

BIOINFORMATICS AND THE CELL
Modern Computational Approaches in Genomics,

Proteomics and Transcriptomics

BIOINFORMATICS AND THE CELL
Modern Computational Approaches in Genomics,

Proteomics and Transcriptomics

by
Xuhua Xia

University of Ottawa, Ontario, Canada

Xuhua Xia
CAREG and Biology Department
University of Ottawa
30 Marie Curie, P.O. Box 450
Ottawa, Ontario K1N 6N5
Canada

Library of Congress Control Number: 2007922341

ISBN-10: 0-387-71336-0

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer soft-
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

e-ISBN-10: 0-387-71337-9
ISBN-13: 978-0-387-71336-6 e-ISBN-13: 978-0-387-71337-3

CONTENTS

Contents .. v
Preface... x
Acknowledgement ... xiv
Chapter 1 BLAST and FASTA... 1

1. Introduction..1
2. Mathematics of string matching...4

2.1 Basic concepts ...4
3. String-matching algorithms in FASTA and BLAST....................11

3.1 FASTA ..11
3.2 BLAST ..16

4. Homology search and sequence annotation20
5. Postscript..21

Chapter 2 Sequence alignment.. 23
1. Introduction..23
2. Pairwise alignment ...24

2.1 Pairwise alignment with constant gap penalty.....................25
2.1.1 Global alignment .. 25
2.1.2 Local alignment .. 29
2.1.3 The simple scoring scheme needs extension 30
2.2 Pairwise alignment with a similarity matrix........................30
2.2.1 DNA matrices ... 30
2.2.2 Protein matrix ... 32
2.3 Pairwise alignment with gap penalty specified by the

affine function ...34
3. Multiple sequence alignment ...38

3.1 Profile alignment ...38
3.2 Multiple alignment with a guide tree...................................41

4. Sequence alignment with secondary structure43

vi

5. Align nucleotide sequences against amino acid sequences..........44
6. Postscript..47

Chapter 3 Contig assembly ... 49
1. Introduction..49
2. Skeletal output of contig assembly ..51
3. string matching of two sequence ends ...56
4. New development in contig assembly..59
5. Postscript..60

Chapter 4 DNA replication and viral evolution 62
1. Introduction..62
2. Fundamentals of viruses...63

2.1 The virion and the viral genome..64
2.2 Variation in viral genome size can be explained by

variation in mutation rate...65
2.3 A representative virus: Phage λ ...66

3. Fundamentals of bacterial species..67
4. genomic AT% of bacterial species is indicative of cellular

AT availability...68
5. Formulating the hypothesis and predictions.................................70
6. Are our predictions supported? ..71
7. A short play featuring phages and bacteria77

Chapter 5 Gene and motif prediction .. 78
1. Introduction..78
2. Bayes’ theorem and odds ratios ...79
3. Characterizing features of Signal sensor......................................83

3.1 Position weight matrix...83
3.2 Perceptron..93

4. Characterizing features of Content sensors................................100
4.1 Indices of content sensors related to DNA

methylation and spontaneous deamination........................101
4.2 Are these indices useful in discriminating between

coding and non-coding sequences?104
Chapter 6 Hidden Markov Models.. 109

1. Introduction..109
2. Markov models ..110
3. Hidden Markov Models ...115

3.1 The Essential Elements in a Hidden Markov Model115
3.2 Training HMM ..117
3.3 The Viterbi algorithm ..120
3.4 Forward algorithm ...127
3.5 HMM and gene prediction...130

4. Postscript..131

Contents vii

Chapter 7 Gibbs Sampler .. 133
1. Introduction..133
2. A numerical illustration of the computational details of

Gibbs sampler ..135
2.1 Initialization...136
2.2 Predictive update ...137

3. Motif sampler...146
Chapter 8. Bioinformatics and vertebrate mitochondria 148

1. Introduction..148
1.1 Mitochondria and mitochondrial genomes149
1.2 DNA-Replication and Strand-biased mutation

spectrum ..150
1.3 The effect of strand-biased mutation on codon usage152

2. Three hypotheses on tRNA anticodon156
2.1 The mutation hypothesis..157
2.2 The codon-anticodon adaptation hypothesis157
2.3 The wobble versatility hypothesis158

3. Empirical evaluation of the three alternative hypotheses...........160
3.1 Evaluation of the mutation hypothesis against the

two selectionist hypotheses ...160
3.2 Evaluating the two selectionist hypotheses161

4. Integrating the codon-anticodon adaptation hypothesis
(CAAH) and the wobble versatility hypothesis (WVH)............162

4.1 Four-fold NNN codons..163
4.2 Two-fold NNY codon families..164
4.3 Two-fold NNR codon families ..165

5. Conflict between translation initiation and elongation165
6. PostScript ...171

Chapter 9. Characterizing translation efficiency................................... 173
1. Introduction..173
2. RSCU (Relative synonymous codon usage)175
3. CAI (Codon adaptation index) ...176

3.1 Computation and basic properties of CAI176
3.2 Problems with CAI and its current implementation178
3.2.1 Problem when w = 0... 178
3.2.2 Problems with codon families containing a single codon

 179
3.2.3 Problems with amino acids coded by two different codon

families ... 180
3.2.4 Problems with initiation and termination codons 181
3.2.5 The problem with the compilation of the reference set of

genes ... 181
4. Indices of codon-anticodon adaptation182

viii

4.1 CAI with a tRNA anticodon-derived codon usage
table ...185

4.2 Codon-anticodon adaptation index (CAAI).......................187
5. Why CAI or CAAI should not be taken as a measure of

gene expression?..192
6. Will AT-rich mRNA be translated inefficiently?.......................200
7. Codon adaptation index and proteomics: clarrification of

some misunderstandings..201
Chapter 10 Protein isoelectric point.. 207

1. Introduction..207
2. Amino acid and protein isoelectric point209
3. Genomic profiling of protein isoelectric point: a case study

with Helicobacter pylori..213
4. An alternative explanation of H. pylori data217

Chapter 11 Bioinformatics and Two-Dimensional Protein Separation. 220
1. Introduction..220
2. Scientific rationale behind the 2D-SDS-PAGE221
3. Expected separation pattern of 2D-SDS-PAGE for the

genome-derived proteome ...222
4. posttranslational modification..227

4.1 Importance in studying posttranslational modification227
4.2 Posttranslational modification changes the migration

pattern of proteins on 2D-SDS-PAGE...............................227
Chapter 12 Self-Organizing Map and other clustering Algorithms 231

1. Introduction..231
1.1 Classification and clustering..231
1.2 Clustering and gene expression ...233
1.3 Similarity and distance indices ..235

2. UPGMA ...239
3. Self-organizing map (SOM)...243

3.1 The SOM algorithm...244
3.2 Variations of the basic SOM algorithm.............................249

Chapter 13 Molecular Phylogenetics .. 251
1. Introduction..251
2. Biodiversity, historical information, and phylogenetics252
3. Substitution models..253

3.1 Nucleotide-based substitution models and genetic
distances ..254

3.2 Amino acid-based and codon-based substitution
models..264

4. Tree-building methods ...266
4.1 Distance-based methods ..266

Contents ix

4.2 Maximum parsimony methods ..272
4.2.1 The Fitch algorithm .. 272
4.2.2 The uphill search and branch-and-bound search

algorithms ... 275
4.2.3 The long-branch attraction problem 277
4.3 Maximum likelihood methods...279
4.4 Bayesian inference...283
4.4.1 Bayes theorem for a continuous variable...................... 283
4.4.2 Alternative computational approaches in Bayesian

inference ... 287
Chapter 14 Fundamentals of Proteomics .. 293

1. Introduction..293
2. Protein Mass Spectrometry ..294
3. Charge deconvolution ..295
4. Peptide mass fingerprinting..301

4.1 Peptide digestion ...301
4.2 MS determination of peptide mass304
4.3 Protein database and in silico digestion.............................305
4.4 Protein identification ...305

References... 309
Postscript... 342
Index ... 344

PREFACE

Biological and biomedical sciences are becoming more interdisciplinary,
and scientists of the future need interdisciplinary training instead of the
conventional disciplinary training. Just as Sean Eddy (2005) wisely pointed
out that sending monolingual diplomats to the United Nations may not
enhance international collaborations, combining strictly disciplinary
scientists trained in either mathematics, computational science or molecular
biology will not create a productive interdisciplinary team ready to solve
interdisciplinary problems.

Molecular biology is an interdisciplinary science back in its heyday, and
founders of molecular biology were often interdisciplinary scientists. Indeed,
Francis Crick considered himself as “a mixture of crystallographer,
biophysicist, biochemist, and geneticist” (Crick, 1965). Because it was too
cumbersome to explain to people that he was such a mixture, the term
“molecular biologist” came handy. To get the crystallographer, biophysicist,
biochemist, and geneticist within himself to collaborate with each other
probably worked better than a team with a crystallographer, a biophysicist, a
biochemist and a geneticist who may not even be interested in each other’s
problems.

Bioinformatics was born in response to the interdisciplinary demand of
modern biological and biomedical sciences as a joint effort by among
mathematicians, computational scientists and biologists of all colors and
shades. It is a peculiar branch of science. A conventional branch of science
such as quantum mechanics in physics or population genetics in biology will
typically have a few classic publications laying down its theoretical
foundation, delineating its boundary and interface with other related
sciences, formulating its central questions, and highlighting the spectacular
views within and beyond that particular mansion of science. Once the
mansion has been skeletally constructed, subsequent works will only serve to

Preface xi

beautify the mansion but will not alter the general structure of the mansion
which remains easily recognizable by people within the mansion and those
in its neighbourhood. There is little controversy as to how the mansion
looks, even when viewed from different perspectives.

Bioinformatics is different. I have been told that bioinformatics was not
built by one or a few visionary giants of science, and that it is not even a
single mansion. Instead, it is the Wild West before the law arrives (Eddy,
2005), dotted by a large number of trailer houses or even temporary tents
that have been built and found workable elsewhere in the kingdom of
science. Many people living in this rough terrain do not know where they
belong but, after living here for some time, found it necessary to give the
dwelling a label. When someone murmured the word “bioinformatics”,
everyone thought it a godsend and the town of bioinformatics was born, and
the inhabitants begin to call themselves bioinformaticians.

Bioinformaticians differ dramatically in their views and their descriptions
of their town. This is partially reflected in the flagship journal of the field,
Bioinformatics. Most papers in the journal were treated by conventional
biologists as Wild West stories and ignored with a passion, except for a few
that get a great deal of attention and citation by proclaiming the finding of
gold. The only consensus among bioinformaticians seems to be that
bioinformatics deals with very big computational problems. However, when
asked about what the very big problems are, most bioinformaticians, to
paraphrase Peter Medawar, will become instantly solemn and shifty-eyed,
solemn because they think that they have something profound to declare, and
shifty-eyed because they really have nothing to declare.

Such a perception of bioinformatics is witty but unfair, because
bioinformatics does have a root to trace to and a central theme with a focus.
For many years, a challenging question near and dear to the mind of many
leading biologists is how living cells work. A living cell is a system with
cellular components interacting with each other and with extracellular
environment, and these interactions determine the fate of the cell, e.g.,
whether a stem cell is going to become a liver cell, a brain cell, or a
cancerous cell. It then became quite obvious that, to understand how living
cells work, those cellular components and their interactions would need to be
identified and characterized. The most important cellular components
happened to be universally acknowledged to be the genome, the transcripts
and the proteins. The characterization and analysis of these three types of
cellular components leads to genomics, transcriptomics and proteomics that
jointly drive the development of bioinformatics.

Genomics leads to two developments. The first is to allow a much faster
identification of proteins by combining mass spectrometry data with
genomic databases. Second, genomic sequences have enabled SAGE

xii

(sequential analysis of gene expression) and microarray technology which
have spawned transcriptomics which is a synonym of functional genomics.
Biologists can now routinely monitor the gene expression at the genomic
scale over time or compare gene expression between control cells and
treatment cells or along the developmental path of a particular cell type.

There are two major problems with the transcriptomic data. The first is
that the relative abundance of transcripts as characterized by SAGE or
microarray experiments is not always a good predictor of the relative
abundance of proteins, yet proteins are true workhorses in the cell. Many
proteins that are produced as a result of alternative splicing and
posttranslational modification will not reveal their mystery in our analysis of
transcriptomic data. It should be quite clear that, in order to characterize the
cellular components and their interactions, one needs the corroboration of
proteomic, genomic and transcriptomic data.

At this point, one is tempted to conclude that bioinformatics has three
facets labelled proteomics, genomics and transcriptomics and that it deals
mainly with characterizing cellular components and their interactions. But
bioinformatics goes beyond this. Genes and genomes have evolved from
time immemorial, as do interactions among genes and gene products. The
genomic change is particularly well exemplified by the infectious diseases
caused by the influenza viruses, the SARS virus, and HIV, all evolving
quickly as a result of mutation, recombination and selection. Studying the
dynamic nature of genes and genomes, tracing their phylogenetic
relationships and reconstructing their ancestral states allow biologists to gain
the advantage perceived by Aristotle thousands of years ago, i.e., “He who
sees things grow from the very beginning has the most advantageous view of
them.” For this reason, molecular evolution is now an essential component
of bioinformatics.

Many books have now been written on bioinformatics. They tend to fall
on two extremes. In one extreme are books featuring computational details
with a great deal of mathematics (e.g., Pevzner, 2000), while in the other
extreme one finds books treating bioinformatics mostly as a giant black box
(e.g., Baxevanis and Ouellette, 2005). The former is for computational
scientists and mathematicians who, after reading the book, will remain
computational scientists and mathematicians. The latter is for biologists who,
after reading the book, will remain biologists. Such books often have limited
contribution to creating interdisciplinary scientists needed in modern
biological and biomedical sciences.

Most biologists cannot appreciate the beauty of mathematics without
having the equations rendered to numbers. Remarkably, neither can
mathematicians and computational scientists appreciate the beauty of
biology without having the cells and bugs rendered to numbers. This book is

Preface xiii

my effort to render both mathematical equations and biology to numbers. It
is aimed at creating truly interdisciplinary scientists to prosper in the Wild
West of bioinformatics.

Although the book covers bioinformatics methods at a level more
advanced than most other bioinformatics books, the extensive numerical
illustration of these methods should make it accessible to most senior
undergraduate students and graduate students majoring in science and
software engineering. An additional advantage of using it as a textbook is
that nearly all algorithms in the book are implemented in a free and user-
friendly computer program (DAMBE).

Practising biologists with reasonably good programming skills should be
able to implement most algorithms themselves and check the output against
numerically illustrated examples in the book. They should soon find such
learning experience intellectually rewarding and mentally satisfying. Some
of them might even be pleasantly surprised to learn that they can quickly
create a much needed computational method that their computer technicians
have failed to create in a whole year.

I have tried my best to “make everything as simple as possible, but not
simpler”. While most numerical illustrations of advanced computational
algorithms in this book are toy examples, they require only simple
extensions to tackle real data. To paraphrase the late C. C. Li, it is not
necessary to create a rainbow spanning the sky to demonstrate how a
rainbow forms – a small one is convincing enough.

 “Please read the book”.

ACKNOWLEDGEMENT

It is said that only a military general fielding an army in the frontier could
truly appreciate and fully acknowledge the contribution of the comrades in
arms protecting his left and right, and the logistics department backing him
up from behind. Not being a general and having never been close to
becoming one, it seems inevitable that my acknowledgement is to be
inadequate and defective.

But I do have comrades in arms protecting me and friends and family
members helping me with logistics. I am fortunate to have Stephan Aris-
Brosou, Linda Bonen, Andre Dabrowski, Christian Detellier, Marc Ekker,
Guy Drouin, Donal Hickey, Stan Matwin, Youlian Pan, Steve Perry, Marcel
Turcotte, Vance Trudeau, Morris Zhang, and David Zhou as colleagues and
friends who have helped me not only in the role of comrades in arms but also
as an essential component of my logistics department.

Much of the book is based on my two undergraduate courses and a
graduate course on bioinformatics and molecular evolution at University of
Ottawa. My students, especially graduate students, have supplied me with
constant challenges and pedagogical insights. The following graduate
students have commented on various chapters and corrected typing errors:
Malisa Carullo, Sam Khalouei, Pinchao, Ma, Jan Mennigen, Gareth
Polidwor, Jason Popescu, Ziyu Song, Huiling Xiong, Xiaoquan Yao.

The internet has helped me keep contact with colleagues far and wide.
Many concepts and methods in the book were included as a consequence of
my discussions with Esther Betran, Adam Eyre-Walker, Joe Felsenstein,
Youngbi Fu, Olivier Gascuel, Brian Golding, Paul Higgs, King Jordan,
Sudhir Kumar, Wen-Hsiung Li, Jean Lobry, Manyuan Long, Axel Meyer,
Etsuko Moriyama, Eduardo Rocha, Eduardo Roman, Marco Salemi, Anne-
Mieke Vandamme, and Reiner Veitia.

xv

While many people have read and commented on some parts of the book,
Stephan Aris-Brosou and Yongbi Fu have read almost every chapter and
provided detailed comments and suggestions. Joe Felsenstein suggested,
upon a quick reading of an earlier draft, adding the EM algorithm for
maximum likelihood calculation and MCMC algorithm for evaluating
posterior probabilities in Bayesian inference. As a little known fact, it is also
Joe who, together with Ben Hall, got me started with molecular evolution
and phylogenetics when I developed severe allergic response to deer mice
that I used to study.

The patience of my editors, Joseph Burns and Marcia Kidston, are much
appreciated. As an embarrassing manifestation of my naivety, I promised, in
late 2003, to deliver the book to the publisher before February 15, 2005, and
I thought it was a conservative estimate. After all, I had been teaching these
computational methods for many years and producing a book seemed to
require little more than simply dumping my lectures to a printer. What a
humbling experience in writing the book!

I also wish to take this opportunity to thank my wife, Zheng, my daughter
Kimberley, and my sons Jeffery, Jeremy and Jadon, for their love, support
and entertainment. Without their constant demand for walks, talks and
outdoor activities, Daddy would probably have spent all his time in front of
computers and consequently ruined his health many years ago.

A family of increasing size has helped me better appreciate the
importance of financial matters, so that I will not forget to acknowledge the
grant support I have received from University of Ottawa and from Canadian
National Science and Engineering Research Council’s Discovery Grant,
Research Tools and Instrument Grant, and Strategic Grant for doing research
in bioinformatics and molecular evolution. While our funding agencies will
inevitably focus on research projects aiming to turn the white and light from
the sky into the golden and heavy in the bank, I am glad that there is still
some leftover for other enquiries.

Acknowledgement

Chapter 1

BLAST AND FASTA
Mathematics in string searching algorithms

1. INTRODUCTION

One might find it odd to start a book on bioinformatics and the cell with
BLAST and FASTA and I have received two kinds of objections from
readers of the book draft. The first argued that any book on a new subject
should provide some historical background so that the reader can position
himself or herself in proper historical context. The following one-paragraph
history of genomics, transcriptomics and proteomics is added in response to
this objection.

Genomics is often considered to have started in 1986 when two
significant events happened. First, the U. S. Department of Energy (DOE)
announced the Human Genome Initiative aiming to produce a reference
human genome sequence. Second, Leroy Hood developed the first automatic
DNA sequencer, which paved the way for the official beginning of the
Human Genome Project in 1990. The year 1995 witnessed the completion of
the first three bacterial genome sequencing projects, with the Haemophilus
influenzae Rd KW20 genome in July (Fleischmann et al., 1995), the
Synechocystis sp. PCC 6803 genome in August (Kaneko et al., 1996;
Kaneko et al., 1995), and the Mycoplasma genitalium G-37 genome in
October (Fraser et al., 1995). The first working draft of the entire human
genome was completed in 2000, soon to be followed by the simultaneous
publication of the human genome in Nature and Science in February, 2001
(Lander et al., 2001b; Venter et al., 2001). Transcriptomics started mainly
with the development of gene arrays such as macroarrays (Chuang et al.,
1993; Tao et al., 1999) and microarrays (Schena, 1996; Schena, 2003) and

2 Chapter 1

serial analysis of gene expression (Madden et al., 1997; Saha et al., 2002;
Velculescu et al., 1995; Velculescu et al., 1997; Zhang et al., 1997). The
terms “proteome” and “proteomics” were coined by Marc Wilkins and
colleagues in 1994 (Ezzell, 2002), and large-scale proteomic research started
with sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE
(Laemmli, 1970). Subsequent perfection of isoelectric focusing leads to the
most frequently used protein separation method, the 2D-SDS-PAGE. Large-
scale peptide analysis methods have been developed by John Yates and
colleagues (Washburn et al., 2001; Yates, 2004a, 2004b). Mass spectrometry
used in combination with affinity purification and/or chemical cross-linking
has made significant contributions to protein interaction networks (Figeys,
2003b, 2003a; Vasilescu and Figeys, 2006). Protein arrays have recently
been developed to directly assess protein-protein interactions (Figeys, 2002;
Sloane et al., 2002; Wilson and Nock, 2002). The characterization and
analysis of genomes, transcriptomes and proteomes have driven the
development of bioinformatics and resulted in many new insights in
understanding how living cells function (or fail to function as in cancer).

The second objection against starting the book with BLAST and FASTA
is based on (1) the approach might mislead the reader to think that this book
is all about something everybody knows and (2) few people would agree,
with good reasons, that any branch of science starts with a homology search
algorithm. If one is to write a book progressing from genomics to
transcriptomics and proteomics, then naturally one should start with
sequencing genomic fragments, contig assembly to assemble the sequence
fragments to a contiguous genome, and sequence annotation to show the
location of biologically interesting genes and motifs on the genome. This
should then be followed by the characterization and analysis of transcripts
and proteins in the cells, and finally bring the reader to a new horizon with a
new concept and perception of a living cell. Why start with BLAST and
FASTA?

The reasoning above is indeed eloquent and compelling, but it is
unfortunately against an important pedagogical principle, i.e., any theme of
presentation should begin with a common, ideally universal, entry point.
This pedagogical principle points unambiguously to BLAST and FASTA.
Many colleagues of mine share the opinion that BLAST and FASTA in
bioinformatics are equivalent to PCR in molecular biology wet labs and
deserve more recognition.

Yet my choice of starting with BLAST and FASTA is not just because of
the pedagogical principle, but more because of two other reasons. First, the
mathematics and computation underlying these two widely used
computational tools represent the common denominator of mathematics and
algorithms in many other bioinformatics tools. Second, while a large number

1. BLAST and FASTA 3

of researchers use BLAST and FASTA daily, very few actually understand
the statistical and computational aspects of them. A simple but systematic
presentation of the mathematical, statistical and computational aspects of
these bioinformatics tools will not only help researchers to better interpret
their BLAST and FASTA output and implement these methods in their own
programs, but also foster better appreciation of bioinformatics as an
interdisciplinary science and of its major players - in this case David
Lipman, Samuel Karlin, Stephen Altschul, William Pearson and many of
their colleagues.

BLAST and FASTA belong to the category of sequence search and
annotation tools. Once genomic scientists obtain a long contig or a genomic
sequence by contig assembly, the next step is obviously to find out what the
long stretch of A, C, G, T means. This is the subject of sequence annotation.
Sequence annotation is perhaps the most misunderstood subject. Laypersons
may equate sequence annotation to adding personal scribbles to the margin
of a novel, without realizing that a great deal of mathematics and
computation, as well as a great deal of biology, is needed to do the job.

The pivotal component of sequence annotation is gene finding. There are
two major categories of computational tools for gene-finding. The first is
based on known genes in molecular databases, and uses homology search
tools such as FASTA (Pearson and Lipman, 1988) and BLAST (Altschul et
al., 1990; Altschul et al., 1997). The second, better known as gene
prediction, is based on known gene structures, and represented by
GENSCAN (Burge and Karlin, 1997). Existing software for gene-finding
often combine both approaches, e.g., GenMark (Hayes and Borodovsky,
1998), GLIMMER (Salzberg et al., 1998), Orpheus (Frishman et al., 1998),
Projector (Meyer and Durbin, 2004) and YACOP (Tech and Merkl, 2003).

The methods for finding sequence similarities caught the attention of
biologists when an oncogene (i.e., a gene in a virus that causes a cancer-like
transformation of the infected cell), v-sys, was found to be similar to PDGF,
the platelet-derived growth factor (Doolittle et al., 1983; Waterfield et al.,
1983). The increasing number of genes and genomes deposited in GenBank
(Benson et al., 2005) implies increasing importance of methods for finding
genes by homology search. Indeed, sequence similarity search has been
claimed to be the most effective method for exploiting the information in the
rapidly growing molecular sequence databases (Pearson, 1998).

Conventional methods for similarity searchers are based on local
sequence alignment using dynamic programming (Smith and Waterman,
1981a). For a given scoring scheme, such methods will guarantee the finding
of the optimal alignment. However, such methods are very slow. FASTA
and BLAST use heuristic methods for similarity search. They may miss
homologous sequences, but are very fast. With terabytes of molecular

4 Chapter 1

sequences in the database to search through, the speed becomes more
important than sensitivity of homology detection.

A similarity search will generate a similarity score, which needs to be
evaluated for its statistical significance. BLAST became more popular than
FASTA partially because the early versions of FASTA did not evaluate the
statistical significance of the resulting sequence matches. Latter versions of
FASTA have incorporated such evaluations.

We will first offer a simple but detailed presentation of the mathematics
involving string matching, which allows us to design a filter to eliminate a
large number of insignificant matches. The string search algorithms used in
FASTA and BLAST are then presented at a level to allow programmers to
implement the algorithms in their own software.

2. MATHEMATICS OF STRING MATCHING

2.1 Basic concepts

Given PA, PC, PG, PT in a target (database) sequence, the probability of a
query sequence (Q), say, ATTGCC, having a perfect match of the target
sequence (D) is:

2 2
A C G Tp P P P P= (1.1)

Let LD be the target sequence length and LQ be the query sequence
length, the number of possible “matching operations”, i.e., number of times
one can shift Q against D in search for a perfect match of LQ letters, is

 (- 1)D Qn L L= + (1.2)

For example, with Q = ATG and D = CGATTGCCCG, LQ = 3, LD = 10,
n = 8.

The probability distribution of the number of matches follows
(approximately) a binomial distribution with p defined in Eq. (1.1), n defined
in (1.2), and q = 1 - p:

1. BLAST and FASTA 5

1! !
()

(1)!1! !()!

!

!()!
()

n n n x n x n

x n x

n n
p q p p q p q q

n x n x

n
p q

x n x
p x

− −

−

+ = + + + + +
− −

−
=

 (1.3)

If PA = PC = PG = PT = 0.25, then p = 0.253 = 0.015625, and q = 1 – p =
0.984375. With LQ = 3, LD = 10, we have n = 8. So the probabilities of
having 0, 1, 2, …, r exact matches of three letters are p(0) = 0.881626, p(1) =
0.111953, p(2) = 0.00622 and so on. The probability of having at least one
match is simply 1 – p(0) = 0.118373565.

 Binomial distribution is troublesome in computation when n is large
because computers will have overflow errors to get the factorial with a large
n. When np < 1 and n is very large, the binomial distribution can be
approximated by the Poisson distribution with mean and variance equal to
np. The mathematical detail of converting the binomial probability
distribution to the Poisson distribution is shown below:

! !
()

()! ! ()! !

(1)(2)...(1)
(1)

!

()

! ! ! !

x n x x x n

x

n

x x x x x
x np np np

n n
p x p q p q q

n x x n x x

n n n n x p
p

x q

n n p np
p e e e e

x x x x
λ λ

− −

− − − −

= =
− −

− − − +
= −

≈ = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1.4)

The approximation assumes a large n and a small p near 0, so that (n – x
+ 1) ≈ n, p/q ≈ p/1 = p, and (1 - p)n ≈ e-np. The Poisson distribution has only
one parameter λ, and P(x) is very easy to compute. To use the Poisson
distribution to approximate the binomial example above with n = 8 and p =
0.015625, we have λ = np = 0.125, and p(0) = 0.882496903, p(1) =
0.110312113, p(2) = 0.006894507, and so on. The probability of having at
least one match is simply 1 – p(0) = 0.117503097. Although our n is not
very large and p not very small, these values are still quite similar to those
from the binomial distribution.

The simple mathematics concerning string matching has practical
applications. For example, in serial analysis of gene expression or SAGE
(Velculescu et al., 1995), it is important to know how many transcribed
RNA may not contain the recognition site (GTAC) of the NlaIII restriction
enzyme and consequently would be missed by the method. Suppose the
genome is slightly GC biased with PC = PG = 0.3 and PA = PT = 0.2. What is

6 Chapter 1

the probability that a transcribed RNA will not have the GTAC? In this case
Q = GTAC and D is a specific transcribed RNA. Assuming LD = 3000, we
have n = (3000 – 4 +1), p = 0.32×0.22, and the Poisson parameter λ =
10.7892. The probability that a transcript does not have the restriction site is
0.000020621. However, if LD = 300, the probability that a transcript does
not have the restriction site is 0.343283. Thus, the SAGE method is strongly
biased against short mRNA.

Another string matching problem in SAGE is whether a sequence
fragment of 14 nucleotides are sufficient to identify a gene uniquely in a
genome, say a human genome with 3×109 bp. With LQ = 14 and LD = 3×109
and assuming equal nucleotide frequencies of 0.25 in the human genome, we
have the Poisson parameter λ = 11.17587085, and the probability of having
at least one random match is 0.999986. Thus, a sequence fragment of 14
nucleotides cannot uniquely identify a gene product with typical eukaryotic
genomes. This obvious fact is often not recognized. For example, the EMBL
site (http://www.embl-heidelberg.de/info/sage/) on SAGE states that “But
scientists don’t need to read long sequences. They’ve discovered that just
fourteen letters are enough to match a RNA to the precise gene that produced
it.” This is false. One can verify this easily by searching the tags in a
published SAGE experiment characterizing human transcriptome
(Velculescu et al., 1999) against human protein-coding genes. Some tags
have more than 100 matches, although to my knowledge no published paper
based on SAGE experiment has mentioned such multiple-match tags.
Fourteen letters are not enough, and long SAGE (Ryo et al., 2000; Saha et
al., 2002) is necessary.

The examples above involve matching the entire query string Q against
the target string D. Now we consider the problem of matching a substring of
Q against a substring of D. We designate the length of the shared substring
as L.

Given Q, D, LQ and LD, and assuming PA = PC = PG = PT = 0.25, the
probability of finding an exact match of at least L (L ≤ LQ and L ≤ LD)
consecutive letters is p = 0.25L = 2-2L. The match of L consecutive letters
between Q and D can happen at m = (LQ – L +1) positions on Q and at n =
(LD – L +1) positions on D. You might have noted, in the BLAST output,
terms such as “Effective length of query” and “Effective length of database”.
These terms are equivalent to m and n, respectively. There are mn possible
matching operations, each with a probability of 0.25L of getting a match of L
consecutive letters. The expected number of matches with length at least L is
therefore

 0.25LE mn= (1.5)

1. BLAST and FASTA 7

Most BLAST web interfaces allow you to input a cutoff E-value.
Suppose we are to BLAST sequence Q of length 10 against genomic
sequence D of length 10,000,000. Does it make sense to set the E-value to
0.01? It does not, because we expect nearly 10 perfect matches of Q against
D by random chance in this case. In other words, it is impossible for any
returned match to have an E-value of 0.01. The smallest E-value among the
returned matches (i.e., those perfect matches) will be nearly 10. A user-
friendly implementation of the BLAST or FASTA algorithm would ignore
the input E-value and return all perfect matches or at least display a tactful
message saying that the user has committed a small and forgivable sin, but a
strict implementation of the algorithm will simply return you with no match
(A computational tool is user-friendly when the computer programmer
works under the assumption that some users are fools).

In BLAST and FASTA literature, one may also encounter an equation in
the following form

 RE mne λ−= (1.6)

Eq. (1.6) and Eq. (1.5) are equivalent with λ = - ln(0.25) = 1.386294361
and R = L, where the value of 0.25 arises from the assumption of equal
nucleotide frequencies.

Noting that 0.25 = 2-2, we can also rewrite Eq. (1.5) as

2 2 2L SE mn mn− −= = (1.7)

where S = 2L. Eq. (1.7) has become particularly useful because it was found
through computer simulations (Altschul, 1996; Altschul et al., 1997;
Pearson, 1998; Waterman and Vingron, 1994) that, when S is computed with
a particular scoring scheme, Eq. (1.7) can be applied to situations involving
two strings not only with consecutive matched letters, but also with
mismatches and gaps.

Figure 1-1 shows the output from BLASTing a nucleotide query
sequence against a local BLAST database containing all annotated
Mycoplasma genitalium coding sequences. From the output (Figure 1-1) we
see 35 matches, 3 mismatches, 1 gap and 2 gap extensions. The scoring
scheme has the match score (M) equal to 1, mismatch score (MM) equal to -
3, gap open penalty (Go) equal to 5 and gap extension penalty (Ge) equal to 2
(Figure 1-1). When the raw score (R) is computed according to this scoring
scheme, and the bit-score (S) is computed with R and two scaling factors λ
and K, Eq. (1.7) can be used to obtain the E-value:

8 Chapter 1

- -

 35 1 3 (-3) -1 5 - 2 2 17

 - ln() 1.37 17 - ln(0.711)
 34.1

ln(2) ln(2)

 2 26 520557 2 0.000735S S

R

R K
S

E mn

λ

= × + × × × =

×
= = ≈

= = × × =

 (1.8)

where λ and K, shown in every BLAST output, are scaling constants
(Altschul et al., 1997, and literature cited therein) estimated from computer
simulation. Note that the E-value is calculated in the same way as in Eq.
(1.7).

BLASTN 2.2.4 [Aug-26-2002]
...
Query= Seq1 38
Database: MgCDS

480 sequences; 526,317 total letters
Score E

Sequences producing significant alignments: (bits) Value
MG001 1095 bases 34 7e-004
Score = 34.2 bits (17), Expect = 7e-004
Identities = 35/40 (87%), Gaps = 2/40 (5%)

Query: 1 atgaataacg--attatttccaacgacaaaacaaaaccac 38
|||||||||| ||||||||||| |||||| ||||||||

Sbjct: 1 atgaataacgttattatttccaataacaaaataaaaccac 40

Lambda K H
1.37 0.711 1.31

Matrix: blastn matrix:1 -3
Gap Penalties: Existence: 5, Extension: 2
…
effective length of query: 26
effective length of database: 520,557

Figure 1-1. Output from a nucleotide BLAST query.

One may note that L in Eq. (1.5) is the same as R given M = 1, because R
= L×M = L in case of exact string match with no mismatches or gaps
involved. Because S = 2L in (1.7) and because L = R with ungapped match
and M = 1, we have S = 2R. This relationship between S and R is similar to
their relationship specified in the second equation in in Eq. (1.8). Note that R
will increase with the length of the query and target sequences. With large R,
S is approximately equal to 2R, i.e.,

 - ln() 2 (with large R)
ln(2)

R KS Rλ
= ≈ (1.9)

1. BLAST and FASTA 9

The E-value can be used as the λ parameter in the Poisson distribution in
Eq. (1.4) to get the probability of having 0, 1, ..., x matches that are as good
or better than the reported match. For our example, p(0) = 0.999265217, p(1)
= 0.000734513, and so on. According to the Poisson distribution in Eq. (1.4),
the probability of having at least one match (i.e., x ≥ 1) that is as good or
better than the reported match, or in other words the probability of having a
raw score (R) at least as large as the observed raw score (Robs), is

(1) () 1 (0) 1 1
RE mne

obspr x pr R R p e e
λ−− −≥ = ≥ = − = − = − (1.10)

where we have substituted E with the expression in Eq. (1.6). Note that
BLAST scales the E value with a parameter K, which makes the BLAST
output of the E value a bit too conservative and is perhaps not necessary.

The last term in Eq. (1.10) has a rather special term associated with it in
probability theory. In short, the probability distribution

()
Rmnep R e

λ−−= (1.11)

with the ugly and cumbersome exponential of an exponential, is a special
form of the extreme value distribution or EVD, also referred to as the
Gumbel distribution in honor of the pioneer of the statistics of extremes
(Gumbel, 1958). The EVD is used in BLAST (Altschul et al., 1990; Altschul
et al., 1997) and FASTA (Pearson, 1998) to attach statistical significance to
a match score between two sequences.

The E-value is the expected number of random matches with match
scores that are equally good or better than the reported one. It is not a
probability. This should have been obvious to anyone, yet my students often
refer to it as a probability (which partially reflects how ineffective I am as a
teacher). However, when E is very small, then it can be approximately
interpreted as the probability of finding one match that is as good as or better
than the reported one. This is shown below based on the Poisson
distribution:

0
(1) because lim 1E E

E
p e E E e− −

→
= ≈ = (1.12)

An inverse problem is to obtain the length of an exact match given a
critical E-value. For example, the E-value is an input parameter during a
BLAST search. One can take such an input E-value to find the critical length
of exact string matches, designated as Lcrit. This Lcrit allows us to quickly
eliminate all exact string matches shorter than Lcrit. So how to obtain Lcrit?

10 Chapter 1

A naïve approach is to try to solve the following equation for Lcrit:

-2 2 2 (1)(1)2crit critL L
crit Q crit D critE mn L L L L −= = − + − + (1.13)

It turns out that Eq. (1.13) does not have an analytical solution for Lcrit
because Lcrit is an implicit function of Ecrit. To obtain Lcrit given Ecrit, one
would have to use numerical solution by iteration. Efficient iteration
methods are available (Press et al., 1992), but one may also use the
approximate method below:

ln

2ln(2)

guess

crit
crit guess

E
E

L L

⎛ ⎞
⎜ ⎟
⎝ ⎠= + (1.14)

where

22 guessL
guess Q DE L L −= (1.15)

ln

2 ln(2)

crit

Q D
guess

E
L L

L

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= − (1.16)

Lguess is derived from Eq. (1.13) by assuming LQ >> Lcrit and LD >> Lcrit,
so that (LQ - Lcrit +1) ≈ LQ and (LD - Lcrit +1) ≈ LD. For this reason Lguess
should be constrained to be no larger than (LD – 1) or (LQ – 1).

Now if we have LQ = 100, LD = 10000, Ecrit = 0.01, then Lguess =
13.28771, and,

22 0.876
ln(/) / ln(4) 13.192251

guessL

crit guess crit

E mn
L L E E

−= =
= + =

 (1.17)

Thus, when BLASTing a query sequence of 100 bases against a database
sequence of 10,000 bases with a critical E-value of 0.01, we may ignore
those with an exact string match shorter than 13 bases. Table 1-1 shows that
Eq. (1.14) is good over a wide range of LQ and LD values. I should
emphasize here again that one should set sensible Ecrit for calculating Lcrit.
For example, if LQ = 10 and LD = 10,000,000 bases, one would be silly to

1. BLAST and FASTA 11

compute Lcrit by setting Ecrit = 0.01 or smaller. As I have mentioned before, it
is impossible to have any sequence match with Ecrit = 0.01 or smaller in this
case. Consequently, any Lcrit calculated from such a Ecrit would be of no use.

Table 1-1. Selected results computing Lcrit by applying Eq. (1.14) with Ecrit = 0.01. The values
in last column is the E-value based on Lcrit and are very close to the preset critical value of
0.01.
LQ LD Lquess Eguess Lcrit E
1000 10000 14.94868 0.009847 14.93754 0.0100
1000 1000 13.28771 0.009756 13.26988 0.0100
10000 100 13.28771 0.008760 13.19225 0.0100
1000 15 10.25827 0.003792 9.55885 0.0112
100 15 8.59730 0.004560 8.03089 0.0108
15 15 7.22882 0.003419 6.45470 0.0118
15 1000 10.25827 0.003792 9.55885 0.0112
15 10000 11.91923 0.002718 10.97942 0.0123
15 1000000 14.00000 0.007450 13.78770 0.0111

3. STRING-MATCHING ALGORITHMS IN FASTA
AND BLAST

Heuristic local similarity search algarithms, which both FASTA and
BLAST algorithms belong to, generally include the following three steps: (1)
finding an exactly or inexactly matched string segment, (2) evaluating the
statistical significance of the match, and (3) if the match is statistically
significant, extending the matched string segment in both directions by
dynamic programming. The second step has already been covered in the
previous section, and the third step will be covered in the chapter on
sequence alignment. This section will cover the FASTA and BLAST
algorithms used in the first step. It is the difference in this first step that is
responsible for the higher sensitivity of the FASTA algorithm than the
BLAST algorithm.

3.1 FASTA

The FASTA set of programs (Pearson, 1994; Pearson and Lipman, 1988)
in fact implements a number of different search algorithms, and I will
illustrate only the basic ones here. The purpose is to give computer
programmers sufficient details for them to implement the algorithm for
homology searching in their own programs.

Suppose we wish to find the similarity between the following query
sequence (Q) and the target sequence (D), with sites numbered from 0
according to the disputable convention of computation:

12 Chapter 1

 0123456789012345678
Q: ACCGCGACCCTGACGAATA
D: ACCGCGATGACGAATA

The FASTA algorithm consists of three steps in achieving the heuristic

local alignment. First, it uses a special form of hashing (illustrated below) to
hash D for a given word length. For simplicity, we start with a word length
of 1 (in which case “word” and “letter” become synonymous, i.e., a letter is
a word of length 1), with the resulting hash table shown in Table 1-2. We
note that word A occurs at positions 0, 6, 9, 12, 13, and 15 in D, and these
numbers occupy the first row in Table 1-2. Word C occurs at positions 1, 2,
4 and 10 and the numbers occupy the second row of Table 1-2 and so on.
The numbers in Table 1-2 will be referred to as HD numbers or HD values,
where H stands for “hash” and the subscript D stands for the target
(database) sequence. HD values are needed in the second step. For a fixed
word length, the computation of HD values could in fact be done before the
user has submitted any query, and consequently would belong to what is
called database pre-processing.

Table 1-2. First step in the FASTA algorithm: generating a hash table of the target sequence
D with a word length of 1. HD values are the sites of the corresponding base (A, C, G and T)
found in D, e.g, base A is found at site 0, 6, 9, 12, 13 and 15, respectively.
Base HD
A 0 6 9 12 13 15
C 1 2 4 10
G 3 5 8 11
T 7 14

In algorithmic terms, a hash table is made of an array of N elements each

being a linked list of variable lengths. The hash table in Table 1-2 has an
array of four elements (designated A, C, G, and T) each with a linked list of
length 6, 4, 4, and 2, respectively.

In the second step of the FASTA algorithm, we designate the site number
of Q as SQ and compute SQ – HD (Table 1-3). For example, nucleotide A
occurs at site 0 in Q, and the differences (i.e., SQ – HD) between this 0 and
the six HD values for A in Table 1-2 (0, 6, 9, 12, 13, and 15), are
consequently (0 – 0), (0 – 6), (0 – 9), (0 – 12), (0 – 13) and (0 – 15),
respectively (first row of SQ – HD values in Table 1-3). Similarly, nucleotide
C occurs at site 1 in Q. Because the HD values for C is 1, 2, 4, and 10,
respectively (Table 1-2), we have (1-1) = 0, (1-2) = 01, (1-4) = -3, and (1-10)
= -9. These values occupy the second row of the SQ-HD values in Table 1-3.

1. BLAST and FASTA 13

Table 1-3. Second step in the FASTA algorithm: computing the difference between the site
number of the query sequence Q (SQ) and HD.
Q SQ SQ - HD
A 0 0 -6 -9 -12 -13 -15
C 1 0 -1 -3 -9
C 2 1 0 -2 -8
G 3 0 -2 -5 -8
C 4 3 2 0 -6
G 5 2 0 -3 -6
A 6 6 0 -3 -6 -7 -9
C 7 6 5 3 -3
C 8 7 6 4 -2
C 9 8 7 5 -1
T 10 3 -4
G 11 8 6 3 0
A 12 12 6 3 0 -1 -3
C 13 12 11 9 3
G 14 11 9 6 3
A 15 15 9 6 3 2 0
A 16 16 10 7 4 3 1
T 17 10 3
A 18 18 12 9 6 5 3

The third (and the last) step is simply to compile a frequency distribution

of (SQ – HD) values. We note that there are 10 (SQ – HD) values equal to 0.
This means 10 matched letters between Q and D without shifting either
sequence left or right. We can also find 11 (SQ – HD) values equal to 3 in
Table 1-3, which means that by shifting D 3 positions to the right against Q,
we will get a match of 11 letters:

Q: ACCGCGACCCTGACGAATA
D: ---ACCGCGATGACGAATA

For matching two long sequences, it is more informative to generate a

histogram of the (SQ – HD) values (Figure 1-2). The histogram not only helps
us visually see which value has the highest frequency, but is also very useful
for obtaining nonintersecting matched segments. For example, knowing that
one can get a match of 10 letters without shifting D left or right relative to Q
and that one can get a match of 11 letters by shifting D 3 spaces to the right
against Q helps us identify two non-intersecting matched segments as
follows, with the first having 7 consecutive matches and the second having 9
consecutive matches:

Q: ACCGCGACCCTGACGAATA
D: ACCGCGA---TGACGAATA

14 Chapter 1

One might wish to have a formal definition of “nonintersecting matched
segments”. They are matched segments that do not overlap and are often
defined with reference to intersecting matched segments. Take the following
two sequences for example:

Q: ACCGCGACCCTGACGAATA
D: ACCGCGACGACCCTGACGAATA

There are two intersecting matched segments below, i.e., matched

segments that overlap:

Q: ACCGCGAC......
D: ACCGCGAC......

Q:GACCCTGACGAATA
D:GACCCTGACGAATA

0

2

4

6

8

10

12

-1
5

-1
2 -9 -6 -3 0 3 6 9 12 15 18

Shift

N
m

at
ch

Figure 1-2. Frequency distribution of SQ – HD values in Table 1-3.

While FASTA algorithms are for local sequence alignment, the trick it
offers for finding nonintersecting segments is very important in aligning two
very long sequences with sequence length in the range of millions. For such
sequences, direct application of dynamic programming is often impractical
because of limited memory in computers to store the matrices, e.g., with two

1. BLAST and FASTA 15

sequences with their lengths in the order of 1,000,000, and with the scoring
matrix containing only integer values each taking four bytes, the matrix
alone would consume 4×1012 bytes. Few computers today have such a large
amount of memory. However, one can use FASTA to first find
nonintersecting segments and use them as anchor points and then align the
sequences between anchor points by applying the dynamic programming
algorithms which will be explained in the chapter on sequence alignment.

It is easy to see that, with increasing length of Q and D, (SQ – HD) values
will be too many, their frequency distribution will become less informative,
and the computation will be more tedious, if we continue to use a word
length of 1. In practical FASTA applications, the word length is almost
always larger than 1 and would increase with the sequence length.

We now illustrate the application of the algorithm with a word length of
2. There are 16 dinucleotides and their occurrences in sequence D are listed
in the first four columns of Table 1-4. These four columns are equivalent to
Table 1-2 containing HD values. The sequence Q is then represented as
overlapping dinucleotides. For example, a sequence “AACG” would be
represented as three overlapping dinucleotides as “AA”, “AC” and “CG”.
Such a representation of sequence Q, together with SQ and SQ-HD values, are
compiled in the last six columns in Table 1-4.

Note that the hash table in Table 1-4, represented by the first four
columns, is made of an array of 16 elements each with a linked list with its
length varying from 0 to 3. Also note that the hash table would be mostly
empty had we used a word length of 3 or 4 for comparing Q and D. The
word length should increase with the sequence length of Q and D.

We have many fewer (SQ – HD) values with a word length of 2 (Table 1-
4) than with a word length of 1 (Table 1-3). This implies a substantial saving
of computational time. We note eight (SQ – HD) values equal to 3 (Table 1-
4), implying eight dinucleotide matches between Q and D. These eight
overlapping dinucleotides are TG, GA, AC, CG, GA, AA, AT, and TA:

Q: ACCGCGACCCTGACGAATA
D: ---ACCGCGATGACGAATA

In practical computation involving nucleotide sequences, a word length

of 4 is frequently used because tetranucleotides AAAA, AAAC, …, TTTT
correspond to byte values 0, 1, …, 255. In other words, each tetranucleotide
can be stored in only one byte, with A, C, G, T each represented by two bits,
i.e., 00, 01, 10 and 11, respectively. This means that AAAA is coded by the
binary number 00000000, AAAC by 00000001, ……, and TTTT by
11111111. BLAST databases also use this encoding to save storage space for
nucleotide sequences.

16 Chapter 1

Table 1-4. Illustration of the FASTA algorithm with word length of 2. (1) A hash table of 16
dinucleotides (DiNuc) for D, with the numbers indicating the position of the dinucleotides in
D, e.g., dinucleotide AA occurs at position 12 of D). (2) Q in overlapping dinucleotide
representation and its corresponding site index (SQ). (3) Computation of the (SQ – HD) values.
For example, the first AC in Q occurs at site 0, so its SQ = 0. AC occurs in D at positions 0
and 9, respectively, which are its HD values. So the two (SQ – HD) values for the first
dinucleotide AC in Q is (0 – 0) and (0 – 9), respectively.
(1) (2) (3)
DiNuc HD Q SQ SQ – HD
AA 12 AC 0 0 -9
AC 0 9 CC 1 0
AG CG 2 0 -2 -8
AT 6 13 GC 3 0
CA CG 4 2 0 -6
CC 1 GA 5 0 -3 -6
CG 2 4 10 AC 6 6 -3
CT CC 7 6
GA 5 8 11 CC 8 7
GC 3 CT 9
GG TG 10 3
GT GA 11 6 3 0
TA 14 AC 12 12 3
TC CG 13 11 9 3
TG 7 GA 14 9 6 3
TT AA 15 3
 AT 16 10 3
 TA 17 3

3.2 BLAST

While FASTA is often found in many European data centers, BLAST is
the main, and often the only, search engine in sequence database servers
hosted in North America. So it is relevant for a bioinformatics student to
gain some familiarity with the algorithm.

The BLAST algorithm has three steps. For BLAST servers, the first is the
pre-processing of the database sequences and does not consume query time
(because it is done before the user submits the query). Each database
sequence of length LD is chopped into overlapping words of a fixed length L,
with word i starting at position i where i = 1, 2, ..., (LQ-L+1). The frequently
occurring words are eliminated to reduce the chance of random matching,
and low-complexity words (e.g., AAAAAAA) are eliminated to reduce the
bias in calculating probabilities and expected values. For example, if
sequence D = “AAAAA” and sequence Q = “AAAA”, then matching the

1. BLAST and FASTA 17

two sequences will lead to two exact matches of length 4. Our expectation,
according to Eq. (1.5) and assuming equal nucleotide frequencies, is much
smaller than two:

-2 2 4

4 1 4 4 1 1

4 1 5 4 1 2

2 1 2 2 0.0078125

Q

D

L

m L

n L

mnμ − ×

= − + = − + =

= − + = − + =

= = × × =

 (1.18)

The remaining words are organized into hash tables. For a powerful
BLAST server, these hash tables for database sequences can be stored in
memory. If the word length is 4, then a hash table will contain an array of
256 elements each with a linked list. The hash table for the following partial
COI sequence from Masturus lanceolatus is shown in Table 1-5.

CGCUGAUUUUUCUCAACCAACCAUAAAGAUAUCGGCACCCUUUAUUUAGUAUUUGGUGCAUG

AGCCGGAAUAGUGGGAACGGCCUUAAGCCUGCUCAUUCGAGCGGAGCUAAGUCAACCUGGGG

CUCUCCUUGGAGACGACCAAAUUUACAAUGUCAUCGUCACAGCACAUGCAUUUGUAAUAAUU

UUCUUUAUAGUAAUACCAAUUAUGAUCGGGGGCUUUGGAAAUUGACUCAUCCCUCUUAUGAU

UGGGGCCCCUGAUAUGGCCUUUCCCCGGAUGAACAAUAUGAGCUUUUGACUAUUACCCCCCU

CUUUCCUCCUCCUCCUUGCUUCUUCAGGCGUCGAAGCAGGUGCCGGAACGGGGUGGACUGUC

UACCCUCCUUUAGCCGGAAAUUUAGCCCACGCAGGCGCCUCUGUUGACUUAACAAUCUUUUC

CCUUCAUCUGGCCGGCAUCUCCUCAAUUCUAGGGGCCAUUAACUUUAUCACAACAAUCAUUA

AUAUGAAACCACCUGCAAUUUCUCAAUACCAAACCCCCUUGUUUGUGUGAGCAGUCCUCAUC

ACGGCAGUACUUCUUCUUCUCUCGCUCCCAGUCCUUGCAGCU

Table 1-5. Hash table for the partial COI sequence from Masturus lanceolatus.
Tetranucleotides not present in the sequence will have an empty linked list.
Word Index Linked list
AAAA 0
AAAC 1 501 526
AAAG 2 24
AAAT 3 142 224 389
AACA 4 279 422 485
AACC 5 14 18 115 502 527
AACG 6 77 356
AACT 7 474
AAGA 8 25
AAGC 9 86 343
AAGG 10
…
TTTG 254 51 174 219 292 537
TTTT 255 6 7 184 291 429

18 Chapter 1

In the second step, the query sequence (Q) is chopped into words of the
same length, and frequently occurring words (e.g., if A is very frequent, then
a word made of all A’s is also expected to be frequent and have a high
chance of being encountered by random chance) as well as words of low
complexity (e.g., known sequence repeats) are discarded. The remaining
words are then searched against the hash table of the database sequences
(Ds). For example, if the word length is set to 4, and the first tetranucleotide
in Q is AAGG, then its index is 0×64+0×16+2×4+2 = 10 (Note that A, C, G,
T are coded here as 0, 1, 2, 3) and we can immediately confirm its absence in
D because there is no entry in the linked list indexed by 10 (Table 1-5).
Similarly, if the search word is TTTG, then its index is 3×64+3×16+3×4+2 =
254, and we immediately know that it occurs at positions 51, 174, 219, 292,
and 537 (These numbers, generated by computer, are 0-based, i.e., the first
nucleotide is at position 0). Each match is a seed to be extended in both
directions.

Third, the length of the consecutive exact matches is checked against a
cutoff score. For example, one can use Eq. (1.14). Alternatively, the bit-
score (S) can be used as a critical cutoff value:

critical 2 2 2S =log (mn) - log (E) = log (mn/E) (1.19)

where m and n are effective query and database length, respectively, and the
E-value is taken from user input (see the previous section for more details).
If an observed S value (Sobs), calculated according to Eq. (1.8), is greater
than Scritical, then the query is reported, otherwise it can be ignored.

FASTA is generally considered to be more sensitive than BLAST in
homology detection. This may be attributed to the fact that BLAST starts
with exact string matching, while FASTA starts with inexact string
matching. The BLAST algorithm has problems in finding sequence
similarities between extremely GC-biased and extremely AT-biased
sequences, e.g.,

S: CCA CGA GGT AAA ATT
T: CCG CGG GGC AAG ATC

The two sequences are identical at the amino acid level and differ only at

the third codon positions. One is AT-rich with its third codon positions all
being A or T, whereas the other is GC-rich with its third codon positions all
being C or G. BLAST will fail to report the sequence similarity because it
does not have an exact match to start with. In contrast, FASTA will readily
identify the sequence similarity. You should apply the FASTA algorithm to
these two sequences as an exercise.

1. BLAST and FASTA 19

Although FASTA is generally more sensitive than BLAST, I should add
here that both are heuristic algorithms that can find a solution that is quite
good but not necessarily optimal. To guarantee the finding of the best
match(es), one needs to use the sequence alignment method with dynamic
programming (the subject of the next chapter).

Heuristic algorithms are used often in solving problems that are
computation intensive, and are of great practical value. A well known
example to illustrate the point is the problem of searching for the largest corn
in a large cornfield versus the problem of searching for a “very large” corn,
say within the top 1%. The first involves the measuring and comparison of
all corns in the cornfield, which may be extremely laborious, although you
are guaranteed to find the largest corn. In contrast, the second problem can
be easily solved by taking a random sample of corns, fitting a statistical
distribution to the corns, finding the size of the corn that lies above 99% of
the distribution, and using this criterion to search for the corn that is larger
than the fixed criterion (or simpler, if the sample is sufficiently large,
picking the largest corn in the sample). In addition, after estimating the
density of the corn and measuring the size of the cornfield, we can estimate
the total number of corns in the field and obtain a fairly good estimate of the
size of the largest corn. The formulation and solution of the second problem
belong to the heuristic approach.

The heuristic approach is used not only in biology or science, but also in
sociology, psychology and economics. For example, Herbert A. Simon,
Nobel laureate in economics in 1978, contributed significantly to the
revelation of practical human decision-making as a process of searching for
satisfactory solutions by heuristic methods rather than optimal solutions by
optimality models. Choosing a religion to guide our behavior is in most
cases based on the result of a heuristic approach. In our life time, we will
never be able to do an exhaustive comparison of different religions, and we
typically adopt one that seems to work pretty well for us and for our
families. The happy ending in the movie “Pretty Woman” is a good example
of a successful application of a fast heuristic approach. Indeed, one may
never get married if one is determined to find the best spouse. However, a
student of mine has brought my attention to the increasing divorce rate
which serves as a good illustration of the failure of the heuristic approach in
building a family. This highlights an important point concerning heuristic
method. Being heuristic does not mean that one would settle with any
solution, even a very haphazard one. So don’t take me responsible for your
hasty heuristic approach in real life.

20 Chapter 1

4. HOMOLOGY SEARCH AND SEQUENCE
ANNOTATION

Both genomic sequencing and large-scale characterization of expressed
sequence tags (ESTs) demand efficient computational tools for automatically
annotating the large number of the resulting sequence reads. I have already
mentioned at the beginning of the chapter that two major categories of gene-
annotation methods are in current use, with one based on known genes in
molecular databases, and the other based on known gene structures.

I wish to highlight two important points here. First, the rapid increase of
well-annotated genomic databases coupled with the improvement of the
special-purpose databases for protein functional classification such as COG
(Tatusov et al., 2003; Tatusov et al., 1997), pFAM (Bateman et al., 1999;
Bateman et al., 2004), SMART (Letunic et al., 2004; Letunic et al., 2002;
Ponting et al., 1999; Schultz et al., 2000), pSort (Nakai and Horton, 1999)
and CDD (Marchler-Bauer et al., 2005; Marchler-Bauer et al., 2002) has
dramatically increased the popularity of the first approach. A number of EST
annotation platforms using the first approach are now available (Ayoubi et
al., 2002; Davila et al., 2005; Koski et al., 2005; Mao et al., 2003; Martin et
al., 2004; Paquola et al., 2003), based on searching against the non-
redundant GenBank files or/and special-purpose databases for protein
functional classification.

Second, the proliferation of the primary databases and of the secondary
sequence annotation platforms have given rise to two major problems for
practicing researchers (Marchler-Bauer et al., 2005; Marchler-Bauer et al.,
2002). The first is that any large-scale query against any of these primary
databases such as COG (Tatusov et al., 2003; Tatusov et al., 1997), pFAM
(Bateman et al., 1999; Bateman et al., 2004), SMART (Letunic et al., 2004;
Letunic et al., 2002; Ponting et al., 1999; Schultz et al., 2000) will take
unbearable amount of time. To make things worse, different databases
contain overlapping but not identical subsets of proteins and protein families,
and one often has to query these databases sequentially in order to maximize
the chance of having a good hit. Second, different databases have different
methods for classifying proteins into functional families and a sequence
query against different databases may yield conflicting results. CDD
(Marchler-Bauer et al., 2005; Marchler-Bauer et al., 2002) was created
mainly in response to these two problems. First, it imports and cross-
validates the protein annotations from major protein function databases such
as COG (Tatusov et al., 2003; Tatusov et al., 1997), pFAM (Bateman et al.,
1999; Bateman et al., 2004), SMART (Letunic et al., 2004; Letunic et al.,
2002; Ponting et al., 1999; Schultz et al., 2000), removes redundant
annotations, resolves annotation conflicts and augment the database entries

1. BLAST and FASTA 21

by adding other curated protein sequences. Second, CDD uses the RPS-
BLAST search engine to dramatically increase the search speed. This is
augmented by pre-computation of much of the output. The joint effect of
these improvements results in more hits, fewer conflicts and shorter search
time than before. One particular advantage of CDD is its web API
(Application Programming Interface) which allows programmers to perform
automated searches and annotations.

5. POSTSCRIPT

A student of mine once told me that she always found it miraculous to
receive many homologous sequences from diverse organisms after
BLASTing a human gene against GenBank. The various forms of nature’s
creation are so intricately and closely related to each other, and people of
different races or different nations are so similar to each other genetically,
that she found it a mystery that modern humans were still so ready and
willing to kill and torture each other. “Aren’t we killing ourselves by killing
people with their genomes essentially identical to ourselves?” she asked.

I think we are, and we should stop. I can’t resist the temptation of
concluding this chapter with a quote from Albert Einstein (Einstein et al.,
1931, p. 6) when he was discussing man’s relationship to others: “This
subject brings me to that vilest offspring of the herd mind - the odious
militia. The man who enjoys marching in line and file to the strains of music
falls below my contempt; he received his great brain by mistake - the spinal
cord would have been amply sufficient. This heroism at command, this
senseless violence, this accursed bombast of patriotism - how intensely I
despise them! War is low and despicable, and I had rather be smitten to
shreds than participate in such doings.”

Yet in spite of Einstein’s antiwar stance, his successes have often been
depicted with military analogies, such as how the established castles of
physics came tumbling down at the trumpet of his theory of relativity, as if
Einstein is a military general bent on conquering. In a similar vein, Louis
Pasteur was accredited with military and strategic genius, that “he had
something of Napoleon in his way of always taking the initiative, of
suddenly changing the terrain, of showing up where he was least expected,
of suddenly concentrating his forces in a narrow sector to make the
breakthrough, …… Without a doubt, Pasteur’s saga was as stirring as
Napoleon’s!” (Jacob, 1988, p. 248).

Why does a life of saving have to be glorified with a life of killing?
Why should human evolution in the 21st century still be shaped by the

ugly selection force called wars?

22 Chapter 1

Einstein signed his last letter, one week before his death, giving
permission to have his name on a manifesto urging all nations to give up
nuclear weapons. May the international peace he had dreamed of all his life
arrive sooner!

Chapter 2

SEQUENCE ALIGNMENT

1. INTRODUCTION

Sequence alignment is not only the essential first step in molecular
phylogenetics, quantification of substitution patterns, and dating of
speciation and gene duplication events, but also a powerful tool for identify
mutations leading to genetic diseases. For example, aligning the β-
hemoglobin gene sequence from one type of β-thalassemia against the
normal β-hemoglobin gene immediately reveals an insertion of T at site 79
(Figure 2-1).

10 20 30 40 50 60

----|----|----|----|----|----|----|----|----|----|----|----|--

Normal ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT

Thalas. ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT

**

70 80 90 100 110 120

--|----|----|----|----|----|----|----|----|----|----|----|----

Normal GGATGAAGTTGGTGGT-GAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGG......

Thalas. GGATGAAGTTGGTGGTTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGG......

**************** ***************************************

Figure 2-1. Alignment between the normal and mutant β-hemoglobin gene sequences.

The insertion creates an inframe stop codon and results in a truncated β-
hemoglobin protein. When the β-hemoglobin locus is heterozygous with one

24 Chapter 2

mutant and one normal gene, the carrier is said to have β-thalassemia minor
and can be easily detected by gel electrophoresis because the mutant β-
hemoglobin, being much shorter than the normal, would migrate much faster
on the gel under an electric field.

This chapter covers (1) pairwise global and local alignment by dynamic
programming with different scoring schemes, from the simplest scoring
scheme with match/mismatch scores and gap penalties all specified by
constants, to more useful scoring scheme with match/mismatch scores
specified by a similarity matrix and gap penalties specified by the affine
function, (2) profile alignment between one sequence and a set of aligned
sequences which is essential for practical implementation of multiple
sequence alignment, and (3) multiple alignment that is reduced to pair-wise
alignment and profile alignment by using a guide tree. Most textbooks on
bioinformatics omit the affine function, and no textbook I know of includes
any detailed explanation of profile alignment.

Dynamic programming algorithms constitute a general class of
algorithms not only used in sequence alignment, but also in many other
applications. For example, the Viterbi algorithm and the forward algorithm
used in hidden Markov models (HMM) are also dynamic programming
algorithms. We will cover HMM in great detail and illustrate with numerical
examples latter. Learning the dynamic programming algorithms used in
sequence alignment paves the way for more advanced applications in latter
chapters.

Sequence alignment methods, especially those for obtaining multiple
alignments, are central to molecular biology, evolution and phylogenetics.
One of the global sequence alignment programs, ClustalW (Higgins and
Sharp, 1988; Thompson et al., 1994) is probably the second most used
bioinformatics tool next to the BLAST suite of programs (Altschul et al.,
1990; Altschul et al., 1997).

2. PAIRWISE ALIGNMENT

Given two strings S (=s1s2...sn) and T (=t1t2...tm), a pairwise alignment of
S and T is defined as an ordered set of pairings of (si, tj) and of gaps (si,−)
and (−,tj), with the constraint that the alignment is reduced to the two
original strings when all gaps in the alignment are deleted. A prefix of S,
specified here as Si, is a substring of S equal to s1s2...si, where i ≤ n.

An optimal alignment is operationally defined as the pairwise alignment
with the highest alignment score for a given scoring scheme. For this reason,
an optimal alignment is meaningless without the specification of the scoring
scheme.

2. Sequence alignment 25

Alignment by dynamic programming guarantees that the resulting
alignment is the optimal alignment or one of the equally optimal alignments.
We will first illustrate the global pairwise alignment (Needleman and
Wunsch, 1970) followed by local pairwise alignment (Smith and Waterman,
1981b). Local sequence alignment is for searching local similarities between
sequences, e.g., homeobox genes which are not similar globally but all share
a very similar homeodomain motif. The best known algorithm for local
alignment is Smith and Waterman (1981b).

Here we will first learn a simple dynamic programming algorithm for
pairwise alignment using a simple scoring scheme with constant gap penalty.
This is then extended in two ways, first by introducing a similarity matrix to
replace match and mismatch scores, and second by introducing the affine
function to better approximate the origin of the insertion and deletion during
sequence evolution.

2.1 Pairwise alignment with constant gap penalty

2.1.1 Global alignment

Suppose we want to align two sequences S and T with S = ACGT and T
= ACGGCT. A simple scoring scheme is used with a constant gap penalty
(G) of -2, a match score (M) of 2 and a mismatch score (MM = -1). Global
alignment with the dynamic programming approach is illustrated
numerically in Figure 2-2. One sequence of the two sequences occupies the
top row and will be referred to hereafter as the row sequence (sequence S in
our example). The other sequence occupies the first column and will be
referred hereafter as the column sequence (sequence T in our example).
Based on these two sequences, two matrices are computed. The first is the
scoring matrix to obtain the alignment score, with the dimensions (n+1,
m+1). The second is the backtrack matrix needed to obtain the actual
alignment, with the dimensions (n,m). In Figure 2-2, the two matrices are
superimposed, with the scoring matrix being the numbers and the backtrack
matrix being made of arrows. The backtrack matrix is sometimes called the
traceback matrix. However, the word traceback is marked by an annoying
red wavy line in Microsoft WORD. So my choice of the two is obvious.

A value in row i and column j in the scoring matrix is the alignment score
between a prefix of S and a prefix of T, i.e., Sj and Ti. This will become clear
later.

The first row and the first column of the scoring matrix is filled with i×G
(where i = 0, 1, ..., n) and j×G (where j = 0, 1, ..., m), respectively. They
represent consecutive insertion of gaps. For example, the number -8 in the

26 Chapter 2

last cell of the first row of the scoring matrix implies the following
alignment with four consecutive gaps in the column sequence and an
alignment score of -8:

ACGT

Figure 2-2. . Computation involved in obtaining the scoring and the backtrack matrices
(superimposed) with the match score equal to 2, mismatch -1 and the gap penalty equal to -2.
There are two equally optimal alignments each with an alignment score of 4.

Similarly, the number of -12 in the last cell of the first column of the
scoring matrix implies the following alignment with six consecutive gaps on
the row sequence and an alignment score of -12:

ACGGCT

The first cell where we need to compute the score is the one

corresponding to the first character of S and T, i.e., the cell with a value of 2.
To compute the value for the cell, we need values in three other cells, one to
its left, one above it and one to its upleft, with their cell values designated as
L, U and UL, respectively. Note that the cell has an upleft (UL) value of 0, a
top value (U) equal to -2, and a left value (L) equal to -2. The following
three values are calculated:

A C G T

0 -2 -4 -6 -8

A -2 2 0 -2 -4

C -4 0 4 2 0

G -6 -2 2 6 4

G -8 -4 0 4 5

C -10 -6 -2 2 3

T -12 -8 -4 0 4

2. Sequence alignment 27

DIAG = UL + IF(Corresponding characters match, M, MM) = 0 + 2 = 2
LEFT = L + G = -2 + (-2) = -4
UP = U + G = -2 + (-2) = -4

The IF function above takes the value of M if the two corresponding

nucleotides match, or MM if they do not. The maximum of these three
values is DIAG, i.e., 2, which was entered as the first computed element in
the scoring matrix. The cell is also filled with an upleft arrow because DIAG
is the maximum of the three values. If LEFT (or UP) happened to be the
maximum of the three, we would have put a left-pointing (or up-pointing)
arrow in the corresponding cell in the backtrack matrix.

The computation is from left to right and from top to bottom. For the
second cell, the maximum of the three values is LEFT (= 0), and the
corresponding cell in the backtrack matrix is filled with a left-pointing
arrow. We continue the computation to the bottom right cell, with the final
value in the bottom-right value equal to 4. This is the alignment score. You
may note that the cell corresponding to the nucleotide G in the row sequence
and the second G in the column sequence is special with two arrows. You
will find that the DIAG and UP values are both equal to 4 in this cell. Hence
both the upleft and the up-pointing arrows in this cell. Such a cell implies the
existence of equally optimal alignments.

The aligned sequences are obtained directly from the backtrack matrix.
We start from the bottom-right cell and follow the direction of the arrow in
the cell. The upleft arrow in the bottom-right cell means that we should stack
the two corresponding nucleotides (T and T) in the row and column
sequences (Figure 2-3). Note that you would be stacking the two
corresponding nucleotides regardless of whether they are the same or
different as long as an upleft arrow is in the cell. A left-pointing or up-
pointing arrow in the cell means a gap in the column sequence or row
sequence, respectively.

(a) (b)

654321 654321
ACG--T AC-G-T
ACGGCT ACGGCT

Figure 2-3. The protocol of obtaining the sequence alignment by following the backtrack
matrix. The numbers in the first row show the order of obtaining the alignment site by site
from the last to the first (i.e., backtracking).

The upleft arrow in the bottom-right cell leads us to the cell containing an
up-pointing arrow, meaning a gap in the row sequence, i.e., we stack a gap

28 Chapter 2

character “-” over the corresponding nucleotide (C) in the column sequence
(Figure 2-3). This up-pointing arrow brings us to the special cell with two
arrows, one pointing upleft and the other up (Figure 2-2). This leads to
alternative construction of the sequence alignment. If we choose the up-
pointing arrow, we will stack a gap character over the corresponding
nucleotide (G) in the column sequence and proceed to the cell with a value
of 6 and an upleft arrow. This ultimately leads to the sequence alignment in
Figure 2-3a. Alternatively, we may choose to follow the upleft arrow and
stack the two nucleotides (G in both sequences) as shown in Figure 2-3b.
This ultimately leads to the alternative sequence alignment in Figure 2-3b.

Both alignments in Figure 2-3 have four matches, two gaps, and zero
mismatch. So the alignment score is 4×M+2×G+0× (MM) = 4, which we
already know after completing the scoring matrix whose bottom-right cell
contains the alignment score.

Recall that each cell with a score and an arrow specifies an optimal
alignment between a prefix of S and a prefix of T, i.e., Sj and Ti. For
example, the first cell with a calculated value of 2 and an upleft arrow
specifies the optimal alignment of S1 (= ‘A’) and T1 (= ‘A’) with an
alignment score of 2 (which is the match score). The next cell to the right,
with a score of 0 and a left arrow, specifies the optimal alignment of S2 and
T1 (The 0 score results from a match and a gap penalty):

AC
A-

The cell with a score of 4 and two arrows specifies two equally optimal

alignments both with an alignment score of 4:

Alignment 1:
ACG-
ACGG

Alignment 2:
AC-G
ACGG

When sequences are long, there might be many equally optimal

alignments and few computer programs would try to find and output all of
them. Instead, only one path is followed, leading to the output of only one of
the potentially many equally optimal alignments.

Dynamic programming guarantees that the resulting alignment is optimal
given the scoring scheme. In other words, there is no alignment that can have

2. Sequence alignment 29

an alignment score greater than 4 given the two sequences and the scoring
scheme of M = 2, MM = -1 and G = -2. However, an optimal alignment may
change when the scoring scheme is changed. This is illustrated in Figure 2-4,
where the use of scoring scheme 1 would result in Alignment 1 (with
alignment score = 14) better than Alignment 2 (with alignment score = 12)
but the use of scoring scheme 2 would lead to the opposite, with Alignment
2 (alignment score = 20) much better than Alignment 1 (alignment score =
9).

Alignment 1: ACCCAGGGCTTA
ACCCGGGCTTAG

Alignment 2: ACCCAGGGCTTA-
ACCC-GGGCTTAG

Scoring scheme 1: M = 2, MM = 0, G = -5
Scoring scheme 2: M = 2, MM = -1, G = -1

Alignment Match Mismatch Gap Score1 Score2
1 7 5 0 14 9
2 11 0 2 12 20

Figure 2-4. Illustration of the dependence of optimal alignment on scoring scheme. Score1
and Score2 in the bottom table refer to Scoring scheme 1 and Scoring scheme 2, respectively.

Because there is no objective way of choosing the right scoring scheme,
it is therefore important to keep in mind that sequence alignment is a method
of data exploration instead of an analytical method that will lead to a single
best solution. For this reason, nearly all computer programs for sequence
alignment allow the user to try various scoring schemes and post-alignment
manual editing.

2.1.2 Local alignment

Local sequence alignment (Smith and Waterman, 1981b) is similar to
global alignment presented above, with only three major differences. First,
the first row and the first column of the scoring matrix is filled with zero
instead of i×G. Second, whenever the cell value becomes negative (i.e., the
maximum of the three values is smaller than 0), the cell value is set to 0.
Thus, when two sequences have a short but perfect local match, and little
similarity elsewhere, the alignment score of the short but perfect match is not
affected by the low similarity elsewhere. Third, because a local alignment
can end anywhere in the matrix, we will not trace back from the cell in the
bottom-right corner of the score matrix. Instead, we find the maximal score

30 Chapter 2

in the matrix and trace back from that point until we reach a cell with a value
of 0, which indicates the start of the local alignment.

In Chapter 1 we have already covered two widely used heuristic methods
for local alignment, i.e., BLAST and FASTA. In Chapter 7 we will learn
Gibbs sampler which is another method for searching local similarities and
local alignment.

2.1.3 The simple scoring scheme needs extension

The simple scoring scheme that we have used has three major problems.
First, transitions (i.e., substitutions between nucleotides A and G and
between C and T) generally occur more frequently than transversions (When
A or G is replaced by C or T). This suggests that we should not treat
transitional differences and transversional differences with the same
mismatch score. Instead, transitions should be penalized less than
transversions. Second, there are often ambiguous bases in input the
sequences, e.g., R for A or G and Y for C or T. An A-R pair is neither a
strict match nor a strict mismatch, but has a probability of 0.5 being a match
and a probability of 0.5 being a transition. The simple scoring scheme we
have used cannot handle these problems, which necessitates the use of a
similarity matrix.

The simple scoring scheme also has another, perhaps even more serious
problem, caused by constant gap penalty. A biologist will complain loudly
that an alignment method is wrong if it considers the two alternative
alignments in Figure 2-3 as equally good, and would have chosen the
alignment in Figure 2-3a as a better alignment. The simplest solution to this
problem is to use what is called an affine function for gaps. In the following
sections, we will learn these two extensions, first with a similarity matrix
and second with an affine function.

2.2 Pairwise alignment with a similarity matrix

2.2.1 DNA matrices

One example of a similarity matrix is the “transition bias matrix” (Table
2-1) used in DAMBE (Xia, 2001; Xia and Xie, 2001b) for multiple
alignment with a star tree. A start tree contains only one internal node with
all leaves connected to this same internal node. The meaning of the top 4×4
matrix (bolded values in Table 2-1) is easy to understand. The first four
diagonal values of 30 are equivalent to the match score, a mismatch score
involving a transversion or a transition is -30 or 0, respectively, because

2. Sequence alignment 31

transitions in general occur much more frequently than transversions and
consequently penalized less (Table 2-1). The rest of the matrix (Table 2-1)
involves ambiguous codes specified in Table 2-2, according to the
Nomenclature Committee of the International Union of Biochemistry (1985).

Table 2-1. A similarity matrix accommodating the transition bias frequently observed in
nucleotide substitutions.
A C G U R Y M W S K D H V B N
30

-30 30
0 -30 30

-30 0 -30 30
15 -30 15 -30 15

-30 15 -30 15 -30 15
0 0 -15 -15 -8 -8 0
0 -15 -15 0 -8 -8 -8 0

-15 0 0 -15 -8 -8 -8 -15 0
-15 -15 0 0 -8 -8 -15 -8 -8 0

0 -20 0 -10 0 -15 -10 -5 -10 -5 -3
-10 0 -20 0 -15 0 -5 -5 -10 -10 -10 -3

0 -10 0 -20 0 -15 -5 -10 -5 -10 -7 -10 -3
-20 0 -10 0 -15 0 -10 -10 -5 -5 -10 -7 -10 -3
-8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8

Table 2-2. IUB codes of nucleotides.
Code Meaning Complement
A A T
C C G
G G C
T/U T A
M A or C K
R A or G Y
W A or T W
S C or G S
Y C or T R
K G or T M
V A or C or G B
H A or C or T D
D A or G or T H
B C or G or T V
X/N G or A or T or C X
- Gap (not G or A or T or C) -

The coding scheme is often refereed to as the IUB code or IUB notation. For
example, R represents either A or G, so an A-R pair has a probability of 0.5
being an A-A match and a probability of 0.5 being an A-G transition. The
corresponding score (=15 in Table 2-1) is consequently somewhere between

32 Chapter 2

a perfect match and a transition. In contrast, Y stands for either C or T/U and
an A-Y pair is always a transversion, with a score of -30 (Table 2-1).

2.2.2 Protein matrix

Amino acids differ from each other in volume, charge, polarity and many
other properties (Figure 2-5), and amino acid residues in a protein confer to
the protein different properties. Proteins with long half-life (>1 day)
typically have glycine, valine or methionine at their N-terminus, whereas
those with short half-life (a few minutes) typically have positively charged
residues (arginine, lysine) at their N-terminus. A small amino acid residue
such as glycine and alanine at the penultimate site (the second amino acid
site in the nascent peptide) allows the initiator methionine to be efficiently
cleaved (Moerschell et al., 1990). Amino acid replacements involving very
different amino acids are generally selected against (Xia and Li, 1998). For
this reason, a scoring scheme with only match and mismatch is rarely used
for protein sequence alignment.

H2N CH C

CH3

OH

O
Ala

H2N CH C

CH2

OH

O

CH2

CH2

NH

C

NH2

NH

Arg

H2N CH C

CH2

OH

O

C

NH2

O

Asn

Asp
H2N CH C

CH2

OH

O

C

OH

O

Cys
H2N CH C

CH2

OH

O

SH

H2N CH C

CH2

OH

O

CH2

C

OH

O

Glu

H2N CH C

CH2

OH

O

CH CH3

CH3

Leu

H2N CH C

CH2

OH

O

OH

Ser

H2N CH C

CH2

OH

O

CH2

C

NH2

O

Gln

H2N CH C

CH2

OH

O

CH2

CH2

CH2

NH2

Lys

H2N CH C

CH

OH

O

OH

CH3

Thr

H2N CH C

H

OH

O
Gly

H2N CH C

CH2

OH

O

CH2

S

CH3

Met

H2N CH C

CH2

OH

O

HN

Trp

H2N CH C

CH2

OH

O

OH

Tyr

H2N CH C

CH2

OH

O

N

NH

His

H2N CH C

CH2

OH

O
Phe

H2N CH C

CH

OH

O

CH3

CH2

CH3

Ile

HN

C OH

O
Pro

H2N CH C

CH

OH

O

CH3

CH3

Val

Figure 2-5. Structural formula of 20 amino acids.

2. Sequence alignment 33

A frequently used example to illustrate the effect of an amino acid being
replaced by a different amino acid is the sickle-cell anemia. Sickle-cell
anemia is caused by a single amino acid replacement in the β-chain of the
human hemoglobin at the six position, with a glutamate residue replaced by
a valine residue (Figure 2-6). Glutamate is negatively charged and
hydrophilic, and tends to stay on the surface of the protein in the aqueous
environment in the blood. In contrast, valine is a non-polar and hydrophobic
residue and tends to shrink into the middle of the protein. The deformed
protein molecules then form bundles and distort the red blood cell that
carries them, resulting in the characteristic shape of a sickle (Figure. 2-6). It
is generally true that amino acids of different polarity rarely replace each
other (Xia and Li, 1998), whereas amino acids with similar polarity can
replace each other quite frequently (Xia and Kumar, 2006).

Hb-A: Val-His-Leu-Thr-Pro-Glu-Glu……
Hb-S: Val-His-Leu-Thr-Pro-Val-Glu……

Figure 2-6. Sickle-cell anemia is caused by a single amino acid replace of a glutamate residue
at the sixth position (Hb-A allele) by a valine residue (Hb-S allele). The mutant deformed
hemoglobin molecules distort the red blood cell which progresses from the normal disk-like
shape to the sickle-like shape.

Frequently used substitution matrices for protein sequences are of two
types, the PAM matrix (Dayhoff et al., 1978) and the BLOSUM matrix
(Henikoff and Henikoff, 1992). The letter codes for amino acids proposed by
the Nomenclature Committee of the International Union of Biochemistry
(1985) are shown in Table 2-3. These codes are now universally adopted by
the scientific community. I have omitted an introduction of these matrices
because (1) the limit of page size of the book precludes the presentation of
20×20 matrices and (2) an excellent introduction of these matrices
appropriate for readers of this book is already available (Higgs and Attwood,
2004). In short, both PAM and BLOSUM matrices are derived from
sequence alignment related proteins, with the former based on global
alignment and the latter based on local alignment. The PAM1 matrix is
based on comparisons of sequences with no more than 1% divergence and
all other PAM matrices are derived from this PAM1 matrix. The requirement
of proteins with no more than 1% divergence is necessary for reliable global
alignment. The most frequently used BLOSUM matrix is BLOSUM 62

34 Chapter 2

which is calculated from comparisons of sequences with no less than 62%
divergence. BLOSUM xx matrix is based on sequence blocks with no less
than xx% divergence, i.e., all BLOSUM matrices are based on observed
alignments in contrast to the PAM matrices all derived from the PAM1
matrix. BLOSUM 62 is the default matrix in BLAST 2.0.

Table 2-3. IUB letter codes of amino acids.
1-letter 3-letter Meaning Codon(1]
A Ala Alanine GCT,GCC,GCA,GCG
B Asp or Asn GAT,GAC,AAT,AAC
C Cys Cysteine TGT,TGC
D Asp Aspartic GAT,GAC
E Glu Glutamic GAA,GAG
F Phe Phenylalanine TTT,TTC
G Gly Glycine GGT,GGC,GGA,GGG
H His Histidine CAT,CAC
I Ile Isoleucine ATT,ATC,ATA
K Lys Lysine AAA,AAG
L Leu Leucine TTG,TTA,CTT,CTC,CTA,CTG
M Met Methionine ATG
N Asn Asparagine AAT,AAC
P Pro Proline CCT,CCC,CCA,CCG
Q Gln Glutamine CAA,CAG
R Arg Arginine CGT,CGC,CGA,CGG,AGA,AGG
S Ser Serine TCT,TCC,TCA,TCG,AGT,AGC
T Thr Threonine ACT,ACC,ACA,ACG
V Val Valine GTT,GTC,GTA,GTG
W Trp Tryptophan TGG
X Xxx Unknown
Y Tyr Tyrosine TAT,TAC
Z Glu or Gln GAA,GAG,CAA,CAG
* End Terminator TAA,TAG,TGA
(1) assuming the standard genetic code.

2.3 Pairwise alignment with gap penalty specified by the
affine function

The second extension of the simple scoring scheme is to replace the
constant gap penalty with what is called an affine function. The problem
with the constant gap penalty is exemplified in the two optimal alignments in
Figure 2-3. From a biological point of view, the alignment with two
independent gaps (Figure 2-3b) is less likely than the one with only one gap
of length 2 (Figure 2-3a). So we should find a gap penalty scheme that
favors the alignment in Figure 2-3a against the one in Figure 2-3b. The

2. Sequence alignment 35

affine function, which is used in BLAST (Altschul et al., 1990; Altschul et
al., 1997), is the simplest of the gap penalty schemes that will do the job.
One particular advantage of the affine function is that it allows the alignment
to be completed in time proportional to MN, where M and N are the length
of the two sequences to be aligned.

The affine function for gap penalty is specified as

() ()G x a bx= − + (2.1)

where x is the length of the gap, and a and b are the gap open and gap
extension penalties, respectively. The gap penalty increases linearly with the
length of the gap. BLAST has its defaults with a = 5 and b = 2, together with
the match score (M) = 1 and mismatch score (MM) = -3.

Figure 2-7 illustrates the computation involved in aligning two sequences
with M = 1, MM = -3 and the gap penalty specified with a = 5 and b = 2, i.e.,
the default BLAST scoring scheme. Note that, while the first value in the
matrix is still 0 (Figure 2-7) as before, the next value on the first row or first
column is -7 which results in -(a + 1b) = -(5 + 1 × 2) = -7 (Note that a shift
leftward or downward means inserting a gap either in the row or in the
column sequence, respectively, and the first gap is associated with both the
gap open and gap extension penalties. The values after -7 on the first row or
on the first column are decreased by gap extension only, i.e., if a gap is
already open, additional gaps will only suffer from gap extension penalties.

We again need to calculate three values in each remaining cells. In
general, we calculate the DIAG, LEFT and UP values as specified below and
fill the cell with the maximum of the three,

DIAG = UL + if(match, M, MM)
LEFT = L – If(GapOpened already, 0, a) – b
UP = U – if(GapOpened already, 0, a) – b

For the first cell, DIAG = 1 because of the match of the two

corresponding nucleotides, i.e., the A-A pair. The UP and LEFT values are
both -9. So we have 1 in the cell with an upleft arrow (Figure 2-7). For the
next cell, we have

DIAG = -7 -3 = -10
UP = -9 - 2 = -11
LEFT = 1 - 5 - 2 = -6

36 Chapter 2

A C G T

0 -7 -9 -11 -13

A -7 1 -6 -8 -10

C -9 -6 2 -5 -7

G -11 -8 -5 3 -4

G -13 -10 -7 -4 0

C -15 -12 -9 -6 -7

T -17 -14 -11 -8 -5

Figure 2-7. Pairwise alignment with M = 1, MM = -3, and gap penalty defined by an affine
function with a = 5 and b = 2.

Note that LEFT value for this cell is penalized with both the gap open
and gap extension penalty because the proceeding cell (with value = 1) has
an upleft arrow, i.e., no gap (Figure 2-7). If the proceeding cell had a left-
pointing arrow, which means that the gap has already been opened, only the
gap extension penalty would be applied. The largest value of the three is
LEFT (= -6), and the cell is therefore filled with -6 with a left-pointing
arrow. This process continues until we get to the last cell, with a value of -5.
This is the alignment score based on the scoring scheme with gap penalties
specified with the affine function.

