trees of the lungs. We consider that
the venular tree is a structure similar to the arterial tree, only of greater, but fixed,
capacity. Also, the two ends of the tube are connected, to allow recirculation of the
fluid. This is implemented by introducing a boundary condition, namely c .0; t/ D
c .L; t/, which makes the tube ring-shaped. The “heart” is located at two separate
points. The left ventricle-left atrium is situated at z� D 0, and the right ventricle-
right atrium is situated at z� D z�

p , Figure 8.6.

8.6.3.2 Dispersion

Two separate values were used for the dispersion coefficient Da for the arterial
segment and Dp for the pulmonary segment. For the venular segment we consider
that the dispersion coefficient has the value Da

�
z�

p � z�
c

	
=z�

c , meaning that it is
proportional to the length of the segment. The flux preservation boundary condition,

Dp
@c .z�; t/
@z�

ˇ
ˇ
ˇ
ˇ
z�DL

D Da
@c .z�; t/
@z�

ˇ
ˇ
ˇ
ˇ
z�D0

;

must also be satisfied.
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Fig. 8.6 Schematic representation of the ring-shaped tube that models the circulatory system of a
mammal. Blood flows clockwise. The tube is divided into segments corresponding to the arterial,
venular, pulmonary arterial, and pulmonary venular trees

8.6.3.3 Elimination

The contribution of elimination of drugs is appreciable and is integrated into the
model. A segment in the capillary region of the tube (z� � z�

c ) is assigned as
the elimination site and a first-order elimination term kc .z�; t/ is now introduced
in (8.13). The length of the elimination segment is arbitrarily set to 0:02L, which
is in the order of magnitude of the capillary length. The position of the elimination
site is imprecise in physiological terms, but it is the most reasonable choice in order
to avoid further model complexity.

8.6.3.4 Drug Administration and Sampling

The necessary initial condition for the intravenous administration of an exogenous
substance, c .z�; 0/, which is the spatial profile of c at the time of administration, is
determined by the initial dose and the type of administration. This profile may have
the shape of a “thin” Gaussian function if an intravenous bolus administration is
considered, or the shape of a “rectangular” gate for constant infusion. The reference
location z�

0 of this profile for an intravenous administration must be set close to the
heart. Similarly, when lung administration is considered, z�

0 should be set in the
capillary area of the lungs. Due to the geometric character of the model, a sampling
site z�

s should be either specified, in simulation studies, or calculated when fitting is
performed.
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The final model can be summarized as follows:

@c .z�; t/
@t

D @

@z�

�
D� �z�	 @c .z�; t/

@z�

�
� v�

0

@c .z�; t/
@z� � W

�
z�	 kc

�
z�; t

	
,

where W .z�/ is a combination of delayed in space Heaviside functions, i.e.,
W .z�/ D H

�
z� � z�

c C 0:01L
	� H

�
z� � z�

c � 0:01L
	
, and

D� �z�	 D

8
<̂

:̂

Da for 0 < z� � z�
c ,

Da
�
z�

p � z�
c

	
=z�

c for z�
c < z� � z�

p ,
Dp for z�

p < z� � L.

Boundary and initial conditions are considered as discussed above.

Example 5. Indocyanine Green Injection

The model was used to identify indocyanine green profile in man after a q0 D
10mg intravenous bolus injection. Both injection and sampling sites (z�

0 and z�
s ,

respectively) were closely located on the ring-shaped tube. The model of drug
administration was a “thin” Gaussian function:

c
�
z�; 0

	 D q0
V

r
b


exp

"

�b

�
z�

L
� z�

0

L

�2#

.

This administration corresponds to a bolus injection at the cephalic vein. The
parameters set in the model were m D 3, �0 D 50 cm, A0 D 3 cm2, and b D 105.
The estimated model parameters were:

• Structure: z�
c =L D 0:28, z�

0 =L D 0:83, z�
p =L D 0:85, and V D 4:4 l. These values

result in L D 1470 cm.
• Dispersion and elimination: Da D 1826 cm2 s�1, Dp D 1015 cm2 s�1, v0 D
44:98 cm s�1, and k D 1:13 s�1.

Figure 8.7 depicts the fitted concentration profile of indocyanine green at the
sampling site along with the experimental data. �

A one-dimensional linear convection–dispersion equation was developed with
constant coefficients that describes the disposition of a substance inside a tree-like
fractal network of tubes that emulates the vascular tree. Based on that result, a simple
model for the mammalian circulatory system is built in entirely physiological terms
consisting of a ring-shaped, one-dimensional tube. The model takes into account
dispersion, convection, and uptake, describing the initial mixing of intravascular
tracers. This model opens new perspectives for studies dealing with the disposition
of intravascular tracers used for various hemodynamic purposes, e.g., cardiac output
measurements [362, 363], volume of circulating blood determination [362], and
liver function quantification [364]. Most importantly, the model can be expanded
and used for the study of xenobiotics that distribute beyond the intravascular space.
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Fig. 8.7 Indocyanine profile at the sampling location z�

s D 1220 cm after intravenous bolus
administration of 10 mg. The peaks correspond to successive passes of the drug bolus from the
sampling site as a result of recirculation. The dots indicate the experimental data

In future developments of the model, the positioning of organs that play an
important role in the disposition of substances can be implemented by adding
parallel tubes at physiologically based sites to the present simple ring-shaped
model. Consequently, applications can be envisaged in interspecies pharmacokinetic
scaling and physiologically based pharmacokinetic-toxicokinetic modeling, since
both fields require a realistic geometric substrate for hydrodynamic considerations.

8.7 Compartmental Models and Heterogeneity

Initially, the deterministic theory was applied to describe the movement of a
population of tracer molecules. Briefly, a drug administered as a bolus input into
an organ modeled by homogeneous compartments results in a time–concentration
curve describing the amount of the drug remaining in the organ as a function of
the elapsed time of the form of a sum of exponential terms. Possibly because the
individual molecules are infinitesimal in size, in most of the literature the implicit
assumption is made of deterministic flow patterns. So, compartmental analysis,
grounded on deterministic theory, has provided a rich framework for quantitative
modeling in the biomedical sciences with many applications to tracer kinetics in
general [365, 366] and also to pharmacokinetics [341]. The linear combinations of
exponential function forms have provided a very rich class of curves to fit to time–
concentration data, and compartmental models turn out to be good approximations
for many processes.
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Thus, compartmental models have been used extensively in the pharmacokinetic
literature for some time, but not without criticism. These criticisms were directed:

• First, at the compartmental approach per se grounded on the assumption of
homogeneous compartments. Compartmental models are in fact appropriate
when there is an obvious partitioning of the material in the process into
discrete portions, the compartments that exchange amounts of materials. From
a theoretical standpoint, there has always been a consensus that the notion of
a homogeneous compartment is merely a simplified representation for different
tissues that are pooled together [367, 368].

• Second, at the fact that the models obtained are not necessarily exact because
mixing in a compartment is not instantaneous. How good a compartment model
is depends on the relative rates of mixing within a compartment as compared
to the transfer rates between the compartments. Mixing may occur by diffusion,
various types of convection, and combinations of them, so it is difficult to come
up with a uniform theory of mixing. Ideally, we should measure the concentration
of material throughout the process and define mixing in terms of the time course
of a ratio such as the standard deviation divided by the mean concentration.

• Third, at the ill-conditioning of numerical problems for parameter estimation
with models involving a large number of exponential terms. Wise [324] has
developed a class of powers of time models as alternatives to the sums of
exponentials models and has validated these alternative models on many sets
of experimental data. From an empirical standpoint, Wise [269] reported “1000
or more” published time–concentration curves where alternative models fit the
data as well or better than the sums-of-exponentials models.

Moreover, it is clear that even the continuous models are often unreliable models.
Matter is atomic, and at a fine enough partition, continuity is no longer an acceptable
solution. Furthermore, living tissues are made up of cells, units of appreciable size
that are the basic structural and functional units of living things. And cells are
not uniform in their interiors; they contain smaller units, the cellular organelles.
There is inhomogeneity at a level considerably above the molecular. All these
facts enhanced the criticism against determinism and the use of homogeneous
compartments. More realistic alternatives have aimed at removing the limiting
assumption of homogeneity:

• The process was considered as continuous and compartmental models were
used to approximate the continuous systems [366]. For such applications, there
is no specific compartmental model that is the best; approximation improves
as the number of compartments is increased. In order to put compartmental
models of continuous processes in perspective it may help to recall that the
first step in obtaining the partial differential equation, descriptive of a process
continuous in the space variables, is to discretize the space variables so as to give
many microcompartments, each uniform in properties internally. The differential
equation is then obtained as the limit of the equation for a microcompartment
as its spatial dimensions go to zero. It is better to approximate the continuous
processes with a finite-compartment system rather than go to the limit. In that



210 8 Deterministic Compartmental Models

case, the partial differential equation is approximated by a set of simultaneous
ordinary differential equations. In philosophy, compartmental modeling shares
basic ideas with the finite element method, where the structure of the system is
also used to define the elements of a partition of the system. But even if a finite-
compartment approximation is used, how can we define the approximation error
and its dependence on the size of the compartmental model? In addition, many
compartmental models approximating continuous processes are so large that it
may be difficult to deal with them and it may be useful or necessary to lump
some of the compartments into one compartment. This raises a set of questions
about the errors incurred in aggregation and about the optimal way of aggregating
compartments.

• Noncompartmental models were introduced as models that allow for transport
of material through regions of the body that are not necessarily well mixed or of
uniform concentration [273]. For substances that are transported relatively slowly
to their site of degradation, transformation, or excretion, so that the rate of diffu-
sion limits their rate of removal from the system, the noncompartmental model
may involve diffusion or other random-walk processes, leading to the solution in
terms of the partial differential equation of diffusion or in terms of probability
distributions. A number of noncompartmental models deal with plasma time–
concentration curves that are best described by power functions of time.

• Physiological and circulatory models have been developed, and they have
provided information of physiological interest that was not available from
compartmental analysis. Rapidly, physiological models turned to the modeling
of complex compartmental structures. In contrast, circulatory models associated
with a statistical framework have proved powerful in describing heterogeneity
in the process [271, 369]. Recently, the above presented complex model for
the entire circulatory system was built, describing initial mixing following
an intravascular administration in a tree-like network by a relatively simple
convection–dispersion equation [359, 370].

• Stochastic compartmental analysis assumes probabilistic behavior of the
molecules in order to describe the heterogeneous character of the processes. This
approach is against the unrealistic notion of the “well-stirred” system, and it is
relatively simpler mathematically than homogeneous multicompartment models.
At first glance, this seems to be a paradox since the conventional approaches rely
on the simpler hypothesis of homogeneity. Plausibly, this paradox arises from the
analytical power of stochastic approaches and the unrealistic hypothesis of homo-
geneity made by compartmental analysis. Nevertheless with only a few excep-
tions, stochastic modeling has been slow to develop in pharmacokinetics and only
recently have some applications also included stochastic behavior in the models.

In conclusion, compartmental models are generally well determined if there is an
obvious partitioning of the material into compartments, and if the mixing processes
within these compartments are considerably faster than the exchanges between the
compartments.



Chapter 9
Fractional Pharmacokinetics

It leads to a paradox, from which one day useful consequences
will be drawn.

Gottfried Wilhelm von Leibnitz (1646–1716)
when asked (1695) by Guillaume de L’Hospital

“what would be the result of half-differentiating?”

by Dr. A. DOKOUMETZIDIS
Faculty of Pharmacy National and Kapodistrian

University of Athens

Diffusion is one of the main mechanisms of various processes in living species
and as such, plays an important role in the course of a drug in the body. Processes
like membrane permeation, dissolution of solids, and dispersion in cellular matrices
are considered to take place by diffusion. As mentioned in Chapter 2, diffusion
is classically described by Fick’s law and is based on the fact that a molecule
makes a random walk, where its mean squared displacement is proportional to time.
However, in the last few decades, strong experimental evidence has suggested that
this is not always true and diffusional processes that deviate from this law have
been observed. These are either faster (super-diffusion) or slower (sub-diffusion)
than the classic case and the mean square displacement is a power of time, with
exponent greater or less than 1, respectively, [371]. This type of diffusion gives
rise to kinetics that are referred to as anomalous, to indicate the fact that deviate
from the classic description [371]. Moreover, anomalous kinetics can also result
from reaction-limited processes and long-time trapping. It is thought that anomalous
kinetics introduces memory effects in the process that need to be accounted for
to correctly describe it. As mentioned in Chapter 7, a theory that describes such
anomalous kinetics is the so- called fractal kinetics where explicit power functions
of time, in the form of time-dependent coefficients, are used to account for the
memory effects. In pharmacokinetics several data sets have been characterized by
power laws [269, 372] which has been justified by the presence of anomalous
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diffusion. These include mainly pharmacokinetics of drugs that distributed in deeper
tissues [369] and bone seeking elements [281, 373].

An alternative theory to describe anomalous kinetics uses fractional calculus
[30, 374], which introduces derivatives and integrals of fractional order, such as
half or 3 quarters. Although fractional calculus was introduced by Leibniz more
than 300 years ago, it is only within the last couple of decades that real-life
applications have been explored [375–377]. It has been shown that differential
equations with fractional derivatives describe experimental data of anomalous
diffusion more accurately. In this chapter the recent applications of fractional
calculus in pharmacokinetics are presented, which have formed a new area of
research referred to as fractional pharmacokinetics.

9.1 Fractional Calculus

9.1.1 The Fractional Derivative

Derivatives of integer order n, dnf .t/ =dtn of a function f .t/ are well defined. For a
fractional order of differentiation ˛, where for simplicity we assume that 0 < ˛ < 1,
the ˛-th derivative is defined through fractional integration and successive ordinary
differentiation. Fractional integration of order ˛ is defined, according to the
Riemann–Liouville integral [378]

0D
�˛
t f .t/ , 1

� .˛/

Z t

0

�
t � t0

	˛�1
f
�
t0
	

dt0

where � .:/ is the gamma function. Consequently, fractional differentiation is
defined as

0D
˛
t f .t/ , d

dt

�
1

� .1 � ˛/

Z t

0

f .t0/
.t � t0/˛

dt0
�
:

This is the Riemann–Liouville definition of the fractional derivative. One can
notice that the fractional integration is basically a convolution integral between the
function and a power law of time, i.e., 0D�˛

t f .t/ D t˛�1 � f .t/, where the star
“�” denotes convolution, accounting for the memory effects of the studied process.
The fractional derivatives have properties that are not intuitive, for example, the
half derivative of a constant � with respect to x does not vanish and instead is
�=

p
x. The left-side index “0” of the D operator denotes the lower end of the

integration which in this case has been assumed to be zero. However alternative
lower bounds can be considered leading to different definitions of the fractional
derivative with slightly different properties. An alternative lower bound which has
been considered is “�1” and is referred to as the Wyel definition [375], which
accounts for the entire “history” of the studied function, and is considered preferable
in some applications. In fact one of the disadvantages of the Riemann–Liouville
definition with the “0” lower bound is that when used in differential equations it
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gives rise to initial conditions that involve the fractional integral of the function and
are difficult to interpret physically. This is one of the reasons the Wyel definition has
been introduced, but this definition may not be very practical for most applications
either, as it involves an initial condition at time �1.

An alternative definition of the fractional derivative which is referred to as the
Caputo definition is preferable for most physical processes as it involves explicitly
the initial condition at time zero [374]. The definition is

C
0D˛

t f .t/ D 1

� .1 � ˛/

Z t

0

�
f .t0/
.t � t0/˛

dt0

where the upper-left index “C” stands for Caputo and the “dot” in
�
f .t/ denotes

classic differentiation. This definition for the fractional derivative, apart from the
more familiar initial conditions, gives rise to more familiar properties, one of
them being that the Caputo derivative of a constant is in fact zero as usual. The
different definitions of the fractional derivative give different results but these are not
contradicting, since they apply for different conditions and it is a matter of choosing
the appropriate one for each specific application. All the definitions collapse to the
usual derivative for integer values of the order of differentiation.

9.1.2 Fractional Differential Equations

The most common type of kinetics encountered in pharmaceutical literature are
zero- and first-order kinetics. The fractional versions of these types of kinetics are
presented below and take the form of fractional order ordinary differential equations
(FDE). Throughout this presentation the Caputo version of the fractional derivative
is considered for the reasons already explained.

9.1.2.1 Zero-Order Kinetics

The classical zero-order kinetics equation, where the rate of change of quantity q .t/,
expressed in mass units, is considered to be constant and equal to k0, expressed in
.mass/ = .time/ units, is given by

�
q .t/ D k0. Its solution is a linear function of time

and when the initial condition is zero, it has the form q .t/ D k0t. The fractional
expression for the zero-order kinetics equation can be obtained by replacing the
derivative of order 1 by a derivative of fractional order ˛

C
0D˛

t q .t/ D k0f

where k0f is a constant with dimension .mass/ = .time/˛ . The solution of this
equation for initial condition q .t/ D 0 is a power law [374]

q .t/ D k0f

� .˛ C 1/
t˛:
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9.1.2.2 First-Order Kinetics

The first-order differential equation, where the rate of change of quantity q .t/
is proportional to its current value, is given by

�
q .t/ D k1q .t/. Its solution by

considering an initial condition of q .t/ D q0 is given by the classical equation of
exponential decay q .t/ D q0 exp .�k1t/. In fractional terms however, the first-order
equation can be written by replacing the derivative of order 1 by a fractional one

C
0D˛

t q .t/ D �k1f q .t/ (9.1)

where k1f is a constant with .time/�˛ dimension. The solution of this equation can
be found in most books or papers of the fast growing literature on fractional calculus
[374] and for initial condition q .t/ D q0 it has the form

q .t/ D q0E˛
��k1f t

˛
	

where E˛ .:/ is a Mittag–Leffler function [374] which is defined as

E˛ .x/ ,
1X

kD0

xk

� .˛k C 1/
:

The function E˛ .x/ is a generalization of the exponential function and it collapses
to the exponential when ˛ D 1, i.e., E1 .x/ D exp .x/. The general form of the
Mittag–Leffler function with two parameters ˛ and ˇ is also defined as

E˛;ˇ .x/ ,
1X

kD0

xk

� .˛k C ˇ/
:

The solution of equation 9.1 basically means that the fractional derivative of
order ˛ of the function E˛ .t˛/ is itself a function of the same form, exactly like the
classic derivative of an exponential is also an exponential. It also makes sense to
restrict ˛ to values 0 < ˛ < 1, since for values of ˛ larger than 1 the solution of
equation 9.1 is non-monotonous and negative values for q .t/ appear.

From these elementary equations the basic relations for the time evolution in drug
disposition can be formulated, with the assumption of diffusion of drug molecules
taking place in heterogeneous space.

9.1.3 Solving FDE by the Laplace Transform

FDE can easily be written in the Laplace domain since each of the fractional
derivatives can be transformed similarly to the ordinary derivatives, as follows, for
order ˛ � 1
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L
˚

C
0 D˛

t f .t/
 D s˛ Qf .s/� s˛�1f .0/ (9.2)

where Qf .s/ is the Laplace transform of f .t/ [374]. For ˛ D 1, the Laplace
transform 9.2 collapses to the classic expression for ordinary derivatives, i.e.,
L ff .t/g D sQf .s/� f .0/.

For example, the following simple FDE

C
0D1=2

t q .t/ D �q .t/

with initial value q .0/ D 1 can be written in the Laplace domain, by applying the
transform 9.2, as follows

s1=2 Qq .s/ � s�1=2q .0/ D �Qq .s/ :

By substituting the initial value, the above can be rearranged as

Qq .s/ D 1

s C p
s

By applying the inverse Laplace transform to the previous expression, the analytical
solution of the FDE can be obtained; it is a Mittag–Leffler function of order one-
half, and

q .t/ D E1=2
��t1=2

	 D exp .t/


1C erf

��p
t
	�
:

Although it is always easy to transform an FDE in the Laplace domain and in
most cases feasible to rearrange it, solving it explicitly for the system variables,
it is more difficult to apply the inverse Laplace transform, such that an analytical
solution in the time domain is obtained. However, it is possible to perform that step
numerically using a Numerical Inverse Laplace Transform (NILT) algorithm [379].

9.2 Fractional Calculus in Pharmacokinetics

9.2.1 A Basic Fractional Model

In the simplest pharmacokinetic relationship, the intravenous bolus injection with
first-order elimination in a one-compartment model, the drug concentration c .t/
follows the common expression

�
c .t/ D �k10c .t/
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where k10 is the elimination rate constant. The fractional version of this equation
[380] can be written as

C
0D˛

t c .t/ D �k10f c .t/

where k10f is a constant with dimensions .time/�˛ . As already mentioned, the
solution of this equation can be written as

c .t/ D c0E˛
��k10f t

˛
	

for ˛ < 1 (9.3)

where c0 is the ratio .dose/ = .volume of distribution/. By introducing t0 D k
� 1
˛

10f , the
above equation becomes

c .t/ =c0 D E˛ Œ� .t=t0/
˛� : (9.4)

This equation for small times behaves as a stretched exponential, i.e.,

exp

�
� .t=t0/

˛

� .1C ˛/

�
;

while for large values of time as a power law, i.e.,

.t=t0/
�˛

� .1 � ˛/

(Figure 9.1). It is therefore a good candidate to describe various data sets exhibiting
power-law-like kinetics due to the slow diffusion of the drug in deeper tissues.

The relationship 9.3 applies for the simplest case of fractional pharmacokinetics.
It accounts for the anomalous diffusion process, which may be considered to be the
limiting step of the entire kinetics. Classic clearance may be considered not to be
the limiting process here and is absent from the equation.

9.2.2 Fractionalizing Linear Multicompartment Models

A single ordinary differential equation is easily fractionalized by changing the
derivative on the left-hand side to a fractional order as in the previous paragraph.
However, in pharmacokinetics and other fields where compartmental models are
used, two or more ordinary differential equations are often necessary and it is not
as straightforward to fractionalize systems of differential equations, especially when
certain properties such as mass balance need to be preserved.

When a compartmental model with two or more compartments is being built,
typically an outgoing mass flux becomes an incoming flux to the next compartment.
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Fig. 9.1 Log–log plot of relationship 9.4 (solid line), the stretched exponential function (dotted
line), and the power-law function (dashed line) for ˛ D 0:5. The relationship 9.4 starts close to the
stretched exponential and finishes close to the power function

Thus, an outgoing mass flux that is defined as a rate of fractional order cannot
appear as an incoming flux into another compartment, as a rate of a different
fractional order, without violating mass balance [381]. It is therefore, in general,
impossible to fractionalize multicompartment systems simply by changing the order
of the derivatives on the left-hand side of the ordinary differential equations. The
latter is possible only in the special case where a common fractional order is
considered for all ordinary differential equations, what is referred of commensurate
order. In the general case, of the non-commensurate orders, a different approach for
fractionalizing systems of ordinary differential equations needs to be applied.

In the following part, a general form of a fractional two-compartment system
is considered and then generalized to a system of an arbitrary number of compart-
ments, which first appeared in [382]. A general ordinary linear two-compartment
model is defined by the following system of linear ordinary differential equations

�
q1 .t/ D �k12q1 .t/C k21q2 .t/� k10q1 .t/C u1 .t/ (9.5)
�
q2 .t/ D k12q1 .t/ � k21q2 .t/ � k20q2 .t/C u2 .t/

where q1 .t/ and q2 .t/ are the mass or molar amounts of material in the respective
compartments and the kij constants control the mass transfer between the two
compartments and elimination from each of them. The notation convention used
for the indices of the rate constants is that the first corresponds to the source
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compartment and the second to the target one, e.g., k12 corresponds to the transfer
from compartment 1 to 2, k10 corresponds to the elimination from compartment 1,
etc. The dimensions of all the kij rate constants are .time/�1. Input rates ui .t/ in
each compartment may be zero, constant, or time dependent. Initial values for q1 .t/
and q2 .t/ have to be considered also, q1 .0/ and q2 .0/, respectively.

In order to fractionalize this system, first the ordinary system is integrated,
obtaining a system of integral equations and then the integrals are fractionalized
as shown in [382]. Finally, the fractional integral equations are differentiated in an
ordinary way. The resulting fractional system contains ordinary derivatives on the
left-hand side and with Riemann–Liouville derivatives on the right-hand side

�
q1 .t/ D �k12f 0D

1�˛12
t q1 .t/C k21f 0D

1�˛21
t q2 .t/ � k10f 0D

1�˛10
t q1 .t/C u1 .t/

�
q2 .t/ D k12f 0D

1�˛12
t q1 .t/ � k21f 0D

1�˛21
t q2 .t/ � k20f 0D

1�˛20
t q2 .t/C u2 .t/

where 0 < ˛ij < 1 is a constant representing the order of the specific process.
Different values for the orders of different processes may be considered, but the
order of the corresponding terms of a specific process is kept the same when these
appear in different equations, e.g., there can be an order ˛12 for the transfer from
compartment 1 to 2 and a different order ˛21 for the transfer from compartment 2
to 1, but the order for the corresponding terms of the transfer, from compartment
1 to 2, ˛12, is the same in both equations. Also the index “f ” in the rate constant
was added to emphasize the fact that these are different to the ones of 9.5 and carry
dimensions .time/�˛ .

Now, it is convenient to rewrite the above FDE system with Caputo derivatives.
An FDE with Caputo derivatives accepts the usual type of initial conditions
involving the variable itself, as opposed to Riemann–Liouville derivatives which
involve an initial condition on the derivative of the variable, which is not practical.
When the initial values are zero then the respective Riemann–Liouville and Caputo
derivatives are the same. This is convenient since a zero initial value is very common
in compartmental analysis. When the initial value is not zero, converting to a
Caputo derivative is possible, for the particular term with a non-zero initial value.
The conversion from a Riemann–Liouville to a Caputo derivative is done with the
following expression

0D
1�˛ij
t qi .t/ DC

0 D
1�˛ij
t qi .t/C qi .0/ t˛ij�1

�
�
˛ij
	 : (9.6)

Summarizing about initial conditions, we can identify three cases .1ı/ the initial
condition is zero and then the derivative becomes a Caputo by definition, .2ı/
the initial condition is non-zero but it is involved in a term with an ordinary
derivative so it is treated as usual, .3ı/ the initial condition is non-zero and is
involved in a fractional derivative which means that in order to present a Caputo
derivative, an additional term, involving the initial value appears, by substituting the
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relationship 9.6. Alternatively, a zero initial value for that variable can be assumed,
with a Dirac delta input to account for the initial quantity for that variable.

So, the previous system of FDE with two compartments can be reformulated, by
using as fractional derivatives the Caputo derivatives. Also, it is easy to generalize
the above approach to a system with an arbitrary number of n compartments as
follows

�
qi .t/ D �ki0

C
0D1�˛i0

t qi .t/ �
nX

j¤i

kij
C
0D

1�˛ij
t qi .t/C

nX

j¤i

kji
C
0 D

1�˛ji
t qj .t/C ui .t/

(9.7)
for i D 1 W n. Here Caputo derivatives have been considered throughout since, as
explained above, this is feasible. The system of equations 9.7 is too general for most
purposes as it allows every compartment to be connected with every other. Typically
the connection matrix would be much sparser than that, with most compartments
being connected to just one neighboring compartment while only a few “hub”
compartments would have more than one connection.

The advantage of the described approach of fractionalization is that each
transport process is fractionalized separately, rather than fractionalizing each com-
partment or each equation. Thus, processes of different fractional orders can coexist
since they have consistent orders when the corresponding terms appear in different
equations. Also, it is important to note that equation 9.7 does not have problems,
such as violation of mass balance or inconsistencies with the units of the rate
constants.

As mentioned, FDE can easily be written in the Laplace domain. In the case
of FDE of the form of equation 9.7 where the fractional orders are 1 � ˛ij, the
relationship 9.2 becomes

L
n

C
0D

1�˛ij
t qi .t/

o
D s1�˛ij Qqi .s/� s�˛ij qi .0/ :

9.3 Examples of Fractional Models

9.3.1 One-compartment Model with Constant Rate Input

A one-compartment model with a fractional elimination and a constant rate input
is considered [382]. Even in this simple one-compartment model, it is necessary to
employ the approach of fractionalizing each process separately, described above,
since the constant rate of infusion is not in fractional order. That would have
been difficult if one followed the approach of changing the order of the derivative
of the left-hand side of the ordinary differential equation, however here it is
straightforward.
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The system can be described by the following equation

�
q .t/ D k01 � k10f

C
0D1�˛

t q .t/ (9.8)

with q .0/ D 0 and where k01 is a zero-order input rate constant, with dimensions
.mass//.time/, k10f is a rate constant with units .time/�˛ , and ˛ is a fractional order
less than 1. The previous equation can be written in the Laplace domain as

sQq .s/� q .0/ D k01
s

� k10f


s1�˛ Qq .s/ � s�˛q .0/

�
:

Since q .0/ D 0, the above equation can be solved to obtain

Qq .s/ D k01s˛�2

s˛ C k10f
:

By applying the following inverse Laplace transform formula (equation 1:80 in ref.
[374], page 21)

L�1
�

s˛�ˇ

s˛ C k

�
D tˇ�1E˛;ˇ .�kt˛/

where E˛;ˇ is the Mittag–Leffler function with two parameters. For ˇ D 2 the
following is obtained

q .t/ D k01tE˛;2
��k10f t

˛
	
: (9.9)

In theorem 1.4 of ref. [374], the following expansion for the Mittag–Leffler function
is proven to hold for jzj ! 1

E˛;ˇ .z/ D �
pX

iD1

z�i

� .ˇ � ˛/
C O

�
jzj�1�p

�
:

Applying this formula for relationship 9.9 and keeping only the first term of the
sum since the rest are of higher order, the limit of 9.9 for t going to infinity can be
calculated [382]

lim
t!1 fq .t/g D lim

t!1
˚
k01tE˛;2

��k10f t
˛
	 � lim

t!1

�
k01
k10f

t1�˛

� .2 � ˛/

�
D 1;

for ˛ < 1. The fact that the limit of the relationship 9.9 diverges when t goes
to infinity, for ˛ < 1, means that unlike the classic case, for ˛ D 1, where the
relationship 9.9 approaches exponentially the steady state k01=k10f , for ˛ < 1,
there is infinite accumulation. In Figure 9.2 left panel, a plot of relationship 9.9
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Fig. 9.2 For ˛ D 0:25, k10f D 0:1 h�˛ , and k01 D 1 mg= l : Plot of relationship 9.9 with constant
infusion (dashed line) which exhibits infinite accumulation and of relationship 9.10 with power-
law infusion (solid line) which approaches a steady state. In the right panel, the profiles of left
panel are for 10-times longer time span

is shown for ˛ < 1 showing that unlike the classic case where a steady state is
approached, in the fractional case the amount keeps rising. In Figure 9.2 right panel,
the same profiles are shown for 10-times larger time span, demonstrating the effect
of continuous accumulation.

The lack of a steady state under constant rate administration which results to
infinite accumulation is one of the most important clinical implications of the
presence of fractional pharmacokinetics. It is clear that this implication extends
to repeated doses as well as constant infusion, which is the most common dosing
regimen, and can be important in chronic treatments. In order to avoid accumulation
the constant rate administration must be adjusted to replaced by a decreasing with
time rate. Indeed, in equation 9.8, if the constant rate of infusion k01 is replaced by
the term f .t/ D k01t�.1�˛/ [378], then the solution of the resulting FDE is, instead
of relationship 9.9, the following

q .t/ D k01� .˛/ t˛E˛;˛C1
��k10f t

˛
	
: (9.10)

The previous solution converges to the steady state � .˛/ k01=k10f as time goes
to infinity, while for the special case of ˛ D 1, the steady state is the usual
k01=k10f . Similarly, for the case of repeated doses, if a steady state is intended to
be achieved, in the presence of fractional elimination of order ˛, then the usual
constant rate of administration, e.g., a constant daily dose, needs to be replaced by an
appropriately decreasing rate of administration. As shown in [378], the decreasing
rate of administration can be achieved by the following two approaches. The first
approach uses the same dose given at increasing inter-dose intervals, i.e.,

Ti D �
T˛i�1 C ˛��˛

	1=˛
;
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where Ti is the time of the i-th dose and �� is the inter-dose interval of the
corresponding kinetics of order ˛ D 1. The second approach is based on a
decreasing dose q0;i described by the following equation

q0;i D q0
˛
Œ.i C 1/˛ � i˛� :

given at constant time intervals. In this way an ever decreasing administration
rate is implemented which compensates the decreasing elimination rate due to the
fractional kinetics.

9.3.2 Two-Compartment Intravenous Model

Based on the generalized approach for the fractionalization of compartmental
models, which allows mixing different fractional orders, developed in the previous
section, a two-compartment fractional pharmacokinetic model is considered, shown
schematically in Figure 9.3. Compartment 1 (central) represents general circulation
and well-perfused tissues while compartment 2 (peripheral) represents deeper
tissues. Three transfer processes (fluxes) are considered: elimination from the
central compartment and a mass flux from the central to the peripheral compartment,
which are both assumed to follow classic kinetics (order 1), while a flux from the
peripheral to the central compartment is assumed to follow slower fractional kinetics
accounting for tissue trapping.

The system is formulated mathematically as follows

�
q1 .t/ D � .k10 C k12/ q1 .t/C k21f

C
0D1�˛

t q2 .t/ (9.11)
�
q2 .t/ D k12q1 .t/ � k21f

C
0 D1�˛

t q2 .t/

10k

1 2

12k

21 ,fk α

Fig. 9.3 A fractional 2-compartment pharmacokinetic model with an intravenous bolus. Elimina-
tion from the central compartment and a mass flux from the central to the peripheral compartment,
which are both assumed to follow classic kinetics (order 1), while a flux from the peripheral to the
central compartment is assumed to follow slower fractional kinetics, accounting for tissue trapping
(dashed arrow)
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with ˛ < 1 and initial conditions are q1 .0/ D q0, q2 .0/ D 0 which account for a
bolus dose injection and no initial amount in the peripheral compartment. Note that
it is allowed to use Caputo derivatives here since the fractional derivatives involve
only terms with q2 .t/ for which there is no initial amount, which means that Caputo
and Riemann–Liouville derivatives are identical (relationship 9.6).

Applying the Laplace transform to the above system, the following algebraic
equations are obtained

sQq1 .s/ � q1 .0/ D � .k10 C k12/ Qq1 .s/C k21f


s1�˛ Qq2 .s/ � s�˛q2 .0/

�

sQq2 .s/ � q2 .0/ D k12 Qq1 .s/ � k21f


s1�˛ Qq2 .s/� s�˛q2 .0/

�

Solving for Qq1 .s/ and Qq2 .s/ and substituting the initial conditions

Qq1 .s/ D q0
�
s˛ C k21f

	

.s C k12 C k10/
�
s˛ C k21f

	 � k12k21f
(9.12)

for the central compartment and

Qq2 .s/ D q0s˛�1k12
.s C k12 C k10/

�
s˛ C k21f

	 � k12k21f
(9.13)

for the peripheral compartment. The above expressions can be used by a NILT
algorithm [379] to simulate values of q1 .t/ and q2 .t/ in the time domain.

Kilbas et al. [383] pointed out that the inverse Laplace transform of such
relationships could lead to closed-form solutions. These solutions were derived in
[384] to be

q1 .t/ D q0

1X

nD0
.�1/n kn

21f

nX

�D0
�EnC1

1;�C˛nC1 Œ� .k10 C k12/ t�C

q0

1X

nD0
.�1/n knC1

21f

nX

�D0
�t˛EnC1

1;�C˛.nC1/C1 Œ� .k10 C k12/ t� (9.14)

for relationship 9.12 and

q2 .t/ D q0k12

1X

nD0
.�1/n kn

21f

nX

�D0
�tEnC1

1;�C˛nC2 Œ� .k10 C k12/ t� :

for relationship 9.13, with the common term

� D k�10nŠ

.n � �/Š�Š t
�C˛n:
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Nevertheless, these closed-form solutions involve terms with an infinite series of
Mittag–Leffler functions and they are hard to implement and apply in practice.

Note, that primarily, q1 .t/ is of interest, since in practice, we only have data
from this compartment. The time–amount profile q1 .t/ may be used to obtain the
drug concentration in the blood c .t/ according to the elementary definition c .t/ ,
q1 .t/ =V1 involving the distribution volume of the central compartment V1. The so
obtained model c .t/ can be fitted to the pharmacokinetic data in order to estimate
parameters V1, k10, k12, k21f , and ˛.

9.4 Applications of Fractional Models

9.4.1 Amiodarone Pharmacokinetics

An application of the fractional two-compartment model, the system of 9.11 to
amiodarone, was presented in [382]. Amiodarone is an antiarrhythmic drug known
for its anomalous, nonexponential pharmacokinetics, which have important clinical
implications due to the accumulation pattern of the drug in long-term administration.
The fractional two-compartment model of the previous section was used to analyze
an amiodarone intravenous data set which first appeared in [385] and estimates
of the model parameters were obtained. The values for q1 .t/ were obtained from
the expression of Qq1 .s/ in the Laplace domain (relationship 9.12) using a NILT
algorithm [379]. In Figure 9.4 the model predicted values are plotted together with
the data demonstrating good agreement for the 60 day period of this study. The
estimated fractional order was ˛ D 0:587 and nonexponential character of the curve
is evident, while the model follows well the data both for long and for short times,
unlike empirical power laws which explode at t D 0.

9.4.2 Other Pharmacokinetic Applications

Apart from the amiodarone example, other applications of fractional pharma-
cokinetics have appeared in literature. From the authors Popovic et al. various
applications of fractional pharmacokinetics to model drugs have appeared, namely
for diclofenac [386], valproic acid [387], bumetanide [388], and methotrexate [389].
Also, Copot et al. have used a fractional pharmacokinetics model for propofol [390].
In most of these cases the fractional model has been compared with an equivalent
ordinary pharmacokinetic model and has been found superior.

FDE have been proposed to describe drug response too, apart from their kinet-
ics. Verotta has proposed several alternative fractional pharmacokinetic-dynamic
models that are capable to describe pharmacodynamic times series with favorable
properties [391]. Although these models are empirical, i.e., they have no mechanistic



9.4 Applications of Fractional Models 225

Fig. 9.4 The fractional two-compartment model of relationships 9.11. The fitted concentrations
(line) to the amiodarone data (circles) were obtained from the expression Qq1 .s/ in the Laplace
domain (relationship 9.12) using a NILT algorithm. Parameter estimates were: k10 D 1:49 d�1,
k12 D 2:95 d�1, k21f D 0:48 d�˛ , ˛ D 0:58, q0=V1 D 4:72 ng ml�1

basis, they are attractive since the memory effects of the FDE can link smoothly the
concentration to the response with a variable degree of influence, while the shape of
the responses generated by fractional pharmacokinetic-dynamic models can be very
flexible, with very few parameters.

Overall, fractional kinetics offers an elegant description of anomalous kinetics,
i.e. nonexponential terminal phases, the presence of which has been acknowledged
in pharmaceutical literature extensively. The approach offers simplicity and a valid
scientific basis, since it has been applied in problems of diffusion in physics
and biology. It introduces the Mittag–Leffler function which describes power-law
behaved data well, in all time scales, unlike the empirical power laws which describe
the data only for large times. Despite the mathematical difficulties, fractional
pharmacokinetics is an interesting approach for the toolbox of the pharmaceutical
scientist.



Chapter 10
Modeling and Simulation in Bioequivalence

There is nothing so unequal, as the equal treatment of unequals.
Aristotle (384–322 BC)

by Dr. V. KARALIS
Faculty of Pharmacy

National and Kapodistrian University of Athens

The purpose of bioequivalence testing is to assess the in vivo “equivalence”
between two drug products of the same active moiety; namely, the test T and
the innovator’s formulation of the same active substance called as reference R
product [237, 392]. In turn, proving bioequivalence is necessary in order to ensure
therapeutic equivalence between the two products under comparison. Assessment
of bioequivalence relies on the assumption that a product’s therapeutic profile is
a function of the concentration of the active substance in the effect site, which
is dependent on drug’s concentration in the general circulation. Thus, two drug
products (T vs. R) are considered to be bioequivalent if their time–concentration
profiles are sufficiently similar to ensure comparable clinical performance [393]. In
other words, the main principle in bioequivalence testing is the proof of equivalence
in pharmacokinetics which in turn is extrapolated to equivalence in therapeutics.

Formally, a T product is considered bioequivalent to the originator’s product R if
it contains the same active substance and when it is administered at the same molar
dose, no significant differences are observed in the rate and extent of its absorption
compared to the R formulation [237, 392]. In order to standardize and elucidate the
bioequivalence assessment procedure, regulatory health agencies worldwide have
issued dozens of guidelines in bioequivalence testing where special emphasis is
placed on pharmacokinetic issues such as the type of pharmacokinetic parameters
to be estimated, the statistical analysis of these pharmacokinetic measures, the
selection of the appropriate clinical design which will allow the reliable estimation
of the pharmacokinetic parameters, handling of missing drug concentrations, the use
of parent drug or metabolite data, etc.
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(DOI: 10.1007/978-3-319-27598-7_15)
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It becomes obvious that bioequivalence is a wide field having as cornerstones
pharmacokinetics and regulatory aspects. However, an in depth analysis of bioe-
quivalence cannot be accomplished without the acting role of statistics and the
use of computational approaches. For this reason, pharmacokinetic modeling and
simulation have been intimately related to bioequivalence. It is quite common in the
bioequivalence field that modeling and simulation studies which have been reported
in the literature, actually triggered or served as the basis for clarifying or setting
many significant issues of the regulatory guidelines. The significant contribution
of modeling and simulation was greatly acknowledged by the European Medicines
Agency (EMA), and a “Modeling and Simulation Working Group” has been set in
the EMA. The aim of this group is to provide support to other committees such as
the committee for medicinal products for human use, the pediatric committee, etc.

The use of modeling and simulation in bioequivalence assessment has been used
in several aspects of bioequivalence assessment such as the: choice of the suitable
pharmacokinetic metrics for expressing extent and rate of drug absorption, statistical
framework, setting of the appropriate clinical design, sample size estimation, evalu-
ation of pharmacokinetic equivalence in terms of the pharmacodynamic behavior,
bioequivalence assessment in case of highly variable drugs, role of metabolites
in the determination of bioequivalence, medicines interchangeability, and more
recently modeling and simulation approaches for two-stage designs. In addition,
modeling and simulation techniques are now officially being used for reasons of
justifying biowaivers, the pharmacokinetic extrapolation of drugs’ performance to
pediatric populations, elucidating the methodology for the assessment of similar
biopharmaceuticals (i.e., biosimilars), as well as to incorporate the concepts of
phenotyping and genotyping in the bioequivalence field. Finally, some “typical”
modeling and simulation methods, as the case of population pharmacokinetic (see
Appendix C) modeling, have been explored for their applicability in bioequivalence.
In this chapter, many of the above-mentioned cases will be presented.

10.1 General Methodology

This section starts with a rough description of the general concept of the modeling
and simulation techniques used in bioequivalence [394–399]. The main idea is
schematically shown in Figure 10.1 which actually reveals that the main elements
required are the following:

• Random generation of a virtual population sample of subjects with specific
pharmacokinetic (and in some cases pharmacodynamic) properties using Monte
Carlo simulations.

• All parameters of the virtual population of the volunteers are completely
determined by the modeler. In other words, one can adjust the pharmacokinetic
properties of the drug (i.e., the pharmacokinetic model), the level of any type of
variability (e.g., between-subject, within-subject, etc.), the absolute magnitude
of the bioequivalence measure, the administered dose of the drug, the number of
subjects, the sampling scheme, etc.
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Generate random population using
Monte Carlo simulations

Individual Concentration - time data
                    or
Individual pharmacokinetic parameters

Use appropriate statistical models

A.

Repeat the ‘A’ & ‘B’ procedures
for thousands to million of times

C.

Obtain / Visualize / Analyze the resultsD.

Draw conclusionsE.

Construct a simulated bioequivalence studyB.

Fig. 10.1 A schematic representation of the classical modeling and simulation methodology used
for bioequivalence purposes

• More specifically for bioequivalence purposes, at least two virtual population
samples are generated where each one refers to the different drug administration,
namely, the T or R product.

• In a subsequent step, these subjects are appropriately classified into groups in
order to construct a certain clinical design (e.g., the classic two-period, two-
sequence, crossover design or more complex designs of any type).

• Pharmacokinetic estimations can be made by using the typical pharmacokinetic
methods (e.g., noncompartmental analysis, Napierian ln transformation, etc.) or
any other newly introduced method by the modeler.

• Statistical analysis is applied, using the appropriate bioequivalence criteria, and
a decision regarding bioequivalence or not is made.

• The above-mentioned procedure is repeated for many times (in nowadays,
usually more than 100; 000 to millions iterations).

• The value of a factor under study (e.g., the absorption rate constant) is changed
and the entire process is repeated again.

• Finally, one can get information about the performance of bioequivalence under
many different situations (scenarios). This allows drawing conclusions on many
different pharmacokinetic conditions.

10.2 Examples of Modeling and Simulation

The purpose of this section is to present examples and illustrate how modeling
and simulation techniques have been used to elucidate some unresolved issues or
introduce new ideas in bioequivalence assessment.
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10.2.1 Bioequivalence Measures

In the past, one of the first fields, where modeling and simulation methods were
applied to bioequivalence testing, was the choice of the pharmacokinetic parameters
which should be used in statistical evaluation. In order to answer this query one
should recall the basic aims of the bioequivalence appraisal. The scientific basis for
the bioequivalence assessment is based on the pharmacokinetic comparison, namely,
the rate and extent of absorption between T and R [394, 395]. Currently, it is widely
accepted that in case of immediate release formulations the rate of absorption should
be assessed by the peak plasma concentration cmax, whereas the extent of absorption
is expressed by the area under the time–concentration curve AUC from time zero
to the last sampling point or the last measurable concentration, whichever occurs
earlier [394, 395, 400, 401]. In addition, other pharmacokinetic measures are further
used to provide supplementary information. These include the area under the plasma
time–concentration curve extrapolated to infinity AUC1, the time tmax at which cmax

occurs, and the terminal slope of the time–concentration curve. For modified release
products, other pharmacokinetic parameters are used like the maximum and the
minimum drug concentration at the steady state, the AUC between each interval
of administration, the peak–trough fluctuation [402, 403]. In all cases, the areas are
calculated using noncompartmental approaches, namely using the linear- or log-
trapezoidal rule (Figure 10.2).

However, before concluding on the above-mentioned bioequivalence measures
several other metrics had been proposed in the literature and evaluated. In all cases,
the investigation of the potential of a pharmacokinetic metric to be established as
a bioequivalence measure was based on computational approaches. Most of the
research in this field took place during the last two decades of the 20th century.

Fig. 10.2 A non-compartmental approach to calculate the area under the time–concentration
curve: the application of the linear trapezoidal method
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Even though, at that time the computational methodology was at its first stages
of development, the modeling and simulation techniques were in essence the only
available tool for investigation.

Several articles have appeared in the literature adopting naïve or more advanced
computational methodologies. In this vein, cmax was criticized as a metric which
(apart from the rate of absorption) also express the extent of absorption [395, 404,
405]. Other studies had also raised similar concerns about the use of cmax as a metric
of the rate of absorption [406–412]. Several pharmacokinetic metrics were proposed
in order to resolve some drawbacks of the pre-referred bioequivalence measures. For
example, the performance of the cmax=AUC ratio was analyzed using modeling and
simulation techniques. The background rationale of this normalization was rather
simple; since cmax is influenced by the extent of absorption, normalization by AUC
would create a metric which is independent from the degree of absorption.

Meanwhile, scientists used modeling and simulation techniques to introduce a
completely different approach for comparing the time–concentration profiles of the
T and R products. This procedure, which named as “direct curve comparison”
metrics, aimed at quantifying the (dis)similarity of the two time–concentration
profiles based on a point-by-point comparison [413–416]. The proposed direct curve
comparison metrics are the following:

1. Rescigno indices (�1 and �2)

� i D
" R1

0 jRi � Tiji dt
R1
0 jRi C Tiji dt

#1=i

where i is an integer positive number (1 and 2 in case of �1 and �2, respectively),
whereas Ri and Ti refer to the plasma concentrations of the test and reference
product at the i-th time point, respectively.

2. Difference factor f1 defined by the relationship 5.29. This metric was originally
proposed for the comparison of two in vitro dissolution curves [413]. The f1
metric reflects the mean difference by taking into account all data from i D 1 to n.

3. Similarity factor f2 defined by the relationship 5.30.

It should be emphasized here that the modeling and simulation techniques, for
the investigation of the suitable bioequivalence measure, are centered around the
concept of drug exposure [397, 400, 406]. According to the official EMA regulatory
guideline [237], AUC is used to express the extent of exposure, whereas the peak
exposure is reflected on the maximum observed plasma concentration (i.e., cmax).

10.2.2 Statistical Framework

Bioequivalence assessment is, in essence, a comparison between the pharma-
cokinetic performances of two drug products. Thus, at the initial setting of
bioequivalence, there was a need to establish a specific and complete statistical
framework for the comparison.
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10.2.2.1 Seeking for the Appropriate Hypothesis

The first issue that was necessary to be clarified was the choice of the appropriate
statistical hypothesis. In this context, several statistical approaches have been
proposed [417–420].

Firstly, the so-called power approach was proposed which assumes a nominal
hypothesis of bioequivalence or equivalently of no difference between the two drug
products

H �
0 W �T � �R D 0 vs. H �

1 W �T � �R ¤ 0

where �T and �R refer to the average bioequivalence measures (in the ln-domain)
of T and R product, respectively.

The power approach is an ad hoc method of testing the interval H �
0 according

to which the statistical analysis can be carried out by using the standard two-sided
t-test methodology. If H �

0 is rejected, then it cannot be concluded that the T and
R products are bioequivalent. But, when H �

0 is not rejected, then the assessment
continues by assessing if the power is higher than 80%. A graphical illustration of
the rejection region of the power approach is depicted in Figure 10.3A.

An alternative approach was proposed by Hauck and Anderson [417]. In this
case, two-interval hypotheses are defined

H0 W �T � �R � �ı or H0 W �T � �R 	 Cı
vs.

H1 W �ı < �T � �R < Cı
where ı is the predefined acceptance limit (a positive number); usually set at
ln .1:25/.

Fig. 10.3 An oversimplified graphical illustration of the rejection regions of the three different
bioequivalence hypotheses: (A) the power approach, (B) the Hauck and Anderson method, and
(C) the two one-sided test procedure. In all cases, the difference (in the ln-domain) between the
mean measures of bioequivalence of the two products under comparison is plotted versus residual
variability
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In other words, according to the Hauck and Anderson approach, the nominal
hypothesis refers to “no bioequivalence,”while the alternative hypothesis assumes
bioequivalence. This setting allowed the specification of an upper limit of the
type I error (i.e., false positive). This implies that the erroneous determination of
bioequivalence or equivalently the patient risk cannot be higher than the nominal
level of 5%. Figure 10.3B shows the rejection region of the “Hauck and Anderson
approach.”.

