
This PDF document was made available from www.rand.org as a public 

service of the RAND Corporation.

6Jump down to document

Visit RAND at www.rand.org

Explore RAND-Initiated Research

View document details

This document and trademark(s) contained herein are protected by law as indicated in a notice 
appearing later in this work.  This electronic representation of RAND intellectual property is provided 
for non-commercial use only.  Permission is required from RAND to reproduce, or reuse in another 
form, any of our research documents for commercial use.

Limited Electronic Distribution Rights

For More Information

CHILD POLICY

CIVIL JUSTICE

EDUCATION

ENERGY AND ENVIRONMENT

HEALTH AND HEALTH CARE

INTERNATIONAL AFFAIRS

NATIONAL SECURITY

POPULATION AND AGING

PUBLIC SAFETY

SCIENCE AND TECHNOLOGY

SUBSTANCE ABUSE

TERRORISM AND 
HOMELAND SECURITY

TRANSPORTATION AND
INFRASTRUCTURE

The RAND Corporation is a nonprofit research 
organization providing objective analysis and effective 
solutions that address the challenges facing the public 
and private sectors around the world.

Purchase this document

Browse Books & Publications

Make a charitable contribution

Support RAND

RAND-INITIATED RESEARCH



How Much Is Enough? 
Sizing the Deployment 
of Baggage Screening 
Equipment by Considering 
the Economic Cost of 
Passenger Delays

Russell Shaver, Michael Kennedy,  

Chad Shirley, Paul Dreyer

DB-410-RC

September 2004

Approved for public release; distribution unlimited



The RAND Corporation is a nonprofit research organization providing objective analysis 
and effective solutions that address the challenges facing the public and private sectors 
around the world. RAND’s publications do not necessarily reflect the opinions of its research 
clients and sponsors.

R® is a registered trademark.

© Copyright 2004 RAND Corporation

All rights reserved. No part of this book may be reproduced in any form by any electronic or 
mechanical means (including photocopying, recording, or information storage and retrieval) 
without permission in writing from RAND.

Published 2004 by the RAND Corporation
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138

1200 South Hayes Street, Arlington, VA 22202-5050
201 North Craig Street, Suite 202, Pittsburgh, PA 15213-1516

RAND URL: http://www.rand.org/
To order RAND documents or to obtain additional information, contact 

Distribution Services: Telephone: (310) 451-7002; 
Fax: (310) 451-6915; Email: order@rand.org

ISBN: 0-8330-3628-9

This research in the public interest was supported by RAND, using discretionary funds made 
possible by the generosity of RAND’s donors, the fees earned on client-funded research, and 
independent research and development (IR&D) funds provided by the Department of 
Defense.



1

PREFACE

Shortly after the terrorist attacks against the World Trade Center on September 11, 2001, 
Congress passed a new law that mandated the screening of all baggage carried on all 
commercial aircraft by the end of Calendar Year (CY) 2002. The Transportation Security 
Agency (TSA), a newly formed organization that is part of the Department of Homeland 
Security, was given the responsibility for ensuring that all bags would be screened. To its 
credit, TSA made sure sufficient equipment was acquired and installed at all U.S. commercial 
airports to satisfy the spirit, if not exactly the letter of the law.

The imperative of meeting the congressionally mandated short deadline completely 
overshadowed any planning to address airport security needs over the long term. Left undone 
was any attempt to determine how to best balance the two principal criteria commonly put 
forward for sizing the machine deployments at individual airports. These two criteria—
keeping the cost to the government of acquiring, installing, and operating the baggage-
scanning equipment as low as possible, and not seriously disrupting the passenger flow 
through the airport—are critical for answering the question in the title of this briefing, “How 
much [baggage-scanning equipment] is enough?”

Determining how much is enough is important for several reasons, not the least of which is 
keeping the overall cost to the flying public to a minimum while still providing the mandated 
level of security. Failure to have deployments that minimize the overall cost to the public will 
unnecessarily hurt the aviation industry, and will impose a drag on the nation’s economic 
growth.

This documented briefing is part of a larger study by the RAND Corporation of the 
implications of airport security measures on airports, airlines and, more broadly, the nation’s 
economic growth. RAND funded this study as a component of an even broader effort to 
expand its understanding of the implications of terrorist threats against the United States and 
its allies.

The breadth and depth of this study was inherently limited by time, cost, and access. We had 
neither the opportunity nor the time to visit many U.S. commercial airports or to interact 
with the TSA to ensure that the assumptions in this study are fully consistent with what TSA 
and the airports are doing.

Despite these shortcomings, the results should be of interest to organizations and individuals 
committed to retaining and fostering a vigorous transportation industry and unrestricted 
access to long-range travel by the public. The commerce associated with air travel is a vital 
element of this nation's economy. Ensuring both its safety and its continued growth is a 
challenge that requires both a high degree of security and a minimum of impedance to 
convenient flight. 
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline

We begin by giving some background on the problem we are addressing, including a summary 
of our prior work in this area and what we recommended to the government in March 2002. 
We then describe our findings from this work, connecting it to the prior work and pointing 
toward a new set of recommendations.

We lead the reader through the steps of the analysis, starting with how we calculated the 
various baggage-scanning delays, how those delays were translated into passengers choosing to 
arrive at the airports earlier than otherwise necessary, and how that behavior is ultimately 
reflected in additional cost to the nation’s economy.

This briefing is relatively long because a number of important sensitivities need to be 
addressed. 
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Study Background

• RAND undertook study of airport security measures shortly 
after the terrorist attacks of 9/11

– In response to a congressional act mandating all baggage be 
screened before being allowed onto aircraft by December 2002

– Internally funded, but study coordinated with FAA
• Results reported in Safer Skies
• Current study extends previous work and undertakes some 

new topics
– Seeks to identify how many machines should be deployed, 

balancing costs of acquiring and operating security equipment 
against costs associated with airport delays caused by 
inadequate scanning capacity to handle demand

– Adds other considerations (e.g., the implications of positive 
profiling program or “registered passenger” program)

Immediately after the terrorist attacks of 9/11, RAND management made a strategic decision 
to employ a major portion of its internal research money toward studies of how the United 
States might best meet the new threat. Among the studies undertaken was one dealing with 
how the government might best respond to the congressionally imposed demands on 
improved airport security. Congress had just passed a security bill that, among other things, 
mandated that all passenger baggage be electronically scanned for explosives prior to its being 
placed onboard the aircraft. The Administration was given until December 2002 to fully 
comply. That part of the FAA already involved in acquiring security equipment (subsequently 
moved to TSA after its formation) was given the mandate to carryout the mandate.

Based on its own work, the FAA believed that the task imposed by Congressional mandate 
was nearly impossible. Among the shortfalls were (1) the lack of adequate certified equipment 
and the unlikelihood that a sufficient production of new EDS* machines could be achieved in 
time, (2) the lack of space at the airports for installing the new equipment, even assuming that 
it would be available, and (3) the shortage of trained machine operators. The FAA asked 
RAND for an independent assessment of these shortfalls. Our initial results were provided in 
January 2002. The formal study report was released in March 2002 (see reference 1). The 
figure on page 6 summarizes the findings of the study.
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Missing from this initial study was a clear evaluation of the proper size of the total EDS* 
machine buy. We knew that the evaluation would trade the costs of additional machine 
acquisition, installation, and operations against the cost of inadequate baggage-scanning 
throughput and what that would mean in terms of passenger inconvenience. Moreover, we 
also know that a successful “registered traveler” positive profiling program could significantly 
reduce baggage-scanning requirements, perhaps to a degree that would alleviate the need for 
additional machines. However, we did not know whether the planned deployment was 
anywhere near the proper size. How these and other considerations would affect the “best” 
answer needed serious study.

---------------------------------------------

* Electronic Detection System. The label EDS is commonly use for machines that use 
magnetic resonance techniques to provide images of objects within a bag being scanned.
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Observations from Safer Skies 

• The congressional mandate tightly constrained FAA/TSA’s
options, and the resulting government-in-charge, top-down 
approach was the unfortunate consequence

– Each airport/airline combination is unique. Failure to obtain 
from the airports and the airlines early recommendations about 
how to manage the baggage-scanning system was a recipe for 
poor execution and inefficient use of equipment

• RAND concluded that
– The government’s top-down approach should be reversed, with 

airports and airlines proposing solutions that best meet their 
unique airport-by-airport circumstances

– The total number of EDS machines being considered was low by 
at least a factor of 2.5

• The responses by representatives of the airlines and the 
airports were positive

The observations from Safer Skies,* detailed in this figure, were provided informally in 
January 2002. Nevertheless, they were either too late or too difficult to handle for TSA to act 
positively on them. 

Remarkably, and to TSA’s credit, by December 2002 all but a few airports were judged to be 
in compliance (the remainder obtained waivers). This rapid compliance was facilitated by a 
change in the requirements for baggage-scanning capabilities. One example is the partial 
substitution of trace detection equipment for EDS equipment. Instead of imaging the 
contents of the bag, trace detection equipment “sniffs” for minute quantities of bomb-related 
molecules. This substitution is recognized by all as a temporary answer, and over time the 
more capable EDS machines will be deployed and used in the manner originally envisioned by 
the law.**

RAND’s sizing analysis focused on passenger demand levels predicted for CY2010. The study 
focused on future demand levels for three reasons: essentially no opportunity 

----------------------------------

*See reference 1.

**Trace detection equipment will continue to be used in airports in roles that complement 
other security equipment, including EDS and x-ray machines.
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Exited to effect near-term machine deployments; the near-term focus did not allow any 
serious examination how to do the mission efficiently, including airport configuration 
changes and the like; and a longer-term target was needed, assuming that there would be time 
to evaluation the outcome of the near-term deployments and plan on how to improve the 
process over the long haul.

Our conclusions were intended to help TSA’s short-term efforts. Nevertheless, they are 
appropriate for the longer term as well.
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What’s New in This Study Since Safer Skies

• Expanded number of airports examined
– Added Chicago O’Hare (ORD) to Dallas–Fort Worth (DFW)

• Modified passenger demand levels
– Obtained lower 2010 demand numbers from MITRE

• Developed new performance criteria
– Average rather than maximum baggage delays
– Passenger pre-departure arrival times vs. risk of having bag 

miss plane
• Added a new metric (sizing the number of EDS machines 

deployed to minimize the impact on the nation’s economy) 
• Examined “Registered Traveler” schemes for lowering 

baggage-scanning demand
• Refocused concern from “Doing the Job Right” to “Doing the 

Right Job”

This briefing is at least in part a follow-on to what was done in the “Safer Skies” white paper. 
The following are some of the changes

• We added another large major hub airport to our analysis, to ensure that the selection of a 
single airport was not unduly biasing our results. It was not.

• We obtained some new demand numbers for these airports, resulting in somewhat fewer 
flights in 2010. Consequently, the total sizing numbers shown in “Safer Skies” have been 
reduced somewhat for a given level of performance.

• We developed two new criteria, in our attempt to better capture how the passengers 
would react to the baggage-scanning delays that they would encounter.

• We added a new metric for sizing the total buy. Roughly, the metric is intended to answer 
the question, “How much is enough?” in terms appropriate for government 
decisionmakers.

• We have added some numbers on what a “Registered Traveler” program would mean for 
sizing the machine buy size or lowering the overall cost to the nation for better security at 
major airports. A companion report on this work has also being produced (see reference 
2).
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Major Finding

• Two competing costs are imposed on the flying public (and 
indirectly on the nation’s economy) from the baggage-
scanning requirements

– The cost of performing the scanning, which includes the cost of 
acquiring, installing, and operating the scanning equipment

– The cost imposed on the passengers associated with spending 
more time at the airport than would be normal otherwise

• The overall sum of these costs is minimized when sufficient 
machines are bought to keep passenger delays to at most a 
few minutes

– The derived size of the buy is substantially higher than the 
numbers now in place (or soon to be in place) at major airports

• This result is very robust, insensitive to wide changes in 
assumptions

The acquisition, installation, and operation of baggage-scanning equipment has already cost 
several billion dollars and that cost is likely to grow over time. The operational costs alone will 
be substantial, given the need for approximately 50,000 TSA employees. Although it is not 
clear to the authors exactly what portion of these costs will be charged back against the 
airlines and their passengers, we assume that eventually most of it will show up in increased 
ticket prices.

Adding more machines and manpower to operate them will simply increase this cost.

On the other hand, adding more machines at an airport will lessen the likely delays that would 
occur in scanning the baggage, reducing the amount of time that passengers must spend at the 
airport waiting for their bags to be inspected. Forcing the passenger to spend extra time at the 
airport imposes another form of cost on him. Adding more machines lowers this cost.

An optimum balance between these two competing costs exists when the overall cost to the 
passenger is minimized. Our calculations show that the minimum is at machine deployment 
levels where maximum baggage-scanning delays are less than five minutes. Knowing the 
answer, it is easy to understand why. There are hundreds of million or more baggage-toting 
passengers travel per year, each suffering to some degree from the delay. Even a small delay 
would add substantial costs under these circumstances. For example, if a passenger valued his 
time at $40 per hour, a five-minute delay would cost him $3.33. 
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline (2)

This figure repeats the structure of the remainder of the briefing.

We begin with a description of our inputs into the analysis, followed by a short description of 
how we did the calculations and then will focus the majority of our discussion on the results 
we obtained for a single large airport (Dallas–Fort Worth International). We will take several 
viewpoints on the results, focusing on both the airline’s potential perspective and that of the 
passengers. We then show some of the sensitivities inherent in the analyses, with attention to 
machine performance (both reliability and its false positive alarm rate).

Next, we show a similar set of results for a second major airport, Chicago’s O’Hare 
International. This comparison is intended to test whether we can reliably generalize the 
results.

Using data from both airports, we show results that allow us to balance the competing 
objectives of higher airport throughput (i.e., buy and deploy more machines) against the 
implied long-term costs associated with their acquisition and operation. Not having adequate 
data from the airports, our analysis could not take full account of all the potential costs to the 
airports (and potentially to the fliers if the costs are passed along to them) related to the need 
for facility reconstruction and/or expansion. See Appendix A for a fuller discussion of how 
these economic calculations were performed
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Scheduled Aircraft Departures at DFW

0

5

10

15

20

25

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day at DFW (hour)

Sc
he

du
le

d 
Ai

rc
ra

ft 
D

ep
ar

tu
re

s
(3

-m
in

ut
e 

in
cr

em
en

ts
)

DFW, 2010 Demand 

This figure shows the activity rate (in terms of aluminum aircraft bodies departing from DFW 
airport) over the course of an average midweek day. The number and timing of the flights are 
taken from projections for 2010 and are based on an original Official Airlines Guide (OAG) 
schedule which was computer-augmented to reflect the anticipated additional flights that 
would arrive in 2010 (the data was provided to RAND by MITRE).

The peaks and valleys in the data are characteristic of major airports where significant hubbing
occurs. Hubbing is the practice common to most of the major airlines. It is characterized by a 
“bank” of aircraft arriving at almost the same time of day and departing 30–60 minutes later, 
also at almost the same time. The “banks” bring people from different cities to a common 
transfer point (the hub airport) and provide them with a choice of aircraft that they can 
connect with that are going to other cities. A bank of 10 aircraft allows the airline to generate 
approximately 100 city-pairs of service (nine destination cities from each of the originating 
cities, plus the hub city for each). In general, hubbing greatly expands the number of 
profitable routes that an airline can serve, providing a valuable transportation service for small 
or midsize cities that cannot offer sufficient traffic to economically justify direct flights to 
other cities.