There are a few cells that need some explanation. The first is the cell with
a value of -4 corresponding to the nucleotide G in the row sequence and the
second nucleotide G in the column sequence. The cell has two arrows, one
pointing up and one pointing upleft (Figure 2-7). This is because both the
DIAG and UP values are equal to -4:

DIAG = -5 + 1 = -4
UP = 3 – (5 + 2) = -4
Had this cell been the last cell, i.e., if we were aligning the partial row

sequence of “ACG” against the partial column sequence “ACGG”, we would
get two alternative optimal alignments both with alignment score of -4:

Alignment 1: ACG-
 ACGG

Alignment 2: AC-G
 ACGG

2. Sequence alignment 37

The other cell with two arrows is in the last column, second row from the
bottom. Had this cell been the last cell, i.e., if we were aligning the row
sequence of “ACGT” against the partial column sequence “ACGGC”, we
would get two alternative optimal alignments both with alignment score of -
7 (i.e., three matches, one mismatch and one gap open and one gap extension
penalty):

Alignment 1: ACGT-
 ACGGC

Alignment 2: ACG-T
 ACGGC

The trickiest cell is at the second last column and second last row, i.e.,

the one with an UP value of -6 and an up-pointing arrow. The DIAG and
LEFT values for this cell are simple:

DIAG = -7 – 3 = -10
LEFT = -9 – 2 = -11

However, the UP value depends on which of the arrows in the cell above

(i.e., the cell with a value of -4 and two arrows) we should take. If we take
the up-pointing arrow (i.e., a gap has already been opened), then UP = -4 – 2
= -6. However, if we take the upleft arrow (i.e., no gap opened yet), then UP
= -4 – (5 + 2) = -11. We should choose the maximum value, i.e., -6, and this
constrains the previous cell (i.e., the cell with a value of -4 and two arrows)
to have an up-pointing arrow. In other words, after we have put a -6 value
into the cell, the cell above will no longer have two arrows but will only
have an up-pointing arrow. It is for this reason that I have set the upleft
arrow in that cell to grey but left the up-pointing arrow black.

Now following the backtrack arrows, we obtain the alignment in Figure
2-3a. The alignment has four matches and one gap of length 2. So the
alignment score is 4 × 1 – (5 + 2 × 2) = -5, which confirms that our scoring
matrix (Figure 2-7) has been obtained correctly (note that the lower right
value in the scoring matrix is the alignment score).

38 Chapter 2

3. MULTIPLE SEQUENCE ALIGNMENT

3.1 Profile alignment

Profile alignment aligns one sequence (designated T) against a set of
already aligned sequences in the form of a profile (designated S), or align
two profiles S1 and S2. It is an essential technique for multiple sequence
alignment. There are various approaches to profile alignment. The simplest
is to get a consensus sequence from S (designated CS) and align T and CS by
using the pairwise alignment method we learned in previous sections.
Whenever we insert a gap in CS, we insert a corresponding gap in all
sequences in S. However, we will learn a mathematically more acceptable
approach in this section.

Suppose we want to align sequence T = “ACG” against S containing the
following three aligned sequences:

AC-GT
AC-GT
GCCAT

The first step in profile alignment is to represent S with a site-specific

frequency profile. The set of three aligned sequences have five symbols (A,
C, G, T and the gap symbol “-”) and can be represented by the profile shown
in the first five rows in Figure 2-8. The first column is a list of the five
symbols, followed by five data columns corresponding to five aligned sites.
The first data column represents the frequencies of symbols in the first
aligned site, with the frequencies of A and G being 2/3 and 1/3, respectively.
The second data column represents the frequencies of the second aligned site
with the frequency C being 1 and the frequencies of other symbols being 0,
and so on. Thus, S can always be represented by a site-specific profile in the
form of a N×L matrix where N is the number of symbols and L is the
sequence length. It is important to note that any phylogenetic information
among sequences in S is lost in converting the set of aligned sequences to a
profile.

The profile representation in the Clustal family of programs (Higgins and
Sharp, 1988; Thompson et al., 1994) uses all ambiguous codes (Tables 2-2
and 2-3). In addition, two synonymous pairs of ambiguous codes are used in
Clustal, the X/N pair and the T/U pair. It would be computationally more
efficient to pre-processing the sequences to use either X or N (or either T or
U) but not both, especially when one uses a programming language that does
not support pointers, e.g., Visual Basic or Java.

2. Sequence alignment 39

A 2/3 0 0 1/3 0
C 0 1 1/3 0 0
G 1/3 0 0 2/3 0
T 0 0 0 0 1
- 0 0 2/3 0 0
0 -3 -6 -9 -12 -15

A -3 5/3 -4/3 -5/3 -14/3 -23/3

C -6 -4/3 11/3 10/3 1/3 -8/3

G -9 -13/3 2/3 3 5 2

Figure 2-8. Application of dynamic programming to profile alignment. T (=“ACG”) is the
column sequence, and the “row sequence” is a profile.

The second step is to perform a special version of the dynamic
programming to generate the score matrix and backtrack matrix. With the
length of T being 3 and the length of S being 5, there are only 15 cells to fill
in. Because one needs to compute three values (DIAG, UP and LEFT) for
each cell, the total number of values to compute is 45. Yet even for such a
small problem, manual computation is quite difficult and error-prone.

The score matrix and the backtrack matrix (Figure 2-8) were obtained
with a special scoring scheme. There are two kinds of matches, a match
involving two identical nucleotides, or a match involving two gap symbols.
The match score for the former and latter are designated MNuc and MGap,
respectively, with corresponding values set to 2 and 1, respectively, in the
example. There are also two kinds of mismatches, one involving a
transitional difference and the other a transversional difference. They are
designated as MMs and MMv, respectively, with corresponding values set to
1 and -1, respectively, in this example. In order not to make things too
complicated, we use constant gap penalty with G = -3.

We now illustrate how the score matrix and backtrack matrix (Figure 2-
8) are computed. For the first cell, the UP and LEFT values are simple:

UP = -3 + G = -3 – 3 = -6
LEFT = -3 + G = -3 -3 = -6

For the DIAG value, we should keep in mind that the nucleotide A in the

column sequence has a probability of 2/3 of an A-A match and a probability
of 1/3 of a A-G transition. This leads to

40 Chapter 2

DIAG = 0 + 2/3 × MNuc + 1/3 × MMs =5/3

Because DIAG is the maximum of the three, it is used to fill the first cell,

together with the associated upleft arrow (Figure 2-8). The second cell (to
the right the first cell) is simple because the profile at the second site
contains C only. So the computation is the same as in regular pairwise
alignment:

DIAG = -3-1 =-4
UP = -6 -3 = -9
LEFT = 5/3 - 3 = -4/3

Because LEFT is the largest of the three, the cell is filled with -4/3

together with a left-pointing arrow.
The cell likely to cause some confusion is the third, i.e., the one with a

value of -5/3 and a left-pointing arrow. Note that an upleft arrow in that cell
implies that A will pair with C with a probability of 1/3, penalized by MMv
= -1, and pair with “-” with a probability of 2/3, penalized by G = -3.
Therefore,

DIAG = -6 - 2/3×3 - 1/3×1 = -25/3

The calculation of UP is simply UP = -9 -3 = -12. A left-pointing arrow,

however, implies a gap in the column sequence, so we have a gap with a
probability of 2/3 of facing a gap in the row profile, with Mgap = 1, and a
probability of 1/3 of facing a C, with G = -3. Therefore,

LEFT = -4/3 + 2/3×1 - 1/3×3 = -5/3.

Because LEFT is the largest of the three, the cell is filled with -5/3 and a

left-pointing arrow. The rest of the cells are relatively straightforward. The
alignment can again be obtained by tracing the backtrack matrix (Figure 2-
8):

AC-GT
AC-GT
GCCAT
AC-G-

The profile alignment outlined above represents an extension of the

pairwise alignment, with the row sequence replaced by a profile. One can
also replace the column sequence by a profile to align two profiles instead of

2. Sequence alignment 41

two sequences. This approach is used in Clustal for multiple sequence
alignment.

One might argue that the profile alignment has a serious problem as
follows. T may be phylogenetically more closely related to some sequences
than others in S. However, the profile alignment approach does not take this
into consideration. This critique is justified. Unfortunately, alternative
approaches by combining both phylogenetic reconstruction and multiple
sequence alignment (Hein, 1990, 1994; Sankoff et al., 1973) are generally
too computationally intensive to be practical. However, recent advances in
Gibbs sampler has paved alternative ways for pairwise sequence alignment
(Zhu et al., 1998) and multiple sequence alignment conditional on a
phylogenetic tree (Holmes and Bruno, 2001; Jensen and Hein, 2005).

3.2 Multiple alignment with a guide tree

The main difficulty in aligning multiple sequences by dynamic
programming is the rapidly increased need for memory and computational
power. While aligning three sequences by dynamic programming has been
implemented (Huang, 1993), it is not practical to align more than three
sequences. For this reason, only heuristic approaches that reduce the
multiple alignment problem to pairwise and profile alignment problems have
been widely used for multiple sequence alignment. The most well known
representative of this approach is the Clustal family of programs (Higgins
and Sharp, 1988; Thompson et al., 1994).

Multiple alignment in Clustal consists of three steps. The first is to
perform all pairwise alignments by dynamic programming. With N
sequences, there are N(N-1)/2 pairwise alignments, leading to a triangular
matrix of alignment scores. The second step is to construct a guide tree by
using the alignment score matrix as a sequence similarity matrix in
conjunction with a clustering algorithm. Alternatively, one can convert the
similarity matrix into a distance matrix and then use either UPGMA or
neighbor-joining method (Saitou and Nei, 1987) to build guide tree such as
the one shown in Figure 2-9. Clustal uses this latter approach. The third and
final step is to traverse the node to align sequences by pairwise alignment
and profile alignment (the pairwise alignments in the first step, typically an
approximate one, are not reused here).

The multiple alignment starts from the most similar sequences. So we
move to internal node 11 and align Seq2 and Seq6. We then move to internal
node 10 and align Seq5 against a sequence profile representing aligned Seq2
and Seq6 using the method outlined in Figure 2-8. A profile is then created
to represent the three aligned sequences (Seq2, Seq6 and Seq5). Moving to
internal node 9, we found one child node (internal node 9) has two child

42 Chapter 2

nodes with two unaligned sequences (Seq3 and Seq4) which are then first
aligned by using the dynamic programming method. A profile is then created
to represent the aligned Seq3 and Seq4. This profile is then aligned against
the profile presenting the aligned Seq2, Seq6 and Seq5. The process
continues until all sequences are aligned.

It is easy to see why we should start with the most similar sequences
because any alignment error will be propagated in subsequent alignment.
Obviously, a wrong guide tree will bias the subsequent alignment which in
turn will bias subsequent phylogenetic reconstruction based on the
alignment. Unfortunately, a guide tree built from alignment scores is
typically a very poor tree. For this reason, it is better to input a well
established tree, whenever available, as a guide tree for multiple sequence
alignment.

Seq2: AACU…

Seq6: AACU…
11

Seq5: AACU…

10

Seq3: AACC…

Seq4: AACC…
12

9

Seq7: AACA…

Seq8: AACA…
13

Seq1: AACG…

8

Figure 2-9. An example of a guide tree for multiple sequence alignment of eight sequences,
called leaves. The internal nodes are numbered from 8 to 13 (with terminal nodes, or leaves,
numbered from 0 to 7).

An alternative method of multiple sequence alignment is to use a star tree
instead of fully resolved bifurcating tree as a guide tree. One starts with
pairwise alignment to obtain a matrix of alignment scores in the same way as
in ClustalW. This matrix is then converted to a distance matrix. We first
align two sequences with the smallest distance to build the first sequence
profile. The next sequence with the average distance closest to the sequence
profile is the aligned to the sequence profile using the algorithm illustrated in
Figure 2-8. A new sequence profile is obtained from these three sequences
and the next sequence with the smallest average distance to those in the
profile is aligned against the profile using the algorithm illustrated in Figure
2-8. This process continues until all sequences have been aligned.

This method is simpler than the method in ClustalW because one does
not need to align two sequence profiles, i.e., in every step, the alignment is

2. Sequence alignment 43

done between a sequence and a profile. The “Quick multiple alignment”
function in my program DAMBE (Xia, 2001; Xia and Xie, 2001b) represents
a crude implementation of this method of multiple alignment.

4. SEQUENCE ALIGNMENT WITH SECONDARY
STRUCTURE

Figure 2-10 shows two sequences, S and T, being a fragment of a
fictitious rRNA gene from two related species. The fragment forms a stem-
loop structure. For simplicity, suppose that T was derived from S through the
intermediate T’ in two steps. First, the C at position 11 was deleted. Second,
a substitution from A to G at position 5 leads to a correlated substitution
from T(U) to C to maintain the stem of length 5. The resulting sequence is T.

1234567890123456
S: CACGACCAATCTCGTG
T: CACGGCCAATCCGTG

Correct alignment:
1234567890123456

S: CACGACCAATCTCGTG
T: CACGGCCAAT-CCGTG

S: CACGA
|||||
GUGCU

TT’’:CACGA:CACGA
||||||||||
GUGCUGUGCU

T: CACGG
|||||
GUGCC

Missing link

Conventional alignment:
S: CACGACCAATCTCGTG
T: CACGGCCAATC-CGTG

Deletion of C in the
loop at position 11 of S

A substitution from A to
G at position 5 leads to a
correlated substitution of
T(U) to C

Figure 2-10. Illustration that the correct alignment may differ from the optimal alignment.
Note that T becomes U in the secondary structure.

If we constrain the alignment with the secondary structure information,
i.e., the first five and the last five nucleotides of S are respectively
homologous to the first five and the last five nucleotides of T, then the
resulting alignment (designated as the correct alignment in Figure 2-10)
correctly identifies the gap at position 11. However, any currently used

44 Chapter 2

alignment program based on linear sequence information, with any sensible
scoring scheme, would recover the ‘conventional alignment’ (Figure 2-10)
that identified the gap at position 12. The two C’s at position 11 in the
‘conventional alignment’ are nicely aligned but are not homologous given
the evolutionary steps given above in generating T. It is easy to see that the
conventional alignment will have a greater alignment score than the correct
alignment and consequently is more “optimal”. Thus, optimal alignment (the
alignment with the largest alignment score) may not necessarily be the
correct alignment.

Aligning rRNA genes with the constraint of secondary structure has now
been frequently used in practical research in molecular evolution and
phylogenetics (Hickson et al., 2000; Kjer, 1995; Notredame et al., 1997;
Xia, 2000; Xia et al., 2003a). However, one cannot always assume that
rRNA secondary structure is stable over time. It is now well established that
variation in rRNA secondary structure is strongly affected by the optimal
growth temperature in prokaryotes (Galtier and Lobry, 1997; Hurst and
Merchant, 2001; Nakashima et al., 2003; Wang and Hickey, 2002; Wang et
al., 2006).

5. ALIGN NUCLEOTIDE SEQUENCES AGAINST
AMINO ACID SEQUENCES

During the evolution of protein-coding genes, an entire codon or multiple
codons may be deleted or inserted, but it is much rarer to see an insertion or
deletion (often abbreviated as indel) of one or two nucleotides because such
indel events lead to frameshifting mutations that almost always disrupt the
original protein function and are strongly selected against. However,
alignment of protein-coding nucleotide sequences often produce indels of
one or two bases as alignment artifacts. The correctly aligned sequences
should have complete codons, not one or two nucleotides, inserted or
deleted.

One way to avoid the above alignment problem is to align the protein-
coding nucleotide sequences against amino acid sequences, which was
implemented in software DAMBE (Xia, 2001; Xia and Xie, 2001b). The
approach obviously requires amino acid sequences which can be obtained in
two ways. First, if you have nucleotide sequences of good quality, then you
can translate the sequences into amino acid sequences, which can be done
automatically in DAMBE which implements all known genetic codes for
translating protein-coding sequences from diverse organisms. Second, if you
are working on nucleotide sequences deposited in GenBank, then typically
you will find the corresponding translated amino acid sequences.

2. Sequence alignment 45

The alignment of protein-coding nucleotide sequences is typically done
in three steps. First, the nucleotide sequences are translated into amino acid
sequences. These amino acid sequences are then aligned, and the nucleotide
sequences are then aligned against the aligned amino acid sequences.

Here is a simple illustration. Suppose we are to align the following two
protein-coding sequences designated S1 and S2, respectively:

S1 ATG CCG GGA TAA
S2 ATG CCC GGG ATT TAA

Step 1: Translate the sequences into amino acid sequences (one-letter

notation) to get:

S1 MPG*
S2 MPGI*

Step 2: Align the amino acid sequences:

S1 MPG-*
S2 MPGI*

This alignment implies the deletion of an amino acid (and its associated

codon) just before the termination codon.
Step 3. Align the protein-coding nucleotide sequences against aligned

amino acid sequences. This is done by essentially mapping the codon
sequences to the aligned amino acid sequences. Keep in mind that a gap in
the aligned amino acid sequences correspond to a triplet gap in nucleotide
sequences:

S1 ATG CCG GGA --- TAA
S2 ATG CCC GGG ATT TAA
 *** ** *** * ***

This alignment, designated as Alignment 1, has 10 matches, 2

mismatches, and 1 gap of length 3. Recall that the main objective of
sequence alignment is to identify homologous sites and it is important to
note that different alignments may lead to different interpretations of
sequence homology. With the alignment above, sites 6 of the two sequences
(G in S1 and C in S2) are interpreted as a homologous site, so is site 9 (A in
S1 and G in S2). These interpretations are not established facts. They are
only inferences of what might have happened.

46 Chapter 2

Depending on the scoring scheme, a nucleotide-based sequence
alignment, i.e., without using aligned amino acid sequences as a mapping
reference, may well generate the following alignment designated Alignment
2, with 12 matches, 0 mismatch and two gaps of lengths 1 and 2,
respectively:

S1 ATG CC- GGG A-- TAA
S2 ATG CCC GGG ATT TAA
 *** ** *** * ***

Note three different interpretations of the homologous sites between

Alignment 1 and Alignment 2. First, the nucleotide G at site 6 of S1 is now
interpreted to be homologous to the nucleotide G at site 7 of S2. Second, the
nucleotide A at site 9 of S1 is now interpreted as homologous to the
nucleotide A at site 10 of S2. Which of the two alignments makes more
sense? If Alignment 1 is correct but we used a nucleotide-based alignment
method and end up with Alignment 2, then the estimation of the genetic
distance between the two sequences will be biased. The genetic distance
measures the evolutionary dissimilarity between two sequences, often
estimated by ignoring the indel sites. It is often used as an index of sequence
divergence time in molecular phylogenetics, when calibrated by fossils with
known divergence time. In this particular case, if we perform site-wise
deletion of indels, then S1 and S2 would appear more similar to each other in
Alignment 2 than in Alignment 1. Biased estimation of the genetic distance
often results in failure in molecular phylogenetic reconstruction.

Given that a protein-coding gene is unlikely to remain functional after
two consecutive indel mutations as in Alignment 2, we may argue that
Alignment 1 based on the alignment of amino acid sequences is better than
Alignment 2. However, there are also cases where a nucleotide-based
alignment is better. Now consider the following two protein-coding
sequences:

 3 6 9 12 15
S1 ATG CCC GTA TAA
S2 ATG CCC GTG TTA TAA

Of the following three alignments, designated as Alignment 1, Alignment

2 and Alignment 3, all involving one indel of length 3, which one makes
more sense to you?

Alignment 1:
S1 ATG CCC GTA --- TAA
S2 ATG CCC GTG TTA TAA

2. Sequence alignment 47

 *** *** ** ***

Alignment 2:
S1 ATG CCC GT- --A TAA
S2 ATG CCC GTG TTA TAA
 *** *** ** * ***

Alignment 3
S1 ATG CCC G- --TA TAA
S2 ATG CCC GTG TTA TAA
 *** *** * ** ***

Alignment 1 is the outcome of aligning nucleotide sequences against

aligned amino acid sequences, and the other two alignments are from
nucleotide-based alignments. The three alignments represent three
alternative hypotheses, all involving a gap of length 3, but differ in the
position of the gap. Alignment 1 has only 11 matches, whereas the other two
alignments each have 12 matches. In this case, the two hypotheses
represented by alignments 2 and 3 is more likely true than alignment 1. In
short, aligning protein-coding sequences against aligned amino acid
sequences is not necessarily better than aligning the nucleotide sequences
directly unless the latter produces frameshifting deletions or insertions.

6. POSTSCRIPT

A student has once told me that it is humiliating to have human gene
sequences aligned against those of chimpanzees, monkeys or even snakes
and turtles. I suspect that people of the past would also find it humiliating to
have our earth displaced from the center of the universe and ranked among
the other planets. Indeed it would have been much nicer, at least esthetically
more charming and spiritually more enlightening, to have human genes all
quite different from genes of all other living creatures. It would also have
been nicer to have our earth centered in the universe with all stars and
galaxies orbiting around us. That would instill into our mind a certain
confidence that a supernatural custodian is looking after our wellbeing. We
would have been more coherent when preaching to our children.

But nature, as beautiful as she is, does not always seem to be our maid
working according to our dictation or wistful thinking. We are part of
nature’s creation and have been shaped by the same two sculptors of
biodiversity called mutation and selection as all the other creatures. From
this perspective we can better appreciate the truth that not only all humans

48 Chapter 2

are created equal, but also are all other creatures populating the earth.
Sequence alignment is a powerful tool to help us position ourselves properly
in the nature of things.

Chapter 3

CONTIG ASSEMBLY

1. INTRODUCTION

A contig is defined as a contiguous sequence assembled from a set of
sequence fragments, typically by string matching and local sequence
alignment. Contig assembly refers to the process of assembling many
sequence fragments into one long genomic sequence or a few long contigs
(Figure 3-1). Although the first automatic sequencer was developed by
Leroy Hood in 1986 and the Human Genome Project was in full swing in
1990, all automatic sequencers still suffer from the problem of limited read
length of ~700 bases. Consequently, any genome-sequencing project will
always involve the sequencing of a large number of sequence fragments.
These fragments need to be assembled to contigs and finally to a complete
genomic sequence.

Seq1 CACACGA......
Seq2 TTCTTCT......
Seq3 TCCTCAT......
Seq4 AATACCA......
……

Contig assembly software

TTCTCTAGGCCACACGAC……

Figure 3-1. Contig assembly

50 Chapter 3

A contig is a reconstructed nucleotide sequence from more than one
sequence fragment. The fragments are assembled by identifying overlapping
sequence fragments based on local string matching and alignment methods
that identify the overlapping ends of the sequence fragments and statistical
methods that evaluate the significance of the matched sequence ends. A
computer program for contig assembly will take as input a set of sequence
fragments, and output one or more reconstructed contigs. It is important to
recognize the fact at the very beginning that a reconstructed contig or
genomic sequence may not be the same as the real sequence.

Contig assembly is really the first step in the pipeline of genomic
analysis and, in this sense, should have been covered in the first chapter of a
book on bioinformatics. However, contig assembly requires the
understanding of algorithms in string matching and sequence alignment. For
this reason, the subject is better covered after the reader has gained
familiarity with string matching covered in Chapter 1 and sequence
alignment covered in Chapter 2.

Two types of contig assembly programs are in current use. The first is
the Phred/Phrap/Consed combo (Gordon et al., 1998) used in hierarchical
shotgun sequencing (e.g., the government-sponsored Human Genome
Project) together with post-assemblers such as the GigAssembler (Kent and
Haussler, 2001) to merge the contigs into a genome. This divide-and-
conquer approach cuts genomes into mapped mega pieces which are further
cut into mapped smaller pieces. So contig assembly involves assembling the
sequence fragments derived from each small genomic segment. The second
is the Celera (Myers et al., 2000; Weber and Myers, 1997) and PCAP
(Huang et al., 2003) assemblers for whole-genome shotgun sequencing. In
this case, contig assembly has to deal with all fragments derived from the
entire genome.

The contig assembly algorithm used in these programs involves three
steps. The first is to perform pairwise matching of sequence ends (including
the complimentary sequences) to identify “mate pairs” with the 3’-end of
one mate overlapping the 5’-end of the other. The confidence of the overlap
can be assessed by statistical methods detailed in the first chapter that has
also been used to assess the significance of an exact string match in BLAST
(Altschul et al., 1990; Altschul et al., 1997) and FASTA (Pearson, 1998).
The confidence is enhanced by searching the putative mate pair against EST
databases to see if both overlap the same segment of an EST. The
Goldenpath human genome assembly is produced by first building an initial
set of sequence contigs and then using paired plasmid ends, ESTs, BAC end
pairs, etc., to order and orient these individual contigs into larger assemblies
(Kent and Haussler, 2001).

3. Contig assembly 51

The second step is the actual assembly. If a sequence fragment is
involved in only one or two mate pairs, then assembling these mate pairs is
unambiguous. Contig assembly of sequence fragments from prokaryotic
genome sequencing projects is generally unambiguous because of the rarity
of sequence repeats in prokaryotic genomes. Sequence repeats are frequent
in eukaryotic genomes, and a fragment can be involved in many more than
two mate pairs. For example, if fragment i is really flanked by fragments j
and k in a eukaryotic genome, but fragment j has N repeats in the genome,
say fragments j1, j2, ..., jN, then fragment i would be involved in at least N
mate pairs. Now we will have a hard time deciding which of the putative
mate pairs represents true neighborhood relationship.

Both greedy and non-greedy algorithms are used to treat the resulting
putative pairs. The greedy one will assemble the two mates into one. If the
assembly of the two is wrong, the error will be propagated to subsequent
longer contigs. A non-greedy algorithm will generate a directed graph based
on pairwise matching. We will have more details on the non-greedy
algorithm latter in the chapter.

The third step is to resolve conflicts. As we will see latter, sequence
repeats can lead to multiple alternative assembled contigs. It is important to
have a criterion to assess alternative assemblies.

Contig assembly involves a great deal of mathematics and computational
algorithms. We will first provide a skeletal outline of the contig assembly
and then explain each step with more details.

2. SKELETAL OUTPUT OF CONTIG ASSEMBLY

Given a set of N sequence fragments, we first obtain N complementary
sequence fragments. The necessity of this step is shown in Figure 3-2 where
two sequence fragments labeled 2 and 6 were from the top strand and four
sequence fragments were from the bottom strand. The 3’-end sequence of
fragment 3 is the same as the 5’-end of the complementary sequence of
fragment 2, but not the same with any part of fragment 2 itself. Similarly, the
5-end of fragment 5 is the same as the 3’-end of the complementary
sequence of fragment 6. Any practical contig assembly will involve many
fragments, but we will use the fragments depicted in Figure 3-2 for
subsequently illustrations.

In contig assembly literature, the two DNA strands are often referred to
as the plus strand and the minus strand. When we have N sequence
fragments and N complementary sequence fragments, contig assembly
ideally should generate a plus strand and a minus strand that will be

52 Chapter 3

complementary to each other. This can be used for validating the contig
assembly algorithm.

5’TACCACAATTACACGA..........................ACGCC 3’
3’ATGGTGTTAATGTGCT..........................TGCGG 5’

2 6

4
3

5
1

Figure 3-2. Six sequence fragments from the double-stranded genomic sequence. Fragments 2
and 6 are collinear with the top DNA strand whereas fragments 1, 3, 4 and 5 are collinear with
the bottom DNA strand.

Contig assembly starts by doing pairwise comparisons between
fragments i and j. Each pairwise comparison consists of (1) matching the 3’-
end of fragment i with 5’-end of fragment j and (2) matching the 5’-end of
fragment i with 3’-end of fragment j. Each match is evaluated for its
statistical significance. The result of these N*(N-1)/2 pairwise comparisons
is summarized in a matrix of matching scores (Figure 3-3). Note that a
practical contig assembly in a shotgun sequencing project will typically
involve hundreds of thousands of sequence fragments and consequently a
matrix with many millions of elements. However, only good scores are kept
for identifying mate pairs. So the actual number of scores that need to be
kept in computer memory is much smaller.

2 3 4 5 6

1 P P P P P
2 G P P P
3 G G P
4 G P
5 G

Figure 3-3. Matrix of matching scores for assembling the six fragments in Figure 3-2.
Symbols P and G stand for poor and good matching scores, respectively. Only good matching
scores need to be kept.

In actual computation, the simplest generic data structure for individual
sequence fragment is as follows:

DataStructure dsFragment
 dsFragment fragmentWhose3EndMatchingMy5End()
 int goodMatchScore1()

3. Contig assembly 53

 int arrayDimension1
 dsFragment fragmentWhose5EndMatchingMy3End()
 int goodMatchScore2()
 int arrayDimension2
End DataStructure

It is worth noting the difference between two kinds of string matches.

The first is the overlapping match (Figure 3-4) used in contig assembly, and
the second is the non-overlapping match (Figure 3-4) that is marked and
discarded. Relevant statistical methods for evaluating the quality of an
overlapping match have already been presented in the first chapter.

Overlapping match Non-overlapping match

5’ 3’ 5’ 3’ 5’ 3’

Figure 3-4. Contig assembly uses only overlapping matches.

From the pairwise comparisons of the six sequence fragments and their
complements, we obtain the matrix in Figure 3-3 and an array of
dsFragments from which one can construct a graph to obtain the contigs
(Figure 3-5) by following the directed path. Note that there are two paths.
The first is made of fragments 2, 3, 5 and 6 in the order of 2→3→5→6 and
the second is made of fragments 2, 3, 4, 5, and 6 in the order of
2→3→4→5→6. Both lead to the same assembled contig. Fragment 1 has no
arrow to link it to any other fragments and will not be assembled with any
other fragment.

5’-2-3’

5’-1-3’ 5’-6-3’

5’-5-3’

5’-4-3’

5’-3-3’

Figure 3-5. Directed graph constructed from the matrix of good matching scores in Figure 3-
3. Only good (statistically significant) scores contribute to the graph construction. An arrow
directing from fragment i to fragment j means that the 3-end of fragment i overlaps the 5’-end
of fragment j with a good score, i.e., each arrow links a mate pair.

54 Chapter 3

There are two major difficulties with the non-greedy algorithm (Figure 3-
5). The first is the large number of possible pathways to construct the contig.
Take a sequencing project with 10× coverage for example (“10× coverage”
means that the total length of all sequenced fragments is 10 times as long as
the estimated genomic length). Each node in the directed graph will on
average have 10 connections, with some nodes having many more. As the
number of possible paths increases rapidly with increasing number of
sequence fragments, it becomes difficult to decide which path to follow. We
all know the difficulty when encountering two roads that diverged in the
yellow wood, but we cannot afford the luxury of idly gazing down both as
far as we could. We have to decide which paths are likely the right ones and
let the computer help us travel down all of them and finally check to see if
they are all the same. Fortunately, modern computers can go very fast,
especially when your instruction is clear.

The second problem with the non-greedy algorithm (Figure 3-5) results
from sequence repeats leading to (1) spurious connections and conflicting
paths and (2) cyclic paths in the directed graph that trap the program that
follows the paths to obtain contigs (Figure 3-6). The cyclic path is produced
because the 3’-end of fragment 4 (i.e., T--A--C--T---G) is the same as the 5’-
end of fragment 3. The path that would lead to a shortened contig is caused
by the 3’-end of fragment 1 (G-T--A—C) being the same as the 5’-end of
fragment 4.

=====A--C---G-T--A--C--T---G==============A--C---G-T--A--C--T---G===========

=====A--C---G-T--A--C 1
============A--C---G-T--A 2

T--A--C--T---G======= 3
G-T--A--C--T---G 4

T---G=========== 5

5’-1-3’ 5’-3-3’ 5’-2-3’ 5’-4-3’ 5’-5-3’

Cyclic Path

Wrong Path leading to a contig shorter than the true one

Figure 3-6. The problem of sequence repeats in contig assembly. The top is the true genomic
sequence with one segment repeated (shown in bold). The five fragments, with numeric labels
to the right, were obtained from the genomic sequence.

The conventional approach to solve conflicting assemblies is to use the
Bellman-Ford algorithm to find the shortest path (Kent and Haussler, 2001;
Thayer et al., 1999). However, the shortest path does not imply the correct

3. Contig assembly 55

assembly. As illustrated in Figure 3-6, the shortest path will result in
omission of repeated sequences. The human and mouse genomes from
Celera, assembled from the whole-genome shotgun sequencing that is
relatively vulnerable to sequence repeats, have many fewer sequence repeats
(which most likely represent artifacts from contig assembly) than the one
from Human Genome Project (Istrail et al., 2004). There are also substantial
differences between different human genome assemblies (e.g., between
NCBI and University of California at Santa Cruz, or UCSC) from public
effort (Rouchka et al., 2002). While these different public assemblies have
now been coordinated to provide a unique human genome assembly, it is not
clear how discrepancies are resolved. A discrepancy between the two may
mean both being wrong or one being wrong and one right. Forcing a
consensus does not always mean that the result will be right.

Once when I get to this point in the classroom, a student suddenly asked
why the two public assemblies could not both be right. My answer was that
both assemblies were from the same source of fragments and therefore could
not both be right when there were substantial differences. Whenever there
was a substantial difference, either assembly A is wrong or assembly B is
wrong or both are wrong. The student could not understand the logic and I,
at my wit’s end, suddenly recalled what Voltaire said in his Philosophical
Dictionary that, given the evil we observe in this world, “Either God wishes
to expunge the evil from this world and cannot; or He can and does not wish
to; or he neither wishes to nor can.” Equipped with this sudden rush of
insight, I explained that “both assemblies being correct given the
differences” was logically similar to “God wishes and can, given the
observed evil”, both being logically impossible. The student wanted me to
show the connection between the two statements. Taking it literally, I draw a
circle containing “both assemblies being correct given the differences” in the
left of the paper and another circle containing “God wishes and can given the
observed evil” in the right of the paper and draw an arrow from the left circle
to the right circle. Unfortunately, the student claimed that this was not the
connection she wanted. In the end, I was left more confused than the student.
(Voltaire probably did not read Isaiah 45:7, King James Version, where one
finds God stating “I form the light and create darkness, I make peace and I
create evil, I am the LORD who does all of these”. All religions share the
notion of the good and the evil, especially oriental ones which are rich in
dialectical thoughts. According to dialectics, the good cannot be defined or
known without the evil. In contrast to the first law of logic, i.e., the law of
identify which states that A is A and cannot be anything else, the first law of
dialectics is the law of the negation of negation which states that A can be A
only if it is not a non-A. In other words, A cannot be A unless the presence
of a non-A is a condicio sine qua non. Therefore, God cannot create the

56 Chapter 3

good without creating the evil at the same time, or create light without
creating darkness at the same time. We cannot see anything when confined
in total darkness or when staring into pure light. A balance of light and
darkness is necessary for us to see. For the same reason Solomon had wisely
stated in Ecclesiastes 7:16-17 that “Be not overly righteous, …… Be not
overly wicked”. In this sense, the Bible is quite dialectical. From this point
of view we see that Voltaire was logical but not philosophical.)

Another problem with contig assembly, other than those getting both my
students and me confused, is that the ending sequences are often of poor
quality, making it difficult to have exact matches. However, modern
automatic DNA sequencers can perform quality analysis and automatically
chop off sequence ends that are poor.

3. STRING MATCHING OF TWO SEQUENCE ENDS

Contig assembly needs to do N×(N-1)/2 pairwise comparisons of the
ending sequences to identify overlapping matches. With N in the order of
10,000-100,0000 or more, the computational burden is huge and efficient
string matching methods are needed. String matching algorithms most
familiar to biologists are BLAST (Altschul et al., 1990; Altschul et al.,
1997), FASTA (Lipman and Pearson, 1985), and the global alignment by
dynamic programming (Needleman and Wunsch, 1970) popularized by
Clustal (Higgins and Sharp, 1988).

String matching algorithms are classified into exact and inexact matching
(Gusfield, 1997). Commonly used string matching algorithms are hash tables
which have been covered in the first chapter, suffix trees (McCreight, 1976;
Ukkonen, 1995; Weiner, 1973) which is a data-structure that facilitates rapid
finding of an exact match of a substring in a string, and pairwise alignment
by dynamic programming (Needleman and Wunsch, 1970). Hash tables and
suffix trees are representatives of the exact string matching algorithm,
whereas sequence alignment by dynamic programming is a representative of
the inexact string matching algorithms. We have covered hash tables and
sequence alignment by dynamic programming in previous chapters. Here we
briefly mention the suffix tree.

If S = t1t2...ti...tn, then Si = titi+1...tn is the suffix of S that starts at position
i. The suffixes of a string (S = ACCGCGATGACGAATA) are shown in the
left column in Figure 3-7. S is a suffix of itself starting at position 1. The
middle column (Figure 3-7) contains the sorted suffixes, and the right panel
is a suffix tree. A related concept is a trie (from retrieve) in which each
nucleotide is a node on the tree, with branches linking its neighboring nodes

3. Contig assembly 57

(e.g., the top leaf ‘GACGAATA<’ would have been written as ‘G-A-C-G-A-
A-T-A<’).

A suffix greatly decreases the time needed to search one string of length
M against another string of length N. Optimized searching algorithms, such
as the Boyer-Moore algorithms (Gusfield, 1997), can finish the search in no
more than M+N comparisons. The suffix tree need only M character
comparisons.

A

C

G

T

ATA<

C

T

CGCGATGACGAATA<

GAATA<

A<

GACGAATA<

CGCGATGACGAATA<

G
A

CGATGACGAATA<

ATA<

TGACGAATA<

A

CGATGACGAATA<

ATA<

CGAATA<
TGACGAATA<

A<

GACGAATA<

AA

AATATA

ACCGCGATGACGAATAATA

ACGAATAAATA

ATAGAATA

ATGACGAATACGAATA

CCGCGATGACGAATAACGAATA

CGAATAGACGAATA

CGATGACGAATATGACGAATA

CGCGATGACGAATAATGACGAATA

GAATAGATGACGAATA

GACGAATACGATGACGAATA

GATGACGAATAGCGATGACGAATA

GCGATGACGAATACGCGATGACGAATA

TACCGCGATGACGAATA

TGACGAATAACCGCGATGACGAATA

Figure 3-7. Suffixes of S = ACCGCGATGACGAATA (left column), alphabetically sorted
suffixes (middle) and a suffix tree (right). The trailing ‘<’ indicates the ending character node.

Suppose now we wish to find whether the 5’-end of sequence T (=
GAATACGACTGACGATGGA) matches the 3’-end of S. We can start with
the first four nucleotides of T, i.e., GAAT. By referring to the suffix tree in
Figure 3-7, we can quickly find GAAT (italicized letters in the suffix tree).
Because the last ‘T’ in GAAT is not the ending character node (Figure 3-7),
we need to extend the match until we encounter the ending character node.
In this case, the extension is successful because the last character node A on
the suffix tree matches the fifth character of T. So we conclude that S and T
have an overlapping match of length five. If our extension fails before
reaching the ending character node, then the match is not an overlapping
match, i.e., it is one of the non-overlapping matches depicted in Figure 3-4.
Such non-overlapping matches are not used to generate mate pairs.

The trie structure and suffix trees are used frequently in storing large
dictionaries in spell-checking programs, where many branches may originate

58 Chapter 3

from one node (e.g., 26 branches may originate from a node in the English
language). The trie or suffix tree for DNA sequences has at most four
branches originating from each node.

An alternative string matching method is illustrated in Figure 3-8, using
the same two strings S and T. The binary coding is similar to that used in
BLAST (Altschul et al., 1990; Altschul et al., 1997), i.e., A:00, C:01, G:10,
T:11, with each nucleotide taking up two bits. This allows four nucleotides
to be packed into a single byte (8 bits). To know whether the 3’-end of S
matches the 5’-end of T (or any other sequence), we obtain a list of suffix
numbers of S starting at the last byte of S (i.e., 00001100) and shifting
leftwards with the step length of two bits (i.e., one nucleotide). This is
illustrated in Figure 3-8. Note that the binary number of 00001100 is equal
to the decimal number of 12:

7 6 5 4 3 2 1 000001100=0 2 0 2 0 2 0 2 1 2 1 2 0 2 0 2
 0 0 0 0 8 4 0 0 12

+ + + + + + +
= + + + + + + + =
i i i i i i i i (3.1)

S: ACCGCGATGACGAATA
T: GAATACGACTGACGATGGA
Recoding A:00, C:01, G:10, T:11
S: 00010110011000111000011000001100
T: 10000011000110000111100001100011101000
From 3’-end of S:

00001100 12
1000001100 524

011000001100 1548
From 5’-end of T:
10000011 131
1000001100 524
100000110001 2097
Conclusion: The last 5 nucleotides of S
matches the first 5 nucleotides of T because
the shared number of 524.

Figure 3-8. A simple illustration of an exact string matching method.

Similarly, we obtain a list of prefix numbers of T starting from the first
byte of T and shifting rightward with the step length of two bits. A prefix
number in T that matches a suffix number in S implies an overlapping
match. In our case, the number 524 is shared between the prefix numbers of
T and the suffix numbers of S, leading to the conclusion of an overlapping
match of 5 nucleotides (Figure 3-8). Because the suffix and prefix numbers
are ordered from small to large, a search for a matching number can be done
quickly. My program DAMBE (Xia, 2001; Xia and Xie, 2001b) has a contig
assembly function, partially based on Huang’s (1992), includes a crude
implementation of these string matching methods.

3. Contig assembly 59

When an exact overlapping match is identified by methods in the
previous section, it is important to know whether the match is statistically
significant or may happen by random occurrence. So we need a filter to
eliminate poor matches and establish good matches. This is covered in the
chapter on BLAST and FASTA.

4. NEW DEVELOPMENT IN CONTIG ASSEMBLY

There are still many unsolved or even unsolvable problems with contig
assembly (Pevzner et al., 2001). For this reason, all assembled genomes
from multicellular eukaryotes have gone through a seemingly everlasting
process of revision. However, a new development in sequencing and contig
assembly in my laboratory might be worth mentioning.

Consider piecing together a jigsaw puzzle. We first would find all the
edge pieces and then optionally sort pieces into similar colors. This divide-
and-conquer approach is used often in efficient computation. What are the
edge pieces in contig assembly?

We propose to use single-copy genes to dramatically reduce the
computation time and error rate in contig assembly. In spite of genome
duplication events during evolutionary time, many genes are single-copy and
highly conserved in extant genomes. For example, the budding yeast has
about 3500 single-copy genes (Goffeau and al., 1996). The human genome
shares 1308 gene families with the genomes of Caenorhabditis elegans,
Drosophila melanogaster and Saccharomyces cerevisiae, 43.1% of which
are single-copy genes in these organisms and in humans (Hughes et al.,
2001; Lander et al., 2001a; McLysaght et al., 2002; Panopoulou et al.,
2003). The number of families shared between the human genome and the
genomes of C. elegans and D. melanogaster increases to 3044, most of
which are single-copy genes (Panopoulou et al., 2003). Approximately 3,700
of the genes in the Arabidopsis Col-0 genome are single-copy, and are
distributed throughout the genome.

We can exploit these single-copy genes (SCGs) in contig assembly in
three steps. First, we extract all fragments matching each SCG and perform
SCG-anchored contig assembly. Second, the genome can be restriction-
digested to obtain the physical distance between SCGs (Dij). Third, routine
contig assembly can be done for the remaining sequences. When conflicting
assemblies arise, we can choose the assembly that fits best the Dij values.
This criterion is obviously superior over the shortest-path criterion in the
Bellman-Ford algorithm used in current contig assemblers. This contig
assembly strategy, once implemented in a user-friendly manner, should
dramatically increase the efficiency of contig assembly and, in particular,

60 Chapter 3

improve the accuracy of the assembled genome and the quality of all
downstream genomic analyses.

5. POSTSCRIPT

A genome typically has many genes, and genes and gene products
interact with each other in many ways in a living cell, creating many
different relationships among them. Contig assembly identifies one of the
relationships among genes, the neighborhood relationship.

The importance to understand the relationships among genes has been
highlighted by using the Greek legend of the Delphi boat (Danchin, 2002).
Delphi is the location where the son of the Greek god Zeus, Apollo,
established a priesthood. The female priests could often enter into a mental
state in which they were prone to murmur an encoded prophecy of the future
called an oracle. For this reason the word Delphi and Oracle have been
associated with prophecy of the future and have both been adopted by
software companies. The female priests might also ask passersby questions,
and one of the question is whether a boat made of wooden planks remains
the same boat after all of its original planks have gone rotten over time and
been sequentially replaced by new planks. From the owner’s point of view,
the boat is the same boat because it is not the individual planks that define
the boat, but the relationships among planks, as well as the constraints
imposed by these relationships on the size and shape of individual planks,
that define the boat. While having a list of planks is an essential step in
building a boat, it is only after we have identified the relationship among
planks can we actually build the boat.

The relevance of the Delphi boat to genomics is that, although we often
claim to be in the postgenomic era, all we really have at the moment is really
just a list of genes equivalent to a pile of wooden planks. We still know very
little about the relationship among the genes and gene products and
consequently are still far from building a real boat (a functional genome in
this case). Contig assembly does help to identify the neighborhood
relationship although the neighborhood relationship identified by current
genomic technology is still often wrong for most multicellular eukaryotic
genomes.

If the boat we are trying to build is a living cell, then we are not even
close to get a good parts list. A cell is a chemical system with numerous
components interacting with each other to determine the state of the cell, i.e.,
whether it is to become a functional liver cell or to turn cancerous. Three
classes of the interacting cellular components are considered to be
particularly important, the genome, the transcriptome (i.e., the collection of

3. Contig assembly 61

RNA molecules transcribed from the genome, often defined with reference
to cell type and time) and the proteome (i.e., all proteins translated from
mRNAs, also often defined with reference to cell type and time). As we will
learn latter, the assembled genomic sequences have greatly accelerated the
characterization and quantification of transcriptomes and proteomes.

Chapter 4

DNA REPLICATION AND VIRAL EVOLUTION

1. INTRODUCTION

We have learned in the previous chapters the fundamental tools for
homology searches, sequence alignment, and contig assembly to assemble
sequence fragments into a genome. If you are not a biology student, you may
ask why we take all this trouble to sequence and assemble genomes. To this I
have two answers. The first is that we, at this point in the book, are still at
the early stage of data collection in genomics. The tremendous value of
obtaining well assembled genomes will become obvious when we progress
further into the book and have acquired more biological knowledge and
genomic analysis such as descriptive, comparative and functional genomics.
The second answer, which is more relevant to your question, is that the
genomic sequences, even not annotated, can already be used to derive
biological insights and to test interesting predictions derived from biological
hypotheses.

This chapter, together with Chapter 8, serves three purposes. First, they
will not only provide essential biological concepts, especially for non-
biology majors, to pave the way for studying latter biological problems, but
also present these concepts in the framework of molecular evolution shaped
by the three essential biological processes: genome replication, transcription
and translation. Without such biological concepts we are likely to get lost in
the jungle of disconnected biological entities. Second, they illustrate
biological research that can be done with molecular sequences, you will soon
realize that the less we know about the genome, the fewer inferences we can
make. In fact, you will soon realize that inferences built upon uncertain

4. DNA replication and viral evolution 63

inferences makes you feel uncomfortable very quickly. Third, we need to
have some variation after three chapters of computational algorithms. An
ancient Chinese administrator (晏子 or Yan Zi) recognized the importance
of variation and diversity about 2500 years ago. When asked by the king for
his opinion on another official who always agreed whole-heartedly with the
king, 晏子 answered that, although water is essential in cooking, adding
water to water can never generates gourmet food (若以水济水，谁能食之
？). So I should give you something more than just plain water.

In this chapter, we will focus on DNA replication to show that even
unannotated genomes can be useful in addressing biologically interesting
questions, i.e., the relationship between bacteria and their parasites, the
bacteriophage (or phage for short). Just in case the reader happens to have
only limited knowledge in biology, I will outline basic viral and bacterial
biology and then perform a very limited genomic analysis based on one of
the simplest genomic properties, the genomic GC% (often referred to as GC
content), to see how mutation and selection can shape viral genomes.

I have to say here that I am hesitant about including this chapter because
of dramatically different feedbacks from colleagues, with one condemning
the chapter by saying that it is like an ugly tumor on an otherwise beautiful
nymph. As tumors are featured far more prominently in science than
nymphs, I hope that you would not mind seeing a tumor sticking out
somewhere.

2. FUNDAMENTALS OF VIRUSES

Sir Peter Medawar has described the virus as “a piece of bad news
wrapped up in protein” (Medawar and Medawar, 1983, p. 275), and the “bad
news” comes in a variety of colors and shapes. The viral diversity serves as a
bridge connecting the organic chemicals to living organisms. In one extreme
of this diversity, nature presents us with some “bad news” that are never
observed to have been wrapped in a protein coat, and such “bad news” are
called viroids that are infectious agents of plants comprised of just a single-
stranded circular RNA molecule of about 300 nucleotides (Gora-Sochacka,
2004). On the other extreme of viral diversity, nature also features some
giant viruses, unfortunately called miniviruses, that blurs the distinction
between viruses and the parasitic cellular organisms (La Scola et al., 2003;
Raoult et al., 2004). The largest known minivirus has a 400-nanometer
particle size that is comparable to Mycoplasma and a genome size of
1,181,404 bp that is longer than that of Mycoplasma genitalium whose
genome size is only 580,074 bp (Raoult et al., 2004).

64 Chapter 4

Viroids are not considered as viruses, and mimivirus exhibits many
features that distinguish it from other large DNA viruses (Raoult et al.,
2004). This chapter will cover viruses that lie between these two extremes.

2.1 The virion and the viral genome

A viral particle outside of a living cell is called a virion, which consists
of an outer shell and an interior core. The outer shell, made of capsid
proteins, protects the contents of the core and has proteins interacting with
the receptor on the cell membrane of the host cell, therefore conferring the
host specificity. For example, HIV-1, the cause of AIDS, binds to the
chemokine receptor CCR5 found on human lymphocytes and macrophages.
The interior core contains the viral genome and, in some viral species, one or
more enzymes needed to start the process of reproduction within the host
cell. The genome encodes proteins needed for viral reproduction but not
provided by the host cell.

The smallest virus is probably the hepatitis B virus with a genome size of
~3 kb and a virion particle size of ~42 nm. The parvoviruses have smaller
capsids (18-26 nm), but a larger genome (5 kb)

Just like the more complicated cellular organisms, a virus needs all three
essential biological processes, i.e., genome replication, transcription and
translation, to reproduce itself. It needs to orchestrate these three processes
to be efficient. Take phage λ for example. If the phage would generate many
copies of its genome but not a corresponding number of head and tail
proteins, or if it would generate too many tail proteins but too few head
proteins, then it would simply be too wasteful to be tolerated by nature.
According to Charles Darwin (Darwin, 1859), our mother nature is not
particularly forgiving for those straying away too far from life’s imperatives
of passing one’s genome to the next generation.

The information for orchestrating the three essential biological processes
is stored in the genome, and different viruses have different ways of storing
the information. Viral genomes can be classified into four types: double-
stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded
RNA (dsRNA) and single-stranded RNA (ssRNA). The four types of viruses
differ significantly in the genome size. Based on the 118 bacteriophage
(which are viruses parasitizing their bacterial hosts) genomes retrieved from
NCBI on September, 2003, with 79 dsDNA phage species, 27 ssDNA phage
species, 4 dsRNA phage species and 8 ssRNA phage species, the average
genomic sequence lengths are 39,297, 6,274, 6,658, and 3,801 for dsDNA,
ssDNA, dsRNA and ssRNA, respectively.

4. DNA replication and viral evolution 65

2.2 Variation in viral genome size can be explained by
variation in mutation rate

The variation in genome size is explained by different mutation rate
operating on different genomes. It is necessary here to introduce the concept
of fitness in evolutionary biology. Fitness of an individual is defined
theoretically as the propensity of leaving offspring in future generations, and
is measured operationally in two ways. The first, called absolute fitness is
measured by the number of offspring brought up to breeding age. The
second, called relative fitness, is typically measured as the ratio the absolute
fitness of a mutant over the absolute fitness of a wild type individual. J. B. S.
Haldane (1937) argued that, in equilibrium populations, the effect of
deleterious mutation on average fitness depends primarily on the mutation
rate and is independent of the severity of the mutations. In particular, the
average fitness (w) at equilibrium depends on the genomic mutation rate
according to the following equation

Lw e μ−= (4.1)

for haploid or asexual diploid populations (Hopf et al., 1988; Kondrashov
and Crow, 1988), where μ is the deleterious mutation rate per nucleotide site
and L the genomic length. For competing species that co-exist for a long
time, the average species fitness should all be 1, i.e.,

1Le μ− ≈ (4.2)

which means that, on average, each genome should produce an equally
mutation-free genome. This implies that a species with a large μ will
necessarily have a small L because a genome with a large μ and a large L
would reduce the fitness (w)so that the carrier of such a genome will be
eliminated by natural selection. The late John Maynard-Smith has taken a
slightly different modeling approach but reached the same conclusion
(Maynard Smith, 1989, pp.20-24).

That μL should be approximately constant for genomes in haploid
organisms and asexual diploid organisms has been well documented
empirically (Table 4 in Drake et al., 1998). Mutation rate μ is relatively
lower in dsDNA than in ssDNA or in RNA viruses, which explains why
dsDNA viral genomes can be substantially longer than other viral genomes.
It is mainly because of the low mutation rate in dsDNA viruses that efficient
vaccines can be developed against them to protect us from their infection.

One interesting exception to this rule is the Hepatitis B viruses which are
dsDNA viruses but with a very small genome of ~3 kb. The genomic

66 Chapter 4

replication in Hepatitis B viruses involves a lengthy mRNA stage. In other
words, the genome is copied to mRNA molecules which not only serve as
templates for making proteins, but ultimately also serve as templates for
making a complementary DNA strand. This lengthy mRNA stage means that
the mutation rate should be high, and we can predict that its genome size
should be small. Indeed, the hepatitis genome, with a length of just about 3
kb, is among the smallest viral genomes. This is a good example in which an
exception to the rule actually supports the rule in a different way.

2.3 A representative virus: Phage λ

The phage λ virion, once attached to the cell wall of its host (Escherichia
coli), injects its DNA into the bacterium (Figure 4-1). The linear viral DNA
is then circularized into a supercoil (over-twisted DNA molecule). If the host
cell is in good shape, then the phage will often initiate its lysogenic cycle by
integrating its DNA to the circular bacterial chromosome and have its
genome co-replicated with the host genome. In its integrated form, the viral
genome is called a provirus (or prophage). Not all dsDNA viruses have the
lysogenic cycle.

Figure 4-1. Schematic illustration of the lytic and lysogenic cycles of the phage lambda

Under certain conditions, typically when the host cell is not in a good
shape to replicate quickly, e.g., when exposed to UV radiation, the phage

Lysogenic Lytic

Phage λ virion

Bacterial cell membrane

Phage
DNA

Phage DNA integrated to the host
genome and known as prophage

Host DNA

Infect other cells

4. DNA replication and viral evolution 67

DNA is able to free itself out and enter the lytic cycle. Now the phage DNA
is quickly replicated and transcribed, and the resulting mRNA quickly
translated into phage proteins. The replicated phage DNA and phage proteins
are assembled into new phage virions. Finally, the phage lysozyme is
produced to lyse the host cell membrane to release the phage virions to
initiate a new cycle of infection. It seems that phage λ is a pretty faithful
practitioner of Sun Tzu’s military strategy. When the environment is
deteriorating and when one can do little about it, then taking-off is the best
strategy (三十六计，走为上计).

3. FUNDAMENTALS OF BACTERIAL SPECIES

Bacterial species used to be grouped into the gram-negative and gram-
positive ones, with Escherichia coli being the representative of the former
and Bacillus subtilis being the representative of the latter. These two are
naturally the most studied bacterial species.

Competition is very intensive in the micro-world and most bacterial
species need to be extremely efficient in order to stay in the game of survival
and reproduction. E. coli cells replicates once every 20 minutes with
unlimited nutrients. During this period it needs to replicate its genome of
about 5 megabases (mb) long, transcribe millions of RNA molecules, and
make millions of protein molecules. If some E. coli cells get lazy and leave
their offspring at a slower rate, then they will soon be replaced by faster-
replicating ones. This process is called negative selection in contrast to
positive selection which preserves the fittest mutants.

Most bacterial genomes are circular DNAs made of A, C, G and T.
Bacterial genomes differ dramatically in genomic AT%. It is likely that
nucleotides A and T are abundant in bacterial species with an AT-rich
genome because otherwise such bacterial species would be inefficient in
replicate their DNA because few building blocks are available. Below we
develop a more formal argument to show that genomic AT% of bacterial
species is indicative of cellular AT availability. It is important to know
something about the cellular environment inside a bacterial cell, especially
from a phage perspective. It would be a fatal mistake if a phage squeezes its
AT-rich genome into a bacterial host with few A and T available.

The importance of the environment reminds me of another story of Yan
Zi (晏子) when he was serving as the prime minister of kingdom Qi (齐国).
When he was visiting the neighboring kingdom Zhu, the king of Zhu and his
aids plotted to insult him. During the banquet, two guards pushed a man in
chains across the court. The king rose to ask what happened and was told
that the man in chains was a native of kingdom Qi and was caught for

68 Chapter 4

stealing. The king then turned to 晏子 and asked if people of kingdom Qi
loved stealing. 晏子 replied with a smile, “I heard that orange trees produce
excellent fruits when growing in the south of the Huai River, but terrible
fruits when growing in the north of the river – the different environments
make them so. People become excellent citizens when living in kingdom Qi,
but degrade to thieves when living in kingdom Zhu – the different
environments make them so.”

Some of my students are pretty good at invoking the same argument.
They would tell me that they were A+ students when taught by other
professors, but became B- students when taught by me – the different
professors make them so.

4. GENOMIC AT% OF BACTERIAL SPECIES IS
INDICATIVE OF CELLULAR AT AVAILABILITY

Let us return to the cellular environment of bacterial cells. We will first
develop a model to show the following conjecture is plausible, i.e., the
genomic AT% in rapidly replicating bacterial species can be used as an
index of the availability of nucleotides A and T for DNA replication in
cellular medium. We will then use this index to (1) study the evolution and
adaptation of the bacteriophage genomic AT% in response to the differential
nucleotide availability of the host and (2) test the prediction of an association
between phage genomic AT% and their host genomic AT%, and (3) test the
prediction that double-stranded DNA (dsDNA) phage should exhibit better
adaptation than single-stranded DNA (ssDNA) phage. You may be wonder
where these predictions come from. Their formulation will be detailed latter.

Designate the amount of the four deoxyribonucleotides dATP, dCTP,
dGTP and dTTP available for DNA replication as VdA, VdC, VdG and VdT,
respectively. Note that these are abstract terms and may not correspond to
the cellular concentration of dNTPs or rNTPs. Suppose a single-stranded
DNA genome of length L is composed of A, C, G, and T with frequencies
NA, NC, NG and NT, respectively (NA + NC + NG + NT = L). The
polymerization reaction is characterized as

1

pk

n nM M M +• + → • (4.3)

where Mn• stands for an elongating (or propagating in chemistry
terminology) DNA strand with n monomer residues (i.e., nucleotides), M is
the monomer, and kp is the propagating constant. According to the law of

4. DNA replication and viral evolution 69

mass action, and assuming that kp is the same for adding any of the four
nucleotides to the elongating chain, the elongation rate (r) during DNA
replication can be modeled as

[] [] [] []C GA TN NN N
p dA dC dG dT

dLr k V V V V
dt

= = (4.4)

Bacterial species often need, and typically are selected, to replicate
rapidly. For example, E. coli in unlimited culture conditions can replicate
once every 20 minutes. It is therefore reasonable to assume natural selection
to operate on increasing r for such organisms. According to Eq. (4.4), if VdA
is the largest, then r is increased with increasing NA and decreasing NG, NC
and NT, with the constraint of NA + NC + NG + NT = L. Without functional
constraints such as the genetic code, the maximum r is achieved when NA =
L and NC = NG = NT =0. This means that, in order to maximize r with
differential nucleotide availability, the genomic nucleotide usage should
evolve to adapt to the availability of nucleotide availability by maximizing
the usage of the nucleotide of the highest availability. Similar conclusions
have also been derived elsewhere on optimization at the molecular level
(Xia, 1996).

One should note that the model above does not consider the effect of
differential depletion of the nucleotides. For example, consider that VdA is
the largest among the four at the beginning of DNA replication. If a rapidly
replicating genome is made entirely of A, then A will be differentially
depleted leading to a reduced VdA which consequently may become smaller
than VdC, VdG and VdT. This means that the replication of the remaining A-
rich part of the genome would be slow, thus compromising the statement
above that “The maximum r is achieved when NA = L and NC = NG = NT
=0”. However, the qualitative conclusion that, if VdA is larger than VdC, VdG
and VdT, then NA should be larger than NG, NC and NT remains correct.

When VdC = VdG = VdA = VdT = V, then Eq. (4.4) becomes:

A C G TN N N N LdLr kV kV
dt

+ + += = = (4.5)

so that r is independent of NA, NC, NG, and NT. This might be interpreted to
mean that, with equal availability of the nucleotides for DNA replication,
there is no selection on genomic nucleotide usage and genomic nucleotide
frequencies can vary freely. However, the replication of a large, rapidly
elongating and AT-rich genome may differentially reduce VdC, VdG, VdA, and
VdT. For example, rapid replication of a large AT-rich genome will reduce
VdA and VdT and increase the time for adding the remaining A and T to the

70 Chapter 4

elongation chain. Thus, even with VdC =VdG = VdA = VdT = V at the
beginning of the replication, we would still expect the genomic AT% to be
near 50% instead of fluctuating to extreme values.

For a double-stranded genome where NA = NT = NAT and NC = NG =NCG,
Eq. (4.4) becomes

() () CGAT NN
dA dT dC dG

dLr k V V V V
dt

= = (4.6)

If VdA•VdT >> VdC•VdG, then increasing NAT in the genome will increase
r, with the maximum r achieved when NAT = L and NCG = 0, i.e., the genome
should evolve towards AT-richness. Again, this assumes no differential
depletion of A and T and should be interpreted qualitatively to mean that,
with VdA•VdT >> VdC•VdG, we should have NAT > NCG.

If VdA•VdT = VdC•VdG, then r becomes independent of NAT and NGC.
However, this again does not necessarily mean that there is no selection to
constrain genomic AT% and that genomic AT% can consequently vary
freely. As we have argued before, a large, rapidly replicating and AT-rich
genome will differentially reduce nucleotides A and T and lead to VdA•VdT
<< VdC•VdG which is unfavorable for replicating an AT-rich genome. Thus,
with VdA•VdT = VdC•VdG, we expect the genomic AT% to be near 50%
instead of fluctuating to extreme values.

In summary, we expect an extremely GC-rich bacterial genome to
indicate relatively high VdC•VdG, an extremely AT-rich bacterial genome to
indicate relatively high VdA•VdT, and a bacterial genome with GC% = 50% to
indicate (VdA•VdT) ≈ (VdC•VdG). It is important to note that, although rATP
and dATP cencentrations are generally higher than other rNTPs and dNTPs,
this does not preclude the possibility that some bacterial species have greater
AT availability than others.

Based on the reasoning above, we may infer that different genomic AT%
values in different bacterial species indicate different AT availability in the
cells of these bacterial species. By using the genomic AT% of bacterial
species as an index of AT availability, we now study how bacteriophage
genomic GC% evolve in response to different nucleotide availability in
different hosts.

5. FORMULATING THE HYPOTHESIS AND
PREDICTIONS

Assuming that it is beneficial for the phage to replicate its genome
rapidly, we can make two testable predictions. First, a phage genome should

4. DNA replication and viral evolution 71

evolve to become AT-rich in a host with a high genomic AT% (indicating
VdA•VdT >> VdC•VdG in its cell), and GC-rich in a host with a low genomic
AT% (indicating VdA•VdT << VdC•VdG in its cell). This will lead to a positive
correlation between the phage genomic AT% and the host genomic AT%.
Such a correlation has in fact been known for a long time (Gibbs and
Primrose, 1976).

Second, because the rate of spontaneous deamination (Figure 4-2), which
leads to C→T or C→U mutations depending on whether C is methylated or
not, is about 100-fold higher in the ssDNA than in dsDNA (Frederico et al.,
1990), we expect such mutations to reduce the effectiveness of natural
selection optimizing the genomic AT% of the ssDNA phage in response to
their host genomic AT%. In particular, with low host AT availability, natural
selection should favor the reduction of the phage genomic AT%, but the
C→T(U) mutation mediated by the spontaneous deamination in the ssDNA
phage would counteract against natural selection and increase the genomic
AT% of the ssDNA phage.

N

N

O

NH2

N

N

O

O

Figure 4-2. Spontaneous deamination converts a cytosine to a uracil.

One more point worth making is that, while A% is constrained to equal
T%, and C% equal G%, in dsDNA phage, genomic A% and T% can evolve
independently in ssDNA phage. We can therefore specifically predict an
increase in the genomic T% in ssDNA phage without an associated increase
in the genomic A%. We will test these predictions. There are many
complications involved in testing these predictions (Xia and Yuen, 2005).
However, we will ignore them at the moment.

6. ARE OUR PREDICTIONS SUPPORTED?

The positive relationship between the phage genomic AT% and their host
genomic AT% is shown separately for the dsDNA and ssDNA phages
(Figure 4-3). Such a positive relationship itself is trivial because the
relationship has been known for nearly 30 years (Gibbs and Primrose, 1976).

72 Chapter 4

However, the difference between the dsDNA and ssDNA phages is
scientifically interesting. The regression line for the ssDNA phage has a
higher intercept (t = 2.83, p = 0.0028) and a lower slope (t = 2.04, p = 0.0221)
than that for the dsDNA phage (Figure 4-3) based on a generalized linear
model (Xia and Yuen, 2005).

20%

30%

40%

50%

60%

70%

80%

20% 30% 40% 50% 60% 70% 80%

Host AT%

Ph
ag

e
A

T

dsDNA ssDNA Linear (dsDNA) Linear (ssDNA)

Figure 4-3. Relationship between the phage genomic AT% and the host genomic AT%. Data
points for ssDNA and dsDNA phages are plotted separately with their respective linear
regression lines.

The increased intercept and decreased slope in the ssDNA phage relative
to the dsDNA phage are easy to interpret in light of the finding that the rate
of spontaneous deamination, which increases the C→T(U) mutation rate, is
about 100-fold higher in ssDNA than in dsDNA (Frederico et al., 1990).
This spontaneous deamination features prominently among all other factors
contributing to the degradation of DNA (Lindahl, 1993). When host genomic
AT% is low (the left extreme of Figure 4-3), indicating low availability of
nucleotides A and T in the cellular medium according to equations (4.4) and
(4.6), natural selection should cause the phage genome to reduce its AT%,
but the C→T(U) mutation mediated by the high rate of spontaneous

4. DNA replication and viral evolution 73

deamination in the ssDNA phage goes against natural selection and increases
phage genomic AT%. In other words, the C→T(U) mutations reduce the
effect of the natural selection that pushes the phage genomic AT%
downwards. This would raise the intercept and decrease the slope of the
regression for the ssDNA phage relative to the regression line for the dsDNA
phage.

Note that the C→T(U) mutations act in the same direction as the natural
selection when the host genomic AT% is high indicating high availability of
nucleotides A and T in the cellular medium according to equations (4.4) and
(4.6). In this case, natural selection should favor phage genomes to become
AT-rich, and the C→T(U) mutation mediated by the high rate of
spontaneous deamination in the ssDNA phage also increases phage AT%,
i.e., the two acting in the same direction. Such an interpretation is consistent
with the right side of Figure 4-3 in which few points are below the
regression line and with little scatter above and below the regression line,
especially when the host genomic AT% is extremely high.

To further substantiate this interpretation, we can test whether the
increased intercept and decreased slope for the regression line of the ssDNA
phage in Figure 4-3 is really due to an increase in the genomic T% instead of
the genomic AT%. This can be done because A and T do not need to be
equal to each other in number for ssDNA. We expect an increased genomic
T% but not genomic A% in the ssDNA phage. Such an inference is
consistent with plotting the genomic A% and T% separately for the ssDNA
phage against the host AT% (Figure 4-4).

The difference between the two regression lines in Figure 4-4 is
significant (Xia and Yuen, 2005). The regression line for the genomic T%
has a significantly increased intercept (P = 0.0068, one-tailed test) and
decreased slope (P = 0.0323, one-tailed test). Also, the relationship between
the phage genomic A% and the host genomic AT% is stronger than that
between the phage genomic T% and the host genomic AT%, with the
Pearson correlation coefficient being 0.87857 and 0.60249, respectively.

The results above corroborate our interpretation that C→T(U) mutations
contribute significantly to the relationship in nucleotide frequency
distribution between the phage genome and the host genome. In particular,
the increased intercept and decreased slope for ssDNA phage in Figure 4-4
can be largely attributed to the C→T(U) mutations mediated by the
spontaneous deamination.

The pattern in Figure 4-4, however, can have an alternative explanation.
First, it is important to note that the host genomic AT% is only indicative of
VdA•VdT. If VdT is similar in all hosts, but VdA differs substantially among
hosts, then VdA•VdT will also differ substantially and phage genomic AT%
will consequently be selected to adapt to the host environment of different

74 Chapter 4

VdA•VdT. However, for ssDNA phages in such a scenario with the hosts
differing much in VdA but little in VdT, only the genomic A%, but not the
genomic T%, of the ssDNA phages will show a good correlation with the
host genomic AT%. This is also consistent with the pattern in Figure 4-4.

10%

15%

20%

25%

30%

35%

40%

45%

20% 30% 40% 50% 60% 70% 80%

Host AT%

Ph
ag

e
A%

 o
r T

%

Phage A% Phage T% Linear (Phage A%) Linear (Phage T%)

Figure 4-4. The genomic A% and T% of the ssDNA phage plotted against their host genomic
AT%. The regression lines are separately fitted for the phage genomic A% and T%,
respectively

Mutation and selection are two sculptors of nature, but the effect of
mutation on the evolution of genomes in general and proteins in particular is
only recently appreciated (Gu et al., 1998; Hickey and Singer, 2004; Lobry,
2004; Wang et al., 2004), notably after the pioneering work of Sueoka
(1961). The C→T(U) mutations mediated by spontaneous deamination
(Frederico et al., 1990, 1993; Lindahl, 1993; Sancar and Sancar, 1988), in
particular, have been invoked to explain the strand-asymmetry in nucleotide
frequency distribution in vertebrate mitochondrial genomes (Reyes et al.,
1998; Tanaka and Ozawa, 1994; Xia, 2005c), in the bacterial genomes

4. DNA replication and viral evolution 75

(Lobry, 1996; Lobry and Sueoka, 2002; McInerney, 1998), and in coding
sequences (Beletskii and Bhagwat, 1996, 1998, 2001; Beletskii et al., 2000).
The result presented above shows how the C→T(U) mutations can operate
together with selection to shape the genomic AT% of dsDNA phage and the
genomic A% and T% in ssDNA phage.

Previous studies have shown that spontaneous mutation appears to be
AT-biased in different genomes and genetic backgrounds (Gojobori et al.,
1982; Li et al., 1984; Marcelino et al., 1998; Wang et al., 1996), and the
evidence is convincing based on the comparison between functional genes
and their pseudogene counterparts (Gojobori et al., 1982; Li et al., 1984).
However, mutation alone is often insufficient to explain the observed genetic
variation.

Two different kinds of AT-richness have been documented for
mitochondrial genomes alone demanding two different explanations (Xia,
1996). The first kind is represented by (1) the insect mitochondrial genomes
where most codons end with A and T and (2) the mammalian mitochondrial
D-loop which is not transcribed and very AT-rich. Both the D-loop and the
third codon position of protein-coding genes evolve rapidly. In the insect
mitochondrial genomes, the number of A-ending codons roughly equals the
number of T-ending codons. In the D-loop, the number of A and T are
distributed roughly equally in the two strands. This first kind of AT-richness
was attributed to AT-biased mutation (Xia, 1996). The second kind of AT-
richness is represented by the coding sequences in vertebrate mitochondrial
genomes, where most codons in four-fold degenerate codon families end
with A but few end with T. This cannot be explained by the mutation
hypothesis invoking AT-biased mutation because such mutations would lead
to roughly equal number of A-ending and T-ending codons in four-fold
degenerate codon families.

The large number of A-ending codons with few T-ending codons in
mammalian mitochondrial genomes prompted the proposal of the
transcription hypothesis of codon usage (Xia, 1996), based on the
observation that cellular concentration of ATP is much higher than that of
the other three rNTPs (Table 2.1 in Bridger and Henderson, 1983, pp. 4-5;
Colby and Edlin, 1970; Table 2.1 in Kornberg and Baker, 1992). For
example, in the exponentially proliferating chick embryo fibroblasts in
culture, the concentration of rATP, rCTP, rGTP and rUTP, in units of (moles
×10-12 per 106 cells), is 1890, 53, 190, and 130, respectively, in 2-hour
culture, and 2390, 73, 220, and 180, respectively, in 12-hour culture. The
transcription hypothesis of codon usage states that, with the high availability
of rATP and relatively low availability of the other three rNTPs, especially
rCTP, the transcription efficiency can be increased by maximizing the use of
A in the third codon position of protein-coding genes. The limitation of
rCTP is well-exemplified by the protozoan parasite, Trypanosoma brucei, in

76 Chapter 4

mammalian blood. The parasite maintains its de novo synthesis pathway for
CTP and inhibiting its CTP synthetase effectively eradicates the parasite
population in the host (Hofer et al., 2001). This suggests that little CTP can
be salvaged from the host. In contrast, the parasite does not have de novo
synthesis pathways for purines, suggesting that the parasite can obtain the
purines by its salvage pathway. C-limitation appears to be a general feature
in bacterial species, and a biochemical explanation has been offered to
explain the general C-limitation in bacterial species (Rocha and Danchin,
2002). C-limitation has also been invoked to explain the length of coding
sequences (CDSs), i.e., a long CDS with many Cs may take inordinately
long to be transcribed and should therefore be selected against (Xia et al.,
2006).

The variation of the genomic AT% in the dsDNA phage and the genomic
A% and T% in the ssDNA phage in our study cannot be explained by the
C→T(U) mutations alone, and we believe that the correlations shown in
Figure 4-3 and Figure 4-4 are mainly the work of natural selection favoring
the AT-rich phage in AT-rich hosts and AT-poor phage in AT-poor hosts.
The data from ssDNA phage helped us to conclude that it is the C→T(U)
mutations, instead of AT-biased mutations, are mainly responsible for the
difference between the ssDNA and dsDNA phages we observe in Figure 4-3
and Figure 4-4. The results here corroborate a previous finding (Xia, 2005c)
that spontaneous deamination has profound effect on the strand-biased
nucleotide and codon frequency distributions and on the codon-anticodon
adaptation in another kind of intracellular genomes, i.e., the vertebrate
mitochondrial genomes.

In short, the phage genomic AT% has evolved in response to the
availability of A and T in their host cells. In particular, the difference in the
relationship between the ssDNA phage and dsDNA phage, can be partially
explained by the difference in (1) selection operating to maximize the rate of
DNA replication and (2) the C→T(U) mutation mediated by the high rate of
spontaneous mutations in the ssDNA phage.

The key message from this chapter is that researchers in bioinformatics
need to gain a certain degree of familiarity with biology, especially
molecular biology and microbiology. The next three chapters bring us back
to core bioinformatics tools, but Chapter 8 will again expose us to more
fundamentals of biology, especially on the three essential biological
processes: DNA replication, transcription and translation.

4. DNA replication and viral evolution 77

7. A SHORT PLAY FEATURING PHAGES AND
BACTERIA

(Phage virions advancing towards bacterial cells)
Bacteria: Hey. Stop! We are peace-loving creatures.
Phages: But we see restriction enzymes made inside your cells with a clear

purpose of cutting us into pieces. Such weapons of mass destruction
cannot be tolerated, and we have been called upon to come in and kill
you.

Bacteria: But look, the restriction enzymes we make are called 8-cutters.
They have a recognition site with 8 nucleotides. The chance of having
such a lengthy recognition site found in your tiny little genome is
extremely small. In fact, if you BLAST this recognition site against your
genome, you will find absolutely no match. On the other hand, you will
find several matches of the restriction site against our own larger
genomes. This shows that the restriction enzyme is really for maintaining
our own genomic integrity under special circumstances.

Phages: Glad to know that your restriction site does not have any match
against our genome, which suggests the right timing for our preemptive
strikes. It would have been too late if you already have a restriction
enzyme that can find a cutting site in our genome.

(So phages invade the bacterial cells, proliferate and finally vote to destroy
the bacterial cells. Remaining bacterial cells all shrink into a corner and
look hostile towards the advancing phages.)

Phages: Be nice to us, otherwise we will come to vote inside you, too!

(Just in case you do not know, the production of restriction enzymes in
bacterial hosts imposes strong selection against their respective phage to
such an extent that almost all phage genomes exhibit strong avoidance of the
restriction sites. You may take an Escherichia coli or Bacillus subtilis
genome to verify this point quite easily.)

Chapter 5

GENE AND MOTIF PREDICTION

1. INTRODUCTION

Two major categories of gene and motif ab initio annotation methods are
in current use. The first is based on known genes in molecular databases, and
uses homology search tools such as FASTA (Pearson and Lipman, 1988)
and BLAST (Altschul et al., 1990; Altschul et al., 1997), which are the
subject of Chapter 1. The second, better known as gene and motif prediction,
is based on known gene structures such as exon-intron structures in
eukaryotic protein-coding genes, and represented by GENSCAN (Burge and
Karlin, 1997). It might be of interest to note that both Stephen F. Altschul
and Chris Burge published their respective works on BLAST and
GENSCAN when they were in the research group of Samuel Karlin in
Department of Mathematics, Stanford University.

While some gene and motif prediction methods, such as Gibbs sampler
that will be covered in a latter chapter, do not require known differences
between coding and non-coding sequences or between motifs and non-
motifs, most gene prediction methods are based on known sequence
differences between protein-coding sequences and non-coding sequences
and between motifs and non-motifs. The differences are often characterized
into two categories, the signal sensors and content sensors. The signal sensor
refers to signals with strong site dependence, i.e., knowing a nucleotide, an
amino acid or a word (e.g., a nucleotide triplet or an amino acid doublet) at
site i greatly improves our prediction of the nucleotide, amino acid or word
at site i+k (where k is any integer). For example, a long word called anti-
Shine-Dalgarno sequence (Shine and Dalgarno, 1975b) at site i in bacterial

5. Gene and motif prediction 79

mRNA greatly improves our prediction of the presence of an ATG triplet
about 10 bases downstream. The content sensor, on the other hand, is not
supposed to have detectable site dependence. For example, in a long intron
or in a DNA sequence that has never been transcribed during its evolutionary
history, knowing a nucleotide at site i generally will not improve our
prediction of what nucleotide should be found at site i+k. However, even for
such a sequence, its nucleotide, dinucleotide or trinucleotide frequencies
(generally referred to as word frequencies) may help us to know whether it is
coding or non-coding. These word frequencies are typical example of
content sensors.

Extensive studies have been carried out to characterize the differences
among different sequence states (e.g., transcription start and termination
sites, translation initiation and termination sites, exons, introns, poly-A site,
etc.), leading to a variety of signal sensors such as the relatively uniform
splicing sites (Burge, 1998; Foissac and Schiex, 2005; Gelfand, 1989;
Tenney et al., 2004) and the much less uniform exon-exon junctions in
spliced mRNA (Gelfand, 1992), and content sensors such as unusual
frequency distributions of words (Borodovsky and McIninch, 1993b;
Gelfand et al., 1992; Pevzner et al., 1989) that can be potentially used in
gene-finding. All these pieces of information can be combined in a Bayesian
framework to increase the confidence of gene prediction. We will have a
very gentle exposure to Bayes’ theorem in this chapter and Bayesian
inference in Chapters 13 and 14.

In this chapter we will first learn a few commonly used techniques for
characterizing the features of signal sensors and content sensors. This will be
followed, in the next chapter, by an in-depth account of hidden Markov
models that combine information from both the signal sensors and content
sensors. Before we get into serious bioinformatic tools, please allow me to
smuggle into the book some basic terminology involved in informal decision
making.

2. BAYES’ THEOREM AND ODDS RATIOS

With N alternative and discrete hypotheses individually designated as θi
(where i = 1, 2, …, N), the observation Y and the prior probabilities
associated with each hypothesis as P(θi), Bayes’ theorem expresses the
probability of θi being true, given the observed Y, as

80 Chapter 5

1

(|) ()(|)
(|) ()

i i
i N

j j
j

P Y PP Y
P Y P

θ θθ
θ θ

=

=

∑
 (5.1)

When there are only two alternative hypotheses, the theorem is reduced
to the familiar form in basic statistical books:

1 1 2 2

(|) ()(|)
(|) () (|) ()

i i
i

P Y PP Y
P Y P P Y P

θ θθ
θ θ θ θ

=
+

 (5.2)

P(θi|Y) is the posterior probability for hypothesis θi, P(Y|θi) is the
likelihood defined as the conditional probability of having the observation Y
given hypothesis θi, and P(θi) is the prior probability. The numerator and
denominator are know as the joint and marginal probabilities, respectively.

Suppose we believe that an average reader of this book has a probability
of 0.6 of university-level mathematical training. This naturally means that
40% or readers are believed not to have the training. We also have some
sampling data to show that those with the university-level mathematics
training will have a probability of 0.9 of getting as far as this chapter, and
those without will have a probability of 0.2 of getting to this chapter. Now
suppose a reader has come to this chapter. What is the probability that the
reader actually has university-level mathematical training?

This problem, clearly involving conditional probabilities, can be easily
solved by applying Bayes’ theorem. We have two hypotheses, i.e., either the
reader has the university-level mathematical training, defined as θYes, or he
does not, defined as θNo. We also define the observation of “reaching this
chapter” as Y. Before we have this observation, our best guess of the reader
having university-level training is 0.6. This leads to the specification of the
two prior probabilities:

() 0.6
() 1 () 0.4

Yes

No Yes

P
P P
θ
θ θ

=
= − =

 (5.3)

Because our sampling data show that a reader has a probability of 0.9 of
getting to this chapter if he has university-level math training and a chance
of 0.2 if he does not, we can now specify the two likelihoods:

(|) 0.9
(|) 0.2

Yes Yes

No No

L P Y
L P Y

θ
θ

= =
= =

 (5.4)

5. Gene and motif prediction 81

Now the probability of the reader having university-level training (the
posterior probability), given the observation that he has reached this chapter,
is simply

0.9 0.6(|) 0.871
0.9 0.6 0.2 0.4YesP Yθ ×

= =
× + ×

 (5.5)

The knowledge that the reader has reached this chapter has changed the prior
probability of 0.6 to 0.871. The probability that θNo is true is naturally 0.129.

It is important to keep in mind the fact that, if a prior probability is zero,
then the associated posterior probability is also zero. For example, if P(θYes)
is zero, then P(θYes|Y) is also zero, and no evidence to the contrary will ever
change it. Thus, a scientist has an obligation not to take extreme views when
adopting a Bayesian approach. Setting a prior probability to extreme values
has done much harm in world politics. Setting the prior probability of a
certain country having WMD to 1 will always lead to a posterior probability
of 1, and no evidence to the contrary will ever change it.

We now introduce an index to measure how likely a hypothesis is relative
to its alternative: the odds ratio which is defined as the ratio of the two
probabilities each associated with a hypothesis. For example, the odds ratio
of the two likelihood values in Eq. (5.4), also known as the likelihood ratio,
is

(|) 0.9 4.5
(|) 0.2

Yes

No

P Y
P Y

θ
θ

Ω = = = (5.6)

Classical statistical decision making is based solely on the observation
and nothing else. So in this case, given the observation of the reader having
reached this chapter, θyes is 4.5 times as likely as θNo. On the other hand, if
we do not know that the reader has reached this point, then we only have the
odds ratio of the two prior probabilities

() 0.6' 1.5
() 0.4

Yes

No

P
P
θ
θ

Ω = = = (5.7)

The two posterior probabilities combine information from both our prior
knowledge (expressed in prior probabilities) and our new observation and
yield the following odds ratio

82 Chapter 5

(|) 0.871'' 6.75
(|) 0.129

Yes

No

P Y
P Y
θ
θ

Ω = = = (5.8)

You may already know that Bayes’ theorem can also be expressed as

'' 'Ω = Ω Ω (5.9)

You can numerically verify the correctness of this formulation by using
the three values in Eq. (5.6)-(5.8). This expression shows that the odds ratio
of the posterior probabilities is equal to the likelihood ratio multiplied by the
odds ratio of the prior probabilities

Let us now have a more relevant, but also a bit more complicated,
example. Suppose that a bacterial genome of length L contains N protein-
coding genes of length X1, X2, …, XN. Suppose we randomly pick up a
sequence fragment of length z bases, the probability that it is within a coding
sequence is

1,

(1)

1
i

N

i
i X z

X z
p

L z
= ≥

− +
=

− +

∑
 (5.10)

where the numerator is the number of possible ways of landing the segment
fragment of z bases long within a coding sequence and the denominator is
the number of possible ways of landing the fragment of z bases within the
genome. For numerical illustration, let’s fix z = 90 bases and work with a
linear genome that is so simple that it has a length of only 10,000 bases and
contains only two protein-coding genes of lengths 900 bases and 3000 bases,
respectively, and three non-coding sequences, with one between the two
coding genes, one at the 5’-end and the other at the 3’-end of the genome.
This gives

(900 90 1) (3000 90 1) 0.37554
10000 90 1

p − + + − +
= =

− +
 (5.11)

Just in case that you are not a biology major, we define an open reading
frame (ORF) as a series of consecutive sense codons flanked by an inframe
upstream initiation codon (e.g., ATG) and an inframe downstream
termination codon (e.g., TAA). By analyzing a set of known protein-coding
genes and intergenic sequences from the genome, you found that the
probability of a protein-coding gene having an ORF at least 90 bases long is
0.95 and the probability of an intergenic sequence having an ORF at least 90

5. Gene and motif prediction 83

bases long is only 0.1. Now if you have a sequence of 90 bases long that
happens to be an ORF, what is the probability that it is a coding sequence?

Again we have two hypotheses, i.e., the 90-base segment is a protein-
coding gene (θYes) or it is not (θNo). Our prior probabilities are

() 0.37554
() 0.62446

Yes

No

P
P
θ
θ

=
=

 (5.12)

The likelihood values associated with the two hypotheses, given the
observation that the 90-base segment is an ORF is

(|) 0.95
(|) 0.1

Yes

No

P Y
P Y

θ
θ

=
=

 (5.13)

The probability that θYes is correct is then

0.95 0.37554(|) 0.851
0.95 0.37554 0.1 0.62446YesP Yθ ×

= =
× + ×

 (5.14)

Thus, knowing the 90-base segment is an ORF greatly increased the
chance that it is a coding sequence (from the prior probability of 0.37554 to
the posterior probability of 0.851). The concept of odds ratios will be used in
position weight matrix in the next section and latter chapters.

3. CHARACTERIZING FEATURES OF SIGNAL
SENSOR

3.1 Position weight matrix

Position weight matrix (PWM) is a simple technique for characterizing
sequence motifs from a set of aligned training sequences. The resulting
PWM can be used to scan sequence fragments and generate a PWM score
for each sequence fragment, with a large score associated with a higher
likelihood of the fragment being one of the motifs. PWM is not only quite
useful in its own right, but is also an essential building block in Gibbs
sampler used often in detecting regulatory sequences in DNA or functional
motifs in proteins. We will cover Gibbs sampler for motif prediction in a
latter chapter. Here we will first describe the details of computing a PWM

84 Chapter 5

and obtaining a PWM score for each sequence, and then highlight a few of
its limitations.

