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Preface to the First Edition

H peyadn téxvn Bpioketal omovdnmote o avlpwmwos katoplwvel vavayvwpllel
TOV EXVUTOV TOU KQL VI TOV EKQPALEL [LE TANPOTNTA JLEC OTO EAL YLOTO.

Great art is found wherever man achieves an understanding of self and is able to express
himself fully in the simplest manner.

Odysseas Elytis (1911-1996)
1979 Nobel Laureate in Literature
The Magic of Papadiamantis

Biopharmaceutics, pharmacokinetics, and pharmacodynamics are the most
important parts of pharmaceutical sciences because they bridge the gap between the
basic sciences and the clinical application of drugs. The modeling approaches in all
three disciplines attempt to:

* Describe the functional relationships among the variables of the system under
study.
* Provide adequate information for the underlying mechanisms.

Due to the complexity of the biopharmaceutic, pharmacokinetic, and pharmaco-
dynamic phenomena, novel physically physiologically based modeling approaches
are sought. In this context, it has been more than ten years since we started
contemplating the proper answer to the following complexity-relevant questions:
Is a solid drug particle an ideal sphere? Is drug diffusion in a well-stirred disso-
lution medium similar to its diffusion in the gastrointestinal fluids? Why should
peripheral compartments, each with homogeneous concentrations, be considered
in a pharmacokinetic model? Can the complexity of arterial and venular trees be
described quantitatively? Why is the pulsatility of hormone plasma levels ignored
in pharmacokinetic—-dynamic models? Over time we realized that questions of
this kind can be properly answered only with an intuition about the underlying
heterogeneity of the phenomena and the dynamics of the processes. Accordingly,
we borrowed geometric, diffusional, and dynamic concepts and tools from physics
and mathematics and applied them to the analysis of complex biopharmaceutic,
pharmacokinetic, and pharmacodynamic phenomena. Thus, this book grew out of

vii



viii Preface to the First Edition

our conversations with fellow colleagues, correspondence, and joint publications.
It is intended to introduce the concepts of fractals, anomalous diffusion, and
the associated nonclassical kinetics and stochastic modeling, within nonlinear
dynamics, and illuminate with their use of the intrinsic complexity of drug processes
in homogeneous and heterogeneous media. In parallel fashion, we also cover in
this book all classical models that have direct relevance and application to the
biopharmaceutics, pharmacokinetics, and pharmacodynamics.

The book is divided into four sections, with Part I, Chapters 1-3, presenting
the basic new concepts: fractals, nonclassical diffusion-kinetics, and nonlinear
dynamics; Part II, Chapters 4—6, presenting the classical and nonclassical models
used in drug dissolution, release, and absorption; Part III, Chapters 7—11, presenting
empirical, compartmental, and stochastic pharmacokinetic models; and Part 1V,
Chapters 12 and 13, presenting classical and nonclassical pharmacodynamic mod-
els. The level of mathematics required for understanding each chapter varies.
Chapters 1 and 2 require undergraduate-level algebra and calculus. Chapters 3—
8, 12, and 13 require knowledge of upper undergraduate- to graduate-level linear
analysis, calculus, differential equations, and statistics. Chapter 11 requires knowl-
edge of probability theory.

We would like now to provide some explanations in regard to the use of some
terms written in italics below, which are used extensively in this book starting
with homogeneous vs. heterogeneous processes. The former term refers to kinetic
processes taking place in well-stirred, Euclidean media where the classical laws
of diffusion and kinetics apply. The term heterogeneous is used for processes taking
place in disordered media or under topological constraints where classical diffusion-
kinetic laws are not applicable. The word nonlinear is associated with either the
kinetic or the dynamic aspects of the phenomena. When the kinetic features of
the processes are nonlinear, we basically refer to Michaelis—Menten-type kinetics.
When the dynamic features of the phenomena are studied, we refer to nonlinear
dynamics as delineated in Chapter 3.

A process is a real entity evolving, in relation to time, in a given environment
under the influence of internal mechanisms and external stimuli. A model is an
image or abstraction of reality: a mental, physical, or mathematical representation or
description of an actual process, suitable for a certain purpose. The model need not
be a true and accurate description of the process, nor need the user have to believe so,
in order to serve its purpose. Herein, only mathematical models are used. Either pro-
cesses or models can be conceived as boxes receiving inputs and producing outputs.
The boxes may be characterized as gray or black, when the internal mechanisms
and parameters are associated or not with a physical interpretation, respectively.
The system is a complex entity formed of many, often diverse, interrelated elements
serving a common goal. All these elements are considered as dynamic processes and
models. Here, deterministic, random, or chaotic real processes and the mathematical
models describing them will be referenced as systems. Whenever the word “system”
has a specific meaning like process or model, it will be addressed as such.

For certain processes, it is appropriate to describe globally their properties using
numerical techniques that extract the basic information from measured data. In
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the domain of linear processes, such techniques are correlation analysis, spectral
analysis, etc. and in the domain of nonlinear processes, the correlation dimension,
the Lyapunov exponent, etc. These techniques are usually called nonparametric
models or, simply, indices. For more advanced applications, it may be necessary to
use models that describe the functional relationships among the system variables in
terms of mathematical expressions like difference or differential equations. These
models assume a prespecified parameterized structure. Such models are called
parametric models.

Usually, a mathematical model simulates a process behavior, in what can be
termed a forward problem. The inverse problem is, given the experimental measure-
ments of behavior, what is the structure? A difficult problem, but an important one
for the sciences. The inverse problem may be partitioned into the following stages:
hypothesis formulation, i.e., model specification, definition of the experiments,
identifiability, parameter estimation, experiment, and analysis and model checking.
Typically, from measured data, nonparametric indices are evaluated in order to
reveal the basic features and mechanisms of the underlying processes. Then, based
on this information, several structures are assayed for candidate parametric models.
Nevertheless, in this book we look only into various aspects of the forward problem:
given the structure and the parameter values, how does the system behave?

Here, the use of the term “model” follows Kac’s remark, “models are caricatures
of reality, but if they are good they portray some of the features of the real
world” [1]. As caricatures, models may acquire different forms to describe the
same process. Also, Fourier remarked, “nature is indifferent toward the difficulties
it causes a mathematician”; in other words the mathematics should be dictated
by the biology and not vice versa. For choosing among such competing models,
the “parsimony rule,” Occam’s “razor rule,” or Mach’s “economy of thought”
may be the determining criteria. Moreover, modeling should be dependent on the
purposes of its use. So, for the same process, one may develop models for process
identification, simulation, control, etc. In this vein, the tourist map of Athens and the
system controlling the urban traffic in Marseille are both tools associated with the
real life in these cities. The first is an identification model and the second, a control
model.

Over the years we have benefited enormously from discussions and collabora-
tions with students and colleagues. In particular we thank P. Argyrakis, D. Barbolosi,
A. Dokoumetzidis, A. Kalampokis, V. Karalis, K. Kosmidis, C. Meille, E. Rinaki,
and G. Valsami. We wish to thank J. Lukas whose suggestions and criticisms greatly
improved the manuscript.

Piraeus, Greece P. Macheras
Marseille, France A. Tliadis
August 2005
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The objectives and scope of this book remain the same as in the first edition: to
present the homogeneous and heterogeneous approaches used in the modeling work
of biopharmaceutics, pharmacokinetics, and pharmacodynamics. However, in the
ensuing ten years from the first publication of the book, significant changes took
place in the modeling and simulation work in the field of drug development and
research. The prominent drug agencies US FDA and EMA have taken specific steps
toward the utility of modeling and simulation in drug development and registration
of medicinal products. Moreover, the latest EMA guideline on investigation of
bioequivalence introduced several new concepts including alternative possibilities
for the clinical design, the statistical analysis, the moiety to be analyzed, and
the application of classification of drugs using the biopharmaceutic classification
system (BCS) as well as the biopharmaceutic drug disposition classification system
(BDDCS). As a result of all these developments, this edition contains two new
chapters “Fractional Pharmacokinetics” (Chapter 9) and “Modeling and Simulation
in Bioequivalence” (Chapter 10) written by Dr. Aristides Dokoumetzidis and Dr.
Vangelis Karalis, respectively. Chapter 9 presents the mathematical formalism based
on fractional calculus for the analysis of pharmacokinetics of drugs following
anomalous kinetics. Chapter 10 presents an overview of the modeling and sim-
ulation methods, which are applied to many areas of bioequivalence assessment.
Besides, new material has been added in Chapters 5 and 6 based on recent
developments in reaction-limited dissolution models and supersaturated dissolution
data as well as the recent advances related to BCS and BDDCS. Also, new sections
regarding the time-varying models and analysis of nonlinear mechanisms were also
added to Chapters 7 and 13, respectively. Almost all models and procedures were
implemented within MATLAB, the commonly used software for numerical analysis
purposes.

The first edition of the book was awarded a prize in “Sciences” of the Academy
of Athens in 2007. The authors wish to thank Athanassios S. Fokas, Academician
and Professor in Nonlinear Mathematical Science at the University of Cambridge,
UK, for his support in proposing the book for this award.

xi
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Finally, we thank the readers of the first edition for the excellent feedback and
stimulus to produce an updated version. We would also like to thank S. Benay, R.
Bies, N. Frances, and N. Pispa for their helpful discussions and suggestions.

Piraeus, Greece P. Macheras
Marseille, France A. Tliadis
October 2015
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Part I
Basic Concepts

Biopharmaceutics, pharmacokinetics, and pharmacodynamics have been developed
and expanded, as have many other scientific subjects, based on the concepts of
homogeneity and linearity.

Homogeneity is a presupposition in almost all research in these fields. Some
typical examples can be quoted. The shape of a drug particle is assumed to
be an ideal sphere and its surface smooth. The permeability of the intestinal
complex membrane is considered constant along the gastrointestinal tract while the
concentration of drug is postulated to be homogeneous in the gastrointestinal fluids.
Homogeneous conditions are assumed for each one of the hypothetical compart-
ments of pharmacokinetic models and the effect compartment of pharmacokinetic-
dynamic models. However, common intuition and scientific knowledge tell us
that the drug particle is not an ideal sphere, and its surface is not smooth: the
permeability of the gastrointestinal wall is position- and time-dependent. Moreover,
the assumed concentration homogeneity of drug in (1°) the gastrointestinal tract,
(2°) the peripheral compartments of compartmental systems, and (3°) the biophase
at receptor’s level, is synonymous with a well-mixed system.

Linearity is the basic assumption behind classical biopharmaceutics, pharma-
cokinetics, and pharmacodynamics. Formally, a system is linear if the output of
an operation is proportional to the input. This property of proportionality along
with the property of independence, i.e., the response of the system to an input is
equal to the sum of the outcomes, is the fundamental feature of linear systems. In
contrast, nonlinear kinetic phenomena are frequently observed in pharmacokinetic
and pharmacodynamic studies, when the output (e.g., the area under the time—
concentration curve) is nonlinearly related to the input (e.g., the dose). However,
we deal with complicated biological systems consisting of a large number of
interrelated components and processes. Linear approaches neglect these intrinsic
relations and therefore are not complete.

In various fields of research, e.g., physics, chemistry, and physiology, scientists
are increasingly finding that at the research level it is the nonlinear phenomena that
control the game; physical or physiological heterogeneity is everywhere, while het-
erogeneous conditions prevail in numerous physical, physiological, and biochemical
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Table 1 . Classma}l andi Fields Classical Nonclassical

nonclassical considerations of .

the in vitro and in vivo drug Geometry | Euclidean Fractal

processes. Topology | Ordered media | Disordered media
Diffusion | Regular Anomalous

Kinetics Deterministic Stochastic
Dynamics | Linear Nonlinear

processes. Today, science shows that the real world is relentlessly nonlinear, and
therefore the techniques of nonlinear dynamics are required to analyze the nonlinear
phenomena. In parallel, structural and functional heterogeneities can be described
and understood with the concept of fractals.

Kinetic processes in various scientific fields are traditionally treated with classi-
cal kinetics. The latter is quite satisfactory for reactions and processes in well-stirred
media, i.e., under homogeneous conditions. In fact, the kinetics of diffusion-
controlled processes and reactions in three-dimensional homogeneous systems obey
the classical laws of diffusion where the rate constant of the process is linearly
proportional to the diffusion coefficient. However, this proportionality is not valid
for systems with smaller dimensions, fractal spaces, or disordered systems since the
laws of transport are different in these media. Accordingly, fractal kinetics has been
developed since classical kinetics was found to be unsatisfactory under dimensional
constraints, e.g., phase boundaries, understirred media, or membrane reactions.

The concepts delineated above are quoted in Table 1 in a comparative manner.
The clear message of the middle column of Table 1 is that classical behavior
is expected when the phenomena are taking place in Euclidean spaces and/or
ordered media (e.g., well-stirred systems) since the classical laws of diffusion and
kinetics are valid. According to the third column of Table 1, deviations from the
normal behavior appear when the processes take place in fractal spaces and/or
under topological constraints since neither diffusion nor kinetics follow the classical
pattern in that case. Finally, the dynamics of the systems are linear when the variable
of interest is considered to be detached from the remainder of the system. On the
contrary, nonlinear dynamic behavior exists when the interaction of the studied
variable with the other variables constituting the system is taken into account.

We do believe that it is only through the understanding of underlying principles
that adequate exploration in the fields of biopharmaceutics, pharmacokinetics, and
pharmacodynamics can be carried out. To this end, in this first, introductory part of
the book we deal with the basic nonclassical concepts. Chapter 1 gives the essentials
of fractals such as self-similarity, scaling laws, and fractal dimension. Chapter 2
deals with the basics of diffusion-kinetics in either Euclidean or disordered media.
The concepts of nonlinear dynamics are discussed in Chapter 3, where reference is
made to a number of characteristics of dynamic systems, e.g., phase space, attractor,
bifurcation.



Chapter 1
The Geometry of Nature

The proper route to an understanding of the world is an
examination of our errors about it.

Euclid (325-265 BC)

Our understanding of nature has been based on the classical geometric figures of
smooth line, triangle, circle, cube, sphere, etc. Each of these regular forms can be
determined by a characteristic scale. For example, the length of a straight line can
be measured with a ruler that has a finer resolution than the entire length of the line.
In general, each Euclidean object has a unique value for its characteristics (length,
area, or volume). It is also known that when these objects are viewed at higher
magnification they do not reveal any new features.

In the real world, however, the objects we see in nature and the traditional
geometric shapes do not bear much resemblance to one another. Mandelbrot [2]
was the first to model this irregularity mathematically: clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark is not smooth, nor does
lightning travel in a straight line. Mandelbrot coined the word fractal for structures
in space and processes in time that cannot be characterized by a single spatial or
temporal scale. In fact, the fractal objects and processes in time have multiscale
properties, i.e., they continue to exhibit detailed structure over a large range of
scales. Consequently, the value of a property of a fractal object or process depends
on the spatial or temporal characteristic scale measurement (ruler size) used.

The physiological implications of the fractal concepts are serious since fractal
structures and processes are ubiquitous in living things, e.g., the lung, the vascular
system, neural networks, the convoluted surface of the brain, ion channel kinetics,
and the distribution of blood flow through the blood vessels. Besides, many
applications of fractals exist for the morphology of surfaces, e.g., the surface area
of a drug particle, surface reactions on proteins. Thus, fractal geometry allows
scientists to formulate alternative hypotheses for experimental observations, which
lead to more realistic explanations compared to the traditional approaches. These
fractal hypotheses can be expressed in terms of quantifying the fractal properties of
the system under study as delineated below.

© Springer International Publishing Switzerland 2016 3
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1.1 Geometric and Statistical Self-Similarity

The most interesting property of fractals is geometric self-similarity, which means
that the parts of a fractal object are smaller exact copies of the whole object.
Replacement algorithms are used to generate geometric fractals. For example, the
Koch curve shown in Figure 1.1 can be produced after four successive replacements
according to the following replacement rule: two lines of the same length replace
the middle third of the length of the line at each step. Infinite recursions can be
applied resulting in a continuous increase of the “line” length by a factor of 4/3
at each successive step. This continuous ramification of the Koch curve leads to a
surprising result if one attempts to measure the length of its perimeter: the length is
dependent on the ruler size used for its measurement. In fact, the smaller the ruler
size used, the longer the perimeter. Accordingly, when we deal with fractal objects
or processes we say that their characteristics (length in this case) “scale” with the
measurement resolution.

Similar algorithms for area and volume replacement can be used to create fractals
from two- or three-dimensional objects. The fractals shown in Figure 1.2 are called
the Sierpinski triangle (gasket) and Menger sponge. They have been generated
from an equilateral triangle and a cube, respectively, by applying the following
replacement algorithms:

» Sierpinski triangle: At each step an equilateral triangle with area equal to one-
quarter of the remaining triangle is removed.

* Menger sponge: At each step one-third of the length of the side of each cube
is removed taking care to apply this rule in 3 dimensions and avoiding removal

Fig. 1.1 The first four i=0

iterations of the Koch curve
i=1 / \
i=3 ﬁﬂﬁh
i=4 ﬂ%
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i=0

Fig. 1.2 Generation of the (A) Sierpinski triangle (gasket) (the first three iterations are shown),
(B) Menger sponge (the first two iterations are shown) from their Euclidean counterparts

of corner cubes. This means that if the original cube has been constructed from
3 x 3 x 3 = 27 small cubes, after the first iteration 20 small cubes are remaining
(6 are removed from the center of the faces and one is removed from the center
of the cube).

These line, area, and volume replacement rules give fractal structures
(Figures 1.1 and 1.2), which are quite different from the original Euclidean objects.
This obvious difference in shape has implications when one considers physical
measurements or (bio)chemical processes taking place in Euclidean vs. fractal
spaces. For example, surface and/or surface/volume ratios are extremely important
for reactions or transport processes taking place at interfaces of different phases like
liquid—solid boundaries, e.g., drug dissolution, drug uptake from the gastrointestinal
mucosa. In general, objects with fractal surfaces are very efficient for surface
reactions.

Replacement rules are expressed mathematically by difference equations, which
can be used to generate the fractal structures. These equations are usually called
maps and have the form

zit1 = g(z), (1.D

where z; and z;4; are the input and output, respectively, at two successive steps,
while the functional form of g in (1.1) depends on the exact features of the recursion
process. The discrete nature of (1.1) allows for a recursive creation of the fractal
object utilizing the output z;4; as the next input z;. In this respect, (1.1) operates
like a copy machine, which produces the self-similar object in accord with the rule
imposed on g.
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The replacement rules used for the generation of fractal objects ensure the
geometric self-similarity discussed above. However, the fractal objects or processes
we encounter in nature are not generated by exact mathematical rules. For example,
some biological objects with fractal structure like the venular and arterial tree cannot
be characterized by geometric self-similarity; rather they possess statistical self-
similarity. The fractal is statistically self-similar since the characteristics (such as
the average value or the variance or higher moments) of the statistical distribution
for each small piece are proportional to the characteristics that concern the whole
object. For example, the average rate at which new vessels branch off from their
parent vessels in a physiological structure can be the same for large and small
vessels. This is due to the fact that portions of fractal biological objects resemble
the whole object instead of being exact copies of the whole. The term random
fractalis used for these fractal structures to underline their statistical character. Also,
statistical self-similarity can be observed when time series data are recorded for
physiological processes, e.g., the electroencephalogram or the electrocardiogram.
In this case, we speak of statistical self-similarity in time and not in space.

At this point, a distinction should be made between geometrically and statisti-
cally self-similar fractals. The pure mathematical basis of geometric fractals does
not impose any restriction on the range of application of their scaling laws. In
contrast, scaling laws for statistically self-similar fractals adhering to biological
objects or processes are subject to the limitations imposed by the physiology and/or
the resolution of the measurement technique. In other words, experimental data
usually obey scaling laws over a finite range of resolution measurements. This
important aspect of scaling laws, with regard to the range of their application, should
be carefully considered when one is applying scaling principles for the analysis of
experimental data.

1.2 Scaling

The issue of scaling was touched upon briefly in the previous section. Here, the
quantitative features of scaling expressed as scaling laws for fractal objects or
processes are discussed. Self-similarity has an important effect on the characteristics
of fractal objects measured either on a part of the object or on the entire object. Thus,
if one measures the value of a characteristic 6 (@) on the entire object at resolution
w, the corresponding value measured on a piece of the object at finer resolution
0 (rw) with r < 1 will be proportional to 6 (w)

0 (rw) = kb (w), (1.2)
where k is a proportionality constant that may depend on r. When statistical self-

similarity in time for recordings of an observable is examined, the scale rw is a finer
time resolution than scale w. Relation (1.2) reveals that there is a constant ratio k
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between the characteristic 6 (w) measured at scale w and the same characteristic
0 (rw) measured at scale ro.

The above-delineated dependence of the values of the measurements on the
resolution applied suggests that there is no true value of a measured characteristic.
Instead, a scaling relationship exists between the values measured and the corre-
sponding resolutions utilized, which mathematically may have the form of a scaling
power law

0 (w) = Bw”, (1.3)

where B and a are constants for the given fractal object or process studied.
Equation (1.3) can be written as

Inf(w)=Inp +alnw.

This equation reveals that when measurements for fractal objects or processes are
carried out at various resolutions, the log—log plot of the measured characteristic
0 (w) against the scale w is linear. Such simple power laws, which abound in nature,
are in fact self-similar: if  is rescaled (multiplied by a constant), then 6 (w) is still
proportional to w?, albeit with a different constant of proportionality. As we will see
in the rest of this book, power laws, with integer or fractional exponents, are one of
the most abundant sources of self-similarity characterizing heterogeneous media or
behaviors.

1.3 Fractal Dimension

The objects considered are sets of points embedded in a Euclidean space. The
dimension of the Euclidean space that contains the object under study is called the
embedding dimension, d,, e.g., the embedding dimension of the plane is d, = 2 and
of three-dimensional space is d, = 3.

One is accustomed to associating topological dimensions with special objects:
dimension 1 with a curve, dimension 2 with a square, and dimension 3 with a cube.
Because there are severe difficulties for the definition of the topological dimension
d,, it is convenient to associate the topological dimension of an object with its cover
dimension d,,.

A curve in the plane is covered with three different arrangements of disks
(Figure 1.3 center). In the right part of the figure there are only pairs of disks with
nonempty intersections, while in the center part there are triplets and in the left
part even quadruplets. Thus, one can arrange coverings of the curve by only one
intersection of each disk with another, and the cover dimension of a line is defined
asd, =d, = 1.

A set of points (Figure 1.3 top) can be covered with disks of sufficiently small
radius so that there is no intersection between them. Their covering dimension is
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Fig. 1.3 The cover dimension

d, = d; = 0. A surface (Figure 1.3 bottom) has covering dimension d, = d;, = 2,
because one needs at least two overlapping spheres to cover the surface. The same
ideas generalize to higher dimensions.

Similarly, the degree of irregularity of a fractal object is quantified with the
fractal dimension, dy. This term is used to show that apart from the Euclidean
integer dimensions (1 or 2 or 3) for the usual geometric forms, fractal objects have
noninteger dimensions. The calculation of dy using the concept of self-similarity
requires in essence the knowledge of the replacement rule, which dictates how many
similar pieces m are found when the scale is reduced by a given factor r at each step.
Thus, if we count the number m of the exact copies of the entire geometric fractal
that are observed when the resolution of scale is changed by a factor of r, the value
of dy can be derived from

1
=" (14

7 Inr

after logarithmic transformation of
m=r. (1.5)

For example, the fractal dimension of the Koch curve is 1.2619 since four (m = 4)
identical objects are observed (cf. levels i = 0 and i = 1 in Figure 1.1) when the
length scale is reduced by a factor » = 3, ie., dr = In4/In3 ~ 1.2619. What
does this noninteger value mean? The Koch curve is neither a line nor an area since
its (fractal) dimension lies between the Euclidean dimensions, 1 for lines and 2 for
areas. Due to the extremely ramified structure of the Koch curve, it covers a portion
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of a two-dimensional plane and not all of it and therefore its “dimension” is higher
than 1 but smaller than 2.

Similarly, the first iteration in the generation of the Sierpinski gasket (Figure 1.2
A) involves the reduction of the scale by a factor r = 2 and results in 3 identical
black equilateral triangles (m = 3); thus, dy = In3/1In2 ~ 1.5815. For the Menger
sponge (Figure 1.2B), the reduction of the scale by a factor » = 3 results in m = 20
identical cubes, i.e., dr = In20/1n3 ~ 2.727. Both values of d; are consistent with
their dimensions since the Sierpinski gasket lies between 1 and 2, while the Menger
sponge lies between 2 and 3.

Equations (1.4) and (1.5) are also valid for Euclidean objects. For example, if
one creates m = 16 identical small squares in a large square by reducing the length
scale by one-fourth, r = 4, the value of dy is In 16/ In4 = 2, which is the anticipated
result, i.e., the topological dimension d, = 2 for a plane.

1.4 Estimation of Fractal Dimension

Irrespective of the origin of fractals or fractal-like behavior in experimental studies,
the investigator has to derive an estimate for dy from the data. Since strict
self-similarity principles cannot be applied to experimental data extracted from
irregularly shaped objects, the estimation of d; is accomplished with methods that
unveil either the underlying replacement rule using self-similarity principles or the
power-law scaling. Both approaches give identical results and they will be described
briefly.

1.4.1 Self-Similarity Considerations

In principle, the object under study is covered with circles for one- and two-
dimensional objects or spheres for three-dimensional objects. This process is
repeated using various sizes @ for circles or spheres, while overlapping may be
observed. Then, the minimum number of “balls” (circles or spheres) m(w) of size
o needed to cover the object is calculated. Finally, the fractal dimension, which in
this case is called the capacity dimension, d. is calculated from the relationship

. Inm(w)
d. =1 .
w301n (1 /)

(1.6)
Note that (1.6) relies on the self-similarity concept since the number of identical
objects m and the scale factor r in (1.5) have been replaced by the number of “balls”
m(w) and the reciprocal of the size 1/w, respectively. The limit (w — 0) is being
used to indicate the estimation of d, at the highest possible resolution, i.e., as the
“ball” size w decreases continuously.
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The reference situation implied in this definition is that at @ = 1, one “ball”
covers the object. A clearer definition of d, is

J = In[m (w) /m(1)]
T In(ljw)

or in general, if at @ = 1, k “balls” cover the object,

g = nlm ko) /m )]
T In(k/kw)

and

_dinm(@)]

d. =
dlnw

1.7)
The capacity dimension tells us how the number of “balls” changes as the size of the
“balls” is decreased. This method is usually called box counting since the method
is implemented in computers with a variety of algorithms utilizing rectangular
grids instead of “balls.” Dimensions dy and d, are quite similar, and the differences
between them are usually much smaller than the error of estimates [3].

1.4.2 Power-Law Scaling

When the scaling law (1.3) of the measured characteristic 6 can be derived from
the experimental data (w, ), an estimate of the fractal dimension d; of the object
or process can be obtained as well. In order to apply this method one has first to
derive the relationship between the measured characteristic # and the function of
the dimension g(dy), which satisfies

0 oc (@) (1.8)

where o represents the various resolutions used. Then, the exponents of (1.3)
and (1.8) are equated,

gldp) = a, (1.9)

and (1.9) is solved in terms of dy to derive an estimate for dy.
The form of the function g(dy) in (1.9) depends on the measured characteristic 0
[4]. For instance:

* When the characteristic is the mass of the fractal object, the exponent of (1.8)
corresponds to the value of df, dr = a.
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* When the characteristic is the average density of a fractal object, df = d. + «,
where d, is the embedding dimension.

* For measurements regarding lengths, areas, or volumes of objects, a simple
equation can be derived using scaling arguments, dr = d. — .

Apart from the estimation of dr from experimental data for mass, density, and
purely geometric characteristics, the calculation of df for a plethora of studies
dealing with various characteristics like frequency, electrical conductivity, and
intensity of light is also based on the exact relationship that is applicable in each
case between dr and the scaling exponent @ (1.9).

1.5 Self-Affine Fractals

The replacement rule we have used so far to generate geometric fractals creates
isotropic fractals. In other words, the property of geometric self-similarity is the
same in all directions. Thus, a unique value for the fractal dimension dy is being
used to quantify an irregular structure. When either the replacement algorithm
or the actual physical object exhibits an asymmetry in different directions, then
the anisotropic fractal is characterized as a self-affine fractal. For example, if one
divides a large square into 6 identical small parallelograms and discards 3 of
them in an alternate series at each iteration, the result is a disconnected self-affine
fractal. Obviously, the unequal horizontal and vertical sides of the parallelograms
produced with the successive replacements follow different scaling laws in accord
with the dimensions of the sides. The basic difference between self-similarity and
self-affinity lies in the fact that self-similar fractals become identical upon simple
magnification (classical scaling), while to become identical, self-affine fractals
should be scaled by different amounts of the spatial directions. Accordingly, there
is no single value of dy for self-affine fractals; it varies with the ruler size used
for measurements. Usually, the box-counting method is applied in conjunction
with (1.6) with limits  — 0 and @ — o0; two estimates for dy are derived, namely,
df jocal and dy giopar, Tespectively, and used to characterize a self-affine fractal. Both
values indicate limiting values of the fractal dimension: the former is relevant when
the size of the boxes decreases infinitely, while the latter corresponds to the largest
length scale used for measurements.

1.6 More About Dimensionality

The concept of fractals has helped us to enrich the notion of dimensionality. Apart
from the classical systems with dimensions 1, 2, and 3 there are disordered systems
with noninteger dimensions.
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In the simplest case, a system is called Euclidean or nonfractal if its topological
dimension d; is identical to the fractal dimension dy. This means d; = dr = 1 for
acurve, d; = dr = 2 for a surface, and d; = dy = 3 for a solid. The following
relationship holds for the three expressions of dimensionality

dr =< df = de-

Although we have used the value of the fractal dimension dy as a means to quantify
the degree of disorderliness, it is the magnitude of the difference dy — d; that in
essence reflects how irregular (disordered) the system is. Geometrically speaking,
this difference dy —d; allows the disordered system to accommodate structure within
structure, and the larger this difference is, the more disordered the system.

The above-defined d; and d, are structural parameters characterizing only the
geometry of a given medium. However, when we are interested in processes like
diffusion or reactions in disordered media, we need functional parameters, which
are associated with the notion of time in order to characterize the dynamic behavior
of the species in these media. The spectral or fracton dimension d; and random-walk
dimension d,, are two such parameters, and they will be defined in Section 2.2.

1.7 Percolation

The origins of percolation theory are usually attributed to Flory and Stockmayer
[5-8], who published the first studies of polymerization of multifunctional units
(monomers). The polymerization process of the multifunctional monomers leads to
a continuous formation of bonds between the monomers, and the final ensemble of
the branched polymer is a network of chemical bonds. The polymerization reaction
is usually considered in terms of a lattice, where each site (square) represents a
monomer and the branched intermediate polymers represent clusters (neighboring
occupied sites), Figure 1.4 A. When the entire network of the polymer, i.e., the
cluster, spans two opposite sides of the lattice, it is called a percolating cluster,
Figure 1.4B.

In the model of bond percolation on the square lattice, the elements are the
bonds formed between the monomers and not the sites, i.e., the elements of
the clusters are the connected bonds. The extent of a polymerization reaction
corresponds to the fraction of reacted bonds. Mathematically, this is expressed by
the probability p for the presence of bonds. These concepts can allow someone
to create randomly connected bonds (clusters) assigning different values for the
probability p. Accordingly, the size of the clusters of connected bonds increases as
the probability p increases. It has been found that above a critical value of p, = 0.5
the various bond configurations that can be formed randomly share a common
characteristic: a cluster percolates through the lattice. A more realistic case of a
percolating cluster can be obtained if the site model of a square lattice is used with
probability p = 0.6, Figure 1.5. Notice that the critical value of p, is 0.593 for the
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Fig. 1.4 A 6 X 6 square lattice site model. The dots correspond to multifunctional monomers. (A)
The encircled neighboring occupied sites are clusters (branched intermediate polymers). (B) The
entire network of the polymer is shown as a cluster that percolates through the lattice from left to
right

Fig. 1.5 A percolation cluster derived from computer simulation in a 300 X 300 square site model
with p = 0.6. Only the occupied sites that belong to the percolating cluster are shown

two-dimensional site model. Also, the percolation thresholds vary according to the
type of model (site or bond) as well as with the dimensionality of the lattice (2 or 3).

The most remarkable properties of percolation clusters arise from their sudden
inception when the bond concentration (probability) reaches the critical threshold
value p = p.. At this specific value the emerged cluster spans two opposite sides of
the lattice and if one conceives of the bonds as channels, the cluster allows a fluid
to flow through the medium from edge to edge. Accordingly, the terms percolation
and percolation transition have been coined in an attempt to capture the sudden
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change in the geometry and the phase transition. In the same vein, the probability
Do that a bond belongs to the percolating cluster undergoes a sharp transition, i.e.,
Poo = p = 0for pos = p < p¢, while po becomes finite following a power law
when p > p,

Poo X (p—pe)*,

where A is an exponent usually called the critical exponent. According to the
findings in this field of research the critical exponent A depends exclusively on the
dimensionality of the system. This independence from other factors is characterized
as universality.

Important characteristics of the clusters like the mass ¢ and the typical length &
of the clusters, usually called the correlation length, obey power laws too

I, I~

q o |p—pe §oclp—pel ",
where p and v are also critical exponents. These laws allow reconsideration of the
fractal properties of the clusters. According to the last equation the clusters are
self-similar as long as the length scale used for measurements is shorter than £.
For example, the giant cluster shown in Figure 1.5 is a random fractal and as such
has a characteristic value for its fractal dimension dy. However, the calculation of
the fractal dimension for the percolating cluster of Figure 1.5 should be performed
with radii p shorter than £. In other words, when p < £ the self-similar character
of the cluster is kept and the scaling law holds. Indeed, when the box-counting
method is applied, the scaling law g o p'® between the mass ¢ (calculated from
the mass of ink or equivalently from the number of dots) and the radius p of the
box is obtained. This means that dy = 1.89 for the percolating cluster of Figure 1.5
since the characteristic measured is the mass for various radii p, and no further
calculations are required in accord with (1.8). On the contrary, for measurements
with p > &, self-similarity no longer exists.



Chapter 2
Diffusion and Kinetics

Everything changes and nothing stands still.

Heraclitus of Ephesus (544-483 BC)

The principles of physical and chemical laws are essential for the understanding of
drug kinetics in mammalian species. This also applies to pharmacodynamics since
the interaction of drug with the receptor(s) relies on the physicochemical principles
of the law of mass action. In reality one can consider the entire course of drug in
the body as consecutive and/or concurrent processes of diffusion and convection.
For example, the oral administration of a drug may include, among many others, the
following processes:

* dissolution in the gastrointestinal fluids (diffusion),

 transport in the chyme by intestinal peristalsis (convection),

* transcellular uptake (diffusion),

 transport with the blood to organs (convection),

* transfer from the bloodstream into the interstitial and intracellular spaces (diffu-
sion),

* interaction with receptors at the effect site (diffusion),

¢ transfer from tissues back into blood (diffusion),

* glomerular filtration (convection),

 transport with the urine into the efferent urinary tract (convection),

* reabsorption from the tubular lumen to the peritubular capillary (diffusion).

The above convection processes are the result of the movement of a liquid in bulk,
i.e., the flow of the biological fluid. Consequently, convection processes are partic-
ularly dependent on physiology. For example, the glomerular filtration of a drug is
extremely important from a therapeutic point of view, but it is solely determined by
the physiological condition of the patient, e.g., the glomerular filtration rate. This is
s0, since a common translational velocity is superposed on the thermal motions of all
drug molecules in any element of volume. On the other hand, convection processes
for the dissolved and undissolved drug in the gastrointestinal tract are much more
complicated. Here, physiology still plays a major role but dietary conditions and the
type of formulation are important too. The picture becomes even more complicated
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if one takes into account the oscillatory nature of intestinal motility, which is
related to the food intake. Despite the complexity involved, the term convection
implies that both dissolved drug molecules and undissolved drug particles along
with the gastrointestinal fluid molecules are transported together without separation
of individual components of the solution/suspension.

On the other hand, diffusion is the random migration of molecules or small
particles arising from motion due to thermal energy. Here, drug diffusive fluxes are
produced by differences in drug concentrations in different regions. Thus, diffusion
is one of the most significant process in all fields of pharmaceutical research either
in vitro or in vivo. This is justified by the fact that everything is subject to thermal
fluctuations, and drug molecules or particles immersed in aqueous environments are
in continuous riotous motion. Therefore, understanding of these random motions is
crucial for a sound interpretation of drug processes.

2.1 Random Walks and Regular Diffusion

Particles under the microscope exhibiting Brownian motion demonstrate clearly that
they possess kinetic energy. We are also familiar with the diffusional spreading
of molecules from the classical experiment in which a drop of dye is carefully
placed in an aqueous solution. Fick’s laws of diffusion describe the spatial and
temporal variation of the dye molecules in the aqueous solution. However, before
presenting Fick’s differential equation, attention will be given to a proper answer
for the fundamental question: How much do the molecules move on average during
diffusional spreading?

The correct answer to the above question is a law of physics: “the mean square
displacement is proportional to time.” We can intuitively reach this conclusion with
particles executing an imaginary one-dimensional random walk. A simple model is
presented in Figure 2.1, ignoring the detailed structure of the liquid and temperature
effects and assuming no interaction between particles. The particles are placed at
z = 0 and start their random walk at + = 0 moving at a distance § either to the right
or to the left once every #, units of time; thus, the particles execute i steps in time
t = it,. Equal probabilities (1/2) are assigned for each movement of the particles
(either to the right or to the left). This means that the successive jumps of particles
are statistically independent and therefore the walk is unbiased. We say that the
particles are blind since they have no “memory” of their previous movement(s).

| I | | | I | l |
46 -30  -20 1% 0o 19 20 30 46

Fig. 2.1 A one-dimensional random walk of particles placed at z = 0 at + = 0. The particles
occupy only the positions 0, £8, £25, £35, £46
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The question arises: How far will a particle travel in a given time interval? The
average distance a particle travels is given by mean square displacement evaluated
as follows: The position of a particle along the z-axis after i steps z; is

Zi=2zi1 £, 2.1

where z;_; is the position of the particle at the previous (i — 1)-th step. Taking the
square of (2.1) we get the square displacement

2=z, +28z1 + 8%,

which if averaged for the total number of particles, provides their mean square
displacement (zlz)

(@) = (g)) £ 26 (zim1) + 8% = (7,) + &% (2.2)

The second term in the brackets vanishes since the plus sign corresponds to half

of the particles and the minus sign to the other half. Given that zp = 0 and
applying (2.2) for the successive steps 1,2, ..., i, we get

() =8 (3) =28, ..., () = i8™ (2.3)

Since as previously mentioned the number of steps is proportional to time (i =
t/t,), we can express the positioning of particles as a function of time # using (2.3):

(2 (1)) = (82 / 2to) ‘. (2.4)

The use of 2 in the denominator of the previous equation will be explained in
Section 2.4. The last expression shows that the mean square displacement of the
particles is proportional to time, #:

(2 (1) o t. (2.5)

The same result is obtained if one considers a simple random walk in two
dimensions, i.e., the walk is performed on a two-dimensional lattice. Here, the
walker (particle) moves either vertically or horizontally at each time step (f, units
of time) with equal probabilities. Two configurations for eight-time-step random
walks are shown in Figure 2.2A, along with the trail of a random walk of 10,000
steps, Figure 2.2B. In the general case and assuming that the lattice spacing is §, the
position of the walker on the plane after i steps z; is

i
a=38) u
j=1
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8

Fig. 2.2 (A) Two configurations of eight-step random walks in two dimensions. The numbers

correspond to the successive eight steps and the arrows indicate the direction of movement. (B) A
random walk of 10, 000 steps

where y; is a (unit) vector pointing to a nearest-neighbor site; it represents the j-th
step of the walk on the two-dimensional lattice. The mean displacement (z;) of the
walker can be obtained if z; is averaged for the total number of walkers, (z;) = 0.
This equation is obtained from the previous one since (u]) = 0. Moreover, the mean
square displacement can be obtained from the previous equation if one takes into
account that (uu;) = 1, and (uju) = 0:

@={|s3

J=1

=8 ((ur +uy + ...+ uw) (u +uz + ...+ u))

= §* Z (i) + §* Z (i) = i82. (2.6)

j=1 =1
k#j
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Substituting i = /¢, in the last equation, (2.4) is recovered using the factor ; for
the derivation once again.

The theory for motion in three dimensions results in the same law if the
same assumptions are applied and motions in the three directions are statistically
independent. The important result for regular diffusion is that its time dependence is
universal regardless of the dimension of the medium. This square root relation (2.5)
has striking consequences for the distance covered by diffusing molecules. It takes
four times as long to get twice as far while a particle can cover half the distance in
a quarter of the time. Thus, transport by diffusion is very slow if there is far to go,
but very rapid over very short distances. For example, the exchange and transport of
solutes within cells and between cells and capillaries can be effectively maintained
by diffusion due to the small size and close spacing of cells and capillaries in the
body of mammals. On the contrary, the slowness of diffusion over large distances
points to the necessity for a circulatory system to bring oxygen, for example, from
the lungs to the brain or glucose from the liver to the muscles of the arms. To permit
these exchanges, the bulk flow of blood carries a large number of solutes around the
body in the vascular system by convection.

Equation (2.4) will help us to define and understand the meaning of the diffusion
coefficient D. This term corresponds to the proportionality constant of (2.4),

D& " | 2.7

has dimensions of areaxtime™" and takes different values for different solutes in a
given medium at a given temperature. Hence, the value of D is characteristic for a
given solvent (or better, medium structure) at a given temperature of the diffusing
tendency of the solute. For example, a small drug molecule in water at 25 °C has
D ~ 107> cm?/s, while a protein molecule like insulin has D ~ 1077 cm?/s.
Using these values one can roughly calculate the time required for the drug and
protein molecules to travel a distance of 1 mm; it takes (0.1)2/107> ~ 1000s ~
16.6 min for the drug and 1666.6 min for insulin. Hence, the value of D is heavily
dependent on the size of the solute molecules. These numerical calculations are
very useful in obtaining insight into the rapidity or slowness of a solute migration,
e.g., drug release from controlled release formulations when regular diffusion is the
operating mechanism.

2.2 Anomalous Diffusion

In the previous section we analyzed the random walk of molecules in Euclidean
space and found that their mean square displacement is proportional to time (2.5).
Interestingly, this important finding is not true when diffusion is studied in fractals
and disordered media. The difference arises from the fact that the nearest-neighbor
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sites visited by the walker are equivalent in spaces with integer dimensions but are
not equivalent in fractals and disordered media. In these media the mean correlations
between different steps (uiuk) are not equal to zero, in contrast to what happens
in Euclidean space; cf. derivation of (2.6). In reality, the anisotropic structure of
fractals and disordered media makes the value of each of the correlations u;uy
structurally and temporally dependent. In other words, the value of each pair u;u
depends on where the walker is at the successive times j and k, and the Brownian
path on a fractal may be a “fractal of a fractal” [9]. Since the correlations u;u; do not
average out, the final important result is (ujuk) # 0, which is the underlying cause
of anomalous diffusion. In reality, the mean square displacement does not increase
linearly with time in anomalous diffusion and (2.5) is no longer exact.

To characterize the dynamic movement of particles on a fractal object, one needs
two additional parameters: the spectral or fracton dimension d; and the random-
walk dimension d,,. Both terms are quite important when diffusion phenomena are
studied in disordered systems. This is so since the path of a particle or a molecule
undergoing Brownian motion is a random fractal. A typical example of a random
fractal is the percolation cluster shown in Figure 1.5.

The definition of spectral dimension d; refers to the probability p(z) of a random
walker returning to its origin after time :

p (1) o /2, (2.8)

According to (2.8), the value of d; governs the decrease of the probability p() with
time. When diffusion is considered in Euclidean spaces the various dimensionality
terms become identical: d, = d; = dy. However, in fractal spaces the following
inequalities hold: d; < d; < df < d,, where d, is the embedding dimension. For
example, we found for the Sierpinski gasket (Figure 1.2A) d; = 1.5815, while
d; = 1.3652 and the embedding dimension in this case is d, = 2. The meaning
of d; can be understood if one considers a walker executing a random walk on a
ramified system, like the Sierpinski gasket with dy = 1.5815, Figure 1.2A. Due
to the system’s ramification, the walker has many alternatives of movement in the
branched system, and therefore the probability of the walker being back at the origin
is small. Hence, the value of d; goes up in accord with (2.8) and is higher than one
(ds > 1), 1.e., the topological dimension of a curve. In actual practice, the calculation
of d, is accomplished numerically. Analytical solutions for d, are available when the
recursion algorithm of the system is known, e.g., Sierpinski gasket.

Finally, a stochastic viewpoint may be associated with the relation (2.8) since the
spectral dimension also characterizes the number n (¢) of distinct sites visited by the
random walker up to time t:

n (1) o 1472, (2.9)
The random-walk dimension d,, is useful whenever one has a specific interest

in the fractal dimension of the trajectory of the random walk. The value of d,, is
exclusively dependent on the values of dy and dj:
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d
dy :min[2 f,df]
d, "

The type of the random walk (recurrent or nonrecurrent) determines the minimum
value of the two terms in the brackets of the previous equation. If the walker does
not visit the same sites (nonrecurrent), then d,, = 2dy/d,. If the walk is of recurrent
type, then the walker visits the same sites again and again and therefore the walker
covers the available space (space-filling walk). Consequently, the meaning of d,,
coincides with dr (d,, = dr). The mean square displacement in anomalous diffusion
follows the pattern

(2 (1)) oc 2/, (2.10)

where d,, is the fractal dimension of the walk and its value is usually d,, > 2.
The exponent d,, arises from the obstacles of the structure such as holes, bottlenecks,
and dangling ends, i.e., the diffusional propagation is hindered by geometric hetero-
geneity. The previous equation is the fundamental relation linking the propagation
of the diffusion front to the structure of the medium, and it recovers also the classical
law of regular diffusion when d,, = 2.

In conclusion, the dynamic movement of particles on a fractal object may be
described by functional characteristics such as the spectral dimension d, and the
random-walk dimension d,,. This anomalous movement of the molecules induces
heterogeneous transport and heterogeneous reactions. Such phenomena present a
challenge to several branches of science: chemical kinetics, surface and solid state
physics, etc. Consequently, one may argue that all mechanisms involved in drug
absorption, metabolism, enzymatic reactions, and cell microscopic reactions can be
analyzed in the new heterogeneous context since these processes are taking place
under topological constraints.

2.3 Fick’s Laws of Diffusion

Apart from the above considerations of diffusion in terms of the distance traveled
in time, the amount of substance transported per unit time is useful too. This
approach brings us to the concept of the rate of diffusion. The two considerations
are complementary to each other since the diffusion of molecules at the microscopic
level results in the observed “flux” at the macroscopic level. Fick’s laws of diffusion
describe the flux of solutes undergoing classical diffusion.

The simplest system to consider is a solution of a solute with two regions of
different concentrations ¢; and ¢, to the left and right, respectively, of a boundary
separating the two regions, Figure 2.3. In reality, the rate of diffusion is the net flux,
i.e., the difference between the two opposite unidirectional fluxes. There will be a
net movement of solute molecules to the right if ¢; > ¢, or to the left if ¢; < ¢,.
When ¢; = ¢, the unidirectional fluxes are equal and the net flux is zero. Since the
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Fig. 2.3 A solute diffuses
across a plane. (A) Solute A G C,
diffusion from two regions of
different concentrations ¢;
and c,; the plane indicates the
boundary of the regions. The
transfer rate of material is
proportional to concentrations B
c; and ¢,. (B) At a given time Attime t:
t there are n(z, t) and
n(z + 8, t) molecules at n(z t) I’Z(Z+5 t)
positions z and z 4 &, | i | ’
respectively I I
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two fluxes across the boundary from left to right and vice versa are proportional to
c; and c,, respectively, the net flux is proportional to the concentration difference
across the boundary.

The derivation of Fick’s first law of diffusion requires a reconsideration of
Figure 2.3A in terms of the one-dimensional random walk as shown in Figure 2.3B.
Let us suppose that at time ¢, there are n(z, f) molecules at the left position z and
n(z+4, t) molecules at the right position z+§, Figure 2.3B. Since equal probabilities
(1/2) are assigned for the movement of the molecules (either to the right or to the
left), half of the n(z,f) and n(z + &, ) molecules will cross the plane at the next
instant of time ¢ + f,, moving in opposing directions. The net number of molecules
crossing the plane to the right is —; [n(z + 8,1) — n(z,1)] and the corresponding net
flux J of the diffusate is

J(z,0) = — (48,0 —n(z0)],

1
2At,
where A is the area of the plane and #, is the time interval. Multiplying and dividing
the right part by 8% and rearranging, we get

1 n@z+80 niz)
J(z, 1) = — — .
@1 2t08|: AS AS }

The terms in the brackets express the concentration of molecules per unit volume
A, ie., c(z+8,1) = ¢, (t) and c(z, 1) = ¢ (¢) at positions z + § and z, respectively,
while the term 82/ 2t, is the diffusion coefficient D; the presence of 2 in the
denominator explains its use in (2.4). We thus obtain

c(z4+8,1)—c(z,1)

J(z,t)=-D 5
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Since the term in the brackets in the limit § — 0 is the partial derivative of ¢ (z, )
with respect to z, one can write

DBC (z, t).

J(z,1) = — 52

@2.11)

The minus sign indicates that the flow occurs from the concentrated to the dilute
region of the solution. Equation (2.11) is Fick’s first law, which states that the net
flux is proportional to the gradient of the concentration function (at z and ). Flux
has dimensions of massxarea™! xtime ™.

Since the flux J is the flow of material g (z, f) from the left to the right through

the surface A, (2.11) is rewritten as follows:

ABC (z, t).