The spikes are a cause for concern in terms of airport throughput. They also ensure that the 
passenger flow into and out of the airport will have similar peaks, causing congestion within 
the airport itself. It is this latter congestion that is the concern of this briefing.
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Expected Baggage Demand per Time of Day
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DFW, 2010 Demand 

Because we are interested in the requirement to scan all bags, we focus solely on passengers 
who are entering the airport as the first leg of their trip. We will assume throughout this 
briefing that transiting bags—bags that arrive on aircraft from another city and are transferred 
from the arriving plane to another departing plane—have already been inspected at the 
original departing airport and do not need to be scanned again. This is an important 
assumption because the transfer of baggage as part of hubbing needs to be done quickly to 
ensure that the aircraft are not held on the ground for an extended period. Time on the 
ground is time wasted, in terms of airline revenues, so the times between the ingress and 
egress of the banks are kept as short as possible.

This figure shows the average number of “newly checked” bags loaded on the aircraft at time of 
departure, assuming that the number of bags per plane scales according to the seating capacity 
of that plane. It also assumes a specific load factor (70 percent throughout this briefing) and 
1.1 check-in bags per arriving passenger (hand-carried bags that the passenger takes onto the 
aircraft are not included here because they do not go through the inspection equipment 
studied here). 

To match the prior figure, we have plotted the baggage demand summed over three-minute 
intervals.
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Calculated Baggage Demand per 3 Minute 
Increments
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Planned Passenger Arrival 
Time = 60 minutes before 

Scheduled Aircraft Departure, 
Plus or Minus 15 Minutes

The previous figure showed the demand associated with each flight departure time. Most 
passengers arrive at airports well before that time, leaving substantial time for getting to the 
ticket counter and checking their baggage. To mimic this behavior, we have assumed that the 
passengers arrive at the airport at least X minutes before the scheduled flight departure time 
(in this figure X = 60), with a flat distribution around that arrival time to account for failure to 
achieve the planned arrival time. In most of our calculations we have set the width of that 
distribution at 30 minutes (i.e., plus or minus 15 minutes). In real life the distribution would be 
more complicated, with a likely bias toward early arrival, but we lacked the data to reflect the 
more accurate distribution. Having tested several types of distributions, we do not believe that 
our simplified assumption makes a noticeable difference in our results.

This figure shows the baggage arrival times associated with the assumed passenger behavior. It 
is not as spiked as the departure times, leading to a somewhat easier baggage flow rate for the 
airline to manage.

Reference 1 showed some sensitivity calculations related to how assumptions about this 
passenger arrival spread affected the results. Here, we note that the assumptions are passenger 
arrival spread do not materially affect the answer so long as that arrival spread around the 
planned time of arrival is on the order of 30 minutes or longer.
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Luggage Check-In

Ticketing
Passenger Check-In

Luggage Assembly

Airplane

Tier One: Initial 
Luggage ScreeningPassenger Screening

Carry-On Screening

Gate
Passenger Check-In

Tier Two: In-depth
Luggage Screening

Airport Entrance

Passenger without
luggage,with ticket
Passenger with luggage, or
without ticket

CONOPs for Baggage Scanning

Check-in luggage

Airport secure area
Ticketed passengers only

This figure shows the schematic used for testing the baggage flow through the airport. We 
assumed that a fraction of the passengers would arrive with baggage that they would want to 
check in and have it carried in the hull of the airport. Based on limited discussions with airport 
personnel, we set this fraction at 70 percent.

Check in could occur at the curb or at the counter. For our purposes, we did not differentiate. 
We assumed that all checked bags would be placed on a conveyor belt and transported to a 
baggage queue line that fed the bags into the first tier of the baggage inspection.

Tier one is assumed to be a high speed EDS machine. In these calculations, we have assumed 
that the machine inspects baggage at an average rate of 350 bags per hour. Detection is 
accomplished using machine algorithms and backed up with human examination of the 
images provided by the machine scans. Based on some operational data taken by the FAA, we 
set the machine’s false alarm rate at 25 percent. Three bags out of four would go directly to 
the baggage assembly area; the remainder are sent to a second inspection tier where a more 
intensive examination of the bag’s contents takes place.

Tier two also uses an EDS machine, but the human is the prime determinant of whether 
something in the bag merits removing the bags from the inspection area and taking it to 
another location where it would be opened and hand searched. We assume that the
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probability of this happening is very small and (for the purposes of this analysis) something 
that we can ignore. The scan rate in tier two was set at 60 bags per hour.

If the bag is not verified to be safe, then the passenger would be called from the gate area and 
asked to accompany the bag while it is being opened.

Both tier one and tier two scan rates are based on operational experience in field tests of 
existing EDS machines.
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Baggage-Screening Delays as Function of
Time of Day
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This figure shows the magnitude of the queue delays in three-minute increments over the 
entire day. The delays are plotted as a function of the number of machines in tiers one and 
two.

First, note that the delays fluctuate over the course of a day, reflecting the spikes that 
characterize the airlines’ departure schedule. If the total number of machines is in the 40s or 
higher, then the maximum delays experienced during the day are relatively small and probably 
would not be cause for concern. If the number of machines is substantially smaller, then the 
maximum queue delays can become uncomfortably large.

In the following pages, we will focus on several measures for judging performance. These 
include

• The peak delay over the day for the specific machine deployment

• The expected peak delay, where we take into account the probabilities that a specific 
machine deployment exists on a random day (we will vary machine reliability between 
1.0 and 0.8)

• The average expected delay that a passenger would encounter, reflecting the fact that 
not all passengers choose to fly at the busiest hours

• A measure of the confidence a passenger or airline can have that a bag makes the plane.
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Ultimately, we are interested in how airlines and passengers change their behavior to avoid 
unpleasant situations (in the airline’s case, it is facing an angry passenger who finds that his 
bag did not make it onto his flight; in the passenger’s case, it is incurring long waits at the 
airport, waits necessitated by the fear that his bag would not make it onto the plane if he 
arrived later).



18

18

EDS Deployment Options Considered
All Commercial Flights at DFW, CY 2000 and 2010

DFW 2000 Number of Machines Criteria (% less than) Days over criteria
Total Bags = 40,714 Tier 1 Tier 2 Total Point Exp Value 10 min 30 min 60 min 10 min 30 min 60 min
No queue > 60 min 8 11 19 46.76 155.92 0.0% 0.0% 13.5% 365.0 365.0 315.7
No queue > 30 min 10 14 24 28.63 45.58 0.0% 8.0% 88.9% 365.0 335.9 40.5
No queue > 15 min 13 19 32 13.66 20.45 0.0% 95.8% 99.9% 365.0 15.4 0.4
No queue > 10 min 15 22 37 8.89 13.82 2.0% 99.8% 100.0% 357.6 0.9 0.0
No queue > 7 min 16 24 40 6.75 10.98 29.1% 100.0% 100.0% 259.0 0.2 0.0
No queue > 5 min 18 27 45 4.73 7.52 85.9% 100.0% 100.0% 51.5 0.0 0.0

DFW 2010 Number of Machines Criteria (% less than) Days over criteria
Total Bags = 63,068 Tier 1 Tier 2 Total Point Exp Value 10 min 30 min 60 min 10 min 30 min 60 min
No queue > 60 min 11 16 27 43.43 151.38 0.0% 0.0% 5.8% 365 365 344
No queue > 30 min 13 19 32 28.66 54.12 0.0% 3.4% 76.7% 365 352 85
No queue > 15 min 17 25 42 14.49 21.47 0.0% 96.9% 99.9% 365 11 0
No queue > 10 min 19 29 48 9.89 15.15 0.6% 99.8% 100.0% 363 1 0
No queue > 7 min 22 33 55 6.47 10.06 63.7% 100.0% 100.0% 132 0 0
No queue > 5 min 24 37 61 4.68 7.32 96.4% 100.0% 100.0% 13 0 0

Max Delay (min)

Max Delay (min)

The assumed reliability of the EDS machines is 90%, except for “max point delays,” where it is set at 100%.

This is our first results figure. For purposes of comparison, we have included results at DFW 
for passenger baggage demands in CYs 2000 and 2010. The demand in 2000 is based on actual 
experience. The demand in 2010 is based on a projection that predates the events on 9/11 and 
thus probably overstates the future demand level. Nevertheless, the recent rise in airline travel 
suggests that this projected demand is likely to be reached no later than CY 2012.

The rows reflect different machine deployments, each selected to meet the specific criteria of 
being the lowest number of total machines consistent with a maximum queuing delay not 
greater than a specified amount. The left-hand column shows the criteria used in specifying 
the deployments. For example, in 2010, at least 27 machines (optimally balanced between the 
two tiers) are needed if the maximum delay is to be less than 60 minutes. For maximum delays 
less than 10 minutes, 48 machines are needed.

Each row shows potential measures of performance. The maximum point delay (“point” delay 
is defined as the specific delay that would occur if the reliability of all the machines were 100 
percent) for the 27 machine case is 43.43 minutes. The expected delay is 151 minutes, where 
we have assumed that the machine’s reliability is only 90 percent. The middle columns on the 
right hand side of the figure show the probability that on any given day a passenger would 
incur a delay no greater than the criteria listed at the top (10 minutes, 30 minutes, or 60 
minutes). The three far-right columns translate the percentages in the three middle columns 
into days of the year that the criteria would fail.
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Obviously, adding more machines improves the outcomes. However, more machines means 
higher costs to the airport and airlines in acquiring and deploying the equipment, costs that 
will eventually be reflected in higher ticket prices.
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Maximum Expected Baggage Queuing Delays 
Versus Total Number of EDS Machines 
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This figure shows the expected delays as a function of the total machine deployment. The 
numbers shown assume that it is not practical to alter machine deployments between tier one 
and tier two. Thus, the actual number of machines operating in each tier is calculated 
independently. The buy size along the bottom axis assumes that the machines are divided 
between the two tiers in a manner that is optimum at that deployment size. We have already 
explained this for the point delay calculations (i.e., machine reliability = 1.0). In the expected 
delay outcomes, the optimum deployment need not be the same as the point delay solution. 
The briefing will offer some examples of this below.

What the reader should understand is that reliability is an important factor in sizing the EDS 
deployment. The additional number of machines needed to hold expected delays constant is 
larger than would be determined if we simply divided the point delay outcome by the 
reliability. This results from the highly nonlinear growth in delays as the number of operating 
machines shrinks.
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Average Baggage Queue Delays Versus
EDS Buy Size
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Thus far we have only discussed the maximum delays over the course of a day. Arguably, a 
better measure for overall passenger discomfort would be the average delay that the passenger 
would suffer at the specific time of day that he or she was planning to fly. This average, 
weighted by the number of passengers at that time, would give a better measure of the overall 
amount of time lost by the passengers.

This figure shows three variants for average delays. The lowest line is marked “no buffer.” It 
is calculated by taking the delays for each time increment, multiplied by the number of bags 
arriving during that increment, and summed over all increments, dividing the result by the 
total number of bags. As shown in the figure, the average delays calculated in this manner are 
far smaller than the maximum point delays also shown. It strongly suggests that using the 
maximum delays would overstate the impacts on the passengers.

However, the average is optimistic, because it does not consider the uncertainties from the 
passenger’s perspective. While the delay in this time increment might be small, the delays a 
few increments away might be large. The passengers might wish to hedge against running into 
large delays by arriving earlier. To anticipate this concern, we have also calculated averages, 
where the largest delays in the neighborhood of each increment are used in the calculation. 
“Neighborhood” is determined by the number of time increments (plus and minus) that we 
include. Thus, the 15-minute buffer looks 5 increments earlier 
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and 5 increments later, selects the largest of the delays in those increments, and uses it in the 
average calculation 

We show two examples, one for a 15-minute buffer and one for a 30-minute buffer. Note 
that the curves are pretty close to each other, suggesting that the average delays are not 
particularly sensitive to modest hedging by the passengers.
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Average Baggage Queue Delays Versus
EDS Buy Size
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EDS Reliability Assumed = 0.9 

The previous figure assumed a reliability of 1.0. This figure assumes a reliability of 90 percent 
and averages over the expected delays. The shape of the curves are not significantly different 
from those in the previous figure, but the deployment sizes for a given average delay are 
increased by an amount that reflects the impact of reliability. We have shown the point delay 
curve from the prior figure for comparison. Note that the average delays actually can exceed 
those on the point delay curve for small deployment numbers.



24

24

Average Baggage Queue Delays Versus 
EDS Buy Size
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EDS Reliability Assumed = 0.8  

This figure shows the average delay curves for an assumed machine reliability is 80 percent.

We will use the average delay numbers (usually tied to a 90 percent machine reliability 
assumption) in those calculations that transform delays into economic impacts.
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline (3)

The previous section talked about bags and delays that they would suffer as a function of the 
total number of EDS machines deployed. But bag delays are not the metric of interest. We 
need to translate these baggage-scanning delays into passenger and airline behavior. That is the
subject of this part of the briefing.
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Relating Passenger and Airline Behavior to
Baggage-Scanning Capabilities

• Airlines want to get all checked bags onto proper aircraft
– Even a small number of checked bags that miss their planes 

poses a public relations problem
– Airlines will hedge against baggage-scanning delays by urging 

passengers to arrive early at the airport
• Passengers will adjust arrival time at airport as function of 

their risk tolerance in having their checked bag miss the plane
– Some passengers will have low risk tolerance and will arrive 

well before scheduled aircraft departure time
– Other passengers will be less willing to spend extra time at the

airport and will arrive closer to departure time
– Still others will avoid checking their bags altogether (use carry-

on only) or simply chose not to fly

We have looked at two aspects of baggage-scanning delays and their impacts on airline and 
passenger behavior. For airlines, we will look at the number of bags that are likely to fail to 
make the intended plane in time as a function of the size of the baggage-scanning system and 
as a function of how early the airlines will suggest that passengers arrive prior to departure 
time.

For the passengers, we also looked at arrival time as a function of the baggage-scanning 
capabilities at the airport. In contrast to the airlines, the passengers can to some degree 
determine their own fate by adjusting their arrival time. As we will discuss later, the total 
transportation time of the passenger is an important economic variable and will have an 
impact on future demand.
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Cumulative Probability Distributions of
Outcomes Versus EDS Deployment
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This figure plots for specific machine deployments the cumulative probability distribution as a 
function of maximum delay encountered. The machine deployments shown here are the same 
as those shown in the results figure.

From either the airline’s or passengers’ perspective, small probabilities of large delays are 
important. The airlines are eager to make certain that all the bags make the plane. Even a small 
fraction of bags missing the plane means a large number of complaints, unhappy passengers 
and a potential loss of revenue. Passengers may be less risk-averse than the airlines, but most 
will set their arrival time sufficiently early to reduce the likelihood to nil. Expected values don’t 
quite capture these concerns. And point values—the measure of merit initially used by the 
FAA (and TSA) to size deployments at individual airports—are significantly deficient.
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Sensitivity of Probability Distributions to EDS 
Reliability
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This figure gives an example of the sensitivity of the cumulative probability distributions to 
the assumed machine reliability.

Starting with a deployment of 19 machines in tier 1 and 29 in tier 2 (a “balanced” 
deployment), we can compare the distributions for reliabilities of 0.9 versus 0.8. The latter is 
moved to the right by a significant amount. After some search, we have found that for a 
reliability of 0.8 the distribution of 22 machines in tier 1 and 33 in tier two almost matches the 
original 0.9 reliability distribution. To the extent they fail to match, the differences are greatest 
at the highest delays. If we wanted to keep the highest delay levels from growing, we would 
need more machines.
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Required Passenger Pre-Departure Arrival 
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This figure looks at the likelihood of the baggage reaching the plane in time from the 
passenger’s perspective.