Suppose we want to characterize the translation initiation signal in
eukaryotic mRNAs. According to Kozak’s scanning model (Kozak, 1982,
1984, 1989), the translation initiation signal in eukaryotic mRNAs includes
the initiation codon together with a few bases flanking the initiation codon.
So we may take, say five bases, flanking the initiation codon from each
known mRNAs as sequence input (i.e., training sequences) to generate
PWM.

In this illustrative example, we will use only protein-coding genes on
human chromosome 22, which is the shortest and first sequenced human
autosome (Dunham et al., 1999). The chromosome contains 508 annotated
protein-coding genes with real names, i.e., not genes named as LOC######
where “#’ is an integer number. The raw sequence data are partially
displayed below, with the left column being the gene name:

A4GALT ATACCATGTCCAA
ACO2 ACAAAATGGCGCC
ACR GGAGTATGGTTGA
ADM2 CCGCCATGGCCCG
......

At this point we hardly see (unless you already have trained eyes) any

similarity among the 13-base sequences other than the fact that they all have
the initiating ATG codon in the middle with 5 bases flanking on each side.

The first step in generating PWM is to obtain site-specific nucleotide
frequencies (or amino acid frequencies if we are characterizing a sequence
motif shared among proteins in a protein family). If the motif has extremely
biased nucleotide usage, then that would provide a straightforward way of
predicting such a motif. However, the result of nucleotide frequencies (Table
5-1) does not show particularly biased nucleotide usage except that the three
sites occupied by the initiation codon.

Designate fij as the site-specific frequency for nucleotide i (i = 1, 2, 3, 4
corresponding to A, C, G, and T) at site j (=1, 2, …, 13 in our example in
Table 5-1), and the number of sequences as N, the probability of
encountering nucleotide i at site j is estimated as

1

, e.g.,

75 0.1476
508

ij
ij

A

f
p

N

p

=

= =
 (5.15)

5. Gene and motif prediction 85

In contrast, the probability of encountering nucleotide i without any site
information is estimated as

, . .,

1563 0.2367
508 13

L

ij
j

i

A

f
p e g

N L

p

=

= =
×

∑
i (5.16)

where L is sequence length.

Table 5-1. Site-specific nucleotide frequencies from the 508 named protein-coding genes on
human chromosome 22. The initiation codon ATG is located at sites 6-8.

Site A C G U
1 75 173 171 89
2 105 216 144 43
3 199 70 212 27
4 124 236 83 65
5 60 276 143 29
6 502 6 0 0
7 0 0 0 508
8 0 0 508 0
9 98 71 274 65
10 141 227 89 51
11 49 154 221 84
12 89 144 196 79
13 121 151 134 102
Sum 1563 1724 2175 1142

Given a sequence, say, S = ACGGTACCACGTT, we have two

hypotheses, i.e., it belongs to the 13-base translation initiation signal (θYes)
or it does not (θNo). It should share the site dependence with the training
sequences if θYes is true, and not if θNo is true. In the latter, it does not. The
likelihoods of observing sequence S, given the two different hypotheses, are
specified, respectively, as

1 2 3 4 13

3 4 3 3

(|) ...

(|)
Yes Yes A C G G T

No No A C G T

L p S p p p p p
L p S p p p p

θ

θ

= =

= =
 (5.17)

In statistical inference, you will often encounter notations equivalent to
p(S|θYes) or p(S|θNo). You should instantly recognize it as a likelihood
function. You may note that, for P(S|θNo), the order of sites is irrelevant.

86 Chapter 5

P(S|θNo) remains the same if you rearrange the nucleotides in sequence S in
any order. For P(S|θYes), the order is important and rearrangement of the
nucleotides in S will change P(S|θYes).

If P(S|θYes) is much larger than P(S|θNo), then we tend to consider S as a
member of the 13-base translation initiation sequence, especially when the
initiation codon is excluded from computation. One convenient index would
seem to be the odds ratio of P(S|θYes)/P(S|θNo), which you should recognize
as the likelihood ratio. The problem is that both P(S|θYes) and P(S|θNo) would
become very small when S has even a moderate length. For example,
assuming equal nucleotide frequencies, P(S|θNo) = 0.2513 = 0.000000015.
Computation involving small numbers is always plagued by rounding errors
and overflows. For this reason, it is not the odds ratio but the logarithm of
the odds ratio (or log-odds for short) that is used as a measure of how likely
that the sequence belongs to the 13-base translation initiation site. This log-
odds (or log-likelihood ratio) is called the sequence score of the position
weight matrix (PWMS):

1 2

1 2

1 2
2 2 2 2

(|)log log log ... log
(|)

L

L

s s s LYes

No s s s

p p pp SPWMS
p S p p p

θ
θ

⎛ ⎞
= = + + +⎜ ⎟

⎝ ⎠
(5.18)

Using the logarithm of base 2 makes it easy to see the difference between
P(S|θYes) and P(S|θNo), i.e., PWMS = 1 when the ratio is 2, PWMS = 2 when
the ratio is 4, etc. One does not have to use base 2 and there is no agreed-
upon convention for choosing any base. Also, sometimes likelihood ratio,
instead of its logarithm, is used as PWMS.

 The PWM is a matrix to facilitate the computation of PWMS. It is of the
same dimensions as the site-specific frequency matrix, i.e., 4 by 13 in our
case. The site-specific frequency matrix in Table 5-1 is presented as a 13 by
4 matrix, instead of a 4 by 13 matrix, because of the limitation of page
width. Each individual entry in PWM is

,
2log i j

ij
i

p
PWM

p
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (5.19)

In practice, PWMij is computed with the following equation which is
computationally more efficient than Eq. (5.19):

,
, 2 2log log i j

i j
i

f
PWM L

f
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (5.20)

5. Gene and motif prediction 87

where L is the sequence length (13 in our case), i = 1, 2, 3 and 4
corresponding to A, C, G and T, j = 1, 2, …, 13 indicating the site number,
fi,j is the nucleotide frequency of nucleotide i at site j, e.g., fA,1 = 75 (Table 5-
1) and fi is the overall nucleotide frequency of nucleotide i, e.g., fA = 1563
(Table 5-1). One may also use the genomic nucleotide frequencies for fi,
especially when the nucleotide frequencies are highly biased in the motif
relative to the genomic frequencies.

A positive PWMij value means it is more likely, and a negative PWMij
value means it is less likely, to find nucleotide i at position j than random
expectation based on pi values only. A PWMij value of 0 means that finding
nucleotide i at position j is not informative in discriminating between motifs
and non-motifs.

Note that fij may be zero, e.g., fG6 = fT6 = fA7 = fC7 = fG7 = fA8 = fC8 = fT8 =
0 in Table 5-1, and no logarithm is defined for zero. One common approach
to avoid this problem is to add what is called pseudocounts. Define α as a
scaling variable for computing pseudocounts, we have

.

.
1

i pseudo i

N

pseudo i pseudo
i

f f

f f

α

=

=

=∑
 (5.21)

where i = 1, 2, 3, 4 corresponding to A, C, G, and T or 1, 2, …, 20
corresponding to the 20 amino acids, respectively, and N = 4 for nucleotide
sequences or 20 for amino acid sequences. Now we modify Eq. (5.20) to
take the following form:

, .
, 2 2log log i j i pseudo

i j
i pseudo

f f
PWM L

f f
⎛ ⎞+

= + ⎜ ⎟⎜ ⎟+⎝ ⎠
 (5.22)

You may wonder how to choose the α value. The allowable values are
between 0 and 1, and some programs such as Gibbs Motif Sampler
(Thompson et al., 2004; Thompson et al., 2003) have a default value of 0.1.
Strangely enough, I have never seen any rules proposed to govern the choice
of the α value. So I will add a few sentences on this topic.

It is important to know the consequences choosing different α values
because it affects the PWM score (PWMS) that we need to calculate for each
sequence. If α = 0, then PWMS is expected to be 0 for a sequence randomly
generated from the pool of background nucleotide frequencies (i.e., pA, pC,
pG, pT). With α > 0, PWMS is no longer expected to be 0 and the
interpretation of its absolute value becomes impossible. For this reason, to

88 Chapter 5

paraphrase Albert Einstein, the α value should be as small as possible, but
not smaller. I recommend 0.01 because such a small α value has little effect
on PWMS. The default α value in DAMBE (Xia, 2001; Xia and Xie, 2001b)
is 0.01.

The PWM obtained with Eq. (5.22) based on all the 13-base translation
initiation site from the annotated human chromosome 22 sequences is shown
in Table 5-2, with α = 0.05. The largest values are found at sites 6-8
corresponding to ATG in the middle of the 13-mer. Highlighting the largest
values in each row flanking ATG results in the recovery of Kozak’s
translation initiation consensus, i.e., RCCATGG (Table 5-2). In translation
literature, A in ATG is often designated as site 1, and the first R is referred
to as -3R and the last G as +4G. Advocates of the scanning model often
attribute much significance to these two sites as important signals for
recognition of translation initiation, so does nearly every textbook on
molecular biology.

Table 5-2. PWM derived from the site-specific frequencies in Table 5-1, using Eq. (5.22) and
with the last row of Table 5-1 as fi values. Pseudocounts equal to 5% of the actual frequencies
were used. The Kozak translation initiation consensus is in bold. PWM values computed with
DAMBE (Xia, 2001; Xia and Xie, 2001b). The standard deviation in the last column (Std) is
an indication of the amount of information at each site and is highly correlated with
Shannon’s information entropy (Shannon, 1948).
Site A C G U Std
1 0.0726 0.7140 0.5377 0.3675 0.2731
2 0.3307 0.9354 0.3913 -0.1780 0.4553
3 0.9284 -0.0167 0.7350 -0.4293 0.6367
4 0.4731 1.0279 -0.0072 0.1086 0.4656
5 -0.0761 1.1967 0.3856 -0.3954 0.6915
6 1.9941 -0.7772 -0.8254 -0.9879 1.4316
7 -0.8980 -0.8743 -0.8254 2.3190 1.5927
8 -0.8980 -0.8743 1.6783 -0.9879 1.3001
9 0.2745 -0.0075 0.9900 0.1086 0.4476
10 0.5896 0.9870 0.0373 -0.0671 0.4931
11 -0.1958 0.6042 0.7750 0.3173 0.4249
12 0.1988 0.5428 0.6612 0.2652 0.2207
13 0.4515 0.5860 0.3331 0.4905 0.1047

It is important to keep in mind that a consensus sequence obtained by the

PWM method does not mean that it has anything to do with translation
initiation. In fact, the interpretation of +4G has been controversial. It has
been suggested that +4G may have little to do with initiation site
recognition, but is constrained by the requirement for particular type of
amino acid residue at the N-terminus of the protein (Cigan and Donahue,
1987). One piece of supporting evidence came from a detailed study of an
influenza virus NS cDNA derivative (Grunert and Jackson, 1994) which
showed that both +4 and +5 sites were important and changes at these sites

5. Gene and motif prediction 89

reduced protein production. In contrast, the +6 site (the third codon position
of the second codon) is less important. A simple explanation of this result is
that changes at the +4 and +5 sites alter the amino acid, whereas those at the
+6 site may not.

Recent studies, especially those involving the removal of the initiator
methionine (Met) and myristoylation, revived the alternative explanation of
amino acid constraint for the presence of +4G in protein-coding genes. First,
amino-terminal modifications of nascent peptides occur in nearly all proteins
in both prokaryotes and eukaryotes, and the removal of the initiator Met,
which occurs soon after the amino terminus of the growing polypeptide
chain emerges from the ribosome, is not only an important amino-terminal
modification in itself, but also required for further amino-terminal
modifications. The efficiency of removing the initiator Met depends heavily
on the penultimate (the second) amino acid, with the efficient cleavage
occurring only when the penultimate amino acid is small (Moerschell et al.,
1990). Alanine (Ala) and glycine (Gly) happen to be the two smallest amino
acids and both are coded by G-starting codons, i.e., Ala by the GCN (where
N stands for any nucleotide) and Gly by the GGN codons. The need for
removing the initiator Met in proteins implies the presence of many Ala and
Gly at the penultimate amino acid position and consequently many +4G due
to the GCN and GGN codons coding for Ala and Gly, respectively.

Another factor contributing to the prevalence of +4G, but independent of
the efficiency of translation initiation, is the myristoylation process. For
example, in Coxsackievirus B3, the initiation codon is flanked by both -3R
and +4G, and viral mutants with a mutation from +4G to +4C is not viable
(Harkins et al., 2005). This may seem to confirm what one would expect
based on the necessity of the Kozak consensus for efficient translation
initiation in highly expressed genes. However, it turns out that the +4G is
required in Coxsackievirus B3 not because it is essential for translation
initiation, but because it is needed for coding Gly (coded by GGN). The Gly
at the amino terminus, after the removal of the initiator methionine, is
needed to attach to a myristoyl (C14H28O2) fatty acid side chain, and
myristoylation occurs only on a Gly residue (Farazi et al., 2001).
Myristoylation may involve many proteins, and are implicated in protein
subcellular relocalization (Farazi et al., 2001), apoptosis (Sakurai and
Utsumi, 2006; Vilas et al., 2006), signal transduction (de Vries et al., 2006;
Rowe et al., 2006), and the virulence and colonization of pathogens
(Bentham et al., 2006; Breuer et al., 2006; Harkins et al., 2005; Provitera et
al., 2006; Robert-Seilaniantz et al., 2006). The need for myristoylation in
proteins would contribute to the presence of +4G in CDSs.

We thus have two alternative hypotheses for the presence of +4G in
protein-coding genes. The conventional translation initiation hypothesis
argues that the presence of +4G is necessary for highly expressed proteins,
with two predictions. First, the selection favoring +4G should drive the

90 Chapter 5

increased usage of amino acids coded by GNN codons (e.g., Ala coded by
GCN, Asp by GAY, Glu by GAR, Gly by GGN, and Val by GUN) at the
penultimate amino acid site. Second, the +4G should be more prevalent in
highly expressed than in lowly expressed genes. In contrast, the amino acid
constraint hypothesis, based on the amino-terminal modification involving
the removal of the initiator Met and myristoylation, has two different
predictions. First, not all GNN codons should have increased usage, but only
GCN coding Ala and GGN coding Gly should have increased usage. Second,
highly expressed genes may need more efficient N-terminal processing and
may consequently need more GCN and GGN codons. This may increase the
frequency of +4G in highly expressed genes relative to lowly expressed
genes.

To those two alternative hypotheses, one could add still one more. It is
known that translation initiation is often the rate-limiting step during protein
production (Bulmer, 1991; Liljenstrom and von Heijne, 1987), and it is
advantageous fro the ribosome to move quickly down the translation
initiation site. Because tRNAAla consistently has more gene copies in both
eukaryotes and prokaryotes, alanine codons are expected to be translated
faster than other codons. For this reason, highly expressed genes should have
alanine codons right after the initiation codon so that ribosome can quickly
move downstream to clear the translation initiation site. This hypothesis,
which may be termed tRNA hypothesis of translation initiation, has unique
predictions. First, it predicts only alanine codons (GCN) should be the
greatest contributor to +4G, and this pattern should be stronger in highly
expressed genes than lowly expressed genes. Second, it predicts that any
species, being it prokaryotes or eukaryotes, should feature +4G regardless of
how translation is initiated, as long as tRNAs for amino acids coded by GNN
codons are the most abundant.

Let us get back to PWM. In artificial intelligence literature, the process of
obtaining the PWM is called training, and the application of the PWM to
classify unknown sequence fragments as containing or not containing a
translation initiation signal is called prediction. Suppose we want to use the
PWM in Table 5-2 for prediction. What we will do is to scan each 13-mer
along an unknown sequence (S) and compute a PWM scores (PWMS) for
each 13-mer. For example, a sequence S = CCACCATGGCTGTG….. will
have the following overlapping 13-mer’s, starting at positions 1, 2, …:

CCACCATGGCTGT
CACCATGGCTGTG
ACCATGGCTGTG.
……

Once PWM is computed, PWMS for each 13-mer is computed as

5. Gene and motif prediction 91

,
1

j

L

S j
j

PWMS PWM
=

= ∑ (5.23)

where L is the length of the sequence fragment (= 13 in our case) and PWM
values are from Table 5-2. For the first fragment, i.e., CCACCATGGCTGT,

,1 ,2 ,3 ,13...
0.7140 0.9354 0.9284 ... 0.4905 14.2398

C C A TPWMS PWM PWM PWM PWM= + + + +

= + + + + =
 (5.24)

The neutrophil cytosolic factor 4 (NCF4) gene happens to have its
translation initiation sequence identical to CCACCATGGCTGT, so its
PWMS is 14.2398. In contrast, the sequence flanking the initiation codon in
the IGLVIV-59 gene, which is a pseudogene, is TTGTGCTGACTCA, with
its PWMS equal to only 7.2119.

It is important to keep in mind that the interpretation of PWMS becomes
more difficult with the inclusion of pseudocounts. Without the pseudocounts,
the rule of thumb concerning PWMS (or log-odds in general when base 2 is
used in logarithm) is that a PWMS greater than 10 is taken as significant,
i.e., P(S|θYes) is about 1000 times greater than P(S|θNo). A PWMS of 0 means
the two hypotheses are equally likely. This interpretation is not valid with
the addition of pseudocounts. For this reason, whenever possible one should
compute PWMS without pseudocounts or use very small pseudocounts so
that the interpretation above can still be approximately correct. When α =
0.01, PWMS is 12.3897 for NCF4 and 2.0437 for IGLVIV-59 (Recall that,
when α = 0.5, SWMS for IGLVIV-59 is 7.2119 which is difficult to interpret
because 7.2119 seems to be substantially larger than 0). We may say that the
13-mer from NCF4 is likely a true translation initiation signal, whereas that
from IGLVIV-59 has already decayed into background as a pseudogene
typically would. In other words, we can infer that it is a pseudogene by
looking at the 13-base fragment at its putative initiation site.

Thus, by scanning along the sequence and computing PWMS for each
13-mer, we can quickly obtain the distribution of putative translation
initiation signals along an unknown nucleotide sequence. This is particularly
useful when one has already identified the ORFs (open reading frames) by
other methods and wants to refine the prediction by identifying the exact
location of the translation initiation signals. Figure 5-1 illustrates the result
of scanning the 5-end of the NCF4 gene.

The peak score (Figure 5-1) corresponds to the 13-mer with 5 bases
flanking the initiation ATG. What is particularly interesting is that the scores
are generally smaller than 0. Recall that random combination of nucleotides
according to the four pi values should result in the expected value of PWMS

92 Chapter 5

equal to 0. The observation that PWMS scores are generally substantially
smaller than 0 implies that, other than the 13-mer with the initiating ATG in
the middle, selection has acted in such a way as to make all other 13-mer’s
to contain weaker translation initiation signals than randomly assembled
sequences. In other words, there is selection to reduce conflicting translation
initiation signals in the 5’-end of coding genes.

-15

-10

-5

0

5

10

15

0 10 20 30 40 50

Site

PW
M

S

Figure 5-1. Illustration of scanning the 5’-end of the NCF4 gene (30 bases upstream of the
initiation codon ATG and 27 bases downstream of ATG. The highest peak, with PWMS =
12.3897, corresponds to the 13-mer with 5 bases flanking the ATG. PWMS computed with α
= 0.01.

Note that the interpretation above depends much on the choice of the α in
computing pseudocounts in Eq. (5.21). If α is substantially larger than 0,
e.g., in the range of 0.1 or larger, then a sequence generated from a random
combination of the four pi values will no longer be expected to have a
PWMS of 0, and the above interpretation would be quite inappropriate.

There seems to be some periodicity in PWMS (Figure 5-1). It might be
worth the effort of applying the fast Fourier transform to quantify the
periodicity.

PWM is implemented in my program DAMBE (Xia, 2001; Xia and Xie,
2001b). One may use it to solve practical problems where PWM is
appropriate.

5. Gene and motif prediction 93

3.2 Perceptron

The perceptron is a binary classifier, being one of the simplest artificial
neural networks invented in 1957 at the Cornell Aeronautical Laboratory by
Frank Rosenblatt (Rosenblatt, 1958). I will abbreviate “artificial neural
networks” as just “neural networks” from now on. Perceptron is also one of
the earliest neural networks that became widely known and contributed to
the increased research effort on neural networks in the early 1960s. The
fancy name must have contributed to its early popularity. Had it been labeled
just as “a novel classifier”, “a linear classifier” or, even worse, “a linear
binary classifier that cannot handle the XOR problem”, it would probably
never see its light of day. Note that these latter labels are in fact far more
meaningful than the word “perceptron”. It seems that human beings, through
some miraculous mechanisms of evolution, have developed a particular
fascination with words suffixed with “-tron”. Whoever can understand and
exploit this human fascination seems to be one step closer to success.
Animals are known to exploit preexisting fascination of other animals to
increase their chance of survival and reproduction, leading to the proposal of
the sensory exploitation hypothesis (Arnqvist, 2006; Ryan et al., 1990;
Sakaluk, 2000).

The perceptron met its bumpy journey in late 1960s. Because of the
theoretical objection against the perceptron concept and the highlight of its
limitations by Minsky and Papert (1969), enthusiasm and funding for
research in artificial intelligence in general and perceptrons in particular
decreased substantially until the field was revived again in the 1980s.
Although the single-layer Perceptrons were proven to be incapable of
learning the "exclusive or (XOR)" operation (Minsky and Papert, 1969),
later extensions of the multi-layer perceptrons are able to handle such non-
linear problems (Freund, 1998; Lerner et al., 1995; Rossi and Conan-Guez,
2005). An alternative for solving the XOR problem is to use the support
vector machine or SVM (Burges, 1998).

Perceptron has been used in bioinformatics research since 1980s. The
identification of translational initiation sites in E. coli (Stormo et al., 1982a)
is perhaps the first publication of applying the perceptron algorithm in
identifying gene features. The algorithm has also been used recently for
finding the ATP/GTP-binding motif (Hirst and Sternberg, 1991).

The perceptron is conceptually similar to Fisher’s two-group linear
discriminant function analysis (Fisher, 1936) for continuous variables, often
referred to as LDA (for linear discriminant function analysis). LDA is used
when we have N variables, M cases, and a M×N matrix, with the first m1
cases belonging to one group and the next m2 (=M-m1) cases belonging to
the other group. The objective is to derive a linear function of the N

94 Chapter 5

variables to maximize the difference between the two groups (or, in the
machine-learning literature, maximize the signal/noise ratio). I will introduce
you to Fisher’s LDA in the section dealing with content sensors.

With the perceptron for discriminating between two groups of sequences,
we designate one group as the positive group and the other as the negative
group. The objective is to obtain a weight matrix that can be used to obtain
scores for the unknown sequences and assign these sequences different
membership according to the scores.

Here is how perceptron works. Suppose we have two groups of
sequences designated as POS (for positive) and NEG (for negative) groups,
respectively. The following two groups of sequences represent one of the
simplest perceptron problems. We will use this fictitious data set to illustrate
the perceptron algorithm:

POS1 ACGT
POS2 GCGC

NEG1 AGCT
NEG2 GGCC

In practical applications, the sequences will typically be longer than 4

and each group will typically contain a very large number of sequences. The
two groups do not necessarily have to contain exactly the same number of
sequences, although statistics involved would be simpler when they do. Here
we will ignore the statistics part entirely and focus only on the algorithmic
aspect of perceptron. Note that we will often refer to sequences in the POS
group as POS sequences and those in the NEG group as NEG sequences.

Our task is to find a weighting matrix that can be used to assign a score to
each sequence in such a way that sequences in the POS group will have high
scores (typically larger than 0) and those in the NEG group will have low
scores (typically smaller than 0). The weight matrix and sequence scores are
the principal output from perceptron training. From now on, we will use
symbols S, PS, and W to designate an input sequence, the perceptron score
for the input sequence, and the weight matrix, respectively.

The first step is to initialize W, which is a 4×L matrix for nucleotide
sequences and a 20×L matrix for amino acid sequences. W should be
initialized with non-zero values. You will see why you should not initialize
the weighting matrix with all zero values. For molecular sequences, M is
typically initialized with values of one (Table 5-3).

The perceptron algorithm involves the iteration of two steps: (1) taking
sequences from the NEG and POS groups sequentially (or randomly when a
very large number of sequences are present in each group or when the
perceptron cannot converge) and computing PS for each input sequence, and

5. Gene and motif prediction 95

(2) updating the values in W based on PS. For each sequence S, PS is
computed as

,
1

j

L

S j
j

PS W
=

=∑ (5.25)

Table 5-3. The weighting matrix (W) for the fictitious example with two sequences of length
4 in each group, initialized with values of 1. The first row designates sites 1-4.
Base 1 2 3 4
A 1 1 1 1
C 1 1 1 1
G 1 1 1 1
T 1 1 1 1

Take the POS1 sequence in the fictitious example, its PS based on the

initialized W in Table 5-3 is

1 ,1 ,2 ,3 ,4 4POS A C G TPS W W W W= + + + = (5.26)

In fact, PS will be 4 for every sequence with the freshly initialized W
with values of 1. What might be slightly confusing is the updating of W. It is
done according to the following rules (there could be slight variation of the
rules in different applications):

, ,

, ,

,

1, if S is from POS group and PS < 0

1, if S is from NEG group and PS 0

No change in otherwise.

j j

j j

j

S j S j

S j S j

S j

W W

W W

W

= +

= − ≥ (5.27)

where j = 1, 2, …, L where L is sequence length (=4 in our fictitious
example).

Let us start with the NEG sequences in the fictitious example. Note that
you would waste computational time by starting with sequences in the POS
group because the resulting PS will all be 4 and consequently, according to
the rules for updating W, no updating is made with positive PS from POS
sequences when PS = 4 > 0.

PS for NEG1, i.e., S = AGCT is 4. According to the rules for updating W
in Eq. (5.27), we should update W by reducing the relevant Wij values by 1.
The updated W is shown in Table 5-4a, with WA,1, WG,2, WC,3 and WT,4 in the
original W (Table 5-3) reduced by 1, with updated values highlighted in
bold.

96 Chapter 5

The next input sequence is NEG2 (=GGCC) which has PS = 2 based on
the updated W in Table 5-4a. According to the rules of updating W in Eq.
(5.27), we should again subtract 1 from Wij values corresponding to the
sequences, i.e., WG,1, WG,2, WC,3 and WC,4 all have their values reduced by 1.
This update changes the weighting matrix from that in Table 5-4a to that in
Table 5-4b.

Table 5-4. The first round of the training process in the perceptron algorithm. Updated values
are highlighted in bold.
NEG1: AGCT, PS = 4, update Base 1 2 3 4
 A 0 1 1 1
(a) C 1 1 0 1
 G 1 0 1 1
 T 1 1 1 0

NEG2: GGCC, PS = 2, update A 0 1 1 1
 C 1 1 -1 0
(b) G 0 -1 1 1
 T 1 1 1 0

POS1: ACGT, PS = 2, no update A 0 1 1 1
 C 1 1 -1 0
(c) G 0 -1 1 1
 T 1 1 1 0

POS2: GCGC, PS = 2, no update A 0 1 1 1
 C 1 1 -1 0
(d) G 0 -1 1 1
 T 1 1 1 0

We can proceed with POS1 and POS2 sequences, but both have PS = 2

and, according to the rules of updating W, no change should be made. At this
point, no input sequence will lead to updating of W, i.e., the two NEG
sequences will both have PS = -2 and the two POS sequences will both have
PS = 2. So we conclude that the perceptron has already converged.

One problem with the perceptron algorithm is that it may not converge,
e.g., when it is applied to solving an XOR problem that will be detailed
latter. For this reason, computer programs implementing the perceptron
algorithm will allow you to input a maximum number of iterations.

You might have noticed that some cells may never be involved in
computing PS for any input sequence, especially when the training set
contains few sequences. This could cause problems in using W for
classifying unknown sequences. For example, a sequence of TAAA would
have a score of 4 and we would consequently assign it to the POS group
although it bears no similarity to any sequences in the training sequences in
the POS group. The reason for this is that the Wij values corresponding to

5. Gene and motif prediction 97

TAAA are never involved in computing PS during the training process and
have still retained the initial value of 1.

To avoid this problem, we will take the final W from perceptron training
in Table 5-4 and set to 0 all Wij values not involved in computing PS for any
input sequences. The post-processed W is shown in Table 5-5. An alternative
is to set to 0 all Wij values that have never been updated during the iteration.

Table 5-5. Final W after setting all Wij values not involved in computing PS to 0. Those
involved in computing PS are highlighted in bold.
Base 1 2 3 4
A 0 0 0 0
C 0 1 -1 0
G 0 -1 1 0
T 0 0 0 0

With the postprocessed W, the two POS sequences will still have PS = 2

and the two NEG sequences still have PS = -2. However, for a sequence
such as TAAA, PS = 0, i.e., the perceptron is absolutely unable to classify it
into either the POS or the NEG group. The final W (Table 5-5) , trained with
the extremely limited training set of only two sequences in the POS and the
NEG groups, shows explicitly that it can only classify sequences with C or G
in the second and third sites because all values in the first and last columns
are zero (Table 5-5). You may find this obvious by looking at the four short
training sequences.

Some readers have criticized me for not using a “biologically more
realistic” example instead of the 4-nucleotide sequences. My objective is
equivalent to demonstrating a rainbow with just a few droplets of water.
Those who insist on seeing a real rainbow spanning the sky would probably
have to find one for themselves in their practical research.

The perceptron is ideally suited for two groups of objects (be they
sequences or any other objects) that are linearly separable. This can be better
understood in comparison with what are not linearly separable (e.g., the
XOR problem). So we will illustrate both in an intuitive way, with
nucleotide sequences in the form of “ACGTXYACGT”. Suppose that the
“XY” is “TT” in sequences of the POS group, and can be any other non-
“TT” dinucleotides in the NEG group. These two groups of sequences can be
easily separated by the perceptron algorithm. Note that the XY in the
sequences contains either 0, 1 or 2 T’s, and the sequences in the positive
group, with their XY containing 2 T’s, is linearly separable from sequences
with their XY containing 0 or 1 T’s.

Now suppose the XY in our sequences in the POS group contains only
one T, i.e., either X or Y is a T but not both. The XY in the sequences in the
negative group can either be TT or contain no T (e.g., XY = “CG”). This is
one of the simplest XOR problems that a conventional perceptron cannot

98 Chapter 5

handle. The iteration will continue forever without convergence. Note that
XY in POS sequences in this case contains only one T and they are no longer
linearly separable from the NEG sequences containing either 0 or two T’s.
This XOR problem has plagued the first application of the perceptron
algorithm to the study of the translation initiation sites in Escherichia coli
(Stormo et al., 1982a), resulting in failure to converge on a solution to
separate the sequences with the translation initiation site from those without.

The perceptron has not been used often to solve problems in molecular
biology and bioinformatics, and this is mainly caused by the overemphasis
that perceptrons cannot deal with the XOR problem. In fact, many XOR
problems can be reduced to non-XOR problems and be solved easily by
perceptrons. For example, the XOR problem in the previous paragraph can
be reduced to a non-XOR problem by using dinucleotide sequences, i.e., AC,
CG, GT, TX, XY, ..., GT and then solved by the perceptron method. In this
case, we will have a W with dimensions 16×(L-1) because there are 16
possible dinucleotides.

In the previous section on position weight matrix, we have used a set of
508 named protein-coding genes and, from each gene, extracted the 13-mer
for illustrating the computation involved. We may use that set of 13-mers as
the POS group and randomly generate 1000 (or more) 13-mers with the
same nucleotide frequencies. These two set of sequences can then be fed into
perceptron for analysis. Table 5-6 shows the output of the weight matrix
from the dinucleotide-encoded sequences.

Table 5-6. Weighting matrix obtained with the dinucleotide-encoded perceptron. Frequent
dinucleotides at sites flanking the ATG codon are in bold. The last row list either the most
frequent dinucleotide at the site or, if no dinucleotide is more frequent than others, the
consensus dinucleotides.
 1 2 3 4 5 6 7 8 9 10 11 12
AA -1 -2 0 -1 0 -2 -1 -1 0 -1 -1 0
AC -1 -3 1 2 -2 -2 -2 -2 -2 1 -4 -1
AG 1 -1 -4 -1 -2 -2 -3 -4 -2 -2 -2 -3
AT 1 -2 -1 0 -1 9 -1 1 -1 -1 1 1
CA -2 4 0 1 1 -2 0 -2 -1 0 0 0
CC 1 -2 -5 -1 -2 -1 -1 -2 0 -3 -1 0
CG -2 0 -1 -3 -3 -1 -4 -3 -5 0 -2 -6
CT -1 -3 -2 -2 -1 0 -1 1 -1 1 0 2
GA -2 -1 1 -2 1 -1 -2 0 -2 -1 -1 -2
GC -3 -2 1 -7 1 -3 -2 -1 1 0 0 0
GG -3 -1 -4 -1 -4 -2 -2 3 0 -3 -2 -4
GT -3 1 1 0 -5 -5 0 -1 -5 -2 -4 0
TA -3 -5 -1 -3 1 -2 -3 -2 0 -4 -1 -1
TC 2 -1 -2 1 -1 0 -1 -2 -1 -1 1 -3
TG 1 1 -1 -2 -2 -1 10 -2 1 -2 0 0
TT -3 -1 -1 1 1 -3 -5 -1 0 0 -2 -1
 TC CA RN NN NA AT TG GG

5. Gene and motif prediction 99

The weight matrix in Table 5-6 reached convergence after only 19
iterations. The final weight matrix (Table 5-6) can be used to assign scores
to 13-mers, with those having high scores more likely to contain the
translation initiation signals. The most frequently or consensus dinucleotides
in Table 5-6 can be used to reconstruct a consensus sequence (Figure 5-2). In
this particular case, the consensus happens to contain the Kozak translation
initiation consensus.

UC
CA
RN
NN
NA
AU
UG
GG

UCRNNAUGG

Figure 5-2. Construction of a consensus (UCRNNAUGG) from overlapping dinucleotides.

To summarize, the input to a perceptron consists of two groups of
sequences of the same length and our objective is to find a scoring function
to maximize the difference between the two groups. The scoring function is
in the form of a weighting matrix, derived from training the perceptron with
the two groups of sequences. The weighting matrix can be used to compute a
score for a sequence according to Eq. (5.25). The output from training a
perceptron is a weighting matrix and a score for each input sequence. A
perceptron that has achieved convergence will have positive sequence scores
in the POS group and negative sequence scores in the NEG group. An
unknown sequence is classified into the POS group when its score is larger
than 0, and into the NEG group when its score is smaller than 0. Perceptron
algorithms are implemented in my program DAMBE (Xia, 2001; Xia and
Xie, 2001b).

In one study using the perceptron algorithm to characterize the translation
start site (TSS) in E. coli (Stormo et al., 1982b) involving 124 true TSSs and
78000 other sites (OSs), the perceptron was unable to converge. However,
all 124 true TSSs have perceptron score (PS) greater than 0, whereas only 64
out of 78000 OSs have PS greater than 0. Now if we have a site with PS > 0,
what is the probability that it is a true TSS?

A student with a Bayesian inclination may go through a circuitous route
to answer the question as follows. Define Y as the event of having a site with

100 Chapter 5

PS > 0. Let θYes stand for the hypothesis of the site being a true TSS, and θNo
the hypothesis of the site not being a TSS. The two prior probabilities are

() 124 / 78124 0.001587
() 1 () 0.998413

Yes

No Yes

P
P P
θ
θ θ

= =
= − =

 (5.28)

The two likelihood functions are

(|) 124 /124 1
(|) 64 / 78000 0.000821

Yes

No

P Y
P Y

θ
θ

= =
= =

 (5.29)

Now the answer to the question (i.e., what is the probability of a site
being a true TSS given its PS > 0) is

(|) ()(|)
(|) () (|) ()

1 0.001587 0.659
1 0.001587 0.000821 0.998413

Yes Yes
Yes

Yes Yes No No

P Y PP Y
P Y P P Y P

θ θ
θ

θ θ θ θ
=

+

×
= =

× + ×

 (5.30)

This calculation is correct but unnecessary. A smart student will note that
there are a total of 188 (= 124 + 64) sites that have PS > 0 (i.e., event Y is
observed). Out of these 124 are true TSSs (i.e., θYes is true). Thus, by
definition

(|) 124 /188 0.6596YesP Yθ = = (5.31)

4. CHARACTERIZING FEATURES OF CONTENT
SENSORS

Content sensors are typically frequencies of various kinds, e.g.,
nucleotide, dinucleotide, and trinucleotide frequencies. For example, triplet
frequencies or nucleotide frequencies at the three different positions of the
triplets are often different between exons and introns. Once a sequence is
compiled into these frequency tables, the site-specific information is lost.
Any sensor that does not include site-specific information is a content sensor
and is the topic in this section.

We will illustrate a few special content sensors that can help discriminate
between coding exons and non-coding sequences (e.g., introns), based on the

5. Gene and motif prediction 101

sequence pattern created by DNA methylation. DNA methylation is a
process that simply cannot be avoided in a book with the word “cell” in its
title. In short, DNA methylation plays a key role in gene regulation in many
vertebrate species, and is a ubiquitous biochemical process particularly
pronounced in vertebrate genomes, with its main function being tissue-
specific gene regulation (Bestor and Coxon, 1993; Rideout et al., 1990; Sved
and Bird, 1990). A typical representative of the vertebrate methyltransferase
is the mammalian DNMT1 with five domains of which the NlsD, ZnD and
CatD domains bind specifically to unmethylated CpG, methylated CpG and
hemimethylated CpG sites, respectively (Fatemi et al., 2001). Methylation of
C (at its #5 carbon atom) in the CpG dinucleotide greatly elevates the
mutation rate of C to T through spontaneous deamination of the resultant
m5C (Brauch et al., 2000; Tomatsu et al., 2004), where the superscript 5
indicates the #5 carbon atom, generating strong footprints in both
prokaryotic and vertebrate genomes (Xia, 2003, 2004, 2005a).

4.1 Indices of content sensors related to DNA
methylation and spontaneous deamination

Here we develop indices to capture the differential substitution patterns
in coding and non-coding sequences. Designate the nucleotide frequencies of
a sequence as pA, pC, pG and pT, and the sequence length as L. Consider both
coding and non-coding sequences as a linear sequence of consecutive non-
overlapping triplets, and the nucleotide frequencies at the three sites of a
triplet as pi1, pi2 and pi3, where i = 1, 2, 3, and 4 corresponding to nucleotide
A, C, G, and T, respectively.

For non-coding sequences, there is no codon structure. So we expect pi1 ≈
pi2 ≈ pi3 ≈ pi, where pi is the average of pi1, pi2, and pi3. For coding sequences,
various mutation and selection processes will create heterogeneity in
nucleotide frequencies among the three sites (Xia, 1998a). Take NCG codon
for example, where N stands for any of the four nucleotides. DNA
methylation and spontaneous deamination tend to change these NCG codons
to NTG and NCA codons (the latter resulting from CpG→TpG mutations in
the complementary strand), with the former change being nonsynonymous
and the latter synonymous. Because nonsynonymous substitution is
generally deleterious and consequently selected against by natural selection,
they are much rarer than the synonymous substitutions in a large number of
protein-coding genes in many organisms studied (Xia, 1998a; Xia et al.,
1996; Xia and Li, 1998), we should expect NCG→NCA mutations more
often than NCG→NTG mutations. This tends to increase the frequency of A
at the third codon position. Similarly, dicodons such as “NNC GNN” tend to
mutate synonymously to “NNT GNN” with DNA methylation and
spontaneous deamination, increasing the frequency of T at the third codon

102 Chapter 5

position. Thus, in contrast to non-coding sequences where we expect pi1 ≈ pi2
≈ pi3 ≈ pi, we should expect pi1 ≠ pi2 ≠ pi3 ≠ pi in coding sequences. This
suggests that the deviation of pij (where j = 1, 2 and 3 corresponding to the
three triplet sites) from pi can contribute to the discrimination between
coding and non-coding sequences. A measure of this deviation that is
independent of L is as follows:

23

2 2 244 1 1 2 3
2

11

()

1
3

=
4 4

ij i

j i i i i

ii i i
Nuc

f f
f f f f

N f
ϕ

=

==

−
⎛ ⎞+ +

−⎜ ⎟⎜ ⎟
⎝ ⎠=

∑
∑∑

 (5.32)

where fij stands for the number of nucleotide i at triplet position j, fi is the
mean number of nucleotide i averaged over the three codon (triplet)
positions, and Ni is the sum of nucleotide i in the sequence. We expect ϕNuc
to be greater for coding sequences than for non-coding sequences.

Following a similar line of reasoning, we expect the dinucleotide
frequencies at triplet positions (1,2), (2,3) and (3,1) to be similar to each
other in non-coding sequences but different in coding sequences. Designate
the number of dinucleotides as fij.k, where ij = AA, AC, ..., TT, respectively,
and k = 1, 2, 3 corresponding to the triplet positions (1,2), (2,3) and (3,1),
respectively. The deviation of fij.k from fij, which is the number of
dinucleotide i averaged over the three triplet positions, should also contribute
to the discrimination between coding and non-coding sequences. A measure
of this deviation that is independent of L is:

2 2 24 4 1 2 3
2

1 1
1

3
=

16

ij ij ij

i j ij
DiNuc

f f f

f
ϕ

= =

⎛ ⎞+ +
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑∑
 (5.33)

For short sequences, fij may be zero, in which case ϕDiNuc is not defined,
or very small, in which case ϕDiNuc would fluctuate widely. To avoid this
problem, the computation can be done by setting valid fij as a value larger
than a certain number, e.g., 6, and the denominator will be the number of
valid fij values instead of a fixed 16.

DNA methylation and spontaneous deamination decrease the CG-
containing triplets and increase the UG- and CA-containing triplets.
However, their effect is stronger on introns than on coding sequences

5. Gene and motif prediction 103

because of weaker selection constraints on introns than on coding sequences,
e.g., all CGN→TGN, CGN→CAN and NCG→NTG mutations are
nonsynonymous. Nonsynonymous mutations are generally deleterious (Xia
and Li, 1998) and tend to be selected against in coding sequences but not in
non-coding sequences. For this reason, the intensity of methylation effect
(designated Im) should be greater in introns than in coding sequences:

' '
NUG,UGN,NCA,CAN NUG,UGN,NCA,CAN NCG,CGN NCG,CGN

m
NUG,UGN,NCA,CAN NCG,CGN

(f - f) - (f - f)
I =

f +f
 (5.34)

where f is the sum of frequencies of those subscripted codons, and f’
is the corresponding expectation computed simply by

'
ijk triplet i j kf N P P P= (5.35)

where Ntriplet is the total number of non-overlapping triplets in the
sequence. A more reasonable expectation would be (by taking AAA
and AAG for illustration):

'

'

AAA
AAA Lys

AAA AAG

AAG
AAG Lys

AAA AAG

ff N
f f

ff N
f f

=
+

=
+

i

i
 (5.36)

where NLys is the number of triplets identical to lysine codons.
However, such a formulation is not equally applicable to non-coding
sequences. Note that the reading frame is usually unknown. So one
will need to compute over six possible reading frames (three on each
strand).

Among UG- and CA-containing codons that tend to be increased by
DNA methylation of CpG dinucleotides, five (AUG, CAA, CAC, CAU, and
UUG) are generally avoided in coding sequences in vertebrate genomes,
either caused by reduced amino acid usage or other unknown factors.
Designating these avoided UG- and CA-containing triplets as f1 and the

104 Chapter 5

other UG- and CA-containing triplets as f2, we define the triplet avoidance
index as

' '
2 2 1 1

ta
1 2

(f - f) - (f - f)I
f + f

= (5.37)

Polypurine and polypyrimidine stretches are ubiquitous among
eukaryotic genomes (Birnboim et al., 1979; Mills et al., 2002; Ohno et al.,
2002), but their frequencies in coding sequences are constrained by the
necessity of codons with mixed purines and pyrimidines. For this reason, the
polypurine and polypyrimidine triplets tend to be more frequent in non-
coding sequences than in coding sequences. We define the following index
to measure the tendency of polypurine and polypyrimidine triplets:

' '
RRR,YYY RRR,YYY Mixed Mixed

pp
RRR,YYY Mixed

(f - f) - (f - f)
I =

f + f
 (5.38)

4.2 Are these indices useful in discriminating between
coding and non-coding sequences?

Here we demonstrate the utility of these indices in discriminating
between introns and coding sequences by using the annotated DNA
sequence of human chromosome 22 (ref_chr22.gbk) in GenBank. Human
chromosome 22 is perhaps the best annotated human chromosome sequence
being the first to be sequenced and having undergone many revisions. The
CDSs, exons and introns were extracted according to the sequence
annotation in the FEATURES table, and their triplet/codon frequencies were
computed, by using DAMBE (Xia, 2001; Xia and Xie, 2001b). The indices
shown in Eq. (5.32)-(5.38) were also computed by DAMBE for introns and
CDSs. Whether the indices are useful can be assessed by how well they can
discriminate between coding sequences and introns.

We will take a first look at the coding and non-coding sequences that are
at least 2000 bases long. As I have mentioned before, the indices are likely
to fluctuate widely with short sequences. Focusing on long sequences will
allow us to extract the difference in these indices between the two groups
more efficiently. We will refer to these sequences with L ≥ 2000 as the
training set and will use the discriminant function derived form this training
set to screen other human chromosome 22 sequences.

The mean and standard deviation of the five indices (Table 5-7) reveal
substantial difference in these indices between the coding and non-coding

5. Gene and motif prediction 105

(intron) sequences, in the direction as we have expected. For example, the
mean ϕNuc and ϕDiNuc are both much smaller in introns than in coding
sequences (Table 5-7), with p = 0.0000. We will subject this training set to
Fisher’s two-group linear discriminant analysis (Fisher, 1936) to obtain a
function that can be used to assign an unknown sequence to either the coding
or non-coding group.

Table 5-7. Mean and standard deviation of the five indices defined in Eqs. (5.32)-(5.38) for
coding and non-coding sequences in the training set. For intron sequences, the indices differ
little for the six different triplet frames (i.e., 3 on each strand), and the numerical results are
presented only for the triplet frame starting with the first intron site.
SeqName SeqType ϕNuc ϕDiNuc Ipp Im Ita
CELSR1 Coding 0.3508 0.5257 -0.0734 0.3073 -0.1205
MYO18B Coding 0.2329 0.3169 0.2074 0.4091 0.0298
EP300 Coding 0.1865 0.2780 0.1519 0.4748 0.0747
PKDREJ Coding 0.1525 0.2146 0.1185 0.2551 0.0130
CACNA1I Coding 0.3670 0.5595 -0.0173 0.3484 -0.1476
… … … … … … …
Mean 0.2507 0.3822 0.1069 0.3790 -0.0219
Std 0.0775 0.1090 0.0854 0.1029 0.1720

LOC40205 Intron 0.0046 0.0110 0.2194 0.4284 0.2308
SYN3 Intron 0.0033 0.0081 0.2318 0.4266 0.2100
LARGE Intron 0.0107 0.0178 0.2131 0.3983 0.2376
OSBP2 Intron 0.0046 0.0124 0.2050 0.4382 0.2394
SEZ6L Intron 0.0034 0.0126 0.2307 0.4216 0.2363
… … … … … … …
Mean 0.0318 0.0768 0.2106 0.4348 0.2362
Std 0.0166 0.0302 0.0499 0.0825 0.0821

I have previously mentioned the similarity between perceptron and

Fisher’s discriminant analysis. The former takes two groups of vectors
(which is not limited to nucleotide or amino acid sequences) and produce a
weighting matrix that can be used to obtain sequence scores to allow the
assignment of unknown sequences to either one or the other group. The latter
takes a data matrix made of two groups as in Table 5-7 and generate a linear
discriminant function which is also used to generate a score to allow the
assignment of unknown sequences to either one or the other group.

The computation involved in the two-group discriminant function
analysis is not difficult and the method is implemented in my program
DAMBE (Xia, 2001; Xia and Xie, 2001b). Running the analysis on the data
generates the desired discriminant function and its associated statistics
(Table 5-8).

106 Chapter 5

Table 5-8. Coefficients of the two-group discriminant function (DiscFunc).
 ϕNuc ϕDiNuc Ipp Im Ita
Mean 0.1413 0.2295 0.1587 0.4069 0.1072
DiscFunc 69.7357 -3.9504 -0.2009 -0.0802 -4.2111

Just as the weighting matrix from training a perceptron can be used to

obtain a score for an unknown sequence for assigning it to either one group
or the other, the coefficients of the discriminant function in Table 5-8 can be
used to get a score for a sequence with its five computed indices for
classifying it to either one group or the other. The score for each sequence is
computed as

1 2 3

4 5

() () ()

() ()
Nuc Nuc DiNuc DiNuc pp pp

m m ta ta

S a a a I I

a I I a I I

ϕ ϕ ϕ ϕ= − − − − −

− − − − (5.39)

where a1 to a5 are in the second row of Table 5-8, and the five means are in
the first row of Table 5-8. For example, if we have a sequence whose five
indices are computed to be 0.0566, 0.1969, 0.1201, 0.7027, and 0.5351,
respectively, its S value according to Eq. (5.39) will be -4.6763. As it is
smaller than 0, it is assigned to the second (i.e., intron) group. A sequence
with its five indices equal to 0.4098, 0.6509, 0.0571, 0.3916, and -0.0553,
respectively, would have a S value equal to 20.6884, resulting its assignment
to the first (i.e., coding sequence) group. Thus, by computing the indices
based on sequence information only, we can predict whether it is coding or
non-coding.

The classification of the training set of 1935 sequences (L ≥ 2000) by the
discriminant function is quite promising (Table 5-9), with only 8
misclassifications out of 1935 sequences. It is prone for one to claim an error
rate of 0.0041 (= 8/1935), which is both misleading and meaningless. For
example, if we have two groups with 2 coding and 2000 non-coding
sequences, even a blind classifier that assigns every sequence as non-coding
would have only 2 misclassifications out of the 2002 sequences. Should you
claim that this is a very good classifier with an error rate of only 0.001
(=2/2002)?

A more acceptable error assessment is by the weighted error rate
expressed as follows

1. 2.

1 2

2

wrong wrong

w

N N
N Nε

+
= (5.40)

5. Gene and motif prediction 107

where N1 and N2 are the number of sequences in the first and second groups,
respectively, and N1.wrong and N2.wrong are the misclassified cases in the first
and second groups, respectively. This error rate for the training set is 0.0276
(Table 5-9). For the fictitious example with 2 coding and 2000 non-coding
sequences and a blind classifier that assigns all sequences to the non-coding
group, εw ≈ 0.5, which reveals the truth that the blind classifier is no better
than a random classifier.

Table 5-9. Results of classification with the discriminant function.
 Classified to
L (bases) From CDS Intron Error
≥2000 CDS 105 6 0.0276
 Intron 2 1822
1000-1999 CDS 225 18 0.0376
 Intron 1 876
500-999 CDS 155 23 0.0717
 Intron 10 696
200-499 CDS 80 29 0.2494
 Intron 156 514

I wish to illustrate the discriminating power of these indices by a

particular “intron” that has its index values similar to coding sequences, and
is classified by the linear discriminant function (Table 5-9) as a coding
sequence. The “intron” belongs to a gene annotated as “LOC284861” in the
ref.chr22.gbk file, starts with GT and ends with AG, and is “derived by
automated computational analysis” according to the FEATURES table in the
GenBank file. However, it is annotated as part of the coding sequence in
other cloned homologous human cDNA sequences (GenBank accession:
AL117481, AL122069, AL133561).

There are three lines of evidence to suggest that this “intron” is not an
intron. First, when the intron and its two flanking exons are treated as a
single exon, there is no embedded stop codon. Second, it has at least four
indels when aligned with the GenBank sequence XM_375042, and all indels
are inframe triplets. Such indel events are typical of coding sequences. Third
and perhaps the most important, aligning the “intron” with other homologous
human cDNA genes shows that its starting GT and ending AG are not
conserved, which is not what we would expect if the starting GT and ending
AG represent true donor and acceptor sites. All these suggest that the
“misclassification” of the intron as a coding sequence by the discriminant
function may in fact represent correct identification.

Another indication of the discrimination power of these indices is that
when sequences annotated as hypothetical genes are excluded, then the error
rate of the classification is decreased overall by nearly one order of
magnitude. This suggests that a high proportion of hypothetical genes are not
true genes.

108 Chapter 5

The discriminant function (Table 5-8) derived from this training set can
be used successfully in discriminating between the CDS and the intron
sequences not in the training set, but the power of discrimination offered by
these five indices decreases with decreasing sequence length (Table 5-9).
Many exons in eukaryotic genomes are quite short, highlighting the
difficulty in gene prediction.

At this point I would like to introduce you to a classroom example
typically used to illustrate the hidden Markov models. The example involves
a dishonest casino dealer who switches between a fair die and a loaded die
(i.e., two hidden states). If the loaded die differ much from the fair die, e.g.,
if the probability of having 6 is nearly 1 for the loaded die, then a short
stretch of 6’s is sufficient to identify the point of switching. Note that a
stretch of 6’s implies a high frequency of 6 which is equivalent to a content
sensor. However, if the casino dealer switches to the loaded die, tosses it
only once, and immediately switches back to the fair die, then it becomes
very difficult to catch her (I am not sure if I should use him or her but most
new books seem to use “her” as default.). The same applies to gene
prediction. If exons and introns (hidden states) are long, then it is easy to
identify them. If they are short, then it is often theoretically impossible to
identify them by content sensors only.

The next chapter is on hidden Markov models, which uses information in
both signal and content sensors. It is a powerful computational tool that
anyone interested in bioinformatics should not miss.

Chapter 6

HIDDEN MARKOV MODELS

1. INTRODUCTION

In the previous chapter we have developed basic understanding of signal
and content sensors in structure-based gene prediction. Hidden Markov
models (HMMs) can incorporate information in both signal and content
sensors, and is frequently applied in structure-based gene prediction (Baldi
and Brunak, 2001; Durbin, 1998; Pevzner, 2000). However, HMMs are also
used in many other contexts. For this reason I have intentionally chosen to
illustrate the application of HMMs in predicting protein secondary structure
instead of in gene prediction. However, I do expect you to know how to use
HMMs in gene prediction once you have learned how to use HMMs in
predicting protein secondary structure.

Before illustrating the utility of HMMs, we will first give a brief
introduction to Markov models sufficient for comprehending HMMs. In
particular, we wish to know (1) two categories of parameters, the frequency
parameters and the rate parameters in the transition probability matrix that
characterize a 1st-order Markov model, also known as a Markov chain, (2)
how to obtain the equilibrium frequencies, and (3) how to calculate the
likelihood of a given sequence of events that follow a Markov model. These
are the minimal requirement for a reasonable understanding of HMMs.

HMMs are illustrated numerically because most readers, just like me,
cannot see the beauty of equations until they are rendered to numbers. You
will learn the essential elements in a HMM, how to train a HMM, how to
reconstruct the most probable path of hidden states by using the Viterbi
algorithm, how to compute the likelihood of a particular sequence of events

110 Chapter 6

by using the forward algorithm, and how to estimate parameters in a HMM.
If you are a programmer, you will be able to implement the algorithms
associated with HMM once you have finished this chapter.

2. MARKOV MODELS

A Markov model is typically used to model the dynamic change of a
random variable over time. For example, the pitch of music from your stereo
reaching your ear over time t1, t2, …, tk can be represented as Xt1, Xt2, …,
Xtk. The Xti values constitute a realization of the random variable X.
However, Markov models are equally applicable over a one-dimensional
space. For example, along the linear DNA, nucleotides change over site 1, 2,
…, i and can be represented as X1, X2, …, Xi.

Suppose a DNA sequence of length L, with each site coded only as
purine (R) and pyrimidine (Y). The proportions of R and Y are designated as
pR and pY, respectively. What is the probability that a nucleotide at site i,
designated as Xi, is R (or Y)? Without any further information, our
prediction of a site being occupied by R (or Y) is simply pR (or pY). For a
fictitious sequence of alternating purine and pyrimidine triplets,

S = RRRYYYRRRYYY……,
pR = pY = 0.5. For the partially sequenced human chromosome 22 with 10
contigs (accession NT_028395, NT_011519, NT_011520, NT_011521,
NT_011523, NT_011525, NT_019197, NT_113818, NT_011526,
NT_113961, dated 02-MAR-2006) with 35,017,877 base pairs (bp), pR and
pY are nearly equal, being 0.50047 and 0.49953, respectively. Without any
further information, our prediction of a site being occupied by R and Y in
human chromosome 22 is 0.50047 and 0.49953, respectively. These are also
our best possible estimates of pR and pY when there is no site dependence.

Now we consider a slightly more realistic case with the minimal site
dependence, with the probability of Xi+1 being either R or Y depending only
on whether Xi is R or Y. We use PRR, and PRY to designate the conditional
probabilities of R and Y, respectively, at site i+1 given R at site i, and PYR
and PYY to designate the conditional probabilities of R and Y at site i+1
given Y at site i. Some authors (Higgs and Attwood, 2004, p. 234; Weir,
1990, p. 238) give the estimate of the conditional probabilities in the
following form:

RR
RR

R

NP
N

= (6.1)

6. Hidden Markov Models 111

where NR and NRR are the number of R’s and RR doublets in the sequence.
What they have in mind is a very long sequence. Suppose we have only a
short sequence S’ equal to the first 12 nucleotides of S, i.e.,

S’ = RRRYYYRRRYYY.

Now Eq. (6.1) will result in weird estimates. For example, PYY and PYR

would be 2/3 and 1/6, respectively. These PYY and PYR values have two
problems, one major and one minor. The major one is that they are
probabilistically incorrect because the two do not even sum up to 1 as they
should. The minor one is that, given the regular alternating patterns of purine
triplets and pyrimidine triplets in S’, our intuition suggests that PYR should
be equal to PRY. The estimated PYR (= 1/6) being half of PRY (= 2/6)
according to Eq. (6.1) makes us feel uncomfortable. A mathematically more
consistent alternative for PYY and PYR (which is also a maximum likelihood
estimate) is

''

XK
XK

XKK

NP
N

=
∑

 (6.2)

where the denominator is the summation of all dinucleotides starting with
nucleotide X. This yields PYY = 4/5 and PYR = 1/5. The two now do sum up
correctly to 1, eliminating the major problem we mentioned above.
Moreover, the difference between PYR and PRY is now somewhat smaller,
alleviating the minor problem. A still more reasonable estimate of PXK,
assuming that the last nucleotide is followed by R with a probability pR and
by Y with a probability pR, is

' '' '

;
1 1

YR R YY Y
YR YY

YK YKK K

N p N pP P
N N

+ +
= =

+ +∑ ∑
 (6.3)

For sequence S, PRR = 2/3, PRY = 1/3, PYR = 1.5/6 and PYY = 4.5/6
according to Eq. (6.3). Thus, the major problem is again solved and the
minor problem is further alleviated although PYR and PRY are still not the
same as from our intuition.

To simplify the presentation of Markov models, let us just assume that
we have a long sequence of alternative purine triplets and pyrimidine
triplets, so that indeed PRR = PYY = 2/3 and PYR = PRY = 1/3. These four
values, arranged in a 2×2 matrix (Table 6-1), constitute what is called the
transition probability matrix for a 1st-order Markov model which is also
known as a Markov chain. The four corresponding elements for human

112 Chapter 6

chromosome 22 are also included in Table 6-1. We note that a purine is more
likely to be followed by a purine than by a pyrimidine and that a pyrimidine
is more likely followed by a pyrimidine than by a purine, and that this
pattern, obvious enough for S, is also true for human chromosome 22 (Table
6-1). This helps us to predict the probability of Xi+1 given Xi. Take S for
example, without information on Xi, our prediction of Xi+1 being R is pR (=
0.5). In contrast, with Xi = R, our prediction of Xi+1 being R is PRR (= 2/3).

Table 6-1. Two transition probability matrices, one for S and one for human chromosome 22,
for the Markov chain with two states (R and Y). Note that values in each row in a transition
probability matrix are constrained with a row sum of 1.

 S Human Chr22
 R Y R Y
R 2/3 1/3 0.56683 0.43317
Y 1/3 2/3 0.43398 0.56602

Other than the transition probability matrix illustrated in Table 6-1, we

need to know the frequency parameters, typically arranged in the form of a
vector designated by pi, to characterize the Markov chain. For our example
with only two states (R and Y), the two frequency parameters are the
probabilities of R and Y at site i, designated by pR.i and pY.i, respectively. In
other words, the vector pi contains two elements, pR.i and pY.i.

We now learn how to obtain equilibrium frequencies of R and Y given
the transition probability matrix. Suppose Xi-1 = R, so pR.i-1 = 1 and pY.i-1 = 0,
and pR.i and pY.i are naturally equal to PRR and PRY, respectively. In matrix
algebra, and using the transition probability matrix for sequence S (Table 6-
1), we have

[]

[] []

1 . 1 . 1

2/3 1/3
1 0 2/3 1/3

1/3 2/3

RR RY
i i R i Y i

YR YY

P P
p p M p p

P P− − −
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

 (6.4)

At site i+1, i+2, etc., we expect

[] []1

2 1

9 8

2/3 1/3
2 / 3 1/ 3 0.55556 0.44444

1/3 2/3
[0.51852 0.48148]

......
 [0.50001 0.49999]

i i

i i

i i

p p M

p p M

p p M

+

+ +

+ +

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
= =

= =

 (6.5)

6. Hidden Markov Models 113

If we continue the multiplication, eventually the two frequencies will
approach pR = pY = 0.5. These equilibrium frequencies can be obtained more
easily by solving the equation pi = pi-1M with the constraints that

. . 1

. . 1

. . 1

R i R i

Y i Y i

R i Y i

p p
p p
p p

−

−

=

=

+ =

 (6.6)

Solving the resulting simultaneous equations, we have

. .;YR RY
R i Y i

RY YR RY YR

P Pp p
P P P P

= =
+ +

 (6.7)

which are the equilibrium frequencies. The equilibrium frequencies are
conventionally designated as πR and πY, respectively. For the fictitious
sequence S, πR = pR = 0.5 and πY = pY = 0.5. For human chromosome 22, πR
= pR = 0.50047 and πY = pY = 0.49953.

One can use one of many numerical routines, e.g., the Gauss-Jordan
elimination (Press et al., 1992, pp. 36-43) to solve for πi by following these
steps: (1) change the diagonal elements of M to –(1-Pii), (2) transpose M to
MT, (3) create a vector B with n elements all being 0, (4) add the constraint
of Σp = 1 by adding 1 to the first row of M, and by setting B(0) = 1, and (4)
use any numerical routine that solves MTp = B.

You may ask whether 1st-order Markov model is any better than the 0-
order Markov model. The latter assumes complete independence of
nucleotides over sites, i.e., whether site i is R has nothing to do with what
nucleotides are at other sites. Because the 0-order Markov model is a special
case of the 1st-order Markov model, the question can be addressed by what is
called a likelihood ratio test. This naturally leads to the calculation of the
likelihood.

Likelihood refers to either a probability function conditional on a
probabilistic model and the empirical observation or the result of such a
function. For the fictitious sequence S’ (the empirical observation) with only
12 nucleotides, the likelihoods according to the 0-order and 1st-order Markov
models are, respectively:

3 3 3 3
0

2 2 2 2
1

0.000244141

0.000722564
R Y R Y

R RR RY YY YR RR RY YY

L p p p p
L p P P P P P P P

= =

= =
 (6.8)

114 Chapter 6

The larger the likelihood, the better the model fits the data. However, the
absolute magnitude of a likelihood value is not important, what is important
is the relative magnitude measured as a ratio of two likelihood values. In our
case, what is important is the ratio of L1/L0 which can be used in a likelihood
ratio test to help us decide whether the 1st-order Markov model is
significantly better than the 0-order Markov model. To carry out a likelihood
ratio test, we calculate,

2
1 02[ln() ln()] 2.170122511X L L= − = (6.9)

which follows approximately the χ2-distribution with one degree of freedom.
The degree of freedom associated with a likelihood ratio test is the
difference in the number of parameters between the two models. The 0-order
Markov model has only two frequencies, pR and pY. Because pR = 1- pY, it is
not free when pY is known, so there is only one free parameter for the 0-
order Markov model. For the 1st-order Markov chain, we have four elements
in the transition probability matrix M. However, because the two values in
each row have to add up to 1, M has only two free parameters. Thus, the
degree of freedom associated with the likelihood ratio test involving the 1st-
order and 0-order Markov models is (2 – 1) = 1. In general, for a kth-order
Markov model with n categories of symbols (in our case we have only two
categories of symbols, i.e., R and Y, so n = 2), the number of parameters is

(1) k
paramN n n= − (6.10)

For example, the number of parameters for a 3rd-order Markov model for an
amino acid sequences (n = 20) is 19×203 = 15200. Given that a protein is
generally only one thousand amino acids long, such a model may have only
limited use.

The likelihood ratio test does not reject the 0-order Markov model in
favour of the 1st-order Markov model for the given S’ (p = 0.14), although
the site dependence, with purine triplets and pyrimidine triplets following
each other, is quite obvious. The reason for the failure to reject the 0-order
Markov model is the short length of S’. If S’ is three times longer, i.e., if it is
made of the first 36 nucleotides of S, then X2 = 4.888507099 and we can
reject the 0-order Markov model with p = 0.027036057.

PR and PY from S happen to be the same as πR and πY. Usually PR and PY
from a short sequence will not be the same as πR and πY. If one has already
obtained πR and πY from longer sequences, one should replace PR with πR in
Eq. (6.8).

6. Hidden Markov Models 115

3. HIDDEN MARKOV MODELS

3.1 The Essential Elements in a Hidden Markov Model

The classic illustration of HMM involves a dishonest casino dealer
stealthily switching between a fair die (F) and a loaded die (L). His
switching pattern is characterized by the 2×2 transition probability matrix
(Table 6-2) detailed in the previous section. Now we introduce another kind
of probability called emission probability. Tossing the fair die leads to
numbers 1-6 appearing with an equal probability of 1/6, but tossing the
loaded die always results in number 6. These probabilities of observing
different numbers conditional on the hidden state are termed emission
probabilities (Table 6-2).

Table 6-2. HMM involving a dishonest casino dealer, with the transition probability matrix on
the left and the emission probabilities on the right (the last 6 columns).
 F L 1 2 3 4 5 6
F PFF PFL 1/6 1/6 1/6 1/6 1/6 1/6
L PLF PLL 0 0 0 0 0 1

Because the casino dealer will not let others know when he switches, the

two states (F and L) are hidden. Hence the term “hidden Markov model”.
What one can observe is just a series of numbers, e.g.,

Observed symbols: 1435266634521334
Hidden states: FFFFFLLLFFFFFFFF

To summarize, a HMM has three essential elements, the transition

probability matrix, the emission probability matrix, and the observed
sequence of events. Recall that signal sensors represent information of site
dependence along a sequence. The transition probability matrix is a
mathematical instrument making use of signal sensors. If there is little site
dependence, then the transition probability matrix will be of little use.

In contrast, content sensors represent word frequencies in a sequence
without site-dependence. The emission probability matrix is a mathematical
instrument making use of content sensors. Given a hidden states, the
emission probabilities are always the same regardless of where the hidden
state is located on the sequence of observed symbols. If there is no site
dependence among the sequence of hidden states and if emission
probabilities do not differ among different hidden states, then the HMM
would be entirely uninformative.

116 Chapter 6

Another illustrative application of HMM is in base-calling (the process of
converting the four traces from the automatic sequencer to nucleotide
sequences). In this case the traces are the observed signals, and the bases are
the hidden states. More advanced applications of HMM can be found in
phylo-HMM which is a site-dependent probabilistic substitution model
supposed to be a better approximation to the substitution process in sequence
evolution (Felsenstein and Churchill, 1996; Siepel and Haussler, 2004a,
2004b, 2005; Yang, 1995).

The application of HMM in base-calling is probably not a very well
thought one. Typically, the association between a base and a particular peak
is strong, i.e., a given hidden state has a strong and characteristic peak. In
other words, emission probability matrix is highly informative and base-
calling can generally be quite successful with this emission probability
matrix only. In contrast, the site dependence of neighbouring nucleotides is
generally weak and generally does not significantly improve the prediction.

HMMs are generally associated with three objectives. The first is to
estimate the parameters of HMM, e.g., the elements in the transition
probability matrix and in the emission probability matrix, based on an
observed sequence of events with known hidden states. This is also called
HMM training. The second is to reconstruct the most probable path of
hidden states by using the trained HMM and the Viterbi algorithm explained
in detail later. The last is to obtain the probability of the observed sequence
of events, also explained in detail later.

How is HMM associated with gene prediction and motif finding? One
may consider exons, introns, etc., as hidden states, and a series of nucleotide
triplets along a genomic sequence as observed symbols. The frequencies of
different triplets “emitted” in the exon state are often different from those in
the intron state. Furthermore, an intron is always followed by an exon, so the
dependence of neighboring states is obviously strong. These different
emission probabilities and transition probabilities between neighboring
hidden states allow us to reconstruct the hidden states of exons and introns.
Another example of HMM application is in predicting protein secondary
structural elements such as α-helix, β-sheet and turns. These structural
elements are hidden states that emit different amino acids with different
frequencies. For example, some amino acids are frequently found in helices
but rarely in sheets or turns (Xia and Xie, 2002).

Whether a HMM is successful depends crucially on two things. The first
is how different are the emission probabilities among different states. Take
the dishonest casino dealer for example. If the loaded die is loaded only
slightly, then it will be extremely difficult for us to reconstruct the path of
hidden states. If the observable nucleotide, dinucleotide and trinucleotide
frequencies (or other observable symbols) are not very different between

6. Hidden Markov Models 117

coding and non-coding sequences, then the two would be difficult to tell
apart. For this reason, a purely computational scientist without access to in-
depth knowledge of the differences among different kinds of sequences is
unlikely to make a successful application of HMM in gene and motif
prediction. The second is how long the process will stay in each state. For
example, if the dishonest casino dealer throws the loaded die several times
consecutively, then a series of 6’s will help us identify the hidden states.
However, if he never throws the loaded die more than once, then it will be
essentially impossible for us to reconstruct the hidden states even if the
loaded die always yields a six. This means that short exons, which are
frequently encountered in eukaryotic genomes, will be very difficult to
identify.

In what follows, I will use empirical data from the HIV1 proteins to
illustrate the application of HMM in secondary structure prediction. In short,
we will learn to (1) train a HMM, i.e., obtain the transition probability matrix
M and emission probability matrix E, from a training sequence with known
hidden states, (2) reconstruct the sequence of hidden states, known as the
Viterbi path or the most probable path, by using the Viterbi algorithm
(Viterbi, 1967), and (3) compute the probability of the observed sequence of
symbols. These are the three essential tasks closely associated with HMM
(Rabiner, 1989). The last two tasks require the transition probability matrix
and the emission probability matrix from task 1.

3.2 Training HMM

Suppose we are going to use a training sequence (Figure 6-1) to train a
HMM for predicting protein secondary structure defined to be either coil
(C), strand (E) or helix (H). The sequence labelled as RT is a protein
sequence of HIV1 reverse transcriptase, and the sequence labelled as ST is
the sequence of known hidden states. Let Nij be the number of transitions
from state i to state j, which can be easily counted by moving along the ST
sequence (Figure 6-1). The maximum likelihood estimate of Pij, i.e., the
transition probability from state i to state j, is

ij
ij

ikk

N
P

N
=
∑

 (6.11)

The Pij values from data in Figure 6-1, with relatively large Pii values on
the diagonal (Table 6-3) are typical of training data where each secondary
structure elements are made of a series of consecutive amino acids so that a
state, be it C, E, or H, tends to stay in the same state for several consecutive

118 Chapter 6

amino acids before changing into another state (Figure 6-1). Note that each
row sum should be 1.

ST CCCCCCCEEEEECCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHCCCEEEECCC
RT PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIGPE

ST CCCCCCEEEEEECCCCCHHHHHHHHHHHHHHHHHHEEECCCCCCCCCCCCCCE
RT NPYNTPVFAIKKKDSTKWRKLVDFRELNKSTQDFWEVQLGIPHPAGLKKKKSV

ST EEEEECCEEEECCCCCCCCEECCEECCCCCCCCCCCCCEECCCCCCCCCCHHH
RT TVLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAI

ST HHHHHHHHHHHHHHCCCCEEEEEEECCCCCCCCCCHHHHHHHHHHHHHHHHHH
RT FQSSMTKILEPFRKQNPDIVIYQYMDDLYVGSDLEIGQHSTKIEELRQHLLRW

ST CCCCCCCCCCCCCCCCCCCCEECCCCCEECCEECCCCCCCCHHHHHHHHHCCC
RT GLTTPDKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVNDIQKLVGKLN

ST HHHHHCCCCHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHCCCCCEE
RT WASQIYPGIKVRQLCKLLRGTKALTEVIPLTEEAELELAENREILKEPVHGVY

ST ECCCHHHHHHHHHCCCCCEEEEEECCCCCCCCCCCCCCCCCCCHHHHHHHHHH
RT YDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARMRGAHTNDVKQLTEA

ST HHHHCCCCEEEECCCCCCCCCCHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCC
RT VQKITTESIVIWGKTPKFKLPIQKETWETWWTEYWQATWIPEWEFVNTPPLVK

ST EEEEECCCCCCCCCCC
RT LWYQLEKEPIVGAETF

Figure 6-1. Example of a training sequence (RT) with known hidden states (ST) for protein
secondary structure prediction. The hidden states are coil (C), strand (E) and helix (H). RT is
a real HIV1 reverse transcriptase. ST is fictitious but treated here as real.

Table 6-3. Transition probability matrix estimated from the training data in Figure 6-1.
 C E H
C 0.88210 0.06987 0.04803
E 0.26154 0.73846 0.00000
H 0.06897 0.00690 0.92414

For the emission probabilities, letting Ek(xj) be the number of amino acid

xj (j = 1, 2, …, 20 corresponding to the 20 amino acids) emitted from state k,
the emission probability ek(xj) is

6. Hidden Markov Models 119

20

1

()
()

()
k j

k j
k jj

E x
e x

E x
=

=
∑

 (6.12)

Note that the denominator is the sum of all amino acid in state k, and the
numerator is the number of amino acid xj in state k. So ek(xj) is simply the
fraction of amino acid xj in state k.

The ek(xj) values estimated from the training data in Figure 6-1 reveal
different amino acid frequency distribution among the three secondary
structure features (Table 6-4). For example, amino acids proline (P) and
glycine (G) are found frequently in coils, but rarely in strands or helices.
This should be obvious given the properties of proline and glycine. Proline
introduces a bend in protein structure due to the cyclic binding of its three-
carbon side chain to the nitrogen of the backbone. Glycine is the smalles
amino acid, and only a small amino acid allows a sharp turn.

Table 6-4. Emission probabilities estimated from the training data in Figure 6-1. The column
heading “AA” stands for amino acid, and C, E, and H stands for coil, strand, and helix,
respectively.
AA C E H
A 0.0262 0.03077 0.05517
C 0 0 0.01379
D 0.05677 0.01538 0.03448
E 0.07424 0.03077 0.13793
F 0.02183 0.04615 0.02759
G 0.09607 0 0.01379
H 0.02183 0 0.01379
I 0.04803 0.13846 0.08276
K 0.11354 0.07692 0.11724
L 0.06987 0.07692 0.11034
M 0.0131 0.01538 0.01379
N 0.0393 0 0.02759
P 0.13974 0.01538 0.01379
Q 0.0393 0.07692 0.08276
R 0.02183 0 0.06207
S 0.0393 0.03077 0.02069
T 0.08297 0.06154 0.06207
V 0.0393 0.18462 0.04828
W 0.03057 0.04615 0.05517
Y 0.0262 0.15385 0.0069

Two other patterns in Table 6-4 are worth highlighting. Tyrosine (Y) and

valine (V) are frequently found in strands but not in the other two structures,

120 Chapter 6

and leucine (L) and glutamate (E) are frequently found in helices but rare
elsewhere (Table 6-4 and Figure 6-1). These differences in emission
probabilities are encouraging. The larger the difference, the better the HMM
will perform in using the emission probabilities and transition probabilities
to predict secondary structures. If the three columns of frequencies in Table
6-4 are similar, then the predictive power of the HMM will rest entirely on
the information in the transition probability matrix. It is crucially important
for computational biologists to collaborate with real molecular biologists to
define the HMM model structure to have hidden states with maximal
differences in their emission probabilities.

3.3 The Viterbi algorithm

Now that we have gone through the training process of obtaining the
transition probability matrix (Table 6-3) and the emission probabilities
(Table 6-4), we are ready to proceed with the prediction of protein secondary
structure of unknown proteins with the Viterbi algorithm illustrated in this
section. Because there are overlapping characters between the secondary
structure notation (C, E and H) and the one-letter codes of amion acids, I
will add the full notation in parenthesis to avoid confusion.

Suppose we have the following amino acid sequence:

T = YVYVEEEEEEVEEEEEEPGPG

How do we predict its secondary structure? Of course we can use only

the content sensor as reflected by the emission probabilities (Table 6-4).
Given the association of L (leucine) and E (glutamate) with helix, P (proline)
and G (glycine) with coil (C) and Y (tyrosine) and V (valine) with strand
(E), we can readily write our prediction of the secondary structure referred to
as the naïve path of hidden states (Naïve):

 123456789012345678901
T = YVYVEEEEEEVEEEEEEPGPG
Naïve = EEEEHHHHHHEHHHHHHCCCC

This seems to make secondary structure prediction really easy, and the

approach has actually been taken before (Chou and Fasman, 1978b, 1978a;
Fasman and Chou, 1974). However, incorporating information on site-
dependence can improve the prediction. For example, PEH in the transition
probability matrix is 0.00000, implying an extremely small probability of E
(strand) followed by H (helix). Our naïve prediction above with an H (helix)
at position 5 following an E (strand) at position 4 therefore represents an

6. Hidden Markov Models 121

extremely unlikely event. Another example is at position 11 with T11 = V
(valine). Our prediction of Naïve11 = E (strand) implies a transition of
secondary structure from H (helix) at Naïve10 to E (strand) at Naïve11 and
then back from E (strand) at Naïve11 to H (helix) at Naïve12. The transition
probability matrix shows us that PHE and PEH are both very small. So T11 is
very unlikely to be in state E (strand).

Let us see if the Viterbi algorithm in HMM can do better than the naïve
prediction. The Viterbi algorithm (Viterbi, 1967) is a dynamic programming
algorithm. It incorporates both the information in the transition probability
matrix and the emission probability matrix. The computation involves filling
a Viterbi matrix and a backtrack matrix (referred to as V and B, respectively,
hereafter), both of dimension n×L where n is the number of states and L is
the length of the sequence. In our example, n = 3 and L = 21. Because the
page is not wide enough for 21 columns, V and B are shown in L×n tables
(Table 6-5).

Table 6-5. The V and B matrices from running the Viterbi algorithm using the transition
probability matrix in Table 6-3 and emission probability matrix in Table 6-4. The values in
the V matrix are their natural logarithms. The values in the B matrix are pointers, with 0, 1,
and 2 as pointers to C, E, or H state in the previous site. The last column (HS) is the
reconstructed hidden states.
 V Matrix B Matrix
 C E H C(0) E (1) H(2) HS
Y -4.74057 -2.97041 -6.07535 E
V -7.54809 -4.96308 -9.18506 1 1 2 E
Y -9.94622 -7.13807 -14.24069 1 1 2 E
V -11.71574 -9.13074 -16.01287 1 1 0 E
E -13.07242 -12.91516 -16.73257 1 1 0 C
E -15.79838 -16.69959 -18.08925 0 1 0 H
E -18.52435 -20.48402 -20.14914 0 1 2 H
E -21.25031 -24.26844 -22.20904 0 1 2 H
E -23.97627 -27.39268 -24.26893 0 0 2 H
E -26.70223 -30.11864 -26.32883 0 0 2 H
V -30.06419 -31.05285 -29.43855 0 0 2 H
E -32.79015 -34.83727 -31.49844 0 1 2 H
E -35.51611 -38.62170 -33.55834 0 1 2 H
E -38.24207 -41.65849 -35.61823 0 0 2 H
E -40.89289 -44.07621 -37.67813 2 2 2 H
E -42.95279 -46.13610 -39.73802 2 2 2 H
E -45.01268 -48.19600 -41.79792 2 2 2 H
P -46.44005 -50.94904 -46.16040 2 2 2 C
G -48.90819 -237.91316 -50.52288 0 0 2 C
P -51.00163 -55.74371 -54.88536 0 0 2 C
G -53.46976 -242.47474 -58.32104 0 0 0 C

The output in Table 6-5 is from program DAMBE (Xia, 2001; Xia and

Xie, 2001b) which implements the Viterbi algorithm as well as the forward

122 Chapter 6

algorithm (detailed later) for computing the probability of the observed
sequence of events given the transition probability matrix and the emission
probability matrix. Here we use manual computation so that you know how
to get the output yourself.

The first amino acid Y has no site-dependence information because we
do not know what goes before it. So the three values in the first row of V
(Table 6-5) are filled as a function of emission probabilities. Given amino
acid Y and no other information, the likelihood of the hidden states being C,
E and H are respectively eC(Y), eE(Y) and eH(Y) which are 0.0262, 0.15385
and 0.0069, respectively, from Table 6-4. These three values are divided by
the number of hidden states to give

(1) 0.0087336245
(1) 0.0512820513
(1) 0.0022988506

C

E

H

V
V
V

=
=
=

 (6.13)

You may wonder why these three values are not the same as the three
values in the first row in the V matrix in Table 6-5. This will be explained
soon.

In more concise and more general mathematical terms, Eq. (6.13) is
written as

1(1) () /k kV e X n= (6.14)

where k = C, E, or H, and n is the number of hidden states (=3 in our
example).

An alternative initialization of Vk(1) values is

11(1) ()k k XV e X π= (6.15)

where πX1 is the equilibrium frequency of X1. We have already learned how
to compute the equilibrium frequencies in a previous section on 1st-order
Markov models. This way of initialization is numerically illustrated later
when we learn the forward algorithm.

The rest of the rows in V are filled with a more intimidating equation

() () max ((1))l l i k k klV i e X V i P= − (6.16)

6. Hidden Markov Models 123

where subscript l refers to the hidden state at site i, and k is the hidden state
at site i-1, Pkl is the transition probability from hidden state k to hidden state
l.

Many intimidating mathematical expressions are in fact quite simple, and
Eq. (6.16) is no exception, especially when it is rendered into numbers. For
example, according to the equation, the second row of the V matrix is filled
with the following three values:

(2) () max[(1) , (1) , (1)]
0.0393 max(0.008733625 0.8821,
0.051282051 0.26154,0.002298851 0.06897)
0.0393 0.013412308 0.000527104

(2) () max[(1) , (1) , (1)]
0.006991512

C C C CC E EC H HC

E E C CE E EE H HE

H

V e V V P V P V P

V e V V P V P V P

V

=
= × ×

× ×
= × =
=
=

(2) () max[(1) , (1) , (1)]
0.000102569

H C CH E EH H HHe V V P V P V P=

=

 (6.17)

where V in eC(V), eE(V) and eH(V) is the amino acid V at the second site of
the amino acid sequence. Don’t confuse it with the V matrix.

Vl(i) values for i = 3, 4, …, 21 are computed in exactly the same way.
Each one depends on the Vl(i-1) values. This is typically of all dynamic
programming algorithms.

Eq. (6.16) and its numerical rendition in Eq. (6.17) are also very easy to
understand and to remember. Take VC(2) in Eq. (6.17) for example. The max
function is to find, given the reconstructed hidden state at the second site is
C, which of the three possible hidden states in the previous site is most likely
to transit into C. In our case, it is the hidden state E that is most likely to
transit into C, with its value of 0.013412308 being the maximum of the
three. If the reconstructed hidden state is C, how likely is it to emit an amino
acid V? This is the emission probability eC(V) = 0.0393 (Table 6-4). So
VC(2) is the probability that the hidden state at the site 2 is C multiplied by
the probability that the hidden state C emits an amino acid V. With this, the
computation of VE(2) and VH(2), as well as the rest of Vl(i), is obvious. I
encourage you to perform the computation by hand. Just in case you wish to
have some values to check your computation, here are the three Vl(3) values:

124 Chapter 6

(3) 0.0000479085
(3) 0.0007942838
(3) 0.0000006537

C

E

H

V
V
V

=
=
=

 (6.18)

Now you may have a really burning question in your mind. The three
rows of V matrix that we have computed in Eq. (6.13), Eq. (6.17) and Eq.
(6.18) are supposed to be the same as the first three rows in the V matrix in
Table 6-5. Why are they not the same? Please be patient for just one more
minute.

You might have noticed that the three Vl(2) values in Eq. (6.17) are
substantially smaller than the three Vl(1) values in Eq. (6.13), and the three
Vl(3) values in Eq. (6.18) are substantially smaller than the three Vl(2)
values in Eq. (6.17). The Viterbi algorithm involves the multiplication of
many small probabilities and it takes only a short sequence for a computer to
generate an arithmetic underflow or overflow error (and probably weird
results long before this). Do you have a solution for this problem now that
you understand how to compute the V matrix?

The solution turns out to be simple. In order to avoid arithmetic
underflow or overflow problems in computation, any practical
implementation of the Viterbi algorithm would have log-transformed the
equations so that we do additions instead of multiplications. If you take the
natural logarithm of Vl(1), Vl(2) and Vl(3) values in equations (6.13), (6.17),
and (6.18), you should get the values in the first three rows in the V matrix
in Table 6-5.

We have not talked about the B matrix (the backtrack matrix), which
should be filled concurrently with the V matrix. Just as the backtrack matrix
in the dynamic programming algorithm for sequence alignment is for the
actual reconstruction of aligned sequences, the backtrack matrix in the
Viterbi algorithm is for reconstructing the most probable hidden path, also
known as the Viterbi path. In our example, the Viterbi path is the
reconstructed secondary structure of the peptide T.

Each cell in B in Table 6-5 is in fact a pointer (or arrow) to a cell in the
previous site. The first row of B in Table 6-5 is empty for the obvious reason
that the first site has no previous site to point to (Table 6-5). The first three
values in the second site is 1, 1, and 2 (Table 6-5). We will first explain how
we get these values and what they mean, and finally learn how to reconstruct
the Viterbi path by following the pointers in the B matrix.

The entries in the B matrix are obtained from the max function in
equations (6.16) and (6.17). Take VC(2) in Eq. (6.17) for example. The three
values within the max function are VC(1)PCC, VE(1)PEC and VH(1)PHC, with
the maximum being VE(1)PEC. So we should have an arrow pointing from C

6. Hidden Markov Models 125

at the second site to E at the first site. Because it is not convenient to store
graphic arrows in digital computers, we coded the three hidden states C, E
and H to 0, 1, and 2, respectively. To represent an arrow from C at the
second site to E at the first site, we simply put a number 1 under column C
(B matrix in Table 6-5) at the second site. Because we only have three
hidden states, a cell in B will contain either a 0 (for C) or 1 (for E) or 2 (for
H).

Yes, I could have put real arrows to the B matrix in Table 6-5, but I was
afraid of spoiling future programmers if everything is made too visual.
Sometimes it is better to see things with our mind’s eye. However, there is
nothing preventing you from replacing the numbers by arrows in the B
matrix in Table 6-5.

The second value in the second row of B is 1, meaning an arrow pointing
from state E at the second site to state E at the first site (i.e., a vertical arrow
pointing up). This is obtained in exactly the same way from VE(2) in Eq.
(6.17). Among the three values within the matrix function, VC(1)PCE,
VE(1)PEE, and VH(1)PHE, VE(1)PEE is the largest. So we again have a value of
1 representing an arrow from state E at the second site to state E at the first
site.