D
q(z1) 9

(2.12)

From this relationship it is clear that the force acting to diffuse the material g through
the surface is the concentration gradient dc/dz. This gradient may be approximated
by differences

de(z.1) _ Ac(z1) _ c(z+6,0) —c(z,0) _ cr (1) —ci ()

2.13
0z Az ] ) 2.13)
and the previous expression becomes
. DA
g0 2Ry =="7"[e:()) — @], (2.14)

where R;, is the transfer rate of material. This equation usually takes one of two
similar forms:

q() =—CLy[c;)—ci(]  or  q@®) =—PA[e,()—ci(].  (2.15)

The new introduced parameter CL;, 2 DA/S is called clearance, and it has
dimensions of flow, volumextime™'. The clearance has a bidirectional use and
indicates the volume of the solution that is cleared from drug per unit of time
because of the drug movement across the plane. For an isotropic membrane,
structural and functional characteristics are identical at both sides of the membrane,
CL, = CL,. In practice, the term “clearance” is rarely used except for the
irreversible removal of a material from a compartment by unidirectional pathways of
metabolism, storage, or excretion. The other new parameter P 2p /& characterizes
the diffusing ability of a given solute for a given membrane, and it is called
permeability. Permeability has dimensions of lengthxtime™".

We now write a general mass conservation equation stating that the rate of change
of the amount of material in a region of space is equal to the rate of flow across the
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boundary plus any that is created within the boundary. If the regionis z; < z < 2,
and no material is created

22 22

aat/dq(z,t) = aat/c(z,t)dz=J(zl,t)—J(zZ,t).

21 21

Here, if we assume D constant in (2.11) and z, = z; + Az, at the limit Az — 0, this
relation leads to

dc(z,0) D 0%c (z,1)

a 22 210

This is the second Fick’s law stating that the time rate of change in concentration
(at z and ¢) is proportional to the curvature of the concentration function (at z and ¢).
There is a clear link between the two laws (2.11) and (2.16).

In order to examine the relevance of the two laws, let us consider that the
layer separating the two regions in Figure 2.3A is not thin but has an appreciable
thickness §, while z is the spatial coordinate along it. According to (2.11), if
dc/dz is constant, then the flux J is constant. This happens when ¢ is a linear
function of z. Consequently, 3°c/dz> = 0 in (2.16) and this implies the steady-
state condition dc (z,f) /ot = 0, where the concentration is stationary in time.
Under these conditions, as many drug molecules diffuse in from the side of
higher concentration as diffuse out to the side of lower concentration. This can be
accomplished experimentally if the concentrations ¢; and ¢, in the two regions of
Figure 2.3A are maintained constant. With boundary conditions ¢(0,f) = ¢; and
¢(8,1) = ¢, and initial condition c¢(z, 0) = 0, the solution of (2.16) is given by [10]

c(z,t):c;—(cl—c,)§
4cli 1 _[(2, ) z] (2i—1)2n2Dt
N 12i—1sm i n8 exp 5

22
sin (mg) exp (—’ ; Dt) @1

By using the above relationship, Figure 2.4 simulates the distance—concentration
profiles ¢ (z, f) at times + = 15 min, 1 and 5 h with D = 0.1 cm?/h, 8§ = 1 cm,
¢; = 10and ¢, = 2 g/ 1. Since there is no solute inside the layer initially (c(z,0) =
0), for early times (e.g., t = 15 min) the solute molecules undergo diffusion with
two opposite directions, from the boundaries to the interior of the layer (dc/dz < 0
and J (z,1) > O0for 0 < z < z*;, dc/dz > O and J(z,1) < Oforz® <z < 1 cm
with z* &~ 0.6 cm according to Figure 2.4). As time grows, the diffusion becomes
unidirectional with dc/dz < 0 and J (z,7) > 0 because ¢; > c¢,. As time goes by

i+1

2(c1—¢) o= (=1)
* T ; i
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Fig. 2.4 Simulation of distance—concentration profiles ¢ (z, #) at times = 15 min, 1 and 5 h with
D=0.1cm?/h,§ =1cm,¢;=10andc, =2 g/1

(e.g., t = 5 h), the steady state is reached, the solution of the partial differential
equation 2.16 is ¢ (z,.) = ¢; — (¢; — ¢;) § and according to the definition 2.11 the
net flux

D
J()= ¢ (a—c)

is constant.

If we postulate that molecules move independently, the concentration ¢ (z, f) at
some point z is proportional to the probability density p (z, ) of finding a molecule
there. Thus, the diffusion partial differential equation (2.16) holds when probability
densities are substituted for concentrations:

@1 0p1)
ot =D 02

If a molecule is initially placed at z = 0, then the solution of the previous equation is

(2.18)

2
p(z.1) = (4D~ exp (— 4ZDt) .

For t > 1 at any z, we obtain p (z,£) o t~'/2. This behavior in a homogeneous
medium corresponds to (2.8), giving the probability density in a fractal medium
with spectral dimension d.
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2.4 Classical Kinetics

Pharmacy, like biology and physiology, is wet and dynamic. Drug molecules
immersed in the aqueous environment of intravascular, extravascular, and intra-
cellular fluids participate in reactions, such as reversible binding to membrane or
plasma proteins; biotransformation or transport processes, e.g., drug release from
a sustained release formulation; drug uptake from the gastrointestinal membrane;
and drug permeation through the blood—brain barrier. This classification is very
rough since some of these processes are more complex. For example, drug release
is basically a mass transport phenomenon but may involve reaction(s) too, e.g.,
polymer dissolution and/or polymer transition from the rubbery to the glassy state.
However, irrespective of the detailed characteristics, the common and principal
component of the underlying mechanism of numerous drug processes is diffusion.
This is the case for the ubiquitous passive transport processes that rely on diffusion
exclusively. The value of D depends on the nature of the environment of the
diffusing species. If the environment changes from one point to another, the value of
D may depend on position. Usually, we deal with systems in which the environment
of the diffusing species is the same everywhere, so that D is a constant. The
diffusion coefficient is constant for diffusion of dilute solute in a uniform solvent.
This case takes in a large number of important situations, and if the dilute solute is
chemically the same as the solvent but is isotopically tagged, then the diffusion is
termed self-diffusion. In contrast, chemical reactions can be either reaction-limited
or diffusion-limited. In the following sections we will discuss them separately.

2.4.1 Passive Transport Processes

There appear to be two main ways for solutes to pass through cell membranes,
namely, transcellular and paracellular. The most important is the transcellular route,
whereby compounds cross the cells by traversing the cell membrane following either
passive diffusion or carrier-mediated transport. Undoubtedly, the transcellular pas-
sive diffusion is the basic mechanism of solute permeation through cell membranes.
According to this mechanism the solute leaves the fluid bathing the membrane,
dissolves in the substance of the membrane, diffuses across in solution, and then
emerges into the intracellular fluid. Accordingly, the mathematical treatment of
drug diffusion across a membrane can be based on (2.12), which is a very useful
expression of Fick’s first law of diffusion. This equation is used extensively in the
pharmaceutical sciences. It describes the mass (number of molecules, or moles, or
amount) transported per unit time, ¢, across an area A with a concentration gradient
dc/dz at right angles to the area. According to this definition, the numerical value
of the diffusion coefficient D, expressed in mass units, corresponds to the amount
of solute that diffuses per unit time across a unit area under the influence of a unit
concentration gradient.
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For a passive transport process, the concentration gradient across the membrane
can be considered constant and therefore the gradient can be approximated by
differences as in (2.13) to obtain

/

A [er (1) = er (D],

="

where D’ is a modified diffusion coefficient, for restricted diffusion inside the
membrane. The value of D’ is much smaller than the diffusion coefficient D in
free solution. The minus sign is not used in the previous equation since the rate
of transport corresponds to the solute transfer from the external to the internal site
(¢; > ¢;). Furthermore, if sink conditions prevail (¢; > c¢,), the previous equation
can be simplified to

g (t) = CLe (1) = PAc (7). (2.19)

The last equation reveals that estimates for P can be obtained in an experimental
setup if the permeation rate ¢ (f) and the total membrane area A available for
transport are measured and the drug concentration c (f) in the donor compartment
remains practically constant. What is implicit from all the above is that the diffusion
coefficient D’ is at the origin of the definition of the clearance CL and permeability
P, and these parameters are incorporated into the global rate constant of the rate
equations used in pharmacokinetics. For example, the first-order absorption rate
constant k, in the following equation is proportional to the diffusion coefficient D’
of drug in the gastrointestinal membrane:

éb (t) = kaCGI (t) s

where ¢, (f) and cgy (f) denote drug concentration (amount absorbed/volume of
distribution) in blood and in the gastrointestinal lumen (amount dissolved in
the gastrointestinal fluids/volume of gastrointestinal fluids), respectively. In other
words, D’ controls the rate of drug absorption from the gastrointestinal tract.

2.4.2 Reaction Processes: Diffusion- or Reaction-Limited?

Pharmacokinetics has been based on the concepts of classical chemical kinet-
ics. However, the applicability of the rate equations used in chemical kinetics
presupposes that the reactions are really reaction-limited. In other words, the typical
time for the two chemical species to react when placed in close proximity (reaction
time #,c) is larger than the typical time needed for the two species to reach each
other (diffusion time #4i¢) in the reaction space. When the condition #eoc > f4if 1S
met, then one can use the global concentrations of the reactant species in the medium
to obtain the classical rate equations of chemical kinetics. This is so since the rate of



28 2 Diffusion and Kinetics

the reaction is proportional to the global concentrations of the reactant species (law
of mass action). The inequality feoc > tqirr underlines the fact that the two reactant
species have encountered each other more than one time previously in order to react
effectively.

The opposite case, teac < tqiff, indicates that the two reactant species actually
react upon their first encounter. The diffusion characteristics of the species control
the rate of the reaction, and therefore these reactions are called diffusion limited.
Consider, for example, a system consisting of species A and B with ns and np
molecules of A and B, respectively. The problem of the reaction rate between A
and B is in essence reduced to the rate at which A and B molecules will encounter
one another. The principal parameters governing the reaction rate are the diffusion
coefficients D4 and Dp of the reactant species since they determine the diffusing
tendency of the species. Focusing on B molecules, it can be proven that the rate of B
molecules diffusing to an A molecule is proportional to the diffusion coefficient
of B, the number of B molecules, and the distance between A and B, namely,
4nDg(p,4 + pg)ns, where p, + pp is the distance between the centers of A and B
molecules; accordingly, the total rate of A and B encounters is 47w Dg(p, + p5)nha.
In an analogous manner the total rate of A and B encounters, viewed in terms of the
A molecules, is 47Dy (p, + pg)nsna. The mean of these separate rates provides a
reasonable expression for the rate per unit volume for A and B molecules separately:

Rate of A and B encounters = 27 (D4 + Dg)(p4 + pp)nans.

Although the previous equation signifies the importance of the diffusion charac-
teristics of the reactant species, it cannot be used to describe adequately the rate of
the reaction. The reason is that the concept of global concentrations for the n4 and
np molecules is meaningless, since a unit volume cannot be conceived due to the
local fluctuations of concentrations. Hence, the local concentrations of the reactants
determine the rate of the reaction for diffusion-limited reactions. Accordingly, local
density functions with different diffusion coefficients for the reactant species are
used to describe the diffusion component of reaction—diffusion equations describing
the kinetics of diffusion-limited reactions.

2.4.3 Carrier-Mediated Transport

The transport of some solutes across membranes does not resemble diffusion
and suggests a temporary, specific interaction of the solute with some component
(protein) of the membrane characterized as “carrier,” e.g., the small-peptide carrier
of the intestinal epithelium. The rate of transport increases in proportion to concen-
tration only when this is small, and it attains a maximal rate that cannot be exceeded
even with a large further increase in concentration. The kinetics of carrier-mediated
transport is theoretically treated by considering carrier—solute complexes in the
same manner as enzyme—substrate complexes following the principles of enzyme-
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catalyzed reactions in Michaelis—Menten kinetics. In both biotransformation and
carrier-mediated transport, unrestricted diffusion is considered for the reactant
species. Due to the analogous formulation of the two processes, the equations
describing the rates of biotransformation,

. VmaxC (t)
1) = s 2.20
C( ) kM +c (l‘) ( )
and carrier-mediated transport,
* Rmaxc (t)
1) = , 2.21
c(®) kg + ¢ (1) (221

are similar. In these expressions, c () is the solute (substrate) concentration,
ky 1s the Michaelis constant, Vp.x 1S the maximum biotransformation rate, and
Riax is the maximum transport rate. Both equations indicate that the rate of
biotransformation or carrier-mediated transport becomes independent of substrate
(solute) concentration when this is large. In this case, the rate of biotransformation
or carrier-mediated transport is said to exhibit saturation kinetics. The graphical
representation of the previous equations is shown in Figure 2.5.

12 T T T .

de(r) / dt

c(?)

Fig. 2.5 The rate of biotranformation or carrier-mediated transport vs. solute concentration. The

plateau value corresponds to Vi.x Or Ryax. ky and Vi were set to 1 and 10, respectively, with
arbitrary units
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2.5 Fractal-like Kinetics

The undisputable dogma of chemistry whether in chemical synthesis or classical
chemical kinetics is to “stir well the system.” The external stirring re-randomizes
the positioning of the reactant species, and therefore the rate of the reaction
follows the classical pattern imposed by the order of the reaction. However, many
reactions and processes take place under dimensional or topological constraints
that introduce spatial heterogeneity. A diffusion process under such conditions is
highly influenced, drastically changing its properties. A general well-known result
is that in such constrained spaces, diffusion is slowed down and diffusion follows
an anomalous pattern. Obviously, the kinetics of the diffusion-limited reactions
(processes) are then sensitive to the peculiarities of the diffusion process. In other
words, the transport properties of the diffusing species or the reactants largely
determine the kinetics of the diffusion-limited processes. Under these circumstances
one can no longer rely on classical rate equations and a different approach is
necessary. The drastic and unexpected consequences of nonclassical kinetics of
diffusion-limited reactions are called fractal-like kinetics. An extensive review on
the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences
has been published recently [11]; the essentials for this “understirred” type of
kinetics are delineated below.

2.5.1 Segregation of Reactants

Classical homogeneous kinetics assumes that the reactants are located in a three-
dimensional vessel, and that during the reaction process the system is constantly
stirred, thus causing the positions (locations) of the reactants to be constantly re-
randomized as a function of time. However, there are important chemical reactions,
which are called “heterogeneous,” in which the reactants are spatially constrained by
either walls or phase boundaries, e.g., liquid—solid boundaries. This is the case for
in vivo drug dissolution as well as for many bioenzymatic and membrane reactions.
Due to dimensional or topological constraints these heterogeneous reactions take
place under understirred conditions. The most dramatic manifestation of such highly
inefficient stirring is the spontaneous segregation of reactants in A + B reactions
[12-14]. This means that correlations begin to develop between the reactants’
positions, which subsequently have a profound effect on the rate of a diffusion-
controlled reaction. The build-up of such correlations is strongly dependent on
the dimensionality, being more pronounced the further one goes below three-
dimensional spaces. This is so because quantitatively the parameter values in the
diffusion laws are very different in different dimensions. In addition, if the space
where the reaction takes place is not smooth, but highly irregular, this has an added
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effect on the building of such correlations. This happens if the space is a fractal
structure characterized by its own dimensionality, which as discussed in Chapter 1
could be different from the integer 1, 2, or 3.

An important segregation effect is related to the violation of Wenzel’s old law for
heterogeneous reactions; this law states that the larger the interface, the higher the
reaction rate [15]. Thus, the most classical way to speed up a heterogeneous process,
e.g., drug dissolution, is to grind the material in order to increase the surface area.
At the macroscopic level, this law has been verified in numerous physicochemical
studies [16] as well as in in vitro drug dissolution studies and in vivo bioavailability
studies using micro instead of macro drug particles. However, violation of Wenzel’s
law has been observed in simulation studies [17, 18] at the microscopic level.
Simulations for the catalytic reaction A + B — AB 1, which takes place only on
the rims of surfaces, indicate that the steady-state rate per unit surface area is not
constant but rather depends on the size of the sample. In reality, lower reaction rates
were observed for a connected catalyst compared to a disjointed one despite the fact
that equal lengths for both designs were used. This is due to the lower segregation
of the reactants on the rims of the disjointed catalyst, which results in a higher rate
coefficient for the catalytic reaction. The clear message taken from these results is
that shredding a sample not only increases the surface area but can also increase the
reactivity per unit area. The latter observation violates Wenzel’s law.

2.5.2 Time-Dependent Rate Coefficients

The spatial reactant correlations result in building a depletion zone around each
reactant, which grows steadily with time. This means that in the close neighborhood
of each reactant there is a void, a space that is empty of reactants. The net result
is that the reactant distribution for the two-reactant case (A + B — C) shows clear
segregation of unlike species (A from B) and aggregation of like species (either A
or B). Naturally, the diffusion-controlled reaction slows down, since as reactants get
further apart, they must travel longer distances to find another reactant to react with
(cf. equation 2.9). A curious effect now is that the rate constant k of the reaction
is no longer “constant,” but depends on the growth of this depletion zone and
consequently is time-dependent:

k() =kot™  (t > to),

where k (¢) is the instantaneous rate coefficient since it depends on time ¢, and A
is the fractal kinetics exponent with 0 < A < 1. In fact, k (f) crosses over from
a constant regime at short times, ¢ < f., to a power-law decrease at longer times,
t > .. The switching time 7, depends on the experimental conditions. This behavior
is the hallmark of fractal kinetics [17].

Under homogeneous conditions (e.g., vigorous stirring), A = 0 and therefore
k (7) is a constant giving back the classical kinetics result. The previous equation
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has been applied to the study of various reactions in fractals as well as in many
other nonclassical situations. For instance, theory, simulations, and experiments
have shown that the value of A for A+A reactions is related to the spectral dimension
d; of the walker (species) as follows [9, 19]:

A=1-— _".
2
From this relationship, we obtain A = 1/3 since the value of d; is ~ 4/3 forA + A
reactions taking place in random fractals in all embedded Euclidean dimensions
[9, 20]. It is also interesting to note that A = 1/2 for an A 4 B reaction in a square
lattice for very long times [13]. Thus, it is now clear from theory, computer sim-
ulation, and experiment that elementary chemical kinetics are quite different when
reactions are diffusion limited, dimensionally restricted, or occur on fractal surfaces
[9, 12, 21-23].

We emphasize that the fractal-like kinetic characteristics are not observed only
under “bing-bang” type conditions (also called batch) as discussed above but also
under quasi-steady-state conditions (cf. Section 8.5.1). Consider, for example, the
homodimeric reaction with two molecules of a single substrate reacting to form
product (A + A — (). Under homogeneous conditions the rate at quasi-steady
state will be proportional to substrate concentration squared, 2 (1), i.e., it is time-
independent (by definition). However, the rate for the bimolecular A + A diffusion-
limited reaction under topological or dimensional constraints will be proportional
to ¢” (7). Surprisingly, the effective reaction order y is higher than 2 and is related
to the spectral dimension d; and in turn to the fractal kinetics exponent A [9]:

2
y=1+ =14+01-1",

s

with d; < 2. Typical values for the Sierpinski gasket and the percolation cluster are
y = 2.46 and y = 2.5, respectively. If d; = 1, so that diffusion is compact, then
y = 3 for the bimolecular A + A reaction. In all these cases, the mechanism of
diffusion is bimolecular. However, the increase in the effective reaction order arises
from the distribution of the species, which as time goes by becomes “less random,”
i.e., it is actually more ordered.

Before we close this section some major, unique kinetic features and conclusions
for diffusion-limited reactions that are confined to low dimensions or fractal
dimensions or both can now be derived from our previous discussion. First, a
reaction medium does not have to be a geometric fractal in order to exhibit fractal
kinetics. Second, the fundamental linear proportionality k¥ o D of classical kinetics
between the rate constant k and the diffusion coefficient D does not hold in fractal
kinetics simply because both parameters are time-dependent. Third, diffusion is
compact in low dimensions and therefore fractal kinetics is also called compact
kinetics [24, 25] since the particles (species) sweep the available volume compactly.
For dimensions d; > 2, the volume swept by the diffusing species is no longer
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compact and species are constantly exploring mostly new territory. Finally, the
initial conditions have no importance in classical kinetics due to the continuous
re-randomization of species but they may be very important in fractal kinetics [17].

2.5.3 Effective Rate Equations

The dependence of kinetics on dimensionality is due to the physics of diffusion.
This modifies the kinetic differential equations for diffusion-limited reactions,
dimensionally restricted reactions, and reactions on fractal surfaces. All these
chemical kinetic patterns may be described by power-law equations with time-
invariant parameters like

c () = —ke’ (1), c(to) = co, (2.22)

with y > 2. Under these conditions, the traditional rate law for the A + A
reaction with concentration squared exhibits a characteristic reduction of the rate
constant with time:

c()=—k(@® A, c(t) = co, (2.23)

where k(f) = kot *. Conversely, (2.23) is equivalent to a time-invariant rate
law (2.22) with an increased kinetic order y. New parameters A and k. are given by

A=(y-2)/(—1and ko = k07D (y — )07

with0 <A < 1.

In traditional chemical kinetics A = 0, the rate constant is time-invariant,
and the effective kinetic order y equals molecularity 2. As the reaction becomes
increasingly diffusion-limited or dimensionally restricted, A increases, the rate
constant decreases more quickly with time, and the kinetic order in the time-
invariant rate law increases beyond the molecularity of the reaction. When the
reaction is confined to a one-dimensional channel, y = 3.0, or it can be as large
as 50 when isolated on finely dispersed clusters or islands [9, 22]. The kinetic order
is no longer equivalent to the molecularity of the reaction. The increase in kinetic
order results in behavior with a higher effective cooperativity. The kinetic orders
in some cases reflect the fractal dimension of the physical surface on which the
reaction occurs.

This anomaly stems from the nonrandomness of the reactant distributions in low
dimensions. Although in a classical reaction system the distribution of the reactants
stays uniformly random, in a fractal-like reaction system the distribution tends to
become “less random.” Similar changes take place in other reactions and other
spaces. Such findings are well established today, and they have been observed
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experimentally and theoretically. Also, results from Monte Carlo simulations
(a powerful tool in this field) are in very good agreement with these findings.

The solution of the differential equations above is a power function of time,
namely c(f) = pt* with parameters 8 and « satisfying the initial condition
¢ (tp) = co. Usually B and « are estimated by curve fitting on experimental data,
and the parameters of (2.22) and (2.23) are obtained by

k=—-af"andy =1-1/a
and
ko =—a/Band A =1+ «,

respectively. Since we have assumed y > 2 or 0 < A < 1, the parameter « satisfies
—1<a<O.

2.5.4 Enzyme-Catalyzed Reactions

In the same vein and under dimensionally restricted conditions, the description of
the Michaelis—Menten mechanism can be governed by power-law kinetics with
kinetic orders with respect to substrate and enzyme given by noninteger powers.
Under quasi-steady-state conditions, Savageau [26] defined a fractal Michaelis
constant and introduced the fractal rate law. The behavior of this fractal rate law
is decidedly different from the traditional Michaelis—Menten rate law:

* the effective ks decreases as the concentration of enzyme increases, and
 the kinetic order of the overall reaction with respect to total enzyme is greater
than unity.

These properties are likely to have an important influence on the behavior of
intact biochemical systems, e.g., within the living cell, enzymes do not function
in dilute homogeneous conditions isolated from one another. The postulates of the
Michaelis—Menten formalism are violated in these processes and other formalisms
must be considered for the analysis of kinetics in situ. The intracellular environment
is very heterogeneous indeed. Many enzymes are now known to be localized within
two-dimensional membranes or quasi-one-dimensional channels, and studies of
enzyme organization in situ [27] have shown that essentially all enzymes are found
in highly organized states. The mechanisms are more complex, but they are still
composed of elementary steps governed by fractal kinetics.

Power-law formalism was used by Savageau [28] to examine the implications of
fractal kinetics in a simple pathway of reversible reactions. Starting with elementary
chemical kinetics, that author proceeded to characterize the equilibrium behavior
of a simple bimolecular reaction, then derived a generalized set of conditions
for microscopic reversibility, and finally developed the fractal kinetic rate law
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for a reversible Michaelis—Menten mechanism. By means of this fractal kinetic
framework, the results showed that the equilibrium ratio is a function of the amount
of material in a closed system, and that the principle of microscopic reversibility
has a more general manifestation that imposes new constraints on the set of fractal
kinetic orders. So, Savageau concluded that fractal kinetics provide a novel means
to achieve important features of pathway design.

2.5.5 Importance of the Power-Law Expressions

Power-law expressions are found at all hierarchical levels of organization from
the molecular level of elementary chemical reactions to the organismal level of
growth and allometric morphogenesis. This recurrence of the power law at different
levels of organization is reminiscent of fractal phenomena. In the case of fractal
phenomena, it has been shown that this self-similar property is intimately associated
with the power-law expression [29]. The reverse is also true; if a power function of
time describes the observed kinetic data or if a reaction rate higher than 2 is revealed,
the reaction takes place in fractal physical support.

The power-law formalism is a mathematical language or representation with a
structure consisting of ordinary nonlinear differential equations whose elements
are products of power-law functions. Power-law formalism meets two of the most
important criteria for judging the appropriateness of a kinetic representation for
complex biological systems: the degree to which the formalism is systematically
structured, which is related to the issue of mathematical tractability, and the degree
to which actual systems in nature conform to the formalism, which is related to the
issue of accuracy.

2.6 Fractional Diffusion Equations

Before closing this chapter we would like to mention briefly a novel consideration
of diffusion based on the recently developed concepts of fractional kinetics [30].
From our previous discussion it is apparent that if d; < 2, diffusion is recurrent.
This means that diffusion follows an anomalous pattern described by (2.10); the
mean squared displacement grows as (zz (t)) o< ¢V with the exponent y # 1. To deal
with this, a consistent generalization of the diffusion equation (2.18) could have a
fractional order temporal derivative such as

’p (z,1) _

?p (z,1)
oty ’

Dy 072

where D, is the fractional diffusion coefficient and the fractional order y depends
on d,,, the fractal dimension of the walk. The previous fractional diffusion equation
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generalizes Fick’s second law, and therefore it allows scientists to describe complex
systems with anomalous behavior in much the same way as simpler systems [30].

Also, in order to appreciate the extent of spatial heterogeneity, Berding [31]
introduced a heterogeneity function for reaction—diffusion systems evolving to spa-
tially inhomogeneous steady-state conditions. The same author discusses particular
applications and compares specific reaction—diffusion mechanisms with regard to
their potential for heterogeneity.



Chapter 3
Nonlinear Dynamics

A wonderful harmony arises from joining together the seemingly
unconnected.

Heraclitus of Ephesus (544-483 BC)

Series of measurements from many physiological processes appear random. On the
other hand, we are used to thinking that the determinants of variability cannot be
known because of the multiplicity and interconnectivity of the factors affecting the
phenomena. This idea relies on the classical view of randomness, which requires
that a complex process have a large (perhaps infinite) number of degrees of freedom
that are not directly observed but whose presence is manifested through fluctuations.
However, over the last two decades, scientists from various fields of research have
shown that randomness generated by deterministic dynamic processes exhibits
spectra practically indistinguishable from spectra of pure random processes. This
is referred to as chaotic behavior, a specific subtype of nonlinear dynamics, which
is the science dealing with the analysis of dynamic systems [32, 33].

The paradox with the term ‘“chaos” is the contradiction between its meaning in
colloquial use and its mathematical sense. Routinely, we use the word chaos in
everyday life as a synonym for randomness having catastrophic implications. In
mathematics, however, “chaos” refers to irregular behavior of a process that appears
to be random, but is not. Accordingly, this apparent random-looking behavior poses
a fundamental dilemma regarding the origin of randomness in a set of irregular
observations from a dynamic process: Is the system chaotic or not? In other words,
does the irregular behavior of the observations arise from noise or chaos?

Figure 3.1 illustrates the difference between random and chaotic systems:

* Subplot (A) shows a series of uniformly distributed random numbers between 0
and 1.

* In (B), the plot was generated by the logistic map, a deterministic model of the
form YVi+1 = 4yl (1 — yl)

It is impossible to distinguish the two models visually. The subplots C and D are
the so-called pseudophase plots of the two sequences of plots A and B, respectively:
each y; is plotted against its consequent y;+;. The random sequence (A) produces
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Fig. 3.1 The difference between random (A, C) and chaotic (B, D) processes pictured as a series
of numbers (A, B) and as pseudophase plots (C, D)

scattered points (C) showing that there is no correlation between successive points.
In contrast, the points of the deterministic sequence (B) lie in a well-formed line (D).

The key property in this complex, unpredictable, random-like behavior is
nonlinearity. When a system (process, or model, or both) consists only of linear
components, the response is proportional to its stimulus and the cumulative effect of
two stimuli is equal to the summation of the individual effects of each stimulus. This
is the superposition principle, which states that every linear system can be studied
by breaking it down into its components (thus reducing complexity). In contrast, for
nonlinear systems, the superposition principle does not hold; the overall behavior of
the system is not at all the same as the summation of the individual behaviors of its
components, making complex, unpredictable behavior a possibility. Nevertheless,
not every nonlinear system is chaotic, which means that nonlinearity is a necessary
but not a sufficient condition for chaos.

The basic ideas of chaos were introduced more than a hundred years ago;
however, its significance and implications were realized relatively recently because
chaos was studied in detail after the wide dissemination of computers in the 1970s.
Although its study started from the fields of mathematics, astronomy, and physics,
scientists from almost every field became interested in these ideas. The life sciences
are good candidates for chaos due to the complexity of biological processes,
although many consider the advanced mathematics and modeling techniques used a
drawback. However, during the last 20 years the science of chaos has evolved into
a truly interdisciplinary field of research that has changed the way scientists look at
phenomena.
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3.1 Dynamic Systems

A dynamic system is a deterministic system whose state is defined at any time by the
values of several variables y(t), the so-called szates of the system, and its evolution
in time is determined by a set of rules. These rules, given a set of initial conditions
¥(0), determine the time evolution of the system in a unique way. This set of rules
can be either

 differential equations of the form
30 =g (r.1.9).

and the system is called a flow, or
» discrete equations in which every consequent generation of the variables y is
given by an equation of the form

yH—l =g(yi,9),

where Y, stands for the i-th generation of the variable y, and then the system is
called a map.

In the above definitions, 8 represents a set of parameters of the system, having
constant values. These parameters are also called control parameters. The set of
the system’s variables forms a representation space called the phase space [33]. A
point in the phase space represents a unique state of the dynamic system. Thus,
the evolution of the system in time is represented by a curve in the phase space
called trajectory or orbit for the flow or the map, respectively. The number of
variables needed to describe the system’s state, which is the number of initial
conditions needed to determine a unique trajectory, is the dimension of the system.
There are also dynamic systems that have infinite dimension. In these cases, the
processes are usually described by differential equations with partial derivatives
or time-delay differential equations, which can be considered as a set of infinite
in number ordinary differential equations. The fundamental property of the phase
space is that trajectories can never intersect themselves or each other. The phase
space is a valuable tool in dynamic systems analysis since it is easier to analyze the
properties of a dynamic system by determining topological properties of the phase
space than by analyzing the time series of the values of the variables directly.

Stable limit sets in the phase space are of supreme importance in experimental
and numerical settings because they are the only kind of limit set that can be
observed naturally, that is, by simply letting the system run (cf. Appendix A).

3.2 Attractors

Dynamic systems are classified in two main categories: conservative and nonconser-
vative systems. Conservative systems have the property of conserving the volume
that is formed by an initial set of points in phase space as time goes by, although



40 3 Nonlinear Dynamics

Fig. 3.2 A schematic representation of various types of attractors. Reprinted from [34] with
permission from Springer

the shape of the volume may change. In other words, a volume in phase space
resembles an incompressible liquid. On the other hand, nonconservative systems do
not possess this property and an initial volume in phase space, apart from changing
its shape, may also grow or shrink. In the latter case (when the volume shrinks)
the system is called dissipative. Most processes in nature, including biological
processes, are dissipative.

The trajectories of dissipative dynamic systems, in the long run, are confined in
a subset of the phase space, which is called an attractor [33], i.e., the set of points
in phase space where the trajectories converge. An attractor is usually an object of
lower dimension than the entire phase space (a point, a circle, a torus, etc.). For
example, a multidimensional phase space may have a point attractor (dimension 0),
which means that the asymptotic behavior of the system is an equilibrium point,
or a limit cycle (dimension 1), which corresponds to periodic behavior, i.e., an
oscillation. Schematic representations for the point, the limit cycle, and the torus
attractors are depicted in Figure 3.2. The point attractor is pictured on the left:
regardless of the initial conditions, the system ends up in the same equilibrium point.
In the middle, a limit cycle is shown: the system always ends up doing a specific
oscillation. The torus attractor on the right is the two-dimensional equivalent of a
circle. In fact, a circle can be called a one-torus, the two-dimensional torus can
be called a two-torus, and there is also the three-torus and generally the m-torus.
The trajectory on a two-torus is a two-dimensional oscillation with the ratio of the
frequencies of the two oscillations being irrational. Because the trajectory never
passes through the same point twice, in infinite time it fills the entire surface of the
torus. This type of trajectory is called quasi-periodic. Being an attractor, the torus
attracts all trajectories to fall on its surface.

Even the states of systems with infinite dimension, like systems described by
partial differential equations, may lie on attractors of low dimension. The phase
space of a system may also have more than one attractor. In this case the asymptotic
behavior, i.e., the attractor where a trajectory ends up, depends on the initial
conditions. Thus, each attractor is surrounded by an attraction basin, which is the
part of the phase space where the trajectories from all initial conditions end up.
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3.3 Bifurcation

A dynamic system may exhibit qualitatively different behavior for different values
of its control parameters 6. Thus, a system that has a point attractor for some value
of a parameter may oscillate (limit cycle) for some other value. The critical point
where the behavior changes is called a bifurcation point, and the event a bifurcation
[33]. More specifically, this kind of bifurcation, i.e., the transition from a point
attractor to a limit cycle, is referred to as Hopf bifurcation.

Consider the one-dimensional map

Yir1 = g i, 0) = Oyi (1 —y,)). (3.D

This difference equation is called a logistic map, and represents a simple determin-
istic system, where given a y; one can calculate the consequent point y;+; and so
on. We are interested in solutions y; > 0 with & > 0. This model describes the
dynamics of a single species population [33]. For this map, the fixed points y* on
the first iteration are solutions of

=0y (1-7),
namely

Yia=0y=(0-1)/0,

with the corresponding characteristic multipliers (cf. Appendix A)

Ela=085p=2-0.

As 0 increases from zero but with 0 < 6 < 1, the only realistic fixed point that is
nonnegative is y},, which is stable since 0 < £, < 1. The first bifurcation of y}, is
observed for § = 1. When 1 < 6 < 3, on the one hand, the fixed point y, becomes
unstable since §;, > 1, and on the other hand, the positive fixed point y} is stable
since —1 < &5 < 1. Although there are two steady states, for any initial condition
different from y = 0, the system will end up after a few steps in yj, (Figure 3.3A,
fixed point of period 1 for § = 2.7). The second bifurcation comes at yj, at 6 = 3
where £, = —1, and so locally, near y}5, we have a periodic solution.

To see what is happening when 6 passes through the bifurcation value 8 = 3, we
examine the stability at the second iteration. The second iteration can be thought of
as a first iteration in a model where the iterative time step is 2. The fixed points are
solutions of

Y5 =075 (1=y3) [1—0y5 (1—y3)].
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Fig. 3.3 The logistic map, for various values of the parameter 6. (A) § = 2.7, (B) 8 = 3.2, (C)
f = 3.5, (D) two chaotic trajectories for 6 = 4 are coplotted. The initial condition for all solid
line plots (A to D) is yp = 0.1

This equation leads to the following solutions:

 _ x _ 0—1 % _ 0+1-v02=20-3 _x _ 0+1+v62—20—3
Vou = 0.3 = "4 V3 = 20 » Yop = 20 )

when 3 < @ < 1 + /6. The corresponding characteristic multipliers are
=026 =2—0), 6 =bpp=—07+20+4.

Hence, §,4 > 1, &5 > 1, -1 < &, < I,and =1 < §,, < 1. Thus, the y5-
and y3,, of the second iteration are stable. What this means is that there is a stable
equilibrium of the second iteration, i.e., if we start at )’;c or y}‘D, for example, we
come back to it after 2 iterations. What happens now is that for any initial condition,
excepty = 0andy = (6 — 1) /6, the system after a few steps will end up forming a
never-ending succession of the two values of y;. and y5,, (Figure 3.3B, fixed points
of period 2 for 6 = 3.2).

As 6 continues to increase (1 + +/6 < ), the characteristic multipliers &,c and
&,p pass through § = —1, and so these 2-period solutions become unstable. At this
stage, we look at the fourth iterate and we find, as might now be expected, that a
4-cycle periodic solution appears (Figure 3.3C, fixed point of period 4 for 8 = 3.5).
The period doubles repeatedly and goes to infinity as one approaches a critical point
6. at which instability sets in for all periodic solutions, e.g., for the model (3.1),
0. ~ 3.5699456. Above 6. all fixed points are unstable and the system is chaotic.
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Fig. 3.4 The bifurcation diagram of the logistic map

The bifurcation situation is illustrated in Figure 3.4, where the stable fixed
points y* are plotted as a function of the parameter 6. These bifurcations are
called pitchfork bifurcations, for obvious reasons from the picture they generate
in Figure 3.4. For example, if 3 < < 1 ++/6, then the periodic solution is between
the two y* that are the intersections of the vertical line through the 6 value and the
curve of equilibrium points. From Figure 3.4, we note that the difference between
the values of 6 at which two successive bifurcations take place decreases. It was
actually found that the ratio of two successive intervals of 6 between successive
bifurcations is universally constant, namely § = 4.66920161, not only for this
specific system, but for all systems of this kind, and it is referred to as the
Feigenbaum constant [33]. Although we have concentrated here on the logistic map,
this kind of behavior is typical of maps with dynamics like (3.1); that is, they all
exhibit bifurcations to higher periodic solutions eventually leading to chaos.

So, apart from the regular behavior, which is either steady-state, periodic, or
quasi-periodic behavior (trajectory on a torus, Figure 3.2), some dynamic systems
exhibit chaotic behavior, i.e., trajectories follow complicated aperiodic patterns that
resemble randomness. Necessary but not sufficient conditions in order for chaotic
behavior to take place in a system described by differential equations are that it must
have dimension at least 3, and it must contain nonlinear terms. However, a system
of three nonlinear differential equations need not exhibit chaotic behavior. This kind
of behavior may not take place at all, and when it does, it usually occurs only for a
specific range of the system’s control parameters 6.
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3.4 Sensitivity to Initial Conditions

As pointed out, for 6 > 6, there exist infinitely many unstable steady states of
period 1, 2, 4, 8, ... and no stable steady states. This means that almost any initial
condition leads to an aperiodic trajectory that looks random as in Figure 3.3D,
but actually the behavior is chaotic. In this figure, two chaotic orbits for 6 = 4
are coplotted. Only the initial conditions of the two trajectories differ slightly. For
the solid line the initial condition is y = 0.1, whereas for the dashed line it is
y = 0.10001. Although the difference is extremely small, the effect is not at all
negligible. The orbits follow an indistinguishable route only for the first 10 steps.
Thereafter, they deviate dramatically. Thus, sensitivity to the initial conditions,
together with its main consequence of long-term unpredictability, is exhibited.

Hence, the main characteristic of chaotic behavior is the sensitivity to initial
conditions. This means that nearby trajectories, whose initial conditions are only
slightly different, follow completely different evolutions in time. This property
has the implication of unpredictability of the time evolution of the system in the
long run due to our inability to know the initial conditions with infinite accuracy.
The deviation of two initially neighboring trajectories increases exponentially with
time, i.e., proportional to exp (Af), where the exponent A is called the Lyapunov
exponent [33, 35]. Lyapunov exponents are a generalization of the eigenvalues at
an equilibrium point and of characteristic multipliers. They depend on the initial
conditions and they can be used to determine the stability of quasi-periodic and
chaotic behavior as well as of equilibrium points and periodic solutions. For
a flow, the Lyapunov exponents are equal to the real parts of the eigenvalues
at the equilibrium point, and for a map, they are equal to the magnitudes of
the characteristic multipliers at the fixed point. A dynamic system has the same
number of Lyapunov exponents as its dimension. The Lyapunov exponents express
the deviation of initially nearby trajectories in each “direction.” So, a Lyapunov
exponent may be negative for a stable “direction,” which expresses the exponential
approach of two nearby trajectories, and positive for exponential deviation, which
expresses the divergence of two nearby trajectories. A system of high dimension
may have Lyapunov exponents of all signs and is considered chaotic if at least one
of them is positive, which states that at least in one “direction” there exists sensitivity
to the initial conditions.

Because chaotic systems may have both negative and positive Lyapunov expo-
nents, their asymptotic behavior can be limited in an attractor as well, where
the negative exponents express the convergence to the attractor and the positive
the exponential divergence (chaotic behavior) within the attractor. These chaotic
attractors are not elementary topological entities with integer dimensions like a
point, a circle, or a torus. Instead they have a fractal dimension, which defines an
extremely complicated object of infinite detail, though confined in a finite space.
This kind of attractor is called a strange attractor [33], and the integer dimension of
the entire phase space in which the attractor lives is called the embedding dimension
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of the attractor. The two concepts, exponential divergence of initially neighboring
trajectories and confinement in a compact space, appear contradictory. However, the
fractal structure of the strange attractor makes their coexistence feasible.

3.5 Reconstruction of the Phase Space

The concepts of nonlinear dynamics do not apply only to abstract mathematical
models that are described by maps or flows. Useful results can be obtained from
observations gathered from real processes as well. Real-life observations, like
biological signals, are usually time series of measured quantities. Instead of studying
a time series statistically, the idea is to consider it as if it came out of a dynamic
system. Then, one tries to reconstruct its phase space (pseudophase space in the
case of observed data, when the state variables are unknown) and see whether any
structure is detectable, either visually or using certain mathematical and numerical
tools [36-38]. The absence of any structure in phase space (e.g., a scatter of points)
means that the system is random (Figure 3.1C). However, the presence of structure
is evidence of the dynamic origin of the time series and the existence of an attractor
(Figure 3.1D). The dimension of the attractor can give us information about the
dynamic behavior of the whole system. If, for example, the dimension of the
attractor is not an integer, it corresponds to a strange attractor and the system exhibits
chaotic behavior. The embedding dimension of the attractor, which is actually the
dimension of the reconstructed phase space and in the case of a strange attractor
should be the next greater integer of the fractal dimension, gives the least number of
independent variables, or states, needed to describe the system.

The phase space reconstruction of a time series is accomplished by the method
of delays. An embedding dimension d, is chosen, plus a time delay °, and then the
phase space is constructed using as variables y (¢), y (t + ¢°), ...,y (t + (d. — 1) t°),
for all ¢. It is evident that the choice of d, and ° is crucial for the reconstruction.
There are certain theorems and tests that help in the proper choice of these param-
eters, but experience and trial are also valuable tools. It must be mentioned though
that due to the automated character of the algorithms, the danger of misleading
results always exists. During the past years an overuse of these techniques was
noticed and many of the results obtained by this rationale were either wrong or led
to erroneous conclusions due to poor application of the techniques and algorithms.

Example 1. The Rossler Strange Attractor

Figure 3.5 illustrates the model of the Rdssler strange attractor [33]. The set of
nonlinear differential equations is

?1 =—y2 -3 y1(0) =3,
Y2 =y1+ 0.2y, y2(0) =3,
y3 =04+ y1y3 —=5.7y3, y3(0) =0.
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Fig. 3.5 The Rossler strange
attractor. (A) The phase
space. (B) The state variable
y1 (2). (C) Reconstruction in
the pseudophase space
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The single trajectory plotted in the three-dimensional phase space never passes
through the same point a second time, yet it never leaves a compact volume, thus
forming a fractal object of infinite detail (fractal dimension ~ 2.07), Figure 3.5A.
The state variable y; plotted in Figure 3.5B as a function of time exhibits obvious
aperiodicity. In Figure 3.5C, the Rossler attractor is reconstructed in pseudophase
space with the method of delays, making use only of the data from the y; variable,
as if y; were an observable quantity and nothing more of the underlying dynamics
were known. Of course, here the dimension of the system is also known and one
does not have to try other values for the dimension. Every value of y; (¢) is plotted
against y;(t + ¢°) and y; (¢ + 2¢°) with lag time /° = 1. The reconstructed phase
space is not identical to the original one; however, the main topology and features
are depicted adequately. |
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3.6 Estimation and Control in Chaotic Systems

Parameter estimation is a key factor in modeling. We usually fit the established
model to experimental data in order to estimate model parameters both for
simulation and control. However, a task so common in a classical system is quite
difficult in a chaotic one. The sensitivity of the system’s behavior with respect to
the initial conditions and the control parameters makes it very hard to assess the
parameters using tools such as least squares fitting. Thus, efforts have been made to
deal with this problem [39]. For nonlinear data analysis, a combination of statistical
and mathematical tests on the data to discern inner relationships among the data
points (determinism vs. randomness), periodicity, quasiperiodicity, and chaos is
used. These tests are in fact nonparametric indices. They do not reveal functional
relationships, but rather directly calculate process features from time series records.
For example, the dimensionality of a time series, which results from the phase
space reconstruction procedure, and the Lyapunov exponent are such nonparametric
indices. Some others are also commonly used:

* Correlation dimension. The correlation dimension is calculated by measuring
the Hausdorff dimension according to the Grassberger method [37, 40]. The
dimension of the system relates to the fewest number of independent variables
necessary to specify a point in the state space [41]. With random data, the
dimension increases with an increase of the embedding space. In deterministic
data sets the dimension levels off, even though the presence of random noise
may yield a slow rise.

» Singular value decomposition and eigenvalues of the singular value matrix phase
plots. By applying singular value decomposition to the embedded matrix one
can improve the appearance of the trajectories in phase space by separating
out the noise and the different frequencies from each other, which is important
when one is working with experimental data [38, 42]. The eigenvalues give a
strong indication of the dimension of the system. A random system shows no
demarcation of values, whereas a deterministic system does, as the embedding
dimension increases. Each column of data is equivalent to an independent
variable; by plotting one column vector vs. another, one can construct the phase
space and observe the flows with arrows indicating the direction [43].

The above indices contrast with those destined for linear data analysis:

* The autocorrelation (or correlation) function is obtained by multiplying each
y(t) by y(t — t°), where ¢° is a time delay, and summing the products over all
points [44]. Examination of the sum plotted as a function of 7° reveals the level
of dependency of data points on their neighbors. The correlation time is the value
of ¢° for which the value of the correlation function falls to exp (—1). When
the correlation function falls abruptly to zero, that indicates that the data are
without a deterministic component; a slow fall to zero is a sign of stochastic
or deterministic behavior; when the data slowly drop to zero and show periodic
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behavior, then the data are highly correlated and are either periodic or chaotic in
nature [38, 44].

* Following a fast Fourier transform of the data, the power spectrum shows the
power (the Fourier transform squared) as a function of frequency. Random and
chaotic data sets fail to demonstrate a dominant frequency. Periodic or quasi-
periodic data sets will show one or more dominant frequencies [38].

Chaotic systems are characterized by extreme sensitivity to tiny perturbations.
This phenomenon is also known as the butterfly effect. This famous term was
coined by Lorenz [45], who noticed that long-term prediction of the weather using
his system of differential equations was impossible. Lorenz observed that tiny
differences in the initial conditions start to grow at a greater and greater speed, until
the predictions become nonsense. In an analogous manner, the flapping of a single
butterfly’s wing today will produce a tiny change in the state of the atmosphere,
which in the long run will diverge from that which would otherwise exist in the
unperturbed state.

The butterfly effect is often regarded as a troublesome property, and for many
years it was generally believed that chaotic motions are neither predictable nor
controllable. Von Neumann around 1950 first reported a differing view that small,
carefully chosen, preplanned atmospheric disturbances could lead after some time
to desired large-scale changes in the weather. Using this chaotic sensitivity, recent
work demonstrates that the butterfly effect permits the use of tiny feedback pertur-
bations to control trajectories in chaotic systems, a capability without counterpart
in nonchaotic systems [46]. Indeed, it is possible to accomplish this only because
the chaotic systems are characterized by exponential growth of small disturbances.
This exponential growth implies that we can reach any accessible target extremely
quickly, using only a small perturbation.

The relevant research fits broadly into two categories [47]. First, one may ask to
select a desired behavior among an infinite variety of behaviors naturally present in
chaotic systems, and then stabilize this behavior by applying only tiny changes to an
accessible system parameter. Second, one can use the sensitivity of chaotic systems
to direct trajectories rapidly to a desired state and steer the system to a general target
in state space (not necessarily a periodic orbit). This means that chaotic systems can
achieve great flexibility in their ultimate performance.