First, note that we assume that the passenger’s actual arrival at the airport is stochastic, 
randomly spread plus or minus 15 minutes around the planned pre-departure arrival time. 
This assumption is identical to what we assumed when we built the demand function.

Also assumed in the figure is a 30 minute baggage handling requirement. This handling time is 
independent of delays associated with baggage screening, and consists of the times required 
for baggage check-in, movement to the baggage assembly area, sorting by flight number, and 
transport to the plane. These times vary by airport, by airline, and by mode of check-in (at 
counter or at curb). If the passenger arrives less than 30 minutes before the airplane’s 
departure, our assumption is that his bags would fail to make the plane. Any baggage-scanning 
delays are added on top of that minimum time. Thirty minutes is probably near the high end 
of handling times across the airports, but the exact number has no direct affect on our 
outcomes.

For purposes of calculation, we assumed that all machines are in operation (i.e., machine 
reliability is 100 percent) and that the passengers know how many machines are deployed. 
Under these circumstances, the minimum planned arrival time for most passengers would be 
45 minutes, hedging against the unfavorable event of a 15 minute delay in arrival.
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Selecting the 99 percent successful curve, and assuming a robust deployment of [19:29] 
machines, the average passenger would be safe if he or she planned to arrive 50 minutes 
before departure. If, instead, the deployment size were only [13:19], the passenger would be 
well advised to come at least 65 minutes before departure.
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Required Passenger Arrival Time to Be Confident
That Bags Make Flight
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If we assume a lower, more likely machine reliability of 90 percent, the sensitivities increase 
noticeably. At a robust deployment of [19:29] machines, the desired pre-departure arrival time 
increases by only a small amount. However, for the smaller deployment of [13:19] machines, 
the pre-departure time for a 99 percent likelihood that the bag makes the plane increases to 
more than two hours. 



32

32

Sensitivity of Passenger Planned Pre-Departure 
Arrival Time to EDS Machine Reliability
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Selecting the “99 percent likelihood of making the plane” curves, this figure shows the 
required pre-departure arrival times as a function of machine reliability. The curves 
demonstrate that the sensitivity is greater than a simple increase in the expected number of 
machines operating. The “edge” effects associated with relatively random occurrences when 
more machines than normal are out of operation drives these curves. In effect, there is no 
substitute for buying a robust number of machines or having the ability to ensure that overall 
operational reliabilities are at or above the 90 percent level.
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline (4)

A number of sensitivities merit attention. We will show only two. One deals with the failure to 
properly guess the false alarm rate in tier 1. The second deals with the impacts of not knowing 
the reliability before having to specify the number of machines in each tier.
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Results’ Sensitivity to Tier 1 False Alarm Rate
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The bold curves in this figure show the expected maximum delays that occur when the initial 
machine deployment of 49 machines is held fixed. If the false alarm rate is higher than 
expected, the tier 2 machines would become the bottleneck. Not being able to “rebalance” the 
number of machines in the two tiers leads to significant deterioration in performance as the 
false-alarm rate grows. Similarly, if the false-alarm rate were better than expected, little gain in 
performance would occur because tier 1 machines would be the bottleneck.

The narrower curves in the figure assume that rebalancing is possible. The benefits are 
substantial for all FARs that differ by any significant amount from the 0.25 value used as our 
norm in this study.

Rebalancing can be done in several ways, including postponing full deployment until such 
time as the true false-alarm rate has been tested and validated.



35

35

Deployment Sensitivity to Machine Reliability

T1 T2 Tot 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80

24 37  4.68 5.14 5.61 6.13 6.70 7.32 7.99 8.73 9.53 10.41 11.37
4.68 5.14 5.61 6.13 6.70 7.29 7.92 8.62 9.39 10.24 11.16

22 33  6.47 7.12 7.77 8.48 9.24 10.06 10.93 11.88 12.91 14.03 15.25
6.47 7.12 7.77 8.48 9.24 10.06 10.93 11.88 12.91 14.03 15.20

19 29  9.89 10.93 11.92 12.94 14.01 15.15 16.38 17.70 19.15 20.77 22.64
9.89 10.93 11.92 12.94 14.01 15.10 16.26 17.52 18.88 20.39 22.08

17 25  14.49 15.88 17.20 18.55 19.96 21.47 23.14 25.05 27.35 30.23 33.95
14.49 15.88 17.20 18.55 19.96 21.47 23.14 25.05 27.35 30.12 33.57

13 19  28.66 31.17 34.29 38.79 45.27 54.12 65.60 79.86 96.97 116.97 139.89
28.66 31.17 34.29 38.79 45.27 54.12 65.60 79.86 96.97 116.97 139.89

11 16  43.43 63.06 82.88 103.92 126.67 151.38 178.19 207.20 238.49 272.16 308.31
43.43 63.06 82.88 103.92 126.67 151.38 178.19 207.20 238.49 272.16 308.31

Deployment Machine Reliability

32Best

27Best

48Best

42Best

61Best

55Best

This figure shows the expected maximum delays for reliabilities varying from 1.0 to 0.8. Six 
deployment sizes are shown. For each deployment, we show two cases. One assumes that the 
deployment to tiers one and two is fixed at its optimum “balanced” value, assuming a 
reliability of 1.0. The other assumes that the deployments are optimally balanced at each 
probability value. The rows are color coded to make comparisons easy. The optimum values 
at each deployment and reliability level are light gray; those that are not optimum are dark 
gray. It is immediately obvious that very little sensitivity is related to deployment configuration 
for different levels of reliability.
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline (5)

The following five figures show results of delays at Chicago’s O’Hare International Airport 
(ORD). We detail these results because it is important to know that DFW is not unique or 
unusual in the problems associated with the deployment of baggage-inspection equipment. 
Like DFW, ORD is a major hub airport and has similar peaks and valleys in its traffic flows. 
The results are slightly different because the predicted traffic levels are somewhat different.

The projected 2010 demand at ORD is only about 88 percent of that at DFW. Moreover, its 
schedule is slightly less peaked. These two factors lead to reduced requirements for machines, 
as the next four figures show.

This section also shows results of delays that combine DFW and ORD.

In addition, we include a figure that looks at ORD and its partitioning (from a baggage-
scanning perspective) into three centralized units. Prior to this figure, all calculations assumed 
that baggage scanning was centralized at the airports. In reality, this will rarely be the case 
except at the smallest airports in the system. This calculation will assess the degree of 
inefficiency associated with not having the ability to concentrate all the bags in a common 
baggage-scanning area.

We end this part of the briefing by extrapolating the results for DFW and ORD to nationwide 
deployments at all U.S. commercial airports.
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EDS Deployment Options Considered
All Commercial Flights at ORD, CY 2000 and 2010

ORD 2000 Number of Machines Criteria (% less than) Days over Criteria
Total Bags = 55,476 Tier 1 Tier 2 Total Point Exp Value 10 min 30 min 60 min 10 min 30 min 60 min
No queue > 60 min 10 14 24 52.92 182.56 0.0% 0.0% 8.0% 365.0 365.0 335.9
No queue > 30 min 11 15 26 27.27 112.06 0.0% 6.5% 38.3% 365.0 341.4 225.2
No queue > 15 min 13 19 32 13.93 25.85 0.0% 83.6% 95.8% 365.0 60.0 15.5
No queue > 10 min 15 22 37 8.79 14.15 2.0% 98.6% 99.8% 357.6 5.0 0.9
No queue > 7 min 16 24 40 6.88 11.02 29.0% 99.7% 100.0% 259.0 1.2 0.0
No queue > 5 min 18 27 45 4.96 7.57 85.9% 100.0% 100.0% 51.3 0.0 0.0

ORD 2010 Number of Machines Criteria (% less than) Days over Criteria
Total Bags = 72,362 Tier 1 Tier 2 Total Point Exp Value 10 min 30 min 60 min 10 min 30 min 60 min
No queue > 60 min 12 18 30 41.79 177.34 0.0% 0.0% 4.2% 365.0 365.0 349.5
No queue > 30 min 13 19 32 23.46 112.73 0.0% 3.4% 26.1% 365.0 352.5 269.7
No queue > 15 min 15 23 38 14.93 31.50 0.0% 75.7% 92.3% 365.0 88.6 28.1
No queue > 10 min 17 26 43 9.93 16.58 1.1% 97.5% 99.5% 361.1 9.1 1.9
No queue > 7 min 19 29 48 6.62 11.19 47.4% 99.8% 100.0% 191.8 0.7 0.0
No queue > 5 min 21 33 54 4.67 7.60 93.5% 100.0% 100.0% 23.9 0.0 0.0

Max Delay (min)

Max Delay (min)

The assumed reliability of the EDS machines is 90%, except for “max point delays,” where it is set at 100%

This figure is a repeat of an earlier figure, modified to make the data consistent with our 
analysis of ORD. As in that earlier figure, we have included results for CY 2000 as well as CY 
2010. And as earlier, the demand in 2010 is based on a projection that predates the events on 
9/11 and thus probably overstates the future demand level. Nevertheless, the recent rise in 
airline travel suggests that this projected demand is likely to be reached no later than CY 2012. 
Instead, we will offer a few comments on comparisons between the two airports.

In general, there is not a lot of difference between the two results. Because of the schedule 
differences, it is more difficult to achieve minimal delays at ORD, but easier (i.e., takes fewer 
machines) to reduce the maximum delays. 
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Expected Baggage Queuing Delays Versus
Number of EDS Machines Deployed
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The figure is very similar to the DFW figure of the same description. There is nothing new 
worth adding.
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Cumulative Probability Distributions of 
Outcomes Versus EDS Deployment
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Again, this figure is very similar to the comparable DFW figure.
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Average Baggage Queue Delays Versus
EDS Buy Size
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This figure also closely resembles the corresponding figure for DFW.
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Sensitivity of Passenger Planned Pre-Departure 
Arrival Time to EDS Machine Reliability: ORD
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This figure also corresponds closely with the data for DFW.
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Required Passenger Planned Arrival Time at
DFW and ORD as Function of Risk
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This figure builds on the passenger planned pre-departure arrival time curves for DFW and 
ORD. It is calculated by holding constant the arrival time at each airport and reading the 
machine requirements from the ordinate. Reliability is held fixed at 0.9, and the sensitivity to 
passenger risk tolerance is displayed by the four individual curves.
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Sensitivity of Machines Deployed at DFW and ORD
as Function of Machine Reliability
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This figure also builds on the prior work. It shows for combined DFW and ORD 
deployments how passenger planned pre-departure arrival times vary as a function of machine 
reliability, holding constant the criterion that the probability of the bag missing the plane is 
not greater than 1 percent. 

These two airports collectively handle about 6 percent of the total arrivals and departures in 
the National Airspace System. We will address below how we transformed requirements for 
machines at these two airports into overall machine deployments for all the nation’s airports. 
First, we address the inefficiencies at larger airports associated with the inability to concentrate 
baggage-scanning equipment in one area.
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Scaling Up the Required EDS Machine Buy:
Reflecting Airline Preferences
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This figure shows how airline preferences can scale up the number of machines that need to 
be purchased. We have used ORD data to show the dependence.

It is the airlines’ preference to keep to themselves those bags that were checked onto their 
aircraft. The calculations shown were derived using the following assumptions:

• The demand at ORD was subdivided into three mini-demands; one for all United 
Airlines flights, one for all American Air Lines flights, and one for all other flights

• The machines needed by each of the three mini-demands was calculated, and the buy 
size required for each were assessed individually

• The machine requirements for each were added, yielding a total demand for the 
airport.

The total machine buy size for the partitioned demand is the higher bar in the figure. We have 
shown the result as a function of machine reliability. The actual fractional increase is a 
function of reliability, growing as reliability decreases. The scale factors used in our following 
analysis assumed the following values:

• 25 percent growth for reliability of 1.0
• 33 percent growth for reliability of 0.9
• 40 percent growth for reliability of 0.8.
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We should note that this calculation understates the likely need. Additional factors (especially 
the existence of individual terminals) will force additional fractionation of the machines at the 
airport, leading to further inefficient usage. A serious examination of machine needs must 
take these factors into account if the result is to be satisfactory.
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Passenger Arrival Time Versus Machines Deployed 
(Scaled for Nationwide Deployment)
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Finally, we end this section of the briefing with a figure that shows how passenger pre-
departure planned arrival times would vary as a function of EDS machine reliability and the
total EDS deployments across all the airports. The underlying criterion for passenger behavior 
is that the baggage would go through scanning and successfully be placed on the airplane 
before departure 99 percent of the time. Obviously, passenger behavior would vary at 
individual airports, and this calculation is an approximation for what would happen in the real 
world.

This figure is derived from Chart 72 by increasing the number of machines required to achieve 
any given passenger planned arrival time by two factors. First is the percentage increase due to 
airline preferences, as just discussed: 40 percent at a reliability of 0.8, 33 percent at a reliability 
of 0.9, and 25 percent at a reliability of 1.0. Second is the ratio of machines in the country as a 
whole to those at DFW and ORD, using a factor of 43.75. This is the ratio of total EDS 
machines needed in the country to those needed at DFW and ORD calculated by the FAA 
shortly after 9/11. (Their calculation used assumptions different from ours with regard to 
performance and the behavioral response of passengers to risk. However, because their 
approach was essentially identical to ours, we are comfortable with using the same degree of 
scaling.) 

It may be worth noting that the total number of EDS machines would need to be above about 
5,000 to keep passenger pre-departure arrival times from becoming substantially
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earlier than would have been the case if no baggage scanning were required. (Note: as already 
mentioned, this ignores the other delays that the passenger would face in the airport, 
especially those associated with passenger-screening stations; a more comprehensive study of 
total airport throughput would certainly include these other delay factors.)
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline (6)

The next set of figures describes one of the fundamental outcomes of this study—i.e., the 
overall economic cost to the nation of the baggage-scanning requirements at U.S. airports and 
how this varies with the amount of EDS equipment acquired. This section takes as given that 
every bag will be scanned and addresses the issue of minimizing the overall cost of doing this 
scanning, taking into account both the resource cost of acquiring and operating scanning 
equipment, and the extra time that air travelers must spend at airports given the delays 
associated with any level of EDS equipment acquired. As the previous sections have shown, 
the level of passenger delays that will occur depends on how much equipment is purchased. 
This clearly indicates two separate costs associated with baggage scanning. The first is the cost 
of buying, installing, operating, and maintaining the equipment over its expected life span. 
This cost grows directly with the amount of equipment purchased. The second is the cost 
associated with the passenger’s unnecessary wasted time in the airport. This cost is lessened as 
more equipment is purchased. 

In this section, we discuss how we estimate the level of equipment purchases that minimizes 
overall economic cost—i.e., the sum of the baggage-scanning equipment and delay costs.