For VH(2) in Eq. (6.17), the last of the three values within the max
function is the largest, yielding a value of 2 representing an arrow from state
H in the second site to H in the first site. That is, you have another vertical
arrow pointing upwards.

Once the V and B matrices are complete, we can backtrack along the B
matrix to reconstruct the hidden states. We first look at the very last row in
V (Table 6-5) and find the largest value, which is -53.46976 under column
C. This means that the last amino acid (i.e., G) should be in state C (i.e., in a
coil). This brings us to the value in the last row of B under column C in
Table 6-5. This value is 0 (representing C). Recall that values in the B matrix
are pointers. A value of 0 in a cell in the B matrix means that the second last
amino acid (i.e,. P) is also in a coil. Similarly, we know the third and fourth
last amino acids (G and P, respectively) are also in a coil. We record these
reconstructed hidden states in the last column in Table 6-5, i.e., a stretch of
four C’s from the bottom.

Now we are at the cell containing a value of 2 (for H or helix) under
column C (the fourth row from the bottom). This means that the next amino
acid (i.e., amino acid E at site 17) is no longer in state C but in state H. So
now we move to the value of 2 (the fifth from the bottom) under column H
in Table 6-5. This cell, together with the 11 cells in proceeding sites,
contains a value of 2. This means a stretch of amino acids in state H all the
way to the 6th amino acid (i.e., amino acid E). We again record this stretch of
H’s in the last column (HS) in Table 6-5.

126 Chapter 6

The last value of 2 in this stretch of 2’s is in the 7th row of the B matrix in
Table 6-5, corresponding to amino acid E. The cell right above this 2 is 0.
This means that the amino acid at 5th site (i.e., E) is no longer in state H, but
in state C. This brings us back to column C corresponding to the fifth amino
acid (amino acid E), where we find a value of 1. This value of 1 means that
the previous amino acid (the fourth one, amino acid V) is in structure E. This
brings us to column E at the forth amino acid. This cell has a value of 1 and
a stretch of 1’s above it all the way to the top. This means that the four
amino acids at sites 1-4 are all in structure E. If you find yourself confused,
then just replace those numbers in the B matrix in Table 6-5 by real arrows
and then follow the arrows to get the reconstructed secondary structure.

The final reconstructed sequences are shown below (Viterbi), together
with the naïve reconstruction (Naïve) we have derived by using only
information in the emission probability matrix:

 123456789012345678901
T = YVYVEEEEEEVEEEEEEPGPG
Viterbi = EEEECHHHHHHHHHHHHCCCC
Naïve = EEEEHHHHHHEHHHHHHCCCC

Two hidden states, at site 5 and 11, were reconstructed differently

between the naïve path and the Viterbi path. A hidden state of H at site 5 in
the Naïve reconstruction implies a transition from hidden state E directly
into hidden state H, which has an extremely small probability PEH = 0.00000
(Table 6-3). The Viterbi path shows first a transition from E to C and then
from C to H. This is a more likely path than the Naïve reconstruction
because PEC and PCH are both much larger than 0.00000 (Table 6-3). Another
difference is at site 11. The naïve reconstruction of state E at this site implies
a transition of secondary structure from H to E and then back from E to H.
The transition probability matrix shows us that PHE and PEH are both very
small. So a hidden state of E at this site is very unlikely. The transition
probability matrix shows a large PHH value (Table 6-3). The reconstructed
hidden state H at this site in the Viterbi path implies that the helix structure
is more likely to continue across this site instead of switching to some other
secondary structures.

We have now covered two of the three major tasks associated with
HMM, i.e., train a HMM and reconstruct the sequence of hidden states. We
now deal with the last task, i.e., computing the probability of the observed
sequence of symbols by the forward algorithm (Rabiner, 1989).

6. Hidden Markov Models 127

3.4 Forward algorithm

The forward algorithm is for computing the probability of the observed
sequence of events. Given an observed amino acid sequence T, the
probability is designated P(T). This probability is useful to understand the
process generating the sequence. For example, given the transition
probability matrix and the emission probability matrix, if we find the
observed sequence (say amino acid sequence T) to have a much smaller
probability than any of the training sequences of the same length from the
training set, then we may have to conclude either that the training set is not
representative (i.e.., the sequence T should not be a member of the training
set) or that the HMM structure is wrong, i.e., there might be more hidden
states or the hidden states in the training set might be wrongly assigned.
HMM is often used to decide whether an amino acid sequence belongs to a
protein family and P(T) plays an important role in making such a decision.
In such cases, the HMM is derived from a set of aligned protein sequences
known to belong to a particular protein family. We classify a new sequence
T into the protein family when P(T) is large.

The forward algorithm involves dynamically completing a L×n matrix,
where L is sequence length and n is the number of hidden states (Table 6-6).
The matrix is henceforth referred to as the F matrix (F for forward).

Table 6-6. The F matrix from the forward algorithm. The first column is the amino acid
sequence (AA), and the last column is the scaling factor s(i) explained in the text.
AA C E H s
Y 0.35294 0.58824 0.05882 25.824
V 0.17282 0.79491 0.03226 9.371
Y 0.09317 0.90426 0.00258 9.807
V 0.09124 0.90635 0.00241 7.281
E 0.52078 0.45909 0.02013 22.082
E 0.71047 0.19040 0.09914 16.477
E 0.68601 0.07944 0.23455 13.523
E 0.55790 0.03897 0.40313 11.704
E 0.40736 0.02247 0.57018 10.351
E 0.28088 0.01410 0.70502 9.353
V 0.23427 0.12798 0.63775 19.865
E 0.19622 0.03300 0.77078 9.304
E 0.14736 0.01129 0.84135 8.452
E 0.11512 0.00610 0.87878 8.120
E 0.09685 0.00456 0.89858 7.968
E 0.08706 0.00397 0.90898 7.892
E 0.08192 0.00369 0.91439 7.853
P 0.61471 0.00733 0.37797 32.278
G 0.91292 0.00000 0.08708 16.665
P 0.97669 0.00853 0.01477 8.615
G 0.99004 0.00000 0.00996 11.917

128 Chapter 6

The three values in the first row, corresponding to the first amino acid
(i.e., Y) are filled as a function of emission probabilities, exactly as the V
matrix in the Viterbi algorithm. Given Y and no other information, the
likelihood of the hidden states being C, E and H are respectively eC(Y),
eE(Y) and eH(Y) which are 0.0262, 0.15385 and 0.0069, respectively, from
Table 6-4. One can initialize the first three values by dividing these three
values by the number of hidden states (= 3) as in Eq. (6.14) or by
multiplying these values by the equilibrium frequencies of the hidden states
as in Eq. (6.15). The three values from the first method of initialization are
equal to Vl(1) in Eq. (6.13). To learn something new, we will use the second
method of initialization. The equilibrium frequencies for hidden states C, E,
and H can be computed by using the method explained in a previous section
on Markov models and are equal to 0.52164009, 0.14806378, and
0.33029613, respectively. This yields

(1) 0.01366697
(1) 0.022779613
(1) 0.002279043

C

E

H

F
F
F

=

=
=

 (6.19)

You may begin to wonder why the three Fl(1) values are not the same as
the three values in the first row in the F matrix in Table 6-6. It may suddenly
dawn on you that you need to take their logarithms. So you did, and ……
they are still quite different. You may begin to wonder if I have made
computational errors. Rest assured that I did not. You just need to be a bit
more patient.

The Fl(i) values with i > 1 are computed according to the following
equation

1(1) () ()l l i k klk
F i e X F i P++ = ∑ (6.20)

Again, this seemingly intimidating equation is quite easy to understand
and simple to compute, especially when it is rendered to numbers. Take the
second amino acid site (amino acid V) for example. The three Fl(2) values
are:

6. Hidden Markov Models 129

(2) ()((1) (1) (1))
0.0393(0.01366697 0.8821
+0.022779613 0.26154+0.002279043 0.06897)

=0.000714105
(2) ()((1) (1) (1))

0.003284846
(2) ()((1) (1)

C C C CC E EC H HC

E E C CE E EE H HE

H H C CH E EH H

F e V F P F P F P

F e V F P F P F P

F e V F P F P F

= + +

= ×
× ×

= + +
=
= + + (1))

0.000133377
HHP

=

 (6.21)

We continue until we obtain the three values for the last amino acid at
site 21 (i.e., the terminating G). The summation of these last three values is
the probability of the observed amino acid sequence (T) given the transition
probability matrix and the emission probability matrix, i.e.,

1
() ()

n

l
l

P T F L
=

=∑ (6.22)

where l is the index of hidden states (E, C and H in our example), n is the
number of hidden states (= 3 in our example) and L is the sequence length of
T. However, Eq. (6.22) is almost never used in actual computation because,
without rescaling, Fl(L) will often be too small to be represented in digital
computers with a large L. The actual computed P(T) in our example is 3×10-

23, a very small value. In practice, we always compute the natural logarithm
of the probability because the probability itself will be difficult to represent
in digital computers with a large L. The natural logarithm of the probability
is -51.8606178.

You might again wonder why the three Fl(1) values in Eq. (6.19) and the
three Fl(2) values in Eq. (6.21) are not the same as the six values populating
the first two rows of F in Table 6-6. The reason is that the forward algorithm
involves the multiplication of many small probabilities and some
computational tricks have to be taken to avoid the arithmetic underflow or
overflow error. You might suggest using the logarithm as we did before with
the Viterbi algorithm, but this time the logarithm does not help because of
the summation term in Eq. (6.20). What we typically do is to re-scale the
Fl(i) values by a scaling factor s(i). In DAMBE (Xia, 2001; Xia and Xie,
2001b), the three Fl(i) values are re-scaled to

130 Chapter 6

'

''

() () ();
1()

()

l l

ll

F i s i F i

s i
F i

=

=
∑

 (6.23)

For example, the three Fl(1) values are re-scaled to

'

'

'

(1)(1) 0.352917995
(1) (1) (1)

(1) 0.588230967

(1) 0.058851038

C
C

C E H

E

H

FF
F F F

F
F

= =
+ +

=

=

 (6.24)

It is these re-scaled values that are presented in Table 6-6. The last
column in Table 6-6 is the scaling factor in Eq. (6.23) that can be used to
compute P(T):

1

1

1()

ln[()] ln()

L

i
i

L

i
i

P T
s

P T s

=

=

=

= −

∏

∑

 (6.25)

 where L is the sequence length.

3.5 HMM and gene prediction

Many methods have been used for gene prediction in prokaryotic
genomes (Borodovsky and McIninch, 1993a; Krogh et al., 1994; Salzberg et
al., 1998) and eukaryotic genomes (Besemer and Borodovsky, 2005; Burge
and Karlin, 1997; Burge and Karlin, 1998). The application of HMM in gene
prediction involves defining the structure of HMM with selected hidden
states, training the defined HMM with genomic sequences of known hidden
states to estimate the parameters in the transition probability matrix and the
emission probability matrix, and finally apply the method to predict genes
(i.e., reconstruct hidden states) by using the Viterbi and forward algorithms.

It is not trivial to define the model structure of HMM in gene prediction.
Current methods for gene prediction in eukaryotic genomes, e.g.,
GENSCAN (Burge and Karlin, 1997), focus on the prediction of coding
exons and exon-intron junctions. Note that introns can be inserted into the
5’-UTR (untranslated region) or 3’-UTR of a gene, creating non-coding

6. Hidden Markov Models 131

exons. Such exons are the most difficult to predict. The first coding exon is
the one containing the initiation codon ATG and ending at the first 5’ splice
junction. The last coding exon is the one containing the termination codon
and extending into the 3-UTR. HMMs used in Gene prediction typically
involve many hidden states, e.g., GENSCAN involve 17 hidden states.

4. POSTSCRIPT

We see informal applications of HMM in our daily life. By making a
telephone call, parents with their ears trained from many years of experience
can often detect hidden troubles of their children based only on the voice of
the latter. In contrast, people unfamiliar to each other often find it
frustratingly difficult to predict each other’s behavior. The same applies to
different nations, such as between the United States and Iran. If two people
or two nations have hardly been trained to understand each other, disasters
are almost never far when they both claim to known what the other party
intends to do.

I once heard a story about the late Stephen Jay Gould giving a talk on
evolution to the congregation of an All Souls Church in New York. When
the guest and hosts were having lunch together, someone suggested that they
should go around the table to introduce themselves. At that point Gould said
something that seemed to be extraordinarily rude, something to the effect
that he did not really care who the hosts were as he would never see them
again. The name of Gould instantly became synonymous to rudeness among
the church members.

However, soon after the incident, the members of the church learned
from the newspaper that Gould had died of cancer and that his lecture in the
church was in fact Gould’s last public engagement – he reserved all the rest
of his time to finish his 1464-page magnum opus entitled “The Structure of
Evolutionary Theory”. They realized that, at that moment when the
seemingly rude remark erupted, Gould must have felt melancholy, as
everyone would, knowing that his days were numbered, and that he was
merely stating a heart-breaking truth that he would never see anyone around
the table again.

Stephen Jay Gould had spent all his life fighting two kinds of
fundamentalists, the religious fundamentalists who believe that God is a
micromanager of everything and the evolutionary fundamentalists who
believe that every bit of biodiversity manifests adaptation and every bit of
adaptation results from natural selection. I would have expected Gould to
have an easy time with members of a very liberal church. Yet

132 Chapter 6

misunderstanding still arose, and the misunderstanding could last for along
time if Gould’s death had not been on the newspaper.

It is truly enigmatic and paradoxical that, with the advanced
computational algorithms helping us to infer the unknown, we still do not
seem to make any progress in understanding each other and in understanding
ourselves. The ancient Greek sage, Plato, has discovered the root cause of all
misunderstanding and evil. It is called arrogance. Plato illustrated his point
with his famous allegory of the cave.

Imagine prisoners chained inside a cave since childhood, with their heads
immobilized in such a way that their eyes were fixed on a gigantic wall.
Immediately behind the prisoners was a road along which men, animals and
other things traveled. Behind the road was an enormous fire that projected
the shadow of the travelers to the wall that the prisoners were facing. Also,
the voice of the travelers was echoed from the wall in such a way that the
prisoners believed that the words came from the shadows. Gradually, the
prisoners became quite good at identifying the travelers by their shadows
and voices. The shadows and the voices, as well as the interpretation of the
shadows and voices by the prisoners, constituted the reality of the prisoners.

Now suppose a prisoner was freed and went outside the cave. Gradually
he would comprehend a new reality from what he could sense. Once thus
enlightened, he naturally would want to return to the cave to convey the new
reality to his fellow prisoners. Unfortunately, once back in the cave, he
found himself much less able to identify the travelers by their shadows than
his fellow prisoners. Being thus perceived as inferior by his fellow prisoners,
he failed completely in communicating the new reality to his fellow
prisoners who believed to know better. The fellow prisoners were too
arrogant to listen.

It is the arrogance in the mind of the prisoners that prevents them from
comprehending the new reality. It is the arrogance in the mind of the
religious fundamentalists and the evolutionary fundamentalists that prevents
them from understanding each other. It is the arrogance in the mind of the
presidents and primer ministers that prolongs the misunderstanding among
nations. An arrogant mind can never perceive the need of training. In the
Christian Bible, arrogance is called Satan.

The fundamental message from this chapter is this. An HMM algorithm,
no matter how algorithmically elegant and mathematically rigorous, will be
of absolutely no value if it is not properly trained. May our mind never be
transformed into such an algorithm in reality.

Chapter 7

GIBBS SAMPLER
Identify functional motifs in DNA and proteins

1. INTRODUCTION

In Chapters 5 on the position weight matrix and perceptron, we have
learned how to characterize a sequence motif by using a set of aligned
training sequences. This chapter introduces a new computational technique
used to identify regulatory motifs in DNA or functional motifs in proteins.
There are in fact a number of computational techniques for such
identifications. However, the most widely used technique is perhaps Gibbs
sampler (Geman and Geman, 1984), named after the mathematical physicist,
J. W. Gibbs.

Gibbs sampler is a method for simplifying computation in parameter
estimation when analytical solution is very difficult or impossible to obtain.
In biology, it has been used in the identification of functional motifs in
proteins (Mannella et al., 1996; Neuwald et al., 1995; Qu et al., 1998),
biological image processing (Samso et al., 2002), pairwise sequence
alignment (Zhu et al., 1998) and multiple sequence alignment (Holmes and
Bruno, 2001; Jensen and Hein, 2005). However, the most frequent biological
application of Gibbs sampler remains in the identification of regulatory
sequences of genes (Aerts et al., 2005; Coessens et al., 2003; Lawrence et
al., 1993; Qin et al., 2003; Thijs et al., 2001; Thijs et al., 2002a; Thijs et al.,
2002b; Thompson et al., 2004; Thompson et al., 2003).

It is important to recognize the fact that a genome comes alive mainly
through transcription and translation. The efficiency of both transcription
and translation depends on the associated sequence motifs, with transcription
affected by promoter sequences and other associated motifs that can enhance

134 Chapter 7

or inhibit transcription, and translation affected by the translation initiation
signal such as translation initiation site. These sequence motifs can be
discovered by Gibbs sampler.

In this chapter we will focus only on gene and motif prediction involving
Gibbs sampler, but the basic algorithm is essentially the same for other
applications. Before we detail the algorithm with numerical illustrations, it is
helpful to first give a concrete example of its application in motif finding.

Suppose a molecular biologist studying yeast cycle has identified a set of
co-expressed genes (i.e., genes that increase or decrease their transcription
level synchronously over time) by microarray (Schena, 1996; Schena, 2003)
or SAGE (Saha et al., 2002; Velculescu et al., 1995) experiment. He wants
to know if the co-expressed genes are also co-regulated, i.e., if they may
share a certain yet-unknown promoter sequences controlled by the same or
similar transcription factor. Suspecting that the promoter is somewhere
upstream of the translation initiation codon, he extracted the upstream
sequences from these coexpressed genes (Figure 7-1a) and hope to get the
aligned regulatory motifs in the form shown in Figure 7-1b. This scenario is
where the Gibbs sampler will shine.

(a)
S1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
S2 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG
S3 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA
……
SN CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

(b)
S1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
S2 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG
S3 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA
……
SN CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

Gibbs sampler

Figure 7-1. Application of Gibbs sampler in motif discovery. The sequences shown are
reverse complement of a subset of erythroid-specific gene sequences, which has been tested
for the presence of GATA box or TATC box in reverse complement (Rouchka, 1997).

The main output of Gibbs sampler is typically of two parts. The first is
the sequences with aligned motifs as shown in Figure 7-1b. The second is a
position weight matrix derived from the aligned motifs so that we can use it
to scan new sequences for the presence and location of such motifs.

In short, the input to Gibbs sampler for motif prediction is a set of
sequences, the majority of which contain one or more motifs of interest
(Figure 7-1a). The output is a set of sequences with aligned motifs (Figure 7-
2) together with a position weight matrix that can be used in future motif
prediction.

7. Gibbs Sampler 135

There are two slightly different applications of Gibbs sampler in motif
prediction. The first assumes that each sequence contains exactly one motif
(Lawrence et al., 1993) and the associated algorithm is called site sampler.
The second is more flexible and allows each sequence to have none or
multiple motifs (Neuwald et al., 1995) and the algorithm is termed motif
sampler. We will illustrate the site sampler and then briefly discuss the motif
sampler. Much of this chapter is based on a previous tutorial on Gibbs
sampler (Rouchka, 1997).

2. A NUMERICAL ILLUSTRATION OF THE
COMPUTATIONAL DETAILS OF GIBBS
SAMPLER

We have to first of all face the necessary evil of defining relevant entities.
For illustration, we will work with nucleotide sequences instead of amino
acid sequences, although the algorithm is applicable to both. The erythroid
sequences (Rouchka, 1997) that we will apply Gibbs sampler to are listed
below (with 3’-end trimmed to the maximum length 50 bases to fit the
screen):

S1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
S2 CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG
S3 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG
S4 AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC
S5 GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC
S6 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA
S7 GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA
S8 CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT
S9 TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC
S10 GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC
S11 CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG
S12 GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG
S13 TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA
S14 CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC
S15 ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC
S16 AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC
S17 CCAGCACACACACTTATCCAGTGGTAAATACACATCAT
S18 TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT
S19 ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA
S20 TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA
S21 CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA

136 Chapter 7

S22 CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA
S23 GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT
S24 TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT
S25 GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT
S26 CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG
S27 CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC
S28 GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG
S29 CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

Let N be the number of input sequences designated as S1, S2, …, Si, …,

SN, and m be the length of the motif. For our example, N = 29 and m = 6.
One typically would use different m values if one knows little about the
length of the motif.

Let Li be the length of Si, and Ai be the inferred starting position of the
motif in Si. The objective of Gibbs sampler is to (1) obtain a set of correct Ai
values to align the motifs in the form of Figure 7-1b, and (2) generate a
position weight matrix that characterizes the motif by site-specific nucleotide
frequency distributions. The position weight matrix can be used to scan for
the presence of the identified motif for purpose of motif prediction. The
position weight matrix is of dimension m×4, for nucleotide sequences and
m×20, for amino acid sequences.

We need first to count all nucleotides, with their numbers designated as
FA, FC, FG and FT, respectively, in the sequences. The total number of
nucleotides of all 29 sequences is 1209, with FA, FC, FG and FT equal to 325,
316, 267 and 301, respectively. These values will be needed for calculating
pseudocounts (which we encountered in the section on position weight
matrix in Chapter 5).

The main algorithm of Gibbs sampler is of two steps. The first is random
initialization in which a random set of Ai value is chosen and site-specific
nucleotide frequencies are calculated. The second step is predictive updating
until a local solution of Ai values is obtained and retained, together with site-
specific nucleotide frequencies that can be made into a position weight
matrix. This is repeated multiple times and previously stored locally optimal
solutions are replaced by better ones. Convergence is typically declared
when two or more local solutions are identical. These steps are numerically
illustrated in the following sections.

2.1 Initialization

We now randomly assign a value to Ai, with the constraint that Ai ≤ Li –
m +1. So our first set of N “motifs” is essentially a random set of sequences
of length m and is not expected to have any pattern. Just in case you are

7. Gibbs Sampler 137

curious, the first set of 29 random Ai values happen to be: 29, 31, 23, 28, 10,
2, 18, 32, 20, 15, 11, 25, 24, 30, 18, 15, 10, 23, 14, 15, 26, 36, 8, 6, 30, 19,
27, 26, and 14. The site-specific distribution of nucleotides from the 29
random motifs is shown in Table 7-1. There is hardly any site-specific
pattern.

The second column in Table 7-1 will be referred to as C0 vector with
C0A, C0C, C0G and C0T equal to 278, 279, 230, and 248, respectively. The
4×6 matrix, occupying the last six columns in Table 7-1, will be referred to
as C matrix. The C matrix is tabulated from the 29 random motifs whereas
the C0 vector is tabulated from nucleotides outside of the motifs. Thus, the
sum of the first, second, third and fourth rows should be equal to FA, FC, FG
and FT, respectively. Also note that each of the six columns in the C matrix
should add up to 29.

Table 7-1. Site-specific distribution of nucleotides from the 29 random motifs of length 6. The
second column lists the distribution of nucleotides outside the 29 random motifs.
 Site
Nuc C0 1 2 3 4 5 6
A 278 8 7 9 6 10 7
C 279 3 8 5 10 6 5
G 230 7 5 6 5 3 11
T 248 11 9 9 8 10 6

2.2 Predictive update

The predictive update consists of obtaining N (= 29 in our example)
random numbers ranging from 1 to N, and use these numbers as an index to
choose the sequences sequentially to update the site-specific distribution of
nucleotides (the C matrix) and the associated frequencies (the C0 vector).
For example, the N numbers in my run of the Gibbs sampler happen to be
11, 18, 26, 22, 2, 28, 12, 9, 7, 3, 17, 16, 1, 4, 21, 15, 14, 24, 19, 27, 29, 6, 10,
20, 13, 8, 23, 25, and 5, respectively. This means that S11 will be used first,
and S5 last, for the first cycle of the predictive update. It is important to use a
random series of numbers instead of choosing sequences according to the
input order. The latter increases the likelihood of trapping Gibbs sampler
within a local optimum. This is repeated multiple times until a local solution
is reached. I present the detail of the predictive update below.

Our first randomly chosen sequence happens to be S11 and its randomly
chosen motif, as has mentioned in the previous section, happens to start at
11, i.e., A11 = 11, with the motif being AGTGTG. This initial motif will now
be taken out of C and put into C0 vector. This motif has one A, zero C, and
three G’s and two U’s. By adding these values to the C0 vector in Table 7-1,

138 Chapter 7

we obtain the C0 vector in Table 7-2. We also need to take this motif out of
the C matrix by subtracting the first A from the first value in the first column
in the C matrix in Table 7-1 (i.e., new CA,1 = old CA,1 - 1) , the second G
from the third value in the second column in the C matrix in Table 7-1 (i.e.,
new CG,2 = old CG,2 - 1), and so on. This converts the C matrix in Table 7-1
to the C matrix in Table 7-2.

Table 7-2. Site-specific distribution of nucleotides from the 28 random motifs of length 6,
after removing the initial motif in S11. The second column lists the distribution of nucleotides
outside the 28 random motifs.
 Site
Nuc C0 1 2 3 4 5 6
A 279 7 7 9 6 10 7
C 279 3 8 5 10 6 5
G 233 7 4 6 4 3 10
T 250 11 9 8 8 9 6

At this point the C matrix is made of the 28 randomly chosen motifs, one

from each sequence. You will notice that each of the six columns in the C
matrix has a sum of 28.

The reason for taking the initial motif in S11 out of the C matrix and put it
back into the C0 vector is that we are going to find a more likely motif in
S11, and put it into the C matrix so that the C matrix will against be based on
29 motifs. How are we going to get a more likely motif? Recall that a
position weight matrix (PWM) can be used to scan fragments of a sequence
to get position weight matrix scores (PWMSs). We will make a PWM out of
the C0 vector and the C matrix and use the resulting PWM to scan S11 and
get a new motif that has the highest PWMS.

You may wonder why such a practice would get us anywhere given the
fact that the C matrix is initially made of random motifs. The resulting PWM
would exhibit no pattern, and the resulting PWMSs will therefore be
uninformative. It is a valid point that you have made, but let us wait and see
if some miracles will happen.

With the C0 vector and C matrix in Table 7-2, we will now create a new
Q0 vector and a new Q matrix. The four values in the Q0 vector are
computed as

1

00 , . .,
0

2790 0.268012
279 279 233 250

Code

i
i N

i
i

A

CQ e g
C

Q

=

=

= =
+ + +

∑ (7.1)

7. Gibbs Sampler 139

where NCode is the number of different symbols in the sequences (= 4 for
nucleotide sequences, and i = 1, 2, 3 and 4 corresponding to A, C, G and T).

Thus, the Q0 vector is just the proportion of A, C, G and T in the 28
sequences outside of the 28 motifs. However, because C0i may be zero, and
because we will need to take the logarithm of Q0i, we will add pseudocounts
to obtain Q0i in the following form.

1 1

00
0

Code Code

i i
i N N

i i
i i

C FQ
C F

α

α
= =

+
=

+∑ ∑
 (7.2)

where Fi has been defined before , and α is typically a small value, with its
default being 0.01 in my implementation of Gibbs Sampler in DAMBE (Xia,
2001; Xia and Xie, 2001b).

The elements in the Q matrix are computed similarly as follows:

1 1 1
1

Code Code Code

ij i ij i
ij N N N

ij i i
i i i

C F C F
Q

C F N F

α α

α α
= = =

+ +
= =

+ − +∑ ∑ ∑
 (7.3)

where i = 1, 2, 3, and 4 corresponding to A, C, G and T, respectively, N is
the number of input sequences, and j = 1 2, …, m. The Q0 vector and the Q
matrix are shown in Table 7-3.

Table 7-3. Site-specific distribution of nucleotide frequencies derived from data in Table 7-2.
The second column lists the distribution of nucleotide frequencies outside the 28 random
motifs.
 Site
Nuc Q0 1 2 3 4 5 6
A 0.2680 0.2495 0.2495 0.2981 0.2251 0.3225 0.2495
C 0.2679 0.1499 0.2716 0.1986 0.3203 0.2229 0.1986
G 0.2238 0.2353 0.1623 0.2110 0.1623 0.1380 0.3083
T 0.2403 0.3410 0.2923 0.2679 0.2679 0.2923 0.2193

Readers who have forgotten PWM might benefit from reviewing Chapter

5 on PWM. Recall that PWM can be used to obtain a PWM score (PWMS)
for a motif of length m and the PWMS value measures our confidence in one
hypothesis (the motif shares the site dependence as those 28 “motifs”
contributing to the C matrix, designated as θYes) relative to its alternative
(θNo), given a motif.

With the Q0 vector and the Q matrix in Table 7-3, we can now scan S11
for a more likely motif. We compute a PWMS for each motif stating point.

140 Chapter 7

For example, for starting point at 1, we have the first 6-mer from S11 equal to
CATGCC. I provide you with computational details just in case you do not
feel like to review Chapter 5 on PWM:

,1 ,2 ,3 ,4 ,5 ,6

3

(|) 0.000072

(|) 0 0 0 0 0.000277

0.259787

Yes Yes C A U G C C

No No A C G T

Yes

No

L p S Q Q Q Q Q Q

L p S Q Q Q Q
LPWMS
L

θ

θ

= = =

= = =

= =

 (7.4)

In actual computation, we generally would have taken logarithms to
avoid possible computer overflow or underflow errors that often occur when
the motif is long.

S11 is 40 bases long, with 35 (= 40 – m + 1) possible motif starting points
(i.e., possible Ai values along the sequence). The 35 PWMS values for these
35 possible motifs (Table 7-4) are normalized to have a sum of 1 (PNorm in
Table 7-4). We now proceed to update the initial A11 (=11) by a new A11
value based on result in Table 7-4. How should we choose the new A11
value?

There are two strategies to choose the new A11 value. The first is to
randomly pickup an Ai value according to the magnitude of PNorm (Table 7-
4). You may visualize a dartboard with 35 slices with their respective areas
being proportional to PNorm values. When you throw a dart at the dartboard,
large slices will have a better chance of being hit than small slices. If the dart
happens to land on the 7th slice, then the initial A11 = 11 will be updated to
A11 = 7, with the original motif AGTGTG replaced by the new motif
CTCAAG.

The second strategy is simply to use the largest PNorm value for updating
initial A11 to the new A11 value. As the motif starting at site 25 has the
largest PNorm, we will set the new A11 equal to 25 and replace the initial motif
(=AGTGTG) by the new motif (=TCACAG). This strategy is faster than the
first, but seems to be just as sensitive in motif detection as the first. My own
limited computer simulation does not seem to indicate that the second
strategy is more likely to trap Gibbs sampler in a local optimum. It may
sound odd, but there has been no systematic studies evaluating the
effectiveness of these two strategies.

Regardless of how the new A11 is chosen, the updating is the same.
Suppose we have taken the second strategy and set the new A11 equal to 25.
The C matrix in Table 7-1 is then revised by replacing the original A11 motif
(=AGTGTG) by the new motif (=TCACAG). This leads to an updated C0
vector and C matrix (Table 7-5).

7. Gibbs Sampler 141

Table 7-4. Possible locations of the 6-mer motif along S11, together with the corresponding
motifs and their position weight matrix scores expressed as odds ratios. The last column lists
the odds ratios normalized to have a sum of 1.
Site 6-mer Odds Ratio PNorm
1 CATGCC 0.2598 0.0079
2 ATGCCC 0.7869 0.0240
3 TGCCCT 0.6925 0.0211
4 GCCCTC 0.8516 0.0259
5 CCCTCA 0.3630 0.0111
6 CCTCAA 0.8467 0.0258
7 CTCAAG 0.7025 0.0214
8 TCAAGT 0.7563 0.0230
9 CAAGTG 0.7043 0.0214
10 AAGTGT 0.5126 0.0156
11 AGTGTG 0.9155 0.0279
12 GTGTGC 0.6148 0.0187
13 TGTGCA 0.6449 0.0196
14 GTGCAG 2.3902 0.0728
15 TGCAGA 0.3678 0.0112
16 GCAGAT 0.9444 0.0287
17 CAGATT 0.4579 0.0139
18 AGATTG 1.4038 0.0427
19 GATTGG 1.0343 0.0315
20 ATTGGT 0.5155 0.0157
21 TTGGTC 1.0647 0.0324
22 TGGTCA 0.8382 0.0255
23 GGTCAC 0.9068 0.0276
24 GTCACA 0.6167 0.0188
25 TCACAG 3.1708 0.0965
26 CACAGC 0.1482 0.0045
27 ACAGCA 0.5895 0.0179
28 CAGCAT 0.6445 0.0196
29 AGCATT 0.4666 0.0142
30 GCATTT 1.4683 0.0447
31 CATTTC 0.5841 0.0178
32 ATTTCA 1.0906 0.0332
33 TTTCAA 2.5773 0.0784
34 TTCAAG 1.7817 0.0542
35 TCAAGG 1.1418 0.0348

Table 7-5. Site-specific distribution of nucleotides from the 29 initial motifs of length 6, after
replacing the initial A11 motif (=AGTGTG) by the new motif (=TCACAG).
 Site
Nuc C0 1 2 3 4 5 6
A 277 7 7 10 6 11 7
C 277 3 9 5 11 6 5
G 232 7 4 6 4 3 11
T 249 12 9 8 8 9 6

142 Chapter 7

We repeat this process for the rest of the sequences to update the rest of

Ai values. After the last sequence has been updated, we have obtained a new
set of Ai values, a new set of 29 motifs, together with the associated C matrix
and Q matrix based on the site-specific frequencies of these motifs. At this
point we compute a weighted alignment score (i.e., a weighted PWMS) as
follows:

,
1 1

ln
0

CodeN m
ij

i j
i j i

Q
F C

Q= =

= ∑ ∑ (7.5)

where m is the motif width, and NCode is the number of different symbols in
the sequences (4 for nucleotide and 20 for amino acid sequences). F is a
measure of the quality of alignment of the motifs. The larger the F value, the
better.

The predictive updating is repeated again and again. Each time when we
get a new set of Ai values, a new set of motifs and the associated Q0 vector
and Q matrix, we compute a new F value. If the new F value is greater than
the previously stored F value, then new F value, the new set Ai values, and
the new set of motifs will replace the previously stored ones. This continues
until we reach a local maximum of F or when the preset maximum number
of local loops has been reached. The resulting F value, the set of Ai values,
the new set of motifs and the associated PWM are stored as the locally
optimal output.

 This process is repeated from the very beginning, i.e., we again perform
the initialization by choosing a random set of Ai values, and go through the
local iteration to obtain another locally optimal output. If the new locally
optimal output is better than previously stored ones (i.e., the new F value is
larger than the previously stored one), the new output will replace the
previously stored output. This process is repeated multiple times until
convergence is reached, i.e., when new F values are the same as the
previously stored one. The final site-specific nucleotide distribution (Table
7-6) displays a much stronger pattern than the initial distribution (Table 7-1)
from 29 randomly chosen motifs.

Table 7-6. Final site-specific distribution of nucleotides from the 29 identified motifs. Output
from DAMBE (Xia, 2001; Xia and Xie, 2001b).
 Site
Nuc C0 1 2 3 4 5 6
A 275 3 0 22 0 9 16
C 285 11 0 0 0 19 1
G 252 0 7 7 0 0 1
T 223 15 22 0 29 1 11

7. Gibbs Sampler 143

The final aligned motifs (Figure 7-2) share in general a consensus of
(C/T)TATC(A/T). Its reverse complement (A/T)GATA(A/G) is known to be
the binding site of GATA-binding transcription factors (Aird et al., 1994;
Fong and Emerson, 1992; Moi et al., 1992; Nishimura et al., 2000; Orkin,
1992; Zon et al., 1991). This discovery of the motif suggests that this set of
sequences may indeed be co-regulated by the same type of GATA-binding
transcription factors. Such findings are crucial in transcriptomic and
proteomic studies aiming to understand gene regulation networks. Although
we are already in the so-called post-genomic era, we actually know little
about how genomes work. What we have is mostly a list of genes.
Algorithms such as Gibbs sampler help us understand interactions among
genes and gene products.

1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
2 CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG
3 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG
4 AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC
5 GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC
6 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA
7 GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA
8 CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT
9 TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC
10 GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC
11 CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG
12GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG
13 TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA
14 CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC
15 ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC
16 AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC
17 CCAGCACACACACTTATCCAGTGGTAAATACACATCAT
18 TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT
19 ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA
20 TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA
21 CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA
22 CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA
23 GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT
24 TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT
25 GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT
26 CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG
27 CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC
28 GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG
29 CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

Figure 7-2. Aligned motifs generated from Gibbs sampler. Output from DAMBE (Xia, 2001;
Xia and Xie, 2001b).

I consider it relevant to provide a summary of the GATA box and
GATA-binding transcription factors so that you can better appreciate the
application of Gibbs sampler in the proper biological context. A living cell is
a system with many genetic switches that can be turned on or off in response
to intracellular and extracellular environment. It is these switches that
distinguish a normal living cell from a cancer cell or a dead cell. The GATA

144 Chapter 7

motif (or GATA box) is one of such switches and it is switched on by
specific transcription factors (which are proteins that bind to the motif and
turn on or off the transcription of the gene containing such motifs). One of
the better known GATA-binding transcription factors is GATA-1 which
binds to the GATA motif found in cis-elements of the vast majority of
erythroid-expressed genes of all vertebrate species examine (Evans et al.,
1990; Orkin, 1990). The core promoter of the rat platelet factor 4 (PF4) gene
contains such a GATA motif and the binding of such GATA motif by
GATA-binding proteins such as GATA-1 suppresses the transcription of the
PF4 gene (Aird et al., 1994). It is now known that GATA regulatory motifs
and the GATA-binding transcription factors are present in a variety of
organisms ranging from cellular slime mold to vertebrates, including plants,
fungi, nematodes, insects, and echinoderms (Lowry and Atchley, 2000),
suggesting that the function of the genetic switch is far beyond
erythropoiesis. In human, the GATA motif and the GATA-binding proteins
are implicated in several diseases (Van Esch and Devriendt, 2001).

You may have noted that some sequences have a strong
(C/T)TATC(A/T) motif, whereas others (e.g., the second, the fourth and the
fifth sequences) have only weak and highly doubtful signals. Computer
programs implementing Gibbs sampler typically would output a quantitative
measure of the strength of the signal, and PWMS is the most often used
index for this purpose (Table 7-7). Recall that PWMS in Chapter 5 is the
log-odds, but here we use the odds ratio directly as a measure of motif
strength. Also recall that an odds ratio is the ratio of two probabilities
associated with two hypotheses. Define θYes as the hypothesis that the 6-mer
is a motif with its probability specified by the position weight matrix derived
form the site-specific nucleotide frequencies in Table 7-5, and θNo as the
hypothesis that the 6-mer is not a motif and has its probabilities specified
only by the four overall nucleotide frequencies. The odds ratio is the ratio of
the probability that θYes is true over the probability that θNo is true. One
generally should take a cutoff value of 20, i.e., θYes is 20 times more likely
than θNo. In other words, the chance that θYes is true is 95%.

From a statistical estimation point of view, the matrix in Table 7-5, or the
position weight matrix that can be derived from it, is in fact what we wish to
obtain. This matrix is the result of training the Gibbs sampler with the 29
sequences in the training set, and it allows us to go beyond the motifs in the
training sequences to scan any unknown sequences or an entire genome to
find similar motifs.

7. Gibbs Sampler 145

Table 7-7. Output of PWMS as a quantitative measure of the strength of the identified motifs.
Output from DAMBE (Xia, 2001; Xia and Xie, 2001b).
SeqName Motif Start Odds-ratio
Seq1 TTATCA 18 163.6602
Seq2 CGGTCA 22 14.5511
Seq3 CTATCA 14 101.8203
Seq4 AGATAA 17 9.1127
Seq5 TGATTA 16 12.9266
Seq6 CTATCT 18 90.7790
Seq7 TTATCA 20 163.6602
Seq8 TTATCA 2 163.6602
Seq9 CTATAA 17 58.1420
Seq10 CTATCT 14 90.7790
Seq11 TGGTCA 21 23.3886
Seq12 TTGTAA 33 38.9024
Seq13 TTATCT 20 145.9129
Seq14 TTATCT 2 145.9129
Seq15 TTATCA 10 163.6602
Seq16 CTATAA 3 58.1420
Seq17 TTATCC 13 34.3258
Seq18 AGATAT 20 8.1245
Seq19 TGATAA 16 32.0835
Seq20 AGATAA 24 9.1127
Seq21 CTGTAT 12 21.5783
Seq22 CTGTAT 0 21.5783
Seq23 CTATCT 23 90.7790
Seq24 TTGTCT 4 60.7395
Seq25 TTATCT 17 145.9129
Seq26 CTATCG 15 21.2368
Seq27 TTATCA 19 163.6602
Seq28 CTATCT 15 90.7790
Seq29 TTGTCA 2 68.1272
Mean 76.3120
Stdev 57.8163

I should emphasize the fact here that Gibbs sampler, being started from

random motif selection, may not necessarily converge to the same motif.
This is both an advantage and a disadvantage of the algorithm. The
advantage is that repeated running of the algorithm will allow us to identify
other types of hidden motifs (i.e., other than the reverse complement of the
GATA motif) in the sequences. The disadvantage is that users not familiar
with the algorithm often get confused when the same input generates quite
different results. For example, another set of putative motifs is partially
shown in Figure 7-3.

146 Chapter 7

4 AAAACACTTGAGGGAGCAGATA...
12 GATTGGTCACAGCATTTCAAGGGAGAGA...
13 TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCT...
14 CCTTATCTGTGGGGGAGGCT...
15 ATTATTTTCCTTATCAGAAGCAGAGA...
20 TGGCCGCAGGAAGGTGGGCCTGGAAGATA...
21 CAACCACAACCTCTGTATCCGGTAGTGGCAGATG...
22 CTGTATCCGGTAGTGGCAGATG...
26 CAACAGCAGGTC...
28 GGGAGGGT...

Figure 7-3. An alternative motif that may be returned from running the Gibbs sampler on the
same set of input sequences. The left column lists the sequence numbers.

3. MOTIF SAMPLER

The Gibbs sampler has two versions. The one that we have just illustrated
is called site sampler. It assumes that each sequence contains exactly one
motif (Lawrence et al., 1993). The other version is more flexible and allows
each sequence to have none or multiple motifs (Neuwald et al., 1995) and
the algorithm is termed motif sampler. The GATA-binding transcription
factors comprise a protein family whose members contain either one or two
highly conserved zinc finger DNA-binding domains (Lowry and Atchley,
2000) and it is consequently likely that a sequence may contain more than
one GATA box. For example, the erythroid Kruppel-like factor (EKLF,
which is a zinc finger transcription factor required for β-globin gene
expression) has in its 5'-region two GATA motifs flanking an E box motif
characterized by CANNTG (Anderson et al., 1998). This calls for an
algorithm that can identify multiple motifs in a single sequence.

The site sampler can be extended to motif sampler by post-processing.
The C matrix and C0 vector in Table 7-5 can be made into a position weight
matrix to re-scan the sequences for motifs and compute the associated
PWMS or odds ratio for all 6-mers in each sequence. All what we need is to
have a cutoff score to keep those motifs with a PWMS or odds ratio greater
than the cutoff score. An odds ratio of 20 is a reasonable cutoff score. Table
7-7 shows the output of motif sampler with a cutoff score of 10.

7. Gibbs Sampler 147

Table 7-8. Motif sampler output from DAMBE (Xia, 2001; Xia and Xie, 2001b). N: number
of motifs in the sequence; columns under headings 1, 2 and 3 lists details of the identified
motif in the format of “Start(Motif, Odds ratio)”
SeqName N 1 2 3
Seq1 2 10(TTATAA,93.4541) 18(TTATCA,163.6602)
Seq2 1 22(CGGTCA,14.5511)
Seq3 1 14(CTATCA,101.8203)
Seq4 0
Seq5 1 16(TGATTA,12.9266)
Seq6 1 18(CTATCT,90.7790)
Seq7 1 20(TTATCA,163.6602)
Seq8 2 2(TTATCA,163.6602) 24(CCATCA,10.2098)
Seq9 1 17(CTATAA,58.1420)
Seq10 3 14(CTATCT,90.7790) 28(ATATCT,41.4438) 32(CTGTCT,37.7888)
Seq11 1 21(TGGTCA,23.3886)
Seq12 2 3(TGGTCA,23.3886) 33(TTGTAA,38.9024)
Seq13 1 20(TTATCT,145.9129)
Seq14 1 2(TTATCT,145.9129)
Seq15 3 1(TTATTT,33.5700) 10(TTATCA,163.6602) 36(TTCTCT,17.7407)
Seq16 1 3(CTATAA,58.1420)
Seq17 2 13(TTATCC,34.3258) 21(TGGTAA,13.3555)
Seq18 0
Seq19 1 16(TGATAA,32.0835)
Seq20 0
Seq21 1 12(CTGTAT,21.5783)
Seq22 1 0(CTGTAT,21.5783)
Seq23 1 23(CTATCT,90.7790)
Seq24 2 4(TTGTCT,60.7395) 26(CTATCC,21.3556)
Seq25 1 17(TTATCT,145.9129)
Seq26 1 15(CTATCG,21.2368)
Seq27 3 19(TTATCA,163.6602) 25(CTTTCT,13.3635) 32(TTATCA,163.6602)
Seq28 1 15(CTATCT,90.7790)
Seq29 2 2(UUGUCA,68.1272) 15(TGATAA,32.0835)

Chapter 8

BIOINFORMATICS AND VERTEBRATE
MITOCHONDRIA
A glimse into the three essential biological processes

1. INTRODUCTION

This chapter has two main purposes. First, I believe that we again need to
add some variation to the monotonous presentation of computational
algorithms. The relationship between bioinformatics and the cell is
analogous to that between hair and skin. Without the cell serving as the skin
the hair of bioinformatics would have no place to grow. So here we take a
close look at the skin, in the same spirit as in chapter 4. If you happen to be
the colleague who told me that Chapter 4 was a tumor on an otherwise
beautiful nymph, I am afraid that another tumor is coming your way.

The second purpose of the chapter is to demonstrate the utility of a well
annotated genome. We have learned much about how to assemble a genome
and how to use gene and motif finding methods to annotate the genome. It is
natural for one to ask why we should spend so much effort to obtain an
annotated genome. This chapter provides a partial answer, i.e., well
annotated genomes can be used to test biologically far more interesting
hypotheses than those we encountered in Chapter 4, where our analysis is
limited to genomic GC% without taking advantage of sequence annotation.

I have mentioned before that all living systems share three essential
biological processes: genome replication, transcription and translation. How
cells function depends on how these three processes are regulated. In this
chapter we take a quick look at these three processes, not in the context of a
living cell, but in a much simpler system, the vertebrate mitochondrion.

8. Bioinformatics and vertebrate mitochondria 149

1.1 Mitochondria and mitochondrial genomes

Since the proposal of the endosymbiotic origin of eukaryotic
mitochondria (Margulis, 1970), it has now been generally accepted that
mitochondria of eukaryotes evolved from aerobic bacteria living within their
host cell, with the most likely ancestor being a member in the Rickettsia
lineage. There are three lines of evidence supporting this endosymbiotic
hypothesis. First, genomic analysis of the eukaryotic intracellular parasite,
Rickettsia prowazekii, has reveal that the functional profiles of R. prowazekii
genes are similar to those of mitochondrial genes and phylogenetic
reconstruction indicates that R. prowazekii is more closely related to
mitochondria than is any other microbe studied (Andersson et al., 1998).
Second, genomes from various Rickettsia species have exhibited various
degrees of degradation and reduction (Andersson and Andersson, 1999),
suggesting that mitochondria represent extremely reduced forms from
certain ancestral Rickettsia lineage. Third, mitochondrial genomes from
primitive protozoans such as Reclinomonas americana containing genes
specifying a multi-subunit eubacterial-type RNA polymerase.

There are several eukaryotic lineages that do not have mitocondria.
Among these amitochondriate lineages, the retortamonads is most likely to
represent the ancestral amitochondriate state (Lang et al., 1997), whereas
others such as Encephalitozoon cuniculi may result from a secondary loss of
the organelle (Katinka et al., 2001). Thus, the mitochondrial eukaryotic
lineage that is the closest relative of the retortamonads likely represents the
oldest lineage where ancestral mitochondria originated.

The closest relative to the amitochondriate retortamonads is the Jakobid
assemblage represented by Reclinomonas americana, a heterotrophic
flagellate, with a mitochondrial genome much larger and more complicated
than the one found in vertebrate mitochondrion (Lang et al., 1997). The R.
americana mtDNA is of 69034 bases long, contains 97 genes with 4 genes
specifying a multi-subunit eubacterial-type RNA polymerase. In contrast,
vertebrate mitochondrial genomes are about 16500 bases long, and contain
only 13 protein-coding genes, 2 rRNA genes, and about 22 tRNA genes.

It is quite obvious that genomes evolve over time and can experience
dramatic changes. From an evolutionary point of view, there are only two
major sculptors of nature, mutation and selection. Of course there are other
factors contributing to evolutionary changes but we will limit ourselves to
only mutation and selection. Anyone who, in their young days, has ever
involved in a love triangle would know how complex and unmanageable our
life could become when we go from two to three.

Here we will learn a few important observations on vertebrate
mitochondrial replication and illustrate how these two factors interact with

150 Chapter 8

the three essential biological processes, i.e., DNA replication, transcription
and translation. What is particularly relevant to bioinformaticians is that such
interactions will generate signals that can be detected, characterized and
studied.

1.2 DNA-Replication and Strand-biased mutation
spectrum

Vertebrate mitochondrial genome has two strands of different buoyant
densities and consequently named the H-strand and the L-strand. The H-
strand is the sense strand for one protein-coding gene (ND6) and 8 tRNA
genes and the L-strand is the sense strand for 12 protein-coding genes, 2
rRNA genes and 14 tRNA genes. The two strands have different nucleotide
frequencies, with the H-strand rich in G and T and the L-strand rich in A and
C (Jermiin et al., 1995; Perna and Kocher, 1995). This asymmetrical
distribution of nucleotides has been explained as follows (Reyes et al., 1998;
Tanaka and Ozawa, 1994) based on the strand-displacement model of
mitochondrial DNA (mtDNA) replication (Bogenhagen and Clayton, 2003;
Clayton, 1982, 2000; Shadel and Clayton, 1997).

During mtDNA replication (Figure 8-1), the L-strand is first used as a
template to replicate the daughter H-strand, while the parental H-strand was
left single-stranded for an extended period because the complete replication
of vertebrate mtDNA takes nearly two hours (Clayton, 1982, 2000; Shadel
and Clayton, 1997).

Parental H

Parental L

Daughter H

OH

OL
Daughter L

Figure 8-1. The parental H-strand is left single-stranded for an extended period of time during
mtDNA duplication

8. Bioinformatics and vertebrate mitochondria 151

Mitochondrial DNA is prone to damage from free oxygen radicals that
occur during the production of ATP through the electron transport chain.
Spontaneous deamination (Figure 8-2) of both A and C (Lindahl, 1993;
Sancar and Sancar, 1988) occurs frequently in human mitochondrial DNA
(Tanaka and Ozawa, 1994). Deamination of A leads to hypoxanthine that
forms stronger base pair with C than with T, generating an A/T→G/C
mutation. Deamination of C leads to U, generating C/G→U/A mutations.

N

NN
H

N

NH2

NH

NN
H

N

O

NH2

N

N
H

NH2

O

NH

NN
H

N

O

H

NH

NN
H

N

O

O

N

N
H

O

O

Adenine Guanine Cytosine Methylcytosine

Hypoxanthine Xanthine Uracil Thymine
(Pair with C) (Pair with C) (Pair with A) (Pair with A)

N

N
H

NH2

O

CH3

N

N
H

O

O

CH3
H

2 O

N
H

3

H
2 O

N
H

3

H
2 O

N
H

3

H
2 O

N
H

3

Figure 8-2. Spontaneous deamination of nucleotides.

Among these two types of spontaneous deamination, the C→U mutation
occurs more frequently than the A→G mutation (Lindahl, 1993). In
particular, the C→U mutation mediated by the spontaneous deamination
occurs in single-stranded DNA more than 100 times as frequently as double-
stranded DNA (Frederico et al., 1990). This implies that nucleotide C on the
H strand, which is left single-straded for hours, is prone to mutation to U.
Note that these C→U mutants will immediately be used as a template to
replicate the daughter L-strand, leading to a G→A mutation in the L-strand
after one round of DNA duplication. Therefore, the H-strand, left single-
stranded for an extended period during DNA replication, tend to accumulate
A→G and C→U mutations and become rich in G and T while the L-strand
will become rich in A and C.

Table 8-1 lists nucleotide frequency distributions among human
mitochondrial genomes. Two contrasts can be made, the first between the 14
tRNA genes collinear with the L-strand and the eight tRNA genes collinear

152 Chapter 8

with the H-strand, and the second between the 12 protein-coding genes
collinear with the L-strand and the ND6 gene collinear with the H-strand.
Those genes, be it tRNA-coding or protein-coding, collinear with the L-
strand are significantly more AC-rich than those collinear with the H-strand
(Table 8-1). The two rRNA genes are collinear with the L-strand and their
AC-richness is similar to tRNA genes collinear with the L-strand. This
pattern is similar for all vertebrate mitochondrial genomes.

Table 8-1. Nucleotide frequency distribution among human mitochondrial genes. tRNAL and
tRNAH are concatenated tRNA genes collinear with L-strand and H-strand, respectively.
ND6 are collinear with the H-strand.
SeqName L PA PC PG PT
(RNA genes)
ssu-rRNA 954 0.3281 0.2652 0.1918 0.2149
lsu-rRNA 1558 0.3504 0.2561 0.1739 0.2195
tRNAL(1) 1025 0.3571 0.1990 0.1522 0.2917
tRNAH(2) 552 0.2409 0.1431 0.2862 0.3297
(Protein-coding genes)
ND1 957 0.2853 0.3595 0.117 0.2382
ND2 1044 0.3123 0.3343 0.0967 0.2567
COX1 1542 0.2717 0.2996 0.1621 0.2665
COX2 684 0.2865 0.3129 0.1491 0.2515
ATP8 207 0.3865 0.3333 0.0628 0.2174
ATP6 681 0.2996 0.3377 0.1072 0.2555
COX3 781 0.2676 0.3188 0.1498 0.2638
ND3 346 0.2919 0.2948 0.1098 0.3035
ND4L 297 0.2828 0.3098 0.1212 0.2862
ND4 1378 0.3019 0.3454 0.0994 0.2533
ND5 1812 0.3035 0.3427 0.1065 0.2472
CYTB 1135 0.2881 0.3419 0.1172 0.2529
ND6 525 0.1943 0.0724 0.3581 0.3752
(1) pooled tRNA genes collinear with the L-strand (n = 14).
(2) pooled tRNA genes collinear with the H-strand (n = 8).

1.3 The effect of strand-biased mutation on codon usage

When transitional mutations (i.e., C↔U and G↔A) happen at the first or
the second codon positions, they are mostly nonsynonymous. Such
nonsynonymous mutations are typically purged off by purifying selection.
However, if such mutations happen at the third codon position, then they are
synonymous and tend to escape purifying selection and accumulate under
the biased mutation pressure. Given the AC-biased mutation on the L-strand
and GT-biased mutation on the H-strand, we may make the following
predictions:

8. Bioinformatics and vertebrate mitochondria 153

(1) Most codons in the 12 CDS sequences (that are collinear with the L-
strand) end with A or C. Specifically, we should expect NNY codon families
to be dominated by C-ending codons, NNR codon families dominated by A-
ending codons, and NNN codons dominated by A-ending and C-ending
codons.

(2) The codon bias in the ND6 gene on the opposite strand should be the
opposite, and

(3) The 8 tRNA sequences collinear with the H-strand should be richer in
G and T than the 14 tRNA sequences collinear with the L-strand.

These expectations have been confirmed by research on both eubacterial
genomes (Lobry, 1996; Lobry and Sueoka, 2002; McInerney, 1998) and
vertebrate mitochondrial genomes (Xia, 2005c). While many vertebrate
mitochondrial DNAs (mtDNAs) are available, I will present data from only
two teleost fish, Erpetoichthys calabaricus (GenBank accession:
NC_005251) and Masturus lanceolatus (NC_005837) and two mammalian
species, Mus musculus (NC_005089) and Bos taurus (NC_001567). There is
no particular reason for choosing these species except for an effort to capture
the rather limited diversity of vertebrate mitochondrial genomes.

The codon usage of the 12 CDS sequences collinear with the L-strand is
consistent from this mutation bias, with the third codon position of the most
frequent codon in each synonymous codon family (refereed to simply as
codon family hereafter) being either A or C. In particular, NNY codon
families are dominated by the C-ending codons, and NNR and NNN codon
families are dominated by the A-ending codons (Table 8-2). While I present
only data from the cow mtDNA, other vertebrate mtDNAs exhibit similar
patterns. The remarkable consistency in this pattern from teleost fish to
mammals demonstrates the power of the AC-biased mutation on the L-
strand.

The observation that NNN codon families are dominated by NNA
codons, instead by both NNA and NNC codons, might have adaptive
significance (Xia, 1996) based on the observation that cellular concentration
of ATP is much higher than that of the other three rNTPs (Colby and Edlin,
1970). For example, in the exponentially proliferating chick embryo
fibroblasts in culture, the concentration of ATP, CTP, GTP and UTP, in the
unit of (moles ×10-12 per 106 cells), is 1890, 53, 190, and 130, respectively,
in 2-hour culture, and 2390, 73, 220, and 180, respectively, in 12-hour
culture. The transcription hypothesis of codon usage (Xia, 1996) states that,
with the high availability of A and relatively low availability of the other
three rNTPs, the transcription efficiency can be increased by maximizing the
use of A in the third codon position of protein-coding genes. However, I now
believe that an alternative hypothesis, invoking differential mutations
mediated by different nucleotide pools (Bebenek et al., 1992 and references

154 Chapter 8

cited therein), may be a better explanation for the slightly more frequent A-
ending codons than C-ending codons. Not only do the four ribonucleotides
differ greatly in concentration, but the deoxyribonucleotides also differ
greatly in concentration, with dATP being the most abundant in
mitochondria. The abundance of dATP is expected to increase A-biased
mutation rate during DNA replication. This would explain why NNA codons
tend to be more frequent than NNC codons.

Table 8-2. Codon usage in the cow mtDNA. Two-fold C- or U-ending codons (top) are
dominated by C-ending codons. Two-fold A- or G-ending codons (middle) are dominated by
A-ending codons. Four-fold degenerate codons (bottom) are dominated by A-ending codons,
followed by C-ending codons. Other vertebrate mitochondrial genomes exhibit similar
patterns.
Codon AA Freq RSCU Codon AA Freq RSCU
UGC C 16 1.524 AUC I 160 1.029
UGU C 5 0.476 AUU I 151 0.971
GAC D 46 1.438 AAC N 102 1.291
GAU D 18 0.563 AAU N 56 0.709
UUC F 130 1.156 AGC S 42 0.955
UUU F 95 0.844 AGU S 9 0.205
CAC H 63 1.355 UAC Y 72 1.125
CAU H 30 0.645 UAU Y 56 0.875
AGA * 1 0.444 UUA L 100 1.038
AGG * 0 0 UUG L 10 0.104
UAA * 7 3.111 AUA M 214 1.705
UAG * 1 0.444 AUG M 37 0.295
GAA E 73 1.698 CAA Q 79 1.837
GAG E 13 0.302 CAG Q 7 0.163
AAA K 88 1.814 UGA W 91 1.82
AAG K 9 0.186 UGG W 9 0.18
GCA A 102 1.693 CGA R 42 2.71
GCC A 90 1.494 CGC R 11 0.71
GCG A 1 0.017 CGG R 3 0.194
GCU A 48 0.797 CGU R 6 0.387
GGA G 93 1.927 UCA S 98 2.227
GGC G 60 1.244 UCC S 64 1.455
GGG G 19 0.394 UCG S 4 0.091
GGU G 21 0.435 UCU S 47 1.068
CUA L 283 2.938 ACA T 150 2
CUC L 95 0.986 ACC T 95 1.267
CUG L 29 0.301 ACG T 14 0.187
CUU L 61 0.633 ACU T 41 0.547
CCA P 85 1.789 GUA V 82 1.964
CCC P 63 1.326 GUC V 46 1.102
CCG P 3 0.063 GUG V 9 0.216
CCU P 39 0.821 GUU V 30 0.719

8. Bioinformatics and vertebrate mitochondria 155

In contrast to the L-strand with mutations favoring A and C, the H-strand
is expected to accumulate mutations in the opposite direction, i.e., favoring
G and T. Consequently, we should predict that the third codon position of
the ND6 gene, which is the only one of the 13 protein-coding sequences
collinear with the H-strand in vertebrate mtDNA, should be dominated by
either G or U. This prediction is also borne out by the empirical evidence
(Table 8-3). In particular, NNY codon families are dominated by the U-
ending codons, and NNR and NNN codon families are dominated by the G-
ending codons.

Table 8-3. Codon frequencies for the two teleost species combined (Teleost) and the two
mammalian species combined (Mammal) for the ND6 gene collinear with the H-strand in the
mitochondrial genome. The most frequently used codons are bolded for large N.

Codon AA Teleost Mammal Codon AA Teleost
Mamm
al

AGA * 1 0 AUA M 12 8
AGG * 0 0 AUG M 10 14
UAA * 0 2 AAC N 1 1
UAG * 1 0 AAU N 3 8
GCA A 9 3 CCA P 2 1
GCC A 2 1 CCC P 2 0
GCG A 5 3 CCG P 2 0
GCU A 16 8 CCU P 3 5
UGC C 0 0 CAA Q 0 0
UGU C 4 5 CAG Q 1 1
GAC D 1 0 CGA R 1 1
GAU D 3 10 CGC R 0 0
GAA E 2 8 CGG R 6 0
GAG E 10 9 CGU R 3 1
UUC F 4 3 AGC S 1 1
UUU F 19 23 AGU S 4 6
GGA G 9 12 UCA S 2 3
GGC G 3 2 UCC S 0 1
GGG G 18 21 UCG S 2 2
GGU G 14 17 UCU S 16 6
CAC H 1 0 ACA T 0 3
CAU H 0 0 ACC T 0 1
AUC I 0 1 ACG T 3 2
AUU I 12 27 ACU T 4 8
AAA K 0 2 GUA V 6 10
AAG K 0 3 GUC V 2 2
CUA L 4 2 GUG V 17 9
CUC L 0 0 GUU V 24 22
CUG L 4 0 UGA W 4 4
CUU L 8 4 UGG W 4 5
UUA L 26 25 UAC Y 4 2
UUG L 14 14 UAU Y 13 17

156 Chapter 8

The third codon position pairs with the first position (the wobble site) of

the tRNA anticodon. Given what we know of the strand-biased mutation and
the biased codon usage, can we predict what nucleotide should occupy the
tRNA wobble site? There are three alternative hypotheses proposed (Xia,
2005c), one termed mutation hypothesis, the second codon-anticodon
adaptation hypothesis and the third the wobble-versatility hypothesis.

2. THREE HYPOTHESES ON TRNA ANTICODON

It might help to gain a bit familiarity with the generic structure of the
tRNA anticodon loop in order to better appreciate the three alternative
hypotheses that will be detailed below. The anticodon in almost all tRNA
sequences from all species share the regular feature of being flanked by two
nucleotides on either side to form a loop that is held together by a stem
(Figure 8-3). For example, the anticodon loop (AC loop) of tRNAAla in M.
musculus is 24AUUGAUUUGCAUUCAAU40 where the starting and
ending numbers indicate the position of the AC loop in the tRNA sequence
(numbered from 1), with the anticodon (5’-UGC-3’) flanked by two
nucleotides on either side (bolded) to form a loop that is held together by a
stem made of the first and the last four nucleotides. Such a regular AC loop
and its anticodon can be easily identified by dynamic programming.

Figure 8-3. The stem-loop structure of the anticodon loop of tRNAGly. The anticodon 3’-
AGG-5’ is often written as GGA.

A few tRNA sequences have an anticodon flanked by three nucleotides,
e.g., tRNAVal in Erpetoichthys calabaricus and tRNASer1 in the blue whale,
Balaenoptera musculus. Some tRNA sequences have a suspicious AC loop.
For example, the AC loop of tRNATrp is 26GAGCCUUCAAAGCCC42 with

 UCC
3’-AGG-5’

A
A

5’ 3’
A-U
G-C
C-G
U-A
G-C

C
U Anticodon

Codon (Gly)

8. Bioinformatics and vertebrate mitochondria 157

a stem that has a mismatch. For such tRNA sequences with an irregular AC
loop, one may identify AC loop by aligning the tRNA sequences against
other isoaccepting tRNA sequences with a regular AC loop.

The two groups of Leu codons (CUN and UUR) are generally treated as
two separate synonymous codon families because they have different
tRNAs. The same applies to the two groups of Ser codons (AGY and UCN).

2.1 The mutation hypothesis

The strand-specific mutation bias is visible in RNA sequences (Table 8-
1), with the 8 tRNA sequences (pooled) collinear with the H-strand being
particularly rich in T and the two rRNA genes and the 14 tRNA sequences
(pooled) collinear with the L-strand being particularly rich in A. This pattern
is consistent from the teleost fish to mammalian species.

Given the strand-specific mutation bias in vertebrate mitochondrial
genomes, what can we predict about the anticodon evolution of the tRNA
sequences? In vertebrate mitochondrial genome, each tRNA anticodon
essentially has to wobble in order to translate two or four synonymous
codons. This suggests that the wobble position may not be strongly
constrained and may be shaped by the strand-specific mutation bias. If the
strand-specific mutation pressure is the dominant force in shaping anticodon
evolution, then the 14 tRNA sequences collinear with the L-strand may have
their wobble positions occupied by A, and the 8 tRNA sequences collinear
with the H-strand may have their wobble positions occupied by U. This is
the mutation hypothesis in a nutshell.

2.2 The codon-anticodon adaptation hypothesis

In contrast to the mutation hypothesis, the codon-anticodon adaptation is
a selectionist hypothesis. Since the discovery of the correlation between
codon usage and tRNA abundance in Escherichia coli (Gouy and Gautier,
1982; Ikemura, 1981) and Saccharomyces cerevisiae (Bennetzen and Hall,
1982), much progress has been made in understanding codon usage and
codon-anticodon adaptation (Bulmer, 1987, 1991) in the context of
maximizing transcription and translation rates (Akashi, 2003; Eyre-Walker,
1996; Xia, 1996, 1998b). In short, suppose two synonymous codons i and j,
with codon i having many cognate tRNA to translate it and codon j having
few or no cognate tRNA to translate it. In order to maximize translation
efficiency in highly expressed protein-coding genes, we predict that natural
selection should favor the use of codon i against codon j in highly expressed
genes, leading to a strong association between frequently used codons and

158 Chapter 8

the abundance of their cognate tRNA. This prediction has been empirically
substantiated numerous number of times.

Almost all publications consider mutation as disruptive to the evolution
and maintenance of codon usage bias and the associated codon-anticodon
adaptation (Akashi, 1995, 1997; Berg, 1996; Berg and Martelius, 1995; Xia,
1996). In other words, while selection is supposed to be the main force
driving and maintaining the evolution of synonymous codons towards
maximizing the codon that matches the anticodon of the most abundant
tRNA, mutation is thought to reduce codon usage bias and disrupt codon-
anticodon adaptation and is invoked whenever one fails to see strong codon
usage bias or codon-anticodon adaptation. The relative abundance of
different tRNA species is often, albeit implicitly, taken as prefixed, and this
tRNA bias then drives codon usage bias. In spite of studies on the effect of
mutation spectrum on GC content and amino acid usage (Lobry, 2004;
Sueoka, 1961), there has been no empirical documentation of mutation
pressure that maintains codon usage bias, and neither is there any report
demonstrating that codon usage bias drives tRNA bias.

Given the codon usage bias in 12 of the 13 CDS sequences maintained by
the strand-specific mutation pressure, it is easy to see from Table 8-2 that the
overall codon usage bias at the genomic level is (1) C-ending codons most
frequent in NNY codon families and (2) A-ending codons most frequent in
NNR and NNN codon families. Such a codon usage may drive the wobble
sites of the anticodon towards G for tRNA translating NNY codons or U for
tRNA translating NNR or NNN codons, regardless of which strand the
tRNA gene is on. Such anticodon evolution would increase the translation
efficiency for the 12 protein-coding genes collinear with the L-strand but
reduce the translation efficiency for the lone ND6 gene collinear with the H-
strand. If the selection for translation efficiency is strong, then the 12
protein-coding genes would “out-vote” the lone ND6 gene.

2.3 The wobble versatility hypothesis

The wobble versatility hypothesis has been implicitly proposed before
(e.g., Agris, 2004; Tong and Wong, 2004). Given that each synonymous
codon family is translated by a single tRNA species in vertebrate
mitochondria, the versatility of this single tRNA in translating two or four
synonymous codons are important for the translation machinery. According
to the conventional base-pairing rule first proposed for fungal mitochondria
(Heckman et al., 1980; Martin et al., 1990), two-fold degenerate codons
ending with C or U are translated by tRNA with a wobble G at its anticodon
wobble site because G can pair not only with C, but also with U (Figure 8-
4), two-fold degenerate codons ending with A or G are translated by tRNA

8. Bioinformatics and vertebrate mitochondria 159

with a wobble U at its anticodon wobble site because U can pair with both A
and G, and four-fold degenerate codons are translated by tRNA with a
wobble U at its anticodon wobble site. The versatility of U at the anticodon
wobble site in pairing with other nucleotides has subsequently been
substantiated in a number of species (Andachi et al., 1989; Barrell et al.,
1980; Inagaki et al., 1995; Sibler et al., 1986; Yokobori et al., 2001;
Yokoyama and Nishimura, 1995).

N

N

N
H

N
NH

2

N

N
H

O

O

CH 3

NH

N

N
H

N O

NH
2

N

N
H

NH2

O

NH

N

N
H

N O

NH
2

N

N
H

O

O

A/T pair

G/C pair

G/U pair

Figure 8-4. Canonical base-paring between nucleotides. The energy taken to break a G/U pair
is roughly half of an A/T pair.

According to the wobble versatility hypothesis, the use of U and G at the

wobble site of the tRNA anticodon can be predicted with no reference to
codon usage, although codon-anticodon adaptation can then evolve as
secondary adaptation given that wobble U and G are strictly maintained by
selection for maximizing wobble versatility.

In summary, the mutation hypothesis predicts that the wobble site should
most likely be A for tRNA genes collinear with the L-strand and T for tRNA
collinear with the H-strand. The codon-anticodon adaptation hypothesis
predicts that the wobble site should be G for NNY codon families to match
the most abundant C-ending codon, and U for NNR and NNN codon
families to match the most abundant A-ending codon. The wobble versatility
hypothesis happens to have exactly the same prediction as the codon-
anticodon adaptation hypothesis. It predicts that the wobble site should be G
for NNY codon families because G can pair with both C and U, U for NNR
codon families because U can pair with both A and G, and U for NNN
families because U is the most versatile in wobbling. When two different
hypotheses generate the same predictions, it becomes difficult to evaluate
their respective validity. We will first evaluate the mutation hypothesis

160 Chapter 8

against the two selectionist hypotheses, and then make an attempt to evaluate
the two selectionist hypotheses.

3. EMPIRICAL EVALUATION OF THE THREE
ALTERNATIVE HYPOTHESES

3.1 Evaluation of the mutation hypothesis against the
two selectionist hypotheses

Because the three hypotheses have explicit predictions of the wobble
nucleotide in tRNA anticodons, a direct evaluation of the hypotheses is to
compile the nucleotide at the tRNA anticodon wobble site to see which
hypotheses provide the correct prediction. Empirical data (Table 8-4)
strongly support the two selectionist hypotheses.

Table 8-4. Anticodon (AC) of the 22 tRNA genes from the four species and their associated
synonymous codon families (SCF). “C” stands for “complementary strand”, i.e., not on the
same strand as the 12 protein-coding genes. Note that the first nucleotide of the anticodon
(AC) is the wobble site.
tRNA Strand SCF AC
Ala C GCN UGC
Arg CGN UCG
Gly GGN UCC
Leu CUN UAG
Pro C CCN UGG
Ser C UCN UGA
Thr CAN UGU(1)
Val GUN UAC
Ser AGY GCU
His CAY GUG
Ile AUY GAU
Asn C AAY GUU
Asp GAY GUC
Cys C UGY GCA
Phe UUY GAA
Tyr C UAY GUA
Gln C CAR UUG
Glu C GAR UUC
Leu UUR UAA
Lys AAR UUU
Met AUR CAU
Trp UGR UCA
(1) GGU in Mus musculus, which might be due to sequencing error because the anticodon
loop is irregular.

8. Bioinformatics and vertebrate mitochondria 161

There are two points worth highlighting in Table 8-4. First, for each
tRNA, the anticodon is the same in all vertebrates from teleost fish to
mammals. This implies that the selection at the wobble site must be very
strong. Second, the wobble site is always G for tRNAs recognizing NNY
codon families, and always U for tRNAs recognizing NNR and NNN codon
families (with only one exception, involving tRNAMet, which leads to
another very interesting story told later). This is consistent regardless of
which strand the tRNA sequence is on.

While the prediction of the selectionist hypotheses are consistent with the
result, the prediction of the mutation hypothesis, that the wobble site should
depend on which strand the tRNA gene is located, is clearly not supported
(Table 8-4). Thus the mutation hypothesis can be readily rejected.

3.2 Evaluating the two selectionist hypotheses

The vertebrate mitochondrial data are unable to distinguish between the
wobble versatility hypothesis and the codon-anticodon adaptation hypothesis
that I have mentioned before because both hypotheses have exactly the same
predictions for the anticodon wobble site. This illustrates a case in which the
same observation can have two different interpretations both being entirely
consistent with the observation. We see this often in real life. A man running
after another may be interpreted as one in full pursuit of the other or as both
trying to catch a departing train. We need more information to discriminate
between these two interpretations. What information do we need to
discriminate between the codon-anticodon adaptation hypothesis and the
wobble versatility hypothesis?

The codon usage of the four-fold degenerate arginine codons (CGN) in
the mitochondrial genome of four species: Caenorhabditis elegans
(nematode), Marchantia polymorpha (plant), Pichia canadensis (fungi), and
Saccharomyces cerevisiae (fungi) sheds light on resolving these two
hypotheses (Table 8-5). In these four mitochondrial genomes, the four
synonymous CGN codons, with CGU being the most dominant (Table 8-5),
are translated by a single tRNA just as in vertebrate mitochondria. The
wobble versatility hypothesis would have predicted a “versatile” U in the
tRNA anticodon wobble site for these four-fold degenerate codons.
However, this is not true because the wobble anticodon site is A instead of U
in all four mitochondrial genomes. On the other hand, given that the CGU
codon is the most dominant of the four synonymous arginine codons in all
four mitochondrial genomes, the hypothesis of anticodon adaptation would
predict an A at the anticodon wobble site, which is true for all four species.

162 Chapter 8

Table 8-5. Codon usage of the four-fold degenerate arginine codons in four species.
Species Accession CGA CGC CGG CGU
C. elegans NC_001328 1 0 1 29
M. polymorpha NC_001660 260 165 118 286
P. canadensis NC_001762 0 1 0 19
S. cerevisiae NC_001224 0 2 1 18

It is important to highlight the fact that none of the species in Table 8-5 is

a vertebrate. Even if my interpretation of the result in Table 8-5 is correct, it
is not necessarily generalizable to vertebrates. Furthermore, the limited result
does not conclusively reject the wobble versatility hypothesis.

Scientists have a tendency to hold on to their own petty hypothesis and to
discredit the hypothesis of others. However, it often happens that, when
people of the two different camps learn to appreciate each other, the two
seemingly incompatible hypotheses suddenly begin to merge into a single
hypothesis. The codon-anticodon adaptation hypothesis and the wobble
versatility hypothesis serve as a good example of two different hypotheses
integrating into each other to form a more general hypothesis outlined in the
next section.

4. INTEGRATING THE CODON-ANTICODON
ADAPTATION HYPOTHESIS (CAAH) AND THE
WOBBLE VERSATILITY HYPOTHESIS (WVH)

Here we develop a general hypothesis of codon-anticodon adaptation.
Let’s be more explicit on the cost of wobble translation. Define

CU-G: cost of wobble pairing between U and G,
CO: cost of wobble pairing other than the two above,

Let’s also define the cost of perfect Watson-Crick paring as 0. Given that

U is more versatile at wobbling than other nucleotides, we expect CO > CU-G
> 0. The general hypothesis assumes that natural selection will drive the
codon-anticodon coevolution in such a way as to minimize the total wobble
cost (designated Cw) in translating a protein molecule. Below we derive
predictions from the general hypothesis (refereed to as GH hereafter) and
compare them with those from the codon-anticodon adaptation hypothesis
(referred to as CAAH hereafter) and the wobble versatility hypothesis
(referred to as WVH hereafter).

8. Bioinformatics and vertebrate mitochondria 163

4.1 Four-fold NNN codons

Consider first a single four-fold codon family. Designate the number of
codons ending with A, C, G, and U as NA, NC, NG, and NU, respectively. The
wobble costs involving an A, C, G or U at the wobble site are, respectively,

0
 ()

()
()
()

wA A O C O G O U

O A C G

wC O A C U

wG O A G U U G

wU O C U G U G

C N C N C N C N
C N N N

C C N N N
C C N N N C
C C N N N C

−

−

= + + + ×

= + +

= + +

= + +

= + +

 (8.1)

Eq. (8.1) provides a means of estimating the relative magnitude of CO,
CU-G. For example, we may replace NA, NC, NG and NU by M. polymorpha
data in Table 8-5 to get

(260 165 118)
(260 165 286)
(260 118) 286
(165 286) 118

wA O

wC O

wG O U G

wU O U G

C C
C C
C C C
C C C

−

−

= + +

= + +

= + +

= + +

 (8.2)

We can see immediately that CwC > CwA because 286 > 118. Because we
know that nature has chosen nucleotide A at the anticodon wobble site of the
tRNA, CwA should also be smaller than CwG and CwU. This gives us two
inequalities. From CwA < CwG, we have

(260 165 118) (260 118) 286
165 286

286
165

O O U G

O U G

O

U G

C C C
C C

C
C

−

−

−

+ + < + +

<

<

 (8.3)

From CwA < CwU, we have

(260 165 118) (165 286) 118
118
92

O O U G

O

U G

C C C
C

C

−

−

+ + < + +

<
 (8.4)

164 Chapter 8

 Eq. (8.4) suggests that the cost associated with wobble pairing may be

quite small, roughly the same as pairing between U and G. Given this, it
becomes easy to understand that the tRNA for translating the CGN codon
family (Table 8-5) should have nucleotide A at its wobble site in C. elegans,
P. Canadensis and S. cerevisiae because CwA is by far the smallest.

4.2 Two-fold NNY codon families

Designate C-ending and U-ending codons by NC and NU, respectively,
and the total cost of wobble pairing as CwG when the wobble site of the
anticodon is G and as CwA when the wobble site is A (we do not need to
consider the case when the wobble site is U or C because such cases have
never been observed and because neither wobble versatility hypothesis nor
codon-anticodon adaptation hypothesis would predict a wobble site that is C
or U in NNY codon families). We can now express CwG and CwA as

0
0

wG C U U G

wA C O U

C N N C
C N C N

−= × +

= + ×
 (8.5)

The multiplication by 0 in Eq. (8.5) arises from our definition that perfect
Watson-Crick pairing has zero wobble cost. Now we consider three special
cases.

First, if NC > NU, then CwG < CwA, and GH predicts that the anticodon
wobble site should be occupied by a G. This prediction is shared by both
CAAH and WVH.

Second, if NC = NU = N/2, then Eq. (8.5) is reduced to

2

2

wG U U G U G

wA C O O

NC N C C

NC N C C

− −= =

= =
 (8.6)

Because CU-G < CO, we have CwG < CwA, and GH predicts that the
anticodon wobble site should be a G. This is the same prediction as WVH. In
this case, CAAH has no prediction.

Third, when NC << NT, especially in the extreme case when NC = 0 and
NT = N, then Eq. (8.5) is reduced to

8. Bioinformatics and vertebrate mitochondria 165

0
wG U G

wA

C NC
C

−=

=
 (8.7)

Because CwG > CwA, GH predicts an A at the anticodon wobble site. In
this case, WVH would still predict a G at the wobble site because it ignores
the codon frequencies, but CAAH would predict an A at the wobble site,
which is the same prediction as GH. Only in this particular case when NC <<
NT can CAAH and WVH be clearly differentiated.

4.3 Two-fold NNR codon families

Following the same reasoning above, we can come to the following
conclusions. When NA > NG, then GH, CAAH and WVH all have the same
prediction that the anticodon wobble site should be a U. When NA = NG, then
CwU < CwC, and GH predicts a U at the anticodon wobble site, the same
prediction as WVH.. In this case, CAAH has no specific prediction. In the
extreme case when NA = 0 and NG = N, then

0
wU U G

wC

C NC
C

−=

=
 (8.8)

Because CwC < CwU, GH predicts a C at the anticodon wobble site. This is
the same prediction as that of CAAH but different from that of WVH which
predicts a U at the anticodon wobble site. Only in this particular case can
CAAH and WVH be clearly differentiated.

5. CONFLICT BETWEEN TRANSLATION
INITIATION AND ELONGATION

By now we have resolved almost all controversies except for one little
puzzle. We have previously noted an exception in Table 8-4. All tRNA
translating two-fold codon families ending with A or G has a nucleotide U at
its anticodon wobble site except for tRNAMet. The tRNAMet anticodon is 3’-
UAC-5’ (or CAU for short), with the wobble site being C instead of U, and
forms a Watson-Crick match with the AUG codon instead of the AUA
codon, in spite of the fact that the latter is used much more frequent than the
former. The ability of the CAU anticodon to pair with the AUA codon is
achieved by modifying the C in the anticodon CAU to 5-formylcytidine
(Matsuyama et al., 1998; Moriya et al., 1994). A similar case involves the

166 Chapter 8

methylation of guanine in starfish tRNASer

 to translate all four AGN codons
(Matsuyama et al., 1998).

The use of the CAU anticodon instead of a UAU anticodon in vertebrate
mitochondrial tRNAMet is unexpected from two existing hypotheses of
anticodon usage, i.e., CAAH and WVH, mentioned before. CAAH predicts
that the anticodon should match the most abundant codon, i.e., AUA instead
of AUG. So the anticodon should be UAU instead of the observed CAU.
WVH (Agris, 2004; Tong and Wong, 2004; Xia, 2005c) states that the
anticodon should maximize its wobble versatility in paring with synonymous
codons. Because U can pair with both A and G, this hypothesis also predicts
an UAU anticodon to maximize its paring versatility with the AUA and
AUG codons. The fact that the observed tRNAMet anticodon is CAU instead
of the predicted UAU is intriguing. After all, why not just use the UAU
anticodon that can pair with both AUA and AUG codons instead of having a
CAU anticodon and then chemically modifying it to pair with AUA codons?

This unexpected tRNAMet anticodon has been attributed to a compromise
between translation initiation and elongation (Xia, 2005c) as follows. AUG
is not only the most frequently used initiation codon, but also the most
efficient initiation codon in Escherichia coli (Romero and Garcia, 1991) and
Saccharomyces cerevisiae (Nett et al., 2001). In E. coli, the most efficient
non-AUG initiation codon is AUA and its rate of initiation is only 7.5% of
AUG (Romero and Garcia, 1991). In yeast mitochondria, a mutation of the
initiation AUG to AUA in the COX2 gene caused at least a five-fold
decrease in translation (Mulero and Fox, 1994), and similar finding was also
duplicated in another yeast mitochondrial gene COX3 (Folley and Fox,
1991). Assuming the generality of these findings, an anticodon matching
AUG will increase the initiation rate and would be favored by natural
selection because translation initiation is often the limiting step in protein
production (Bulmer, 1991; Liljenstrom and von Heijne, 1987). This presents
a conflict between translation initiation and translation elongation. An AUG-
matching anticodon would increase translation initiation rate but decrease
translation elongation rate because an overwhelming majority of methionine
codons are AUA in vertebrate mitochondrial genomes. The fact that all
known vertebrate tRNAMet genes feature an AUG-matching codon implies
that nature has chosen to maximize the translation initiation rate (Xia,
2005c). This hypothesis that invokes a conflict between translation initiation
and translation elongation to explain the usage of the CAU anticodon in
tRNAMet will be referred hereafter as the translation conflict hypothesis.

Two consequences can be derived from the translation conflict
hypothesis. First, we should expect a relative reduction of AUA usage
because the AUG-matching anticodon imposes selection against the use of
AUA codons as AUA would need to be wobble-translated by a chemically
modified CAU anticodon. To fix ideas, let us focus only on AUR
(methionine) and UUR (leucine) codon families. The reason for choosing

8. Bioinformatics and vertebrate mitochondria 167

UUR instead of any other XYR codon families is because other XYR codon
families do not have a middle U and the middle nucleotide in a codon is
known to affect the nucleotide at the third codon position.

For the 12 CDSs that are collinear with the AC-rich L-strand, the
mutation favors A-ending codon (Reyes et al., 1998; Tanaka and Ozawa,
1994; Xia, 2005c). For UUR codons, because the anticodon wobble site is U
and form Watson-Crick base pair with A, we also expect UUA codon to be
preferred against UUG codons. Thus, both mutation and the tRNA-mediated
selection favor the use of UUA against UUG codons. However, for the
methionine codons, the AUG-matching tRNAMet anticodon would favor the
AUG codon against the AUA codon. Thus, the tRNA-mediated selection and
the mutation bias are in opposite directions. If we define

100 XUA
XUA

XUA XUG

NP
N N

=
+

 (8.9)

for each of these two codon families, where NXUA and NXUG are the number
of XUA and XUG codons, respectively, we should find PAUA to be smaller in
the AUR codon family than PUUA in the UUR codon families.

An argument against using Eq. (8.9) is that the result would be biased in
favor of supporting the prediction of PAUA < PUUA because the initiation
codon, which is AUG in most cases, was not excluded. A more convincing
comparison should compute PAUA after excluding initiation codons entirely.
This is what we are going to use.

For the ND6 gene collinear with the GT-rich H-strand, the strand-biased
mutation spectrum favors G-ending codons in the two XUR codon families.
For the methionine codon family, the AUG-matching anticodon also favors
the AUG codon against the AUA codon. So the AUA codon will be
depressed by both the strand-biased mutation and the tRNA-imposed
selection. The tRNA-imposed selection is absent against UUA codon in the
UUR codon families because their respective tRNA anticodons all match the
A-ending codons (Xia, 2005c). Thus, for the ND6 gene, we also expect PAUA
to be smaller in the AUR codon family than PUUA in the UUR codon
families.

Many vertebrate mitochondrial genomes can be used to test the
prediction that PUUA should be greater than PAUA. For ease of presentation,
we will use only 30 vertebrate species covering a wide range of taxonomic
diversity. These include six each from mammals, birds, reptiles (now a
nearly obsolete taxonomic term), amphibians and fish. Results from these
species, summarized in Table 8-6, substantiates the predictions based on the
translation conflict hypothesis.