The presence of chaos may be a great advantage for control in a variety of
situations. Typically, in a nonchaotic system, small controls can only change the
system dynamics slightly. Short of applying large controls or greatly modifying
the system, we are stuck with whatever system performance already exists. In a
chaotic system, on the other hand, we are free to choose among a rich variety of
dynamic behaviors. Thus, we anticipate that it may be advantageous to design chaos
into systems, allowing such variety without requiring large controls or the design of
separate systems for each desired behavior.
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3.7 Physiological Systems

The application of nonlinear dynamics in physiological systems offers a new
basis in the way certain pathological phenomena emerge. The main characteristic
is that a pathological symptom is considered as a sudden qualitative change in
the temporal pattern of an illness, such as when a bifurcation takes place. This
change can be caused either by endogenous factors or by an exterior stimulus
that changes one or more critical control parameters. According to this rationale,
therapeutic strategies should aim to invert the progress of the disease and restore
normal physiological conditions by interfering with the control parameters. This is
in contrast to the classical approach, which focuses on eliminating the symptoms
with a linear rationale that relates the therapeutic stimulus to the effect through
a proportionality. This is a general concept also referred to as dynamical disease,
a term introduced by Mackey and Glass [32, 48-50] (cf. also Section 13.1.3).
It is widely appreciated that chaotic behavior dominates physiological systems.
Moreover, periodic or other nonchaotic states are considered pathological, whereas
chaotic behavior is considered to be the normal, healthy state. The reason for this
should be associated with a fundamental advantage of nonlinear over classical
systems. Indeed, small variations of the control parameters may offer finer, more
rapid, and more energy-efficient controllability of the system compared to linear
systems [51]. This may explain why nature prefers chaos to regularity, and of
course the latter is a good enough reason for applied biological sciences such as
biopharmaceutics, pharmacokinetics, and pharmacodynamics to adopt this rationale
to a greater extent.



Part 11
Modeling in Biopharmaceutics

Most drugs on the market today are taken orally. Provided a drug is well absorbed,
this route of administration results in effective therapy with a minimum of incon-
venience to the patient. Therefore, much effort in pharmaceutical research has been
devoted to developing oral dosage forms that can deliver the drug to the systemic
circulation in a timely and efficient manner. Biopharmaceutics refers to the study
of the effect of formulation characteristics, the physicochemical properties of the
drug, and the physiology of drug absorption. The main object of this discipline
is to close the gap between the in vitro data collected in the laboratory and the
in vivo performance of the pharmaceutical formulation. Since drug molecules can
penetrate the epithelial barrier of the gastrointestinal tract only if they are in solution,
drug dissolution and release are the most important biopharmaceutical processes
for oral drug delivery. In parallel, the physiological conditions prevailing in the
gastrointestinal tract play a significant role and should be taken into account when
drug absorption is studied.

Most research on gastrointestinal absorption is based on the concept of homo-
geneity, that is, the description of average behavior. Some of the most often
used paradigms are those borrowed from chemical engineering literature to model
hydrodynamics, permeability, and absorption. For example, in the field of disso-
lution testing, a well-stirred (homogeneous) dissolution medium is used to mimic
the in vivo conditions [52]. Calculations associated with the effective intestinal
permeability or the unstirred water layer thickness in permeability studies assume
that the hydrodynamics of the solution in the intestinal segment obey the well-
stirred model [53]. The tank and tube models, often used for the analysis of drug
dissolution and uptake in the gastrointestinal tract [54-56], are accompanied with
the assumptions of perfect mixing and homogeneous flow, respectively.

One can argue, however, that the assumptions of homogeneity and well-stirred
media are not only obvious, but that they are also in fact contrary to the evidence,
given the anatomical and physiological complexity of the gastrointestinal tract.
In vivo drug dissolution, release, and uptake are heterogeneous processes since
they take place at interfaces of different phases, e.g., liquid—solid and liquid—
membrane boundaries, while diffusion, which is the principal mechanism of all
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processes, operates under topological constraints. In addition, all processes occur
in heterogeneous environments, e.g., variable stirring conditions in the lumen.

Therefore, a proper analysis of drug dissolution, release, and uptake should
take into account the heterogeneous character of these processes. In this second
part of the book, we consider these important biopharmaceutical processes, placing
emphasis on their heterogeneous features.



Chapter 4
Drug Release

An equation relating the rate of release of solid drugs suspended

in ointment bases into perfect sinks is derived. ... The amount
of drug released . .. is proportional to the square root of time.
Takeru Higuchi

School of Pharmacy, University of Wisconsin, Madison
Journal of Pharmaceutical Sciences 50:874—-875 (1961)

The term “release” encompasses several processes that contribute to the transfer
of drug from the dosage form to the bathing solution (e.g., gastrointestinal fluids,
dissolution medium). The objective of this chapter is to present the spectrum
of mathematical models that have been developed to describe drug release from
controlled-release dosage forms. These devices are designed to deliver the drug
at a rate that is governed more by the dosage form and less by drug properties
and conditions prevailing in the surrounding environment. The release mechanism
is an important factor in determining whether both of these objectives can be
achieved. Depending on the release mechanism, the controlled-release systems can
be classified into

1. diffusion-controlled,
2. chemically controlled, and
3. swelling-controlled.

By far, diffusion is the principal release mechanism, since apart from the
diffusion-controlled systems, diffusion takes place at varying degrees in both chem-
ically and swelling-controlled systems. The mathematical modeling of release from
diffusion-controlled systems relies on the fundamental Fick’s law (2.11), (2.16) with
either concentration-independent or concentration-dependent diffusion coefficients.
Depending on the formulation characteristics of the device, various types of
diffusion can be conceived, i.e., diffusion through an inert matrix, a hydrogel,
or a membrane. For chemically controlled systems, the rate of drug release is
controlled by

* the degradation and in some cases the dissolution of the polymer in erodible
systems or
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* the rate of the hydrolytic or enzymatic cleavage of the drug—polymer chemical
bond in pendant chain systems.

For swelling-controlled systems the swelling of the polymer matrix after the
inward flux of the liquid bathing the system induces the diffusion of drug molecules
toward the bathing solution.

In the following sections of this chapter we present the mathematical models used
to describe drug release from hydroxypropyl methylcellulose (HPMC) controlled-
release dosage forms. HPMC is the most widely used hydrophilic polymer for
oral drug delivery systems. Since HPMC exhibits high swellability, drug release
from HPMC-based systems is the result of different simultaneously operating
phenomena. In addition, different types of HPMC are commercially available and
therefore a universal pattern of drug release from HPMC-based systems cannot be
pointed out. Accordingly, a wide spectrum of models has been used to describe
drug release kinetics from HPMC-based matrix tablets. The sequential presentation
below of the mathematical models presented attempts to provide hints to their
interrelationships, along with their time evolution, and avoids a strict classification,
e.g., empirical vs. mechanistically based models. The last part of the chapter is
devoted to the rapidly emerging applications of Monte Carlo simulation in drug
release studies. Finally, a brief mention of applications of nonlinear dynamics to
drug release phenomena is made at the end of the chapter.

4.1 The Higuchi Model

In 1961 Higuchi [57] analyzed the kinetics of drug release from an ointment
assuming that the drug is homogeneously dispersed in the planar matrix and the
medium into which drug is released acts as a perfect sink, Figure 4.1. Under these
pseudo-steady-state conditions, Higuchi derived (4.1) for the cumulative amount
q (?) of drug released at time #:

q@t) = A\/D (2co — ¢;) ¢ty ¢ > Cy 4.1)

where A is the surface area of the ointment exposed to the absorbing surface, D
is the diffusion coefficient of drug in the matrix medium, and ¢y and ¢, are the
initial drug concentration and the solubility of the drug in the matrix, respectively.
Although a planar matrix system was postulated in the original analysis [57],
modified forms of (4.1) were published [58-60] for different geometries and matrix
characteristics, e.g., granular matrices.

Equation (4.1) is frequently written in simplified form:

‘i](t) — ki, 4.2)
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Fig. 4.1 The spatial concentration profile of drug (solid line) existing in the ointment containing
the suspended drug in contact with a perfect sink according to Higuchi’s assumptions. The broken
line indicates the temporal evolution of the profile, i.e., a snapshot after a time interval A¢. For
the distance & above the exposed area, the concentration gradient (co — ¢;) is considered constant
assuming that ¢y is much higher than ¢

where g, is the cumulative amount of drug released at infinite time and k is
a composite constant with dimension time~!/? related to the drug diffusional
properties in the matrix as well as the design characteristics of the system. For a
detailed discussion of the assumptions of the Higuchi derivation in relation to a
valid application of (4.2) to real data, the reader can refer to the review of Siepmann
and Peppas [61].

Equation (4.2) reveals that the fraction of drug released is linearly related to
the square root of time. However, (4.2) cannot be applied throughout the release
process since the assumptions used for its derivation are not obviously valid for the
entire release course. Additional theoretical evidence for the time limitations in the
applicability of (4.2) has been obtained [62] from an exact solution of Fick’s second
law of diffusion for thin films of thickness § under perfect sink conditions, uniform
initial drug concentration with ¢y > ¢, and assuming constant diffusion coefficient
of drug D in the polymeric film. In fact, the short-time approximation of the exact
solution is

doo T

a0 _ 4\/73(;2 =KV, 4.3)

where k' = 4\/ D/né>. Again, the proportionality between the fraction of drug
released and the square root of time is justified (4.3). These observations have led
to a rule of thumb, which states that the use of (4.2) for the analysis of release data
is recommended only for the first 60% of the release curve (¢ (f) /goo < 0.60).
This arbitrary recommendation does not rely on strict theoretical and experimental
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findings and is based only on the fact that completely different physical conditions
have been postulated for the derivation of the equivalent (4.2) and (4.3), while the
underlying mechanism in both situations is classical diffusion. In this context, a
linear plot of the cumulative amount of drug released ¢ (7) or the fraction of drug
released g (f) /g0 (utilizing data up to 60% of the release curve) vs. the square root
of time is routinely used in the literature as an indicator for diffusion-controlled drug
release from a plethora of delivery systems.

In 2011, an issue of the International Journal of Pharmaceutics (Vol. 418, No. 1,
pp. 1-148, 10 October 2011) entitled “Mathematical modeling of drug delivery
systems: Fifty years after Takeru Higuchi’s models” was published commemorating
the 50-th anniversary of the Higuchi’s publication [57].

4.2 Systems with Different Geometries

One of the first physicochemical studies [63] dealing with diffusion in glassy
polymers published in 1968 can be considered as the initiator of the realization
that two apparently independent mechanisms of transport, a Fickian diffusion and
a Case II transport, contribute in most cases to the overall drug release. Fick’s law
governs the former mechanism, while the latter reflects the influence of polymer
relaxation on the molecules’ movement in the matrix [64]. The first studies on this
topic [65, 66] were focused on the analysis of Fickian and non-Fickian diffusion
as well as the coupling of relaxation and diffusion in glassy polymers. The models
used to describe drug release from different geometries are quoted below:

1. Fickian diffusional release from a thin polymer film. Equation (4.3) gives the
short-time approximation of the fractional drug released from a thin film of
thickness 8.

2. Case II release from a thin polymer film. The fractional drug release ¢ () /g0
follows zero-order kinetics [67, 68] according to

q (0 _ 2ko

g o8 t, “4.4)

where ky is the Case Il relaxation constant and ¢y is the drug concentration, which
is considered uniform.

3. Case II radial release from a cylinder. The following equation describes the
fractional drug released, ¢ (f) /g0, When Case II drug transport with radial
release from a cylinder of radius p is considered [68]:

2
a9 _ 2k, (ko [\ (4.5)
doo  CoP  \Cop
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4. Case II one-dimensional radial release from a sphere. For a sphere of radius
p with Case II one-dimensional radial release, the fractional drug released,

q (1) /goo, is given [68] by

n 3k ke \° (ko \
9 _ 0t—3( Ot) +( Ot) . (4.6)
oo Cop Cop Cop
5. Case II radial and axial release from a cylinder. We quote below a detailed

analysis of Case II radial and axial release from a cylinder [69] since (4.4)
and (4.5) are special cases of the general equation derived in this section.

The analysis of Case II drug transport with axial and radial release from the
cylinder depicted in Figure 4.2 is based on two assumptions:

* aboundary is formed between the glassy and rubbery phases of the polymer, and
» the movement of this boundary takes place under constant velocity.

First, the release surface is determined. A cylinder of height 2L that is allowed to
release from all sides can be treated as a cylinder of height L that can release from
the round side and the top only, Figure 4.2. This second case is easier to analyze
and is also implied in [68] for the release of drug from a thin film of thickness
L' /2. If the big cylinder of Figure 4.2 is cut in half across the horizontal line, two
equal cylinders, each of height L, are formed. If drug release from the two newly
formed areas (top and bottom) of the two small cylinders is not considered, the two
cylinders of height L’ exhibit the same release behavior as the big cylinder, i.e.,

q D)y = 2q (), and goo 21 = 2Geo.1; cOnsequently,

Fig. 4.2 Case Il drug

transport with axial and radial

release from a cylinder of Yol
height 2L and radius p at

t = 0. Drug release takes
place from all sides of the big
cylinder. The drug mass is
contained in the gray region. -— p'
After time ¢ the height of the
cylinder is reduced to 2L’ and o7
its radius to p’ (small
cylinder) 2L
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q )y _4 (1),
doo,2L qoo.L

This proportionality demonstrates that the analysis of the release results can describe
both of the following cases: either a cylinder of height L that releases from the round
and top surfaces or a cylinder of height 2L that releases from all sides, Figure 4.2.

At zero time, the height and radius of the cylinder are L and p, respectively,
Figure 4.2. After time ¢ the height of the cylinder decreases to L’ and its radius to o’
assuming Case II drug transport for both axial and radial release. The decrease rate
of radius o’ and height L’ of the cylinder can be written

p=L=-"" 4.7)

where ko is the Case II relaxation constant and ¢y is the drug concentration
(considered uniform). The assumed value of the penetration layer speed is implied
from the analysis of the cases studied in [67, 68], which are simpler than the present
case. Initial conditions for the above equations are simply p’ (0) = pand L' (0) = L.

After integration of (4.7), we obtain the following equations as well as the time
for which each one is operating:

o' =p—(ko/co)t, t < (co/ko) p, 4.8)
L' =L—(ko/co)t, t = (co/ko) L. .

This means that the smaller dimension of the cylinder (p or L) determines the
duration of the phenomenon.

The amount of drug released at any time ¢ is given by the following mass balance
equation:

q(t) = com (0°L—p"L’). 4.9)

Substituting (4.8) into (4.9), the following expression for mass ¢ () as a function of

time ¢ is obtained:
ko \* k
q () = com |:p2L—(p— Ot) (L— Ot):|.
Co Co

And for the mass released at infinite time, we can write
_ 2
goo = commpL.

From the previous equations, the fraction released ¢ (f) /g0 as a function of time ¢
is obtained:
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t 2k ki k2 2k2 K
40 _ (o Koy, R R SN o (4.10)
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This equation describes the entire fractional release curve for Case II drug transport
with axial and radial release from a cylinder. Again, (4.10) indicates that the smaller
dimension of the cylinder (p or L) determines the total duration of the phenomenon.
When p > L, (4.10) can be approximated by

q (1) _ ko ,
doo coL

bl

which is identical to (4.4) with the difference of a factor of 2 due to the fact that the
height of the cylinder is 2L . When p <« L, (4.10) can be approximated by

() _ 2k, (ko t)z
doo  Cop  \cop )’

which is also identical to (4.5). These results demonstrate that the previously
obtained (4.4) and (4.5) are special cases of the general solution (4.10).

4.3 The Power-Law Model

Peppas and coworkers [66, 70] introduced a semiempirical equation (the so-called
power law) to describe drug release from polymeric devices in a generalized way:

q@) _
doo

kt*, 4.11)

where k is a constant reflecting the structural and geometric characteristics of the
delivery system expressed in dimensions of time™, and A is a release exponent
the value of which is related to the underlying mechanism(s) of drug release.
Equation (4.11) enjoys a wide applicability in the analysis of drug release studies
and the elucidation of the underlying release mechanisms. Apart from its simplicity,
the extensive use of (4.11) is mainly due to the following characteristics:

* Both Higuchi equations (4.1) and (4.3), which describe Fickian diffusional
release from a thin polymer film, are special cases of (4.11) for A = 0.5;
also, (4.4) is a special case of (4.11) for A = 1.

It can describe adequately the first 60% of the release curve when (4.5) and (4.6)
govern the release kinetics [68, 69].

¢ The value of the exponent A obtained from the fitting of (4.11) to the first 60%
of the experimental release data, from polymeric-controlled delivery systems of
different geometries, is indicative of the release mechanism, Table 4.1.
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Table 4.1 Values of the exponent A in (4.11) and the corresponding release mechanisms from
polymeric-controlled delivery systems of various geometries [65].

Exponent A Release

Thin film Cylinder Sphere mechanism

0.5 0.45 0.43 Fickian diffusion
05<1 <10 [045<1<0.89 [0.43 <A <0.85 | Anomalous transport
1.0 0.89 0.85 Case II transport

From the values of A listed in Table 4.1, only the two extreme values 0.5
and 1.0 for thin films (or slabs) have a physical meaning. When A = 0.5,
pure Fickian diffusion operates and results in diffusion-controlled drug release. It
should be recalled here that the derivation of the relevant (4.3) relies on short-time
approximations and therefore the Fickian release is not maintained throughout the
release process. When A = 1.0, zero-order kinetics (Case II transport) are justified
in accord with (4.4). Finally, the intermediate values of A (cf. the inequalities in
Table 4.1) indicate a combination of Fickian diffusion and Case II transport, which
is usually called anomalous transport.

It is interesting to note that even the more realistic model adhering to the Case 11
radial and axial drug release from a cylinder (4.10) can be described by the power-
law equation. In this case, pure Case II drug transport and release is approximated
(Table 4.1) by the following equation:

q@®) _
doo

k™39, (4.12)

A typical example of comparison between (4.10) and (4.12) when p < L is shown
in Figure 4.3. One should note the resemblance, along the first 60% of the curves,
to the kinetic profiles derived from these equations.

4.3.1 Higuchi Model vs. Power-Law Model

Drug release data are frequently plotted as percent (or fractional) drug released vs.
t'/2. This type of plot is usually accompanied by linear regression analysis using
g (t) /goo as dependent and /2 as independent variable. This routinely applied
procedure can lead to misinterpretations regarding the diffusional mechanism, as
is shown below using simulation studies [71].

Simulated data were generated from (4.11) using values for A and k ranging
from 0.4 to 0.65 and from 0.05 to 0.5, respectively. The range of A values is
the neighborhood of the Higuchi exponent 0.5, which is the theoretical value
for a diffusion-controlled release process. Moreover, values of A in the range
0.4 — 0.65 are frequently quoted in the literature for the discernment of drug release
mechanisms (pure diffusion, anomalous transport, and combination) from HPMC
matrix devices of different geometries [67, 68]. The values assigned to k are similar
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Fig. 4.3 Fractional drug release g () /goo Vs. time (arbitrary units) for Case II transport with axial
and radial release from a cylinder. Comparison of the solutions presented by (4.10) with ky = 0.01,
co = 0.5, p =1, L = 2.5 (dashed line) and (4.12) with k = 0.052 (solid line)

to the estimates obtained when (4.3) is fitted to drug release data, whereas k has
dimension of time™'/2. The constraint g (f) /geo < 1 was used for each set generated
from (4.11). The duration of the simulated release experiment was arbitrarily set
equal to 8 (¢ < 8). Therefore, the number of the simulated data generated from (4.11)
varied according to the specific value assigned to k using in all cases a constant
time step, 0.01. The pairs of data (¢ () /geo, t) generated from (4.11) were further
analyzed using linear regression analysis in accord with (4.3).

Table 4.2 shows the results of linear regression analysis (g (f) /goo Vs. t'/?) for
the data generated from (4.11). As expected, the theoretically correct sets of data
(A = 0.5) exhibited ideal behavior (intercept= 0, R = 1. Judging from the
determination coefficient R? values in conjunction with the number of data points
utilized in regression, all other sets of data with A # 0.5 are also described nicely if
one does not apply a more rigorous analysis, e.g., plot of residuals. It is also worthy
of mention that the positive intercepts were very close to zero and only in two cases
(k=0.4,1L =0.4;k = 0.5, 1 = 0.4) were they found to be in the range 0.10—0.11.
In parallel, any negative intercepts were very close to the origin of the axes.

These observations indicate that almost the entire set of data listed in Table 4.2
and generated from (4.11) can be misinterpreted as obeying (4.3). Under real
experimental conditions the discernment of kinetics is even more difficult when
linear regression of g (f) /geo Vs. /2 is applied. This is so if one takes into account
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Table 4.2 Results of linear k A Intercept Slope R2 N?
regression ¢(f)/qoo Vvs. 1'/?

for data generated 0.05 |0.40 0.01287 [0.03668 |0.9970 | 800
from (4.11). (a) Estimates not 0.45 0.006719 {0.04305 |0.9993 | 800
statistically significant 0.50 | 0¢ 0.05 1 800
different from zero were 0.55 | —0.00576 | 0.05760 | 0.9994 | 800

obtained. (b) Number of data

. e . 0.60 | —0.01545 |0.06571 |0.9976 | 800
points utilized in regression.

0.65 | —0.02436 | 0.07501 |0.9950 | 800
0.30 |0.40 0.0772 0.02201 | 0.9970 | 800
0.45 0.04031 {0.2583 | 0.9993 | 800
0.50 | 0¢ 0.3 1 800
0.55 | —0.04418 0.3456 |0.9994 | 800
0.60 | —0.08866 |0.3925 |0.9976 | 743
0.65 | —0.1258 0.4349 109949 | 637
0.40 |0.40 0.1030 0.2935 1 0.9970 | 800
0.45 0.05270 [0.3451 [0.9993 | 766
0.50 | 0¢ 0.4 1 625
0.55 | —0.04676 |0.4513 |0.9994 | 529
0.60 | —0.08829 |0.4987 |0.9976 | 460
0.65 | —0.1253 0.5422 1 0.9948 | 4409
0.50 |0.40 0.1117 0.3800 |0.9969 | 565
0.45 0.05243 [ 0.4424 09993 | 466
0.50 | 0¢ 0.5 1 400
0.55 | —0.04649 0.5525 |0.9993 | 352
0.60 | —0.0878 0.6002 09975 | 317
0.65 | —0.1245 0.6432 09947 | 290

¢ the usually small number of experimental data points available,

* the constraint for the percentage of drug released, g (¢) /goo < 0.60,

* the experimental error of data points,

* the high variability or lack of data points at the early stages of the experiment,
and

* the possible presence of a delay in time.

Therefore, it is advisable to fit (4.11) directly to experimental data using
nonlinear regression. Conclusions concerning the release mechanisms can be based
on the estimates for A and the regression line statistics [71].

4.4 Recent Mechanistic Models

Although the empirical and semiempirical models described above provide adequate
information for the drug release mechanism(s), better insight into the release process
can be gained from mechanistic models. These models have the advantage of being
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more accurate and predictive. However, mechanistic models are more physically
realistic and therefore mathematically more complex since they describe all concur-
rent physicochemical processes, e.g., diffusion, dissolution, swelling. Additionally,
they require the use of time- and/or position-, direction-dependent diffusivities. This
mathematical complexity is the main disadvantage of the mechanistic models since
explicit analytical solutions of the partial differential equations cannot be derived.
In this case, one has to rely on numerical solutions and less frequently on implicit
analytical solutions.

Although the emphasis of this section will be on the most recent mechanistic
approaches, the work of Fu et al. [72] published in 1976 should be mentioned
since it deals with the fundamental release problem of a drug homogeneously
distributed in a cylinder. In reality, Fu et al. [72] solved Fick’s second law equation
assuming constant cylindrical geometry and no interaction between drug molecules.
These characteristics imply a constant diffusion coefficient in all three dimensions
throughout the release process. Their basic result in the form of an analytical
solution is

0 8 [ NI~ 2
q zl_thz Y o exp(=Daft) | | D B; eXp(_Dﬂft) ’
0o i=1 J=l

where B; = (2j + 1) 7/ (2h), a; are the roots of the equation Jy (par) = 0, and Jo
is the zero-order Bessel function. Here, & denotes the half-length, p the radius of
the cylinder, and i and j are integers. Note that for small ¢ the series is very slowly
converging. Even keeping 100 terms of the above series is still not a good enough
approximation of g (f) /¢eo, for t & 0. For long times all terms with high values of
« and B decay rapidly and only the term with the lowest value survives. The series
reduces to a simple exponential after some time.

Gao et al. [73, 74] developed a mathematical model to describe the effect of
formulation composition on the drug release rate for HPMC-based tablets. An
effective drug diffusion coefficient D’ was found to control the rate of release as
derived from a steady-state approximation of Fick’s law in one dimension:

)

q() A\/D’t
Goo Y% T

where A is the surface area and V the volume available for release, while D’
corresponds to the quotient D/ 1, where D is the classical drug diffusion coefficient
in the release medium and 7 is the tortuosity of the diffusing matrix.

In a series of papers Narasimhan and Peppas [75-77] developed models that
take into account the dissolution of the polymer carrier. According to the theory,
the polymer chain, at the surface of the system, disentangles (above a critical water
concentration) and diffuses into the release medium. The kinetics of the polymer
mass loss is controlled by the dissolution rate constant of the polymer and the
decreasing with time surface area of the device. Symmetry planes in axial and radial
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direction, placed at the center of the matrix, for the water and drug concentration
profiles allow the development of an elegant mathematical analysis. Fick’s second
law of diffusion for cylindrical geometry is used to model both water and drug
diffusion. Since both the composition and the dimensions of the device change with
time while the diffusion coefficients for both species are considered to be dependent
on the water content, the complex partial differential equations obtained are solved
numerically. The model has been used successfully to describe the effect of the
initial theophylline loading of HPMC-based tablets on the resulting drug release
rate.

Recently, a very sophisticated mechanistic model called the sequential layer
model was presented [78-83]; the model considers inhomogeneous polymer
swelling, drug dissolution, polymer dissolution, and water and drug diffusion with
nonconstant diffusivities and moving boundary conditions. The raptation theory
was used for the description of polymer dissolution, while water and drug diffusion
were described using Fick’s second law of diffusion. An exponential dependence
of the diffusion coefficients on the water content was taken into account. Moving
boundaries were considered since the polymer swells, the drug and the polymer
dissolve, thereby making the interface matrix/release medium not stationary. The
model was applied successfully in the elucidation of the swelling and drug release
behavior from HPMC matrices using chlorpheniramine maleate, propranolol HCI,
acetaminophen, theophylline, and diclofenac as model drugs.

4.5 Monte Carlo Simulations

In a Monte Carlo simulation we attempt to follow the time evolution of a model that
does not proceed in some rigorously predefined fashion, e.g., Newton’s equations
of motion. Monte Carlo simulations are appropriate for models whose underlying
mechanism(s) are of a stochastic nature and their time evolution can be mimicked
with a sequence of random numbers, which is generated during the simulation. The
repetitive Monte Carlo simulations of the model with different sequences of random
numbers yield results that agree within statistical error but are not identical. The goal
is to understand the stochastic component of the physical process making use of the
perfect control of “experimental” conditions in the computer-simulation experiment,
examining every aspect of the system’s configuration in detail. Since the mass
transport phenomena, e.g., drug diffusion and the chemical processes, e.g., polymer
degradation encountered in drug release studies, are random processes, Monte Carlo
simulations are used to elucidate the release mechanisms. In the next section we
demonstrate the validity of the Higuchi law using Monte Carlo simulations and in
the following two sections we focus on the use of Monte Carlo simulations for the
description of drug release mechanisms based on Fickian diffusion from Euclidean
or fractal spaces. Finally, the last portion of this section deals with Monte Carlo
simulations of drug release from bioerodible microparticles.
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4.5.1 Verification of the Higuchi Law

The presuppositions for the application of the Higuchi law (4.2) have been discussed
in Section 4.1. However, it is routinely quoted in the literature without a rigorous
proof that only the first 60% of the release curve data should be utilized for a valid
application of (4.2). Recently, this constraint has been verified for the Higuchi model
using Monte Carlo computer simulations [84] (cf. Appendix B).

To mimic the conditions of the Higuchi model, a one-dimensional matrix of
200 sites has been constructed, Figure 4.4. Each site is labeled with the number of
particles it currently hosts. Initially all sites have 10 particles, i.e., the total number
no of particles monitored is 2000. Drug molecules move inside the matrix by the
mechanism of Fickian diffusion and cannot move to a site unless this site is empty.
Thus, the system is expected to behave as if its “concentration” was much higher
than its “solubility,” which is the basic assumption made in the theoretical derivation
of the Higuchi equation. The matrix can leak only from the site at its edge in full
analogy with Figure 4.1. The diffusive escape process is simulated by selecting a
particle at random and moving it to a randomly selected nearest-neighbor site. If
the new site is an empty site, then the move is allowed and the particle is moved to
this new site. If the new site is already occupied, the move is rejected. A particle is
removed from the lattice as soon as it migrates to the leak site. After each particle
move, time is incremented by arbitrary time units, the Monte Carlo microSteps
(MCS), during which the movement takes place. One MCS is the smallest time
unit in which an event can take place. The increment is chosen to be 1/x (f), where
n (¢) is the number of particles remaining in the system. This is a typical approach in
Monte Carlo simulations. The number of particles that are present inside the cylinder
as a function of time is monitored until the cylinder is completely empty of particles.
Figure 4.5 shows the simulation results for the first 60% of the release data; the slope
of the line is 0.51 very close to the value 0.50 expected by the Higuchi equation.

The simulation results presented in Figure 4.5 provide an indirect proof of the
valid use of the first 60% of the release data in line with (4.2). Needless to say,
the Monte Carlo simulations in Figure 4.5 do not apply to the diffusion problem
associated with the derivation of (4.3).

00000 [ 00000 | 00000 | 00000 | 00000 | 00000 | 00000
A 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000

00000 | 00000 | 00000 | 00000
B 00000 | 00000 | 00000 |00 ([ ] ([ ]

Fig. 4.4 Schematic of a system used to study diffusion under the Higuchi assumptions. (A) Initial
configuration of the system, (B) evolution after time 7. Particles are allowed to leak only from the
right side of the system. Reprinted from [84] with permission from Springer
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Fig. 4.5 Log-log plot of 1 —n () /ng vs. time. Simulation results are indicated as points using the
first 60% of the release data. The slope of the fitted line is 0.51 and corresponds to the exponent of
the Higuchi equation. The theoretical prediction is 0.50

4.5.2 Drug Release from Homogeneous Cylinders

The general problem that we will focus on in this section is the escape of drug
molecules' from a cylindrical vessel. Initially, theoretical aspects are presented
demonstrating that the Weibull function can describe drug release kinetics from
cylinders, assuming that the drug molecules move inside the matrix by a Fickian
diffusion mechanism. Subsequently, Monte Carlo simulations will be used to
substantiate the theoretical result and provide a link between the Weibull model
and the physical kinetics of the release process [84].

4.5.2.1 Theoretical Aspects

A simple approximate solution is sought for the release problem, which can be used
to describe release even when interacting particles are present. The particles are
assumed to move inside the vessel in a random way. The particle escape rate is
expected to be proportional to the number 7 (¢) of particles that exist in the vessel
at time ¢. The rate will also depend on another factor, which will show how “freely”
the particles are moving inside the vessel, how easily they can find the exits, how
many of these exits there are, etc. This factor is denoted by g. Hence, a differential
equation for the escape rate can be written

!The terms “drug molecule” and “particle” will be used in this section interchangeably.
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n(t) = —agn (1),

where a is a proportionality constant and the negative sign means that n (f) decreases
with time. If the factor g is kept constant, it may be included in a and in this case
the solution of the previous equation is

n (tf) = ngexp (—at)

using the initial condition n (0) = n¢. The last equation is similar to the asymptotic
result derived by Fu et al. [72] for pure Fickian diffusion inside a cylinder for long
times (cf. Section 4.4).

It stands to reason to assume that the factor g should be a function of time since
as time elapses a large number of drug molecules leave the vessel and the rest can
move more freely. Thus, in general one can write that g = g (¢) and the previous
differential equation becomes

n(t) =—ag()n(r). (4.13)

A plausible assumption is to consider that g (¢) has the form g () o< .

We are interested in supplying a short-time approximation for the solution of the
previous equation. There are two ways to calculate this solution. The direct way is
to make a Taylor expansion of the solution. The second, more physical way, is to
realize that for short initial time intervals the release rate 7 (¢) will be independent of
n (f). Thus, the differential equation (4.13) can be approximated by n (f) = —ag ().
Both ways lead to the same result.

e For ;= 1/2, (4.13) leads to n (f) & +/t (as a short-time approximation) exactly
as predicted by the Higuchi law.

e For u = 0 we obtain, again as a short-time approximation, the result n (f) =
ny — at corresponding to ballistic exit (zero-order kinetics).

The above imply that choosing g (f) = t~* is quite reasonable. In this case (4.13)
will be

n(t) = —ar *n().
Solving this equation we obtain
n(t) = ngexp (—at’), (4.14)

where b =1 — p.

The above reasoning shows that the stretched exponential function (4.14), or
Weibull function as it is known, may be considered as an approximate solution of
the diffusion equation with a variable diffusion coefficient due to the presence of
particle interactions. Of course, it can be used to model release results even when
no interaction is present (since this is just a limiting case of particles that are weakly
interacting).
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It is clear that it cannot be proven that the Weibull function is the best choice of
approximating the release results. There are infinitely many choices of the form g (7)
and some of them may be better than the Weibull equation. This reasoning merely
indicates that the Weibull form will probably be a good choice. The simulation
results below show that it is indeed a good choice. The above reasoning is quite
important since it provides a physical model that justifies the use of the Weibull
function in order to fit experimental release data.

4.5.2.2 Simulations

A brief outline of the Monte Carlo techniques used for the problem of drug release
from cylinders is described in Appendix B. The results obtained for cylinders of
different dimensions are shown in Figure 4.6. In all cases it is possible to achieve
a quite accurate fitting of the simulation results for n (¢) using the Weibull function
[84]. It turns out that the exponent b takes values in the range 0.69 to 0.75. Figure 4.7
shows that the fitting is very accurate especially at the beginning, and it remains
quite good until all of the drug molecules are released. The number of particles that
have escaped from the matrix is equal to
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Fig. 4.6 Number of particles inside a cylinder as a function of time. (1) Cylinder with height of
31 sites and diameter 16 sites. Number of drug molecules ny = 1750. (2) Cylinder with height 7
sites and diameter 31 sites. Number of drug molecules ny = 2146. (3) Cylinder with height 5 sites
and diameter 41 sites. Number of drug molecules ny = 2843. (4) Cylinder with height 51 sites and
diameter 21 sites. Number of drug molecules ny = 6452
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Fig. 4.7 Number of particles inside a cylinder as a function of time with initial number of drug
molecules ny = 2657. Simulation for cylinder with height 21 sites and diameter 21 sites (dotted
line). Plot of curve n (t) = 2657 exp (—O.O49t°'72), Weibull model fitting (solid line). Plot of curve

n (1) = 2657 (1 — 0.094£°4), power-law fitting (dashed line)

ii(t)=ng—n(t) =no[l—exp(—at’)], (4.15)

where a and b are parameters that have to be experimentally determined.

Ritger and Peppas [67, 68] have shown that the power law (4.11) describes
accurately the first 60% of the release data. It is easy to show that the two
models (4.11) and (4.14) coincide for small values of ¢. Note that 7 (¢) /ny is directly
linked to ¢ (f) /geo- From the Taylor expansion of exp (—y), we can say that for
small values of y we have exp (—x) ~ 1 — y. From (4.15), setting y = at’, one gets

(1) /ng = at’

for small values of ar”, which has the same form as the power-law model. For
this approximation to hold, the quantity ar® has to be small. This does not mean
that 7 itself must be small. As long as a is small,  may take larger values and the
approximation will still be valid.

A comparison of the simulation results and fittings with the Weibull and the
power-law model is presented in Figure 4.7. Obviously, the Weibull model describes
quite well all release data, while the power law diverges after some time. Of course
both models can describe equally well experimental data for the first 60% of the
release curve.
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4.5.2.3 The Physical Connection Between a, b and the System Geometry

The parameters a and b are somehow connected to the geometry and size of the
matrix that contains the particles. This connection was investigated by performing
release simulations for several cylinder sizes and for several initial drug concentra-
tions [84]. The Weibull function was fitted to the simulated data to obtain estimates
for a and b. If one denotes by N,k the number of leak sites and by Ny the total
number of sites, in the continuum limit the ratio Nyeax/Nior is proportional to the leak
surface of the system. Plots of a vs. Njeai/Nior (not shown) were found to be linear
and independent of the initial drug concentration; this implies that a is proportional
to the specific leak surface, i.e., the surface to volume ratio. The slopes of the straight
lines were found to be in the range 0.26 — 0.30 [84]. The value of the slope can
be related to the mathematical model presented in the theoretical section since the
number of particles escaping at time d¢r was assumed to be proportional to an ();
thus, the simulation results can be summarized as an (f) = 0.28 (Neax/Niot) 1 (£).
Assuming a uniform distribution of particles, Nea/Nior is the probability that a
particle is at a site that is just one step from the exit. Accordingly, (Meak/Niot) 72 (2)
is the mean number of particles that are able to escape at a given instant of time.
Since there are 6 neighboring sites in the three-dimensional space, the probability
for a particle to make the escaping step is 1/6 (= 0.17). It is quite close to the
0.28 value of the simulation. The difference is due to the fact that after some time,
the distribution of particles is no longer uniform. There are more empty cells near
the exits than inside, so the mean number of particles that are able to escape at a
given instant is rather less than (Neak/Niot) 12 (£). This explains the higher value of
the slope.

The plot of b values obtained from release simulations for several cylinder
sizes and initial drug concentrations vs. Nk /Nt (not shown) was also linear
[84] with a slope practically independent of the initial concentration, b = 0.65 +
0.4 (Nieak/ Niot)- There are two terms contributing to b; one depends on Njeqx/Niot
and the other does not. Actually b is expected to be proportional to the specific
surface, since a high specific surface means that there are a lot of exits, so finding
an exit is easier. The constant term depends on the ability of the particles to move
inside the matrix, the interaction between the particles, etc. The linear relationship
yields the value of b = 0.69 when the exits cover the entire surface of the cylinder
(Nieak = Niot)-

4.5.3 Release from Fractal Matrices

Apart from the classical mechanisms of release, e.g., Fickian diffusion from a
homogeneous release device (cf. Sections 4.5.1 and 4.5.2) or Case II release there
are also other possibilities. For example, the gastrointestinal fluids can penetrate the
release device as it is immersed in the gastrointestinal tract fluids, creating areas
of high diffusivity. Thus, the drug molecules can escape from the release device
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through diffusion from these high diffusivity “channels.” Now, the dominant release
mechanism is diffusion, but in a complex disordered medium. The same is true
when the polymer inside the release device is assuming a configuration resembling
a disordered medium. This is a model proposed for HPMC matrices [85]. Several
diffusion properties have to be modified when we move from Euclidean space to
fractal and disordered media.

4.5.3.1 The Pioneering Work of Bunde et al.

The problem of the release rate from devices with fractal geometry was first
studied by Bunde et al. [86]. This study was based on a percolation fractal-
cluster at the critical point, assuming cyclic boundary conditions, embedded on
a two-dimensional square lattice. The concentration of open sites is known to be
approximately p = 0.593 (cf. Section 1.7). The fractal dimension of the percolation
fractal is known to be 91/48. The simulation starts with a known initial drug
concentration ¢g = 0.5 and with randomly distributed drug molecules inside the
fractal matrix. The drug molecules move inside the fractal matrix by the mechanism
of diffusion. Excluded volume interactions between the particles, meaning that two
molecules cannot occupy the same site at the same time, were also assumed. The
matrix can leak from the intersection of the percolation fractal with the boundaries
of the square box where it is embedded. Bunde et al. [86] specifically reported that
the release rate of drug in a fractal medium follows a power law and justified their
finding as follows: “the nature of drug release drastically depends on the dimension
of the matrix and is different depending on whether the matrix is a normal Euclidean
space or a fractal material such as a polymer, corresponding to the fact that the basic
laws of physics are quite different in a fractal environment.”

4.5.3.2 Can the Power Law Describe the ‘“Entire” Release Curve?

Based on the findings of Bunde et al. [86], one can also conceive that the entire,
classical % release vs. time curves from devices of fractal geometry should also
follow a power law with (a different) characteristic exponent. Although the power
law has been extensively used for the description of the initial 60% of the release
data, it has also been shown that the power law can describe the entire drug release
profile of several experimental data [71]. Typical examples of fittings of (4.11) to
experimental data of drug release from HPMC matrices along with the estimates
obtained for k and A are shown in Figures 4.8, 4.9, and 4.10 [71]. In all cases,
the entire release profile was analyzed and the fitting results were very good. All
these experimental results were explained [71] on the basis of the Bunde et al. [86]
findings. However, it will be shown below that the conclusion that the release rate
follows a power law is accurate only for infinite problems. For problems in which
the finite size is inherent, as happens to be the case in drug release studies, a power
law is valid only in the initial stages of the release process.



72 4  Drug Release

109 ¢(1)/q,

0.8 1

0.6 1

0.4 R? =0.9989

k=0.0019 (0.0001)

0.2 A
2 =0.8062 (0.0074)

0.0 T T T . .
0 500 1000 1500 2000 2500 3000

¢ (min)

Fig. 4.8 Fitting of (4.11) to the entire set of fluoresceine release data from HPMC matrices [87]
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Fig. 4.9 Fitting of (4.11) to the entire set of buflomedil pyridoxal release data from HPMC
matrices [88]

4.5.3.3 The Weibull Function Describes Drug Release from Fractal
Matrices

Kosmidis et al. [89] reexamined the random release of particles from fractal polymer
matrices using the percolation cluster at the critical point, Figure 4.11, following
the same procedure as proposed by Bunde et al. [86]. The intent of the study was
to derive the details of the release problem, which can be used to describe release
when particles escape not from the entire boundary but just from a portion of the
boundary of the release device under different interactions between the particles that
are present.
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Fig. 4.10 A typical example of fitting (4.11) to chlorpheniramine maleate release data from
HPMC K15M matrix tablets (tablet height 4 mm; tablet radius ratio 1 : 1) [83]

Fig. 4.11 A percolation fractal embedded on a 2-dimensional square lattice of size 50 x 50. Cyclic
boundary conditions were used. We observe, especially on the boundaries, that there are some
small isolated clusters, but these are not isolated since they are actually part of the largest cluster
because of the cyclic boundary conditions. Exits (release sites) are marked in dark gray, while all
lighter gray areas are blocked areas. Reprinted from [89] with permission from American Institute
of Physics

The release problem can be seen as a study of the kinetic reaction A + B — B
where the A particles are mobile, the B particles are static, and the scheme describes
the well-known trapping problem [90]. For the case of a Euclidean matrix the entire
boundary (i.e., the periphery) is made of the trap sites, while for the present case of
a fractal matrix only the portions of the boundary that are part of the fractal cluster
constitute the trap sites, Figure 4.11. The difference between the release problem and
the general trapping problem is that in release, the traps are not randomly distributed
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inside the medium but are located only at the medium boundaries. This difference
has an important impact in real problems for two reasons:

* Segregation is known to play an important role in diffusion in disordered media
(cf. Section 2.5.1). In the release problem the traps are segregated from the
beginning, so one expects to observe important effects related to this segregation.

* The problem is inherently a finite-size problem. Results that otherwise would be
considered as finite-size effects and should be neglected are in this case essential.
At the limit of infinite volume there will be no release at all. Bunde et al. [86]
found a power law also for the case of trapping in a model with a trap in the
middle of the system, i.e., a classical trapping problem. In such a case, which is
different from the model examined here, it is meaningful to talk about finite-size
effects. In contrast, release from the surface of an infinite medium is impossible.

The fractal kinetics treatment of the release problem goes as follows [89]. The
number of particles present in the system (vessel) at time 7 is n (7). Thus, the particle
escape rate will be proportional to the fraction g of particles that are able to reach
an exit in a time interval dz, i.e., the number of particles that are sufficiently close to
an exit. Initially, all molecules are homogeneously distributed over the percolation
cluster. Later, due to the fractal geometry of the release system segregation effects
will become important [17]. Accordingly, g will be a function of time, so that g (¢)
will be used to describe the effects of segregation (generation of depletion zones),
which is known to play an important role when the medium is disordered instead of
homogeneous [17].

We thus expect a differential equation of the form of (4.13) to hold, where a is
a proportionality constant, g (¢) n () denotes the number of particles that are able to
reach an exit in a time interval dz, and the negative sign denotes that n (f) decreases
with time. This is a kinetic equation for an A + B — B reaction. The constant trap
concentration [B] has been absorbed in the proportionality constant a. The basic
assumption of fractal kinetics [17] is that g (¢) has the form g (¢) o< ~*. In this case,
the solution is supplied by (4.14).

The form of this equation is a stretched exponential. In cases in which a system
can be considered as infinite (for example, release from percolation fractals from
an arbitrary site located at the middle of the volume) then the number of particles
n (¢) inside the system is practically unchanged. Treating n () as constant and letting
g (t) o< in the right-hand side of (4.13) will lead to a power law for the quantity
n (f). Since most physical problems belong to this class it is widely believed that the
release rate from fractal matrices follows a power law. In the case of release from
the periphery and if we want to study the system until all particles have escaped, as
is often the case for practical applications, then (4.14) is of practical importance.

The above reasoning shows that the stretched exponential function (4.14), or
Weibull function as it is known, may be considered as an approximate solution of
the release problem. The advantage of this choice is that it is general enough for
the description of drug release from vessels of various shapes, in the presence or
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absence of different interactions, by adjusting the values of the parameters a and b.
Monte Carlo simulation methods were used to calculate the values of the parameters
a and (mainly) the exponent b [89].

4.5.3.4 Simulations

The drug molecules move inside the fractal matrix by the mechanism of diffusion,
assuming excluded volume interactions between the particles. The matrix can leak
at the intersection of the percolation fractal with the boundaries of the square box
where it is embedded, Figure 4.11.

The diffusion process is simulated by selecting a particle at random and moving it
to arandomly selected nearest-neighbor site. If the new site is an empty site, then the
move is allowed and the particle is moved to this new site. If the new site is already
occupied, the move is rejected since excluded volume interactions are assumed. A
particle is removed from the lattice as soon as it migrates to a site lying within
the leak area. After each particle move, time is incremented. As previously, the
increment is chosen to be 1/n (), where n (¢) is the number of particles remaining
in the system. This is a typical approach in Monte Carlo simulations, and it is
necessary because the number of particles continuously decreases, and thus, the
time unit is MCS characterizing the system is the mean time required for all 7 (¢)
particles present to move one step. The number of particles that are present inside the
matrix as a function of time until a fixed number of particles (50 particles) remain
in the matrix is monitored. The results are averaged using different initial random
configurations over 100 realizations. The release rate ¢ () is calculated by counting
the number of particles that diffuse into the leak area in the time interval between ¢
andt 4 1.

Figure 4.12 shows simulation results (line) for the release of particles from a
fractal matrix with initial concentration ¢, = 0.50, on a lattice of size 50 x 50.
The simulation stops when more than 90% of the particles have been released from
the matrix. This takes about 20, 000 MCS. In the same figure the data by Bunde et
al. [86] (symbols), which cover the range 50 — 2, 000 MCS, are included. Because
of the limited range examined in that study, the conclusion was reached that the
release rate ¢ () is described by a power law, with an exponent value between 0.65
and 0.75 [86]. With the extended range examined, Figure 4.12, this conclusion is
not true, since in longer times ¢ (¢) deviates strongly from linearity, as a result of the
finiteness of the problem.

In Figure 4.13, n () /ny is plotted as a function of time for different lattice sizes.
The data were fitted with a Weibull function (4.14), where the parameter a ranges
from 0.05 to 0.01 and the exponent b from 0.35 to 0.39. It has been shown [84]
that (4.14) also holds in the case of release from Euclidean matrices. In that case the
value of the exponent b was found to be b ~ 0.70.

These results reveal that the same law describes release from both fractal and
Euclidean matrices. The release rate is given by the time derivative of (4.14). For
early stages of the release, calculating the derivative of (4.14) and performing a
Taylor series expansion of the exponential will result in a power law for the release



76 4  Drug Release

1 —_——r —_—

0.01

100 1000 10000
t (MCS)

Fig. 4.12 Plot of the release rate i](t) vs. time. The lattice size is 50 X 50 and the initial
concentration of particles is ¢ = 0.50. Points are the results given in [86], while the line is
the result of the simulation in [89]

rate, just as Bunde et al. [86] have observed. If we oversimplify the release problem
by treating it as a classical kinetics problem, we would expect a pure exponential
function” instead of a stretched exponential (Weibull) function. The stretched
exponential arises due to the segregation of the particles because of the fractal
geometry of the environment. Concerning the release from Euclidean matrices [84],
it has been demonstrated that the stretched exponential functional form arises due
to the creation of a concentration gradient near the releasing boundaries. Note that
although the functional form describing the release is the same in Euclidean and
fractal matrices, the value of the exponent b is different, reflecting the slowing
down of the diffusion process in a disordered medium. However, these results
apparently point to a universal release law given by the Weibull function. The above
considerations substantiate the use of the Weibull function as a more general form
for drug release studies.

4.6 Discernment of Drug Release Kinetics

In the two previous sections the Weibull function was shown to be successful
in describing the entire release profile assuming Fickian diffusion of drug from
fractal as well as from Euclidean matrices. Since specific values were found for

2The classical kinetics solution is obtained by solving (4.13) in case of g () = 1.
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Fig. 4.13 Plot of the number of particles (normalized) remaining in the percolation fractal as a
function of time ¢ for lattice sizes 100 x 100, 150 x 150, and 200 X 200. # (¢) is the number of
particles that remain in the lattice at time ¢ and no is the initial number of particles. Simulation
results are represented by points. The solid lines represent the results of nonlinear fitting with a
Weibull function

the exponent b for each particular case, a methodology based on the fitting results
of the Weibull function (4.14) to the entire set of experimental %-release-time
data can be formulated for the differentiation of the release kinetics[91]. Basically,
successful fittings with estimates for b higher than one (sigmoid curves) rule out the
Fickian diffusion of drug from fractal or Euclidean spaces and indicate a complex
release mechanism. In contrast, successful fittings with estimates for b lower than
one can be interpreted in line with the results of the Monte Carlo simulations of
Sections 4.5.2 and 4.5.3. The exponent b of the Weibull function using the entire set
of data was associated with the mechanisms of diffusional release as follows:

e b < 0.35: Not found in simulation studies [84, 89]. May occur in highly
disordered spaces much different from the percolation cluster.