We do this estimation in two ways. First is a very straightforward way in which we simply cost 
the scanning equipment levels and delay times shown in Chart 76. Second, we use a more 
detailed model of the U.S. economy, which includes such phenomena as the impact
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of price and delay time on the amount of personal and business flying, the impact of price 
and delay time on business productivity, and the temporal effects of changes in economic 
activity in any given year arising from price and delay time of air travel on future GDP levels, 
through changes in investment flows. This model is fully documented in Appendix A. Both 
the simple methodology and the more complex modeling approach give similar results on the 
optimum amount of scanning equipment to purchase. The result in a nutshell is that 
sufficient scanning equipment should be procured so that very little delay time occurs for air 
travelers.
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Costing Assumptions

• Factors included in total machine cost
– Acquisition costs, based on estimated costs for EDS machines
– Personnel costs for operating and maintaining the equipment
– Facility modification costs for machine installation

• First-order estimates only, scaled for annual life-cycle costs 
assuming a 10-year machine life

• Value of time from Department of Transportation guidelines

We calculated the annualized cost of any overall EDS machine buy using the following 
assumptions (all in dollars of 2002 purchasing power). Procurement cost is $1 million per 
machine, and machines must be replaced every 10 years. There is an installation cost of $4 
million per machine, which is not again incurred when the machines are replaced. Machines 
operate two-thirds of the time, and are attended by one technician when operating. The fully 
burdened cost of an operator is $80,000 per year, and five operators are required to provide 
full-time coverage of one machine. We derived the “five” figure in the following way. From 52 
weeks per year, we deduct two weeks for holidays, two weeks for vacation, and two weeks for 
sick leave. The remaining 46 weeks per year, at 40 hours of machine operation per week, 
would lead to a staffing ratio of 4.75. We judgmentally increase this to five to account for such 
miscellaneous activities as continuing and refresher training. An additional $50,000 per year 
maintenance cost per machine is assumed. The present value cost of buying, installing, and 
operating a machine for 30 years (at a 3 percent real discount rate, which we use) is $9.5 
million, which translates into an annual charge of $630,000 per machine. Since our calculations 
are done in dollars of 2003 purchasing power, this grows to $640,000 per year to account for 
inflation.

As illustration, from Chart 76 we see that 5,550 machines would be needed in 2010 
nationwide to achieve a five-minute average delay per passenger checking baggage (at 90 
percent machine reliability). The total annualized cost of operation of these would thus be
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$3.55 billion dollars per year. Our machine-sizing calculations are based on a level of air travel 
in 2010 of 967 billion revenue passenger miles (RPM), so the total cost is 0.37 cents per 
RPM. This can be contrasted to the average cost (including taxes) of an RPM in 2002 of 
about 15 cents, so it represents about 2.5percent of that.

We value delay time at $31.67 per hour, based on the Department of Transportation 
recommended value (found at api.hq.faa.gov/economic/742SECT1.PDF) of $28.60 per hour 
in dollars of 2000 purchasing power, adjusted upward by the change in nominal GDP per 
employed person between 2000 and 2003. Our machine sizing calculations are based on 600 
million trips in 2010 (900 million emplanements from the U.S. Department of Transportation 
(2002) forecast, and our assumption that the ratio of trips to emplanements is two-thirds—
that one-third of emplanements are people changing planes on the same trip). We assume 
that 70 percent of passengers check bags. Thus, the time cost of a five minute delay in 2010 is 
$1.1 billion. (5 × 600 million × [$31.67/60] × 0.7) 
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How Much Equipment Is Enough?
Minimizing Total Costs
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This figure shows as a function of the total number of machines acquired (1) the annualized 
costs of the acquiring, installing, operating, and maintaining the EDS equipment; (2) the 
annual passenger delay costs; and (3) the arithmetic sum of these two costs. The reliability of 
the equipment is assumed to be 90 percent, and the passenger demand is assumed to be the 
forecast in the year 2010 (967 billion RPM and 600 million trips).

The equipment costs are a simple linear function of the size of the total buy. As seen earlier, 
the amount of wasted time imposed on the passenger to avoid having his or her bag fail to 
reach the aircraft on time is a function of the number of these machines, decreasing rapidly 
from the point where the equipment can barely keep up with the average demand during the 
day to a point where even the peaks of the day can be handled. Note that for a total buy of 
5,550 machines, machine cost is $3.55 billion and delay cost is $1.1 billion, as discussed on the 
previous figure.

Adding these two curves together gives our estimate of the total cost that the traveling public 
will pay over the course of one year (cost in italics, because the wasted time is not monetary in 
character). Note that near the left-hand axis delays dominate the cost, and toward the right-
hand of the axis machine costs dominate. The total cost has a minimum at around 6,000 
machines. Buy sizes less than this amount incur greater overall economic costs because the 
passengers will be forced to arrive at the airport earlier than is economically efficient. Buy 
sizes greater than this amount add cost not justified by the
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decrease in passenger time it leads to. Given the slopes of the curves, it is clearly better to 
overbuy EDS machines than to underbuy them.

Note that the annual minimum cost to the flying public is around $4.5 billion.
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Sensitivity of Total Costs to EDS Reliability
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This figure extends the total cost results on the prior figure, including results for equipment 
reliabilities of 1.0 and 0.8.

It is worth repeating the observation that the long-term operating reliability of the machines is 
uncertain at this time. Given the consequences in terms of cost to the flying public if that 
reliability turns out worse than anticipated, it is clearly better to hedge toward acquiring a 
larger number than might be calculated as the optimum.
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Total Cost as a Function of Delay Time
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An important point can be made by viewing costs as a function of delay time rather than 
number of machines. This figure does that. The cost-of-delay curve is now a linear function of 
the delay time, given the cost of delay ($31.67 per hour) and our other assumptions noted 
above—that 70 percent of passengers check baggage and that 600 million trips will occur in 
2010. The cost of machines drops as average delays are allowed to grow. The sum of these 
two curves again yields the total cost to passengers. Note that for a delay time of five minutes, 
machine cost is $3.55 billion and delay cost is $1.1 billion, as discussed previously figure.

Note that the minimum cost occurs at average delays in the vicinity of three minutes. This 
remarkable result is surprising at first glance, but a simple explanation illustrates why it is valid. 
Machines, their manning, and maintenance are expensive items. Their numbers are very small 
when compared to the number of passengers that flow through U.S. airports every year. That 
number, estimated in this work to be 600 million in 2010, is sufficiently large that the costs 
associated with delays of a few minutes can add up to a very hefty sum.

The minimum cost point is of course the same as before, at $4.5 billion.

An additional point merits note. The delays discussed here are related to hedging against 
baggage-scanning delays and pertain to only a portion of the total number of passengers (70 
percent used in this analysis). As anyone who has flown in the past two years knows,
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the most obvious delays—namely the delays at the passenger-screening stations—have 
nothing to do with checked baggage. The greater of these two delays will dominate and drive 
the passenger costs. In other words, the costs estimated here are the least that the passenger 
is likely to incur. The authors are not aware of a similar study pertaining to delays associated 
with the passenger-screening stations but believe that matching an average delay of three 
minutes at these screening station may also require additional investment on the part of the 
government and the airports.
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Sensitivity of Total Costs to EDS Reliability
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Simple Calculation

This figure expands the prior calculations to include other reliability assumptions. Noteworthy 
is that the minimum costs all occur for average delays in the vicinity of three minutes. As a 
policy observation, this gives the government a good criterion for judging how much is 
enough. The total costs vary, as would be expected, because of the markedly different 
machine buy sizes for different reliabilities at these levels of delay.

As discussed above, we also did a more detailed calculation of the overall economic cost of 
any machine deployment policy, using a model of the entire U.S. economy and the role of air 
transportation in it. We did this because the simple calculations ignore many important 
phenomena that may affect the result on the best machine deployment policy. Among these 
are the impact of price and delay time on the amount of personal and business flying, the 
impact of price and delay time on business productivity, and the temporal effects of changes 
in economic activity in any given year because of price and delay time of air travel on future 
GDP levels, through changes in investment flows. We did this second more complex 
approach to calculating economic cost to capture the effects of such phenomena.
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How the Cost of Air Transportation Affects 
Overall Economic Performance of Nation
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This flow chart illustrates the second methodology by which we calculate the overall economic 
cost of any level of baggage-scanning equipment and its associated delay. The methodology is 
a model of the entire U.S. economy and the role of air transportation in determining overall 
GDP and consumer well-being. (A complete mathematical statement of the methodology is 
given in Appendix A.) For this calculation we include consideration of how the level of air 
travel depends on both its dollar or resource cost, and the time it takes. For each level of 
delay, we calculate the average cost per RPM, and in the economic model we add this to the 
cost of air travel, in effect assuming that the cost will be passed on to air passengers in 
proportion to their RPMs flown. We also assume that the level of machines required to 
achieve the given level of delay is proportional to the volume of air travel, as measured by 
RPM.

Thus, as the flow chart shows, we begin each calculation with the delay level (“time cost of air 
transportation”) and the increase in the cost of air travel (“resource cost of air 
transportation”). Changes in these variables have two primary effects. First, air travel is an 
input to the production process in the economy as a whole. Increases in either its resource 
cost or time cost will lower the overall level of output, or GDP, and will result in a decrease in 
air travel for business. GDP determines consumer income. Decreases in GDP, and increases 
in either the resource or time cost of air transportation, will lower consumer economic well-
being, as well as decrease consumer use of air transportation. It is the 
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decrease in the economic well-being of consumers that we use as the measure of economic 
cost in these calculations. It is precisely defined as the amount consumers would be willing to 
pay to avoid the changes in resource and time cost, called consumer “willingness to pay.”

A further effect captured in the model is that investment in any year depends on GDP, and a 
decrease in GDP will lead to a decrease in investment, which will in turn lead to a decrease in 
GDP in future years from what it would have been. This thus affects consumer well-being in 
future years as well, and our calculations capture this effect on consumer well-being over 
time. 
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Willingness-to-Pay Illustration
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We illustrate here the “willingness-to-pay” measure of consumer well-being, for the case of an 
increase in the dollar cost of air transportation. A standard demand curve is shown on this 
figure, with the level of consumer air transportation purchased on the horizontal axis, and the 
price of air transportation on the vertical. This shows the standard downward-sloping demand 
relation, in which the quantity purchased decreases with price.

The interpretation of the demand curve is that the height of the curve at any level of air travel 
represents the amount consumers are willing to pay for that increment of air travel. Thus, at a 
zero level of purchases the height of the demand curve is A, implying that no unit of air travel 
has value more than A because otherwise some would be purchased at that price. The highest 
consumers are willing to pay for any unit of travel is in fact A, and at that price units of air 
travel begin to be purchased. The value of unit Q0 of travel is P0, since the Q0th unit is 
purchased only when the price falls to that level. By an extension of this logic, the height of 
any point on the demand curve is the value of that associated unit of consumption to the 
consumer, and thus the consumer’s willingness to pay for that unit. The total value, or 
willingness to pay, to consumers of any quantity of output is the area under the demand curve 
up to that quantity because this is the summation of the value of all the units of output. Thus, 
the total value to consumers of consuming quantity Q0 would be the area ACQ0O. If the 
market price to consumers is P0, they will purchase an
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amount Q0 , for which they would be willing to pay, as just discussed, ACQ0O. However, 
they only pay an amount P0CQ0O, so the difference between what they would be willing to 
pay for this output and what they do pay is the area AC P0, which is also referred to as 
“consumer surplus.” It is the amount consumers would be willing to pay to participate in this 
market. 

The impact of a price increase on consumer well being is measured by the change in 
consumer surplus that results. For example, if the price were to rise from P0 to P1, consumer 
surplus would fall from ACP0 to ABP1. The difference, P1BCP0 , is the measure we use for 
the economic impact of a price increase on consumers. It is the amount consumers would be 
willing to pay to avoid the price increase. 

In our overall analysis, we also include the impact of price increases on GDP production 
levels and the impact of changes in the time required for air transportation. The overall 
impact of these changes is measured by the willingness of consumers to pay to avoid them, 
and this is the measure of economic impact. The mathematical details of how we do the 
overall calculation are in Appendix A. 
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Results of a More Complex Approach to 
Total Cost as a Function of Delay Time
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This figure overlays the results of the more complex approach on the results of the simple 
approach as shown on Chart 86. The results are very close. Thus we conclude that including 
the considerations of the impact of price and delay time on the level of air travel, and on the 
level of business productivity and the resulting rate of economic growth do not change the 
basic finding of the simple approach—i.e., that sufficient machines should be procured to 
reduce delay times to very low levels.

Because the more complex approach, as shown in Appendix A, includes the interaction of 
changes in resource costs and time costs, the separate contribution of the two cannot be 
disentangled in this approach. Similarly, because the results of the more complex approach are 
mediated through the various elasticity parameters, no direct comparison is possible with the 
more simple approach. For example, because in the more complex approach air travel falls 
with price and delay increases, this might mitigate to some degree the size of the economic 
cost. On the other hand, because in the more complex approach any change in costs leads to a 
lower GDP that, through its effect on investment, lowers future years’ GDP, this might 
magnify the effect. This figure shows that on balance the magnifying effects are calculated to 
be higher. We offer one explanation of why this magnification is falling as delay levels 
increase. This may stem from economic growth effects—all of machine usage costs feed into 
investment and lower future GDP, while some of the time cost is borne every year but does 
not compound.
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Sensitivity of Total Costs to EDS Reliability
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Complex Calculation

This figure shows the results of the more complex model at different machine reliabilities. 
Again, these results are very similar to the simple calculation results.
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Sensitivity of Results to Uncertainties in 
Passenger Delays and Equipment Costs

$9.03 (3)$7.10 (3)$5.14 (2)$3.01 (2)Pass Delay 
x 2.0

$8.65 (4)$6.77 (3)$4.84 (3)$2.79 (2)Pass Delay 
x 1.5

$8.21 (4)$6.38 (4)$4.51 (3)$2.57 (2)Pass Delay 
x 1.0

$7.43 (9)$5.82 (7)$4.10 (4)$2.35 (2)Pass Delay 
x 0.5

Machines x 
2.0

Machines x 
1.5

Machines x 
1.0

Machines x 
0.5

Name x Number => cost category (delay or machine) x cost multiplier
(Number) => minutes of delay where minimum occurs

No profiling, EDS rel. = 0.9

This figure addresses a sensitivity that we have until now ignored, namely our estimates of the 
costs associated with acquiring and operating the EDS machines and the costs incurred by the 
passengers when they must arrive earlier than necessary to get their baggage on the plane. To 
show the sensitivities, we have varied these two costs independently, reducing and increasing 
them by a maximum factor of two.

The numbers shown in the table are the minimum cost (in unit of $B) and (in parentheses) the 
minutes of passenger delay where the minimum occurs.

The results related to the relationship between passenger delay costs and optimum sizing show 
that increasing the cost estimates does not markedly change the optimum delay that minimizes 
the costs. If delay costs are substantially reduced, then the optimum delay increases 
substantially. But our expectation is that the costs in both categories are more likely to be 
larger than smaller.

It might also be noted that if the costs are larger, the importance of seeking ways to keep them 
to a minimum is increased. 
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline (7)

The final topic in this briefing relates to the possibility that positive passenger profiling will 
allow airports and airlines to obtain the desired scanning performance at a much lower overall 
economic cost. A more extensive discussion of profiling can be found in reference 2. We will 
mostly summarize what is in that reference.

First, positive profiling is defined here as the identification of passengers that are almost 
certainly not terrorists and treating them differently. Among the options are (1) reducing the 
number of bags that need to be scanned, (2) exposing bags from profiled passengers to less 
intrusive scanning, and (3) setting up a two-tier system that allows profiled passengers easier 
entry into the secure portion of the airport.