168 Chapter 8

Table 8-6. Results from the 12 CDS sequences collinear with the L-strand and ND6 collinear
with the H-strand from 30 representative vertebrate species.
 12 CDS ND6
Species Accession PUUA PAUA PUUA PAUA
Homo sapien NC_001807 87.8 87.1 53.3 22.2
Mus musculus NC_005089 94.2 93.4 65.2 40.0
Bos Taurus NC_006853 90.1 87.8 62.5 40.0
Canis familiaris NC_002008 85.3 85.5 43.8 50.0
Equus caballus NC_001640 86.4 87.5 25.0 11.1
Capra hircus NC_005044 94.4 88.5 68.8 66.7
Gallus gallus NC_001323 94.9 88.2 31.6 25.0
Struthio camelus NC_002785 89.2 87.9 27.3 0.0
Coturnix chinensis NC_004575 95.7 88.0 28.6 0.0
Anser albifrons NC_004539 92.2 82.9 41.7 0.0
Gavia stellata NC_007007 88.0 91.9 7.1 33.3
Alectura lathami NC_007227 83.1 80.4 61.1 25.0
Alligator mississippiensis NC_001922 94.2 84.4 64.7 33.3
Alligator sinensis NC_004448 78.2 76.1 45.5 37.5
Chelonia mydas NC_000886 99.1 98.6 30.4 75.0
Shinisaurus crocodilurus NC_005959 94.2 89.0 42.9 33.3
Abronia graminea NC_005958 92.0 91.2 42.9 12.5
Chrysemy picta NC_002073 92.7 94.5 50.0 33.3
Ambystoma laterale NC_006330 95.0 91.5 91.3 71.4
Aneides hardii NC_006338 92.6 85.4 45.0 77.8
Xenopus laevis NC_001573 93.6 88.6 64.7 75.0
Kaloula pulchra NC_006405 87.9 76.7 47.8 0.0
Alytes obstetricans NC_006688 90.5 80.1 57.1 0.0
Rana nigromaculata NC_002805 91.3 69.1 66.7 40.0
Cyprinus carpio NC_001606 97.7 79.1 62.5 20.0
Danio rerio NC_002333 89.6 78.9 57.1 50.0
Salanx ariakensis NC_006918 73.9 46.9 77.8 0.0
Carassius auratus NC_002079 93.9 75.5 60.0 40.0
Anguilla rostrata NC_006547 89.1 83.2 57.9 66.7
Auxis rochei NC_005313 82.8 38.8 83.3 12.5

Table 8-6 shows that mean PUUA is significantly greater than mean PAUA

in both the 12 CDSs collinear with the L-strand (90.32 versus 82.56, DF =
29, T = 4.256, p = 0.0000, one-tailed test) and the ND6 gene (52.12 versus
33.05, DF = 29, T = 3.762324119, p = 0.0004, one-tailed test). In short, the
prediction that AUA codon usage is reduced is empirically supported by
genes from both DNA strands. We may conclude that the first prediction,
that AUA codon usage should be reduced given the CAU anticodon in
tRNAMet, is generally supported by the empirical analysis.

The observation of a relative deficiency of AUA codons can be
interpreted in two ways. If methionine usage remains constant among
vertebrate mitochondrial genomes, then a deficiency of AUA in a genome
implies an equal amount of surplus in AUG. On the other hand, if the
number of methionine codons (NMet) is weakly constrained, then the

8. Bioinformatics and vertebrate mitochondria 169

selection against AUA codons may result in a net loss of methionine codons.
This would lead to a positive association between PAUA and NMet, i.e., small
PAUA is associated with small NMet. The empirical data supports the latter
inference, i.e., reduction of AUA codons leads to a reduction in methionine
usage in the genome (Figure 8-5).

30

40

50

60

70

80

90

120 160 200 240

NMet

P
A

U
A

Spearman correlation = 0.55741

p = 0.0014

Figure 8-5. Genomic reduction of AUA codons is associated with a reduction in methionine
usage. PAUA is defined in equation and arcsine-transformed; NMet – Number of methionine
codons.

It is important to recognize that the results presented above, while all

consistent with the translation conflict hypothesis, do not exclude the
possibility that AUA codon usage may be reduced for reasons unrelated to
the CAU anticodon in tRNAMet. It would be nice to have a mitochondrial
genome in which the tRNAMet anticodon is not CAU but UAU. If such a
genome also has a reduced AUA usage relative to UUA codons, then we
cannot interpret the reduced AUA usage in the vertebrate mitochondrial
genomes as a response to the selection mediated by the CAU anticodon in
tRNAMet. On the other hand, if such a genome does not exhibit a deficiency
of AUA codons relative to UUA codons, but instead exhibit an increased
AUA codon usage favored by the UAU anticodon, then the translation
conflict hypothesis is strengthened.

170 Chapter 8

It is also important to keep in mind that the 30 species above do not
represent independent data points. For example, their common ancestor
could have somehow evolved a reduced PAUA relative to PUUA, and this
character has been inherited among all its descendents. This means that all
30 species could be equivalent to just single data point. For this reason,
corroborative evidence needs to be sought in other species.

In this context the mitochondrial genomes of four urochordates
(Halocynthia roretzi, Ciona intestinalis, C. savignyi, and Doliolum
nationalis) deposited in GenBank are particularly useful in providing
corroborative evidence. All four genomes have two tRNAMet genes, one with
CAU anticodon and the other with a UAU anticodon (Gissi et al., 2004;
Hoffmann et al., 1992; Kondow et al., 1998; Yokobori et al., 2005;
Yokobori et al., 1999; Yokobori et al., 2003). This would eliminate the
hypothesized selection against AUA codon usage. We can therefore predict
that PAUA should not be underused relative to PUAU for these urochordate
genomes, in contrast to the vertebrate mitochondrial genomes in which the
only tRNAMet has a CAU anticodon that would favor a decreased usage of
AUA codons. In other words, we should expect PUUA - PAUA to be near 0, in
contrast to vertebrate mitochondrial genomes where PUUA - PAUA is generally
greater than 0. This prediction is confirmed (Table 2). The mean PUUA - PAUA
is only -3.225, in contrast to the vertebrate mitochondrial genome where the
mean PUUA - PAUA values are significantly greater than 0 (p = 0.0001 for the
12 CDSs collinear with the L-stand and p = 0.0004 for ND6 collinear with
the H-strand).

Table 8-7. Results from the 13 CDSs from the four urochordate species.
Species ACCESSION PUUA PAUA PUUA-PAUA
H. roretzi NC_002177 60.7 67.3 -6.6
C. intestinalis NC_004447 92.6 90.5 2.1
C. savignyi NC_004570 75.1 83.5 -8.4
D. nationalis NC_006627 71.0 71.0 0.0

In conclusion, the translation conflict hypothesis is empirically

supported. The presence of a CAU anticodon matching the AUG methionine
codon represents a significant selection force against AUA codon usage in
vertebrate mitochondrial genomes, resulting in PAUA smaller than PUUA. The
reduced AUA codon usage is associated with a reduced methionine usage in
the vertebrate mitochondrial genomes. When such selection is weakened in
the urochordate mitochondrial genomes containing CAU-tRNAMet and
UAU-tRNAMet, the AUA codon is no longer strongly selected against, and
PAUA becomes similar to PXUA.

I should finally mention here that, although the conceptual framework
that leads to the prediction of strand-asymmetry in mutation spectrum is
based on the classical strand-displacement model of mtDNA replication

8. Bioinformatics and vertebrate mitochondria 171

(Bogenhagen and Clayton, 2003; Clayton, 1982; Shadel and Clayton, 1997)
the prediction can also be derived from the strand-coupled model of
bidirectional mtDNA replication (Holt and Jacobs, 2003; Holt et al., 2000;
Yang et al., 2002). Many studies have documented an excess of (G+T) in the
leading strand and an excess of (A+C) in the lagging strand in most
prokaryotic genomes examined (Francino and Ochman, 1997; Freeman et
al., 1998; Grigoriev, 1998; McLean et al., 1998; Perriere et al., 1996) and
spontaneous deamination has also been invoked as the main factor
contributing to the strand asymmetry (Lobry and Sueoka, 2002). Thus, if the
H-strand is the leading strand, and the L-stand the lagging one, then we
would also predict an excess of (G+T) in the H-strand and of (A+C) in the
L-strand, just as we would expect from the strand-displacement model of
mtDNA replication.

One limitation of this study is that it cannot be generalized to invertebrate
mitochondrial genomes although they also have about 13 protein-coding
genes and 22 tRNA genes. There are several major differences between
vertebrate and invertebrate mtDNA. First, invertebrate mitochondrial
genomes are generally extremely AT-rich and the distribution of the protein-
coding genes is less asymmetrical between the two strands than in vertebrate
mitochondrial genomes. Take the common honey bee mtDNA for example.
Nine of the 13 CDSs are collinear with the L-strand and 4 are collinear with
the H-strand, in contrast to 12 CDSs collinear with the L-strand and only 1
collinear with the H-strand in vertebrate mitochondrial genomes.

6. POSTSCRIPT

In both Chapter 4 and this chapter, I have tried to illustrate the value of
thinking from an evolutionary point of view. I did this because there are two
contrasting and radical views of evolution in science that harms biology in
general and bioinformatics in particular. In one extreme, many biologists,
especially traditional molecular biologists, regard evolutionary biology as
totally irrelevant and have little hesitation to proclaim “what is true for the
colon bacillus is true for the elephant” (attributed to Jacques Monod, Jacob,
1988, p. 290). In the other extreme, many evolutionary biologists consider
evolution as the key to every problem in biology and indulge themselves
with the assertion that “Nothing in biology makes sense except in the light of
evolution” (Dobzhansky, 1973). Some have gone even further by claiming
that “in a sense all evolution is adaptation” (Medawar and Medawar, 1983,
p. 1).

Extreme views, especially when taken out of the context in which they
are formed, would often become so radical as to serve no purpose other than

172 Chapter 8

brainwashing the unwary and thwarting healthy communication that is so
essential for science, especially for the normal development of the
interdisciplinary bioinformatics.

Historians have often been criticized for not taking averages, but why
neither do biologists?

Chapter 9

CHARACTERIZING TRANSLATION
EFFICIENCY
Indices of codon usage

1. INTRODUCTION

The genome comes alive mainly through transcription and translation.
The previous chapter on Gibbs sampler can be used to discover sequence
motifs that serve as genetic switches regulating transcription and translation.
In this chapter, we focus on a few simple but useful indices that can be used
to measure the efficiency of translation elongation. You are expected to have
read Chapter 8 and have already gained familiarity with biological concepts
involving codon, tRNA, and anticodon in tRNAs.

Many unicellular organisms, especially bacterial species, need to grow
and replicate the cell rapidly in order not to be out-competed by others. For
example, an E. coli cell replicates once every 20 minutes with unlimited
nutrients. To replicate a cell, not only the genome needs to be replicated, but
a large amount of proteins have to be produced, with some proteins produced
in nearly half a million copies in an E. coli cell. For such highly expressed
proteins, it is very important for their coding genes to have efficient coding
strategy to maximize the rate of transcription and translation.

One way to increase the translation efficiency is to maximize the usage of
codons that match the anticodon of the most abundant cognate tRNA (Gouy
and Gautier, 1982; Ikemura, 1992; Xia, 1998b, 2005c). For example, the
amino acid glycine can be coded by GGA, GGC, GGG and GGU codons,
but tRNAGly species that translates GGY codons (Y stands for either C or U)
are much more abundant than tRNAGly species that translate GGR codons in

174 Chapter 9

E. coli cells. What codons should E. coli use to code glycine? Obviously
natural selection should favor those that maximize the usage of CCY codons
against GGR codons given the differential tRNA availability.

There are two different notations of tRNA. For example, a glycine tRNA
may be written either as GGY-tRNAGly where GGY is the codons that the
tRNA can translate, or ACC-tRNAGly where ACC is the tRNA anticodon
written in the 5’ to 3’ direction. The first notation is often used when a tRNA
species is known to carry a glycine and to translate GGY codons, but the
tRNA sequence and consequently the anticodon are unknown. The second
notation is used when the anticodon is known. The two notations do not
cause confusion because, given the tRNAGly part of the notation, it is
unlikely for one to take ACC as a glycine codon.

Translation efficiency depends partially on the coding strategy of an
mRNA and is reflected in codon usage bias which is often measured by two
classes of indices, one class being codon-specific and the other being gene-
specific. A representative of the first class is the relative synonymous codon
usage or RSCU (Sharp et al., 1986), and a representative of the second class
is the codon adaptation index, or CAI (Sharp and Li, 1987).

Other than CAI, several other indices have been proposed to measure
codon usage bias of protein-coding genes. All these indices (including CAI)
measure codon usage bias in two ways. One is to measure the deviation of
codon usage from random expectation or from equal codon usage. The
random expectation can be derived as follows. Designating the genomic
nucleotide frequencies as PA, PC, PG and PT, respectively, the expected
probability of a codon, e.g., ACG, is simply PAPCPG. A representative of this
type of codon usage indices is the effective number of codons (Wright,
1990) which measures codon usage bias by the deviation of codon usage
from equal codon usage.

The other codon usage indices measure codon usage bias by their degree
of using translationally favored codons. They differ fundamentally in how
they define translationally favored codons. The frequency of optimal codons,
or Fop (Ikemura, 1985), defines translationally optimal codons as those
forming Watson-Crick base pair with the anticodon of major tRNA species
in each codon family. The codon adaptation index (CAI) defines
translationally optimal codons as those frequently represented in highly
expressed genes. The codon bias index, or CBI (Bennetzen and Hall, 1982)
defines translationally favored codons as those not only frequently
represented by highly expressed genes but also forming Watson-Crick base
pair with the anticodon of major tRNA species. Comparative studies
(Coghlan and Wolfe, 2000; Comeron and Aguade, 1998) suggest that CAI is
the best in predicting gene expression levels. For this reason, we will only

9. Characterizing translation efficiency 175

detail the computation and application of CAI. Readers interested in other
indices may read the original publications.

It is natural for one to ask why we should not use indices derived directly
from relative tRNA abundance or why such indices often do not perform
better than CAI which ignores tRNA but is based entirely on the codon
usage of highly expressed genes. We will provide answers to these questions
once we know how to compute RSCU and CAI.

2. RSCU (RELATIVE SYNONYMOUS CODON
USAGE)

RSCU measures codon usage bias for each codon within each codon
family. It is essentially a normalized codon frequency so that the expectation
is 1 when there is no codon usage bias. A codon is overused if its RSCU
value is greater than 1 and underused if its RSCU value is less than 1. It is
computed directly from input sequences.

The general equation for computing RSCU is

1

i

j
ij NumCodon

i
j

i

CodFreq
RSCU

CodFreq

NumCodon
=

=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
 (9.1)

where i refers to a codon family and j to a specific codon within the family.
For example, i may refer to the alanine codon family with four codons
(GCU, GCC, GCA, and GCG) and j to a specific codon such as GCU. In this
case, the numerator is the frequency of GCU and denominator is the
summation of the four codon frequencies divided by the number of codons
in the codon family, i.e., 4.

For biology students, it is always easier to learn by numerical examples.
Suppose we counted the codon frequencies of one particular protein-coding
sequence and have obtained the codon frequencies (Table 9-1). The RSCU
for the GCU codon is computed, according to Eq. (9.1), as

()
52 0.84

52 91 103 2
4

GCURSCU = =
+ + +

 (9-2)

176 Chapter 9

which is displayed in Table 9-1. Biology students are recommended to cover
up the last column in Table 9-1 and finish the computation of the rest of the
RSCU values.

Table 9-1. Data for illustrating the calculation of RSCU. AA-amino acid; T-codon frequency.
Codon AA N RSCU
GCU Ala 52 0.84
GCC Ala 91 1.47
GCA Ala 103 1.66
GCG Ala 2 0.03
GAA Glu 78 1.64
GAG Glu 17 0.36
...

3. CAI (CODON ADAPTATION INDEX)

CAI has been used extensively in biological research. Other than its
primary use for measuring the efficiency of translation elongation, it has
contributed to the finding that functionally related genes are conserved in
their expression across different microbial species (Lithwick and Margalit,
2005), to the prediction of protein production (Futcher et al., 1999; Gygi et
al., 1999), and to the optimization of DNA vaccines (Ruiz et al., 2006).

3.1 Computation and basic properties of CAI

While RSCU characterizes codon usage bias in each codon family, CAI
quantifies the codon usage bias in one gene. It is based on (1) the codon
frequencies of the gene and (2) the codon frequencies of a set of known
highly expressed genes (often referred to as the reference set). The reference
set of genes is used to generate a column of w values computed as:

.max

ij
ij

i

RefCodFreq
w

RefCodFreq
= (9-3)

where RefCodFreqij is the frequency of codon j in synonymous codon family
i, and RefCodFreqi.max is the maximum codon frequency in synonymous
codon family i. For example, if the four alanine codons GCA, GCC, GCG
and GCU have frequencies 20, 4, 4, and 2, respectively, then their associated
w value are 1, 0.2, 0.2 and 0.1, respectively. The codon whose frequency is
RefCodFreqi.max is often referred to as the major codon (whose w is 1), and

9. Characterizing translation efficiency 177

the other codons in the synonymous codon family are referred to as minor
codons. The major codon is assumed to be the translationally optimal codon.

It is easy to see the relationship between wij and RSCU. The former is
obtained by dividing each RSCU by the largest RSCU value within each
codon family. With the w values for a particular species, we can now
compute the CAI value of any protein-coding sequence from the species by
using the following equation:

1

1

[ln()]
n

i i
i

n

i
i

CodFreq w

CodFreq

CAI e

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
= (9-4)

where n is the number of sense codons (excluding codon families with a
single codon, e.g., AUG for methionine and UGG for tryptophan in the
standard genetic code). Note that the exponent is simply a weighted average
of ln(w). Because the maximum of w is 1, ln(w) will never be greater than 0.
Consequently, the exponent will never be greater than 0. Thus, the maximum
CAI value is 1. The minimum CAI depends on the w values for minor
codons in each codon family. If the minor codons all have w values close to
zero, then the minimum CAI will also be very close to zero.

A gene with a CAI value greater than 0.7 is often considered to be highly
expressed (Sharp and Li, 1987; Takahashi et al., 2003). However, this
interpretation is questionable because the value of CAI depends on what
reference set of genes is used. For the same reason, CAI values are not
comparable between or among different species. One should never say
something like “Gene A may be more highly expressed in human than in
mouse because its CAI value is 0.8 in human and only 0.4 in mouse”. Such a
statement is wrong in at least two ways. First, CAI values for mouse are
computed with a set of mouse genes as reference and those for human are
computed with a set of human genes as reference. They are not comparable.
Second, CAI is not an index of gene expression, but an index of translation
elongation efficiency. Strictly speaking, it is not even correct to say that “the
mRNA from human gene A can be translated more efficiently than that from
human gene B because the former has a CAI value twice as larger as the
latter”. The reason is that the translation process involves initiation,
elongation and termination. CAI is a measure of the efficiency of translation
elongation, not that of translation initiation or termination.

One can also derive a similar amino acid adaptation index (AAAI) to
measure the bias of amino acid usage:

178 Chapter 9

1

1

[ln()]
n

i i
i

n

i
i

AAFreq w

AAFreq

AAAI e

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
= (9.5)

where wi is obtained by dividing each of the 20 amino acid frequencies by
the highest frequency, i.e., the most highly used amino acid will have its wi =
1. For computing AAAI, we can use the copy number of tRNA genes as the
reference set because most frequently used amino acids typically have more
associated tRNA to carry them and because tRNA concentration is positively
related to the copy number of tRNA genes, at least in several bacterial
species and the yeast (Duret, 2000; Ikemura, 1992; Kanaya et al., 1999;
Percudani et al., 1997).

It is important to keep in mind that CAI and AAAI are, respectively,
gene-specific and peptide-specific, not codon-specific or amino acid-
specific. It makes no sense to say that a codon has a CAI value of 0.75.

3.2 Problems with CAI and its current implementation

CAI has three major problems. Two problems are related to the
compilation of the reference set of highly expressed genes, and one related to
the computer implementation. Most published papers use the cai program in
the EMBOSS (Rice et al., 2000) distribution (typically referred to as the
EMBOSS.cai program). I will consequently use EMBOSS.cai to illustrate
implementation problems. Because the implementation problem is
intertwined with the reference set, I will not try to separate the problems into
reference-set-related and implementation-related.

3.2.1 Problem when w = 0

The first problem with CAI occurs when w = 0. It often happens that only
a few genes are known to be highly expressed, even for model organisms
such as the yeast (Saccharomyces cerevisiae). The number of codons one
can compile from a small number of genes is consequently small, leading to
some w values to be zero. For example, the frequently used codon usage
table in the EMBOSS compilation Eyeastcai.cut for the budding yeast
contains a number of zeros. In particular, in the CCN (coding for arginine)
codon family, there are 43 CGT codons, but no CCG, CGA, or CGC codon.

The overuse of CGT and the avoidance of CCG, CGA and CGC codons
in highly expressed genes make sense because the yeast genome contains six
tRNAArg genes all with anticodon ACG forming Watson-Crick base-pairing
with the CGT codon, but no other tRNAArg gene forming Watson-Crick base

9. Characterizing translation efficiency 179

pairing with the other three CGN codons. The highly expressed genes
included in the Eyeastcai.cut file apparently have strong codon usage bias
favoring the CGT codon, taking advantage of the six ACG-tRNAArg genes to
facilitate translation of arginine codons. While this illustrates well the codon-
anticodon adaptation, it causes practical problems with computing CAI.

Given the 43 CGT codon and no other CGN codon in the reference set,
the associated w value is therefore 1 for CGT but 0 for the other three.
However, computing CAI requires taking the logarithm of w but there is no
logarithm defined for w = 0. Different implementations of CAI typically
would try to use some methods to avoid taking the logarithm of 0, but the
resulting CAI can be outrageous. For example, if one uses the following
sequence consisting of CGA, CGC, CGG codons only:

S = CGACGCCGGCGACGCCGGCGACGCCGGCGACGCCGG

as input to the EMBOSS.cai program (which is perhaps the most frequently
used CAI calculator in practical research and available online at
http://bioportal.cgb.indiana.edu/cgi-bin/emboss/cai), the resulting CAI value
is 1 (the maximum CAI), which is totally unexpected and absolutely absurd.

We know that, among CGN codons, only CGT is represented in the
reference set and all other three CGN codons have zero representation in the
reference set. The sequence S consists of only CGA, CGC and CGG codon
only but no CGT, and we therefore would expect the CAI to be at its
minimum, i.e., 0. A CAI of 1 from EMBOSS.cai for sequence S is of course
wrong. Unfortunately, given the scanty documentation of EMBOSS
programs, one does not even know where to send bug reports without
extensive searching through the internet. The implementation of CAI in
DAMBE (Xia, 2001; Xia and Xie, 2001b) gives a CAI value of 0 for
sequence S, with a note stating that there is insufficient information for
computing CAI for the sequence.

Another way to avoid having w = 0 is to collect all sequenced protein-
coding genes for a species and then choose those sequences with large CAI
values as a reference set to compile a codon usage table. A compilation with
all w values greater than 0 is available for the budding yeast in the EMBOSS
compilation as Eysc_h.cut. The problem with this approach is that we are not
sure if the included sequences in such a reference set are truly highly
expressed.

3.2.2 Problems with codon families containing a single codon

EMBOSS.cai does not exclude codon families with a single codon in
computing CAI. It is important to exclude such codons. Note that, for such

180 Chapter 9

codons (e.g., AUG and UGG in the standard genetic code), their
corresponding w value will always be 1 regardless of codon usage bias of the
gene. Although such codons will not contribute to the numerator in Eq. (9-4)
because ln(1) = 0, they contribute to the denominator. If a gene happens to
use a high proportion of methionine and tryptophan, then it will have a high
CAI value even if the codon usage is not at all biased. Just add a string of
ATG triplets to a sequence will substantially increase its CAI.

Because EMBOSS.cai does not exclude codon families with a single
codon, one should be cautious in interpreting results from it. For example, if
the input sequence consists of multiple ATG codons, such as

S = ATGATGATG……
then the EMBOSS.cai program will yield a CAI value of 1, based on the web
interface of EMBOSS.cai available at http://bioportal.cgb.indiana.edu/cgi-
bin/emboss/cai. Of course such a CAI value is wrong. A correctly computed
CAI value should not depend on the frequencies of methionine and
tryptophan. The implementation of CAI in DAMBE (Xia, 2001; Xia and
Xie, 2001b) gives a CAI value of 0 for sequence S, with a note stating that
there is insufficient information for computing CAI for the sequence.

3.2.3 Problems with amino acids coded by two different codon
families

EMBOSS.cai also produce other perplexing output. Suppose we now use
a sequence consisting entirely of CGT codons and expect the resulting CAI
to be 1 by using the Eyeastcai.cut reference set (Recall that the reference set
contains 43 CGT codons but no CGA, CGC or CGG codon). The resulting
CAI value from the EMBOSS.cai program is 0.140 instead of 1. This is
again unexpected. It turns out that amino acid arginine is coded by two
codon families, the CGN codon family we have mentioned, and the AGR
codon family. The largest codon frequency among these six codons is 314
(for AGA codon). So the w value for CGT is not 1 (43/43) as we have
thought, but is only 0.1369 (= 43/314). For standard genetic code, there are
three amino acids (arginine, leucine and serine) each coded by two different
codon families. EMBOSS.cai does not separate the two codon families for
each amino acid, but treated them as three six-member codon families. This
is not appropriate because the codon usage bias in one codon family (e.g.,
the CGN codon family) translated by one set of tRNAs is much obscured by
the codon usage in another codon family (e.g., the AGR codon family)
translated by another set of tRNA genes.

The implementation of CAI in DAMBE (Xia, 2001; Xia and Xie, 2001b)
separates the “six-codon family” into two separate codon families, with one
family containing two codons and another containing four. For example, one

9. Characterizing translation efficiency 181

arginine codon family contains the two AGR codons and the other contains
the four CGN codons.

3.2.4 Problems with initiation and termination codons

Strictly speaking, CAI is an index measuring the efficiency of translation
elongation. So its calculation should not include initiation and termination
codons because these special codons are more related to translation initiation
and termination than translation elongation. EMBOSS.cai does not exclude
the termination codons. However, because each protein-coding gene is
generally expected to contain only one termination codon, the effect of
including the termination codon in computing CAI is small with long gene
sequences.

The implementation of CAI in DAMBE (Xia, 2001; Xia and Xie, 2001b)
does not exclude the initiation codon in prokaryotic genomes, but excludes
the termination codon in computing CAI.

3.2.5 The problem with the compilation of the reference set of genes

Early reference sets of genes include known highly expressed genes such
as genes coding for ribosomal proteins. An average E. coli cell in the
exponential growing phase contains about 15,000 ribosomes made of two
subunits. The large subunit contains the 5S rRNA (120 bases long) and 23S
rRNA (about 2900 bases long, e.g., E. coli K12 strain has seven 23S rRNA
genes, with six being 2904 bases long and one being 2905 bases long),
together with 31 different proteins. The small subunit contains the 16S
rRNA (1542 bases long) and 21 different proteins. Nearly all ribosomal
proteins are present in single copies in each ribosome. This implies that
ribosomal proteins are all highly expressed and exist in about 15,000 copies
per cell.

The first large-scale compilation of reference sets is derived from
TransTerm (Brown et al., 1994; Dalphin et al., 1996), which also outputs
CAI values for genes from species with a reference set of highly expressed
genes. Such genes, together with associated parameters such as CAI, are
compiled for each species in a file named ****.dat, where ‘****’ is usually a
four letter code made from the organism’s genus and species. For example,
the codon usage table for Homo sapiens is Hsap.dat. The subset of genes
with the highest CAI values are found in the file named ****_H.dat.
TransTerm also outputs these files in GCG format (Dalphin et al., 1996),
named as ****.cod. Note that gene sequences in the ****_H.dat files are not
necessarily highly expressed genes because their expression is not verified
by gene expression studies.

182 Chapter 9

These ****.dat files can be formatted as codon frequency tables that can
be used as the reference set of genes for computing CAI values. The first
large-scale distribution of the reformatted codon frequency tables came with
the release of EMBOSS (Rice et al., 2000). The EMBOSS-reformatted
codon frequency tables are stored in files named E*.cut where the prefix E is
presumably for EMBOSS and the file type “cut” is for codon usage table.
The * part in the file is typically a species designation, but unfortunately is
not standardized. Because EMBOSS is open-source, and consequently
because everybody can contribute to it with little restriction, there was an
undesirable proliferation of E*.cut files. For example, you will find
Ehum.cut, Ehuman.cut, Eeco.cut, Eeco_h.cut, Eecoli.cut, Emus.cut, etc. In
some cases, the species is easy to tell. For example, the first two file names
in the previous sentence refer to human, the next three refer to Escherichia
coli, with the middle one referring to highly expressed E. coli genes (i.e.,
from genes with high CAI values, not from genes experimentally verified to
be highly expressed), and the last refers to Mus musculus. Names ending
with cp refer to chloroplast genes. For example, Emzecp.cut, is from maize
chloroplast genes. File names ending with mt are from mitochondrial genes.
For example, Eyscmt.cut is derived from the yeast (Saccharomyces
cerevisiae) mitochondrial genes.

There are two major problems with the EMBOSS compilation of
reference genes. First, the nonstandard species designation, coupled with a
lack of documentation typically associated with open-source software, has
led to a profound confusion as to which file refers to which species, who
compiled the reference codon usage table and how the table is obtained.
Second, the reference set of genes are supposed to be highly expressed, but it
is difficult to define highly expressed genes in multicellular eukaryotes
because a gene may be highly expressed only in a certain tissue at a certain
time.

I present below two alternatives to CAI computation. One is a minor
revision of CAI computation by using a codon frequency table derived from
anticodons of all tRNA genes in a genome. The rest of the computation is the
same as the conventional CAI. The other is an entirely different measure of
codon usage bias, but also based on the distribution of tRNA anticodons.

4. INDICES OF CODON-ANTICODON
ADAPTATION

One may think that, because efficiency of translation elongation depends
much on whether the codon usage maximizes the use of codons
corresponding to the most abundant tRNA species (Bennetzen and Hall,

9. Characterizing translation efficiency 183

1982; Gouy and Gautier, 1982; Ikemura, 1981, 1982; Ikemura, 1992; Xia,
1998b), we can use tRNA relative abundance as the basis for a reference set.
It is less controversial to define translationally optimal codons as those
matching the anticodon of most abundant tRNA species than as those
matching the most frequent codons in a subset of highly expressed genes
because the latter may not be representative of highly expressed genes.

From the frequencies of tRNA anticodons, one can obtain the frequencies
of codons that form Watson-Crick base pairs with the anticodons and use
such a codon frequency table as a reference set for computing CAI. Such a
reference set, with all the w values based on the tRNA-derived “codon
frequencies”, is presented in Tables 9-2 and 9-3.

Table 9-2. tRNAs translating two-fold codon families from Saccharomyces cerevisiae.
AA(1) Codon(2) T(3) w(4) F(5)
Arg AGA 11 1 314
Arg AGG 1 0.091 1
Asn AAC 10 1 208
Asn AAU 0 0 11
Asp GAC 16 1 202
Asp GAU 0 0 112
Cys UGC 4 1 3
Cys UGU 0 0 39
Gln CAA 9 1 153
Gln CAG 1 0.111 1
Glu GAA 14 1 305
Glu GAG 2 0.143 5
His CAC 7 1 102
His CAU 0 0 25
Leu UUA 7 0.7 42
Leu UUG 10 1 359
Lys AAA 7 0.5 65
Lys AAG 14 1 483
Phe UUC 10 1 168
Phe UUU 0 0 19
Ser AGC 2 1 6
Ser AGU 0 0 4
Tyr UAC 8 1 141
Tyr UAU 0 0 10
(1) Amion acid carried by tRNA
(2) Codons forming Watson-Crick base pair with the anticodon of tRNA
(3) Copy number of tRNA gene.
(4) wi equals Ti divided by the maximum T within each codon family
(5) the codon frequencies of highly expressed yeast protein-coding genes compiled in the

Eyeastcai.cut file distributed with EMBOSS (Rice et al., 2000).

184 Chapter 9

The idea of using the relative frequencies of tRNA anticodons to define
translationally optimal codons is not new. Both the frequency of optimal
codons, or Fop (Ikemura, 1985) and the codon bias index, or CBI (Bennetzen
and Hall, 1982) incorporate the relative frequencies of tRNA anticodons as a
reference to identify translationally optimal codons.

Table 9-3. tRNA data in the genome of the budding yeast, Saccharomyces cerevisiae. Only
four-fold codon families are included. Symbols as in Table 9-2.
AA Codon T w F
Ala GCA 5 0.455 6
Ala GCG 0 0 0
Ala GCC 0 0 130
Ala GCU 11 1 411
Arg CGA 0 0 0
Arg CGG 1 0.167 0
Arg CGC 0 0 0
Arg CGU 6 1 43
Gly GGA 3 0.188 1
Gly GGG 2 0.125 2
Gly GGC 16 1 9
Gly GGU 0 0 459
Ile AUA 2 0.154 0
Ile AUC 0 0 181
Ile AUU 13 1 149
Leu CUA 3 1 14
Leu CUG 0 0 1
Leu CUC 1 0.333 1
Leu CUU 0 0 2
Pro CCA 10 1 211
Pro CCG 0 0 0
Pro CCC 0 0 2
Pro CCU 2 0.2 10
Ser UCA 3 0.273 7
Ser UCG 1 0.091 1
Ser UCC 0 0 133
Ser UCU 11 1 192
Thr ACA 4 0.364 2
Thr ACG 1 0.091 1
Thr ACC 0 0 164
Thr ACU 11 1 151
Val GUA 2 0.143 0
Val GUG 2 0.143 5
Val GUC 0 0 231
Val GUU 14 1 278

The approach of using relative tRNA abundance as the reference is

particularly attractive given the high correlation between relative tRNA
abundance and the copy number of tRNA genes (Duret, 2000; Ikemura,

9. Characterizing translation efficiency 185

1992; Kanaya et al., 1999; Percudani et al., 1997). The availability of many
genomes as well as the ease of identifying tRNA genes (Lowe and Eddy,
1997) allow us to quickly obtain all tRNA genes in a genome, identify their
anticodons and the codons that form Watson-Crick base pair with these
anticodons. These codons can then form a “codon usage” table and used as a
reference set for computing CAI.

In general, the most frequently used codons in each codon family (last
column in Table 9-2 and Table 9-3) correspond to the most abundant tRNA
species translating that codon family, although there are exceptions. We will
look at these exceptions in more detail later.

4.1 CAI with a tRNA anticodon-derived codon usage
table

It is simple to replace the reference set in CAI computation by the codon
usage table derived from tRNA anticodons. For any particular species, what
we need to do is to compile the copy number of each tRNA genes, identify
the anticodon of each tRNA gene, and obtain a frequency table of their
anticodons. This table of anticodon frequency can be directly translated into
a table of codons that form Watson-Crick base-pairing with these
anticodons. A codon frequency table obtained in this way can then be used
as a reference set to compute CAI, referred hereafter as tCAI to distinguish it
from the conventional CAI. This approach has been made easy by the
proliferation of genomic sequencing projects and the tRNA scanning
software (Lowe and Eddy, 1997).

Tables 9-2 and 9-3 together show such a codon usage table for the
budding yeast, Saccharomyces cerevisiae, together with calculated w values
for computing tCAI. The resulting tCAI for yeast protein-coding genes and
the conventional CAI based on EMBOSS compilation Eysc_h.cut are highly
correlated, with r = 0.98 (Figure 9-1). This suggests the potential of using
tRNA anticodons as a reference set for computing codon adaptation index.

The ultimate test of an index of translation elongation efficiency is on
whether it can, together with the relative mRNA concentration, predict
protein production. CAI has been used for this purpose (Futcher et al., 1999;
Gygi et al., 1999). When the data in these two papers are used, tCAI is very
slightly (but not significantly) better in predicting protein production than
CAI (details in the last section of the chapter).

The high correlation between the tRNA-based CAI and the conventional
CAI may lead one to conclude that the former is a highly satisfactory
replacement for the latter, without any evils associated with the poorly
defined and poorly documented reference sets associated with the latter.
Unfortunately, this is not true.

186 Chapter 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

CAI (Eysc_h)

tC
A

I

Figure 9-1. CAI based on tRNA anticodons of the yeast (Saccharomyces cerevisiae),
designated tCAI, and conventional CAI based on EMBOSS compilation of Eysc_h.cut.
Computed by ignoring all codons with their corresponding w values equal to 0 (because no
logarithm is defined for 0).

There is a serious problem that limits the utility and interpretation of
tCAI . For some species, the number of tRNA genes is relatively small, with
the consequence that some w values are zero (Tables 9-2 and 9-3). These w
values typically correspond to codons that are rarely used in highly
expressed genes, but more frequent in lowly expressed genes. If we ignore
all codons with their corresponding w values equal to 0, then the resulting
CAI values for highly expressed genes will be little affected, but CAI values
for lowly expressed genes tend to be elevated. This is already visible in
Figure 9-1 which compares the conventional CAI based on the reference
codon usage table Eysc_h.cut and the tRNA-based CAI. The effect is more
obvious with Escherichia coli with fewer tRNA genes (Figure 9-2).

The seriousness of the problem is not well illustrated with the yeast or E.
coli data because they are not the species with the fewest tRNA genes. For
example, Mycoplasma genitalium G37 genome (NC_000908) contains only
38 tRNA genes, and M. pulmonis genome (NC_002771) contains only 29
tRNA genes (of which only 28 may be functional because one of the two
tRNATrp genes, MYPU_TRNA_TRP_1, does not form the anticodon loop
properly, i.e., it does not have the seven-nucleotide anticodon loop formed
by the anticodon flanked by two nucleotides and held by a stem). Such a
small number of tRNA genes will result in about half of the w values being
zero. The resulting w values would generate a very high CAI value for every
gene (i.e., most genes will have CAI = 1) if we ignore all codons with their

9. Characterizing translation efficiency 187

corresponding w values equal to zero. Therefore, while the yeast result
(Figure 9-1) suggests the potential of using tRNA genes to compute CAI, it
is necessary to develop an alternative index of codon usage bias.

y = 0.4214x + 0.624
R2 = 0.6634

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CAI

tC
A

I

Figure 9-2. Relationship between tCAI and conventional CAI (based on EMBOSS
compilation of Eeco_h.cut) for Escherichia coli. Computed by ignoring all codons with their
corresponding w values equal to 0 (because no logarithm is defined for 0).

4.2 Codon-anticodon adaptation index (CAAI)

Before we start developing our new index, it is important to review a few

exceptional codon families in Table 9-2 and Table 9-3. We have previously
asked why indices based on tRNA availability, indirectly measured by the
number of tNRA gene copies because the two are generally positively
correlated in several bacterial species and the budding yeast (Duret, 2000;
Ikemura, 1992; Kanaya et al., 1999; Percudani et al., 1997), often do not
perform as well as CAI which ignores tRNA but is based entirely on the
codon usage of highly expressed genes. Examining the exceptional codon
families in Table 9-2 and Table 9-3 will help answer the question.

Table 9-2 and Table 9-3 show that codon usage of highly expressed
genes does not always match the tRNA gene with the largest number of gene
copies in the genome. Although the codon that forms perfect base-pairing
with the tRNA anticodon is preferentially used within each codon family in

188 Chapter 9

most cases, there is an obvious exception involving cysteine (Table 9-
2).There are four tRNACys genes with the anticodon matching codon UGC
but no tRNACys

 with an anticodon matching codon UGU. We would have
expected UGC codon to be preferentially used over the UGU codon.
However, the opposite is true (Table 9-2). While there has been no
satisfactory explanation for highly expressed genes to prefer UGU codon
against UGC codon, the observation that codon usage of highly expressed
genes do not always match the tRNA gene with the largest number of gene
copies in the genome may explain why indices based on relative tRNA
abundance may not perform as well as indices based on the codon frequency
of known highly expressed genes.

Similar exceptions are also present in the four-fold codon families (Table
9-3). For example, there is no tRNAGly with an anticodon matching perfectly
the GGU codon, yet the codon is by far the most frequently used in highly
expressed protein-coding genes (Table 9-3). Another exception is tRNAThr.
There is no tRNAThr with an anticodon that forms Watson-Crick base pair
with codon ACC, yet ACC is the most frequently used codon in the codon
family (Table 9-3). In particular, while the exceptional case in Table 9-2
involves an infrequently used amino acid (cysteine), the exceptional cases in
Table 9-3 involve relatively frequently used amino acids (glycine and
threonine). It is difficult to argue that natural selection favouring an
increased efficiency of translation for highly expressed genes should turn a
blind eye on glycine and threonine codon families while imparting a strong
effect on other codon families.

The exceptional cases are not unique in the yeast, but can also be found
in many other species (although not always the same codon families being
exceptional). Because of these exceptions, we cannot always be sure of
which codon is translationally optimal. For example, based on tRNA copy
numbers, we would have predicted codons UGC, GGC, and ACU to be
translationally optimal in the UGY, GGN and ACN codon families,
respectively. However, based on the codon frequencies of known highly
expressed genes, we expect codons UGU, GGU and ACC to be
translationally optimal in the UGY, GGN and CAN codon families,
respectively. This should be kept in mind when we learn indices of codon
usage bias such as RSCU and CAI.

Readers who still remember the codon-anticodon adaptation hypothesis
and the wobble versatility hypothesis that we encountered in Chapter may
have noticed these two hypotheses, specifically formulated for vertebrate
mitochondrial genomes, are not applicable for eukaryotic nuclear genomes.
We have already mentioned exceptions to the codon-anticodon adaptation
hypothesis (i.e., the cysteine codon family in Table 9-2, and glycine and
threonine codon families in Table 9-3). The wobble versatility hypothesis is

9. Characterizing translation efficiency 189

also not very useful in predicting the wobble nucleotide in eukaryotic tRNA
encoded by nuclear genomes. For example, the wobble versatility hypothesis
states that tRNA translating Y-ending codons should have nucleotide G at
the wobble site (the first nucleotide of the anticodon) because G can pair
with both C and U. However, however, most tRNAs translating Y-ending
codons within the four-fold degenerate codon families have nucleotide A
(Table 9-3).

Because the exceptional cysteine codon family in Table 9-2 involves an
under-used amino acid (cycteine accounts for about 1% in protein-coding
genes in the genome of the budding yeast, Saccharomyces cerevisiae and
2.2% in the 890 protein-coding sequences in human chromosome 22), its
effect on the codon usage index is small. More serious problems are present
in Table 9-3 because exceptions involve frequently used amino acids such as
glycine and threonine. If we use relative tRNA copy number to generate w
(Tables 9-2 and 9-3), and if the input sequence happens to contain many
GGU (glycine codon) and ACC (threonine codon), then the input sequence
will have a rather small CAI value, although the biased usage of these
codons is characteristic of highly expressed genes (Table 9-3).

We note in Table 9-3 that each four-fold codon family is generally
translated by at least two types of tRNAs, one with a wobble U at the tRNA
anticodon to translate R-ending codons and the other with a wobble G at the
tRNA anticodon to translate Y-ending codons (where R stands for A or G
and Y stand for C or T/U). As we have briefly explored in Chapter 8 on the
cost of wobble pairing, there might be little cost in wobble-translating G-
ending codons given a wobble U at the tRNA anticodon. So the wobble U
may not imply any selection against G-ending codons. Similarly, there might
be little selection against U-ending codons when the wobble site of the
tRNA anticodon is G. Thus, we may simply collapse the four-fold codon
families into “two-fold” codon families with R-ending and Y-ending codons.

Table 9-4 results from collapsing Table 9-3 into R-ending and Y-ending
codons. This has three advantages. First, it eliminates the exceptional codon
families that do not show the nice association between tRNA gene copy
number and codon frequencies of highly expressed genes. Second, it has
essentially eliminated all zero w values. Third, it reduces codon usage bias
not associated with selection for optimizing codon-anticodon adaptation. For
example, in extremely AT-biased genome maintained by strong AT-biased
mutation spectrum, a four-fold codon family may have many A-ending and
T-ending codons but few C-ending or G-ending codons. Such mutation-
mediated codon usage bias has little to do with maximizing translation
elongation rate and should not confound the computation of an index such as
CAI intended to measure efficiency of translation elongation. By collapsing

190 Chapter 9

such codons into R-ending and Y-ending codons, such mutation-mediated
codon usage bias is eliminated or at least substantially reduced.

Table 9-4. Collapsing Table 9-3 to R-ending and Y-ending codons. Symbols as in Table 9-2.
AA Codon T w F
Ala GCR 5 0.455 6
Ala GCY 11 1 541
Arg CGR 1 0.167 0
Arg CGY 6 1 43
Gly GGR 5 0.313 3
Gly GGY 16 1 468
Ile AUR 2 0.154 0
Ile AUY 13 1 330
Leu CUR 3 1 15
Leu CUY 1 0.333 3
Pro CCR 10 1 211
Pro CCY 2 0.2 12
Ser UCR 4 0.364 8
Ser UCY 11 1 325
Thr ACR 5 0.455 3
Thr ACY 11 1 315
Val GUR 4 0.286 5
Val GUY 14 1 509

We now again have two roads diverged in the yellow wood. One is to

continue to compute CAI, by using a reference codon usage table with four-
fold codon families collapsed as in Table 9-4. Now for each input sequence
for which we need to compute the CAI value, we count the codon
frequencies in the two-fold families and use the w values in Table 9-2 but,
for four-fold codon families, we count the frequencies of all R-ending and
Y-ending codons and use the w values in Table 9-4. This allows us to use
tRNA-derived codon frequencies for any species. The only disadvantage is
that there are still some w values being zero, and we would always feel
guilty for not using all the information in the data.

The other road we can take is to develop an entirely new index. Note that
all codon families in Tables 9-2 and 9-4 are effectively “two-fold” after
collapsing the four-fold codon families into the R-ending and Y-ending
codons. Designating the codon frequencies of such a “two-fold” codon
family i as Ni1 and Ni2, the deviation of Ni1 and Ni2 from equal codon usage
can be measured by:

2 2 2
2 1 2 1 2() () ()i i i i i i
i

i i i

N E N E N NX
E E M
− − −

= + = (9.6)

where Mi = (Ni1 + Ni2), and Ei = Mi / 2.

9. Characterizing translation efficiency 191

Summing up the Xi
2 values would generate an overall measure of codon

usage bias for the gene. However, there are two problems. First, Xi
2 is

dependent on the number of codons in codon family i so that a codon family
with a large (Ni1 + Ni2) tends to have a larger Xi

2. To eliminate the
dependence we need to divide the summation of Xi

2 by the summation of Mi.
Second, we have not yet incorporated the information of the reference set.
This we can do by introducing a sign function for codon family i:

1 2 1 2[()()]i i i i iS sign N N T T= − − (9.7)

where Ti1 and Ti2 stand for the frequencies of the two tRNA-derived codons,
i.e., the column headed by T in Tables 9-2 and 9-4. The sign function is
positive when the codon usage bias is in the same direction as the tRNA
bias, and negative when it is not. These considerations now lead to a new
index called codon-anticodon adaptation index (CAAI, following the
wisdom that two A’s are better than one):

()2

1

n

i i
i

n

i
i

S X
CAAI

M

==
∑

∑
 (9.8)

where Si determines whether Xi
2 is to be positive or negative. Obviously, if

codon usage is biased to favor the codon with the fewest cognitive tRNA
species, then the contribution of the codon usage bias should be negative.

The value of CAAI ranges from -1 to 1 and can be interpreted in the
same way as a correlation coefficient. The relationship between CAAI for
Escherichia coli K12 (NC_000913) and the conventional CAI computed
with the EMBOSS compilation Eeco_h.cut is stronger (Figure 9-3), with R2
= 0.7294, than that between tCAI and CAI (Figure 9-2), with R2 = 0.6634.
Thus, it seems that CAAI is a better replacement of CAI than tCAI. The
relationship in Figure 9-3 also appears more linear and more normally
distributed than that in Figure 9-2. This makes it easy to re-scale CAAI to be
within the range of 0 and 1 as CAI. The linear relationship (Figure 9-3)
implies that any analysis involving CAI can also be performed with CAAI
with no further data transformation.

A more objective check of the relative value of CAAI and CAI is to see
which one is better associated with the translation initiation signal, based on
the assumption that a highly expressed protein should not only have strong
codon usage bias to speed up translation elongation, but also a strong

192 Chapter 9

initiation signal to increase initiation efficiency. For prokaryotes, the
initiation site is located by the binding of Shine-Dalgarno (SD) sequence of
small subunit rRNA to the anti-SD sequence on the 5’-end of mRNA
upstream of the initiation codon (Shine and Dalgarno, 1974, 1975a). The
efficiency of translation initiation depends, in a non-linear fashion, on the
binding strength (S) and the distance of the binding to the initiation codon
(D). One can obtain a set of known highly expressed proteins in E. coli,
characterize S and D, and check to see if CAI or CAAI is a better predictor
of features of S and D in highly expressed genes.

y = 0.8853x - 0.3361
R2 = 0.7294

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CAI

C
A

A
I

Figure 9-3. Relationship between CAAI and conventional CAI (based on EMBOSS
compilation of Eeco_h.cut) for Escherichia coli. Results from DAMBE(Xia, 2001; Xia and
Xie, 2001b)

5. WHY CAI OR CAAI SHOULD NOT BE TAKEN AS
A MEASURE OF GENE EXPRESSION?

There is a great deal of confusion concerning the relationship between
CAI (or CAAI) and gene expression, especially when gene expression refers
to the expression level of mRNA. As I have emphasized before, CAI and
CAAI are intended to measure the efficiency of translation elongation. When
there are selection favoring an increased production of a certain protein, then

9. Characterizing translation efficiency 193

the selection can act at both the translation level and transcription level, so
that the protein-coding gene may both be transcriptionally and translationally
highly expressed. For this reason, an index such as CAI or CAAI that
increases with translation efficiency will also be spuriously increased with
transcription efficiency.

There is no theoretical basis that CAI or CAAI should always be
positively correlated with mRNA level. In fact, it is easy to think of
scenarios when CAI or CAAI would be negatively correlated with mRNA
level. Let us first learn a fact about CAI or CAAI that might at first erode
your confidence in such indices. The fact is that these indices depend on the
AT% (or GC% sometimes referred to as GC content) of the gene, with AT-
rich genes having low CAI or CAAI values (Figure 9-4).

-0.3
-0.2

-0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 40 50 60 70 80

AT%

C
A

I o
r C

A
A

I

CAI
CAAI

Figure 9-4. Dependence of CAI or CAAI on AT% of the gene, based on Escherichia coli K12
data (NC_000913).

This dependence of CAI and CAAI of a gene on the AT% of the gene
may at first appear disconcerting, but is in fact quite natural given the fact
that CAI and CAAI essentially measure codon-anticodon adaptation.
Consider a two-fold codon family ending with either C or U. Such a codon
family is typically translated by a tRNA with a G at the wobble site, because
G can pair with both C and U. Given the wobble G in the anticodon, we
would expect C-ending codons to be maximally used. However, for an AT-
rich gene, the codon usage is almost necessarily dominated by U in this Y-
ending codon family. So we have poor codon-anticodon adaptation in these

194 Chapter 9

AT-rich genes. This would contribute to low CAI and CAAI values
associated with high AT% as we can observe in Figure 9-4.

Is this explanation correct or sufficient? At this point a smart student will
typically raise a strong objection as follows. Instead of considering only the
Y-ending codons in the previous paragraph, we consider both R-ending and
Y-ending codons, assuming that the former is translated by tRNA with a U
at the anticodon wobble site and the latter by tRNA with a G at the anticodon
wobble site. This is summarized in Figure 9-5.

R-ending

Y-ending

A

G

C
G

U

G

C3 AC1

A
G

C

U

U

G

C3 AC1

GC-rich gene AT-rich gene

Figure 9-5. Effect of increasing and decreasing AT% on CAI and CAAI, assuming that R-
ending codons are translated by tRNA with a U at its anticodon wobble site and Y-ending
codons by tRNA with a G at its anticodon wobble site. A small “A” and a large “G” mean the
R-ending codon family contains few A-ending codons but many G-ending codons. C3 –
nucleotide at the third codon position; AC1 – nucleotide at the first anticodon position.

We focus first on the right half of Figure 9-5 with AT-rich genes in
which R-ending codon families are dominated by A-ending codons and Y-
ending codon families are dominated by U-ending codons (Figure 9-5, right
half). While the Y-ending codon families of these genes will be biased to
have many U-ending codons and few C-ending codons, resulting in fewer
Watson-Crick C/G pairs and more wobble U/G pairs during translation, the
AT-richness also implies more A-ending codons and fewer G-ending codons
in R-ending codon families, resulting in more Watson-Crick A/U pairs and
fewer G/U wobble pairs during translation. The latter should contribute to an
increased CAI or CAAI and offset the CAI-decreasing effect of Y-ending
codon families. Moreover, for GC-rich genes (the left part of Figure 9-5), Y-
ending codon families should improve their contribution to CAI (or CAAI)
because these codon families now should feature many C-ending codons and
few U ending codons. In contrast, R-ending codons should now contribute
poorly to CAI (or CAAI) because they now have many G-ending codons that
need to be wobbly translated (Figure 9-5). So the argument in the previous
paragraph does not seem logical or sufficient to explain the negative
correlation between CAI (and CAAI) and AT%.

9. Characterizing translation efficiency 195

The answer to the objection turns out to be quite simple. While Y-ending
codons are typically translated by one type of tRNA with a wobble G at its
anticodon, R-ending codons typically have two types of tRNA, one with a U
at the anticodon wobble site to translate A-ending codons and the other with
a C at the anticodon wobble site to translate G-ending codons. This is
summarized in Figure 9-6. In short, it is the Y-ending codon families whose
contribution to CAI or CAAI is sensitive to the AT% of the gene. The
contribution of R-ending codon families may be largely ignored. Focusing
on the Y-ending codon families only, we can see easily that genes with high
AT% should have few C/G pairs and many wobble U/G pairs during
translation. This explains well the negative relationship between gene AT%
and CAI or CAAI.

R-ending

Y-ending

A

G

C
G

U

C

G

C3 AC1

A
G

C

U
G

C3 AC1

GC-rich gene AT-rich gene

U

C

Figure 9-6. A more realistic display of the effect of increasing and decreasing AT% on CAI
and CAAI. Symbols mean the same as in Figure 9-5.

For readers who want to see real data instead of a graphic abstraction, I
list the human tRNA distribution in Table 9-5.

Table 9-5. Frequency distribution of tRNA genes in human.
AA(1) Codon tRNA with anticodon NtRNA

(2)
Ala GCA TGC 9
Ala GCG CGC 5
Ala GCC GGC 0
Ala GCU AGC 29
Arg AGA TCT 6
Arg AGG CCT 5
Arg CGA TCG 6
Arg CGG CCG 5
Arg CGC GCG 0
Arg CGU ACG 7
Asn AAC GTT 28
Asn AAU ATT 1
Asp GAC GTC 18
Asp GAU ATC 0

196 Chapter 9

AA(1) Codon tRNA with anticodon NtRNA

(2)
Cys UGC GCA 30
Cys UGU ACA 0
Gln CAA TTG 11
Gln CAG CTG 21
Glu GAA TTC 12
Glu GAG CTC 13
Gly GGA TCC 9
Gly GGG CCC 7
Gly GGC GCC 15
Gly GGU ACC 0
His CAC GTG 11
His CAU ATG 0
Ile AUA TAT 5
Ile AUC GAT 5
Ile AUU AAT 14
Leu UUG CAA 6
Leu UUA TAA 7
Leu CUA TAG 3
Leu CUG CAG 10
Leu CUC GAG 0
Leu CUU AAG 12
Lys AAA TTT 17
Lys AAG CTT 17
Phe UUC GAA 12
Phe UUU AAA 0
Pro CCA TGG 7
Pro CCG CGG 4
Pro CCC GGG 0
Pro CCU AGG 10
Ser UCA TGA 5
Ser UCG CGA 4
Ser UCC GGA 0
Ser UCU AGA 11
Ser AGC GCT 8
Ser AGU ACT 0
Thr ACA TGT 8
Thr ACG CGT 6
Thr ACC GGT 0
Thr ACU AGT 10
Tyr UAC GTA 14
Tyr UAU ATA 1
Val GUA TAC 5
Val GUG CAC 16
Val GUC GAC 0
Val GUU AAC 11
(1) amino acid
(2) Number of tRNA gene copies.

9. Characterizing translation efficiency 197

In general, Y-ending codons are translated by one type of tRNA with a
wobble G at its anticodon, while R-ending codons typically have two types
of tRNA, one with a U at the anticodon wobble site to translate A-ending
codons and the other with a C at the anticodon wobble site to translate G-
ending codons.

At this point a smart student may again argue that Table 9-5 is irrelevant.
The dependence of CAI and CAAI on AT% is demonstrated for E. coli
(Figure 9-4), but the tRNA data in Table 9-5 is for human. The human data
would be relevant if we have shown a negative correlation between CAI (or
CAAI) and AT% in human genes but, to explain the negative correlation
between CAI (or CAAI) and AT% in E. coli genes (Figure 9-4), don’t we
need tRNA data from E. coli?

This is an excellent question. Some people, in response to this question,
will quote the dogmatic assertion that “what is true for E. coli is also true for
the cow, only truer”. This is not the right way of carrying out science. The
proper response is to present tRNA data for E. coli to demonstrate the same
pattern seen in human tRNA data (Table 9-6 and Table 9-7).

Table 9-6 shows the frequency distribution of tRNA genes in E. coli that
translate Y-ending codons in each codon family. These codons are translated
by one type of tRNA with a wobble G at its anticodon. The anticodon
wobble site of almost all these tRNA genes is occupied by a G, with tRNAArg
being the only exception. This is consistent with the wobble versatility
hypothesis (Xia, 2005c) stating that the wobble site of tRNA anticodons is
determined by the necessity of wobble pairing. Given the anticodon wobble
nucleotide being G, an increase in U-ending codons and a decrease of C-
ending codon as a consequence of AT-richness in the gene naturally will
lead to a decrease in codon-anticodon adaptation, i.e., more U/G wobble
pairing and fewer C/G pairing during translation.

In contrast to Y-ending codons that are typically translated by tRNA with
a wobble G at its anticodon wobble site, R-ending codons in E. coli, similar
to those in human, are typically translated by two types of tRNAs, one with a
U and the other with a C at the anticodon wobble site (Table 9-7). This is
similar to human tRNA (Table 9-5). Therefore, an increase in GC% in a
gene has relatively little effect on its codon-anticodon adaptation for R-
ending codons.

To summarize, Y-ending codons are typically translated by one type of
tRNA with a wobble G at its wobble site, and R-ending codons are typically
translated by two types of tRNA, one with a C and another with a U at its
wobble site. This is generally true from E. coli to human. When AT% of the
gene increases, resulting in many U-ending codons in Y-ending codon
families, the increased U/G wobbling will decrease the CAI value of those
AT-rich genes. The increased AT% would also increase A-ending codons

198 Chapter 9

and decrease G-ending codons, but such increases in AT% has little effect on
codon-anticodon adaptation because R-ending codons generally have two
types of tRNA for translation. When GC% increases, or in the extreme case
when all Y-ending codons are C-ending codons, the resulting perfect C/G
pairing increases the CAI value. This explains the negative relationship
between CAI (or CAAI) and AT% (Figure 9-4).

Table 9-6. Frequency distribution of tRNA genes for translating Y-ending codons in E. coli.
Y-ending codons in each codon family are typically translated by tRNA with a wobble G at
the anticodon. Symbols as in Table 9-5.
AA Codon tRNA with anticodon NtRNA
A GCC GGC 2
A GCU AGC 0
C UGC GCA 1
C UGU ACA 0
D GAC GUC 3
D GAU AUC 0
F UUC GAA 2
F UUU AAA 0
G GGC GCC 4
G GGU ACC 0
H CAC GUG 1
H CAU AUG 0
I AUC GAU 3
I AUU AAU 0
L CUC GAG 1
L CUU AAG 0
N AAC GUU 4
N AAU AUU 0
P CCC GGG 1
P CCU AGG 0
R CGC GCG 0
R CGU ACG 4
S AGC GCU 1
S AGU ACU 0
S UCC GGA 2
S UCU AGA 0
T ACC GGU 2
T ACU AGU 0
V GUC GAC 2
V GUU AAC 0
Y UAC GUA 3
Y UAU AUA 0

9. Characterizing translation efficiency 199

Table 9-7. Frequency distribution of tRNA genes for translating R-ending codons in E. coli.
R-ending codons in each codon family are typically translated by two types of tRNAs, one
with a wobble U and the other with a wobble C at the anticodon. Symbols as in Table 9-5.
AA Codon tRNA with anticodon Freq
A GCA UGC 3
A GCG CGC 0
E GAA UUC 4
E GAG CUC 0
G GGA UCC 1
G GGG CCC 1
K AAA UUU 6
K AAG CUU 0
L CUA UAG 1
L CUG CAG 4
L UUA UAA 1
L UUG CAA 1
P CCA UGG 1
P CCG CGG 1
Q CAA UUG 2
Q CAG CUG 2
R AGA UCU 1
R AGG CCU 1
R CGA UCG 0
R CGG CCG 1
S UCA UGA 1
S UCG CGA 1
T ACA UGU 1
T ACG CGU 2
V GUA UAC 5
V GUG CAC 0

It is important to keep in mind that AT-rich genes may be transcribed

more efficiently than GC-rich genes simply because the nucleotide pool
typically features more A and T than G and C. Nucleotide C is particularly
rare. ATP is much higher than that of the other three rNTPs (Colby and
Edlin, 1970). For example, in the exponentially proliferating chick embryo
fibroblasts in culture, the concentration of ATP, CTP, GTP and UTP, in the
unit of (moles ×10-12 per 106 cells), is 1890, 53, 190, and 130, respectively,
in 2-hour culture, and 2390, 73, 220, and 180, respectively, in 12-hour
culture. Relative abundance of dNTP exhibits similar patterns. The surplus
in A and deficiency in C has been proposed to affect RNA synthesis and
DNA replication (Rocha and Danchin, 2002; Xia, 2005c; Xia et al., 1996;
Xia et al., 2006; Xia and Yuen, 2005), although there is little direct evidence
supporting the claim that the rate of RNA synthesis is in any way affected by
AT% of the RNA.

If AT-rich genes indeed are transcribed more efficiently, then they will
have high mRNA levels and at the same time low CAI values. The negative

200 Chapter 9

correlation between CAI and mRNA level has indeed been documented for
AT-rich genes (dos Reis et al., 2003; Jia and Li, 2005). This should highlight
the point that CAI and CAAI are not measures of gene expression at the
mRNA level because, at least for AT-rich genes, the indices are expected to
be negatively correlated with the mRNA level (which unfortunately is often
referred to as “gene expression” without the qualification of “at the
transcription level”).

Before we finish this section, the reader may wonder if, in this particular
case, we may reasonably claim that “what is true for E. coli is also true for
the human”. We have shown the human tRNA data (Table 9-5), which
would make sense of a negative correlation between CAI (or CAAI) and
AT% in human genes. However, we have not yet seen such a negative
correlation for human genes. So here I will just briefly mention that the
negative correlation is present and statistically significant for not only
human, but also the cow, the mouse and the budding yeast.

6. WILL AT-RICH MRNA BE TRANSLATED
INEFFICIENTLY?

One highly pertinent question arising from the reasoning in the previous
section is whether AT-rich mRNAs will be translated inefficiently because
of the increased pairing of U-ending codons with the G at the tRNA
anticodon wobble site. The answer to this question may not be obvious and
requires some discussion from an evolutionary point of view.

According to the canonical codon-anticodon pairing rules first proposed
for fungal mitochondria (Heckman et al., 1980; Martin et al., 1990), Y-
ending codons can be wobble-translated by tRNA with a wobble G at the
anticodon because G can not only pair with C but also wobble-pair with U,
and R-ending codons by tRNA with a wobble U at the anticodon (through
U/A and U/G pairing). To facilitate the exposition, let us designate the
nucleotide at the anticodon wobble site as A1, G1, C1 and U1 respectively
(where the superscript 1 indicates the wobble site at the first position of the
tRNA anticodon), and that at the third codon position as A3, G3, C3 and U3,
respectively. These canonical codon-anticodon pairing rules imply two
Watson-Crick pairs, U1/A3 and G1/C3, as well as two wobble pairs, U1/G3
and G1/U3, respectively.

If U1/G3 pair is not as good as C1/G3 in term of translation efficiency and
accuracy, then there should be selection in favor of the origin of tRNA genes
with C1 to eliminate the necessity of U1/G3 pairs in translation. Similarly, if
G1/U3 is not as good as A1/U3, then selection should favor the origin of
tRNA genes with A1 to eliminate the necessity of G1/U3 pairs in translation.

9. Characterizing translation efficiency 201

Tables 9-5, 9-6 and 9-7 show that A-ending and G-ending codons are
frequently translated by separate tRNAs with U1 and C1, respectively, but C-
ending and U-ending codons are almost always translated by tRNA with
only G1. This implies that G1/U3 pairs may be as good as perfect Watson-
Crick pairs (e.g., A1/U3, and G1/C3), i.e., selection for the origin of tRNA
genes with A1 to reduce or eliminate G1/U3 pairs is weak. In contrast, wobble
U1/G3 likely is not as good as perfect Watson-Crick pairing, and selection
has resulted in the origin of tRNAs with C1 to replace the U1/G3 pair by the
C1/G3 pair in translation. In other words, both C1 tRNA and U1 tRNA are
needed to translate G-ending and A-ending codons, respectively.

If the reasoning above is correct, i.e., if G1/U3 pairs are as good as
Watson-Crick pairs, then an increase in U-ending codons with a consequent
increase in G1/U3 pairs during translation of AT-rich genes does not
necessarily imply inefficient translation, although such an increase would
still reduce CAI or CAAI. If this is true, then CAI and CAAI are not good
measures of translation efficiency for AT-rich genes.

On the other hand, if G1/U3 pairs are not as good as Watson-Crick pairs
but A1 tRNA did not originate because of some unknown evolutionary
constraints, then AT-rich genes may be translated inefficiently and the
negative correlation between CAI (and CAAI) and AT% does not invalidate
their application to AT-rich genes. An extension of this argument is that if
AT-rich genes cannot be translated efficiently, yet the cell requires a large
quantity of proteins from some of these genes, then the only way to meet the
cellular need is to increase transcriptional efficiency to produce many
mRNAs. This would also contribute to the association of low CAI (or CAAI)
and high gene expression at the transcription level. As I have mentioned
before, such negative correlation between the two has already been
documented (dos Reis et al., 2003; Jia and Li, 2005). This is another warning
against interpreting CAI (or CAAI) as an index of gene expression at the
transcriptional level.

7. CODON ADAPTATION INDEX AND
PROTEOMICS: CLARRIFICATION OF SOME
MISUNDERSTANDINGS

Proteins are involved in all three essential biological processes, i.e., DNA
replication, transcription and translation. Their functions include metabolic
interactions, signal transduction, gene regulation, transport, cellular
structures, organelle constituents, storage reserves, protection, and cellular
homeostasis. Normal function of living cells depends much on normal
production of proteins, and many of the known human genetic diseases are

202 Chapter 9

caused by the overproduction or underproduction of certain proteins. Many
human genetic diseases can be attributed to the overproduction or
underproduction of certain proteins. Therefore, proteins constitute one of the
most important cellular components in the cell, and the understanding of
their interactions is believed to be the key to many unresolved biological
problems today, including cancer (Chen et al., 2005; Sparre et al., 2005).

Given the importance of proteins in understanding cellular functions, a
biologist naturally would wish to characterize the protein production,
especially the temporal change of protein production and their interactions
(Figeys, 2002; Sloane et al., 2002; Wilson and Nock, 2002), in the living
cells. However, it has been difficult to characterize the expressed proteome
in spite of the recent advances in protein separation, identification and
quantification (Figeys, 2003b, 2003a; Vasilescu and Figeys, 2006; Washburn
et al., 2001; Yates, 2004a, 2004b). Large-scale proteomics is handicapped by
the difficulties in (1) separating certain proteins, especially hydrophobic
membrane proteins and those with extreme isoelectric points and (2)
identifying rare proteins (Chen et al., 2005; Gygi et al., 1999; Kolkman et
al., 2005; Sparre et al., 2005; Tian et al., 2004).

One alternative is to characterize the expressed transcriptome and predict
the proteome from the transcriptome. The ease in generating transcriptomic
data by the microarray (Diehn et al., 2000; Epstein and Butow, 2000;
Gaasterland and Bekiranov, 2000; Holstege et al., 1998; Schena, 1996;
Schena, 2003) or SAGE (Madden et al., 1997; Saha et al., 2002; Velculescu
et al., 1995; Velculescu et al., 1997; Zhang et al., 1997) experiments has
fostered the hope that protein production can be predicted from
transcriptomic data. In particular, the reproducibility of the SAGE method
has been shown to be excellent (Dinel et al., 2005).

However, the relationship between the mRNA and protein levels in cells
is either poor or moderate (Baliga et al., 2002; Chen et al., 2002; Futcher et
al., 1999; Griffin et al., 2002; Gygi et al., 1999; Ideker et al., 2001; Tian et
al., 2004). The best result was obtained by using the transcriptomic data
obtained by SAGE (Velculescu et al., 1997) and the proteomic data acquired
by 2D-gel electrophoresis and capillary liquid chromatography-tandem mass
spectrometry (Gygi et al., 1999), with a correlation of 0.93 between the
mRNA abundance and the protein abundance. However, this reported
correlation of 0.93 is misleading because it results mainly from a few
outlying points with very high mRNA abundance and protein abundance.
This problem is illustrated in Figure 9-7.

9. Characterizing translation efficiency 203

y = 0.3944x + 0.3853
R2 = 0.8684

R = 0.93

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.0 2.0 4.0 6.0 8.0 10.0

x

y

Figure 9-7. Inappropriate use of Pearson correlation in case of outliers. The figure has 23
points with 22 being randomly generated. The correlation is near 0 when the outlying point is
removed.

It is statistically inappropriate to use such a correlation coefficient to

characterize the relationship between two variables (e.g., between the
mRNA abundance and the protein abundance) with outliers. The correlation
coefficient between mRNA abundance and protein abundance drops quickly
from 0.93 to around 0.3 when the few extremely highly expressed genes
were removed (Gygi et al., 1999).

While transcriptomic data measure the number of mRNA molecules in
the cell, it is not expected to be a good predictor of protein production by
itself. Two protein-coding genes may have the same mRNA level, but one
may be translated more efficiently than the other and consequently produce
more proteins. Translation efficiency is partially reflected by the codon
usage and amino acid usage. If a mRNA uses codons recognized by most
abundant tRNA, and if the resulting protein is made mostly of abundant
(typically energetically cheap) amino acids, then we expect more proteins
produced from this mRNA than an alternative mRNA whose codons are
recognized by few tRNA and whose resulting proteins are made mostly of
rare and energetically expensive amino acids. For this reason, codon usage
bias and amino acid usage can improve significantly the prediction of protein
abundance, especially in predicting protein abundance with low mRNA
abundance. CAI measures the component of translation efficiency reflected

204 Chapter 9

by codon usage bias and is expected to contribute to predicting protein
production.

There are often misunderstandings of CAI. For example, it was thought
“that codon bias is a measure of protein abundance” (Gygi et al., 1999) and
expected to be able to predict protein production by itself. The codon usage
bias in Gygi et al. (1999) is CAI (Sharp and Li, 1987) taken from the yeast
proteome database (YPD) (Hodges et al., 1999). As we know now, CAI is
not a measure of protein abundance. Instead, it is a measure of how well a
coding sequence is adapted to the translation machinery (Bulmer, 1991;
Ikemura, 1981; Sharp and Li, 1987; Xia, 1998b). If two protein-coding genes
of equal lengths have the same copy number of their mRNA, then the gene
with a higher CAI value is expected to be translated more efficiently than the
one with a lower CAI, everything else being equal. CAI does not indicate
whether a gene will be transcribed or not. A gene may be highly expressed in
one particular tissue at one particular time, but it may be turned off in other
tissues or at other times, and consequently has no mRNA in the cell. Thus,
the codon usage bias should not be used alone to predict protein abundance
as previously suggested (Futcher et al., 1999), but instead should be
incorporated into a model together with the mRNA abundance to predict
protein abundance.

The misunderstanding of CAI by Gygi et al (1999) led to wrong data
analysis and wrong conclusions. I particularly wish to highlight the
significance of the result concerning gene ENO1 because the mRNA and
protein abundance of this gene was used by Gygi et al. (1999) to support two
major claims in their paper. First, they concluded that mRNA abundance is
insufficient to predict the protein abundance. This claim is also echoed by
others (Griffin et al., 2002; Tian et al., 2004). Instead of providing statistical
substantiation, Gygi et al. (1999) provided a concrete example to show that
genes with similar mRNA abundance such as ENO1 and FRS2 both with the
mRNA abundance value of 0.7 differ in protein abundance by more than 20-
fold (e.g., the protein abundance values for ENO1 and FRS2 are 44.2 and
2.3, respectively).

Although ENO1 and FRS2 do not differ in mRNA abundance, they differ
greatly in CAI which is 0.93 and 0.451 for ENO1 and FRS2, respectively. In
other words, ENO1 mRNA is expected to be translated into proteins much
more efficiently than FRS2. Given the same mRNA abundance of 0.7, we
naturally should expect the ENO1 mRNA to be translated into many more
copies of proteins than the FRS2 mRNA. This is exactly what has been
observed, a vindication of incorporating codon usage bias in a model for
predicting the protein abundance. In fact, there are 13 genes with the lowest
average mRNA abundance of 0.7 (Gygi et al., 1999), and ENO1 is the only
gene with a very high CAI value and also a high protein abundance value of

9. Characterizing translation efficiency 205

44.2. The predicted protein abundance value for ENO1 is almost exactly the
same as the observed value when both mRNA and CAI are incorporated into
the prediction (Xia, 2005b). So there is nothing extraordinary for ENO1 to
have its protein abundance much higher than other genes with similar
mRNA abundance. One should not use its high protein production relative to
FRS2 as evidence to support the claim that mRNA abundance is a poor
predictor of protein abundance.

The second major claim made by Gygi et al. (1999) is that codon usage
bias is a poor predictor of protein production because ENO1 and ENO2 both
have high CAI values but the protein abundance value for the latter is much
greater than the former. As mentioned before, codon usage bias says nothing
about whether a gene will be transcribed or not. It measures how efficient a
transcribed mRNA can be translated by the translation machinery in the cell.
As Gygi et al. (1999) has recognized, ENO1 is down-regulated, and ENO2
up-regulated in transcription, in their culture conditions, with the former has
few transcripts relative to the latter (0.7 and 289, respectively). The
observation that they have different protein abundance does not in any way
belittle the utility of codon usage bias in predicting protein abundance. In
fact, the predicted protein abundance value for ENO2 is also quite similar to
its observed value (Xia, 2005b), i.e., consistent with the model that both
mRNA abundance and codon usage bias are important predictors of protein
abundance. As the previous contrast between ENO1 and FRS2 has shown,
codon usage bias is crucial in supplying the answer missed by mRNA
abundance alone.

This illustration above vindicates the wisdom of R. A. Fisher that “No
aphorism is more frequently repeated in connection with field trials, than
that we must ask Nature few questions, or ideally, one question at a time.
The writer is convinced that this view is wholly mistaken. Nature, he
suggests, will respond to a logical and carefully thought-out questionnaire;
indeed, if we ask her a single question, she will often refuse to answer until
some other topic has been discussed” (Fisher, 1926). When Gygi et al.
(1999) asked if CAI could predict protein production, nature refused to give
them the right answer. When they asked if mRNA abundance could predict
protein production, they again were given a wrong answer. However, when
both mRNA and CAI were taken into account to predict protein production,
a very good answer was given (Xia, 2005b).

The example above reminded me of an anecdote involving the former
Chinese premier Zhou Enlai that highlights the importance of having a
global view of things. After the establishment of the People’s Republic of
China, the government launched a nationwide campaign against
pornography and prostitution. The effort resulted in a complete eradication
of prostitution in mainland China. In a news conference celebrating this

206 Chapter 9

major socialist achievement, a western reporter suddenly asked Premier
Zhou if China still had prostitutes. All Chinese officials present were
surprised to hear Premier Zhou answering “Yes”, and all applauded when
Premier Zhou added that “They are in Taiwan”. It turned out that the western
reporter was hoping that Premier Zhou would answer “No” given the special
occasion so that he could then claim that Chinese leadership did not consider
Taiwan as part of China. A global view of things by Premier Zhou saved the
day. It is time for biologists to take a global view of the cell instead of asking
nature a single question at a time.

As I mentioned before, the utility of an index of translation efficiency
ultimately depends on its ability to predict protein abundance. Two previous
publications (Futcher et al., 1999; Gygi et al., 1999) have evaluated the
utility of CAI by studying its relationship to protein production. Futcher et
al. (1999) noted that log-transformation of the protein abundance data
linearized its relationship with CAI and stabilized variance of protein
abundance over the range of CAI. I present in Table 9-8 Pearson correlation
coefficients between the log-transformed data and the two indices of codon
usage bias, CAAI and CAI. Two points are worth noting. First, there is a
clear relationship between the two variables, indicating that these indices of
codon usage bias can contribute to a better prediction of protein abundance.
Second, CAAI consistently exhibits a highly correlation than the
conventional CAI.

Table 9-8. Pearson correlation coefficients between protein abundance and indices of codon
usage CAAI and CAI.
 lnGygi(2) lnFut1(2) lnFut2(2)
CAAI 0.7072 0.8464 0.7372
CAI-Gygi(1) 0.6989 0.8055 0.7229
CAI-Futcher(1) 0.7024 0.7736 0.5935
(1) CAI values differ slightly between Futcher et al. (1999) and Gygi et al. (1999), likely

caused by using slightly different reference sets (which were not specified in the papers).
(2) Log-transformed protein abundance in Futcher et al. (1999) and Gygi et al. (1999).

Protein abundance was measured by Futcher et al. (1999) in glucose and ethanol media,
designated lnFut1 and lnFut2, respectively in the Table.

The misunderstanding of codon usage bias by Gygi et al. (1999) and their

conclusion that codon usage bias is a poor predictor of protein abundance
have the unfortunate consequence that several subsequent studies of the
relationship between mRNA and protein levels have ignored codon usage
bias all together (Baliga et al., 2002; Chen et al., 2002; Griffin et al., 2002;
Ideker et al., 2001; Tian et al., 2004) by citing conclusions in Gygi et al.
(1999). It seems that science can move backwards quite easily.

Chapter 10

PROTEIN ISOELECTRIC POINT

1. INTRODUCTION

Proteins have ionizable groups such as carboxyl groups and amino
groups. Since the charge of these groups depends on pH, a protein molecule
can have different charges at different pH. The isoelectric point of a protein
is the pH at which the protein carries not net charge.

Why should a book entitled “bioinformatics and cell” have a chapter on
protein isoelectric point (pI) and its computation? There are several answers
to this question, all related to the aphorism that proteins are the workhorses
in the cell and that an understanding of a living cell cannot come into shape
without a good understanding of proteins housed in the cell.

First, pI is important in understanding enzyme-substrate interactions. An
enzyme and its substrate should not be both positively charged or both
negatively charged because the two will repulse each other. To know
whether the enzyme is positively charged or negatively charged at a given
ambient pH, we need to know pI of the protein. The protein is positively
charged if its pI is greater than the pH and negatively charged if its pI is
smaller than the pH.

Second, biologists have tried for a long time to characterize and analyze
proteins in living cells. Large-scale proteomic research started with sodium
dodecyl sulfate polyacrylamide gel electrophoresis or SDS-PAGE (Laemmli,
1970). Subsequent perfection of isoelectric focusing leads to the
development of 2D-SDS-PAGE. While large-scale peptide analysis methods
have been developed by John Yates and colleagues recently (Washburn et

208 Chapter 10

al., 2001; Yates, 2004a, 2004b), 2D-SDS-PAGE remains the most frequently
used proteomic method. Indeed, 2D-SDS-PAGE has almost become
synonymous to proteomic research (Liebler et al., 2002, p. 36).
Understanding 2D-SDS-PAGE requires an understanding of pI. For
example, if the pI values of proteins in a cell ranges from 2 to 14 and you
intend to use an isoelectric-focusing strip with a fixed pH range between 3
and 7 in your 2D-SDS-PAGE, then you know that you will miss many
proteins. It is now routine for researchers to extract all annotated coding
sequences in a genome, translate them into proteins, obtain their molecular
mass and theoretical pI values, and generate an in silico 2D-SDS-PAGE to
improve the experimental design of a real 2D-SDS-PAGE. This in silico 2D-
SDS-PAGE can also be used as the expected pattern to compare with the
observed pattern on a real 2D-SDS-PAGE. Those proteins found at the same
location in both the in silico gel and the real gel may be assumed to have
undergone no posttranslational modification, whereas those whose
coordinates do not match between the in silico gel and the real gel are good
candidates for studying posttranslational modification.

Third, the stability of a protein often depends on the electrostatic
interaction between its positively charged and negatively charged groups on
the surface of protein at its physiological condition. When the pH deviates
substantially from the physiological pH, the electrostatic interaction is
disrupted and the protein will denature. For example, at extremely low pH
(acidic), the carboxyl group is protonated and negative charges are
decreased, whereas more of the amino groups are positively charged. Such a
protein will tend to lose its stability, become less compact and finally
denature.

Fourth, if a highly expressed protein happens to have its pI equal to the
cytoplasmic pH, then there is no electrostatic repulsion among different
copies of this protein when it is mass produced. Because the protein is not
charged, its solubility is the lowest, and different copies of this protein may
aggregate and precipitate, which is often bad for the cell. The “amyloid
precursor protein” causing Alzheimer disease and the prion protein causing
the mad cow disease are examples of the undesirable protein aggregation and
precipitation. From an evolutionary point of view, one should expect
directional selection driving the protein pI away from the physiological pH,
and the directional selection should be strong in highly expressed proteins
than in lowly expressed proteins. There are known cases where natural
selection has shaped protein pI. For example, Helicobacter pylori, a bacterial
species colonizing mammalian stomach, features a set of membrane proteins
that are positively charged, and this positively charged membrane is likely
important in alleviating the influx of protons (H+) in the acidic stomach fluid
into the bacterial cytoplasm (Sachs et al., 2003; Xia and Palidwor, 2005).

10. Protein isoelectric point 209

This chapter begins with a brief review of the basic concepts of
biochemistry related to computing protein pI. The method of computing
protein pI based on computer iterations is then presented. This is then
followed by special sections illustrating bioinformatics applications of pI.

2. AMINO ACID AND PROTEIN ISOELECTRIC
POINT

We need to know the ionization constant (Ka) and a few associated
concepts. Ka measures the tendency of a chemical to give up proton. With an
ionizing reaction below involving a weak acid:

- +RCOOH=RCOO + H (10.1)

Ka is expressed as

- +

a
[RCOO][H]

[RCOOH]
K = (10.2)

which will be re-designated as Ka1 hereafter for the ionization constant in an
amino acid ionization reaction involving a weak acid. The ionization
constant involving a weak base will be designated as Ka2.

Take the base-10 logarithm (lg) of both sides of Eq. (10.2), we have

-
+

a1
[RCOO]lg lg[H]+ lg
[RCOOH]

K = (10.3)

Recall that, in chemistry, pH is defined as –lg[H+] and pKa1 as -lgKa1. So
the equation above becomes the well known Henderson-Hasselbalch
equation:

-

a1
[RCOO]+lg
[RCOOH]

pH pK= (10.4)

For weak bases such as amines, the Henderson-Hasselbalch equation is

2
a2 +

3

[NH]+lg
[NH]

pH pK= (10.5)

210 Chapter 10

An amino acid is a weak base and a weak acid at the same time. It exists
as a cation at low pH, and an anion at high pH. The amino acid at the
intermediate pH when it carries no net charge (i.e., the positive and the
negative charge cancel each other) is called a zwitterion:

a1 a2+ + - -
3 3 2

pK pK
NH -RCH-COOH NH -RCH-COO NH -RCH-COO⎯⎯⎯→ ⎯⎯⎯→←⎯⎯⎯ ←⎯⎯⎯

The isoelectric point of an amino acid is defined as the pH at which the
amino acid exists as a zwitterion. Thus, given the condition that [RCOO-] in
Eq. (10.4) equals [NH3

+] in Eq. (10.5), i.e., the negative charge equals the
positive charge, we have

1 2

1 2

1 2

1 2

1 2

a a 2

a a 2

+ -
a a 3

a a

a a

pH - p lg[RCOOH] p - lg[NH]

2pH p p lg[NH]- lg[RCOOH]

 p p lg([AA]-[NH]) - lg([AA]-[RCOO])

 p p

p p
pH

2

K K pH

K K

K K

K K

K K

+ = +

= + +

= + +

= +

+
=

 (10.6)

where [AA] is the total concentration of the amino acid. The final pH in Eq.
(10.6) is defined as the isoelectric point of the amino acid and is designated
by a new symbol pI, i.e., it is the pH at which [RCOO-] = [NH3

+]. The pKa
values for the ionizable residues are listed in Table 10-1.

Table 10-1. The ionizable residues in proteins and their approximate pKa values. The last four
columns illustrate the calculation of pI for protein polA2 from Halobacteria NRC1.
Amino acid group pKa

(1) pKa
(2) N pH = 3 pH = 4.2227 pH = 5

Arginine 12.5 12.50 95 95.0000 95.0000 95.0000
Lysine 10.0 10.79 31 31.0000 31.0000 30.9999
Histidine 6.0 6.50 38 37.9880 37.8004 36.8352
Tyrosine 10.4 10.95 40 0.0000 0.0000 0.0000
Cysteine 8.3 8.30 18 -0.0001 -0.0015 -0.0090
Glutamic acid 4.1 4.25 115 -6.1226 -55.6905 -97.6374
Aspartic acid 4.1 3.91 161 -17.6374 -108.2869 -148.8972
N-terminal α-amino 8.0 8.56 1 1.0000 1.0000 0.9997
C-terminal α-carboxyl 3.1 3.56 1 -0.2159 -0.8214 -0.9650
(1) From Berg et al. (2002).
(2) The average of 16 sets of values that I collected from journal papers, books and web

pages

10. Protein isoelectric point 211

Each peptide has a H2N- group at one end and a –COOH group at the
other end, and its charge depends mainly on the ionization of the side chain
of amino acid residues (Table 10-1). Note that the pKa values depend on
temperature, ionic strength and other less well defined factors, so that values
in Table 10-1 are approximate. Also note that there are only seven amino
acids that have ionizable residues. Other amino acid residues are irrelevant
in computing protein pI.

The pI of a protein is typically computed by an iterative method
illustrated in Table 10-1, with the polA2 protein from Halobacteria NRC1
and the pKa values in the third column in Table 10-1. First, one counts the
frequencies of the seven ionizable amino acid residues in Table 10-1 (shown
in the column headed with ‘N’). Next, for each amino acid, we compute the
proportion of positively charged and negatively charged residues, designated
by PNH3+ and PRCCO-, respectively:

3

3

3 2

[]
[] []

[]
[] []

RCOO

NH

RCOOP
RCOO RCOOH

NHP
NH NH

−

+

−

−

+

+

=
+

=
+

 (10.7)

From equations (10.4) and (10.5), we can derive these two proportions as
follows:

a

a

-
a

-

a

-

RCOO

[RCOO]lg
[RCOOH]

[RCOO] 10
[RCOOH]

10
1 10

pH pK

pH pK

pH pK

pH pK

P

−

−

−

= −

=

=
+

 (10.8)

a

+
a3

2
a+

3

2
+
3

NH

[NH]lg
[NH]

[NH] 10
[NH]

1
10 1

pH pK

pH pK

pH pK

P

−

−

= −

=

=
+

 (10.9)

212 Chapter 10

PRCOO- in Eq. (10.8) is interpreted in two similar ways. For example, with
N Glu residues, PRCOO- means the proportion of the residues that carry the
negative charge at a given pH. For a single Glu residue, PRCOO- means the
probability that the residue will be in a negatively charged state. Similarly,
for N Arg residues, PNH3+ means the proportion of the residues that are
positively charged at a given pH. For a single Arg residue, PNH3+ means the
probability that the residue will be in a positively charged state.