Three years later, a modified approach for the hypothesis was proposed by D.
Schuirmann who introduced the two one-sided test procedure (TOST) [418]. The
nominal and the alternative hypothesis, of the two sets of one-sided hypotheses, are
the following:

H01 W �T � �R � �ı H11 W �T � �R > �ı
and

H02 W �T � �R 	 ı H12 W �T � �R < ı

The TOST procedure relies on the decomposition of the interval hypothesesH0 and
H1 into two sets of one-sided hypotheses. The TOST procedure actually states that
the rejection of the interval hypothesis H0, and thus concluding equivalence of �T
and �R, can take place if and only if both H01 and H02 are rejected at a pre-specified
nominal level of significance ˛. In other words, bioequivalence can be denoted when
both H11 and H12 hold.

Assuming normal distribution, the two sets of one-sided hypotheses can be tested
with ordinary one-sided t-tests. Thus, the TOST method is actually identical to the
procedure of declaring equivalence based on the .1 � 2˛/% confidence interval for
�T � �R; namely, if it lies completely within some pre-specified limits (an upper
and a lower limit of acceptance). Figure 10.3C depicts schematically the rejection
region of the TOST procedure.

It is worth mentioning that the approaches presented above which were published
25 � 30 years ago, were published under the title “Pharmacometrics,”which is now
a popular field of application of the modeling and simulation techniques [417, 418].

10.2.2.2 Seeking for the “Limits” and the “Methodology”

Even though the construction of an appropriate hypothesis setting is necessary, it
is not sufficient for the purposes of bioequivalence assessment. A complete and
detailed description of the statistical methodology is required, as well as, the choice
of the acceptance limits.

As far as the limits of acceptance, a fixed ˙20% boundary has been set as
a universal guideline. A strict justification for this value has not appeared in the
literature, but this value was adopted since a 20% difference was considered as being
non-significant in terms of mean clinical effect. Therefore, it seemed reasonable as
a limit for product quality [421].
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Also, all calculations take place in the Napierian logarithm domain of the
pharmacokinetic data (e.g., AUC, cmax). The reason for the ln-transformation is two-
fold .1ı/ a clinical rationale which suggests that the comparison should focus on
the ratio rather than the difference between the mean values of the pharmacokinetic
parameters and .2ı/ a pharmacokinetic/statistical rationale due to the fact that a
multiplicative model is used [422–424]. The latter, properly coupled with the ˙20%
difference, leads to the 80–125% rule.

Thus, according to the general modeling and simulation procedure, depicted
in Figure 10.1, the pharmacokinetic parameters are calculated for each subject
and then they are transformed into the ln-domain. The statistical analysis takes
place afterwards, where the mean sample values of the T and R pharmacokinetic
parameters are calculated, as well as, the residual variability. Based on the TOST
procedure, the .1 � 2˛/% confidence interval is estimated in the normal domain and
compared to the pre-set acceptance limits. Typically, a 90% two-sided confidence
interval is used, since the nominal level of significance is set at 5%. Thus, if the 90%
confidence interval of the mean difference (of the pharmacokinetic parameters of T
and R) is within the 80–125% limits, then bioequivalence is declared.

It will be described later on in this chapter, that in some cases (e.g., highly
variable drugs) the constant 80–125% limits, outlined above, do not suffice, and
other limits are specified.

Average Bioequivalence The assessment procedure using the .1 � 2˛/% confi-
dence interval, which is described above, actually implies the assumption of average
bioequivalence [392, 422]. Indeed, average bioequivalence refers to equivalence in
averages of the marginal distributions of the pharmacokinetic parameters of the T
and R products. As it is already mentioned, this approach is equivalent to the two
one-sided t-tests [418].

In order to explain the encountered variability, the statistical evaluation with
the average bioequivalence approach includes the following “effects”: Sequence,
Formulation, Period, and the nested effect Subject-within-Sequence. The variability
that cannot be described by the pre-referred factors is characterized as “residual.” In
case of the classic 2 � 2 design, the following general linear model is used in the
average bioequivalence procedure

Yijk W �C Sik C Tj C P.j;k/ C eijk (10.1)

where

• Yijk is the pharmacokinetic response (ln-transformed) of the i-th subject in the
k-th sequence for the j-th formulation,

• � is the overall mean,
• Tj refers to the effect for the j-th treatment (i.e., T or R),
• P.j;k/ is the period effect at which the j-th formulation is administered at the k-th

sequence,
• Sik is the effect of the i-th subject in the k-th sequence,
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• eijk refers to the residual variability in observing Yijk. The latter is thought to
express the within-subject variability.

Based on the regulatory guidelines, the Tj and P.j;k/ effects are set as fixed.
In the past, the Sik effect was considered as random, but currently the Sik is also
considered as fixed [237]. It should be mentioned that in the model described by
the relationship 10.1, no carryover effects are assumed, since an adequate washout
period is supposed to be included between the two treatment periods.

The average bioequivalence approach relies on the use of fixed bioequivalence
limits which are defined by the regulatory authorities [237, 392]. The criterion
applied to the determination of bioequivalence is mathematically expressed by

� ln ı � �T � �R � ln ı

where ln ı is usually set at ln .1:25/.
Assuming the classic two-treatment, two-period, two-sequence (2� 2) crossover

design, with equal number subjects in each sequence, the upper and lower limits of
the 90% confidence interval are given by [418, 425]

Up;Low 90% CI D exp

"

.�T � �R/˙ t0:05;N�2
r

MSE
2

N

#

(10.2)

where MSE is the mean square error derived from the linear model described by the
relationship 10.1, t is the t-student statistic with N � 2 degrees of freedom, and N
is the total number of subjects enrolled in the bioequivalence study. It is reminded
that the terms �T and �R refer to the ln-transformed mean pharmacokinetic metrics
of T and R products, respectively.

Overall, it can be concluded that the average bioequivalence approach is a
conventional method which focuses only on the sample average pharmacokinetic
parameters and does not make any comparisons of the products’ variances. Also,
average bioequivalence does not assess subject-by-formulation interaction and
ignores the statistical distribution of the metric. For these reasons, it has been
characterized and concomitantly criticized as an “one size fit all bioequivalence
criterion.”

Other Approaches It should be highlighted that even though the application of
average bioequivalence can ensure efficacy and safety of the two products under
comparison, it cannot address questions like prescribability and switchability. In
order to deal with these issues, the population and individual bioequivalence
approaches were introduced [143, 426–435]. The term prescribability refers to the
physician’s selection for the appropriate drug product for a new patient. This choice
is made among the R product and a number of T formulations that have already been
proved to be bioequivalent to the R. Another important term is switchability. The
latter refers to situation when a switch is made from the R product to a T formulation
within the same patient.
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In order to address the issues of prescribability and switchability two different
methodological procedures have been proposed .1ı/ the population bioequivalence
and .2ı/ the individual bioequivalence.

Population Bioequivalence Approach The concept of population bioequivalence
was introduced in order to offer an answer to the issue of prescribability [426–
428]. Population bioequivalence requires the knowledge of the total variability of
the sample of volunteers, that is, the sum of the between- and the within-subject
variabilities. In order to address population bioequivalence two methodological
options have been proposed: a reference-scaled and constant-scaled criterion. The
reference-scaled approach is mathematically expressed by

.�T � �R/
2 C �

S2TT � S2TR

	

S2TR

� �P

while the constant-scaled approach by

.�T � �R/
2 C �

S2TT � S2TR

	

S2PO

� �P

where S2TT is the total (i.e., within- and between-subject) variability of the T
formulation; S2TR is the total (i.e., within- and between-subject) variability of the
R formulation; S2PO is a constant variance term; �P is the limit of acceptance for
population bioequivalence. The choice between one or the other method depends on
the magnitudes of STR and SPO. The reference-scaled method should be used when
STR > SPO, while the constant-scaled criterion is applied if STR � SPO [422].

Individual Bioequivalence Approach As it is mentioned above, individual bioe-
quivalence was introduced to address switchability. The application of individual
bioequivalence presupposes the estimation of the within-subject variabilities of the
T and R formulation, as well as an additional variance term called as “subject-by-
formulation” interaction. As in case of population bioequivalence, two different
methodologies have been proposed: a reference- and a constant-scaled criterion.
The individual bioequivalence can be expressed by the inequality

.�T � �R/
2 C �

S2wT � S2wR

	C S2D
S2wR

� � I (10.3)

for the reference-scaled method and

.�T � �R/
2 C �

S2wT � S2wR

	C S2D
S2IO

� � I (10.4)

for the constant-scaled method. In the above expressions, S2wT is the within-subject
variability of the T formulation; S2wR is the within-subject variability of the R
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formulation; S2IO is a constant within-subject variance term used in individual
bioequivalence; S2D is the variance component of subject-by-formulation interaction;
� I is the limit of acceptance for individual bioequivalence. The choice between the
use of the reference- or the constant-scaled criterion is based on the relative values
of SwR and SIO. Thus, the reference-scaled criterion should be applied if SwR > SIO,
whereas the constant-scaled method should be used when SwR � SIO [422, 429].
Plausibly, the individual bioequivalence approach requires the conduct of a replicate
study, which will allow the estimation of the within-subject variability of both T and
R products.

Despite the fact that the individual bioequivalence approach appeared rather
attractive, it gained only limited application due to practical problems [434]. More
specifically, the FDA proposed the use of non-parametric bootstrap 95% upper
confidence interval, namely, a method that requires computational skills. The
same method also proposed for population bioequivalence. In order to resolve this
computational difficulty an alternative confidence interval procedure was proposed.
The latter was based on the Howe’s approximation I to a Cornish–Fisher expansion
[436]. Based on this method, inequalities 10.3 and 10.4 are re-written in terms of a
linear combination of parameters, namely

�1 D .�T � �R/
2 C S2D C �

S2wT � S2wR

	 � � IS
2
wR < 0 for SwR > SIO

�2 D .�T � �R/
2 C S2D C �

S2wT � S2wR

	 � � IS
2
IO < 0 for SwR � SIO

Thus, if one wants a testing methodology for individual bioequivalence, he can
estimate the upper 95% confidence interval for the �1 and �2 in the above
inequalities. This approach can be applied to balanced or unbalanced crossover
designs, and can be computed very easily.

10.2.3 Highly Variable Drugs

Even though the above presented classic average bioequivalence approach is widely
used, it does not suffice for the case of highly variable drugs or drug products.
For the purposes of this chapter the term “highly variable drugs” will be used to
refer to cases where the observed coefficient of variation of the within-subject is
greater than or equal to 30%, regardless if it is due to the drug substance itself
or derives from the product properties [237, 437, 438]. Many causes such as the
drug-related issues of the active moiety and physiological/pathological conditions
of the human body may contribute significantly to variability [438]. Irrespective of
the underlying reason, as within-subject variability increases, it becomes harder to
prove bioequivalence even though it exists. From the relationship 10.2, it becomes
apparent that as variability (i.e., MSE) increases, then it becomes more difficult
to declare bioequivalence, unless a larger sample size is used. In order to resolve
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this problem, several approaches were proposed like the conduct of multiple-dose
studies, the planning of bioequivalence studies in the fed state, as well as the use of
individual or population bioequivalence criteria [427, 429, 432–434, 439].

Closely to the end of the 20th century, the idea of scaled bioequivalence
approaches was invented [440]. Based on this approach, the bioequivalence limits
are expanded as a function of the within-subject variability of the reference product

Up;Low bioequiv. limits D exp .˙kscSwR/

where ksc is a scaling factor and SwR is the within-subject variability. Since then, sev-
eral other approaches have been introduced which ameliorate the properties of the
scaling rationale [262, 264, 425, 441–443]. Thus, the word “scaled” characterizes
the bioequivalence acceptance limits which are gradually becoming wider based
on estimates of the within-subject variability of the study. Figure 10.4 illustrates
several scaling methods either proposed in the literature, or currently accepted by
the regulatory agencies.
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Fig. 10.4 Bioequivalence acceptance limits as a function of the “unexplained” variability. (A) and
(B): x�axis refers to the “pooled” Test-Reference residual variability (actually, its coefficient of
variation CVw), (C) and (D): x�axis is the calculated within-subject variability of the reference
product (the coefficient of variation CVwR). (A) uses the classic 80–125% limits, (B) is the first
scaled approach proposed in 1995, (C) refers to the mixed scaled criterion adopted by the EMA,
and (D) is the mixed scaled proposed by the US FDA
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In Europe, bearing in mind all scaled procedures, a novel methodology was
adopted by the EMA [237, 444]. Currently, the EMA suggests the application of
a mixed scaled approach which relies on SwR. According to this method, it is
recommended that if the coefficient of variation of SwR (i.e., CVwR) is less than (or
equal to) 30% or higher (or equal to) than 50%, then the classic 80–125% limits
or the expanded 69.84–143.19% limits should be applied, respectively. For CVwR

values between 30 and 50%, the scaled limits should be used. The EMA scaled
limits can be expressed mathematically by

Up;Low bioequiv. limits D
8
<

:

0:80; 1:25 for CVwR � 30%
exp

�˙k �
scSwR

	
for 30% < CVwR < 50%

0:6984; 1:4319 for 50% � CVwR

where k �
sc is a scaling factor (k �

sc D 0:760) set by the EMA for the scaled approach.
In addition, a secondary criterion is used in all cases. The latter defines that the point
estimate of the geometric mean ratio of the pharmacokinetic parameters should
be between the 80–125% acceptance interval. This constraint is used to avoid the
risk of accepting two drug products which in fact may differ significantly in their
geometric-mean-ratio values. It should be stated that the scaling procedure applies
only to cmax, whereas the acceptance limits of AUC are kept equal to the typical
levels (80–125%), regardless the level of variability.

A similar criterion, but not completely identical to that proposed by the EMA,
was introduced by the US FDA [443, 445]. Based on the FDA method, a reference-
scaled approach is used for drugs with CVwR 	 30%. These scaled limits were
mathematically expressed by

Up;Low bioequiv. limits D
(

0:80; 1:25 for CVwR < 30%

exp
h
˙ ln .1:25/ SwR

Sw0

i
for 30% � CVwR

where Sw0 is a constant (set equal to 0:25) referring to the regulatory standardized
variation of the FDA approach. Therefore, the actual “constant” value next to SwR is
ln .1:25/ =0:25 � 0:893. In any case, for drugs with CVwR less than 30%, the typical
80–125% limits are applied. Finally, the point geometric mean of T=R ratio estimate
of the pharmacokinetic parameter should lie in the region of 80–125%.

It is worth mentioning that the reference-scaled procedures recommended either
by the EMA or the FDA, imply the use of full-replicate or a semi-replicate design
[443, 445], where at least the R product is administered twice to each subject. The
use of replicate designs is essential in order to estimate the within-subject variability
of the R product. A more detailed discussion on the replicate designs is provided
later in the chapter.

Apart from the similarities between the EMA and the FDA scaling methods,
several differences also exist [446, 447]. Firstly, the FDA uses a different (i.e.,
higher) scaled constant than the EMA. In addition, there is no upper cut-off limit
for FDA, as in case of the EMA method (Figure 10.4C). The latter leads to
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continuous expansion of the bioequivalence limits (Figure 10.4D). Plausibly, these
two differences imply that the FDA method is more permissive than EMA. This
attitude becomes even more evident as CVwR increases. Besides, a finding from the
modeling and simulation methods revealed that a sample size increase affects more
the EMA limits than the FDA [446]. In essence, these two approaches can only lead
to identical results either when CVwR is less than 30% or when a large number of
subjects are recruited.

It should be underlined that the development of all scaled bioequivalence
approaches was based entirely on modeling and simulation techniques. All the
above-mentioned articles, dealing with scaling bioequivalence approaches, relied
solely on modeling and simulation techniques. The application of modeling and
simulation techniques allowed the study of many different scenarios; thus, the
properties as well as the pros and cons of each scaled procedure were evaluated.
Also, modeling and simulation allowed the comparison of the properties of the
EMA’s and the FDA’s approaches [446, 447]. The common modeling and simulation
methodology for this type of analysis is based on the following combination
of factors: simulation of bioequivalence studies (see Figure 10.1) under several
different conditions of variability, sample size, type of clinical design, similarity
in the average pharmacokinetic parameter values, and any setting for certain
parameters of the scaling method. The main “tool” for the assessment of each
method was the construction of plots called as “power curves.”The power curves
plots show the percentage of bioequivalence acceptance as a function of a variable,
usually the geometric mean ratio of T=R ratio for a certain pharmacokinetic
parameter. A typical example of a power curve plot is shown in Figure 10.5.

The main advantage of power curves relies on the fact that they depict the
overall performance of the utilized method for several different conditions which
are controlled by the modeler. Every point in the “power curves” plot refers to the
average percent acceptance value derived from thousands to millions of iterations
of a bioequivalence study. Thus, allowing the extraction of robust estimates. Each
bioequivalence study is generated using Monte Carlo methods for the random

Fig. 10.5 Percent of
bioequivalence acceptance
(y�axis) of the test vs. the
reference product for several
values of their geometric
mean ratios (x�axis). The %
numbers, close to the curves
refer to the coefficient of
variation of the residual
variability. In this case, the
geometric mean T=R ratio
ranges from 80 to 125%
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generation of the pharmacokinetic parameters. Finally, the statistical methodology
presented above is applied to each one of the bioequivalence studies.

10.2.4 Clinical Design

The main purpose of the clinical design of a bioequivalence study is to distinguish
the formulation effect from other factors that can also affect the outcome of
the study. Thus, the study design is primarily dependent on the pharmacokinetic
properties of the active substance. A valuable tool for the choice of the appropriate
clinical design is the use of modeling and simulation techniques which allow the
investigation of the performance of each design under the anticipated conditions of
the planned bioequivalence study. The modeling and simulation techniques offer
the opportunity to test the candidate designs and choose the one which offers the
optimum performance of the study, e.g., higher statistical power, estimation of
within-subject variability, avoidance of inflation of type I error, etc.

10.2.4.1 Standard Design

Traditionally, the randomized, two-treatment, two-sequence, two-period (2 � 2)
design (Figure 10.6) is used in bioequivalence assessment [237, 392]. Based on
the 2 � 2 design, each subject receives consecutively the two drug products
(i.e., T and R) in two different time phases, which are separated by an adequate
washout period. The duration of the washout period is calculated using the
elimination half-life of the drug. The latter should be adequately large (e.g., more
than five times the elimination half-life) to ensure that no drug can be detected at
the initiation of the second period of the study.

Fig. 10.6 The classic two-treatment, two-period, two-sequence, crossover design. Between the
two dosing administrations an adequate washout period should exist in order to avoid carry-over
effects. The terms T and R refer to the Test and the Reference products, respectively
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It should be underlined that due to the nature of this design, the within-subject
variability of any of the two products (i.e., T or R) cannot be estimated. After
applying the linear model (expression 10.1), the estimated residual error is actually
an estimate of the pooled variability from the two drug products, which is generally
considered (even though it is not always true) to reflect the within-subject variability
of the active substance.

10.2.4.2 Alternative Designs

Even though the 2 � 2 design has been widely used, other possibilities for clinical
setting are also accepted such as replicate and two-stage designs.

Replicate Designs In replicate designs, each participant receives the same product
more than once. The replicate administration may refer to both formulations or to
only one of them. Some examples of replicate designs are shown in Figure 10.7.
One advantage of replicate designs is the fact that they allow the calculation of the
within-subject variability of a drug product, if this product is administered more
than once to the same subject. This implies a very useful application to the case
of highly variable drugs, where the knowledge of SwR is needed. Thus, in case
of highly variable drugs, it is proposed the use of three- or four-period studies
(Figure 10.7) where, at least, the R product is administered twice [237, 443, 445].
In case of Figure 10.7C, each subject receives both T and R products twice, which
leads to four periods of administration. Plausibly, this type of design allows the
estimation of the within-subject variabilities of the two treatments T and R. On the
contrary, replication may only refer to one treatment (i.e., R), which in turn allows
the estimation of SwR (e.g., Figure 10.7A and 10.7B).

A common advantage of replicate studies relies on their properties to reduce
the required number of subjects [392, 439, 448]. For example, a four-period
design requires almost 50% of the subjects of a typical 2 � 2 study. Plausibly,
replicate designs should also be used in case of the individual bioequivalence
approach, but they are not mandatory for either the average or the population
bioequivalence approach [422]. As mentioned above, the assessment of several
replicate designs in bioequivalence assessment has been made using modeling and
simulation techniques. Nevertheless, the regulatory authorities do not promote or
suggest a specific replicate design.

Two-Stage Designs Two-stage designs are a recent possibility for clinical design in
bioequivalence studies [237, 449–451]. The general rationale of two-stage designs
methodology is the following: initially (stage 1), a group of subjects is recruited and
their pharmacokinetic data are analyzed using the statistical principles discussed
earlier in this chapter. If some predefined criteria are satisfied in stage 1 (e.g.,
bioequivalence is proved), the study stops since there is no need to proceed into stage
2. Otherwise, additional subjects can be included and the study proceeds into stage
2 [452]. Finally, data from both stages are combined and appropriately analyzed. A
general schematic presentation of two-stage designs is shown in Figure 10.8.
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Fig. 10.7 Representative examples of replicate crossover designs used in bioequivalence assess-
ment (A) a two-sequence, three-period design, (B) a three-sequence, three-period design, and (C)
a two-sequence, four-period design. Between the consecutive drug administrations, an adequately
long washout period should be used

In case of two-stage designs appropriate steps are taken in order to preserve
the overall type I error of the study [453]. A type I error is observed when the
null hypothesis is rejected even though it is actually true. It is reminded that in
bioequivalence assessment, the null hypothesis is that of no equivalence. Thus, the
two-stage clinical designs that can be used in bioequivalence assessment should be
firstly verified to not lead to inflation of the type I error, namely, to avoid false
positive results. In this context, several two-stage designs and their modifications
have been proposed in the literature [454–462]. Initially, two studies were published
toward the validation of methods on two-stage crossover bioequivalence studies
[454, 455]. Figure 10.9 is flowchart of two of the first approaches.
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Fig. 10.8 A simplified schematic representation of the two-stage designs used in bioequivalence
studies. An initial group of subjects (stage 1) is recruited based on some specific and predefined
criteria in the study protocol. If for a certain reason (explicitly pre-specified in the protocol), the
study needs to move on to the second stage, then sample-re-estimation takes place. Finally, data
from both stages are appropriately combined and bioequivalence assessment is made using specific
statistical procedures. Special concern is made to avoid inflation of type I error

It becomes evident that evaluation of a candidate two-stage designs and finally
the choice of a two-stage designs is based on modeling and simulation techniques.
Some basic steps of the modeling procedure are outlined below:

• The algorithm of the modeling procedure is based on the general principles of
the two-stage designs as these are depicted in the relevant flowchart (e.g., as in
case of Figure 10.9).

• A total number of two-stages are considered and no provision is made for
additional stages.

• Each stage consists of a single 2 � 2 or a parallel bioequivalence study.
• An initial number of subjects are set for stage 1.
• Monte Carlo methods are used for the random generation of the pharmacokinetic

profiles for the number of subjects set before.
• All estimated pharmacokinetic parameters are transformed in the ln-domain

where the statistical analysis is further applied.
• For average bioequivalence purposes, the linear statistical model (expres-

sion 10.1) is used, as discussed above in this chapter. In particular, for stage 1 the
effects considered are: Sequence, Period, Treatment, and Subject(Sequence).
After sample size re-estimation in stage 2, the analysis of the entire
set of data uses the effects: Sequence, Treatment, Stage, Period(Stage),
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Estimate Bioequivalence at Stage 1
setting α=2.94%

Estimate stat. power at Stage 1
setting α=5%

If bioequivalence is met,
then Stop

If bioequivalence is met,
then Stop

If stat. power ≥ 80%,
then Stop

If stat. power ≥ 80%,
assess bioequivalence

with α=5%

If stat. power < 80%, assess
bioequivalence at Stage 1

with α=2.80%

Type ‘B’

Type ‘D’

Failure

Success or Failure

Success or Failure

Success or Failure

Success

Success

If stat. power < 80%,
estimate sample size using

residual variability from Stage 1
and α=2.94%

Assess bioequivalence
using data from both stages

and α=2.94%

Assess bioequivalence
using data from both stages

and α=2.80%

If bioequivalence is not met,
then estimate stat. power

at Stage 1 setting α=2.94%

If bioequivalence is not met,
re-estimate sample size using
residual variability from Stage 1

with α=2.80%

A

B

Fig. 10.9 A schematic illustration of two typical adaptive sequential designs proposed for
bioequivalence purposes (A) the so-called type “B” and (B) the type “D” design
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Subject(Sequence�Stage). It is worth mentioning that the additional factor
“sequence�stage” proposed by the EMA was found to be unnecessary [462]. All
these effects are usually considered as “fixed,”even though the choice of “fixed”
or “random” effect does not alter the % bioequivalence acceptance [462].

• After finishing stage 1, power calculation is made in order to decide on the next
step of the procedure.

• Power estimation relies on several factors like: the observed difference in
the average pharmacokinetic parameters between the two drug products, the
observed variability, the choice of type I and II errors, etc.

• For stage 2, a minimum sample size is considered to be 2. In any case, the sample
size used in stage 2 should be the minimum even number.

• An upper limit for the total sample size can be defined or not, based on the
individual two-stage designs examined. Based on this choice, futility criteria can
be further used in the algorithm or not.

• The levels of the assumed type I error for stage 1 and 2 are a priori defined. This
is necessary in order to control the overall type I error of the two-stage designs.
This step is important since it affects the performance of the two-stage designs.
An “ideal” two-stage designs should not lead to inflation of the type I error
and concomitantly exhibit the highest possible statistical power. To this point,
it should be mentioned that in case of the EMA, it is now generally proposed that
a 94:12% confidence interval can be used for the analysis of both the first stage
and the entire set of data.

• Usually, under each condition, millions of bioequivalence studies are simulated
in order to obtain robust estimates.

10.2.5 Sample Size Estimation

Sample size estimation is an issue inextricably related with clinical design and very
often is an exhaustive point when planning a bioequivalence study. It is necessary
that a bioequivalence study should include an adequate number of subjects in order
to have the ability to prove equivalence. Besides, bioequivalence studies should also
avoid unnecessary human exposure to drugs. Usually, a statistical power value of
at least 80% is required in case of bioequivalence studies. The sample size should
also be adequate enough to tolerate for possible subjects dropouts. In any case, the
US FDA and the EMA set the lowest limit of a bioequivalence study to be equal to
12 [237].

Setting the required number of subjects of a bioequivalence study (and generally
any clinical study) is in essence a calculation step which among others depends on
the type of the design (e.g., 2 � 2, parallel, type of higher-order, etc.), the levels of
type I and II errors, the assumed difference between the two products under compar-
ison, the encountered residual variability, the limits of bioequivalence acceptance,
etc. This estimation can be made using mathematical formulas, asymptotic methods,
or Monte Carlo methods. The latter require computational skills to simulate the
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conditions of the bioequivalence study. In addition, they are time-consuming since
they are based on iterations; however, they can offer precise estimates of sample
size.

At first sight, the use of mathematical formulas appears to be an easy task.
In case of the classic 2 � 2 design with ln-transformation of the data several
articles have appeared in the literature suggesting mathematical formulas [463–
469]. For example, the required sample size can be estimated by using the following
relationships:

N D 2�2w
�
Z1�ˇ C Z1�˛

	2

Œ.�T � �R/ � ı�2 when �T > �R

or

N D 2�2w
�
Z1�ˇ=2 C Z1�˛

	2

ı2
when �T D �R

where N is the total sample size, �2w is the residual variance, and Z the normalized
statistic associated with the relevant probability. The above relationships assume
large sample sizes (or normal distribution) of the data and known variance. In this
vein, these relationships can only lead to approximate sample size estimates. More
accurate results can be derived using t-student statistics and applying computational
approaches.

It should be underlined that sample size estimation is a crucial step in the
modeling and simulation techniques for two-stage designs. This due to the fact that
sample size re-estimation might take place after completion of stage 1. The latter
should not only be computed accurately, but also for millions of times. However,
in the routine practice of planning a bioequivalence study, the situation has now
become quite easy; instead of using the above-mentioned approaches (either the
Monte Carlo, or the iterative procedure), tables with sample size estimates can be
found in the literature in case of several different clinical designs. Alternatively,
commercially or publicly available software exist which can lead to an ease estimate
of sample. size

10.2.6 Drug Metabolites

Another field in bioequivalence, where modeling and simulation methods have
been extensively applied, is the assessment of the role of metabolites. Traditionally,
bioequivalence studies are planned focusing on the measurement of the parent drug.
This is justified since the time–concentration profile of the parent compound can
detect the potential formulation differences with higher sensitivity compared to the
metabolite [470, 471]. However, the contribution of metabolites in bioequivalence
assessment has been a controversial issue for several years [470–473].
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The methods which have been applied to investigate the role of metabolites in
bioequivalence assessment can be divided into two major categories. According to
the first approach, data from actual bioequivalence studies are analyzed in order
to provide information for the relative performance of the parent drug and the
metabolite [474, 475]. The major drawback of this method is the fact that the true
condition is unknown, i.e., whether the two drug products are truly bioequivalent
or not. The second methodology relies on modeling and simulation techniques,
namely, the generation and assessment of simulated data [476–483]. The value
of this approach relies on the fact we are able to know the correct answer of the
analyzed study. Besides, modeling and simulation techniques allow us to investigate
many different conditions and thus to make inferences about different types of
parent drug and metabolite kinetics.

The modeling and simulation technique for the assessment of metabolites can
roughly be described with the following points:

• Simulate the conditions of a bioequivalence study. The modeler can define the
number of subjects and generate the relevant pharmacokinetic profile for each
one.

• Generate drug time–concentration data for several pharmacokinetic models
and scenarios, in order to allow inferences to as many as possible different
conditions. In this vein, pharmacokinetic simulations may refer to one- and
two-compartment disposition models for both or any of the parent drug or
the metabolite(s), different absorption and elimination kinetics (e.g., first-order,
Michaelis–Menten, etc.), place (e.g., central compartment) of formation of the
metabolite, other situations like first-pass effect, and so on. For example, a
schematic representation of some popular pharmacokinetic models is depicted
in Figure 10.10.

• Set the desired types and levels of variability (e.g., between-subject, within-
subject, analytical error, etc.), as well as the random error model (e.g., additive,
proportional, combined).

• Based on mass balance principles, each pharmacokinetic model is described with
a system of ordinary differential equations.

• Apply numerical solution to the above-mentioned ordinary differential equations.
• Set the desired sampling scheme (e.g., sparse, typical, dense).
• Estimate the randomly generated individual time–concentration profiles and the

so-derived pharmacokinetic parameters (AUC, cmax, etc.).
• Divide the individual pharmacokinetic parameter data into appropriate groups in

order to simulate the conditions of the desired clinical design (e.g., 2�2, parallel).
• Apply statistical analysis and assess bioequivalence for each study using the

appropriate statistical framework.
• Repeat the entire procedure for thousands of times in order to obtain robust

inferences.

For example, based on the mass balance principle, the pharmacokinetic model
shown in Figure 10.10 F is mathematically described by the following differential
equations and initial conditions:
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Fig. 10.10 Pharmacokinetic compartmental models used for the simulation of the parent drug (P)
and metabolite (M) kinetics. One- and two-compartment models are shown for P and/or M. First-
pass metabolism (assuming Michaelis–Menten kinetics) may also take place leading either to the
metabolite under study (E and F), or to another compound (D). Arrows indicate first-order transfer
from one-compartment to another. Key: GI, the gastrointestinal tract; ka, first-order absorption rate
constant; km, first-order formation rate constant of the metabolite; kel;M , elimination rate constant
of M; kel;P, elimination rate constant of P; k12 central compartment to tissue rate constant (either
for M or P); k21 tissue to central compartment rate constant (either for M or P)

• amount of parent drug in the gastrointestinal system

�
qGI .t/ D �kaqGI .t/ � RmaxqGI .t/

kM C qGI .t/
,
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• concentration of parent drug in the central compartment

�
c1 .t/ D ka

qGI .t/

V1
� .k1E C km/ c1 .t/ � k12c1 .t/C k21

q2 .t/

V1
;

• amount of parent drug in the peripheral compartment

�
q2 .t/ D k12V1c1 .t/ � k21q2 .t/ ;

• concentration of metabolite in the central compartment

�
cm .t/ D km

V1
Vm

c1 .t/ � kmEcm .t/C 1

Vm

RmaxqGI .t/

kM C qGI .t/
;

• initial conditions

c1 .0/ D c2 .0/ D cm .0/ D 0 and qGI .0/ D Faq0:

In the above expressions, qGI .t/ is the amount of drug absorbed; qi .t/ and ci .t/
refer to the amount and the concentration, respectively, of the parent drug in the
i-th compartment at time t; Fa is the absorbed fraction of the initial dose q0; V1
is the volume of distribution of the parent drug in the central compartment; ka is
the first-order absorption rate constant; k1E refers to the elimination rate constant
of the moiety from the central compartment; km is the first-order formation rate
constant of the metabolite; Rmax is the maximum biotransformation rate and kM is
the Michaelis–Menten constant implied in the first-pass effect; Vm is the volume
of distribution of the metabolite in the central compartment and kmE refers to
the elimination rate constant of the metabolite from the central compartment; k12
and k21 represent the transfer rate constants between the central and peripheral
compartments.

10.2.7 Drugs Interchangeability

An issue of special importance in bioequivalence and every day health practice
is to investigate how similar are, one to another, two generic products (i.e., T1
and T2) which have been found to be bioequivalent to the same R formulation.
In bioequivalence assessment, generic drug products are not compared between
themselves, but only against the R product. Ideally, a generic can ideally exhibit
pharmacokinetic performance identical to the innovator’s, but in other cases the
pharmacokinetic behavior can be more or less different. Thus, there is chance that
bioequivalence between T1 and T2 is not ascertained, even though both of them were
found to be bioequivalent with the R product. This matter is very important for the
reasons of drugs’ interchangeability described above in section 10.2.2.2. In order
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to address this issue, namely, the comparison of two generics, several approaches
have been proposed in the literature which can be divided into two main categories:
indirect and direct methods.

10.2.7.1 Indirect Methods

The indirect methods use data from previous bioequivalence studies and apply
statistical approaches in order to make inferences about the relationship between
T1 and T2. In this case, the T1 and T2 are not compared directly one to another, since
no such kind of data are available. Several indirect approaches have appeared in
the literature where each one relies on one or more assumptions [484, 485]. These
indirect methods, as well as their main characteristics, are outlined below:

• Application of meta-analysis assuming that .1ı/ all studies exhibit the same
(2 � 2) design, .2ı/ the between- and within-subject variability in all bioequiva-
lence studies between T1, T2, and R is the same, .3ı/ homogeneity of distribution
of R in all studies [486].

• Use meta-analysis which assumes only that the data from the individual studies
derived from the same population [487].

• Apply adjusted indirect comparison of the T1 and T2 treatments ignoring the
randomization within the individual trials. In this case, the T1 vs. T2 comparison
is adjusted by the results of their direct comparison with R.

• Studies comparing the properties of the above-mentioned indirect methods using
several approaches to calculate the width of the 90% confidence interval such as
z-distribution model, homo- or heteroscedastic method, and pragmatic method
[484, 485].

10.2.7.2 Direct Methods

The main drawback of the indirect methods is the fact that they rely on several
assumptions which are not completely fulfilled in practice. In order to avoid
this problem, direct methods have appeared in the literature. The direct methods
are based on modeling and simulation techniques and allow a straightforward
comparison of the two generics (T1 and T2) using several hypothetical conditions
and pharmacokinetic scenarios.

The direct comparison methods incorporate Monte Carlo simulations in order
to examine all possible relationships between the tested products [488, 489]. The
main purpose of direct methods is to make multiple comparisons of T1 � T2 � R
at the same time, namely, to make comparisons for three products in pairs of two
according to a specific bioequivalence framework. In order to achieve this task, the
modeling and simulation technique investigates concomitantly the performance of
T1 and T2 when each one is compared to the R formulation. Obviously, not only the
same design is used for all possible combinations (T1 � R, T2 � R, and T2 � T1), but
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also all comparisons are made at the same time. In other words, the T1, T2, and R
estimates, which are initially used for the T1�R and T2�R comparisons, are further
applied to the T2 � T1 comparisons.

Several different conditions can be studied such as .1ı/ different true ratios of
T1=R, T2=R and thus, T2=T1 fractions, .2ı/ levels of variability, .3ı/ sample size,
etc. The reason for including all these combinations of values is to obtain an insight
into the different situations that might be encountered in practice. The modeling and
simulation technique follows the general principles presented in Figure 10.1, as well
as, in other parts of this chapter. The values of the linear statistical model effects, i.e.,
Sequence, Period, and Subject(Sequence), remain unaltered for all comparisons;
the only exception is the period effect in case of T2 vs. T1 comparison which is
unavoidably determined by the initial comparisons (T1 vs. R, T2 vs. R).

Overall, the modeling and simulation techniques used in the direct methods
allow to investigate the relative similarity of the generics in terms of percent
bioequivalence acceptance of T1 when compared to the R product, of T2 vs.
R, and T2 vs. T1. In other words, direct methods can provide the necessary
evidence to draw conclusions on generics’ switchability. In addition, modeling and
simulation techniques can introduce new measures like the conditional probability
of bioequivalence acceptance which reflects the % acceptance of generic T2 vs.
another generic T1 given that both T are declared bioequivalent to the same R
formulation.

10.3 Rising Applications

Apart from the modeling and simulation techniques which are applied following the
classic bioequivalence principles, alternative applications of modeling and simula-
tion have been proposed recently. These approaches include the use of nonlinear
mixed effect modeling in bioequivalence studies, the biowaivers justification using
modeling and simulation techniques with special emphasis on pediatric marketing
authorizations, and the assessment of biosimilars.

10.3.1 Population Approaches

The field of population pharmacokinetics has shown an extensive growth during
the last three decades. Population pharmacokinetics is a valuable tool for obtaining
insight into the pharmacokinetic behavior of the mean population performance and
of each individual. It can also allow the identification and quantification of several
sources of variability (e.g., between- and within-subject, inter-occasion variability,
etc.) in drug concentrations in the population under study. Also, population model-
ing has numerous advantages such as incorporating unbalanced designs, modeling
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sparse data (e.g., only two or three samples per subject), and examining the role of
patient-specific covariates (such as gender, age, body weight). All these topics are
presented in the Appendix C.

In the area of bioequivalence, the population pharmacokinetic methodology has
also been proposed and several articles have appeared in the literature investigating
this issue [490–496]. Population pharmacokinetic modeling approaches have been
proposed and evaluated in bioequivalence trials in order to compare the two
treatments, namely, the T vs. R product [490, 491]. Several possibilities have
introduced such as the global analysis of the time–concentration data, with or
without the calculation of the treatment effect. Alternatively, each treatment group
can be analyzed separately and individual pharmacokinetic parameters can be
calculated. Modeling and simulation techniques have been used for the exploration
of these techniques. It can be generally stated that the population pharmacokinetic
approach leads to more reliable estimates (than the conventional bioequivalence
method) when the number of samples per subject is limited [490]. However, this
is a case which is not encountered in actual practice, since special concern is
made a priori for the sampling scheme. The latter is imposed by the fact that for
bioequivalence purposes, pharmacokinetic methods are not only applied based on
the scientist’s point of view, but they are also guided by regulations. For example, the
regulatory guidelines highlight on the issue of the number of samples per subject,
the missing and/or the inferior than the “lower limit of detection” concentration
values. Thus, pharmacokinetics and regulations behave like communicating vessels
in bioequivalence assessment.

Besides, population pharmacokinetic modeling approaches can be used as a
tool for carrying additional information like the genotype and/or phenotype data.
Identification of single nucleotide polymorphism can easily be implemented by the
nonlinear mixed effects modeling and thus can reduce between-subject variability
of a pharmacokinetic parameter.

10.3.2 Justification of Biowaivers

Classically, bioequivalence assessment relies on the use of clinical data from
appropriately designed studies. Supplementary to these studies, other type of
evidence can further be used such as in vitro data. Nevertheless, the alternate type of
evidence can totally replace in vivo data in order to reduce human exposure to drugs,
time, and cost of development. These situations are called biowaivers. Traditionally,
in vitro data (e.g., the BCS, in vitro–in vivo correlations, etc.) were the only tool for
biowaivers. However, more recently modeling and simulation techniques have been
introduced as alternatives of in vivo evidence and are now accepted by the health
agencies. In fact, the importance of modeling and simulation is now recognized
by the EMA, and for this reason a “Modeling and Simulation Working Group” is
established in the structure of the EMA.
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In this context, a common area for application of modeling and simulation
techniques is the case of pediatric marketing authorizations. In this case, the main
focus is on the extrapolation of safety and efficacy evidence from adults to children
and/or between different age groups of the children. In order to enforce this task, the
EMA has published in June 2012 a concept paper toward the extrapolation of safety
and efficacy in medicine development.

10.3.3 Biosimilars

During the last years, biopharmaceuticals (i.e., biological drugs) have been success-
fully used for the management of many diseases. When the patent of an innovator’s
biopharmaceutical expires, biosimilars may be placed on the market. Assessment of
equivalence between biopharmaceuticals is different from the small molecule drugs;
in particular, additional conditions should be specified and stricter criteria have to be
used. These are mainly due to the fact that .1ı/ the structure of biopharmaceuticals
is complex and cannot be completely characterized, .2ı/ even small changes in the
manufacturing process can lead to important differences in the final product, and
.3ı/ there is always a risk for immune response reactions due to their active protein
structure [497–499].

For the evaluation of biosimilarity several methodological approaches have been
proposed [500–503]. It is acknowledged that the determination of biosimilarity
requires a thorough consideration of the evidence regarding the properties of the
two biopharmaceutical products [504]. This evidence may include pharmacokinetic
and pharmacodynamic data, as well as clinical safety and efficacy. For this reason, it
has been proposed the formation of a fundamental biosimilarity assumption in order
to bridge all obtained information. It is suggested that the statistical methodology
for the assessment of biosimilarity should include both a step-wise approach and
methods to assess the totality of evidence. Recently, mathematical models were
proposed for the quantitative assessment of immunogenicity of therapeutic proteins
[505, 506]. These models rely on the concurrent modeling of the protein pharma-
cokinetics and the in vivo anti-drug-antibody responses. Also, statistical methods
were evaluated in order to define a depletion criterion used for immunogenicity
assessment [507].



Chapter 11
Stochastic Compartmental Models

Résumons nos conclusions. . . C’est donc en termes probabilistes
que les lois de la dynamique doivent être formulées lorsqu’elles
concernent des systèmes chaotiques.

Ilya Prigogine (1917–2003)
1977 Nobel Laureate in Chemistry

La fin des certitudes

The “real world” of compartmental systems has a strong stochastic component, so
we will present a stochastic approach to compartmental modeling. In deterministic
theory developed in Chapter 8, each compartment is treated as being both homoge-
neous and a continuum. But:

• Biological media are inhomogeneous, and the simplest way to capture structural
and functional heterogeneity is to operate at a molecular level. First, one has to
model the time spent by each particle in the process and second, to statistically
compile molecular behaviors. As will be shown in Section 11.3.4, this compila-
tion generates a process uncertainty that did not exist in the deterministic model,
and this uncertainty is the expression of process heterogeneity.

• Matter is atomic, not continuous, and cells and molecules come in discrete
units. Thus, in compartmental models of chemical reactions and physiological
processes, a compartment contains an integral number of units and in any transfer
only an integral number of units can be transferred. Consequently, it is important
to develop the theory for such systems in which transfers occur in discrete
numbers of units, and that is done in terms of the probabilities of transfer of
one unit from one compartment to another or to the outside.

As concluded in Chapter 7, the observed time-varying features of a process
are expressions of structural and functional heterogeneity. Observations gathered
from such processes were fitted by power-law and gamma-type functions. Marcus
was the first to suggest stochastic modeling as an alternative working hypothesis
to the empirical power-law or gamma-type functions [325]. At the same time,
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stochastic modeling began to provide applications in compartmental analysis either
as multivariate Markov immigration–emigration models [508–510], or as random-
walk models [323, 324], or as semi-Markov (Markov renewal) models [511, 512].

In deterministic theory we started with the definition of a compartment as a
kinetically homogeneous amount of material. The equivalent definition in stochastic
theory is that the probability of a unit participating in a particular transfer out of a
compartment, at any time, is the same for all units in the compartment.

11.1 Probabilistic Transfer Models

The present stochastic model is the so-called particle model, where the substance
of interest is viewed as a set of particles.1 We begin consideration of stochastic
modeling by describing Markov-process models, which loosely means that the
probability of reaching a future state depends only on the present and not the past
states. We assume that the material is composed of particles distributed in an m-
compartment system and that the stochastic nature of material transfer relies on the
independent random movement of particles according to a continuous-time Markov
process.

11.1.1 Definitions

The development of probabilistic transfer models is based on two probabilities, a
conditional probability and a marginal one, commonly stated as transfer and state
probabilities, respectively.

• The transfer probability pij .tı; t/ gives the conditional probability that “a given
particle resident in compartment i at time tı will be in compartment j at time
t.” Because the particles move independently, the transfer probabilities do not
depend on the number of other particles in the compartments. In this way, the
pij .tı; t/ serve to express the Markovian process. Indeed, the Markov process can
be expressed in terms of the m � m transfer-intensity matrix H .t/ with .i; j/-th
element hij .t/ given by

hij .t/ D lim
�t!0

pij .t; t C�t/

�t
and hii .t/ D hi0 .t/C

mX

jD1
j¤i

hij .t/ . (11.1)

1The terms “drug molecule” and “particle” will be used in this chapter interchangeably.
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The so-defined elements hij .t/ of the transfer-intensity matrix are called the
hazard rates, and define the conditional probability

Pr Œtransfer to j by t C�t j present in i at t� , hij .t/ �t C o .�t/

that “a given particle resident in i at time t leaves by t C�t to go in j,” where�t
is small and o .�t/ denotes all possible higher-order terms of�t.

• The state probability pij .t/ is the special case of the transfer probability where tı
is the starting time, i.e., tı � 0. The state probability gives the probability that
“a given particle starting in i at time 0 is resident in compartment j at time t.” All
these probabilities may be considered as the .i; j/-th elements of the m � m state
probabilities matrix P .t/, with pij .0/ D 0 when i ¤ j. Also, to allow all possible
movements, of particles starting from any initial position, the initial conditions
pii .0/ are set to 1, i.e., P .0/ D I.

In the above expressions, indices i and j may vary between 1 and m with i ¤ j.
Moreover, j may be set to 0, denoting the exterior space of the compartmental
configuration.

To obtain equations for the state probabilities, write the equation for the state
probability at t C�t as the sum of joint probabilities for all the mutually exclusive
events that enumerate all the possible ways in which “a particle starting in i at 0
could pass through the various compartments at time t” AND “end up in j at t C
�t.” These joint probabilities can be expressed as the product of a marginal by a
conditional probability. The state probability pij .t/ that “a given particle starting in
i at time 0 is resident in compartment s at time t” plays the role of the marginal and
the transfer probability hsj .t/�t that “a given particle resident in compartment s at
time t will next transfer to compartment j, i.e., at time t C�t” plays the role of the
conditional probability

pij .t C�t/ D pij .t/


1 � hjj .t/�t

�C
mX

sD1
s¤j

pis .t/ hsj .t/�t C o .�t/ .

The first term in the right-hand side expresses the joint probability that “a particle
starting in i at 0 is present in j at time t” AND “remains in j at t C �t,” and the
second term expresses the sum of joint probabilities that “a particle starting in i at 0
is present in each compartment s, except j, at time t” AND “ends up in j at t C�t.”

Rearranging, taking the limit �t ! 0 in the above difference equations, and
neglecting the higher-order terms of �t, one obtains m2 differential equations,
namely the probabilistic transfer model

�
pij .t/ D �hjj .t/ pij .t/C

mX

sD1
s¤j

hsj .t/ pis .t/ .
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These equations are linear differential equations with time-varying coefficients since
the hazard rates are time-dependent and may be presented in matrix form as

�
P .t/ D P .t/H .t/

with initial conditions P .0/ D I. These models are referred to as generalized
compartmental models and can be studied using the time-dependent Markov theory
[513, 514] but are not of present interest.

In what follows, we will rather restrict ourselves mainly to the standard Markov
process in the probabilistic transfer model with time-independent hazard rates. This
is equivalent to assuming that the transfer probabilities do not depend on either the
time the particle has been in the compartment or the previous history of the process,
and

H .t/ � H. (11.2)

These equations lead to the matrix solution

P.t/ D exp .Ht/ . (11.3)

In most pharmacokinetic applications, the system is open and the eigenvalues of H
are real and negative. This implies that the solution has the form of a sum of negative
exponentials.

11.1.2 The Basic Steps

To illustrate the successive steps in this procedure, we present the case of a simple
two-compartment model, Figure 11.1. There will be four differential equations, one
for each combination of the i and j previously introduced indices. For example, to
obtain the differential equation for j D 1, one has to advocate the necessary events
for a particle starting in i to pass through the two compartments at time t and end up
in 1 at .t C�t/:

• “the particle is present in 1 at time t,” associated with the state probability pi1 .t/
AND “it remains in the compartment during the interval from t to .t C�t/,”
associated with the transfer probability Œ1 � .h10 C h12/�t�,

Fig. 11.1 Two-compartment
configuration

20h10h

1 2

12h

21h
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OR

• “the particle is present in 2 at time t,” associated with the state probability pi2 .t/
AND “it goes to 1 during the interval from t to .t C�t/,” associated with the
transfer probability h21�t.

Therefore, the probability of the desired joint event may be written as

pi1 .t C�t/ D pi1 .t/ Œ1 � .h10 C h12/�t�C pi2 .t/ Œh21�t� .

To obtain the differential equation for j D 2, one has to advocate the necessary
events for a particle starting in i to pass through the two compartments at time t and
end up in 2 at .t C�t/:

• “the particle is present in 2 at time t,” associated with the state probability pi2 .t/
AND “it remains in the compartment during the interval from t to .t C�t/,”
associated with the transfer probability Œ1 � .h20 C h21/�t�,

OR

• “the particle is present in 1 at time t,” associated with the state probability pi1 .t/
AND “it goes to 2 during the interval from t to .t C�t/,” associated with the
transfer probability h12�t.

Therefore, the probability of the desired joint event may be written as

pi2 .t C�t/ D pi2 .t/ Œ1 � .h20 C h21/�t�C pi1 .t/ Œh12�t� .