* b =~ 0.35 — 0.39: Diffusion in fractal substrate morphologically similar to the
percolation cluster [89].

* 0.39 < b < 0.69: Diffusion in fractal or disordered substrate different from the
percolation cluster. These values were not observed in Monte Carlo simulation
results [84, 89]. It is, however, plausible to assume this possibility since there has
to be a crossover from fractal to Euclidian dimension.
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* b = 0.69 — 0.75: Diffusion in normal Euclidean space [84].

¢ 0.75 < b < 1: Diffusion in normal Euclidean substrate with contribution of
another release mechanism. In this case, the power law can describe the entire
set of data of a combined release mechanism (cf. below).

* b = I: First-order release obeying Fick’s first law of diffusion; the rate constant
a controls the release kinetics, and the dimensionless solubility—dose ratio
determines the final fraction of dose dissolved [92].

e b > 1: Sigmoid curve indicative of complex release mechanism. The rate of
release increases up to the inflection point and thereafter declines.

When Fickian diffusion in normal Euclidean space is justified, further verifica-
tion can be obtained from the analysis of 60% of the release data using the power
law in accord with the values of the exponent quoted in Table 4.1. Special attention
is given below for the values of 4 in the range 0.75 — 1.0, which indicate a combined
release mechanism. Simulated pseudodata were used to substantiate this argument
assuming that the release obeys exclusively Fickian diffusion up to time ¢+ = 90
(arbitrary units), while for # > 90 a Case II transport starts to operate too; this
scenario can be modeled using

q (1) 0.70 0 for # < 90,

=1- —0.05¢" 4.16
oo exp ( )+ 0.004 (t — 90)°% for 7 > 90. (4.16)
Also, the following equation was used to simulate concurrent release mechanisms
of Fickian diffusion and Case II transport throughout the release process:

q@) _

1 — exp (—0.057%) + 0.0041"%°. 4.17)
qoo

Pseudodata generated from (4.16) and (4.17) are plotted in Figure 4.14 along
with the fitted functions

y () = 0.0652°°31 and y () = 0.0787¢0->440,

The nice fittings of the previous functions to the release data generated from (4.16)
and (4.17), respectively, verify the argument that the power law can describe the
entire set of release data following combined release mechanisms. In this context,
the experimental data reported in Figures 4.8 to 4.10 and the nice fittings of the
power-law equation to the entire set of these data can be reinterpreted as a combined
release mechanism, i.e., Fickian diffusion and a Case II transport.
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Fig. 4.14 (A) Points are simulation data produced using (4.16). The solid line is the fitting of the
power law (4.11) to data. Best-fitting parameters are k = 0.0652 for the proportionality constant
and A = 0.5351 for the exponent. (B) Points are simulation data produced using (4.17). The solid
line is the fitting of the power law (4.11) to data. Best-fitting parameters are k = 0.0787 for the
proportionality constant and A = 0.5440 for the exponent. Time is expressed in arbitrary units
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4.7 Release from Bioerodible Microparticles

In bioerodible drug delivery systems various physicochemical processes take place
upon contact of the device with the release medium. Apart from the classical
physical mass transport phenomena (water imbibition into the system, drug dis-
solution, diffusion of the drug, creation of water-filled pores) chemical reactions
(polymer degradation, breakdown of the polymeric structure once the system
becomes unstable upon erosion) occur during drug release.

The mathematical model developed by Siepmann et al. [93] utilizes Monte Carlo
techniques to simulate both the degradation of the ester bonds of the polymer
poly-lactic-co-glycolic acid (PLGA) and the polymer’s erosion (cleavage of the
polymer chains throughout the PLGA matrix). Both phenomena are considered
random, and the lifetime of the pixel representing the polymer’s degradation is
calculated as a function of a random variable obeying a Poisson distribution. The
modeling of the physical processes (dissolution and diffusion) takes into account
the increase of porosity of the matrix with time because of the polymer’s erosion.
This information is derived from the Monte Carlo simulations of the polymer’s
degradation—erosion and allows the calculation of the time- and position-dependent
axial and radial diffusivities of the drug. Further, the diffusional mass transport
processes are described using Fick’s second law with spatially and temporally
dependent diffusion coefficients. The numerical solution of the partial differential
equation describing the kinetics of the three successive phases of drug release
(initial burst, zero-order- and second rapid release) was found to be in agreement
with the experimental release data of 5-fluorouracil loaded PLGA microparticles,
Figure 4.15 [93]. This model has been further used to investigate the effect of the
size of the biodegradable microparticles on the release rate of 5-fluorouracil [94].
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B experiment
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25
0 1 1 1
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Fig. 4.15 Triphasic drug release kinetics from PLGA-based microparticles in phosphate buffer
pH 7.4: experimental data (symbols) and fitted theory (curve). Reprinted from [93] with permission
from Springer
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4.8 Dynamic Aspects in Drug Release

Although the development of controlled drug delivery systems is usually based on
the simple notion “a constant delivery is optimal,” there are well-known exceptions.
For example, drug administration in a periodic, pulsed manner is desirable for
endogenous compounds, e.g., hormones [95]. The most classical example is the
administration of insulin to diabetic patients in order to maintain blood glucose
levels at an approximately constant level [96]. In reality, the pancreas behaves as
a feedback controller, which changes its output with time in response to food intake
or changes in metabolic activity. Hence, the delivery system should not simply
maintain insulin levels within an acceptable physiological range to counterbalance
the failure of the patient’s pancreas to secrete sufficient insulin, but it should also
mimic the normal pancreas’s feedback controlling function. In other words, the
delivery system should secrete insulin according to the (bio)sensed glucose levels in
an automatic, periodic manner. These two steps, sensing and delivery, are the basic
features of all self-regulated delivery systems regardless the variable, e.g., glucose,
temperature, pressure, that is monitored to control the delivery of a pharmacological
agent [97].

Since all these systems behave like autonomous oscillators fueled either directly
or indirectly by the variable monitored, the factors involved in the production of
pulsatile oscillations have been studied thoroughly. One of the most studied means
for driving the periodic delivery of drugs is the utilization of chemical pH oscillators
[98, 100, 101]. It was demonstrated that periodic drug delivery could be achieved as
a result of the effect of pH on the permeability of acidic or basic drugs through
lipophilic membranes. The model system of Giannos et al. [100] comprises a
thin ethylene vinyl-acetate copolymer membrane separating a sink from an iodate-
thiosulfate-sulfite pH oscillator compartment into which drugs like nicotine or
benzoic acid are introduced. In the work of Misra and Siegel [98, 101] a model
system consisting of the bromate-sulfite-marble pH oscillator in a continuously
stirred tank reactor is used, along with acidic drugs of varying concentration.
Figure 4.16 provides a schematic for the periodic flux of a drug through the
membrane according to the pH oscillations. In one of the studies, Misra and Siegel
[98] provided evidence that low concentrations of acidic drugs can attenuate and
ultimately quench chemical pH oscillators by a simple buffering mechanism. In the
second study, Misra and Siegel [101] demonstrated that multiple, periodic pulses of
drug flux across the membrane can be achieved when the concentration of the drug
is sufficiently low.

Another approach for periodically modulated drug release is based on an
enzyme-hydrogel system, which, due to negative chemomechanical feedback
instability, swells and de-swells regularly in the presence of a constant glucose
level [102]. The enzyme glucose oxidase catalyses the conversion of glucose to
gluconate and hydrogen ions; the latter affect the permeability of the poly(N-
isopropylacrylamide-co-methacrylic acid) hydrogel membrane to glucose since the
hydrogel swells with increasing pH and de-swells with decreasing pH, Figure 4.17.
This system has been studied extensively from a dynamic point of view [99, 103].
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Fig. 4.16 Illustration of Acidic Drug Basic Drug
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Fig. 4.17 Schematic of pulsating drug delivery device based on feedback inhibition of glucose
transport to glucose oxidase through a hydrogel membrane. Changes in permeability to glucose
are accompanied by modulation of drug permeability. Reprinted from [99] with permission from
American Institute of Physics

It was found that the model allows, depending on system parameters and external
substrate concentration, two separate single steady states, double steady state, and
permanently alternating oscillatory behavior.



Chapter 5
Drug Dissolution

The rate at which a solid substance dissolves in its own solution
is proportional to the difference between the concentration of
that solution and the concentration of the saturated solution.

Arthur A. Noyes and Willis R. Whitney
Massachusetts Institute of Technology, Boston
Journal of the American Chemical Society 19:930-934 (1897)

The basic step in drug dissolution is the reaction of the solid drug with the fluid
and/or the components of the dissolution medium. This reaction takes place at
the solid-liquid interface and therefore dissolution kinetics are dependent on three
factors, namely the flow rate of the dissolution medium toward the solid—liquid
interface, the reaction rate at the interface, and the molecular diffusion of the
dissolved drug molecules from the interface toward the bulk solution, Figure 5.1. As
we stated in Section 2.4.2, a process (dissolution in our case) can be either diffusion
or reaction-limited depending on which is the slower step. The relative importance
of interfacial reaction and molecular diffusion (steps 2 and 3 in Figure 5.1,
respectively) can vary depending on the hydrodynamic conditions prevailing in
the microenvironment of the solid. This is so since both elementary steps 2 and
3 in Figure 5.1 are heavily dependent on the agitation conditions. For example,
diffusion phenomena become negligible when externally applied intense agitation
in in vitro dissolution systems gives rise to forced convection. Besides, the reactions
at the interface (step 2) and drug diffusion (step 3) in Figure 5.1 are dependent
on the composition of the dissolution medium. Again, the relative importance can
vary according to the drug properties and the specific composition of the medium.
It is conceivable that our limited knowledge of the hydrodynamics under in vivo
conditions and the complex and position- and time-dependent composition of the
gastrointestinal fluids complicates the study of dissolution phenomena in particular
when one attempts to develop in vitro—in vivo correlations.

Early studies in this field of research formulated two main models for the
interpretation of the dissolution mechanism: the diffusion layer model and the
interfacial barrier model. Both models assume that there is a stagnant liquid layer
in contact with the solid, Figure 5.2. According to the diffusion layer model
(Figure 5.2A), the step that limits the rate at which the dissolution process occurs
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// Interface
// Solid drug particle //
HI

Fig. 5.1 The basic steps in the drug dissolution mechanism. (1) The molecules (o) of solvent
and/or the components of the dissolution medium are moving toward the interface; (2) adsorption—
reaction takes place at the liquid—solid interface; (3) the dissolved drug molecules (®) move toward
the bulk solution

T ey

i slow

Fig. 5.2 Schematic representation of the dissolution mechanisms according to: (A) the diffusion
layer model and (B) the interfacial barrier model

is the rate of diffusion of the dissolved drug molecules through the stagnant liquid
layer rather than the reaction at the solid-liquid interface. For the interfacial barrier
model (Figure 5.2B), the rate-limiting step of the dissolution process is the initial
transfer of drug from the solid phase to the solution, i.e., the reaction at the solid—
liquid interface.

Although the diffusion layer model is the most commonly used, various alter-
ations have been proposed. The current views of the diffusion layer model are
based on the so-called effective diffusion boundary layer, the structure of which
is heavily dependent on the hydrodynamic conditions. In this context, Levich [104]
developed the convection—diffusion theory and showed that the transfer of the solid
to the solution is controlled by a combination of liquid flow and diffusion. In other
words, both diffusion and convection contribute to the transfer of drug from the solid
surface into the bulk solution. It should be emphasized that this observation applies
even under moderate conditions of stirring.
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5.1 The Diffusion Layer Model

Noyes and Whitney published [105] in 1897 the first quantitative study of a
dissolution process. Using water as a dissolution medium, they rotated cylinders of
benzoic acid and lead chloride and analyzed the resulting solutions at various time
points. They found that the rate ¢ (f) of change of concentration ¢ (r) of dissolved
species was proportional to the difference between the saturation solubility ¢, of the
species and the concentration existing at any time t. Using k as a proportionality
constant, this can be expressed as

c(t) =kles—c ()] ¢ (0) = 0. (5.1)

Although it was not stated in the original article of Noyes and Whitney, it should
be pointed out that the validity of the previous equation relies on the assumption
that the amount used, g, is greater than or equal to the amount required to saturate
the dissolution medium, g,. Later on, (5.1) was modified [104, 106] and expressed
in terms of the dissolved amount of drug ¢ () at time ¢ while the effective surface
area A of the solid was taken into account:

a0 =" [ei= "] a0 =0, (5:2)

where D is the diffusion coefficient of the substance, § is the effective diffusion
boundary layer thickness adjacent to the dissolving surface, and V is the volume of
the dissolution medium. In this case, the first-order rate constant k (dimension of
time™!) appearing in (5.1) and governing the dissolution process is

DA
k= o (5.3)

The integrated form of (5.2) gives the cumulative mass dissolved at time :
q (1) = ¢,V [l —exp (—k1)]. (5.4)

The limit + — oo defines the total drug amount, g; = ¢V, that could be eventually
dissolved in the volume V assuming that the amount used g is greater than g,. Thus,
we can define the accumulated fraction of the drug in solution at time ¢ as the ratio
q (t) /qs. Equation (5.4) expressed in terms of concentration (¢ (f) = ¢ (¢t) /V) leads
to the most useful form for practical purposes:

c(t) = ¢ [1 —exp(—kt)]. (5.5)
Equation (5.5) is the classical equation quoted in textbooks indicating the expo-

nential increase of concentration c () approaching asymptotically the saturation
solubility c;.
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Also, (5.1) indicates that initially (# — 0) when ¢ (¢) is small (¢ (f) < 0.15¢y) in
comparison to c;:

¢ (7) = kes.
t—=0

If this applies then we consider that sink conditions exist. Under sink conditions the
concentration c () increases linearly with time,

c(t) =kestt — 0, (5.6)

and the dissolution rate is proportional to saturation solubility:

q()| = Vke,.
t—0

5.1.1 Alternative Classical Dissolution Relationships

The aforementioned analysis demonstrates that these classical concepts are in
full agreement with Fick’s first law of diffusion and the equivalent expressions
in Sections 2.3 and 2.4. However, there are obvious deficiencies of the classical
description of dissolution since the validity of (5.3) presupposes that all terms in
this equation remain constant throughout the dissolution process. For example, the
drug surface area A of powders and immediate release formulations is decreasing
as dissolution proceeds. In fact, a dramatic reduction of the surface area takes
place whenever the dose is not used in large excess, i.e., the drug mass divided
by product of the volume of the dissolution medium and the drug’s solubility is
less than 10. This problem has been realized over the years and equations that take
into account the diminution of the surface area have been published. For example,
Hixson and Crowell [107] developed the following equation, which is usually called
the cube-root law, assuming that dissolution occurs from spherical particles with a
mono-disperse size distribution under sink conditions:

1/3
a” = a0 = ks, (5.7)
where go and ¢ (¢) are the initial drug amount and the drug amount at time ¢ after
the beginning of the process, respectively, and k;,3 is a composite cube-root rate

constant. Alternatively, when sink conditions do not apply, the following equation
(usually called the law of 2/3) can be used:

lq (0] — g5 = kaat, (5.8)

where k3 is a composite rate constant for the law of 2/3.
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Although these approaches demonstrate the important role of the drug material’s
surface and its morphology on dictating the dissolution profile, they still suffer
from limitations regarding the shape and size distribution of particles as well as
the assumptions on the constancy of the diffusion layer thickness § and the drug’s
diffusivity D throughout the process implied in (5.5), (5.6), (5.7), and (5.8). In
reality, the parameters § and D cannot be considered constant during the entire
course of the dissolution process when poly-disperse powders are used and/or an
initial phase of poor deaggregation of granules or poor wetting of formulation is
encountered. In addition, the diffusion layer thickness appears to depend on particle
size. For all aforementioned reasons, (5.5), (5.6), (5.7), and (5.8) have been proven
adequate in modeling dissolution data only when the presuppositions of constancy
of terms in (5.3) are fulfilled.

5.1.2 Fractal Considerations in Drug Dissolution

Drug particles are classically represented as ideal smooth spheres when dissolution
phenomena are considered. The surface area of a spherical smooth object is a
multiple of the scale, e.g., cm?, and has a topological dimension d, = 2. If one
knows the radius p, the surface area of the sphere is 47 pz. However, many studies
indicate that the surfaces of most materials are fractal [108]. The measured surface
areas of irregular and rough surfaces increase with decreasing scale according to the
specific surface structure. These surfaces have fractal dimensions dy lying between
the topological and the embedding dimensions: 2 < df < 3.

Since the surface area of solids in dissolution studies is of primary importance,
the roughness of the drug particles has been the subject of many studies. For
example, Li and Park [109] used atomic force microscopy to determine the fractal
properties of pharmaceutical particles. Moreover, analysis of the surface ruggedness
of drugs, granular solids, and excipients using fractal geometry principles has been
applied extensively [110-113]. Most of these studies underline the importance of
surface ruggedness on dissolution. It is also interesting to note that considerations of
the surface roughness are not restricted to the macroscopic level. The same concepts
can also be applied to microscopic levels. A typical example is the importance of
the surface roughness of proteins in binding phenomena [114].

Farin and Avnir [115] were the first to use fractal geometry to determine effects
of surface morphology on drug dissolution. This was accomplished by the use of
the concept of fractal reaction dimension d, [116], which is basically the effective
fractal dimension of the solid particle toward a reaction (dissolution in this case).
Thus, (5.7) and (5.8) were modified [115] to include surface roughness effects on
the dissolution rate of drugs for the entire time course of dissolution (5.9) and under
sink conditions (5.10):

g (O] —qo* = akjt, (5.9)

a0 =g 0] = g, (1 —a) k{51, (5.10)
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where & = d,/3 and ¢, is the drug amount that could be dissolved in the volume
of the dissolution medium and k7 /3 is the dissolution rate constant of the modified
cube-root. Although the previous equations describe quantitatively the dissolution
of solids with fractal surfaces, their application presupposes that the value of d, is
known.

According to the classical scaling laws, an estimate of d, can be obtained from

the slope of a log—log plot of the initial rate of dissolution Q(t)) vs. the radius
t—0

p of the various particle sizes. This kind of calculation relies on the fundamental
proportionality

q(t) 0 O(.,40(10dr_3’
t—

where A is the effective surface area; the slope of log g (t)) o vs. log p corresponds
t—

to d, — 3, in agreement with the relationship for measurements regarding areas in
Section 1.4.2. However, this approach for the calculation of d, requires the execution
of a number of experiments with a variety of particles of well-defined size and shape
characteristics, which can also exhibit different d, values.

For the aforementioned reasons, a simpler method requiring only a dissolution
run with particles of a given size has been proposed for the estimation of d, [117].
As can be seen from (5.9) and (5.10), on plotting the values of the left-hand side
against time ¢, one can obtain the value of k{ , from the slope of the straight line.
In practice, this involves choosing a starting value for d,, e.g., 2, and, using an
iterative method, searching for the linearity demanded by the previous equations for
the experimental data pairs (g () , ). When this has been found, one knows values

both for k’l"/3 and d,.

5.1.3 On the Use of the Weibull Function in Dissolution

In 1951, Weibull [118] described a more general function that can be applied
to all common types of dissolution curves. This function was introduced in the
pharmaceutical field by Langenbucher in 1972 [119] to describe the accumulated
fraction of the drug in solution at time 7, and it has the following form:!

q() _
doo

1 —exp[— (AD)"], (5.11)

'In the pharmaceutical literature the exponential in the Weibull function is written as exp (—Az)

and therefore A has dimension time™*. In the version used herein (equation 5.11), the dimension

of A is time™!.
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Fig. 5.3 Accumulated fraction of drug dissolved, ¢ (r) /¢oo as a function of At according to the
Weibull distribution function (5.11)

where ¢ is the total mass that can be eventually dissolved and A, u are constants.
The scale parameter A defines the time scale of the process, while the shape
parameter | characterizes the shape of the curve, which can be exponential (u =
1), S-shaped (i > 1), or exponential with a steeper initial slope (1 < 1), Figure 5.3.

It is also worthy of mention that a gamma distribution function proposed by
Djordjevic [120] for modeling in vitro dissolution profiles implies a relevant type of
time dependency for the amount of drug dissolved.

The successful use of the Weibull function in modeling the dissolution profiles
raises a plausible query: What is the rationale of its success? The answer will be
sought in the relevance of the Weibull distribution to the kinetics prevailing during
the dissolution process.

The basic theory of chemical kinetics originates in the work of Smoluchowski
[121] at the turn of the twentieth century. He showed that for homogeneous
reactions in three-dimensional systems the rate constant is proportional to the
diffusion coefficient. In dissolution studies this proportionality is expressed with
k o« D, where k is the intrinsic dissolution rate constant. In addition, both D and
k are time-independent in well-stirred, homogeneous systems. However, that is not
true for lower dimensions and disordered systems in chemical kinetics. Similarly,
homogeneous conditions may not prevail during the entire course of the dissolution
process in the effective diffusion boundary layer adjacent to the dissolving surface.
It is very difficult to conceive that the geometric and hydrodynamic characteristics
of this layer are maintained constant during the entire course of drug dissolution.
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Accordingly, the drug’s diffusional properties change with time and the validity of
use of a classical rate constant & in (5.1) is questionable. It stands to reason that an
instantaneous yet time-dependent rate coefficient k (f) governing dissolution under
inhomogeneous conditions can be written as

-V
k(1) = ko (; ) with 50, (5.12)

where ko is a rate constant not dependent on time, #, is a time scale parameter,
and y is a pure number. In a simpler form (t, = 1), the previous relation is
used in chemical kinetics to describe phenomena that take place under dimensional
constraints or understirred conditions [17]. It is used here to describe the time
dependency of the dissolution rate “constant” that originates from the change of
the parameters involved in (5.3) during the dissolution process, i.e., the reduction
of the effective surface area .A and/or the inhomogeneous hydrodynamic conditions
affecting 6 and subsequently D.

Using (5.12) to replace k in (5.1), also changing the concentration variables to
amounts Ve (f) = ¢ (t), Vdc(t) = dq (1), and using, instead of ¢,V = g, for
generality purposes ¢V = goo (Which applies to both goo = g5 and geo = o), We
obtain

-y
é(t)=ko() [do —q (O],  q(to) =0,

t
to

and after integration,

q (1) { koto [( t )l‘y (IO)I_YB
=1—expy— — .
qoo 1—vy to to

Taking the limit as #y approaches zero, for y < 1 we get the following equation:

1=y
fi](t) — 1 exp [_lko_toy (tt) ] 5.13)

This equation is identical to the Weibull equation (5.11) for

1 koto \/07V
A= ( ) and u=1—ry.
to \1—y

Furthermore, (5.13) collapses to the “homogeneous” (5.4) when y = 0. These
observations reveal that the parameter i of (5.11) can be interpreted in terms of
the heterogeneity of the process. For example, an S-shaped dissolution curve with
@ > 1in (5.11) for an immediate release formulation can now be interpreted as
a heterogeneous dissolution process (with y < 0 in equation 5.13), whose rate
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increases with time during the upwards, concave initial limb of the curve and
decreases after the point of inflection. This kind of behavior can be associated with
an initial poor deaggregation or poor wetting.

Most importantly, it was shown that the structure of the Weibull function captures
the time-dependent character of the rate coefficient governing the dissolution
process. These considerations agree with Elkoski’s [122] analysis of the Weibull
function and provide an indirect, physically based interpretation [123] for its
superiority over other approaches for the analysis of dissolution data. In other words,
drug dissolution is a typical example of a heterogeneous process since, as dissolution
proceeds, homogeneous conditions cannot be maintained in the critical region of
the microenvironment of drug particles. Thus, drug dissolution exhibits fractal-
like kinetics like other heterogeneous processes (e.g., adsorption, catalysis) since
it takes place at the boundary of different phases (solid-liquid) under topological
constraints.

5.1.4 Stochastic Considerations

The dissolution process can be interpreted stochastically since the profile of the
accumulated fraction of amount dissolved from a solid dosage form gives the
probability of the residence times of drug molecules in the dissolution medium.
In fact, the accumulated fraction of the drug in solution, g (¢) /goo, has a statistical
sense since it represents the cumulative distribution function of the random variable
dissolution time T, which is the time up to dissolution for an individual drug
fraction from the dosage form. Hence, ¢ (f) /goo can be defined statistically as
the probability that a molecule will leave the formulation prior to ¢, i.e., that the
particular dissolution time 7 is smaller than t:

q (1) /qgoo = Pr[leave the formulation priorto 7] = Pr[T < 1].
Conversely,
1 — g (¢) /qoo = Pr[survive in the formulationto f] = Pr[T > 1].

Since ¢ () /qoo is a distribution function, it can be characterized by its statistical
moments. The first moment is defined as the mean dissolution time (MDT) and
corresponds to the expectation of the time up to dissolution for an individual drug
fraction from the dosage form:

MDT = E[T] = /ootdq @0 _ ABC (5.14)

0 doo doo

where goo is the asymptote of the dissolved amount of drug and ABC is the area
between the cumulative dissolution curve and the horizontal line that corresponds
to g0, Figure 5.4.
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q@®

Fig. 5.4 The cumulative dissolution profile ¢ () as a function of time. The symbols are defined in
the text

Since the fundamental rate equation of the diffusion layer model has the typical
form of a first-order rate process (5.1), using (5.4) and (5.14), the MDT is found
equal to the reciprocal of the rate constant k:

1
MDT = v (5.15)

As a matter of fact, all dissolution studies, which invariably rely on (5.1) and do not
make dose considerations, utilize (5.15) for the calculation of the MDT. However,
the previous equation applies only when the entire available amount of drug (dose)
qo is dissolved. Otherwise, the mean dissolution time of the dose is not defined, i.e.,
MDT is infinite.

In fact, it will be shown below that MDT is dependent on the solubility—dose ratio
if one takes into account the dose g¢ actually utilized [92]. Also, it will be shown
that the widely used (5.15) applies only to a special limiting case. Multiplying both
parts of (5.1) by V/qo (volume of the dissolution medium/actual dose), one gets
the same equation in terms of the fraction of the actual dose of drug dissolved,

0 (1) 2 q@) /90
e =k[}—9®].0 0 =0, (5.16)

where 0 is the solubility—dose ratio

gpa 9o _ 9o (5.17)
sV qs



5.1 The Diffusion Layer Model 93

expressed as a dimensionless quantity. Equation (5.16) has two solutions:

e When 6 <1 (go < ¢;), which means that the entire dose is eventually dissolved:

1
[1 —exp (—kt)] for t < to,
Hn=179
¢ (1) {1 for ¢t > to,
where t, = —ln(lk_ %) is the time at which dissolution terminates (p(t) = 1).

Similarly to (5.14), the MDT is

O+ (1—0)In(l—0)

10 (5.18)

to
MDT :/ tdo (1) =
0

This equation reveals that the MDT depends on both k and 6. Figure 5.5 shows
a plot of MDT as a function of 8 for three different values of the rate constant
k. Note that (5.15) is obtained from (5.18) for & = 1 (the actual dose is equal to
the amount needed to saturate the volume of the dissolution medium). In other
words, the classically used (5.15) is a special case of the general equation (5.18).

e When 6 > 1 (g0 > ¢5), which means that only a portion of the dose is dissolved
and the drug reaches the saturation level 1/6:

o) = 5 11— exp (D).

10
8 - m
=9 1
Z =0.1(h"!
E k=0.1(h")
; 4 /‘
k=02(h")
2 - m
k=05(h")
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

0

Fig. 5.5 Plot of MDT vs. 6 using (5.18) for different values of k
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The MDT is infinite because the entire dose is not dissolved. Therefore, the
term mean saturation time, MDTy, [124] has been suggested as more appropriate
when we refer only to the actually dissolved portion of dose, in order to get a
meaningful time scale for the portion of the dissolved drug dose:

[T de(m 1
MDTJ—/O Lo = e (5.19)

which is independent of 6.

This analysis demonstrates that when 6 < 1, solubility—dose considerations
should be taken into account in accord with (5.18) for the calculation of MDT,
the MDT is infinite when 6 > 1. Equation (5.15) can be used to obtain an estimate
for MDT only in the special case 6 = 1. Finally, (5.19) describes the MDT; of the
fraction of dose dissolved when 6 > 1.

5.2 The Interfacial Barrier Model

In the interfacial barrier model of dissolution it is assumed that the reaction at
the solid-liquid interface is not rapid due to the high free energy of activation
requirement and therefore the reaction becomes the rate-limiting step for the
dissolution process (Figure 5.1), thus, drug dissolution is considered as a reaction-
limited process for the interfacial barrier model. Although the diffusion layer model
enjoys widespread acceptance since it provides a rather simplistic interpretation
of dissolution with a well-defined mathematical description, the interfacial barrier
model is not widely used because of the lack of a physically based mathematical
description.

In recent years three novel models [124—-126] have appeared that were proposed
to describe the heterogeneous features of drug dissolution. They are considered here
as continuous (in well-stirred media) or discrete (in understirred media) reaction-
limited dissolution models. Their derivation and relevance are discussed below.

5.2.1 Continuous Reaction-Limited Dissolution Models

Lansky and Weiss [124] proposed a novel model by considering the reaction of the
undissolved solute with the free solvent yielding the dissolved drug complexed with
solvent:

[undissolved drug] + [free solvent] — [dissolved drug complexed with solvent] .
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Further, global concentrations as a function of time for the reactant species of the
above reaction were considered, assuming that the solvent is not in excess and
applying classical chemical kinetics. The following equation was found to describe
the rate of drug dissolution in terms of the fraction of drug dissolved:

o) =k [L—p@®][1—0¢ ()], ¢ 0) =0, (5.20)

where ¢ () denotes the fraction of drug dissolved up to time ¢, and 6 is the
dimensionless solubility—dose ratio (5.17); k* is a fractional (or relative) dissolution
rate constant with dimensions time™'. The fractional dissolution rate is a decreasing
function of the fraction of dissolved amount ¢ (f), as has also been observed for
the diffusion layer model (5.16). However, (5.20) reveals a form of second-order
dependency of the reaction rate on the dissolved amount ¢ (¢). In reality, a classical
second-order dependency is observed for & = 1. These are unique features, which
are not encountered in models dealing with diffusion-limited dissolution. All the
above characteristics indicate that (5.20) describes the continuous—homogeneous
character of the reaction of the solid with the solvent or the component(s) of the
dissolution medium, i.e., a reaction-limited dissolution process in accord with the
interfacial barrier model.
The solution of (5.20) for 6 # 1 yields the monotonic function

exp[k* (1 —=0)1]—1

¢ = ol (1—0)]— 6

(5.21)

and for 0 =1,

k*t

1) = s
00 = iy

with the same asymptotes as found above for the diffusion layer model, i.e.,
@(0) = 1for < 1 and ¢ (c0) = 1/0 for & > 1. It is interesting to note
that both MDT and MDT; for the model of the previous equation depend on the
solubility—dose ratio & when 6 # 1. Thus, the MDT for 6 < 1 is

1
MDT = ~ 10 In(l1-0), (5.22)
while the MDT, for 6 > 1 is
-1

1 0
MDT, = In (9 ) . (5.23)

For & = 1 the MDT is infinite. It should be noted that the MDT for the diffusion
layer model depends also on 6 for # < 1 while the MDT is equal to 1/k when
0 > 1, (5.18) and (5.19). However, this dependency is different in the two models,
cf. (5.18), (5.19), and (5.22), (5.23).
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In 2008 Dokoumetzidis et al. [126] published a complete analysis of a continuous
reaction-limited model of dissolution based on a bidirectional chemical reaction of
the undissolved drug species with the free solvent molecules yielding the dissolved
species of drug complex with solvent. This bidirectional reaction governed by the
k41 and k_; rate constants can be considered in either sink conditions, where it
corresponds to the unidirectional case and the entire drug amount is dissolved, or
reaching chemical equilibrium, which corresponds to saturation of the solution. The
model equation derived for the drug concentration y (f) in mass per volume units is

30 = ki o) [ =y 0]~y @ (5249

where g is the initial quantity (dose) in mass units, wy is the initial concentration
of the free solvent species, a and b are exponents dependent on the stoichiometry of
the reaction and/or the geometry (surface) of the solid particles, and V is the volume
of the dissolution medium.

Simpler, special cases of the above equation can be considered. For example,
when a = 1 the undissolved species have equal probability to dissolve, implying
that they are in a form of a well-mixed dispersion. Upon integration of the above
equation for a = 1 one ends up

0 (1) = ! {1 —exp [— (ks1 (wo)” + k1) 1]}

s

where ¢ (1) is the fraction of dose dissolved and

_ K (wo)” + k—y
ki1 (wo)”

AN

is a dimensionless constant. Other simpler cases are also considered in [126]. The
models derived were fitted successfully to dissolution experimental data sets. On the
contrary, functions based on the diffusion layer model fitted to experimental data,
failed to reveal the governing role of saturation solubility in the dissolution process.
One of the most important results of this study is that the rate of dissolution of a
reaction-limited approach is driven by the concentration of the undissolved species
and solubility is considered to be the concentration when the reaction equilibrium is
reached.

5.2.2 A Discrete Reaction-Limited Dissolution Model

Dokoumetzidis and Macheras [125] developed a population growth model for
describing drug dissolution under heterogeneous conditions. In inhomogeneous
media, Fick’s laws of diffusion are not valid, while global concentrations cannot
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Fig. 5.6 A discrete, reaction-limited dissolution process interpreted with the population growth
model of dissolution

be used in the dissolution rate equation. In order to face the problem of complexity
and circumvent describing the system completely, the reaction of the solid with
the solvent or the component(s) of the dissolution medium was described as the
“birth” of the population of the dissolved drug molecules from the corresponding
population of solid drug particles, Figure 5.6. In this context, only instants of the
system’s behavior are considered and what happens in the meanwhile is ignored.
The jump from one instant to the next is done by a logical rule, which is not
a physical law, but an expression that gives realistic results based on logical
assumptions. The variable of interest (mass dissolved) is not considered as a
continuous function of time, but is a function of a discrete time index specifying
successive “generations.”

Defining s; and y; as the populations of the drug molecules in the solid state and
in solution in the i-th generation (i = 0, 1, 2, ...), respectively, the following finite
difference equation describes the change of y; between generations i and i + 1:

Yit1 = Yyi+ksi =y +k(go—y),yo =0,

where k is a proportionality constant that controls the reaction of the solid particles
with the solvent or the components of the dissolution medium, and gy is the pop-
ulation of the drug molecules in the solid state corresponding to dose (Figure 5.6).
The growth of y; is not unlimited since the solubility of drug in the medium restricts
the growth of y;. Thus, the rate of dissolution decreases as the population of the
undissolved drug molecules decreases as reaction proceeds. For each one of the
drug particles of the undissolved population, the solubility g, (expressed in terms
of the amount needed to saturate the medium in the neighborhood of the particle)
is used as an upper “local” limit for the population growth of the dissolved drug
molecules. Accordingly, the growth rate is a function of the population level and
can be assumed to decrease with increasing population in a linear manner:

k—>k(y,-)=k(1—y"),
qs
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where g is the saturation level of the population, i.e., the number of drug molecules
corresponding to saturation solubility. Thus, the previous recursion relation is
replaced with the nonlinear discrete equation:

Yi+1 = yi +k(qo—yi) (1 - ;i),yo = 0.

This equation can be normalized in terms of dose by dividing both sides by g
and written more conveniently using y;/qo = ¢;, yi+1/q0 = ¢;11, and 6 = qo/qy:

Yip1 =@ tk(1—9)(1—=09,),9,=0, (5.25)

where ¢, and ¢, , | are the dissolved fractions of drug dose at generations i and i + 1,
respectively. The previous discrete equation, if written as

Pip1— 9 =k(1—9) (1 =09, 9, =0, (5.26)

becomes equivalent to its continuous analogue (5.20). As expected, (5.26) has the
two classical fixed point, ¢y = 1 when § < 1 and ¢ = 1/6 when 6 > 1,
Figure 5.7. All discrete features of (5.26) are in full analogy with the fractional
dissolution rate differential equation (5.20), and it is for this reason that the two
approaches are considered counterparts [124].

i

Fig. 5.7 Plot of the dissolved fraction ¢; as a function of generations i using (5.25) with k = 0.5,
0 = 0.83 (solid line); k = 0.7, 0 = 1.82 (dashed line); k = 0.2, = 2.22 (dotted line)
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Since difference equations exhibit dynamic behavior [127, 128], the stability of
the fixed points of (5.25) is explored according to the methodology presented in
Appendix A. The absolute value of the derivative of the right-hand side of (5.25) is
compared with unity for each fixed point. There are the following cases:

e If 6 < 1, the derivative is equal to 1 — k (1 — ) and the condition for stability of
the fixed point ¢ = 1 is

0<k< 2

1-0°

e If 6 > 1, the derivative is equal to 1 — k (6 — 1) and the condition for stability of
the fixed point ¢ = 1/6 is

0<k< .
-1
» If 0 = 1, the derivative is equal to unity and therefore the fixed point ¢ = 1 is
neither stable or unstable.

Because of the discrete nature of (5.26), the first step always gives ¢; = k; hence,
k is always lower than 1, i.e., the theoretical top boundary of ¢;. Comparing the
second step ¢, = k + k(1 — k) (1 — 6k) with the first one ¢, = k, one can obtain
the conditions k > 1/6 and 6 > 1, which ensure that the first step is higher than the
following steps (Figure 5.7B). The usual behavior encountered in dissolution
studies, i.e., a monotonic exponential increase of ¢; reaching asymptotically 1, or
the saturation level 1/, is observed when 6 < 1 (Figure 5.7A) or when k < 1/6
for 8 > 1 (Figure 5.7C), respectively.

As previously pointed out, when one uses (5.25) for 6 > 1 and values of & in the
range 1/60 < k < 2/ (6 — 1), the first step is higher than the plateau value followed
by a progressive decline to the plateau (Figure 5.8A, B). For 1/6 and k values
close enough, the descending part of the dissolution curve is smooth, concave either
upward (Figure 5.8B) or initially downward and then upward (Figure 5.8A); this
decline can also take the form of a fading oscillation when & is close to 2/ (6 — 1)
(Figure 5.8C, D). When k exceeds 2/ |6 — 1], the fixed points become unstable,
bifurcating to a double-period stable fixed point. So we have both the unstable
main point and the generated double-period stable point. This mechanism is called
bifurcation and is common to dynamic systems (cf. Chapter 3).

Equation (5.26) can be used to estimate the proportionality constant k and 6
from experimental data by plotting the fraction dissolved (¢;) as a function of the
generations i. Prior to plotting, the sampling times are transformed to generations
defining arbitrarily a constant sampling interval as a “time unit.” By doing so, an
initial estimate for k can be obtained by reading the value of ¢; corresponding to the
first datum point. When 6 > 1 an initial estimate for 8 can be obtained from the
highest value of the dissolved fraction at the end of the dissolution run. However, an
estimate for 6 cannot be obtained from visual inspection when 6 < 1 since ¢} =1
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Fig. 5.8 Plots of the dissolved fraction ¢; as a function of generations i using (5.25) with k and
0 values satisfying the inequality 1/6 <k <2/(0 —1): (A)k = 0.97,0 = 1.79; B) k = 0.8,
0=2.0,;(C)k=0.97,0 =294, D)k =0.7,0 = 3.57

in all cases. The initial estimates for k and 6 can be further used as starting points in
a computer fitting program to obtain the best parameter estimates.

The population growth model of dissolution utilizes the usual information
available in dissolution studies, i.e., the amount dissolved at certain fixed intervals
of time. The time points of all observations need to be transformed to equally
spaced values of time and furthermore to take the values 0, 1, 2, .. .. Since the model
does not rely on diffusion principles it can be applied to both homogeneous and
inhomogeneous conditions. This is of particular value for the correlation of in vitro
dissolution data obtained under homogeneous conditions and in vivo observations
adhering to the heterogeneous milieu of the gastrointestinal tract. The dimensionless
character of k allows comparisons to be made for k estimates obtained for a drug
studied under different in vitro and in vivo conditions, e.g., various dissolution
media, fasted, or fed state.

Example 2. Danazol Data

For the continuous model, a fitting example of (5.21) to actual experimental data of
danazol [129] is shown in Figure 5.9. For the discrete model, a number of fitting
examples are shown in Figure 5.10 for danazol dissolution data obtained by using
15 minutes as a “time unit.” Table 5.1 lists the estimates for £ and 6 obtained
from the computer analysis of danazol data utilizing an algorithm minimizing the
sum of squared deviations between experimental and theoretical values obtained
from (5.25). |
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Fig. 5.9 The fraction of dose dissolved as a function of time for the danazol data [129]. Symbols
represent experimental points and the lines represent the fittings of (5.21) to data. Key (% sodium
lauryl sulfate in water as dissolution medium): e 1.0; l 0.75; A 0.50; ¥ 0.25; ¢ 0.10

Fig. 5.10 The fraction of dose dissolved ¢; as a function of generations i, where the solid line
represents the fittings of (5.25) to danazol data [129]. Symbols represent experimental points
transformed to the discrete time scale for graphing and fitting purposes assigning one generation
equal to 15 minutes. Key (% sodium lauryl sulfate in water as dissolution medium): o 1.0; Il 0.75;

A 0.50; ¥ 0.25; ¢ 0.10
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Table 5.1 Estimates for k Dissolution medium® | k 0 R2
and 6 obtained from the

fitting of (5.24) to danazol 0.10 0.06 |10 0.993
data, Figure 5.10. (a) 0.25 0.23 1.82 10.9993
Percentage of sodium lauryl 0.50 0.45 | 0.75 |0.9999
sulfate in water, (b) 0.75 0.56 | 0.08 |0.9995
Determination coefficient. 1.00 0.71 0.47 | 0.9996

5.2.3 Modeling Supersaturated Dissolution Data

The dissolution data are basically of monotonic nature (the drug concentration or the
fraction of drug dissolved is increasing with time) and therefore the corresponding
modeling approaches rely on monotonic functions. However, nonmonotonic dis-
solution profiles are frequently observed in studies dealing with co-precipitates of
drugs with polymers and solid dispersion formulations [130, 131]. The dissolution
profiles in these studies usually exhibit a supersaturation phenomenon, namely,
an initial rapid increase of drug concentration to a supersaturated maximum
followed by a progressive decline to a plateau value. This kind of behavior cannot
be explained with the classical diffusion principles in accord with the diffusion
layer model of dissolution. It seems likely that the initial sudden increase is
associated with a rapid reaction of the solid particles with the dissolution medium.
The dynamics of the difference equation for the population growth model of
dissolution, (5.25), can capture this behavior and therefore can be used to model
supersaturated dissolution data [132].

Example 3. Nifedipine Data

An example of fitting (5.25) to experimental data of a nifedipine solid dispersion
formulation [131] is shown in Figure 5.11. Initially, the drug concentration values
are transformed to the corresponding dissolved fractions of dose ¢; and plotted as
a function of the generations i, obtained by using a “time unit” of 5 minutes. The
transformation of sampling times to generations i is achieved by adopting the time
needed to reach maximum concentration (equivalent to maximum fraction of dose
dissolved) as the time unit of (5.25). Reading the maximum and lowest values of ¢;,
one obtains initial estimates for parameters k and 1/6, respectively. These values are
further used as starting points in a computer program minimizing the sum of squared
deviations between observed and predicted values to determine the best parameter
estimates. The estimated parameter values for k and 6 were found to be 0.323 and
4.06, respectively. The value of k denotes the maximum fraction of dose that is
dissolved in a time interval equal to the time unit used. The value of 6 corresponds
to the reciprocal of the plateau value, which is the fraction of dose remaining in
solution at steady state. |
However, the use of (5.25) should not be considered as a panacea for modeling
nonmonotonic dissolution curves. Obvious drawbacks of the model (5.25) are
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Fig. 5.11 Plot of the dissolved fraction ¢, as a function of generations i (time step 5min) using
(5.25) for the dissolution of nifedipine solid dispersion with nicotinamide and polyvinylpyrrolidone
(1:3:1),in 900 ml of distilled water. Fitted line of (5.25) is drawn over the experimental data

. The data on the ascending limb of the dissolution curve, if any, should be ignored.

. The time required to reach the maximum value of the dissolved fraction of drug
should be adopted as the time interval between successive generations.

3. The time values of the data points that can be used for fitting purposes should be

integer multiples of the time unit adopted.

N —

Further, when k takes values much larger than 1/6, (5.25) exhibits chaotic
behavior following the period-doubling bifurcation (cf. Chapter 3). For exam-
ple, (5.25) leads to chaos when 1/60 = 0.25 and k is greater than 0.855. Despite
the aforementioned disadvantages, the model offers the sole approach that can be
used to describe supersaturated dissolution data. In addition, the derivation of (5.25)
relies on a model built from physical principles, i.e., a reaction-limited dissolution
model. Other approaches based on empirical models, e.g., polynomial functions,
could provide better fittings for supersaturated dissolution data but these approaches
will certainly lack in physical meaning.

In 2011 Charkoftaki et al. [133] modified the continuous reaction-limited model
of dissolution [126] to describe classical experimental supersaturated dissolution
data of carbamazepine in presence of d-alpha-tocopheryl polyethylene glycol 1000
succinate (TPGS). The model developed was based on a time-dependent expression
for the forward microconstant of the bidirectional reaction carbamazepine-TPGS
at the solid-liquid interface. The following modified version of equation 5.24 was
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Fig. 5.12 Fitings of equation 5.27 to three data sets of carbamazepine tablets in presence of TPGS
at 10° C exhibiting supersaturated dissolution profiles. Key: (A) 0.5 mM TPGS; (B) 2 mM TPGS;
(C) 4 mM TPGS

fitted to the experimental data of carbamazepine dissolution in presence of TPGS
at 10° C:

YO =k[A+(1+07"] [‘if —y(t)]“ k() (5.27)

where k is a constant in (time)””! units and A is a constant in (time) ™" units.
Figure 5.12 shows the fittings of the above equation to three data sets of carba-
mazepine dissolution.

5.3 Modeling Random Effects

In all previous dissolution models described in Sections 5.1 and 5.2, the variability
of the particles (or media) is not directly taken into account. In all cases, a unique
constant (cf. Sections 5.1, 5.1.1, and 5.1.2) or a certain type of time dependency in
the dissolution rate “constant” (cf. Sections 5.1.3, 5.2.1, and 5.2.2) is determined
at the commencement of the process and fixed throughout the entire course of
dissolution. Thus, in essence, all these models are deterministic. However, one can
also assume that the above variation in time of the rate or the rate coefficient can
take place randomly due to unspecified fluctuations in the heterogeneous properties
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of drug particles or the structure/function of the dissolution medium. Lansky and
Weiss have proposed [134] such a model assuming that the rate of dissolution & ()
is stochastic and is described by the following equation:

k(1) =k + 0k (1),

where k is the deterministic part of the dissolution rate “constant,” £ (¢) is Gaussian
white noise, and o > 0 is its amplitude. According to the definition of this equation,
the “constant” k represents the mean of & (7).

The stochastic nature of k (#) allows the description of the fraction of dose
dissolved, ¢ (¢), in the form of a stochastic differential equation if coupled with
the simplest dissolution model described by (5.16), assuming complete dissolution

@ =1:
dop () = k[l —@ )]dt + 0§ () [1 —¢ (D] dB (1), (5.28)

where the symbol ¢ (7) is used here to denote the random nature of the process,
while dB (f) comes from the Brownian motion since the noise & (¢) is the formal

derivative of the Brownian motion, B (). The solution of (5.28) gives

o= 1—exp|:—(k+ ;az)t—oB(t):|.

A discretized version of (5.28) can be used to perform Monte Carlo simulations
using different values of o and generate ¢ (¢)-time profiles [134]. The random
fluctuation of these profiles becomes larger as the value of o increases.

Stochastic variation may be introduced in other models as well. In this context,
Lansky and Weiss [134] have also considered random variation for the parameter k*
of the interfacial barrier model (5.20).

5.4 Homogeneity vs. Heterogeneity

Lansky and Weiss defined [135] the classical dissolution first-order model in terms
of the fraction of dose dissolved, ¢ () (equation 5.16 assuming 6 = 1),

¢ () =k[l—9 )], ¢(0) =0,

as the simplest homogeneous case, since the fractional dissolution rate function k()
derived from the above equation,

0]
k(1) = =@
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is constant throughout the dissolution process. In physical terms, the homogeneous
model dictates that each drug molecule has equal probability to enter solution during
the entire course of the dissolution process. Plausibly, the various dissolution models
have different time-dependent functional forms of k(7). Accordingly, all these
models were termed heterogeneous since the time dependence of the functions k(7)
denotes that the probability to enter solution is not identical for all drug molecules.
To quantify the departure from the homogeneous case, Lansky and Weiss proposed
[135] the calculation of the Kullback—Leibler information distance Dist (f, ¢) as a
measure of heterogeneity of the function f(7) from the homogeneous exponential
model ¢ (f) derived from the previous equation:

f® 4
()

This measure of heterogeneity generalizes the notion of heterogeneity as a departure
from the classical first-order model initially introduced [123] for the specific case
of the Weibull function. In addition, the above equation can also be used for
comparison between two experimentally obtained dissolution profiles [135].

The comparison of dissolution curves based on the calculation of Dist (f, ¢)
is model-independent; however, other model-dependent comparative approaches
have been proposed [136]. Caution should be exercised, though, when comparison
of estimates of the parameters obtained from various models is attempted in the
context of heterogeneity assessment. For example, the valid use of (5.15) for the
homogeneous case presupposes that the amount needed to saturate the medium is
exactly equal to the dose used in actual practice, i.e., 6 = 1 [136]. Recently, Lansky
and Weiss presented [137] in a concise form the results of their recent studies
[124, 134]. The empirical and semiempirical models for drug dissolution were
reviewed and classified in five groups: first-order model with a time lag, models for
limited solubility of drug, models of heterogeneous compound, Weibull and inverse
Gaussian models, and models defined on a finite time window. In this contribution,
the properties of models were investigated, the parameters were discussed, and the
role of drug heterogeneity was studied.