With the 95 Arg residues in Table 10-1, the number of positively charged
Arg residues, given pH = 3 is

+
3 3 12.50NH

195 95
10 1ArgArgN N P+ −= = × =

+
 (10.10)

Similarly, the number of negatively charged Asp residues out of the total
of 161 in Table 10-1, given pH = 3, is

-

3 3.91

3 3.91RCOO

10161 17.63745
1 10AspAsp

N N P−

−

−= = × =
+

 (10.11)

Such calculations are done for each of the amino acids to generate the
forth column in Table 10-1 headed by ‘pH = 3’. The negative sign is used to
indicate those that carry negative charges. The summation of the column is
141.0119, which means that the protein is positively charged at pH = 3.The
iterative procedure then finds a pH value at which the protein is negatively
charged. Suppose the next value is pH = 5 and we repeat the procedure to
generate the last column in Table 10-1 headed by ‘pH = 5’. Now the
summation becomes -83.6737, i.e., the protein is negatively charged at pH =
5. Now we know that the pH at which the protein carries no net charge must
lie between 3 and 5. Suppose we happen to be lucky to try pH = 4.222657
and repeat the procedure to generate the fifth column in Table 10.1. Now the
sum of the values is very close to 0, i.e., the positively charged and
negatively charged residues cancel each other. Therefore, pI = 4.222657.
Many efficient numerical algorithms are available to find pI (Press et al.,
1992) to any degree of accuracy. The software DAMBE (Xia, 2001; Xia and
Xie, 2001b) implements this iterative procedure to compute the protein pI.

10. Protein isoelectric point 213

3. GENOMIC PROFILING OF PROTEIN
ISOELECTRIC POINT: A CASE STUDY WITH
HELICOBACTER PYLORI

Genomic pI profiling refers to the computation and graphic display of pI
for all genome-derived proteins. Figure 10-1 is a genomic pI profiling for
Escherichia coli. The saddle-shaped distribution is typical of most species
from prokaryotes to eukaryotes. There are several reasons for such a saddle-
shaped distribution, but we will postpone the presentation of the reasons to
the last section of the chapter.

0

100

200

300

400

500

3 5 7 9 11 13
pI

Fr
eq

ue
nc

y

Figure 10-1. Frequency distribution of pI values of genome-derived proteins from E. coli.

The genomic pI profile for the bacterial pathogen, Helicobacter pylori

(Figure 10-2) is quite different from that of E. coli. The conspicuous peak of
basic proteins has been interpreted as a mechanism protecting the organism
against its acidic environment, i.e., the mammalian stomach (Sachs et al.,
2003; Xia and Palidwor, 2005). Note that a protein is acidic if its pI is
smaller than 7 and basic if its pI is greater than 7. However, whether the
protein is positively or negatively charged depends on its environmental pH.
A protein will be positively charged when the environmental pH is lower
than its pI, and negatively charged when the environmental pH is higher than
its pI. For H. pylori, its environmental pH is near 1 but its cytoplasmic pH
can be maintained around pH near 5. Most of its proteins have their pI
greater than its cytoplasmic pH and are consequently positively charged.

Why does the pI profile of H. pylori miss the conspicuous peak visible in
the pI profile of E. coli around pH = 5? From an evolutionary point of view,

214 Chapter 10

when we see differences among different species, we typically think in two
ways. The first is that the pI profile has little to do with the survival and
reproduction of the species and can drift in any way and take up any shape.
The alternative hypothesis is that the differences between the species are
respectively beneficial to the organisms living in different environments. It is
in this context that we will examine in detail the pI profile of H. pylori.

0

50

100

150

200

250

3 5 7 9 11 13

pI

Fr
eq

ue
nc

y

Figure 10-2. Frequency distribution of pI values of genome-derived proteins from H. pylori.

H. pylori (Figure 10-3) is one of the terminal lineages in the highly
invasive Helicobacter complex. It thrives in the acidic environment of
mammalian stomach, causing gastric and duodenal ulcers and gastric cancer
in human (Correa, 1997; Hamajima et al., 2004; Hunt, 2004; Menaker et al.,
2004; Siavoshi et al., 2004).

Figure 10-3. Microscopic image of H. pylori (From Paul Stokes Hoffman, University of
Virginia).

10. Protein isoelectric point 215

Being an acid-resistant neutralophile (Bauerfeind et al., 1997;
Rektorschek et al., 2000; Sachs et al., 1996; Scott et al., 2002), H. pylori is
capable of surviving for at least 3 hours at pH 1 with urea (Stingl et al.,
2001) and maintaining a nearly neutral cytoplasmic pH between pH 3.0 and
7.0 (Matin et al., 1996; Scott et al., 2002; Stingl et al., 2002b). These
properties allow it to survive and reproduce in the human stomach where the
gastric fluid has a pH averaging about 1.4 over a 24-h period (Sachs et al.,
2003).

The buffering action of the gastric epithelium and limited acid diffusion
through the gastric mucus were previously thought to protect the bacterium
against stomach acidity, but both empirical studies (Allen et al., 1993) and
theoretical modeling (Engel et al., 1984) have suggested that the protection
is rather limited (Matin et al., 1996; Sachs et al., 2003). Recently it has also
been shown that mucus does not hinder proton diffusion and a trans-mucus
pH gradient is abolished when the luminal pH drops to < 2.5 (Baumgartner
and Montrose, 2004). It is therefore necessary for H. pylori to have acid-
resistance mechanisms to colonize the gastric mucosa successfully (Sachs et
al., 2003).

H. pylori has evolved two mechanisms protecting itself against the acidic
environment in the mammalian stomach. The first involves the urease gene
cluster ureABIEFGH. The constitutively expressed cytoplasmic urease,
coded by ureAB, catalyzes urea to generate 2NH3 + CO2 to buffer against the
H+ influx into either the periplasm or the cytoplasm (Mobley et al., 1991;
Rektorschek et al., 2000; Sachs et al., 2003; Stingl et al., 2002a) and to
facilitate the extrusion of H+ from the cytoplasm in the form of NH4

+ (Stingl
et al., 2002a). However, urease is an apoenzyme requiring a nickel to be
active. The ureEFGH gene cluster, whose expression is acid-induced, codes
for nickel-sequestrating proteins that insert nickel into the urease, leading to
increased and sustained urease activity (Sachs et al., 2003; Wen et al., 2003;
Williams et al., 1996).

The urease, once activated, naturally needs a constant supply of urea as
its substrate, and the cell has two sources of urea supply, one intrinsic and
one extrinsic. The extrinsic source refers to urea present in saliva and
stomach fluid. The exposure to gastric acid results in a large increase in urea
influx into the cell due to the pH-gating of the urea channel protein UreI
(Bury-Mone et al., 2001; Weeks et al., 2000). The intrinsic source comes
from efficient conversion of arginine to urea in the cytoplasm by the highly
expressed arginase in H. pylori (Mendz and Hazell, 1996). For this reason,
arginine is underused in H. pylori proteins and the positively charged
membrane in H. pylori is mainly maintained by a surplus of positively
charged lysine residues (Xia and Palidwor, 2005).

The second acid-resistant mechanism in H. pylori is the restriction of
acute proton entry across its membranes by having a high frequency of

216 Chapter 10

positively charged amino acids in the inner and outer membrane proteins
(Sachs et al., 2003; Scott et al., 1998; Valenzuela et al., 2003). This is
supported by recent discovery of a basic proteome (Tomb et al., 1997), a set
of basic membrane proteins (Baik et al., 2004) in H. pylori, and an extensive
genomic analysis (Xia and Palidwor, 2005).

The membrane proteins have long been suspected to play an important
role in acid resistance in H. pylori (Alm et al., 2000; Huynen et al., 1998;
Solnick et al., 2004; Yamaoka et al., 2002). In a recent characterization of
34 membrane proteins of H. pylori STR 26695 (Baik et al., 2004), four
proteins (HP0243, HP0072, HP0512 and HP1563) have pI values ranging
from 5.86 to 6.25, whereas the rest 30 have pI greater than 7. The average pI
is 8.9221 for these 34 membrane proteins, whereas the average calculated pI
value for the other 1542 proteins annotated in the genomic sequence
(NC_000915) is 8.2147. The two average pI values are significantly
different by a two-sample t-test (DF = 1572, t = 2.075, p = 0.0382, two-
tailed test). Thus, membrane proteins are significantly more basic than the
rest of the proteins in H. pylori.

A comparison of the H. pylori membrane proteins with those in the
related H. hepaticus, may shed light on whether the basic membrane proteins
in H. pylori result from adaptation in response to the acidic environment. If
H. hepaticus, which is not acid resistant, also features a set of equally basic
or even more basic membrane proteins, then the set of basic membrane
proteins in H. pylori is likely an ancestral trait evolved before H. pylori
became a stomach parasite and consequently should not be interpreted as
resulting from adaptation in response to the acidic stomach environment. In
contrast, if the set of basic membrane proteins is unique in H. pylori, then we
would have more confidence in interpreting the basic membrane proteins as
an adaptation.

BLASTing (Altschul et al., 1990; Altschul et al., 1997) those 34 H.
pylori membrane proteins by their corresponding CDSs against the 1875
CDSs in the related H. hepaticus genome, with a cutoff e-value of 0.0001,
revealed several interesting patterns (Xia and Palidwor, 2005). The four H.
pylori membrane proteins with pI < 7 all have homologs in the H. hepaticus
genome (NC_004917). In contrast, among the rest of 30 membrane proteins
with pI > 7, only one has a homolog in the H. hepaticus genome. It is
important to note that, out of the 1576 predicted protein-coding genes in the
genomes of H. pylori strain 26695, 938 found matches in the genome of H.
hepaticus. Similarly, 941 out of 1492 predicted protein-coding genes in the
genome of H. pylori strain J99 (NC_000921) have matches in the genome of
H. hepaticus (Suerbaum et al., 2003). With this reference in mind, the
number of matches for H. hepaticus 26695 membrane proteins in the H.
hepaticus genome is relatively small. This suggests that nearly all those

10. Protein isoelectric point 217

positively charged membrane proteins in H. pylori are unique, and most
likely result from the evolution along the H. pylori lineage. These basic
membrane proteins may either have evolved quickly along the H. pylori
lineage so as to be beyond recognition in the H. hepaticus genome, or
represent differential gain of genes in the H. pylori lineage or differential
loss of genes in the H. hepaticus lineage. In any case, this result lends more
support to the interpretation that the basic membrane proteins and the
functional consequence that they alleviate the influx of H+ into the H. pylori
cell have resulted from adaptation to the acidic environment.

The interpretation above appears rather straightforward. However,
science is never so simple. Almost any observed pattern in science can have
multiple interpretations that seem perfectly consistent with the data. While
two other alternative hypotheses, i.e., preadaptation and exaptation, have
been evaluated against the adaptation hypothesis for the origin and
maintenance of a basic proteome in H. pylori before (Xia and Palidwor,
2005), there is at least another hypothesis that has not been examined.

4. AN ALTERNATIVE EXPLANATION OF H.
PYLORI DATA

As mentioned previously, a protein in a solution with a pH equal to the
protein pI is not charged. If highly expressed proteins happen to have their pI
equal to the cytoplasmic pH, then there is no electrostatic repulsion among
these proteins when they are mass-produced. Because the proteins are not
charged, their solubility is at the lowest, and they may aggregate and
precipitate, which is often harmful to the cell. The “amyloid precursor
protein” causing Alzheimer disease and the prion protein causing the mad
cow disease are examples of the undesirable protein aggregation and
precipitation.

A prediction arising from this simple observation is that organisms tend
to avoid having proteins, especially those highly expressed ones, with their
pI equal to intracellular pH because of the negative (purifying) selection
against protein precipitation. Because most living organisms have
physiological pH nearly neutral, their pI profiles should exhibit a saddle-
shaped curve with relatively few proteins at their physiological pH but with
a peak at the acidic pH range and another peak at the basic pH range. For E.
coli living in mammalian intestine where the pH is about 8-9, we should
expect relatively few proteins with pI in the range of 8-9, which is true
(Figure 10-1).

One may note that the “valley” of the pI profile for E. coli (Figure 10-1)
is not all that shallow, i.e., there are still many proteins that have theoretical

218 Chapter 10

pI in the range of 8-9. Will these proteins precipitate upon translation? There
are two possible explanations. One is that some proteins will immediately be
modified to assume a different pI, and the other is that these proteins are not
mass produced and the chance of them forming aggregations and precipitate
is consequently small. We can have a quick examination of the latter by
plotting CAI or CAAI against pI, with the expectation that proteins with pI
values in the range of 8-9 should not have high CAI values. Empirical data
appear to support this expectation (Figure 10-4). Among proteins with CAI
values greater than 7 and presumably are highly expressed, few have pI
values in the range of 8-9 (Figure 10-4).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 4 5 6 7 8 9 10 11 12 13 14

pI

C
A

I

Figure 10-4. Few E. coli proteins with pI near environmental pH of 8-9 have high CAI values
(an index of protein production). CAI and pI computed for all E. coli proteins longer than 33
amino acid residues, with the reference codon usage table Eeco_h.cut by using DAMBE (Xia,
2001; Xia and Xie, 2001b).

The data and reasoning above suggest that highly expressed proteins may
indeed evolve (through their coding genes) to avoid having pI near the
physiological pH of the organism as a mechanism to avoid forming protein
aggregation and precipitation. This hypothesized precipitation-avoidance can
explain the contrasting pI profiles in E. coli (Figure 10-1) and H. pylori
(Figure 10-2). E. coli lives in mammalian intestine with a pH around 8-9. So
we expect it to have few proteins with pI in the range of 8-9 because such

10. Protein isoelectric point 219

proteins would tend to be uncharged, form aggregations and precipitate. For
H. pylori, we expect it to have few proteins to have pI around 5 because that
is its physiological (intracellular) pH when colonizing the mammalian
stomach. This explains why the peak in the pH range 5-7 in E. coli (Figure
10-1) should be missing in H. pylori (Figure 10-2).

Now we have two valid hypotheses both of which can explain why H.
pylori should have a basic set of proteins (or having its pI profile shifting to
the right). Both hypotheses invoke selection, and interpret the basic set of
proteins as an adaptation in response to selection in the acidic environment.
However, the two hypotheses differ in what selection force is operating. To
facilitate discussion, let us designate the adaptation hypothesis presented in
the previous section as positive-shell hypothesis (PSH for short) and the
adaptation hypothesis in this section as the precipitation-avoidance
hypothesis (PAH for short).

In summary, PSH states that basic proteins in H. pylori are favored by
selection because they foster the formation of a positively charged
membrane to alleviate proton influx into the cell, whereas PAH argues that
the basic proteins are favored (and acidic proteins selected against) to avoid
precipitation. One may note that the two hypotheses are not mutually
exclusive, and one may find supportive evidence for both hypotheses.

When the two hypotheses are expressed explicitly in this way, they
clearly have different predictions. If PSH is correct, then it is the membrane
proteins that should be affected most and they should spearhead the change
in pI than the rest of the proteins. We have already investigated a small set of
membrane proteins identified before (Baik et al., 2004) in the previous
section. We may subject all annotated proteins in H. pylori to bioinformatics
tools, such as PSORT (Nakai and Horton, 1999), that reveal subcellular
localization of proteins to identify other membrane proteins and check if it is
generally true for membrane proteins to evolve towards an increase pI in H.
pylori relative to its non-acid-resistance sister lineages.

In contrast, if PAH is correct, then it is those originally acidic and highly
expressed proteins that are under the strongest selection pressure to evolve to
have larger pI values. Thus, discriminating between these two hypotheses is
reduced to test these two predictions. I consider it as a good idea to stop here
and let the reader evaluate the two hypotheses.

Chapter 11

BIOINFORMATICS AND TWO-DIMENSIONAL
PROTEIN SEPARATION

1. INTRODUCTION

In Chapter 10 we have briefly mentioned how to generate an expected
pattern of proteins separated by their differences in isoelectric point and
molecular mass, by assuming no posttranslational modification. This can
then be compared with the actual separation pattern obtained by using 2D-
SDS-PAGE which remains arguably the most frequently used proteomic
method (Liebler et al., 2002, p. 36). Such bioinformatics tools are valuable
for identifying proteins that are the products of alternative splicing or that
have undergone posttranslational modification.

Alternative splicing has now been recognized as the most fundamental
mechanism in generating the complexity of multicellular eukaryotes. A
limited number of protein-coding genes in multicellular eukaryotic genomes
can generate a huge number of different proteins through alternative splicing
(Ast, 2004). Even a single Dscam gene in Drosophila melanogaster can
generate 38016 protein variants through alternative splicing (Graveley, 2005;
Schmucker et al., 2000). While alternative splicing is long known for
generating the diversity of immunoglobulins, recent studies have shown that
it affects the expression of many other genes (Kazan, 2003; Lipscombe,
2005; Stamm et al., 2005), with an estimate of up to 60% of human genes
(Kornblihtt, 2005; Lee and Wang, 2005) being involved in alternative
splicing. Large-scale transcriptomic approaches such as microarray (Diehn et
al., 2000; Epstein and Butow, 2000; Gaasterland and Bekiranov, 2000;
Holstege et al., 1998; Schena, 1996; Schena, 2003) or SAGE (Madden et al.,

11. Bioinformatics and Two-Dimensional Protein Separation 221

1997; Saha et al., 2002; Velculescu et al., 1995; Velculescu et al., 1997;
Zhang et al., 1997) experiments are rather limited in detecting or predicting
protein products resulting from alternative splicing, and direct proteomic
methods are needed to characterize the diversity of protein products in
multicellular eukaryotic cells.

Protein posttranslational modifications represent another biochemical
mechanism contributing to the diversity of proteins in living cells. They
typically involve changes in molecular mass or in charge. Such modified
proteins will migrate to locations on the gel different from what we expect
assuming no modification. Therefore, those proteins found at the same
location in both the in silico gel and the real gel may be assumed to have
undergone no posttranslational modification, whereas those whose
coordinates do not match between the in silico gel and the real gel are good
candidates for studying posttranslational modification.

The scientific rationale of the 2D-SDS-PAGE is outlined first in this
chapter for readers not familiar with the method. This is followed by the
simple computation needed to generate the in silico 2D-SDS-PAGE. We
have already learned how to obtain the isoelectric point (pI) for each protein
in the previous chapter. We only need to learn how to obtain the values for
the other dimension (i.e., the molecular mass of the protein) and how to
graphically present the results.

2. SCIENTIFIC RATIONALE BEHIND THE 2D-SDS-
PAGE

2D-SDS-PAGE separate proteins by their differences in molecular mass
and isoelectric point (pI). One may wonder why, given that proteins differ in
many properties, should protein separation be based on their molecular mass
and pI. Ideally, proteins should be separated on the basis of their properties
least affected by the gel environment (e.g., loading buffer). Proteins have
many different properties, such as molecular mass, charge and structure that
can all affect protein mobility in the gel. Protein structures, in particular, are
prone to environmental perturbations. In contrast, the molecular mass of a
protein is stable and highly predictable as long as no active proteases are
present in the gel. Similarly, each protein has its characteristic isoelectric
point (i.e., the pH at which the protein does not carry any net charge,
designated as pI), although it is not a protein property as rigid as the
molecular mass. For example, even at a fixed pH, a certain amino group may
become protonated at time t1, deprotonated at time t2, reprotonated at time t3,
and so on. However, the proportion of such amino groups, or the probability
of such an amino group, being protonated remains the same for a given pH,

222 Chapter 11

leading to a relatively stable pI. For these reasons, protein separation by gel
electrophoresis should be based on differences in molecular mass and pI,
performed in a denaturing gel that reduces the proteins to linear structure.
This is the scientific rationale behind the development of 2D-SDS-PAGE.

2D-SDS-PAGE first separate proteins based on their differences in pI by
using immobilized pH gradient (IPG) strips that are available commercially.
When loaded onto the strip under an electric field, proteins will migrate to
the location of the strip with the pH equal to their pI values. At that location
they do not carry any net charge and consequently will not move in the
electric field. A protein wandering out of the location will carry charges
again and will be forced back to the location by the electric field. This
process, called isoelectric focusing (IEF), separate proteins along the pH
gradient.

The second dimension of protein separation in 2D-SDS-PAGE is by
molecular mass. Proteins are denatured by mercaptoethanol or DDT or the
like. SDS then binds and imparts negative charge to proteins in roughly
constant proportion to the length of the protein. This implies that each amino
acid residue will be pulled roughly by the same electric force, and longer
proteins, being clumsier in passing through porous materials, migrate more
slowly than shorter ones. This resolves the protein mixture by molecular
mass.

The DNA sequence in a living cell typically codes for many proteins.
Prokaryotes typically have hundreds or thousands of protein-coding genes in
their genome. The genome of the yeast, Saccharomyces cerevisiae, which is
a unicellular eukaryote, contains about 6000 protein-coding genes. Human
genome contains about 30000 protein-coding genes. However, the limited
number of genes in the genome of multicellular eukaryotes can generate a
huge number of different proteins through alternative splicing (Ast, 2004).
Even a single Dscam gene in Drosophila melanogaster can generate 38016
protein variants through alternative splicing (Graveley, 2005; Schmucker et
al., 2000). Displaying and detecting these different proteins on a gel is by no
means trivial. It is valuable for one to have an expected protein separation
pattern as a reference to compare against the observed separation pattern on
a 2D gel.

3. EXPECTED SEPARATION PATTERN OF 2D-SDS-
PAGE FOR THE GENOME-DERIVED
PROTEOME

For a well annotated genome, the protein-coding genes and their
unmodified protein products are known. These annotated proteins are

11. Bioinformatics and Two-Dimensional Protein Separation 223

collectively known as the genome-derived proteome (gdProteome), in
contrast to the conventional definition of a proteome as the collection of all
quantifiable proteins in the same cell type at a particular developmental time.
The latter is a cellular property at a specific time. The former, i.e.,
gdProteome, is a genomic property and does not change with cell type or
time.

We have already learned how to compute the pI value of a known protein
sequence. Here we learn how to compute the molecular mass of an amino
acid sequence. It is important to know that the molecular mass of an amino
acid sequence is not the summation of the molecular mass of all constituent
amino acids, because a peptide is formed by the end-to-end condensation of
amino acids with loss of water. The molecular mass of the resulting amino
acid residues (Table 11-1) in a peptide, taken from Caltech’s Protein/Peptide
MicroAnalytical Laboratory at http://www.its.caltech.edu/~ppmal/, is
consequently smaller than the molecular mass of intact amino acids by about
18 (i.e., molecular mass of H2O).

Table 11-1. Molecular mass of amino acid residues. AA3 and AA1 refer to the 3-letter and 1-
letter notation of amino acids.
AA3 AA1 AA Mass Residue Mass
Gly G 75.07 57.052
Ala A 89.10 71.079
Ser S 105.10 87.078
Pro P 115.13 97.117
Val V 117.15 99.133
Thr T 119.12 101.105
Cys C 121.20 103.144
Ile I 131.17 113.160
Leu L 131.18 113.160
Asn N 132.10 114.104
Asp D 133.10 115.089
Gln Q 146.15 128.131
Lys K 146.19 128.174
Glu E 147.10 129.116
Met M 149.21 131.198
His H 155.16 137.142
Phe F 165.19 147.177
Arg R 174.20 156.188
Tyr Y 181.19 163.170
Try W 204.23 186.213

One may note that Ile and Leu have identical residue mass, and Gln and

Lys have very similar residue mass. They cause problems in de novo
sequencing of proteins by mass spectrometry (Carroll et al., 2003).
Bioinformatics tools to alleviate such problems will be presented in a latter
chapter on proteomics.

224 Chapter 11

The molecular mass of a peptide is the summation of the molecular mass
of the constituent residues plus an extra proton (with a molecular mass of 1)
at the N-terminal and an extra –OH (with a molecular mass of 17) at the C-
terminal. Thus, the molecular mass of an amino acid sequence
AACAGGRQD is 847.893.

The migration distance (D) can be expressed as a function of protein
molecular mass (M). The following equation appears general enough to fit
the relationship between D and M very well:

bMD ae= (11.1)

where a and b are constants that can be estimated by a simple linear
regression of observed D on M values, after log-transformation of the two
sides of the equation. Figure 11-1 shows the relationship between D and M,
with a and b estimated to be 16.573 and -0.0283, respectively, based on my
sample of a subset of secreted proteins of the gastric pathogen Helicobacter
pylori (Bumann et al., 2002).

y = 16.573e-0.0283x

R2 = 0.9997

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

M

D

Figure 11-1. Relationship between migration distance (D) and molecular mass (M).

Now that we have protein pI, molecular mass and migration distance
based on the molecular mass, the location of the protein on the 2D gel is
defined. However, there is still one thing missing. A protein dot in a real 2D-

11. Bioinformatics and Two-Dimensional Protein Separation 225

SDS-PAGE gel always features at least three types of information. That is,
not only does it show the protein pI and the migration distance, it also
reveals the protein abundance (i.e., big dots for highly expressed proteins
and small dots for lowly expressed proteins). While we already know how to
draw a protein dot on the 2D graph by using protein pI as the X-coordinate
and D as the Y-coordinate, we need a measure of protein abundance so that
different proteins will have different dot size. The in silico gel would not
look professional if all dots were of the same size.

We know that highly expressed proteins exhibit strong codon usage bias.
Thus, we can use an index of codon usage bias as an approximate measure of
the dot size. This is not ideal, but is used for the lack of anything better. We
have learned in Chapter 9 a number of indices for measuring codon usage
bias, such as the effective number of codons (Wright, 1990), the codon
adaptation index or CAI (Sharp and Li, 1987), the frequency of optimal
codons or Fop (Ikemura, 1985), and the codon bias index or CBI (Bennetzen
and Hall, 1982). Comparative studies (e.g.,Coghlan and Wolfe, 2000)
suggest that CAI is the best in predicting gene expression levels. The in
silico 2D-SDS-PAGE in Figure 11-2 is produced in this way by using CAI
as a measure of protein abundance, i.e., the protein coding gene with a large
CAI value will have a large dot. It includes all protein-coding genes longer
than 100 in the budding yeast, Saccharomyces cerevisiae.

The in silico 2D-SDS-PAGE (Figure 11-2) reveals a set of highly
expressed, positively charged, and relatively small proteins on the lower
right of the gel. Many of these proteins contain a positively charged binding
domain that may interact electrostatically with DNA and RNA (recall that
DNA and RNA, with the phosphate backbone, are negatively charged and
therefore exhibits affinity to positively charged proteins.

The protein pI values in Saccharomyces cerevisiae range from 3.2 to
13.1. This suggests that one should use an isoelectric focusing strip covering
this range in a real 2D-SDS-PAGE. The in silico 2D-SDS-PAGE for E. coli
exhibits a similar pattern with a number of small and positively charged
proteins.

One may think that, if the yeast proteins already generate a rather
crowded in silico 2D-SDS-PAGE, then it would be totally messy to display a
much large number of possible proteins in a multicellular eukaryote. This
concern seems unnecessary. Recent gene expression studies (e.g.,Velculescu
et al., 1999) have demonstrated that tissue-specific genes in multicellular
organisms are relatively few. By taking advantage of such gene expression
studies, we can produce tissue-specific in silico 2D-SDS-PAGE much
simpler than that in Figure 11-2. Furthermore, eukaryotic proteins are
distributed according to subcellular locations. For example, one can isolate

226 Chapter 11

ribosomes and study their 82 or so proteins (50 in the large ribosomal
subunit and 32 in the small subunit).

Figure 11-2. In silico 2D-SDS-PAGE of genome-derived proteins in the budding yeast,
Saccharomyces cerevisiae, with four protein dots labeled. The annotations are in the form of
“Gene name, pI, molecular mass”. RPL4B, RPL18A and RPL39 are protein components of
the large (60S) ribosomal subunit, all with high pI values and positively charged, which
indicates the possibility of their electrostatic interaction with the negatively charged
ribosomal RNA. RPP1A (acidic ribosomal protein P1α) is a component of the ribosomal stalk
involved in the interaction between translational elongation factors and the ribosome.
Produced with DAMBE (Xia, 2001; Xia and Xie, 2001b).

11. Bioinformatics and Two-Dimensional Protein Separation 227

4. POSTTRANSLATIONAL MODIFICATION

4.1 Importance in studying posttranslational
modification

While outstanding progresses have been made in characterizing
transcriptomic data by microarray (Diehn et al., 2000; Epstein and Butow,
2000; Gaasterland and Bekiranov, 2000; Holstege et al., 1998; Schena,
1996; Schena, 2003) or SAGE (Madden et al., 1997; Saha et al., 2002;
Velculescu et al., 1995; Velculescu et al., 1997; Zhang et al., 1997)
experiments, it is important to recognize the fact that an understanding of
how living cells work ultimately depends on how well we understand the
proteins in the cell.

Many proteins are not functional until they have undergone
posttranslational modification. Take glucagon production for example. The
gene coding for glucagon is transcribed and translated into proglucagon in
both pancreas and intestine. However, proglucagon is cut to produce
glucagon in the pancreas, but glucagon-like peptides in the intestine. The
difference in glucagon production between the pancreas and the intestine is
obvious at the protein level but not at the transcriptomic level.

A similar example is the differential production of different forms of
somatostatin. Somatostatin SS-14 is secreted from pancreas, whereas SS-28
is the predominant form produced in the intestine. Both SS14 and SS-28 are
derived from the same prosomatostatin which in turn is derived from
preprosomatostatin. The difference in the production of SS-14 and SS-28
between the pancreas and the intestine is again obvious at the protein level
but not at the transcriptomic level.

Posttranslational modification (PTM) of proteins plays a central role in
protein activation and gene regulation. A fundamental and challenging
aspect of proteomics is the identification of proteins that have undergone
PTMs.

4.2 Posttranslational modification changes the migration
pattern of proteins on 2D-SDS-PAGE

Nearly all PTMs result in a deviation of the protein dot from the expected
in silico location. For this reason, an in silico 2D gel can facilitate the
identification of PTM events.

A major class of PTMs involves addition of a function group that may
alter both protein pI and molecular mass. For example, the amino group in
the lysine is normally positively charged, but acetylation (the addition of an

228 Chapter 11

acetyl group, usually at the N-terminus of the protein or the lysine residue)
results in the loss of the positive charge and a consequent decrease in pI
(Figure 11-3). The modification also decreases migration distance because of
the increased molecular mass. Thus, acetylation of amino acid residues in a
protein will change the location of the affected protein on the gel.

 O
 ║
H3C ⎯ C ⎯ S ⎯ CoA + H2N ⎯ Protein ⎯→

 O
 ║
H3C ⎯ C ⎯ HN ⎯ Protein + H ⎯ S ⎯ CoA

Figure 11-3. Acetylation. Acetyl Coenzyme A (Acetyl CoA) attaches to the amino group of
an amino acid residue (e.g., lysine, whose amino group typically exist in the form of ⎯NH3

+).

Acetylation plays a crucial role in gene expression. Eukaryotic genomic
DNA typically wraps itself around a group of proteins in the nucleus called
histones to form nucleosomes. Histones are rich in lysine residues and are
consequently positively charged. These positively charged lysine residues
interact electrostatically with the negatively charged DNA backbone to
facilitate the formation of nucleosomes. RNA polymerases, which transcribe
RNA from DNA, generally cannot access transcription start site when DNA
is tightly wrapped around histones. Acetylation of the lysine residues
removes the positive charge and allows the DNA to “melt” away from
histones. This opens the transcription start site so that gene transcription can
happen.

In vertebrates, when DNA is methylated at the 5-carbon of nucleotide C
in CpG dinucleotides, these methylated CpG will attract methyl-CpG
binding domain (MBD) of a number of proteins such as MBD1, MBD2,
MBD3, and MeCP2. The resulting protein-DNA complex will recruit histone
deacetylase which will remove acetyl-CoA from lysine residues to restore
the positive charge of the amino group. These positively charged lysine
residues then allow histones to bind tightly to DNA to prevent transcription.

Acetylation is observed only in eukaryotes. Aside from histones in the
nucleus, about 59% and 90% of proteins in the cytoplasm are acetylated,
mostly at the N-terminus. Proteins with its N-terminus acetylated are more
resistant to degradation, with their lifetime extended from between seconds
and hours up to days. Prokaryotic proteins, mitochondrial proteins and
chloroplast proteins are not acetylated.

Another PTM that is unique in eukaryotes is glycosylation which
involves the attachment of sugar molecules to specific amino acids in a
polypeptide chain. This modification changes the molecular mass resulting

11. Bioinformatics and Two-Dimensional Protein Separation 229

in a change of the protein in the location of the 2D gel. Because small sugar
molecules are water soluble, glycosylated proteins are also more soluble in
water.

Glycosylation exists in two forms. The N-glycosylation involves the
attachment of sugars to the nitrogen in the side chain of the amino acid
asparagine (Asn). It requires a characteristic sequence of Asn-Xaa-Ser or
Asn-Xaa-Thr where Xaa is any amino acid except proline. It is interesting
that some N-glycosylation sites are never used, indicating that amino acids
flanking the N-glycosylation sites might also be important. One can use the
perceptron algorithm detailed in Chapter 5 to investigate this possibility, by
collecting two sets of peptide sequences containing the N-glycosylation sites
together with, say, 10 flanking amino acids. One set (the positive group)
would include all those known to have undergone N-glycosylation in some
tissue or at certain developmental stage, and the other set (the negative
group) would include all those “N-glycosylation sites” that have never been
N-glycosylated. Running the perceptron algorithm or its multilayer
derivatives should shed light on the differences between the two groups.

The other form of glycosylation, called O-glycosylation, involves the
attachment of sugars to the oxygen in the side chain of the amino acids
serine or threonine. No specific sequence motif is associated with this form
of glycosylation.

The most common and ubiquitous form of reversible protein
modification is phosphorylation, which is crucial in signal transduction and
enzyme regulation in the cell. It involves the addition of a phosphate (PO4)
group to the oxygen of the side chain of an amino acid residue, typically
serine, threonine, and tyrosine residues. Such a modification would increase
the negative charge of the protein, resulting in a downshift in pI. In addition,
the involved protein will become more hydrophilic because of the charged
(polar) phosphate group.

Reversible protein modifications such as phosphorylation typically
involve a pair of enzymes working in opposite directions. Recall that
acetylation and deacetylation require acetylase and deacetylase.
Phosphorylation requires various protein kinases and dephosphorylation
requires protein phosphatases.

Some PTMs involve the modification of certain function groups that may
also change pI and molecular mass of the involved protein. For example,
citrullination (or deimination which convert arginine to citrulline) results in
the loss of charge in normally positively charged arginine residue, resulting
in a downshift of protein pI.

Some PTMs involve the removal of certain function groups. For
example, deamination removes an amide functional group from a chemical

230 Chapter 11

compound, and converts asparagine and glutamine residues to aspartic acid
and glutamic acid residues. The modification reduces pI.

There are many other PTM events that occur frequently in a living cell
and that can affect protein pI and migration distance. While great progress
has been made in characterizing transcripts in living cells, very limited
progress has been made to understand proteins. The true bottle neck in
advancing our understanding of a living cell from a systems science point of
view is proteomic analysis. It is for this reason that nearly all recently
established institutions with an emphasis on systems biology feature strong
proteomic expertise.

Chapter 12

SELF-ORGANIZING MAP AND OTHER
CLUSTERING ALGORITHMS

1. INTRODUCTION

Self-organizing map (SOM) and other clustering algorithms have now
become very popular in microarray data analysis. It might be beneficial to
have an overview of clustering and classification methods used in
bioinformatics before a numerical illustration of these algorithms. In
particular, we need to understand some special terms in computational
science such as classification and clustering, as well as supervised and
unsupervised learning. Because clustering algorithms are frequently used in
large-scale gene expression studies, especially in microarray experiments, I
will also provide the scientific context in which the clustering algorithms are
applied. In addition, because almost all clustering algorithms used in
analyzing microarray data require a distance or a similarity index, we will
also have a subsection on distances and similarities to help the reader in
choosing which distance or similarity index to use. Finally we will
numerically illustrate two algorithms, the UPGMA algorithm (Sneath, 1962)
as a representative of the hierarchical clustering and the SOM algorithm
(Kohonen, 2001) as a representative of the non-hierarchical clustering. These
two algorithms are perhaps the most frequently used in analyzing microarray
data.

1.1 Classification and clustering

Classification in bioinformatics and computer science is different from
classification in taxonomy. Instead of referring to a method for organizing

232 Chapter 12

species into genera, families and higher taxa, classification in computer
science refers to a class of algorithms that assign an entity with a set of
measurable attributes (properties) to pre-defined groups, after the algorithm
has already learned from a data set, termed training data, with many
representative entities with known group identification. For example, one
may characterize the expression of K genes for each of N liver cancer
patients (Group 1) and M non-liver-cancer persons (Group 2) to obtain data
in Figure 12-1 and apply a classification algorithm to learn the differences
between the two groups. The result of learning from the training data can
then be used to predict whether a person with measured properties E1, E2, …,
Ek belongs to Group 1 or Group 2.

Group E1 E2 Ek

1 E1,1 E1,2 … E1,K
1 E2,1 E2,2 … E2,K
…
1 EN,1 EN,2 … EN,K
2 EN+1,1 EN+1,2 … EN+1,K
2 EN+2,1 EN+2,2 … EN+2,K
…

Figure 12-1. Illustrative data layout for training two-group classification, with the first N
rows (cases) belonging to Group 1 and the next M rows belonging to Group 2.

Both the single-layer perceptron and the two-group discriminant function

analysis (better known as Fisher’s linear discriminant function analysis or
LDA) we covered in Chapter 5 are classification algorithms. In the case of
perceptron, we may start with two groups of sequences (e.g., 10-base
sequences flanking the initiation codon AUG from eukaryotes as the positive
group and those from prokaryotes as the negative group) and the result of
learning is a matrix that can be used to calculate a score to assign a new 10-
base sequence to either the positive group (if the score is greater than 0) or
the negative group (if the score is smaller than 0). Perceptron can work with
either sequences or numerical data, but LDA works only with numerical
data. Performing LDA with the type of data in Figure 12-1 results in a liner
discriminant function that can be used to assign a person with measured
properties E1, E2, …, Ek to Group 1 or Group 2.

People in computer sciences often talk about supervised learning and
unsupervised learning. Supervised learning refers to the training process in
which a classification algorithm derives the classification function from
training data with known group identification. The training processes
involving the perceptron algorithm and its multi-layer derivatives, LDA and
its multi-group derivatives, support vector machine or SVM (Burges, 1998),

12. Self-Organizing Map and other clustering Algorithms 233

etc., are all examples of supervised learning. In short, supervised learning is
associated with classification into predefined groups.

What is then clustering? Clustering works with input data that do not
have group identification, i.e., do not have the first column in Figure 12-1.
Clustering algorithms are classified into hierarchical and non-hierarchical
clustering algorithms. Representatives of the hierarchical clustering
algorithms include conventional single-linkage, complete-linkage and
average linkage algorithms, with the average linkage being used most often.
The UPGMA (unweighted pair-group method with arithmetic mean)
algorithm used during the early stage of molecular phylogenetics (Sneath,
1962; Sokal and Michener, 1958) is one of the average-linkage algorithms.
Representatives of the non-hierarchical clustering algorithms include the K-
mean (Hartigan, 1975) and self-organizing map or SOM (Kohonen, 2001).
SOM is used extensively in analyzing microarray data (Chen et al., 2001;
Covell et al., 2003; Kim et al., 2005; Lamendola et al., 2003; Ordway et al.,
2005; Seo et al., 2005; Toronen et al., 1999; Trutschl et al., 2005; Wang et
al., 2002; Xiao et al., 2003), and one may have difficulty understanding
publications on microarray data without proper background knowledge of
SOM.

1.2 Clustering and gene expression

One of the main objectives in gene expression studies is the identification
of co-regulated genes and regulator-regulatee relationships. The first step in
achieving the objective is to identify co-expressed genes. Clustering
algorithms are used particularly often in identifying co-expressed genes (Xia
and Xie, 2001a). Take human development for example. If we designate the
time of zygote formation as t0, what genes are activated at t1, t2, …, tn? How
do the products of these activated genes activate other genes and lead to the
developmental cascade? If we know that Gene A activates Gene B which in
turn activates Gene C, then we are in a good position to understand how
living cells work. Note that “Gene X activates Gene Y” is understood to
mean “the protein product of Gene X activates the transcription of Gene Y”.
If Genes A, B, and C are all activated by Gene D, then we know that Genes
A, B, and C most likely share the same regulatory sequences controlled by
the same transcription factor.

Microarray data publicly available are typically in the form of matrices
each summarizing the expression profiles of thousands of gene loci either
over a period of time or among different experimental conditions or cell
types. Such data can provide two kinds of information that is related to
transcription pathways and gene interactions. The first is the co-expressed
genes whose expression may be controlled by the same gene product, e.g.,
their regulatory sequences may bind to the same transcription factor. The

234 Chapter 12

second is the regulator-regulatee relationship, in which one group of genes
(regulatees) increase or decrease their expression consistently with the
increase or decrease of the expression of another group of genes (regulators).

The co-expressed genes can be identified by calculating pair-wise
similarity or dissimilarity indices among genes based on their expression
profiles, and then clustered into gene clusters by using one of the many
available clustering techniques (e.g., Bittner et al., 1999; e.g., Chen et al.,
1999; Heyer et al., 1999). Pearson correlation and the jackknife correlation
(Heyer et al., 1999) have been proposed. The former is not robust against
outliers and the latter is too time-consuming to compute. An alternative is
the nonparametric Spearman’s rS that is easy to compute and robust against
one or multiple outliers.

For dissimilarity measures, the Euclidean distance has been suggested
(Chen et al., 1999; Heyer et al., 1999). Other distances that can be used in
clustering algorithms include Manhattan metric, percent remoteness, chord
distance, and geodesic distance (Pielou, 1984). All these distances are metric
(which is explained in the next section), and satisfy triangular inequality. My
program AMIADA (Xia and Xie, 2001a), formerly called AMADA,
implements these distances as well as the Pearson and Spearman
correlations.

For clustering algorithms, both hierarchical and non-hierarchical ones
have been proposed and used in research (Eisen et al., 1998; Tamayo et al.,
1999; Tavazoie and Church, 1998; Tavazoie et al., 1999; Wen et al., 1998).
The former include single-linkage, complete-linkage and average-linkage
clustering (Pielou, 1984), and the latter include the k-mean clustering, the
self-organization map, and the QT-clustering (Heyer et al., 1999). The k-
mean clustering requires the specification of the number of clusters (k) at the
beginning, but k is unknown to the researcher. If the guessed k value is too
large, then co-expressed genes may be split into different clusters. If the
guessed value is too small, then unrelated genes may be forced into the same
cluster. This problem is partially shared with the method of the self-
organization map. The QT-clustering algorithm (Heyer et al., 1999) has
three disadvantages. First, it is time-consuming. Second, the criterion of
choosing the cluster with the largest number of member as the best cluster is
dubious. A more sensible criterion would be to choose a cluster as the best if
it has the least overlap with others. Third, the “quality guarantee” is just a
guessed value. I note that all clusters recovered by the QT-clustering (Heyer
et al., 1999) can also be recovered by the average-linkage method. So the
former has no obvious advantage to offset the disadvantages. AMADA
implements the single-linkage, complete-linkage and average-linkage
algorithms.

Clustering aims to recover certain relationships (similarities) among the
input entities (e.g., patients, genes) that do not have known group affiliation,
in contrast to classification which works with data with known group

12. Self-Organizing Map and other clustering Algorithms 235

affiliations (e.g., data in Figure 12-1). Hierarchical clustering is typically not
associated with learning. Its ultimate objective is to build a hierarchical tree
so that neighboring entities are more similar to each other than to those
separated by more intermediate nodes. In other words, the generation of a
tree is the end of the analysis and the algorithm does not keep any reusable
knowledge for assigning data points not in the original data set to clusters on
the tree.

In contrast, nonhierarchical clustering is associated with what is called
unsupervised learning involving a training data set. Because the data points
in the training set do not have group affiliation, the unsupervised learning
process is supposed to learn a classification scheme from the training data
and cluster the data points in the training data set to groups. However,
clustering the data points is not the end of the analysis. The classification
scheme (i.e., the knowledge) from the learning process will allow the
classification of data points not in the original training data set. For example,
the K-mean algorithm may cluster the training data into N groups and keep
the centroids of these N groups. Once this is done (i.e., the training is over),
a data point not in the original training set can be assigned to one of these N
clusters by computing the distance between this data point and each of the N
centroids, with the new data point classified into the group whose centroid
has the smallest distance to the new data point. Similarly, once the training is
finished for SOM, a new data point can be assigned to one of the nodes by
checking which node is closest to the new data point.

We have previously learned that classification in machine-learning
literature is associated with supervised learning. Now we know that
nonhierarchical clustering is associated with unsupervised learning. I
personally do not find it helpful to have terms or categorizations such as
supervised and unsupervised learning because they do not seem to make
algorithms easier to understand.

1.3 Similarity and distance indices

Almost all clustering algorithms used in analyzing microarray data
require a distance or a similarity index. So we need to have basic
understanding of distances and similarities. Representative distances that
have been used in gene expression studies include the scale-dependent
Euclidean distance (Bickel, 2003; Sawa and Ohno-Machado, 2003) and
scale-independent Mahalanobis distance (Chilingaryan et al., 2002) and (1-r)
where r is Pearson correlation coefficient (Bickel, 2003; Eisen et al., 1998;
Sawa and Ohno-Machado, 2003). Other distances that could be used in
clustering algorithms include Manhattan metric, percent remoteness, chord
distance, and geodesic distance (Pielou, 1984). Mahalanobis distance

236 Chapter 12

becomes identical to Euclidean distance with standardized data, i.e., when
variable X is transformed to x by

i
i

X

X Xx
s
−

= (12.1)

so that mean and standard deviation of the resulting variable x is 0 and 1,
respectively. Euclidean distance based on standardized data and (1-r) are
perhaps used most frequently in clustering gene expression data.
Representative similarity indices include various correlation coefficients
such as the parametric Pearson correlation and non-parametric Spearman
correlation and others.

An ideal distance or similarity index for clustering analysis should be
metric. Nonmetric distances are likely to produce negative branch lengths in
cluster analysis that are not only difficult to interpret, but also render
frequently used optimization criteria (e.g., least-squares or minimum tree
length) inapplicable.

So what is a distance in the first place? Designating x and y as two points
in space, a distance is defined to have the following properties:

D(x,x) = d0 (distance of a point to itself, which is typically 0)
D(x,y) ≥ d0
D(x,y) = D(y,x)

What is a metric distance? Designating x, y and z as three points in space,

a metric distance is defined to have the following additional properties:

D(x,y) = d0 if and only if x = y.
D(x,z) ≤ D(x,y) + D(y,z), or triangular inequality in Euclid geometry.

An example of a metric distance is the Euclidean distance. If d is a metric

distance (e.g., Euclidean d), then the following are metric similarities:

1/d
Cd, where C is a constant
dmax – d

If s is a metric similarity index then the following are metric distances

1/s
Cs, where C is a constant
smax – s

12. Self-Organizing Map and other clustering Algorithms 237

Pearson r is a similarity index, and its maximum is 1. Is (1- r) a metric
distance? As (smax – s) is a metric distance, (1 – r) would be a metric distance
if r were a metric similarity. Because Euclidean distance is known to be
metric, we can derive the relationship between Euclidean distance and r to
help us conclude whether (1-r) is metric.

Although the formulation of Pearson r between variables x and y can be
found in any statistical book, I have reproduced it below to facilitate
presentation:

1

2 2

1 1

()()

() ()

N

i i
i

xy N N

i i
i i

x x y y
r

x x y y

=

= =

− −
=

− −

∑

∑ ∑
 (12.2)

To simplify the inference, we assume that the values of variable x and y
have already been standardized so that the mean and standard deviation is 0
and 1, respectively. The variance of a standardized variable is also 1. This
reduces Eq. (12.2) to

1
2

2 2

1 1

1

N

i i
xy xy xy xyi

xy N N
xxxx yy xx

i i
i i

x y S S S S
r

S NS S Sx y

=

= =

= = = = =
−

∑

∑ ∑
 (12.3)

The last step is often confusing to students because they have forgotten
the fact that the variance of a standardized variable x (s2) equals Sxx/(N-1)
and that s2 = 1 for a standardized variable. Because s2 = 1 = Sxx/(N-1), Sxx =
N-1. One should already know that Sxx = Syy for standardized variables x and
y.

The Euclidian distance is defined as

2 2 2

1 1
() (2)

N N

xy i i i i i i
i i

d x y x x y y
= =

= − = − +∑ ∑ (12.4)

238 Chapter 12

2 2 2

1 1 1
2 2

2 2 2()

N N N

xy i i i i xx xy yy
i i i

xx xy xx xy

d x x y y S S S

S S S S
= = =

= − + = − +

= − = −

∑ ∑ ∑ (12.5)

We already know that Sxx = N-1. From Eq. (12.3), we also know that Sxy
= (N-1)rxy. This leads to

2 2[(1) (1)] 2(1)(1)xy xy xyd N N r N r= − − − = − − (12.6)

Because d2
xy is not a metric distance, (1 – r) also is not a metric distance.

In this sense, using Euclidean distance computed from standardized
variables for clustering is better than using (1 – r). However, Euclidean
distance is scale-dependent but (1 – r) is scale-independent. The scale effect
is illustrated is Figure 12-2. We note that Gene 1 and Gene 3 increase and
decrease in their expression synchronously, so do Gene 2 and Gene 4. In
other words, Gene 1 and Gene 3 are co-expressed, so are Gene 2 and Gene 4.
However because Gene 1 and Gene 2 are highly expressed and Gene 3 and
Gene 4 are relatively lowly expressed, the synchronous change in gene
expression between Gene 1 and Gene 3 and between Gene 2 and Gene 4 will
not be reflected by Euclidean distance on the original data and the clustering
analysis will not help us discover co-expressed genes.

-0.086-0.086-1.458-0.0861.972-0.0860.600-0.772Gene 4

-0.564-0.5640.725-0.5641.369-0.564-1.2081.369Gene 3

-0.086-0.086-1.458-0.0861.972-0.0860.600-0.772Gene 2

-0.564-0.5640.725-0.5641.369-0.564-1.2081.369Gene 1

T70T60T50T40T30T20T10T0

After Normalization

4040204070405030Gene 4

3030503060302060Gene 3

400400200400700400500300Gene 2

300300500300600300200600Gene 1

T70T60T50T40T30T20T10T0

Figure 12-2. Original data (top) and standardized data (bottom) to illustrate the effect of scale.
T0, T10, etc., indicate time points.

You may note that, before standardization, Euclidean distance d12
between Gene 1 and Gene 2 is smaller than d13 or d14, and d34 is the smallest
of all pairwise distances. Application of a clustering algorithm typically will

12. Self-Organizing Map and other clustering Algorithms 239

cluster Gene 3 and Gene 4 together, and then Gene 1 and Gene 2 together. In
other words, the clustering analysis does not cluster co-expressed genes
together.

After standardization (Figure 12-2, bottom half) which removes the scale
effect, d13 = d24 = 0, which implies that Gene 1 should be clustered with
Gene3 and Gene 2 should be clustered with Gene 4.

In contrast to Euclidean distance which differs between standardized and
non-standardized data, the distance d’ = (1-r) does not change with
standardization, and d’13 = d’24 = 0 for either original or standardized data.
Applying any cluster algorithm will results in Gene 1 and Gene 3 clustered
together and Gene 2 and Gene 4 clustered together. If our purpose is to
cluster co-expressed genes together, then using d’ with either original or
standardized data or using d with standardized data is better than using d
with the original data.

Note that one does not have to standardize the data to remove the scale
effect. For example, one can just transform the data so that all variables will
have the same mean and variance.

2. UPGMA

We have learned two frequently used distance measures in the previous
section, the Euclidean distance and (1 – r). Given N genes, there are
N(N-1)/2 pairwise distances (designated as di,j between gene i and gene j).
We can apply the UPGMA algorithm to perform hierarchical clustering.

A matrix of di,j values for five genes (designated as Gi) is shown in
Figure 12-3. At this point we do not know the relationship among the genes
and our ignorance is represented by what is called a star tree represented as
(G1,G2,G3,G4,G5). The UPGMA algorithm starts by finding the smallest di,j
(designated as dmin) in the matrix and cluster the two associated genes. There
are two smallest di,j in the matrix, d1,3 = d4,5 = 0.0076. So what should we do?

0.00760.04580.06870.0534G5
0.05340.06110.0611G4

0.08400.0076G3
0.0916G2

G4G3G2G1

Figure 12-3. Distance matrix for illustrating UPGMA

In this particular example, we can start by either clustering G1 and G3 or
clustering G4 and G5, and the final tree will be the same. However, identical

240 Chapter 12

di,j values sometime may lead to alternative clustering outcome. In particular,
if di,j = di,k = dmin (or di,j = dj,k = dmin), then there will always be alternative
trees because there is a clear conflict between clustering (Gi, Gj) and
clustering (Gi, Gk). In other words, clustering Gi and Gj rules out the
possibility of clustering Gi and Gk and vice versa. The neighbor-joining
algorithm (Saitou and Nei, 1987) sometimes also experiences the problem of
conflicting trees, although almost all phylogenetic programs implementing
the UPGMA and neighbor-joining algorithms typically output only a single
tree. While elegant algorithms are available to handle conflicts (Murtagh,
1984), the only computer program I know of that keeps track of conflicting
trees from UPGMA and neighbor-joining method is DAMBE (Xia, 2001;
Xia and Xie, 2001b).

Fortunately our simple example does not require us to resolve such a
conflict. So we will proceed to cluster G1 and G3. This leads to a slightly
more structured tree ((G1,G3),G2,G4,G5) together with a reduced matrix
shown in Figure 12-4.

0.00760.06870.0496G5

0.06110.0573G4

0.0878G2

G4G2(G1,G3) G5

G4

G2

G1

G3

Figure 12-4. Intermediate result of UPGMA after clustering G1 and G3.

Note that some distances, e.g., d2,4, d2,5, d4,5, in Figure 12-4 are directly
transferred from the matrix in Figure 12-3. There are three new distances in
the reduced matrix (Figure 12-4), computed as

1,2 2,3
2,(1,3)

1,4 3,4
4,(1,3)

1,5 3,5
5,(1,3)

0.0916 0.0840 0.0878
2 2

0.0611 0.0534 0.0573
2 2

0.0496
2

d d
d

d d
d

d d
d

+ +
= = =

+ +
= = =

+
= =

 (12.7)

Now we again find dmin in the reduced matrix in Figure 12-4, which is d45
= 0.0076. So we cluster G4 and G5 and obtain a still more structured tree
together with a still more reduced new matrix (Figure 12-5).

12. Self-Organizing Map and other clustering Algorithms 241

0.06490.0534(G4,G5)

0.0878G2

G2(G1,G3)
G5

G4

G2

G1

G3

Figure 12-5. Intermediate result of UPGMA

There are two new distances in Figure 12-5, i.e.,

(1,3),4 (1,3),5
(1,3),(4,5)

2,4 2,5
2,(4,5)

0.0534
2

0.0649
2

d d
d

d d
d

+
= =

+
= =

 (12.8)

The smallest distance now is d(1,3),(4,5) = 0.0534. This implies the
clustering of (G1,G3) with (G4,G5). Now we have a fully resolved tree
(Figure 12-6), together with the last distance computed as:

(1,3),2 (4,5),2
((1,3),(4,5)),2 0.0764

2
d d

d
+

= = (12.9)

G3

G1

G4

G5

G2

0.0038

0.0382

0.02290.0115

0.0267

x1

x2

x3

x4

x5

x6

Figure 12-6. Final UPGMA tree.

The branch lengths of the tree can be easily computed. Because d1,3 = d45
= 0.0076, we have x1 = x2 = d4,5/2 = d1,3/2 = 0.0038, the branch length from
G1 or G3 to their closest shared node is 0.0038. Similarly, d(1,3),(4,5) = 0.0534,
so we have (x1 + x3) = (x2 + x6) = d(1,3),(4,5)/2 = 0.0267. Because x1 = 0.0038,

242 Chapter 12

so x3 = 0.0267 – x1 = 0.0229. Finally, because d2,((1,3),(4,5)) = 0.0764, so x5 =
0.0764/2 = 0.0382. This also implies that (x1 + x3 + x4) = 0.0382, so x4 =
0.0382 – x1 – x3 = 0.0115. Also note that, in our example, x3 = x6. Figure 12-
7 shows a more realistic output from a cluster analysis.

YAL046C/
YAL014C/
YAL040C/CLN3
YBL102w/SFT2
YBL090w/
YBL077w/
biodm
YBL092w
biod5
biod3
RPS8A
CDC19
YFL039C3
YAL003W/EFB1_ex2
YBL087c/RPL17A_ex2_i
PHEM
PHE3
PHE5
crem
cre5
cre3
YAL003W/EFB1_ex1
YFL039CM
YBL087c/RPL17A_ex1
YAR002AC/
YBL058w/SHP1
biocm
YAL042W/
YAR040C/
YAL060W/
YAR027W/
YBL078c/
18srRnaa
18srRnac
18srRnae
25srRnae
25srRnad
25srRnac
18srRnad
25srRnab
18srRnab
25srRnaa

Figure 12-7. Partial output from clustering analysis of gene expression data in the yeast,
Saccharomyces cerevisiae. Only the first 200 genes from the original data (Cho et al., 1998)
were used. The expression profiles of the six genes within the box of dashed lines are shown
in Figure 12-8. Tree generated by AMIADA(Xia and Xie, 2001a).

Genes clustered together with short branch lengths connecting them
should have similar expression profiles and are designated as co-expressed

12. Self-Organizing Map and other clustering Algorithms 243

genes. I will illustrate the application of clustering analysis with a real
example. The budding yeast, Saccharomyces cerevisiae, has a very useful
property that the development of yeast cells in a culture can be synchronized.
This allows one to monitor gene expression during the progression through
the yeast cell cycle. In one of such studies (Cho et al., 1998), 6220
transcripts were monitored and the data set is available to the public.
Application of the UPGMA algorithm to the yeast gene expression data
results in many clusters of co-expressed genes. Figure 12-7 displays a partial
output of the clustering analysis using UPGMA and the standardized
Euclidean distance for the first 200 genes.

My program AMIADA (Xia and Xie, 2001a) allows the user to easily
visualize gene expression profiles. Right-clicking a node on the tree and
choose ‘Plot expression profiles’ will display the expression profile of genes
clustered under a node. Figure 12-8 shows a plot of the expression profiles
for a set of six genes clustered together in Figure 12-7. The synchronized
increase and decrease in their expression is obvious. Finding co-expressed
genes is the first step towards identifying co-regulated genes, i.e., genes that
share regulatory sequences.

biod5
biod3
biodm
YBL092w
RPS8A

0

2000

4000

6000

8000

10000

12000

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160
Time

CDC19

Figure 12-8. Co-expressed genes from yeast gene expression data (Cho et al., 1998).

3. SELF-ORGANIZING MAP (SOM)

Being one of the unsupervised learning algorithms, SOM, like UPGMA,
takes data that do not have prior group affiliation. It takes a training data set
and goes through a training process to obtain a SOM of nodes (or artificial
neurons) which can then be used for classification.

244 Chapter 12

Because SOM is also one of the artificial neural network (ANN)
algorithms, it is necessarily associated with concepts such as nodes (neurons)
and learning rate. All ANN algorithms have neurons and need learning
(training).

3.1 The SOM algorithm

We start with data in Table 12-1, where data are not standardized. If one
is interested only in uncovering co-expressed genes, then one should
standardize the data. The computation is the same regardless of our data
being standardized or not.

Table 12-1. Fictitious gene expression data for illustrating the SOM algorithm. T0, T10 and
T20 represent three time points. The values are between 0 and 100.
Gene T0 T10 T20 Sum
1 93 76 87 256
2 80 81 85 246
3 89 88 85 262
4 69 74 96 239
5 95 89 93 277
6 65 96 76 237
7 87 85 96 268
8 78 89 88 255
9 87 80 97 264
10 67 96 55 218
11 91 90 95 276
12 76 72 67 215
13 79 78 94 251
14 96 76 78 250
15 66 64 63 193

Data in Table 12-1 is our training data. Most computation in SOM is in

the training part. Once we have finished training, we will be able to use the
finished SOM for classification of data points not in the training set.

We first need to decide the size of SOM, i.e., the number of nodes to
have and whether the nodes should be arranged in one dimension, two
dimensions, or higher dimensions. Most SOMs use a two-dimensional grid
of nodes. There is not optimal way of choosing the number of nodes. Too
many nodes increases computation and too few nodes may not provide
sufficient fit to the data. For example, if we have only two nodes, then
forcing all data points into these two nodes may result in very heterogeneous
groupings. We will learn latter that a finished SOM provides some ways for
us to see poorly fit points. If such points do exist, then we should re-run
SOM with a larger grid of nodes.

12. Self-Organizing Map and other clustering Algorithms 245

Let us just start with a 3×3 grid of 9 nodes (Table 12-2), with randomly
initialized values between 0 and 100 (the lower and upper bounds of our
training data). Later on we will learn a better way of initialization. The
random initialization symbolizes a beginning of ignorance. The knowledge
will be gained through the learning process.

Table 12-2. A 3×3 grid of 9 nodes each with three randomly initialized values T0, T10 and
T20.
 1 2 3
 T0 T10 T20 T0 T10 T20 T0 T10 T20
1 2.2 11.5 33.4 41.9 27.6 0.8 6 63.8 51.2
2 28.5 30.2 47 28.7 51.3 9 61.6 38.2 17.9
3 40.5 76.1 71.2 79.8 94.6 23.2 76.2 40.9 23.9

We now randomly choose one gene, and suppose we happen to have

chosen Gene 4 with T0, T10 and T20 equal to 69, 74 and 96, respectively
(Table 12-1). The Euclidean distances (designated hereafter as d) between
this gene and each of the 9 nodes (Table 12-3) show that Gene 4 is closest to
node(3,1), with d = 37.8. This node is then called a winning node. You may
use a distance other than the Euclidean, but the procedure is the same, i.e.,
you find the winning node which has the smallest distance to Gene 4.

Table 12-3. Euclidean distance between Gene 4 and each of the nine nodes.
 1 2 3
1 111.0 109.0 78.0
2 77.2 98.5 86.2
3 37.8 76.4 79.6

The winning node is the node that will get the first chance to learn from

Gene 4, and its three values will be updated as a consequence of the
learning. Recall that SOM is an algorithm in neural networks, and all neural
networks learn. The updated values are given by the following equation
referred to hereafter as a learning function:

' (1)i i iw w pα α= − + (12.10)

where w1, w2 and w3 refers to the winning node’s values in T0, T10 and
T20, respectively, and p1, p2 and p3 refers to the chosen gene’s values in
T0, T10 and T20, respectively. In our case, p1, p2 and p3 equal 69, 74 and
96, respectively, and w1, w2 and w3 equal 40.5, 76.1, and 71.2, respectively.
Of course one can devise many alternative learning functions, but the one I
have used is the simplest and it works fine. What is a bit tricky is the α
parameter in Eq. (12.10), which is called the learning rate.

246 Chapter 12

What should be the α value? An α equal to 0 implies wi’ = wi, which
means that the winning node does not learn anything from the chosen gene
and will never change. An α equal to 1 implies wi = pi, which means that the
winning node cannot retain any prior knowledge and will always mirror the
knowledge of the chosen gene that has the smallest distance to it. This
simple reasoning leads us to conclude that the α value should be greater than
0 but smaller than 1.

If α is close to 0, then the learning process is slow and the SOM takes a
long time to converge. People with a very slow α often call themselves
conservatives. If α is close to 1, the values of the winning node will change
back and forth too fast and the node values may fail to stabilize. People with
a α near 1 tend to call themselves liberals. Unfortunately, it would be very
inconvenient to have two group of nodes, one with a small α and the other
with a large α, fighting against each other to generate a winner. As a
compromise, α will initially be large (close to 1), but will diminish with each
iteration. This may make conservatives happy because all nodes in SOM will
end up with a slow α and become conservatives.

For illustration, let’s start with α = 0.5 (Any value that is not an integer
or half of an integer may cause headaches for a small fraction of biology
students). This leads to

'
1
'
2
'
3

40.5(1- 0.5) 69 0.5 54.7

75.0

83.6

w
w
w

= + × =

=

=

 (12.11)

These three values will replace the three original values (i.e., 40.5, 76.1
and 71.2, respectively) of node(3,1). The update of the winning node is now
complete.

The next step is to modify the neighbors of the winning node as the
neighboring nodes will also learn from the chosen gene. This privilege of
learning as a neighbor is what drives up the housing price near universities.
Updating the values of neighbors is governed by the following learning
function

' (1)i i n i nw w pα α= − + (12.12)

where αn is the learning rate for the neighbors. Again one can use one of
many possible alternative learning functions, but we will just use Eq. (12.12)
to keep things simple. In practice, the learning function of neighbors depends
on how we define neighbors and αn will be larger for immediate neighbors
than for remote neighbors. For obvious reasons, it should also be smaller

12. Self-Organizing Map and other clustering Algorithms 247

than α. If we designate αn1 as the learning rate for the immediate neighbors
(i.e., nodes in physical contact with the winning nodes), αn2 as the learning
rate for the neighbors of the immediate neighbors, and so on, then one
simple way of choosing αn values is to set αn1 = α/2, αn2 = αn1/2, and so on.

For our illustration, we will just define each node to have a maximum of
four neighbors, i.e., the one to its left, the one to its right, the one above it
and the one below it. Thus defined, we need only one αn value which we will
set to α/2. Now a biology student typically will need a calculator to carry out
the required arithmetic operations.

Our winning node is in a corner and consequently has only two
neighbors, with one above it and one to its right. The updated values of SOM
are shown in Table 12-4.

Table 12-4. SOM after updating the winning node, i.e., node(3,1), and its two neighbors,
node(2,1) and node(3,2).
 1 2 3
 T0 T10 T20 T0 T10 T20 T0 T10 T20
1 2.2 11.5 33.4 41.9 27.6 0.8 6.0 63.8 51.2
2 38.7 41.1 59.3 28.7 51.3 9.0 61.6 38.2 17.9
3 54.7 75.0 83.6 77.1 89.5 41.4 76.2 40.9 23.9

Now that we have done with Gene 4, we again repeat the process by

randomly choosing a gene, computing the Euclidean distance to find the
winning node, and carry out the updating of the values. We perform this with
decreasing α and αn values with each cycle of iteration until α equals a
preset αmin > 0 (We do not want to decrease α to zero because SOM will stop
learning when α = 0).

How should we decrease α and αn with each cycle of updating? There is
no optimal way of decreasing α. In my SOM implementation in AMIADA
(Xia and Xie, 2001a), I used the following equation:

1(1)
G

Q
N

= − (12.13)

where NG is the number of genes. In our case, NG = 15 and Q = 0.933, i.e., α
will be multiplied by Q after each cycle of iteration.

Continuing the learning process will eventually lead to convergence, i.e.,
when the values in the nodes do not change any more or the change is
smaller than a pre-fixed small value in two consecutive cycles of iteration.
The result of the learning process (Table 12-5) is a trained SOM ready for
classification.

248 Chapter 12

Table 12-5. Trained SOM.
 1 2 3
 T0 T10 T20 T0 T10 T20 T0 T10 T20
1 80.7 77.6 73.3 74 77.9 67.3 69.2 79.5 72.2
2 84.4 81.9 82.1 82.5 81.2 81.4 78.5 77.6 78.2
3 89.6 85.4 91 88.1 82.9 91.7 79.9 79.1 89.4

Different nodes (Table 12-5) have different properties reflecting our data

structure, e.g., we know that there are highly expressed genes and lowly
expressed in the data set. The lower left nodes, i.e., node(3,1) and node(3,2)
have relatively high expression values at all three time points, and node(1,2)
and node(1,3) have relatively low expression at all three time points.
Node(1,1) has its expression decreasing with time, node(3,3) has its
expression increased at time T20 relative to the two previous time points.

The trained SOM can now be used for classification. During the
classification stage, the node values do not change. A new gene with its
expression values at T0, T10 and T20 can be assigned to a node by
computing the Euclidean distance between this node and each of the nine
nodes. The node with the smallest Euclidian distance will have the new gene
assigned to it. The node to which Gene i is assigned is called the host node
of Gene i.

Before we use the trained SOM to do the classification of new genes, it is
crucial to check how well the SOM fits the training data. This is typically
done by first assigning the genes in the training data to the nine nodes, and
then computing the Euclidian distance (or its square) between each gene and
its host node (Table 12-6).

Table 12-6. Classification of the 15 genes to the nine nodes. Row and Col indicate the
coordinates of the host nodes. The last column is the Euclidian distance between each gene
and its host node.
Gene T0 T10 T20 Row Col d
1 93 76 87 3 2 9.69
2 80 81 85 2 2 4.41
3 89 88 85 3 1 6.54
4 69 74 96 3 3 13.77
5 95 89 93 3 1 6.80
6 65 96 76 1 3 17.43
7 87 85 96 3 2 4.90
8 78 89 88 3 3 10.17
9 87 80 97 3 2 6.12
10 67 96 55 1 2 23.00
11 91 90 95 3 1 6.30
12 76 72 67 1 2 6.19
13 79 78 94 3 3 4.84
14 96 76 78 2 1 13.63
15 66 64 63 1 2 16.54

12. Self-Organizing Map and other clustering Algorithms 249

We instantly notice a few genes that fit poorly into their respective host
nodes (Table 12-6). For example, gene 10, with three gene expression values
being 67, 96, and 55 at T0, T10 and T20, respectively, is classified to
node(1,2) with its node values being 74, 77.9 and 67.3. Although both Gene
10 and its host node have the largest value at T10 and the smallest value at
T20, the classification is deemed poor because of the large Euclidean
distance (= 23, Table 12-6). The classification of Gene 7 to node(3,2) is
similar, albeit with a smaller distance (= 17.43). Such large Euclidean
distances suggest that the SOM does not provide good fit to the dada and we
should re-run SOM with a larger (more accommodating) grid.

Application of SOM to the yeast gene expression data (Cho et al., 1998)
generates many co-expressed genes. Most are similar to those recovered by
the UPGMA methods, but there are also different ones. These co-expressed
genes are candidates for further study to check if they are co-regulated, i.e.,
whether they share similar regulatory sequences that are activated by the
same transcription factors of similar proteins. The Gibbs sampler in Chapter
7 is one of the key data-mining tools used to identify such regulatory
sequences.

It is important to recognize the fact that, although each input data point in
our example is a vector of three numbers, SOM is not limited to data points
represented as a vector of numbers. It can be applied to any data for which
we can (1) define a distance between a data point and the node and (2)
update the value of the winning nodes and neighboring nodes in response to
the input. For example, the input data points can be 20-base sequences
flanking the 5’-splicing site in eukaryotic protein-coding genes, and the node
can be represented by a sequence profile (illustrated in Chapter 2 on profile
alignment). The distance between the input sequence and the node sequence
profile can just be a function of mismatch score or of an alignment score,
and the updating of the nodes can be done easily by revising the sequence
profile by adding the input sequence.

3.2 Variations of the basic SOM algorithm

I will briefly mention two variations of the basic SOM algorithm as
presented in the previous section. The first is to replace the random
initialization step by using the first two principal component scores from
principal component analysis (PCA) of the matrix containing the gene
expression data. PCA is a dimension reduction technique to project high
dimensional data into a low dimensional space, and in this sense it serves a
similar purpose as SOM.

250 Chapter 12

To visualize the application of PCA to SOM initialization, plot the two
principal component scores and superimpose the grid of node onto the two-
dimensional plot (Figure 12-9). The values of each node, e.g., w1, w2 and w3
in our example, are then the averages of those points falling within that node.
The node values are then updated by using the same protocol as we have
already learned. This dramatically reduces the computation time needed for
SOM training.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-4 -2 0 2 4

PC1

PC
2

Figure 12-9. Using the first two principal component scores to initialize the grid of nodes.

One may wonder why the grid in Figure 12-9 has five columns but only
three rows. The reason is that PC1 (the first principal component) typically
accounts for far more variation in the data than PC2, and the dimension of
the grid of nodes should be proportional to the variation accounted for by
each principal component.

The other variation of the SOM algorithm involves the updating process.
Instead of updating the winning node and its neighbors with every input data
point, we simply find a host node for each data point and assign all data
points to their respective host nodes without updating. Once all data points
have been mapped onto the grid of nodes, we then compute the node values
as the mean or median of those data points assigned to the node. This
process is repeated until convergence is achieved. This variation of the SOM
algorithm is often referred to as the batch mode of SOM training.

Chapter 13

MOLECULAR PHYLOGENETICS

1. INTRODUCTION

Molecular phylogenetics has been increasingly recognized as an essential
subject in understanding molecular biology and evolution, and the subject
has been often included in recent bioinformatics textbooks (Baxevanis and
Ouellette, 2005; Higgs and Attwood, 2004). It is now a common consensus
that understanding the dynamic nature of genes, genomes and gene
interactions over evolutionary time is just as important as understanding the
dynamic nature of gene expression and gene interaction during the
development of an individual. We need molecular phylogenetics to facilitate
our understanding of the dynamic natures of genes, genomes and gene
interactions. In particular, phylogenetic relationships and dating are essential
in reconstructing ancestral genes, predicting sites that are important to
natural selection and, ultimately, understanding genomic evolution.

Four categories of phylogenetic methods are currently used to construct
branching patterns during the speciation and gene duplication processes: the
distance-based, the maximum parsimony, maximum likelihood and the
Bayesian methods. Here I present the mathematical framework of the first
three methods and their rationales, provide computational details for each of
them, illustrate analytically and numerically the potential biases inherent in
these methods, and outline computational challenges and unresolved
problems. This is followed by a numerical illustration of the Bayesian
inference, together with a few numerical illustrations of the Bayesian
approach that has recently been used in molecular phylogenetics
(Huelsenbeck et al., 2001).

252 Chapter 13

Molecular phylogenetics is now a very advanced subject in biology
requiring substantial mathematical maturity. However, there are many
excellent textbooks available (Felsenstein, 2004; Hillis et al., 1996; Li, 1997;
Nei and Kumar, 2000; Semple and Steel, 2003). This chapter, partially based
on a previous review (Xia, 2007), will bridge the reader to more advanced
topics in molecular phylogenetics. Although I have cut several corners to
simplify and shorten the presentation, the chapter remains the longest in the
book.

2. BIODIVERSITY, HISTORICAL INFORMATION,
AND PHYLOGENETICS

Phylogenetics aims to organize biodiversity based on genealogical
(ancestor-descendent) relationships. Biodiversity comes in many colors and
shades, and unorganized biodiversity can not only dazzle our eyes but also
confuse our minds. Molecular phylogenetics uses molecular sequence data to
achieve its three main objectives: (1) to reconstruct the branching pattern of
different evolutionary lineages such as species and genes, (2) to date
evolutionary events such as speciation or gene duplication and subsequent
functional divergence, and (3) to understand and summarize the evolutionary
processes by substitution models. With the rapid increase of DNA and
protein sequence data, and with the realization that DNA is the most reliable
indicator of ancestor-descendent relationships, molecular phylogenetics has
become one of the most dynamic fields in biology with solid theoretical
foundations (Felsenstein, 2004; Li, 1997; Nei and Kumar, 2000; Page and
Holmes, 1998; Semple and Steel, 2003) and powerful software tools
(Felsenstein, 2002; Kumar et al., 2001; Swofford, 2000; Xia, 2001; Xia and
Xie, 2001b; Yang, 2002). I will not argue for the importance of molecular
phylogenetics other than quoting Aristotle’s statement that “He who sees
things from the very beginning has the most advantageous view of them.”

It is not always easy to see things from the very beginning. The
evolutionary process depicted in Figure 13-1 shows an ancestral population
with a single sequence shared among all individuals that have subsequently
split into two populations and evolved and accumulated substitutions
independently. Twelve substitutions have occurred, but only three
differences can be observed between the sequences from the two extant
species. The most fundamental difficulty in molecular phylogenetics is to
estimate the true number of substitutions (i.e., 12) from the observed number
of differences between extant sequences (i.e., 3). In short, the difficulty lies
in how to correct for multiple hits.

13. Molecular Phylogenetics 253

ACACTCGGATTAGGCT

G C

si
ng

le

pa
ra

lle
l

co
nv

er
ge

nt

C

co
in

ci
de

nt
al

m
ul

tip
le

ba
ck

ACACTCGGATTAGGCT
(Shared among ancestors)

ATACTCAGGTTAAGCT

ACATTCCGGTTAAGCT

ACACTCGGATTAGGCT

Substitutions
occurred in
population 1

Substitutions
occurred in
population 2m

ul
tip

le

Figure 13-1. Illustration of nucleotide substitutions and the difficulty in correcting multiple
hits. After Li (1997).

The number of substitutions per site is known as a genetic distance. The
simplest genetic distance between two sequences, known as the p-distance
(Dp), is simply the number of different sites (N) divided by the sequence
length (L). For the two sequences in Figure 13-1, Dp = 3/16. Because Dp
does not correct for multiple hits, it is typically a severe underestimate of the
true genetic distance and has to be corrected.

In the next few sections, I will first detail commonly used substitution
models, derive genetic distances based on the substitution models, and
introduce the three categories of molecular phylogenetic methods: the
distance-based, the maximum parsimony and the maximum likelihood
methods. Several numerical examples are then presented to demonstrate
commonly used computational approaches in Bayesian inference, such as
conjugate prior distributions, discrete approximation and MCMC algorithms.
Potential problems with these phylogenetic methods will be highlighted.

3. SUBSTITUTION MODELS

Substitution models reflect our understanding of how molecular
sequences change over time. They are the theoretical foundation for
computing the genetic distance in the distance-based phylogenetic method
and for computing the likelihood value in the maximum likelihood method
for phylogenetics. There are three types of molecular sequences, i.e.,
nucleotide, amino acid and codon sequences. Consequently, there are three
types of substitution models, i.e., nucleotide-based, amino acid-based and
codon-based. We will focus on nucleotide-based substitution models, with

254 Chapter 13

only a brief discussion on amino acid-based and codon-based models to
highlight a few potential problems.

3.1 Nucleotide-based substitution models and genetic
distances

Let pt be the vector of the four nucleotide frequencies (PA.t, PG.t, PC.t, PT.t)
at time t. Nucleotide-based substitution models are characterized by a
Markov chain of four discrete states as follows:

1

AA AG AC AT

GA GG GC GT
t t t

CA CG CC CT

TA TG TC TT

P P P P
P P P P

p p p M
P P P P
P P P P

+ = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (13.1)

where M is the transition probability matrix and Pij is the probability of
changing from state i to state j in one unit of time. Three frequently used
special cases of Eq. (13.1) will be detailed here: the JC69 model (Jukes and
Cantor, 1969), the K80 model (Kimura, 1980), and the TN93 model (Tamura
and Nei, 1993).

The simplest nucleotide substitution model is the JC69 one-parameter
model, in which all off-diagonal elements in M are identical and designated
as α. The four diagonal elements in M are 1-3α constrained by the row sum
equal to 1. There is a corresponding rate matrix, designated by Q , that differs
from M only in that the diagonal elements are -3α, constrained by the row
sum equal to 0. It is often more convenient to derive substitution rates by
using Q instead of M, as will be clear latter. Following Eq. (13.1), we have

. 1

. 1

. 1

. 1

(1 3)

(1 3)

(1 3)

(1 3) .

A t A t G t C t T t

G t A t G t C t T t

C t A t G t C t T t

T t A t G t C t T t

P P P P P

P P P P P

P P P P P

P P P P P

α α α α

α α α α

α α α α

α αα α

+

+

+

+

= − + + +

+ − + +

= + + − +

= + + + −

=
 (13.2)

Arranging the left side to be PA.t+1 - PA.t and then applying the continuous
approximation, we have

13. Molecular Phylogenetics 255

. . . .

. . . .

. . . .

. . . .

(3) ()

(3) ()

(3) ()

(3) () .

A
A t G t C t T t

G
G t A t C t T t

C
C t A t G t T t

T
T t A t G t C t

P
P P P P

t
P

P P P P
t

P
P P P P

t
P

P P P P
t

α α

α α

α α

α α

∂
= − + + +

∂
∂

= − + + +
∂
∂

= − + + +
∂
∂

= − + + +
∂

 (13.3)

Equation (13.3) is a special case of a general equation. Designate d as the
vector of the four partial derivatives, the general equation is

td PQ= (13.4)

where Q is the rate matrix mentioned before. The reason for Q to be called
a rate matrix should now be clear.

Suppose that we start with nucleotide A, what is the probability that it
will stay as A or change to one of the other three nucleotides after time t?
Given the initial condition that PA.0 = 1 and PC.0 = PG.0 = PT.0 = 0 and the
constrain that that PA + PG + PC + PT = 1, Eq. (13.3) can be solved to yield

4
.

4
. . .

1 3
4 4

1 1
 .

4 4

t
A t

t
G t C t T t

P e

P P P e

α

α

−

−

= +

= = = −

 (13.5)

The time t in Eq. (13.5) is the time from the ancestor to the present.
When we compare two extant sequences, the time is 2t, i.e., from one
sequence to the ancestor and then back to the other sequence. So Eq. (13.5)
has its general form as

8
.

8
.

1 3
4 4
1 1

 .
4 4

t
ii t

t
ij t

P e

P e

α

α

−

−

= +

= −

 (13.6)

The genetic distance (D), which is the number of substitutions per site, is
defined as 2tμ where μ is the rate of substitution. For the JC69 mode, μ =
3α, so αt = D/6. Now we can readily derive D from the JC69 model,

256 Chapter 13

designated DJC69, from the p-distance (Dp) defined before (Recall that Dp
between two sequences is the probability of a site being different between
two sequences). According to Eq. (13.6),

694 / 38
.

69

3 3
1 (1) (1)

4 4
43

ln(1) .
4 3

JCDt
p ii t

p
JC

D P e e

D
D

α −−= − = − = −

= − −

 (13.7)

For the two sequences in Figure 13-1, Dp = 3/16 = 0.1875 and DJC69 =
0.21576. The equilibrium frequencies are derived by setting (pi.t+1 – pi.t) in
Eq. (13.3) to zero. Solving the resulting simultaneous equations with the
constraint that the four frequencies sum up to 1, we have PA.t =PG.t =PC.t =PT.t
= 0.25. In summary, the JC69 model assumes that (1) the four nucleotides
can change into each other with equal probability and (2) the equilibrium
frequencies are all equal to 0.25.

The variance of DJC69 can be obtained by using the “delta” method
(Kimura and Ohta, 1972). When a variable Y is a function of a variable X,
i.e., Y = F(X), the delta method allows us to obtain approximate formulation
of the variance of Y if (1) Y is differentiable with respect to X and (2) the
variance of X is known. The same can be extended to more variables.

The mathematical concept for the delta method is illustrated below,
starting with the simplest case of Y = F(X). Regardless of the functional
relationship between Y and X, we always have

dY
Y X

dX
Δ ≈ Δ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (13.8)

() ()
2

2 2 .
dY

Y X
dX

Δ ≈ Δ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (13.9)

where ΔY and ΔX are small changes in Y and X, respectively.
Note that the variance of Y is the expectation of the squared deviations of

Y, i.e.,

2

2

() ()

() () .

V Y E Y

V X E X

= Δ

= Δ
 (13.10)

Replacing (ΔY)2 and (ΔX)2 in Eq. (13.9) with V(Y) and V(X), we have

13. Molecular Phylogenetics 257

2

() () .
dY

V Y V X
dX

≈ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (13.11)

This relationship allows us to obtain an approximate formulation of the
variance of either Y or X if we know either V(X) or V(Y). For the variance of
DJC69, we note that DJC69 is a function of Dp, and the variance of Dp is known
from the binomial distribution:

(1)
() p p

p

D D
V D

L

−
= (13.12)

where L is the length of the two aligned sequences. From the expression of
DJC69 in Eq. (13.7), we have

69

2

69
69 2

1
4

1
3

(1)
() () .

4
1

3

JC

p

p pJC
JC p

p

p

p

D
DD

D DD
V D V D

D D
L

∂
=

∂
−

−∂
= =

∂
−

⎛ ⎞
⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

 (13.13)

As students are always eager to have more illustrative examples, and
because I myself belong to the lesser folks who cannot see the beauty of
equations without rendering them to numbers, I will present another
example, taken from a book on population genetics (Li, 1976), in which we
know the variance of Y and want to estimate the variance of X.

Given a locus with one dominant allele (A) and one recessive allele (a),
we have only two distinguishable phenotypes, dominants (AA, Aa) and
recessives (aa). How to estimate the allele frequency of a and its variance?

You might be interested to know that the severe human disease cystic
fibrosis is determined by one locus with a dominant allele and a recessive
allele. The disease is caused by homozygosity for the recessive allele.

Let D and R be the observed numbers of dominants and recessives in a
sample of N random individuals (N = D + R). Our estimate of the frequency
of allele a, designated q, is

2 /

/

q R N

q R N

=

=
 (13.14)

258 Chapter 13

In the case of cystic fibrosis, the ratio of R/N is about 1/2500. So q =
1/50. Now we proceed to find the variance of q. From the binomial
distribution, we know the variance of q2 to be

2 2
2 (1)() q qV q

N
−

= (13.15)

In the framework of the delta method with Y = F(X), we have Y = q2, X
= q, and dY/dX = 2q. We already know the variance of Y (i.e., q2) in Eq.
(13.15), and the variance of X can be obtained as follows

22 2
2

2 2

2

2 2

(1)() () (2) ()

(1)
() 1()

(2) 4 4

q q dYV Y V q q V q
N dq

q q
V Y qNV q

q q N

⎛ ⎞−
= = =⎜ ⎟

⎝ ⎠
−

−
= = =

 (13.16)

You might have noticed that, q2 = R/N and (1-q2) = D/N. So we have

2

2

1 /()
4 4 4

q D N DV q
N N N
−

= = = (13.17)

In the case of cystic fibrosis, q = 1/50 = 0.02, V(q) = 0.00009996, the
standard deviation of q is 0.009998, and the 95% confidence interval for q,
when sample size is large, is (0.0004, 0.0396).

Joe Felsenstein (pers. comm.) suggests that a bioinformatics book would
be incomplete without coverage of the EM algorithm. So here comes a
numerical illustration (the simplest possible, I believe) of the EM algorithm
to estimate q (the frequency of the recessive allele a). Note that in this
particular case we do not need to use the EM algorithm to estimate q because
q is already given in Eq. (13.14). However, gaining some familiarity with the
EM algorithm may be useful in other situations.

There are three genotypes involving the cystic fibrosis locus, AA, Aa and
aa, with AA and Aa indistinguishable phenotypically. Designate p = 1 – q
and let NAA, NAa and Naa be the number of AA, Aa and aa genotypes,
respectively. Using the notations above, we have D = (NAA + NAa) and R =
Naa. Because the EM algorithm works on real data, we will assume that we
have observed D = 9996 and R = 4.