Rearranging and taking the limit �t ! 0 for the above difference equations, one
has

�
pi1 .t/ D � .h10 C h12/ pi1 .t/C h21pi2 .t/ ,
�
pi2 .t/ D h12pi1 .t/ � .h20 C h21/ pi2 .t/ ,

(11.4)

with initial conditions pii .0/ D 1 and pij .0/ D 0 for i ¤ j, where i D 1; 2. The
above differential equations have as solution

�
p11 .t/ p12 .t/
p21 .t/ p22 .t/

�
D exp

�� .h10 C h12/ t h12t
h21t � .h20 C h21/ t

�
. (11.5)

Markov processes have H matrices with real negative eigenvalues, which lead to
models that are linear combinations of decaying exponentials, which are analogous
to the deterministic models. In the presence of distinct multiple eigenvalues, the
probability profiles are mixtures of exponentials multiplied by integer powers of
time. The integer powers are the numbers of distinct eigenvalues [366]. Never-
theless, in practice, functions that include parts with noninteger powers of time
have been needed to provide a satisfactory fit to data [323, 509]. In the face of
these “impossible” experimental results, alternative working hypotheses should be
created, e.g., retention-time distribution models.
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11.2 Retention-Time Distribution Models

A stochastic model may also be defined on the basis of its retention-time distribu-
tions. In some ways, this conceptualization of the inherent chance mechanism is
more satisfactory since it relies on a continuous-time probability distribution rather
than on a conditional transfer probability in discretized units of size�t.

One first needs the basic notions associated with a continuous probability
distribution. Consider the age or the retention time of a molecule in the compartment
as a random variable, A. Let:

• f .a/ D dF .a/ =da be the density function of ages A of the molecules in the
compartment,

• F .a/ D Pr ŒA < a� be the distribution function of A, i.e., the probability that “the
molecule will leave the compartment prior to attaining age a,” and

• S .a/ D Pr ŒA 	 a� D 1� F .a/ be the survival function, i.e., the probability that
“the molecule survives in the compartment to age a.”

From the above relations, the hazard function h .a/ is defined as

h .a/ , f .a/ =S .a/ . (11.6)

Also from this definition, the simple relationship

d logS .a/
da

D �h .a/ (11.7)

links the survival and the hazard functions.

11.2.1 Probabilistic vs. Retention-Time Models

We look now for the evaluation of the state probability p .t/ that “the molecule is
in the compartment at time t” in the case of a one-compartment model. To this end,
consider the partition 0 D a1 < a2 < : : : < an�1 < an D t and the n � 1 mutually
exclusive events that “the molecule leaves the compartment between its age instants
ai�1 and ai.” The state probability p .t/ equals the probability of the complement of
the above n � 1 mutually exclusive events,

p .t/ D 1 �
nX

iD2
Pr Œleaves by ai�1 to ai� D 1 �

nX

iD2
ŒF .ai/ � F .ai�1/�

D 1 �
nX

iD2
ŒS .ai�1/ � S .ai/� D 1 � ŒS .a1/ � S .an/� D S .t/ .
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Therefore, the survival function S .a/ plays the same role as the state probability
p .t/. But the former independent variable a is defined as the endogenous or within-
compartment measure of time after the particle introduction to the compartment,
whereas the independent variable t denotes some exterior, exogenous time measure
in a system. Only for the one-compartment model do a and t have the same meaning.

The link between the probabilistic transfer model and retention-time distribution
model may be explicitly demonstrated by deriving the conditional probability
implied in the one-compartment probabilistic transfer model. We look for the
probability, S .a C�a/, that “a particle survives to age .a C�a/.” Clearly, the
necessary events are that “the particle survives to age a,” associated with the state
probabilityS .a/ AND that “it remains in the compartment during the interval from a
to .a C�a/,” associated with the conditional probability Œ1 � h�a�, where h is the
probabilistic hazard rate. Therefore, the probability of the desired joint event may
be written as

S .a C�a/ D S .a/ Œ1 � h�a� .

Then, we can write

h�a D 1 � S .a C�a/

S .a/ D 1 � 1 � F .a C�a/

S .a/ D �F .a/

S .a/ � f .a/�a

S .a/ .

Then, the probabilistic hazard rate h is the particular hazard function value
h .a/ evaluated at a specified age a. For the retention-time distribution models,
h .a/�a gives the conditional probability “that a molecule that has remained in the
compartment for age a leaves by a C�a.” In other words, the probabilistic hazard
rate is the instantaneous speed of transfer.

It is noteworthy that only for the exponential distribution is the hazard rate
h .a/ D f .a/ =S .a/ D � not a function of the age a, i.e., the molecule “has no
memory” and this is the main characteristic of Markovian processes. In other words,
the assumption of an exponential retention time is equivalent to the assumption
of an age-independent hazard rate. One practical restriction of this model is that
the transfer mechanism must not discriminate on the basis of the accrued age
of a molecule in the compartment. In summary, it is clear that the formulations
in the probabilistic transfer model and in the retention-time distribution model
are equivalent. In the probabilistic transfer model we assume an age-independent
hazard rate and derive the exponential distribution, whereas in the retention-time
distribution model we assume an exponential distribution and derive an age-
independent hazard rate.

For multicompartment models, in addition to the retention-time distributions
within each compartment, we require the specification of the transition probabilities
!ij of transfer among compartments. These ! ij’s, assumed age-invariant, give the
probabilities of transfer from a donor compartment i to each possible recipient
compartment j. From (11.1), it follows that !ij D hij=hii is the probability that a
particle in i will transfer to j on the next departure.
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11.2.2 Markov vs. Semi-Markov Models

Consider now a multicompartment structure aiming not only at describing the
observed data but also at providing a rough mechanistic description of how the
data were generated. This mechanistic system of compartments is envisaged with
the drug flowing between the compartments. The stochastic elements describing
these flows are the !ij transition probabilities as previously defined. In addition,
with each compartment in this mechanistic structure, one can associate a retention-
time distribution fi .a/. The so-obtained multicompartment model is referred to as
the semi-Markov formulation. The semi-Markov model has two properties, namely
that:

• the transition probabilities ! ij are time-invariant; this implies that the sequence
of compartment visitations for a particle may be described by a Markov chain
and

• the retention-time distributions are arbitrary.

The semi-Markov formulation in the compartmental context was originally
proposed by Purdue [512] and Mehata and Selvan [515]. The present approach
attempts to characterize fully the mechanistic flow pattern between compartments
and to use nonmechanistic models with the smallest number of parameters to
describe the within-compartment processes. The experimenter might first divide the
system into compartments based on known theory. The retention-time distributions
within each compartment are specified either through expert knowledge from hazard
rates or by fitting alternative models to data. The !ij transition probabilities are
then determined. One advantage of using these nonmechanistic retention times is
the incorporation of inhomogeneous compartments and consequential particle age
discrimination with a minimum number of additional parameters.

The Markov model is a special case of the semi-Markov model in which all the
retention-time variables are exponentially distributed, Ai �Exp.�i/, and � i is the
parameter of the exponential. In this case, the semi-Markov model parameters are
� i D hii and ! ij D hij=� i for j ¤ i and i; j D 1 W m. This results from the assumption
of the Markov model given in (11.1), which implies that the conditional transfer
probability from i to j in a time increment �t is time-invariant, or in other words is
independent of the “age” of the particle in the compartment. Particles with such a
constant flow rate, or hazard rate, are said to “lack memory” of their past retention
time in the compartment.

Figure 11.2 shows a two-compartment Markov model with parameters h10, h12,
and h21 and the semi-Markov model with exponentially distributed retention times
with parameters �1, �2, and !. The conversion relationships are

h10 D �1 .1 � !/ and h12 D �1! and h21 D �2



11.2 Retention-Time Distribution Models 263

10h

12h

21h

11 ~ fA 22 ~ fA

ω−1

ω

1

( )11 Exp~ κA ( )22 Exp~ κA

ω−1

ω

1 2

1 2

1 2

1 B

A

C

Fig. 11.2 The two-compartment Markov model (A) vs. the semi-Markov model with exponential
retention times (B) vs. the general semi-Markov model (C)

from semi-Markov to Markov, and

�1 D h10 C h12 and �2 D h21 and ! D h12
h10 C h12

from Markov to semi-Markov with exponential retention-time distribution. We note
that the compartmental structure of the semi-Markov model is simply determined
by means of !. The figure also shows the general semi-Markov model having the
same structure determined by ! but allowing several distribution models f1 and f2
for the retention times A1 and A2, respectively, in the compartments.

The causes of nonexponential retention times, and hence age-varying hazard
rates, may be numerous. Two general reasons for such retention times in phar-
macokinetic applications are noninstant mixing and compartmental heterogeneity.
Noninstant mixing, for example, is likely to occur in compartmental models with
oral dosing. Inhomogeneous compartments, on the other hand, are a natural conse-
quence of the lumping inherent in dividing the body into two or three compartments,
for example, into a central and a peripheral compartment. Conversely but less
likely, if all the drug particles in a compartment were homogeneous and also well
stirred, then the transfer processes that determine how the drug particles leave the
compartment could not discriminate on the basis of the accumulated age of a particle
in the compartment. Hence such homogeneous, well-stirred compartments could be
modeled using exponential transit times.
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Table 11.1 Density, survival, and hazard functions.

f .a/ S .a/ h .a/

Exp.�/ � exp .��a/ exp.��a/ �

Erl.�; �/ ��a��1

.��1/Š
exp .��a/ exp.��a/

P��1
iD0

.�a/i

iŠ

�� a��1

.��1/Š
P��1

iD0
.�a/i

iŠ

Ray.�/ �2a exp
h
� 1
2
.�a/2

i
exp

h
� 1
2
.�a/2

i
�2a

Wei.�; �/ ���a��1 exp Œ� .�a/�� expŒ� .�a/�� ���a��1

11.2.3 Irreversible Models

11.2.3.1 One-Compartment Model

The one-compartment model is the typical simple irreversible model. For the 1-
compartment model and only when initial conditions are given, the exterior time t
and the molecule ages a are the same. The state probability p .t/ that a molecule is
in the compartment is S .t/:

p .t/ � S .t/ . (11.8)

One has simply to assume a particular probability distribution for A with the
survival function available in a closed form, namely the exponential, Erlang,
Rayleigh, and Weibull. Table 11.1 summarizes the probability density functions,
survival functions, and hazard rates for the above-mentioned distributions. In these
expressions, � is the scale parameter and � and � are shape parameters with
�; �; � > 0 and � D 1; 2; : : : .

• Exponential distribution. The survival function is a single exponential p .t/ D
exp .��t/. A deterministic one-compartment model produces the same profile,
so one can say that this model is the single-exponential distribution of residence
times. However, following instantaneous administration of drugs, the time–
concentration observed profiles sometimes present two decreasing phases on
the semilogarithmic plot. This may be described using the one-compartment
model and assuming a mixed distribution consisting of two exponential survival
functions p .t/ D � exp .��1t/C .1 � �/ exp .��2t/, where � (� < 1) represents
the relative contribution of the first exponential term. These biphasic profiles are
usually attributed to the two-compartment models. However, there is no rigorous
conjunction between the two-exponential and two-compartment models since
more complex compartmental models may also give biphasic-like profiles with
certain combinations of the microconstants. In the same way, one can use the
single compartment model and conceive mixed survival functions containing
three or more exponential forms leading to three- or more-phasic profiles.
It follows therefore that one cannot discriminate on the basis of observed
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data alone between the situation in which the survival function in the single
compartment is the sum of two exponentials and the situation in which a single
exponential survival function is associated with each of the two compartments
present in the configuration.

• Erlang distribution. We assume that A � Erl.�; �/. The state probability is

p .t/ D exp .��t/
��1X

iD0

.�t/i

iŠ
.

• Weibull and Rayleigh distributions. From Table 11.1, we have

p .t/ D exp Œ� .�t/�� (11.9)

for the Weibull distribution and as a special case with � D 2, the Rayleigh
distribution.

Figure 11.3 depicts state probability curves for the Erlang and the Weibull
distributions. The hazard rates as functions of time are also illustrated. For � D 1

and � D 1, we obtain the behavior corresponding to an exponential retention-time
distribution and to the one-compartment deterministic profile.
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Fig. 11.3 State probabilities and hazard functions with � D 0:5 h�1, and � D 1; 2; 3 and � D
0:5; 1; 1:5 for Erlang and Weibull distributions, respectively
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For � > 1, in case of an Erlang distribution, the rate function at age 0 is h .0/ D
0, after which the rate increases and the kinetic profile has a log-concave form.
This provides an initial dampening of the retention probability of newly introduced
particles. Then, the rate is asymptotic to � as the age increases. This implies that
the age discrimination within the compartment diminishes, either rapidly or slowly
depending on �, as the retention time increases.

The Weibull distribution allows noninteger shape parameter values, and the
kinetic profile is similar to that obtained by the Erlang distribution for � > 1.
When 0 < � < 1, the kinetic profile presents a log-convex form and the hazard
rate decreases monotonically. This may be the consequence of some saturated
clearance mechanisms that have limited capacity to eliminate the molecules from
the compartment. Whatever the value of �, all profiles have common ordinates,
p .1=�/ D exp .�1/.

These qualitative features are typical of data from inhomogeneous compart-
ments and/or compartments with noninstant initial mixing. Reciprocally, many
compartments that are not well stirred have these properties. For these reasons,
the Erlang and Weibull retention-time distributions have been very useful in
practice to fit to data. In a theoretical context, Weiss classifies the retention-time
distributions according to the log-convexity or concavity of the corresponding time–
concentration profiles. Moreover, that author attempts to explain these profiles
by assuming time-varying mechanisms as time-varying volume of distribution or
clearance capacities [516–518]. As in Section 7.5 for the empirical models, these
investigations again reveal the strong link between time dependence and process
heterogeneity.

11.2.3.2 Multicompartment Models

Consider the irreversible two-compartment model with survival, distribution, and
density functions S1 .a/, F1 .a/, f1 .a/ and S2 .a/, F2 .a/, f2 .a/ for “ages” a of
molecules in compartments 1 and 2, respectively. We will assume that at the
starting time, the molecules are present only in the first compartment. The state
probability p1 .t/ that “a molecule is in compartment 1 at time t” is S1 .a/ with
t D a; the external time t is the same with the age of the molecule in the
compartment 1, i.e., p1 .t/ D S1 .t/. The state probability p2 .t/ that “a molecule
survives in compartment 2 after time t” depends on the length of the time interval
a between entry and the 1 to 2 transition, and the interval t � a between this event
and departure from the system. To evaluate this probability, consider the partition
0 D a1 < a2 < : : : < an�1 < an D t and the n � 1 mutually exclusive events that
“the molecule leaves the compartment 1 between the time instants ai�1 and ai.” By
applying the total probability theorem (cf. Appendix D), p2 .t/ is expressed as

nX

iD2
Pr Œsurvive in 2 to t j leave 1 by ai�1 to ai� Pr Œleave 1 by ai�1 to ai� .
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If max .ai�1 � ai/ ! 0:

• Pr Œsurvive in 2 to t j leave 1 by ai�1 to ai� D S2 .t � a/ and
• Pr Œleave 1 by ai�1 to ai� D F1 .ai/ � F1 .ai�1/ DdF1 .a/

with a 2 Œai�1; ai�. It follows that p2 .t/ is the Stieltjes integral of S2 with respect to
F1 (cf. Appendix E):

p2 .t/ D
Z t

0

S2 .t � a/ dF1 .a/ D
Z t

0

S2 .t � a/ f1 .a/ da D f1 � S2 .t/ , (11.10)

that is the convolution of the density function f1 in the input site with the survival
function S2 in the sampling site. Similarly, the probability that “the molecule will
leave the compartment 2 prior to time t” is

Z t

0

F2 .t � a/ dF1 .a/ D f1 � F2 .t/ ,

that is, the convolution of the density function f1 in the input site with the distribution
function F2 in the sampling site.

This result can be generalized in the case of a catenary irreversible m-
compartment model [515]; the state probability in the compartment i (i D 2 W m) at
t is given by

pi .t/ D f1 � : : : � fi�1 � Si .t/ .

An elegant form of the previous expressions is obtained in the frequency domain.
The convolution becomes the product of the Laplace transform of the survival and
the density functions:

Qpi .s/ D Qf1 .s/ : : : Qfi�1 .s/ QSi .s/ , (11.11)

where Qf .s/ is the Laplace transform of f .t/, Qf .s/ D L ff .t/g (cf. Appendix F).
For analyzing general irreversible compartmental configurations, Agrafiotis

[519] developed a semi-Markov technique on the basis of conditional distributions
on the retention time of the particles in the compartments before transfer into the
next compartment. This approach uses the so-called forces of separation, and it
is quite different from the one introduced at the beginning of this section, where
the distribution of the retention time in each compartment is independent of the
compartment that the particle is transferring to.
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11.2.4 Reversible Models

Consider the reversible two-compartment model that is explained by way of the
semi-Markov formulation as illustrated in Figure 11.2C. We will assume that at
the starting time all molecules are present in compartment 1. A single molecule
that is present at the initial time in compartment 1 stays there for a length of
time that has a single-passage density function f1 .a/. Then, it has the possibility
to leave the system definitively with probability 1 � ! or reach compartment 2
with probability !. The retention time in this compartment is governed by the
single-passage density function f2 .a/. At the end of its stay in compartment 2, the
molecule reenters compartment 1. Our goal is to evaluate the probability p1 .t/ that
“a molecule survives in 1 after time t.” This event is the compilation of the following
mutually exclusive events:

• “survive in 1 without visit in 2” with probability S1 .t/,
• “survive in 1 with 1 visit in 2” with probability !S1 � f1 � f2 .t/,
• “survive in 1 with 2 visits in 2” with probability !2S1 � f1 � f2 � f1 � f2 .t/,

etc. for an infinite number of visits. The probability of a composite event is then

p1 .t/ D S1 .t/ �
1X

iD0
!i Œf1 � f2 .t/�

�i ,

where f �m denotes the m-fold convolution of f with itself. This last expression has
the structure of the renewal density for positive random variables, which is studied
in probability theory [514]. Taking the Laplace transform of this expression, the
probability has a simpler form in the frequency domain:

Qp1 .s/ D QS1 .s/
1X

iD0
!iQf i

1 .s/ Qf i
2 .s/ .

Because of the boundness of density functions 0 <
R t
0

f .a/da < 1, the infinite sum
has a closed-form expression:

Qp1 .s/ D
QS1 .s/

1 � ! Qf1 .s/ Qf2 .s/
. (11.12)

The probability p2 .t/ that “a molecule survives in 2 after time t” will be given by
using the inverse Laplace transform of

Qp2 .s/ D ! Qf1 .s/ QS2 .s/
1 � ! Qf1 .s/ Qf2 .s/

.
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If at the starting time the molecules are present only in compartment 2, the
Laplace transform of the state probabilities in the compartments are

Qp1 .s/ D
Qf2 .s/ QS1 .s/

1 � ! Qf1 .s/ Qf2 .s/
and Qp2 .s/ D

QS2 .s/
1 � ! Qf1 .s/ Qf2 .s/

.

To deal with more complex compartmental configurations, block diagrams and
transfer functions are now introduced. Block diagrams are extensively used in the
automatic control field [334] to represent the functionality of a process. These are
diagrams involving a set of elements each of them representing a given function.
When the process is described by a mathematical model, each element of the block
diagram represents a mathematical operation such as scaling, integration, addition,
and multiplication. Here block diagrams are used to represent a compartmental
configuration by specifying the pathways and the retention sites that a molecule
can encounter when it is administered in the system. Associated with the block
diagrams, the concept of a transfer function is of fundamental importance in the
analysis of control systems and feedback problems in general. After specifying in
the block diagram a site of external action, i.e., the input or administration site, and
a site of observation, i.e., the output or sampling site, the transfer function is defined
as the ratio of the Laplace transform of the output of a system to its input.

For instance, in the simple one-compartment model associated with gamma
retention-time distribution A �Gam.�; �/,

f .a/ D �

� .�/
.�a/��1 exp .��a/ ,

the transfer function is

Qf .s/ D ��

.s C �/�
.

The usefulness of the transfer functions lies in the fact that:

• The problem of obtaining the transfer function of a complex system, composed
of two or more simple elements, consists in combining the transfer functions of
its elements following some elementary rules [334].

• Once the transfer function is known for a particular complex system, then the
response of the system to any known input is readily found by multiplying the
transfer function by the Laplace transform of the input.

The same problem arises when the pharmacokinetic system is decomposed into
subsystems that can be characterized by transfer functions, but where no closed-
form solution emerges for the complete system. This holds for the evaluation of the
time–amount curve after oral administration when the models of the input and dispo-
sition process are known. In these cases, numerical techniques may be of substantial
help in performing inverse Laplace transforms. These methods fall into two classes,
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.1ı/ approximations by Fourier series expansion and .2ı/ numerical integration in
the complex plane. The validation of these methods and the performance of the
available software have been tested directly with pharmacokinetic models [520].
These evaluations showed that simulations as well as parameter estimations from
functions defined only in the Laplace domain can be associated with the same degree
of reliability as in the conventional case, in which the models are directly given as
functions of time. These techniques are commonly used in pharmacokinetics for
recirculation drug modeling [521, 522] or physiological modeling [523, 524]. With
few exceptions [525], all these approaches are deterministic, and consequently, they
use exponential retention-time distributions.

These findings can be summarized in the following procedure to obtain equations
for a semi-Markov stochastic model:

1. Represent the underlying mechanistic model with the desired physiological
structure through a set of phenomenological compartments with their intercon-
nections.

2. Obtain the equivalent semi-Markov representation by specifying the transition
probabilities !ij and the single-passage retention-time distributions fi .a/ for
each compartment. Obtain the block diagram representation using the transition
probabilities as gain factors and the Laplace transforms of single-passage density
functions as transfer functions.

3. Solve the system of algebraic equations in the frequency domain to obtain the
transfer function between the input and sampling sites. The Laplace transform
of the probability that “a molecule survives in the sampling site after time t”
is this transfer function where substitution of the multiplying Qfi .s/ factor in the
sampling site with the corresponding QSi .s/ was made.

4. Evaluate in the time domain the time–amount course by applying traditional
inverse Laplace transforms [526] or numerical inversion techniques [520, 527].

Conceiving models based on block diagrams may be quite complex, involving
feedback loops and time delays. A paper [528] shows in detail how such a model
can be constructed for a pharmacokinetic system. On the other hand, retention-time
reversible models can be very powerful and flexible for simulation and data fitting.

Example 6. Simulate a Complex System

The procedure is presented in a complex system involving three compartments.
Figure 11.4 illustrates the original model (upper panel) and the semi-Markov model
(lower panel), and Figure 11.5 shows the block diagram representation. If we denote
by u .s/ the input function and by y2 .s/ and y3 .s/ the output functions at the
sampling sites 2 and 3, respectively, we can write

y2 .s/ D 

!12Qf1 .s/ u .s/C !32y3 .s/

� Qf2 .s/
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Fig. 11.4 Complex
3-compartment configuration.
The administration site is in
compartment 1 and the
sampling sites are
compartments 2 and 3
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Fig. 11.5 Block diagram
representation of the complex
system shown in Figure 11.4
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and

y3 .s/ D 

!13Qf1 .s/ u .s/C !23y2 .s/

� Qf3 .s/ .

Solving with respect to y2 .s/ and y3 .s/, we obtain the transfer functions between
the administration and sampling sites:

y2 .s/

u .s/
D

Qf1 .s/


!12 C !13!32Qf3 .s/

� Qf2 .s/
1 � !23!32Qf2 .s/ Qf3 .s/

(11.13)

and

y3 .s/

u .s/
D

Qf1 .s/


!13 C !12!23Qf2 .s/

� Qf3 .s/
1 � !23!32Qf2 .s/ Qf3 .s/

. (11.14)
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The Laplace transform of the probabilities p2 .t/ and p3 .t/ that “a molecule survives
in 2 and 3, respectively, after time t” are obtained by substituting in (11.13),
y2 .s/ =u .s/ and Qf2 .s/ with Qp2 .s/ and QS2 .s/, respectively,

Qp2 .s/ D
Qf1 .s/



!12 C !13!32Qf3 .s/

� QS2 .s/
1 � !23!32Qf2 .s/ Qf3 .s/

,

and in (11.14), y3 .s/ =u .s/ and Qf3 .s/ by Qp3 .s/ and QS3 .s/, respectively,

Qp3 .s/ D
Qf1 .s/



!13 C !12!23Qf2 .s/

� QS3 .s/
1 � !23!32Qf2 .s/ Qf3 .s/

.

�
First, Purdue [529] reviewed the use of the semi-Markov theory, from which in

principle, the requisite pij .t/ regression function may be determined for arbitrary
(nonexponential) retention-time distributions. Although the semi-Markov formula-
tion is elegant, the mechanism determining the sequential location of the particles in
the compartmental structure is highly complex, and it may be difficult to write down
explicit expressions when one is dealing with a general multicompartment system.
The solutions are given in general terms involving an infinite sum of convolutions,
and the complexity generally rules out an analytical solution for the pij .t/ function.

11.2.5 Time-Varying Hazard Rates

The initial idea is to use the differential equations of a probabilistic transfer model
with hazard rates varying with the age of the molecules, i.e., to enlarge the limiting
hypothesis (11.2). The objective is to find nonexponential families of survival
distributions that are mathematically tractable and yet sufficiently flexible to fit the
observed data. In the simplest case, the differential equation (11.7) links hazard
rates and survival distributions. Nevertheless, this relation was at the origin of an
erroneous use of the hazard function. In fact, substituting in this relation the age a
with the exogenous time t, we obtain

�
S .t/ D �h .t/S .t/ ,

which looks like the deterministic one-compartment model (8.4) with time-varying
fractional flow rate k .t/, where the amount of the substance q .t/ and k .t/ are
associated with the S .t/ and h .t/, respectively. This correspondence is valid only in
exceptional cases, and particularly for multicompartment configurations, the use of
a hazard function h .a/ as a time-varying fractional flow rate k .t/ must be handled
with extreme care.
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11.2.5.1 One-Compartment Model

Since the exterior time t and the age of the molecules a are the same for the one-
compartment model, we can use the previous equation to write

�
p .t/ D �h .t/ p .t/ , p .0/ D 1. (11.15)

The solution is given by

p .t/ D exp

�
�
Z t

0

h .a/ da

�
.

The closed-form solutions are more difficult to obtain than those previously obtained
by means of the survival functions. Numerical integration or quadrature can be used
to solve the differential equation or the integral. For instance:

• If the hazard rate is Weibull:

�
p .t/ D ����t��1p .t/ , p .0/ D 1.

This form is very similar to the model often used when the molecules move across
fractal media, e.g., the dissolution rate using a time-dependent coefficient given
by (5.12) to describe phenomena that take place under dimensional constraints or
understirred conditions [17]. The previous differential equation has the solution
given by (11.9).

• If the hazard rate is h .t/ D �
˛
t C ˇ

	
:

p .t/ D � t�˛ exp .�ˇt/ ,

where � is a normalizing constant. This model involving terms like t�˛ or
t�˛ exp .�ˇt/ contains only two parameters and seems to be applicable to fit
some of the data much better for many drugs [269].

In a pioneer work, Marcus established the link between some usual time-varying
forms of h .t/ and f .a/ in a single compartment [325]. For instance in h .t/ D�
˛
t C ˇ

	
, ˛ D 1 leads to A �Gam.�; ˇ/ and 1 < ˛ < 2 defines the standard

extreme stable-law density with exponent ˛. In the case of a D 1:5, the obtained
distribution is known as the retention-time distribution of a Wiener process with
drift.

The use of age-dependent hazard rates provides a large increase in modeling
flexibility, and such models are currently investigated with increasing interest for
the following two reasons, among others:

• Many processes have rates that are inherently age-dependent, e.g., various
digestion and enzyme-kinetic processes.
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• Some complex standard models with many compartments may be simplified
by using approximate age-dependent models with fewer parameters, and thus
often with superior subsequent statistical analysis. One such application is the
description of mixing in passage models.

From a practical point of view, starting from observed data, we are looking for
the retention-time distribution f .a/ of molecule ages. Using the data and (11.15),
recursive techniques may be applied to reveal an approximative time profile of h .t/
(cf. Section 7.7). On a second level, this profile can be identified using retention-
time distributions from Table 11.1.

11.2.5.2 Multicompartment Models

This formulation is the time-varying alternative to the probabilistic transfer models
assuming constant hazard rates as defined by (11.1), and it can be accommodated by
generalizing the Markov processes. These models with age-varying hazard rates are
expressed by a set of linear differential equations with time-varying coefficients.
One may call them generalized compartmental models since they satisfy the
equations of a deterministic model with kij being a function of age a. Nevertheless,
reference must always be made to the stochastic origin of these equations and
confusion avoided between the exogenous time t and ages a of the molecules in
the compartments.

Let us examine now the conditions for which a probabilistic transfer model is
equivalent to a retention-time model, both using the same hazard functions. More
precisely, for the irreversible multicompartment structures, the study can be reduced
to the analysis of an irreversible two-compartment model, where compartment no.1
embodies all compartments before compartment no.2. We have to compare two
situations:

• The probabilistic transfer model whose differential form is

�
p2 .t/ D h1 .t/ p1 .t/ � h2 .t/ p2 .t/ D f1 .t/ � h2 .t/ p2 .t/ ,

where no distinction is made between the time t and ages a.
• The retention-time model expressed by convolution (11.10). The derivation of

this convolution product leads to (cf. Appendix E)

�
p2 .t/ D f1 .t/C f1 � �

S2 .t/ ,

where by definition
�
S2 .t/ D �h2 .t/S2 .t/.

By merging the last three equations, one has

f1 � Œh2 .t/S2 .t/� D h2 .t/ f1 � S2 .t/ ,
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which is the condition of equivalence, i.e., h2 .t/ must commute to ensure the
equivalence between the probabilistic transfer and the retention-time models, both
using the same hazard functions. Among the usual hazard functions the exponential
distribution has this property. For the reversible multicompartment structures, such
a condition further reduces the set of possible distribution functions. For exponential
distributions alone we may have such equivalence, but the model degenerates into a
Markovian one.

11.2.6 Pseudocompartment Techniques

This section proposes the use of a semi-Markov model with Erlang- and phase-
type retention-time distributions as a generic model for the kinetics of systems
with inhomogeneous, poorly stirred compartments. These distributions are justified
heuristically on the basis of their shape characteristics. The overall objective is to
find nonexponential retention-time distributions that adequately describe the flow
within a compartment (or pool). These distributions are then combined into a
more mechanistic (or physiologically based) model that describes the pattern of
drug distribution between compartments. The new semi-Markov model provides a
generalized compartmental analysis that can be applied to compartments that are
not well stirred.

11.2.6.1 The Erlang-Type Retention-Time Distributions

The Erlang distributions used as retention-time distributions fi .a/ have interesting
mathematical properties considerably simplifying the modeling. For the Erlang
distribution, it is well known that if � independent random variables Zi are
distributed according to the exponential distribution

Zi � Exp .�/ , i D 1 W �,

then their summation follows an Erlang distribution:

Z D
�X

iD1
Zi � Erl .�; �/ .

The application of this statement in the present context enables one to represent the
process responsible for the retention of molecules by a chain of � catenary com-
partments, each of them associated with an exponential retention-time distribution
with parameter �. This compartment chain is well known as the pseudocompartment
chain, but no physical or mechanistic meaning may be associated with this chain.
It simply represents a formal way to take into account the Erlang retention-time
distribution.
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11.2.6.2 The Phase-Type Retention-Time Distributions

A more general yet tractable approach to semi-Markov models is the phase-type
distribution developed by Neuts [530], who showed that any nondegenerate distri-
bution f .a/ of a retention time A with nonnegative support can be approximated,
arbitrarily closely, by a distribution of phase type. Consequently, all semi-Markov
models in the recent literature are special phase-type distribution models. However,
the phase-type representation is not unique, and in any case it will be convenient to
consider some restricted class of phase-type distributions.

The phase-type distribution has an interpretation in terms of the compartmental
model. Indeed, if the phenomenological compartment in the model, which is
associated with a nonexponential retention-time distribution, is considered as
consisting of a number of pseudocompartments (phases) with movement of particles
between these pseudocompartments or out of them, then the retention time of a
particle within the entire phenomenological compartment will have a phase-type
distribution. The pseudocompartments do not have a mechanistic interpretation but
rather are a mathematical artifice to generate the desired retention-time distribution.

Using the Markovian formulation, the expanded set of pseudocompartments
leads to the solution

P� .t/ D exp
�
H�t

	
,

where H� and P� .t/ are the transfer-intensity and the state probability matrices,
respectively, both associated with the pseudocompartment structure. It has been
shown that the solutions for the state probability p .t/ of the phenomenological
compartment with the assumed retention-time distribution may be obtained by
finding appropriate linear combinations of the p�

ij .t/. Mathematically, one has

p .t/ D bT
1P� .t/ b2,

where bT
1 D 


1 0 : : : 0
�

and bT
2 D 


1 1 : : : 1
�

are m-dimensional vectors of indi-
cator variables, i.e., 0’s or 1’s. The elements of b1 indicate the origin of particles in
the pseudocompartment structure and b2 indicates that all the pseudocompartments
contribute to build the phenomenological compartment.

Perhaps the most commonly used example of a phase-type distribution is the
Erl.�; �/ distribution, defined by the catenary system consisting of � pseudocom-
partments. According to the phase-type concept for generating distributions, one can
find phase-type distributions that exhibit rich kinetic behaviors using concatenation
of Erlang distributions associated with several �’s: this case is reported as the
generalized Erlang distribution. Further kinetic flexibility can be achieved by
using feedback pathways and partition of hazard rates in the pseudocompartment
structures.
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Fig. 11.6 Pseudocompartment configurations generating Erlang (A), generalized Erlang (B), and
phase-type (C) distributions for retention times in phenomenological compartments. Retention
times are distributed according to A1 �Exp.�1/ and A2 �Exp.�2/

To describe heterogeneity within a compartment, Figure 11.6 illustrates three
pseudocompartment configurations, each of them involving four pseudocompart-
ments in all.

• The first one (A) is a catenary system with pseudocompartments associated with
a �1 hazard rate. The transfer-intensity matrix H� is

H� D

2

6
6
4

��1 �1 0 0

0 ��1 �1 0

0 0 ��1 �1

0 0 0 ��1

3

7
7
5 ,

and the phase-type distribution generated by this structure is Erl.�1; 4/.
• Like the previous system, the second (B) is also a catenary one, but two

pseudocompartments are associated with the �1 hazard rate, and two others with
the �2 hazard rate. The transfer-intensity matrix is

H� D

2

6
6
4

��1 �1 0 0

0 ��1 �1 0

0 0 ��2 �2
0 0 0 ��2

3

7
7
5 ,

and the generalized Erlang density function is more dispersed with the actual
parameter values than the previous one.
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Fig. 11.7 Retention-time densities generated by pseudocompartment configurations: Erlang (solid
line), generalized Erlang (dashed line), and phase-type densities (dotted line)

• The third configuration (C) is unusual because the phenomenological compart-
ment output takes place from the second pseudocompartment and the output of
the last pseudocompartment is fed back to the second pseudocompartment. The
transfer-intensity matrix is

H� D

2

6
6
4

��1 �1 0 0

0 ��1
�
1 � !p

	
�1 0

0 0 ��2 �2

0 �2 0 ��2

3

7
7
5 ,

and the resulting density is “long-tailed.”

For the three pseudocompartment configurations presented above, Figure 11.7
depicts the obtained density functions with parameters set to �1 D 1, �2 D 0:25 h�1,
and !p D 0:3.

The phase-type distributions are designed to serve as retention-time distributions
in semi-Markov models. To obtain the equations of the model for a phenomenolog-
ical compartmental configuration, one has to follow the following procedure:

1. Represent the underlying mechanistic model with the desired physiological
structure through a set of phenomenological compartments with their intercon-
nections.
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2. Express the retention-time distribution for each phenomenological compartment
by using phase-type distributions. However, the phase-type distributions for
these sites are determined empirically. There is no assurance of finding the
“best” phase-type distribution. This step leads to the expanded model involving
pseudocompartments generating the desired phase-type distribution.

3. For the resulting model with phase-type distributions, find the expanded transfer-
intensity and the state probability matrices of the equivalent Markov model H�
and P� .t/, respectively.

4. Simulate the kinetic behavior by combining the P� .t/ probability functions
for the pseudocompartments to obtain the state probabilities P .t/ of a particle
belonging to the phenomenological compartments at time t. That is expressed by
means of appropriate matrices B1 and B2 with indicator variables, i.e., 0’s or 1’s:

P .t/ D B1P� .t/B2.

The elements of B1 indicate the origin of particles in the pseudocompartment
structure and establish the correspondence between the numbering of the original
compartments and the sequence of the pseudocompartments. The elements of
B2 indicate the summing of pseudocompartments to yield the phenomenological
compartment.

11.2.6.3 Structured Models

Although the structured models are at the origin of the pseudocompartment concept,
these models are less well known [531, 532]. The structured models are compart-
mental systems, but with a structure that describes the dynamics in a physically
reasonable way. Imposing some structure on the compartmental model is certainly a
way of dealing with possible ill-conditioning of more general models. The resulting
model has only a few parameters, and is capable of fitting well some observed
data. The proposed structure is more holistic, in the sense that the compartments
themselves may not have an obvious physical interpretation, but the system as a
whole does. Although the number of compartments is increasing, the number of
estimated parameters does not because the model is structured, unlike traditional
compartmental modeling. Models of this type include some well-known systems
[509], and they have been used as examples in other work [342]. This structured
compartmental model has some similarities to the dispersion model [293], but it
does have certain advantages.

Faddy [531] consider the compartmental configuration, shown schematically in
Figure 11.8, where compartments are numbered 1, 2, . . . , m are pseudocompart-
ments, with the starting compartment numbered is (2 � is � m). The material
is transferred between compartments over time according to a Markov process,
where the positive parameters hC, h�, and h0 are the hazard rates. Thus a molecule
administered to the system would be able to clear the system only via the series of
compartments is C 1 W m, corresponding to Erl(h0;m � is C 1) distributed retention



280 11 Stochastic Compartmental Models

1 si m1−si …… 1+si

+h

−h

0h
+h +h

−h −h

0h 0h
0h

Fig. 11.8 Structured Markovian model. Diffusion is expressed by means of hC, h�, and
compartments 1 to is. Erlang-type elimination is represented by means of h0 and compartments
is to m. The drug is given in compartment is and cleared from compartment m

times. As previously noted, a large value of m would be exemplified by a “hump”
in any observed retention data, corresponding to a delay in clearance of the drug.
Pseudocompartments 1; 2; : : : ; is correspond to the states of a random walk with
reflecting barrier at 1, which describes the retention of the drug by movement of
elements between nearest-neighbor sites within a heterogeneous peripheral medium.
For large is, this random walk can be thought of as approximating a diffusion. Such
a model thus describes drug kinetics in terms of two components:

• diffusion within the heterogeneous peripheral medium and
• Erlang distributed retention times describing the elimination from the system.

Retention data that after a possible delay in concentration show a sharp decline
followed by a long tail would be modeled by is � 2 and h0 � h� > hC. The
condition h� > hC ensures that the drift of the random walk (or diffusion) is
away from the reflecting barrier. Figure 11.9 illustrates the probability profiles in
the distribution and elimination compartments when m D 20, is D 15, hC D 0:1,
h� D 0:2, and h0 D 1.

In summary, any stochastic semi-Markov model may be represented as an
expanded Markov model. This simply involves subdividing each compartment into
a number of pseudocompartments, leading to a matrix that essentially defines a
new expanded compartmental system, but with many more compartments [531].
After passing through a sequence of pseudocompartments, a particle would transfer
according to the ! ij transition probabilities. Thus, multicompartment modeling may
be done using the definitions and the methodology developed for the probabilistic
transfer models. Therefore, the formulation of the probabilistic transfer model is
immediate and hence the questions associated with the nature of the eigenvalues and
the complexity of the analytical solutions may be attempted using suitable numerical
procedures and computer software. The assumption of the Erlang retention-time
distributions has several consequences:

• for irreversible models, the eigenvalues of the H matrix may be multiple real,
leading to a “time-power” solution,

• for reversible models, the eigenvalues may be real or complex multiple values,
with negative parts leading to damped oscillations.
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Fig. 11.9 The total probabilities in the distribution (solid line) and elimination (dashed line)
compartments of the Faddy structured model

Erlang- and phase-type distributions provide a versatile class of distributions,
and are shown to fit naturally into a Markovian compartmental system, where
particles move between a series of compartments, so that phase-type compartmental
retention-time distributions can be incorporated simply by increasing the size of the
system. This class of distributions is sufficiently rich to allow for a wide range of
behaviors, and at the same time offers computational convenience for data analysis.
Such distributions have been used extensively in theoretical studies (e.g., [533]),
because of their range of behavior, as well as in experimental work (e.g., [534]).
Especially for compartmental models, the phase-type distributions were used by
Faddy [531] and Matis [326, 331] as examples of “long-tailed” distributions with
high coefficients of variation.

11.2.7 A Typical Two-Compartment Model

The mechanistic model is the traditional reversible two-compartment model. For
this model, Karalis et al. [535] hypothesized a well-stirred compartment, the
central compartment, and a heterogeneous, peripheral compartment. In general, one
would assume that the sampling site is a well-stirred medium ensuring sampling
feasibility technology where the particles mix quickly and homogeneously with
blood, e.g., the central compartment. But such an assumption is not valid for
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the peripheral compartment that represents soft tissues, muscles, or bone or other
organs, Figure 11.2A. We assume that all molecules are present in compartment 1 at
time 0. In the following, we express the heterogeneity in the peripheral compartment
in several manners.

11.2.7.1 Semi-Markov Formulation

We propose to use as single-passage retention-time distributions the A1 �Exp.�/
for the central compartment and the A2 �Gam.�; �/ distribution for the peripheral
compartment and we assume that all molecules are present in compartment 1 at
initial time. According to (11.12),

Qp1 .s/ D 1

s C � � !e�
�
�

sC�
	� . (11.16)

Using the numerical inverse Laplace transform and � D 2 h�1, � D 1 h�1, !e D
0:8, and � D 1; 4; 6, Figure 11.10 illustrates the p1 .t/ time profiles.

Instead of the gamma single-passage distribution for the peripheral compartment,
Wise [323] proposed the mixed random walk in series distribution,

f .t/ / t�w exp

�
��

�
t

�
C �

t

��
,
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Fig. 11.10 Simulation of time–p1 .t/ profiles for � D 1; 4; 6
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to justify the gamma-type function � t�˛ exp .�ˇt/ often used as an empirical model
to fit several series of data. These gamma profiles can also be interpreted in terms of
a recirculation process, where the single-passage retention time is the generalized
inverse Gaussian distribution [271].

11.2.7.2 Erlang-Type Distribution

We propose the retention-time distributions A1 � Exp.�/ and A2 � Erl.�; �/ for the
first and second compartments, respectively. The peripheral compartment 2 is then
constituted by the � pseudocompartments that are required to express Erl.�; �/. It
follows that

� D h10 C h12 and � D h21 and !e D h12
h10 C h12

.

The system now becomes an m D � C 1 compartment model and the probabilistic
transfer differential equations are

�
p1 D ��p1 C �pm,

�
p2 D !e�p1 � �p2,

�
pj D �

�
pj�1 � pj

	
, j D 3 W m.

In the above equations, pi represents the probability that a molecule starting in
compartment 1 is in compartment i at time t. By using � D �t and � D �=�,
one obtains the dimensionless system of differential equations

�
p1 D ��p1 C pm,

�
p2 D !e�p1 � p2,

�
pj D pj�1 � pj, j D 3 W m.

This model is a special case of the model studied by Matis and Wehrly [536]
in which A1 � Erl.�1; �1/ and A2 � Erl.�2; �2/ retention-time distributions are
associated with the first and second compartments, respectively. The analysis of the
characteristic polynomial of this model implies that there are at least two complex
eigenvalues, except for the case � D 2 with parameters satisfying the condition

!e <
4 .� � 1/3

27�
.

The practical significance is that for the above two-compartment models with large
� or large !e, the pi do not have the simple commonly used sum of exponential
forms but damped oscillatory ones. According to the � and !e values, one obtains
a broad spectrum of models able to fit unusual data profiles. Figure 11.11 illustrates
the p1 profiles for � D 2; 4; 6 associated with � D 2 h�1, � D 1 h�1, and !e D
0:8. These simulations are identical to those obtained with the transfer functions in
Figure 11.10. Therefore, Erlang distributions are useful for a class of problems in
which there is initial dampening of the conditional transfer probability due to such
phenomena as noninstant mixing.
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Fig. 11.11 Simulation of time–p1 .t/ profiles for � D 2; 4; 6

11.2.7.3 Phase-Type Distribution

We propose the use of the phase-type distributions previously developed as
retention-time distributions associated with the peripheral compartment. The
numeric values of the parameters are � D 2 h�1, �1 D 1 h�1, !e D 0:8,
�2 D 0:25 h�1, and !p D 0:3. For the three cases, the transfer-intensity matrices
H� of the equivalent Markov model are

H� D

2

6
66
6
6
4

�� !e� 0 0 0

0 ��1 �1 0 0

0 0 ��1 �1 0

0 0 0 ��1 �1
�1 0 0 0 ��1

3

7
77
7
7
5

,

H� D

2

66
6
6
6
4

�� !e� 0 0 0

0 ��1 �1 0 0

0 0 ��1 �1 0

0 0 0 ��2 �2
�2 0 0 0 ��2

3

77
7
7
7
5

,
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H� D

2

6
6
6
6
66
4

�� !e� 0 0 0

0 ��1 �1 0 0

!p�1 0 ��1
�
1 � !p

	
�1 0

0 0 0 ��2 �2

0 0 �2 0 ��2

3

7
7
7
7
77
5

,

respectively. Also, the B1 and B2 matrices with the indicator variables are

B1 D
"
1 0 0 0 0

0 1 0 0 0

#

and BT
2 D

"
1 0 0 0 0

0 1 1 1 1

#

.

Figure 11.12 illustrates the p1 .t/ state probability of having a particle in the sampled
compartment at time t. These p1 .t/ use the retention-time distributions presented in
Figure 11.7. The profile of p1 .t/ that corresponds to Erl.�1; 4/ is the same as that
drawn in Figure 11.11.

0 3 6 9 12 15 18
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10
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10
0

t (h)

p 1( t)

Fig. 11.12 Simulation of time–p1 .t/ profiles using pseudocompartments to generate Erlang (solid
line), generalized Erlang (dashed line), and phase-type densities (dotted line); cf. Figure 11.7
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11.3 Time–Concentration Profiles

The probabilistic transfer and retention-time models are models evaluating the
transition or retention probabilities that are associated with a single particle. This
is why these models are called the particle models. In order to account for all
the particles in the process and administered amounts, one needs to make further
statistical and practical considerations.

11.3.1 Routes of Administration

Let us consider some drug administration practicalities. Up to now, the administered
amounts were considered as initial units introduced simultaneously into several
compartments at the beginning of the experiment. These amounts were considered
as initial conditions to the differential equations describing the studied processes.
Nevertheless, this concept seems to have limited applications in pharmacokinetics.
In this section, we develop the probabilistic transfer and retention-time models
associated with an extravascular or intravascular route of administration.

In both cases, an extra compartment is introduced: the absorption or the infusion
balloon compartment for the extravascular and intravascular route, respectively. To
model these disposition processes, we again apply probabilistic analysis for these
compartments looking for the probability p .t C�t/ that a particle is present at time
.t C�t/ in that compartment. Clearly, the necessary events are “that the particle is
present at time t,” associated with the state probability p .t/ AND “that it remains
in the compartment during the interval from t to .t C�t/,” associated with the
conditional probability Œ1 � h�t�. Therefore, the probability of the desired joint
event may be written as

p .t C�t/ D p .t/ Œ1 � h�t� . (11.17)

For the extravascular and intravascular routes, p .t/ will be referred to as pev .t/ and
piv .t/, and h will be referred to as hev and hiv, respectively.

The two routes of administration can be formulated as follows:

• In the extravascular case, the compartment is the absorption compartment and the
hazard rate hev represents the absorption rate constant. If we assume that hev is
not dependent on time, rearranging (11.17), taking the limit�t ! 0, and solving
the so obtained differential equation with initial condition pev .0/ D 1, we obtain

pev .t/ D exp .�hevt/ .

The retention-time distribution follows:

fev .t/ D hevpev .t/ D hev exp .�hevt/ .
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The Laplace transform of the extravascular retention-time distribution is

Qfev .s/ D hev

s C hev
.

• In the intravascular case with a constant rate infusion between the starting time
TS and the ending time TE, the state probability piv .t/ is given by

piv .t/ D TE � t

TE � TS
ŒH .t � TS/� H .t � TE/� .

Solving (11.17) for hiv , we obtain a time-varying hazard rate hiv ,

hiv .t/ D 1

TE � t
ŒH .t � TS/� H .t � TE/� ,

and the retention-time distribution

fiv .t/ D hiv .t/ piv .t/ D 1

TE � TS
ŒH .t � TS/� H .t � TE/� . (11.18)

In the above relationships, H .t/ is the step Heaviside function. The Laplace
transform of the intravascular retention-time distribution is

Qfiv .s/ D 1

s .TE � TS/
Œexp .�TSs/� exp .�TEs/� . (11.19)

For both cases, the retention-time distribution functions fev .t/ and fiv .t/ are
similar to the input functions vev .t/ and viv .t/, respectively, defined for the
deterministic models. The only difference is that in the stochastic consideration,
the drug amounts are not included is these input functions.

In conclusion, in order to account for the usual routes of administration, one
has to expand the system by artifactual compartments and associated retention-
time distributions corresponding to the extravascular or intravascular routes. So,
the expanded system may now be considered without environmental links and the
administration protocol is simply expressed by the initial conditions in the input
compartments. In this case, at least one of the m compartments must be considered
as the input compartment.

11.3.2 Some Typical Drug Administration Schemes

In the following, we present how to apply the above relationships for the compart-
mental model shown in Figure 11.13.
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Fig. 11.13
Two-compartment
irreversible system 1 2

11.3.2.1 Extravascular Case

The most frequent situation is the heterogeneous absorption materialized by
retention-time distributions A1 � Erl.�; �/ and A2 � Exp.�/ for compartments
1 and 2, respectively. In this configuration, compartment 1 represents the
heterogeneous absorption compartment and compartment 2 represents the
distribution compartment that is the sampled compartment. The state probability
p .t/ that “a molecule initially introduced into compartment 1 is in compartment 2
at time t” is evaluated using (11.10) with

f1 .a/ D ��a��1

.� � 1/Š
exp .��a/ and S2 .a/ D exp .��a/ .

The convolution integral can be evaluated using the Laplace transform. In fact,

L ff1 .a/g D ��

.s C �/�
and L fS2 .a/g D 1

s C �
.