We will not dwell on the arguments—pro and con—concerning positive profiling. Intelligent 
people can differ on the balance of risks and rewards associated with profiling. But there is no 
question that the only assured way to know whether a bomb is inside a bag is to inspect the 
bag. This briefing will simply show some of the positives that might accrue if positive profiling 
were implemented.
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Profiling Can Significantly Reduce Point Delays
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We start with a plot of how point delays (all machines are 100 percent reliable) are reduced if 
profiling reduces the number of bags that need to be scanned. It is clear that for a given 
deployment, delays can be sharply reduced if a reasonable fraction of the bags can be 
eliminated from scanning.
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Impact of 50 Percent Passenger Profiling on 
Bag Queuing Delays
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This figure shows the savings as a function of reliability. For simplicity, we only show curves 
for 50 percent profiling, and for reliabilities of 1.0 and 0.9. As might be expected, the number 
of machines required to achieve a specified level of delays with 50 percent profiling is 
approximately half of that without profiling. It is probably self-evident that a reduction of half 
the bags leads to a requirement of half as many machines, holding delays constant. It is useful, 
however, to show it graphically, after a computer program generates the numbers. 
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Trading Fraction of Baggage Scanned Versus
Delays
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Profiling Implemented After
Delays Reach 5 minutes
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This figure introduces a new concept—responsive profiling. For argument’s sake, assume that 
all bags were scanned until delays started to build. In our calculations we set a threshold level 
for delays. If delays exceeded the threshold, profiling was used; if delays were less than the 
threshold, all bags were scanned. This is the simplest of rules, and obviously improvements 
are possible.

Even this simple rule offers some impressive results. Even with 50 percent profiling, it is 
possible to reduce delays by about 80 percent while still inspecting more than 85 percent of 
the bags. The carpet plot shows that numerous combinations are possible.
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Total Cost as a Function of Machines Deployed 
(50 Percent of Passengers Profiled)
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The figure shows the total costs of baggage scanning as a function of the number of baggage-
scanning machines deployed, assuming that 50 percent of the passengers are eligible for 
positive profiling. As noted in an earlier figure, this does not mean that 50 percent of all the 
bags are exempt from being scanned. Instead, it does mean that during peak hours up to 50 
percent of the bags may not be scanned.

The shape of the curves match those shown on a similar figure where no profiling was 
allowed. The total number of machines is significantly smaller, as expected, but the character 
of the curves are essentially unchanged.

These results, and the rest in this section, were derived from the complex form of the 
calculations described in the previous section. The simpler approach gives very similar results. 
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Comparison of Total Cost 
With and Without Passenger Profiling (1)
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This figure compares the with and without profiling outcomes.

1. First, total cost of the baggage-scanning program is reduced by approximately 40 
percent. In itself, this is a reasonable motivation for taking positive profiling seriously

2. The minimum cost occurs at a machine buy level approximately half of that for the 
no-profiling case.

3. This reduction has several positive aspects not necessarily captured adequately in this 
analysis:

• The smaller deployment sizes imply significantly fewer problems with 
deployments within current airport facilities, easing full deployment and lowering 
the overall costs associated with new airport facilities

• The smaller numbers also make more feasible the replacement of the current 
EDS equipment with newer, higher-performance equipment in the future.

• The smaller numbers suggest that full EDS deployments could be achieved at 
earlier, allowing rapid phase-out of some of the current trace detection machines.
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Sensitivity of Total Cost to Machine Reliability
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This figure shows the 50 percent profiling results as a function of the average passenger delay 
(e.g., time wasted in airport) and machine reliability.

These results are fundamentally the same as those for the no-profiling case. It is worth noting 
that the minimum passenger costs occur where average delays are only about 2 minutes. The 
minimum costs are in the $2 billion to $3 billion range, depending on reliability. As was true in 
the no-profiling case, the magnitude of these “optimum” delays is remarkably small, albeit 
easy to explain.
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Comparison of Total Cost 
With and Without Passenger Profiling (2)
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This figure compares the 50 percent profiling results with the no-profiling results, assuming a 
machine reliability of 90 percent.

The comparisons show that positive profiling can lower the minimum traveler costs by about 
40 percent. They also show that the optimum delay is somewhat smaller in the profiling case.
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1. Background, Introduction, and Findings

2. Calculating Maximum and Average Baggage-Scanning 
Delays at a Major Airport (Dallas–Fort Worth)

3. Implications for Passenger Delays

4. Sensitivity of Results to Assumptions

5. Extending Analysis to Include a Second Major Airport 
(Chicago O’Hare)

6. Balancing Costs and Consequences

7. Profiling as a Means to Reduce Costs and/or Lessen 
Consequences

8. Observations and Recommendations

Briefing Outline (8)

We conclude with a few short observations.
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Observations
• Congress mandated that all bags be scanned by the end of CY 2002

– TSA, the airlines, and the airports worked very hard to satisfy that 
mandate

– Some airports fell short and Congress gave them another year to 
comply

• A prior RAND white paper ruminated on the wisdom of this mandate
in light of the many constraints facing all concerned in its 
implementation

• This briefing adds some details to that prior work, suggests ways to 
determine “how much is enough.” and estimates the overall 
economic consequences if we don’t meet the mandate in a sensible
way

• The analysis suggests that a “good” design would seek deployments 
that yield expected delays of no greater than five minutes. In general, 
this implies that the government must acquire substantially more
machines than they originally planned

The congressional mandate on airport security has in principal been met. It remains to be seen 
whether the results will satisfy the dual objectives of (1) increasing airport security while (2) 
not significantly inconveniencing the flying public. A prior RAND white paper (reference 1) 
concluded that it was likely that the second objective would not be met, a conclusion also 
supported by this work

This briefing adds some new information to the earlier work. It concludes that baggage 
queuing delays and the corresponding increased time that travelers would have to spend in the 
airport dominate the “costs” to the nation of the added security measures. Rather than being 
just an annoyance, delays need to be driven to relatively small amounts if the overall impact on 
the country is to be kept to a minimum. Moreover, having enough machines to handle peak 
baggage demands would improve overall baggage-scanning performance, allowing human 
operators more time to inspect suspicious bags.

Two clear options for minimizing queuing delays exist.

• Deploy and operate a sufficient number of baggage-scanning machines (we strongly 
suspect that the current deployment size is significantly less than optimal)

• Reduce the baggage demand but implementing a “registered traveler” program.
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We believe that a combination of these two would best serve the interests of the nation but 
recognize that cogent arguments can be made against positive profiling (the prime ingredient 
in a registered traveler program) that cannot be dismissed without further serious study.

We emphasize that the results of this work reflect analyses of only two airports. Moreover, 
this work did not have access to ongoing TSA plans. It is possible that TSA already 
understands the importance of baggage queuing delays and is implementing steps to ensure 
that passengers are not inconvenienced. We certainly hope so. But if not, this analysis should 
aid them in understanding the real need and in proceeding promptly toward meeting the 
nation’s interest by resizing the buy.
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Recommendations
• The government should undertake a serious study to validate the 

conclusions of this work
– We urge the government to adopt the economic measures developed 

here in sizing the full deployment of baggage-scanning machines
• If our work is validated, the Government should suitably alter their 

deployment plans for baggage-scanning equipment deployments
– Less than optimum deployments will hurt the U.S. economy 

unnecessarily
• The government should come to terms with the pros and cons of 

passenger profiling
– The potential is substantial, but some risks need to be addressed
– The technology needs to be fully defined and tested before a practical 

and foolproof system can be designed and deployed

Even though this study was done with limited funds, short timelines, and inadequate access to 
relevant government and private data, we believe that our results will stand the test of time. 
We urge the government to validate what we have done and to act on our results, modifying 
the baggage-scanning equipment plans to reflect deployment sizes that minimize the overall 
cost of the deployments to the nation. At no time do we suggest that less than complete 
scanning of all threatening bags should be our objective, and if that means scanning all the 
bags because we cannot be confident that we can pick potential terrorists out of the full pool 
of passengers, then so be it. But if we can have confidence to exclude some of those 
passengers on grounds that are so convincing that nobody could object, then positive 
passenger profiling should be given a hard look.

As a final comment, we urge the government to not only consider doing the job right, but 
urge them to appreciate and undertake the right job. The country deserves nothing less.
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APPENDIX A 
 

A METHODOLOGY FOR ASSESSING THE ECONOMIC 
IMPLICATIONS OF INCREASES IN THE RESOURCE 

AND TIME COST OF AIR TRANSPORTATION 

INTRODUCTION 
As discussed in the main body of this report, we calculated the overall cost of any baggage-
screening machine procurement policy (i.e., number of machines procured) in two ways. 
One was the simple and straightforward way of adding our estimate of the cost of buying, 
installing, and operating the machines to our estimate of the value of the time lost caused by 
early airport arrivals. The estimate of the time lost itself was done by us and is described in 
the main body of the report. The time was valued at the rate ($31.67 per hour in dollars of 
2003 purchasing power) prescribed by the Federal Aviation Administration at its Web site, 
api.hq.faa.gov/economics/742SECT1.PDF. This simple methodology is fully presented in 
the main body of the briefing. 

We realize, of course, that this simple method, though it has the virtue of transparency, does 
not take into account many phenomena that bear on this issue. Among those are the 
reactions of air travelers to changes in the dollar and time cost of travel and the impacts of 
changes in air travel costs on overall GDP and thus investment, future capital stock, and 
future GDP. These all have implications not captured in the first, simple calculation. To 
address them, we developed the second approach described in this appendix. This approach 
has the disadvantage that it is not particularly transparent. For example, in the simple 
approach, one can separately calculate the cost associated with machine procurement and 
that associated with time delays and show how their sum achieves a minimum at a given 
procurement policy. This conceptual separation of the effects cannot be done in the more 
complex methodology described here because, among other complications, the level of the 
dollar cost of air travel affects the impact of time cost changes and vice versa. For example, 
the higher the dollar cost, the lower the level of air travel and thus the lower the impact of 
any change in the time cost. Of course, it is precisely because such interactions exist that we 
chose to develop and apply this more complex methodology for estimating the effects of 
alternate policies. As discussed in the main body of this briefing, it turns out in this case that 
the complex and the simple methodologies give very similar answers in terms of optimal 
policy. But we could not know that without applying the more complex methodology. The 
rest of this appendix describes the model that was developed and gives some additional 
results from it.  
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MODEL OVERVIEW  
In our modeling framework, the economy consists of air transportation and all other goods 
and services. Air transportation is broken down into personal travel, business travel, and air 
freight. We use the following symbols for each sector: 

 

 

Personal air travel T 

Business air travel B 

Air freight F 

All other goods and services Q 

 

Table A.1 characterizes the U.S. economy in 2000 in terms of these sectors. Data is from 
Economic Report of the President and Survey of Current Business, various issues, and the Air 
Transport Association Web page (www.airlines.org). 

Because these data sources do not distinguish between business and personal air travel in the 
detail needed for the model, we made the following assumptions that resulted in Table A.1. 
Based on discussions with industry personnel, we have assumed that expenditure on 
business air travel is twice the expenditure on personal air travel, while the number of 
revenue-passenger miles is the same in the two sectors. Total U.S. revenue-passenger miles 
in 2000 were 690 million, and total emplanements were 695 million (U.S. Department of 
Transportation (2002)). Based on discussions with industry personnel, we assumed that trips 
were two-thirds of emplanements and that trips were also evenly distributed between 
personal and business travel. Thus, we assume 230 million business trips and 230 million 
personal trips in 2000. We further assume that the level of resources used to produce these 
passenger miles is proportional to the price charged for them, reflecting the cost of 
producing the extra convenience and flexibility that business travelers receive. We also 
assume that the use of labor, capital, and other goods and services is proportionately the 
same in provision of business travel, personal travel, and air freight and that all air freight is 
for business uses. 

We note here that the model includes neither the joint production characteristics of personal 
and business air travel nor the peak-load characteristics of air travel—i.e., how demand 
varies by time of day and season. This was a strategic decision on our part to ensure the 
existence of general equilibrium. We require a general-equilibrium solution to generate 
internally consistent projections of overall investment and thus GDP growth, and the impact 
of air travel security policies on the overall level and rate of GDP was one of the concerns 
that motivated us to pursue the more complex modeling approach. We acknowledge that 
this was a judgment call and that a partial equilibrium approach that focused more on the 
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joint production and peak load characteristics of the industry and less on a complete model 
of the implications for overall GDP, investment, and growth would have also been a 
valuable approach. We would recommend further work along these lines for further 
informing policy decisions. For an overall view of computable general equilibrium models, 
see the comprehensive handbook by Amman, Kendrick, and Rust (1996). The model 
described here is in the tradition of previous work done by one of the authors modeling 
patterns of economic growth. See Kennedy and Rostow (1979) and Rostow with Kennedy 
(1990). 

We begin with an overview of the model. Each of the four goods is produced by a constant-
returns-to-scale production function, with labor, capital services, and intermediate goods as 
inputs. The three air transportation sector outputs are produced by constant proportions of 
intermediate input of all other goods and services, labor, and capital. (For convenience from 
now on, “all other goods and services” will be called OGS as shorthand.) OGS is produced 
in variable proportions by business travel, air freight, labor, and capital. An index of the time 
required for business travel is also an argument of this production function, as a technical 
shift parameter called τ . (In any given model simulation, τ  is an exogenous variable.) For a 
fixed level of the inputs, a higher τ  implies lower total output, reflecting the lost productivity 
of workers during the time they are traveling.  

τ  is an index of the average time required for one trip, and in the model only this average 
time is included. τ is a function of the delay time associated with any level of baggage-
screening equipment procurement, as discussed in the main body of the briefing. As stated 
there, we assume that an average trip takes 270 minutes, so that a 10-minute delay results in a 
3.7 percent increase in τ.    

Table A.1 

U.S. Economy in 2000 
(billion $; employment in millions) 

From sector Into Sector   
  

Q 
 

B 
 

F 
 

T 
Final 

Demand 
 

Total 
Q 0.0 40.4 8.6 20.2 9,834.7 9,903.9 
B 75.6 0.0 0.0 0.0 0.0 75.6 
F 16.2 0.0 0.0 0.0 0.0 16.2 
T 0.0 0.0 0.0 0.0 37.8 37.8 
Wages 6,371.8 26.4 5.7 13.2  6,417.1 
Return to 

Capital 
3,440.5 8.7 1.9 4.3  3,455.4 

Total (Gross 
Output) 

9,903.9 75.6 16.2 37.8 9,872.5  

Employment 134.52 0.4 0.09 0.2  135.21 
Wage Rate 47.4 66.6 66.6 66.6  47.5 

Note: Totals may not add due to rounding. 
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The parameters of the production functions in the model are chosen so that they fit the U.S. 
economy in 2000 as described in Table A.1 and also so that they have certain elasticities. 
This model calibration will be further discussed when the formal model structure is 
presented below. 

Total income and GDP in this model is simply the total earnings of labor and capital. An 
exogenous fixed percentage of this (called s) is allocated to investment. s is fixed at a value of 
0.18 in accordance with recent U.S. experience. The remainder of GDP will be called 
“consumption” for the purposes of the model, although of course it includes government 
spending and net exports. (International trade is not explicitly represented in the model.) 

Consumption spending is allocated across personal air travel and OGS to maximize an index 
of utility. The time required for personal travel is also an argument of this utility index, and it 
is also represented by the technical shift parameter called τ . Thus, we are assuming that the 
index of business and personal travel are the same. For any given level of consumption of air 
travel and OGS, consumers would prefer to spend less time traveling. Consumers cannot do 
anything to change τ ; it is simply a given technical parameter to them, and they maximize 
the utility index as a function of personal air travel and OGS for each given level of τ . How 
τ explicitly enters the utility index will be shown below when the model structure is 
presented. 