13. Molecular Phylogenetics 259

Since we cannot observe NAA and NAa directly (they are indistinguishable
phenotypically), the two numbers represent incomplete data from a three-
category trinomial distribution. The complete data specification is as
follows:

2 2(, , |) [] [2] []
!

! ! !

aaAA NN NAa
AA Aa aa

AA Aa aa

f N N N q C p pq q
NC

N N N

=

=
 (13.18)

The EM algorithm consists of two steps, the estimation step (or E-step)
and the maximization step (or M-step). Let us start by setting q = 0.1. For the
E-step, we estimate NAA and NAa as follows (with the subscript in NAA.1 and
NAa.1 indicating the first E-step):

2

.1 2

.1 2

8178.545455
2

2 1817.454545
2

AA

Aa

pN D
p pq

pqN D
p pq

= =
+

= =
+

 (13.19)

Substituting these into Eq. (13.18), we can obtain q by the maximum
likelihood method, i.e., taking the derivative of f(NAA,NAa,Naa|q) with respect
to q, setting the derivative to 0 and solve the resulting equation for q. This
gives

1
2 0.091272727

2
Aa aaN Nq

N
+

= = (13.20)

where the subscript 1 in q1 indicates the first M-step. We now repeat the E-
step according to the following equations equivalent to Eq. (13.19)

2

. 2
1

1
. 2

1

1

2
2

2
1

AA i
i

i
Aa i

i

i

pN D
p pq

pqN D
p pq

p q

−

−

−

−

=
+

=
+

= −

 (13.21)

and the M-step according to the following equation equivalent to Eq. (13.20)

260 Chapter 13

. 2
2

Aa i aa
i

N Nq
N
+

= (13.22)

Repeating the E-step and M-step will result in qi asymptotically
approaching 0.02, and NAa and NAA approaching 392 and 9604, respectively.

Let us now come back to molecular phylogenetics and introduce a
slightly more complicated substitution model. Kimura (1980) noted that
transitional substitutions typically occur much more frequently than
transversions, and consequently proposed the two-parameter K80 model in
which the rate of transitional substitutions (A↔G and T↔C) is designated
as α and the rate of transversion substitutions (A↔T, A↔C, G↔T and
G↔C) as β:

 .

A
G

Q
C
T

α β β

α β β

β β α

β β α

•

•
=

•

•

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (13.23)

Substituting this new Q into Eq. (13.4) and solving the equations with

the initial condition that PA.0 = 1 and PC.0 = PG.0 = PT.0 = 0 and the constrain
that that PA + PG + PC + PT = 1 as before, we have

4 2()
.

4 2()
.

4
. .

1 1 1
4 4 2
1 1 1
4 4 2

1 1
 .

4 4

t t
A t

t t
G t

t
C t T t

P e e

P e e

P P e

β α β

β α β

β

− − +

− − +

−

= + +

= + −

= = −

 (13.24)

Note again that time t in Eq. (13.24) should be 2t when used between two
extant sequences. So Eq. (13.24) has its general form as

8 4()
.

8
.

1 1 1
4 4 2
1 1
2 2

t t
s t

t
v t

P e e

P e

β α β

β

− − +

−

= + −

= −

 (13.25)

13. Molecular Phylogenetics 261

where Ps.t and Pv.t are the probabilities that a site differs by a transition and a
transversion, respectively, between two sequences that have diverged for
time t, and can be estimated by the proportion of sites differing by a
transition (P) and a transversion (Q), respectively. This leads to

ln(1 2)
8

ln(1 2) ln(1 2)
 .

4 8

Q
t

P Q Q
t

β

α

−
= −

− − −
= − +

 (13.26)

Recall that the genetic distance is defined as 2tμ where μ = α + 2β for the

K80 model. Therefore,

80

1 1
2 4 ln() ln(), where

2 4
1 1

 and .
1- 2 - 1- 2

KD t t a b

a b
P Q Q

α β= + = +

= =
 (13.27)

For the two sequences in Figure 13-1, P = 2/16, Q = 1/16, DK80 =
0.22073. The equilibrium frequencies are derived by setting d in Eq. (13.4)
to the 0 vector. Solving the resulting simultaneous equations with the
constraint that the four frequencies sum up to 1, we have PA.t =PG.t =PC.t =PT.t
= 0.25. Thus, the K80 model shares with the JC69 model the assumption that
the equilibrium frequencies are all equal to 0.25. You might have noticed
this because nucleotide frequencies are not featured in the expression of
DJC69 or DK80.

The variance of DK80 can be derived by the delta method as before:

80 80
80 1 2

K K
K

D D
dD dP dQ d dP d dQ

P Q
∂ ∂

= + = +
∂ ∂

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

i i (13.28)

262 Chapter 13

[]

[]

22
80 1 2

2 2 2 2
1 1 2 2

2 2
1 1 2 2

1
1 2

2

80(()

2

() 2 (,) ()

() (,)
 .

(,) ()

) KKV D dD d dP d dQ

d dP d d dPdQ d dQ

d V P d d Cov P Q d V Q

dV P Cov P Q
d d

dCov P Q V Q

= +

= + +

= + +

=

=

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

i i

 (13.29)

Recall that P stands for the proportion of sites that differ by a transitional
change and Q stands for the proportion of sites that differ by a transversional
change. Designate R as the proportion of identical sites (R = 1 – P – Q).
From the trinomial distribution of (R + P + Q)L, we have:

(1)
()

(1)
()

(,) .

P P
V P

L
Q Q

V Q
L

PQ
Cov P Q

L

−
=

−
=

= −

 (13.30)

Substituting these into Eq. (13.29), we have the variance of DK80:

2 2 2
2

80 80

()
() ()K K

a P c Q aP cQ
V D dD

L
+ − +

= = (13.31)

where c = (a + b)/2, with a and b defined in Eq. (13.27).
Note that Eq. (13.29) is a general equation for computing the variance by

the delta method. For any function Y = F(X1, X2, ..., Xn), the variance of Y is
obtained by the variance-covariance matrix of Xi multiplied left and right by
the vector of partial derivatives of Y with respect to Xi.

Tamura and Nei (1993) noticed the rate difference between C↔T and
A↔G transitions and proposed the TN93 model with the following rate
matrix:

2

2

1

1

 .

G C T

A C T

A G T

A G C

A
G

Q
C
T

α π βπ βπ

α π βπ βπ

βπ βπ α π

βπ βπ α π

•

•
=

•

•

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (13.32)

13. Molecular Phylogenetics 263

where πi designates equilibrium nucleotide frequencies, and the diagonal is
constrained by the row sum equal to 0.

Following the same protocol as before, and designate P1, P2 and Q as the
probabilities of C↔T transitions, A↔G transitions and R↔Y transversions
(R means either A or G and Y means either C or T), respectively, we can
obtain,

1

1

2()2

(2) (2)

2 ()

Y R

T TC C CT

tt
T C Y R

Y

P P t P t

e e α π βπβ

π π

π π π π
π

− +−

= +

+ −
=

 (13.33)

2

2

2()2

(2) (2)

2 ()

R Y

A AG G GA

tt
A G R Y

R

P P t P t

e e α π βπβ

π π

π π π π
π

− +−

= +

+ −
=

 (13.34)

22 (1) .t
R YQ e βπ π −= − (13.35)

Solving for α1t, α2t and βt from Eqs. (13.33)-(13.35), we have

1

1

ln(1) ln(1)
2 2 2

2

Y
R

Y T C R Y

Y

PQ Q

t

π
π

π π π π π
α

π

− − − + −

= (13.36)

2

2

ln(1) ln(1)
2 2 2

2

R
Y

R A G R Y

R

PQ Q

t

π
π

π π π π π
α

π

− − − + −

= (13.37)

ln(1)
2

 .
2

R Y

Q

t
π π

β
−

= − (13.38)

264 Chapter 13

93 2 1

1 2

2 1

2 [() ()

 () ()]

 4[] .

TN A T C G C A G T

T A G C G T C A

R Y A G C T

D t

t t t

π βπ βπ α π π βπ βπ α π

π βπ βπ α π π βπ βπ α π

π π β π π α π π α

= + + + + +

+ + + + + +

= + +

 (13.39)

Because we can estimate P1, P2 and Q by the proportion of sites with
C↔T transitions, A↔G transitions and R↔Y transversions, respectively,
DTN93 can be readily computed. For the two sequences in Figure 13-1, DTN93
is 0.2525. The variance of DTN93 can be easily obtained by left- and right-
multiplying the variance-covariance matrix of P1, P2 and Q with the vector
of the three derivatives of DTN93 with respect to P1, P2 and Q in the same way
shown in the last term of Eq. (13.29). The variance and covariance of P1, P2
and Q can be obtained in the same way as in Eq. (13.30).

Many more substitution models and genetic distances have been
proposed (Tamura and Kumar, 2002), with the number of all possible time
reversible models of nucleotide substitution being 203 (Huelsenbeck et al.,
2004). In addition, there are more complicated models underlying the
LogDet and the paralinear distances (Lake, 1994; Lockhart et al., 1994) that
can presumably accommodate the nonstationarity of the substitution process.
Such models have not been implemented in a maximum likelihood
framework until very recently (Jayaswal et al., 2005). Different substitution
models often lead to different trees produced and constitute a major source
of controversy in molecular phylogenetics (Rosenberg and Kumar, 2003;
Xia, 2000; Xia et al., 2003a).

3.2 Amino acid-based and codon-based substitution
models

Amino acid-based models (Adachi and Hasegawa, 1996; Kishino et al.,
1990) are similar in form to those nucleotide-based models in the previous
section, except that the discrete states of the Markov chain will be 20 instead
of only 4. Because of the large size of the transition matrix, the transition
probabilities are typically derived from empirical transition matrices
(Dayhoff et al., 1978; Jones et al., 1992).

There are three inherent difficulties with amino acid-based models. First,
protein-coding genes often differ much in substitution patterns, and one can
never be sure if any of the empirical transition matrices is appropriate for the
protein sequences one is studying. Second, note that an amino acid
replacement is effected by a nonsynonymous codon replacement. Two
codons can differ by 1, 2, or 3 sites, and an amino acid replacement
involving two codons differing by one site is expected to be more likely than
that involving two codons differing by 3 sites. However, at the amino acid

13. Molecular Phylogenetics 265

level, there is no information on whether an amino acid replacement results
in a single nucleotide replacement or a triple nucleotide replacement. Only a
codon-based model can incorporate this information. Third, two similar
amino acids are expected to, and do, replace each other more frequently than
two different amino acids (Xia and Li, 1998). However, the similarity
between amino acids is difficult to define. For example, polarity may be
highly conserved at some sites but not at others. Two very different amino
acids rarely replace each other in functionally important domains but can
replace each other frequently at unimportant segment. Moreover, the
likelihood of two amino acids replacing each other also depends on
neighboring amino acids (Xia and Xie, 2002). For example, whether a
stretch of amino acids will form a α-helix may depend on whether the
stretch contains a high proportion of amino acids with high helix-forming
propensity, and not necessarily on whether a particular site is occupied by a
particular amino acid.

The codon-based substitution models (Goldman and Yang, 1994; Muse
and Gaut, 1994) were proposed to overcome some of the difficulties in
amino acid-based models. These models share the third difficulty above with
the amino acid-based models, and have additional problems of their own.
For example, one cannot get good estimate of codon frequencies because
protein-coding genes are typically very short. An alternative is to use the
F3x4 codon frequency model (Yang, 2002; Yang and Nielsen, 2000).
However, codon usage is affected by many factors, including differential
ribonucleotide and tRNA abundance as well as biased mutation (Xia, 1996,
1998b, 2005c). For example, the site-specific nucleotide frequencies are
poor predictors of codon usage (Table 13-1) of protein-coding genes in
Escherichia coli K12.

Table 13-1. Site-specific nucleotide frequencies and codon usage in two codon families. AA –
amino acid; Ncod – number of codon; Results based on eight highly expressed genes (gapC,
gapA, fbaB, ompC, fbaA, tufA, groS, groL) from the Escherichia coli K12 genome (GenBank
Accession: NC_000913)

Nuc. Freq. by codon sites (CS) Codon freq.
Base CS1 CS2 CS3 Codon AA Ncod
A 0.273 0.32 0.18 AAG Lys 24
C 0.189 0.24 0.326 AAA Lys 149
G 0.409 0.16 0.219 CAG Gln 73
U 0.129 0.28 0.275 CAA Gln 7

A-ending codon are used frequently for coding lysine, but G-ending

codon used frequently for coding glutamine (Table 13-1). The reason for this
is simple. Six Lys-tRNA genes in E. coli K12 all have anticodons being
UUU which can translate the AAA lysine codon better than the AAG lysine

266 Chapter 13

codon. For glutamine codons, there are two copies of Glu-tRNA genes (glnX
and glnV) with a CUG anticodons matching the CAG codon and another two
copies (glnW and glnU) with the UUG anticodon matching the CAA codon.
However, the former is more abundant than the latter in the E. coli cell
(Ikemura, 1992), which would favor the use of CAG against the CAA codon
for glutamine. One should expect the F3x4 codon frequency model to
perform poorly in such a situation which unfortunately is frequently
encountered.

The complex array of factors contributing to codon usage bias is
illustrated in Chapter 9. Readers should refer to that chapter in order to
appreciate the difficulty in developing realistic codon-based models as well
as the poor performance of several proposed codon-based models in
molecular phylogenetics.

4. TREE-BUILDING METHODS

Three categories of tree-building methods are in common use: the
distance-based, the maximum parsimony and the maximum likelihood
methods. These methods have their respective advantages and disadvantages
and I will provide mathematical details for the reader to understand their
problems.

4.1 Distance-based methods

The distance-based methods build trees from a distance matrix, and are
represented by UPGMA (Sneath, 1962), the neighbor-joining (NJ) method
(Saitou and Nei, 1987), the Fitch-Margoliash (FM) method (Fitch and
Margoliash, 1967) and the FastME method (Desper and Gascuel, 2002). The
calculation of some genetic distances has already been covered in previous
sections. Other genetic distances include the paralinear (Lake, 1994) and
LogDet (Lockhart et al., 1994) distances. A variety of genetic distances,
together with tree-building algorithms such as UPGMA, NJ, FM and
FastME (an excellent representative of distance-based methods based on the
minimum criterion), are implemented in my program DAMBE (Xia, 2001;
Xia and Xie, 2001b).

Other than the simplest UPGMA method, each tree-building method
consists of two steps: (1) the evaluation of branch lengths for a given
topology by either the least-squares (LS) method, the NJ method or the FM
method, and (2) the selection of the best tree based on either the minimum
evolution (ME) criterion or the least-squares or the weighted least-squares
criterion referred to hereafter as the Fitch-Margoliash (FM) criterion. One

13. Molecular Phylogenetics 267

should not confuse, e.g., the FM way of evaluating branch lengths with the
FM criterion for choosing the best tree.

There are many ways of evaluating branch lengths for a given tree, and I
will only present the LS method here. For the three-OTU (operational
taxonomic unit) tree in Figure 13-2A, the branch lengths (xi) can be solved
uniquely by the following equations:

12 1 2

13 1 3

23 2 3

 .

d x x

d x x

d x x

= +

= +

= +

 (13.40)

x5

S4

x1

S3

S2

S1

x4

x3

x2

S3

x1

S1

S4

S2
x5

x4

x3

x2

x1

S2

S1

x3

x2

S3

(A) (B) (C) (D)
S4

4

S3

S2

S1

1

4

1

S2 S3 S4
S1 5 8 5
S2 5 2
S3 5

S1 4 5 4
S2 4 2
S3 4

S1 6 12 6
S2 6 2
S3 6

Figure 13-2. Topologies for illustrating the distance-based methods.

For the four-OTU tree in Figure 13-2B, we can write down the equations
in the same way as in Eq. (13.40), but there will be six equations for five
unknowns. The LS method finds the xi values that minimize the sum of
squared deviations (SS),

' 2 2 2
12 1 2 34 3 4(-) [- ()] ... [- ()] .ij ijSS d d d x x d x x= = + + + +∑ (13.41)

By taking the partial derivatives with respect to xi, setting the derivatives
to zero and solving the resulting simultaneous equations, we get

1 13 12 23 14 24

2 12 13 23 14 24

3 13 23 34 14 24

4 14 13 23 34 24

5 12 23 34

 / 4 / 2 - / 4 / 4 - / 4

 / 2 - / 4 / 4 - / 4 / 4

 / 4 / 4 / 2 - / 4 - / 4

 / 4 - / 4 - / 4 / 2 / 4

 - / 2 / 4 - / 2

x d d d d d

x d d d d d

x d d d d d

x d d d d d

x d d d d

= + +

= + +

= + +

= + +

= + + 14 24 13/ 4 / 4 / 4 .d d+ +

 (13.42)

268 Chapter 13

With four OTUs, there are three unrooted trees. There are two commonly
used global criteria for choosing the best tree. The first is the ME criterion
based on the tree length (TL) which is the summation of all xi values. The
tree with the smallest TL is chosen as the best tree. Note that TL can be
computed directly from dij values without first evaluating xi values.

In contrast, the FM criterion chooses the tree with the smallest SS

()2'
1

1 1

n n ij ij

P
i j i ij

d d
SS

d

−

= = +

−
= ∑ ∑ (13.43)

where n is the number of OTUs and P often takes the value of 0 or 2.
Whether a distance-based method will recover the true tree depends

critically on the accuracy of the distance estimates. We will briefly examine
this problem with both the ME criterion and the FM criterion. Let TLB and
TLC be the tree length for Trees B and C in Figure 13-2. Suppose that OTUs
1 and 3 have diverged from each other so much as to have experienced
substitution saturation (Xia et al., 2003b) to cause difficulty in estimating the
true D13. Let pD13 be the estimated D13, where p measures the degree of
underestimation (p < 1) or overestimation (p > 1). Designate DTL as the
difference in TL between the two trees,

12 34 13 24- ()
 .

4TL B C

d d pd d
D TL TL

+ +
= − = (13.44)

According to the LS method of branch evaluation, Tree B is better than
Tree C if DTL < 0, and worse than Tree C if DTL > 0. Simple distances such
as the p-distance or JC69 distance tend to have p < 1 and consequently
increase the chance of having DTL > 0, i.e., favoring the incorrect Tree C.
This is the long-branch attraction problem, first recognized in the maximum
parsimony method (Felsenstein, 1978b). Genetic distances corrected with the
gamma-distributed rates over sites (Golding, 1983; Jin and Nei, 1990; Nei
and Gojobori, 1986; Tamura and Nei, 1993) tend to have p > 1 when there is
in fact no rate heterogeneity over sites, and consequently would favor Tree B
over Tree C, leading to long-branch repulsion (Waddell, 1995).

The long-branch attraction and repulsion problem is also present with the
FM criterion. Let SSB and SSC be SS in Eq. (13.43) for Trees B and C,
respectively. With P = 0 in Eq. (13.43) and letting DSS = SSB – SSC, we have

2 2

2 2
13 24 12 34 14 23 12 34 13 244

 2 ()

() () 2()[() ()]SSD

x y z y x

d d d d d d d d d d=

= − −

+ − + + + + − +

+
 (13.45)

13. Molecular Phylogenetics 269

where x = d13+d24, y = d12+d34 and z = d14+d23.

We now focus on Tree D, for which y is expected to equal z. Now Eq.
(13.45) is reduced to

24 ()SSD x y= − (13.46)

If branch lengths are accurately estimated, then x = y = 10, and DSS = 0,
i.e., neither Tree B nor Tree C is favored. However, if d13 (i.e., the
summation of the two long branches) is under- or overestimated, then DSS >
0 favoring Tree C. This means that both under- and overestimation of the
distance between divergence taxa will lead to long-branch attraction. This
can be better illustrated with a numerical example with Tree D in Figure 13-
2 which also displays three distance matrices. The first one is accurate, the
second one has genetic distances more underestimated for more divergent
taxa, and the third has genetic distances more overestimated for more
divergent taxa (e.g., when gamma-distributed rates are assumed when the
rate is in fact constant over sites). Note that Tree B and Tree C converge to
Tree D when x5 = 0. Table 13-2 shows the results by applying the ME and
LS criterion in analyzing the three distance matrices.

When the distances are accurate, the application of both the ME criterion
and the FM criterion recovers Tree D (the true tree) with x5 = 0, TL = 10, and
SS = 0. However, ME criterion favors Tree C when long branches are
underestimated, and Tree B when long branches are overestimated. In
contrast, the FM criterion would favor Tree C with both under- and
overestimated distances (Table 13-2) when negative branches are allowed.

Table 13-2. Effect of under- and over-estimation of genetic distances.

 Correct Under-estimation Over-estimation
 TreeB TreeC TreeB TreeC TreeB TreeC
TL 10 10 7.75 7.5 12.5 13
SS 0 0 0.25 0 1 0
x5 0 0 -0.25 0.5 0.5 -1

Distance-based methods, when used together with properly estimated

genetic distances, are generally robust against various biases that handicap
the maximum parsimony methods (illustrated in the next section). However,
a recent paper has suggested a few topological biases associated with
commonly used distance methods (Xia, 2006) which may be summarized
briefly below.

With two alternative unlabelled topologies (tree shapes, designated as
Topology A and Topology B, respectively) for six OTUs (Figure 13-3), we
have 105 possible unrooted labeled topologies.

270 Chapter 13

x2

x1

x5

x6

x8
x9

x4x3

x7

(A)

x2

x1

x5

x6

x7

x3

x9
x4

x8

(B)

Figure 13-3. Two unlabelled topologies (tree shapes), with Topology A having three cherries
and Topology B having two (a cherry is a pair of adjacent leaves descending from the most
recent common ancestor).

There are 15 different ways of assigning the six OTUs to the leaves in
Topology A and 90 different ways of assigning the six OTUs to Topology B.
If we use randomly generated distance matrices, and if the distance-based
methods are not biased in favor of one tree shape against the other, then the
probability of getting Topology A and Topology B should be p = 15/105 and
q = 90/105, respectively. However, the observed p is greater than 15/105
(and observed q smaller than 90/105), when either the neighbor-joining
(Saitou and Nei, 1987), FastME (Desper and Gascuel, 2002) or Fitch-
Margoliash method (Fitch and Margoliash, 1967) is used. This suggests that
these distance methods may be biased in favor of topologies with more
cherries (a cherry is a pair of adjacent leaves descending from the most
recent common ancestor).

The bias may be explained by the way the xi values are estimated by the
least-squares method. Designate dij as the genetic distance between two
OTUs i and j, and dij’ the sum of branches linking OTUs i and j on the
reconstructed tree. When there are only three OTUs, the three xi values can
be solved exactly and dij is always equal to dij’. With more than three OTUs,
dij is equal to dij’ only when OTUs i and j are in the same cherry, i.e.,
separated by only one internal node. A tree with more cherries with have
more dij values equal to dij’ and may consequently be favored.

It may not be obvious that dij = dij’ when OTUs i and j are in the same
cherry. So a bit of explanation is due. For the UPGMA method, whenever

13. Molecular Phylogenetics 271

two OTUs i and j are clustered, the branching point is set at a distance equal
to dij/2. So dij = dij’. For the NJ method, with two OTUs A and B separated
by a single internal node X, the branch lengths between A and X and
between B and X, designated bAX and bBX, respectively, are computed by the
NJ method as

[]

[]

1 (2)
2(1)

1 (2)
2(1)

AX AB A B

AX AB B A

b N d R R
N

b N d R R
N

= − + −
−

= − + −
−

 (13.47)

where N is the number of OTUs, RA = ΣdAi, and RB = ΣdBi (Saitou and Nei,
1987; Studier and Keppler, 1988). It is now obvious that dAB’ = (bAX + bBX)
= dAB. These branch lengths, i.e., bAX and bBX specified in Eq. (13.47), are
also known to be the least-square estimates (Saitou and Nei, 1987).

For the Fitch-Margoliash method (Fitch and Margoliash, 1967) with two
OTUs A and B separated by a single node X, the branch lengths are
computed by first merging all the rest of OTUs into a single OTU,
designated C, and then using the following equation with x, y, and z
designating the branch lengths between A and X, B and X and C and X,
respectively,

() / 2
() / 2
() / 2

AB AC BC

AB BC AC

AB AC BC

x d d d
y d d d
z d d d

= + −

= + −
= − + +

 (13.48)

Eq. (13.48) shows clearly that dAB’ = (x + y) = dAB. For three OTUs, i.e.,
when C is not a composite OTU, these branch lengths are also least-square
estimates.

When dij = dij’, it does not contribute to SS in Eq. (13.41) or SS in Eq.
(13.43). It is possible that Topology A in Figure 13-3 with three dij values
equal to their corresponding dij’ values, may be favored than Topology B in
Figure 13-3 with only two dij values equal to their corresponding dij’ values.

A related, but slightly different explanation for the possible bias in favor
of topologies with more cherries is as follows. Because the least-squares
method is a minimization method, the more often the observed dij values
appear in equations for estimating xi values, the more constraints are
imposed on the minimization. If we expressed the nine xi’s as functions of dij
values in the same form as Eq. (13.42), we will find the observed dij values
appearing in the nine functions 93 times for Topology A but 95 times for
Topology B. Thus, the minimization problem associated with Topology B is

272 Chapter 13

subject to more constraints than that with Topology A. Whether this can
explain why Topology A is favored needs more study.

4.2 Maximum parsimony methods

The maximum parsimony method saw its first effective algorithm in
1971 (Fitch, 1971), and became immensely popular mainly due to the
excellent software package PAUP (Swofford, 1993). The method remains
the best entry point for computer science students to learn molecular
phylogenetics and for biology students to develop a basic vocabulary of
computation for communicating with programmers.

4.2.1 The Fitch algorithm

In contrast to the distance-based methods, maximum parsimony (MP)
and maximum likelihood methods are character-based methods. The six
aligned sequences in Figure 13-4 have nine sites, with sites 2, 4, 9 being
monomorphic, and the rest of sites being polymorphic. A polymorphic site
with at least two different states each represented by at least two OTUs is
defined as an informative site. The MP method operates on informative sites
only in its search for the best tree.

S6 CATGCCGGC

S5 TATGCCGGC

S4 GACGTTGAC

S3 TACGTCAAC

S2 AACGTCGGC

S1 AATGCCGGC

∪→(T,C)

∪→(A,T)

∩→(T)

∪→(A,T,G)

∪→(T,G)

123456789

Figure 13-4. Computing the minimum number of changes for the first site of the six
alignment sequences in phylogenetic reconstruction using the maximum parsimony method

Given a topology, we compute the minimum number of changes for each
sequence site, with the computation of the first site illustrated in Figure 13-4.
Each node is represented by a set of characters, with the terminal nodes
(leaves) each represented by a set containing a single character. The method
traverses through each internal node, starting from the node closest to the
leaves. If two sets of the two daughter nodes have an empty intersection,

13. Molecular Phylogenetics 273

then the node will be represented by the union of the two daughter sets,
otherwise the node will be represented by the intersection. Once the
operation reaches the root, then the number of union operations is the
minimum number of changes needed to map the site to the tree.

Site 1 in Figure 13-4 requires four union operations (Figure 13-4),
whereas sites 3, 5, and 8 each require only one union operation. Sites 6 and
7, which are polymorphic with two nucleotide states but not informative,
will require one change for any topology. So the minimum number of
changes, also referred to as the tree length, given the topology and the
sequences in Figure 13-4, is nine. The same computation is done for other
possible topologies and the tree with the smallest tree length is taken as the
MP tree.

One may think that it is necessary to have a 4×L matrix (where L is
sequence length) to store the possible ancestral states in the internal nodes
for nucleotide sequences with four bases. In practice, only a vector of L
elements is sufficient to store the states of the internal nodes by using
ambiguous coding notation similar to the IUB (International Union of
Biochemistry) code in Table 2-2 in Chapter 2. For example, according to the
IUB code, (A,T) is coded as W, (A, T, G) as D, (T,G) as K and (T, C) as Y.
If we compare the first nucleotide between S5 and S6 (T and C, respectively),
we would need to look up the Table 2-2 of ambiguous codes to find letter Y.
Looking up the ambiguous code table for every set of nucleotides in the
internal node is time consuming.

To speed up the computation, one will almost always use bitwise
operations. Here I illustrate the implementation in the DNAPARS program
in the PHYLIP package (Felsenstein, 2002). First, for nucleotide i, where i =
A, C, G, T, O (for other such as the gap “-”), we define Ii (i.e., IA, IC, IG, IT
and IO) as 0, 1, 2, 3, and 4, respectively. We also note that the binary
notation of the decimal value of 1 is “00000001” which, when left-shifted by
IA, IC, IG, IT or IO bits, yields decimal values 1, 2, 4, 8 and 16, respectively
(Table 13-3).

Table 13-3. Decimal values obtained by left-shifting (<<) the binary 00000001 by Ii.
Nuc Ii 1<<Ii Decimal
A 0 00000001 1
C 1 00000010 2
G 2 00000100 4
T 3 00001000 8
O 4 00010000 16

We can now use bitwise operations to obtain the union and intersection.

In almost all programming languages, there is an operation called bitwise
OR that will combine corresponding bits of two binary numbers in such a
way that the result is 1 if either of the operand bits is 1, and is 0 when both

274 Chapter 13

operand bits are 0. The bitwise OR is typically designated by | in C-related
languages and simply OR in VB (Visual Basic)-related languages. Thus, the
union of A (represented in binary as 00000001) and G (represented in binary
as 00000100) is 00000001 | 00000100 = 00000101, which equals a decimal
value of 5. We consequently assign the value of 5 to the letter R (for either A
or G according to the IUB coding).

Similarly, the union of C and T is 00000010 | 00001000 = 00001010,
which equals a decimal value of 10. We consequently assign the value of 10
to the letter Y (for either Y or T according to IUB coding). The union of R
and Y is N (any of the four nucleotides), obtained by 00000101 | 00001010 =
00001111 which equals the decimal value of 15. The letter N consequently
gets the value of 15.

In VB-related languages, we have R = (1 OR 4) = 5 for the union of A
and G, Y = (2 OR 8) = 10 for the union of C and T, N = (5 OR 10) =15, and
so on. To help you check the output of the bitwise operations, I have listed
the nucleotides, their respective ascii keycodes, assigned values with binary
notation and the meanings of ambiguous codes in Table 13-4.

Table 13-4. Nucleotides (Nuc), their ascii code, assigned decimal (binary) values according to
bitwise operations and their meanings.
Nuc Ascii Value Meaning
A 65 1 (00000001) A
C 67 2 (00000010) C
M 77 3 (00000011) A or C
G 71 4 (00000100) G
R 82 5 (00000101) A or G
S 83 6 (00000110) C or G
V 86 7 (00000111) A or C or G
T 84 8 (00001000) T
W 87 9 (00001001) A or T
Y 89 10 (00001010) C or T
H 72 11 (00001011) A or C or T
K 75 12 (00001100) G or T
D 68 13 (00001101) A or G or T
B 66 14 (00001110) C or G or T
N 78 15 (00001111) G or A or T or C
O 79 16 (00010000) - or whatever else

Programming languages also feature a bitwise AND operator to help us

get intersection. It is represented as & in C-related languages and simply
AND in VB-related languages. It combines corresponding bits of two binary
numbers in such a way that the result is 1 if both operand bits are 1, and is 0
otherwise. Thus, the intersection of A and R is (A & R) = 1 in C-related
languages, (A AND R) = 1 in VB-related languages (Recall that 1 is the

13. Molecular Phylogenetics 275

number assigned to A (Table 13-4), so the operation simply means that the
intersection of A and R is just A.

The brief introduction of binary operations above suggests a clever trick
in speeding up the evaluation of a particular tree topology. We define

S = “ACMGRSVTWYHKDBNO???????????????”

so that A = 1, C = 2, M = 3, G = 4, …, N = 15 (which stands for any
nucleotide), O = 16, and “?” = 31, then the union and intersection of the two
child nodes can be obtained easily by the bitwise OR and bitwise AND
operations. For example, if the nucleotide at the left child node is A = 1 and
the right child node is K = 12 (i.e., T or G), then their union at the parental
node is 1 | 12 = 13 (which is D standing for A, G or T). Similarly, if the
nucleotide at the left child node is (T,C) = Y = 10 and the right child node is
(A, G, T) = D = 13, then their intersection at the parental node is 10 & 13 = 8
(which is the number assigned to T). Bitwise operations are very fast, even
for VB-related languages.

The evaluation of each tree can also be sped up by first collapsing the
sites into site patterns. When sequences are long and when the number of
OTUs few, most sites will have the same site pattern. For example, if all nine
columns of data in Figure 13-4 are the same as the first column, then we
only need to evaluate the first column and multiple the number of changes
by nine to get the tree length. However, when the number of sequences
increases, this approach becomes less and less effective the probability of
different sites sharing the same site pattern decreases with the number of
sequences.

In summary, the algorithm for the MP method consists of two
components, one being a tree generation function to generate alternative
topologies and the other being the tree evaluation function to output the
minimum number of changes for each alternative tree topology. The
topology with the smallest number of changes is the MP tree.

4.2.2 The uphill search and branch-and-bound search algorithms

The number of possible topologies (Felsenstein, 1978a) increases very
quickly with the increase in the number of OTUs (n), with the number of
rooted and unrooted topologies, designated as NR and NU, respectively, being

276 Chapter 13

2

3

(2 3)!

2 (2)!

(2 5)!

2 (3)!

R n

U n

n
N

n

n
N

n

−

−

−
=

−

−
=

−

 (13.49)

Searching through all possible topologies is called exhaustive search. It is
often computationally impossible to search all possible trees with a large n.
Two faster alternatives are commonly used. The first is the uphill search
which does not guarantee that the resulting tree is the most parsimonious.
The second is the branch-and-bound approach which does guarantee the
finding of the most parsimonious tree.

The uphill search algorithm is illustrated in Figure 13-5 with rooted
topologies. We first take three OTUs and evaluate all three possible
alternative topologies. If T1 (Figure 13-5) is the shortest of the three, then
we ignore the other two topologies (i.e., T2 and T3 in Figure 13-5) and all
other 4-OTU topologies derived from them. Now we add the fourth OTU at
all possible positions of T1 and generate the five possible topologies.
Evaluating these five topologies generates the 4-OTU “MP tree”.

Monkey
Rat
Mouse

Monkey
Rat
Mouse

Monkey
Mouse
Rat

Rat
Monkey
Chimp
Mouse

Monkey
Chimp
Rat
Mouse

Mouse
Monkey
Chimp
Rat

Monkey
Rat
Mouse
Chimp

Chimp
Rat
Mouse
Monkey

Monkey
Rat
Chimp
Mouse

Rat
Chimp
Monkey
Mouse

Mouse
Monkey
Rat
Chimp

Rat
Monkey
Mouse
Chimp

Chimp
Monkey
Mouse
Rat

Monkey
Rat
Mouse
Chimp

Rat
Monkey
Mouse
Chimp

Mouse
Chimp
Monkey
Rat

Mouse
Monkey
Rat
Chimp

Chimp
Monkey
Rat
Mouse

T1 T2 T3

Figure 13-5. Illustration of the uphill and branch-and-bound searching algorithm. T1, T2 and
T3 designate the three 3-OTU topologies. Adding the fourth OTU at all possible positions in
T1 generates the five 4-OTU topologies under it. The same for T2 and T3 and their respective
4-OTU topologies.

13. Molecular Phylogenetics 277

Compared to the exhaustive search evaluating all 15 possible 4-OTU
topologies, the uphill search is obviously much faster. Computation
simulations have shown that the uphill search generates optimal or near-
optimal trees.

The branch-and-bound algorithm for the MP method (Hendy and Penny.,
1982) starts by generating an initial tree with fast algorithms such as the
uphill search. Designate the length of the initial tree (i.e., the number of
changes required to account for the sequence variation) as L, which is the
upper bound of the tree length for the true MP tree. One may also use the
neighbor-joining method (Saitou and Nei, 1987) to generate a topology and
then evaluate the topology to obtain L. The resulting topology also allows us
to know which OTUs tend to have long branches.

The next step is to rank OTUs according to their branch lengths and take
the three OTUs with the longest branch lengths to build the 3-OTU
topologies. More divergent OTUs are added to the tree earlier. Any subtree
with a tree length > L is eliminated together with all topologies derived from
such a subtree because adding more OTUs will only lengthen the tree. This
is why we use more divergent OTUs first because this increases the chance
of having subtrees with a tree length > L so that such subtrees get eliminated
early. Take topologies in Figure 13-5 for example. If L = 10 and the 3-OTU
topologies T2 and T3 already have tree lengths greater than L, then we do
not need to consider the 4-OTU topologies derived from them because such
4-OTU topologies cannot be the MP tree. This process continues until the
true MP tree is found.

The efficiency of the branch-and-bound algorithm depends much on the
initial topology. If the initial topology is good, then many non-MP
alternatives gets eliminated early. If it is bad, then the algorithm will be
nearly as slow as the exhaustive search.

4.2.3 The long-branch attraction problem

The MP method is known to be inconsistent (Felsenstein, 1978b;
Takezaki and Nei, 1994) and I will provide a simple demonstration here by
using trees in Figure 13-6. With four species, we have three possible
unrooted topologies, designated Tk (k = 1, 2, 3), with T1 being the correct
topology.

278 Chapter 13

S1

S2

S3

S4

S1

S3

S2

S4

S1

S4

S3

S2

(T1) (T2) (T3)

Figure 13-6. The long-branch attraction problem in the maximum parsimony methods.

Let Xij be nucleotide at site j for species Si, and L be the sequence length.
For simplicity, assume that nucleotide frequencies are all equal to 0.25.
Suppose that the lineages leading to S1 and S3 have experienced full
substitution saturation, so that

1 , 1 3 , 3Pr() Pr() 0.25j ij i j ij iX X X X≠ ≠= = = = (13.50)

where Pr stands for probability. The lineages leading to X2 and X4 have not
experienced substitution saturation and have

2 4Pr()j jX X P= = (13.51)

where P > 0.25. For simplicity, let us set P = 0.8, and L = 1000.
We now consider the expected number of informative sites, designated

by nk (k = 1, 2, 3), favoring Tk. By definition, site j is informative and
favoring T1 if it meets the following three conditions: X1j = X2j, X3j = X4j, X1j
≠ X3j. Similarly, site j favors T2 if X1j = X3j, X2j = X4j, X1j ≠ X2j. Thus, the
expected numbers of informative sites favoring T1, T2 and T3, respectively,
are

1 1 2 3 4 1 3

2 1 3 2 4 1 2

3 1

() Pr(, ,)

 0.25 0.25 0.75 1000 47

() Pr(, ,)

 0.25 0.8 0.75 1000 150

() () 47 .

j j j j j j

j j j j j j

E n X X X X X X L

E n X X X X X X L

E n E n

= = = ≠

= × × × ≈

= = = ≠

= × × × =

= ≈

 (13.52)

The equations mean that, in spite of T1 being the true topology, we
should have, on average, only about 47 informative sites favoring T1 and T3,
but 150 sites supporting the wrong tree T2. This is one of the several causes
for the familiar problem of long-branch attraction (Hendy and Penny, 1989)
or short-branch attraction (Nei, 1996). Because it is the two short branches
that contribute a large number of informative sites supporting the wrong tree,

13. Molecular Phylogenetics 279

“short-branch attraction” seems a more appropriate term for the problem
than “long-branch attraction”.

4.3 Maximum likelihood methods

The maximum likelihood (ML) method is introduced into molecular
phylogenetics by Joe Felsenstein (1981) and popularized by his DNAML
program in his PHYLIP package (Felsenstein, 2002). It is based on explicit
substitution models. Many different types of computer simulation have
demonstrated the superiority of the ML method in recovering the true tree. I
now use the four aligned sequences in Figure 13-7 to illustrate numerically
the computation involved in the ML method based on the JC69 model. With
four sequences, we have three possible unrooted topologies of which one is
shown in Figure 13-7.

S1:A S3:G

S2:A S4:G
65

t1
t2

t3
t4

t5

16

L1 = prob. + prob. + ... +

A
A
G
G

C

A

A
A
G
G

T

T

A
A
G
G

A

A
S1 ACATACGT
S2 ACATACGT
S3 GTCGACGT
S4 GTCGACGT

Figure 13-7. Likelihood calculation for the first site of the four aligned sequences.

We do not know the state of the two internal nodes, labeled as nodes 5
and 6, respectively, in Figure 13-7. So we need to consider all four
possibilities (i.e., A, C, G, and T) for each node, with 16 possible
combinations (Figure 13-7). Note that the number of possible combinations
increases rapidly as 4N, where N is the number of internal nodes. This is one
of main reasons why likelihood methods in phylogenetics are slow.

 The sequences have 8 sites, with the first four sites sharing one site
pattern and the last four sites sharing another site pattern. So we need only
two site-specific likelihood functions. You may recall that the JC69 model
assumes that all nucleotides substitute each other with equal probabilities
and that nucleotide frequencies are equal. This is why we can treat the first
four sites as having the same site pattern.

The likelihood function of the first site, given the topology in Figure 13-
7, is the summation of the 16 probabilities corresponding to the 16
nucleotide combinations of the two internal nodes with unknown nucleotides
(Figure 13-7). Thus, the likelihood of the first site is,

280 Chapter 13

1 2 5 3 4

1 2 5 3 4

1 2 5 3 4

1

.

.

 ...

A AA t AA t AA t AG t AG t

C CA t CA t CA t AG t AG t

T TA t TA t TT t TG t TG t

L P P P P P

P P P P P

P P P P P

π

π

π

=

+

+
+

 (13.53)

where Pij.t for the JC69 model has already been given in Eq. (13.6) except
that “8αt” should be replaced by “4αt” because here we are not dealing with
branch lengths connecting two extant OTUs. Note that L2 = L3 = L4 =L1. We
can write L5 (= L6 = L7 = L8) in a similar fashion.

The sequences in Figure 13-7 allow us to simplify Eq. (13.53) greatly.
Note that S1 = S2 and S3 = S4 (Figure 13-7) so that αt1, αt2, αt3, and αt4 are
all zero. Now we have

5

5

4
1

4
5

0.0625 0.0625

0.0625 0.1875 .

t

t

L e

L e

α

α

−

−

= −

= +
 (13.54)

With the assumption that all sites evolve independently, the likelihood

function for all eight sites is simply

5 5

4 4
1 5

1 5

4 4

ln 4ln() 4 ln()

 4 ln(0.0625 0.0625) 4 ln(0.0625 0.1875) .t t

L L L

L L L

e eα α− −

=

= +

= − + +

 (13.55)

 The αt5 value that maximizes lnL is 0.27465, which leads to lnL = -
21.02998. The branch length between nodes 5 and 6 is 3αt5 = 0.82396. We
can do the same calculation for the other two possible topologies, and then
choose the tree with the largest lnL value as the ML tree. In this particular
example, the tree in Figure 13-7 is the ML tree because it has the lnL value
greater than that of the other two trees. One may also find that the ML tree,
including its estimated branch lengths, is identical to the tree from a
distance-based method such as the neighbor-joining (Saitou and Nei, 1987),
the FastME (Desper and Gascuel, 2002) or the Fitch-Margoliash method
(Fitch and Margoliash, 1967) as long as the JC69 distance is used.

One can cite many advantages of the maximum likelihood over the
maximum parsimony method, and one of the frequently cited advantages is
that the former uses more information than the latter. The maximum

13. Molecular Phylogenetics 281

parsimony method uses only the informative sites for searching the MP tree,
whereas maximum likelihood methods, depending on the inherent
substitution model adopted, can use information on all sites, including
monomorphic sites.

There are two major criticisms on the ML method in phylogenetics. The
first is that the application of the likelihood in phylogenetics is not really a
ML method in its conventional sense because the topology is not in the
likelihood function (Nei, 1987; Nei and Kumar, 2000). To see this point, we
can illustrate the conventional ML method with a simple example.

Suppose we wish to estimate the proportion of males (p) of a fish
population in a large lake. A random sample of N fish contains M males.
With the binomial distribution, the likelihood function is

!
(1) .

!()!
M N MN

L p p
M N M

−= −
−

 (13.56)

The maximum likelihood method finds the value of p that maximizes the
likelihood value. This maximization process is simplified by maximizing the
natural logarithm of L instead:

ln ln() () ln(1)

ln
0

1

 .

L A M p N M p

L M N M

p p p

M
p

N

= + + − −

∂ −
= − =

∂ −

=

 (13.57)

The likelihood estimate of the variance of p is the negative reciprocal of
the second derivative,

2

2 22

1 1 (1)
() .

ln()
(1)

p p
Var p

M N ML N
p pp

−
= − = − =

−∂ − −
−∂

 (13.58)

Note that, in contrast to the likelihood in Eq. (13.57) which is a function
of p (the parameter to be estimated), the likelihood in Eq. (13.55) does not
have the topology as a parameter. Without the convenient “∂lnL/∂θ = 0”
formulation, we have to do either exhaustive or branch-and-bound search in
order to find the topology that maximizes the likelihood. In practice,
exhaustive or branch-and-bound search is rarely done, which implies that
few of the published ML trees are authentic ML trees. Thus, Nei’s criticism
highlights more of a practical difficulty than a theoretical one because the

282 Chapter 13

likelihood principle does not require the parameter to be continuous and
differentiable (Chang, 1996). The criticism can also be applied to other
phylogenetic methods. However, other methods are generally faster and can
search the tree space more thoroughly than the ML method. Therefore, while
it is not particularly controversial to claim that an authentic ML tree is
generally better than a tree satisfying the MP, ME or FM criterion, it is not
unreasonable for one to expect the latter to be as good as or better than a
“ML” tree that is obtained from searching a small subset of all possible
topologies. This is particularly pertinent with reconstructing very large
phylogenies (Tamura et al., 2004).

The second criticism is on the assumptions shared by nearly all the
substitution models currently implemented in the likelihood framework: (1)
the substitutions occur independently in different lineages, (2) substitutions
occur independently among sites, and (3) the process of substitution is
described by a time-homogeneous (stationary) Markov process. The
likelihood depends on the assumptions of the substitution model, and we
generally cannot be sure if the model we use is appropriate.

Among the three assumptions mentioned above, the first assumption is
false in taxa with a history of horizontal gene transfer which is rampant in
bacterial species (Brown, 2003; Eisen, 2000; Koonin, 2003; Kurland et al.,
2003; Medigue et al., 1991; Philippe and Douady, 2003) or with gene
conversion which is ubiquitous (Aylon and Kupiec, 2004; Drouin, 2002a,
2002b; Drouin and de Sa, 1995; Drouin et al., 1999; Hickey et al., 1991).

The problem of the second assumption can be illustrated with the
following example involving the GAT and GGT codons. Both codons end
with a T. Whether a T→A substitution would occur depends much on
whether the second position is an A or a G. The T→A substitution is rare
when the second codon position is A because a T→A mutation in the GAT
codon is nonsynonymous, but relatively frequent when the second codon
position is G because such a T→A mutation in a GGT codon is synonymous.
So nucleotide substitutions do not occur independently among sites (Xia,
1998a). This is one of the reasons for using codon-based models but these
models have their own problems as mentioned before.

The third assumption is also problematic. Suppose we wish to reconstruct
a tree from a group of orthologous sequences from both invertebrate and
vertebrate species. There is little DNA methylation in invertebrate genomes,
but heavy DNA methylation in some vertebrate genomes. DNA methylation
greatly enhanced the C→T transition and consequently the G→A transition
on the opposite strand (Xia, 2003). The net result is a much elevated
transition/transversion bias and increased AT% in the lineages with DNA
methylation, violating the third assumption.

13. Molecular Phylogenetics 283

The transfer of genes from a mitochondrial genome into a nuclear
genome serves as another illustration of this third problem. The mutation
spectrum and selection regime may differ substantially between the
mitochondria and the nucleus, leading to nonstationarity. The gene transfer
between mitochondrial genome and nuclear genome is an ongoing process in
plants (Bonen, 2006; Bonen and Calixte, 2006).

More complicated models have been proposed in response to our
increased knowledge of the substitution process. However, such parameter-
rich models create two problems. First, the dependence of the likelihood
value on tree topology decreases as the number of parameters increases
because tree topology is just one of these parameters. So a better-fit model
does not imply a more efficient recovery of the true tree. Second, parameter-
rich models require more data for reliable parameter estimation. The
dilemma is that increasing the sequence length also increases the
heterogeneity of substitution processes (Xia, 1998a) including heterotachy
(Kolaczkowski and Thornton, 2004) operating on different sequence
segments and consequently increase the number of parameters to be
estimated. Such heterogeneity over sites implies that the consistency of the
ML method (Chang, 1996; Felsenstein, 1988) is not of much value because
we cannot get long sequences for a fixed and small number of parameters.
Take for example the estimation of the proportion of male fish in the lake. If
we get only six male fish in a sample with no female, then the likelihood
estimation of p is 1 which is worse than our wildest guess without any data.

4.4 Bayesian inference

The Bayesian approach has only recently been used extensively in
phylogenetic inference (Aris-Brosou, 2003; Aris-Brosou and Yang, 2003;
Huelsenbeck et al., 2001) as well as in phylogeny-based detection of
adaptive evolution (Aris-Brosou, 2005). In previous chapters, I have already
illustrated Bayesian approach involving discrete variables. Here I illustrate
(1) the basic principle of the Bayesian approach involving a continuous
variable, and (2) three computational approaches to simplify the evaluation
of posterior probabilities, i.e., the conjugate prior distributions, the discrete
approximation the Markov chain Monte Carlo (MCMC) method.

4.4.1 Bayes theorem for a continuous variable

We will use the same example of estimating the proportion (p) of male
fish in a fish population in a large lake. For a continuous variable such as p,
the Bayes’ theorem is

284 Chapter 13

(|) ()
(|)

(|) ()

f y p f p
f p y

f y p f p dp
=
∫

 (13.59)

where p is the parameter of interest, y is the observed sample data, f(p) is the
prior probability density function for incorporating our prior knowledge on
p, f(y|p) is the likelihood, and f(p|y) is the posterior probability. The
numerator and the denominator are often referred to as the joint and
marginal probabilities, respectively.

Suppose that we have taken a sample of six fish, all being males. Let N
be the number of fish in the sample and M be the number of males in the
sample. So we have N = 6 and M = 6. How should we use the Bayesian
approach to estimate p (the proportion of males)?

We have three tasks to accomplish in order to obtain f(p|y). The first is to
formulate f(p), our prior probability density function (referred hereafter as
PPDF), the second is to formulate the likelihood, f(y|p), and the third is the
most tricky, i.e., to get the integration in the denominator of Eq. (13.59).

The first task, i.e., formulate f(p), should have been done before taking
the sample. According our conventional wisdom in vertebrate biology, the
two sexes should be roughly equal in number (especially in a large lake
where the fish population is most likely outbreeding). So the probability of p
= 0.5 should be the largest and decrease as p becomes more extreme towards
0 or 1. Such a conventional wisdom can be described by the versatile beta
distribution which is a two-parameter density function defined over the
closed interval 0 ≤ p ≤ 1 and used often as a model for proportions:

' 1 ' ' 1(' 1)!() (1)
(' 1)!(' ' 1)!

M N MNf p p p
M N M

− − −−
= −

− − −
 (13.60)

where N’ = 6 and M’ = 3 to reflect prior belief that p = 0.5 is the most likely.
The primes in Eq. (13.60) in N’ and M’ indicate that they are for PPDF and
different from N and M from the sample.

The PPDF expressed as the beta distribution with N’ = 6 and M’ = 3 is
shown in Figure 13-8. If you think that the bell-shaped curve of PPDF
reflects your prior wisdom, then we are in business and can continue with
our computation. If you want to get another density function to replace f(p)
in Eq. (13.60), please do so and we will continue just the same.

13. Molecular Phylogenetics 285

0
0.5

1
1.5

2
2.5

3
3.5

0 0.2 0.4 0.6 0.8 1

p

f(p
)

Prior

Posterior

Figure 13-8. Comparison between prior and posterior probabilities.

The second task in evaluating f(p|y) is to formulate the likelihood
function f(y|p), which is easy given the binomial distribution:

!(|) (1)
!()!

M N MNf y p p p
M N M

−= −
−

 (13.61)

If you do not like symbols, just substitute N’ = 6, and M’ = 3 into Eq.
(13.60) and N = 6 and M = 6 into Eq. (13.61). Now the numerator of Eq.
(13.59), designated as A, becomes

8 2() (|) 30 (1)A f p f y p p p= = − (13.62)

Finally we come to the more difficult third task, dealing with the
denominator of Eq. (13.59). Fortunately for us, I have chosen perhaps the
simplest possible problem for this illustration. The denominator, designated
by B, is simply

1 8 2
0

230 (1)
33

B Adp p p dp= = − =∫ (13.63)

where A is given in Eq. (13.62). Now Eq. (13.59) is reduced to

8 2
8 230 (1)(|) 495 (1)

2 / 33
A p pf p y p p
B

−
= = = − (13.64)

286 Chapter 13

The result is shown in Figure 13-8 in comparison with the prior
probability. f(p|y) in Eq. (13.64) is a properly normalized probability density
function as you can verify that

1 8 2
0

495 (1) 1p p dp− =∫ (13.65)

The peak of f(p|y) is at p = 0.8, i.e., our prior expectation of p = 0.5 has
been revised by the actual sample to p = 0.8. You may verify this by taking
the derivative of f(p|y) in Eq. (13.64) with respect to p, setting the derivative
to 0 and solving the resulting equation for p, which will yield p = 0.8.

You may have already noted that, for estimating a Bayesian p, we do not
need the integral in the denominator of Eq. (13.59). You may verify this by
taking the derivative of the numerator A in Eq. (13.62) with respect to p,
setting the derivative to 0 and solving the resulting equation for p, which will
also yield p = 0.8. It is only when we need to obtain f(p|y), the posterior
probability density function, that we need the integral in denominator to
normalize the numerator into a proper probability density function.

One misunderstanding from students is the following. The assumption of
equal males and females inherent in the prior can be readily rejected by the
sampling data of six males because the probability of the assumption being
true is 0.56 = 0.015625. So why should we use a very unlikely prior? To this
question, a Bayesian can readily answer by pointing out that the prior should
be properly assessed before the sampling takes place. However, this does not
mean that accepting a prior probability density function is not controversial.
As has been pointed out already (Felsenstein, 2004), many problems exist in
choosing proper prior probabilities, and a Bayesian is characterized by being
willing to accept controversial priors. Given the fact that posterior
probabilities depend on prior probabilities, a Bayesian enjoys a great deal of
flexibility in generating “desirable” results. Indeed, one may claim that no
branch of statistics is more closely related to lies and damned lies than
Bayesian statistics.

In our simple example, one may note that if the population of fish is
indeed made of all males, e.g., when there is a high concentration of
androgen masculinizing all individuals to males (Baron et al., 2004), then
the likelihood estimate of p = 1 is correct and the Bayesian estimate of p =
0.8 is wrong, and the wrong estimate may lead to our failure to identify an
environmental crisis.

Aside from the controversy in setting prior probabilities, there are cases
where priors can be assessed properly and there is no denial that Bayesian
inferences have made significant contributions in virtually any branch of
natural and social sciences where decision making is involved. For this

13. Molecular Phylogenetics 287

reason, it is important to learn a few tricks that ease the computation burden
of Bayesian inference.

4.4.2 Alternative computational approaches in Bayesian inference

One should know that, in practice, Eq. (13.59) is rarely used for
computing the posterior probabilities because the integration in the
denominator is difficult unless f(θ) and f(y|θ) are very simple (which luckily
is true in our case). There are three alternative computational approaches.
The first is to use the conjugate prior distributions (Raiffa and Schlaifer,
1961), the second is to use the discrete approximation, and the third is the
MCMC (Markov chain Monte Carlo) approach (Hastings, 1970; Metropolis
et al., 1953) of which a special case, called Gibbs sampler, has already been
presented in Chapter 7. I will briefly illustrate these approaches here using
the same example.

A conjugate prior distribution is one that, after the mathematical
operation specified in Eq. (13.59), will result in a posterior distribution,
f(p|y), belonging to the same family of distributions as the prior. If you do
not have a statistical handbook, Wikipedia lists many conjugate distributions
under “Conjugate prior”. For our example involving a stationary and
independent Bernoulli process in sampling fish, the conjugate prior
distribution is the beta distribution already specified in Eq. (13.60), with N’
= 6 and M’ = 3 reflecting our prior knowledge that p is most likely 0.5. The
density function of the prior is already shown in Figure 13-8.

Now we compute the posterior probability. It can be proven that, if the
prior distribution of p is a beta distribution, then the posterior distribution
will also be a beta distribution with the two parameters computed according
to Eq. (13.66) below. In our actual sample with six males and 0 female (N =
6 and M = 6),

" ' 3 6 9
" ' 6 6 12

M M M
N N N

= + = + =
= + = + =

 (13.66)

Now the posterior probability can be calculated by using Eq. (13.60) by
substituting N’ and M’ in Eq. (13.60) with N" and M'' in Eq. (13.66). The
resulting f(p|y) is exactly the same as is specified in Eq. (13.64), i.e., you
have derived f(p|y) without going through the hazardous step of integration.
In particular, if you subsequently decided to take another sample of fish and
get 4 males out of 7, all what you need to do is to use N’ = 12, M’ = 9, N =
7, and M = 4, and recalculate M’’ and N’’ using Eq. (13.66). So you can
obtain the new posterior probability in no time.

288 Chapter 13

The second alternative to the integration specified in the denominator of
Eq. (13.59) is by the discrete approximation, which is illustrated in Table 13-
5. Although variable p is continuous between 0 and 1, we have discretized it
into 20 intervals, with pi = 0, 0.05, 0.1, …, 1, and computed f(pi) according
to Eq. (13.60) and f(y|pi) according to Eq. (13.61). The integral in the
denominator of Eq. (13.59) is then approximated by

21

1
21

1

(|) ()
1.21187329(|) () 0.0606
19.999875

()

i i
i

i
i

f y p f p
f y p f p dp

f p

=

=

≈ = =
∑

∫
∑

 (13.67)

which is equal to the value of 2/33 in Eq. (13.63). Thus, we obtained the
integral by simply taking a weighted arithmetic mean.

Table 13-5. Approximate the integral in Eq. (13.59) by discretization.
pi f(pi) f(y|pi) f(y|pi)*f(pi)
0 0 0 0
0.05 0.067688 0.000000 0.000000
0.1 0.243000 0.000001 0.000000
0.15 0.487688 0.000011 0.000006
0.2 0.768000 0.000064 0.000049
0.25 1.054688 0.000244 0.000257
0.3 1.323000 0.000729 0.000964
0.35 1.552688 0.001838 0.002854
0.4 1.728000 0.004096 0.007078
0.45 1.837688 0.008304 0.015260
0.5 1.875000 0.015625 0.029297
0.55 1.837688 0.027681 0.050868
0.6 1.728000 0.046656 0.080622
0.65 1.552688 0.075419 0.117102
0.7 1.323000 0.117649 0.155650
0.75 1.054688 0.177979 0.187712
0.8 0.768000 0.262144 0.201327
0.85 0.487688 0.377150 0.183931
0.9 0.243000 0.531441 0.129140
0.95 0.067688 0.735092 0.049757
1 0 1 0
Sum 19.999875 1.21187329

Discretizing variable p into finer intervals will have more accurate

approximation. I will leave it as an exercise for you to discretize variable p
into intervals of 0.01. This should be easy to do if you are familiar with any
spreadsheet programs such as Microsoft EXCEL. Any practical computation

13. Molecular Phylogenetics 289

would have involved smaller intervals. Choosing interval of 0.001 would
imply the discretization of p into 1000 intervals.

For Bayesian inference involving a single variable, the discrete
approximation works very well. However, the approach becomes clumsy
with multiple variables. For example, with two variables of interval 0.001,
we would need a 1000 by 1000 grid. Imagine the scenario of having a vector
of 10 variables!

The third alternative is by Monte Carlo integration (MC integration),
which brings us one step closer to MCMC algorithms. In our example, the
denominator in Eq. (13.59) is approximated by MC integration as

1

1(|) () (|)
n

i
i

f y p f p dp f y p
n =

= ∑∫ (13.68)

where pi are drawn randomly from the density f(p). This is in fact quite
similar to the discrete approximation except that pi is drawn from f(p) in MC
integration in contrast to discretizing p into equal intervals in discrete
approximation. Note that Eq. (13.68) and Eq. (13.66) are really the same
except that the former is a plain arithmetic mean of f(y|pi) and the latter is a
weighted arithmetic mean of f(y|pi).

For numerical illustration of MC integration, one would need a random
number generator from the beta distribution. Readers well versed in
computer languages such as Fortran, C or Visual Basic should be able to find
such a random number generator in the web, or write one for themselves, or
just request one from me. However, every university appears to have the
software Maple installed. So one may just use the following commands to
generate, say, 1000 random numbers from the beta distribution with N’ = 6
and M’ = 3:

with(stats):
stats[random, beta[3,3]](1000);

The resulting random numbers and associated f(p), f(y|p) and f(p)*f(y|p),

computed according to Eqs. (13.60), (13.61) and (13.62), respectively, are
partially shown in Table 13-6. The MC integral according to Eq. (13.68) is
simply the mean of f(y|p), which in our case is 0.0604, slightly smaller than
the exact integration in Eq. (13.63). The column headed by “f(p|y)” in Table
13-6 lists the resulting posterior probabilities, which are very close to the
exact posterior probabilities (last column in Table 13-6) computed according
to Eq. (13.64).

290 Chapter 13

Table 13-6. Numerical illustration of Monte Carlo integration. The first column is the random
number from the beta distribution. The MC integral is the arithmetic mean of the column
headed by f(y|p) according to Eq. (13.68). The last column is the exact posterior probability
from Eq. (13.64). The second last column is the posterior probabilities obtained by dividing
f(p)*L by the MC integral.

p f(p) f(y|p) f(p)*L f(p|y) 495p8(1-p)2
0.797392458 0.783026967 0.257058956 0.201284095 3.33251813 3.321187569
0.365079937 1.611889587 0.002367706 0.003816481 0.063186769 0.062971934
0.527481851 1.86368833 0.021539972 0.040143794 0.66463235 0.6623726
0.807263134 0.726241527 0.276751969 0.200988772 3.32762868 3.316314743
0.55190323 1.834808541 0.028260355 0.051852341 0.858482468 0.855563628

0.612808637 1.688971541 0.052960157 0.089448199 1.480930442 1.475895278
0.573633704 1.794553082 0.035629355 0.063938769 1.058588895 1.054989693
0.624998494 1.647954515 0.059603783 0.098224323 1.626230512 1.620701328
0.404049408 1.739445056 0.004351178 0.007568635 0.125308527 0.124882478

… … … … … …

We are now in a position to introduce the Markov Chain Monte Carlo

(MCMC) method with the Metropolis algorithm (Metropolis et al., 1953)
which is a special case of the Metroplis-Hastings algorithm (Hastings, 1970).
Our interest is the same as above, i.e., the posterior probability density
function f(p|y). In short, the algorithm consists of three steps. First, we start
with any p0 satisfying f(p0)*f(y|p0) > 0. Second, we generate a new p* by
using either one of two jumping functions: (1) a random walk chain or (2) an
independent chain. For illustration of a random walk chain, we will use the
following jumping function:

0

() /10
* [() 0.5, ,]

z Rnd
p p if Rnd z z
=
= + > −

 (13.69)

where z is the step length of the random walk, Rnd() is a random number
generator generating random numbers between 0 and 1, and the division by
10 is to limit the step length so that the random walk will not be too erratic.
We also need to constrain p* within the range of, say, (0.00001, 0.99999),
i.e., when p* is set to 0.00001 when p* ≤ 0 and set to 0.99999 when p* ≥ 1.
If p* When Rnd() > 0.5, p* is equal to p plus a step length, otherwise p* is p
minus a step length. This symmetry in the jumping function is required by
the Metropolis algorithm.

In the third step, we compute the ratio of

0 0 0

(* |) (*) (| *)
(|) () (|)

f p y f p f y p
f p y f p f y p

α = = (13.70)

13. Molecular Phylogenetics 291

Note that the integration in the denominator of Eq. (13.59) for f(p|y)
cancels out when we compute the ratio α. This is the main advantage of the
MCMC method.

If α < 1, then we accept p* with a probability of α and reject p* with a
probability of (1 - α). If α ≥ 1, then we accept p*. The accepted p* becomes
p1, and the procedure is repeated according to Eqs. (13.69) and (13.70), with
p0 replaced by p1, p2, …, pn.

The chain proceeds with no end. However, it is expected that, when t
become sufficiently large (e.g., when t = k is typically a large number), the
chain should approach its stationary distribution and samples from the vector
(pk+1, pk+1, …, pk+n) are samples from f(p|y). The period from t = 0 to t = k is
termed the burn-in period. Figure 13-9 is a plot of pt versus t, started with p0
= 0.111. The chain appears to have converged soon after t = 1000, with pt
values distributed roughly around 0.8 (Figure 13-9).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

t

p t

Figure 13-9. The dynamic behavior of accepted p values along a random walk chain using
Metropolis algorithm.

Bayesian phylogenetics is obviously much more complicated than the
one-parameter case we have illustrated. The parameters in Bayesian
phylogenetics, often collectively designated as θ, is a collection of the tree
topology, the rate matrix and the branch lengths, with the likelihood function
formulated as in the maximum likelihood method. However, the main
controversy remains to be the justification of the prior probability
(Felsenstein, 2004; Pickett and Randle, 2005; Zwickl and Holder, 2004)
which is problematic even for the simple example of estimating p.

292 Chapter 13

In summary, the accuracy of phylogenetic reconstruction depends mainly
on (1) the sequence quality, (2) the correct identification of homologous sites
by sequence alignment, (3) regularity of the substitution processes, e.g.,
stationarity along different lineages, absence of heterotachy and little
variation in the substitution rate over sites, (4) consistency, efficiency and
little bias in the estimation method, e.g., not plagued by the long-branch
attraction problem, and (5) sequence divergence, i.e., neither too conserved
as to contain few substitutions nor too diverged as to experience substantial
substitution saturation. Readers wish to do research in molecular
phylogenetics and evolution should consult more detailed references
(Felsenstein, 2004; Hillis et al., 1996; Li, 1997; Nei and Kumar, 2000;
Semple and Steel, 2003).

Chapter 14

FUNDAMENTALS OF PROTEOMICS
Peptide mass fingerprinting

1. INTRODUCTION

The terms “proteome” and “proteomics” were coined by Marc Wilkins
and colleagues in 1994 (Ezzell, 2002), with proteomics referring specifically
to studies of proteins using the method of mass spectrometry (MS).
Proteomics has since become one of the two major components of what is
now known as protein science (e.g., Lesk, 2004), with the other component
being protein structure determination, typically by X-ray crystallography and
nuclear magnetic resonance.

Mass spectrometry used in combination with affinity purification and/or
chemical cross-linking has made significant contributions to protein
interaction networks (Figeys, 2003b, 2003a; Vasilescu and Figeys, 2006).
Protein arrays have recently been developed to directly assess protein-
protein interactions (Figeys, 2002; Sloane et al., 2002; Wilson and Nock,
2002). Ultimately, all proteins, isolated either by conventional 2D gel,
protein arrays, or other affinity purification methods, have to go through MS
for protein identification. For this reason, protein identification is the most
fundamental in proteomics.

Modern large-scale protein identification is through protein mass
fingerprinting (Sloane et al., 2002; Washburn et al., 2001; Yates, 2004a,
2004b), which is the main subject in this chapter. We will first give a brief
overview of MS, followed by a few computational methods involved in
peptide mass fingerprinting.

294 Chapter 14

2. PROTEIN MASS SPECTROMETRY

All MS instrumentations include two essential components, an ionizer
that generates gaseous ions from a sample and a mass analyzer that generates
the number as well as the mass/charge ratios, i.e., m/z values of each type of
ions. A computational protocol called charge deconvolution (or just
deconvolution) uses the m/z values to produce the estimated molecular mass
of the molecule of interest, e.g., protein or peptide. Deconvolution is
explained in the next section.

Two types of ionizers are used frequently in proteomics (Lesk, 2004;
Liebler et al., 2002), the matrix-assisted laser desorption ionization
(MALDI) and electrospray ionization (ESI). The MALDI ionizer generates
predominantly singly charged ions (which may be positive or negative but
generally only positive ions are analyzed by MS) and used most often in
peptide mass fingerprinting because of its high accuracy in measuring
peptide mass. An extension of the MALDI ionizer, termed surface-enhanced
laser desorption/ionization or SELDI (Forde and McCutchen-Maloney,
2002; Tang et al., 2004; Wright, 2002; Yip and Lomas, 2002) has recently
been developed for identifying proteins of different sizes on protein arrays.

The ESI ionizer generates ions carrying different charges because
peptides or proteins ionized by ESI ionizers are in aqueous solutions. Recall
that proteins will carry a net charge when the pH of the solution differs from
the protein isoelectric point (pI, review Chapter 10 if you have forgotten the
computation of pI). They become more and more positively charged in
acidic solutions and more and more negatively charged in basic solutions.
For MS analysis, the peptides are typically ionized to carry positive charged
in acidic solutions. Because a protein or a peptide may have multiple lysine,
arginine and histidine residues, the resulting peptide or protein ions may
consequently carry multiple charges. For example, a peptide with molecular
mass of m may have n different types of charged ions from the ESI ionizer,
designated as ion1, ion2, …, ionn, carrying z0, (z0+1), (z0+2), …, (z0+n-1)
positive charges (protons), respectively. Note that we have designated z0 as
the charge of the least-charged ion.

Each proton adds one atomic mass to the ion, so the actual molecular
masses of ion1, ion2, …, ionn carrying z0, (z0+1), (z0+2), …, (z0+n-1) protons
are (m+z0), (m+z0+1), (m+z0+2), …, (m+z0+n-1), respectively. However,
MS does not measure the molecular mass of the ions directly. Instead it
outputs the mion/zion ratios where mion is the mass of the ion (i.e., m plus the
total mass of extra protons) and zion is the positive charge of the ion (the
number of the protons). Given the n types of differently charged ions, an
ESI-MS will output (m+z0)/z0, (m+z0+1)/(z0+1), (m+z0+2)/(z0+1), …,

14. Fundamentals of Proteomics 295

(m+z0+n-1)/ (z0+n-1). Charge deconvolution in the next section takes this
output to estimate m and z0.

Aside from an ionizer, a MS will always have a mass analyzer.
Frequently used mass analyzers are time of flight (TOF), quadrupole or ion
trap analyzers. Different MS instrumentations are often specified by the
combination of the ionizer and the mass analyzer. For example, MALDI-
TOF MS is a frequent combination for peptide mass fingerprinting after
digesting proteins into small peptides, and SELDI-TOF MS is used typically
for large-scale protein identification in protein arrays involving proteins over
a wide mass range.

A mass analyzer has fixed measurement range of m/z values. If the
maximum m/z range for a given mass analyzer is 2000, then the analyzer can
measure the mass of a peptide up to the molecular mass of 2000 when ions
are singly charged, as is the case with MALDI ionizer. If ions carry multiple
charges, as in the case with ESI ionizers, then the same mass analyzer can be
used to measure the molecular mass of much larger peptides or even entire
proteins. For example, if the ion mass is 10000 but it carries 10 positive
charges, then its m/z ratio is only about 1000, well within the measurement
range of the mass analyzer. For this reason, MS with an ESI ionizer is able to
measure the molecular mass of much larger molecules than that with a
MALDI ionizer.

There are excellent descriptions of MS hardware in the proteomic
framework (e.g., Liebler et al., 2002) for readers who are interested in MS
hardware. I will focus only on what is important but missing in other books
on proteomics.

3. CHARGE DECONVOLUTION

Deconvolution in MS literature refers to the protocol of computing the
molecular mass from the distribution of multiply charged ions of the
molecule of interest. Such multiply charged ions are typical in MS with an
ESI ionizer. MS data obtained with a MALDI ionizer do not need charge
deconvolution because ions are predominantly singly charged and the
peptide mass can be derived directly as the m/z ratio minus the proton mass
(which is 1).

Let us start with a simple example taken from Liebler (2002, p. 67). An
ESI-MS analysis of a peptide revealed two ions, ion1 with a mion/zion = 784.7
and ion2 with a mion/zion = 1567.9. How to estimate the molecular mass (m)
of the peptide?

There are two categories of deconvolution methods, one being
probabilistic and the other deterministic. Here we employ only a

296 Chapter 14

representative of the deterministic method because it is simpler and in most
cases sufficient.

Recall that we have designated z0 as the charge of the least-charged ion,
which is ion2 in this example (Note that, with the same m, the more charge,
the smaller the m/z ratio). Ion1 then carries (z0+1) protons. Each proton adds
one atomic mass to the peptide, so the expected m/z values for ion1, and ion2,
designated as mz1, mz2, respectively, can be expressed as

1 0 0

2 0 0

(1) /(1)
(z) /

mz m z z
mz m z

= + + +

= +
 (14.1)

The least-square estimation of the two parameters (i.e., m and z0) is to
minimize the sum of squared deviation (SS) between the observed mzi
values, i.e., 784.7 and 1567.9, and their respectively expected mz1 and mz2
in Eq. (14.1):

2 2
1 2

2 2
0 0

0 0

(- 784.7) (-1567.9)

1
- 784.7 -1567.9

1

SS mz mz

m z m z
z z

= +

⎛ ⎞ ⎛ ⎞+ + +
= +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 (14.2)

To minimize SS, we take partial derivative of SS with respect to m and
z0, set the two partial derivatives to 0 and solve for m and z0. The two partial
derivatives are:

0 0

0 0

0 0

12 - 784.7 2 -1567.9
1

 =
1m

m z m z
z zSSD

m z z

⎛ ⎞ ⎛ ⎞+ + +
⎜ ⎟ ⎜ ⎟+∂ ⎝ ⎠ ⎝ ⎠= +

∂ +
 (14.3)

()0
0 0

2
0 0 0 0

0 0
2

0 0 0

1 112 - 784.7 -
1 1 1

1 2 -1567.9 -

z
m z m zSSD

z z z z

m z m z
z z z

⎛ ⎞⎛ ⎞+ + + +∂ ⎜ ⎟= = ⎜ ⎟⎜ ⎟∂ + + +⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞+ +

+ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (14.4)

Setting Dm and Dz0 to 0 and solving the simultaneous equations with the
constraint of z0 > 0 result in m = 1567.9032 and z0 = 1.0006 (which is taken

14. Fundamentals of Proteomics 297

to mean 1). This means that ion1 carries two (=z0+1) protons and ion2 carries
only one proton.

One may ask why we can’t just assume z0 = 1, so that the mion/zion for
ion2 (= 1567.9) can be taken as a direct measure of m. The reason is that z0 is
often not 1. For long peptides or proteins, the chance of getting singly
charged ion in an ESI-MS instrumentation is typically quite small. It might
help to introduce a numerical illustration.

Amino acid residues that may carry charges are mainly the three basic
amino acids (arginine, lysine, histidine) and two acidic amino acids
(glutamic acid and aspartic acid), plus the N-terminal amino acid with an
amino group and C-terminal amino acid with a carboxyl group. In acidic
solutions (say pH = 3), the probability of the amino group of the three basic
amino acids being protonated is nearly 1 according to the following equation
(see Chapter 10 for its derivation).

+
a3NH

1
10 1pH pKP −=

+
 (14.5)

You may substitute pH = 3 and the pKa value (12.50, 10.79 and 6.50 for

arginine, lysine and histidine, respectively, Table 10-1) into the equation to
verify that the proportion is nearly 1. The probability of the amino group in
the N-terminal amino acid, with its pKa = 8.56, being protonated is also
nearly 1.

The probability of the two acidic amino acids being protonated can be
calculated according to the following equation:

a

-
aRCOO

10
1 10

pH pK

pH pKP
−

−=
+

 (14.6)

Now suppose a protein contains 10 lysine residues and no arginine,
histidine, aspartic acid and glutamic acid residues. In a solution with pH = 3,
the 10 lysine residues are protonated, so is the amino group of the N-
terminal amino acid. The C-terminal carboxyl has a probability of 0.21595
being protonated (You may verify this by substituting pKa = 3.56 for the C-
terminal carboxyl into the equation above). With N copies of such a protein
in the solution, There will be only two ions, one with its C-terminal carboxyl
protonated and the other not, with their respectively proportions being
0.21595 and (1-0.21595). This implies that the net charges of the two ions
will be 11 and 10, respectively. There will essentially be no ion carrying
fewer than 10 charges. In this case z0 = 10.

298 Chapter 14

One may argue that our example is too artificial, with a protein carrying
no negatively charged residues such as aspartic acid or glutamic acid
residues. We will now consider the case when the protein not only contain
10 lysine residues, but also 10 aspartic acid residues (but no arginine,
histidine, and glutamic acid residues as before). The proportion of aspartic
acid residues (whose pKa = 3.91) being protonated is 0.10955 according to
Eq. (14.6). The frequency distribution of the proteins with 0, 1, …, 10
aspartic acid residues protonated is then specified by the binomial
distribution of (p + q)10, where p = 0.10955 and q = 1 - p. Thus, given N
copies of such a protein in the solution, the proportion of proteins with 0, 1,
…, 10 aspartic acid residues protonated is 0.31340, 0.38557, 0.21346,
0.07003 0.01508, 0.00223, 0.00023, 0.00002, 0.00000, 0.00000, and
0.00000, respectively. The proportion is also the proportion of protein ions
carrying 10, 9, …, 0 extra protons if we ignore the N-terminal and C-
terminal amino acids (You may take into consideration the N-terminal and
C-terminal amino acids as an exercise). Obviously, the chance of having a
protein ion carrying five extra protons is already very small (= 0.00223), and
the chance of having an ion carrying fewer than three extra protons is
essentially zero. Thus, the chance of having z0 = 1 is often negligibly small,
and we consequently cannot assume z0 = 1. In short, it is necessary to
estimate both z0 and m.

Now that you are convinced that we cannot assume z0 = 1, we will
introduce a more complicated example involving a long peptide, with the
output from ESI-MS shown in Table 14-1. There are 12 types of
differentially charged ions with their respective m/z ratios. The estimated
molecular mass of the molecule is about 12358 and the estimated z is listed
in the last column of Table (14-1). How did we get such estimates?

Table 14-1. Output from ESI MS with estimated z in the last column.
Ion m/z Number z
1 687.72 1000 18
2 727.91 4600 17
3 773.39 9000 16
4 824.93 13400 15
5 883.74 13400 14
6 951.67 10000 13
7 1030.88 8000 12
8 1124.46 7500 11
9 1236.91 6500 10
10 1374.16 6000 9
11 1545.66 5600 8
12 1766.29 1000 7

We first will ignore the column headed by “Number” and use only

information in the column headed by “m/z”. Again recall that z0 is the

14. Fundamentals of Proteomics 299

number of charges (i.e., extra protons) carried by the least charged ion,
which is ion12 with its m/z = 1766.29. Ion11, ion10, …, and ion1 carry (z0+1),
(z0+2), … and (z0+11) protons, respectively. Designate m as the mass of the
peptide. Because the molecular mass of each proton is one, the actual mass
of ion12, ion11, …, and ion1 is (m + z0), (m + z0 + 1), …, (m + z0 + 11). Thus
defined, the expected m/z values for ion1, ion2, …, ion12, designated as mz1,
mz2, …, mz12, respectively, can be expressed as

1 0 0

2 0 0

12 0 0

(11) /(11)
(10) /(10)

...
(z 0) /(0)

mz m z z
mz m z z

mz m z

= + + +

= + + +

= + + +

 (14.7)

The least-square estimation of the two parameters (i.e., m and z0) is to
minimize the sum of squared deviation between the observed m/z values
(i.e., 687.72, 727.91, etc., in Table 14-1) and the expected mz1, mz2, etc., in
Eq. (14.7):

2 2 2
1 2 12(- 687.72) (- 727.91) ... (-1766.29)SS mz mz mz= + + + (14.8)

To minimize SS, one naturally would take partial derivatives of SS with
respect to m and z0 to obtain Dm and Dz0, set them to 0 and solve the
simultaneous equations to obtain m and z0, just as we have done before with
only two ions. However, with 12 ions, Dm and Dz0 may become too
complicated for analytically solutions of m and z0 to be obtained. So it is
time to learn how to obtain numerical solutions by numerical iteration.

We can substitute different values of m and z0 to obtain Dm and Dz0
values. The m and z0 values that make Dm and Dz0 values closest to 0 are the
best estimates. Table 14-2 shows such an iteration process.

Table 14-2. Estimation of m and z0 by computer iteration.
m z0 Dm' Dz0

12350 7 -1.61 2012.45
12360 7 0.38 -533.41
12370 7 2.37 -3083.39
12365 7 1.38 -1807.89
12361 7 0.58 -788.22
12359 7 0.18 -278.64
12358 7 -0.02 -23.91
12357 7 -0.22 230.78
12358 6 323.38 -512885.17
12358 8 -206.63 251562.87

300 Chapter 14

We first tried m values from 12350 to 12370 and z0 = 7, and we found
the m value equal to 12358 to yield the smallest Dm and Dz0 values (Table
14-2). Then we fix m = 12358 but vary z0 values from 6 to 8, and found both
z0 = 6 and z0 = 8 to be very poor estimates, resulting in very large Dm and
Dz0 values (Table 14-2). Thus, we conclude that our z0 = 7, and the z values
in the last column of Table 14-1 are easily obtained because z12 = z0, z11 = z0
+1, z10 = z0 +2, …, z1 = z0 + 11. Of course one can continue the iteration
process to obtain more accurate estimate of m.

More advanced algorithms would incorporate the column headed by
“Number” in Table 14-1 into a weighted estimation. However, this is often
not necessary given the outstanding performance of modern MS.

One may ask what we should do when some of the ions are missing, e.g.,
ion6 may not get ionized and consequently will not have its m/z value
reported. One can formulate more advanced probabilistic methods to
evaluate the probability of missing ions. However, a simpler method is just
to plot the observed m/z ratio versus the series of n, n-1, n-2, …, 1 where n is
the number of types of differently charged ions (e.g., 12 in our example in
Table 14-1). Such a plot, which I call missing-ion plot, for data in Table 14-1
is shown in Figure 14-1a.

0

2

4

6

8

10

12

600 800 1000 1200 1400 1600 1800

m/z

0

2

4

6

8

10

12

600 800 1000 1200 1400 1600 1800
m/z

(a) (b)

Figure 14-1. Missing-ion plot, with one ion missing in (b).

The curve is smooth when no ion is missing (Figure 14-1). In contrast,
when one ion is missing (e.g., when ion6 in Table 14-1 with m/z = 951.67 is
missing), the curve is no longer smooth (Figure 14-1b). The curve would
become even more twisted if two consecutive ions are missing (by two
consecutive ions I mean two ions carrying i and i+1 charges, respectively).

14. Fundamentals of Proteomics 301

Modern MS data are so accurate that a missing ion can generally be
identified by such a plot.

How many positively-charged ions we should expect to have, given a
peptide “DAFLGSFLYEYSR”? The last R (arginine residue) and the N-
terminal amino group can both be protonated. So we should have only two
different positively-charged ions, one with z = 1 and the other with z = 2.
This is in fact the peptide that provides us with the first example in this
section where we have ion1 with a mion/zion = 784.7 and ion2 with a mion/zion =
1567.9.

4. PEPTIDE MASS FINGERPRINTING

Peptide mass fingerprinting (PMF) is for protein identification. For
example, one may perform 2D-SDS-PAGE of liver proteins between a
normal person and a liver cancer patient. Comparing the two gels, one may
find a dot that is different between the two. One naturally wishes to know
what protein the dot represents. Establishing a link from a protein dot on the
gel to a protein-coding gene on the genome is where PMF shines. Below I
detail the four essential steps in PMF.

4.1 Peptide digestion

The first step in PMF is to cut out the protein dot on the gel and digest it
into peptides by using one of proteases (Table 14-3). For example, trypsin
cuts after Arg and Lys residues when the residue is not immediately
followed by a Pro (Table 14-3). The purpose of including amino acid
frequencies in Table 14-3 is to correct a misconception. Some authors (e.g.,
Liebler et al., 2002, p. 52) have remarked that chymotrypsin may cleave too
frequently because it cleaves at three amino acid residues (Phe, Trp and Try)
to yield too many peptides that are too small to be informative in MS
analysis. However, for human proteins, trypsin is expected to cut much more
frequently than chymotrypsin because Arg and Lys account for a total of
11.58% of all amino acid residues, whereas Phe, Trp and Tyr jointly account
for only 7.30% of all amino acid residues (Table 14-3). This implies that
trypsin will cleave the proteins into much smaller peptides than
chymotrypsin.

Trypsin is widely used in protein digestion in MS analysis. However, it is
not suitable for all proteins. For example, the human DEXI gene codes for 95
amino acids which include only one Arg and no Lys residue. The protein
consequently cannot produce suitable peptides for MS analysis with trypsin
digestion. However, 13 of its residues are Phe, Trp and Tyr and it can

302 Chapter 14

consequently be cut by chymotrypsin into peptides suitable for MS analysis.
It also contains nine Glu residues and can be cut by Glu C into peptides
suitable for MS analysis. On the other hand, the human PRB3 gene codes
351 amino acid residues but contains only one Glu residue and no Phe, Trp
or Tyr residue, i.e., Glu C will cut it only once and chymotrypsin will not cut
it at all. However, it contains 17 Arg and 17 Lys residues and can be cut by
trypsin into peptides with lengths well suited for MS analysis. A large-scale
peptide mass fingerprinting will almost always involve digestion with more
than one protease.

Table 14-3. Amino acid frequencies from 34179 annotated human CDSs from GenBank and
protease cleavage site. X – cut after the specific amino acid; \Pro – cleavage inhibited if the
cleavage site is followed by proline.
AA Percent Trypsin Chymotrypsin Asp N Glu C Lys C
Ala 7.21
Arg 5.96 X\Pro
Asn 3.48
Asp 4.65 X
Cys 2.29
Gln 4.75
Glu 7.02 X\Pro
Gly 6.84
His 2.60
Ile 4.19
Leu 9.77
Lys 5.62 X\Pro X\Pro
Met 2.10
Phe 3.51 X\Pro
Pro 6.65
Ser 8.34
Thr 5.33
Trp 1.25 X\Pro
Tyr 2.54 X\Pro
Val 5.89
Sum 100 11.58 7.30 4.65 7.02 5.62

It is almost always a good practice to have a rough estimate of the

average peptide length as well as the distribution of the peptide lengths after
digestion with a certain protease. For example, suppose we digest a human
protein with trypsin, which cleaves the protein after the Lys and Arg residue
when they are not followed by a Pro. From Table 14-3, we know that Lys
and Arg residues (hereafter referred to as KR residues) jointly account for
11.58% of the amino acid residues of human proteins and Pro accounts for
6.65%, which is also the probability that a KR residue is followed by a Pro.

14. Fundamentals of Proteomics 303

Thus, the probability that a KR residue that is not followed by a Pro (i.e., the
probability of cleavage by trypsin) is

0.1158(1 0.0665) 0.1081p = − = (14.9)

The distribution of the peptide length (l) follows the geometric
distribution:

() 1(|) 1 lP L l p p p−= = − , (14.10)

The expected mean and variance of the peptide length are then,
respectively,

2

1() 9.25

(1)() 76.32

E L
p

pVar L
p

= =

−
= =

 (14.11)

In contrast, digesting the same protein with chymotrypsin would generate
peptides with an expected mean length of 14.67 and an expected variance of
the peptide lengths equal to 200.67.

In the genome of the mammalian gastric pathogen, Helicobacter pylori
(strain 26695), the proportions of Arg, Lys and Pro are 0.0345, 0.0894 and
0.0328, respectively, based on its 1576 annotated proteins. If we have a
representative sample of H. pylori proteins and use trypsin to completely
digest all these proteins, what is the expected mean length of the resulting
peptides?