In these expressions, L and s denote the Laplace operator and Laplace variable,
respectively. The solution is given by

p .t/ D L�1
�

��

.s C �/ .s C �/�

�
. (11.20)

The inverse Laplace calculus of (11.20) leads to

p .t/ D �� exp .��t/ � exp .��t/
�X

iD1
� i .�t/��i

.� � i/Š

with � D �= .� � �/.

11.3.2.2 Intravascular Case

Here the drug is administered by a constant rate infusion over T hours. This model
may be conceived in two different ways:

• Probabilistic transfer model. The model is a special case of the two-compartment
model presented in Figure 11.1, where compartment 1 is associated with the
infusion balloon and compartment 2 is associated with the central compartment.
The links between compartments are specified as h12 D hiv .t/, h21 D 0,
h10 D 0, and h20 D h. The state probabilities associated with compartment 1
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are p11 .t/ D piv .t/ and p21 .t/ D 0. The probabilistic transfer equation for the
central compartment 2 is obtained directly from (11.4):

�
p12 .t/ D hiv .t/ piv .t/ � hp12 .t/ .

Given (11.18), the solution of the differential equation is

p12 .t/ D 1

Th
fexp Œ�h .t � T/H .t � T/� � exp .�ht/g . (11.21)

This equation gives the probability that “a molecule set in the infusion balloon 1
at time 0 is present in the central compartment 2 at time t.”

• Retention-time model. The model is an irreversible two-compartment model
whose solution is given by (11.11):

Qp2 .s/ D Qf1 .s/ QS2 .s/ ,

where Qf1 .s/ � Qfiv .s/ and QS2 .s/ D .s C h/�1. The solution is given by

p2 .t/ D 1

Th
fexp Œ�h .t � T/H .t � T/� � exp .�ht/g .

Example 7. Infusion for the Typical Two-Compartment Model

This example concerns the typical two-compartment model previously pre-
sented under the semi-Markov formulation (cf. Section 11.2.7). By assuming that
molecules are initially present in the central compartment, (11.16) is the Laplace
transform of the survival function in that compartment. If now the drug molecules
are administered by a constant rate infusion between TS and TE , the Laplace
transform of the survival function in the central compartment becomes

Qp�
1 .s/ D Qfiv .s/ Qp1 .s/ D exp .�TSs/ � exp .�TEs/

s .TE � TS/

1

s C � � !e�
�
�

sC�
	� .

This expression is obtained by reporting (11.16) and (11.19) into (11.10). Using the
numerical inverse Laplace transform and � D 2 h�1, � D 1 h�1, !e D 0:8, and
� D 1; 4; 6, Figure 11.14 illustrates the p�

1 .t/ time profiles for a 6- h constant-rate
infusion. This figure takes into account the infusion duration, whereas Figure 11.10
considers that all molecules are in compartment 1 at initial times. �

11.3.3 Time–Amount Functions

After specifying the route of drug administration, we now turn to some statistical
considerations in order to express the behavior of all particles administered into the
system.
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Fig. 11.14 Simulation of time–p�

1 .t/ profiles for � D 1; 4; 6 obtained with a 6- h infusion

11.3.3.1 Number of Particles

Let n0 be an m-dimensional deterministic vector representing the number of
particles contained in the drug amount q0 initially given in each compartment.
Also, let Ni .t/ be an m-dimensional random vector that takes on zero and positive
integer values. Ni .t/ represents, at time t, the random distribution among the m
compartments of the number of molecules starting in i. Since all of the molecules
are independent by assumption, Ni .t/ follows a multinomial distribution:

Ni .t/ � multinomial
h
n0i; pi

.t/
i

, (11.22)

where p
i
.t/ is the vector of state probabilities for the molecules starting in i. The

expectation vector, variances, and covariances of Ni .t/ have simple well-known
forms:

E


Ni .t/

� D n0ipi
.t/ ,

Var


Nij .t/

� D n0ipij .t/


1 � pij .t/

�
,

Cov


Nij .t/Nik .t/

� D �n0ipij .t/ pik .t/ .
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Particles starting in each compartment i contribute to obtaining the number of
particles in each compartment:

N .t/ D
mX

iD1
Ni .t/ ,

where N .t/ is a random vector having expectation, variance, and covariance

E ŒN .t/� D
mX

iD1
n0ipi

.t/ , (11.23)

Var


Nj .t/

� D
mX

iD1
n0ipij .t/



1 � pij .t/

�
,

Cov


Nj .t/Nk .t/

� D �
mX

iD1
n0ipij .t/ pik .t/ ,

respectively.

11.3.3.2 Repeated Dosage

When drugs are given in repeated dosage, we have to compile the repeated schemes.
We assume linearity in mixing multinomial distributions, i.e., if

Nik .t/ � multinomial
h
n0ik; pi

.t/
i

for k D 1 W mu, then

Ni .t/ D
muX

kD1
Nik .t/ � multinomial

"
muX

kD1
n0ik; pi

.t/

#

with expectation vector, variances, and covariances

E


Ni .t/

� D p
i
.t/

muX

kD1
n0ik,

Var


Nij .t/

� D pij .t/


1 � pij .t/

� muX

kD1
n0ik,

Cov


Nij .t/Nik .t/

� D �pij .t/ pik .t/
muX

kD1
n0ik,
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respectively. Moreover, if the mu administrations are delayed by tık , one has to
substitute in the previous expressions p

i
.t/ with p

i

�
t � tık

	
H
�
t � tık

	
.

Example 8. Repeated Infusions for the One-Compartment Model

For the one-compartment model of (11.21), assume that n0 particles of drug were
initially in compartment 2 and then two constant-rate infusions delayed by tı were
given in compartment 1. Let n1 and n2 be the infused amounts and T1 and T2 the
infusion times. According to the previous relations, the expectation of the time–
amount curve will be

E ŒN2 .t/� D n0 exp .�ht/C n1
T1h

fexp Œ�h .t � T1/H .t � T1/� � exp .�ht/g

C n2
T2h

˚
exp


�h
�
t0 � T2

	
H
�
t0 � T2

	� � exp

�ht0H

�
t0
	�

with t0 D t � tı.�

11.3.3.3 Drug Amounts

Given the gram-molecular weight of the drug and using Avogadro’s number, one
converts the number of particles n0i and N .t/ to the equivalent amounts q0i and
Q .t/, respectively. Thus, the expectation vector, variances, and covariances of the
drug amount Q .t/ in the compartments at time t are

E


Q .t/

� D
mX

iD1
q0ipi

.t/ ,

Var


Qj .t/

� D
mX

iD1
q0ipij .t/



1 � pij .t/

�
,

Cov


Qj .t/Qk .t/

� D �
mX

iD1
q0ipij .t/ pik .t/ ,

respectively. In matrix notation, E


QT .t/

�
may also be written as qT

0
P .t/. Taking

into account (11.3), the expectation of the drug amount becomes

E


QT .t/

� D qT
0

exp .Ht/ ,

a similar form to that of deterministic models (8.5).
In conclusion, the solutions E



QT .t/

�
for the expected values for such stochastic

models are the same as the solutions qT .t/ for the corresponding deterministic
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models, and the transfer-intensity matrix H is analogous to the fractional flow rates
matrix K of the deterministic model. If the hazard rates are constant in time, we have
the stochastic analogues of linear deterministic systems with constant coefficients.
If the hazard rates depend on time, we have the stochastic analogues of linear
deterministic systems with time-dependent coefficients.

So, it is possible to associate some probabilistic interpretations in the determinis-
tic model. From the probabilistic viewpoint kij�t is the conditional probability that
a molecule will be transferred from i to j in the interval t to t C�t. Thus kii�t is the
conditional probability that a molecule leaves i in that interval.

If the hazard rate of any single particle out of a compartment depends on the state
of the system, the equations of the probabilistic transfer model are still linear, but
we have nonlinear rate laws for the transfer processes involved and such systems are
the stochastic analogues of nonlinear compartmental systems. For such systems, the
solutions for the deterministic model are not the same as the solutions for the mean
values of the stochastic model.

Example 9. Two-Compartment Reversible Model

For the model presented in Section 11.2.4 and in the presence of q01 and q02
amounts of molecules at the starting time in compartments 1 and 2, respectively, the
expectation of the time–amount curve in the two compartments will be the inverse
Laplace transform of

E

 QQ1 .s/

� D


q01 C q02Qf2 .s/

� QS1 .s/
1 � ! Qf1 .s/ Qf2 .s/

and

E

 QQ2 .s/

� D


q01! Qf1 .s/C q02

� QS2 .s/
1 � ! Qf1 .s/ Qf2 .s/

.

�

11.3.4 Process Uncertainty or Stochastic Error

So, we find that the mean behavior of the stochastic model is described by the deter-
ministic model we have already developed. The fundamental difference between
the stochastic and the deterministic model arises from the chance mechanism in
the stochastic model that generates the so-called process uncertainty, or stochastic
error.
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11.3.4.1 Spatial Error

The stochastic error is expressed in (11.23) by the variance Var


Nj .t/

�
and

covariance Cov


Nj .t/Nk .t/

�
that did not exist in the deterministic model. This

error could also be named spatial stochastic error, since it describes the process
uncertainty among compartments for the same t and it depends on the number of
drug particles initially administered into the system. For the sake of simplicity,
assume n0i D n0 for each compartment i. From the previous relations, the
coefficient of variation CVj .t/ associated with a time curve Nj .t/ in compartment
j is

CVj .t/ D
q

Var


Nj .t/

�

E


Nj .t/

� D
s
1

n0

Pm
iD1



1 � pij .t/

�

Pm
iD1 pij .t/

.

CV varies as 1=
p

n0 and it is not a small number for dosages involving few particles
or drugs administered at very low doses; otherwise, CV 
 1, as is typical in
pharmacokinetics [537, 538]. From a mechanistic point of view, if the number
of molecules present is not large, the concentration as a function of time will
show the random fluctuations we expect from chance occurrences. However, if
the number is very large, these fluctuations will be negligible, and for purposes of
estimation, the stochastic error may be omitted in comparison with the measurement
error.

11.3.4.2 Serial Error

An important generalization concerns the multinomial distribution of observations
at different times. To deal with this, we analyze in the Markovian context the pre-
diction of the statistical behavior of particles at time tC tı based on the observations
at t, i.e., the state about the conditional random variable



Ni .t C tı/ j ni .t/

�
. As

previously, in common use is the multinomial distribution



Ni

�
t C tı

	 j ni .t/
� � multinomial

h
ni .t/ ; pi

�
t; t C tı

	i

using the transfer probability p
i
.t; t C tı/ with elements pij .t; t C tı/. For the

standard Markov process, the above expression is reduced to



Ni

�
t C tı

	 j ni .t/
� � multinomial

h
ni .t/ ; pi

�
tı
	i

, (11.24)

where p
i
.tı/ is the state probability with elements pij .tı/. The conditional expecta-

tion of E


Ni .t C tı/ j ni .t/

�
is ni .t/ p

i
.tı/, and whatever the particles’ origin,
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E


N
�
t C tı

	 j n .t/
� D

mX

iD1
ni .t/ p

i

�
tı
	

, (11.25)

Var


Nj
�
t C tı

	 j n .t/
� D

mX

iD1
ni .t/ pij

�
tı
	 

1 � pij

�
tı
	�

,

Cov


Nj
�
t C tı

	
Nk
�
t C tı

	 j n .t/
� D �

mX

iD1
ni .t/ pij

�
tı
	

pik
�
tı
	

.

The expressions (11.24) and (11.25) correspond to (11.22) and (11.23), respectively.
The latter expressions can be obtained from the former ones by substituting t
with 0 and tı with t. Since N .t C tı/ is conditioned to the random n .t/, the total
expectation theorem leads unconditionally to (cf. Appendix D)

E


N
�
t C tı

	� D
mX

iD1
E ŒNi .t/� pi

�
tı
	

,

and the total variance theorem leads to

Var


Nj
�
t C tı

	� D
mX

iD1
E ŒNi .t/� pij

�
tı
	 

1 � pij

�
tı
	�

C
mX

iD1
Var ŒNi .t/� pij

�
tı
	

,

Cov


Nj
�
t C tı

	
Nk
�
t C tı

	� D �
mX

iD1
E ŒNi .t/� pij

�
tı
	

pik
�
tı
	

�
mX

iD1
Var ŒNi .t/� pij

�
tı
	

pik
�
tı
	

.

The covariance structure following the chain binomial distribution [330, 514]
introduces a serial covariance process error [539]. It is expressed by

E


Nj .t/Nk

�
t C tı

	 j n .t/
� D

mX

iD1
Nj .t/Ni .t/ pik

�
tı
	

,

and using the same unconditional approach,

E


Nj .t/Nk

�
t C tı

	� D E


N2

j .t/
�

pjk
�
tı
	C

mX

sD1
s¤j

E


Nj .t/Ni .t/

�
pik
�
tı
	

.
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Hence for all j D 1 W m and k D 1 W m,

Cov


Nj .t/ ;Nk

�
t C tı

	� D pjk
�
tı
	

Var


Nj .t/

�C
mX

sD1
s¤j

Cov


Nj .t/ ;Nk .t/

�
pik
�
tı
	

,

which can be expressed in terms of the n0i and pij .t/ (i; j D 1 W m) using (11.23).
This error could be named temporal stochastic error, since it describes the error
correlation between two time instants for a couple of compartments. These results
agree with the equations of Kodell and Matis [540] in the two-compartment case that
they discussed. The above derivations apply equally to the time-dependent Markov
process if we replace pij .tı/ by pij .t; t C tı/. The additional difficulties in the time-
dependent case come in the computation of pij .tı; t/. It is important to note that in
the general case, the stochastic errors have slight serial correlation and hence are
not independent. In the pharmacokinetic context where the number of molecules is
large, the serial error may be neglected in comparison with the measurement error.

In principle, the general objective is to solve for the distribution of the random
vector N .t/, which might then be compared with the deterministic solution.
However, the first and the second moments are sufficient for many applications using
least squares procedures, since the mean value function gives the regression model
and the second moments provide information useful in weighting the data and in
identifying the model. Hence, one focus only on these moments, and, for simplicity,
one considers only the expectations and variances. The covariance structure, where
the N .t/ are interrelated both temporally and serially, must be used together with
the measurement error.

Finally, note also that we do not use the count of particles that have gone to the
environment. This can be recovered from the original counts and the counts in the
other compartments. Use of that count would introduce an exact linear dependence
in the data.

11.3.5 Distribution of Particles and Process Uncertainty

To illustrate the process uncertainty, we present the case of the two-compartment
model, Figure 11.1. Equation (11.5) associated with the transfer-intensity matrix
H was used to simulate the random distribution of particles, which expresses the
process uncertainty.

11.3.5.1 The Time Profile of the Distribution of Particles

After obtaining the state probabilities and setting the distributional assumptions,
it is interesting to simulate the probabilistic behavior of the system, i.e., evaluate
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Pr


Nj .t/ D n

�
, n D 0; : : : ;1 and j D 1; 2. For a given n, Pr



Nj .t/ D n

�
is the joint

probability of the nC1 possible mutually exclusive events that “i particles originated
in compartment 1” AND “n � i particles originated in compartment 2 are present in
compartment j at t” with i D 0 W n. Because the particles behave independently

Pr


Nj .t/ D n

� D
nX

iD0
Pr


iI n01; p1j .t/

�
Pr


n � iI n02; p2j .t/

�
,

where Pr ŒiI n; p� is the binomial distribution giving the probability of obtaining i
tiles among n with prior probability p.

Using hazard rates h10 D 0:5, h20 D 0:1, h12 D 1, and h21 D 0:1 h�1, and
initial conditions nT

0 D Œ100 50�, Figures 11.15 and 11.16 show the time profile
of Pr



Nj .t/ D n

�
(the n D 0 levels were not shown). In these figures for a given

time t and a fixed level n, the disk area is proportional to the associated probability
Pr


Nj .t/ D n

�
. Thus for each t, the sum of areas is equal to 1. It is noted that a fixed

n has chances to occur at several t, and for a fixed t, the probability is widespread
over a range of n values. This phenomenon is the process uncertainty or stochastic
error.
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Fig. 11.15 Probabilistic behavior of the particles observed in compartment 1. The solid line is the
solution of the deterministic model. The area of a disk located at coordinates .t; n/ is proportional
to Pr ŒN1 .t/ D n�
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Fig. 11.16 Probabilistic behavior of the particles observed in compartment 2. The solid line is the
solution of the deterministic model. The area of a disk located at coordinates .t; n/ is proportional
to Pr ŒN2 .t/ D n�

11.3.5.2 The Process Uncertainty and the Serial Correlation

Assuming as initial conditions first nT
0 D Œ10 5� and then 10n0, Figures 11.17

and 11.18 illustrate:

• the time–particle-count profiles for the two compartments E
h
Nj .t/

i
, j D 1; 2,

• the confidence intervals computed as E
h
Nj .t/

i
˙
q

Var


Nj .t/

�
, j D 1; 2, and

• random data generated from the binomial distribution, Bin


n0i; pij .t/

�
, with prior

probabilities computed from (11.5).

These profiles were normalized with respect to the initial condition in each
compartment. The wider confidence intervals correspond to the initial conditions
n0, and the narrower confidence intervals to 10n0. Even without measurement
error, fluctuations in the predicted amounts expressing the process uncertainty were
observed: the lower the number of molecules initially present in the compartments,
the higher the observed fluctuations.

For tı D 1; 2; 4, Figure 11.19 illustrates the correlation coefficients

Cor


Nj .t/ ;Nk

�
t C tı

	�
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Fig. 11.17 Normalized particle-count profiles in compartment 1. Dashed line and open circles for
low initial conditions, and dotted line and full circles for high initial conditions
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Fig. 11.18 Normalized particle-count profiles in compartment 2. Symbols as in Figure 11.17
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Fig. 11.19 Autocorrelations and cross-compartment serial correlations with increased values of
delay tı D 1; 2; 4 (solid, dashed, and dotted lines, respectively)

computed from covariances

Cov


Nj .t/ ;Nk

�
t C tı

	�

between the same and different compartments. The autocorrelations

Cor ŒN1 .t/ ;N1 .t C tı/� and Cor ŒN2 .t/ ;N2 .t C tı/�

vanish with increasing tı and they are always positive. Cor ŒN2 .t/ ;N2 .t C tı/�
reaches high levels because particles stay longer in compartment 2 when trapped by
the slow hazard rate h21. The cross-correlations Cor



Nj .t/ ;Nk .t C tı/

�
, j ¤ k, are

low in absolute value. Sensitivity analysis reveals that the inter-compartment hazard
rates h12 and h21 highly influence autocorrelations, while cross-correlations are more
influenced by h10 and h20, the elimination rates of particles to the environment.

11.3.6 Time Profiles of the Model

According to definitions (8.3) and (11.6), the relationship between clearance,
volume of distribution, and hazard rate is again recalled:

CL .t/ D V .t/ h .t/ .
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This relationship is now considered as time-dependent because of h .t/, the age-
dependent hazard rate in the retention-time models, or because of V .t/, the time-
varying volume of distribution. For all the above models, the time–concentration
curve E ŒC .t/� in each observed compartment is obtained by dividing E ŒQ .t/� by
V .t/. For the simplest one-compartment model, two different interpretations may
arise:

• The volume of distribution is assumed constant. In this case,

E ŒC .t/� D E ŒQ .t/�

V
D q0S .t/

V

and E ŒC .t/� is directly proportional to the survival function S .t/. Also, the
clearance CL .t/ becomes an age-dependent parameter proportional to the hazard
rate h .t/.

• The clearance is assumed constant. In this case,

E ŒC .t/� D E ŒQ .t/�

V .t/
D q0S .t/

h .t/

CL
D q0

CL
f .t/

and E ŒC .t/� is directly proportional to the density function f .t/. Also, the volume
V .t/ becomes an age-dependent parameter inversely proportional to the hazard
rate h .t/.

In other words, the expectation of the amount behaves always as the survival
function S .t/ but the expectation of the concentration behaves either as the density
function f .t/ if CL is assumed constant, or as S .t/ if V is assumed constant.
Consequently, given a set of observed data, we may have indication that the process
has a constant V if the best fitting is obtained by using the survival function.
Conversely, if the best fitting is obtained by using the density function, the process is
rather driven by a constant CL. Figure 11.20 simulates one-compartment retention-
time models with initial conditions and compares the time–concentration curves
obtained under the hypothesis of a constant V or a constant CL. It is noticeable that:

• the exponential retention-time distribution did not discriminate between the two
hypotheses, and

• for the other distributions, the constant CL hypothesis yields a maximum in the
time–concentration curve.

After bolus administration and keeping the CL constant, Weiss [270] obtained
the simple time–concentration profile

c .t/ D � t�.1��/ exp .��t/

by assuming the Gam.�; �/ retention-time distribution for the particle ages in
the single compartment. Under the same conditions, Piotrovskii [541] assumed
the Wei.�; �/ retention-time distribution, but both models constrained the shape
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Fig. 11.20 Time–concentration curves for the hypotheses of a constant V (dashed line) and a
constant CL (solid line)

parameter (0 < � < 1) in order to ensure monotonically decreasing kinetic profiles.
Nevertheless, there is no indication of biological or numerical nature excluding
cases with � > 1 that lead to profiles similar to those shown in Figure 11.20
and, in several cases [323], experimental data lead to negative powers of time less
than �1 that contrast with the positivity of �. Therefore, some assumptions become
questionable, e.g., the simple compartmental structure, or the time-constancy of CL,
or the choice for the retention-time distribution.

11.4 Random Hazard-Rate Models

In the models of the previous section, the stochastic nature of the system was due to
the random movement of homogeneous individual particles. They are probabilistic
transfer models or retention-time models expressing that the molecules are retained,
or trapped by cells or otherwise fixed components of the process. In this way, these
models express the structural heterogeneity that may originate from the time courses
of particles through media that are inhomogeneous or from the retention of particles
by organs in the body that are characterized by heterogeneous or fractal structures,
e.g., the liver and lung.

Let us now consider a class of models that introduce particle heterogeneity
through random rate coefficients. In this conceptualization, the particles are assumed
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different due to variability in such characteristics as age, size, molecular con-
formation, or chemical composition. The hazard rates h are now considered to
be random variables that vary, influenced by extraneous sources of fluctuation
as though stochastic processes were added on to the hazard rates. This approach
corresponds to a physiologically realistic mechanism by which the hazard rates
fluctuate in an apparently random manner because of influences from other parts
of the real system affecting them but that are not included in the model. The random
variable h is associated with a specific probability density function f .h/.

Hazard rates are heterogeneous particle models expressing a functional het-
erogeneity. As such they contrast with probabilistic transfer and retention-time
models, which assume homogeneous particles and express a structural hetero-
geneity. As pointed out in Chapter 7, these heterogeneities may be described by
simple empirical models with time-varying parameters. Using stochastic model-
ing, these heterogeneities may also be expressed in a different manner. In fact,
the combination of the resulting stochasticities will provide a rich collection of
models. Matis and Wehrly [329] call P1 stochasticity the variability induced by
structural heterogeneity, and P2 stochasticity the variability induced by functional
heterogeneity.

We now consider models that combine the sources of stochastic variability
identified previously [542]. The experimental context reproducing the randomness
of h can be conceived as follows:

• Assume that m0 independent units were introduced initially into the system with
a transfer mechanism whose hazard rate h applies to all units in the experiment.
The random movement of individual units in the heterogeneous process will
result in a state probability p .t; h/ depending on the specific h of all units in
that experiment. Using the binomial distribution, the conditional expectation and
variance are

E ŒN .t/ j h� D m0p .t; h/ ,

Var ŒN .t/ j h� D m0p .t; h/ Œ1 � p .t; h/� .

• Let also n0 be replicates of the above experiment where the hazard rate varies
from experiment to experiment with probability density function f .h/. From
the previous relations, the unconditional expectation and variance are (cf.
Appendix D)

E ŒN .t/� D EhE ŒN .t/ j h� D m0p .t/ ,

Var ŒN .t/� D EhVar ŒN .t/ j h�C VarhE ŒN .t/ j h�

D m0pS .t/C m2
0pF .t/ ,
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with

p .t/ D
Z

h
p .t; h/ f .h/ dh, (11.26)

pS .t/ D
Z

h
p .t; h/ Œ1 � p .t; h/� f .h/ dh D p .t/ �

Z

h
p2 .t; h/ f .h/ dh,

pF .t/ D
Z

h
Œp .t; h/ � p .t/�2 f .h/ dh D

Z

h
p2 .t; h/ f .h/ dh � Œp .t/�2 .

The variance expression is composed of two terms: m0pS .t/ generalizes the
variance of a standard binomial distribution and is attributable to the stochastic
transfer mechanism (structural heterogeneity) and m2

0pF .t/ reflects the random
nature of h (functional heterogeneity).

The random hazard rate model is easily obtained from the above by considering a
single unit, m0 D 1, and n0 particles initially administered into the system. The first
two moments are obtained by summing n0 independent and identically distributed
experiments:

E ŒN .t/� D n0p .t/ , (11.27)

Var ŒN .t/� D n0 ŒpS .t/C pF .t/� D n0p .t/ Œ1 � p .t/� .

These relations are analogous to (11.23); the only difference is that in (11.27), p .t/
mixes the conditional p .t; h/ with the distribution f .h/.

11.4.1 Probabilistic Models with Random Hazard Rates

The solution of the probabilistic transfer equations leads to the exponential model
(11.3). The presence of negative exponentials in the model may simplify somewhat
the choice of distribution associated with the random hazard rate. In fact, the
elements p .t; h/ of the state probability matrix exp .Ht/ in (11.3) are exponentials,
and integrating (11.27) over the random variable h, we obtain

Z

h
exp .�ht/ f .h/ dh D M .�t/ ,

where M .�t/ is the moment generating function of h. Hence, the parameters of the
assumed “mixing” distribution f .h/ for the population of heterogeneous particles
may be estimated directly by fitting M .�t/ to data.

For the one-compartment model with n0 initial conditions, the distribution of
the random hazard rate h can be simply mixed with the state probability p .t; h/ D
exp .�ht/, and relations (11.27) become
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Table 11.2 Density and moment generating functions.

f .h/ M .�t/

Exp.�/ � exp .��h/ .1C t=�/�1

Erl.�; �/ ��h��1

.��1/Š
exp .��h/ .1C t=�/��

Gam.�; �/ � .�h/��1 exp .��h/ =� .�/ .1C t=�/��

Rec.˛; ˇ/ 1=ˇ, 0 � .h � ˛/ =ˇ � 1 exp.�˛t/ Œ1� exp .�ˇt/� = .ˇt/

E ŒN .t/� D n0M .�t/ ,

Var ŒN .t/� D n0


M .�t/ � M2 .�t/

�
.

By using the moment generating functions of Table 11.2, one directly obtains the
following cases (the variance expressions were omitted for simplicity):

• Discrete distribution:

E ŒN .t/� D n0

mX

iD1
pi exp.�� it/

associated with the distribution function Pr Œh D � i� D pi, i D 1 W m. In principle,
one could fit this model with multiple rates to data and estimate the � i parameters.
However, in practice the estimation can be difficult even for m D 3, and becomes
particularly hazardous for any real application with m > 3 [542].

• Rectangular distribution:

E ŒN .t/� D n0 exp.�˛t/
1 � exp.�ˇt/

ˇt
.

This model is an analogue to the previous model with multiple rates in that the
m specified fractions are replaced by a continuous rectangular rate distribution
[542, 543].

• Gamma distribution:

E ŒN .t/� D n0 .1C t=�/�� . (11.28)

This is the most widely applied distribution for h. When the shape parameter
is an integer, one obtains the Erlang distribution. Hence, the one-compartment
stochastic model leads to power-law profiles involving � and � parameters.

In the following, we show how to apply probabilistic transfer models with
random hazard rates associated with the administration and elimination processes
in a single-compartment configuration.
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11.4.1.1 Hazard Rate for the Absorption Process

We report the one-compartment probabilistic transfer model receiving the drug
particles by an absorption process. In this model, the elimination rate h was fixed and
the absorption constant hev was random. For the stochastic context, the difference
hev � h D w is assumed to follow the gamma distribution, i.e., W �Gam.�; �/ with
density f .wI�;�/ and E ŒW� D �=�.

The state probability for a particle with given hev to be in the central compartment
at time t is

p .t;w/ D hev

hev � h
Œexp .�ht/� exp .�hevt/�

D h C w

w
exp .�ht/ Œ1 � exp .�wt/� . (11.29)

Irrespective of the individual hev, the state probability is the mixture

p .t/ D
Z

w
p .t;w/ f .wI�;�/ dw.

But for the gamma density the following hold:

xf .xI�;�/ D �

�
f .xI�;�C 1/ , (11.30)

1

x
f .xI�;�/ D �

�� 1
f .xI�;� � 1/ ,

allowing us to compute

Z

h
p .t; h/ f .h/ dh

D exp .�ht/

�
1 � M .�tI�;�/C h�

� � 1 Œ1 � M .�tI�;� � 1/�
�

Z

h
p2 .t; h/ f .h/ dh

D exp .�2ht/
n
1� 2M .�tI�;�/C M .�2tI�;�/

C 2h�

.� � 1/
Œ1 � 2M .�tI�;� � 1/C M .�2tI�;� � 1/�

C h2�2

.� � 1/ .� � 2/ Œ1 � 2M .�tI�;� � 2/C M .�2tI�;� � 2/�
)
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Fig. 11.21 For the absorption model, expected profile (solid line), confidence corridors (mixed
and dashed lines for functional and structural heterogeneity, respectively), and profile with the
mean coefficient value (dotted line)

with � > 2 and M .�tI�;�/ given in Table 11.2. From (11.26) and (11.27),
one obtains the expected profile E ŒN .t/� D n0p .t/ and the standard deviationsp

n0pS .t/ and
p

n0pF .t/ associated with the structural and functional heterogeneity,
respectively. For n0 D 10, h D 0:1 h�1, � D 1:5 h�1, and � D 2:5, Figure 11.21
shows the expected profile, the confidence corridors computed from the previous
standard deviations, and the profile n0p .t; �=�/ obtained from (11.29) using the
expected value of the random variable W. All these profiles were normalized with
respect to the initial condition n0. We note the larger variability associated with the
functional heterogeneity compared to that associated with the structural one, and the
difference between the expected profile of the model with a random rate coefficient
and the profile of the model with a fixed coefficient evaluated at the mean rate.

11.4.1.2 Hazard Rate for the Elimination Process

We present the one-compartment case in which the drug amount n0 is given over
a period T by a constant-rate infusion. Assuming a random hazard rate h over the
molecules, the state probability that “a molecule associated with a hazard rate h is
in the compartment at time t” is
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p .t; h/ D 1

Th

�
1 � exp .�ht/ , t � T,
exp Œ�h .t � T/� � exp .�ht/ , T < t.

(11.31)

Let h be gamma distributed, i.e., H �Gam.�; �/. By using properties (11.30)
with � > 1 for the gamma distribution, the resulting probability that “a molecule
regardless of its hazard rate is in the compartment at time t” will be

p .t/ D �

T .� � 1/

(
1 � .1C t=�/�.��1/ , t � T,
Œ1C .t � T/ =���.��1/ � .1C t=�/�.��1/ , T < t.

From (11.26) and (11.27), we obtain the expected profile and standard deviation.
For n0 D 10, � D 1:5 h�1, and � D 2:5, Figure 11.22 shows the expected profile,
the confidence corridors computed from the standard deviation, and the profile
n0p .t; �=�/ obtained from (11.31) using the expected value of the random vari-
able H. All these profiles were normalized with respect to the initial condition n0.
As for the absorption process, we note the difference between the expected profile
of the model with a random rate coefficient and the profile of the model with a fixed
coefficient evaluated at the mean rate.
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Fig. 11.22 For the elimination model, expected profile (solid line), confidence corridors (dashed
lines), and profile with the mean coefficient value (dotted line)
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For � D 1, the gamma distribution is reduced to an exponential one, and
following the same procedure,

p .t/ D �

T

�
ln .1C t=�/ , t � T,
ln .1C t=�/ � ln Œ1C .t � T/ =�� , T < t.

In this case, following long-term infusion, no asymptotic behavior can be reached
as t goes to infinity, i.e., no steady state exists.

Note that when the drug is given by a short infusion, i.e., T ! 0, the above
expressions for p .t/ are reduced to (11.28).

Each molecule has its own hazard rate, and if we assume a constant volume of
distribution V , each molecule will have its own clearance defined as CL , Vh.
Then CL becomes a random variable, and there follows the distribution of h with
expectation E ŒCL� D VE Œh� D V�=�. Regardless of the molecule’s clearance,
the systemic clearance may be obtained on the basis of the expected profile E ŒN .t/�
using either the plateau evaluation during a long-term infusion or the total area under
the curve. Both evaluations give CL D V .� � 1/ =�. Note that for � D 1, the
systemic clearance cannot be defined albeit individual molecular clearances exist.
The discrepancy between E ŒCL� and CL is due to the randomness of the model
parameter h.

The discrepancy mentioned above in the parameter space is at the origin of the
often reported discrepancy in the output space. When a rate coefficient is a random
variable, the expected amount of a model with a random rate coefficient will always
exceed the amount of a model with a fixed coefficient evaluated at the mean rate.
It is a widespread conjecture in modeling that for systems with linear kinetics, the
deterministic solution is identical to the mean value from any stochastic formulation.
This conjecture, however, clearly does not hold when the rate coefficient is a random
variable. In fact, the function exp .�kt/ is convex, and using Jensen’s inequality
[544] we can prove that for any t,

E Œexp .�kt/� 	 exp .�E Œk� t/ ,

which permits us to conclude that the kinetic profile of a homogeneous substance is
always faster than that of a heterogeneous compound for which the mean rate is the
same as the rate of the homogeneous one. Therefore, the mean of the stochastic
model exceeds the deterministic model evaluated at the mean rates, E ŒN .t/� >
n .t;E ŒCL�/, and this is why CL < E ŒCL�.

For models using the pseudocompartment techniques to express the retention-
time distribution, the same procedure as for the probabilistic transfer models can
be applied to incorporate the randomness of the distribution parameter. Also, for
simple situations, several assumed probability density functions of h that are rich
in form yet parsimonious in parameters have been suggested by Matis [329, 543,
545]. Although these models are lengthy, they have few parameters and may be
fitted to data using standard nonlinear least squares computer programs. Clearly,
these models represent the union of many mechanisms that have been observed
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in experimental studies to be of interest in retention-time modeling. These models
have considerable appeal analytically because the parameters are identifiable, the
regression functions are not necessarily monotonic, and most of the previous models
are special cases of this mixture model.

11.4.2 Retention-Time Models with Random Hazard Rates

Like the previous ones, these models are two-level models. Now, the retention-
time model substitutes the probabilistic transfer model in the first level, and in
the second level, parameters of this model are assumed to be random and they are
associated with a given distribution. Consider, for instance, the one-compartment
model with Erlang retention times where the parameter � is a random variable
expressing the heterogeneity of the molecules. Nevertheless, even for the simplest
one-compartment case, the model may reach extreme complexity. In these cases,
analytical solutions do not exist and numerical procedures have to be used to
evaluate the state probability profiles.

This approach is presented for the two-compartment model of Section 11.2.7.
At the second level in (11.16), we assume that � is a gamma-distributed random
variable,ƒ �Gam.�2; �2/. The Laplace transform of the state probability is

p1 .t/ D �2

� .�2/

Z

�

.�2�/
�2�1 exp .��2�/ L�1

(
1

s C � � !e�
�
�

sC�
	�

)

d�.

This expression was computed by the numerical inverse Laplace transform embed-
ded in the numerical quadrature. As previously, we used � D 1; 4; 6, E Œƒ� D
�2=�2 D 1, and �2 D 4 h�1. Figure 11.23 illustrates the influence of the �
parameter on the shape of the state probability profile: the larger �, the most
pronounced the rebound form of the profile. For comparison, cf. Figure 11.10, which
was obtained with fixed � D 1 h�1.

Actually, the inverse problem should be solved, i.e., given the data n .t/ con-
taining errors, obtain a plausible candidate f .h/ associated with a known function
p .t; h/. This function, termed kernel, is assumed to be a retention-time distribution
other than an exponential one; otherwise, the problem has a tractable solution by
means of the moment generating functions as presented earlier. This part aims to
supply some indications on how to select the density of h. For a given probability
density function f .h/, one has to mix the kernel with f .h/:

n .t/ D n0

Z

h
p .t; h/ f .h/ dh. (11.32)

Equation (11.32) is a linear Fredholm integral equation of the first kind. It is also
known as an unfolding or deconvolution equation. One can preanalyze the data and
try to solve this first-kind integral equation. Besides the complexity of this equation,
there is a paucity of numerical methods for determining the unknown function f .h/
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and for � D 1; 4; 6

[212, 546] with special emphasis on methods based on the principle of maximum
entropy [211, 547]. The so-obtained density function may be approximated by
several models, gamma, Weibull, Erlang, etc., or by phase-type distributions.

Although attractive at first, there are some problems associated with the random
rate models. Here, we really have a two-level stochastic model in that the parameters
of the basic model contain a stochastic process. So, the first important problem is
how to partition the contribution of the basic probabilistic or retention-time model,
and the contribution of the random rate distribution model. This cannot be decided
on the basis of empirical time–concentration data alone. The case is that of fitting
a sum of exponentials model to the time–concentration data and then to assume
that the number of compartments in the system is at least as large as the number
of exponential terms required to achieve an acceptable fitting. This practice is
inappropriate and may be very misleading when a random rate coefficient is present.
Indeed, for a biphasic distribution of time–concentration data, the biexponential
model is used with the common hypothesis that the underlying mechanism is a
deterministic two-compartment model. But it is apparent that a one-compartment
model with h having two possible outcomes has a biexponential function for its
mean value. It follows therefore that one cannot imply that a multiexponential
fitting of the observed mean value is sufficient evidence of a multicompartment
system [542]. A second problem is related to the choice of stochastic processes to
be added to a transfer coefficient. Since no transfer coefficient may ever be negative,
distributions such as the normal are excluded, but log-normal, gamma, or Weibull
would be acceptable.
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11.5 The Kolmogorov or Master Equations

Given a compartmental structure, the probabilistic transfer, the retention-time,
as well as the random hazard rate models were first conceived to express the
probability of a particle transferring between compartments. In a next step and for
the multinomial distribution, the model was extended to all particles administered
into the system and expectations, variances, and covariances were obtained. In the
last step, Pr



Nj .t/ D n

�
, n D 0; : : : ;1 and j D 1 W m, was obtained, i.e., the

probability of having a given number of particles n in a given compartment j at
time t. In a reverse way and for a given compartmental structure, one could model
Pr


Nj .t/ D n

�
and subsequently obtain the statistical distribution of particle transfer

among compartments. The probabilistic transfer formulation is rather focused on
compartmental modeling and describes mainly diffusion processes. Additionally,
probabilistic transfer models can also be proposed for processes involving chemical,
metabolic, and enzymatic reactions as well as for release, transport, and absorption
phenomena. In this section, enlarged modeling concepts will be used to take into
account all these processes without exclusively referring to the special case of
compartmental modeling.

In a general context, suppose a given volume V contains a spatially homogeneous
mixture of Ni particles from m different populations of initial size n0i (i D 1 W m).
Suppose further that these m populations can interact through mı specified reaction
or diffusion channels Rl (l D 1 W mı). These processes are assumed to be
characterized by the probability of an elementary event per unit time that depends
only on the physical properties of the diffusing or reacting particles and on the real
system environment such as temperature, pressure, etc. Then, we may assert the
existence of mı constants hl that are the hazard rates as they were defined in (11.1)
for the probabilistic transfer models. Now they are reformulated and the elementary
transfer event is designated by a single index l, instead the double index ij denoting
the start and end compartments.

The hl are used to express the conditional probability of “changes in the
population sizes for the Rl reaction from t to t C �t given the system in n .t/
at t.” These probabilities are described by means of the intensity functions
I'l;1;:::;'l;m

.N1; : : : ;Nm/, whereby

Pr


N1 changes by ' l;1,. . . , Nm changes by ' l;m

�

D I'l;1;:::;' l;m
.N1; : : : ;Nm/�t C o .�t/

with ' l;i denoting the changes in population i by the Rl reaction. Analysis of the
mechanistic behavior of a population of reacting particles inside V leads to the
intensity functions [548] of the form

I'l;1;:::;' l;m
.N1; : : : ;Nm/ D hlN

 l;1
1 : : :N

 l;m
m (11.33)
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involving the hazard rates hl and the number of particles  l;i from the population i
implied in the Rl reaction. The intensity functions are l-order elementary processes
in the previous equation, with

 l D
mX

iD1
 l;i.

The definition of the hl hazard rates and the model of (11.33) are the only required
hypotheses to formulate the stochastic movement or reaction of particles in a spatial
homogeneous mixture of m-particle populations interacting through mı reactions.

To calculate the stochastic time evolution of the system, the key element is the
grand probability function

pn1;:::;nm .t/ D Pr ŒN1 .t/ D n1; : : : ;Nm .t/ D nm� ,

i.e., the joint probability that “there will be in the system n1 particles of the 1-st
population, . . . , and nm particles of the m-th population at time t.” The abundance
of particles at t can be viewed as a random vector N.t/ D ŒN1 .t/ ; : : : ;Nm .t/�T and
the objective is to solve for pn .t/, for any t > 0. One standard approach for solving
for the grand probability function is to use equations known as the Kolmogorov
differential equations or known also as the master equation in chemical engineering.
This equation may be obtained by using the addition and multiplication laws of
probability theory to write pn .t C�t/ as the sum of the probabilities of the 1C mı
different ways in which the system can arrive at the state n.t/ at time t C�t:

pn .t C�t/ D pn .t/

"

1 ��t
mıX

lD1
al

#

C�t
mıX

lD1
bl. (11.34)

Here we have defined the quantities al and bl by

al , I'l;1;:::;' l;m
.N1; : : : ;Nm/ ,

bl , pn1�' l;1;:::;nm�'l;m
.t/ I'l;1;:::;' l;m

�
n1 � ' l;1; : : : ; nm � 'l;m

	
.

Thus:

• The quantity al�t is the probability that “an Rl reaction occurs in �t, given the
system in n .t/” and the first term in (11.34) is the probability that “the system
will be in the state n .t/ at time t, and then remains in that state in .t; t C�t/.”

• The quantity bl�t gives the probability that “the system has one Rl reaction
removed from the state n .t/ at time t, and then undergoes an Rl reaction in
.t; t C�t/.” Thus, bl will be the product of pn .t/ evaluated at the appropriate
once-removed state at t, TIMES the l-th intensity function evaluated in that once-
removed state.
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Subtracting pn .t/ in (11.34), dividing by�t, and taking the limit as�t ! 0, one
has

�
pn .t/ D �pn .t/

mıX

lD1
al C

mıX

lD1
bl (11.35)

for ni > 0 and the appropriate boundary conditions for each ni D 0. The initial
conditions are

pn .0/ D
mY

iD1
ı .ni � n0i/ ,

where ı .n � n0/ is the Dirac delta function. These equations yield the desired prob-
ability distribution for N.t/. This is an infinite system of linear differential equations
in the state probabilities expressed by the Kolmogorov equations. Although the
system is infinite, the probabilities associated with states much larger than

P
i n0i

become minute.
An important property of the stochastic version of compartmental models with

linear rate laws is that the mean of the stochastic version follows the same time
course as the solution of the corresponding deterministic model. That is not true for
stochastic models with nonlinear rate laws, e.g., when the probability of transfer of a
particle depends on the state of the system. However, under fairly general conditions
the mean of the stochastic version approaches the solution of the deterministic
model as the number of particles increases. It is important to emphasize for the
nonlinear case that whereas the deterministic formulation leads to a finite set of
nonlinear differential equations, the master equation generates an infinite set of
linear differential equations although the rate laws are nonlinear.

Besides the hypothesis of spatially homogeneous processes in this stochastic
formulation, the particle model introduces a structural heterogeneity in the media
through the scarcity of particles when their number is low. In fact, the number of
differential equations in the stochastic formulation for state probability keeps track
of all of the particles in the system, and therefore it accounts for particle scarcity.
The presence of several differential equations in the stochastic formulation is at
the origin of the uncertainty, or stochastic error, in the process. The deterministic
version of the model is unable to deal with stochastic error, but as stated in
Section 11.3.4, that is reduced to zero when the number of particles is very
large. Only in this last case can the set of Kolmogorov differential equations
be adequately approximated by the deterministic formulation, involving a set of
differential equations of fixed size for the states of the process.
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Fig. 11.24 Two-way
catenary compartment model
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11.5.1 Master Equation and Diffusion

As an example application, we will develop the master equation for a fragment of a
two-way catenary compartment model around three compartments spaced by�z, as
illustrated in Figure 11.24. By assuming only one particle in movement, the master
equation gives

p:::010::: .t C�t/ D p:::010::: .t/ Œ1 ��t .h� C hC/�

Cp:::100::: .t/ hC�t C p:::001::: .t/ h��t.

The subscripts : : : 010 : : :, : : : 100 : : :, and : : : 001 : : : indicate that the particle is
located in the z, z � �z, or z C �z compartment, respectively. For writing con-
venience, we denote these probabilities by p .z; t/, p .z ��z; t/, and p .z C�z; t/.
Assuming equal probabilities that the particle jumps to the nearest site to its left or
right, i.e., h��t D hC�t D 0:5, the previous equation becomes

p .z; t C�t/� p .z; t/ D 1

2
Œp .z ��z; t/ � 2p .z; t/C p .z C�z; t/� .

Similarly to (2.7), we define

D , 1

2

.�z/2

�t
.

Dividing these last two equations term by term, we obtain

p .z; t C�t/ � p .z; t/

�t
D Dp .z ��z; t/ � 2p .z; t/C p .z C�z; t/

.�z/2
.

Taking the limits �t ! 0 and �z ! 0 and keeping .�z/2 =�t D 2D constant in
the limiting case, the previous equation gives the diffusion equation (2.18) in one
dimension.

Therefore, the solution of the master equation can be thought of as a Markovian
random walk in the space of reacting or diffusing species. It measures the probability
p .z; t/ of finding the walker in a particular position z at any given time t.
Furthermore, by taking into account the number of particles in the compartments,
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probabilities can be converted to concentrations to obtain the second Fick’s law,
(2.16). If we consider an asymmetric walk where h� ¤ hC, we obtain the diffusion
equation with the drift velocity of the walker [549]. Moreover, if the transfer
probabilities h� and hC depend on the number of walkers present at a given time, the
master equation corresponds to a nonlinear situation leading to anomalous diffusion,
as presented in Section 2.2 for fractals and disordered media.

A good review of the master equation approach to chemical kinetics has been
given by McQuarrie [550]. Jacquez [366] presents the master equation for the
general m-compartment, the catenary, and the mammillary models. That author
further develops the equation for the one- and two-compartment models to obtain
the expectation and variance of the number of particles in the model. Many others
consider the m-compartment case [510, 513, 551], and Matis [552] gives a complete
methodological rule to solve the Kolmogorov equations.

In any particular case, the master equation is fairly easy to write; however,
solving it is quite another matter. The number of problems for which the master
equation can be solved analytically is even less than the number of problems for
which the deterministic corresponding equations can be solved analytically. In
addition, unlike the reaction equations (linear, nonlinear, etc.), the master equation
does not readily lend itself to numerical solution, owing to the number and nature
of its independent variables. In fact, the master equation is a generic form that when
expanded, leads to the set of Kolmogorov differential equations whose number is
equal to the product of population size for all the reactants. In short, although the
master equation is both exact and elegant, it is usually not very useful for making
practical numerical calculations.

We can, however, analyze these problems within the framework of the stochastic
formulation by looking for an exact solution, or by using the probability generating
functions, or the stochastic simulation algorithm.

11.5.2 Exact Solution in Matrix Form

For simple cases with populations of small sizes, one can express the Kolmogorov
equations in a matrix form. The elements of the grand probability function
pn1;:::;nm .t/ can be considered in a vector form:

p .t/T D Œp0;:::;0 .t/ ; p1;:::;0 .t/ ; : : : ; pn01;:::;0 .t/ ; : : : ;

: : : ; : : : ; : : : ; : : : ; : : : ;

p0;:::;n0m .t/ ; p1;:::;n0m .t/ ; : : : ; pn01;:::;n0m .t/ ; : : :� .

And the Kolmogorov equations may be written as

�
p .t/ D p .t/R,
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where R is a constant-coefficient matrix. For models with finite R, e.g., when
only initial conditions are present in an open system, one can proceed to find
numerical solutions for the probability distributions by the direct solution of the
above differential equation. In the general context, the dimension of R is infinite
and the previous equation rules out a direct exact solution. One option for such
problems is to truncate the set of differential equations for some large upper bound
of population size, and then proceed to find directly a close approximate solution for
the size distributions. Therefore, one can truncate the distribution of N.t/ at some
large upper value and solve the resulting finite system. This useful option will be
illustrated in Section 11.5.5.1.

11.5.3 Cumulant Generating Functions

A very useful tool for finding analytically the distribution of N.t/ is to obtain and
solve partial differential equations for the associated cumulant generating functions.
The moment generating function, denoted by M .�; t/, is defined for a multivariate
integer-valued variable N .t/ as

M .�; t/ ,
X

.n1;:::;nm	0/
pn1;:::;nm .t/

mY

iD1
exp .� ini/ , (11.36)

where � is a dummy variable. The cumulant generating function, denoted by
K .�; t/, is defined as

K .�; t/ , logM .�; t/ (11.37)

with power series expansion

K .�; t/ D
X

.s1;:::;sm	0/
�s1;:::;sm .t/

mY

iD1

�
si
i

siŠ
. (11.38)

This equation formally defines the joint .s1; : : : ; sm/-th cumulants, �s1;:::;sm .t/ as the
coefficients in the series expansion of K .�; t/. The multiple summations in (11.36)
and (11.38) on ni and si, respectively, require that at least one ni or si be different
from 0. Hence, the approach to deriving differential equations for cumulants is
simple in practice.

Statistical characteristics of the random vector N .t/ can be directly obtained from
cumulants �s1;:::;sm .t/ with all si D 0 except:

• sj D 1 to calculate expectation E


Nj .t/

�
, or

• sj D 2 to calculate variance Var


Nj .t/

�
, or

• sj D 1 and sk D 1 to calculate covariance Cov


Nj .t/Nk .t/

�
, etc.
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There are also a number of advantages to using cumulant generating functions
instead of probability or moment generating functions. For instance, in the univari-
ate case:

• The cumulant functions provide a basis for parameter estimation using weighted
least squares. The expected value function �1 .t/ could serve as the regression
function, the variance function �2 .t/ supplies the weights, and �3 .t/ provides a
simple indicator of possible departure from an assumed symmetric distribution.

• The cumulant structure provides a convenient characterization for some common
distributions:

1. for the Poisson distribution, all cumulants are equal, i.e., � i D c for all i, and
2. for the Gaussian distribution, all cumulants above order two are zero, i.e.,
� i D 0 for i > 2.