Dist (f, ¢) = / f(®1In

5.5 Comparison of Dissolution Profiles

The comparison of dissolution profiles is of interest for both research and regulatory
purposes. Several methods, which can be roughly classified as (1°) statistical
approaches, (2°) model-dependent, and (3°) model-independent methods, have
been reported in the literature for the comparison of dissolution profiles [138-
140]. The statistical approaches are based on the analysis of variance, which
is used to test the hypothesis that the two profiles are statistically similar. The
model-dependent methods are mainly used for clarifying dissolution or release
mechanisms under various experimental conditions and rely on the statistical
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comparison of the estimated parameters after fitting of a dissolution model (e.g.,
the Weibull model) to the raw data. The model-dependent methods can be applied
to dissolution profiles with nonidentical dissolution sampling schemes, while the
model-independent methods require identical sampling points since they are based
on pairwise procedures for the calculation of indices (factors) from the individual
raw data of two profiles. Two of these factors, namely, the difference factor f; and
the similarity factor f,, have been adopted by the regulatory agencies and have been
included in the relevant dissolution Guidances for quality control testing [141-143].
Each one of these factors is calculated from the two mean dissolution profiles and
is being used as a point estimate measure of the (dis)similarity of the dissolution
profiles.

The difference factor f; [141] measures the relative error (as a percentage)
between two dissolution curves over all time points:

sz=1 |Ri - Ti|
YL R

where m is the number of data points, R; and 7; are the percentage of drug dissolved
for the reference and test products at each time point i, respectively.

The similarity factor f, [141-143] is a logarithmic reciprocal transformation of
the sum of squared errors and is a measurement of the percentage similarity in the
dissolution between the two dissolution curves:

fi =100 (5.29)

m —0.5
1

£ = 50log 4 100 [1 + )R- T,-)z] . (5.30)
m

i=1

Both factors take values in the range 0 — 100 assuming that the percentage dissolved
values for the two products are not higher than 100%. When no difference between
the two curves exist, i.e., at all time points R; = T}, then fj = 0 and f, = 100. On
the other hand, when the maximum difference between the two curves exists, i.e., at
all time points |R; — T;| = 100, then fj = 100 and f, = 0.

The calculation of the factors from the mean profiles of the two drug products
presupposes that the variability at each sample time point is low. Thus, for
immediate release formulations, the FDA guidance [141] allows a coefficient of
variation of no more than 20% for the early data points (e.g., 10 or 15 min), while a
coefficient of variation less than 10% is required for the other time points. According
to the guidances [141, 143], when batches of the same formulation are compared,
a difference up to 10% at all sample points is considered acceptable. On the basis
of this boundary, the acceptable range of values derived from (5.29) and (5.30) for
fiis 0 — 15 [141] and for f, is 50 — 100 [141, 143]. From a technical point of
view, the following recommendations are quoted in the guidances [141, 143] for the
calculation of f] and f, as point estimates:
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1. a minimum of three time points (zero excluded),
2. 12 individual values for every time point for each formulation,
3. not more than one mean value of > 85% dissolved for each formulation.

Note that when more than 85% of the drug is dissolved from both products
within 15 minutes, dissolution profiles may be accepted as similar without further
mathematical evaluation. For the sake of completeness, one should add that some
concerns have been raised regarding the assessment of similarity using the direct
comparison of the f; and f, point estimates with the similarity limits [144—146].
Attempts have been made to bring the use of the similarity factor f, as a criterion for
assessment of similarity between dissolution profiles in a statistical context using a
bootstrap method [145] since its sampling distribution is unknown.

Although there are some differences between the European [143] and the US
guidance [141, 142], e.g., the composition of the dissolution media, it should be
pointed out that both recommend dissolution studies as quality assurance tests as
well as for bioequivalence surrogate inference. The latter aspect is particularly well
developed in the FDA guidance [142] in the framework of the Biopharmaceutics
Classification System (BCS), which is treated in Section 6.6.1.



Chapter 6
Oral Drug Absorption

The right drug for the right indication in the right dosage to the
right patient.

Anonymous

The understanding and the prediction of oral drug absorption are of great interest
for pharmaceutical drug development. Obviously, the establishment of a compre-
hensive framework in which the physicochemical properties of drug candidates
are quantitatively related to the extent of oral drug absorption will accelerate the
screening of candidates in the discovery/preclinical development phase. Besides,
such a framework will certainly help regulatory agencies in developing scientifically
based guidelines in accord with a drug’s physicochemical properties for various
aspects of oral drug absorption, e.g., dissolution, in vitro—in vivo correlations,
biowaivers of bioequivalence studies.

However, the complex interrelationships among drug properties and processes in
the gastrointestinal tract make the prediction of oral drug absorption a difficult task.
In reality, drug absorption is a complex process dependent upon drug properties
such as solubility and permeability, formulation factors, and physiological variables
including regional permeability differences, pH, luminal and mucosal enzymes,
and intestinal motility, among others. Despite this complexity, various qualitative
and quantitative approaches have been proposed for the estimation of oral drug
absorption. In all approaches discussed below the drug movement across the
epithelial layer is considered to take place transcellularly since transcellular passive
diffusion is the most common mechanism of drug transport.

The absorption models described in this chapter can be divided as follows:

* pseudoequilibrium models,

* mass balance approaches,

* dynamic models,

* heterogeneous approaches, and

* models based on chemical structure.

The last section of this chapter is devoted to the regulatory aspects of oral drug
absorption and in particular to the BCS and the relevant FDA guideline. The recent
regulatory-scientific advances related to BCS as well as the Biopharmaceutics Drug
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Disposition Classification System (BDDCS) are described too. At the very end of
the chapter, we mention the difference between randomness and chaotic behavior as
sources of the variability encountered in bioavailability and bioequivalence studies.

6.1 Pseudoequilibrium Models

These models assume that oral drug absorption takes place under equilibrium
conditions. Spatial or temporal aspects of the drug dissolution, transit and uptake
and the relevant physiological processes in the gastrointestinal tract are not taken
into account. Only drug-related properties are considered as the key parameters
controlling the absorption process.

6.1.1 The pH-Partition Hypothesis

Back in the 1940s, physiologists were the first to realize that in contrast to the capil-
lary walls, with their large and unselective permeability, cell membranes present
a formidable barrier to the diffusion of small molecules. A prominent scientist,
M.H. Jacobs, in 1940 [147] was the first who studied the cell permeability of
weak electrolytes and described quantitatively the nonionic membrane permeation
of solutes. This observation initiated a number of specific studies [148—-153] during
the 1950s on the mechanisms of gastrointestinal absorption of drugs. The results
of these studies formed the basis for the pH-partition hypothesis, which relates
the dissociation constant, lipid solubility, and the pH at the absorption site with
the absorption characteristics of various drugs throughout the gastrointestinal tract.
Knowledge of the exact ionization of a drug is of primary importance since the un-
ionized form of the drug, having much greater lipophilicity than the ionized form,
is much more readily absorbed. Consequently, the rate and extent of absorption are
principally related to the concentration of the un-ionized species. Since the pH in the
gastrointestinal tract varies, the Henderson—Hasselbach equations for the ionization
of acids,

un-ionized-concentration

ionized-concentration
pH = pK, + log )

and bases,

un-ionized-concentration
pH = pK, + log

ionized-concentration

relate the fraction of the un-ionized species with the regional pH and the pK,, of the
compound.
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Most of the gastrointestinal absorption studies were found to be in accord with
the principles of the pH-partition hypothesis. However, several deviations were
noted and attributed to the unstirred water layer, the microclimate pH, and the mucus
coat adjacent to the epithelial cell surface [154—156].

Although the pH-partition hypothesis relies on a quasi-equilibrium transport
model of oral drug absorption and provides only qualitative aspects of absorption,
the mathematics of passive transport assuming steady diffusion of the un-ionized
species across the membrane allows quantitative permeability comparisons among
solutes. As discussed in Chapter 2, (2.19) describes the rate of transport under sink
conditions as a function of the permeability P, the surface area .4 of the membrane,
and the drug concentration ¢ (¢) bathing the membrane:

q(1) = PAc(1). 6.1)

The proportionality between the rate of transport and permeability in (6.1) shows
the importance of the latter parameter in the transcellular passive gastrointestinal
absorption of drugs. Strictly speaking, one should utilize an estimate of the
effective permeability (P,y) [157] in (6.1) for predicting oral absorption potential of
compounds. However, the methods for the estimation of P,y are invasive, laborious,
and time-consuming. Alternatively, various measures of lipophilicity such as the
octanol/water partition coefficient (log P,) [158] and the distribution coefficient
(logD) [159] have been used as surrogates for predicting the oral absorption
potential of compounds since permeability is mainly dependent on membrane
partitioning.

6.1.2 Absorption Potential

In 1985 a major step in the theoretical analysis of oral drug absorption phenomena
took place [160], when solubility and dose were also taken into account for the
estimation of the absorption potential AP of a drug apart from the pH-partition
hypothesis related parameters (lipophilicity, and degree of ionization). According
to this concept, the AP is related proportionally to the octanol/water partition
coefficient P., the fraction of the un-ionized species f,,, at pH= 6.5, and the
physiological solubility ¢, of the drug and inversely proportional to the dose go:

AP = log [P‘f“”c‘?v} = log [P“g”"} . 6.2)
q0

The logarithmic expression in the definition of AP has no physicochemical basis
and is used for numerical reasons only; pH= 6.5 was selected as the representative
pH of small intestines, where most of the absorption of drugs takes place. The
incorporation of the terms P, and f,, in the numerator of (6.2) means that the
pH-partition hypothesis governs gastrointestinal absorption. Plausibly, AP was
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considered proportional to solubility and inversely proportional to the dose in
accord with classical dissolution—absorption considerations. The volume term V
corresponds to the small-intestinal volume content, which was set arbitrarily equal
to 250 ml; moreover, the use of the term V makes the AP dimensionless. The ratio
qo/csV was defined as the dimensionless solubility—dose ratio in Section 5.1.4 and
it was denoted by 6.

The validity of the approach based on (6.2) was proven when the fraction of dose
absorbed, F,, was found to increase with AP for several drugs with a wide variety
of physicochemical properties and various degrees of extent of absorption [160].
Additional support for the AP concept was provided by a three-dimensional plot of
F, as a function of the ionization—solubility/dose term (f;,,/ &) and the octanol/water
partition coefficient P, [161]. In fact, because of the recent interest in the apparent
permeability estimates Py, measured in the in vitro Caco-2 monolayer system, it
was suggested that P, can replace the octanol/water partition coefficient P, in (6.2)
[161].

Although the AP concept is a useful indicator of oral drug absorption, its
qualitative nature does not allow the derivation of an estimate for F,. A quantitative
version of F, as a function of AP was published in 1989. It was based on the
equilibrium considerations used for the derivation of AP and the fundamental
physicochemical properties in (6.2) with the implied competing intestinal absorption
and nonabsorption processes [162]. This quantitative AP concept relies on (6.3),
where a nonlogarithmic expression for AP is used:

(AP)?

= ) 6.3)
(AP)Z +fun (1 _fun)

a

Based on physiological-physicochemical arguments, constraints were proposed
for P, i.e., to be set equal to 1000 when P, > 1000 and 0 equal to 1 when 6 < 1.
Equation (6.3) is, in reality, the first ever published explicit relationship between
F, and physicochemical drug properties. It was used to classify drugs according
to their solubility, permeation, and ionization characteristics [162]. Moreover, (6.3)
was monoparameterized:

ZZ

F,= s
1+ 22

(6.4)

where

AP
Z= .
\/f un (1 _ﬁm)
Equation (6.4) was used for fitting purposes using AP and F, data reported in

the literature and applying the constraints mentioned above for P, and 6 in the
calculation of AP, Figure 6.1.
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Fig. 6.1 Plot of the fraction of dose absorbed for various drugs as a function of Z. Key: A,
acyclovir; B, chlorothiazide solution; D, hydrochlorothiazide; E, phenytoin; F, prednisolone; G,
digoxin (Lanoxicaps); I, cimetidine; J, mefenamic acid

A number of modifications in the solubility and the partition coefficient terms of
the AP have also been proposed in the literature [163—-165]. According to these
authors the modified absorption potential expressions can be considered better
predictors of the passive absorption of drugs than the original AP. The most recent
approach [165] relies on a single absorption parameter defined as the ratio of the
octanol/water partition coefficient to the luminal oversaturation number. The latter
is equal to the solubility-normalized dose for suspensions and equal to unity for
solutions.

A relevant simple model was used to estimate the maximum absorbable dose
(MAD) [166]. It takes into account the permeability, expressed in terms of a first-
order rate constant k,, the solubility c; of the drug, and two physiological variables,
the dissolution-intestinal volume V arbitrarily set to 250 ml, and the duration of
gastrointestinal absorption #, for 6 h:

MAD = Vcgkyt,.
This model assumes gastrointestinal absorption from a saturated solution of the drug

(hypothetically maintained at a constant saturated value) for a time period equal
to 6h.
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6.2 Mass Balance Approaches

These approaches place particular emphasis on the spatial aspects of the drug
absorption from the gastrointestinal tract. The small intestine is assumed to be
a cylindrical tube with fixed dimensions where the drug solution or suspension
follows a homogeneous flow. Mass balance relationships under steady-state assump-
tions are used to estimate the fraction of dose absorbed as a function of the drug
properties and of physiological parameters.

6.2.1 Macroscopic Approach

In the early 1990s the research group of G. Amidon in Ann Arbor applied mass
balance approaches to the analysis of drug intestinal absorption [55, 56]. The
small intestine is assumed to be a cylindrical tube with physiologically relevant
dimensions (radius R and length L), while a constant volumetric flow rate Q
describes the transit process of the intestinal contents, Figure 6.2. The macroscopic
approach [55] refers mainly to highly soluble compounds. The incorporation of
the dissolution step as an important part of the absorption process is treated in
Section 6.2.2 under the heading microscopic approach [56].

The macroscopic approach under the steady-state assumption provides estimates
for the fraction of dose absorbed F, for the three cases, which refer to the magnitude
of ¢y and ¢, in Figure 6.2 relative to drug solubility ¢, namely:

1. Case I: ¢cp < ¢, and cpyy < ¢y (the drug is in solution throughout the transit
process);
2. CaseIl: ¢y > ¢ and ¢,y < ¢ (solid drug at inlet; concentration reaches solubility

at a certain point and diminishes thereafter);
3. Case III: ¢y > ¢y and ¢,y > ¢, (solid drug exists at both ends of the tube).

Rate in = R

Q‘Cn

Fig. 6.2 The small intestine is modeled as a homogeneous cylindrical tube of length L and radius
R. ¢y and c,,, are the inlet and outlet drug concentrations, respectively. The other symbols are
defined in the text
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Irrespective of the specific case considered, the general mass balance relationship
for the system depicted in Figure 6.2 under the steady-state assumption is

L
Q (C() — Cout) = ZJTRPeﬂ/ c (Z) dZ,
0

where P is the effective permeability of drug and dz the infinitesimal axial length.
The fraction of dose absorbed F, can be expressed in terms of ¢y and c,,, using the
previous equation:

i 27RPy [
Fo=1-"" =" ﬂ/c(z)dz
0

Co QOco
2nRP L [! !
— 0 7 / c* (z*) dz* = 2An/ c* (z*) dz*. (6.5)
0 0

The last two integrals of the previous equation are expressed in dimensionless
variables, ¢* = ¢/cg, z¥ = z/L with normalized limits (0, 1), while the symbol
A, is the absorption number of the drug:

Ap é NSLPeff = (Tsi> P]‘;ff
The first fraction of the previous equation shows that A, is exclusively determined by
the effective permeability P,y of drug since all other variables are species-dependent
physiological parameters. In terms of characteristic times, the A, of a drug can also
be defined as the ratio of the mean small-intestinal transit time (7;), to its absorption
time R/ P .

For the calculation of F,, one should first express the dimensionless concentra-
tion ¢* (z*) as a function of z*, for each one of the three cases considered above,
and then integrate (6.5).

(6.6)

1. For case I, the concentration profile ¢* (z*) diminishes exponentially as a
function of distance z* assuming the complete radial mixing model [167] in the
tube,

o (Z*) _ C;mt — exp (—ZAnZ*) ,
0

and for the fraction of dose absorbed,
F,=1—exp(-24,).

This last equation shows that when the drug is in solution throughout the transit
process and cp < c¢; and ¢,y =< ¢y, then F, is dependent exclusively and
exponentially on A,. According to this equation, large values of A, ensure
complete absorption for this type of drugs.
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2. For case III, the concentration c,,, can be considered equal to the solubility since
co > ¢ and c,,; > cy; therefore

)= " = 6.7
c* (%) 0= (6.7)
and for the fraction of dose absorbed,
2A,
F, = 0 (6.8)

Although this equation indicates that F, is proportional to A, and inversely
proportional to 6, this should be judged with caution since the conditions of
case III, expressed in terms of concentration, are physically irrelevant (cy > ¢
and ¢,,; > c¢,). In addition, the use of (6.7) for the derivation of (6.8) assumes
instantaneous dissolution in order to maintain the value of ¢, constant throughout
the transit process.

3. Case II can be viewed as a hybrid of cases I and III. As long as ¢y > c;, the
conditions assumed for case Il are prevailing. Then, using a simple mass balance
equation up to the temporal (spatial) point when ¢ reaches solubility (co = cy)
and (6.7), the fraction absorbed F,; can be calculated as

F coV —cV | 1
al = C()V B 0 '
Beyond this spatiotemporal point until the drug exits from the tube, the inequality
co < cs holds and therefore the fraction absorbed F,, in this region follows the
results obtained for case I conditions:

1
Fp = 0 [l —exp (=24, + 6 —1)].

Consequently, the total fraction of dose absorbed F, is the sum of F,; and F;:

F,=1- ; exp(—24,+6—1).

The most significant result of the macroscopic approach was derived from the
analysis of case I conditions. It was found that the absorption number A, and in
particular its major determinant, the effective permeability, control the intestinal
absorption of drugs. This observation triggered a large number of studies, and in
recent years several attempts have been made to model the fraction of dose absorbed,
F,, with experimental in situ and in vitro models such as cell cultures (Caco-2,
HT-29, and MDCK) [168-170] and artificial membranes (IAM, PAMPA) [171].
The aim of these studies is to find a correlation between the apparent permeability
estimates P, measured in these systems and the experimental F,, values. The most
popular among these systems is the in vitro Caco-2 monolayer system [172], which
is a donor-receptor compartment apparatus separated by a cell monolayer grown
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Fig. 6.3 Plot of the fraction of dose absorbed (in %) of various drugs as a function of the
permeability estimates in the Caco-2 system. Key: 1, D-glucose; 2, verapamil; 3, piroxicam; 4,
phenylalanine; 5, cyclosporin; 6, enalapril; 7, cephalexim; 8, losartan; 9, lisinopril; 10, amoxicillin;
11, methyldopa; 12, naproxen; 13, antipyrine; 14, desipramine; 15, propanolol; 16, amiloride;
17, metoprolol; 18, terbutaline; 19, mannitol; 20, cimetidine; 21, ranitidine; 22, enalaprilate; 23,
atenolol; 24, hydrochlorothiazide

on a porous polycarbonate filter and is used to estimate the apparent permeability
of compounds. In reality, an estimate for P,,, is obtained from the experimental

permeation data using (6.1) and solving it in terms of P; the flux rate g (¢) is obtained
from the slope of the receptor chamber solute mass vs. time plot, while A is the
cross-sectional area of cell surface and ¢ (f) = ¢ is the initial solute concentration in
the donor compartment. Extensive research in the passive transport mechanisms of
a great number of compounds in cell culture monolayers indicates that an apparent
permeability estimate in the range of 2 x 107® — 107> cms™! [172-174] ensures
complete absorption of the solute provided that absorption is not solubility- and/or
dissolution-limited, Figure 6.3.

6.2.2 Microscopic Approach

This approach deals with the analysis of intestinal absorption of poorly soluble
drugs, administered as suspensions, assuming that drug particles are spheres of the
same initial radius size p,,. The resulting mathematical model [56] assumes complete
radial mixing, takes into account drug dissolution, transit, and uptake, and relies
on the homogeneous cylindrical intestinal tube depicted in Figure 6.2. Under the
steady-state assumption, mass balance relationships for the drug processes in both
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solid and solution phase are considered in a volume element of the intestine of axial
length dz. Two differential equations expressed in dimensionless variables govern
the reduction of the radius p (z) of the particles from their initial value pjand the
change of the luminal concentration of the drug c (z):

dp* (") _ _ Dy 1=¢*(c") —
‘e =3 p*(zi) =1 (6.9)
U = 0D, () [1 = ¢ ()] = 24,67 () € (0) =0,

where z* = z/L, c* (%) = ¢ (z*) /c5, p* (2%) = p (2*) / py, and D,, is the dissolution
number defined by the following relationship:

A (D/po) cs (477/%) (”RZL)
’ Q(4zpz0)
where D is the diffusivity and o is the density of the drug. Using a mass balance
relationship for the solid and solution phases at the outlet of the tube (p* = 1), the
following equation is obtained for the fraction of dose absorbed, F:

3 1
Fa = 1 - (p*lz*=l)3 - 9 (c*|z*=l) *

This equation can be used in conjunction with (6.9) for the estimation of F,.
The microscopic approach points out clearly that the key parameters controlling
drug absorption are three dimensionless numbers, namely, absorption number A,,,
dissolution number D,,, and 6. The first two numbers are the determinants of
membrane permeation and drug dissolution, respectively, while 0 reflects the ratio
of the dose administered to the solubility of drug.

6.3 Dynamic Models

These models are dependent on the temporal variable associated with the drug
transit along the small intestine. Drug absorption phenomena are assumed to take
place in the time domain of the physiological mean transit time. For those dynamic
models that rely on diffusion/dispersion principles both the spatial and temporal
variables are important in order to simulate the spatiotemporal profile of the drug in
the intestinal lumen.

6.3.1 Compartmental Models

The compartmental approach to the process of a drug passing through the gas-
trointestinal tract has been used to simulate and explain oral drug absorption. The
simplest approach relies on a single mixing tank model of volume V where the
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drug has a uniform concentration while a flow rate Q is ascribed to the contents of
the tank. Thus, the ratio V/Q corresponds to the time period beyond which drug
dissolution and/or absorption is terminated. In other words, it is equivalent to the
small-intestinal transit time for the homogeneous tube model. Similarly, the ratio
Q/V indicates the first-order rate constant for drug removal from the absorption
sites. One or two mixing tanks in series have been employed for the study of various
oral drug absorption phenomena [54, 175, 176].

Mixing tanks in series with linear transfer kinetics from one to the next with the
same transit rate constant k; have been utilized to obtain the characteristics of flow
in the human small intestine [177, 178]. The differential equations of mass transfer
in a series of m compartments constituting the small intestine for a nonabsorbable
and nondegradable compound are

G () = kegioy (1) —keqi (), i=1:m, (6.10)

where ¢; (f) is the amount of drug in the i-th compartment. The rate of exit of the
compound from the small intestine is

G (1) = —kigm (1) . 6.11)

Solving the system of (6.10) and (6.11) in terms of the fraction of dose absorbed,
we obtain

_am (D) _
q0

2 (m — 1)!

2 m—1

1 — exp (—kt) [1 + kit + k)™ 4 D ] . (6.12)
Analysis of experimental human small-intestine transit time data collected from
400 studies revealed a mean small-intestinal transit time (7y;) = 199 min [177].
Since the transit rate constant k, is inversely proportional to (7Ty;), namely, k, =
m/ (Ts), (6.12) was further fitted to the cumulative curve derived from the distri-
bution frequency of the entire set of small-intestinal transit time data in order to
estimate the optimal number of mixing tanks. The fitting results were in favor of
seven compartments in series and this specific model, (6.10) and (6.11) withm = 7,
was termed the compartmental transit model.

The incorporation of a passive absorption process in the compartmental transit
model led to the development of the compartmental absorption transit model (CAT)
[179]. The rate of drug absorption in terms of mass absorbed ¢, () from the small
intestine of the compartmental transit model is

,
Ga (1) =k Y qi (1),

i=1

where k, is the first-order absorption rate constant. Then, the fraction of dose
absorbed F,, using the previous equation, is
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F, = q“(t) ka Z/ gi (¢) d. (6.13)

The solution of (6.12) and (6.13) yields

F,=1 1+k“ -
a — kr .

Recall that k, is equal to 7/ (Ty;), while k, can be expressed in terms of the effective
permeability and the radius R of the small intestine [56]:

2Py

ka =
R

(6.14)

The previous equation can be written as

2Peﬁ” (Tsi> -7
Fo=1-1 :
( TR )

The CAT model presupposes that dissolution is instantaneous and therefore the
kinetics of the permeation step control the gastrointestinal absorption of drug. This
is reflected in the previous equation, which indicates that the effective permeability
is the sole parameter controlling the intestinal absorption of highly soluble drugs.

Due to its compartmental nature, the CAT model can easily be coupled with
the disposition of drug in the body using classical pharmacokinetic modeling. In
this respect the CAT model has been used to interpret the saturable small-intestinal
absorption of cefatrizine in humans [179].

The CAT model was further modified to include pH-dependent solubility,
dissolution/precipitation, absorption in the stomach or colon, first-pass metabolism
in gut or liver, and degradation in the lumen. Physiological and biochemical factors
such as changes in absorption surface area, transporter, and efflux protein densities
have also been incorporated. This advanced version of CAT, called ACAT [180],
has been formulated in a commercially available simulation software product under
the trademark name GastroPlus™. A set of differential equations, which is solved
by numerical integration, is used to describe the various drug processes of ACAT as
depicted in Figure 6.4.

6.3.2 Convection-Dispersion Models

The use of convection—dispersion models in oral drug absorption was first proposed
in the early 1980s [181, 182]. The small intestine is considered a one-dimensional
tube that is described by a spatial coordinate z that represents the axial distance
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Fig. 6.4 Schematic of the ACAT model. Reprinted from [180] with permission from Elsevier

velocity

Fig. 6.5 The velocity of the fluid inside the tube is larger near the axis and much smaller near the
walls. This is considered to be the main factor for the dispersion of the distribution of the drug

from the stomach. In addition, the tube contents have constant axial velocity v and
constant dispersion coefficient D, which arises from molecular diffusion, stirring
due to the motility of the intestines, and Taylor dispersion due to the difference of
the axial velocity at the center of the tube compared with the tube walls (Figure 6.5).
The small-intestine transit flow for a nonabsorbable and nondegradable compound
in this type of model is described by [177, 182]

de(z,1) D32C (0 ; dc (z,1)

A
ot 022 0z (©.15)

where c¢ (z,t) is the concentration. An analytical solution of this equation can be
obtained if one assumes that the stomach operates as an infinite reservoir with
constant output rate in terms of concentration and volume. Under these assumptions,
the following analytical solution was obtained [182]:

c@n _1 erf ¢ \/UZZ +e (UZ) erf M \/v2t
= C — X Cc >
co 2 V4Dt 4D Pip V4Dt 4D

(6.16)
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where erf ¢ is the complementary error function defined by

2 X
erfc(x) 21— J / exp (—z%) dz.
T Jo

Equation (6.16) allows one to generate the axial profile of normalized concentration
¢ (z,1) /co at different times, Figure 6.6A. The second term in the parentheses
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Fig. 6.6 Axial profile snapshots of normalized concentration (with respect to the constant input
concentration) inside the intestinal lumen, at various times. (A) (6.16) is used, with D =
0.78cm?s™', v = 1.76cmmin™!, and a constant-concentration infinite reservoir input. (B) the
analytical solution of (6.17) with initial condition ¢ (z,0) = 0 is used, with D = 0.78 cm?s™!,
v = 1.76cmmin™!, k, = 0.18 h ™!, and a constant-concentration reservoir input, applied only for
the first hour, 1o = 1h
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of (6.16) is relatively small compared to the first; therefore, (6.16) can be approxi-
mated by the following:

c(z.1) 1 Z \/ V2t
= _erfc — .
co 2 V4Dt 4D

By replacing the spatial coordinate z with the length of the tube L in the previous
equation, the fraction of dose exiting the small intestine as a function of time is

obtained:
c(L,t) 1 (L - vt)
= _erfc .
€o 2 VADt

This equation allows one to consider the cumulative distribution of small-intestinal
transit time data with respect to the fraction of dose entering the colon as a function
of time. In this context, this equation characterizes well the small-intestinal transit
data [177, 178], while the optimum value for the dispersion coefficient D was found
to be equal to 0.78 cm? s™!. This value is much greater than the classical order of
magnitude 107> cm? s™! for molecular diffusion coefficients since it originates from
Taylor dispersion due to the difference of the axial velocity at the center of the tube
compared with the tube walls, as depicted in Figure 6.5.

For absorbable substances, a first-order absorption term can be coupled with
the convection—dispersion (6.15) to model both the fluid flow and the absorption
process:

de(z,1) Dazc (z,1) o dc (z,1)

— ks (z,1), 17
o 822 oz @ ©17

where k, is the first-order absorption rate constant. Although the previous equation
is solved numerically, an analytical solution can be obtained [183] for appropriate
initial and boundary conditions. More specifically, with a zero initial condition
¢(z,0) = 0 and boundary conditions that correspond to a constant reservoir for
an initial period 7, only,

co for0 <t <t,, dc(z,1)
0,1 = ' =0,
c©.9 { 0 fort, <t, %2 |00t
the analytical solution of (6.17) is
co® (z,1) for0 <t < to,

c(z,t) = {

co® (z,1) — co® (z,t — 1o) for 1o, < t,

where

® (1) = ;exp[(v ;l;x)z:| orfe (zTth) N ;exp[(v ;—;)z:| orfe (z—;vt)
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and
o =vy/1 + 4k,Dv2, B =2+/Dr.

Profiles of the analytical solution of (6.17) were plotted in Figure 6.6B.

In this category of dispersion models, one can also classify a “continuous plug
flow with dispersion” model for the simulation of gastrointestinal flow and drug
absorption [184]. In this model, the drug is passively absorbed, while the intestinal
transit is described via a Gaussian function. The drug solution moves in a concerted
fashion along the intestines, but with an ever-widening distribution about the
median location in contrast to the time-distribution theoretical profiles of classical
dispersion—convention models shown in Figure 6.6. The model described nicely the
dose-dependent absorption of chlorothiazide in rats [184], and it has been used for
the development of a physiologically based model for gastrointestinal transit and
absorption in humans [185].

Recently, a novel convection—dispersion model for the study of drug absorption
in the gastrointestinal tract, incorporating spatial heterogeneity, was presented [186].
The intestinal lumen is modeled as a tube (Figure 6.7), where the concentration
of the drug is described by a system of convection—dispersion partial differential
equations. The model considers:

spatial coordinate —z——
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Fig. 6.7 A dispersion model that incorporates spatial heterogeneity for the gastrointestinal
absorption processes. gy denotes the administered dose and ¢ is the fraction of dose dissolved
in the stomach
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* two drug concentrations, for the dissolved and the undissolved drug species, and

 spatial heterogeneity along the axis of the tube for the various processes included,
i.e., axial heterogeneity for the velocity of the intestinal fluids, the constants
related to the dissolution of the solid drug, and the uptake of the dissolved drug
from the intestinal wall.

The model includes more realistic features than previously published dispersion
models for the gastrointestinal tract, but the penalty for that is that it can be solved
only numerically and includes a large number of parameters that are difficult to be
estimated based solely on blood data.

6.4 Heterogeneous Approaches

The approaches discussed in Sections 6.1, 6.2, and 6.3 were based on the concept
of homogeneity. Hence, the analysis of drug dissolution, transit, and uptake in
the gastrointestinal tract was accompanied by the assumption of perfect mixing
in the compartment(s) or the assumption of homogeneous flow. In the same vein,
the convection—dispersion models [177, 178, 181-184, 186] consider the small
intestine as a uniform tube with constant axial velocity, constant dispersion behavior,
and constant-concentration profile across the tube diameter. The heterogeneous
approaches attempt to incorporate the geometrically heterogeneous features of the
internal structure of the intestinal tube, e.g., microvilli as well as the inhomogeneous
flow of drug toward the lower end of the intestinal tube.

The assumptions of homogeneity and/or well-stirred media used in Sections 6.1
to 6.3 are not only not obvious, but they are also in fact contrary to the evidence
given the anatomical and physiological complexity of the gastrointestinal tract. Both
in vivo drug dissolution and uptake are heterogeneous processes since they take
place at interfaces of different phases, i.e., the liquid—solid and liquid—membrane
boundaries, respectively. In addition, both processes occur in heterogeneous envi-
ronments, i.e., variable stirring conditions in the lumen. The mathematical analysis
of all models described previously relies furthermore on the assumption that an
isotropic three-dimensional space exists in order to facilitate the application of
Fick’s laws of diffusion. However, recent advances in physics and chemistry, as
discussed in Chapter 2, have shown that the geometry of the environment in which
the processes take place is of major importance for the treatment of heterogeneous
processes. In media with topological constraints, well-stirred conditions cannot
be postulated, while Fick’s laws of diffusion are not valid in these spaces. Most
of the arguments questioning the validity of the diffusion theory in a biological
context seem to be equally applicable in the complex media of the gastrointestinal
tract [187, 188]. However, advances in heterogeneous kinetics have led to the
development of fractal-like kinetics that are suitable for processes taking place in
heterogeneous media and/or involving complicated mechanisms. In the light of the
above-mentioned gastrointestinal heterogeneity, the drug gastrointestinal processes
are discussed below in terms of fractal concepts [189].
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6.4.1 Heterogeneous Gastrointestinal Transit

Since gastrointestinal transit has a profound effect on drug absorption, numerous
studies have focused on the gastric emptying and the intestinal transit of different
pharmaceutical dosage forms. Gastric emptying is totally controlled by the two
patterns of upper gastrointestinal motility, i.e., the interdigestive and the digestive
motility pattern [190]. The interdigestive pattern dominates in the fasting state and
is organized into alternating phases of activity and quiescence. Studies utilizing
gamma scintigraphy have shown that gastric emptying is slower and more consistent
in the presence of food [191, 192]. The transit through the small intestine, by
contrast, is largely independent of the feeding conditions and physical properties
of the system [191, 192], with an average transit time of ~ 3h [177]. Thus,
normal transport seems to operate in the various segments of the small intestine and
therefore a linear evolution in time of the mean position of the propagating packet
of drug molecules or particles can be conceived.

Several studies with multiparticulate forms have indicated that the movement of
pellets across the ileo—caecal junction involves an initial regrouping of pellets prior
to their entrance and spreading in the colon [193-195]. According to Spiller et al.
[196] the ileocolonic transit of 1 ml solution of a *"Tc-diethyl triamine-pentaacetic
acid (DTPA) in humans is rapid postprandially and slow and erratic during fasting.
Under fasting conditions the ileum is acting as a reservoir in several cases and
the colonic filling curves of DTPA exhibit long plateaus and low slopes that are
indicative of episodic colonic inflow and wide spreading of the marker in the colon
[196]. Similarly, Krevsky et al. [197] have shown that an 8 ml bolus containing
n-DTPA installed into the cecum was fairly evenly distributed throughout all
segments of the colon after 3 h. Finally, the colonic transit of different-sized tablets
has also been shown to follow the same spreading pattern [198]. This type of marker
movement is most likely due to the electrical activity of the proximal and distal
parts of the colon [190]. The electrical waves in these regions are not phase locked
and therefore random contractions of mixing and not propulsion of contents is
observed. From a kinetic point of view, the wide spreading of the marker in the
colon is reminiscent of what is known in physics as dispersive transport [199]. This
conclusion can be derived if one compares time distribution analysis data of colonic
transit (cf., for example, the data of the first 3 hours in Figure 3 of [197]) with
the general pattern of dispersive transport (Figure 4 in [199]). These observations
substantiate the view that dispersive transport [199] operates in the large intestine
and therefore the mean position of the propagating packet of drug particles is a
sublinear function of time. However, dispersive transport is a scale-invariant process
with no intrinsic transport coefficients; in other words, a mean transit time does
not exist since transport coefficients become subject- and time-dependent [199].
These observations provide an explanation for the extremely variable whole-bowel
transit, i.e., 0.5 — 5d [198], since the greater part of the transit is attributable to
residence time in the large intestine.
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6.4.2 Is in Vivo Drug Dissolution a Fractal Process?

In the pharmaceutical literature there are several reports that demonstrate that flow
conditions in the gastrointestinal tract do not conform to standard hydrodynamic
models. Two investigations [200, 201] assessed the gastrointestinal hydrodynamic
flow and the mechanical destructive forces around a dosage form by comparing the
characteristics of in vitro and in vivo release of two different types of controlled-
release paracetamol tablets. The results [200] indicate that the hydrodynamic
flow around the dosage forms in the human gastrointestinal tract are very low,
corresponding to a paddle speed of 10 rpm in the paddle method of dissolution
or a velocity of about 1cmmin™! (1-2mlmin~! flow rate) in the flow-through
cell method. In parallel, low and high in vitro destructive forces were found
to be physiologically meaningful and essential for establishing a useful in vitro
dissolution testing system [200, 201].

Furthermore, data from gastrointestinal physiology have long since shown the
heterogeneous picture of the gastrointestinal contents as well as the importance of
mechanical factors in the gastrointestinal processes [190]. It is very well established
that the gastric contents are viscous, while shearing forces in the chyme break
up friable masses of food. Since chyme moves slowly down the intestine by
segmentation and short, weak propulsive movements, the flow is governed by
resistance as well as by pressure generated by contraction [190]. Thus, there is
a progressive reduction of the transit rate from duodenum to the large intestine
[202, 203].

All the above observations [190-203] substantiate the view that the flow is
forced in the narrow and understirred spaces of the colloidal contents of the lower
part of the gastrointestinal tract. Consequently, friction becomes progressively
more important than intermolecular diffusion in controlling the flow as the drug
moves down the intestine. The characteristics of this type of flow have been
studied [204, 205] with Hele—Shaw channels ensuring a quasi-two-dimensional
space using miscible fluids of different viscosities. These studies revealed that
when a less-viscous fluid moves toward a fluid with higher viscosity (polymer
solution or colloidal suspension), the interface ripples and very soon becomes
extremely meandering (fractal). These viscous, fractal fingers have been observed
in experiments mimicking the secretion of HCI and its transport through the mucus
layer over the surface epithelium [206]. Confirmation of this type of morphology
(channel geometry) in the mucus layer has been provided by an in vivo microscopic
study of the acid transport at the gastric surface [207]. The results obtained with the
dyes Congo red and acridine strongly suggest that secreted acid (and pepsin) moves
from the gastric crypts across the surface mucus layer into the luminal bulk solution
only at restricted sites [207].

In the light of these observations one can argue that the dissolution of sparingly
soluble drugs should be performed in topologically constrained media since the
drug particles traverse the larger part or even the entire length of the intestines and
attrition is a significant factor for their dissolution. However, one can anticipate poor
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Fig. 6.8 Geometric
representation of dissolution

under (A) homogeneous and O g eaaya
(B) heterogeneous conditions |: Q
at a given time . Reprinted
from [189] with permission
from Springer
|

eace

ogere "

A e x w

A B

reproducibility of dissolution results in topologically constrained media [208, 209]
since the dissolution of particles will be inherently linked with the fractal fingering
phenomenon, Figure 6.8:

1.

The square in Figure 6.8 A represents geometrically all currently used well-stirred
dissolution media, which ensure at any time a homogeneous concentration of
drug throughout their volume. Due to homogeneity a sample taken from a well-
stirred dissolution medium can provide the amount of drug dissolved (white
squares) after separation of the undissolved drug (black squares).

. Dissolution in topologically constrained media gives rise to fractal fingering,

Figure 6.8B (cf. also figures in [205, 208, 209]). The tree-like structure shown
here indicates the flow of liquid where dissolution takes place. This structure
is generated via the modified diffusion-limited aggregation (DLA) algorithm of
[209] using the law p = « (m/N)ﬂ . Here, N = 2,000 (the number of particles of
the DLA clusters), « = 10 and 8 = 0.5 are constants that determine the shape of
the cluster, p is the radius of the circle in which the cluster is embedded, p, = 0.1
is the lower limit of p (always p. < p), and m is the number of particles sticking
to the downstream portion of the cluster. This example corresponds to a radial
Hele—Shaw cell where water has been injected radially from the central hole.
Due to heterogeneity a sample cannot be used to calculate the dissolved amount
at any time, i.e., an average value for the percent dissolved amount at any time
does not exist. This property is characteristic of fractal objects and processes.

According to van Damme [205], fractal fingering is in many respects a chaotic

phenomenon because it exhibits a sensitive dependence on the initial conditions.
Although this kind of performance for a dissolution system is currently unaccept-
able, it might mirror more realistically the erratic dissolution of drugs with very low
extent of absorption.
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6.4.3 Fractal-like Kinetics in Gastrointestinal Absorption

Derivation of the equations used in linear compartmental modeling relies on the
hypothesis that absorption takes place from a homogeneous drug solution in the
gastrointestinal fluids and proceeds uniformly throughout the gastrointestinal tract.
Homogeneous gastrointestinal absorption is routinely described by the following
equation [210]:

Citl (t) = Faqoka exp (_kat) 5

where F, is the fraction of dose (qo) absorbed, and k, is the first-order absorption
rate constant. Nevertheless, the maximum initial absorption rate (F,qok,) associated
with the previous equation is not in accord with stochastic principles applied to
the transport of drug molecules in the absorption process [210]. Theoretically, the
absorption rate must be zero initially and increase to reach a maximum over a
finite period of time. This type of time dependency for the input rate has been
verified in deconvolution and maximum entropy studies of rapid-release dosage
forms [210-212]. To overcome the discrepancies between the above equation and
the actual input rates observed in deconvolution studies, investigators working in
this field have utilized a cube-root-law input [213], polynomials [214], splines
[212], and multiexponential [215] functions of time. In the same vein, but from
a pharmacokinetic perspective, Higaki et al. [216] have considered models for
time-dependent rate “constants” in oral absorption. Although these approaches
[210,212-216] are purely empirical, their capability in approximating the real input
function indicates that power functions of time can be of value in describing the
gastrointestinal drug absorption.

A more realistic approach to modeling drug absorption from the gastrointestinal
tract should take into account the geometric constraints imposed by the hetero-
geneous structure and function of the medium. A diffusion process under such
conditions is highly influenced, drastically changing its properties. For example,
for a random walk in disordered media, the mean square displacement (zz (t)) of the
walker is given by (2.10):

(% (1)) oc £/,

where d,, is the random-walk dimension (cf. Section 2.2). The value of d,, is larger
than 2, typically d, = 2.8 (2 dimensions), and d,, = 3.5 (3 dimensions), so
the overall exponent is smaller than 1. Furthermore, in understirred media, where
reactions or processes take place in a low-dimensional space, the rate “constant” is
in fact time-dependent at all times (cf. Section 2.5). Hence, the transit, dissolution,
and uptake of drug under the heterogeneous gastrointestinal conditions can obey
the principles of fractal kinetics [17, 217], where rate “constants” depend on time.
For these heterogeneous processes, the time dependency of the rate coefficient k is
expressed by

k = kot*,
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where k, is a constant, while the exponent A is different from zero and is the outcome
of two different phenomena: the heterogeneity (geometric disorder of the medium)
and the imperfect mixing (diffusion-limit) condition. Therefore, k depends on time
since A # 0 in inhomogeneous spaces while in three-dimensional homogeneous
spaces A = 0 and therefore k = ko, i.e., classical kinetics prevail and the rate
constant does not depend on time. For “ideal” drugs having high solubility and
permeability the homogeneous assumption (A = 0, gastrointestinal absorption pro-
ceeds uniformly from a homogeneous solution) seems to be reasonable. In contrast,
this assumption cannot be valid for the majority of drugs and in particular for drugs
having low solubility and/or permeability. For these drugs a suitable way to model
their gastrointestinal absorption kinetics under the inhomogeneous gastrointestinal
conditions is to consider a time-dependent absorption rate coefficient k,,

k, = ki1,
and a time-dependent dissolution rate coefficient k4,
ks = kzlﬂ .

In reality, the exponents & and B determine how sensitive k, and k, are in temporal
scale and the kinetic constants k; and k,, determine whether the processes happen
slowly or rapidly. The dimensions of k; and k, are time™('*® and time=(+#)
respectively. Thus, the absorption rate g, (7) is

‘ia () = kaqa (1) = k1t"q4 (1),

where ¢, (¢) is the dissolved quantity of drug in the gastrointestinal tract. Since
the change of g, (¢) is the result of dissolution and uptake, which are both taking
place under heterogeneous conditions (¢ # 0 and/or 8 # 0), the previous
equation exhibits a nonclassical time dependency for the input rate. Consequently,
this equation provides a theoretical basis for the empirical power functions of time
utilized in deconvolution studies [210, 212-215].

The values of the parameters o and S for drugs exhibiting heterogeneous
absorption kinetics are inherently linked with the physicochemical properties of the
drug, the formulation, the topology of the medium (gastrointestinal contents), and
the initial distribution of drug particles in it [17]. It is worthy of mention that the
initial conditions (the initial random distribution of the reactants: solid drug particles
and gastrointestinal contents) are very important in fractal kinetics [17]. For all
these reasons, population parameters for drugs having ¢ # 0 and/or § # 0 are
unlikely since the topology of the medium and the initial conditions are by no means
consistent or controlled, being dependent on subject and time of day. For the sake of
completion, one should add that under homogeneous conditions (¢ = = 0) both
k, and k; are independent of time and therefore classical kinetics can be applied.
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6.4.4 The Fractal Nature of Absorption Processes

Relying on the above considerations one can argue that drugs can be classified with
respect to their gastrointestinal absorption characteristics into two broad categories,
i.e., homogeneous and heterogeneous. Homogeneous drugs have satisfactory solu-
bility and permeability, and are dissolved and absorbed mostly prior to their arrival
to the large intestine. It seems likely that the gastrointestinal absorption charac-
teristics of the homogeneous group of drugs are adequately described or modeled
with the homogeneous approach, i.e., well-stirred in vitro dissolution systems and
classical absorption kinetics. In contrast, drugs with low solubility and permeability
can be termed heterogeneous, since they traverse the entire gastrointestinal tract,
and are most likely to exhibit heterogeneous transit, dissolution, and uptake and
therefore heterogeneous absorption kinetics. In this context, the following remarks
can be made for the heterogeneous drugs that exhibit limited bioavailability and
high variability, and most of them can be classified in categories II and IV of the
BCS [157] (cf. also Section 6.6.1):

* Mean or median values should not be given for the whole bowel transit since most
of the dissolved and/or undissolved drug traverses the entire gastrointestinal tract.
The complex nature of transit involving normal and dispersive transport [199] as
well as periods of stasis would be better expressed by reporting the range of the
experimental values.

* Dissolution testing with the officially used in vitro systems ensuring homoge-
neous stirring conditions, should be solely viewed as a quality control procedure
and not as a surrogate for bioequivalence testing. According to the current view
[157], limited or no in vitro—in vivo correlations are expected using conventional
dissolution tests for the category IV drugs and the drugs of category II used in
high doses. Since this unpredictability is routinely linked with our inability to
adequately mimic the in vivo conditions, one should also consider whether the
chaotic character of in vivo dissolution is a valid hypothesis for the failure of
the in vitro tests. It is advisable, therefore, to perform physiologically designed
dissolution experiments in topologically constrained media [205, 208, 209] for
drugs of categories II and IV [157] in order to determine potential cutoffs for
dose and solubility values as well as flow characteristics for drug classifications
(homogeneous and heterogeneous drugs). Further, these cutoffs could be used for
setting standards for in vitro drug dissolution methodologies of drugs classified
as heterogeneous.

* A notion that routinely accompanies oral absorption studies is that the mathemat-
ical properties of the underlying processes have a Gaussian distribution where the
moments, such as the mean and variance, have well-defined values. Relying on
this notion, drugs and/or formulations are categorized as low or highly variable.
Thus, any drug that generates an intraindividual coefficient of variation greater
than 30% as measured by the residual coefficient of variation (from analysis of
variance) is arbitrarily characterized as highly variable. The use of a statistical
measure of dispersion for drug classification is based on the law of large numbers,
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which dictates that the sample means for peak blood concentration, cy.x, and
the area under the blood time—concentration curve, AUC, converge to fixed
values while the variances decrease to nonzero finite values as the number
used in averaging is increased. The conventional assessment of bioequivalence
relies on the analysis of variance to get an estimate for the intraindividual
variability prior to the construction of the 90% confidence interval between 80
and 125% for AUC and cp,x. The basic premise of this approach is that errors
are normally distributed around the estimated mean values and two one-sided
t-tests can be performed. Although the validity of this assumption seems to
be reasonable for drugs following classical kinetics, concern is arising for the
parameters cpax and fmax (time corresponding to cyax) When fractal-like kinetics
govern absorption since for many fractal time-dependent processes [4, 199] the
mean and the variance may not exist. Under heterogeneous conditions, both
Cmax and fp.x Will depend on « and B, and therefore mean values for these
parameters cannot be justified when fractal kinetics are operating. Apparently, a
significant portion of variability with the heterogeneous drugs can be mistaken as
randomness and can be caused by the time dependency of the rate coefficients of
the in vivo drug processes. These observations provide a plausible explanation
for the high variability in cy.x values and the erroneous results obtained in
bioequivalence studies [218]. From the above it appears that is inappropriate to
apply rigorous statistical tests in bioequivalence studies for heterogeneous drugs
using parameter estimates for cyax and 7« that do not actually represent sample
means. The suggested [219] comparison of the time—concentration curve profiles
of test and reference products in bioequivalence studies seems to be in accord
with the reservations pointed out regarding use of specific parameters for the
assessment of the absorption rate.