The model is closed by finding a set of factor (capital and labor) and product (T, B, F, Q) 
prices and quantities in any year with the following properties. Final and intermediate 
production and factor usage fall on the production functions, and product and factor prices 
are such that there are no excess profits in any sector (i.e., all profits are equal to the return 
to the capital stock). Consumption of personal air travel and OGS are chosen to maximize 
the consumer utility index, subject to a constraint that spending be no more than 
(1 – s)GDP, where GDP is the total of factor rewards (i.e., the wage rate multiplied by the 
quantity of labor plus the return to capital multiplied by the amount of capital). Investment 
spending is equal to s (GDP). The net quantity produced of consumption and investment 
goods equals the consumption and investment demands. In other words, we find the year-
to-year general equilibrium of the economy. 

The capital stock in any year equals the depreciated value of the capital stock in the previous 
year, plus the amount of gross investment in the previous year. Thus, we assume a one-year 
gestation period for gross investment. The depreciation rate is assumed to be 5 percent. By 
fixing s exogenously, we do not allow intertemporal optimization of consumption and 
investment but instead solve a series of one-year general-equilibrium models, with the fixed 
parameter s linking economic outcomes from one year to the next through the propagation 
of the capital stock.   
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MODEL STRUCTURE 

Overall Framework 
Readers of this section of the report are required to have a familiarity with input-output 
economics models and terminology. We begin by defining the following variables: 

Xi,j Use of product i in production of product j. (i,j = Q,B,F,T) (Values of 
the Xi,j are in the first four rows and columns of Table A.1.)    

Xi Gross output of product i.  
(i = Q,B,F,T) (Values of the Xi are in the seventh row as well as the 
sixth column of Table A.1.)     

Yi Final demand for product i.  
(i = Q,B,F,T) (Values of the Yi are in the fifth column of Table A.1. 
They sum to GDP.) (For each sector i, we have the relation Yi = Ci + 
Ii, where Ci is consumption of output of sector i, and Ii is investment 
of output of the sector. and Only CQ and CT are positive of the Ci. 
Only IQ is positive of the Ii. Government spending and net exports 
are not explicitly modeled but implicitly included in the other 
aggregates. In the model, investment is only done out of output of 
sector Q.)    

The economy satisfies the resource constraint equation (1). 

X
i

= X
i , jj∑ + Y

i
∀i (1)  

Next we define the variables. 

pi Price of product i.     

Li Labor used in production of product i. 

Ki Capital used in production of product i. 

wi Wage rate of labor used in production of product i. 

ri Gross return on capital used in production of product i. 

GDP Value of gross domestic product.   

We then have the value relations (2) and (3). 

p
i
X

i
= p

j
X

j , ij∑ + w
i
L

i
+ r

i
K

i
∀ i (2 )  
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GDP = p
i
Y
ii∑ = (w

i
L

i
+ r

i
K

i
)i∑ (3)  

The model is solved by finding a set of Xi, Yi, Xi,j, pi, Li, Ki, wi, and ri that satisfy relations (1) 
and (2), as well as the production and demand relations that will be described next. 

Production Relations 
This section describes the “supply” side of the model.  

We begin with a description of the how production of XQ, output of all goods and services 
besides air transportation, is modeled. In the most general representation, output of “all 
other goods and services,” or Q, is represented as a function of the inputs of labor, capital, 
business travel, and air freight devoted to it, as well as of the average duration of air trips. A 
general representation of the production function would be 

X
Q

= f
Q

( K
Q

, L
Q

, X
B, Q

, X
F , Q

, τ ) ( 4)  

Here, τ is an index of air transportation trip duration. (Note that we use only one index to 
represent trip duration, and thus delays, for both business travel and air freight. This could 
be usefully generalized in future work.) For this analysis, we actually work with the unit cost 
function that is dual to the production function (4), which has a general representation  

p
Q

= g
Q

( X
Q

, r
Q

, w
Q

, p
B

, p
F

,τ ) (5 )
 

That is, the price of one unit of output of sector Q (equal to its total cost, including return 
on capital) is a function of the level of output, all input prices, and the index of air 
transportation duration. We use a nested translog cost function, with the parameters chosen 
to result in a given set of elasticities. (For a more complete description of the translog 
function, and the rationale for the parameter restrictions later shown in equations (9) 
through (12), see Varian (1992).) (Later in this appendix we summarize the range of elasticity 
estimates in the relevant literature; the elasticities chosen here are meant to be representative 
of that literature.) We use the following specific elasticities in the simulations reported here 
(with a note on the rationale for each parameter choice): 

 (1) elasticity of output of XQ with respect to τ  of –0.0042. This was not derived from 
any reported estimates but was based on the recommended $40.10 per hour value for 
business travel (2000 $) given by the U.S. Department of Transportation 
(api.hq.faa.gov/economics/742SECT1.PDF). It is also based on our assumptions 
discussed above that 230 million business trips occurred in 2000 with an average 
length of 270 minutes, that 70 percent of passengers check baggage, and that gross 
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output in 2000 was $9,903.9 billion. If the delay associated with screening is one 
minute, this means 0.7 additional minutes of trip time, which is a 2.6/10 of one 
percent increase. The 0.7 additional minutes per trip have a value of $0.47 per trip, or 
$110 million per year, which is about 1/100 of one percent of gross output. Since the 
value of gross output in 2000 was $9,903.9 billion, we solve the simple elasticity 
equation (9,903.79/9,903.9)=(270.7/270)η for η to derive the value of the elasticity. 

 (2) elasticity of demand for business travel with respect to its price of -0.7. Table A.2 at 
the end of this appendix, which summarizes empirical elasticity estimates, shows a 
wide range of estimates for this parameter, from –0.18 to –3.51. –0.7 represents our 
judgment of the central tendency of the estimates and was also informally vetted 
with industry experts.  

 (3) elasticity of demand for business travel with respect to τ  of –0.3. Table A.2 also 
shows a wide range of estimates for this parameter, from –0.16 to –1.8. –0.3 here 
again represents our judgment of the central tendency of the estimates and was also 
informally vetted with industry experts. 

 (4) elasticity of demand for air freight services with respect to its price of –0.7. We 
judgmentally chose this to be the same as the parameter for business travel. We again 
informally vetted this with industry experts. 

 (5) elasticity of demand for air freight services with respect to τ  of –0.3. We 
judgmentally chose this to be the same as the parameter for business travel. We again 
informally vetted this with industry experts. 

 (6) elasticity of demand for capital, labor, business travel, and air freight services with 
respect to XQ of 1.0. This is an implication of our assumption of constant returns to 
scale in production, which we made to ensure the existence of general equilibrium. 
We note that this is not strictly necessary for existence and that an assumption of 
diminishing returns to scale would also have guaranteed existence. However, 
constant returns is much more generally used in overall economic growth analysis 
(see, for example, Barro and Sala-i-Martin (2003) for a survey of contemporary 
growth analysis).  

 (7) elasticity of demand for (KQ/LQ) with respect to (rQ/wQ) of –1.0 (commonly 
referred to as the “Cobb-Douglas” assumption). This is also the most widely used 
form of the capital-labor substitution relationship used in contemporary economic 
growth analysis. (See again Barro and Sala-i-Martin (2003).) 

The specific cost function (5) we use is in nested form, in which pQ is represented as a 
function of two new variables, q and c, as well as of τ. q is a cost index of capital and labor 
and is a function of wQ and rQ. c is a cost index for air transport and is a function of pB and pF. 
The specific trans log functions are   
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c = p
B

= p
F

(8)  

We note here that all price variables in this model are indexes, with their values in 2000 equal 
to unity. Equation (8) illustrates our assumption that pB = pF. Given the definition of prices 
as indexes, this is equivalent to assuming that the prices of business travel and air freight will 
move in proportion to each other. The absence of terms of the power two in equation (7) 
embodies the Cobb-Douglas assumption of substitutability between capital and labor, in 
which the elasticity of substitution is –1. 

The absence of quantity terms in equations (6), (7), and (8) embodies our assumption of 
constant returns to scale in the production of other goods and services (i.e., we assume that 
if input prices are unchanged and output increases, then all inputs would increase in the 
same proportion that output increases). This also implies assumption (6) given above that 
the elasticity of demand for all inputs with respect to output is unity.  

The parameters of equations (6) and (7) are not free but are constrained by the relation that 
if all input prices increase by a given factor, then output price increases by the same factor. 
(This is an immediate consequence of the assumption of cost-minimizing behavior.) The 
implied constraints on the parameters of equations (6) and (7) are   
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Subject to these constraints, we choose parameter values for equations (6) and (7) which lead 
to the elasticity values specified above, as well as being consistent with the actual values of 
inputs, outputs, and prices in 2000. 

Roy’s identity shows that the demand for inputs as a function of output level and input price 
is simply the partial derivative of the cost function with respect to input price. (See any 
graduate-level economics textbook—for example, Mas-Colell, Whinston, and Green 
(1995)—for a discussion of Roy’s identity.) Thus the demand for the capital-labor composite 
and the air transportation composite goods can be represented as: 
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Here, sq and sc are the shares of the two composite goods, from which the demand levels are 
immediately recoverable. The production function (4) is also immediately recoverable from 
equations (13) and (14). Varying input cost ratios generates input-output ratios, which 
generate the unit isoquant of the production function. The unit isoquant itself generates, 
through the assumption of constant returns to scale, the entire production function. 

We now turn to the production of air transportation services. For these sectors, we assume 
no substitutability among inputs, but fixed proportions at 2000 levels instead. We also 
assume that the proportions are the same for the three kinds of air transportation, as shown 
in Table A.1. This assumption implies that the prices of the three kinds of air transportation 
move in proportion, as illustrated in equation (8).  

We chose this representation, with no substitution possibilities among labor, capital, and 
intermediate inputs, for the following reason. Many of our simulations imply substantial 
changes in the short-run ratio of labor to capital costs in the production of air 
transportation. In particular, sharp decreases in the short-run return to capital as costs rise. 
Our view of the technology for producing air transportation services is that there is very 
little short-run substitutability. In particular, as the short-run demand for air transportation 
falls, airlines cannot produce a lower level of output by fully utilizing the sunk capital stock 
and only reducing labor inputs—i.e., flying all the existing aircraft at the pre-2001 rate and 
using a sharply lower number of workers per airplane. Instead, our judgment is that in the 
short run, the decreases in capital utilization and labor are approximately proportional, which 
we represent as exactly proportional in this choice of production function functional form. 
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In summary, a production function with substantial capital-labor substitution would not 
properly represent short-run production possibilities as we understand them. 

There may indeed be capital-labor substitution in the long run as aircraft designs can change. 
Thus, a production function with substantial capital-labor substitutability in the long run, but 
not in the short run, would be a reasonable modeling choice. However, in our simulations 
the long-run ratio of labor costs, adjusted for labor-saving technical progress, to capital costs 
does not change in the economy as a whole. Labor-saving technical progress occurs at the 
same rate in both air transportation and the rest of the economy in the model. Thus, in the 
long run in this model, airlines eventually face the same costs of labor and capital as the rest 
of the economy does. Introducing a production function with a long-run/short-run capital-
labor substitutability distinction would not affect the results and was not therefore worth the 
additional modeling complexity in our judgment. 

Consumption Relations 
This section describes the “demand” side of the model.  

The model includes a representation of consumer preferences for the amount and quality of 
personal air transportation. Quality is represented by average trip duration, represented by 
the variable τ, as defined above. It is meant to include all time costs of a trip, from the 
beginning of the transit to the airport to the arrival at the ultimate destination. We note that 
based on these preferences, the “willingness-to-pay” of the consumer to avoid air travel time 
delays can be calculated. Based on preferences for the amount and quality of air travel, a 
market demand curve can be derived.  

Preferences of individuals in the economy for the amount and quality of air travel is 
represented in the model by a utility function. It indexes the economic well-being of 
individuals as a function of three variables. These are 

 (1) the amount of personal air travel consumed (CT);  

 (2) time used for these trips (τ); and 

 (3) consumption of all other goods and services (CQ). 

Utility is increasing in variables (1) and (3) and decreasing in (2). As with the interpretation of 
τ in the production function, τ here is an exogenous variable in the utility index. Consumers 
take it as given and adjust their purchases in reaction to it. Consumers are thus assumed to 
allocate their total expenditure to maximize the index of utility, given the price and time 
length of air trips. Total expenditure is given by the expression (1–s)GDP. Here, s is the 
saving rate, and (1–s)GDP is the value of consumption. As discussed above, s is taken as 
exogenous in this study.  

As with our parameterization of the production function, we parameterize the utility 
function so that it results in certain numerical characteristics of market demand. Again, the 
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elasticities chosen here are meant to be representative of the values from the literature 
summarized in Table A.2 later in this appendix. We use the following specific elasticities in 
the simulations reported here (with a note on the rationale for each parameter choice): 

 (1) price elasticity of demand of –1.0. Table A.2, which summarizes empirical elasticity 
estimates, shows a wide range of estimates for this parameter, from –0.4 to –4.4. –1.0 
represents our judgment of the central tendency of the estimates and was informally 
vetted with industry experts. 

 (2) income elasticity of demand of 1.3. Table A.2, which summarizes empirical elasticity 
estimates, also shows a wide range of estimates for this parameter, from 0.5 to 2.1. 
1.3 represents our judgment of the central tendency of the estimates and was also 
informally vetted with industry experts. 

 (3) elasticity of travel demand with respect to trip time of –0.2. Table A.2, which 
summarizes empirical elasticity estimates, also shows a wide range of estimates for 
this parameter, from –0.1 to –1.8, although most estimates fall between –0.1 and  
–0.4. –0.2 represents our judgment of the central tendency of the estimates and was 
also informally vetted with industry experts. 

We must choose a utility functional form with enough flexibility to simultaneously lead to all 
the above numerical implications. The commonly used Cobb-Douglas form is not a possible 
choice since it implies unitary income elasticities for all purchased items; we require a 
nonhomothetic form to generate the nonunitary income elasticity. We choose the addilog 
functional form, introduced by Houthakker (1960). Recent applications of this function 
form are Ogaki (1992) and Clarida (1996), who were also analyzing economic quantities—in 
these cases food consumption and imports, respectively—that may have nonunitary income 
elasticities. We chose it because of the intuitive appeal of representing the amount of time 
spent not in air travel as a good, just as air travel services and other goods and services are. 
The functional form is: 

U =
αC

T
(1 − σ )

(1 − σ )
+

β (1 − τC
T

)
(1 − γ )

(1 − γ )
+

C
Q

(1 − ρ )

(1 − ρ )
(15)

 

α, β, σ, γ, and ρ are parameters. The scaling of τ is chosen so that (1 – τCT) represents the 
proportion of available time spent not in air travel. Because τ is simply an index in the 
production relations, the same scaling can be used for them without loss of generality. As 
discussed above, we assume that consumers took 230 million trips in 2000 and that each trip 
took 270 minutes. Thus the total time used in trips was assumed to be 1,035 hours. We 
assumed a total time availability for consumption of 2,200 hours per year per person, and 
our measure of “persons” in 2000 is simply the U.S. population of 280 million. Thus 
personal air travel in 2000 was assumed to require .00167 of total time available for 
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consumption, and this is the value of (1 – τCT) assumed for 2000 in calibrating the model. 
The assumptions about total time available are admittedly arbitrary. However, at the low 
levels of time usage in these simulations, the elasticities are the primary drivers of the results, 
not the initial conditions. 

Consumers are assumed to maximize utility function (15) subject to the budget constraint 

)16()1(
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C
Q

p
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C
T

pGDPs +=−
 

This, together with equation (3), implies that s(GDP) is the value of investment, which is pQ 
(IQ). 