• The low-order cumulants may be utilized to give saddle-point approximations of
the underlying distribution [552, 553].

Partial differential equations may be written directly using an infinitesimal
generator technique, called the random-variable technique, given in Bailey [554].
For intensity functions of the form (11.33), we define the operator notation

I'l;1;:::;'l;m

�
@

@�1
; : : : ;

@

@�m

�
M .�; t/ D hl

@ lM .�; t/

@�
 l;1
i : : : @�

 l;m
i

.

Using this notation, the moment generating function is given in [554] (p. 73):

@M .�; t/

@t
D

mıX

lD1

"

exp

 
mX

iD1
� i' l;i

!

� 1
#

I'l;1;:::;'l;m

�
@

@�1
; : : : ;

@

@�m

�
M .�; t/ .

(11.39)
The boundary condition for this partial differential equation is obtained from
(11.36). By multiplying both sides of this relationship by M�1 and using the
definition of the cumulant generating function, the partial differential equation of
the cumulant generating function is derived. The operator equation approach is very
useful. Therefore, this approach is easily applied to density-dependent models, for
which the intensity functions involve higher powers of N leading to nonlinear partial
differential equations. The approach also extends to multiple populations. For cases
in which analytical solutions are not available, one might solve for the cumulant of
desired order instead of using series expansions and after equating coefficients of
powers of � .

For linear systems, the differential equation for the j-th cumulant function
is linear and it involves terms up to the j-th cumulant. The same procedure
will be followed subsequently with other models to obtain analogous differential
equations, which will be solved numerically if analytical solutions are not tractable.
Historically, numerical methods were used to construct solutions to the master
equations, but these solutions have pitfalls that include the need to approximate
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higher-order moments as a product of lower moments, and convergence issues
[550]. What was needed was a general method that would solve this sort of problem,
and that came with the stochastic simulation algorithm.

11.5.4 Stochastic Simulation Algorithm

A computational method was developed by Gillespie in the 1970s [548, 555] from
premises that take explicit account of the fact that the time evolution of a spatially
homogeneous process is a discrete, stochastic process instead of a continuous,
deterministic process. This computational method, which is referred to as the
stochastic simulation algorithm, offers an alternative to the Kolmogorov differential
equations that is free of the difficulties mentioned above. The simulation algorithm
is based on the reaction probability density function defined below.

Let us now consider how we might go about simulating the stochastic time
evolution of a dynamic system. If we are given that the system is in state n .t/ at
time t, then essentially all we need in order to “move the system forward in time”
are the answers to two questions: “when will the next random event occur,” and
“what kind of event will it be?” Because of the randomness of the events, we may
expect that these two questions will be answered in only some probabilistic sense.

Prompted by these considerations, Gillespie [555] introduced the reaction prob-
ability density function p .~; l/, which is a joint probability distribution on the
space of the continuous variable ~ (0 � ~ < 1) and the discrete variable l
(l D 1 W mı). This function is used as p .~; l/�~ to define the probability that
“given the state n .t/ at time t, the next event will occur in the infinitesimal time
interval .t C ~; t C ~ C�~/, AND will be an Rl event.” Our first step toward finding
a legitimate method for assigning numerical values to ~ and l is to derive, from
the elementary conditional probability hl�t, an analytical expression for p .~; l/.
To this end, we now calculate the probability p .~; l/ �~ as the product p0 .~/, the
probability at time t that “no event will occur in the time interval .t; t C ~/” TIMES

al�~, the subsequent probability that “an Rl event will occur in the next differential
time interval .t C ~; t C ~ C�~/”:

p .~; l/�~ D p0 .~/ al�~. (11.40)

The probability of more than one reaction occurring in .t C ~; t C ~ C�~/ is
o .�~/.

In order to appreciate p0 .~/, the probability that “no event occurs in .t; t C ~/,”
imagine the interval .t; t C ~/ to be divided into L subintervals of equal length
" D ~=L. The probability that none of the events R1; : : : ;Rmı

occurs in the first
" subinterval .t; t C "/ is
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mıY

�D1
Œ1 � a�"C o ."/� D 1 �

mıX

�D1
a�"C o ."/ D 1 � a0"C o ."/

if we put a0 ,
Pmı

�D1 a� . This is also the subsequent probability that no event occurs
in .t C "; t C 2"/, and then in .t C 2"; t C 3"/, and so on. Since there are L such "
subintervals between t and t C ~, then p0 .~/ can be written as

p0 .~/ D Œ1 � a0"C o ."/�L D
h
1 � a0~

L
C o

�
L�1	iL

.

This is true for any L > 1, and in particular, for infinitely large L. By using the limit
formula for the exponential function,

lim
�!1

�
1 � x

�

�� D exp .�x/ ,

the probability p0 .~/ becomes

lim
L!1p0 .~/ D exp .�a0~/ .

Inserting the previous expression in (11.40), we arrive at the following exact
expression for the reaction probability density function:

p .~; l/ D al exp .�a0~/ . (11.41)

Thus, we observe that p .~; l/ depends, through the quantity in the exponential, on
the parameters for all events (not just Rl) and on the current sizes of populations for
all particles (not just the Rl reactants).

Even though it may be impossible to solve a complicated dynamic system
exactly, Gillespie’s method can be used to numerically simulate the time evolution
of the system [548]. In this method, implied events are thought of as occurring
with certain probabilities, and the events that occur change the probabilities of
subsequent events. This stochastic simulation algorithm has been shown to be
physically and mathematically well grounded from a kinetic point of view, and
rigorously equivalent to the spatial homogeneous master equation, yet surprisingly
simple and straightforward to implement on a computer [548, 550, 555]. In the limit
of large numbers of reactant molecules, the supplied results are entirely equivalent
to the solution of the traditional kinetic differential equations derived from the
mass balance law [548]. As presented here, the stochastic simulation algorithm
is applicable only to spatially homogeneous systems. Work toward extending the
algorithm to accommodate particle diffusion in spatially heterogeneous systems is
currently in progress.

For most macroscopic dynamic systems, the neglect of correlations and fluctu-
ations is a legitimate approximation [550]. For these cases the deterministic and
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stochastic approaches are essentially equivalent, and one is free to use whichever
approach turns out to be more convenient or efficient. If an analytical solution
is required, then the deterministic approach will always be much easier than
the stochastic approach. For systems that are driven to conditions of instability,
correlations and fluctuations will give rise to transitions between nonequilibrium
steady states and the usual deterministic approach is incapable of accurately
describing the time behavior. On the other hand, the stochastic simulation algorithm
is directly applicable to these studies.

11.5.4.1 Implementation

This algorithm can easily be implemented in an efficient modularized form to
accommodate quite large reaction sets of considerable complexity [555]. For an easy
implementation, the joint distribution can be broken into two disjoint probabilities
using Bayes’s rule p.~; l/ D p.~/p.l j ~/. But note that p.~/ may be considered as
the marginal probability of p.~; l/, i.e.,

p.~/ D
mıX

lD1
p.~; l/,

and substituting this into (11.41) leads to values for its component parts:

p.~/ D a0 exp .�a0~/ (11.42)

and

p.l j ~/ D al

a0
. (11.43)

Given these fundamental probability density functions, the following algorithm
can be used to carry out the reaction set simulation:

• Initialization:

1. Set values for the hl.
2. Set the initial number n0i of the m reactants.
3. Set t D 0, and select a value for tsim, the maximum simulation time.

• Loop:

1. Compute the intensity functions al and a0 ,
Pmı

�D1 a� .
2. Generate two random numbers r1 and r2 from a uniform distribution on Œ0; 1�.
3. Compute the next time interval ~ D ln .1=r1/ =a0. Draw from the probability

density function (11.42).
4. Select the reaction to be run by computing l such that
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l�1X

�D1
a� < r2a0 �

lX

�D1
a� .

Draw from the probability density function (11.43).
5. Adjust t D t C~ and update the nl values according to the Rl reaction that just

occurred.
6. If t > tsim, then terminate. Otherwise, go to 1.

By carrying out the above procedure from time 0 to time tsim, we evidently obtain
only one possible realization of the stochastic process. In order to get a statistically
complete picture of the temporal evolution of the system, we must actually carry
out several independent realizations or “runs.” These runs must use the same initial
conditions but different starting numbers for the uniform random number generator
in order for the algorithm to result in different but statistically equivalent chains. If
we make K runs in all, and record the population sizes ni .k; t/ in run k at time t
(i D 1 W m and k D 1 W K), then we may assert that the average number of particles
at time t is

ni .t/ � 1

K

KX

kD1
ni .k; t/ ,

and the fluctuations that may reasonably be expected to occur about this average are

si .t/ �
(
1

K

KX

kD1
Œni .k; t/ � ni .t/�

2

) 1=2

.

The approximately equal signs in the previous relations become equality signs in
the limit K ! 1. However, the fact that we obviously cannot pass to this limit
of infinitely many runs is not a practical source of difficulty. On the one hand, if
si .t/ 
 ni .t/, then the results ni .k; t/ will not vary much with k; in that case
the estimate of ni .t/ would be accurate even for K D 1. On the other hand, if
si .t/ & ni .t/, a highly accurate estimate of ni .t/ is not necessary. Of more practical
significance and utility in this case would be the approximate range over which the
numbers ni .k; t/ are scattered for several runs k. In practice, somewhere between 3
and 10 runs should provide a statistically adequate picture of the state of the system
at time t.

The computer storage space required by the simulation algorithm is quite small.
This is an important consideration, since charges at most large computer facilities
are based not only on how long a job runs but also on how much memory storage is
used.

Because the speed of the stochastic simulation algorithm is linear with respect to
the number of reactions, adding new reaction channels will not greatly increase the
simulation runtime, i.e., doubling either the number of reactions or the number of
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reactant species, doubles (approximately) the total algorithm runtime. The algorithm
speed depends more on the number of molecules. This is seen by noting that
the computation of the next time interval in ~ D ln .1=r1/ =a0 depends on the
reciprocal of a0, a term representing the number of molecules in the simulation.
If the reaction set contains at least one second-order reaction, then a0 will contain
at least one multiplication product of two species in the population. In this case the
simulation speed will fall off like the reciprocal of the square of the population.
Recent improvements to the algorithm are helping to keep the runtime in check
[556, 557].

11.5.4.2 Extensions

The simulation algorithm might allow one to deal in an approximate way with
spatial heterogeneities. The basic idea is to divide the volume V into a number
of subvolumes V� (� D 1 W M) in such a way that spatial homogeneity may be
assumed within each subvolume. Each subvolume V� would then be characterized
by its own (uniformly distributed) particle populations N1� .t/ ; : : : ;Nm� .t/ and also
a set of hazard rates hl� appropriate to the physicochemical characteristics inside
V�. For instance, in order to apply the simulation algorithm to a collection of cells,
the original algorithm must be extended to accommodate the introduction of spatial
dependencies of the concentration variables. Introducing the spatial context into the
stochastic simulation algorithm using the subvolumes V� may be materialized by a
rectangular array of square cells with only nearest-neighbor, cell–cell interactions.
In this model of interacting cells, it is assumed that each cell is running its own
internal program of biochemical reactions.

The fact that simulation of any given reaction generates its own “local” simu-
lation time steps poses the problem of synchronization of the internal simulation
times of cells. In the simplest case with no specific interaction affecting the order
of the reaction, converting the algorithm from what is essentially a spatial-scanning
method to a temporal-scanning method can solve this problem. This is accomplished
by first making an initial spatial scan through all of the cells in the array, and
inserting the cells into a priority queue that is ordered from shortest to longest local
cell time. All succeeding iterations are then based on the temporal order of the cells
in the priority queue. In other words, a cell is drawn from the queue, calculations
are performed on the reaction set for that cell, and then the cell is placed back on
the queue in its new temporally ordered position.

The use of a priority queue to order the cells was a unique innovation, and it
solves the synchronizing problem inherent in a multicellular situation. Not only
does this allow an easy mechanism for intercellular signaling: this methodology can
also readily accommodate local inhomogeneities in molecular populations. Work
has been done that extends the stochastic simulation algorithm to reaction-diffusion
processes, and the modification to the method is straightforward. Diffusion is
considered to be just another possible chemical event with an associated probability
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[558]. As with all the other chemical events, diffusion is assumed to be intracellular
and the basic idea behind this approach is incorporated into the simulation.

The justification for using the stochastic approach, as opposed to the simpler
mathematical deterministic approach, was that the former presumably took account
of fluctuations and correlations, whereas the latter did not. Oppenheim et al.
[559] subsequently demonstrated that the stochastic formulation reduces to the
deterministic formulation in the thermodynamic limit (wherein the size of particle
populations and the containing volume all approach infinity in such a way that the
particle concentrations approach finite values). Experience indicates that for most
systems, the constituent particle populations need to have sizes only in the hundreds
or thousands in order for the deterministic approach to be adequate. Thus, for most
systems the differences between the deterministic and stochastic formulations are
purely academic, and one is free to use whichever formulation turns out to be more
convenient or efficient. However, near state instabilities in certain nonlinear systems,
fluctuations, and correlations can produce dramatic effects, even for a huge number
of particles [560]. For these systems the stochastic formulation would be the more
appropriate choice.

Among the three presented approaches to solve the Kolmogorov or master
equations, the partial differential equations for cumulant generating functions are
most adequate for the estimation problem. The exact solution using the R matrix can
never be applied in a real context because of the astronomic requirement of memory
for storing and matrix processing operations. The stochastic simulation algorithm
is an elegant tool for simulating and analyzing the system, but as a nonparametric
approach it is not adequate for the estimation problem.

11.5.5 Simulation of Linear and Nonlinear Models

The two-compartment model and the model of the enzymatic reaction (cf. Sec-
tions 11.1.2 and 8.5.1, respectively) will be presented as typical cases for linear and
nonlinear models, respectively. For these simulations, the model parameters were
set as follows:

• For the compartmental system: h10 D 0:5, h20 D 0:1, h12 D 1, h21 D 0:1 h�1.
• For the enzyme reaction: kC1 D 1, k�1 D 0:5, kC2 D 1 h�1.

11.5.5.1 Exact Solution

Initial conditions for the compartmental model and the enzymatic reaction were set
to nT

0 D Œ10 5�, and s0 D 10, e0 D 5, and c0 D 0, respectively. These values are very
low regarding the experimental reality, but they were deliberately chosen as such to
facilitate the computation of the exact solution.
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Two-Compartment Model First, we develop full probabilistic transfer modeling.
Consider the number of particles in the first and second compartments being n1 and
n2, respectively, at time t C �t, where �t is some small time interval. There are
a number of mutually exclusive ways in which this event could have come about,
starting from time t. Specifically, they are:

• to have size .n1; n2/ at time t with no change from t to t C�t,
• to have size .n1 C 1; n2/ at time t with only a single irreversible elimination by

the h10 way in the next interval �t,
• to have size .n1; n2 C 1/ at time t with only a single irreversible elimination by

the h20 way in the next interval �t,
• to have size .n1 C 1; n2 � 1/ at time t with only a single reversible particle

transfer to compartment 2 by the h12 way in �t,
• to have size .n1 � 1; n2 C 1/ at time t with only a single reversible particle

transfer to compartment 1 by the h21 way in �t, and
• other ways that involve two or more independent changes of unit size in the

interval �t.

Because this set of mutually exclusive “pathways” to the desired event at t C�t
is exhaustive, the probability of size n1; n2 at t C �t may be written as the sum of
the individual probabilities of these pathways. Symbolically, using the assumptions
for possible changes, one has for suitably small�t,

pn1;n2 .t C�t/ D pn1;n2 .t/ Œ1 � h10n1�t � h20n2�t � h12n1�t � h21n2�t�

Cpn1C1;n2 .t/ Œh10 .n1 C 1/�t�

Cpn1;n2C1 .t/ Œh20 .n2 C 1/�t�

Cpn1C1;n2�1 .t/ Œh12 .n1 C 1/�t�

Cpn1�1;n2C1 .t/ Œh21 .n2 C 1/�t�C o .�t/ ,

where o .�t/ denotes terms of higher order than �t associated with multiple
independent changes. Subtracting pn1;n2 .t/, dividing by �t, and taking the limit as
�t ! 0, one has

�
pn1;n2 .t/ D h10 Œ.n1 C 1/ pn1C1;n2 .t/ � n1pn1;n2 .t/�

Ch20 Œ.n2 C 1/ pn1;n2C1 .t/ � n2pn1;n2 .t/�

Ch12 Œ.n1 C 1/ pn1C1;n2�1 .t/ � n1pn1;n2 .t/�

Ch21 Œ.n2 C 1/ pn1�1;n2C1 .t/ � n2pn1;n2 .t/� (11.44)

for n1; n2 > 0, with boundary conditions for either n1 D 0 or n2 D 0. Initial
conditions are pn01;n02 .0/ D 1 and pn1;n2 .0/ D 0 for n1 ¤ n01 and n2 ¤ n02. The
solution of this set of differential equations yields the desired probability distribution
for ŒN1 .t/ ;N2 .t/�

T .
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Second, considering now the exchange processes between compartment and
environment as the set of first-order reactions,

N1
h10! environment, I�1;0 D h10N1,

N2
h20! environment, I0;�1 D h20N2,

N1
h12! N2, I�1;1 D h12N1,

N2
h21! N1, I1;�1 D h21N2,

(11.45)

we can obtain the master equation (11.44) directly from the (11.35) formulation.
For this model, there were two interacting populations (m D 2) and four (mı D 4

in equation 11.45) intensity functions. Since only one particle from each population
was implied in these intensity functions, all  l;i exponents were equal to one.

The possible states in each compartment are n01 C n02C 1. Therefore R is a 256-
dimensional matrix. The initial condition for the master equation is p10;5 .0/ D 1.
Figures 11.25 and 11.26 show the associated probabilities for each state as functions
of time for the central and peripheral compartments, respectively. In these figures
the disk area is proportional to the associated probability, the full markers are the
expected values, and the solid lines the solution of the deterministic model. As
already mentioned, we note that the expectation of the stochastic model follows
the time profile of the deterministic system.

Enzymatic Reaction The usual stochastic approach begins by focusing attention
on the probability function ps;e;c .t/, which is defined to be the probability of finding
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Fig. 11.25 The exact solution of the Kolmogorov equations associating marginal probabilities
with the number of particles in compartment 1. The solid line is the solution of the deterministic
model. The areas of disks located at coordinates .t; n1/ are proportional to pn1 .t/
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Fig. 11.26 The exact solution of the Kolmogorov equations associating marginal probabilities
with the number of particles in compartment 2. The solid line is the solution of the deterministic
model. The areas of disks located at coordinates .t; n2/ are proportional to pn2 .t/

s molecules of substrate S, e molecules of enzyme E, and c molecules of complex C
at time t. From (8.7), the intensity functions are

I�1;�1;1 D kC1se,

I1;1;�1 D k�1c,

I0;1;�1 D kC2c.

From the conservation law of enzyme sites, e D e0 � c, the enzyme population size
can be substituted with the previous relation involving the initial enzyme amount e0
and the current complex population size c. The intensity functions become

I�1;1 D kC1s .e0 � c/ , (11.46)

I1;�1 D k�1c,

I0;�1 D kC2c,

and applying the standard rules of probability theory and the (11.35) formulation, it
is a straightforward matter to deduce the master equation:

�
ps;c .t/ D kC1 Œ.s C 1/ .e0 � c C 1/ psC1;c�1 .t/ � s .e0 � c/ ps;c .t/�

Ck�1 Œ.c C 1/ ps�1;cC1 .t/ � cps;c .t/�

CkC2 Œ.c C 1/ ps;cC1 .t/ � cps;c .t/� . (11.47)
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In principle, this time-evolution equation can be solved subject to the given initial
condition ps;c .0/ D ı .s � s0/ ı .c � c0/ to obtain ps;c .t/ uniquely for all t > 0.
The number of product molecules can be recovered as s0 � .s C c/. For a given
s0 and e0, a computer solution is constrained not only by run time but also by the
amount of computer memory that would be required just to store the current values
of the function ps;c .t/ on the two-dimensional integer lattice space of the variables
S and C. The master equation may be solved exactly only when s0 and e0 are small.
For this model, there were two interacting populations (m D 2), and three (mı D 3,
in equation 11.46) intensity functions. Since only one particle from each population
was implied in these intensity functions, all  l;i exponents were equal to one.

The possible states for substrate are 11 and 6 for the complex. R is a 66-
dimensional matrix and the initial condition for the master equation is p10;0 .0/ D 1.
Figures 11.27 and 11.28 show the associated probabilities for each state as functions
of time for the substrate and the complex, respectively. As previously, the full
markers are the expected values and the solid lines the solution of the deterministic
model. Notably, the expectation of the stochastic model does not follow the time
profile of the deterministic system. This is the main characteristic of nonlinear
systems.

11.5.5.2 Cumulant Generating Functions

To illustrate how to proceed using the cumulant generating functions, the well-
known two-compartment model and the enzymatic reaction will be presented as
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Fig. 11.27 The exact solution for the substrate, s .t/, of the Kolmogorov equations associating
marginal probabilities with the number of particles. The solid line is the solution of the
deterministic model. The areas of disks located at coordinates .t; s/ are proportional to ps .t/
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Fig. 11.28 The exact solution for the complex, c .t/, of the Kolmogorov equations associating
marginal probabilities with the number of particles. The solid line is the solution of the
deterministic model. The areas of disks located at coordinates .t; c/ are proportional to pc .t/

examples of linear and nonlinear systems, respectively. In these examples, there are
two interacting populations (m D 2) and the cumulant generating function is

K .�1; �2; t/ D
X

i;j	0
� ij .t/

� i
1�

j
2

iŠjŠ
(11.48)

Initial conditions for the compartmental model and the enzymatic reaction were
set to nT

0 D Œ100 50�, and s0 D 100, e0 D 50, and c0 D 0, respectively. These
values are higher than those used previously and they are more likely to resemble
experimental reality.

Two-Compartment Model The model assumptions in (11.45) were substituted
directly into operator equation (11.39), which was transformed via (11.37) to yield

@K
@t

D fh10 Œexp .��1/� 1�C h12 Œexp .��1 C �2/� 1�g @K
@�1

C fh20 Œexp .��2/� 1�C h21 Œexp .�1 � �2/ � 1�g @K
@�2

.

Upon substituting the series expansion (11.48) into the previous equation and
equating coefficients of �1 and �2, one has the following differential equations for
the cumulant functions:

�
�10 D � .h10 C h12/ �10 C h21�01,�
�01 D h12�10 � .h20 C h21/ �01,
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which are stochastic analogues of the deterministic formulation (8.4) and of
the probabilistic transfer model (11.4). The equations for higher-order cumulants
were obtained by equating coefficients of second- and third-order terms of � i

1�
j
2.

Especially for the second cumulants, the equations are

�
�20 D �2 .h10 C h12/ �20 C 2h21�11 C .h10 C h12/ �10 C h21�01,�
�02 D �2 .h20 C h21/ �02 C 2h12�11 C .h20 C h21/ �01 C h12�10,�
�11 D � .h10 C h12 C h20 C h21/ �11 C h12 .�20 � �10/C h21 .�02 � �01/ .

Since pn01;n02 .0/ D 1 and pn1;n2 .0/ D 0 for n1 ¤ n01 and n2 ¤ n02, from (11.36)
and (11.38) one has M .�1; �2; t/ D exp .�1n01 C �2n02/ and K .�1; �2; t/ D
�1n01C�2n02, respectively. Initial conditions for the cumulant differential equations
are obtained by equating K .�1; �2; t/ with the terms of the power expansion in
(11.48): � ij .0/ D 0 except for �10 .0/ D n01 and �01 .0/ D n02.

Simulations of these equations confirm the probabilistic behavior and the time
profile of the distribution of particles that were already shown in Section 11.3.5
in Figures 11.15 and 11.16. Through the �11 .t/ profile, this analysis reveals the
statistical independence of the population sizes. Since the system has no entry, the
two variables are negatively linked with an extreme value about 0:5 h as shown in
Figure 11.29. This link is stronger when h12 and h21 are high compared to h10 and
h20.
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Fig. 11.29 Cumulant �11 .t/ profile expressing the statistical dependence of the population sizes
for the compartmental model
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Enzymatic Reaction The intensity functions (11.46) were substituted directly into
operator equation (11.39), which was transformed by (11.37) to yield

@K
@t

D kC1 Œexp .��1 C �2/� 1�

�
e0
@K
@�1

�
�

@2K
@�1@�2

C @K
@�1

@K
@�2

��

C fk�1 Œexp .�1 � �2/� 1�C kC2 Œexp .��2/� 1�g @K
@�2

.

Upon substituting the series expansion (11.48) into the previous equation, and
equating the coefficients of �1 and �2, one has the following differential equations
for the expected value functions:

�
�10 D �kC1 .e0 � �01/ �10 C k�1�01 C kC1�11,�
�01 D kC1 .e0 � �01/ �10 � .k�1 C kC2/ �01 � kC1�11.

These equations are not equivalent to the deterministic formulation given by (8.8).
The last term kC1�11 involving the stochastic interaction in the previous equations
expresses the main difference between deterministic and stochastic solutions for a
nonlinear system.

The cumulant differential equations truncated at third order are

�
�20 D kC1 .A � 2B/C k�1 .�01 C 2�11/ ,

�
�02 D kC1 .A C 2C/C k0 .�01 � 2�02/ ,

�
�11 D kC1 .B � A � C/ � k�1 .�01 � �02/ � k0�11,�
�30 D kC1 .3B � A � 3D/C k�1 .�01 C 3�11 C 3�21/ ,

�
�21 D kC1 .A C C C D � 2B � 2F/C k�1 .�02 � �01 C 2�12 � 2�11/� k0�21,�
�12 D kC1 .B � A � 2C � E C 2F/C k�1 .�03 C �01 � 2�02/C k0 .�11 � 2�12/ ,

�
�03 D kC1 .A C 3C C 3E/C k0 .�01 C 3�02 � 3�03/ ,

with

A D .e0 � �01/ �10 � �11,
B D .e0 � �01/ �20 � .�21 C �10�11/ ,

C D .e0 � �01/ �11 � .�12 C �10�02/ ,

D D .e0 � �01/ �30 � .2�20�11 C �10�21/ ,

E D .e0 � �01/ �12 � .2�02�11 C �10�03/ ,

F D .e0 � �01/ �21 � �
�20�02 C �211 C �10�12

	
,

k0 D k�1 C kC2.
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In these equations, the contributions of the fourth- and higher-order cumulants are
neglected.

From the above, we remark again as for the first-order cumulant that the
differential equations for the second-order cumulants �20, �02, and �11 imply the
third-order cumulants �12 and �21 and so on. This can be generalized by noting that
the differential equation for the j-th cumulant function for a  -degree power in the
intensity function model involves terms up to the .j C  /-th cumulant. Obviously,
this fact rules out exact solutions, such as those previously found for the linear
kinetic model, for the present equations. A standard approach to this problem has
been to assume that the population size variable follows a Gaussian distribution,
and set to 0 all cumulants of order 3 or higher. One can also intend [552] to find
approximating cumulant functions using a “cumulant truncation” procedure. In this
approach, one approximates the cumulant functions of any specific order, say j, of
a  -degree power model by solving a system of up to the first .j C  / cumulant
functions with all higher-order cumulants set to 0.

Initial conditions for the cumulant differential equations are � ij .0/ D 0 except
for �10 .0/ D s0. Setting to 0 all cumulants of order 4 or higher, simulations
of these equations confirm the expected behaviors and the associated confidence
intervals. Through the �11 .t/ profile shown in Figure 11.30, this analysis reveals the
statistical independence of the population sizes. Moreover, �11 .t/ magnified by kC1
evaluates the discrepancy between the deterministic and the stochastic solution: the
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Fig. 11.30 Cumulant �11 .t/ profile expressing the statistical dependence of the population sizes
for the enzymatic model
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Fig. 11.31 The deterministic profile (dashed line), typical run (solid line), average (dotted line),
and confidence corridor (dashed-dotted line) in compartment 1

substrate is overestimated at the early time of reaction by the deterministic model
and underestimated over 0:5 h with a maximum about 1:2 h.

11.5.5.3 Stochastic Simulation Algorithm

As previously, initial conditions for the compartmental model and the enzymatic
reaction were set to nT

0 D Œ100 50�, and s0 D 100, e0 D 50, and c0 D 0, respectively.
Figures 11.31 and 11.32 show the deterministic prediction, a typical run, and
the average and confidence corridor for 100 runs from the stochastic simulation
algorithm for the compartmental system and the enzyme reaction, respectively.
Figures 11.33 and 11.34 show the coefficient of variation for the number of particles
in compartment 1 and for the substrate particles, respectively.

“On average,” the solutions supplied by the deterministic system and the
stochastic method are in close agreement, but the stochastic approach captures the
fluctuations in the system. In comparing Figures 11.33 and 11.34, it is clear that
when the number of molecules is large, the fluctuations might take the appearance of
noise. But when there are small numbers of molecules, the fluctuations may in fact
no longer be just noise but a significant part of the signal. Whether these fluctuations
make a difference in the basic behavior of the system depends on the characteristics
of that particular system. The system may also move between situations in which
the fluctuations do and do not matter. However, when it is known that the system
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Fig. 11.32 The deterministic profile (dashed line), typical run (solid line), average (dotted line),
and confidence corridor (dashed-dotted line) for substrate particles
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Fig. 11.33 Coefficient of variation for the particles in compartment 1
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Fig. 11.34 Coefficient of variation for the substrate particles

contains small numbers of molecules and the network is nonlinear, the stochastic
approach appears to be a more appropriate method, because both of these situations
will magnify any fluctuations that already exist in the system.

11.6 Fractals and Stochastic Modeling

In the classical book [4], the distinct models dealing with ion channel kinetics
are extensively discussed. One of the most important results is the connection
established between fractal scaling and stochastic modeling. Based on experimental
data, Liebovitch et al. [561] assessed the dependence of the effective kinetic constant
kı on the sufficient time scale for detection tı by a fractal scaling relationship:

log kı .tı/ D log˛ C �
1 � df

	
log tı, (11.49)

where ˛ is a constant and df is the fractal dimension. Moreover, the effective kinetic
constant kı .tı/ can be considered as the conditional probability per unit time that
the channel changes state (open vs. closed), i.e., kı .tı/ is considered as the hazard
function h .tı/ defined by (11.6). In that case, the survival function S .tı/ is the
cumulative probability Pr ŒTı > tı� that the duration of the open (or closed) state Tı
is greater than tı. Solving (11.6) and using the fractal scaling relationship (11.49),
we obtain
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S .tı/ D exp

�
� ˛

2 � df
.tı/2�df

�
,

which is the Weibull survival function already mentioned in Table 11.1. When the
fractal dimension is close to 2, the previous equation takes the form of a power-law
of time:

S .tı/ D g
�
2 � df

	
.tı/�˛ ,

where g
�
2 � df

	
is a function of the fractal dimension. This form is equivalent to

(2.8) in Chapter 2. From this development, we note the correspondence between
the time scale sufficient for detection, tı, and the age a of particles in a given com-
partment. This short presentation illustrates how fractality could be incorporated in
retention-time distributions.

All the stochastic models presented here may include multiple compartments,
age-varying rates, and heterogeneous particles with random rate coefficients, and
their mathematical solutions tend to have various forms, e.g., exponential form,
power function, damped oscillatory regimens, etc. This formulation concerns
systems that are discrete in space, i.e., the particle can be located in one of a
number of discrete compartments, and continuous in time; i.e., the particle is located
continuously in one compartment until a transition occurs that discretely moves it
to another compartment. In fact, stochastic models, and especially semi-Markov
models, are tools for analyzing data when the response of interest is the time up to
the occurrence of some event. Such events are generically referred to as failures,
although the event may, for instance, be the ability of a power system to supply
energy on demand without local failures or large-scale blackouts, the operating
hours of replaced parts in equipment already in field use, industrial product testing,
or the change of residence in a demographic study.

Certainly at the beginning, stochastic modeling had applications in the field
of reliability, a relatively new field whose conception is primarily due to the
complexity, sophistication, and automation inherent in modern technology. The
problems of maintenance, repair, and field failures became severe for the military
equipment used in World War II. In the late 1940s and early 1950s reliability
engineering appeared on the scene [562–564]. For instance, the analysis of a
process with operative and failure states can be based on the model presented in
Figure 11.2C. Compartments 1 and 2 correspond to states in which the process is
operable and failed, respectively. A1 corresponds to the time before failure, and A2
to the time needed to repair. Lastly, ! and 1 � ! correspond to the probabilities of
entering reparable and irreparable failure states, respectively.

Recently, pharmacodynamicists have become interested in stochastic modeling
for analyzing failure time data associated with pharmacological treatments [565].
Despite the unquestionable erudition of stochastic modeling, only a few of the
stochastic models proposed to account for the observed biological data enjoy
widespread use. The main reasons are that parameter estimation of stochastic
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processes in biology is a relatively recent enterprise and that a number of models
involve the application of fairly advanced statistics that typically lie beyond the
scope and knowledge of experimental biologists.

11.7 Stochastic vs. Deterministic Models

In many cases and with an acceptable degree of accuracy, the time evolution of a
dynamic system can be treated as a continuous, deterministic process. For deter-
ministic processes the law of mass conservation is well grounded in experiments
and also leads to equations that can be readily solved. Besides the great importance
of the differential equation approach for either compartmental analysis or analysis
of reactions involved in a living system, we should not lose sight of the fact that
the physical basis for this method leaves something to be desired. The approach
evidently assumes that the time evolution of a real process is both continuous
and deterministic. However, time evolution of such a system is not a continuous
process, because particle population sizes can obviously change only in discrete
integer amounts. Moreover, time evolution is not a deterministic process. Even if
we put aside quantum considerations and regard particle motions as governed by
the equations of classical mechanics, it is impossible to predict the exact particle
population size at some future time unless we take into account the precise positions
and velocities of all the particles in the system.

This criticism has been supported by several recent experimental results that
strongly suggest that several processes, like ecological systems, microscopic bio-
logical systems, and nonlinear systems driven to conditions of instability, in fact
behave stochastically. So it was not until the early 1950s that it became clear that
in small systems the law of mass conservation breaks down and that even small
fluctuations in the number of molecules may be a significant factor in the behavior
of the system [566]. Therefore, the equations obtained by using the law of mass
conservation to describe fluctuations in the particle population sizes can be a serious
shortcoming. Implicit in using the law of mass conservation are the key assumptions
of continuity and determinism that could be warranted when there is a large number
of the molecules of interest. These assumptions are reasonable for some systems of
reactants, like a flask in the chemistry lab, but they are questionable when it comes
to small living systems like cells and neurological synapses.

For instance, it turns out that inside a cell the situation is not continuous and
deterministic, and that random fluctuations drive many of the reactions. With regard
to the continuity assumption, it is important to note that individual genes are often
present only in one or two copies per cell and that the regulatory molecules are
typically produced in low quantities [567]. The low number of molecules may
compromise the notion of continuity and consequently that of homogeneity. As for
determinism, the rates of some of these reactions are so slow that many minutes
may pass before, for instance, the start of mRNA transcription after the necessary
molecules are present. This may call into question the notion of deterministic change
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due to the fluctuations in the timing of cellular events. As a consequence, two
regulatory systems having the same initial conditions might ultimately settle into
different states, a phenomenon strengthened by the small numbers of molecules
involved. This phenomenon is already reported as sensitivity to initial conditions
(cf. Section 3.4) and it is characteristic of a nonlinear system exhibiting chaotic
behavior. Thus, heterogeneity may be at the origin of fluctuations, and fluctuations
are the prelude of instability and chaotic behavior.

Consequently, the observed process uncertainty may actually be an important
part of the system and the expression of a structural heterogeneity. When the
fluctuations in the system are small, it is possible to use the traditional deterministic
approach. But when fluctuations are not negligibly small, the obtained differential
equations will give results that are at best misleading, and possibly very wrong if
the fluctuations can give rise to important effects. With these concerns in mind, it
seems only natural to investigate an approach that incorporates small volumes and
small numbers of particle populations and that may actually play an important part.

However, research along these lines is relatively scarce. The mathematical
biology community continues to produce work that ignores the fact that there
is a very different world inside a small biological system where topological
heterogeneity prevails over homogeneity. So we turned to methods that are better
able to capture the inherent stochastic nature of the system like the previously
developed probabilistic transfer model, which expresses a structural heterogeneity
and generates the process uncertainty corresponding to the observed fluctuations in
the real process.

Aside from the continuity assumption and the discrete reality discussed above,
deterministic models have been used to describe only those processes whose
operation is fully understood. This implies a perfect understanding of all direct
variables in the process and also, since every process is part of a larger universe,
a complete comprehension of how all the other variables of the universe interact
with the operation of the particular subprocess under study. Even if one were
to find a real-world deterministic process, the number of interrelated variables
and the number of unknown parameters are likely to be so large that a complete
mathematical analysis would probably be so intractable that one might prefer to use
a simpler stochastic representation. A small, simple stochastic model can often be
substituted for a large, complex deterministic model since the need for the detailed
causal mechanism of the latter is supplanted by the probabilistic variation of the
former. In other words, one may deliberately introduce simplifications or “errors in
the equations” to yield an analytically tractable stochastic model from which valid
statistical inferences can be made, in principle, on the operation of the complex
deterministic process.

For modeling purposes, the complexity pictured by heterogeneity undoubtedly
requires more much knowledge than homogeneous conditions. If homogeneity pre-
vails over heterogeneity, deterministic models may be good candidates to describe
the real process. Conversely, the huge amount of knowledge needed to describe
heterogeneity could be summarized only by the statistical concepts provided by
stochastic modeling approaches.
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Stochastic models have much to offer at the present time in strengthening the
theoretical foundation and in extending the practical utility of the widespread
deterministic models. After all, in a mathematical sense, the deterministic model
is a special limiting case of a stochastic model.

The stochastic formulation was proposed to account for the heterogeneity in
biological media since it supplies tractable forms to fit the data. These forms involve
time-varying parameters in dynamic modeling. But it is unlikely to have parameters
depending on time through a single maturation or age dependence. We believe that
internal dynamic states of the process are involved in these time-dependencies.
Introduction of these states leads to nonlinear dynamic modeling associated with
various levels of stability. Naturally occurring, the nonlinear model may exhibit
chaotic behavior. Thus, one must frequently expect chaotic-like behavior when the
process is heterogeneous. In contrast, it is impossible to expect chaotic properties
with homogeneous processes.



Part IV
Modeling in Pharmacodynamics

Pharmacodynamics has been described as “what the drug does to the body,”
in contrast to pharmacokinetics, which tells “what the body does to the drug.”
The simplest pharmacodynamic study is a phase I clinical trial, in which the
purpose is to relate dose to toxicity. In a more general context, pharmacodynamics
may concern efficacy as well as toxicity, or both. Such studies complement the
more frequently performed pharmacokinetic studies, and pharmacokinetic-dynamic
studies are becoming increasingly popular as a means of encompassing complete
organism responses to pharmacological interventions. They can synthesize and
integrate knowledge gained from multiple experiments, in vitro and in vivo, and can
be used for forecasting or confirming (validation) the results of drug administration
or of clinical trials.

In comparison to pharmacokinetic modeling, the task of defining appropriate
structural and statistical models to represent and forecast pharmacodynamic out-
comes is more complex. This complexity first relies on the difficulty of proper
selection of the outcome measures in order to relate concentration to quantifiable
effect. However, investigators tend to focus on those efficacy measures that are
most reproducible or convenient for quantification, but these may bear little or
no relationship to the therapeutically relevant effect. Hence, the importance of the
appropriate choice of short-term markers predictive of long-term clinical outcomes
has repeatedly been emphasized [568].

Efficacy measures can be categorized as biomarkers, surrogate markers, or
clinical outcomes. While the clinical outcome is the ultimate efficacy measure
quantifying the direct benefit to a patient, it is often difficult to measure. Instead,
clinical outcomes are often predicted from surrogate markers that can readily and
sooner be observed and can easily be quantified. The essential feature of a surrogate
marker is that it predicts clinical outcome. Before surrogate endpoints can be used
to predict clinical outcomes, however, it is crucial to validate them and prove their
relevance. Biomarkers are measurable physiological or biochemical parameters that
reflect some pharmacodynamic activity of the investigated drug, even if they are
not directly related to clinical outcome. They may be useful to get insight into the
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overall pharmacodynamic behavior of a compound of interest. Surrogate markers
are clinically validated biomarkers.

The complexity in pharmacodynamic studies also arises from the wide variety
of pharmacological responses that are often discontinuous. These responses are
classified as dichotomous, categorical, time-to-event, or counts:

• When the observed response is dichotomous, the probability of response is
related to the level of the pharmacodynamic stimulus.

• Categorical responses can be regarded as generalized dichotomous responses:
several distinct responses are possible, not just one [569].

• Time-to-event data record the time elapsing from some natural origin of the time
scale to an event [565].

• The count model describes data that report the number of events in a volume of
space or time.

Despite the problems associated with constructing appropriate efficacy measures,
a plethora of classical pharmacodynamic models have been developed. Accordingly,
in this last part of the book, we first present in Chapter 12 the classical modeling
approaches used to analyze the observed pharmacodynamic effects. In Chapter 13,
we present concepts and applications of nonlinear dynamics to pharmacodynamics,
placing particular emphasis on chemotherapy and drugs affecting the central
nervous system, the cardiovascular system, and the endocrine function.



Chapter 12
Classical Pharmacodynamics

The master of the oracle at Delphi does not say anything and
does not conceal anything, only hints.

Heraclitus of Ephesus (544–483 BC)

Receptors are the most important targets for therapeutic drugs [570]. Therefore, it
is important to explore the mechanisms of receptor modulation and drug action in
intact in vivo systems. Also, the need for a more mechanism-based approach in
pharmacokinetic-dynamic modeling has been increasingly recognized [571, 572].
Hill [573] made the first explicit mathematical model of simulated drug action to
account for the time courses and concentration–effect curves obtained when nicotine
was used to provoke contraction of the frog rectus abdominis muscle.

Simple mathematical calculations by the first pharmacologists in the 1930s
indicated that structurally specific drugs exert their action in very small doses and
do not act on all molecules of the body but only on certain ones, those that constitute
the drug receptors. For example, Clark [574] calculated that ouabain applied to
the cells of the heart ventricle, isolated from the toad, would cover only 2:5%
of the cellular surface. These observations prompted Clark [574, 575] to apply
the mathematical approaches used in enzyme kinetics to the effects of chemicals
on tissues, and this formed the basis of the occupancy theory for drug–receptor
interaction. Thus, pharmacological receptor models preceded accurate knowledge
of receptors by many years.

12.1 Occupancy Theory in Pharmacology

According to the occupancy theory, which has evolved chronologically from the
original work of Clark [574, 575], the drug effect is a function of two processes:

• binding of drug to the receptor and drug-induced activation of the receptor, and
• propagation of this initial receptor activation into the observed pharmacological

effect, where the intensity of the pharmacological effect is proportional to the
number of receptor sites occupied by drug.
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Therefore, the drug–receptor interaction follows the law of mass action and may
be represented by the equation

� Œdrug molecules�C Œreceptor�
kC1

�
k�1

Œdrug–receptor complex�

Œdrug–receptor complex�
k2H) Œpharmacological effect� ;

(12.1)

where � molecules of drug activate a receptor and give an activated receptor
usually called the drug–receptor complex. Although � is defined as the number of
molecules interacting with one receptor, it is in practice merely used to provide
better data fits. Rate constants kC1, k�1 characterize the association and dissociation
of the complex, respectively. The ratio k�1=kC1 is defined in pharmacology as the
dissociation constant kD of the complex. The proportionality constant k2 relates the
drug–receptor complex concentration � .t/ with the pharmacological effect E .t/,
through the equation

E .t/ D k2� .t/ . (12.2)

When the total number of receptors r0 is occupied, the effect will be maximal:

Emax D k2r0. (12.3)

For drug concentration c .t/ and a total receptor concentration r0 we thus have

�
� .t/ D kC1c� .t/ Œr0 � � .t/� � k�1� .t/ , � .0/ D 0. (12.4)

In the equilibrium state (
�
� .t/ D 0 assumption H1) we have

�� D r0c��

kD C c�� , (12.5)

where c�, �� are the drug and drug–receptor complex concentrations in the
equilibrium, respectively. By combining the last equation with (12.2) and (12.3),
we obtain the working equation for the so-called sigmoid Emax model:

E� D Emaxc��

kD C c�� , (12.6)

where E� is the pharmacological effect at equilibrium. From the last equation, it
can be seen that the dissociation constant kD expresses also the � -power of drug
concentration needed to induce half maximal effect (Emax=2). When � is set to 1,
the model is called the basic Emax model, but this model offers less flexibility in the
shape of the function compared to the sigmoid Emax model.

Assuming relatively rapid drug–receptor equilibrium with respect to c .t/ varia-
tions, then c� � c .t/ (assumption H2), so the previous equation becomes
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E� .t/ D Emaxc� .t/

kD C c� .t/
, (12.7)

where E� .t/ indicates that the effect is driven by the pharmacokinetic time.
With � D 1, (12.6) has been used extensively in pharmacology to describe the

effect of chemicals on tissues in the modified form:

E� D "r0c�

kD C c� ,

where " is the intrinsic efficacy (inherent ability of the chemical to induce a
physiological response). In other words, " is the proportionality constant k2 relating
the receptor density r0 with the maximal effect Emax (12.3). In order to avoid the use
of the efficacy term (due to its ad hoc nature), Black and Leff [576] introduced in
1983 the operational model of drug action

E� D 	Emaxc�

kD C .	 C 1/ c� ,

where 	 is equal to the ratio of the receptor density over the concentration of the
complex that produces 50% of the maximal tissue response. In reality, this constant
ratio characterizes the propensity of a given chemical–tissue system to yield a
response.

Since the development of the occupancy theory, the mathematical models used
to explain the action of ligands at receptors have been subject to continuous
development prompted by new experimental observations. Currently, pharmaco-
logical studies deal with drug–receptor or drug–tissue interactions to get estimates
for receptor (tissue) affinity and capacity. Thus, the operational model enjoys
widespread application in the field of functional receptor pharmacology [577].
Although this model is routinely applied to in vitro studies, the estimates for receptor
affinity and capacity can be used for prediction of the effect in vivo. In principle, kD

should be of the same order as the unbound Ec�50, where Ec50 is the concentration
at half maximal effect in vivo. In this context, Visser et al. [578] correlated the in
vitro measurements with in vivo observations in rats when studying the effect of
� -aminobutyric acid receptor modulators on the electroencephalogram.

12.2 Empirical Pharmacodynamic Models

Combined pharmacokinetic-dynamic studies seek to characterize the time course of
drug effects through the application of mathematical modeling to dose–effect–time
data. This definition places particular emphasis on the time course of drug action.
Pharmacodynamics is intrinsically related to pharmacokinetics, which encompasses
the study of movement of drugs into, through, and out of the body. The term
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pharmacodynamic models exclusively refers to those models that relate drug
concentration with the pharmacological effect.

The most common function used to relate drug concentration c with effect is the
Emax model:

E D Emaxc�

Ec�50 C c�
, (12.8)

where Emax is the maximum effect and Ec50 is the concentration at half the
maximal observable in vivo effect. Equation (12.8) corresponds to (12.6) with Ec�50
substituting kD. It is also clear that (12.8) is a static nonlinear model in which c
corresponds to the equilibrium point c�. If we consider c as a time course c .t/,
we must implicitly assume that equilibrium is achieved rapidly throughout c .t/, so
c� � c .t/ (assumption H2).

If a baseline E0 is introduced to the previous equation,

E D E0 ˙ Emaxc�

Ec�50 C c�
,

we obtain the Emax model describing either stimulation or inhibition of the effect by
the concentration of the drug. Parameters Emax, Ec50, and � are assumed constant
and independent of the drug dose as well as the drug and receptor concentrations.

Other simpler empirical models have also been used since the early days of phar-
macodynamics [579, 580] to describe the drug concentration–effect relationship.
The linear model relies on a linear relationship between E and c:

E D ˛c C ˇ, (12.9)

where ˛ is the slope indicating the sensitivity of the effect to concentration changes.
The intercept ˇ can be viewed as the baseline effect. Equation (12.9) reveals that the
linearity between c and E is unlimited, and this feature is undoubtedly a drawback
of the model. Besides, a log-linear model between E and c can also be considered:

E D ˛ log .c/C ˇ. (12.10)

Due to the logarithmic expression of concentration in this model a larger concentra-
tion range is related “linearly” with the effect. As a rule of thumb, 20 to 80% of the
concentration range of the Emax model can be approximately described with (12.10).

Although these empirical approaches may quantify and fit the data well, they do
not offer a physical interpretation of the results.
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12.3 Pharmacokinetic-Dynamic Modeling

In the mid-1960s, G. Levy [579, 580] was the first to relate the pharmacokinetic
characteristics with the in vivo pharmacological response of drug using the above-
mentioned linear models. In fact, as the pharmacological responses E .t/ and
the drug concentration c .t/ can be observed simultaneously and repeatedly as a
function of time, a combined pharmacokinetic-dynamic model is needed to describe
these time courses. From the simple models, the discipline of pharmacokinetic-
dynamic modeling emerged gradually, and in actuality even complex physiological
processes controlling drug response can be modeled. The key mechanisms intrinsic
to pharmacokinetic-dynamic models are the following:

• the processes may take place under either equilibrium or nonequilibrium condi-
tions for the pharmacodynamic part,

• the binding of drug with the receptor may either be reversible or irreversible, and
• the bound drug may induce its effect directly or indirectly.

A general scheme for the basic components of pharmacokinetic-dynamic models
is depicted in Figure 12.1. According to this scheme, the drug at the prereceptor
phase is considered to distribute to an effect compartment; then it reacts with
the receptors under equilibrium (direct link, assumption H3) or nonequilibrium
(indirect-link) conditions, and finally, at the postreceptor phase, the activated
receptors can either produce the response directly (direct response, assumption H4)
through the transducer function T (which is usually a proportionality constant like
k2 in equation 12.1) or they can interfere with an endogenous or already existing
process that produces the final response (indirect response). In fact, all the processes
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Fig. 12.1 Schematic of the basic processes involved in pharmacokinetic (PK)-dynamic (PD)
models. The phases I, II, and III refer to processes that take place in the prereceptor, receptor,
and postreceptor proximity, respectively. The symbols are defined in the text
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of the general model depicted in Figure 12.1 are not necessarily incorporated in the
final model used in practice. Almost always, one of these steps is considered to be
the limiting one, and the model reduces to one of the basic models described below.