6.4.5 Modeling Drug Transit in the Intestines

The small-intestinal transit flow is a fundamental process for all gastrointestinal
absorption phenomena. However, the structure of the gastrointestinal tract is highly
complex and it is practically impossible to explicitly write and solve the equations
of motion for the drug flow. Instead, numerical computer-simulation techniques that
incorporate the heterogeneous features of the gastrointestinal wall structure and of
the drug flow are used in this section to characterize the intestinal transit process in
humans.

An algorithm is built from first principles, where the system structure is recreated
and subsequently the drug flow is simulated via Monte Carlo techniques [220].
This technique, based on principles of statistical physics, generates a microscopic
picture of the intestinal tube. The desired features of the complexity are built in,
in a random fashion. During the calculation all such features are kept frozen in the
computer memory (in the form of arrays), and are utilized accordingly. The principal
characteristic of the method is that if a very large number of such units is built, then
the average behavior of all these will approach the true system behavior.
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Fig. 6.9 (A) The cylinder used for the tube construction. (B) Cross section of the tube. Reprinted
from [220] with permission from Springer

6.4.5.1 Construction of the Heterogeneous Tube

The model is based on a cylinder whose length is several orders of magnitude
larger than its radius. Thus, any entanglements that are present are ignored, since
they do not influence the dynamics of the phenomena. Initially, a three-dimensional
parallelepiped with a square cross section, of size x : y : z equal to 31 : 31 : 3000 is
constructed, Figure 6.9A. Inside it a cylinder with a radius of 14 units is built, a cross
section of which appears in Figure 6.9B. Hence, the quotient of [radius/length]=
R/L = 14/3000 in the tube model is quite similar to the ratio of physiological data
1.3 cm/3 m for the human small intestine.

For convenience in the calculations, an underlying lattice of discrete spacing
forming in effect a three-dimensional grid is used. This grid covers the entire
cylinder, while for all spatial considerations the grid sites are utilized. The interior
of the cylinder has a finite concentration of villi attached to the cylinder wall, which
have the property that they may absorb the dissolved drug particles flowing through
the cylinder. The villi have the usual random dendritic structure, and they are formed
by the DLA method [209]. The absorption of the drug particles in the model takes
place when a flowing particle happens to have a position right next to the villi
coordinates, implying that when a particle comes in contact with a villi structure it
can be absorbed. The probability for absorption by the villi or walls is p,. Since the
present model focuses on the tube structure and the characteristics of flow, p, = 0,
while the case of p, # 0 is treated in the following section.

The villi have a random dendritic-type structure, and they are formed initially
by use of an algorithm based on the well-known DLA [209] model from solid-state
physics. At random positions, 2z seed particles (z the cylinder length, Figure 6.9A)
are placed on the cylinder surface by positioning 2 particles on each z value.
Following the DLA model, another particle, starting at a random point of each cross
section, makes a three-dimensional random walk (diffusion) inside the cylinder.
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Fig. 6.10 Cross sections of

the tube at random positions
for various concentrations of
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The walk stops when the moving particle visits any of the neighbor sites of the
original seed particles. At this point it stops and becomes attached to the neighboring
seed particle. The particle is constrained to move inside the cylinder. Then a second
particle starts a random walk, until it meets either one of the seeds or the already
[frozen particle. The process continues and the internal structure of the tube, which
can be of varying complexity, is built using a total of Ny particles per unit length.
The size of each villi cluster is limited to the value 1.5Ny;;;. This is done in order to
achieve a uniform distribution of villi cluster sizes. The higher the N, value, the
more ramified is the ensuing structure. Some examples for various values of Ny
are shown in Figure 6.10. This figure shows typical two-dimensional cross sections
of the cylinder, for four different Ny values, Ny = 50, 100, 150, and 200, at
random places. It is clearly seen how the villi complexity is built up with increasing
N.ini- Some squares appear not to be connected to any others in these pictures. In
fact, these are indeed connected to adjacent (first neighbor) squares in the next or
previous cross section of the tube (i.e., with 7/ = z+ 1 or 7 = z— 1), which are not
shown in Figure 6.10.

6.4.5.2 Dynamics

The dynamics of the system are also followed utilizing the Monte Carlo technique.
This includes motion of the particles through the tube, dissolution in the solvent
flow, and absorption by the villi or the tube walls. Time is incremented by arbitrary
time units, the MCS, which is the time it takes for a particle to move to one of its
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neighbor positions. A “tablet” can be inserted in one end of the tube (input end)
at predefined time increments expressed in MCS. The “tablet” is modeled as an
aggregate of drug particles of mass go = 100. This means that one “tablet” can
later be broken down successively into 100 units, which represent the solid drug
particles. These can be further dissolved in the encompassing solution. But as long
as the “tablet” has a mass larger than one it cannot be dissolved in the solution. All
diffusing species (dissolved and undissolved) flow through the cylinder from the
input end toward the direction of the other end (output end). This is accomplished
by using a diffusion model of a biased random walk that simulates the fluid flow.

A simple random walk is the prototype model of the regular Brownian motion.
Such a model is modified here, by including a bias factor, which makes the motion
ballistic rather than simply stochastic. This bias factor, €, increases the probability
for motion in the z-direction, i.e., toward the output end, as compared to the
probabilities in all other directions. This makes the flow of the particles and the
dissolved drug molecules possible. If ¢ = 0, there is a motion but it is rather
stationary and in all possible directions. If ¢ > 0, this makes the flow possible. The
rate of the flow is also directly affected by the numerical value of &, with increasing
¢ values resulting in increasing flow rates. With this statistical model the diffusing
species can momentarily go against the flow, or sideways. This is a realistic feature,
but it occurs with reduced probability.

Two different models of the biased random walk were envisaged. In model I the
three directions of space, x, y, and z, are all equally probable, but in the z direction,
the probability toward the output end (z4 ) is now (1/z) + ¢, while the corresponding
probability toward the input end (z_) is (1/z)—¢ (where z is the coordination number
of the underlying space, e.g., z = 6 in a three-dimensional space). This model has
the characteristic that diffusion is equally probable in all possible directions, the
species spending equal times in all of them, but due to the ¢ factor, when the z
direction is chosen a positive flow drives the solution to the output end.

In a second model II, more emphasis is given to the motion toward the output and
less to the other directions. The probabilities for motion in the different directions
are now defined differently. While in the simple random walk the probability for
motion in a specific direction is 1/z, here the probability for motion in the output
direction is (1/z) + &, while the probability in any of the other five directions is

1—(;—}-8)
z—1

Thus, the values that € can take are in the range
1
O<e<l-— ,
z

while the overall forward probability py, i.e., the probability toward the output end,
is in the range

1
<pr<l.
z Dr
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At each time step there is a probability p; for the “tablet” to dissolve, i.e.,
0 < ps < 1. In the Monte Carlo method the “tablet” is tested at every step
to determine whether a fragment (one new particle) is to be released. When this
happens a fragment of the “tablet” with mass y = 1 breaks off, and gets separated
from the larger mass. It is understood that this v = 1 particle is immediately
dissolved, and it is never reattached to the original mass. This dissolved particle
now performs a random walk of its own, with the same characteristics (bias) as
the main “tablet.”” The mass go of the “tablet” is then reduced by . The virtual
experiment of the flow starts when a large number of drug particles (e.g., 10, 000)
with mass ¥ = 1 are inserted simultaneously at time r = O in the tube and are
allowed to diffuse. To concentrate on the transit process exclusively, dissolution is
considered instantaneous and py is set equal to 1, while absorption is not allowed
by setting p, = 0. When the fragments of the “tablet” reach the end of the tube,
they are discarded. At the end of the simulation time the mass that has exited from
the end of the tube is computed. The mean transit time is also computed by keeping
track of the time it took for the particles to reach the end of the tube.

When the diffusing species come in contact with a closed site (such as the villi
sites of the model) they have two options. In the first option, the particle does not
“feel” the presence of the closed site, and it may attempt, unsuccessfully, to go to
it. This model is called the blind ant model. In the second model, the particle feels
the presence of the closed site, and thus it never attempts to land on it. This is called
the myopic ant model. The difference between these two models is that the blind ant
consumes long times in unsuccessful attempts, and thus its motion is slower than
the myopic ant case.

6.4.5.3 Simulated vs. Experimental Data

The details of the flow of particles in the heterogeneous tube were studied using
a model II biased random walk. In Figure 6.11, the mean transit time of the drug
particles vs. the forward probability py (i.e., the probability toward the output along
the z-axis) is plotted for various villi concentrations, for the two cases of the blind
ant (part A), and the myopic ant (part B). For no villi structures, Nyii = 0, and for
Nyiii = 50 we observe that for larger py values the transit times of the particles were
shorter, as one would expect. For larger villi concentrations the transit time became
longer as py was increased. This behavior may seem inconsistent, but can easily be
explained if we consider that when a drug fragment meets an obstacle (villi) then
its forward motion is hampered, and it must move in the x or y direction (sideways)
in order to circumvent it and continue moving toward the end of the tube. What
happens is that when py values are large, then the probability for movement along
the x- or y-axis is reduced. This does not give the particle the freedom to easily pass
the obstacle, so it wastes time trying to move in the z direction. This explains the rise
in the transit times, which is larger for larger villi concentrations. This qualitative
picture is valid for both models in parts (A) and (B) of Figure 6.11. Plausibly, in
comparing the two figures, the transit times are always longer in the blind ant case,
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Fig. 6.11 Mean transit times vs. the forward probability for various concentrations of villi, (A)
blind ant model; (B) myopic ant model. Key (Ny;;): ® 0; l 50; A 100; ¥ 150; ¢ 200

for any villi concentration. The system behavior as shown in Figure 6.11 implies that
the interplay of these two factors, namely the villi structure and the bias probability
(flow rate), is important in determining the dynamics of the flow.

The frequency of transit times that result from the simulations for various values
of villi and forward probability ps are also compared to experimental data [177].
Model I consistently produces narrower frequencies than do model II and the
experiments. This is because in model I, motion in the preferred z direction occurs
with the same frequency as motion in the other directions. The effect of the flow
along the tube length is downplayed, as opposed to the other model (I), in which it
is emphasized. In Figure 6.12 the results for model I of the biased diffusion, together
with the experimental data are presented. A wide range of variation for the two
parameters, i.e., the bias factor ¢ and the villi concentration N, was used, and
the best resemblance between simulation and experimental data was achieved for
the values of Nyjy;; = 190 and forward probability p; = 0.65, Figure 6.12. The x-
axis here is in units of minutes. This is done by establishing a correspondence of
1's = 1.5 MCS, since this is the value that produces the best possible fit.

Overall, the biased random walk, which places more emphasis on the motion
toward the output end and less on the other directions, mimics more closely the
transit profile of the experimental data. Both diffusion models, i.e., the blind and
the myopic ant models, can reproduce the basic features of the real small-intestinal
transit profile.
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Fig. 6.12 Frequency of mean transit times vs. time (min) using the diffusion model II for the blind
ant model positions for various concentrations of villi and forward probabilities p; values. Key: o
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6.4.6 Probabilistic Model for Drug Absorption

The probabilistic absorption model described herein [221] was based on the cylinder
built in [220] that incorporates all the random heterogeneities that make up the
gastrointestinal tube. The optimal heterogeneous characteristics found in [220] were
assigned to the number of villi and the type of the biased random walk. Thus, the
parameter number of villi Ny was set equal to 190, while the blind ant model for
the biased random walk with forward probability p; = 0.65 was used to simulate
the motion of the dissolved and undissolved drug species. The dissolved species
are tagged and continue the random walk and can be absorbed by the cylinder wall
structure, or exit the tube if they reach its end. The quantities input and exiting
through the tube, their transit time, and the fraction of the species absorbed and
dissolved during the flow are monitored.

6.4.6.1 Simulation of Dissolution and Uptake Processes

A “tablet,” which is modeled as an aggregate of drug particles of mass g, is inserted
in one end of the tube (input end). At each time step a portion of the mass of the
“tablet” can be dissolved. The rate of dissolution is considered to be dependent on
three factors, which are all expressed in probability values.
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1. The first factor, k;, mimics the conventional dissolution rate constant; it is
inherent for every drug and takes values in the range 0 < k; < 1. A value close
to unity denotes a drug with rapid dissolution characteristics. Thus, a specific k4
value is conceived for a given drug under certain experimental conditions. As
a probability value, k; corresponds to p, and it expresses the number of events
occurring in a time unit. Consequently, k; has dimension of time™!.

2. The second factor, k., is related to the first-order concentration dependence of
the dissolution rate. As dissolution proceeds the amount of drug in solution
increases exponentially and therefore the value of k. is reduced exponentially.
This reduction is controlled by the relative amount dissolved, g (¢) /¢;, as defined
in Section 5.1.4, at each time point:

ke = ke (1) = exp[=In(10)q (1) /4],

where ¢ (¢) is the mass of the dissolved drug at any moment during the simulation
and ¢; is the dissolved mass at saturation. g, is computed by multiplying the
minimum physiologic solubility c; min of the drug by the luminal volume, which
is assumed to be 250 ml. The In (10) factor was chosen so that the magnitude
of k., when the dissolved mass was equal to the dissolved mass at saturation,
should arbitrarily be one-tenth of the value of k. when the dissolved mass is equal
to zero. Thus, k. is reduced exponentially as dissolution proceeds. Of course, at
saturation (g (f) = ¢5) no more material is allowed to dissolve.

3. The third factor, k;, depends on the surface area of the drug particles. It is known
that the reduction of the surface area is related nonlinearly to the reduction
of mass as dissolution proceeds. Since the nonlinear relationship between the
undissolved mass, gy — ¢ (), and surface area is dependent on the geometric
characteristics of the drug particles, the value of k; is considered to decrease
proportionally to exp {[qgo — ¢ (t)] /q0} = exp[l — ¢ (¢)] in order to avoid any
shape assumptions. Therefore, k; is not computed directly in the simulation, but is
calculated from the undissolved drug mass at any moment during the simulation.
The exact equation that gives k; is

ks — kg (1) = 0.0l exp{4.5[1 — ¢ (1)]}.

The constants in the last equation are chosen so that k, arbitrarily equals 0.9
when ¢ (¢) is close to zero and k; = 0.01 when ¢ (f) equals go. In essence,
the probability factor k; is related to the diminution of the surface area of drug
particles during the dissolution process.

The quantities k. and k; in the last two equations result from a calculation of
an exponential, and thus have no physical dimensions. The effective dissolution
probability rate “constant” k4 .4 is calculated by multiplying the above three factors,
so that kg . = kgkcks. Thus, kg . has dimension of time™! and denotes the fraction
of the total number of drug particles that can be dissolved per MCS. The mass of
the “tablet” that will break off at any moment is given by multiplying the value
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of kg e by the undissolved mass of the tablet. If g, (¢) is this mass, then g, (1) =
[g0 — q (D] kg and g4 (r) /Y particles of the “tablet” with mass v will break off,
and will get separated from the larger mass. The dissolved particles now flow on
their own, with the same characteristics (forward probability) as the undissolved
particles. The mass gy — ¢ (7) of the undissolved drug is then reduced by g, (7).

Dissolved particles are tagged in the calculation at all times, so their location
relative to all other particles and the tube walls is known. When one of the dissolved
particles comes “in contact” (when it is in a lattice site adjacent to villi or tube
wall) with the tube walls or the villi there is a probability &/, that it will be
absorbed. It is obvious that the higher the value of &/, the higher the probability of a
dissolved particle of being absorbed. This proportionality implies that only passive
mechanisms are considered. If a dissolved particle is absorbed it is immediately
removed from the system. If it is not absorbed, it remains on its site and continues
the flow. When a dissolved or undissolved particle reaches the end of the tube, it is
discarded.

At the end of the simulation time, the mass that was absorbed and the mass that
has exited from the end of the tube can be computed. Further, the dimensionless
absorption number A,, can be computed [157] from

A ! Tsi) k
n — 2 ( Sl) a
using (6.6) and (6.14). In this relation (7;) is equal to 24, 500 MCS, i.e., the mean
intestinal transit time found in [220]. It must be noted that k, as it appears above
is not identical to the one used as a parameter in the simulation. While they both
describe probabilities, k, is a first-order macroscopic rate constant expressed in
dimension of time™!, while the k; in the simulations describes the microscopic
probabilistic events of the simulation model.

6.4.6.2 Absorption of Freely Soluble Drugs

The absorption of freely soluble drugs having various values of k/, was studied.
Initially, the relationship between the simulated &/, values and the corresponding
conventional k, values, which are computed from the simulation assuming first-
order absorption, was explored. An amount of instantly dissolved mass of gy =
20,000 was inserted in the input end of the tube and both profiles of the fraction
of the mass that was absorbed and exited the tube were recorded. To find out the
relationship between k!, and k,, the following exponential equation was used to fit
the simulated data of the fraction of dose absorbed F, vs. time:

F,=1—exp(—k4t),

where the fitting parameter is k, in MCS™" units, and time ¢ is also expressed in
MCS. Focusing on &/, values, which ensure that most of the drug is absorbed and
does not exit the tube, the following relation between &/, and &, was found:

ky = 0.885K..
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Fig. 6.13 Fraction of dose absorbed vs. A,,. The solid line represents results for 24, 500 MCS and
the points the experimental data. Key: A, D-glucose; B, ketoprofen; C, naproxen; D, antipyrine;
E, piroxicam; F, L-leucine; G, phenylalanine; H, beserazide; I, L-dopa; J, propranolol; K,
metoprolol; L, terbutaline; M, furosemide; N, atenolol; O, enalaprilate

This relationship shows the proportionality between the first-order macroscopic
rate constant k, and the &/, that describes the microscopic probabilistic events (the
“successful” visits of the dissolved species to the villi). Similar simulations for
instantly dissolved 20, 000 drug particles were carried out using various values of
k!, and the fraction of the drug dose absorbed, F,, at 24,500 MCS was calculated.
The k! values were then translated to MCS™! values using the last equation, and
the absorption number A, was computed as delineated above. The fraction of the
dose that was absorbed vs. the absorption number A,, is shown in Figure 6.13. The
symbols represent the experimental data of various drugs [56], while the line gives
the simulation results obtained from the model by adjusting the intestinal transit
time to 24,500 MCS. From the different intestinal transit times evaluated it was
found that 24, 500 MCS gave the best description of the experimental data. Using
the correspondence between MCS and real time units [220], the 24, 500 MCS are
16,333 s or 4.5h. The duration of 4.5h is physiologically sound as an effective
intestinal transit time to study gastrointestinal drug absorption in the model.

6.4.6.3 Absorption of Sparingly Soluble Drugs
The model was also applied to the study of low-solubility drugs. Numerical results

of the system of differential equations reported in [56] were compared to the
simulations based on the heterogeneous tube. In the simulations the z* variable is
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Fig. 6.14 Three-dimensional graph of fraction dose absorbed vs. k/, and k. Dose and ¢, min values
[157] correspond to those of digoxin (A) and griseofulvin (B)

computed using the mean transit time of the particles, (Ty;) = 24,500 MCS, and
7* = t/ (T, expressing both ¢ and (Ty;) in MCS. The “tablet” was inserted in
the tube entrance as a bolus of a given weight go (e.g., 200 or 500 mg) and it was
arbitrarily set that the bolus may break up eventually into a large number of particles,
each weighing 0.01 mg. Thus, each “tablet” of mass go can be finally broken down
to go/0.01 particles. The values of k. and k; were continuously computed during
the simulation—fitting procedure. Various values of the parameter k; were used to
get a good matching of the simulation and the theoretical curves obtained from the
solution of equations [56] for the normalized concentration profile in the tube.

Finally, a three-dimensional plot of the fraction of dose absorbed F, at 24, 500
MCS for various values of the parameters &/, and k, is shown in Figure 6.14 using
values for dose and c; i corresponding to those of digoxin and griseofulvin. The
plots of Figure 6.14 are indicative of the effect of dose on the fraction of dose
absorbed for sparingly soluble drugs. For example, for a highly permeable drug
(k, &~ 0.5) given in a large dose (500 mg) and having the dissolution characteristics
of griseofulvin, ~ 25% of the administered dose will be absorbed according to
Figure 6.14B. In contrast, a drug like digoxin, which exhibits the same permeability
and dissolution characteristics as griseofulvin, given at a low dose (0.5 mg) will be
almost completely absorbed, Figure 6.14A.

6.5 Absorption Models Based on Structure

The ability to predict the fraction of dose absorbed F, and/or bioavailability is a
primary goal in the design, optimization, and selection of potential candidates in the
development of oral drugs. Although new and effective experimental techniques
have resulted in a vast increase in the number of pharmacologically interesting
compounds, the number of new drugs undergoing clinical trial has not increased
at the same pace. This has been attributed in part to the poor absorption of the
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compounds. Thus, computer-based models based on calculated molecular descrip-
tors have been developed to predict the extent of absorption from chemical structure
in order to facilitate the lead optimization in the drug discovery process. Basically,
the physicochemical descriptors of drug molecules can be useful for predicting
absorption for passively absorbed drugs. Since dissolution is the rate-limiting step
for sparingly soluble drugs, while permeability becomes rate-controlling if the
drug is polar, computer-based models are based on molecular descriptors related
to the important drug properties solubility and permeability across the intestinal
epithelium.

A rapid popular screen for compounds likely to be poorly absorbed is Lipinski’s
[222] “rule of 5,” which states that poor absorption of a compound is more likely
when its structure is characterized by:

* molecular weight > 500,

e logP > 5,

* more than 5 H-bond donors expressed as the sum of NHs and OHs, and
* more than 10 H-bond acceptors expressed as the sum of Ns and Os.

However, compounds that are substrates for biological transporters are excep-
tions to the rule. Based on the analysis of 2, 200 compounds in the World Drug Index
that survived Phase I testing and were scheduled for Phase II evaluation, Lipinski’s
“rule of 5” revealed that less than 10% of the compounds showed a combination of
any two of the four parameters outside the desirable range. Accordingly, the “rule of
5” is currently implemented in the form “if two parameters are out of range, a poor
absorption is possible.” However, compounds that pass this test do not necessarily
show acceptable absorption.

Although various computational approaches for the prediction of intestinal
drug permeability and solubility have been reported [223], recent computer-based
absorption models utilize a large number of topological, electronic, and geometric
descriptors in an effort to take both aqueous drug solubility and permeability into
account. Thus, descriptors of “partitioned total surface areas” [172], Abraham
molecular descriptors [224, 225], and a variety of structural descriptors in combi-
nation with neural networks [226] have been shown to be determinants of oral drug
absorption.

Overall, the development of a robust predictor of the extent of absorption requires
a careful screening of a large number of drugs that undergo passive transport to
construct well-populated training and external validation test sets. The involvement
in the data sets of compounds with paracellular, active transport, carrier-mediated
transport mechanisms, or removal via efflux transporters can complicate the prob-
lem of in silico prediction of the extent of absorption. Another problem arises from
the fact that published drug data for F, or bioavailability are skewed toward high
values (&~ 1), while the compounds in the training and external validation data sets
should evenly distributed across the complete range of oral absorption.
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6.6 Regulatory Aspects

Over the past fifteen years the advances described in the previous sections of this
chapter have enhanced our understanding of the role of:

* the physicochemical drug properties,
* the physiological variables, and
* the formulation factors in oral drug absorption.

As a result, the way in which regulatory agencies are viewing bioavailability
and bioequivalence issues has undergone change. In this section, we discuss the
scientific basis of the regulatory aspects of oral drug absorption.

6.6.1 Biopharmaceutics Classification of Drugs

As mentioned in Section 6.1.2, the first attempts to quantitatively correlate the
physicochemical properties of drugs with the fraction of dose absorbed were based
on the absorption potential concept in the late 1980s [160, 162]. The elegant analysis
of drug absorption by Amidon’s group in 1993 based on a microscopic model
[56] using mass balance approaches enabled Amidon and his colleagues [157] to
introduce the Biopharmaceutics Classification System (BCS) in 1995. According to
BCS a substance is classified on the basis of its aqueous solubility and intestinal
permeability, and four drug classes were defined as shown in Figure 6.15. The
properties of drug substance were also combined with the dissolution characteristics
of the drug product, and predictions with regard to the in vitro—in vivo correlations
for each of the drug classes were pointed out.

This important achievement affected many industrial, regulatory, and scientific
aspects of drug development and research. In this context, the FDA guidance [227]
on BCS issued in 2000 provides regulatory benefit for highly permeable drugs
that are formulated in rapidly dissolving solid immediate release formulations. The
guidance [227] defines a substance to be highly permeable when the extent of
absorption in humans is 90% or more based on determination of the mass balance
or in comparison to an intravenous reference dose. In parallel, the guidance [227]
classifies a substance to be highly soluble when the highest dose strength is soluble
in 250 ml or less of aqueous media over the pH range 1 —7.5, while a drug product is
defined as rapidly dissolving when no less than 85% of the dose dissolves in 30 min
using USP Apparatus 1 at 100 rpm in a volume of 900 ml in 0.1N HCI, as well as in
pH 4.5 and pH 6.8 buffers.

It has been argued [228] that the use of a single solubility value in the original
BCS article [157], Figure 6.15, for solubility classification is inadequate since
drugs are administered in various doses. Moreover, solubility is a static equilibrium
parameter and cannot describe the dynamic character of the dissolution process.
Both aspects are treated in the guidance on biowaivers [227]; solubility is related to
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Fig. 6.15 The Biopharmaceutics Classification System (BCS). The reader should note that the
original presentation of BCS [157] has been modified here and follows a kind of a "Cartesian
plot," i.e., Class I (high solubility, high permeability) lies in the upper right corner while Class IV
(low solubility, low permeability) lies at the lower left corner

dose, while dissolution criteria are specified. However, the reference of the FDA
guidance exclusively to “the highest dose strength” for the definition of highly
soluble drugs implies that a drug is always classified in only one class regardless
of possible variance in performance with respect to solubility of smaller doses
used in actual practice. This is not in accord with the dose dependency (non-
Michaelian type) of oral drug absorption, which consistently has been demonstrated
in early [160, 162] and recent studies [164, 165] related to the absorption potential
concept and its variants as well as in the dynamic absorption models [56, 184, 185].
Moreover, the dissolution criteria of the FDA guidance [227], which unavoidably
refer to a percentage of dose dissolved within a specific time interval:

 are not used as primary determinants of drug classification,

¢ have been characterized as conservative [229],

* have had pointed out suggestions for broadening them [230], and
 suffer from a lack of any scientific rationale.

In parallel, the current dissolution specifications [227] are not correlated with
the drug’s dimensionless solubility—dose ratio 1/6, which has been shown [92] to
control both the extent of dissolution and the mean dissolution time, MDT, which is
a global kinetic parameter of drug dissolution.

The latter finding prompted the development of the Quantitative Biopharmaceu-
tics Classification System (QBCS) [228] in which specific cutoff points are used for
drug classification in the solubility—dose ratio permeability plane, Figure 6.16. Unity
was chosen as the critical parameter for the dimensionless solubility—dose ratio axis
because of the clear distinction between the two cases of complete dissolution (when



146 6 Oral Drug Absorption

109" <1 A O =1
F,>095 | F,>0.95
— I
3 10-5_,fffoff‘LJr ffffffffffff |
£ N
S R
s A
N qpe . D<1 \ } o=
\
F <095 | F. <0.95
I
v 111
107 L— .
102 100 102 10 106

Fig. 6.16 The Quantitative Biopharmaceutics Classification System (QBCS) utilizes specific
cutoff points for drug classification in the solubility—dose ratio (1/6), apparent permeability (P,,,)
plane. Each class of the QBCS can be characterized on the basis of the anticipated values for the
fraction of dose absorbed, F,, and the fraction of dose dissolved, ® at the end of the dissolution
process assuming no interplay between dissolution and uptake. In essence the classification system
is static in nature

(1/8) = 1) and incomplete dissolution (when (1/6) < 1) [92]. To account for
variability related to the volume content, a boundary region of 250 to 500 ml was
assumed and thus a boundary region for 1/6 was set from 1 to 2. The boundary
region of highly permeable drugs, P, values in the range 2 x 107 -~ 10 cms™!
on the y-axis of Figure 6.16, can ensure complete absorption. It was based on
experimental results [172—174], which indicate that drug absorption in Caco-2
monolayers can model drug transport in vivo.

In full analogy with BCS [157], the QBCS [228] classifies drugs into four
categories based on their permeability (P,,,) and solubility—dose ratio 1/6 values
defining appropriate cutoff points. For category I (high P,,, high 1/6), complete
absorption is anticipated, whereas categories II (high P,,, low 1/6 ) and III (low
Ppp, high 1/0) exhibit solubility—dose ratio- and permeability-limited absorption,
respectively. For category IV (low P, low 1/6), both permeability and solubility—
dose ratio are controlling drug absorption. A set of 42 drugs was classified into the
four categories of QBCS [228] and the predictions of their intestinal drug absorption
were in accord with the experimental observations, Figure 6.17. However, some of
the drugs classified in category II of the QBCS (or equivalently Class II of the BCS)
exhibit a greater extent of absorption than the theoretically anticipated value based
on a relevant semiquantitative analysis of drug absorption [228].
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Fig. 6.17 The classification of 42 drugs in the (solubility—dose ratio, apparent permeability) plane
of the QBCS. The intersection of the dashed lines drawn at the cutoff points form the region of the
borderline drugs. Key: 1, acetyl salicylic acid; 2, atenolol; 3, caffeine; 4, carbamazepine; 5, chlor-
pheniramine; 6, chlorothiazide; 7, cimetidine; 8, clonidine; 9, corticosterone; 10, desipramine;
11, dexamethasone; 12, diazepam; 13, digoxin; 14, diltiazem; 15, disopyramide; 16, furosemide;
17, gancidovir; 18, glycine; 19, griseofulvin; 20, hydrochlorothiazide; 21, hydrocortisone; 22,
ibuprofen; 23, indomethacine; 24, ketoprofen; 25, mannitol; 26, metoprolol; 27, naproxen; 28,
panadiplon; 29, phenytoin; 30, piroxicam; 31, propanolol; 32, quinidine; 33, ranitidine; 34,
salicylic acid; 35, saquinavir; 36, scopolamine; 37, sulfasalazine; 38, sulpiride; 39, testosterone;
40, theophylline; 41, verapamil HCI; 42, zidovudine

6.6.2 The Problem with the Biowaivers

According to the FDA guidance [227], petitioners may request biowaivers for high
solubility—high permeability substances (Class I of BCS) formulated in immediate
release dosage forms that exhibit rapid in vitro dissolution as specified above.
The scientific aspects of the guidance as well as issues related to the extension
of biowaivers using the guidance have been the subjects of extensive discussion
[229, 230]. Furthermore, Yazdanian et al. [231] suggested that the high solubility
definition of the FDA guidance on BCS is too strict for acidic drugs. Their
recommendation was based on the fact that several nonsteroidal anti-inflammatory
drugs (NSAID) exhibit extensive absorption and, according to the current definition
of the FDA guidance, are classified in Class II (low soluble—high permeable) of
the BCS. An important concluding remark of this study [231] is “an inherent
limitation in the solubility classification is that it relies on equilibrium solubility
determination, which is static and does not take into account the dynamic nature
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Table 6.1 Dose and human bioavailability data of NSAIDs [227].

no. | Drug Highest Dose (mg) | Bioavailability (%)
1 Diclofenac 50 54

2 Etodolac 400 > 80

3 Indomethacin 50 98

4 Ketorolac 20 100

5 Sulindac 200 88

6 Tolmetin 600 > 90

7 Fenoprofen 600 85

8 Flurbiprofen 100 92

9 Ibuprofen 800 > 80

10 | Ketoprofen 75 100

11 | Naproxen 500 99

12 | Oxaprozin 600 95 — 100

13 | Mefenamic acid 250 Rapidly absorbed
14 | Acetylsalicylic acid | 975 68 (unchanged drug)
15 | Diflunisal 500 90

16 | Salicylic acid 750 100

17 | Meloxicam 15 89

18 | Piroxicam 20 Rapidly absorbed
19 | Celecoxib 200 -

20 | Rofecoxib 25 93

of absorption.” Moreover, the measurement of intrinsic dissolution rates [232] or
the use of dissolution—absorption in vitro systems [233] appears more relevant than
solubility to the in vivo drug dissolution dynamics for regulatory classification
purposes. Also, the development of QBCS [228] is based on the key role of the
solubility—dose ratio for solubility classification, since it is inextricably linked to the
dynamic characteristics of the dissolution process [92]. All these observations point
to the need for involvement of the dynamics of dissolution and uptake processes for
the regulatory aspects of biopharmaceutical drug classification.

Recently, this type of analysis was attempted [234] for several nonsteroidal anti-
inflammatory drugs listed in Table 6.1, which are currently classified as Class II
drugs. The dynamics of the two consecutive drug processes, dissolution and wall
permeation, were considered in the time domain of the physiologic transit time
using a tube model that considers constant permeability along the intestines, a
plug flow fluid with the suspended particles moving with the fluid, and dissolution
in the small-particle limit. The radius of the spherical drug particles, p, and
the concentration of dissolved drug in the intestinal tract, ¢ (z), are modeled as
suggested by Oh et al. [56] for the development of BCS [157] by a system of
differential equations, with independent variable the axial intestinal distance gz,
which is considered to be proportional to time, since the fluid flow rate is constant:

2 —C
Y = =Toe p(0) = po.

P 2p2 "
W =P P @ e~ @)= e e =0,
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where D is the diffusion coefficient of the drug, o is the density of the solid drug, R is
the radius of the intestinal lumen, c; is the solubility of the drug, Q is the volumetric
flow rate, n is the number of drug particles in the dose, V is the luminal volume, and
P is the effective permeability of the drug.

These equations can be rewritten with respect to time if one multiplies both sides
by L/MITT (where L is the length of the tube and MITT is the mean intestinal transit
time) and simplifies:

i _ D cy—c)

PO == "0 - o

- ap =

¢ =W e—c@] =T,
where g is the dose and p,, is the initial radius of the drug particles.

Both sides of the last two equations are divided by ¢o/V, and ¢ (f) and ¢
are substituted with the fraction ¢ (f) of dose dissolved and the dimensionless
solubility—dose ratio 6, respectively, yielding

. D [V @] i p (o) > 0,
= o Vp» Lo 0) = p,,
rO=1, ity =0, PO =P 6.18)

e =0% 0 -e0]-"Te®. ¢©=0.

The mass balance equation for the fraction F, of dose absorbed at the end of the
tube is
1
Fa = [6]0 — Y4solid — qdismlv] 5
q0
where giiq and qgissory denote the mass of the undissolved and dissolved drug,
respectively, at the end of the intestine. This equation simplifies to the following:

p(MITT)T
F,=1-— [OR 6.19
[ p(0) (©.19

where p (MITT), and @ refer to their values at t = MITT = 199 min [177].

The system of (6.18) and (6.19) describes the intestinal drug absorption as
a function of four fundamental drug/formulation properties: dose ¢qo, solubility—
dose ratio 0, initial radius of the particles p,, and effective permeability Py
Typical values can be used for constants D (10™*cm?min™'), o (1000 mgml ™),
V (250 ml), and R (1 cm) [56]. Thus, one can assess, using (6.18) and (6.19), whether
practically complete absorption (F, = 0.90) of category II drugs of the QBCS is
feasible by setting the permeability in (6.18) equal to P,y = 1.2 x 1072 cm min~",
which is equivalent [174] to the upper boundary limit P,,, = 10~cms™! of
the apparent permeability borderline region of QBCS [228], Figure 6.16. The
correlations developed [174] between effective permeability P, values determined
in humans and the Caco-2 system allowed the conversion of the Caco-2 to Py
estimates. Figure 6.18 shows the simulation results in a graph of ¢ vs. 1/6 for
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Fig. 6.18 Plot of dose go vs. the dimensionless solubility—dose ratio 1/6. The curves indicate

90% absorption for three radius sizes 10, 25, and 50 sum assuming Poy = 1.2 X 1072 cm min~!.

Since the value assigned to Py corresponds to the upper boundary limit (expressed in apparent
permeability values, [174]) of the borderline permeability region of QBCS [228], compounds of
category II of QBCS exhibiting complete absorption are located above the curves

the three particle sizes p, = 10, 25, and 50 um. The areas above the lines, for each
of the particle sizes considered, correspond to drug/formulation properties go, 1/6,
ensuring complete absorption, i.e., F,, > 0.90 for drugs classified in category II of
the QBCS [228]. It is worth noting that for a given value of 1/0, a higher fraction of
dose is absorbed from a larger rather than a smaller dose. This finding is reasonable
since the common 1/6 value ensures higher solubility for the drug administered in
a larger dose.

The underlying reason for a region of fully absorbed drugs in category II of the
QBCS, shown in Figure 6.18, is the dynamic character of the dissolution—uptake
processes. A global measure of the interplay between dissolution and uptake can be
seen in Figure 6.19, which shows the mean dissolution time, MDT, in the intestines
as a function of the effective permeability for a Class II drug (1/0 = 0.2). Clearly,
the MDT value is reduced as effective permeability increases. Needless to say that
the MDT would be infinite for this particular drug (1/0 = 0.2) if dissolution were
considered in a closed system (P, = 0) [92]. The plot of Figure 6.19 verifies this
observation since MDT — o0 as Py — 0.

According to Yazdanian et al. [231] most of the NSAIDs listed in Table 6.1
are classified in Class II based on their solubility data at pH 1.2, 5.0, and fed
state simulated intestinal fluid at pH 5.0. A series of simulations based on (6.18)
and (6.19) revealed that the extensive absorption (Table 6.1) of the NSAIDs can
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Fig. 6.19 The mean dissolution time MDT in the intestines as a function of P, for parameter
values go = 10mg, (1/0) = 0.2, and p (0) = 10 um. MDT is calculated as the area under the

p(0)

3
p(())] dt in conjunction

curve of the undissolved fraction of dose using the integral MTD = /000 [
with (6.18)

be explained using the solubility—dose ratio values in buffer or fed state simulated
intestinal fluid, both at pH 5.0, Figure 6.20. This plot shows the experimental data
along with the curves generated from (6.18) and (6.19) assuming F, = 0.90, radius
sizes 10 and 25 pum, and assigning P,y = 2 X 1072 cmmin™!, which corresponds
[174] to the mean of the apparent permeability values of the NSAIDs (P,,, =
1.68 x 107> cms™ 1) [231]. Visual inspection of the plot based on the solubility at pH
5.0, Figure 6.20A, reveals that only the absorption of sulindac (no.5, F, = 0.88) can
be explained by the generated curve adhering to 25 um, while flurbiprofen (no.8,
F, = 0.92) lies very close to the theoretical line of 10 um.

In contrast, the extensive absorption of tolmetin (no.6, F, > 0.90), sulindac
(no.5, F, = 0.88), etodolac (no.2, F, > 0.80), diflunisal (no.15, F, = 0.90),
ibuprofen (no.9, F, > 0.80), using the corresponding doses listed in Table 6.1,
can be explained on the basis of the solubility data in fed state simulated intestinal
fluid at pH 5.0, in conjunction with the generated curve assigning p (0) = 25 um,
Figure 6.20B. Also, the curve generated from p (0) = 10 um and the solubility in
the biorelevant medium of indomethacin (no.3) and piroxicam (no.18) explain their
extensive absorption. Although naproxen (no.11, F, = 0.99) lies very close and
meloxicam (no.17, F, = 0.89) in the neighborhood of the theoretical line of 10 pum,
oxaprozin (no.12, F, = 0.95—1.00) is located far away from the simulated curve of
10 pum, Figure 6.20B. Special caution is required in the interpretation for diclofenac
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Fig. 6.20 Plot of go vs. 1/6, for the experimental data of Table 6.1 classified in Class II. The
curves denote 90% absorption for two particle sizes (from left to right 10 and 25 jum) assigning
P = 2% 1072 cmmin~ !, which corresponds [174] to the mean, P,,, = 1.68 x 107> cms™! of
the Caco-2 permeability values of the data [92]. Drugs located above the curves are fully absorbed
(F, > 0.90) Class II drugs. Key (solubility values in): (A) buffer, pH 5.0; (B) fed state simulated
intestinal fluid, pH 5.0

(no.1, F, = 0.54), which lies between the theoretical curves of 10 and 25 um in
Figure 6.20B. Some reports suggest that diclofenac undergoes first-pass metabolism
(F, = 0.60), while some others refer to absolute bioavailability 0.90 [235]. Explicit
data for the extent of absorption of mefenamic acid (no.13), Figure 6.20B, are not
reported [231], while solubility data in the fed state simulated intestinal fluid (pH
5.0) for the two nonacidic NSAIDs, celecoxib (no.19) and rofecoxib (no.20), have
not been measured [231].

These results point out the importance of the dynamic nature of the absorption
processes for those drugs classified in Class II. It should also be noted that a
conservative approach was utilized for the interpretation of the NSAIDs’ extensive
absorption, Table 6.1. In fact, only the highest doses of drugs were analyzed, while
the duration of absorption was restricted to the mean intestinal transit time, 199 min
[177], i.e., absorption from the stomach or the large intestine was not taken into
account. Moreover, the lower value for the volume of the intestinal content, 250 ml
[228-230], was used in the simulations. This means that drugs like naproxen (no.11)
and meloxicam (no.17) in Figure 6.20B would also have been explained if higher
values of the two physiological parameters for time and volume had been used.

For the sake of completeness one should also add that Blume and Schug [236]
suggested that Class III compounds (high solubility and low permeability) are
better candidates for a waiver of bioavailability and bioequivalence studies since
bioavailability is not so much dependent on the formulation characteristics as on
the permeability of the compound. According to the European Medicines Agency
guidance [237], petitioners may request biowaivers for Class III compounds;
however, the most recent BCS-based FDA guideline issued in May 2015 adopts
the biowaiver status for Class III compounds.
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6.6.3 Biowaiver Monographs: BCS Considerations

Since the biowaiver status is a real alternative to in vivo pharmacokinetic bioequiv-
alence studies, its importance for the pharmaceutical industry is more than obvious.
The term “biowaivers” refers to all exceptions from the necessity to perform
clinical studies. Accordingly, a large number of papers were published in this area
of research after the publication of the FDA BCS guidance [227].

In fact, this guidance triggered off the development of biorelevant media in
particular for solubility—dissolution studies of Class II compounds. Several review
articles dealing with the use of biorelevant media for the in vitro testing of orally
administered dosage forms have been published recently, e.g., [238]. Although the
biorelevant media have not been officially adopted from the drug Agencies, they are
useful for the assessment of drug dissolution in specific cases, e.g., locally acting
drugs in the gastrointestinal tract.

In the same vein, twenty seven “biowaiver monographs” have published in the
literature (a complete list can be found in [239]). Each one of the “biowaiver
monographs” analyses a drug which can or cannot be considered as a Class I drug on
the basis of the strict regulatory definitions [227, 237]. The authors of the “biowaiver
monographs” use arguments based on the physicochemical and biopharmaceutical
properties of drug and its pharmacokinetic-dynamic characteristics to substantiate
drug’s (in)eligibility for a biowaiver status.

However, the most important developments in the regulatory and scientific
aspects of BCS are associated with the experimental—theoretical work exploring the
limitations of the static—binary classification of all drugs in the four BCS classes
as well as the definition of a Class I drug [240]. This review article provides
an overview of the recent developments of science and regulation in oral drug
absorption and focus on the various drug properties and processes in the milieu of
gastrointestinal lumen, e.g., dose, solubility, permeability, dissolution, precipitation
which are directly or indirectly associated with the application of BCS. One notable
example is the importance of dose for the biopharmaceutic classification of drugs
[92, 228, 231, 234, 241, 242]; thus, the WHO proposal on in vivo bioequivalence
requirements does not only allow biowaivers for BCS Class II substances but
also utilizes the solubility—dose ratio for biopharmaceutical classification purposes
[243]. It should be noted that one of the requirements of both the previous EMA
2001 Guideline and the current FDA 2000 Guideline [237] specifies that “the
(marketed) highest dosage strength” should be dissolved in 250 ml for getting the
biowaiver status regarding the solubility criterion. However, the recent revised EMA
2010 Guideline [227] defines dose as the “highest single oral immediate release
dose” recommended for administration in the summary of product’s characteristics.
The impact of this change has been analyzed recently [244] in terms of the biowaiver
monographs for 27 active pharmaceutical ingredients published in the literature.
Moreover, another recent study recommends that each dose strength be considered
separately, i.e., whether or not it meets the solubility—dissolution regulatory criteria
[239].
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Fig. 6.21 A pictorial view of the 59 compounds, which have been assigned to multiple BCS
classes in different papers [245]. The positioning of the encircled numbers of the plot corresponds
to the boundary of the classes for each one of the 59 compounds reported in the literature. The
numbers in the center of the rectangular for dual classification n = 3 and n = 2, refer to Classes
I-IV and Classes II-III, respectively

Another notable example is the dual biopharmaceutic classification of a great
number of drugs [245]. A pictorial view of the classification of 59 drugs in more than
one BCS Classes is presented in Figure 6.21. According to this study [245], a more
relevant pH restriction for acids and/or dissolution medium with lipids present better
forecast solubility-limited absorption in vivo than the presently used BCS solubility
criterion. Along these lines, Macheras and Karalis [246] introduced a non binary
biopharmaceutic classification system, the so-called ABI" system, Figure 6.22.
This approach relies on the mathematical model used for the development of BCS
[157], appropriately modified, to estimate the limiting values of drug solubility
and permeability when the fraction of dose absorbed, F, was 0.90 or 0.20. The
continuity of the biopharmaceutical classification is ensured since the first category
(A, alpha) includes drugs with F, > 0.90, the B (beta) category consists of drugs
with F,, < 0.20 while the area lying between the two boundaries of A and B defines
the third category I" (gamma), (0.20 < F, < 0.90), Figure 6.22. It was found that
most of the BCS classes II and III are included in category I" which mainly consists
of drugs with properties like moderate or low solubility and permeability; besides,
the dynamic character of dissolution and uptake processes explains why category A
is expanded toward BCS Class II, Figure 6.22.
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Fig. 6.22 The ABT system [246] is coplotted with a continuous version of BCS using upper and
lower solubility limits 0.1 and 1 mg ml~!, for Classes IL, IV and I, III, respectively, while the lower
and upper limits for permeability have been calculated numerically [246] applying the model used
for the development of BCS [157] and assigning F,, = 0.90 or F,, = 0.20. In all cases, ‘Dose’ was
equal to 10 mg, while the drug’s particle size radius was 0.010 mm

6.6.4 Biopharmaceutics Drug Disposition Classification
System

In the early-mid dates of 2000 decade, Professor Leslie Benet questioned, in a
number of talks, the ability of a single permeability estimate to predict the extent
of drug absorption along the lines of BCS. His arguments were based on the fact
that permeability (expressed in velocity units) is a rate and not an extent parameter
metric. As a matter of fact, a rate parameter like permeability can be also used
as a predictor of extent of absorption; however, the morphological-functional—
dynamical complexity of the gastrointestinal lumen and tract does not allow the
reliable use of permeability as a sole parameter of drug’s permeation across the
gastrointestinal tract [248]. Based on these concerns, Wu and Benet [247] developed
in 2005 the so-called Biopharmaceutics Drug Disposition Classification System
(BDDCS), Figure 6.23. According to this Figure, the extent of metabolism (either
low or high) replaces permeability in the four classes of BCS, Figure 6.15. It is
worthy to mention that the EMA 2010 Guideline [227] adopted and assigned the
“> 90% metabolized” as cut-off limit, namely, an alternative criterion for the extent
of absorption for Class I biowaivers. Strictly speaking the EMA 2010 Guideline
[227] specifies “following a single oral dose to humans, administered at the highest
dose strength, mass balance of Phase 1 oxidative and Phase 2 conjugative drug
metabolites in the urine and feces, account for > 90% of the dose administered.”
In parallel, Benet and Larregieu [249] stated that “although FDA-approved BCS
Class I drugs are designated as high-permeability drugs, in fact, the criterion
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Fig. 6.23 The Biopharmaceutics Drug Disposition Classification System as proposed by Wu and
Benet [247]

utilized is high extent of absorption. This ambiguity should be eliminated, and the
FDA criterion should explicitly be stated as > 90% absorption based on absolute
bioavailability or mass balance.”

The publication of BDDCS attracted the interest of scientists since it extends
BCS toward drug elimination phenomena and the effects of efflux and transporters
on oral drug absorption. Overall, the BDDCS is a useful tool in predicting (1°)
drug disposition when transporter—enzyme interplay will yield clinically significant
effects, (2°) the direction, mechanism, and importance of food effects, and (3°)
the transporter effects on post-absorption systemic drug concentration following
oral and intravenous dosing [250, 251]. A large number of studies followed the
publication of the seminal BDDCS paper [247]. For example, in silico approaches
were used in order to predict the BDDCS class for new compounds using molecular
structure and available molecular descriptors and software [252] while classification
of Class I marketed drugs was based on estimates of drug permeability vis a
vis extent of drug metabolism (> 90% metabolized) [253]. Most importantly,
Benet and coworkers [254, 255] classified over 900 drugs using BDDCS criteria
and also applied a computational approach to predict BDDCS class of new
molecular entities from molecular structures. Both studies revealed the importance
of solubility—dose ratio for BDDCS classification. This finding not only coincides
with the importance of dose for the classification of drugs in BCS mentioned above
[92, 228, 231, 234, 241-243] but also emphasizes the utility of the concepts of
critical dose, effective in vivo solubility, and dose-dependent BCS developed in
[242]. Although the complimentary role of BCS and BDDCS in the improvement,
simplification, and speed of drug development has been recognized [256], issues
associated with differences in the drug’s permeability considerations—mechanisms
of the two systems are still open [257, 258].
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6.7 Randomness and Chaotic Behavior

Pharmacokinetic studies are in general less variable than pharmacodynamic studies
because simpler dynamics are associated with pharmacokinetic processes. Accord-
ing to van Rossum and de Bie [259], the phase space of a pharmacokinetic system is
dominated by a point attractor since the drug leaves the body, i.e., the plasma drug
concentration tends to zero. Even when the system is as simple as that, tools from
the dynamic systems theory are still useful. When a system has only one variable a
plot referred to as a phase plane can be used to study its behavior. The phase plane is
constructed by plotting the variable against its derivative. The most classical phase
plane, quoted even in textbooks, is the ¢ (1) vs. ¢ (¢) plot of the ubiquitous Michaelis—
Menten kinetics. In the pharmaceutical literature the phase-plane plot was used
by Dokoumetzidis and Macheras [260] for the discernment of absorption kinetics,
Figure 6.24. The same type of plot was used for the estimation of the elimination
rate constant [261].