Given that consumers maximize the utility indicator (15) subject to the income constraint 
(16), the demand for trips will be a function of the price of trips, trip time, and total 
expenditure. This demand function can be derived from the Lagrangian expression. 
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The first-order conditions for a maximum are 
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Combining these expressions gives the (implicit) demand function 
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in which CT is (implicitly) a function of pT, pQ, τ, and expenditure ((1–s)GDP). 

Model Equilibrium 
This section describes the conditions of market equilibrium in the model. The model finds a 
set of prices of all outputs and inputs for which supply and demand are equated in all 
markets. 

The model is solved on an annual basis. Labor is assumed to be transferable across sectors 
over this time period, so the overall unemployment rate in the economy is assumed to be 
unaffected by the kinds of changes simulated in the model. This assumption could usefully 
be generalized in future work; its reasonableness in this case will be discussed with the results 
shown below. This assumption implies that relative wages among various labor categories will 
vary proportionately. As Table A.1 shows, wages in the air transportation sector are 
substantially above those in the rest of the economy, about 40 percent higher. (The wage rate 
shown in Table A.1 is the gross wage, including fringe benefits and payroll taxes.) This wage 
rate differential is assumed to reflect higher productivity on the part of workers currently in 
the air transport industry, and they are assumed to retain that productivity advantage if they 
move to other sectors. This assumption could also reasonably be varied in future work. It is 
especially suspect in the case of pilots. 

Capital is assumed not to be transferable across sectors after it has been installed. As long as 
capital stocks are growing in all sectors, the rate of return will be equalized in them. 
However, if no gross investment in any given sector occurs, its rate of return will fall below 
that in the rest of the economy. Gross investment is assumed to be 18 percent of total GDP, 
consistent with the 1990s experience. The underlying rate of growth in the economy is 
assumed to be the same as that projected in the Economic Report of the President, 2002. This is 
an underlying growth rate of 3 percent per year, based on employment growth of 1 percent 
and labor productivity growth of 2 percent. This is consistent with a long-run rate of growth 
of real per capita GDP of 2 percent as well. 

Actually solving the model is quite simple given its simple structure. We begin with an initial 
guess of labor and capital prices. These immediately imply the level of GDP because GDP 
equals factor income, and imply product prices through the cost functions, because there are 
no quantity variables in the cost functions, stemming from the constant-returns-to-scale 
assumptions. The level of GDP and the product prices imply final demand through the 
consumption and investment relations, which imply total output through the input-output 
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structure, which implies factor demand through the input demand functions. If factor 
demand equals factor supply, this is a general equilibrium. If not, labor and capital prices are 
adjusted as a function of the ratio of demand to supply of the relevant factor, and in practice 
the general equilibrium set of prices and quantities is found very quickly. 

MODEL RESULTS 
The main text of this briefing shows the results of changing air transportation resource and 
time costs in the model to represent the baggage-screening policy options being assessed. 
Here, we present the results of some gross changes in overall parameters to illustrate more 
vividly how the model responds to changes in parameter assumptions.  

We first illustrate the results of a very large increase in the cost of providing air 
transportation. Figure A.1 shows the impact of a 100 percent increase in the amount of 
nonlabor and capital resources needed to produce a unit of air transportation. In model 
terms, this is a 100 percent increase in the ratio of XQ,k to Xk in the fixed-proportions 
production function for Xk, k = B, T, and F. As Table A.1 indicates, the ratio of the value of 
these nonlabor and capital resources to the value of the total output of air transportation 
services is about 50 percent. Therefore, this amounts in general terms to a 50 percent 
increase in the cost of air transportation. 

Model results are shown in terms of “willingness-to-pay” to avoid this result. They are 
literally the value of nonair transportation goods and services that consumers in the 
economy would be willing to give up, based on preference function (15), in return for not 
suffering the consequences of the cost increase postulated. These results are in dollars of 
2003 purchasing power. The results begin in the year 2003. The base case assumption is that 
nominal GDP will be $11.2 trillion, which is from the projection from the Economic Report of 
the President, 2002. It is assumed that air travel will have recovered so that its ratio to real 
GDP is the same as it was in 2000—i.e., that it will have grown 6 percent from its 2000 level 
by 2003. Because actual air transportation in summer 2002 was about 8 percent below the 
2000 level, this assumes a robust recovery of air transportation. 

Figure A.1 shows that the annual overall cost to the economy of this increase in air 
transportation costs is about $60 billion in 2003, growing by about a factor of three by the 
last year of the analysis, 2033. This factor of three represents an almost 4 percent annual 
growth. This is more than the 3 percent underlying growth in the economy as a whole 
because of the consumer income elasticity of demand of more than one. Personal air 
transportation becomes more important as the economy grows, so the penalty of cost 
increases in it grows relative to the overall economy. 
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Figure A.1—Value of Avoiding 50 Percent Air Transport Cost 

We note that the $60 billion penalty in 2003 is not markedly different from 50 percent of 
overall airline revenues, meaning that the estimated penalty to the economy is roughly the 
same as a more simple measure of the penalty—namely the percentage cost increase applied 
to total revenue. 

The sectoral implications are striking. Figure A.2 shows estimated employment in the air 
transportation industry in both the base case (no cost increase) and in the case of the 50 
percent cost increase. It shows a dramatic decrease of about 200,000 in air transportation  
employment between the two cases, and employment does not reach its base case 2003 level 
(about 700,000) in the higher cost case until around 2030. The underlying employment trend 
is 1 percent annual growth because airline workers in the model are assumed to have the 
same productivity increase as those in the rest of the economy. This assumption could 
usefully be investigated further in future work. 

As discussed above, the overall unemployment rate in the economy is not assumed in this 
simulation to change in the face of this decrease in air transport employment. (Although the 
model could be easily modified to show the effects of differing assumptions about this 
issue.) While 200,000 is a large number of jobs, it should be viewed in the context of the 
300,000 to 400,000 weekly initial unemployment insurance claims in the U.S. economy. This 
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Figure A.2—The Effect of Air Transport Employment of a 50 Percent Cost Increase 

300,000 to 400,000 is in fact much less than those who are newly seeking work in any week 
because it excludes new job entrants, reentrants, and those who do not apply for 
unemployment insurance because they either voluntarily left their previous job or are 
otherwise ineligible for it. In addition, airline jobs are spread evenly across the country, so no 
regional concentration of unemployment would be expected. The 200,000 job losses in air 
transport are thus less than 1 percent of new job seekers on an annual basis, and this is the 
reason we do not model it as leading to an increase in the unemployment rate. Exploring this 
assumption further would be a worthwhile extension of the analysis. 

The second dip in employment in 2006–2007 stems from air transport prices that rise 
somewhat in those years as airlines return to profitability. Airline profits in the model fall to 
zero in 2003–2005 as a result of the cost increase, as price elasticities drive down traffic in 
the face of the resulting price increases. The underlying growth in the economy allows a 
return to profitability in 2006–2007, with a modest attendant price increase. 

This is illustrated further in Figure A.3, which shows gross investment done by the air 
transportation industry in both the base and the increased cost cases. It shows zero gross 
investment until 2007, at which time profitability rises to a level at which new investment 
would be made. Gross investment by the air transport industry consists of many general- 
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Figure A.3—The Effect on Air Transport Gross Investment of a 50 Percent  
Cost Increase 

purpose investment goods, such as computers and structures, but it is of course dominated 
by aircraft purchases. The model literally predicts no new aircraft purchases for four years as 
a result of this cost increase and the resulting decrease in traffic. This is a standard result of 
microeconomic modeling—namely, that no investment flows into an industry unless its rate 
of return is at least at the economywide level. A more sophisticated approach could be taken, 
which recognizes more completely how airlines might smooth their purchases over time, and 
it might not show such a drastic result. A more detailed approach would be useful for  
further work in this area. Nevertheless, the basic thrust of the model, that new investment 
would be seriously decreased by such a cost increase, is correct. Here, the unemployment 
effects might be more pronounced than the direct effects of airline employees being laid off 
because the aircraft industry is much more geographically concentrated, particularly in the 
Seattle area. Again, more research in this area would be useful in future work. 

We next addressed the issue of how any cost increase associated with air transport would be 
financed. All the results to date have assumed that the increased costs would be directly 
borne by the airlines and only recoverable by them by increasing their prices. In the model, 
they do indeed increase their prices because no other source of financing for these costs 
exists. We did an alternate analysis with the model, in which the costs were borne by the  
U.S. government and not passed on to users of air transportation. In the model, these costs 
were financed by a lump-sum tax on all income. As Figure A.4 shows, this leads to a higher 
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overall cost to the economy. This is for two reasons. First, because users of air 
transportation do not pay the cost, the use of air transportation is not reduced, so a higher 
overall cost is incurred. Second, an inefficiency is introduced into the economy when the 
cost increase is centrally financed. In this case, both business and personal users of air 
transportation face a price below its true cost. When deciding whether to buy air 
transportation or other goods and services, they therefore use more air transportation than is  
socially optimal, making decisions on the basis of too low a price. The difference is relatively 
low in the first few years because this policy avoids the underutilization of the airline capital 
stock for the first two years, until the airlines return to profitability. 

The policy of central financing does avoid the specific sectoral employment and investment 
consequences, since the industry is sheltered from the cost increase. Figures A.5 and A.6 
show air transport employment and gross investment, respectively, under the base case; the 
50 percent cost increase case borne by airlines and users of air transport; and the 50 percent 
cost increase financed by the government (called “Equivalent General Tax” on these charts). 
Base case and government-financed cost increase cases are almost identical because relative 
prices of air transport and other goods and services are not directly affected. There is a 
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Figure A.4—Values of Alternate Policies 
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Figure A.5—Air Transport Employment Under Alternate Policies 
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Figure A.6—Air Transport Gross Investment Under Alternate Policies 
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minimal decrease in air transport, and thus employment and gross investment, simply 
because overall disposable income is down because of the tax increase. But this difference is 
small indeed, amounting to about one-half of 1 percent of employment, and a similar figure 
for investment after the first year. In the first year, the impact on investment is somewhat 
greater, stemming from a one-time shift of capital to the sectors producing the extra inputs 
for air transportation. 

Just as centrally financing an actual cost increase in air transportation leads to efficiency 
losses, so would financing through air transport fees a cost not related to the volume of air 
travel. If the government were to undertake some policy measures whose cost is truly fixed, 
in the sense that it does not vary with the amount of air transport used, then it is most 
efficient to finance this centrally. There is an efficiency loss associated with making users of 
air transport bear it. This is because efficiency is maximized when users face a price equal to 
the marginal cost of the product they are purchasing. If the cost of the policy initiative is 
unrelated to the level of air travel (such as a new intelligence effort directed at those who 
would threaten air travel), then financing it through prices charged to air transport users 
leads to efficiency losses. 

Figure A.7 illustrates this. It shows the cost to the economy of undertaking a given policy 
initiative, whose level is independent of air travel, under conditions of both central financing 
and financing through air transport prices. The former cost is below the latter for the 
reasons explained above. The cost divergence here is greatest in the early years because the 
underutilization of airline capital stock in the early years after an air transport price increase 
here exacerbates the overall efficiency loss. (The specific policy modeled here is assumed to 
have a cost equal to the additional costs associated with Figure A.1 for ease of comparison. 
Again, we assume that the central financing is through a lump-sum tax on all income. There 
is no specific rationale behind this cost because it is by assumption no longer related to the 
level of air transport.) 

In addition, financing a policy whose cost does not vary with air transport volume with air 
transport taxes has the additional disadvantages of leading to the major sectoral disruptions 
shown in Figures A.2 and A.3. We have not specifically included their costs here for the 
reasons given above, but further work would be warranted to improve our understanding of 
their magnitudes, as also indicated above. 

To show the sensitivity of our results to changes in numerical parameters, we show Figures 
A.8 and A.9, which add to Figures A.2 and A.3 the results of a case of a 30 percent increase 
in the ratio of XQ,k to Xk in the fixed-proportions production function for Xk, k = B, T, and 
F. We label this the “15 percent cost increase” case. (For precision, we note that the ratio of 
XQ,k to Xk in Table A.1 is actually 53.4 percent, so we are using the term “cost increase” 
loosely in labeling these cases. The actual cost increase also varies as a result of airline 
profitability and the wage rate. The cases are strictly defined by the changes in the fixed-
proportions production functions as defined above.) 
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Figure A.7—Value of Alternate Policies 
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Figure A.8—Air Transport Employment Under Alternate Cost Increase 
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Figure A.9—Air Transport Gross Investment Under Alternate Cost Increases 

The change in employment is more or less proportional to the change in cost increase. The 
behavior of gross investment is qualitatively different, as it only takes until 2004 for a return 
to profitability and a positive level of gross investment. 

The model can also be used to assess the impact of a change in trip duration, represented by 
the index variable τ. (This index also represents the duration of the air freight process in the 
model. In future work, a separate representation of passenger and air freight trip duration 
would be useful.) An increase of 50 percent in trip duration has overall effects not 
qualitatively dissimilar from the “30 percent cost increase” case in terms of impacts on 
employment and gross investment. Willingness to pay to avoid such a change in trip duration 
begins at about half the level associated with the “50 percent cost increase” case but grows at 
about 5 percent per year rather than 4 percent. This is a direct result of the limited ability to 
substitute away from the longer-duration trips, as embodied in the relatively low elasticity 
estimates. Of course, the numerical impacts of these effects depend very dramatically on all 
the assumed elasticities of output and business and personal air transportation use with 
respect to trip duration. As can be seen in the annex, these are economic magnitudes for 
which relatively few estimates exist in the literature, so there is substantial uncertainty about 
their true values. There is corresponding uncertainty about the value of avoiding increases in 
trip duration. Here again, more work would be very helpful in informing policy decisions. 
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PROMISING AREAS FOR FURTHER RESEARCH 
In the kind of economic model used here, decisions about employment and gross 
investment are based on current levels of output, and many of the frictions and adaptive 
processes of the real world are abstracted from it. Econometric work to measure how 
employment and investment flows have actually varied in the air transportation industry 
would be useful here. 

Additional sectoral detail would lead to more kinds of policy insights. Specific representation 
of the aircraft manufacturing industry; other transportation sectors; travel-related sectors, 
such as hotels and restaurants; and the security industry are all interesting candidates. 
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ANNEX 

A SURVEY OF DEMAND ELASTICITIES FOR 
COMMERCIAL AIR TRAVEL 

One of the key features of most economic models of commercial air travel is the treatment 
of the relationships between various travel characteristics, such as price, frequency of 
departure, or the time involved in travel, and the demand for air travel. In economics 
parlance, a percentage change in a travel characteristic that is associated with a percentage 
change in travel demand is called the elasticity of demand with respect to that characteristic. 
Numerically, these percentage changes are expressed as a ratio, with the travel characteristic 
percentage on the bottom. For example, if a 1 percent increase in price leads to a 2 percent 
decrease in demand, then the elasticity of demand with respect to price is equal to (–2)/1, or 
–2. A positive elasticity means that when the characteristic increases, demand increases as 
well. A negative elasticity means that the travel characteristic and demand move in opposite 
direction, when one increases the other decreases. Therefore, given our example above, a 10 
percent increase in price would be expected to lead to a –2 times 10 percent, or –20 percent, 
increase in travel demand—i.e., a 20 percent decrease in travel demand. These estimates of 
demand elasticities inform many of our calculations, and this section of the briefing surveys 
the elasticities found in the economics literature. 