12.3.1 Link Models

During the first decades of the development of pharmacokinetic science, a lag
time in pharmacological response after intravenous administration was often treated
by applying a compartmental approach. If the plasma concentration declined in a
biexponential manner, the observed pharmacodynamic effect was fitted to plasma
or “tissue” compartment concentrations. Due to the lag time of effects, a successful
fit was sometimes obtained between effect and tissue drug level [581]. However,
there is no a priori reason to assume that the time course of a drug concentration
at the effect site must be related to kinetics in tissues that mainly cause the
multiexponential behavior of the plasma time–concentration course. A lag time
between drug levels and dynamic effects can also occur for drugs described by a
one-compartment model.

Segre [582] was the first author to consider the possibility that the time course
of pharmacological effect could itself be used to describe the transfer rate of a
drug to the biophase. Thus, the lag time of the effect was modeled by including
two hypothetical tissue compartments between the plasma compartment and the
pharmacodynamic response compartment.

The idea of Segre was further developed, in an elegant way, by Sheiner and
associates [583, 584] by linking the effect compartment to a kinetic model. This
approach has since been called the link model. The time course of the drug in
the effect site is determined by the rates of transfer of material into and from the
effect compartment; the lag time of the effect-site concentration is controlled by the
elimination rate constant of the effect compartment. The beauty of this approach
is that instead of relating the pharmacodynamic response to drug concentrations in
some more or less well-defined tissue, it is related to the plasma drug level, which
in clinical practice is of great importance.

12.3.1.1 Direct Link

Strictly speaking, pharmacodynamic models are employed to relate the receptor
site drug concentration to pharmacological response at any given time using data
mainly from in vivo experiments. However, the receptor site drug concentration
normally cannot be measured directly. Thus, the simplest pharmacokinetic-dynamic
mechanistic model arises from assuming that the drug concentration in the blood,
c .t/ (far left compartment of Figure 12.1), is the same at the receptor site, y .t/.
Strictly speaking, this assumption expresses a prereceptor equilibrium (H3) and the
resulting model does not utilize concentrations at the effect site.
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Further, under equilibrium conditions H1, we can use (12.6) to relate the
pharmacological effect E� with the drug concentrations c�, or in addition, use (12.7)
to relate the time courses E� .t/ and c� .t/ under the supplementary assumption H2.
Thus, the simplest mechanistic models are once again the basic and the sigmoid
Emax models, but now they have a specific physical interpretation in terms of drug–
receptor reaction kinetics.

As is implicit from all the above, the measured concentration in plasma is
directly linked to the observed effect for these simple mechanistic, pharmacokinetic-
dynamic models. Accordingly, these models are called direct-link models since the
concentrations in plasma can be used directly in (12.6) and (12.7) for the description
of the observed effects. Under the assumptions of the direct-link model, plasma
concentration and effect maxima will occur at the same time, that is, no temporal
dissociation between the time courses of concentration and effect is observed. An
example of this can be seen in the direct-link sigmoid Emax model of Racine-Poon
et al. [585], which relates the serum concentration of the anti-immunglobulin E
antibody CGP 51901, used in patients for the treatment of seasonal allergic rhinitis,
with the reduction of free anti-immunglobulin E.

Under the assumptions of the direct-link model, neither a counterclockwise
(Figure 12.2) nor a clockwise hysteresis loop (Figure 12.4) will be recorded in an
effect vs. concentration plot. In principle, the shape of the effect vs. concentration
plot for an ideal direct-link model will be a curve identical to the specific
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Fig. 12.2 Normalized effect–plasma drug concentration state space for the indirect-link model. As
time flows (indicated by arrows) a counterclockwise hysteresis loop is formed. The rate constant
for drug removal from the effect compartment ky characterizes the temporal delay, that is, the
degree of hysteresis
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pharmacodynamic model, relating effect with concentration, e.g., linear for a linear
pharmacodynamic model, sigmoid for the sigmoid Emax model etc.

12.3.1.2 Indirect Link: The Effect-Compartment Model

In the direct-link model, concentration–effect relationships are established without
accounting for intrinsic pharmacodynamic temporal behavior, and relationships
are valid only under the assumption of effect site, prereceptor equilibrium H3.
In contrast, indirect-link models are required if there is a temporal dissociation
between the time courses of concentration and effect, and the observed delay in
the concentration–effect relationship is most likely caused by a functional delay
between the concentrations in the plasma and at the effect site.

When a lag time of E .t/ is observed with respect to the c .t/ time course, the
use of a combined pharmacokinetic-dynamic model, the indirect-link model, is
needed to relate the drug concentration c .t/ to the receptor site drug concentration
y .t/ (which cannot be measured directly) and the y .t/ to the pharmacological
response E .t/.1

The effect-compartment model relaxes the assumption H3 and it stems from the
assumption of prereceptor nonequilibrium between drug concentration in the blood
or plasma c .t/ and the receptor site y .t/. According to this model, an additional
compartment is considered, the effect (or biophase) compartment, and concentration
y .t/ in that compartment reacts with the receptors, Figure 12.1.

Notation:

• Vc and Vy denote the apparent volumes of distribution of the plasma and effect
compartments, respectively.

• kc and ky denote the first-order rate constants for the drug transfer from plasma
to effect site and for drug elimination from the effect site, respectively.

Then assuming that the mass-flux equality holds for the effect compartment, i.e.,
Vckc D Vyky, the drug concentration y .t/ in the effect compartment can be described
by the linear differential equation

�
y .t/ D ky Œc .t/ � y .t/� , y .0/ D 0. (12.11)

This equation can be solved by applying the Laplace transformation and convolution
principles (cf. Appendix E):

y .t/ D kyQy .t/ , (12.12)

1In the classical pharmacokinetic-pharmacodynamic literature, the effect-site concentration and
the effect-site elimination rate constant are denoted by cE and kE0, respectively. Here, the symbols
y .t/ and ky are used instead.
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where Qy .t/ is defined as the apparent effect site drug concentration and it is given by

Qy .t/ D
Z t

0

c
�
t0
	

exp

�ky

�
t � t0

	�
dt0.

The time symbols t0, t denote the temporal dissociation between the time courses of
concentration and effect, respectively. For various types of drug administration, the
function c .t/ is known and therefore analytic solutions for Qy .t/ have been obtained
using the integral defined above. Substituting (12.12) into (12.7), we obtain the
fundamental equation for the Emax indirect-link model:

E� .t/ D E�max Qy� .t/
Qy�50 C Qy� .t/ ; (12.13)

where Qy50 is the apparent effect site drug concentration producing 50% of the
maximum effect.

In this model, the rate constant ky was originally considered to reflect a
distributional delay of drug from plasma to the effect compartment. However, it
can also be regarded as a constant producing the delay in effects in relation to
plasma, irrespective of whether this is caused by distributional factors, receptor
events, production of a mediator of any kind, etc.

The basic feature of the indirect-link model is the counterclockwise hysteresis
loop that is obtained from plotting the observed values of the effect vs. the observed
plasma drug concentration values, Figure 12.2. In other words, the effect is delayed
compared to the plasma drug concentration and this is reflected in the effect–
concentration state space.

Numerous applications of pharmacokinetic-dynamic models incorporating a
biophase (or effect) compartment for a variety of drugs that belong to miscellaneous
pharmacological classes, e.g., anesthetic agents [586], opioid analgesics [587–589],
barbiturates [590, 591], benzodiazepines [592], antiarrhythmics [593], have been
published. The reader can refer to a handbook [594] or recent reviews [572] for a
complete list of the applications of the biophase distribution model.

In actual practice, nonlinear regression is used to fit a suitable pharmacoki-
netic model described by the function c .t/ to time–concentration data. Then, the
estimated parameters are used as constants in the pharmacodynamic model to
estimate the pharmacodynamic parameters. Alternatively, simultaneous fitting of
the model to the concentration–effect–time data can be performed. This is recom-
mended as c .t/ and E .t/ time courses are simultaneously observed.

Example 10. Bolus Intravenous Injection

An example of the indirect-link model after bolus intravenous injection can be
seen in Figure 12.3. The arrow indicates time flow. Each point represents a uniquely
defined state and only one trajectory may pass from it. The state space has a point
attractor, i.e., a steady state, which is obviously the point (c D 0, E� D 0) reached
at theoretically infinite time. Three different initial conditions of the form c .0/ D
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Fig. 12.3 Indirect-link
model with bolus intravenous
injection. (a) The classical
time profiles of the two
variables c .t/ (solid line)
and E� .t/ (dashed line)
for dose q0 D 0:5. (b) A
two-dimensional phase space
for the concentration c .t/ vs.
effect E� .t/ plot using three
doses 0:5, 0:75, and 1 (solid,
dashed, and dotted lines,
respectively)
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q0=Vc, E� .0/ D 0, are used to generate three different trajectories, all of which end
up at the point attractor. The integrated equations of the system are

c .t/ D q0
Vc

exp .�kt/ ,

Qy .t/ D q0
Vc



exp .�kt/ � exp

��kyt
	�

ky � k
,

E� .t/ D Emax Qy .t/
Qy50 C Qy .t/ ,

where q0 is the dose, Vc and k are the volume of distribution and the elimination rate
constant for pharmacokinetics, ky is the effect-site elimination rate constant, Emax

is the maximum effect, and Qy50 is the concentration at which 50% of the maximum
effect is observed. Parameter values were set at
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Vc D 1, k D 0:1,
ky D 0:5, Emax D 1, Qy50 D 0:7.

where all units are arbitrary. �

12.3.2 Response Models

Time is not an independent variable in the presented models. Dynamic behavior is
either a consequence of the pharmacokinetics or the observed lag time by means of
the effect compartment. Dynamic models from the occupancy theory and described
by differential equations, such as (12.4), are scarce [595, 596].

Neglecting dynamic models in pharmacodynamics [597] is perhaps due to the
fact in that instant equilibrium relationships between concentration and effect appear
to occur for most drugs. For some drugs, such as cytotoxic agents, this delay is often
extremely long, and attempts to model it are seldom made. One can describe these
relationships as time-dissociated or nondynamic because the temporal aspects of the
effect are not linked to the time–concentration profile.

In recent years, new models overcoming these defaults have been developed
as the indirect physiological models introduced by Jusko and associates [598].
According to this last type of model, an endogenous substance or a receptor
protein is formed at a constant rate and lost with a first-order rate constant. The
drug concentration in plasma produces an effect by either stimulating or inhibiting
the synthesis or removal of the endogenous substance leading to a change in the
observed pharmacodynamic effect described by a suitable pharmacodynamic model.

12.3.2.1 Direct Response

The standard effect-compartment model, usually characterized as an atypical
indirect-link model, also constitutes an example of what we will call a direct-
response model in contrast to the indirect-response models. Globally, the standard
direct-response models are models in which c .t/ affects all dynamic processes only
linearly.

12.3.2.2 Indirect Response

Ariens [599] was the first to describe drug action through indirect mechanisms.
Later on, Nagashima et al. [600] introduced the indirect-response concept to
pharmacokinetic-dynamic modeling with their work on the kinetics of the antico-
agulant effect of warfarin, which is controlled by the change in the prothrombin
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complex synthesis rate. Today, indirect-response modeling finds extensive applica-
tions especially when endogenous substances are involved in the expression of the
observed response.

From a modeling point of view, the last equilibrium assumption that can be
relaxed, for the processes depicted in Figure 12.1, is H4, between the activated
receptors (� variable in the occupancy model) and the response E. Instead of
the activated receptors directly producing the response, they interfere with some
other process, which in turn produces the response E. This mechanism is usually
described mathematically with a transducer function T which is no longer linear (cf.
Section 12.4.1). This type of pharmacodynamic model is called indirect response
and includes modeling of the response process usually through a linear differential
equation of the form

�
E .t/ D kigi .t/ � kogo .t/E .t/ , E .0/ D ki=ko, (12.14)

where ko is a first-order rate constant, and ki represents an apparent zero-order
production rate of the response. Stationarity conditions set the initial response value
E .0/ at the ratio ki=ko. Functions gi .t/ and go .t/ depend on the drug concentration
through Emax functions and can produce either stimulation or inhibition, respec-
tively:

g .t/ D 1C Smaxc .t/

Sc50 C c .t/
or g .t/ D 1 � Imaxc .t/

Ic50 C c .t/
. (12.15)

In these expressions, g .t/ is either gi .t/ or go .t/, Smax is maximum stimulation
rate, Imax is maximum inhibition rate with Imax < 1, Sc50 and Ic50 are the drug
concentrations at which g .t/ D 1C .Smax=2/ and g .t/ D 1� .Imax=2/, respectively.
Consequently, four basic models are formulated: inhibition of ki, inhibition of ko,
stimulation of ki, and stimulation of ko, Figure 12.1.

This family of the four basic indirect-response models has been proven to
characterize diverse types of pharmacodynamic effects and it constitutes the current
approach for pharmacokinetic-dynamicmodeling of responses generated by indirect
mechanisms. Thus, indirect-response models have been used to interpret the antico-
agulant effect of warfarin, adrenal suppression by corticosteroids, cell trafficking
effects of corticosteroids, the antipyretic effect of ibuprofen, aldose reductase
inhibition, etc. [601]. Basically, the indirect-response concept is appropriate for
modeling the pharmacodynamics of drugs that act through inhibition or stimulation
of the production or loss of endogenous substances or mediators.

However, the general model described above is considered to be mechanistic.
It is opposed to the completely empirical approach, since it is based on a general
physiological process like receptor activation. But it is too general and abstract
to describe complicated drug processes. Stimulation and inhibition of a baseline
through the saturable Emax function is often not enough, since drugs interplay
with complicated physiological processes. Thus, during the last ten years Jusko’s
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group and other investigators have expanded the application of indirect-response
mechanisms to real mechanistic pharmacodynamic modeling and have included
detailed modeling of the underlying physiology and then modeled the effect of
drugs on it. These models are called extended indirect-response models [602] and
they have been used to describe tolerance and rebound phenomena [603], time-
dependency of the initial response [604, 605], cell trafficking dynamics [606], etc.

It is rather obvious that an indirect-response mechanism, whatever the detailed
processes involved, results in a counterclockwise hysteresis loop for the effect–
concentration relationship, Figure 12.2. Here, however, the elaboration of the
observed response is usually secondary to a previous time-consuming synthesis
or degradation of an endogenous substance(s) or mediator(s). Since both the
indirect-link and indirect-response models have counterclockwise hysteresis effect–
concentration plots, an approach based on the time of the maximum effect has been
applied to furosemide data [607] for indirect (link or response) model selection.

When one looks into the basic functions of the link and indirect-response models,
it is clear that one of the differences resides in the input functions to the effect and
the receptor protein site, respectively. For the link model a linear input operates
in contrast to the indirect model, where a nonlinear function operates. For the
link model the time is not directly present and the pharmacological time course
is exclusively dictated by the pharmacokinetic time, whereas the indirect model has
its own time expressed by the differential equation describing the dynamics of the
integrated response.

12.4 Other Pharmacodynamic Models

A number of other pharmacodynamic approaches focusing either on prereceptor or
postreceptor events have been proposed in the literature and are discussed below.

12.4.1 The Receptor–Transducer Model

First, mention can be made of cases in which the measured effect, instead of
being proportional to the activated receptors, follows a more general function
E D T .�/. This model is called receptor–transducer and was introduced by Black
and Leff [576]. The function T is called a transducer function and its most common
form is yet again the Emax function, which when replaced in (12.5) results in an Emax

model but with different shape parameters called an operational model [608].
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12.4.2 Irreversible Models

All the above-mentioned pharmacokinetic-dynamic models are characterized by
reversibility of the drug–receptor interaction. In several cases, however, drug
action relies on an irreversible bimolecular interaction; thus, enzyme inhibitors
and chemotherapeutic agents exert their action through irreversible bimolecular
interactions with enzymes and cells (bacteria, parasites, viruses), respectively.

The irreversible inactivation of endogenous enzymes caused by drugs, e.g., the
antiplatelet effect of aspirin after oral administration [609], the 5˛-reductase inhi-
bition by a new nonsteroidal inhibitor [610], and the HC, KC-ATPase inactivation
by proton pump inhibitors [611], is modeled with turnover models. The simplest
model [609] includes terms for the production rate ki and loss rate ko of the
response E, coupled with a function g .c/ representing the change of plasma or
effect-compartment drug concentration:

�
E .t/ D ki � Œko C g .c/�E .t/ ,

where ki and ko have the same meaning as defined for (12.14) while the function
g .c/ is either linear or of Michaelian type.

The models used for the irreversible effects of chemotherapeutic agents quantify
the response E .t/ in terms of the cell number since irreversible inactivation leads to
cell killing. In these models, the function of the natural proliferation of cells r .E/ is
combined with the cell-killing function g .c/, which again represents the change of
plasma or effect-compartment drug concentration:

�
E .t/ D r .E/ � g .c/E .t/ .

The function r .E/ can take various forms describing the natural growth of the cell
population in the absence of drug [539, 612], while g .c/ can be either linear or
nonlinear [602, 613, 614]. Due to the competitive character of the functions r .E/ and
g .c/, the cell number vs. time plots are usually biphasic with the minimum effective
concentration of drug being the major determinant for the killing or regrowth phases
of the plot.

12.4.3 Time-Variant Models

Contrary to the already mentioned models, which include constant parameters,
pharmacodynamic models may include time-varying parameters as well. Typical
examples include models of drug tolerance or sensitization, where the parameters
vary as a function of the dosing history. Other examples concern modeling of
circadian rhythms where parameters depend explicitly on time through biological
clocks, e.g., the baseline of a pharmacological response, and it is necessary to
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Fig. 12.4 Normalized effect–plasma drug concentration state space for tolerance phenomena. As
time flows (indicated by arrows) a clockwise hysteresis loop is formed

include periodicity in the pharmacokinetic-dynamic modeling. This is usually done
by empirical periodic functions directly on the baseline, such as trigonometric
functions, for example. An example is the effect of fluticasone propionate on cortisol
[605]. All models associated with these phenomena are called time-variant.

12.4.3.1 Drug Tolerance

This phenomenon is characterized by a reduction in effect intensity after repeated
drug administration. The explanation for the diminution of the effect as a function of
time is attributed either to a decrease in receptor affinity or a decrease in the number
of receptors. These changes result in a clockwise hysteresis loop when the effect
is plotted vs. the plasma concentration, Figure 12.4. Usually, tolerance phenomena
are discussed with respect to the Emax model. In this case, tolerance is associated
with either a decrease in Emax over time or an increase in Ec�50 over time (12.8). An
example of this kind of time dependency is the work of Meibohm et al. [615] on the
suppression of cortisol by triamcinolone acetonide during prolonged therapy.

Apart from the decrease in the number or affinity of the receptors, more
complex mechanisms have been proposed for tolerance phenomena. In the so-called
counterregulation models, the development of tolerance is driven by the primary
effect of drug perhaps via an intermediary transduction step. This mechanism was
postulated by Bauer and Fung [616] for hemodynamic tolerance to nitroglycerine.
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According to these authors, initial nitroglycerin-induced vasodilatation controls the
counterregulatory vasoconstrictive effect. Moreover, the desensitization of receptors
can reduce the drug effects on prolonged exposure. The receptor-inactivation theory
[617] can be used to model this mechanism.

12.4.3.2 Drug Sensitization

This term is used to describe the increase in pharmacological response with time
to the same drug concentration. The up-regulation of receptors is considered to
be the primary cause for sensitization. This phenomenon is observed when the
negative feedback of an agonist is removed. A clinical example of sensitization is
the chronic administration of beta-blockers, which induces up-regulation of beta-
adrenoreceptors. This leads to increased adenyl cyclase activity and hypersensitivity
to catecholamines after sudden withdrawal of the antagonist [618]. Due to the
increase of the effect over time in sensitization phenomena, the effect–plasma
concentration plots have a counterclockwise hysteresis loop, Figure 12.2.

12.4.4 Dynamic Nonlinear Models

Using the approach of Sheiner and Verotta [619], a large number of pharmaco-
dynamic models can be considered as hierarchical models composed of a series
of submodels. These submodels are linear or nonlinear, static or dynamic input–
output, elementary models. Several possible combinations of such submodels have
been considered, but they have systematically associated the linear with dynamic
features, and the nonlinear with static ones. Is there hesitation or fear of using
nonlinear dynamics in the traditional pharmacokinetic-dynamic modeling context?

The most interesting case arises by removing assumption H1, i.e., when the
reaction between drug and receptor is not at equilibrium [595]. This happens when
relatively slow rates of association and dissociation of the complex are observed.
Under these conditions, a slow dynamic receptor-binding model is most applicable.
By maintaining the proportionality between the effect and the concentration of the
drug–receptor complex, (12.4) can be written in terms of the effect

�
E .t/ D kC1c� .t/ ŒEmax � E .t/� � k�1E .t/ , E .0/ D 0. (12.16)

This equation is a nonlinear differential equation describing the time course of the
effect and using an intrinsic pharmacodynamic time. An application of this model
can be found in the work of Shimada et al. [596], who applied the drug–receptor
nonequilibrium assumption to model the pharmacodynamics of eight calcium
channel-blocking agents in hypertensive patients on the basis of their in vitro
binding data. This model is rarely used because it produces profiles similar to the



12.5 Unification of Pharmacodynamic Models 359

Table 12.1 Assumptions and operable equations for the pharmacokinetic-
dynamic models. The hysteresis column “Hyster” refers to the graph of the
effect–concentration plot.

Model Prereceptor Receptor Postreceptor Hyster

Empirical Emax None 12.8 None No

Indirect link 12.11 12.13 None Yes

Indirect response Equilibrium 12.15 12.14 Yes

Transducer None None E .t/ D T .�/ -

Nonlinear Equilibrium 12.16 None Yes

indirect-link model described above. However, the drug–receptor nonequilibrium
model has more theoretical and practical interest since more complex solutions are
also feasible by adding a feedback component to the effect of the drug [620]. The
resulting model has a very rich dynamic behavior and is the essence of Chapter 13.

Table 12.1 summarizes assumptions and equations for the above-presented
pharmacodynamic models.

12.5 Unification of Pharmacodynamic Models

Historically, delays between drug exposure and effect have been described with the
so-called effect-compartment model, first described by Segre [582] and popularized
by Sheiner and coworkers [583, 584]. Recently, Dayneka [598] focused attention
on a set of indirect-effect models to introduce intrinsic pharmacodynamic time.
The relevance of combined pharmacokinetic-dynamic modeling has been largely
recognized [621, 622]. The discussion in Section 12.3 indicates that the development
of the various pharmacokinetic-dynamic models was based on the dominating
assumption for one of the drug processes depicted in Figure 12.1. Thus, the
pharmacokinetic-dynamic models can be classified kinetically on the basis of the
assumptions associated with:

• the prereceptor equilibrium,
• the drug–receptor interaction, and
• the postreceptor equilibrium.

A very general scheme for relating effects to concentration, of which both the
effect-compartment and the indirect-effect models are special cases, was outlined by
Sheiner and Verotta [619]. The models presented in the study can be considered to
be a special case of that unified scheme. As judiciously presented by these authors,
both direct-response and indirect-response models are composed of one nonlinear
static submodel and one dynamic submodel, but the placement of the submodels in
the global model differs:
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• In a direct-response model, the output of a linear dynamic model (the link model)
with input c .t/ drives a nonlinear static model (usually the Emax model) to
produce the observed response.

• In an indirect-response model, the above order of models is reversed and now
the static model precedes the dynamic one. The dynamic model describes the
formation and loss of the response variable through a linear differential equation
whose parameters are nonlinear saturable forms of the driving concentration c .t/.

All these models introducing the prereceptor and postreceptor events have an
interesting appeal with respect to physiologically implied mechanisms. Sheiner and
Verotta [619] pointed out the importance of knowing where the rate-limiting step is
located in a series of events from pre- to postreceptor drug interactions.

The fundamental assumption and equations governing the effect–concentration
relationship for each one of the models considered are listed in Table 12.1. The
presence or not of a hysteresis loop in the effect–plasma concentration plot of each
model is also quoted in Table 12.1. At present, the methodology for performing
efficient pharmacokinetic-dynamic modeling is well established [572, 623, 624].



Chapter 13
Nonclassical Pharmacodynamics

The whole is more than its parts.

Aristotle (384–322 BC)
Metaphysics

Whereas the concentration of a drug depends on the administration protocol and
on intrinsic pharmacokinetic characteristics of the process, endogenous substances
are certainly regulated by appropriate internal control mechanisms. For example,
the neurotransmitter norepinephrine is released from sympathetic nerve endings
and its concentration is regulated by enzymes and by a mechanism for reuptake
of this catecholamine into nerve endings. Deficiencies in the control of such
important chemicals may result in vasospasm, spasticity, and a variety of behavioral
abnormalities. Such observations strongly suggest the existence of control systems
represented by negative feedback mechanisms. By means of those mechanisms, the
dynamic system controls the local concentration of critical endogenous chemicals
that interact with receptors according to the mass-action law. Indeed, the biomedical
literature, particularly that of functional and biochemical pharmacology, is rich
with detailed descriptive mechanisms of control and its modification induced by
an extensive list of drugs and chemicals. However, mathematical analysis of such
control is virtually nonexistent in the pharmacological literature. In contrast, there
has been a steady evolution of concepts of control theory and dynamic modeling
in many areas of physiology, elegantly traced by Glass and Mackey [32], with an
extension by these authors to physiopathological states [49].

As stated in Chapter 12, when the drug–receptor interaction involves feedback,
the system becomes more complex. Hence, we will first present modeling and
associated mathematical analysis of three typical processes. This will be followed
by several applications involving drug pharmacodynamics organized around phar-
macotherapy with drugs affecting the endocrine, central nervous, and cardiovascular
systems.
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13.1 Nonlinear Concepts in Pharmacodynamics

First, we provide a typical stability analysis for a model involving a nonlinear
mechanism, which links pharmacodynamics with pharmacokinetics. Also, we
provide new insights that may aid in understanding the variety of oscillations
displayed in biological systems and how they may be related to the maintenance
or loss of control in such systems. Examples of periodic phenomena abound in
biological systems, in many cases due to fluctuations of ligand interacting with a
receptor.

Homeostatic regulation will be studied as represented by negative feed-
back mechanisms. First, it will be shown how the properties of negative feedback
are related to the geometric properties of the binding and control curves in a
ligand–receptor interaction and, further, how changes in their geometry affect the
system’s response to variations of the ligand release. Second, in the analysis of the
hemopoietic chain, negative feedback is supplemented by a lag time that leads to
bifurcations and oscillatory, chaotic behavior.

For these analyses, the procedure is to use dimensionless parameters in the set
of differential equations describing the model, look for the steady state, investigate
the linear stability, and determine the conditions for instability. Near the bifurcation
values of the parameters, which initiate an oscillatory growing solution, perturbation
analysis provides an estimate for the period of the ensuing limit cycle behavior.

13.1.1 Nonlinear Mechanism

As an indirect-link model, the effect-compartment model has been frequently
revealed not flexible enough to fit experimental data, nor sensitive enough with
respect to dosage modifications in order to adjust regimens in clinical pharmacoki-
netics. Some others were subsequently introduced to offer the required properties.
The interface model introduced first by Meille et al. [625] is an alternative of the
biophase effect-compartment model.

The interface model receives as input the pharmacokinetic concentrations c .t/
and elaborates the exposition variable y .t/ which drives the pharmacodynamic
effect. The interface model is described by the following differential equation

�
y .t/ D �� exp Œ�˛y .t/� y .t/C ˇ Œc .t/ � ��H Œc .t/ � �� (13.1)

where H Œ:� is the Heaviside step function. The model parameter

• ˛ controls the extent of nonlinearity; when ˛ D 0, the model becomes the
traditional biophase compartment model;

• ˇ quantifies the influence of pharmacokinetics on the interface model; and
• � is a threshold on the circulating drug concentrations.
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13.1.1.1 Stability Analysis

The section presents successively the reparametrization of the model to obtain
dimensionless parameters, the search of equilibrium point, the investigation of the
linear stability, and the determination of the conditions for instability.

The proposed reparametrizations are

� D �t � .�/ D c .�/� �  .�/ D ˛y .�/

and the model becomes

�
 .�/ D � exp Œ� .�/�  .�/C �� .�/ (13.2)

with � D ˛ˇ=�.
The equilibrium points � depend on the extent of �� .�/ term and they are roots

of the following equation

exp
�� �	 � D �� .�/ (13.3)

obtained from the differential equation 13.2 by setting
�
 .�/ D 0. The maximum of

 exp .� / occurs for  D 1. Equation 13.3 may have no solution, one solution,
or two solutions when �� .�/ is higher, equal, or less than exp .�1/, respectively.

For linear stability, the local behavior of the differential equation 13.2 near  � is
determined by linearizing at  �

d

d .�/
Œ� exp Œ� .�/�  .�/C �� .�/�

ˇ
ˇ
ˇ
ˇ
 .�/D �

D exp
�� �	 � � � 1	

(13.4)

The above expression is the eigenvalue � of the system evaluated at the equilibrium
points and it states about the stability conditions. So, the conditions for instability
are connected with the kind of roots  � of the equation 13.3:

• if �� .�/ > exp .�1/, no real solutions and the system is unstable;
• if �� .�/ D exp .�1/, one saddle-point solution  � D 1 and the system is

unstable;
• if �� .�/ < exp .�1/, two real solutions and the sign of  � � 1 determines

the stability conditions. If  � < 1, the model is stable; otherwise, it is unstable.
For the stable solution  �

1 , the eigenvalue 13.4 is negative and for the unstable
solution  �

2 , it is positive. The positive eigenvalue is the Lyapunov exponent that
is connected with the sensitivity with respect to the initial conditions.
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13.1.1.2 Initial Conditions

The role of initial conditions was not mentioned in the above analysis. In fact,
the stability was studied after a long time, sufficient enough to drive the system
toward the equilibrium points. Now, we propose to examine the trajectories starting
from different initial conditions to end at the equilibrium points. The behavior of
the differential equation 13.2 is examined when the initial condition is chosen near

the equilibrium points  �, i.e., the sign of
�
 .�/ is studied near  .0/ D  � C ı.

Here, ı is a small quantity and �� .�/ is assumed constant �� , �� .�/. From the
above

�
 .�/

ˇ̌
ˇ
�D0 D exp


� � � C ı
	� �
 � C ı

	C ��

and by expanding the above expression, by using equation 13.3, and by approximat-
ing exp .ı/ � 1C ı, we obtain

�
 .�/

ˇ
ˇ
ˇ
�D0 D exp

�� �	 � � � 1	 ı:

• If  � < 1 (i.e.,  .0/ near to  �
1 ),

�
 .�/

ˇ̌
ˇ
�D0 < 0 for ı > 0 and

�
 .�/

ˇ̌
ˇ
�D0 > 0

for ı < 0, i.e., the trajectory is attracted toward the stable equilibrium point  �
1 .

• If  � > 1 (i.e.,  .0/ near to  �
2 ),

�
 .�/

ˇ
ˇ
ˇ
�D0 < 0 for ı < 0, i.e., the trajectory is

leaving the instable  �
2 neighborhood and it reaches lower  .�/ values.

• If  � > 1 (i.e.,  .0/ near to  �
2 ),

�
 .�/

ˇ
ˇ
ˇ
�D0 > 0 for ı > 0, i.e., the trajectory

reaches higher to  .�/ values, it is diverging and becomes unstable.

In summary,  �
2 is a critical point for the initial conditions, if  .0/ <  �

2 , the
trajectory ends up to  �

1 , otherwise the trajectory becomes unstable. This comments
the sensitivity of the system trajectories with respect to the initial conditions.

For instance, with �� D 0:23, Figure 13.1 presents graphically the position of
the two real solutions  �

1 D 0:3152 and  �
2 D 2:3046. Also, Figure 13.2 presents

the trajectories starting near  �
2 D 2:3046 for different values of ı.

The Lyapunov exponent is the eigenvalue � evaluated at the unstable equilibrium
point  �

2 , � D exp
�� �

2

	 �
 �
2 � 1

	 D 0:1302. It is named ‘exponent’ because
the same value � is the � parameter in exp .�t/. This increasing exponential term
quantifies the time profile of the difference between two trajectories starting from
nearly located initial conditions. Based on this property, the Lyapunov exponent was
calculated at � D 0:13014 close to � D 0:1302 by fitting the simulated trajectories
in the time interval up to 115 h.
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13.1.1.3 Unexpected Toxicity

In the above analyses, the input function in the interface model was assumed
constant, �� , �� .�/. In this section the input will be considered variable in time,
as it is driven by the pharmacokinetic concentration time profile. The model involves
the pharmacokinetic, interface, and pharmacodynamic components as follows

�
c .t/ D �kc .t/C u.t/

V c .0/ D 0
�
 .t/ D � exp Œ� .t/�  .t/C �c .t/  .0/ D 0

• The pharmacokinetic component is a simple one-compartment model describing
the concentration profile c .t/ with parameters, the volume of distribution V D
100 l and elimination rate k D 0:05 h�1. The drug is assumed to be given in
repeated administrations by oral route with absorption rate ka D 1 h�1. This
administration protocol is adequately described by the u .t/ function.

• The interface model uses the � D 0:23 parameter and it generates the normalized
exposure variable  .t/. The differential equation 13.1 was reparametrized by
selecting ˛ D � D 1, ˇ D 0:23 and the concentration threshold was set at 0,
� D 0.

• The pharmacodynamic component is a simple sigmoidal function that quantifies
the risk of toxicity

	 .t/ D  .t/

 50 C  .t/
:

According to this model, 	 .t/ is driven by the exposure variable  .t/ generated
by the interface model and involves the parameter  50 D 10, which is the
exposure required to induce a risk of 50%.

The dose used was fixed at 180 mg daily. Two administration schedules were
studied, twice in day (b.i.d.) and once in day (o.i.d.). For the two schedules, the
average concentration remains the same, cave D 1:5 mg l�1, but the fluctuations

cmax � cmin

cave

are 41:62 and 95:02% for the b.i.d. and o.i.d. schedules, respectively.
By using the model, simulations were made to show that, when instability

conditions are met within the interface model, spontaneous toxicity could be
observed as pharmacodynamic outcome. The stability graphics are first presented
in Figure 13.3. In this graphics, the input function of the interface model �c .t/
is plotted by solid line; the  .t/ exp Œ� .t/� function and the exp .�1/ threshold
are plotted by dashed lines. It is important to mention that considering the overall
pharmacokinetic behavior materialized by the average concentration cave, the input
function �cave D 0:345 leads to levels lower than the exp .�1/ D 0:3679 threshold,
thus preventing the instability of the system.
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a daily dose of 180 mg

Because of the repeated administrations, the pharmacokinetic profile is varying
periodically and the trajectories of the input are represented in a spiral form. For
the two administration schedules, the input function using high concentration levels
exceeds the threshold of exp .�1/, and this could induce some instabilities. Since
the concentration profile fluctuations for the o.i.d. are two-fold larger than that for
the b.i.d. schedule, this behavior is more pronounced for the o.i.d. (Figure 13.3, right
panel) than that for the b.i.d. schedule (Figure 13.3, left panel). Moreover, important
segments of the trajectories of the input function in the o.i.d. schedule are projected
in the .t/ > 1 domain, where the equilibrium points become unstable. This should
result in an unstable behavior of the o.i.d. as compared with the b.i.d. administration
schedule.

The time profiles of the exposure variable .t/ for both administration schedules
are depicted in Figure 13.4. In fact, the b.i.d. schedule (low-level profile) is not
sufficiently powerful to trigger instability; in opposite, the o.i.d. schedule (high-level
profile) induces uncontrolled exposure after 10 d of repeated drug administrations.
Again in the phase plane concentration–exposure (Figure 13.5), the hysteresis
curves obtained with the o.i.d. schedule are confined in the low dashed-line-box
for the early times (first 10 d) and, for the longer times, the hysteresis curves jump
spontaneously to 100-fold higher levels (Figure 13.5). This instability has severe
consequences regarding the risk for toxicity 	 .t/ as described by the sigmoidal
function (Figure 13.6). The b.i.d. schedule can induce toxicity risks up to 7%, but
the o.i.d. schedule after 10 d of daily repeated doses induces a risk that can exceed
90% in a spontaneous rather than gradual manner.
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The interface model is a nonlinear effect-compartment model, in which the
elimination rate � exp Œ�˛y .t/� is controlled by the state y .t/. This nonlinear
feedback mechanism induces a highly versatile exposure variable controlling
pharmacodynamics. The potential instability results from the saturation of this
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Fig. 13.6 The sigmoidal function toxicity risk 	 .t/ vs. exposure variable  .t/ for the b.i.d. (thin
line) and for the o.i.d. (thick line) schedules.

nonlinear mechanism triggered by high drug levels c .t/ although for short time
period and periodically. In fact, several references support the instability and the
spontaneous toxicity in pharmacodynamics [626].

13.1.2 Negative Feedback

The interaction of a drug or an endogenous ligand with a specific receptor is most
often modeled as a bimolecular reversible reaction

Œligand�C Œreceptor�
kC1

�
k�1

Œligand-receptor complex� ,

to which the mass-action law applies. This is the classic model presented else-
where (8.8), (12.1). It is the basis of most studies aimed at quantitatively charac-
terizing receptors with specific radioligands as well as in functional studies where
the effect is related to receptor occupancy [617].

For a concentration c .t/ of the drug or ligand and a total receptor concentration
r0, we thus have

�
� .t/ D kC1c .t/ Œr0 � � .t/� � k�1� .t/ , � .0/ D 0, (13.5)
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where � .t/ is the concentration of the ligand–receptor complex, and kC1 and k�1
are the forward and reverse rate constants, respectively, of the reaction. The main
features for the ligand model are that ligand is continuously released at rate u .t/,
and eliminated exponentially with a rate constant k, and that there exists a negative
feedback control function ˆ.�/ that depends on the concentration of occupied
receptor � .t/ that modulates the release; thus,

�
c .t/ D �kc .t/Cˆ.�/C u .t/ , c .0/ D 0, (13.6)

with ˆ.�/ 	 0 and dˆ.�/ =d� , ˆ0 .�/ � 0. The model is based on evidence,
obtained largely from studies of the release of neurotransmitters, that the quantity
of ligand released per unit time is modulated by the nerve terminal itself as a
result of stimulation by the neurotransmitter of a subset of the receptors termed
“autoreceptors” [617]. Thus, receptor stimulation not only produces effects but also
inhibits or augments release, thereby maintaining a basal level of the ligand. The
feedback signal may originate at a site other than the occupied receptor; however, it
is functionally related to � .t/.

We make the variables of the above equations dimensionless:

� D kC1
k

, � D k�1
k

, � D k�1
kC1

,

y .�/ D � .�/

r0
, � .y/ D ˆ.y/

k
, 	 .�/ D u .�/

k
,

with � D kt. The set of differential equations becomes

�
y .�/ D �c .�/ Œ1 � y .�/� � �y .�/ , y .�/ D 0,
�
c .�/ D �c .�/C � .y/C 	 .�/ , c .�/ D 0.

(13.7)

Equilibrium points .y�; c�/ of the system are those for which
�
y .�/ D �

c .�/ D 0.

• Equating
�
y .�/ to zero, we have the binding curve. The binding curve and its

slope are given by

cB D �y= .1 � y/ and dcB=dy D �= .1 � y/2 (13.8)

respectively.
• Equating

�
c .�/ to zero, we have the feedback curve. The feedback curve and its

slope are given by

cF D � .y/C 	 .�/ and dcF=dy D �0 .y/ (13.9)

respectively.
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Equilibrium points of the system are the intersections of the binding curve with
the feedback curve, i.e., c� D cB D cF. Their location in the state space depends on
� and 	 .�/ (equations 13.8 and 13.9).

The stability of equilibrium points is determined by standard stability analysis
(cf. Appendix A). The Jacobian matrix of the linearized system,

A .y/ D
�� .�c C �/ � .1 � y/

�0 .y/ �1
�

,

supplies the eigenvalues �1 and �2. Given (13.8) and (13.9), these eigenvalues are

�1;2 D 1

2

"

� .� C 1/˙
s

.� C 1/2 C 4� .1 � y/

�
�0 .y/� dcB

dy

�#

, (13.10)

where

� D �c C � D �

1 � y
.

Since y < 1 at any equilibrium point, it follows that a negative feedback
�0 .y/ � 0 ensures that the second term under the radical is negative, so that the
eigenvalues are real and negative or complex with a negative real part; hence, such
an equilibrium point is stable. For a large negative value of �0 .y/ the eigenvalues
are complex and the point is a stable focus. A shallow negative slope gives two real
negative eigenvalues and thus a stable node. In the previous equation it is seen that
the eigenvalues do not depend on the normalized ligand input rate 	 .�/.

In simple negative feedback, � .y/ is a monotone decreasing function and the
equilibrium point is unique. However, due to a variety of factors, it is expected
that at very low ligand–receptor numbers, � .y/ becomes an increasing function,
implying a positive feedback. The feedback becomes a mixture of positive and
negative feedbacks, called mixed feedback, and it has been reported elsewhere
[627]. Positive slopes in � .y/ generate other equilibrium points [620, 628, 629].
The characterization of the eigenvalues in these new equilibrium points, and hence
the stability of the system, follows from the application of the following theorem
(cf. Appendix G): “The derivatives of two successive intersection points between
two continuous functions, one of which is monotone, have opposite signs.”

Application of this theorem permits analysis of the equilibrium points of the
system with a monotone binding curve. If in the equilibrium point P1 D �

y�
1 ; c

�
1

	

we have �0 �y�
1

	
< 0, the system is stable. If the feedback curve is assumed to be

continuous over a domain of permissible values of receptor occupancy y .�/, in the
nearest equilibrium point P2 D �

y�
2 ; c

�
2

	
, we will have �0 �y�

2

	
> 0. This condition

is necessary but not sufficient for the instability of the system. But if moreover
�0 �y�

2

	
>dc�

B=dy�, one eigenvalue from (13.10) is positive and the system becomes
unstable at P2, which is an unstable saddle point or repellor.
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Fig. 13.7 Upper panel: Binding curve (solid line) and the intersections P1, P2, and P3, with the
feedback curve (dashed line) to give the equilibrium points. Lower panel: the slope graphical
analysis determines yA, yB, and yC, which are intersections of slopes �0 .y/ (dashed line) and
dcB=dy (solid line) helping us to analyze the stability graphically

Example 11. Stability with Feedback

We use a feedback curve similar to the Weibull distribution with both scale and
shape parameters equal to 5; for the binding curve, we set � D 20 and 	 .�/ D 0:2.
In the state space, Figure 13.7 illustrates the position of the three equilibrium
points, P1 D .0:2304; 5:9878/, P2 D .0:1119; 2:5204/, and P3 D .0:0099; 0:2002/

(Figure 13.7A). The graphic slope analysis determines yA D 0:2947, yB D 0:1901,
and yC D 0:0182 (Figure 13.7B), which are threshold values for �0 .y/ and dcB=dy
comparison. Thus, according to (13.10), we note that for:

• y� < yC, the equilibrium is stable since �0 .y/ <dcB=dy; since y�
3 < yC, P3 is

stable;
• yC � y� < yB, the equilibrium is unstable since �0 .y/ >dcB=dy; since

yC < y�
2 < yB, P2 is unstable;

• yB � y� < yA, the equilibrium is a stable focus since
ˇ
ˇ�0 .y/

ˇ
ˇ �dcB=dy; since

yB � y�
1 < yA, P1 is a stable focus; and

• yA � y�, the equilibrium is stable since
ˇ
ˇ�0 .y/

ˇ
ˇ <dcB=dy.

These results are supported by the standard stability analysis of Figure 13.8,
where � is set to 0:1 and � D 2 (� D ��). The eigenvalues computed by (13.10) are
plotted as functions of y. In this figure, unstable and stable equilibrium points are
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Fig. 13.8 Eigenvalues computed via (13.10). ( ı ) indicates the positions of equilibrium points P1,
P2, and P3, and vertical dash-dotted lines, the positions of yA, yB, and yC. The solid line represents
the imaginary parts, and dashed and dotted lines represent the real parts of eigenvalues

clearly separated by an interval, Œ0:1974I 0:2790�, where eigenvalues are complex,
leading to a stable focus. With increasing �, this interval becomes narrower and for
� > 0:65, the eigenvalues have only real parts.

Finally, Figure 13.9 illustrates the dynamics of the model described by (13.7)
when a different initialization is used. The unstable P2 point is actually a repellor,
P1 is a stable focus, and P3 is stable. Depending on the magnitude of the release of
ligand from intracellular storage sites or exogenous administration, and the location
of the unstable point, the state vector will either return to the operating point or be
propelled to extreme states. Such propulsion means loss of control in the effector
system governed by occupation of the receptor. The distance between the stable and
the unstable points is crucial in this regard. Equally important are the eigenvalues at
the control point. When these are complex, the recovery follows a path that is closer
to the unstable point.

It is also interesting to comment on the influence of the parameters on the system
behavior:

1. The elimination rate constant k is a time-scale parameter and it does not affect
the present stability analysis.

2. The forward and reverse rate constants, kC1 and k�1, respectively, govern the
affinity. A change in affinity, with the same receptor density, also affects stability.
A decrease in affinity (decrease in � or increase in � expressing the dissociation
constant) results in an increase in distance between P1, P2, and P3. The parameter
� affects exclusively the binding curve.
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focus, P2 ( � ) is an unstable saddle point, and P3 ( � ) is stable

3. The steep negative slope �0 .y/ � 0 results in complex eigenvalues. The
frequency of the oscillation increases with the steepness. The operating point in
such cases is a stable focus. In contrast, shallow negative slopes are indicative
of a nonoscillating operating point or stable node. Since eigenvalues do not
depend on 	 .�/, figures like Figure 13.8 are useful for following the positions of
equilibrium points in the state space when 	 .�/ varies.

4. When fixed, the number of receptors r0 is a scale parameter and it does not affect
the stability. When r0 is not fixed but changes as a result of pharmacological
interventions or pathological states, the operating point will, of course, change.

When u .t/ and r0 are varying and the other parameters are fixed, simulations
(not presented here) with (13.5) and (13.6) reveal that a decrease in u .t/ results in
a decrease in distance between P2 and P3. Conversely, an increase in r0 results in a
decrease in distance between P1 and P2. �

The above-mentioned theorem allows speculation about a monotone feedback
curve and a nonlinear binding curve. Their intersections will have derivatives with
alternate signs, and therefore, they lead to stable and unstable equilibrium points. In
this sense, Tallarida [629] used a U-shaped feedback curve to analyze experiments
involving neurotransmitter norepinephrine systems [630].

Analysis on the state space proved to be very useful and demonstrated how
possible changes in receptor affinity or receptor number affect the distance between
the operating point and the unstable equilibrium point, and thus the ability of the
system to return to the operating point after a perturbation such as endogenous



13.1 Nonlinear Concepts in Pharmacodynamics 375

release. The new information reported here pertains to the geometry on the state
space, which allows us to predict both the stability of equilibrium points and
the characteristic frequency from the slopes of both curves at their intersection.
The relationship between the slope and the frequency of the system is especially
important in the further development of models for particular receptor systems,
since examples of rhythmic phenomena abound in biological systems.

As we proceed it will be seen that the most important results do not depend on a
particular assumption regarding the form of the feedback function. Thus far we have
not located the equilibrium points for the system under study because the function
ˆ.�/ was kept general. The model we have used is applicable to both endogenous
and exogenous substances.

In a series of contributions, Tallarida also studied the control of an endogenous
ligand in the presence of a second compound (agonist or antagonist) that interacts
with the same receptor [630] or under periodic release of the ligand [631]. That
author showed by computer simulation how the parameters of the model affect the
time course of released ligand resulting from administration of an antagonist and
the suppression of such release when the second compound is an agonist.

A new quantitative concept that describes the feedback control of the dopaminer-
gic system was also introduced, the control curve. Once known, the ligand’s control
curve has predictive value that may be useful in the design of efficient drug tests.
These theoretical results were confirmed experimentally on numerous cases as for
neurotransmitters, hormones, peptides, etc., whose concentrations in the various
organs and tissues remain bounded. For example, the control of dopamine release
by negative feedback was confirmed in the rat striatum [632]. A consequence
of this model is that competitive antagonists augment dopamine release, whereas
competing agonists reduce such release.

These findings may be of general importance since baseline parameters are cru-
cial in determining pharmacodynamic responses [633], while feedback mechanisms
are frequently involved in physiological processes, e.g., the secretion of hormones
and the recurrent inhibitory pathway for � -aminobutyric acid in the hippocampus,
which has been described in almost every type of neural tissue ranging from the
lowest invertebrates through humans [634], and the production of biotech products
in humans [635].

13.1.3 Delayed Negative Feedback

An interesting case is that of a delay mechanism inserted in a closed loop
process with negative feedback. The typical process is the hemopoietic process that
incorporates some control elements that regulate homeostatically the rates of release
of marrow cells to proliferation, maturation, and to the blood.

The dynamic response of the process of neutrophil granulocyte production to
perturbations has been studied in a number of ways. In leukopheresis, neutrophils
are removed from the blood artificially over a short span of time. Following
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such an acute depletion of the neutrophil blood count, referred to as a state of
neutropenia, neutrophils rapidly enter the blood from the marrow and produce an
abnormally large number of neutrophils in the blood, or a state of neutrophilia
[636]. The magnitude of the neutrophil blood count seen in such a state is about
2� 3 times normal. Such observations suggested the presence of some mechanisms
for regulating the release of marrow neutrophils in response to the number of
neutrophils circulating in the blood [637].

The most notable feature of the dynamic response of the process to large
perturbations in the number of blood cells is that the system “rings,” displaying an
oscillatory behavior in the number of cells in the blood and other compartments
of the system, as a function of time. Such large perturbations are produced by
leukopheresis or exposure of the system to disease, which depletes the number of
blood cells, and in total body irradiation experiments or some drug treatments such
as chemotherapy, which deplete the total number of cells in the production process
of neutrophil granulocytes.

Besides these perturbations on the hemopoietic process, there are some diseases,
collectively referred to as the periodic diseases, in which symptoms recur on a
regular basis of days to months. The most common of these disorders are cyclic
neutropenia (also known as periodic hemopoiesis) [638] and cyclic thrombocy-
topenia [639]. It has long been suspected that periodic hematologic diseases arise
because of abnormalities in the feedback mechanisms that regulate blood cell
number [640–642]. But in a dynamic feedback process such as hemopoiesis it is
difficult to distinguish between cause and effect. Oscillations occurring in one cell
stage may induce cycling in other stages via feedback regulation. The mechanisms
regulating neutrophil production are not as well understood. The important role
of the cytokine granulocyte colony-stimulating factor (G-CSF) for the in vivo
control of neutrophil production was demonstrated by Lieschke [643, 644]. Several
studies have shown an inverse relation between circulating neutrophil density and
serum levels of G-CSF [645]. Coupled with the in vivo dependency of neutrophil
production on G-CSF, this inverse relationship suggests that the neutrophils would
regulate their own production through negative feedback, in which an increase
(decrease) in the number of circulating neutrophils would induce a decrease
(increase) in the production of neutrophils through the adjustment of G-CSF levels.
G-CSF has synergetic effects on the entry into cycling of dormant hemopoietic
stem cells.