A topic in which dynamic systems theory has a potential use is the analysis
of variability encountered in bioavailability and bioequivalence studies with highly
variable orally administered formulations [262-264]. For example, the dissolution
of a sparingly soluble drug takes place in the continuously changing environment
of the gastrointestinal lumen. Due to the interactive character of the three principal
physiological variables that affect drug dissolution, i.e., the motility of intestines,

de(t) / dt

10

c(?)

Fig. 6.24 Phase plane plot for a drug obeying one-compartment model disposition with first-order
absorption and elimination. Time indexes each point along the curve. The time flow is indicated by
the arrows, while the x-axis intercept corresponds to Cpax
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the composition and volume of gastrointestinal contents, a dynamic system of low
dimension can be envisaged. If this is a valid hypothesis, a significant portion
of the high variability encountered in the gastrointestinal absorption studies can
be associated with the dynamics of the physiological variables controlling drug
dissolution, transit, and uptake. However, the inaccessibility of the region and thus
the difficulty of obtaining detailed information for the variables of interest compel
one to infer that the observed variability originates exclusively from classical
randomness.

Despite the hypothetical character of the previous paragraph, recent findings
[265] have revealed the chaotic nature of the gastric myoelectrical complex. It seems
likely that the frequently observed high variability in gastric emptying data should
not be attributed exclusively to the classical randomness of rhythmic electrical
oscillation in the stomach. Plausibly, one can argue that this will have an immediate
impact on the absorption of highly soluble and permeable drugs from immediate
release formulations since their absorption is controlled by the gastric emptying rate.
Hence, the high variability of cpax values for this type of drug originates from both
classical experimental errors and the chaotic dynamics of the underlying processes.

Finally, the heterogeneous dynamic picture of the gastrointestinal tract becomes
even more complicated by the coexistence of either locally or centrally driven
feedback mechanisms, e.g., avitriptan controlling drug absorption. Experimental
observations indicate [266] that when avitriptan blood levels exceed a certain
threshold level, a centrally driven feedback mechanism that affects gastric emptying
is initiated. Consequently, the presence or absence of double or multiple peaks
of avitriptan blood levels is associated with the dynamic system describing the
dissolution and uptake of drug as well as the feedback mechanism controlling the
functioning of the pylorus.

It can be concluded that the use of nonlinear dynamics in gastrointestinal
absorption studies can provide a tool for:

* the interpretation of variability and

* the understanding of unpredictability in situations in which double, or multiple
peaks are observed and classical explanations, e.g., enterohepatic cycling, are not
applicable.
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Modeling in Pharmacokinetics

The kinetic description of the overall disposition of drug in the body is based on
experimental observations, most frequently time—drug plasma concentration data.
In essence, the quantitative description of these kinetic patterns constitutes the
discipline of pharmacokinetics.

Pharmacokinetic models are, or at least should be, created through a repeated
seesaw process of monitoring against experimental evidence. Starting from a com-
paratively simple model, a comparison with experimental evidence will normally
point to modifications of the original model, which in turn will call for new
experimental evidence to assist a decision between alternative model modifications,
and so on.

Mathematical models are typically classified as phenomenological or empirical
[267, 268]. For the construction of phenomenological models, one must have some
knowledge of the processes in terms of structural connectivity and functional
mechanisms. On the other hand, when the underlying processes are unknown,
one often relies on mathematical functional forms for the observed profile. These
mathematical functions are empirical models. However, one can start with an
empirical model and incorporate some mechanistic assumptions so that the model
looks more “phenomenological.” For this reason, a clear borderline cannot be
drawn between phenomenological and empirical models. The full contrast between
phenomenological and empirical models can be exemplified by the physiologically
based and the input—output models. Neither of these extreme cases is suitable
because:

* in the physiologically based models the compiled information is highly complex
implying a decline in prediction performances and

* in the input—output models only a rough description of the external behavior of
the process is established.

We believe that current science is a dynamic process of knowledge requiring
updating the formal tools of analysis that are our mathematical models. For example,
the starting point may be a purely phenomenological or purely empirical model,
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but as the knowledge is accumulated, the phenomenological must become more
empirical, or the empirical more phenomenological.

Most models should be considered “temporary.” All require validation and many
will be subject to change. Modeling may be viewed either as a screening process that
employs variable selection methods to construct candidate models, or as a testing
tool that validates a specific model. From a mathematical point of view, the art of
good modeling relies on:

 asound understanding and appreciation of the biological problem,

* arealistic mathematical representation of the important biological processes,

» finding useful solutions, preferably quantitative; and most importantly,

* a biological interpretation of the mathematical results in terms of insights and
predictions.

In this part of the book, we first present in Chapter 7 the empirical pharmacoki-
netic models used to fit the observed kinetic data, placing particular emphasis on the
relevance of power functions and the heterogeneous processes. The deterministic
compartmental approach is described in Chapter 8 as the standard technique to
analyze homogeneous processes. In Chapter 9, the application of fractional differ-
ential in equations in pharmacokinetics are presented. Chapter 10 focuses on the
application of Modeling and Simulation approaches in bioequivalence assessment.
The last chapter of this part, Chapter 11, is devoted to the stochastic modeling
techniques, a powerful tool in mathematical biology suitable for the analysis of both
homogeneous and heterogeneous processes.



Chapter 7
Empirical Models

It is through a few empirical functions that I am able to
approach contemplation of the whole.

William A. Calder III (1934-2002)
Size, function and life history

In experimental or clinical pharmacokinetics, the simplest experiment consists in
administering, in a rapid input, a large number of drug molecules having the same
pharmacological properties and then in the subsequent time interval, sampling
biological fluids in order to follow the decline in number of molecules or in drug
concentration. The investigators are primarily interested in describing the observed
decrease in time of the data by simple mathematical functions called empirical
models. The most commonly employed model profiles are the negative exponential,
the power-law, and the gamma profiles.

Exponential Profiles These have the form ¢ (f) = y exp (—p1). Differentiating
with respect to time, one obtains

[de (2) /¢ ()] _ dlnc

dr a b (7.1

c(t) = —fc(0),
i.e., “the relative variation of the concentration ¢ of the material divided by the
absolute variation of time ¢ is constant,” which is the expression of Fick’s law
(cf. Section 2.3 and equation 2.14) under the assumption of constant volume of
distribution V of the material in the medium. The constant 8 with dimension time™!
represents the ratio of the clearance CL to the volume V.

Power-Law Profiles These profiles follow the form c (f) = yr “. Differentiating
with respect to time, one obtains

() = —(:c(t), or e E;)t//tc] o _ 311‘:; S (7.2)

ie., “the relative variation of the concentration ¢ of the material divided by
the relative variation of time ¢ is constant.” Similarly, we can argue that the
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dimensionless constant o relates to how many new molecules are eliminated from
the experimental medium or from the body by a mechanism similar to the overall
process as the time resolution becomes finer. Attention will be given below to
clarifying the power law.

Gamma Profiles These profiles follow the form ¢ (f) = yr~* exp (—pt), which is
reported in the literature as the gamma-function model [269]. This model was used
to fit pharmacokinetic data empirically [270, 271]. Differentiating with respect to
time, we obtain

e = — (O: + ﬁ) c (7.3)

i.e., the gamma profiles might be considered as the mixed exponential and power-
law profiles; the general expression for the behavior of the process in specific cases
becomes either exponential or power-law.

In the three profiles above, the coefficient y is set according to the initial
conditions. For instance, if ¢ (ty) = co at tp # 0, y is equal to

co exp (—Pto) or ¢ (to)” or  ¢o(to)” exp (—p1o)

for the exponential, power-law, or gamma model, respectively. Figure 7.1 illustrates,
in linear, semilogarithmic, and logarithmic scales, the behavior of these basic

10°L -
10 10 10
t(h) t(h)

Fig. 7.1 Plots of the exponential, power-law, and gamma empirical models (solid, dashed, and
dotted lines, respectively)
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profiles with « = 0.5, B = 0.25, and ¢ (0.1) = 1. From these plots, we can decide
in practice which empirical model we need to use:

* The y-semilogarithmic plot distinguishes the exponential model, which is
depicted as one straight-line profile.

* The log—log plot distinguishes the power-law model, which is depicted as one
straight-line profile.

* Both y-semilogarithmic and log-log plots are needed to decide for the gamma
profile. It behaves like a power-law model in the early times (cf. the log—log plot)
and as an exponential model in the later times (cf. the y-semilogarithmic plot).

The linear and x-semilogarithmic plots are uninformative for such decisions.

7.1 Power Functions and Heterogeneity

In a more realistic context, the observed data usually decay according to a sum of m
negative exponentials

c(t) =) Biexp(=bi),

i=1

which correspond to a series of well-stirred tanks where drug administration is in
the first tank and the concentration is computed for the m-th tank.

In many cases, it was observed that when the fit of data improves as m increases,
they would also be well fitted by a function of a negative power of time. It does seem
extraordinary that the power function, with only two adjustable parameters, fits the
data nearly as well as the sum of three or more exponential functions [269]. In fact,
the scheme of the series of tanks corresponds to the states of a random walk that
describes the retention of the molecules by movement of elements between nearest-
neighbor sites from the administration to the sampling site. For large m, this random
walk can be thought of as approximating a diffusion in a single heterogeneous site
that is fitted by the empirical power-law model.

When the real process generates power-law data, alternatively a sum of exponen-
tials and power function models may be used. But:

» power functions are defined by fewer parameters than the sums of exponentials;

» power functions seem to yield better long-term predictions;

» furthermore, the exponential parameters have little or no physiological meaning,
under inhomogeneous conditions.

Overall, a large number of drugs that exhibit apparently multiexponential kinetics
obey power-law kinetics. The cogent question is why many of the observed
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time—concentration profiles exhibit power function properties. Although the origin
of the power function remains unclear, some empirical explanations could elucidate
its origin:

1. A power function can be related to the sum of an infinitely large number of
exponential functions:

—a 1 * a—1
% = I (@) u®"" exp (—ut) du, a > 0.
@) Jo

Therefore, within a given range of time, the power functions can always be fitted
by sums of negative exponentials within limits that are typical for experimental
error. But the converse is not true: one cannot fit power functions to data
generated by sums of negative exponentials.

2. Beard and Bassingthwaighte [272] showed that a power function can be repre-
sented as the sum of a finite number of scaled basis functions. Any probability
density function may serve as a basis function. They considered as basis function
a density corresponding to the passage time of a molecule through two identical
well-stirred tanks in series. The weighted sum of such m models leads to the
power function

oY kT texp(—kit), o> 0.

i=1

This sum can also be viewed as the parallel combination of m pathways, each
characterized by a different rate constant and a uniform distribution of flow in
the input of these pathways. Then, the negative power function behavior can be
attributed to the heterogeneity of the flow in the system.

3. Power functions can arise if the administered molecules undergo random walks
with drift, as in the well-known Wiener process [273]. The concept of random
walk in series can be expressed in terms of compartments in series that have one-
way entrances and exits. Each series of compartments constitutes one region, and
according to the inhomogeneous assumption the administered molecules move
through such a region, while according to the homogeneous assumption they
move randomly within it. The inhomogeneous process could be related to active
transport, i.e., through membranes.

Therefore, it seems that when the response can be fitted by power-law empirical
models, the underlying process is rather heterogeneous. This probably occurs
because of inhomogeneous initial mixing and transport of the molecules by
bloodstream that is understirred [274], or because of elimination of molecules by
organs with structural heterogeneity. Perhaps the most obvious origin of the simple
power function is a diffusion process that constitutes a rate-limiting step for removal
of certain substances from the circulation [4]. Moreover, drug molecules can differ
in their kinetic behavior because of inherent variability in their characteristics
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such as molecular weight, chemical composition, or hepatic clearance involving a
large number of metabolites. All these features introduce functional heterogeneity.
Overall, homogeneity and heterogeneity can originate respectively when:

* Most substances intermix rapidly within their distribution spaces, and the rate-
limiting step in their removal from the system is biochemical transformation or
renal excretion. Substances of this nature are best described by compartmental
models and exponential functions.

* Conversely, some substances are transported relatively slowly to their site of
degradation, transformation, or excretion, so that the rate of diffusion limits their
rate of removal from the system. Substances of this nature are best described by
non-compartmental models and power functions.

7.2 Heterogeneous Processes

Description of distribution and elimination under homogeneous conditions can be
done using classical kinetics, while fractal kinetics should be applied to describe
distribution and elimination mechanisms under heterogeneous conditions. Classical
transport theories, and the resulting mass-action kinetics, applicable to Euclidean
structures do not apply to transport phenomena in complex and disordered media.
The geometric constraints imposed by the heterogeneous fractal-like structure of
the blood vessel network and the liver strongly modify drug dynamics [275].
Topological properties like connectivity and the presence of loops or dead ends play
an important role. Hence, it is to be expected that media having different dimensions
or even the same fractal dimension, but different spectral dimensions, could exhibit
deviating behavior from that described by classical kinetics.

7.2.1 Distribution, Blood Vessels Network

According to Mandelbrot [276], fractal bifurcating networks mimic the vascular
tree. Based on this observation, van Beek et al. [277] developed dichotomous
branching fractal network models to explain the regional myocardium flow hetero-
geneity. Even though the developed models give overly simple descriptions of the
fractal network, they describe adequately the dependence of the relative dispersion
of flow distribution on the size of the supplied region of myocardium. These findings
allow us to infer that such fractal approaches would be useful in describing other
systems with heterogeneous flow distributions.

From a drug’s site of administration, the blood is the predominant medium
of transport of the molecules through the body to the drug’s final destination.
Conventionally, the blood is treated as a simple compartment, although the vascular
system is highly complex and consists of an estimated 96, 000 km of vessels [278].
The key feature of the network is the continuous bifurcation of the parent vessels
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Fig. 7.2 A complete vascular dichotomous network used to describe the distribution of drug in the
body. The black circle represents the drug molecules. (a) The distribution of drug in well-perfused
tissues takes place under homogeneous (well-stirred) conditions. (b) The distribution of drug in
deep tissues takes place under heterogeneous (understirred) conditions. Reprinted from [281] with
permission from Springer

for many generations of branching. The vessels of one generation bifurcate to form
vessels of the next generation in a continuous process toward smaller and smaller
vessels. Some studies [279, 280] of the microvascular system have shown that the
dimensions for vessel radii, branch length, and wall thickness in the mesenteric and
renal arterial beds have fractal properties. The discovery of the fractal nature of the
blood vessels, however, indicated that the distribution of flow within an organ might
be fractal as well.

Building on the work of van Beek et al. [277], a dichotomous branching network
of vessels representing the arterial tree connected to a similar venous network can
be used to describe the distribution of the drug in the body, Figure 7.2. Thus, the
general pattern of distribution of flow can also be assumed for the complete vascular
system of Figure 7.2, envisaged for the distribution of drugs in the body. The flow
will diverge in the arterial tree and converge in the venous tree, while at the ends of
the arterial and venular networks the local flow will be slow and heterogeneous.

In the light of these network flow considerations, the distribution of drugs in the
body can be classified into two broad categories. The distribution process of the
drugs of the first category takes place under homogeneous (well-stirred) conditions.
For the second category of drugs a significant part of the distribution process
operates under heterogeneous (understirred) conditions.

* Drugs of the first category have physicochemical properties and permeability
characteristics that allow them to leave the arteriole network and diffuse to
the adjacent tissues under conditions of flow that ensure complete mixing
(Figure 7.2 a). These drugs reach only the well- perfused tissues and return
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rapidly to the venular draining network. The disposition of this category of
drugs can be modeled with the “homogeneous model,” which is identical
mathematically to what we call the “one-compartment model.” Obviously, the
drug molecules obeying the homogeneous model permeate the walls of vessels
prior to their arrival at the hugely dense ending of the networks; thus, the upper
part of the vascular system and the well-perfused adjacent tissues comprise a
homogeneous well-stirred “compartment.”

* Based on the considerations of flow in the network, it is reasonable to argue that
in close proximity with the terminal arteriolar ending, the blood flow and drug
diffusion in the adjacent deep tissues will be so slow that the principle of the
well-mixed system will no longer hold. Consequently, if a large portion of drug is
still confined in the arterial system near its ending, the drug diffusion in the deep
tissues will operate under heterogeneous (understirred) conditions (Figure 7.2 b).
Transport limitations of drug in tissues have been dealt with so far with the flow-
or membrane-limited physiological models [282] that maintain compartmental
and homogeneity concepts. Albeit not specifying transport limitations, the
previously developed description relies on the more realistic heterogeneous
conditions of drug diffusion.

7.2.2 Elimination, Liver Structure

The liver is the major site of drug biotransformation in the body [283]. It is the
largest composite gland of the body and weighs about 15 gkg™' body weight. The
physical structure of the liver exhibits unusual microcirculatory pathways [284].
Circulation in the liver can be divided into macrocirculation and microcirculation.
The former comprises the portal vein, hepatic artery, and hepatic veins, while
the latter consists of hepatic arterioles and sinusoids [284]. The sinusoids are the
specialized capillaries of the liver that form an uninterrupted three-dimensional
network and are fully permeable by substances. This macrocirculation spans the
axes of the liver while branching into successively smaller vessels. At the anatomical
level, there exist small histological units, called lobules, made up of an interlacing
channel network of sinusoids supplied with blood and drug by the terminal ends of
the portal venules and hepatic arterioles. Between the individual sinusoids of the
interior of a lobule, one-cell-thick sheets of hepatocytes are interspersed [285, 286].

7.2.2.1 In Vitro-in Vivo Correlations in Liver Metabolism
The in vitro studies in this field of research attempt to assess the rate of metabolism
at an early stage of drug development in order to:

* identify problematic substances and
 allow extrapolation of the in vitro findings to in vivo conditions.
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The driving force for the execution of these studies is the reduction of cost,
which is related to expensive animal testing. However, replacement of in vivo
testing with in vitro approaches presupposes well-based understanding of the scaling
factors associating the in vitro with the in vivo measurements. The establishment
of relationships between in vitro and in vivo data are known as in vitro—in vivo
correlations.

Both isolated rat hepatocytes and rat liver microsomes [287-289] have been
advocated for the determination of the kinetic parameters Vi« and ks (cf. equa-
tion 2.20) under in vitro conditions. The development of in vitro—in vivo correlations
is based on two essential steps. Initially, the units of the in vitro intrinsic clearance
CLiy; (u1min™" per 10° liver cells or wlmin~' per mg microsomal protein)
are converted to mlmin~! per standard rat weight of 250 g using scaling factors
reported in the literature [290]. Next, a liver model that incorporates physiological
processes such as hepatic blood flow, O, and plasma protein binding is used to
provide the hepatic clearance CLj,. Therefore, the liver modeling step of the in vitro—
in vivo correlations is crucial in the scaling process from the in vitro to the in vivo
estimates of clearances.

Due to its mathematical simplicity, most in vitro—in vivo correlations are based on
a homogeneous, “well-stirred” model for the liver such that all metabolic enzymes
in the liver are exposed to the same drug concentration [291]. Under steady-state
conditions, the predicted hepatic clearance CL;, for this model is

Qf u CLint

CL, = ,
" Q +ﬁ¢ CLim‘

where f, is the blood unbound fraction. Alternatively, liver has also been viewed
as a parallel tube model [292]. In this case, the liver is considered as an organ
receiving a series of parallel blood flows carrying the drug in identical parallel tubes
representing the sinusoids. Here, the hepatic clearance assuming linear kinetics and
steady-state conditions is

CLh — Q |:1 —exp (_fMCQLint):| ]

However, these two models assume either perfect mixing conditions (well-
stirred model) or no mixing at all (parallel tube model) and cannot explain several
experimental observations. Therefore, other approaches such as the distributed
model [293], the dispersion model [294], and the interconnected tubes model
[295, 296] attempt to capture the heterogeneities in flow and an intermediate level
of mixing or dispersion. Despite numerous comparisons [289, 290, 297-299] of
the use of various liver models [291-296] for predicting the in vivo drug clearance
from in vitro measurements, there is still controversy regarding the most suitable
liver modeling approach. This is so since drug-specific factors, like high- or low-
cleared drugs, seem to have a major impact on the quality of the in vitro—in vivo
correlations. For example, low-clearance drugs are rather independent of blood-flow
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characteristics, while drugs with relatively higher clearance values show a more
pronounced dependence on blood-flow properties.

7.2.2.2 Fractal Considerations in Liver Metabolism

Observations of the liver reveal an anatomically unique and complicated structure,
over a range of length scales, dominating the space where metabolism takes place.
Consequently, the liver was considered as a fractal object by several authors [4, 273]
because of its self-similar structure. In fact, Javanaud [300], using ultrasonic wave
scattering, has measured the fractal dimension of the liver as approximately dy ~ 2
over a wavelength domain of 0.15 — 1.5 mm.

While there is no performance advantage over a well-stirred classical compart-
ment, one with a rate constant due to a uniformly random distribution of drug and
enzyme, such a compartment may well be impossible to achieve under biological
designs, and the implied comparison is therefore an ill-posed one [301]. It may be
that the fractal liver design is the best design possible, so that comparisons against
nonideal theoretical models, like a poorly stirred sphere with enzymes adhered along
the inner wall, are favorable. For example, the fractal structure, with many layers of
membrane at its interface, allows the organ to possess a high number (concentration)
of enzymes, thus giving it a high reaction rate despite time-dependent (decay)
fractal kinetics. Indeed, the intricate interlacing of a stationary, catalytic phase of
hepatocytes with a liquid phase of blood along a fractal border is what reduces
the required diffusional distances for reactions to take place with any appreciable
celerity. Moreover, the complicated structure of the liver, which provides for a
huge interface between drug and hepatocytes, may be generated simply during
the growth of the liver. The fractal form may be parsimoniously encoded in the
DNA, indirectly specified by means of a simple recursive algorithm that instructs the
biological machinery on how to construct the liver. In this way, a vascular system
made up of fine tubing with an effective topological dimension of one may fill the
three-dimensional embedding space of the liver. These possibilities suggest that the
structure of the liver may be that of a fractal.

In this context, Berry [302] studied the enzyme reaction using Monte Carlo
simulations in two-dimensional lattices with varying obstacle densities as models
of biological membranes. That author found that the fractal characteristics of the
kinetics are increasingly pronounced as obstacle density and initial concentration
increase. In addition, the rate constant controlling the rate of the complex formation
was found to be, in essence, a time-dependent coefficient since segregation effects
arise due to the fractal structure of the reaction medium. In a similar vein, Fuite
et al. [303] proposed that the fractal structure of the liver with attendant kinetic
properties of drug elimination can explain the unusual nonlinear pharmacokinetics
of mibefradil [304, 305]. These authors utilized a simple flow-limited physiolog-
ically based pharmacokinetic model where clearance of the drug occurs in the
liver by fractal kinetics [303]. The analytical solution of the proposed model was
fitted to experimental dog data and the estimates for the spectral dimension d; of
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the dog liver were found to be in the range 1.78 — 1.91. This range of values is
consistent with the value found in ultrasound experiments on the liver, df ~ 2
[300]. Furthermore, special attention was given to mibefradil pharmacokinetics
by studying the effect of species segregation on the kinetics of the enzyme
reaction in fractal media using a microscopic pharmacokinetic model mimicking the
intravenous and oral administration of the substrate [306]. This mathematical model
coupled with Monte Carlo simulations of the enzyme reaction in a two-dimensional
square lattice reproduced the classical Michaelis—Menten kinetics in homogeneous
media as well as unusual kinetics in fractal media. Based on these findings, a
time-dependent version of the classic Michaelis—Menten equation was developed
for the rate of change of the substrate concentration in disordered media. This
equation was successfully used to describe the experimental time—concentration
data of mibefradil and to derive estimates for the model parameters.

7.3 Fractal Time and Fractal Processes

The concept of fractals may be used for modeling certain aspects of dynamics, i.e.,
temporal evolution of spatially extended dynamic systems in nature. Such systems
exhibit fractal geometry and may maintain dynamic processes on all time scales.
For example, the fractal geometry of the global cloud cover pattern is associated
with fluctuations of meteorological parameters on all time scales from seconds
to years. Temporal fluctuations exhibit structure over multiple orders of temporal
magnitude in the same way that fractal forms exhibit details over several orders of
spatial magnitude. Power-law behavior has been documented in the functioning of
physiological systems [307, 308]. Long-range spatial correlations have also been
identified at DNA level [309, 310]. Long-range correlations over time and space for
geophysical records have also been investigated by Mandelbrot and Wallis [311]
and, more recently, by Tang and Bak [312]. Recent studies have identified power
laws that govern epidemiological phenomena [313]. All the reported long-range
temporal correlations signify persistence or memory.

A major feature of this correlation is that the amplitudes of short-term and long-
term fluctuations are related to each other by the scale factor alone, independent
of details of growth mechanisms from smaller to larger scales. The macroscopic
pattern, consisting of a multitude of subunits, functions as a unified whole indepen-
dent of details of dynamic processes governing its individual subunits [314]. Such
a concept, whereby physical systems consisting of a large number of interacting
subunits obey universal laws that are independent of the microscopic details, is
acknowledged as a breakthrough in statistical physics. The variability of individual
elements in a system acts cooperatively to establish regularity and stability in the
system as a whole [315]. Scale invariance implies that knowledge of the properties
of a model system at short times or short length scales can be used to predict the
behavior of a real system at large times and large length scales [316].
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The spatiotemporal evolution of dynamic systems was not investigated as a
unified whole, and fractal geometry of spatial patterns and fractal fluctuations in
time of dynamic processes were investigated as two separate multidisciplinary areas
of research till as late as 1987. In that year, Bak et al. [317, 318] postulated that
fractal geometry in spatial patterns, as well as the associated fractal fluctuations
of dynamic processes in time, are signatures of self-organized phase transition in
the spatiotemporal evolution of dynamic systems. The relation between spatial and
temporal power-law behavior was recognized much earlier in condensed-matter
physics where long-range spatiotemporal correlations appear spontaneously at the
critical point for continuous phase transitions. The amplitude of large- and small-
scale fluctuations are obtained from the same mathematical function using an
appropriate scale factor, i.e., ratio of the scale lengths.

Conversely, the relationship (7.2) expresses a time-scale invariance (self-
similarity or fractal scaling property) of the power-law function. Mathematically, it
has the same structure as (1.7), defining the capacity dimension d, of a fractal object.
Thus, « is the capacity dimension of the profiles following the power-law form that
obeys the fundamental property of a fractal self-similarity. A fractal decay process
is therefore one for which the rate of decay decreases by some exact proportion
for some chosen proportional increase in time: the self-similarity requirement is
fulfilled whenever the exact proportion, ¢, remains unchanged, independent of the
moment of the segment of the data set selected to measure the proportionality
constant.

Therefore, the power-law behavior itself is a self-similar phenomenon, i.e.,
doubling of the time is matched by a specific fractional reduction of the function,
which is independent of the chosen starting time: self-similarity, independent of
scale is equivalent to a statement that the process is fractal. Although not all power-
law relationships are due to fractals, the existence of such a relationship should
alert the observer to seriously consider whether the system is self-similar. The
dimensionless character of « is unique. It might be a reflection of the fractal nature
of the body (both in terms of structure and function) and it can also be linked with
“species invariance.” This means that o can be found to be “similar” in various
species. Moreover, a could also be thought of as the reflection of a combination of
structure of the body (capillaries plus eliminating organs) and function (diffusion
characteristics plus clearance concepts).

7.4 Modeling Heterogeneity

From a kinetic viewpoint, the distribution of drugs operating under homogeneous
conditions can be described with classical kinetics. When distribution processes
are heterogeneous, the rate constant of drug movement in the tissues is not
linearly proportional to the diffusion coefficient of the drug. Then, modeling of
heterogeneity features should be based on fractal kinetics concepts [4, 9, 17].
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7.4.1 Fractal Concepts

A better description of transport limitations can be based on the principles of
diffusion in disordered media [319]. It has been shown [320] that in disordered
media the value of the first-order rate constant is related to the geometry of the
medium. In these media the diffusional propagation is hindered by its geometric
heterogeneity, which can be expressed in terms of fractal and spectral dimensions.
For our purposes, the propagation of the drug’s diffusion front in the heterogeneous
space of tissues can be viewed as a diffusion process in a disordered medium.
Both the diffusion coefficient of the drug and the rate constant are dependent
on the position of the radial coordinate of the diffusion front, and therefore both
parameters are time-dependent. In these lower-dimensional systems, diffusion is
inhibited because molecules cannot move in all directions and are constrained to
locally available sites.

The description of these phenomena in complex media can be performed by
means of fractal geometry, using the spectral dimension d,. To express the kinetic
behavior in a fractal object, the diffusion on a microscopic scale of an exploration
volume is analyzed [303]. A random walker (drug molecule), migrating within the
fractal, will visit n (f) distinct sites in time ¢ proportional to the number of random-
walk steps. According to the relation (2.9), n (¢) is proportional to /2, so that
diffusion is related to the spectral dimension.

The case d; = 2 is found to be a critical dimension value in the phenomena of
self-organization of the reactants:

* Ford, > 2, arandom walker has a finite escape probability-microscopic behavior
conducive to re-randomize the distribution of reactants around a trap and deplete
the supply of reactive pairs, and thus a stable macroscopic reactivity as attested
by the classical rate constant [321, 322]. The scale of the self-organization is
microscopic and independent of time, such that n (f) o ¢ (is linear) and k = n ()
is a constant, so the reaction Kinetics are classical.

* For d; < 2, a random walker (drug) is likely to stay at its original vicinity
and will eventually recross its starting point, a microscopic behavior conducive
to producing mesoscopic depletion zones around traps, e.g., enzymes. The
compactness of the low-dimensional random walk implies ineffective diffusion,
relevant mesoscopic density fluctuations of the drug, and an entailing aberrant
macroscopic rate coefficient. Subsequently, the macroscopic reaction rate, which
is given by the time derivative of n (¢), sometimes described as the efficiency of
the diffusing, reacting random walker, will be

k(1) o< n (1) oc £~ 17/2) = =2 (7.4)
for transient reactions [303]. Since 0 < d; < 2, the parameter A has values

in the range 0 < A < 1. The minus sign in (7.4) is used to mimic the
decrease of k with time as the walker (drug) has progressively less successful
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visits. This time-dependent rate “constant” in the form of a power law is
the manifestation of the anomalous microscopic diffusion in a dimensionally
restricted environment leading to anomalous macroscopic kinetics [303].

The kinetic consequences that are associated with the time dependency of the
rate “constant” are delineated in Section 2.5 under the heading, coined by Kopelman
[9, 171, fractal-like kinetics.

7.4.2 Empirical Concepts

Heterogeneity could also be expressed and described by elementary operations with
empirical models. The only difference between (7.1) and (7.2) lies in the coefficient
of ¢ (¢) on the right-hand side of the differential equations. This allows someone to
infer empirically that these equations could be unified as

"l
() = —f (ﬂ ’) ¢ .5)

o

with initial condition ¢ (fp) = co at fp # 0. The exponent A takes integer 0 or 1
values corresponding to the exponential and power-law profiles, respectively, and o
and B are as defined in (7.1) and (7.2). Since the gamma profile (7.3) is presented
as the additive mixture of the previous ones, one wonders whether A is allowed
to attain fractional values between O and 1. Indeed, the previous equation could
also be considered as a generalization of (7.1) and (7.2) assuming a fractional time
exponent A (0 < A < 1). Under this assumption, (7.5) is similar to what we reported
previously (equations 5 and 7 in [281]), obtained from the classical first-order rate
kinetics assuming that the rate coefficient is a time-varying rate coefficient.
The solution of (7.5) is

1-2 1-2
c(t):coexpg_lf)k |:(/Zl) _(,3(;0) ]} (7.6)

for A # 1 and
t
c(t) = coexp [—(x In ( ):|
fo

for A = 1. Then, with fractional A, the transition in output response is continuous
between a homogeneous process (A = 0) and a heterogeneous one (A # 1) (or
equivalently, how to generate multiexponential behavior starting from a monoexpo-
nential one). Inversely, after fitting observed data by empirical models such as (7.6),
the estimated value of A might help us classify drugs in two large groups:

* Homogeneous drugs with A ~ 0: their kinetics can be described homogeneously
with what we will call compartmental models. These drugs are characterized by
small or medium volumes of distribution.
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* Heterogeneous drugs with A # 0: their kinetics are described with non-
compartmental modeling, and in reality they approximate the true heterogeneous
disposition, i.e., the time-dependent character of diffusion (flow). These drugs
are characterized by high volumes of distribution.

Moreover, combinations of these models can also be used to roughly describe
physiological considerations. For instance, if the drug is metabolized by the liver
and simultaneously eliminated by the kidney, a gamma profile is obtained as the
solution of (7.3), where the o/f term expresses the structural heterogeneity of the
liver, and the term S, the homogeneous elimination process from the kidney.

7.5 Heterogeneity and Time Dependence

It has been stated that heterogeneous reactions taking place at interfaces, membrane
boundaries, or within a complex medium like a fractal, when reactants are spatially
constrained on a microscopic level, culminate in deviant reaction rate coefficients
that appear to have a sort of temporal memory. Fractal kinetic theory suggested the
adoption of a time-dependent rate “constant,” with power-law form, determined by
the spectral dimension. This time dependency could also be revealed from empirical
models.

In fact, empirical models involve parameters without any physiological meaning.
To obtain sound biological information from the observed data, these models
should be converted to some more phenomenological ones, parameterized by
volume of distribution, clearance, elimination rate constant, etc. In their simplest
form, phenomenological models are based on Fick’s first law (2.14), where the
concentration gradient is the force acting to diffuse the material g through a
membrane:

q(1) =—CLc (1), (1.7)

where CL is the clearance. Concentration and amount of material are also linked via
the well-known relationship

q@) =Ve(), (7.8)

where V is the volume of distribution of the material. We also explicitly denote the
time dependency in each parameter, CL (¢) and V (¢), and define the rate constant
k(t) as

CL(D) a
. k(f). (7.9)
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Differentiating (7.8) with respect to ¢ and using expressions (7.7) and (7.9) to
substitute ¢ (7) and CL (¢), we obtain

c(t)V(t) =—k@O)c@OVEO -V (). (7.10)

According to the exponential, power-law, or gamma empirical model, ¢ (r) may take
the form of relation (7.1), (7.2), or (7.3), respectively. By introducing these relations
in (7.10) we get, respectively,

V) =[B-k®]V () (7.11)

or
vy =T -k0]vo (7.12)

or
vy =" +B-k0]va. (7.13)

A time-invariant process has time-independent parameters. Therefore, a time-
invariant process is that for which both V and k are invariant in time. From the three
previous relationships, the only time-independent situation occurs in the exponential
empirical model when k (r) = B. In this case, from (7.11) one has V (f) = V), a
time-invariant volume. The processes fitted by the power-law and gamma empirical
models are necessarily time-varying processes, because when either V or k is kept
constant, the other becomes time-varying.
In these cases, two extreme situations may occur:

¢k is time-invariant. If we assume & () = B in (7.12) and (7.13), the time courses
of the volume are

V (1) = Vot® exp (—B1) and V(1) = Vot*,

respectively, where Vj is set according to the initial conditions. Taking into
account this time dependence of volume, a unique form of the amount profile
is obtained, g (t) = Qo exp (—p1), irrespective of the exponential, power-law, or
gamma concentration profiles.

¢ V is time-invariant. From (7.12) and (7.13) one obtains the time course of the
rate constant:

k(1) = ‘: and k() = ‘: + B,

respectively. With time-invariant V, the amount profiles ¢ (¢) will be proportional
to the concentration profiles c (7).
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Fig. 7.3 Time courses of V (¢) /Vy (up) and of k (r) /B (down) associated with the exponential,
power-law, and gamma empirical models (solid, dashed, and dotted lines, respectively)

Figure 7.3 illustrates the time courses of the reduced volume of distribution
V (¢) / Vo and of the reduced rate constant k () /8 with ¢ = 0.5 and § = 0.25.
Certainly, mixed situations where both k (r) and V (f) are time-varying can be
thought of.

This preliminary analysis highlights the difference between regular and irregular
profiles associated with time-invariant and time-varying physiological parameters,
respectively. Some authors have attempted to associate a functional physiological
meaning to the gamma empirical model [323, 324] or to describe by stochastic
modeling the real processes leading to power-law outputs [325, 326]. In contrast,
in the case of calcium pharmacokinetics [281], the possible mechanisms underly-
ing (7.3), where renal elimination of calcium was associated with the parameter S,
and the other elimination mechanisms, with parameter o were discussed. Lastly, a
simple approach for including, within a multicompartment model, time dependence
of the transfer coefficients that vary continuously with the age of human patients
was described by Eckerman et al. [327], but time dependence was over periods
much greater than a single dose. This simplified the mathematics so that there
was no time dependence of coefficients during the time course of a single dose.
Within a physiological model, over a very long time scale of 98 days, Farris et al.
[328] introduce time-dependent compartment volume changes due to growth in the
studied rat model system.

Therefore, it is clear that when the outputs are optimally fitted by the power-
law and gamma empirical models, the underlying processes are rather time-varying.
The time-varying features of the observed processes are in fact the expression of
functional or structural heterogeneities in the body.
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7.6 Simulation with Empirical Models

The observed empirical models should now be employed to simulate and predict
kinetic behaviors obtained with administration protocols other than those used for
observation. Moreover, we must develop pharmacokinetics in a multicompartment
system by including the presence of a fractal organ. We have argued that the liver,
where most of the enzymatic processes of drug elimination take place, has a fractal
structure. Hence, we expect transport processes as well as chemical reactions taking
place in the liver to carry a signature of its fractality.

Little has been done so far to predict the effect of different modes of administra-
tion, in inhomogeneous conditions, on the observed ¢ () when this contains a power
function. In fact, the availability of the drug in the process was simply expressed by
an initial condition ¢ (fp) = cy. Later on, exponential, power-law, or gamma profiles
were observed according to the inherent heterogeneity of the process.

Empirical models helped us recognize heterogeneity in the process and express
it simply by mathematical models with time-varying parameters V and k. Neverthe-
less, time in such time-varying parameters can be conceived only as a maturation
time or as an age a associated with each administered molecule, i.e., V (a) and
k (a). This time a must be distinguished from the exogenous time ¢ associated with
the evolution of the overall process. Several hypotheses based on fractal principles
were formulated to explain heterogeneity and time dependency, but conceptual
difficulties persist in explaining the time profiles of V (a) and k (a). Volume may
represent the maximal space visited by a molecule and the elimination constant,
the fragility of a molecule while it remains in the process. These parameters are
dependent on the age a of each molecule, and they must be independent of the
drug administration protocol, e.g., the repeated dosages, which are scheduled with
respect to the exogenous time ¢ of the process. Therefore, the relation between
a and ¢ must be resolved before integrating in the model the usual routes of
administration. The heterogeneous process observed in several circumstances and
the resulting complexity of the molecular kinetic behaviors, with respect to the
actual experiments, required new techniques as well as modifications of Fick’s law
in order to comply with observations. In this way, two operational procedures may
be retained:

» First operate at a molecular level and establish a probabilistic model for the
behavior and the time spent by each molecule in the process. Second, take into
account statistically all the molecules in the process. This stochastic formulation
would be the most appropriate for capturing the structural and functional
heterogeneity in the biological media. The resulting models supply tractable
forms involving the time-varying parameters V (a) and k (a) [329]. This issue was
greatly addressed in biological systems and only recently in pharmacokinetics
[330, 331]. It will be developed, here, in Chapter 11.

¢ From a holistic point of view, the time-varying parameters V (¢) and k () fitting
the observed data could represent the dynamic behavior of a complex system
involving feedback mechanisms implying the states ¢ (f). So, these parameters
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can be assumed to be complex functions of ¢ (¢), namely V (¢) and & (g),
leading to nonlinear kinetics (e.g., logistic saturable [332]), with time-varying
coefficients [281], etc. For decades, this approach has had numerous applications
in pharmacokinetics, and it allows any complex function to be assumed as V and
k. Time variation in the parameters is treated in the next section.

7.7 Time-Varying Models

The fundamental working hypothesis is that time-varying parameters are expres-
sions of feedback regulation mechanisms involving the process states. To reveal the
dependence of the time-varying parameters on the process states, we propose the
following procedure:

1. Roughly describe the process by means of a phenomenological continuous-time
model according to the underlying physiological structure. The reason is that
most physical laws are expressed in continuous time as differential equations.
For instance, use compartmental configuration to sketch the fundamental mech-
anisms. This results in a linear state-space dynamic model described by a set of
differential equations continuous in time

y () = Ay () + bu (1), (7.14)

where y (¢) and u (¢) are the states and inputs, respectively. The matrix A and the
vector b involve the parameters x of this holistic description, e.g., exchange rates
and volumes of distribution. The parameters x, and therefore A and b, may be
constant or time varying.

2. Given a set of observed data, reveal the time dependency of x. If x is demonstrated
to be time-varying x (f), the issue is to obtain the time profile of A () and
b (t) in (7.14). To perform this key operation, it is necessary to estimate the
model “on-line” at the same time as the input—output data are received [333].
Identification techniques that comply with this context are called recursive
identification methods. Other commonly used terms for such techniques are on-
line or real-time identification, or sequential parameter estimation [334]. Using
these techniques, it may be possible to investigate time variations in the process
in a real-time context. However, tools for recursive identification are available
for discrete-time models. Most common discrete-time models are difference-
equation descriptions, such as the Auto-Regression with eXtra inputs (ARX)
model. The basic relationship is the linear difference equation

yO +ay@t—-D+...+a,yt—ny) =biut—1)+ ...+ bu(t—ny),

which relates the current output y (7) to a finite number of past outputs y (f — i)
and inputs u (t —i), with i = 1,...,(n,, np). State-space and ARX models
describe the functional relation between inputs and outputs. The order of the
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state-space model relates to the number n, and n; of delayed outputs and inputs,
respectively, used in the corresponding difference ARX model.

3. Analyze the time profile of A (r) and b (f) against the states y (¢). For instance,
one looks at the dependence of ay () on y; (f) by plotting ay (f) or logay (f) as a
function of y; (f) or log y; (¢). This dependence can be expressed by a second-level

model of the form A [y (t)] and b [y (t)] resulting in the nonlinear differential
equation

s =AlOlyo+b[y0]uo. (7.15)

This second-level model of the feedback mechanisms involving the states leads
to nonlinear models for processes, which under some experimental conditions
may exhibit chaotic behavior.

The transformation procedure of a time-varying parameter model to a nonlinear
one has already been applied in other contexts. For instance in the simple case

y®) =—x®)y(t). (7.16)

if it is possible to approximate log x (¢) linearly at any logarithmically transformed
state logy (z), one obtains logx(f) = A + plogy(¢). In terms of the original
variables, this results in a power-law approximation

x(0) =" ().

Subsequently, the differential equation with time-varying parameters (7.16) is
transformed into a differential equation of the form

y() = =@

Another example is the diffusion-limited or dimensionally restricted homodimeric
reaction presented in Section 2.5.3. Equation 2.23 is the traditional rate law with
concentration squared and time-varying time “constant” k (f), whereas (2.22) is the
power law (c? (¢)) in the state differential equation with constant rate.

In the presence of multiple states, the right-hand-side term consists of sums,
products, and nesting of elementary functions such as y*, logy, expy, and trigono-
metric functions, called the S-system formalism [335]. Using it as a canonical form,
special numerical methods were developed to integrate such systems [336].

In the case where the input u () is piecewise constant over time intervals (this
condition is fulfilled in our context), then the conversion of (7.14) to a discrete-time
model is

* possible without any approximation or additional hypothesis, if x is revealed not
to be time-dependent;
e a very difficult task, if x is revealed to be time varying.
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The following sections present the conversion of continuous- to discrete-time
linear time-invariant (LTT) models. Finally, the recursive identification is presented
for a model with time-varying parameters.

7.7.1 Discrete- vs. Continuous-Time LTI Models

To emphasize the continuous-time character in equation 7.14, Ac and b, were
introduced instead of A and b, respectively. The equation is re-written

y(t) =Acy(t) +beou(t). (7.17)

We assume state y (¢) to be m-dimensional, so that Ac and b are m X m matrix and
m x 1 vector, respectively. This form can be converted in the following discrete-time
form:

Y (te+1) = Apy () + bpu (1)

where the states y(f) are assumed to be evaluated or observed at the sampling
times (not the biological sampling but the discretization sampling) #, = kT with
k=1,2,.... Also, T is the sampling interval, a sufficiently short time to obtain an
adequate representation of the kinetic profile. Finally, the input u (¢) is assumed to
be constant between two successive sampling times

uk)=u(@) kT<t<k+1)T.

The Ap and b, elements in the previous discrete version depend on the sampling
interval 7 and on the parameters x. They are given by the following relationships:

Ap = exp (AcT) (7.18)

and

T

b, = /exp (Act) bdt.
0

By using the derivation rule

dexp (X1)

=X Xt
. exp (X1)

of a matrix exponentiation and, because b is not time dependent, the following
holds:
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T

by = Ag! /dexp (Act) | be = AZ' [exp (AcT) — I b (7.19)
0

7.7.1.1 Closed-Form Solution of Discrete-Time Models
The commonly used expression of the discrete-time model is
y(k+1) =Apy (k) + bpu (k) (7.20)

where the sampling number k was only reported instead of the explicit notation
t, = kT. Briefly, the states y (k + 1) at the time k + 1 are expressed as a linear
combination of the states y (k) and inputs u (k) at the previous time k.

Nevertheless, the above form is useless because the states are implied in the same
relationship at different sampling times k7" and kT + T. The use of the shift operator
g, defined by qu (7) 2y (t+T)org 'u( - (t —T), converts the set 7.20 of
discrete-time equations to the following more relevant form:

[l —Aply (k) = bpu (k).
The ratio

A y (k)

Flgn = © = [ql — Ap] ™" bp,

involves the shift operator ¢ and it is named discrete-time transfer function of
a multi-output model. The above relationship represents a rational function with
polynomials in g for the numerator and denominator.

7.7.1.2 Discrete-Time Transfer Function

The elements Ap and b, in the discrete-time transfer function are given by
relationships 7.18 and 7.19, respectively. So

F (g, %) = lgI —exp (AcT)] ™ A" [exp (AcT) — 1] b. (7.21)

In order to develop calculus involved in the above, the factorization of the
exp (AcT) is introduced. According to the second proposition in the Appendix G,
the Jordan factorization involves the matrix G of eigenvectors 7® of A and the
diagonal matrix Z of eigenvalues {; of A¢

exp (AcT) = Gexp (ZT) G~' = Gdiag (exp (¢,T)) G~

Here, exp (ZT) = diag (exp ({,T)) because Z is a diagonal matrix, Z = diag ({;).
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By using the Jordan factorization and the matrix inversion lemma (cf.
Appendix G), the pre- and post-multiplying factors involved in 7.21 become

lal — exp (AT = [gI — Gdiag (exp (¢,T) G~

_ 1y g 1 1
=4 [' Gd‘“g[l—qexm—;,-T)}G }

and
AZ' [exp (AcT) — )b = GZ™' [diag (exp ({,T)) — 11 G b,

respectively. Given the above relationships, the transfer function 7.21 becomes

F (¢,x) = Gdiag (0;) G"'b,. (7.22)
with
_ ,Biq_l
o; = .
1+ a;q7!
Here,
1 - T
w=—ewn awd  p=- PO
are dummy variables with i = 1 : m. Therefore, the final form of discrete-time

transfer function involves b, and, the eigenvectors and eigenvalues of Ac. Since
Ac and b are defined on the basis of x, the transfer function depends on the shift
operator g and the parameters x.

7.7.2  Polynomial Form of Transfer Function

For a single-output discrete-time model, the transfer function 7.22 can be
expressed as

F@9=" 0 = A

(7.23)

where A (g,x) and B; (g, x) are polynomials depending on the parameters x, and
k is the sampling number. Parametrization of the polynomials could be obtained
in several ways. The most popular is the ARX model whose parameters are the
coefficients of polynomial terms in the numerator

B(q.x) =big "+ ... +byqg ™ (7.24)
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and denominator
Ag,x)=14+ag ' +...+a,qg ™. (7.25)

The order n, of polynomial A (g, x) is equal to the number of first-order differential
equations in the initial description 7.14. For the order n;, of B (¢, x), np < n, holds in
general. In the above expressions, the polynomial coefficients a; and b; are the new
parametrization of the discrete-time model. These coefficients can be aggregated as
follows:

9:[611 .oy, b] ...bnb]T.