Table A.2 lists a number of different elasticity estimates from the literature for a variety of 
travel characteristics. This draws in part on work done by the Federal Aviation 
Administration for a 1995 report to Congress (U.S. Department of Transportation (1995)). 
Elasticity estimates often vary, frequently depending on the sample from which the estimate 
was made. Different periods in time, geographical locations, and traveler demographics can 
all affect an elasticity value. The challenge is to understand how these estimates may (or may 
not) be valid when applied to a new time, place, or group of people. The other important 
consideration is what other factors were controlled for when the estimate was made. A study 
that analyzes several factors that influence demand at the same time is likely to find that each 
factor has a smaller influence on demand than a study that includes only a single factor in its 
analysis. 

Price elasticities are the most commonly estimated and most important of the travel demand 
elasticities. These elasticities depend greatly on the passenger sample from which the 
estimate was made. The smallest and largest price elasticity estimates listed in the table vary 
by more than an order of magnitude. The estimates range from the Morrison and Winston 
(1985) value of –0.180 for business travel pre-deregulation, based on a U.S. intercity 
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passenger transportation demand model with frequency and travel time variables included in 
the analysis, to the Royal Commission on National Passenger Transportation (1992) value of 
–4.5 for nonbusiness, low-income travelers. Looking across the estimates, we can generalize 
that business travel is less responsive to price than leisure travel and low-income travelers are 
more responsive to price than high-income travelers. The Royal Commission on National 
Passenger Transportation (1992) study of Canadian transportation stands as the outlier in the 
group. Studies that incorporate multiple air travel characteristics in a mode choice model 
usually have lower price elasticities than market demand studies that may use only a single 
measure. Oum, Waters, and Yong (1992) did a survey of the literature and found that the 
majority of estimates fell between –0.8 and –2.0. Work published since then has generally 
been in that range or lower, spanning –0.48 to –1.58. Morrison and Winston (1996) take –0.7 
as a rule-of-thumb value and argue that it is consistent with the elasticities implied by their 
model. 

Income elasticities measure the change in travel when incomes change, and unlike the price 
elasticities, these are grouped somewhat more narrowly. Three out of the four studies in 
Table A.2 have estimates that are 1.0 or above, and these values appear to have held up to 
scrutiny since 1981.  

The remaining elasticities all involve time of one sort or another. Pels, Nijkamp, and Rietveld 
(2001) provide an estimate of access time elasticity in a study of groundside transport time to 
get to airports in the San Francisco Bay Area. This elasticity would most closely capture 
changes in wait times stemming from enhanced security measures. Other time measures 
related directly to the air travel portion include measures of travel time, wait time between 
departures, and flight frequency. For travel time and frequency elasticities, Mandel, Gaudry, 
and Rothengatter (1997) appears to be the outlier. These measures matter more for analysis 
of flight delays and changes in scheduling as a result of congestion or changes in demand. 
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Table A.2 

Elasticity Estimates for a Variety of Travel Characteristics 

 
Study 

With Respect 
to What? 

 
Value 

 
Range 

 
Comments 

Morrison and Winston 
(1996) 

Price –0.7  Cited as rule of thumb, and consistent 
with implied elasticity in model 

Apogee Research Inc. 
(1994) 

Price –1.10 –0.86 to –1.21 Nonbusiness 

Apogee Research Inc. 
(1994) 

Price –0.59 –0.58 to –0.61 Business 

Royal Commission on 
National Passenger 
Transportation (1992) 

Price –3.51  Business, low-income 

Royal Commission on 
National Passenger 
Transportation (1992) 

Price –1.57  Business, high-income 

Royal Commission on 
National Passenger 
Transportation (1992) 

Price –4.50  Nonbusiness, low-income 

Royal Commission on 
National Passenger 
Transportation (1992) 

Price –4.38  Nonbusiness, high-income 

Oum, Gillen, and Noble 
(1986) 

Price  –0.6 to –0.8 First class 

Oum, Gillen, and Noble 
(1986) 

Price  –1.2 to –1.4 Standard economy 

Oum, Gillen, and Noble 
(1986) 

Price  –1.5 to –2.0 Discount economy 

Oum, Zhang, and Zhang 
(1993) 

Price –1.58 –1.24 to –2.34 Used 20 city pairs; no correlation 
between trip distance and price 
elasticity 

Oum, Waters, and Yong 
(1992) 

Price –1.52  Leisure travel; based on survey of two 
studies 

Oum, Waters, and Yong 
(1992) 

Price –1.15  Business travel; based on survey of 
two studies 

Oum, Waters, and Yong 
(1992) 

Price  –0.76 to –4.51 General; based on survey of 11 
studies; majority fall within –0.8 to 
–2.0 range 

Borenstein and Zimmerman 
(1988) 

Price  –0.50 to –0.63 Passenger mile demand based on 
1978–1985 sample 

Morrison and Winston 
(1985) 

Price –0.378  Pleasure travel; based on pre-
deregulation intercity travel demand 
model 

Morrison and Winston 
(1985) 

Price –0.180  Business travel; based on pre-
deregulation intercity travel demand 
model 

Mandel, Gaudry, and 
Rothengatter (1997) 

Price  –0.62 to –0.69 Model for Germany 1979–1980; Box-
Cox Logit Model of intercity travel 
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Table A.2—continued 

 
Study 

With Respect 
to What? 

 
Value 

 
Range 

 
Comments 

     
Wingrove et al. (1998) Price  –0.95 to –1.39 U.S. 1985–1994; for scheduled major, 

national, regional, and shuttle 
operations with competition 

Dresner, Lin, and Windle 
(1996) 

Price  –0.48 to –0.53 Passenger demand model for U.S., early 
1990s 

Russon and Riley (1993) Income 1.833  Model for travel up to 650 miles, 
southeast U.S., 1985 data 

Wingrove et al. (1998) Income 2.069  U.S. 1985–1994; passenger mile 
Borenstein and Zimmerman 

(1988) 
Income  0.46 to 1.38 Passenger mile demand based on 

1978–1985 sample 
Nesbit (1981) Income  1.5 to 2.0 No specific empirical work cited, but 

expressed as range favored by 
forecasters 

Pels, Nijkamp, and Rietveld 
(2001) 

Access Time  –0.12 to –0.37 Business passengers in San Francisco 
Bay Area; based on airport/airline 
choice model; no prices in choice 

Pels, Nijkamp, and Rietveld 
(2001) 

Access Time  –0.12 to –0.32 Leisure passengers in San Francisco 
Bay Area; based on airport/airline 
choice model; no prices in choice 

Morrison and Winston 
(1985) 

Travel Time –0.434  Pleasure travel; based on pre-
deregulation intercity travel demand 
model 

Morrison and Winston 
(1985) 

Travel Time –0.158  Business travel; based on pre-
deregulation intercity travel demand 
model 

Mandel, Gaudry, and 
Rothengatter (1997) 

Travel Time  –1.69 to –1.79 Model for Germany 1979–1980; Box-
Cox Logit Model of intercity travel 

Morrison and Winston 
(1985) 

Time 
between 
Departures 

–0.047  Pleasure travel; based on pre-
deregulation intercity travel demand 
model 

Morrison and Winston 
(1985) 

Time 
between 
Departures 

–0.206  Business travel; based on pre-
deregulation intercity travel demand 
model 

Pels, Nijkamp, and Rietveld 
(2001) 

Frequency  0.64 to 0.72 Business passengers in San Francisco 
Bay Area; based on airport/airline 
choice model; no prices in choice 

Pels, Nijkamp, and Rietveld 
(2001) 

Frequency  0.55 to 0.71 Leisure passengers in San Francisco 
Bay Area; based on airport/airline 
choice model; no prices in choice 

Mandel, Gaudry, and 
Rothengatter (1997) 

Frequency  0.10 to 0.16 Model for Germany 1979–1980; Box-
Cox Logit Model of intercity travel 

Russon and Riley (1993) Frequency 0.813  Model for travel up to 650 miles, 
southeast U.S., 1985 data 
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APPENDIX B:
PASSENGER DELAYS TRANSITING THE AIRPORT AND 

THEIR IMPACT ON SIZING THE EDS BUY
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Other Passenger Delays and What They
Imply for Sizing the EDS Deployment

• Other passenger delays transiting the airport include
– Ticket counter check-in lines
– Passenger screening stations

• Ticket counter check-in delays may or may not affect our results
– These delays essentially meter the flow of bags to be checked, thus smoothing 

the baggage flow into the scanning area
• Baggage check-in delays are thus modified, but total passenger delays 

may actually be greater
– If delays are partially caused by passengers without bags to be checked, then 

total delays will be greater, but optimal buy size may be smaller
• Delays caused by passenger screening stations are unrelated to baggage 

delays; the greater of the two will determine total passenger delays
• The following figures address passenger screening delays and how they 

modify the optimum baggage-scanning equipment buy size

The briefing made an implicit assumption that baggage-scanning delays dominate over other 
passenger delays. This might not be true, in which case, the optimum buy size would be 
modified. The purpose of this appendix is to examine how much modification is likely—that 
is, is this a big deal or is it just a curiosity.

This figures points out two delays common to all passengers bringing baggage to be checked 
at the airport. The first is the waiting line associated with getting the baggage checked. This 
line could be at the curb or at the ticket counter. For the purposes of this appendix it does 
not matter. In both cases, the waiting line for getting the bags checked occurs before the 
bags are put into the baggage-scanning queue, and thus the delays are added to those in that 
queue. Counterbalancing this additional delay is the observation that the waiting line 
essentially moderates the arrival of the bags into the scanning queue, essentially lowering the 
peaks (and raising the valleys) of the input flow. The natural consequence would be a 
lowering of the maximum queues, but with only a small impact on the average delays. It is 
clearly best for the passenger to never encounter delays prior to checking the bags, so we 
judge that any impact on baggage-scanning size requirements are likely to be minimal.

The second delay is the waiting to pass through the passenger screening stations. This delay 
occurs after the baggage check in, and thus does not affect the baggage queues. 
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However, if the extent of the screening station delays is large, then the passengers total 
transit time from the baggage check-in to the gate may exceed the 30 minutes that we 
assumed as minimal for the checked baggage to confidently get onto the plane. Assuming 
that the passenger’s planned arrival time took this screening delay into account, any time 
greater than the nominal 45 minutes (30 minutes nominal plus 15 minutes to hedge against 
delays in arrival because of traffic or whatever) should be attributable to screening delays and 
not baggage delays. The results would be a greater tolerance for baggage delays and thus a 
somewhat lower requirement for EDS machine deployments.

We have not collected the needed statistics, etc., that would allow us to do a rigorous analysis 
of passenger screening delays. Thus, we have parameterized the travelers transit time from 
the baggage check-in counter to the airplane gate over a range from 30 minutes to 45 
minutes. Less than 30 minutes has no impact on the baggage-scanning calculations. Greater 
than 45 minutes puts this analysis into a range where we would need to do further analysis of 
the baggage-scanning queues.
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Sizing the EDS Machine Acquisition for All 
Airports: Sensitivity to Other

Passenger Delays
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Additional delays = 0 min 
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Passenger Criteria: Baggage
Makes Plane 99% of Trials 

No Positive Profiling
EDS Reliability = 0.9

Simple Calculation

Additional delays = Passenger transit delays that
exceed delays associated with baggage screening

(e.g., passing through passenger screening stations) 

One of the basic results in the main briefing is the total cost to the passenger (a sum of the 
cost of acquiring and operating the EDS equipment at the airports and the cost to the 
passenger for arriving at the airport earlier than would be needed if no baggage queuing 
delays existed) as a function of the total number of machines deployed at U.S. airports. The 
top curve in the figure represents that cost, where we have assumed a machine reliability of 
0.9. The minimum cost is around $4.6 billion and occurs in the neighborhood of 5,900 
machines.

The three other curves in the figure are this same cost, except we have only included the 
passenger delay costs if the delays exceeded those needed to transit the airport. For example, 
the five-minute-additional-delay curve assumes that there is no cost to the passenger if the 99 
percent confidence curve for baggage arrival at the plane is 35 minutes or less. For the 10-
minute-additional-delay curve, that 35 minutes would move to 40 minutes.

Increasing the amount of time available for baggage scanning without incurring additional 
delay to the passenger allows for a reduction in total buy size. Thus, for a five minute 
additional delay, the optimum EDS deployment size drops to about 5,500 machines, and the 
overall cost to the passenger because of baggage scanning to around $4.5 billion.
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Baggage-Scanning Costs When Passengers 
Are Subjected to Additional Delays
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for baggage handling from check-in to plane)

This figure is a copy of one in the main text, except it has been modified to take into account 
a five-minute-additional-delay for the passenger reaching the gate. In this figure the total 
costs are plotted against the delay that the passenger experiences with baggage screening. 
Because of the assumed additional passenger delay in transit to the gate, the first five minutes 
of baggage-scanning delay does not increase the delay cost to the passenger (the cost of delay 
in the first five minutes are attributable to whatever caused this delay—e.g., the passenger 
screening stations). Past five minutes, however, an further delay would be attributable to 
baggage scanning.

Thus, for the first five minutes of delay, the total cost to the passenger associated with 
baggage scanning is just the cost of the equipment. The baggage-scanning costs kick in after 
that, as shown on the figure. This alters the overall cost curve, yielding a minimum cost 
associated with baggage scanning of around $3.5 billion, as noted on the previous slide.

The criterion of minimum cost to the flying public associated with baggage scanning leads to 
sizing the deployment so that the passenger did not add time to his planned arrival to 
account for baggage-scanning delays (subject to the 99 percent confidence of the bag
reaching the plane in time).



114

114

Additional Passenger Transit Delays Can 
Dominate Passenger Arrival Time Choice
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The result on the prior figure also pertains to passenger transit times larger than 35 minutes. 
Minimizing the cost to the flying public associated with baggage scanning leads to sizing the 
EDS deployment so that the passenger does not add time to his planned arrival to account 
for baggage-scanning delays. In this context, passenger transit times from the airport check-
in counter to the gate dictate the planned arrival time of the passenger. As this figure shows, 
the requirement on baggage scanning is thereby relaxed, allowing for reduced buy sizes and 
longer baggage-scanning queues without adding time to the passenger’s delays in the airport.

Of course, this may not be the overall optimum for the passenger if we took into account the 
costs of passenger delays associated with increasing passenger transit time. The next figure 
will address this element of the problem.
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Including All Passenger Delay Costs in the Analysis
(Cost Versus Number of EDS Machines Deployed)
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Including all passenger delay costs shows clearly that these additional delays do in fact add 
further costs to the results where passenger transit times were not included in the analysis. 
And the optimum number of EDS machines is exactly where the passenger delay costs 
associated with airport transit times are equal to the delay costs associated with baggage 
scanning. Or, more directly, the two delay costs, which are independent of each other, are 
equal.
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Including All Passenger Delay Costs in the
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This figure replots the results of the previous figure, using excess passenger time spent in the 
airport caused by baggage scanning as the variable along the ordinate. This figure clearly 
shows that reducing the baggage-scanning delays below the point where the passenger transit 
time curves intersect would increase overall costs to the passenger and, more generally, to the 
overall public.

These figures raise the following questions:

• What are the passenger transit times expected to be in 2010?

• How much do these screening stations cost in terms of acquisition of the equipment, 
installation at the airports, operating both the machines and manning the individual 
inspections required, and maintaining the machines.

• What is the optimum number of these screening stations at individual airports, and what 
would be the airport facility reconstruction costs needed to enable them to be deployed. 
Is there sufficient room at the airports to accommodate such reconstruction or are new 
facilities required

• Combining all costs, what then are the optimum number of passenger screening stations 
and baggage-scanning machines at individual airports.
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