These observations have provided impetus for mathematicians to determine the
conditions for the observed oscillations. Thus far, there have been two surprising
discoveries [48, 49]:

• qualitative changes can occur in blood cell dynamics as quantitative changes are
made in feedback control and

• under appropriate conditions, these feedback mechanisms can produce aperiodic,
irregular fluctuations, which could easily be mistaken for noise and/or experi-
mental error [32, 646, 647].
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Fig. 13.10 The organization of normal hemopoiesis. Symbols are defined in the text

In the following, we will examine some theoretical developments and discuss
their implications in a pharmacodynamic context. A simple, physiologically realistic
mathematical model of neutrophil lineage is first proposed, including homeostatic
regulation by means of cytokine G-CSF. Next, investigation of the properties of
the model by stability analysis shows that this variety of clinical outcome can be
described mainly from the dynamics of neutrophil counts governed by feedbacks.
The sharpness of the feedback signals is essentially determined by the stability of
the oscillatory behavior.

13.1.3.1 Modeling of Neutrophil Regulation

The organization of normal hemopoiesis is shown in Figure 13.10. It is gener-
ally believed that there exists a self-maintaining pluripotent stem cell population
capable of producing committed stem cells specialized for the erythroid, myeloid,
or thromboid cell lines [648]. The lineage studied here is the myeloid, ending
with the neutrophils in the bloodstream. Three differential equations describe the
mechanisms implied in this hemopoietic scheme:

1. The influx Rs of cells from the pluripotent stem cell population to the committed
stem cell lines is assumed mainly regulated by long-range humoral mecha-
nisms � .e/, implicating the cytokine G-CSF, e .t/. An intrinsic property of
the hemopoietic chain is the presence of a time delay tı that arises because
of finite cell maturation times and cell replication times for the neutrophil
myelocytes, s .t/. In fact, it is important to remember that once a cell from
the pluripotent stem cell population is committed to the neutrophil lineage, it
undergoes a series of nuclear divisions and enters a maturational phase for a
period of time (tı � 5 � 7 d) before release into circulation. The production
function Rs has not only to be amplified, but also to be delayed as described by
the feedback component � .e .t � tı//, because a change in the blood neutrophil
numbers can only augment or decrease the influx into the circulation after a
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period of time tı has elapsed. Thus, changes that occur at time t were actually
initiated at a time t � tı in the past. For the sake of simplicity, we will use the
notation eı .t/ instead of e .t � tı/. We can describe these dynamics by

�
s .t/ D Rs�

�
eı .t/

	 � kss .t/ ,

where ks is the loss rate for s .t/. The previous equation is a differential–delay
equation. In contrast to ordinary differential equations, for which we need only to
specify an initial condition as a particular point in the state space for a given time,
for differential–delay equations we have to specify an initial condition in the form
of a function, usually called the history function,  .t/ and defined for a period
of time equal to the duration of the time delay. Thus, we will select

s .t/ D  .t/ , �tı � t � 0.

We will consider only initial functions that are constant, i.e., s .t/ D s0.
2. Mature neutrophil myelocytes s .t/ are now controlling the input rate Rw of

neutrophils w .t/ that disappear from the blood with a rate constant kw. The input
function Rw in its simplest form can be considered as an amplification of s .t/,
expressing the proliferation of neutrophil myelocytes, i.e., Rw D ˛s .t/:

�
w .t/ D ˛s .t/ � kww .t/ , w .0/ D w0.

3. At the physiological equilibrium state, cytokine G-CSF, e .t/, is delivered at the
rate Re and cleared by mechanisms characterized by rate constant ke. A fall
in circulating neutrophil numbers w .t/ leads to an acceleration of the G-CSF
clearance, which has as consequence a decrease in e .t/ levels. This decrease in
turn triggers the production of committed stem cells, which increases cellular
efflux of neutrophil precursors, and ultimately augments w .t/ (i.e., negative
feedback). This regulated behavior can be implemented by means of the e .t/
clearance depending on w .t/ levels and the � .eı .t// function [649]. The
differential equation for e .t/ is expressed by

�
e .t/ D Re � kew .t/ e .t/ , e .0/ D e0.

4. Of primary importance is the form of feedback mechanism implying the previous
differential equation, where the w .t/ level controls the e .t/ clearance, and the
function � .eı .t// that modulates the committed stem cell production. More
specifically

�
�
eı .t/

	 D #

(

1 � exp

"

log

�
# � 1
#

��
eı .t/

e0

��#)

,
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a monotone increasing Weibull-like function with � .e0/ D 1. In the present
model, parameters # and � express the amplification and the sharpness of the
G-CSF effect.

In the above equations, s0, w0, and e0 denote history and initial conditions
corresponding to the undisturbed state of the process at equilibrium.

Thus, we propose to study a model with delayed feedback, as done by several
investigators [48, 49, 640–642, 650–654].

Normally, the equilibrium behavior of the process requires that the production
rate equal the disappearance rate. These conditions and the introduction of the
variable transformation g .t/ D ˛s .t/ allow us to determine the input rates Rs

and Re:

�
g .t/ D kskww0� .eı .t// � ksg .t/ , g .�tı � t � 0/ D kww0,�
w .t/ D g .t/ � kww .t/ , w .0/ D w0,�
e .t/ D ke Œw0e0 � w .t/ e .t/� , e .0/ D e0.

(13.11)

Figure 13.11 illustrates the function regulating neutrophil production depending on
the circulating neutrophil numbers.

We make the variables of the above equations dimensionless:

g .�/ D kww0x .�/ , w .�/ D w0y .�/ , e .�/ D e0z .�/ ,
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Fig. 13.11 Homeostatic control for regulation of neutrophil production. Parameters are w0 D 4

and e0 D 1 cells�106 ml�1, # D 2 and � D 1, and kw D 0:7 d�1. ı indicates the position of the
equilibrium point
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with � D kew0t, and we set

�ı D kew0tı, � D ks= .kew0/ , � D kw= .kew0/ .

The set of differential equations becomes

�
x .�/ D � Œ� .zı .�//� x .�/� , x .��ı � � � 0/ D 1,
�
y .�/ D � Œx .�/ � y .�/� , y .0/ D 1,
�
z .�/ D 1 � y .�/ z .�/ , z .0/ D 1,

(13.12)

with zı .�/ D z .� � �ı/ and

�
�
zı .�/

	 D #

�
1 � exp

�
log

�
# � 1
#

� �
zı .�/

	�
��

. (13.13)

Current analytic and numerical work determine the time-dependent changes
in blood cell number as certain quantities, referred to as control parameters, are
varied. Examples of control parameters in the regulation of hemopoiesis are the
dimensionless maturation time �ı and the peripheral destruction rates � and �.

It is well established that under appropriate circumstances, delayed negative
feedback mechanisms can produce oscillations. To illustrate this point we continue
with the stability analysis.

13.1.3.2 Stability Analysis

Equilibrium points .x�; y�; z�/ of the system are those for which
�
x .�/ D �

y .�/ D�
z .�/ D 0. As previously defined, the equilibrium state of the process leads to the
single equilibrium point .x�; y�; z�/ D .1; 1; 1/. Since z .�/ is not changing with
time, we have also .zı/� D z� D 1. We would now like to know what conditions on
the parameters of our model are required to warrant stability, and even further, what
happens in the case of instability.

Because the model (13.12) that describes this physiological process is nonlinear,
we cannot answer these questions in total generality. Rather, we must be content
with understanding what happens when we make a small perturbation on the states
x, y, and z away from the equilibrium. The fact that we are assuming that the
perturbation is small allows us to carry out what is known as linear stability analysis
of the equilibrium state.

The nonlinearity of (13.12) comes from the terms � .zı .�// and y .�/ z .�/
involved in the nonlinear negative feedback regulation. What we want to do is
replace these nonlinear terms by a linear function in the vicinity of the equilibrium
state .x�; y�; z�/. This involves writing the Jacobian matrix of the linearized system
(cf. Appendix A):
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A D
2

4
�� 0 ��0 .1/ .dzı=dz/
� �� 0

0 �1 �1

3

5 .

To analyze stability of the linearized model, we have to examine the eigenvalues
that are solutions of the characteristic equation of A. Usually the eigenvalue is a
complex number � D �Ci!. If � D Re � < 0, then the solution is a decaying
oscillating function of time, so we have a stable situation. If � D Re � > 0 on
the other hand, then the solution diverges in an oscillatory fashion and the solution
is unstable. The boundary between these two situations, where � D Re � D 0,
defines a Hopf bifurcation in which an eigenvalue crosses from the left-hand to the
right-hand complex plane.

The usual procedure to obtain solutions of the characteristic equation of A is to
assume that the solution of z .�/ has the form

z .�/ / exp .��/

and find out the requirements on the parameters of the equation so that there is an
eigenvalue � allowing z .�/ to be written in this form. Under this assumption,

dzı=dz D exp
����ı	 ,

and the eigenvalues are given as solutions of the characteristic equation

.� C �/ .� C �/ .� C 1/C ���0 .1/ exp
����ı	 D 0. (13.14)

In contrast to systems without delay, the previous equation has generally an
infinite number of roots. Nevertheless, there are only a finite number of roots with
real parts [655]. Figure 13.12 illustrates solutions of (13.14) with � D 0:025,
� D 0:175, �0 .1/ D 2, and �ı D 0; 10; 100. We note that:

• all roots are complex conjugates, except for �ı D 0, where one root is real,
• only for �ı D 100 do we have one pair of roots with positive real part, � D

Re � � 0:002947,
• in the complex plane, the roots’ density near the origin is higher for �ı D 100

than the density for the other �ı values.

Let us find the critical delay value �� at which the characteristic roots intersect
the stability boundary, i.e., the imaginary axis � D 0, thus rendering the system
unstable with � Di!�. We substitute this into the previous equation, and after
separating real and imaginary parts, we have

��


1C �0 .1/ cos!���� D .� C �C 1/!�2, (13.15)

���0 .1/ sin!��� D .��C � C �/!� � !�3.
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Fig. 13.12 Characteristic roots for different �ı values: �ı D 0 (�), �ı D 10 (C), and below for
�ı D 100 (ı)

Note that if i!� is a characteristic root of (13.14), then �i!� is also a characteristic
root. Then, we can assume that !� > 0. Squaring and adding the above two
equations defines a polynomial equation in !�6 with only even powers. If we set
� D !�2 > 0, this equation becomes a third-order polynomial equation in �:

�3 C ˇ2�
2 C ˇ1�C ˇ0 D 0

with

ˇ2 D �2 C �2 C � C �C 1,
ˇ1 D �2�2 C �2 C �2,

ˇ0 D .��/2
h
1 � �0 .1/2

i
.

According to the Descartes rule of signs and since ˇ1 and ˇ2 are positive, the
inequality ˇ0 < 0 or �0 .1/ > 1 is a necessary condition to have the unique positive
solution � > 0.

After evaluating this solution, we obtain !�, and then, from one of (13.15), we
calculate the critical value of ��. Figure 13.13 shows the frequency!� (upper panel)
and the critical value of �� (lower panel) as functions of �0 .1/. We can say that the
real parts of � will be positive, and thus (13.12) will be unstable, if and only if the
actual delay �ı is greater than ��. For example, for �0 .1/ D 2 and the set � and �
values, �� � 44:049 and any �ı > �� triggers periodic oscillations following some
perturbation in the system. Otherwise, the system is locally stable.
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Fig. 13.14 The period T of oscillations as a function of ��

The period T of the periodic solution can be obtained by noting that ! D 2=T.
In general, the period of an oscillation produced by a delayed negative feedback
mechanism is at least twice the delay [640]. For our model of neutrophil production,
the functional relationship between �� and T is shown in Figure 13.14. We note that
the period of the oscillation should be four times the delay as reported by Mackey
[641] and as also concluded by another simpler model without the neutrophil
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myelocytes s .t/ (results not shown). Since the maturational delay for neutrophil
production is � � 5�7 d, we would expect to see oscillations in neutrophil numbers
with periods of about 3� 4 weeks.

13.1.3.3 Chemotherapy

Neutropenic episodes place patients at increased risk for infective processes (e.g.,
abscesses, pneumonia, septicemia), and up to 20% of patients may die during these
episodes. For example, in patients undergoing cancer chemotherapy, neutropenia
is frequently a dose-limiting side effect. The importance of the time profile of
hematologic effects in analyzing properties of anticancer agents has been recently
recognized [656, 657]. Different models of the entire time course of responses
have been proposed. They can be classified as either mechanistic or empirical.
The latter models postulate explicit relationships between the effect and pharma-
codynamic and pharmacokinetic parameters [597, 656], whereas the mechanistic
models describe the biological processes controlling the change of the affected cells
[657, 658].

Here, a new model of hematologic toxicity of anticancer agents is introduced.
The postulated mechanisms that influence the response variable (e.g., neutrophil
count) are:

• an indirect mechanism, where by means of a logistic function, the cell production
rate of neutrophil myelocytes s .t/ is modulated by the blood concentrations of
the anticancer drug and

• direct toxicity of the anticancer drug levels, according to which the killing rate
of neutrophil myelocytes is proportional to s .t/ � Œdrug levels� [659].

This model was identified from data gathered in a clinical study [660] aiming
to define a regular and tolerable dose of the epirubicin–docetaxel combination in
first-line chemotherapy on 65 patients with metastatic breast cancer. Following the
analysis of these data, parameters were set to

kw D 0:7 d�1, ke D 1 d�1, ks D 0:1 d�1,
w0 D 4000 cells � mm�3, e0 D 1000 cells � mm�3,
# D 2, � D 2:8854,

leading to the dimensionless parameters

� D 0:025, � D 0:175, �0 .1/ D 2.

Two different delays were also assessed, tı D 5 and 15 d, corresponding to �ı D
20 and 60, respectively. The simulation of the neutrophil count is presented in the
Figure 13.15. We observe that:
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Fig. 13.15 Simulation of the neutrophil count kinetics for tı D 5 (solid line) and 15 d (dashed
line). The dotted line indicates the minimum allowed neutrophil level

• while in the first month following initial delay the two kinetic patterns look the
same, their behavior has been differentiated for the subsequent time leading
either to oscillatory or dampening behavior corresponding to tı D 15 and
tı D 5 d delays, respectively, and

• the periods of oscillations in both cases are 4-fold higher than the initial delay.

The clinical significance of the previous analysis is that it may be possible
to develop new therapeutic strategies with agents shortening the period of
chemotherapy-associated neutropenia such as lenograstim [661]. Such agents
may reduce incidence or duration of serious infections and enable greater dose-
intensification. In the long run, quantitative modeling may support the design of
chemotherapy or growth factor drug regimens based on manipulation of feedback
[32, 48–50]. Alternatively, the model can be used to identify more specifically the
effects of drugs in the hemopoietic system.

13.1.3.4 Mixed Feedback

Recently, Bernard et al. [654] studied oscillations in cyclical neutropenia, a rare
disorder characterized by oscillatory production of blood cells. As above, they
developed a physiologically realistic model including a second homeostatic control
on the production of the committed stem cells that undergo apoptosis at their
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proliferative phase. By using the same approach, they found a local supercritical
Hopf bifurcation and a saddle-node bifurcation of limit cycles as critical parameters
(i.e., the amplification parameter) are varied. Numerical simulations are consistent
with experimental data and they indicate that regulated apoptosis may be a
powerful control mechanism for the production of blood cells. The loss of control
over apoptosis can have significant negative effects on the dynamic properties of
hemopoiesis.

In the previous analysis, delayed negative feedback mechanisms were considered
only for neutrophil regulation. However, if over a wide range of circulating
neutrophil levels, the neutrophil production rate decreases as the number of neu-
trophils increases (i.e., negative feedback), in the range of low neutrophil numbers
the production rate must increase as neutrophil number increases (i.e., positive
feedback). This type of feedback was reported as mixed feedback [627].

In order to contrast the dynamics that arise in delayed negative and mixed
feedback mechanisms, Mackey et al. [662] considered periodic chronic myeloge-
nous leukemia in which peripheral neutrophil numbers oscillate around elevated
levels with a period of 30 � 70 d even in the absence of clinical interventions
[663, 664]. On closer inspection it can be seen that the number of days between
successive maximum numbers of neutrophils is not constant, but varies by a few
days. Moreover, the morphology of each waveform differs slightly and there are
shoulders on some of them. Mackey et al. [48, 49] have explored the possibility
that these irregularities are intrinsic properties of the underlying control mechanism.
These studies indicate that the dynamics of mixed feedback are much richer than for
the simple negative feedback model. Increases in tı are of particular interest since
a prolongation of the neutrophil maturation time is inferred in patients with chronic
myelogenous leukemia [665]. As tı is increased an initially stable equilibrium
becomes unstable and stable periodic solutions appear. Further increases in tı
lead to a sequence of period-doubling bifurcations, which ultimately culminates
in an apparently chaotic or aperiodic regime. Here, the model predicts that levels
of circulating neutrophils are random simply as a consequence of their own
deterministic evolution.

The observations in these notes emphasize that an intact control mechanism for
the regulation of blood cell numbers is capable of producing behaviors ranging
from no oscillation to periodic oscillations to more complex irregular fluctua-
tions, i.e., chaos. The type of behavior produced depends on the nature of the
feedback, i.e., negative or mixed, and on the value of certain underlying control
parameters , e.g., peripheral destruction rates � and � or maturation times �ı.
Pathological alterations in these parameters can lead to periodic hematologic
disorders. The observation that periodic hematologic diseases have periods that are
multiples of 7may simply be a consequence of the combination of delayed feedback
mechanisms with maturation times that are on the order of 5 � 7 d. Thus it is
not necessary to search for elusive and mystical entities [666], such as circadian
rhythms, to explain the periodicity of these disorders.

The realization that physiological control mechanisms can generate exceedingly
complex oscillations, such as chaos, is a subject of great interest [32, 48, 49, 646,



13.2 Pharmacodynamic Applications 387

647]. It is quite possible that both interesting and relevant dynamic changes are often
observed, but their significance is wrongly ascribed to environmental noise and/or
experimental error. Careful attention to these dynamic behaviors may eventually
provide important insights into the properties of the underlying control mechanisms.

13.1.3.5 Periodic and Dynamical Diseases

The first explicit description of the concept of periodic diseases, where the disease
process itself may flare or recur on a regular basis of days to months, was provided
over 40 years ago by H. Reimann [667]. That author described and catalogued
a number of periodic disease states ranging from certain forms of arthritis to
some mental illnesses and hereditary diseases such as familial Mediterranean
fever. As an extension to the concept of periodic diseases introduced by Reimann
and to encompass irregular physiologic dynamics thought possibly to represent
deterministic chaos, the term dynamical disease has been introduced [32, 48–50].
A dynamical disease is defined as a disease that occurs in an otherwise intact
physiological control system but operates within a range of control parameters that
leads to abnormal dynamics. Clearly the hope is that it may eventually be possible
to identify these altered parameters and then readjust them to values associated with
healthy behaviors.

13.2 Pharmacodynamic Applications

During the last fifteen years many investigators have expanded traditional pharma-
codynamic modeling (law of mass action at equilibrium) to mechanistic pharmaco-
dynamic modeling including detailed modeling of the underlying physiology and
then modeling the effect of drugs on it. On the other hand, as just pointed out,
deterministic chaos is typically the recorded behavior of complex physiological
systems implicating feedback regulations and nonlinear elements. In the next
paragraphs, three major fields of physiological systems with great importance in
pharmacotherapy, namely cardiovascular, central nervous, and endocrine systems,
where tools and concepts from nonlinear dynamics have been applied, will be
discussed.

13.2.1 Drugs Affecting Endocrine Function

It is widely appreciated that hormone secretion is characterized by pulsatility.
The first experimental studies of the pulsatile nature of hormone secretion started
more than thirty years ago. Hellman et al. reported in 1970 [668] that “cortisol
is secreted episodically by normal man.” It was also realized that this pulsatility
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was not due to noise, but was actually associated with physiological processes.
Indeed, the circadian clock, the interaction between hormones through feedback
mechanisms, and the interaction of hormones with central and autonomic nervous
systems are some of the reasons for this behavior. It has been apparent that the theory
of dynamic systems is the right field in which to find useful tools for the study of
hormonal systems. This has been done along two directions:

• experimental studies using tools from time series analysis and
• modeling with differential equations.

13.2.1.1 A Dynamic System for Cortisol Kinetics

Although the detailed features of the interactions involved in cortisol secretion are
still unknown, some observations indicate that the irregular behavior of cortisol
levels originates from the underlying dynamics of the hypothalamic–pituitary–
adrenal process. Indeed, Ilias et al. [669], using time series analysis, have shown
that the reconstructed phase space of cortisol concentrations of healthy individuals
has an attractor of fractal dimension df D 2:65 ˙ 0:03. This value indicates that
at least three state variables control cortisol secretion [670]. A nonlinear model of
cortisol secretion with three state variables that take into account the simultaneous
changes of adrenocorticotropic hormone and corticotropin-releasing hormone has
been proposed [671].

The Model These observations prompted us to model cortisol plasma levels
[672] relying on the well-established erratic secretion rate [673] and the circadian
rhythm, while other factors controlling cortisol secretion are also considered but not
expressed explicitly:

• Cortisol concentration is described by a nonlinear time-delay differential equa-
tion [48, 674] with two terms, i.e., a secretion rate term that adheres to the
negative feedback mechanism [675, 676] and drives the pulsatile secretion, and
a first-order output term with rate constant ko:

�
c .t/ D ki

g�cı .t/
g� C Œcı .t/��

� koc .t/ , (13.16)

where c .t/ is the cortisol concentration, cı .t/ is the value of c .t/ at time t � tı, �
is an exponent, and ki and ko are the input and output rate constants, respectively.

• The circadian rhythm of cortisol secretion is implemented phenomenologically
by considering the parameter of the model as a simple cosine function of 24- h
period:

g .t/ D ˛ cos

�
.t � '/

2

1440

�
C ˇ, (13.17)
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Fig. 13.16 A 24-h simulated profile generated by the model of cortisol kinetics

where ˛ and ˇ are constants with concentration units, ' is a constant with time
units, and t is time in minutes. Similar approaches relying on simple periodic
functions were used by Rohatagi et al. [677] to describe the secretion rate of
cortisol.

Our dynamic model consists of (13.16) and (13.17). The physical meaning of
the time delay in (13.16) is that the cortisol concentration c .t/ affects other phys-
iological parameters of the hypothalamic–pituitary–adrenal process (not present
in equation 13.16), which in turn affect, via the feedback mechanism, cortisol
concentration; thereby, cortisol controls its own secretion [605]. This cycle is
postulated to last time tı, and that is how the concentration cı .t/ at time t � tı
arises.

The simulated profile generated by (13.16) and (13.17) is shown in Figure 13.16.
Model parameters take the values

ki D 0:0666min�1, ko D 0:0333min�1, c .0/ D 170�g ml�1, � D 10,
˛ D 70�g ml�1, ˇ D 100�g ml�1, ' D 250min, tı D 70min.

The value assigned to tı corresponds to about one cortisol secretion burst per
hour in accordance with experimental observations [673]. The simulations were
performed by a numerical solution of (13.16) and (13.17). This simulation exhibits
the circadian rhythm, as well as the pulsatile nature of the cortisol secretion system.

Since (13.16) has an infinite number of degrees of freedom [678], we constructed
a pseudophase space [4, 33] for the system of (13.16) and (13.17) using the model
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Fig. 13.17 A pseudophase space for the model of cortisol kinetics. Variables c .t/, c .t C tı=2/,
c .t C tı/ are expressed in g ml�1

variables c .t/, c .t C tı=2/, c .t C tı/, Figure 13.17. The use of three dimensions
is in accordance with the embedding dimension that Ilias et al. [669] have found.
The attractor of our system is quite complicated geometrically, i.e., it is a strange
attractor. The real phase space is of infinite dimension. However, trajectories may
be considered to lie in a low-dimensional space (attractor). The model parameters
take the same values as in Figure 13.16 and time runs for 10 days.

A Dynamic Perspective of Variability The model under study here offers an
opportunity to refer to some implications of the existence of nonlinear dynamics.
Apart from the jagged cortisol concentration profile, elements such as the sensitive
dependence on the initial conditions (expressed by the positive Lyapunov exponent),
as well as the system’s parameters, play an important role and may explain
the inter- and intraindividual variability observed in the secretion of cortisol.
These implications, together with other features absent from classical models, are
demonstrated in Figure 13.18.

In all plots the dashed line is generated from (13.16) and (13.17) using the above
parameter values, while the sampling interval is fixed to 30min. The solid lines
correspond to the same set of parameter values applying a change only in one of
them. This change, however, is enough to produce significant visual change in the
profile: (A): ko is set to 0:03min�1; (B): c .0/ is set to 160�g ml�1; (C): the second-
day profile is compared to the first-day profile; (D): sampling is performed every
80min instead of 30min. The dashed and solid lines of plots C and D have identical
values for the model parameters. Thus, a change in the initial conditions or the
parameter values of (13.16) and (13.17) may be depicted in a relatively large change
of the final profile, Figure 13.18A and B. Also, the profiles corresponding to two
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Fig. 13.18 The dotted lines are generated from the model of cortisol kinetics using the same
parameter values as for Fig. 13.16. The solid lines correspond to the same set of parameter values
applying a change only in one of them: ko (A), c .0/ (B), and observation sampling (D). In (C), the
second-day profile is compared to the first-day profile

successive days (Figure 13.18C), or two different sampling designs (Figure 13.18D),
may differ remarkably, even though the exact same set of parameter values is used.
Overall, our analysis based on nonlinear dynamics offers an alternative explanation
for the fluctuation of cortisol levels. However, the most important implication of
the presence of nonlinear dynamics in cortisol secretion processes is the limitation
for long-term prediction, which makes practical application of the classical models
questionable.

As we have already mentioned (cf. Chapter 3), one of the most important features
of nonlinear dynamics is the sensitivity to initial conditions. A measure to verify the
chaotic nature of a dynamic system is the Lyapunov exponent [33], which quantifies
the sensitive dependence on initial conditions. In the present model we found [679]
the largest Lyapunov exponent to have a positive value of around 0:00011min�1,
which is a clear indication for chaotic behavior.

Cortisol Suppression by Corticosteroids The model presented here allows the
consideration of external corticosteroid administration as a perturbation of the
cortisol secretion system. As a matter of fact, corticosteroids cause a temporary
diminution of plasma cortisol levels [677]. Assuming that the drug follows one-
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compartment model disposition with first-order input and output, the effect-site
[680] concentration is described by the following equation [584]:

y .t/ D Faq0
V

kaky

ka � ke

"
exp

��kyt
	 � exp .�ket/

ke � ky
� exp

��kyt
	 � exp .�kat/

ka � ky

#

,

(13.18)

where Fa is the bioavailable fraction of dose q0, V is the volume of distribution of
the pharmacokinetic compartment, ka, ke are the input and elimination first-order
rate constants from the pharmacokinetic compartment, respectively, and ky is the
elimination rate constant from the effect compartment.

The effect-site concentration of the corticosteroids can be considered to affect
one or more parameters of the model described by (13.16). This must be imple-
mented so that the presence of y .t/ suppresses the cortisol secretion in accordance
with the experimental data. Instead of g .t/, the parameter describing the circadian
rhythm, a new parameter Qg .t/ was introduced to include the effect of corticosteroid
administration following a receptor reduction:

Qg .t/ D g .t/

�
1 � y .t/

Ec50 C y .t/

�
, (13.19)

where Ec50 is a coefficient that expresses the concentration of the drug when
Qg .t/ D g .t/ =2. In this simple way, and in the presence of external corticosteroid
drug administration, realistic cortisol blood levels can be obtained as illustrated in
Figure 13.19, for the case of fluticasone propionate [605].

The solid and dashed lines represent simulations for two “individuals” with
significantly different profiles corresponding to different initial conditions, c .0/ D
90�g ml�1 (solid) and c .0/ D 150�g ml�1 (dashed). Parameter values were set to

ki D 0:0666min�1, ko D 0:0333min�1, � D 10,
˛ D 90�g ml�1, ˇ D 100�g ml�1, ' D 200min, tı D 70min.
ka D 0:14min�1, ke D 0:002min�1, ky D 0:005min�1,
V D 22:2 l, Faq0 D 1mg, Ec50 D 20�g ml�1,

These values were selected in order to generate qualitatively similar profiles to the
experimental data and were not optimized since fitting is not well established for
chaotic systems. In parallel, the sensitive dependence of the detailed final profile
from the exact values of the concentration y .t/ should be emphasized, since y .t/
directly affects one of the parameters of the chaotic oscillator (13.19).

Finally, experimental evidence indicates that fluctuations in cortisol secretion
are not produced by random processes. In fact, the large inter- and intraindividual
variability observed in studies dealing with the effect of fluticasone propionate on
cortisol levels [681] may be partly explained with the erratic behavior of the system
of (13.16) to (13.19).
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Fig. 13.19 Diminution of cortisol blood levels in the presence of fluticasone propionate. Circles
represent averaged experimental data of four volunteers after the administration of 1mg of inhaled
drug [605], while the solid and dashed lines, generated by the model of cortisol kinetics, represent
simulated data for two “individuals” with different initial conditions

13.2.1.2 Parametric Models

Numerous other experimental studies of hormonal systems utilize tools from
nonlinear dynamic systems theory. Smith in 1980 [682] used a mathematical
model of three interacting hormones, namely testosterone, luteinizing hormone,
and luteinizing hormone-releasing hormone, to describe qualitatively their behavior.
The initial model was improved later by Cartwright and Husain [683], introducing
time-retarded terms of the three state variables to make the system more realistic,
exhibiting limit cycle solutions. Further improvements of the model were studied
by Liu and Deng [684] and also by Das et al. [685]. Apart from testosterone other
efforts in the same context have been made to model the secretion of hormones.
Examples include the work of Lenbury and Pacheenburawana [671] in the system
of cortisol, adrenocorticotropic hormone, and corticotrophin-releasing hormone, the
work of Topp et al. in the system of ˇ-cell mass, insulin, and glucose [686], and also
the work of Londergan and Peacock-Lopez [687]. The latter is a general model
of hormone interaction description with negative feedback, exhibiting very rich
dynamics and even chaotic behavior.

Many drugs affect normal hormonal secretion, either as their primary target
of action or as a side effect. Many studies in recent years have considered
models of hormonal secretion together with the dominant pharmacokinetic-dynamic
concepts of drug action. Examples include the effect of corticosteroids on cortisol
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by Chakraborty et al. [605]; the effect of the gonadotropin-releasing hormone
antagonist on testosterone and luteinizing hormone by Fattinger et al. [688]; the
effect of the dopaminomimetic drug DCN 203-922 on prolactin by Francheteau et
al. [689]; the effect of the calcimimetic agent R-568 on parathyroid hormone by
Lalonde et al. [690]; and the effect of ipamorelin on growth hormone by Gobburu
et al. [691].

All the above studies share a common element. The hormone secretion modeling
is kept to a minimum, usually consisting of a single differential equation or even
an algebraic equation that gives a simple smooth hormone baseline. Then, the
pharmacokinetic-dynamicmodels, such as direct or indirect link and response [572],
relate the inhibition or stimulation of the baseline with the drug concentration. In
order to set the baseline, only the most obvious characteristics of the hormone
profile are integrated, as a periodic circadian rhythm. The dynamic structure of
the underlying physiology is practically ignored and so is pulsatility, which is
considered to be noise. The only studies in which pulsatility is considered as a
feature of the profile are the works of Francheteau et al. [689] for the effect of
dopaminomimetic drug DCN 203-922 on prolactin and Chakraborty et al. [605]
for the effect of fluticasone propionate on cortisol. However, even in these studies
the pulsatility is integrated phenomenologically through spline terms or Fourier
harmonics, respectively, and not through modeling of the dynamic origin of the
pulsatility. It must be noted though that there are studies in which the pulsatility
does not play an important role, like the study of Gobburu et al. [691] for the effect
of ipamorelin on growth hormone, where the baseline of the hormone is reasonably
considered zero due to the multifold amplification of the growth hormone levels
after the administration of the drug.

A mathematical model of the insulin–glucose feedback regulation in man was
proposed by Tolic et al. [692] to examine the effects of an oscillatory supply of
insulin compared to a constant supply at the same average rate. The model analysis
allowed them to interpret seemingly conflicting results of clinical studies in terms
of their different experimental conditions with respect to hepatic glucose release.
If this release operates near an upper limit, an oscillatory insulin supply will be more
efficient in lowering the blood glucose level than a constant supply. If the insulin
level is high enough for the hepatic release of glucose to nearly vanish, the opposite
effect is observed. For insulin concentrations close to the point of inflection of
the insulin–glucose dose–response curve, oscillatory and constant insulin infusion
produce similar effects.

13.2.1.3 Nonparametric Models

The phase space reconstruction approach, making use only of the hormone plasma
profiles, was utilized in order to assess dimensionality and thus expose the chaotic
nature of the underlying dynamics of various hormones. In all these studies,
reconstruction of the phase space gave attractors of fractal dimension, evidence for
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the presence of nonlinear dynamics. Such examples are the work of Prank et al.
[693] on parathyroid hormone, Ilias et al. [669] on cortisol and growth hormone,
and Papavasiliou et al. [694] on prolactin.

By using nonlinear dynamics methods, Papavasiliou et al. [694] analyzed the
circadian profiles of prolactin, directly from the experimental data, by combining
in a single time series (432 measurements), six individual 24- h prolactin profiles
(72 measurements per profile, 20min sampling interval), obtained from young
healthy human volunteers, under basal conditions. These authors found that signifi-
cant autocorrelation exists between any given point of the time series and a limited
number of its successors [694]. Fourier analysis showed a dominant frequency of 1
cycle� d�1, without sub-24- h harmonics. Poincaré section indicated the presence
of a fractal attractor, and a sketch of the attractor revealed a highly convoluted
geometric structure with a conical contour. The box-counting dimension was found
to be fractional, namely df D 1:66, indicating that diurnal prolactin secretion is
governed by nonlinear dynamics. Information dimension and correlation dimension
confirmed the above value of the attractor. The two dimensions did not differ
significantly from each other, and exhibited saturation at an embedding dimension
of 2. The evidence taken together suggests that under basal conditions, the daily
changes in the peripheral blood levels of prolactin are governed by nonlinear
deterministic dynamics, with a dominant rhythm of 1 cycle � d�1 mixed with a
higher-frequency, low-amplitude signal.

Pincus developed in 1991 a different method to quantify hormone pulsatility,
which is referred to as the approximate entropy algorithm [695] and is based on the
concept of Lyapunov exponents. This method has been applied for several hormones
such as adrenocorticotropic hormone, cortisol, prolactin, insulin, growth hormone,
testosterone, and luteinizing hormone, quantifying the observed pulsatility and
comparing it between different groups such as sick vs. healthy, different age groups,
etc. ([696] and references therein). The experimental evidence of the chaotic nature
of hormonal underlying dynamics clarifies the origin of pulsatility and acts as a
guide for proper modeling.

Serial data of glucose and insulin values of individual patients vary over
short periods of time, since they are subject to biological variations. The classic
homeostatic control model assumes that the physiological mechanisms maintaining
the concentrations of glucose and insulin are linear. The only deviations over a short
period of time one should observe are in relation to glucose load or major hormonal
disturbance. Otherwise, the values of glucose and insulin should be constant and any
variations should be due to random disturbances. Kroll [697] investigated previously
published serial data (three for glucose and one for insulin) with both linear and
nonlinear techniques to evaluate the presence of deterministic components hidden
within the biological (intraindividual) variation. Within the linear techniques, the
power spectra failed to show dominant frequencies, but the autocorrelation functions
showed significant correlation, consistent with a deterministic process. Within the
nonlinear techniques, the correlation dimension was finite, around 4:0, and the
first Lyapunov exponent was positive, indicative of a deterministic chaotic process.
Furthermore, the phase portraits showed directional flow. Therefore, the short-term
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biological variation observed for glucose and insulin records arises from nonlinear,
deterministic chaotic behavior instead of random variation.

From the above studies, it is evident that although significant progress has been
made as far as the physiological modeling of hormonal systems is concerned, the
relevant pharmacodynamic modeling, even in state-of-the-art studies dealing with
the effect of drugs on hormonal levels, practically ignores these findings. It is a
necessity to develop new pharmacodynamic models for drugs related to hormonal
secretion, compatible with the physiological modeling and the experimental findings
that suggest low-dimensional nonlinear dynamic behavior. This kind of modeling
is not only more realistic: it integrates a new rationale as well. The notions of
sensitivity with respect to the initial conditions and qualitatively different behavior
for different, even slightly, values of the control parameters surely play an important
role and must be taken into account in modeling since their presence is suggested
by experiments.

An important outcome of these studies is the opportunity that it offers to discuss
the implications of the presence of nonlinear dynamics in processes such as the
secretion of cortisol. Based on the aforementioned discussion it is evident that the
concepts of deterministic nonlinear dynamics should be adopted in pharmacody-
namic modeling when supported by experimental and physiologic data. This is valid
not only for the sake of more detailed study, but mainly because nonlinear dynamics
suggest a whole new rationale fundamentally different from the classical approach.
Moreover, the clinical pharmacologist should be aware of the limitations of chaotic
models for long-term prediction, which is contrary to the routine use of classical
models.

If chaotic dynamics are present, experimental errors do not originate exclusively
from classical randomness. Thus, the measures of central tendency used to describe
or treat experimental data are questionable, since averaging is inappropriate and
masks important information in chaotic systems [259].

13.2.2 Central Nervous System Drugs

The application of nonlinear dynamics to brain electrical activity offered new
information about the dynamics of the underlying neuronal networks and formulated
the brain disorders on the basis of qualitatively different dynamics [634].

13.2.2.1 Parametric Models

Serotonin plays an active role in temperature regulation and in particular in the
maintenance of the body’s set-point [698–700]. More recently, numerous pharmaco-
logical studies have suggested the involvement of homeostatic control mechanisms
[699, 701] that are achieved through interplay between the 5-hydroxytryptamine
(HT)1A and 5-HT2A/C receptor systems [700, 702, 703]. Administration of a
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5-HT1A receptor agonist that is used therapeutically as an antidepressant and
antianxiety drug causes hypothermia [704, 705].

So far, only very few of these models incorporate complex regulatory behavior
[689, 706, 707]. Specifically, no mathematical models have been developed to
characterize the complex time behavior of the hypothermic response in a strict
quantitative manner, and neither attempts to link existing temperature regulation
models [708] to pharmacokinetic models describing the time course of the drug
concentration in the body.

To characterize 5-HT1A-agonist-induced hypothermia, Zuideveld et al. [709]
developed a mathematical model that describes the hypothermic effect on the basis
of the concept of a set-point and a general physiological response model [598, 710].
The model was applied to characterize hypothermic response vs. time profiles after
administration of different doses of the reference 5-HT1A receptor agonists R- and
S-8-OH-DPAT.

Example 12. Temperature Regulation

The classical three-compartment model describes pharmacokinetics of 5-HT1A
receptor agonists. By means of a sigmoidal function E .c/, the 5-HT1A agonist
concentration c .t/ influences the set-point signal that dynamically interacts with
the body temperature. By using x .t/ and y .t/ as dimensionless state variables for
the set-point and temperature, respectively, the model is expressed by the set of two
nonlinear differential equations:

E .c/ D Smaxcn .t/


Scn
50 C cn .t/

��1
,

�
x .t/ D A Œ1 � E .c/� y .t/� ,
�
y .t/ D B Œ1 � x�� .t/ y .t/� ,

where the initial conditions are those at equilibrium .x�; y�/ D .1; 1/. The
symbols and the parameter values are as reported in [709]. Figures 13.20 and 13.21
simulate the dynamic behavior of the model for two dose levels, 200 and 1000mg.
We note that for the low dose, damped oscillations appear in the temperature y .t/
variable, whereas for the larger dose the perturbed temperature slowly reaches the
reference value. These behaviors result from the type of the eigenvalues of the
linearized model, complex conjugated for the low dose and real with negative part
for the higher dose. �

The developed model is able to reproduce the observed complex effect vs. time
profile:

• When the model is not fully “pushed” into the maximal effect, a plateau phase
appears. This plateau originates from damped oscillations that occur around the
equilibrium point on returning to baseline. Hence, the observed plateau phase is
an intrinsic part of the regulatory mechanism related to the oscillatory behavior
found in many regulatory systems [711, 712].
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Fig. 13.20 The state space of the dimensionless set-point and temperature variables x .t/ and y .t/,
respectively. Solid and dashed lines correspond to the low and high doses, respectively. ( � )
represents the stable equilibrium point
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Fig. 13.21 The perturbed dynamics of the dimensionless temperature variable y .t/. Solid and
dashed lines correspond to the low and high doses, respectively

• When the model is fully “pushed” into its maximal effect, such as in the case of
a relatively high dose of a full agonist, the system becomes overdamped, thereby
losing its oscillatory behavior.
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The model described above has been successfully applied to characterize the
in vivo concentration effect relationships of several 5-HT1A agonists including
flesinoxan and buspirone [713, 714]. This model has also linked with the oper-
ational model of agonism into a full mechanism-based pharmacokinetic-dynamic
model [715].

13.2.2.2 Nonparametric Models

Once again, most studies applying nonlinear tools in this field are based on exper-
imental electroencephalogram recordings and demonstrate the irregular behavior
of the brain electrical activity. Various metrics have been used to assess the
electroencephalogram variability, using phase space reconstruction techniques or
even calculating the fractality of the electroencephalogram recording in real time
[716]. These tools, apart from pointing out the obvious complexity of the brain
electrical signals, offer supplemental information to the classical techniques, such as
Fourier analysis, in order to distinguish qualitatively different electroencephalogram
recordings, e.g., in epileptic seizures [717], in Parkinson’s disease [718], or in
schizophrenia [719]. In the same context, low doses of ethanol have been found to
reduce the nonlinear structure of brain activity [720]. Most of the pharmacokinetic-
dynamic studies of centrally acting drugs rely on quantitative measures of electroen-
cephalogram parameters [721]. However, an ideal electroencephalogram parameter
to characterize the central nervous system effect of drugs has not been found as yet.
To the best of our knowledge, time series analysis of electroencephalogram data of
pharmacodynamic studies with central nervous system drugs using techniques of
nonlinear dynamics are limited. Examples include investigations of the influence
of anticonvulsive [722] and antiepileptic [723] drugs in epilepsy, the study of sleep
electroencephalogram under lorazepam medication [724], the study of the effects
of pregnenolone sulfate and ethylestrenol on rat behavior [725], the investigation of
the electrophysiological effects of the neurotoxin 5; 7-dihydroxytryptamine [726],
and the study of epileptiform bursts in rats after administration of penicillin and KC
ions [727].

However, the pharmacodynamic mixed-effects model for the effect of
temazepam on sleep [728] requires special mention. The model is based on
hypnogram recordings and describes the probability of changes in sleep stage
as a function of time after drug intake. The model predictions were found
to be consistent with the observations of the effect of temazepam on sleep
electroencephalogram patterns. Also, the effect of temazepam on the sleep–wake
status was interpreted in terms of known mechanisms for sleep generation and
benzodiazepine pharmacology.

Modeling in the brain is mainly targeted to the general qualitative principles
underlying various phenomena such as epileptic seizures [729], and not to quan-
titative assessment and forecasting as one would expect to achieve in simpler
systems. For example, in [634], recurrent inhibition and epilepsy are studied and
also penicillin is considered as a � -aminobutyric acid inhibitor.
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The analysis of brain activity using tools from chaos theory can provide
important information regarding the underlying dynamics if one takes into con-
sideration that the qualitative electroencephalogram changes, induced by centrally
acting drugs, e.g., ketamine, thiopental, etomidate, propofol, fentanyl, alfentanil,
sufentanil, and benzodiazepines, differ considerably [721]. This exercise can also
unmask the sources of extremely high variability (the coefficient of variation for
model pharmacodynamic parameters of benzodiazepines in humans ranges from
30 to 100%) [721]. A plausible interpretation for the extremely high variability
of pharmacodynamic parameters of benzodiazepines may be associated with the
dynamic behavior of the underlying system, i.e., the recurrent inhibitory pathway of
� -aminobutyric acid [634].

It is also worthy of mention the work on the pharmacodynamics of midazolam in
rats of Cleton et al. [730]. These authors found that the rate of change in plasma
concentration is an important determinant of midazolam pharmacodynamics. In
addition, the relationship found between the rate of change of blood concentration
and the values of the different pharmacodynamic parameters is rather complex.
These findings indicate that in vivo a homeostatic control mechanism is operative
that may modify sensitivity to midazolam and whose activation is largely influenced
by the rate of presentation of the drug in blood.

Keeping patients at a well-defined level of anesthesia is still a difficult problem in
clinical practice. If anesthesia is too deep, a decompensation of the cardiovascular
system is threatening. When anesthesia is too weak, the patient may wake up. Depth
of anesthesia is expected to be reflected in the electroencephalogram. In current
clinical practice, one or a few channels of the electroencephalogram are routinely
displayed during difficult anesthesias. Since the attending personnel have to monitor
several critical parameters (blood pressure, heart rate, etc.), the vast amount of
information contained in the electroencephalogram must be severely condensed in
order to be useful. Only a few numbers may be monitored at a typical intervention
time scale. More pragmatically, a single number should be produced that indicates
the instantaneous depth of anesthesia of the patient.

In that spirit, Widman et al. [731] adapted a prescription for an overall index of
nonlinear coherence that has been found powerful for anticipating epileptic seizures
from implanted electrode recordings. This index based on phase space reconstruc-
tion and correlation sums was called d�, and it contains many ingredients familiar
from the Grassberger–Procaccia algorithm for the correlation dimension [732].

Widman et al. [733] compared several indices measuring the depth of anesthesia
from electroencephalogram data gathered from 17 patients undergoing elective
surgery and anesthetized with sevoflurane. Two of these measures are based on
the power spectrum, and the third is the bispectral index (BIS) [734]. The power
spectrum measures are essentially useless and unreliable as indicators of depth of
anesthesia in the investigated group of patients. While for both of the two nonlinear
measures, bispectral index and d�, such a relationship seems to exist, the correlation
is strongest for d�. Dimension d� seems to be able to improve the quantification of
depth of anesthesia from brain electrical activity, at least when sevoflurane is used
as an anesthetic drug. To assess the depth of anesthesia of the patient, Bruhn et al.
[735] recently proposed another index based on the Shannon entropy.



13.2 Pharmacodynamic Applications 401

13.2.3 Cardiovascular Drugs

Numerous applications of nonlinear dynamics and chaos theory to cardiac physi-
ology have been published [736]. Many techniques, either statistical, like spectral
analysis, or dynamic, like phase space reconstruction, applied to electrocardiogram
data clearly indicate that the frequency of the heartbeat is essentially irregular.
The electrocardiogram was in fact one of the first biological signals studied with
the tools of nonlinear dynamics. Studies applying concepts from chaos theory to
electrocardiogram data, regarding the effects of drugs on the dynamics of cardiac
physiology, have also been published. Examples include the effect of atropine on
cardiac interbeat intervals [737], the induction of cellular chaos during quinidine
toxicity [738], the attempt to control cardiac chaos using ouabain [739], and the
effect of anticholinergic drugs on heart rate variability [740].

Another very successful application of nonlinear dynamics to the heart is through
mathematical modeling. An example in which a simple model based on coupled
oscillators describes the dynamics of agonist-induced vasomotion is in the work of
de Brouwer et al. [741], where the route to chaos in the presence of verapamil, a
class IV antiarrhythmic drug, is studied.

Undoubtedly, the most promising modeling of the cardiac dynamics is associated
with the study of the spatial evolution of the cardiac electrical activity. The cardiac
tissue is considered to be an excitable medium whose electrical activity is described
both in time and space by reaction–diffusion partial differential equations [674].
This kind of system is able to produce spiral waves, which are the precursors of
chaotic behavior. This consideration explains the transition from normal heart rate to
tachycardia, which corresponds to the appearance of spiral waves, and the following
transition to fibrillation, which corresponds to the chaotic regime after the breaking
up of the spiral waves, Figure 13.22. The transition from the spiral waves to chaos is
often characterized as electrical turbulence due to its resemblance to the equivalent
hydrodynamic phenomenon.

Fig. 13.22 The four snapshots show the evolution and breakup of a spiral wave pattern in
2-dimensional simulated cardiac tissue (300 � 300 cells). The chaotic regime shown in the
final snapshot corresponds to fibrillation. Reprinted from [742] with permission from Lippincott
Williams and Wilkins
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These concepts have been successfully applied to the effect of antiarrhythmic
drugs as well. It is widely known that although class II antiarrhythmic drugs,
like isoproterenol, have shown satisfactory results [743], class I and III agents,
such as encainide, flecainide, and moricizine, have been shown even to increase
sudden death rate caused by ventricular fibrillation [744]. Although it is unclear
how to integrate the drug action in the excitable media models, successful attempts
have been made to simulate, mainly, two-dimensional cardiac tissue [745, 746].
Three-dimensional cardiac tissue has been simulated as well [747], where the three-
dimensional equivalent of spiral waves, the scroll waves, appear. These models
explain how a drug can exhibit antiarrhythmic action in a single-cell system, which
ignores the spatial evolution, while acting as proarrhythmic in a system of a whole
cardiac tissue of spatial dimension 2 or 3. This has given rise to a new approach
for antiarrhythmic drug evaluation based on the chaotic dynamics of transition from
tachycardia to fibrillation [742, 746, 747], which is also supported by experimental
evidence [747]. The results of these recent studies [742] indicate that the failure
to predict long-term efficacy of class I and III antiarrhythmic agents in patients
with ischemic heart disease [744] may be associated with the limitations of the
classical approach, which is based only on the suppression of premature ventricular
polarization on the electrocardiogram, i.e., the initiation of tachycardia. Sudden
cardiac death resulting from ventricular fibrillation, however, is separated into two
components: initiation of tachycardia and degeneration of tachycardia to fibrillation.
These studies suggest that a new antiarrhythmic drug classification scheme must
be adopted, which should incorporate the antifibrillatory profile based on results
from excitable media modeling, together with the classical antitachycardiac profile
(classes I to IV scheme). Also, the drug bretylium is proposed as a prototype for
future development of antifibrillatory agents [747].

In the pharmaceutical literature [748] the pharmacodynamics of antiarrhyth-
mic drugs are treated with the classical models, Emax, indirect link with effect
compartment, etc. Variability, wrong dosage scheme, narrow therapeutic index,
and lack of individualization of treatment are the dominant interpretations for the
failure of these drugs. Another factor held responsible for failure in treatment
with antiarrhythmics is the possible nonbioequivalency of the generics used [749].
However, classical bioequivalence studies are based only on the comparison of
pharmacokinetic parameters of the formulations (cmax, area under curve (AUC)).
Although testing for therapeutic equivalence is implied, pharmacodynamics are
not taken into account at all. Thus, classical bioequivalence studies may be
inappropriate for assessing the effects of antiarrhythmic drugs if their mechanism
of action arises from nonlinear dynamic processes.