Since polynomials 7.25 and 7.24 depend on x, the new polynomial parameters 6 also
depend on x. For LTI models, conversion formulas allow computation of 6 given x
or, inversely compute x given 6. From the relationships 7.23, 7.24, and 7.25, and
after shifting by one the sampling interval

yk)y+aytk—1)+...+anyk—n,) =biutk—1)+ ...+ byu(k—np).
(7.26)
This discrete expression of the model is the famous ARX form and that will be
further used. The form advocates the designation “Auto-Regression” because the
prediction y (k) is composed of the previous “predictions” y (k — 7).
By introducing the regression vector

oy =[-ytk—=1) ... —y(k—na) utk—1) ... u(k—np)]". (7.27)

the above relationship can be re-written as y (k) =¢” (k)f. Again, to emphasize
that the calculation of y (k) depends on the parameters 6, we will rather call this
calculated value

y(kl6) = @" (k) 6. (7.28)

Therefore, concentrations y (k|@) are linear with respect both to the inputs u (k)
involved in the regression vector ¢ (k) and to the parameters 6.

7.7.2.1 Parameter Estimation

Now suppose that we do not know the values of parameters in 6, but that we have
recorded inputs u (k) and measured outputs y (k) over m samples (1 < k < m).
An obvious approach is to select @(m) in 7.28 so as to fit as well as possible the
calculated values y (k|0) to the m measured outputs y (k) by the weighted least
squares method

B =argmin S wim HH® —y (O
k=1
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The factor w (m, k) in the above expression is a weighting function. A pragmatic
and useful way to use 7.28 is to view it as a way of determining the next predicted
outputs given the previous observations. Therefore, the definition of regression
vector 7.27 initially involving predictions now makes use of observations. So, for
estimation purposes, the observed regression vector

R =[Fk=1) ... =Fk—ny) utk—1) ... utk—ny)]"

will be used instead of the predicted regression vector 7.27. The estimator will now
work as

8 (m) = arg min ; 3w (m. k) [y(k) 9" (k) 9]2 . (7.29)
k=1

In these developments, the measurement error in outputs was assumed negligible.

Off-Line Estimation Since predictions are linear with respect to parameters 6, the
sum of weighted squared residuals is a quadratic form. Its minimum value can easily
be obtained by setting at zero the derivative of the sum with respect to parameters
6. The expression for the resulting estimate is

6 (m) = Q™" (m)f (m) (7.30)

with

Qm) =Y wm k@R k) fm)=> wmkp k7K. (7.31)

k=1 k=1

According to the previous discussion, observations y (k) are involved in ¢ (k).

Consequently, the description of the real process by means of a linear discrete-
time model conveniently uses a single step estimation of parameters 6 and therefore,
the iterative algorithm that is needed for estimation of parameters x involved in the
nonlinear continuous-time model is circumvented. The inverse conversion formulas
allow computation of x given 6 for the LTI models.

On-Line Estimation The model should be based on observations up to the current
time. The on-line computation of the model must also be done in such a way that
the processing of the measurements from one sample can be completed during one
sampling interval. Such a recursive algorithm can be derived from an off-line version
using the philosophy of performing one iteration in the numerical search at the same
time as a new observation is included in the criterion. In this sense, apart from
possible initial-value effects, recursive estimates coincide with its off-line version.
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In the weighted least-squares criterion, relationships 7.30 and 7.31 hold for any &
among the m sampling times. For the recursive algorithm, we assume the weighting
sequence has the property

wki)=Ak)wk—-1,i)) 0<i<k—1 w(kk) =1 (7.32)
This implies recursive relationships
k) =2(R)QUhk=1)+P R G (0) f k) =A(R)f (k=1)+§*)T (k)

corresponding to the relationships 7.31. Also, ,9\(/() = Q7! (k)f (k) and taking into
account the above relationships

IR =0k-1+0" RIR [T 3" WD k-1].

To avoid inverting Q (k) at each step, it is convenient to introduce P (k) = Q™' (k).
By applying the matrix inversion lemma, the algorithm is

dk) = A0 +9" W) Ph—1DF (k)

PER = [PUh—-D=Pk=1FK®F 0 Pk=1/2()]/2®)
L() =Pk=DP®) /(K ‘
R =8-D+LW0[F0) 9" 00 k-]

(7.33)

To use the recursive algorithms, initial values for their start-up are required. A
possibility is to start recurrence after the time instant #, when Q (#y) has become
invertible (typically ’; > dim (8)). So starting conditions will be Q (%), f (t), and

9 (tp) in accordance with the off-line relationships 7.30 and 7.31.

A reason for using recursive identification in practice is that the properties of the
system may be time-varying and that we want the identification algorithm to track
the variations. This is handled in a natural way in the weighting criterion 7.29 by
assuming less weight to older measurements that are no longer representative for
the system. In terms of 7.32, this means that we choose A (i) < 1. In particular
for a system that changes gradually, the most common choice is A (i) = A, then
w (k,i) = A*" and old measurements in the criterion are exponentially discounted.
In that case, A is often called the forgetting factor.

The forgetting factor is chosen slightly less than 1 so that

w(k,i) =exp[(k—i)In(A)] ~ exp[— (k—i) (1 —})].
This means that measurements that are older than T 1/ (1 — 1) samples are

included in the criterion with a weight that is exp (—1) &~ 36% of that of the most
recent measurements. 7, could be called the memory time constant of the criterion.
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If the system remains approximately constant over Tj samples, a suitable choice of
A can be made from the previous relationship, i.e., A = 1 — 1/Tj. Typical choices
of A are in the range between 0.96 and 0.995.

Conversely, if 64% of sampling times and measurements should be supported
over a time horizon hy = TTy, the forgetting factoris A = 1 — T/hy. If L = 0.99 is
set, the sampling interval 7 must be the hundredth of horizon Ag.

It is worth mentioning that the conversion formulas between x (continuous time)
and 6 (discrete time) based on the relationships 7.18 and 7.19 do not apply for the
on-line estimation because these relationships assume LTI models. For applications
with recursive identification, the starting model is the discrete-time model 7.26
and the time profiles of its parameters 6 are recursively obtained given the data.
At each sampling time k, the 6 (k) are (1°) converted to parameters Ap (k) and
by, (k) involved in the discrete-time form (equation 7.20) and (2°) Ap (k) and b, (k)
are converted to parameters Ac (f) and b (1) by fitting the frequency responses of
the discrete- and continuous-time models and applying model reduction techniques
[337].

7.7.3 Pharmacokinetic Application

Tracking the time-varying parameters for the one-compartment model associated
with intravenous route of administration is considered here. To unveil the depen-
dence of the time-varying parameters on the states, the proposed procedure is
used:

1. Roughly describe the process. To describe the time profiles of amounts of drug in
the compartments, the mass conservation law was applied for the compartment.
The elementary model of first-order process was used to describe the drug
elimination and a differential equation was obtained. The amount of drug implied
in this equation was converted in concentration by dividing amount by volume
of distribution. The so-obtained first-order differential equation is

d
yc‘h(t) = —kioy1 (1) + “éf) and  y, (0) = 0. (7.34)

The state variable y; (¢) represents the concentrations of the drug in the compart-
ment and the input function u (r) describes the drug administration protocol. The
parameters x involved in the model are the elimination rate constant k¢ and the
volume of distribution V| of compartment. For the intravenous infusion of total
dose D over an infusion time t, the input function is given by

wy =" (H() ~ H o)
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where H (¢) is the step or Heaviside function. For the purposes of this simulated
application, the elimination rate constant ko is assumed to be dependent on the
concentration y; (f) according to the Michaelis—Menten type relationship

k1o ~ k1o (t) = Vm/ [Km + 1 (t)] .

Therefore, ko (f) becomes a time-varying parameter in this application.
2. Reveal the time dependency of parameters. The observed data were generated by
using the above Michaelis—Menten relationship with

x=[ViVuK,] =[20105h" 1 mg/1]"

and administration protocol with D = 200 mg and r = 1 min. The obtained
reference profile is illustrated in Figure 7.4 by the solid line. The dashed
line represents the time profile of ki (f). Since the model is of first order,
n, = np = 1, and the polynomial form of the transfer function 7.23 is

big™!

‘F(qvx): 1+a16]_1

and the ARX model 7.26 is

yk)+ayk—1)+...+a,ytk—ng) =biutk—1)+ ... + byu(k—np).

10
~ 10} ;
=l ]
= i
S 7]
p=
=7
~ 10"} E

10'2 1 1 1 1 1

0 6 12 18 24 30 36
t(h)

Fig. 7.4 The reference profile of a nonlinear one-compartment model with infusion. The solid line
represents the kinetic profile and the dashed line, the time profile of k, (¢)



188 7 Empirical Models

x 10
-0.99 9
< -0.995 -
4 8
0 6 12 18 24 30 36 0 6 12 18 24 30 36
21 05
20.5 0.4
— —_
- 03
2 oo =
e < 02
-~
19.5 o1
19 0
0 6 12 18 24 30 36 0 6 12 18 24 30 36
t(h) t(h)

Fig. 7.5 Time-varying coefficients in transfer function (up) and pharmacokinetic parameters
(down) vs. time

In a complete reverse way, we attempt to track the ko () time variations from
the sampled every T = 1 min reference profile. The horizon supporting 64%
of sampling times and measurements was set at about 4y = 40 min, therefore,
A = 0.975 was used for the on-line estimation of algorithm 7.33. Figure 7.5
presents the time profiles of coefficients in the transfer function polynomials and
of pharmacokinetic parameters. The kg (7) is the highest variable parameter and
copies the time variations of « (7). Inversely, the almost constant b; () ensures
negligible variations in V ().

3. Analyze the time profile of the time-varying parameters. Again, Figure 7.6
represents the time-varying pharmacokinetic parameters V; (f) and kjg (f) vs.
y1 (¢). It is obvious from the down subplot that kj¢ (¢) is linked with y; () by
a saturable relationship of Michaelis—Menten type. Therefore, by means of the
on-line estimation algorithm, the postulated nonlinear relationship was revealed.

In conclusion, we obtain a set of differential equations in continuous time having
the form of equations 7.15. This kind of equation is called bilinear because of

the presence of the b [y (t)] u (f) term and it is the general formalism for models

in biology, ecology, industrial applications, and socioeconomic processes [338].
Bilinear mathematical models are useful to real-world dynamic behavior because
of their variable structure. It has been shown that processes described by bilinear
models are generally more controllable and offer better performance in control
than linear systems. We emphasize that the unstable inherent character of chaotic
systems fits exactly within the complete controllability principle discussed for
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Fig. 7.6 Time-varying pharmacokinetic parameters vs. variations
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of concentration in the

bilinear mathematical models [338]; additive control may be used to steer the system
to new equilibrium points, and multiplicative control, either to stabilize chaotic
behavior or to enlarge the attainable space. Then, bilinear systems are of extreme
importance in the design and use of optimal control for chaotic behaviors. We can
now understand the butterfly effect, i.e., the extreme sensitivity of chaotic systems
to tiny perturbations described in Chapter 3.



Chapter 8
Deterministic Compartmental Models

This is Polyfemos the copper Cyclops whose body is full of
water and someone has given him one eye, one mouth and one
hand to each of which a tube is attached. Water appears to drip
from his body and to gush from his mouth, all the tubes have
regular flow. When the tube connected to his hand is opened his
body will empty within 3 days, while the one from his eye will
empty in one day and the one from his mouth in 2/5 of a day.
Who can tell me how much time is needed to empty him when all
three are opened together?

Metrodorus (331-278 BC)

Compartmental modeling is a broad modeling strategy that has been used in
many different fields, though under varying denominations. Virtually all current
applications and theoretical research in compartmental analysis are based on
deterministic theory. In this chapter deterministic compartmental models will be
presented. The concept of compartmental analysis assumes that a process may be
divided though it were occurring in homogeneous components, or “compartments.”
Various characteristics of the process are determined by observing the movement
of material. A compartmental system is a system that is made up of a finite
number of compartments, each of which is homogeneous and well mixed, and the
compartments interact by exchanging material. Compartmental systems have been
found useful for the analysis of experiments in many branches of biology.

We assume that compartment i is occupied at time 0 by g;o amount of material
and we denote by ¢; (f) the amount in the compartment i at time ¢. We also assume
that no material enters the compartments from the outside of the compartmental
system and we denote by Rjy (¢) the rate of elimination from compartment i to the
exterior of the system. Let also Rj; (f) be the transfer rate of material from the j-
th to i-th compartment. Because the material is distributed in each compartment at
uniform concentration, we may assume that each compartment occupies a constant
volume of distribution V; The box in Figure 8.1 represents the i-th compartment of
a system of m compartments.

Mathematics is now called upon to describe the compartmental configurations
and then to simulate their dynamic behavior. To build up mathematical equations
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Fig. 8.1 The rates of transfer
for the i-th compartment

expressing compartmental systems, one has to express the mass balance equations
for each compartment i:

m
q; (1) = —Rio (1) + Y _Rji (1), (8.1)
j=1
i
with initial condition g; (0) = gjo. Thus, we obtain m differential equations, one for
each compartment i.

8.1 Linear Compartmental Models

Now, some fundamental hypotheses, commonly called laws, were employed to
expand the transfer rates appearing in (8.1). Fick’s law is largely used in current
modeling (cf. Section 2.3 and equation 2.14). It assumes that the transfer rate of
material by diffusion between regions / (left) and r (right) with concentrations ¢;
and ¢,, respectively, is

er (t) = _CLlr (Cr - Cl) . (82)

This law may be applied to the transfer rates Rj; (f) of the previous equation for
all pairs j and i of compartments corresponding to / and r and for the elimination
rate Ry (¢), where the concentration is assumed nearly zero in the region outside the
compartmental system. One has for the compartment i,

m
q; (1) = —CLige; (1) + Y _ CLi [¢; (1) — i (0],
j=1
J#i
where CL; is the fotal clearance from compartment i and CL;; is the intercompart-
mental clearance between i and j. We recall that the clearance has a bidirectional
property (CL;; = CL;;) and the subscript ij denotes simply the pair of compartments
referenced. The initial condition associated with the previous differential equation
is denoted by ¢; (0) = gj. Using the volumes of distribution V; and the well-
known relationship g; (f) = Vic; (f), we substitute the concentrations with the
corresponding amounts of material:

q; (1) = —kiogi (1) + Y kg (1) = Y kijqi (1) .
Jj=1 J=1
i J#i
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The constants k are called the fractional flow rates. They have the dimension of
time™! and they are defined as follows:

1>

Li sy

CLjp A CL;;
VL ‘/j Jie

v, = ko, kij, (8.3)

In contrast to the clearance, the fractional flow rates indicate the flow direction, i.e.,
kji # ki, the first subscript denoting the start compartment, and the second one, the
ending compartment. The fractional flow rates and the volumes of distribution are
usually called microconstants.

When the volume of the compartment being cleared is constant, the assumption
that the fractional flow rate is constant is equivalent to assuming that the clearance
is constant. But in the general case, in which the volume of distribution cannot
be assumed constant, the use of fractional flow rates k is unsuitable, because the
magnitude of k£ depends as much upon the volume of the compartment as it does
upon the effectiveness of the removal process. In contrast, the clearance depends
only upon the overall effectiveness of removal, and can be used to characterize any
removal process whether it be constant or changing, capacity-limited or supply-
limited [339].

Through the following procedure the equations for a deterministic model can be
obtained:

1. Represent the underlying mechanistic model with the desired physiological
structure through a set of phenomenological compartments with their intercon-
nections.

2. For each compartment in the configuration, apply the mass balance law to obtain
the differential equation expressing the variation of amount per unit of time. In
these expressions, constant or variable fractional flow rates k can be used.

3. Solve the system of differential equations obtained for all the compartments by
using classical techniques or numerical integration (e.g., Runge—Kutta) [340].

Therefore, Fick’s law, when applied to all elements of the compartmental
structure, leads to a system of linear differential equations. There are as many
equations as compartments in the configuration. If we set

ki = kip + Zkij,
j=1
JEi
the equation for the i-th compartment is
q; (1) = —kiqi (1) + iji%' (), (8.4)

J=1
i#i
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associated with initial conditions g;. In the previous equation, the g; (f) and g
amounts of material can be compiled in vector forms as g () and ¢ o respectively. In
the same way, the fractional flow rates k; may be considered as the (i, j)-th elements
of the m x m fractional flow rates matrix K. Thus, the set of linear differential
equations can be expressed as

T T
g )=q (K,
and having the following solution:
q (1) = qg exp (K1), (8.5)

where the initial conditions are postmultiplied by exp (Kr), which is defined by

A > Kt
exp(Kn) 21+ ) i
i=1

In most pharmacokinetic applications, one can assume that the system is open and
at least weakly connected. This is the case of mammillary compartmental models,
where the compartment no.1 is referred to as the central compartment and the other
compartments are referred to as the distribution compartments, characterized by
kio = O and k; = O for i,j = 2 : m. For open mammillary compartmental

configurations, the eigenvalues of K are distinct, real, and negative, implying that

qi (1) =Y _ Bjexp (=bit).

j=1

the so-called formula of sum of exponentials, which is common in pharmacokinetics.
The B;; and positive b; are often called macroconstants, and they are functions of
the microconstants. The equations relating these formulations are given explicitly
for the common two- and three-compartment models in many texts [332, 341]. It
should be noted, however, that the addition of a few more compartments usually
complicates the analysis considerably.

8.2 Routes of Administration

In practice, it is unlikely to have compartmental models with initial conditions
unless there are residual concentrations obtained from previous administrations.
Drugs are administered either by extravascular, or intravascular in single or repeated
experiments. Extravascular routes are oral, or intramuscular routes, and intravascu-
lar are the constant rate short- and long-duration infusions.
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¢ For the extravascular route, the rate of administration is

Uey (t) = qoka exXp (_kat) )

where ¢ is the amount of material initially given to the extravascular site of
administration and k, is the fractional flow rate for the passage of material from
the site of administration toward the recipient compartment; k, is the absorption
rate constant.

¢ For the intravascular route with constant rate, we have

Uiy (t) = 0

g2 H—T5) ~ H = Tp)],

where go is the amount of material given at a constant rate in the venous
compartment between the starting time T and the ending time Tg. Here, H (7)
is the step Heaviside function.

Extravascular and intravascular routes can be conceived as concomitant or
repeated, e.g., delayed oral intake with respect to an intramuscular administration,
or piecewise constant rate infusions, etc. Applying the superposition principle, the
contribution of all administration routes in the same recipient compartment is given
by the following input function:

Mey Miy

qoi
w(®) = qoikaiexp [—kai (t = TN + ) I " 7, H=Ts) —H@=Tp).
i=1 i=1 i i

where the m,, and m;, administrations preceding the time ¢ are associated with the
qo; amounts of material. 7; is the time of the i-th extravascular administration, and
Ts, and TF, are the starting and ending times in the i-th intravascular administration.
The contribution of the input function « (¢) in the mass balance differential equation
for the recipient compartment is represented by an additive term in the right-hand
side of (8.1).

8.3 Time-Concentration Profiles

In (8.4), by dividing the amounts g; (f) by non-time-dependent volumes of distribu-
tion V;, one obtains the differential equations for the concentrations c; (¢):

b0 = ke 0+ 3 ke 0. (8.6)
=1

J#i
Additional assumptions further reduce the complexity of these equations. One

such assumption is the incompressibility of the volumes of distribution or, as usually
known, the flow conservation. This assumption applied to compartment j leads to
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m m

Y Viki =V, ) ki

i=1 i=1

i#j i#j
In the special case of a mammillary compartmental configuration, the above relation
allows one to express the volume of distribution in peripheral compartments as
functions of the fractional flow rates and the volume of distribution of the central
compartment V; = [Iq i/ kjl] V) for j = 2 : m. Substituting this relationship in (8.6),
we obtain

¢i () = —kici () + Zkijcj .
=1
i

This set of linear differential equations can be expressed as ¢ (f) = Kc (1), and it has
the following solution:

c () = exp (K1) ¢,

where the initial conditions are premultiplied by exp (Kt) (instead of the postmulti-
plication in the case of amounts; cf. equation 8.5).

These equations are widely used to simulate simple or complex compartmental
systems and currently to identify pharmacokinetic systems from observed time—
concentration data. However, it is not always possible to write the equations in
terms of concentrations that represent true physical blood or plasma levels. In
practice, it may occur that some, say two, compartments exchange so rapidly on the
time scale of an experiment that they are not distinguishable but merge kinetically
into one compartment. If the two compartments represent material that exists at
different concentrations in two different spaces, or two forms of a compound in one
space, the calculated concentration may not correspond to any actual measurable
concentration and thus may be misleading. For this reason the development of
differential equations in terms of compartment amounts g; (f) is more general. If
these equations are available, it is not difficult to convert to concentrations c; (f)
by assuming that V; is a proportionality constant, called the apparent volume of
distribution, and to solve the equations as long as the volumes are constant in time
[342]. If the volumes are changing the problem becomes more difficult.

8.4 Random Fractional Flow Rates

The deterministic model with random fractional flow rates may be conceived on the
basis of a deterministic transfer mechanism. In this formulation, a given replicate
of the experiment is based on a particular realization of the random fractional flow
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rates and/or initial amounts ®. Once the realization is determined, the behavior of
the system is deterministic. In principle, to obtain from the assumed distribution
of ® the distribution of ¢; (), i = 1 : m, the common approach is to use the
classical procedures for transformation of variables. When the model is expressed
by a system of differential equations, the solution can be obtained through the theory
of random differential equations [343-345]. However, in practice, one can find the
moments directly using conditional expectations (cf. Appendix D):

Elq: ()] = Ee[qi (t]| ©®)],
Var [q; ()] = Varg [q; (¢ | ©®)].

Besides the deterministic context, the predicted amount of material is subjected
now to a variability expressed by the second equation. This expresses the random
character of the fractional flow rate, and it is known as process uncertainty.
Extensive discussion of these aspects will be given in Chapter 11.

Example 4. One-Compartment Model

As an illustration of the procedure, consider the one-compartment model g (f) =
qo exp (—kt). Assuming that k has a gamma distribution k ~Gam(A, @), one has the
solutions

E[q ()] = qoE [exp (—kt)] = qo (1 +1/1)7",
Var[q ()] = qéVar [exp (—kt)] = qé [(1 +2t/A)7F -1+ t//\)_z"] .

Figure 8.2 shows E[q(¥)] and E[gq(f)] £ \/Var [q ()] with go = 1 and
k ~Gam(2,2). It is noteworthy that confidence intervals are present due to the
variability of the fractional flow elimination rate k. This variability is inherent to
the process and completely different from that introduced by the measurement
devices. |

8.5 Nonlinear Compartmental Models

Many systems of interest are actually nonlinear:

e A first formulation considers the transfer rates of material from compartment
i to j as functions of the amounts in all compartments g (f) and of time ¢, i.e.,

R; [q ®, t]. In this case, R;; (¢) in (8.1) should be substituted with R; [q ®, t].

If we expand the R;; [q 0, t] in a Taylor series of ¢ (¢) and retain only the linear

terms, the nonlinear transfer rates take the form k;; (f) g; (f) and one obtains a
linear time-varying compartmental model.
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Fig. 8.2 One-compartment model with gamma-distributed elimination flow rate k ~Gam(2, 2).
The solid line represents the expected profile E [g (¢)], and dashed lines, the confidence intervals
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¢ A second formulation considers the fractional flow rate of material as a function
of ¢ (1) and 1, i.e.. ky [q ), t]. In this case, k; in (8.4) should be substituted with

kij [q (0, t].

Therefore, the transfer rates and the fractional flow rates are functions of the
vector ¢ () and t. The dependence on ¢ may be considered as the exogenous envi-
ronmental influence of some fluctuating processes. If no environmental dependence
exists, it is more likely that the transfer rates and the fractional flow rates depend
only on ¢ (). Nevertheless, since ¢ (f) is a function of time, the observed data in the
inverse problem can reveal only a time dependency of the transfer rate, i.e., R; (¥),
or of the fractional flow rate, i.e., k;; (f). Hence, the dependency of R;; (¢) and k;; (£)
on ¢ () is obscured, and a second-level modeling problem now arises, i.e., how
to regress the observed dependency on the ¢ (f) and ¢ separately. This problem is
mentioned in Section 7.7.

Until now, the compartmental model was considered as consisting of compart-
ments associated with several anatomical locations in the living system. The general
definition of the compartment allows us to associate in the same location a different
chemical form of the original molecule administered into the process. In other
words, the compartmental analysis can include not only diffusion phenomena but
also chemical reaction kinetics.

One source of nonlinear compartmental models is processes of enzyme-catalyzed
reactions that occur in living cells. In such reactions, the reactant combines with
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an enzyme to form an enzyme—substrate complex, which can then break down to
release the product of the reaction and free enzyme or can release the substrate
unchanged as well as free enzyme. Traditional compartmental analysis cannot
be applied to model enzymatic reactions, but the law of mass balance allows us
to obtain a set of differential equations describing mechanisms implied in such
reactions. An important feature of such reactions is that the enzyme is sometimes
present in extremely small amounts, the concentration of enzyme being orders of
magnitude less than that of substrate.

8.5.1 The Enzymatic Reaction

The mathematical basis for enzymatic reactions stems from work done by Michaelis
and Menten in 1913 [346]. They proposed a situation in which a substrate reacts
with an enzyme to form a complex, one molecule of the enzyme combining with
one molecule of the substrate to form one molecule of complex. The complex can
dissociate into one molecule of each of the enzyme and substrate, or it can produce
a product and a recycled enzyme. Schematically, this can be represented by

R
[substrate] + [enzyme] & [complex],
k—y 8.7

k
[complex] = [product] + [enzyme] .

In this formulation k4 is the rate parameter for the forward enzyme—substrate
reaction, k_; is the rate parameter for the backward reaction, and k., is the rate
parameter for the creation of the product.

Let s (7), e (¢), ¢ (t), and w (¢) be the amounts of the four species in the reac-
tion (8.7), and sy and ey the initial amounts for substrate and enzyme, respectively.
The differential equations describing the enzymatic reaction,

s (1) = —ky1s (1) [eo — c (O] + k1 (1), 5(0) = so,
c(t) = ky1s (1) [eo — c (0] — (k=1 + ky2) c (1), c(0) =0, (8.8)
w (1) = kiac (1), w(0) =0,

are obtained by applying the law of mass balance for the rates of formation and/or
decay, and the conservation law for the enzyme, ey = e (¢) + ¢ (7).

Relying on a suggestion by Segel [347], we make the variables of the above
equations dimensionless

s (2) c(@) w (1)
x(r) = P y(‘L’): P Z(‘L—): s
K ) 50
5 ) ko1 +kis 50
K = s &= s

k150 k150 eo
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. 8.3 Profiles of dimensionless reactant amounts, substrate x(r), complex y(tr), and

product z (t)

with T = k41ept and k = A. The set of differential equations becomes

{C(t) =—=x@)[I-y@]+K-21)y(®), x(0) =1,
y@ =elx(@[1—y@] -y (@)}, y(0) =0,
z(7) = Ay (1), z(0) = 0.

This system cannot be solved exactly, but numerical methods easily generate

good solutions. The time courses for all reactant species of reaction (8.7) generated
from the previous equations with (k,A) = (0.015,0.010) and ¢ = 2 are shown in
the semilogarithmic plot of Figure 8.3. We note that:

The substrate x (t) drops from its initial condition value, equal to 1, at a rapid
rate, but quickly decelerates. Progressively, and for ¢ > 50, the substrate
decreases rapidly in a first phase and then slowly, in a second phase. This irregular
profile of substrate in the semilogarithmic plot is reflected as a concavity or
nonlinearity, as it is usually called.

The intermediate compound complex y (7) reaches a maximum (called quasi-
steady state in biology) that persists only for a time period and then decreases;
this time period corresponds to the period of nonlinearity for the substrate time
course. In fact, saturation of the complex form is responsible for the nonlinearity
in the substrate time course. During this period, there is no free enzyme to
catalyze the substrate conversion toward the product.

The product z (7) reaches the maximum plateau level asymptotically. In contrast
to the substrate profile, the nonlinear behavior along the saturation of the complex
is not easily defined on the product profile.
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Fig. 8.4 Influence of & on the substrate x (r) profiles with fixed (x,A) = (0.015,0.010) and
e=(051,2,5)

Figure 8.4 shows the influence of ¢ on the x (t) shape. For fixed («k, 1), we
simulated the time courses for ¢ = 0.5, 1, 2, 5. It is noted that the shape of the
substrate profiles varies remarkably with the values of ¢; thus profiles of biphasic,
power-law, and nonlinear type are observed. So, the sensitivity of the kinetic profile
regarding the available substrate and enzyme amounts is studied by using several &
values: for low substrate or high enzyme amounts the process behaves according to
two decaying convex phases, in the reverse situation the kinetic profile is concave,
revealing nonlinear behavior.

Other processes that lead to nonlinear compartmental models are processes
dealing with transport of materials across cell membranes that represent the transfers
between compartments. The amounts of various metabolites in the extracellular and
intracellular spaces separated by membranes may be sufficiently distinct kinetically
to act like compartments. It should be mentioned here that Michaelis—Menten
kinetics also apply to the transfer of many solutes across cell membranes. This
transfer is called facilitated diffusion or in some cases active transport (cf. Chap-
ter 2). In facilitated diffusion, the substrate combines with a membrane component
called a carrier to form a carrier—substrate complex. The carrier—substrate complex
undergoes a change in conformation that allows dissociation and release of the
unchanged substrate on the opposite side of the membrane. In active transport
processes not only is there a carrier to facilitate membrane crossing, the carrier
mechanism is somehow coupled to energy dissipation so as to move the transported
material up its concentration gradient.
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8.6 Complex Deterministic Models

The branching pattern of the vascular system and the blood flow through it
has continued to be of interest to anatomists, physiologists, and theoreticians
[4, 348, 349]. The studies focusing on the geometric properties such as lengths,
diameters, generations, orders of branches in the pulmonary, venular, and arterial
tree of mammals have uncovered the principles on which these properties are based.
Vascular trees seem to display roughly the same dichotomous branching pattern
at different levels of scale, a property found in fractal structures [350-352]. The
hydrodynamics of blood flow in individual parts of the dichotomous branching
network have been the subject of various studies. Recently, West et al. [353], relying
on an elegant combination of the dynamics of energy transport and the mathematics
of fractal geometry, developed a hydrodynamic model that describes how essential
materials are transported through space-filling fractal networks of branching tubes.

Although these advances provide an analysis of the scaling relations for mam-
malian circulatory systems, models describing the transport of materials along the
entire fractal network of the mammalian species are also needed. Pharmacokinetics
and toxicokinetics, the fields in which this kind of modeling is of the greatest
importance, are dominated by the concept of homogeneous compartments [354].
Physiologically based pharmacokinetic models have also been developed that define
the disposition patterns in terms of physiological principles [282, 354, 355]. The
development of models that study the heterogeneity of the flow and the materials
distribution inside vascular networks and individual organs has also been fruitful
in the past years [294, 356-358]. Herein, we present a simple model for the
heterogeneous transport of materials in the circulatory system of mammals, based on
a single-tube convection—dispersion system that is equivalent to the fractal network
of the branching tubes.

8.6.1 Geometric Considerations

We consider a fractal arterial tree that consists of several branching levels where
each level consists of parallel vessels, Figure 8.5A. Each vessel is connected to m
vessels of the consequent branching level [353]. We make the assumption that the
vessel radii and lengths at each level k follow a distribution around the mean values
oy and ., respectively. The variance of the vessel radii and lengths at each level
produces heterogeneity in the velocities.

The total flow across a section of the entire tree is constant (conservation of
mass). This allows us to replace the tree with a single one-dimensional tube. Since
the tree is not area-preserving and the area of the cross section of the tube is equal to
the total area of the cross sections of each level of the tree, the total cross-sectional
area of subsequent levels increases, i.e., the tube is not cylindrical (Figure 8.5A-C).
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Fig. 8.5 (A) Schematic A B (o]
representation of the
dichotomous branching
network. (B) Cross sections at
each level. (C) Single tube
with continuously increasing
radius. (D) Volume-
preserving transformation of
the varying radius tube to a
fixed radius tube. Reprinted
from [359] with permission
from Springer

Based on the scaling properties of the fractal tree, the noncylindrical tube
is described in terms of a continuous spatial coordinate, z, which replaces the
branching levels of the fractal tree from the aorta to the capillaries. As suggested
by West [353], both the radii and the vessel lengths scale according to “cubic law”
branching, i.e., poy\/pr = M1/ M = m~'/3. These assumptions allow us to
obtain the expression for the area A(z) of the noncylindrical tube (Figure 8.5C)
as a function of the coordinate z:

T P%Hoﬁ

AQ= (=) + g

(8.9)

where p, and j4, are the radius and the length of aorta, respectively, and m = m'/3.

Further, a volume-preserving transformation allows the replacement of the
varying radius tube with a tube of fixed radius p, and fixed area Ay = =« pé
(Figure 8.5D). This is accomplished by replacing z with a new coordinate z* with
the condition that the constant total flow of the fluid across a section is kept invariant
under the transformation:

z=f°ﬁl§1—eXp[z*(1_%)}}. (8.10)

Hoim

8.6.2 Tracer Washout Curve

The disposition of a solute in the fluid as it flows through the system is governed by
convection and dispersion. The convection takes place with velocity

J— AO
v(z) = A" (8.11)
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where vy is the velocity in the aorta and .A(z) is given by (8.9). If molecular diffusion
is considered negligible, dispersion is exclusively geometric and consists of two
components originating from the variance of the path lengths and of the vessel
radii. Because the components are independent of each other, the global form of
the dispersion coefficient is

11l Ao T
D) = [klo%ﬁzkzagopﬂ [ Y (Z)} V0, (8.12)

where k; and k, are proportionality constants, and CT%O and ‘7%0 are the variances
of the radius and the length of aorta, respectively [357, 360, 361]. The equation
that describes the concentration ¢ (z, f) of solute inside the tube is a convection—
dispersion partial differential equation:

ot 0z

dc (z,1) . 0 [D @ ac (z, t):| (@) dc (z,1)
0z 0z

with D (z) and v (z) given by (8.12) and (8.11), respectively. Applying the trans-
formation (8.10), the previous equation becomes a simple convection—dispersion
equation with constant coefficients:

dc (z%,1) L 0%c(z5,1) L 0c (25,0
=D — , 8.13
ot 0 fpx2 Y0 g (8.13)

where

D; = k()v(), Ug = (%Zj:) + 1) Vo, k() = klO'%O + 2k20'%0l;8.
These forms relate the dependence on the system characteristics. Equation (8.13)
describes the concentration ¢ (z*,¢) of a solute in a tree-like structure that corre-
sponds to the arterial tree of a mammal. Considering also the corresponding venular
tree situated next to the arterial tree and appropriate inflow and outflow boundary
conditions, we are able to derive an expression for the spatiotemporal distribution of
a tracer inside a tree-like transport network. We also make the assumption that the
arterial and venular trees are symmetric, that is, have the same volume V; then, the
total length is L = V/.Ay. The initial condition is ¢ (z*,0) = 0 and the boundary
conditions are:

e Inflow at z* = 0:

d *, * *
[—Da‘ €(&. 1) + vz ,t):|

_ 9 5 (1)
ap

*¥=0

where gy is the dose, and § (¢) is the Dirac delta function.
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¢ Outflow at z* = L:

ac (z*,t
Gl
aZ 7*=L
The outflow concentration ¢ (L, f) of the above model describes tracer washout
curves from organs that have a tree-like network structure, and it is given by an
analytic form reported in [359].

8.6.3 Model for the Circulatory System

Based on the above, an elementary pharmacokinetic model considering the entire
circulatory system was constructed. Thus, apart from the arterial and venular
trees, a second set of arterial and venular trees, corresponding to the pulmonary
vasculature, must be considered as well. These trees follow the same principles
of (8.10) and (8.13), i.e., tubes of radius p,, are considered with appropriate length
to accommodate the correct blood volume in each tree.

8.6.3.1 Structure

An overall tube of appropriate length L is considered and is divided into four sequen-
tial parts, characterized as arterial, venular, pulmonary arterial, and pulmonary
venular, Figure 8.6.

We assign the first portion of the tube length from z* = 0 to z* = z} to the
arterial tree, the next portion from z* = z¥ to z* = z; to the venular, and the rest
from z* = z7 to z* = L to the two symmetrical trees of the lungs. We consider that
the venular tree is a structure similar to the arterial tree, only of greater, but fixed,
capacity. Also, the two ends of the tube are connected, to allow recirculation of the
fluid. This is implemented by introducing a boundary condition, namely c (0, t) =
¢ (L,t), which makes the tube ring-shaped. The “heart” is located at two separate
points. The left ventricle-left atrium is situated at z* = 0, and the right ventricle-
right atrium is situated at z* = z, Figure 8.6.

8.6.3.2 Dispersion

Two separate values were used for the dispersion coefficient D, for the arterial
segment and D,, for the pulmonary segment. For the venular segment we consider
that the dispersion coefficient has the value D, (z} —zF) /z¥, meaning that it is
proportional to the length of the segment. The flux preservation boundary condition,
dc (7, ¢ dc (7, ¢
0| _ ) @)

— Va
P 31* Z*=L BZ* 7%=0 ’

must also be satisfied.
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Fig. 8.6 Schematic representation of the ring-shaped tube that models the circulatory system of a
mammal. Blood flows clockwise. The tube is divided into segments corresponding to the arterial,
venular, pulmonary arterial, and pulmonary venular trees

8.6.3.3 Elimination

The contribution of elimination of drugs is appreciable and is integrated into the
model. A segment in the capillary region of the tube (z* =~ ZJ¥) is assigned as
the elimination site and a first-order elimination term kc (z*, ) is now introduced
in (8.13). The length of the elimination segment is arbitrarily set to 0.02L, which
is in the order of magnitude of the capillary length. The position of the elimination
site is imprecise in physiological terms, but it is the most reasonable choice in order
to avoid further model complexity.

8.6.3.4 Drug Administration and Sampling

The necessary initial condition for the intravenous administration of an exogenous
substance, ¢ (z*, 0), which is the spatial profile of ¢ at the time of administration, is
determined by the initial dose and the type of administration. This profile may have
the shape of a “thin” Gaussian function if an intravenous bolus administration is
considered, or the shape of a “rectangular” gate for constant infusion. The reference
location zj of this profile for an intravenous administration must be set close to the
heart. Similarly, when lung administration is considered, z; should be set in the
capillary area of the lungs. Due to the geometric character of the model, a sampling
site z; should be either specified, in simulation studies, or calculated when fitting is
performed.
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The final model can be summarized as follows:

Ie@0) 0 [ w w 0c@D] @D
N [ R B R T L)

where W (z*) is a combination of delayed in space Heaviside functions, i.e.,
W(z*) = H (z* —zF + 0.01L) — H (z* —z* — 0.01L), and

D, for 0 < z* < z¥,
* [ %
D* (%) = { Da (2} — %) /2k for ¥ < 2* <z,
* *
D, forzy < z* < L.

Boundary and initial conditions are considered as discussed above.
Example 5. Indocyanine Green Injection

The model was used to identify indocyanine green profile in man after a go =
10 mg intravenous bolus injection. Both injection and sampling sites (z; and z},
respectively) were closely located on the ring-shaped tube. The model of drug
administration was a “thin”” Gaussian function:

qo | b 2\
*,0) = \/ = B
eer.0) = ﬂexp|: (L L)

This administration corresponds to a bolus injection at the cephalic vein. The
parameters set in the model were m = 3, , = 50cm, Ay = 3 cm?, and b = 10°.
The estimated model parameters were:

* Structure: z /L = 0.28, z5/L = 0.83,z, /L = 0.85, and V = 4.41. These values
result in L = 1470 cm.

* Dispersion and elimination: D, = 1826 cm?s™!, D, = 1015 cm?s™! vy =
44.98cms~ ! and k = 1.13s7 L.

Figure 8.7 depicts the fitted concentration profile of indocyanine green at the
sampling site along with the experimental data. |

A one-dimensional linear convection—dispersion equation was developed with
constant coefficients that describes the disposition of a substance inside a tree-like
fractal network of tubes that emulates the vascular tree. Based on that result, a simple
model for the mammalian circulatory system is built in entirely physiological terms
consisting of a ring-shaped, one-dimensional tube. The model takes into account
dispersion, convection, and uptake, describing the initial mixing of intravascular
tracers. This model opens new perspectives for studies dealing with the disposition
of intravascular tracers used for various hemodynamic purposes, e.g., cardiac output
measurements [362, 363], volume of circulating blood determination [362], and
liver function quantification [364]. Most importantly, the model can be expanded
and used for the study of xenobiotics that distribute beyond the intravascular space.



208 8 Deterministic Compartmental Models

10 . . . . .
8 o -
—_
> of -
=
% ° 4t 4
Nm
N
S
2 I .
0 1 1 1 1 1
0 10 20 30 40 50 60
£(s)
Fig. 8.7 Indocyanine profile at the sampling location z7 = 1220 cm after intravenous bolus

administration of 10 mg. The peaks correspond to successive passes of the drug bolus from the
sampling site as a result of recirculation. The dots indicate the experimental data

In future developments of the model, the positioning of organs that play an
important role in the disposition of substances can be implemented by adding
parallel tubes at physiologically based sites to the present simple ring-shaped
model. Consequently, applications can be envisaged in interspecies pharmacokinetic
scaling and physiologically based pharmacokinetic-toxicokinetic modeling, since
both fields require a realistic geometric substrate for hydrodynamic considerations.

8.7 Compartmental Models and Heterogeneity

Initially, the deterministic theory was applied to describe the movement of a
population of tracer molecules. Briefly, a drug administered as a bolus input into
an organ modeled by homogeneous compartments results in a time—concentration
curve describing the amount of the drug remaining in the organ as a function of
the elapsed time of the form of a sum of exponential terms. Possibly because the
individual molecules are infinitesimal in size, in most of the literature the implicit
assumption is made of deterministic flow patterns. So, compartmental analysis,
grounded on deterministic theory, has provided a rich framework for quantitative
modeling in the biomedical sciences with many applications to tracer kinetics in
general [365, 360] and also to pharmacokinetics [341]. The linear combinations of
exponential function forms have provided a very rich class of curves to fit to time—
concentration data, and compartmental models turn out to be good approximations
for many processes.
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Thus, compartmental models have been used extensively in the pharmacokinetic
literature for some time, but not without criticism. These criticisms were directed:

» First, at the compartmental approach per se grounded on the assumption of
homogeneous compartments. Compartmental models are in fact appropriate
when there is an obvious partitioning of the material in the process into
discrete portions, the compartments that exchange amounts of materials. From
a theoretical standpoint, there has always been a consensus that the notion of
a homogeneous compartment is merely a simplified representation for different
tissues that are pooled together [367, 368].

* Second, at the fact that the models obtained are not necessarily exact because
mixing in a compartment is not instantaneous. How good a compartment model
is depends on the relative rates of mixing within a compartment as compared
to the transfer rates between the compartments. Mixing may occur by diffusion,
various types of convection, and combinations of them, so it is difficult to come
up with a uniform theory of mixing. Ideally, we should measure the concentration
of material throughout the process and define mixing in terms of the time course
of a ratio such as the standard deviation divided by the mean concentration.

e Third, at the ill-conditioning of numerical problems for parameter estimation
with models involving a large number of exponential terms. Wise [324] has
developed a class of powers of time models as alternatives to the sums of
exponentials models and has validated these alternative models on many sets
of experimental data. From an empirical standpoint, Wise [269] reported “1000
or more” published time—concentration curves where alternative models fit the
data as well or better than the sums-of-exponentials models.

Moreover, it is clear that even the continuous models are often unreliable models.
Matter is atomic, and at a fine enough partition, continuity is no longer an acceptable
solution. Furthermore, living tissues are made up of cells, units of appreciable size
that are the basic structural and functional units of living things. And cells are
not uniform in their interiors; they contain smaller units, the cellular organelles.
There is inhomogeneity at a level considerably above the molecular. All these
facts enhanced the criticism against determinism and the use of homogeneous
compartments. More realistic alternatives have aimed at removing the limiting
assumption of homogeneity:

* The process was considered as continuous and compartmental models were
used to approximate the continuous systems [366]. For such applications, there
is no specific compartmental model that is the best; approximation improves
as the number of compartments is increased. In order to put compartmental
models of continuous processes in perspective it may help to recall that the
first step in obtaining the partial differential equation, descriptive of a process
continuous in the space variables, is to discretize the space variables so as to give
many microcompartments, each uniform in properties internally. The differential
equation is then obtained as the limit of the equation for a microcompartment
as its spatial dimensions go to zero. It is better to approximate the continuous
processes with a finite-compartment system rather than go to the limit. In that
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case, the partial differential equation is approximated by a set of simultaneous
ordinary differential equations. In philosophy, compartmental modeling shares
basic ideas with the finite element method, where the structure of the system is
also used to define the elements of a partition of the system. But even if a finite-
compartment approximation is used, how can we define the approximation error
and its dependence on the size of the compartmental model? In addition, many
compartmental models approximating continuous processes are so large that it
may be difficult to deal with them and it may be useful or necessary to lump
some of the compartments into one compartment. This raises a set of questions
about the errors incurred in aggregation and about the optimal way of aggregating
compartments.

* Noncompartmental models were introduced as models that allow for transport
of material through regions of the body that are not necessarily well mixed or of
uniform concentration [273]. For substances that are transported relatively slowly
to their site of degradation, transformation, or excretion, so that the rate of diffu-
sion limits their rate of removal from the system, the noncompartmental model
may involve diffusion or other random-walk processes, leading to the solution in
terms of the partial differential equation of diffusion or in terms of probability
distributions. A number of noncompartmental models deal with plasma time—
concentration curves that are best described by power functions of time.

* Physiological and circulatory models have been developed, and they have
provided information of physiological interest that was not available from
compartmental analysis. Rapidly, physiological models turned to the modeling
of complex compartmental structures. In contrast, circulatory models associated
with a statistical framework have proved powerful in describing heterogeneity
in the process [271, 369]. Recently, the above presented complex model for
the entire circulatory system was built, describing initial mixing following
an intravascular administration in a tree-like network by a relatively simple
convection—dispersion equation [359, 370].

* Stochastic compartmental analysis assumes probabilistic behavior of the
molecules in order to describe the heterogeneous character of the processes. This
approach is against the unrealistic notion of the “well-stirred” system, and it is
relatively simpler mathematically than homogeneous multicompartment models.
At first glance, this seems to be a paradox since the conventional approaches rely
on the simpler hypothesis of homogeneity. Plausibly, this paradox arises from the
analytical power of stochastic approaches and the unrealistic hypothesis of homo-
geneity made by compartmental analysis. Nevertheless with only a few excep-
tions, stochastic modeling has been slow to develop in pharmacokinetics and only
recently have some applications also included stochastic behavior in the models.

In conclusion, compartmental models are generally well determined if there is an
obvious partitioning of the material into compartments, and if the mixing processes
within these compartments are considerably faster than the exchanges between the
compartments.



Chapter 9
Fractional Pharmacokinetics

It leads to a paradox, from which one day useful consequences
will be drawn.

Gottfried Wilhelm von Leibnitz (1646-1716)
when asked (1695) by Guillaume de L’Hospital
“what would be the result of half-differentiating?”’

by Dr. A. DOKOUMETZIDIS
Faculty of Pharmacy National and Kapodistrian
University of Athens

Diffusion is one of the main mechanisms of various processes in living species
and as such, plays an important role in the course of a drug in the body. Processes
like membrane permeation, dissolution of solids, and dispersion in cellular matrices
are considered to take place by diffusion. As mentioned in Chapter 2, diffusion
is classically described by Fick’s law and is based on the fact that a molecule
makes a random walk, where its mean squared displacement is proportional to time.
However, in the last few decades, strong experimental evidence has suggested that
this is not always true and diffusional processes that deviate from this law have
been observed. These are either faster (super-diffusion) or slower (sub-diffusion)
than the classic case and the mean square displacement is a power of time, with
exponent greater or less than 1, respectively, [371]. This type of diffusion gives
rise to kinetics that are referred to as anomalous, to indicate the fact that deviate
from the classic description [371]. Moreover, anomalous kinetics can also result
from reaction-limited processes and long-time trapping. It is thought that anomalous
kinetics introduces memory effects in the process that need to be accounted for
to correctly describe it. As mentioned in Chapter 7, a theory that describes such
anomalous kinetics is the so- called fractal kinetics where explicit power functions
of time, in the form of time-dependent coefficients, are used to account for the
memory effects. In pharmacokinetics several data sets have been characterized by
power laws [269, 372] which has been justified by the presence of anomalous
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diffusion. These include mainly pharmacokinetics of drugs that distributed in deeper
tissues [369] and bone seeking elements [281, 373].

An alternative theory to describe anomalous kinetics uses fractional calculus
[30, 374], which introduces derivatives and integrals of fractional order, such as
half or 3 quarters. Although fractional calculus was introduced by Leibniz more
than 300 years ago, it is only within the last couple of decades that real-life
applications have been explored [375-377]. It has been shown that differential
equations with fractional derivatives describe experimental data of anomalous
diffusion more accurately. In this chapter the recent applications of fractional
calculus in pharmacokinetics are presented, which have formed a new area of
research referred to as fractional pharmacokinetics.

9.1 Fractional Calculus

9.1.1 The Fractional Derivative

Derivatives of integer order n, d"f (z) /d¢" of a function f () are well defined. For a
fractional order of differentiation v, where for simplicity we assume that 0 < o < 1,
the a-th derivative is defined through fractional integration and successive ordinary
differentiation. Fractional integration of order « is defined, according to the
Riemann—Liouville integral [378]

1 ' o= / /
oD (1) £ F(a)/o (=) (1) dr

where I (.) is the gamma function. Consequently, fractional differentiation is
defined as
r@
oD¥ =
f() [F(l—a) (N

This is the Riemann-Liouville definition of the fractional derivative. One can
notice that the fractional integration is basically a convolution integral between the
function and a power law of time, i.e., ¢D;%f () = 1*~! x f (), where the star
“x” denotes convolution, accounting for the memory effects of the studied process.
The fractional derivatives have properties that are not intuitive, for example, the
half derivative of a constant A with respect to x does not vanish and instead is
A/ +/7x. The left-side index “0” of the D operator denotes the lower end o