These studies show that it is possible to predict the time course of drug effects in
vivo in situations in which complex homeostatic control mechanisms are operative.
As such, they form the basis for the development of an entirely new class of
pharmacokinetic-dynamic models. These models are important for the development
of new drugs and the application of such drugs in clinical practice. For example, on
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the basis of this kind of model, it becomes possible to predict whether withdrawal
symptoms will occur on cessation of (chronic) drug treatment. Hence, these models
may provide a scientific basis either for the selection of alternative drug candidates
or the design of dosing regimens that show less-pronounced withdrawal phenomena.
It is further anticipated that such models will provide a basis for pharmacokinetic-
dynamic modeling with disease progression.



Chapter 14
Concluding Notes

I know one thing: that I know nothing (The Socratic paradox).
Sokrates (470/469-399 BC)

There is some disagreement about whether it accurately
represents a Socratic view.

In various fields of research, scientists are finding that heterogeneity is everywhere:
the heterogeneous conditions prevail in numerous physical, chemical, physiological,
and biochemical processes. Indeed, many reactions and processes take place
under dimensional or topological constraints that introduce structural heterogeneity.
In parallel, drug molecules can differ in their kinetic behavior because of inherent
variability in their characteristics such as molecular weight, chemical composition,
or hepatic clearance involving a large number of metabolites. All these features
introduce functional heterogeneity. Structural and functional heterogeneities can be
described and understood with the concept of fractals.

On the other hand, series of measurements from many physiological processes
appear randomly variable. The determinants of the observed variability cannot be
known because of the multiplicity and interconnectivity of the factors affecting
the phenomena. This idea relies on the classical view of randomness, which
requires that a complex process have a large number of degrees of freedom that
are not directly observed but whose presence is manifested through fluctuations.
However, scientists from various fields of research have shown that the “random-
ness” generated by deterministic dynamic processes exhibits spectra practically
indistinguishable from spectra of pure random processes. This is referred to as
chaos, a specific behavior of nonlinear dynamic systems. Since most drugs are
modifiers of physiological and biochemical states, it follows that many concepts
of modern nonlinear dynamic theory have potential applications to pharmacology
and drug development.

The aim of the book was to treat heterogeneity and analyze nonlinear behavior
in the pharmaceutical processes (biopharmaceutics, pharmacokinetics, pharmaco-
dynamics) by using modeling and simulation techniques.
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14.1 Heterogeneous Processes

In vivo drug dissolution, release, and uptake are heterogeneous processes since
they take place at interfaces of different phases, e.g., liquid–solid and liquid–
membrane boundaries, while diffusion, which is the principal mechanism of all
processes, operates under topological constraints. In addition, all processes occur
in heterogeneous environments, e.g., variable stirring conditions in the lumen. Also,
the geometric constraints imposed by the heterogeneous fractal-like structure of the
blood vessel network and the liver strongly modify drug dynamics.

Given the above considerations one can argue that drugs can be classified with
respect to their gastrointestinal absorption characteristics into two broad categories,
i.e., homogeneous and heterogeneous. Homogeneous drugs have satisfactory solu-
bility and permeability, and are dissolved and absorbed mostly prior to their arrival
in the large intestine. In contrast, drugs with low solubility and permeability can
be termed heterogeneous, since they traverse the entire gastrointestinal tract, and
are most likely to exhibit heterogeneous transit, dissolution, uptake, distribution,
metabolism, and elimination.

The forecast of pharmacodynamic outcomes is more complex than that of
biopharmaceutics and pharmacokinetics. This complexity first relies on the presence
of nonlinear elements and multiple homeostatic regulations implying negative
feedback mechanisms. In this context, physiological control mechanisms can gen-
erate exceedingly complex oscillations and generate chaos. Therefore, deterministic
chaos is typically the recorded behavior of complex pharmacodynamics.

We deal with complex biological processes involving a large number of inter-
related components exhibiting unpredictable behavior; this is the source of an
important portion of the observed biological fluctuations. This information changes
the view of biological variability. In the past, it was thought that the source of
variability was external to the internal workings of the organism, that environmental
factors, such as temperature, food ingestion, immobilization, and venous occlusion,
were responsible for the short-term changes. Today, the observed biological vari-
ability is rather ascribed to the heterogeneity of the studied process.

14.2 Detecting Heterogeneity

Heterogeneous reactions taking place at interfaces, membrane boundaries, or within
a complex medium like a fractal, when the reactants are spatially constrained on
the microscopic level, culminate in deviant reaction rate coefficients that appear
to have a sort of temporal memory. Fractal kinetic theory suggested the adoption
of a time-dependent rate “constant,” with power-law form, determined by the
spectral dimension. This time dependency could be revealed from empirical models.
When the observations are optimally fitted by the power-law and gamma empirical
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models, the underlying processes are rather time-varying. The time-varying features
of the observed processes are in fact the expression of functional or structural
heterogeneities in the process.

Power-law expressions are found at all hierarchical levels of organization from
the molecular level of elementary chemical reactions to the organismal level of
growth and allometric morphogenesis. This recurrence of the power law at different
levels of organization is reminiscent of fractal phenomena. The reverse is also true;
if a power function of time describes the observed data, the reaction takes place in
fractal physical support.

Useful results related to nonlinear dynamics can be obtained from observations
gathered from real processes. Real-life observations, like biological signals, are
usually time series of measured quantities. Instead of studying a time series
statistically, the idea is to consider it as if it came out of a dynamic system. Then, one
tries to reconstruct its phase space and see whether any structure is detectable, either
visually or using certain mathematical and numerical tools. The absence of any
structure in phase space means that the system is random. However, the presence of
structure is evidence of the dynamic origin of the time series and the existence of an
attractor. The dimension of the attractor can give us information about the dynamic
behavior of the whole system. If, for example, the dimension of the attractor is
not an integer, it corresponds to a strange attractor and the system exhibits chaotic
behavior.

The observed time-varying features of a process are expressions of structural and
functional heterogeneity. Thus, heterogeneity may be at the origin of fluctuations,
which are the prelude of instability and chaotic behavior.

14.3 Modeling Heterogeneity

Empirical models helped us to recognize heterogeneity in the process and express it
simply by mathematical models with time-varying parameters. The heterogeneous
process operating in several circumstances and the resulting complexity of the
kinetic behaviors require new techniques in order to comply with observations. In
this way, two operational procedures may be retained:

• From a holistic point of view, the time-varying parameters fitting the observed
data could represent the dynamic behavior of a complex system implying the
states in feedback regulations and leading to nonlinear kinetics.

• From a molecular point of view, the stochastic formulation would be the most
appropriate for capturing the structural and functional heterogeneity in the
biological media that generates the observed uncertainty and fluctuations in the
real process.

Stochastic compartmental analysis assumes probabilistic behavior of the
molecules in order to describe the heterogeneous character of the processes. The
huge amount of knowledge needed to describe heterogeneity could be summarized
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only by the statistical concepts provided by stochastic modeling approaches.
Stochastic modeling is able to (1ı) generate process uncertainty, (2ı) express
process memory in the process, and (3ı) supply tractable forms to fit the data
involving time-varying parameters. The usual deterministic approach is incapable
of describing all these features accurately.

Moreover, the time-varying parameters implied in stochastic models highlight
the presence of feedback regulation mechanisms involving states of the process.
Introduction of these states leads to nonlinear dynamic modeling associated with
various levels of stability. Near state instabilities in such nonlinear systems, fluctua-
tions and correlations can produce dramatic effects; for these systems the stochastic
formulation would be the more appropriate choice. Thus, one must frequently expect
chaotic-like behavior when the process is heterogeneous. In contrast, it is impossible
to expect chaotic properties with homogeneous processes.

14.4 Estimation and Control

Usually a mathematical model simulates a process behavior, in what can be termed
a forward problem. The inverse problem is the following: given the experimental
measurements of behavior, what is the structure? This is a difficult problem, but
an important one for the sciences. The inverse problem may be partitioned into
the following stages: hypothesis formulation, i.e., model specification, definition of
the experiments, identifiability, parameter estimation, experiment, and analysis and
model checking.

Since this monograph is devoted only to the conception of mathematical models,
the inverse problem of estimation is not fully detailed. Nevertheless, estimating
parameters of the models is crucial for verification and applications. Any parameter
in a deterministic model can be sensibly estimated from time series data only
by embedding the model in a statistical framework. This is usually performed
by assuming that instead of exact measurements on concentration, these values
are blurred by observation errors that are independent and normally distributed.
The parameters in the deterministic formulation are estimated by nonlinear least-
squares or maximum likelihood methods.

The meaning of the estimation in the models with heterogeneous particles
is qualitatively different from that described above because the constants have
been replaced by random variables. Now, by fitting the model to the observed
data, we obtain estimates of the parameters involved in the probability density
function of the random variables. Moreover, the weighting scheme in the nonlinear
regression is not the same as in the deterministic case. So we need to take into
account the process uncertainty and the measurement error components that blur the
observations. Special computational methods in nonlinear regression are available
(unconditional and conditional generalized least squares, etc.), and the classical
maximum likelihood approach is also possible based on the multinomial distribution
of particles in the compartments.
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Table 14.1 Process and model features associated with homogeneous
and heterogeneous media.

Media
Models or features Homogeneous Heterogeneous

Empirical model Sum of exponentials Power law

Phenomenological model Deterministic Stochastic

Retention probability Exponential Weibull

Process memory No Yes

Process uncertainty No Yes

The presence of chaos may be a great advantage for control in a variety of
situations. Therapeutic strategies should aim to invert the progress of the disease and
restore normal physiological conditions by interfering with the control parameters.
It is widely recognized that chaotic behavior dominates physiological systems.
Moreover, periodic or other nonchaotic states are considered pathological, whereas
chaotic behavior is considered to be the normal, healthy state. The reason for
this must be associated with a fundamental advantage of nonlinear over classical
systems. Indeed, small variations of the control parameters may offer finer, more
rapid, and more energy-efficient controllability of the system compared to linear
systems. Processes generating chaos are generally more controllable and offer
better control performances than linear systems do. This may be the reason why
nature prefers chaos to regularity, and of course the latter is a good enough reason
for applied biological sciences such as biopharmaceutics, pharmacokinetics, and
pharmacodynamics to adopt this rationale to a greater extent.

In short, the presented procedures show how to expect chaotic behaviors with
processes revealing uncertainty and which are described by models involving time-
varying parameters. All these considerations oriented us to complete the initial
Table 1 referenced in the preface by Table 14.1.
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Appendix A
Stability Analysis

Stability is determined by eigenvalue analysis at an equilibrium point for flows
and by characteristic multiplier analysis of a periodic solution at a fixed point for
maps [3].

• The equilibrium point y� for flows is the solution of g
�

y�; t; �
�

D0. Local

behavior of the flow near y� is determined by linearizing g at y�; let A be the
matrix formed by elements

ajk D
dgj

�
y
�

dyk

ˇ̌
ˇ
ˇ
ˇ
ˇ
yDy�

.

Let the eigenvalues of A be � j with corresponding eigenvectors �.j/. If �j is real,
the eigenvalue is the rate of contraction (if � j < 0) or expansion (if � j > 0) near y�

in the direction of �.j/. If �j are complex-conjugate pairs, the trajectory is a spiral

in the phase space spanned by Re
h
�.j/
i

and Im
h
�.j/
i
. The real part of �j gives

the rate of contraction (if Re


� j

�
< 0) or expansion (if Re



� j

�
> 0) of the spiral;

the imaginary part of the eigenvalue is the frequency of rotation. Hence, one can
conclude that if Re



� j

�
< 0 for all � j, then all sufficiently small perturbations

tend toward 0 as t ! 1, and y� is asymptotically stable. If Re


� j

�
> 0 for

all �j, then any perturbation grows with time, and y� is unstable. If there exist j

and k such that Re


� j

�
< 0 and Re Œ�k� > 0, then y� is unstable. An unstable

equilibrium point is often called a saddle point. A stable or unstable equilibrium
point with no complex eigenvalues is often called a node.
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• The fixed point y� for maps is the solution of y� D g
�

y�; �
�

. The local behavior

of the map near y� is determined by linearizing the map at y�; let A be the matrix
formed by elements

ajk D
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dyk
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ˇ
ˇ̌
ˇ
ˇ
yDy�

.

Let the eigenvalues of A be � j with corresponding eigenvectors �.j/. The eigen-
values � j are called characteristic multipliers and they are a generalization of
the eigenvalues at an equilibrium point. The characteristic multipliers’ position
in the complex plane determines the stability of the fixed point. If � j is real, the
characteristic multiplier is the amount of contraction (if � j < 1) or expansion
(if � j > 1) near y� in the direction of �.j/ for one iteration of the map. If � j

are complex-conjugate pairs, the orbit is a spiral in the phase space spanned

by Re
h
�.j/
i

and Im
h
�.j/
i
. The magnitude of � j gives the amount of expansion

(if
ˇ
ˇ� j

ˇ
ˇ > 1) or contraction (if

ˇ
ˇ� j

ˇ
ˇ < 1) of the spiral for one iteration of the map;

the angle of the characteristic multiplier is the frequency of rotation. Hence, one
can conclude that if

ˇ
ˇ� j

ˇ
ˇ < 1 for all � j, then all sufficiently small perturbations

tend toward 0 as i ! 1, and y� is asymptotically stable and is said to be an

attracting equilibrium. If
ˇ
ˇ� j

ˇ
ˇ > 1 for all � j, then any perturbation grows with

iterations, and y� is unstable. If there exist j and k such that
ˇ
ˇ� j

ˇ
ˇ < 1 and j�kj > 1,

then y� is unstable. An unstable fixed point is often called a saddle point. The
critical values � D ˙1 are where the fixed point y� changes its behavioral
character. The case � D 1 is called a tangent bifurcation and the case � D �1 is
called a pitchfork bifurcation.

Both equilibrium and fixed points are simply referenced as steady states. The
matrix A of the linearized system is called the Jacobian of the system.



Appendix B
Monte Carlo Simulations in Drug Release

Models that can be discretized either naturally or through approximation are suitable
for study using Monte Carlo simulations. As an example, we have provided a brief
outline below of drug release simulations from cylinders assuming Fickian drug
diffusion and excluded volume interactions. This means that each molecule occupies
a volume V where no other molecule can be at the same time.

First, a three-dimensional lattice in the form of a cube with L3 sites is constructed.
Next, a cylinder inside this cubic lattice is defined. The cylinder can leak from its
side, but not from its top or bottom. A site is uniquely defined by its 3 indices i; j; k
(coordinates). The sites are labeled as follows (R is the radius of the cylinder):

• When for a site .R � 1/2 � i2 C j2 � R2, it is considered to be a leak site and it
is marked as such.

• If i2 C j2 � .R � 1/2, then it belongs to the interior of the cylinder and it can host
drug molecules.

• If, on the other hand, i2 C j2 > R2, then it is outside the cylinder, and it is marked
as a restricted area, so that particles are not allowed to go there; cf. Figure B.1
for a schematic.

When spherical matrices are constructed, the sites with indices i2 C j2 C k2 > R2

are considered outside of the sphere with radius R and marked as a restricted
area, while leak sites are those whose indices satisfy the inequalities
.R � 1/2 � i2 C j2 C k2 � R2.

The simulation method proceeds as follows: a number of particles are placed
randomly on the sites of the cylinder, according to the initial concentration, avoiding
double occupancy. The diffusion process is simulated by selecting a particle at
random and moving it to a randomly selected nearest-neighbor site. If the new site
is an empty site, then the move is allowed and the particle is moved to this new
site. If the new site is already occupied, the move is rejected, since excluded volume
interactions are assumed.
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Fig. B.1 A cylindrical cross
section with radius R D 30

sites. The dark area is
restricted to particles. The
gray area indicates the
leaking sites. The white area
is where the drug particles are
initially located. Each site in
the white area can be either
occupied or empty
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Fig. B.2 (A) A cylinder with
radius 5 units and half-height
20 units initially contains 282
particles at completely
random positions. Each
particle is represented by a
cuboid of volume 1 .unit/3.
(B) A snapshot of the same
cylinder during the release
procedure. Now only 149
particles are left inside the
cylinder. The positions of the
particles are no longer
completely random. On
average a concentration
gradient forms with fewer
particles at the cylinder
border

A particle is removed from the lattice as soon as it migrates to a site lying within
the leak area. After each particle moves, time is incremented. The increment is
chosen to be 1=n .t/, where n .t/ is the number of particles remaining in the system.
This is a typical approach in Monte Carlo simulations. The number of particles that
are present inside the cylinder as a function of time is monitored until the cylinder
is completely empty of particles. The results are averaged using different initial
random configurations, but the same parameter. A pictorial view of particles in the
cylinder at two different time points is presented in Figure B.2.



Appendix C
The Population Approach

The goal of pharmacokinetic and pharmacodynamic investigations is to establish a
rational basis for the therapeutic use of a drug. Specifically, clinical trials aim at
determining the dose and the dosage regimen of the new drug that will produce
therapeutic benefit in patients while minimizing the inconvenience of side effects
and risks of adverse drug reactions. This is particularly true in the clinical evaluation
of new chemical and biological entities during drug development [750].

Data destined for pharmacokinetic analysis consist of one or more drug con-
centration vs. time observations, while pharmacodynamic data consist of specific
concentration levels corresponding to a specific therapeutic effect or its validated
biomarker. One distinguishes two types of data:

• Experimental data arise from studies carried out specifically for pharmacokinetic
investigations, under controlled conditions of drug dosing and extensive blood
sampling.

• Observational data are collected as a supplement in a study designed and carried
out for another purpose. These data are characterized by lack of control and few
design restrictions: the amount of kinetic data collected from each individual is
variable, the timing of blood sampling differs, and the number of blood samples
per patient is small, typically from 1 to 5.

It should be emphasized that in the collected data, several responses may be
measured (e.g., drug plasma concentration, arterial blood pressure), and diverse
administration schedules (single dose and chronic dosing) may be considered.
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C.1 Inter- and Intraindividual Variability

The population approach is a new point of view in clinical drug evaluation
and therapy. It emphasizes the estimation of parameters describing the dose–
concentration–response relationship both between and within patients (including
average behavior and variability). The population approach recognizes variability
as an important feature that should be identified and measured during drug
evaluation [751]. Indeed:

• We need to know something about the distributions of the deviations of individ-
ual patient pharmacokinetic-dynamic model parameters from their population
average values, and how these deviations correlate with one another. The
deviations are population parameters of a different type: random individual effect
parameters; random because individual deviations are regarded as occurring
according to chance mechanisms.

• One may ask how much drug outcome (concentration/effect) varies across a mod-
eling cycle within an individual. To answer this question, other random-effect
population parameters are also needed: the variance of the combined random
intraindividual and measurement error; random because outcome fluctuations
and measurement errors are also regarded as occurring according to chance
mechanisms.

• One may immediately imagine further subdividing the last type of variability. For
example, one might wish to distinguish intraindividual variability due to different
aspects of kinetics and separate all such variability from that due to measurement
error. The problem with doing so is that most data are insufficiently detailed
and not complete enough to allow these components of variance to be estimated
separately. The two-way division we have proposed appears to suffice for most
applications and data sets.

According to the population approach, the analysis of collected data requires
an explicit mathematical model, including parameters quantifying population mean
profiles, interindividual variability, and residual variability including intraindividual
variability and measurement error [752].

C.2 Models and Software

Nonlinear mixed-effects modeling methods as applied to pharmacokinetic-dyna-
mic data are operational tools able to perform population analyses [753]. In the
basic formulation of the model, it is recognized that the overall variability in
the measured response in a sample of individuals, which cannot be explained
by the pharmacokinetic-dynamic model, reflects both interindividual dispersion in
kinetics and residual variation, the latter including intraindividual variability and
measurement error. The observed response of an individual within the framework
of a population nonlinear mixed-effects regression model can be described as
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yij D g
�
� i; tij

	C "ij,

where yij for j D 1 W ni are the observed data at time points tij of the i-th individual.
An appropriate model of this type is defined for all i D 1 W m, where m is the
number of individuals in the sample. The function g .�; t/ is a specific function for
predicting the response, � i is the vector of unknown individual-specific parameters,
and "ij accounts for the error between the unknown value and the corresponding
measurement.

The sample of individuals is assumed to represent the patient population at
large, sharing the same pathophysiological and pharmacokinetic-dynamicparameter
distributions. The individual parameter � is assumed to arise from some multivariate
probability distribution‚� f .‰/, where ‰ is the vector of so-called hyperparame-
ters or “population characteristics.” In the mixed-effects formulation, the collection
of ‰ is composed of population “typical values” (generally the mean vector) and
of population “variability values” (generally the variance–covariance matrix). Mean
and variance characterize the location and dispersion of the probability distribution
of ‚ in statistical terms.

Then, given a model for data from a specific drug in a sample from a population,
mixed-effect modeling produces estimates for the complete statistical distribution of
the pharmacokinetic-dynamic parameters in the population. Especially, the variance
in the pharmacokinetic-dynamicparameter distributions is a measure of the extent of
inherent interindividual variability for the particular drug in that population (adults,
neonates, etc.). The distribution of residual errors in the observations, with respect
to the “mean” pharmacokinetic or pharmacodynamic model, reflects measurement
or assay error, model misspecification, and, more rarely, temporal dependence of
the parameters.

Population modeling software varies in the number of assumptions made regard-
ing the statistical distributions of the pharmacokinetic-dynamic parameters, the
within-individual or residual error, and, particularly, the interindividual variability
(random effect). They take either a parametric approach with strong assumptions,
typically of a log-normal distribution [754–756] or Bayesian approaches [757],
a semiparametric view with relaxed assumptions [758], or a nonparametric, no
assumptions approach [759, 760]. NONMEM (NONlinear Mixed Effect Modeling,
NONMEM Project Group, University of California at San Francisco, CA [754])
and NPEM2 (NonParametric Expectation Maximization, Laboratory of Applied
Pharmacokinetics, University of Southern California, Los Angeles, CA [760]) are
pioneers of parametric and nonparametric population modeling packages, respec-
tively. Recently, Aarons [761] reviewed some of the software currently available for
performing nonlinear mixed-effects modeling.

However, the Bayesian analysis using Gibbs sampling (BUGS) requires special
mention since it is a general program for performing analysis for a wide range of
statistical problems and is available on PC and Unix platforms and also in a PC
Windows version. The Bayesian analysis is based on complex statistical models
using Markov chain Monte Carlo methods [762–764].
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C.3 Covariates

In the initial stage of the analysis, the pharmacokinetic or pharmacodynamic obser-
vations are blind with respect to the patients, i.e., no patient-specific demographic
or physiological covariates are included, other than the dose. Both parametric and
nonparametric population methods then, in this first stage, produce a base model for
the centering and spread of the parameters in the population, which can then be used
in subsequent steps in various ways.

However, the base model provides inadequate individualization, and to assist
clinical decision-making, it is important to relate differences among individuals
to readily identifiable and routinely measurable individual attributes or covariates,
such as demographic (e.g., age), pathophysiological (e.g., serum creatinine, renal,
or hepatic function), or genotypic (e.g., CYP2D6 polymorphism) data. Knowing the
value of an influential covariate in a new patient before starting therapy increases
the predictive power and therefore makes the choice of dose more reliable.

Explanation of parameter variability using covariates can be achieved:

• by simple regression of the individual empirical Bayes parameters from the base
model with the covariates and

• within the population fitting process, estimating the covariate term coefficients
jointly with the pharmacokinetic parameters.

Parametric population methods also obtain estimates of the standard error of
the coefficients, providing consistent significance tests for all proposed models.
A hierarchy of successive joint runs, improving an objective criterion, leads to
a “final” covariate model for the pharmacokinetic parameters. The latter step
reduces the unexplained interindividual randomness in the parameters, achieving
an extension of the deterministic component of the pharmacokinetic model at
the expense of the random effects. Recently used individual empirical Bayes
estimations exhibit more success in targeting a specific individual concentration
after the same dose.

C.4 Applications

The knowledge of population kinetic parameters has been proved important, and up
to the present, the population approach has had a wide spectrum of applications:

• It is a currently accepted medical practice to measure a few drug levels after
dosage has progressed for some time. In order to make the measured drug levels
useful, one should estimate individual parameters using Bayesian estimation
techniques. They consist in combining a few or even a single individual drug level
measurement with the probability distribution function expressing interindividual
variability. Once the individual parameters are obtained, the time-dependent
pharmacokinetic model can be used for forecasting and predictive exploration
of dosing regimens.
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• Most decisions regarding drug regulation involve knowledge of the typical or
average behavior of a drug in a population. To the extent that pharmacokinetic
aspects of drugs are of interest to drug regulatory agencies, population pharma-
cokinetics will also be of interest.

• Although intraindividual kinetic variability has only been regarded as a nuisance,
the typical degree of intraindividual kinetic variability from all causes can be used
to fix rational limits on the increments for tablet dosage, and on permissible
tablet-to-tablet and lot-to-lot variability.

• Finally, in drug development or evaluation phase studies, logistical trade-offs of
pharmacokinetic-dynamic data may lead to reduced samples per patient (sparse
data) and/or reduced patient group sizes, as well as noisy data (e.g., unknown
variability in the dose strategy, noncompliance) (phase IV).

The ability to handle, in a statistically rigorous explanatory and predictive frame-
work, large data sets of drug-related pharmacokinetic-dynamic clinical observations
is of increasing importance to the industry, regulatory agencies, and patients, in
order to reduce human and budgetary risks.

Beyond pharmacokinetics and pharmacodynamics, population modeling and
parameter estimation are applications of a statistical model that has general validity,
the nonlinear mixed-effects model. The model has wide applicability in all areas,
in biomedical science and elsewhere, where a parametric functional relationship
between some input and some response is studied and where random variability
across individuals is of concern [750].



Appendix D
Probability

D.1 Basic Properties

• Poincaré theorem. Given n random events A1; : : : ;An, the probability of their
union is given by
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If the events are mutually exclusive, i.e., 8i; j Ai \ Aj D ¿ , then

Pr

"
n[

iD1
Ai

#

D
nX

iD1
Pr ŒAi� .

• Conditional probability. Given the random events A and B, the conditional
probability of A for observed B is defined by

Pr ŒA j B� , Pr ŒA \ B�

Pr ŒB�
.
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Two events A and B are defined as independent if Pr ŒA j B� D Pr ŒA�, or
Pr ŒA \ B� D Pr ŒA�Pr ŒB�. Given n random events A1; : : : ;An, the probability
of their intersection is given by

Pr

"
n\

iD1
Ai

#

D Pr

"

A1 j
n\

iD2
Ai

#

Pr

"

A2 j
n\

iD3
Ai

#

: : :

Pr ŒAn�1 j An� Pr ŒAn� .

• Total probability theorem. Given n mutually exclusive events A1; : : : ;An, whose
probabilities sum to unity, then

Pr ŒB� D Pr ŒB j A1�Pr ŒA1�C : : :C Pr ŒB j An� Pr ŒAn� ,

where B is an arbitrary event, and Pr ŒB j Ai� is the conditional probability of B
assuming Ai.

• Bayes theorem. For the same settings, the Bayes theorem gives the conditional
probability

Pr ŒAi j B� D Pr ŒB j Ai�Pr ŒAi�Pn
kD1 Pr ŒB j Ak�Pr ŒAk�

.

D.2 Expectation, Variance, and Covariance

For scalar continuous random variables X and Y with joint probability density
f .x; y/, marginals and conditionals are defined as

f .x/ D R
y f .x; y/ dy, f .y/ D R

x f .x; y/ dx

and

f .x j y/ D f .x; y/ =f .y/ , f .y j x/ D f .x; y/ =f .x/ ,

respectively. The statistical characteristics up to second order of X and Y are:

• Expectation. It can be interpreted as the center of gravity of random variables:

E ŒX� ,
R

x xf .x/ dx, E ŒY� ,
R

y yf .y/ dy

on X and Y axes, respectively, or

E ŒXY� ,
Z

xy
xyf .x; y/ dx dy

on X, Y plan. If X and Y are independent, E ŒXY� D E ŒX�E ŒY�.
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• Variance: It can be interpreted as the inertia about the centers of gravity E ŒX�
and E ŒY�:

Var ŒX� ,
R

x fx � E ŒX�g2 f .x/ dx, Var ŒY� ,
R

y fy � E ŒY�g2 f .y/ dy.

• Covariance:

Cov ŒX;Y� ,
Z

x;y
fx � E ŒX�g fy � E ŒY�g f .x; y/ dxdy

D E ŒXY� � E ŒX�E ŒY�

and correlation:

Cor ŒX;Y� , Cov ŒX;Y�
p

Var ŒX�Var ŒY�
.

D.3 Conditional Expectation and Variance

• Conditional expectation. It is defined as

E ŒX j y� ,
R

x xf .x j y/ dx, E ŒY j x� ,
R

y yf .y j x/ dy,

and these are functions of y and x, respectively [765]. It follows that

E ŒX� D EyE ŒX j y� , E ŒY� D ExE ŒY j x� .

In these expressions, E ŒX j y� and E ŒY j x� are considered as random variables
and subscripts in Ex or Ey mean that expectation is taken with respect to x or y
by using their respective marginals. The last two expressions are also known as
total expectations.

• Conditional variance. It is defined as

Var ŒX j y� ,
Z

x
fx � E ŒX j y�g2 f .x j y/ dx

and

Var ŒY j x� ,
Z

y
fy � E ŒY j x�g2 f .y j x/ dy,

and they are functions of y and x, respectively [765]. It follows that

Var ŒX� D VaryE ŒX j y�C EyVar ŒX j y�
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and

Var ŒY� D VarxE ŒY j x�C ExVar ŒY j x�

As above, Var ŒX j y� and Var ŒY j x� are considered as random variables and
subscripts in Varx or Vary mean that variance is taken with respect to x or y
using their respective marginals. The last two expressions are also known as total
variances.

D.4 Generating Functions

Generating functions are coming into widespread use as methodological tools [552].
They may be used to obtain numerical summary measures of probability distri-
butions in an analytical form by computing its moments and cumulants. For the
nonnegative integer-valued random variable X .t/:

• The probability generating function P .s; t/ is defined as

P .s; t/ ,
X

sxpx .t/ ,

where s is a “dummy variable” such that jsj < 1. It follows that one could obtain
any probability, say pi .t/, by differentiatingP .s; t/ with respect to s; specifically,

pi .t/ D P .i/ .0; t/ ,

where P .i/ .0; t/ denotes the i-th derivative with respect to s evaluated at s D 0.
• The moment generating function M .�; t/ is defined as

M .�; t/ ,
X

exp .�x/ px .t/ ,

where � is a “dummy variable.” Clearly, using the previous relation one has
M .�; t/ D P .exp .�/ ; t/. If M .�; t/ is expressed as the power series

M .� ; t/ D
X

i	0

�i .t/ �
i

iŠ
,

the coefficients�i .t/ in this series expansion are the i-th moments of X .t/, which
are usually defined as �i .t/ ,

P
xipx .t/ with �0 D 1. It follows that the i-th

moment may be obtained from the moment generating function as

�i .t/ D M.i/ .0; t/ .
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• The cumulant generating function K .�; t/ is defined as

K .�; t/ , logM .�; t/ ,

with power series expansion

K .�; t/ D
X

i	0

� i .t/ �
i

iŠ
.

This equation formally defines a cumulant � i .t/ as a coefficient in the series
expansion of K .�; t/. It too is easily found from its generating function as

�i .t/ D K.i/ .0; t/ .

The first three cumulants may be obtained as

�1 .t/ D �1 .t/ ,

�2 .t/ D �2 .t/ � �21 .t/ ,

�3 .t/ D �3 .t/ � 3�1 .t/ �2 .t/C 2�31 .t/ ,

which give the mean, variance, and skewness functions for X .t/ from the �i .t/
moment functions.



Appendix E
Convolution in Probability Theory

A convolution is an integral that expresses the amount of overlap of one function
g as it is shifted over another function f . It therefore “blends” one function with
another. The convolution is sometimes also known by its German name, Faltung
(folding). Abstractly, a convolution is defined as a product of functions f and g that
are objects in the algebra of Schwartz functions in R

n. Convolution of two functions
f .z/ and g.z/ over a finite range Œ0; t� is given by

f � g .t/ ,
Z t

0

f .� � t/ g .�/ d� ,

where the symbol f � g denotes convolution of f and g.
There is also a definition of the convolution that arises in probability theory and

is given by

F � G .t/ ,
Z t

0

F .t � z/ dG .z/ ,

where

Z t

0

F .t � z/ dG .z/

is a Stieltjes integral.
The Stieltjes integral is a generalization of the Riemann integral. Let f .z/ and

h .z/ be real-valued bounded functions defined on a closed interval Œa; b�. Take a
partition of the interval a D z1 < z2 < : : : < zn�1 < zn D b and consider the
Riemann sum
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n�1X

iD1
f .� i/ Œh .ziC1/ � h .zi/�

with � i 2 Œzi; ziC1�. If the sum tends to a fixed number I as max .ziC1 � zi/ ! 0,
then I is called the Stieltjes integral, or sometimes the Riemann–Stieltjes integral.
The Stieltjes integral of f with respect to h is denoted by

R
f .z/dh .z/. If f and h

have a common point of discontinuity, then the integral does not exist. However, if
f is continuous and h0 is Riemann integrable over the specified interval, then

Z
f .z/ dh .z/ D

Z
f .z/ h0 .z/ dz.

For enumeration of many of the Stieltjes integral properties, cf. [766] (p.105). In
the following, we present some useful convolution relationships:

• f � g .t/ D g � f .t/ ,
R t
0

f .� � t/ g .�/d� D R t
0

g .� � t/ f .�/d�
• f .t/ � Œk1g .t/C k2h .t/� D k1f � g .t/C k2f � h .t/
• f � g .t/jtD0 D 0

•
R t
0

f � g .�/d� D f .t/ � R t
0

g .�/d� D g .t/ � R t
0

f .�/d�
•
R1
0

f � g .�/d� D 
R1
0

f .�/ d�
� 
R1

0
g .�/ d�

�

• d
dt Œf � g .t/� D f .t/ g .0/C f � dg.t/

dt D g .t/ f .0/C g � df .t/
dt

• k � f .t/ D k
R t
0

f .�/d�
• d

dt Œk � f .t/� D kf .t/
• ı � f .t/ D f .t/

where k is a scalar constant and ı .t/ is the Dirac delta function.



Appendix F
Laplace Transform

The Laplace transform Qf .s/ of the function f .t/ of the nonnegative variable t is
defined by

Qf .s/ , L ff .t/g D
Z 1

0

exp .�st/ f .t/ dt.

This transform is widely used to formulate semi-Markov stochastic models, where
t and f .t/ are the random variable and its probability density function, respectively.
In Table F.1, we briefly report some Laplace transform pairs.

The probability density functions Exp.�/, Erl.�; �/, Gam.�; �/, and Rec.˛; ˇ/
are defined in Tables 11.1 and 11.2, and Chi.�/ is the �2 distribution with � degrees
of freedom. After modeling in frequency s-space, the solution in time t-space must
be obtained by inverse Laplace transform. Nevertheless, given the complexity of the
obtained model, the inverse transform may be rarely obtained from the above table.
Usually, the numerical inverse Laplace transform is used [520, 527].

Table F.1 Some Laplace
transform properties and pairs
of functions used as
probability density functions
for semi-Markov modeling.

f .t/ Qf .s/
exp .�˛t/ f .t/ Qf .s C ˛/

f .t � ˛/H .t � ˛/ exp .�˛s/ Qf .s/
f .kt/ Qf .s=k/ =k

f1 � f2 .t/ Qf1 .s/ Qf2 .s/
Exp.�/ �= .s C �/ with s > ��
Erl.�; �/ Œ1C .s=�/��� with s > ��
Chi.�/ .1C 2s/��=2 with s > � 1

2

Gam.�; �/ Œ1C .s=�/��� with s > ��
Rec.˛; ˇ/ fexp .�˛s/� exp Œ� .˛ C ˇ/ s�g = .ˇs/
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Appendix G
Theorems

G.1 Continuous Functions

Lemma 13. Let h .z/ be a derivable function of z over Œa; b� satisfying h.z/ ¤ 0 for
all z 2�a; bŒ, h.a/ D h.b/ D 0, and h0.a/ < 0. Then, for all z 2�a; bŒ, h.z/ < 0 and
h0.b/ 	 0.

When the derivative h0.a/ is approximated by the quotient difference, we have

h0.a/ � h.z/� h.a/

z � a
D h.z/

z � a
< 0,

and therefore, using continuity, h.z/ < 0 for z 2�a; aC�a�. Since h .z/ is continuous
over �a; bŒ and h.z/ ¤ 0, h .z/ preserves its sign for z 2�a; bŒ; consequently, h.z/ < 0
for z 2�a; bŒ. Conversely, for all z 2�a; bŒ, we have

h.z/� h.b/

z � b
D h.z/

z � b
> 0

and

h0.b/ D lim
z!b

h.z/� h.b/

z � b
	 0

�
Proposition 14. Let f .z/ and g.z/ be derivable functions of z over Œa; b� satisfying:
g.z/ is a monotone increasing function over Œa; b�, f .z/ ¤ g.z/ for all z 2�a; bŒ,
f .a/ D g.a/ and f .b/ D g.b/, and f 0.a/ < 0. Then f .z/ < g.z/ and f 0.b/ 	 0.
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Let h.z/ D f .z/�g.z/. Since f 0.a/ < 0 and g0.a/ 	 0 (g is monotone increasing),
h0.a/ D f 0.a/ � g0.a/ < 0. Because of f .z/ ¤ g.z/, h.z/ ¤ 0 for all z 2�a; bŒ.
According to the previous lemma, it follows that h.z/ < 0, i.e., f .z/ < g.z/ for all
z 2�a; bŒ, and h0.b/ D f 0.b/�g0.b/ 	 0. Since g0.b/ 	 0 (g is monotone increasing),
we have also f 0.b/ 	 0. �

A similar proof may be delineated for the dual proposition:

Proposition 15. Let f .z/ and g.z/ be derivable functions of z over Œa; b� satisfying:
g.z/ is a monotone increasing function over Œa; b�, f .z/ ¤ g.z/ for all z 2�a; bŒ,
f .a/ D g.a/ and f .b/ D g.b/, and f 0.a/ > 0. Then f .z/ > g.z/ and f 0.b/ � 0.

From the last two propositions, we can state the following result:

Theorem 16. Let f .z/ and g.z/ be derivable functions of z over the interval I and let
g.z/ be a monotone increasing function. Let also a1 < a2 < : : : < an be n reals over
I satisfying: f .ai/ D g.ai/ for i D 1 W n and f .z/ ¤ g.z/ for all z 2�ai; aiC1Œ with
i D 1 W n � 1. Then f .ai/g.ai/ � 0 for i D 1 W n. In other words, the derivatives on
two successive intersection points between two continuous functions, one of which
is monotone, have opposite signs.

Simply, apply the previous propositions to the segment Œai; aiC1�. �

G.2 Matrix Operations and Eigenvalues

Proposition 17. Given a square matrix A with eigenvalues � i, the eigenvalues �i of
sA (with s scalar) are �i D s�i and the eigenvalues Q�i of exp .A/ are Q� i D exp .� i/.
The eigenvectors remain the same under the above matrix operations.

The above results from the definition of eigenvalues and eigenvectors, and the
Jordan factorization A D GZG�1 leading to exp .A/ D G exp .Z/G�1. Here, G and
Z denote the matrix of eigenvectors and the diagonal matrix of eigenvalues of A,
respectively. �

G.3 Matrix Inversion Lemma

Proposition 18. The Matrix Inversion Lemma is the equation

�
A � BD�1C

	�1 D A�1 C A�1B
�
D � CA�1B

	�1
CA�1

where A and C are square invertible matrices, and B, D are matrices so that A and
BCD have the same dimensions.



Appendix H
List of Symbols

The symbols in the following tables are classified in several lists according to
their significance and form: symbols associated with functions and distributions
(Table H.1), time-dependent variables (Table H.2), random variables (Table H.3),
constants and parameters (Tables H.4, H.5, H.6), and Greek symbols (Table H.7).
The list of tables is completed by a table of abbreviations (Table H.8).

In order to respect the initial writing in the literature of symbols, sometimes but
in a different place the same symbol has been used for more than one purpose. For
example, s .t/ denotes the substrate variable in Chapters 8 and 11, whereas it refers
to the neutrophil myelocytes in Chapter 13. In such cases, we systematically report
as reference for each use the number of the corresponding chapter. For random
variables, a pair of symbols is used with the same character in uppercase and
lowercase form to denote the name of a random variable and an element of that
variable, respectively. For instance, A denotes the random variable “age” and a a
given age. Underscored lowercase characters and bold uppercase denote vectors
and matrices, respectively, e.g., y and H. Usually, Greek letters �, �, �, � stand for
the parameters of statistical distributions, and ˛, ˇ, and � are used as unspecified
constants or parameters.
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Table H.1 Functions and
distributions.

SYMBOL LABEL

B .t/ Brownian motion

� .t/ Gaussian white noise, Chapt. 5

' .t/ Fraction of dose dissolved, Chapts. 5, 6

cB .y/ Binding curve

cF .y/ Feedback curve

ı .�/ Dirac delta function

f .a/ Density function

F .a/ Distribution function

F .�; �/ Transfer function

ˆ .�/ Feedback control function

� .�/ Dimensionless feedback function

g .�/ Functional form

I .�/ Intensity function

J0 .�/ Zero-order Bessel function

K .�; �/ Cumulant generating function

M .�; �/ Moment generating function

P .�; �/ Probability generating function

S .a/ Survival function

T .�/ Transducer function

u .t/ Input function

	 .t/ Dimensionless input function

H .�/ Heaviside step function

� .�/ Gamma function

 .t/ History function, Chapt. 13

Bin.�; �/ Binomial distribution

Chi.�/ �2 distribution

Erl.�; �/ Erlang distribution

Exp.�; �/ Exponential distribution

Gam.�; �/ Gamma distribution

Rec.�; �/ Rectangular (uniform) distribution

Wei.�; �/ Weibull distribution

E Œ�� Expectation

Var Œ�� Variance

Cov Œ�; �� Covariance

Cor Œ�; �� Correlation
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Table H.2 Time-dependent variables.

SYMBOL LABEL

c .t/ Drug concentration, Chapts. 2, 4, 6, 7, 8, 10, 12, 13

e .t/ Enzyme, Chapts. 8, 11

Cytokines, Chapt. 13

E .t/ Pharmacological effect, Chapts. 12, 13

q .t/ Drug amount, Chapts. 2, 4, 5, 6, 7, 8, 12

s .t/ Substrate, Chapts. 8, 11

Neutrophil myelocytes, Chapt. 13

� .t/ Enzyme–substrate complex, Chapt. 8

Drug–receptor complex, Chapts. 12, 13

w .t/ Product of enzymatic reaction, Chapt. 8

Blood neutrophils, Chapt. 13

x .�/ ; y .�/ ; z .�/ Dimensionless state variables

y .t/ State variable

Table H.3 Random variables.

SYMBOL LABEL DIMENSION

a;A Age, Chapt. 11 Time

c .t/ ;C .t/ Concentration, Chapt. 11 Mass�Volume�1

n .t/ ;N .t/ No. of particles, Chapt. 11

q .t/ ;Q .t/ Amount, quantity, Chapt. 11 Mass

t; T Time, Chapt. 5 Time

�;‚ Characteristic parameter, Chapts. 7, 8



436 H List of Symbols

Table H.4 Constants, parameters (part 1). [apu] denotes arbitrary pharmaco-
logical units.

SYMBOL LABEL DIMENSION

A Area Area

An Absorption number

AUC Area under curve Mass�Volume�1�Time

B�� Coefficients in a sum of exponentials Mass�Volume�1

b� Exponents in a sum of exponentials Time�1

B�; b�
Parameters in pseudocompartments

cs Solubility Mass�Volume�1

c0 Initial concentration Mass�Volume�1

cmax Peak drug concentration Mass�Volume�1

CL Clearance Volume�Time�1

CV Coefficient of variation

dt Topological dimension

df Fractal dimension

dc Capacity dimension

de Embedding dimension

ds Spectral dimension

dw Random walk dimension

do Cover dimension

d� Index of nonlinear coherence

D Diffusion coefficient Area�Time�1

D0 Modified diffusion coefficient Area�Time�1

D� Fractional diffusion coefficient Area�Time�1

D Dispersion coefficient Area�Time�1

Dn Dissolution number

e0 Initial enzyme amount, Chapts. 8, 11 Mass

Initial cytokine amount, Chapt. 13 Mass

E0 Baseline in Emax model [apu]

Emax Maximum pharmacological effect [apu]

Ec50 Concentration at half Emax Mass�Volume�1

f1 Difference factor

f2 Similarity factor

fu Drug unbound fraction

fun Fraction of unionized species

Fa Fraction of dose absorbed

h�� Hazard rates Time�1

H Hypothesis for statistical test

H Transfer intensity matrix

Imax Maximum inhibition rate

Ic50 Concentration at half Imax Mass�Volume�1

J Net flux Mass�Area�1�Time�1
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Table H.5 Constants, parameters (part 2). [apu] denotes arbitrary pharmaco-
logical units.

SYMBOL LABEL DIMENSION

k First-order rate const. (generic) Time�1

kı Reference rate const. Time�1

k0 Case-II relaxation const. Mass�Area�1�Time�1

kC1 Forward enz. reaction rate const. Mass�1�Time�1

k�1 Backward enz. reaction rate const. Time�1

kC2 Enzymatic product formation

rate const. Time�1

k2 Pharmacological proport. const. [apu]�Mass�1�Volume

ka Macroscopic absorption rate const. Time�1

k0

a Microscopic absorption rate const. Time�1

kd Dissolution rate const. Time�1

kd;eff Effective dissolution rate const. Time�1

kc Controlled dissolution

rate const., Chapt. 6 Time�1

ky Effect-compartment

rate const., Chapt. 12 Time�1

ks Surface area dissolution rate const.

kD Dissociation const. Mass

ki; ko Input (orders 0 and 1),

output rate const.

ke; ks; kw Rate const. in hemopoiesis

kM Michaelis–Menten const. Mass

k�� Fractional flow rates Time�1

K Matrix of fractional flow rates

L Height of cylinder Length

m No. of objects (except particles):

samples, compartments, individuals,

vessels, administrations, sites

mı No. of reaction channels

na; nb No. of delayed outputs, inputs

n0 Initial no. of particles

n .t/ No. of visited sites, Chapt. 2

No. of remained particles, Chapt. 4

Qn .t/ No. of escaped particles

Nleak No. of leak sites

Ntot Total no. of sites

Nvilli No. of villi

p Probability

pa Probability for absorption by villi

pf Forward probability to the output

pc Critical probability
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Table H.6 Constants, parameters (part 3).

SYMBOL LABEL DIMENSION

P Permeability Length�Time�1

Papp Apparent permeability Length�Time�1

Peff Effective permeability Length�Time�1

Pc Partition coefficient

P State probability matrix

q the shift operator

q0 Initial drug amount (dose) Mass

q1 Maximum cumulative amount Mass

Q Volumetric flow rate Volume�Time�1

R Radius of tube Length

R�� Transfer rate Mass�Time�1

R2 Coefficient of determination

Rmax Maximum biotransformation rate Mass�Time�1

r Resolution, Chapt. 1

Random number, Chapt. 11

r0 Total no. of receptors

Ri Reference drug dissolved at i Mass

S2
��

Variance in the sample, Chapt. 10

Smax Maximum stimulation rate

Sc50 Concentration at half Smax Mass�Volume�1

t Time Time

tı Time delay Time

tı Time reference Time

t0 Initial time Time

tsim Maximum simulation time Time

tdiff Diffusion time Time

treac Reaction time Time

tmax Time to cmax Time

t�� Observation times Time

T Infusion duration Time

TE Infusion ending time Time

TS Infusion starting time Time

Tsi Small-intestinal transit time Time

Ti Test drug dissolved at i Mass

ui Unit geometric vector in direction i

v Velocity Length�Time�1

V Volume of distribution Volume

Vc Central compartment volume Volume

Vy Effect-compartment volume Volume

Vmax Maximum transport rate Mass�Time�1

y�� Observations Mass�Volume�1

z Spatial coordinates Length
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Table H.7 Greek symbols. [apu] denotes arbitrary pharmacological units.

SYMBOL LABEL DIMENSION

˛; ˇ; � Constants, parameters (usually)

˛ Significance level for statistical tests

ı Thickness, elementary distance Length

� Finite difference symbol

" Intrinsic efficacy, Chapt. 12 [apu]�Mass�1�Volume

Bias factor, Chapt. 6

Subinterval length, Chapt. 11 Length

"�� Prediction error

� Eigenvalue

� Eigenvector

� Characteristic parameter, Chapts. 1,

3, 11, 13

Solubility–dose ratio, Chapts. 5, 6

�; �; �; � Distribution parameters (usually)

�� Cumulants

�
�

Moments

� Characteristic multiplier, Chapt. 3

Correlation length, Chapt. 1

% Density of the drug Mass�Volume�1

	 Radius of particle Length

	c Critical radius Length

	0 Initial radius Length

�2 Variance, Chapts. 5, 8

� Dimensionless time

�ı Dimensionless time delay

' Regression vector, Chapt. 7

'
��

Changes in population size by

the reaction, Chapt. 11

 
��

No. of particles implied in

the reaction, Chapt. 11

‰ Vector of population parameters

! Resolution, Chapt. 1

!�� Transition probabilities, Chapt. 11
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Table H.8 Abbreviations.

ABBREVIATION EXPANSION

AB� AB� system

ACAT Advanced version of CAT

ARX Auto-Regression with eXtra inputs (ARX) model

BCS Biopharmaceutics Classification System

BDDCS Biopharmaceutics Drug Disposition Classification System

CAT Compartmental Absorption Transit

DLA Diffusion-Limited Aggregation

DTPA diethyltriamino-pentaacetic acid

EMA European Medicines Agency

FDA Food and Drug Administration

FDE Fractional order ordinary Differential Equations

G-CSF colony-stimulating factor

HPMC hydroxypropyl methylcellulose

LTI Linear Time-Invariant models

MCS Monte Carlo microSteps

MSE Mean Square Error

NONMEM NONlinear Mixed Effect Modeling

NPEM2 NonParametric Expectation Maximization

NSAID nonsteroidal anti-inflammatory drugs

NILT Numerical Inverse Laplace Transform algorithm

PLGA poly-lactic-co-glycolic acid

TOST Two One-Sided Test procedure

TPGS d-alpha-tocopheryl polyethylene glycol 1000 succinate

QBCS Quantitative Biopharmaceutics Classification System

WHO World Health Organization
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