From the three proportions for Arg, Lys and Pro, we can estimate p =
(0.0345+0.0894)*(1-0.0328) = 0.119836. Thus, the expected mean and
variance of the peptide lengths, after complete trypsin digestion, are 8.3447
and 61.2898, respectively. The observed distribution, based on an in silico
trypsin digestion of a random sample of H. pylori, is close to the expected
distribution (Figure 14-2). Generally peptides of length between 5 and 21
residues can be measured accurately by MALDI-TOF MS. The distribution
in Figure 14-2 has a proportion of 0.504300196 of the peptides with lengths
between 5 and 21. This means that about half of the digested peptides from
H. pylori proteins can be measured by MALDI-TOF MS with high accuracy.

304 Chapter 14

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Peptide length

Pr
op

or
tio

n

Observed
Expected

Figure 14-2. Observed and expected distribution of peptide length, from trypsin digestion of a
random sample of proteins in H. pylori Str 26695.

4.2 MS determination of peptide mass

Now that the protein dot has been reduced to a number of peptides
(referred to hereafter as query peptides), we proceed to the second step in
PMF by subjecting these query peptides to MS to obtain peptide masses.
Suppose we now have determined the peptide mass of n peptides resulting
from digesting the protein dot from the 2-D gel. We typically will create a
file, say ProteinDot1.txt, to store these n peptide masses, m1, m2, …, mn. For
example, one protein dot from a sample of H. pylori proteins could have
eight peptides with their molecular masses determined by MS:

832.94
974.05
1105.16
1526.68
1537.92
1653.86
1680.87
2231.42

The list of eight peptide masses, hereafter referred to as query peptide

masses, will be matched against the peptide mass of all possible peptides

14. Fundamentals of Proteomics 305

from an in silico digestion of all H. pylori proteins to identify the protein.
This brings us to the third step of creating a database of peptide masses.

4.3 Protein database and in silico digestion

The third step of PMF is to obtain a relevant database of proteins and
perform an in silico digestion, using the same protease that has been used to
digest the protein dot. If one is working on human, then the relevant database
of proteins would obviously be human proteins. For example, one may
retrieve all 34169 annotated human CDSs, translate them into proteins and
perform an in silico digestion to obtain all possible peptides with their
respective masses. We have already learned how to compute the molecular
mass of a peptide in Chapter 11.

If one is working on H. pylori, then one may retrieve the annotated
protein-coding genes in sequenced H. pylori genomes and perform in silico
digestion to obtain all possible peptides with their respectively masses. The
in silico trypsin digestion of all 1576 annotated proteins in H. pylori strain
26695 generates 61160 peptides, which are partially shown in Table 14-4.

The list of peptide masses from the database will be referred to as
database peptide masses (designated by Mj) to distinguish them from the
query peptide masses (designated by mi) which pertain to peptides from an
isolated protein (e.g., a protein dot in a 2D-SDS-PAGE).

4.4 Protein identification

The fourth and final step in PMF is to search each of the query peptide
masses (e.g., the eight query peptide masses from a H. pylori protein dot in
Section 4.2) against H. pylori database peptide masses (Table 14-4). For
example, the first query peptide mass, 832.94, matches five database peptide
masses (Table 14-4), the second query peptide mass, 974.05, matches six
database peptide masses, and so on. The number of matches depends on the
accuracy of MS. If peptide mass mi is accurate to 0.5 Dalton, then any
database peptide within the peptide mass range of (mi – 0.5, mi + 0.5) would
be considered as a match.

We note that all eight query peptide masses match peptides from the
protein with gene index (GeneInd) of 319 (Table 14-4). We can therefore
conclude that the query peptides come from the gene with GeneInd = 319,
which has a locus_tag of HP0324 and is described as “outer membrane
protein (omp10)” in the GenBank file (NC_000915). There is no other gene
that comes close to this gene in term of the number of matches.

306 Chapter 14

Table 14-4. Partial list of peptide masses from trypsin digestion of the 1576 annotated
proteins in H. pylori strain 26695. GeneInd specifies the gene from which the peptide is from.
Note that the peptide at the C-terminal of the protein may not end with K (Lys) or R (Arg).
Mass GeneInd Peptide
832.934 38 QFTYFK
832.941 48 NNFPTLK
832.941 319 FPTINNK
832.941 476 GFNAPSLK
832.962 106 LGEAMANK
…
974.023 853 GVEAEVQDK
974.052 319 YYTTDALK
974.052 507 VYDLSSYK
974.066 57 ITNEQIEK
974.066 171 TALVENEAK
974.066 1235 YSDLALHR
…
1105.114 5 DDDNLALSSR
1105.155 319 EESAAPSWTK
1105.184 493 VDYNYYLR
…
1526.644 87 GLDEAIEFLEEYV
1526.684 319 VFAFYVGYNYHF
1526.688 1386 SLGNNLLYNTYVR
…
1537.808 71 GVAFSLLSFLEGGLK
1537.919 319 MLVGASLLTHALIAK
1538.613 747 FFDLGEYFEEDK
…
1653.84 852 IHFAQNYQLFSSAK
1653.856 319 YFAFLDWQGYGMR
1653.861 1379 MIGGSENIESAISFAK
1653.87 510 EIVAYLDEYIIGQK
…
1680.817 517 VPNQATFYDDLQAAK
1680.868 242 IGLNQQEIDAIQNPK
1680.868 319 ALFVDEHEFEIGFK
1680.883 1360 MDEVDLIFEEEAIK
…
2230.723 1277 FYATLALSCVFLTITNILVK
2231.42 319 EVTNYQTGYTNIITSVNSVK
2231.42 1503 DFYEELLYILGLEEQNDK
2231.499 208 EVDVLGGAMGIITDHSGLQYR

The intuitive argument above linking a protein dot and a protein-coding

gene on the genome has problems, especially in eukaryotes where proteins
differ dramatically in lengths. For example, the mammalian dystrophin
protein coded by the dmd gene contains about 4000 amino acid residues
coded by about 75 exons. It consequently would have a much large

14. Fundamentals of Proteomics 307

probability (100 times to be exact) of getting a random match than a small
protein of 40 amino acid residues. We therefore need to develop a statistical
framework to help us decide whether our identification is correct or not.

We have two hypotheses, i.e., the protein dot is HP0324 (designated as
θYes) and it is not (designated as θNo). Designate Yij as the event of query
peptide mass mi matching database peptide mass Mj of HP0324 (19 peptides
are generated by in silico digestion of the annotated HP0324 protein, so j = 1
2, …, 19). The likelihood of Yij, i.e., the probability of Yij happening given
θYes is true, is generally close to 1 (although molecular mechanisms such as
posttranslational modification may reduce this value slightly), i.e.,

(|) 1ij Yesp Y θ ≈ (14.12)

If the protein dot is not HP0324, then what is the probability of event Yij
happening? This can be estimated empirically by searching the 17 Mj values
from HP0324 against the rest of the M values from other H. pylori proteins.
Designate the number of matches for M1, M2, …, M17 as N1, N2, …, N17,
respectively, we can estimate

17

1(|)
17(17)

j
j

ij No
T

N

p Y
N

θ ==
−

∑
 (14.13)

where NT is the total number of database peptides results from in silico
digestion. For simplicity, let’s assume that p(Yij|θNo) = 0.0003.

Now designating the protein length of HP0324 as LHP0324, and the total
length of all 1576 H. pylori proteins as LT, we have the prior probabilities for
θYes and θNo as

0324 255() 0.0005
503015

() 1 () 0.9995

HP
Yes

Total

No Yes

Lp
L

p p

θ

θ θ

= = =

= − =
 (14.14)

According to Bayes’ theorem, the probability that θNo is true is

308 Chapter 14

(|) ()
(|)

(|) () (|) ()

0.0003 0.9995 0.37488
1 0.0005 0.0003 0.9995

ij No No
No ij

ij Yes Yes ij No No

P Y P
P Y

P Y P P Y P
θ θ

θ
θ θ θ θ

=
+

×
= ≈

× + ×

 (14.15)

Thus, with only one Yij event, we cannot reject θNo. However, we have
eight mi values that all match Mj values from HP0324. So the final
probability that θNo is true is 0.374888 = 0.0004. So θNo can be conclusively
rejected and we conclude that the protein dot is indeed HP0324. The
formulation above can be further refined by taking into consideration the fact
that peptides of different lengths have different matching probabilities
against database peptide mass.

Peptide mass fingerprinting, together with quantification of protein
abundance, ultimately leads to two types of data for further bioinformatics
analysis. The first type is between the control and the experiment and the
second type is what is known as time-course data, obtained by sampling the
proteome of a cell lineage over different time points. For example, one may
synchronize the development cycle of yeast cells and sampling the proteome
at regular time intervals during the yeast cell cycle, or trigger the
developmental cascade of a stem cell lineage and sample the proteome at
regular time intervals. These two types of data parallel those from
transcriptomic experiments and can be analyzed similarly to identify genes
that are up-regulated or down-regulated at the protein level.

REFERENCES

Adachi, J., and Hasegawa, M., 1996, Model of amino acid substitution in
proteins encoded by mitochondrial DNA. J. Mol. Evol. 42: 459-468.

Aerts, S., Van Loo, P., Thijs, G., Mayer, H., de Martin, R., Moreau, Y., and
De Moor, B., 2005, TOUCAN 2: the all-inclusive open source
workbench for regulatory sequence analysis. Nucleic Acids Res 33:
W393-396.

Agris, P.F., 2004, Decoding the genome: a modified view. Nucleic Acids Res
32: 223-238.

Aird, W.C., Parvin, J.D., Sharp, P.A., and Rosenberg, R.D., 1994, The
interaction of GATA-binding proteins and basal transcription factors
with GATA box-containing core promoters. A model of tissue-
specific gene expression. J. Biol. Chem. 269: 883-889.

Akashi, H., 1995, Inferring weak selection from patterns of polymorphism
and divergence at "silent" sites in Drosophila DNA. Genetics 139:
1067-1076.

Akashi, H., 1997, Codon bias evolution in Drosophila. Population genetics
of mutation-selection drift. Gene 205: 269-278.

Akashi, H., 2003, Translational selection and yeast proteome evolution.
Genetics 164: 1291-1303.

Allen, A., Flemstrom, G., Garner, A., and Kivilaakso, E., 1993,
Gastroduodenal mucosal protection. Physiol. Rev. 73: 823-857.

Alm, R.A., Bina, J., Andrews, B.M., Doig, P., Hancock, R.E., and Trust,
T.J., 2000, Comparative genomics of Helicobacter pylori: analysis
of the outer membrane protein families. Infect. Immun. 68: 4155-
4168.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., 1990,
Basic local alignment search tool. J. Mol. Biol. 215: 403-410.

Altschul, S.F., 1996, Local alignment statistics. Meth. Enzymol. 274: 460-
480.

310

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller,

W., and Lipman, D.J., 1997, Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids
Res. 25: 3389-3402.

Andachi, Y., Yamao, F., Muto, A., and Osawa, S., 1989, Codon recognition
patterns as deduced from sequences of the complete set of transfer
RNA species in Mycoplasma capricolum. Resemblance to
mitochondria. J Mol Biol 209: 37-54.

Anderson, K.P., Crable, S.C., and Lingrel, J.B., 1998, Multiple Proteins
Binding to a GATA-E Box-GATA Motif Regulate the Erythroid
Kruppel-like Factor (EKLF) Gene. J. Biol. Chem. 273: 14347-
14354.

Andersson, J.O., and Andersson, S.G., 1999, Genome degradation is an
ongoing process in Rickettsia. Molecular Biology & Evolution 16:
1178-1191.

Andersson, S.G., Zomorodipour, A., Andersson, J.O., et al., 1998, The
genome sequence of Rickettsia prowazekii and the origin of
mitochondria. Nature 396: 133-140.

Aris-Brosou, S., 2003, How Bayes tests of molecular phylogenies compare
with frequentist approaches. Bioinformatics 19: 618-624.

Aris-Brosou, S., and Yang, Z., 2003, Bayesian models of episodic evolution
support a late precambrian explosive diversification of the Metazoa.
Mol Biol Evol 20: 1947-1954.

Aris-Brosou, S., 2005, Determinants of adaptive evolution at the molecular
level: the extended complexity hypothesis. Mol Biol Evol 22: 200-
209.

Arnqvist, G., 2006, Sensory exploitation and sexual conflict. Philos Trans R
Soc Lond B Biol Sci 361: 375-386.

Ast, G., 2004, How did alternative splicing evolve? Nat Rev Genet 5: 773-
782.

Aylon, Y., and Kupiec, M., 2004, DSB repair: the yeast paradigm. DNA
Repair (Amst) 3: 797-815.

Ayoubi, P., Jin, X., Leite, S., et al., 2002, PipeOnline 2.0: automated EST
processing and functional data sorting. Nucleic Acids Res 30: 4761-
4769.

Baik, S.C., Kim, K.M., Song, S.M., et al., 2004, Proteomic analysis of the
sarcosine-insoluble outer membrane fraction of Helicobacter pylori
strain 26695. J. Bacteriol. 186: 949-955.

Baldi, P., and Brunak, S., 2001, Bioinformatics: the machine learning
approach. The MIT Press, Cambridge, Massachusetts.

Baliga, N.S., Pan, M., Goo, Y.A., et al., 2002, Coordinate regulation of
energy transduction modules in Halobacterium sp. analyzed by a
global systems approach. Proc. Natl. Acad. Sci. U S A 99: 14913-
14918.

311

Baron, D., Cocquet, J., Xia, X., Fellous, M., Guiguen, Y., and Veitia, R.A.,
2004, An evolutionary and functional analysis of FoxL2 in rainbow
trout gonad differentiation. J. Mol. Endocrinol. 33: 705 - 715.

Barrell, B.G., Anderson, S., Bankier, A.T., et al., 1980, Different pattern of
codon recognition by mammalian mitochondrial tRNAs. Proc. Natl.
Acad. Sci. U S A 77: 3164-3166.

Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Finn, R.D., and
Sonnhammer, E.L., 1999, Pfam 3.1: 1313 multiple alignments and
profile HMMs match the majority of proteins. Nucleic Acids Res 27:
260-262.

Bateman, A., Coin, L., Durbin, R., et al., 2004, The Pfam protein families
database. Nucleic Acids Res 32: D138-141.

Bauerfeind, P., Garner, R., Dunn, B.E., and Mobley, H.L., 1997, Synthesis
and activity of Helicobacter pylori urease and catalase at low pH.
Gut 40: 25-30.

Baumgartner, H.K., and Montrose, M.H., 2004, Regulated alkali secretion
acts in tandem with unstirred layers to regulate mouse gastric
surface pH. Gastroenterology 126: 774-783.

Baxevanis, A.D., and Ouellette, B.F.F., 2005, Bioinformatics: a practical
guide to the analysis of genes and proteins. Wiley, Hoboken, New
Jersey.

Bebenek, K., Roberts, J.D., and Kunkel, T.A., 1992, The effects of dNTP
pool imbalances on frameshift fidelity during DNA replication. J.
Biol. Chem. 267: 3589-3596.

Beletskii, A., and Bhagwat, A.S., 1996, Transcription-induced mutations:
increase in C to T mutations in the nontranscribed strand during
transcription in Escherichia coli. Proc. Natl. Acad. Sci. U S A 93:
13919-13924.

Beletskii, A., and Bhagwat, A.S., 1998, Correlation between transcription
and C to T mutations in the non-transcribed DNA strand. Biol.
Chem. 379: 549-551.

Beletskii, A., Grigoriev, A., Joyce, S., and Bhagwat, A.S., 2000, Mutations
induced by bacteriophage T7 RNA polymerase and their effects on
the composition of the T7 genome. J. Mol. Biol. 300: 1057-1065.

Beletskii, A., and Bhagwat, A.S., 2001, Transcription-induced cytosine-to-
thymine mutations are not dependent on sequence context of the
target cytosine. J. Bacteriol. 183: 6491-6493.

Bennetzen, J.L., and Hall, B.D., 1982, Codon selection in yeast. J. Biol.
Chem. 257: 3026-3031.

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Wheeler,
D.L., 2005, GenBank. Nucleic Acids Res 33: D34-38.

Bentham, M., Mazaleyrat, S., and Harris, M., 2006, Role of myristoylation
and N-terminal basic residues in membrane association of the human
immunodeficiency virus type 1 Nef protein. J Gen Virol 87: 563-
571.

References

312

Berg, J.M., Tymoczko, J.L., and Stryer, L., 2002, Biochemistry. W. H.

Freeman and Co., New York.
Berg, O.G., and Martelius, M., 1995, Synonymous substitution-rate

constants in Escherichia coli and Salmonella typhimurium and their
relationship to gene expression and selection pressure. J. Mol. Evol.
41: 449-456.

Berg, O.G., 1996, Selection intensity for codon bias and the effective
population size of Escherichia coli. Genetics 142: 1379-1382.

Besemer, J., and Borodovsky, M., 2005, GeneMark: web software for gene
finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res
33: W451-454.

Bestor, T.H., and Coxon, A., 1993, The pros and cons of DNA methylation.
Curr. Biol. 6: 384-386.

Bickel, D.R., 2003, Robust cluster analysis of microarray gene expression
data with the number of clusters determined biologically.
Bioinformatics 19: 818-824.

Birnboim, H.C., Sederoff, R.R., and Paterson, M.C., 1979, Distribution of
polypyrimidine. polypurine segments in DNA from diverse
organisms. Eur J Biochem 98: 301-307.

Bittner, M., Meltzer, P., and Trent, J., 1999, Data analysis and integration: of
steps and arrows [news; comment] [see comments]. Nat. Genet. 22:
213-215.

Bogenhagen, D.F., and Clayton, D.A., 2003, The mitochondrial DNA
replication bubble has not burst. Trends Biochem Sci 28: 357-360.

Bonen, L., 2006, Mitochondrial genes leave home. New Phytol 172: 379-
381.

Bonen, L., and Calixte, S., 2006, Comparative analysis of bacterial-origin
genes for plant mitochondrial ribosomal proteins. Mol Biol Evol 23:
701-712.

Borodovsky, M., and McIninch, J., 1993a, GENMARK: parallel gene
recognition for both DNA strands. Comput. Chem. 17: 123-133.

Borodovsky, M., and McIninch, J., 1993b, Recognition of genes in DNA
sequence with ambiguities. Biosystems 30: 161-171.

Brauch, H., Weirich, G., Brieger, J., et al., 2000, VHL alterations in human
clear cell renal cell carcinoma: association with advanced tumor
stage and a novel hot spot mutation. Cancer Res 60: 1942-1948.

Breuer, S., Gerlach, H., Kolaric, B., Urbanke, C., Opitz, N., and Geyer, M.,
2006, Biochemical indication for myristoylation-dependent
conformational changes in HIV-1 Nef. Biochemistry (Mosc). 45:
2339-2349.

Bridger, W.A., and Henderson, J.F., 1983, Cell ATP. Wiley, New York.
Brown, C.M., Stockwell, P.A., Dalphin, M.E., and Tate, W.P., 1994, The

translational termination signal database (TransTerm) now also
includes initiation contexts. Nucleic Acids Res 22: 3620-3624.

Brown, J.R., 2003, Ancient horizontal gene transfer. Nat Rev Genet 4: 121-
132.

313

Bulmer, M., 1987, Coevolution of codon usage and transfer RNA
abundance. Nature 325: 728-730.

Bulmer, M., 1991, The selection-mutation-drift theory of synonymous codon
usage. Genetics 129: 897-907.

Bumann, D., Aksu, S., Wendland, M., Janek, K., Zimny-Arndt, U., Sabarth,
N., Meyer, T.F., and Jungblut, P.R., 2002, Proteome analysis of
secreted proteins of the gastric pathogen Helicobacter pylori. Infect.
Immun. 70: 3396-3403.

Burge, C., and Karlin, S., 1997, Prediction of complete gene structures in
human genomic dna. J. Mol. Biol. 268: 78-94.

Burge, C.B., 1998, Modeling dependencies in pre-mRNA splicing signals. In
Computational Methods in Molecular Biology. Salzberg, S., Searls,
D. and Kasif, S. (eds). Elsevier Science, Amsterdam, pp. 127-163.

Burge, C.B., and Karlin, S., 1998, Finding the genes in genomic DNA. Curr
Opin Struct Biol 8: 346-354.

Burges, C.J.C., 1998, A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery 2: 121-167.

Bury-Mone, S., Skouloubris, S., Labigne, A., and De Reuse, H., 2001, The
Helicobacter pylori UreI protein: role in adaptation to acidity and
identification of residues essential for its activity and for acid
activation. Mol. Microbiol. 42: 1021-1034.

Carroll, J., Fearnley, I.M., Shannon, R.J., Hirst, J., and Walker, J.E., 2003,
Analysis of the subunit composition of complex I from bovine heart
mitochondria. Mol Cell Proteomics 2: 117-126.

Chang, J.T., 1996, Full reconstruction of Markov models on evolutionary
trees: identifiability and consistency. Math Biosci 137: 51-73.

Chen, G., Gharib, T.G., Huang, C.C., et al., 2002, Discordant protein and
mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 1:
304-313.

Chen, J.J., Peck, K., Hong, T.M., et al., 2001, Global analysis of gene
expression in invasion by a lung cancer model. Cancer Res 61:
5223-5230.

Chen, R., Pan, S., Brentnall, T.A., and Aebersold, R., 2005, Proteomic
Profiling of Pancreatic Cancer for Biomarker Discovery. Mol Cell
Proteomics 4: 523-533.

Chen, Y., Bittner, M.L., and Rougherty, E.R., 1999, Issues associated with
microarray data analysis and integration. Nat. Genet. 22: 213-215.

Chilingaryan, A., Gevorgyan, N., Vardanyan, A., Jones, D., and Szabo, A.,
2002, Multivariate approach for selecting sets of differentially
expressed genes. Math Biosci 176: 59-69.

Cho, R.J., Campbell, M.J., Winzeler, E.A., et al., 1998, A genome-wide
transcriptional analysis of the mitotic cell cycle. Mol Cell 2: 65-73.

Chou, P.Y., and Fasman, G.D., 1978a, Prediction of the secondary structure
of proteins from their amino acid sequence. Adv Enzymol Relat
Areas Mol Biol 47: 45-148.

References

314

Chou, P.Y., and Fasman, G.D., 1978b, Empirical predictions of protein

conformation. Annu Rev Biochem 47: 251-276.
Chuang, S.E., Daniels, D.L., and Blattner, F.R., 1993, Global regulation of

gene expression in Escherichia coli. J Bacteriol 175: 2026-2036.
Cigan, A.M., and Donahue, T.F., 1987, Sequence and structural features

associated with translational initiator regions in yeast--a review.
Gene 59: 1-18.

Clayton, D.A., 1982, Replication of animal mitochondrial DNA. Cell 28:
693-705.

Clayton, D.A., 2000, Transcription and replication of mitochondrial DNA.
Hum Reprod 15: 11-17.

Coessens, B., Thijs, G., Aerts, S., et al., 2003, INCLUSive: A web portal and
service registry for microarray and regulatory sequence analysis.
Nucleic Acids Res 31: 3468-3470.

Coghlan, A., and Wolfe, K.H., 2000, Relationship of codon bias to mRNA
concentration and protein length in Saccharomyces cerevisiae. Yeast
16: 1131-1145.

Colby, C., and Edlin, G., 1970, Nucleotide pool levels in growing, inhibited,
and transformed chick fibroblast cells. Biochemistry (Mosc). 9: 917.

Comeron, J.M., and Aguade, M., 1998, An evaluation of measures of
synonymous codon usage bias. J Mol Evol 47: 268-274.

Correa, P., 1997, Helicobacter pylori as a pathogen and carcinogen. J.
Physiol. Pharmacol. 48: 19-24.

Covell, D.G., Wallqvist, A., Rabow, A.A., and Thanki, N., 2003, Molecular
classification of cancer: unsupervised self-organizing map analysis
of gene expression microarray data. Mol Cancer Ther 2: 317-332.

Crick, F.H., 1965, Recent research in molecular biology: introduction. Br
Med Bull 21: 183-186.

Dalphin, M.E., Brown, C.M., Stockwell, P.A., and Tate, W.P., 1996,
TransTerm: a database of translational signals. Nucleic Acids Res
24: 216-218.

Danchin, A., 2002, The Delphic boat: what genomes tell us. Harvard
University Press, Cambridge, MA.

Darwin, C., 1859, The Orgin of Species by means of natural selection, or the
preservation of favoured races in the struggle for life. JOHN
MURRAY, London.

Davila, A.M., Lorenzini, D.M., Mendes, P.N., et al., 2005, GARSA:
genomic analysis resources for sequence annotation. Bioinformatics
21: 4302-4303.

Dayhoff, M.O., Schwartz, R.M., and Orcutt, B.C., 1978, A model of
evolutionary change in proteins. In Atlas of Protein Sequence and
Structure. Vol. 5, Suppl. 3. Dayhoff, M.O. (ed). National
Biomedical Research Foundation, Washington D.C., pp. 345-352.

de Vries, J.S., Andriotis, V.M., Wu, A.J., and Rathjen, J.P., 2006, Tomato
Pto encodes a functional N-myristoylation motif that is required for
signal transduction in Nicotiana benthamiana. Plant J 45: 31-45.

315

Desper, R., and Gascuel, O., 2002, Fast and accurate phylogeny
reconstruction algorithms based on the minimum-evolution
principle. J. Comput. Biol. 9: 687-705.

Diehn, M., Eisen, M.B., Botstein, D., and Brown, P.O., 2000, Large-scale
identification of secreted and membrane-associated gene products
using DNA microarrays. Nat. Genet. 25: 58-62.

Dinel, S., Bolduc, C., Belleau, P., et al., 2005, Reproducibility, bioinformatic
analysis and power of the SAGE method to evaluate changes in
transcriptome. Nucleic Acids Res 33: e26.

Dobzhansky, T., 1973, Nothing in biology makes sense except in the light of
evolution. The American Biology Teacher 35: 125-129.

Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Devare, S.G., Robbins,
K.C., Aaronson, S.A., and Antoniades, H.N., 1983, Simian sarcoma
virus onc gene, v-sis, is derived from the gene (or genes) encoding a
platelet-derived growth factor. Science 221: 275-277.

dos Reis, M., Wernisch, L., and Savva, R., 2003, Unexpected correlations
between gene expression and codon usage bias from microarray data
for the whole Escherichia coli K-12 genome. Nucleic Acids Res 31:
6976-6985.

Drake, J.W., Charlesworth, B., Charlesworth, D., and Crow, J.F., 1998,
Rates of spontaneous mutation. Genetics 148: 1667-1686.

Drouin, G., and de Sa, M.M., 1995, The concerted evolution of 5S ribosomal
genes linked to the repeat units of other multigene families. Mol Biol
Evol 12: 481-493.

Drouin, G., Prat, F., Ell, M., and Clarke, G.D., 1999, Detecting and
characterizing gene conversions between multigene family
members. Mol Biol Evol 16: 1369-1390.

Drouin, G., 2002a, Characterization of the gene conversions between the
multigene family members of the yeast genome. J Mol Evol 55: 14-
23.

Drouin, G., 2002b, Testing claims of gene conversion between multigene
family members: examples from echinoderm actin genes. J Mol Evol
54: 138-139.

Dunham, I., Shimizu, N., Roe, B.A., et al., 1999, The DNA sequence of
human chromosome 22. Nature 402: 489-495.

Durbin, R., 1998, Biological sequence analysis: probabilistic models of
proteins and nucleic acids. Cambridge University Press, Cambridge.

Duret, L., 2000, tRNA gene number and codon usage in the C. elegans
genome are co-adapted for optimal translation of highly expressed
genes. Trends Genet 16: 287-289.

Eddy, S.R., 2005, "Antedisciplinary" science. PLoS Comput Biol 1: e6.
Einstein, A., Russell, B., Dewey, J., et al., 1931, Living Philosophies. Simon

and Schuster., New York.
Eisen, J.A., 2000, Horizontal gene transfer among microbial genomes: new

insights from complete genome analysis. Curr Opin Genet Dev 10:
606-611.

References

316

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D., 1998, Cluster

analysis and display of genome-wide expression patterns. Proc.
Natl. Acad. Sci. USA. 95: 14863-14868.

Engel, E., Peskoff, A., Kauffman, G.L., Jr., and Grossman, M.I., 1984,
Analysis of hydrogen ion concentration in the gastric gel mucus
layer. Am. J. Physiol. 247: G321-338.

Epstein, C.B., and Butow, R.A., 2000, Microarray technology - enhanced
versatility, persistent challenge. Curr. Opin. Biotechnol. 11: 36-41.

Evans, T., Felsenfeld, G., and Reitman, M., 1990, Control of globin gene
transcription. Annu Rev Cell Biol 6: 95-124.

Eyre-Walker, A., 1996, Synonymous codon bias is related to gene length in
Escherichia coli: selection for translational accuracy? Mol Biol Evol
13: 864-872.

Ezzell, C., 2002, Proteins rule. Sci. Am. 286: 40-47.
Farazi, T.A., Waksman, G., and Gordon, J.I., 2001, The Biology and

Enzymology of Protein N-Myristoylation. J. Biol. Chem. 276:
39501-39504.

Fasman, G.D., and Chou, P.Y., 1974, Prediction of protein conformation:
consequences and aspirations. In Peptides, polypeptides and
proteins. Blout, E.R., Bovey, F.A., Goodman, M. and Latan, N.
(eds). Wiley, New York, pp. 114-125.

Fatemi, M., Hermann, A., Pradhan, S., and Jeltsch, A., 2001, The activity of
the murine DNA methyltransferase Dnmt1 is controlled by
interaction of the catalytic domain with the N-terminal part of the
enzyme leading to an allosteric activation of the enzyme after
binding to methylated DNA. J. Mol. Biol. 309: 1189-1199.

Felsenstein, J., 1978a, The number of evolutionary trees. Syst. Zool. 27: 27-
33.

Felsenstein, J., 1978b, Cases in which parsimony and compatibility methods
will be positively misleading. Syst. Zool. 27: 401-410.

Felsenstein, J., 1981, Evolutionary trees from DNA sequences: a maximum
likelihood approach. J. Mol. Evol. 17: 368-376.

Felsenstein, J., 1988, Phylogenies from molecular sequences: inference and
reliability. Annu Rev Genet 22: 521-565.

Felsenstein, J., and Churchill, G.A., 1996, A Hidden Markov Model
approach to variation among sites in rate of evolution. Mol Biol Evol
13: 93-104.

Felsenstein, J., 2002, PHYLIP 3.6 (phylogeny inference package). Seattle:
Department of Genetics, University of Washington.

Felsenstein, J., 2004, Inferring phylogenies. Sinauer, Sunderland,
Massachusetts.

Figeys, D., 2002, Adapting arrays and lab-on-a-chip technology for
proteomics. Proteomics 2: 373-382.

Figeys, D., 2003a, Proteomics in 2002: a year of technical development and
wide-ranging applications. Anal Chem 75: 2891-2905.

317

Figeys, D., 2003b, Novel approaches to map protein interactions. Curr Opin
Biotechnol 14: 119-125.

Fisher, R.A., 1926, The arrangement of field experiments. Journal of the
Ministry of Agriculture 33.

Fisher, R.A., 1936, The use of multiple measurements in taxonomic
problems. Annals of Eugenics 7: 179-188.

Fitch, W.M., and Margoliash, E., 1967, Construction of phylogenetic trees.
Science 155: 279-284.

Fitch, W.M., 1971, Toward defining the course of evolution: minimum
change for a specific tree topology. Syst. Zool. 20: 406-416.

Fleischmann, R.D., Adams, M.D., White, O., et al., 1995, Whole-genome
random sequencing and assembly of Haemophilus influenzae Rd.
Science 269: 496-512.

Foissac, S., and Schiex, T., 2005, Integrating alternative splicing detection
into gene prediction. BMC Bioinformatics 6: 25.

Folley, L.S., and Fox, T.D., 1991, Site-directed mutagenesis of a
Saccharomyces cerevisiae mitochondrial translation initiation codon.
Genetics 129: 659-668.

Fong, T.C., and Emerson, B.M., 1992, The erythroid-specific protein
cGATA-1 mediates distal enhancer activity through a specialized
beta-globin TATA box. Genes Dev 6: 521-532.

Forde, C.E., and McCutchen-Maloney, S.L., 2002, Characterization of
transcription factors by mass spectrometry and the role of SELDI-
MS. Mass Spectrom Rev 21: 419-439.

Francino, M.P., and Ochman, H., 1997, Strand asymmetries in DNA
evolution. Trends Genet. 13: 240-245.

Fraser, C.M., Gocayne, J.D., White, O., et al., 1995, The minimal gene
complement of Mycoplasma genitalium. Science 270: 397-403.

Frederico, L.A., Kunkel, T.A., and Shaw, B.R., 1990, A sensitive genetic
assay for the detection of cytosine deamination: determination of
rate constants and the activation energy. Biochemistry (Mosc). 29:
2532-2537.

Frederico, L.A., Kunkel, T.A., and Shaw, B.R., 1993, Cytosine deamination
in mismatched base pairs. Biochemistry (Mosc). 32: 6523-6530.

Freeman, J.M., Plasterer, T.N., Smith, T.F., and Mohr, S.C., 1998, Patterns
of Genome Organization in Bacteria. Science 279: 1827a-.

Freund, Y.a.S., R. E., 1998, Large margin classification using the perceptron
algorithm. In The 11th Annual Conference on Computational
Learning Theory (COLT' 98). ACM Press.

Frishman, D., Mironov, A., Mewes, H.W., and Gelfand, M., 1998,
Combining diverse evidence for gene recognition in completely
sequenced bacterial genomes. Nucleic Acids Res 26: 2941-2947.

Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S., and Garrels, J.I.,
1999, A sampling of the yeast proteome. Mol Cell Biol 19: 7357-
7368.

References

318

Gaasterland, T., and Bekiranov, S., 2000, Making the most of microarray

data [news]. Nat. Genet. 24: 204-206.
Galtier, N., and Lobry, J.R., 1997, Relationships between genomic G+C

content, RNA secondary structures, and optimal growth temperature
in prokaryotes. J Mol Evol 44: 632-636.

Gelfand, M.S., 1989, Statistical analysis of mammalian pre-mRNA splicing
sites. Nucleic Acids Res 17: 6369-6382.

Gelfand, M.S., 1992, Statistical analysis and prediction of the exonic
structure of human genes. J Mol Evol 35: 239-252.

Gelfand, M.S., Kozhukhin, C.G., and Pevzner, P.A., 1992, Extendable words
in nucleotide sequences. Comput Appl Biosci 8: 129-135.

Geman, S., and Geman, D., 1984, Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 6: 721-
741.

Gibbs, A., and Primrose, S., 1976, A correlation between the genome
compositions of bacteriophages and their hosts. Intervirology 7: 351-
355.

Gissi, C., Iannelli, F., and Pesole, G., 2004, Complete mtDNA of Ciona
intestinalis reveals extensive gene rearrangement and the presence of
an atp8 and an extra trnM gene in ascidians. J Mol Evol 58: 376-389.

Goffeau, A., and al., e., 1996, Life with 6000 genes. Science 274: 546.
Gojobori, T., Li, W.-H., and Graur, D., 1982, Patterns of nucleotide

substitution in pseudogenes and functional genes. J. Mol. Evol. 18:
360-369.

Golding, G.B., 1983, Estimates of DNA and protein sequence divergence:
An examination of some assumptions. Mol. Biol. Evol. 1: 125-142.

Goldman, N., and Yang, Z., 1994, A codon-based model of nucleotide
substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11:
725-736.

Gora-Sochacka, A., 2004, Viroids: unusual small pathogenic RNAs. Acta
Biochim Pol 51: 587-607.

Gordon, D., Abajian, C., and Green, P., 1998, Consed: a graphical tool for
sequence finishing. Genome Res. 8: 195-202.

Gouy, M., and Gautier, C., 1982, Codon usage in bacteria: correlation with
gene expressivity. Nucleic Acids Res. 10: 7055-7064.

Graveley, B.R., 2005, Mutually exclusive splicing of the insect Dscam pre-
mRNA directed by competing intronic RNA secondary structures.
Cell 123: 65-73.

Griffin, T.J., Gygi, S.P., Ideker, T., Rist, B., Eng, J., Hood, L., and
Aebersold, R., 2002, Complementary profiling of gene expression at
the transcriptome and proteome levels in Saccharomyces cerevisiae.
Mol Cell Proteomics 1: 323-333.

Grigoriev, A., 1998, Analyzing genomes with cumulative skew diagrams.
Nucleic Acids Res 26: 2286-2290.

319

Grunert, S., and Jackson, R.J., 1994, The immediate downstream codon
strongly influences the efficiency of utilization of eukaryotic
translation initiation codons. Embo J 13: 3618-3630.

Gu, X., Hewett-Emmett, D., and Li, W.H., 1998, Directional mutational
pressure affects the amino acid composition and hydrophobicity of
proteins in bacteria. Genetica 102-103: 383-391.

Gumbel, E.J., 1958, Statistics of extremes. Columbia University Press, New
York, NY.

Gusfield, D., 1997, Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge University Press,
Cambridge.

Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R., 1999, Correlation
between protein and mRNA abundance in yeast. Mol Cell Biol 19:
1720-1730.

Haldane, J.B.S., 1937, The effect of variation of fitness. Amer. Nat. 71: 337-
349.

Hamajima, N., Goto, Y., Nishio, K., Tanaka, D., Kawai, S., Sakakibara, H.,
and Kondo, T., 2004, Helicobacter pylori eradication as a preventive
tool against gastric cancer. Asian Pacific Journal of Cancer
Prevention 5: 246-252.

Harkins, S., Cornell, C.T., and Whitton, J.L., 2005, Analysis of translational
initiation in coxsackievirus B3 suggests an alternative explanation
for the high frequency of R+4 in the eukaryotic consensus motif. J
Virol 79: 987-996.

Hartigan, J.A., 1975, Clustering algorithms. Wiley, New York.
Hastings, W.K., 1970, Monte Carlo sampling methods using Markov chain

and their applications. Biometrika 57: 97-109.
Hayes, W.S., and Borodovsky, M., 1998, How to interpret an anonymous

bacterial genome: machine learning approach to gene identification.
Genome Res. 8: 1154-1171.

Heckman, J.E., Sarnoff, J., Alzner-DeWeerd, B., Yin, S., and RajBhandary,
U.L., 1980, Novel features in the genetic code and codon reading
patterns in Neurospora crassa mitochondria based on sequences of
six mitochondrial tRNAs. Proc. Natl. Acad. Sci. U S A 77: 3159-
3163.

Hein, J., 1990, A unified approach to phylogenies and alignments. Methods
in Enzymology 183: 625-644.

Hein, J., 1994, TreeAlign. Methods Mol Biol 25: 349-364.
Hendy, M.D., and Penny., D., 1982, Branch and bound algorithms to

determine minimal evolutionary trees. Math. Biosci. 60: 133-142.
Hendy, M.D., and Penny, D., 1989, A framework for the quantitative study

of evolutionary trees. Syst. Zool. 38: 297-309.
Henikoff, S., and Henikoff, J.G., 1992, Amino acid substitution matrices

from protein blocks. Proc. Natl. Acad. Sci. U S A 89: 10915-10919.

References

320

Heyer, L.J., Kruglyak, S., and Yooseph, S., 1999, Exploring expression data:

identification and analysis of coexpressed genes. Genome Res. 9:
1106-1115.

Hickey, D.A., Bally-Cuif, L., Abukashawa, S., Payant, V., and Benkel, B.F.,
1991, Concerted evolution of duplicated protein-coding genes in
Drosophila. Proc. Natl. Acad. Sci. U S A 88: 1611-1615.

Hickey, D.A., and Singer, G.A., 2004, Genomic and proteomic adaptations
to growth at high temperature. Genome Biol 5: 117.

Hickson, R.E., Simon, C., and Perrey, S.W., 2000, The performance of
several multiple-sequence alignment programs in relation to
secondary-structure features for an rRNA sequence. Mol Biol Evol
17: 530-539.

Higgins, D.G., and Sharp, P.M., 1988, CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer. Gene 73: 237-
244.

Higgs, P.G., and Attwood, T.K., 2004, Bioinformatics and molecular
evolution. Blackwell, Malden.

Hillis, D.M., Moritz, C., and Mable, B.K., 1996, Molecular systematics.
Sinauer Associates, Inc., Sunderland, Massachusetts.

Hirst, J.D., and Sternberg, M.J., 1991, Prediction of ATP/GTP-binding
motif: a comparison of a perceptron type neural network and a
consensus sequence method [corrected]. Protein Eng 4: 615-623.

Hodges, P.E., McKee, A.H., Davis, B.P., Payne, W.E., and Garrels, J.I.,
1999, The Yeast Proteome Database (YPD): a model for the
organization and presentation of genome-wide functional data.
Nucleic Acids Res 27: 69-73.

Hofer, A., Steverding, D., Chabes, A., Brun, R., and Thelander, L., 2001,
Trypanosoma brucei CTP synthetase: a target for the treatment of
African sleeping sickness. Proc. Natl. Acad. Sci. U S A 98: 6412-
6416.

Hoffmann, R.J., Boore, J.L., and Brown, W.M., 1992, A novel mitochondrial
genome organization for the blue mussel, Mytilus edulis. Genetics
131: 397-412.

Holmes, I., and Bruno, W.J., 2001, Evolutionary HMMs: a Bayesian
approach to multiple alignment. Bioinformatics 17: 803-820.

Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J.,
Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A., 1998,
Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:
717-728.

Holt, I.J., Lorimer, H.E., and Jacobs, H.T., 2000, Coupled leading- and
lagging-strand synthesis of mammalian mitochondrial DNA. Cell
100: 515-524.

Holt, I.J., and Jacobs, H.T., 2003, Response: The mitochondrial DNA
replication bubble has not burst. Trends Biochem Sci 28: 355-356.

321

Hopf, F.A., Michod, R.E., and Sanderson, M.J., 1988, The effect of the
reproductive system on mutation load. Theor Popul Biol 33: 243-
265.

Huang, X., 1993, Alignment of Three Sequences in Quadratic Space.
Applied Computing Review 1: 7-11.

Huang, X., Wang, J., Aluru, S., Yang, S.P., and Hillier, L., 2003, PCAP: a
whole-genome assembly program. Genome Res. 13: 2164-2170.

Huang, X.Q., 1992, A Contig Assembly Program Based on Sensitive
Detection of Fragment Overlaps. Genomics 14: 18-25.

Huelsenbeck, J.P., Ronquist, F., Nielsen, R., and Bollback, J.P., 2001,
Bayesian inference of phylogeny and its impact on evolutionary
biology. Science 294: 2310-2314.

Huelsenbeck, J.P., Larget, B., and Alfaro, M.E., 2004, Bayesian
phylogenetic model selection using reversible jump Markov chain
Monte Carlo. Mol Biol Evol 21: 1123-1133.

Hughes, A.L., da Silva, J., and Friedman, R., 2001, Ancient genome
duplications did not structure the human Hox-bearing chromosomes.
Genome Res. 11: 771-780.

Hunt, R.H., 2004, Will eradication of Helicobacter pylori infection influence
the risk of gastric cancer? Am. J. Med. 117: 86S-91S.

Hurst, L.D., and Merchant, A.R., 2001, High guanine-cytosine content is not
an adaptation to high temperature: a comparative analysis amongst
prokaryotes. Proc. R. Soc. Lond. B. 268: 493-497.

Huynen, M., Dandekar, T., and Bork, P., 1998, Differential genome analysis
applied to the species-specific features of Helicobacter pylori. FEBS
Lett. 426: 1-5.

Ideker, T., Thorsson, V., Ranish, J.A., et al., 2001, Integrated genomic and
proteomic analyses of a systematically perturbed metabolic network.
Science 292: 929-934.

Ikemura, T., 1981, Correlation between the abundance of Escherichia coli
transfer RNAs and the occurrence of the respective codons in its
protein genes: a proposal for a synonymous codon choice that is
optimal for the E coli translational system. J Mol Biol 151: 389-409.

Ikemura, T., 1982, Correlation between the abundance of yeast transfer
RNAs and the occurrence of the respective codons in protein genes.
Differences in synonymous codon choice patterns of yeast and
Escherichia coli with reference to the abundance of isoaccepting
transfer RNAs. J Mol Biol 158: 573-597.

Ikemura, T., 1985, Codon usage and tRNA content in unicellular and
multicellular organisms. Mol Biol Evol 2: 13-34.

Ikemura, T., 1992, Correlation between codon usage and tRNA content in
microorganisms. In Transfer RNA in protein synthesis. Hatfield,
D.L., Lee, B. and Pirtle, J. (eds). CRC Press, Boca Raton, Fla., pp.
87-111.

Inagaki, Y., Kojima, A., Bessho, Y., Hori, H., Ohama, T., and Osawa, S.,
1995, Translation of synonymous codons in family boxes by

References

322

Mycoplasma capricolum tRNAs with unmodified uridine or
adenosine at the first anticodon position. J Mol Biol 251: 486-492.

Istrail, S., Sutton, G.G., Florea, L., et al., 2004, Whole-genome shotgun
assembly and comparison of human genome assemblies. Proc. Natl.
Acad. Sci. U S A 101: 1916-1921. Epub 2004 Feb 1909.

Jacob, F., 1988, The statue within: an autobiography. Basic Books, Inc.,
New York.

Jayaswal, V., Jermiin, L.S., and Robinson, J., 2005, Estimation of Phylogeny
Using a General Markov Model. Evolutionary Bioinformatics
Online 1: 62-80.

Jensen, J.L., and Hein, J., 2005, Gibbs sampler for statistical multiple
alignment. Statistica Sinica 15: 889-907.

Jermiin, L., Graur, D., and Crozier, R., 1995, Evidence from Analyses of
Intergenic Regions for Strand-specific Directional Mutation Pressure
in Metazoan Mitochondrial DNA. Mol Biol Evol 12: 558-563.

Jia, M., and Li, Y., 2005, The relationship among gene expression, folding
free energy and codon usage bias in Escherichia coli. FEBS Lett
579: 5333-5337.

Jin, L., and Nei, M., 1990, Limitations of the evolutionary parsimony
method of phylogenetic analysis. Mol. Biol. Evol. 7: 82-102.

Jones, D.T., Taylor, W.R., and Thornton, J.M., 1992, The rapid generation
of mutation data matrices from protein sequences. Comput Appl
Biosci 8: 275-282.

Jukes, T.H., and Cantor, C.R., 1969, Evolution of protein molecules. In
Mammalian protein metabolism. Munro, H.N. (ed). Academic Press,
New York, pp. 21-123.

Kanaya, S., Yamada, Y., Kudo, Y., and Ikemura, T., 1999, Studies of codon
usage and tRNA genes of 18 unicellular organisms and
quantification of Bacillus subtilis tRNAs: gene expression level and
species-specific diversity of codon usage based on multivariate
analysis. Gene 238: 143-155.

Kaneko, T., Tanaka, A., Sato, S., Kotani, H., Sazuka, T., Miyajima, N.,
Sugiura, M., and Tabata, S., 1995, Sequence analysis of the genome
of the unicellular cyanobacterium Synechocystis sp. strain
PCC6803. I. Sequence features in the 1 Mb region from map
positions 64% to 92% of the genome. DNA Res 2: 153-166, 191-
158.

Kaneko, T., Sato, S., Kotani, H., et al., 1996, Sequence analysis of the
genome of the unicellular cyanobacterium Synechocystis sp. strain
PCC6803. II. Sequence determination of the entire genome and
assignment of potential protein-coding regions. DNA Res 3: 109-
136.

Katinka, M.D., Duprat, S., Cornillot, E., et al., 2001, Genome sequence and
gene compaction of the eukaryote parasite Encephalitozoon cuniculi.
Nature 414: 450-453.

323

Kazan, K., 2003, Alternative splicing and proteome diversity in plants: the
tip of the iceberg has just emerged. Trends Plant Sci 8: 468-471.

Kent, W.J., and Haussler, D., 2001, Assembly of the working draft of the
human genome with GigAssembler. Genome Res. 11: 1541-1548.

Kim, D.W., Lee, K.H., and Lee, D., 2005, Detecting clusters of different
geometrical shapes in microarray gene expression data.
Bioinformatics 21: 1927-1934.

Kimura, M., and Ohta, T., 1972, On the stochastic model for estimation of
mutational distance between homologous proteins. J. Mol. Evol. 2:
87-90.

Kimura, M., 1980, A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide
sequences. J. Mol. Evol. 16: 111-120.

Kishino, H., Miyata, T., and Hasegawa, M., 1990, Maximum likelihood
inference of protein phylogeny and the origin of chloroplasts. J. Mol.
Evol. 31: 151-160.

Kjer, K.M., 1995, Use of Ribosomal-RNA Secondary Structure in
Phylogenetic Studies to Identify Homologous Positions - an
Example of Alignment and Data Presentation from the Frogs. Mol.
Phylogenet. Evol. 4: 314-330.

Kohonen, T., 2001, Self-Organizing Maps. Springer, Berlin.
Kolaczkowski, B., and Thornton, J.W., 2004, Performance of maximum

parsimony and likelihood phylogenetics when evolution is
heterogeneous. Nature 431: 980-984.

Kolkman, A., Dirksen, E.H., Slijper, M., and Heck, A.J., 2005, Double
standards in quantitative proteomics: direct comparative assessment
of difference in gel electrophoresis and metabolic stable isotope
labeling. Mol Cell Proteomics 4: 255-266.

Kondow, A., Yokobori, S., Ueda, T., and Watanabe, K., 1998, Ascidian
mitochondrial tRNA(Met) possessing unique structural
characteristics. Nucleosides Nucleotides 17: 531-539.

Kondrashov, A.S., and Crow, J.F., 1988, King's formula for the mutation
load with epistasis. Genetics 120: 853-856.

Koonin, E.V., 2003, Horizontal gene transfer: the path to maturity. Mol.
Microbiol. 50: 725-727.

Kornberg, A., and Baker, T.A., 1992, DNA replication. Freeman, New York.
Kornblihtt, A.R., 2005, Promoter usage and alternative splicing. Curr Opin

Cell Biol 17: 262-268.
Koski, L.B., Gray, M.W., Lang, B.F., and Burger, G., 2005, AutoFACT: an

automatic functional annotation and classification tool. BMC
Bioinformatics 6: 151.

Kozak, M., 1982, How do eukaryotic ribosomes recognize the unique AUG
initiator codon in messenger RNA? Biochem Soc Symp 47: 113-128.

Kozak, M., 1984, Selection of initiation sites by eucaryotic ribosomes: effect
of inserting AUG triplets upstream from the coding sequence for
preproinsulin. Nucleic Acids Res 12: 3873-3893.

References

324

Kozak, M., 1989, The scanning model for translation: an update. J Cell Biol

108: 229-241.
Krogh, A., Mian, I.S., and Haussler, D., 1994, A hidden Markov model that

finds genes in E. coli DNA. Nucleic Acids Res 22: 4768-4778.
Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M., 2001, MEGA2:

molecular evolutionary genetics analysis software. Bioinformatics
17: 1244-1245.

Kurland, C.G., Canback, B., and Berg, O.G., 2003, Horizontal gene transfer:
a critical view. Proc. Natl. Acad. Sci. U S A 100: 9658-9662.

La Scola, B., Audic, S., Robert, C., Jungang, L., de Lamballerie, X.,
Drancourt, M., Birtles, R., Claverie, J.M., and Raoult, D., 2003, A
giant virus in amoebae. Science 299: 2033.

Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of
the head of bacteriophage T4. Nat. Biotechnol. 227: 680-685.

Lake, J.A., 1994, Reconstructing evolutionary trees from DNA and protein
sequences: paralinear distances. Proc. Natl. Acad. Sci. USA. 91:
1455-1459.

Lamendola, D.E., Duan, Z., Yusuf, R.Z., and Seiden, M.V., 2003, Molecular
description of evolving paclitaxel resistance in the SKOV-3 human
ovarian carcinoma cell line. Cancer Res 63: 2200-2205.

Lander, E.S., and Linton, L.M., and Birren, B., et al., 2001a, Initial
sequencing and analysis of the human genome. Nature 409: 860-
921.

Lander, E.S., and Linton, L.M., and Birren, B., et al., 2001b, Initial
sequencing and analysis of the human genome. [see comments].
[erratum appears in Nature 2001 Jun 7;411(6838):720]. Nature 409:
860-921.

Lang, B.F., Burger, G., J., O.C., Cedergren, R., Golding, G.B., Lemieux, C.,
Sankoff, D., Turmel, M., and Gray, M.W., 1997, An ancestral
mitochondrial DNA resembling a eubacterial genome in miniature
[see comments]. Nature 387: 493-497.

Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., and
Wootton, J.C., 1993, Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment. Science 262: 208-214.

Lee, C., and Wang, Q., 2005, Bioinformatics analysis of alternative splicing.
Brief Bioinform 6: 23-33.

Lerner, B., Guterman, H., Dinstein, I., and Romem, Y., 1995, Human
chromosome classification using multilayer perceptron neural
network. Int J Neural Syst 6: 359-370.

Lesk, A.M., 2004, Introduction to protein science: Architecture, function
and genomics. Oxford University Press, New York.

Letunic, I., Goodstadt, L., Dickens, N.J., et al., 2002, Recent improvements
to the SMART domain-based sequence annotation resource. Nucleic
Acids Res 30: 242-244.

325

Letunic, I., Copley, R.R., Schmidt, S., Ciccarelli, F.D., Doerks, T., Schultz,
J., Ponting, C.P., and Bork, P., 2004, SMART 4.0: towards genomic
data integration. Nucleic Acids Res 32: D142-144.

Li, C.C., 1976, First course in population genetics. The Boxwood Press,
Pacific Grove, California.

Li, W.-H., 1997, Molecular evolution. Sinauer, Sunderland, Massachusetts.
Li, W.H., Wu, C.I., and Luo, C.C., 1984, Nonrandomness of point mutation

as reflected in nucleotide substitutions in pseudogenes and its
evolutionary implications. J. Mol. Evol. 21: 58-71.

Liebler, D.C., III., T.b.D.C.L.f.b.J.R.Y., and Publisher, c., 2002, Introduction
to proteomics: tools for the new biology. Humana Press, Totowa,
NJ.

Liljenstrom, H., and von Heijne, G., 1987, Translation rate modification by
preferential codon usage: intragenic position effects. J Theor Biol
124: 43-55.

Lindahl, T., 1993, Instability and decay of the primary structure of DNA.
Nature 362: 709-715.

Lipman, D.J., and Pearson, W.R., 1985, Rapid and sensitive protein
similarity searches. Science 227: 1435-1441.

Lipscombe, D., 2005, Neuronal proteins custom designed by alternative
splicing. Curr Opin Neurobiol 15: 358-363.

Lithwick, G., and Margalit, H., 2005, Relative predicted protein levels of
functionally associated proteins are conserved across organisms.
Nucleic Acids Res 33: 1051-1057.

Lobry, J.R., 1996, Asymmetric substitution patterns in the two DNA strands
of bacteria. Mol Biol Evol 13: 660-665.

Lobry, J.R., and Sueoka, N., 2002, Asymmetric directional mutation
pressures in bacteria. Genome Biol 3: research58.51-14.

Lobry, J.R., 2004, Life history traits and genome structure: aerobiosis and
G+C content in bacteria. Lecture Notes in Computer Science 3039:
679-686.

Lockhart, P.J., Steel, M.A., Hendy, M.D., and Penny, D., 1994, Recovering
evolutionary trees under a more realistic model of sequence
evolution. Mol Biol Evol 11: 605-612.

Lowe, T.M., and Eddy, S.R., 1997, tRNAscan-SE: a program for improved
detection of transfer RNA genes in genomic sequence. Nucleic Acids
Res 25: 955-964.

Lowry, J.A., and Atchley, W.R., 2000, Molecular evolution of the GATA
family of transcription factors: conservation within the DNA-
binding domain. J. Mol. Evol. 50: 103-115.

Madden, S.L., Galella, E.A., Zhu, J., Bertelsen, A.H., and Beaudry, G.A.,
1997, SAGE transcript profiles for p53-dependent growth
regulation. Oncogene 15: 1079-1085.

Mannella, C.A., Neuwald, A.F., and Lawrence, C.E., 1996, Detection of
likely transmembrane beta strand regions in sequences of

References

326

mitochondrial pore proteins using the Gibbs sampler. J Bioenerg
Biomembr 28: 163-169.

Mao, C., Cushman, J.C., May, G.D., and Weller, J.W., 2003, ESTAP--an
automated system for the analysis of EST data. Bioinformatics 19:
1720-1722.

Marcelino, L.A., Andre, P.C., Khrapko, K., Coller, H.A., Griffith, J., and
Thilly, W.G., 1998, Chemically induced mutations in mitochondrial
DNA of human cells: mutational spectrum of N-methyl-N'-nitro-N-
nitrosoguanidine. Cancer Res. 58: 2857-2862.

Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A.,
Geer, L.Y., and Bryant, S.H., 2002, CDD: a database of conserved
domain alignments with links to domain three-dimensional structure.
Nucleic Acids Res 30: 281-283.

Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., et al., 2005, CDD: a
Conserved Domain Database for protein classification. Nucleic
Acids Res 33: D192-196.

Margulis, L., 1970, Origin of eukaryotic cells; evidence and research
implications for a theory of the origin and evolution of microbial,
plant, and animal cells on the Precambrian earth. Yale University
Press, New Haven.

Martin, D.M., Berriman, M., and Barton, G.J., 2004, GOtcha: a new method
for prediction of protein function assessed by the annotation of
seven genomes. BMC Bioinformatics 5: 178.

Martin, R.P., Sibler, A.P., Gehrke, C.W., Kuo, K., Edmonds, C.G.,
McCloskey, J.A., and Dirheimer, G., 1990, 5-
[[(carboxymethyl)amino]methyl]uridine is found in the anticodon of
yeast mitochondrial tRNAs recognizing two-codon families ending
in a purine. Biochemistry (Mosc). 29: 956-959.

Matin, A., Zychlinsky, E., Keyhan, M., and Sachs, G., 1996, Capacity of
Helicobacter pylori to generate ionic gradients at low pH is similar
to that of bacteria which grow under strongly acidic conditions.
Infect. Immun. 64: 1434-1436.

Matsuyama, S., Ueda, T., Crain, P.F., McCloskey, J.A., and Watanabe, K.,
1998, A novel wobble rule found in starfish mitochondria. Presence
of 7-methylguanosine at the anticodon wobble position expands
decoding capability of tRNA. J. Biol. Chem. 273: 3363-3368.

Maynard Smith, J., 1989, Evolutionary genetics. Oxford University Press,
Oxford.

McCreight, E.M., 1976, A Space-Economical Suffix Tree Construction
Algorithm. Jounral of Algorithms 23: 262-272.

McInerney, J.O., 1998, Replicational and transcriptional selection on codon
usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. U S A 95:
10698-10703.

McLean, M.J., Wolfe, K.H., and Devine, K.M., 1998, Base composition
skews, replication orientation, and gene orientation in 12 prokaryote
genomes. J. Mol. Evol. 47: 691-696.

327

McLysaght, A., Hokamp, K., and Wolfe, K.H., 2002, Extensive genomic
duplication during early chordate evolution. Nat. Genet. 31: 200-
204.

Medawar, P.B., and Medawar, J.S., 1983, Aristotle to zoos: a philosophical
dictionary of biology. Harvard University Press, Cambridge, Mass.

Medigue, C., Rouxel, T., Vigier, P., Henaut, A., and Danchin, A., 1991,
Evidence for horizontal gene transfer in Escherichia coli speciation.
J Mol Biol 222: 851-856.

Menaker, R.J., Sharaf, A.A., and Jones, N.L., 2004, Helicobacter pylori
Infection and Gastric Cancer: Host, Bug, Environment, or All
Three? Current Gastroenterology Reports 6: 429-435.

Mendz, G.L., and Hazell, S.L., 1996, The urea cycle of Helicobacter pylori.
Microbiology 142: 2959-2967.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and
Teller, E., 1953, Equation of state calculations by fast computing
machines. J. Chem. Phys. 21: 1087-1092.

Meyer, I.M., and Durbin, R., 2004, Gene structure conservation aids
similarity based gene prediction. Nucleic Acids Res 32: 776-783.

Mills, M., Lacroix, L., Arimondo, P.B., Leroy, J.L., Francois, J.C., Klump,
H., and Mergny, J.L., 2002, Unusual DNA conformations:
implications for telomeres. Curr Med Chem Anti-Canc Agents 2:
627-644.

Minsky, M.L., and Papert, S.A., 1969, Perceptrons: an introduction to
computational geometry. MIT Press, Cambridge, Mass.

Mobley, H.L., Hu, L.T., and Foxal, P.A., 1991, Helicobacter pylori urease:
properties and role in pathogenesis. Scandinavian Journal of
Gastroenterology Supplement 187: 39-46.

Moerschell, R.P., Hosokawa, Y., Tsunasawa, S., and Sherman, F., 1990, The
specificities of yeast methionine aminopeptidase and acetylation of
amino-terminal methionine in vivo. Processing of altered iso-1-
cytochromes c created by oligonucleotide transformation. J. Biol.
Chem. 265: 19638-19643.

Moi, P., Loudianos, G., Lavinha, J., et al., 1992, Delta-thalassemia due to a
mutation in an erythroid-specific binding protein sequence 3' to the
delta-globin gene. Blood 79: 512-516.

Moriya, J., Yokogawa, T., Wakita, K., et al., 1994, A novel modified
nucleoside found at the first position of the anticodon of methionine
tRNA from bovine liver mitochondria. Biochemistry (Mosc). 33:
2234-2239.

Mulero, J.J., and Fox, T.D., 1994, Reduced but accurate translation from a
mutant AUA initiation codon in the mitochondrial COX2 mRNA of
Saccharomyces cerevisiae. Mol Gen Genet 242: 383-390.

Murtagh, F., 1984, Complexities of hierarchic clustering algorithms: state of
the art. Computational Statistics Quarterly 1: 101-113.

References

328

Muse, S.V., and Gaut, B.S., 1994, A likelihood approach for comparing

synonymous and nonsynonymous nucleotide substitution rates, with
application to the chloroplast genome. Mol Biol Evol 11: 715-724.

Myers, E.W., Sutton, G.G., Delcher, A.L., et al., 2000, A whole-genome
assembly of Drosophila. Science 287: 2196-2204.

Nakai, K., and Horton, P., 1999, PSORT: a program for detecting sorting
signals in proteins and predicting their subcellular localization.
Trends Biochem Sci 24: 34-36.

Nakashima, H., Fukuchi, S., and Nishikawa, K., 2003, Compositional
changes in RNA, DNA and proteins for bacterial adaptation to
higher and lower temperatures. J Biochem (Tokyo) 133: 507-513.

Needleman, S.B., and Wunsch, C.D., 1970, A general method applicable to
the search of similarities in the amino acid sequence of two
proteins. J. Mol. Biol. 48: 443-453.

Nei, M., and Gojobori, T., 1986, Simple methods for estimating the numbers
of synonymous and nonsynonymous nucleotide substitutions. Mol
Biol Evol 3: 418-426.

Nei, M., 1987, Molecular Evolutionary Genetics. Columbia University
Press, New York.

Nei, M., 1996, Phylogenetic analysis in molecular evolutionary genetics.
Annu. Rev. Genet. 30: 371-403.

Nei, M., and Kumar, S., 2000, Molecular evolution and phylogenetics.
Oxford University Press, New York.

Nett, J.H., Kessl, J., Wenz, T., and Trumpower, B.L., 2001, The AUG start
codon of the Saccharomyces cerevisiae NFS1 gene can be
substituted for by UUG without increased initiation of translation at
downstream codons. Eur J Biochem 268: 5209-5214.

Neuwald, A.F., Liu, J.S., and Lawrence, C.E., 1995, Gibbs motif sampling:
detection of bacterial outer membrane protein repeats. Protein Sci 4:
1618-1632.

Nishimura, S., Takahashi, S., Kuroha, T., Suwabe, N., Nagasawa, T.,
Trainor, C., and Yamamoto, M., 2000, A GATA box in the GATA-1
gene hematopoietic enhancer is a critical element in the network of
GATA factors and sites that regulate this gene. Mol Cell Biol 20:
713-723.

Nomenclature Committee of the International Union of Biochemistry, 1985,
Nomenclature for incompletely specified bases in nucleic acid
sequences. Recommendations 1984. Eur. J. Biochem. 150: 1-5.

Notredame, C., O'Brien, E.A., and Higgins, D.G., 1997, RAGA: RNA
sequence alignment by genetic algorithm. Nucleic Acids Res 25:
4570-4580.

Ohno, M., Fukagawa, T., Lee, J.S., and Ikemura, T., 2002, Triplex-forming
DNAs in the human interphase nucleus visualized in situ by
polypurine/polypyrimidine DNA probes and antitriplex antibodies.
Chromosoma 111: 201-213.

329

Ordway, J.M., Fenster, S.D., Ruan, H., and Curran, T., 2005, A
transcriptome map of cellular transformation by the fos oncogene.
Mol Cancer 4: 19.

Orkin, S.H., 1990, Globin gene regulation and switching: circa 1990. Cell
63: 665-672.

Orkin, S.H., 1992, GATA-binding transcription factors in hematopoietic
cells. Blood 80: 575-581.

Page, R.D.M., and Holmes, E.C., 1998, Title Molecular evolution: a
phylogenetic approach. Blackwell Science, Oxford.

Panopoulou, G., Hennig, S., Groth, D., Krause, A., Poustka, A.J., Herwig,
R., Vingron, M., and Lehrach, H., 2003, New Evidence for Genome-
Wide Duplications at the Origin of Vertebrates Using an Amphioxus
Gene Set and Completed Animal Genomes. Genome Res. 13: 1056-
1066.

Paquola, A.C., Nishyiama, M.Y., Jr., Reis, E.M., da Silva, A.M., and
Verjovski-Almeida, S., 2003, ESTWeb: bioinformatics services for
EST sequencing projects. Bioinformatics 19: 1587-1588.

Pearson, W.R., and Lipman, D.J., 1988, Improved tools for biological
sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444-2448.

Pearson, W.R., 1994, Using the FASTA program to search protein and DNA
sequence databases. Methods Mol Biol 24: 307-331.

Pearson, W.R., 1998, Empirical statistical estimates for sequence similarity
searches. J Mol Biol 276: 71-84.

Percudani, R., Pavesi, A., and Ottonello, S., 1997, Transfer RNA gene
redundancy and translational selection in Saccharomyces cerevisiae.
J Mol Biol 268: 322-330.

Perna, N.T., and Kocher, T.D., 1995, Patterns of nucleotide composition at
fourfold degenerate sites of animal mitochondrial genomes. J Mol
Evol 41: 353-358.

Perriere, G., Lobry, J.R., and Thioulouse, J., 1996, Correspondence
discriminant analysis: a multivariate method for comparing classes
of protein and nucleic acid sequences. Comput Appl Biosci 12: 519-
524.

Pevzner, P.A., Borodovsky, M., and Mironov, A.A., 1989, Linguistics of
nucleotide sequences. I: The significance of deviations from mean
statistical characteristics and prediction of the frequencies of
occurrence of words. J Biomol Struct Dyn 6: 1013-1026.

Pevzner, P.A., 2000, Computational molecular biology: an algorithmic
approach. The MIT Press, Cambridge, Massachusetts.

Pevzner, P.A., Tang, H., and Waterman, M.S., 2001, An Eulerian path
approach to DNA fragment assembly. Proc. Natl. Acad. Sci. U S A
98: 9748-9753.

Philippe, H., and Douady, C.J., 2003, Horizontal gene transfer and
phylogenetics. Curr Opin Microbiol 6: 498-505.

References

330

Pickett, K.M., and Randle, C.P., 2005, Strange bayes indeed: uniform

topological priors imply non-uniform clade priors. Mol Phylogenet
Evol 34: 203-211.

Pielou, E.C., 1984, The interpretation of ecological data: a primer on
classification and ordination. Wiley, New York.

Ponting, C.P., Schultz, J., Milpetz, F., and Bork, P., 1999, SMART:
identification and annotation of domains from signalling and
extracellular protein sequences. Nucleic Acids Res 27: 229-232.

Press, W.H., Teukolsky, S.A., Tetterling, W.T., and Flannery, B.P., 1992,
Numerical recipes in C: the art of scientifi computing. Cambridge
University Press, Cambridge.

Provitera, P., El-Maghrabi, R., and Scarlata, S., 2006, The effect of HIV-1
Gag myristoylation on membrane binding. Biophys Chem 119: 23-
32.

Qin, Z.S., McCue, L.A., Thompson, W., Mayerhofer, L., Lawrence, C.E.,
and Liu, J.S., 2003, Identification of co-regulated genes through
Bayesian clustering of predicted regulatory binding sites. Nat
Biotechnol 21: 435-439.

Qu, K., McCue, L.A., and Lawrence, C.E., 1998, Bayesian protein family
classifier. Proc Int Conf Intell Syst Mol Biol 6: 131-139.

Rabiner, L.R., 1989, A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE 77:
257–286.

Raiffa, H., and Schlaifer, R., 1961, Applied Statistical Decision Theory.
Division of Research, Graduate School of Business Administration,
Harvard University.

Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., La
Scola, B., Suzan, M., and Claverie, J.M., 2004, The 1.2-megabase
genome sequence of Mimivirus. Science 306: 1344-1350.

Rektorschek, M., Buhmann, A., Weeks, D., Schwan, D., Bensch, K.W.,
Eskandari, S., Scott, D., Sachs, G., and Melchers, K., 2000, Acid
resistance of Helicobacter pylori depends on the UreI membrane
protein and an inner membrane proton barrier. Mol. Microbiol. 36:
141-152.

Reyes, A., Gissi, C., Pesole, G., and Saccone, C., 1998, Asymmetrical
directional mutation pressure in the mitochondrial genome of
mammals. Mol Biol Evol 15: 957-966.

Rice, P., Longden, I., and Bleasby, A., 2000, EMBOSS: the European
Molecular Biology Open Software Suite. Trends Genet 16: 276-277.

Rideout, W.M.I., Coetzee, G.A., Olumi, A.F., and Jones, P.A., 1990, 5-
Methylcytosine as an endogenous mutagen in the human LDL
receptor and p53 genes. Science 249: 1288-1290.

Robert-Seilaniantz, A., Shan, L., Zhou, J.M., and Tang, X., 2006, The
pseudomonas syringae pv. tomato DC3000 Type III effector HopF2
has a putative myristoylation site required for its avirulence and
virulence functions. Mol Plant Microbe Interact 19: 130-138.

331

Rocha, E.P., and Danchin, A., 2002, Base composition bias might result
from competition for metabolic resources. Trends Genet. 18: 291-
294.

Romero, A., and Garcia, P., 1991, Initiation of translation at AUC, AUA and
AUU codons in Escherichia coli. FEMS Microbiol Lett 68: 325-330.

Rosenberg, M.S., and Kumar, S., 2003, Heterogeneity of nucleotide
frequencies among evolutionary lineages and phylogenetic
inference. Mol Biol Evol 20: 610-621.

Rosenblatt, F., 1958, The perceptron: a probabilistic model for information
storage and organization in the brain. Psychol Rev 65: 386-408.

Rossi, F., and Conan-Guez, B., 2005, Functional multi-layer perceptron: a
non-linear tool for functional data analysis. Neural Netw 18: 45-60.

Rouchka, E.C., 1997, A Brief Overview of Gibbs Sampling.: IBC Statistics
Study Group, Washington University, Institute for Biomedical
Computing.

Rouchka, E.C., Gish, W., and States, D.J., 2002, Comparison of whole
genome assemblies of the human genome. Nucleic Acids Res 30:
5004-5014.

Rowe, D.C., McGettrick, A.F., Latz, E., et al., 2006, The myristoylation of
TRIF-related adaptor molecule is essential for Toll-like receptor 4
signal transduction. Proc. Natl. Acad. Sci. U S A 103: 6299-6304.

Ruiz, L.M., Armengol, G., Habeych, E., and Orduz, S., 2006, A theoretical
analysis of codon adaptation index of the Boophilus microplus bm86
gene directed to the optimization of a DNA vaccine. J Theor Biol
239: 445-449.

Ryan, M.J., Fox, J.H., Wilczynski, W., and Rand, A.S., 1990, Sexual
selection for sensory exploitation in the frog Physalaemus
pustulosus. Nature 343: 66-67.

Ryo, A., Kondoh, N., Wakatsuki, T., Hada, A., Yamamoto, N., and
Yamamoto, M., 2000, A modified serial analysis of gene expression
that generates longer sequence tags by nonpalindromic cohesive
linker ligation. Anal Biochem 277: 160-162.

Sachs, G., Meyer-Rosberg, K., Scott, D.R., and Melchers, K., 1996, Acid,
protons and Helicobacter pylori. Yale J. Biol. Med. 69: 301-316.

Sachs, G., Weeks, D.L., Melchers, K., and Scott, D.R., 2003, The gastric
biology of Helicobacter pylori. Annu. Rev. Physiol. 65: 349-369.

Saha, S., Sparks, A.B., Rago, C., Akmaev, V., Wang, C.J., Vogelstein, B.,
Kinzler, K.W., and Velculescu, V.E., 2002, Using the transcriptome
to annotate the genome. Nat Biotechnol 20: 508-512.

Saitou, N., and Nei, M., 1987, The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.

Sakaluk, S.K., 2000, Sensory exploitation as an evolutionary origin to
nuptial food gifts in insects. Proc Biol Sci 267: 339-343.

Sakurai, N., and Utsumi, T., 2006, Posttranslational N-myristoylation is
required for the anti-apoptotic activity of human tGelsolin, the C-

References

332

terminal caspase cleavage product of human gelsolin. J. Biol. Chem.
281: 14288-14295.

Salzberg, S.L., Delcher, A.L., Kasif, S., and White, O., 1998, Microbial gene
identification using interpolated Markov models. Nucleic Acids Res
26: 544-548.

Samso, M., Palumbo, M.J., Radermacher, M., Liu, J.S., and Lawrence, C.E.,
2002, A Bayesian method for classification of images from electron
micrographs. J Struct Biol 138: 157-170.

Sancar, A., and Sancar, G.B., 1988, DNA repair enzymes. Annu. Rev.
Biochem. 57: 29-67.

Sankoff, D., Morel, C., and Cedergren, R.J., 1973, Evolution of 5S RNA and
the non-randomness of base replacement. Nat New Biol 245: 232-
234.

Sawa, T., and Ohno-Machado, L., 2003, A neural network-based similarity
index for clustering DNA microarray data. Comput Biol Med 33: 1-
15.

Schena, M., 1996, Genome analysis with gene expression microarrays.
Bioessays 18: 427-431.

Schena, M., 2003, Microarray analysis. Wiley-Liss, New York.
Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M.,

Dixon, J.E., and Zipursky, S.L., 2000, Drosophila Dscam is an axon
guidance receptor exhibiting extraordinary molecular diversity. Cell
101: 671-684.

Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P., and Bork, P., 2000,
SMART: a web-based tool for the study of genetically mobile
domains. Nucleic Acids Res 28: 231-234.

Scott, D., Weeks, D., Melchers, K., and Sachs, G., 1998, The life and death
of Helicobacter pylori. Gut 43: S56-60.

Scott, D.R., Marcus, E.A., Weeks, D.L., and Sachs, G., 2002, Mechanisms
of acid resistance due to the urease system of Helicobacter pylori.
Gastroenterology 123: 187-195.

Semple, C., and Steel, M., 2003, Phylogenetics. Oxford University Press,
Oxford.

Seo, E.Y., Namkung, J.H., Lee, K.M., et al., 2005, Analysis of calcium-
inducible genes in keratinocytes using suppression subtractive
hybridization and cDNA microarray. Genomics 86: 528-538.

Shadel, G.S., and Clayton, D.A., 1997, Mitochondrial DNA maintenance in
vertebrates. Annu Rev Biochem 66: 409-435.

Shannon, C.E., 1948, A Mathematical Theory of Communiction. The Bell
Systems Technical Journal 27: 379-423.

Sharp, P.M., Tuohy, T.M., and Mosurski, K.R., 1986, Codon usage in yeast:
cluster analysis clearly differentiates highly and lowly expressed
genes. Nucleic Acids Res 14: 5125-5143.

Sharp, P.M., and Li, W.H., 1987, The codon Adaptation Index--a measure of
directional synonymous codon usage bias, and its potential
applications. Nucleic Acids Res 15: 1281-1295.

333

Shine, J., and Dalgarno, L., 1974, The 3'-terminal sequence of Escherichia
coli 16S ribosomal RNA: complementarity to nonsense triplets and
ribosome binding sites. Proc. Natl. Acad. Sci. U S A 71: 1342-1346.

Shine, J., and Dalgarno, L., 1975a, Terminal-sequence analysis of bacterial
ribosomal RNA. Correlation between the 3'-terminal-polypyrimidine
sequence of 16-S RNA and translational specificity of the ribosome.
Eur J Biochem 57: 221-230.

Shine, J., and Dalgarno, L., 1975b, Determinant of cistron specificity in
bacterial ribosomes. Nature 254: 34-38.

Siavoshi, F., Malekzadeh, R., Daneshmand, M., Smoot, D.T., and
Ashktorab, H., 2004, Association between Helicobacter pylori
Infection in gastric cancer, ulcers and gastritis in Iranian patients.
Helicobacter 9: 470.

Sibler, A.P., Dirheimer, G., and Martin, R.P., 1986, Codon reading patterns
in Saccharomyces cerevisiae mitochondria based on sequences of
mitochondrial tRNAs. FEBS Lett 194: 131-138.

Siepel, A., and Haussler, D., 2004a, Combining phylogenetic and hidden
Markov models in biosequence analysis. J Comput Biol 11: 413-428.

Siepel, A., and Haussler, D., 2004b, Phylogenetic estimation of context-
dependent substitution rates by maximum likelihood. Mol Biol Evol
21: 468-488.

Siepel, A., and Haussler, D., 2005, Phylogenetic hidden Markov models. In
Statistical Methods in Molecular Evolution. Nielsen, R. (ed).
Springer, New York, pp. 325-351.

Sloane, A.J., Duff, J.L., Wilson, N.L., et al., 2002, High throughput peptide
mass fingerprinting and protein macroarray analysis using chemical
printing strategies. Mol Cell Proteomics 1: 490-499.

Smith, T.F., and Waterman, M.S., 1981a, Identification of common
molecular subsequences. J Mol Biol 147: 195-197.

Smith, T.F., and Waterman, M.W., 1981b, Identification of common
molecular subsequences. J. Mol. Biol. 147: 195-197.

Sneath, P.H.A., 1962, The construction of taxonomic groups. In Microbial
Classification. Ainsworth, G.C. and Sneath, P.H.A. (eds).
Cambridge University Press, Cambridge, pp. 289-332.

Sokal, R.R., and Michener, C.D., 1958, A statistical method for evaluating
systematic relationships. University of Kansas Sci. Bull. 28: 1409-
1438.

Solnick, J.V., Hansen, L.M., Salama, N.R., Boonjakuakul, J.K., and
Syvanen, M., 2004, Modification of Helicobacter pylori outer
membrane protein expression during experimental infection of
rhesus macaques. Proc. Natl. Acad. Sci. U S A 101: 2106-2111.

Sparre, T., Larsen, M.R., Heding, P.E., Karlsen, A.E., Jensen, O.N., and
Pociot, F., 2005, Unraveling the Pathogenesis of Type 1 Diabetes
with Proteomics: Present And Future Directions. Mol Cell
Proteomics 4: 441-457.

References

334

Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D.,

Thanaraj, T.A., and Soreq, H., 2005, Function of alternative
splicing. Gene 344: 1-20.

Stingl, K., Uhlemann Em, E.M., Deckers-Hebestreit, G., Schmid, R.,
Bakker, E.P., and Altendorf, K., 2001, Prolonged survival and
cytoplasmic pH homeostasis of Helicobacter pylori at pH 1. Infect.
Immun. 69: 1178-1180.

Stingl, K., Altendorf, K., and Bakker, E.P., 2002a, Acid survival of
Helicobacter pylori: how does urease activity trigger cytoplasmic
pH homeostasis? Trends Microbiol. 10: 70-74.

Stingl, K., Uhlemann, E.-M., Schmid, R., Altendorf, K., and Bakker, E.P.,
2002b, Energetics of Helicobacter pylori and Its Implications for the
Mechanism of Urease-Dependent Acid Tolerance at pH 1. J.
Bacteriol. 184: 3053-3060.

Stormo, G.D., Schneider, T.D., Gold, L., and Ehrenfeucht, A., 1982a, Use of
the 'Perceptron' algorithm to distinguish translational initiation sites
in E. coli. Nucleic Acids Res 10: 2997-3011.

Stormo, G.D., Schneider, T.D., and Gold, L.M., 1982b, Characterization of
translational initiation sites in E. coli. Nucleic Acids Res 10: 2971-
2996.

Studier, J.A., and Keppler, K.J., 1988, A note on the neighbor-joining
algorithm of Saitou and Nei. Mol. Biol. Evol. 5: 729-731.

Sueoka, N., 1961, Correlation bewteen base composition of
deoxyribonucleic acid and amino acid composition of proteins.
Proc. Natl. Acad. Sci. USA. 47: 1141-1149.

Suerbaum, S., Josenhans, C., Sterzenbach, T., et al., 2003, The complete
genome sequence of the carcinogenic bacterium Helicobacter
hepaticus. Proc. Natl. Acad. Sci. U S A 100: 7901-7906.

Sved, J., and Bird, A., 1990, The expected equilibrium of the CpG
dinucleotide in vertebrate genomes under a mutation model. Proc.
Natl. Acad. Sci. USA. 87: 4692-4696.

Swofford, D., 1993, Phylogenetic Analysis Using Parsimony. Champaign,
IL: Illinois Natural History Survey.

Swofford, D.L., 2000, Phylogeentic analysis using parsimony (* and other
methods). Sinauer, Sunderland, Mass.

Takahashi, N., Kaji, H., Yanagida, M., Hayano, T., and Isobe, T., 2003,
Proteomics: advanced technology for the analysis of cellular
function. J Nutr 133: 2090S-2096S.

Takezaki, N., and Nei, M., 1994, Inconsistency of the maximum parsimony
method when the rate of nucleotide substitution is constant. J. Mol.
Evol. 39: 210-218.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky,
E., Lander, E.S., and Golub, T.R., 1999, Interpreting patterns of
gene expression with self-organizing maps: methods and application
to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA. 96:
2907-2912.

335

Tamura, K., and Nei, M., 1993, Estimation of the number of nucleotide
substitutions in the control region of mitochondrial DNA in humans
and chimpanzees. Mol Biol Evol 10: 512-526.

Tamura, K., and Kumar, S., 2002, Evolutionary distance estimation under
heterogeneous substitution pattern among lineages. Mol Biol Evol
19: 1727-1736.

Tamura, K., Nei, M., and Kumar, S., 2004, Prospects for inferring very large
phylogenies by using the neighbor-joining method. Proc. Natl.
Acad. Sci. U S A 101: 11030-11035.

Tanaka, M., and Ozawa, T., 1994, Strand asymmetry in human
mitochondrial DNA mutations. Genomics 22: 327-335.

Tang, N., Tornatore, P., and Weinberger, S.R., 2004, Current developments
in SELDI affinity technology. Mass Spectrom Rev 23: 34-44.

Tao, H., Bausch, C., Richmond, C., Blattner, F.R., and Conway, T., 1999,
Functional genomics: expression analysis of Escherichia coli
growing on minimal and rich media. J Bacteriol 181: 6425-6440.

Tatusov, R.L., Koonin, E.V., and Lipman, D.J., 1997, A genomic
perspective on protein families. Science 278: 631-637.

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., et al., 2003, The COG
database: an updated version includes eukaryotes. BMC
Bioinformatics 4: 41.

Tavazoie, S., and Church, G.M., 1998, Quantitative whole-genome analysis
of DNA-protein interactions by in vivo methylase protection in E.
coli. Nat. Biotechnol. 16: 566-571.

Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., and Church, G.M.,
1999, Systematic determination of genetic network architecture [see
comments]. Nat. Genet. 22: 281-285.

Tech, M., and Merkl, R., 2003, YACOP: Enhanced gene prediction obtained
by a combination of existing methods. In Silico Biol 3: 441-451.

Tenney, A.E., Brown, R.H., Vaske, C., Lodge, J.K., Doering, T.L., and
Brent, M.R., 2004, Gene prediction and verification in a compact
genome with numerous small introns. Genome Res. 14: 2330-2335.

Thayer, E.C., Olson, M.V., and Karp, R.M., 1999, Error checking and
graphical representation of multiple-complete-digest (MCD)
restriction-fragment maps. Genome Res. 9: 79-90.

Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouze, P.,
and Moreau, Y., 2001, A higher-order background model improves
the detection of promoter regulatory elements by Gibbs sampling.
Bioinformatics 17: 1113-1122.

Thijs, G., Marchal, K., Lescot, M., Rombauts, S., De Moor, B., Rouze, P.,
and Moreau, Y., 2002a, A Gibbs sampling method to detect
overrepresented motifs in the upstream regions of coexpressed
genes. J Comput Biol 9: 447-464.

Thijs, G., Moreau, Y., De Smet, F., Mathys, J., Lescot, M., Rombauts, S.,
Rouze, P., De Moor, B., and Marchal, K., 2002b, INCLUSive:

References

336

integrated clustering, upstream sequence retrieval and motif
sampling. Bioinformatics 18: 331-332.

Thompson, J.D., Higgins, D.G., and Gibson, T.J., 1994, CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, positions-specific gap
penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-
4680.

Thompson, W., Rouchka, E.C., and Lawrence, C.E., 2003, Gibbs Recursive
Sampler: finding transcription factor binding sites. Nucleic Acids
Res 31: 3580-3585.

Thompson, W., Palumbo, M.J., Wasserman, W.W., Liu, J.S., and Lawrence,
C.E., 2004, Decoding human regulatory circuits. Genome Res. 14:
1967-1974.

Tian, Q., Stepaniants, S.B., Mao, M., et al., 2004, Integrated Genomic and
Proteomic Analyses of Gene Expression in Mammalian Cells. Mol
Cell Proteomics 3: 960-969.

Tomatsu, S., Orii, K.O., Bi, Y., et al., 2004, General implications for CpG
hot spot mutations: methylation patterns of the human iduronate-2-
sulfatase gene locus. Hum Mutat 23: 590-598.

Tomb, J.F., White, O., Kerlavage, A.R., et al., 1997, The complete genome
sequence of the gastric pathogen Helicobacter pylori. Nature 388:
539-547.

Tong, K.L., and Wong, J.T., 2004, Anticodon and wobble evolution. Gene
333: 169-177.

Toronen, P., Kolehmainen, M., Wong, G., and Castren, E., 1999, Analysis of
gene expression data using self-organizing maps. FEBS Lett 451:
142-146.

Trutschl, M., Dinkova, T.D., and Rhoads, R.E., 2005, Application of
machine learning and visualization of heterogeneous datasets to
uncover relationships between translation and developmental stage
expression of C. elegans mRNAs. Physiol Genomics 21: 264-273.

Ukkonen, E., 1995, On-line Construction of Suffix Trees. Algorithmica 14:
249-260.

Valenzuela, M., Cerda, O., and Toledo, H., 2003, Overview on chemotaxis
and acid resistance in Helicobacter pylori. Biol. Res. 36: 429-436.

Van Esch, H., and Devriendt, K., 2001, Transcription factor GATA3 and the
human HDR syndrome. Cell Mol Life Sci 58: 1296-1300.

Vasilescu, J., and Figeys, D., 2006, Mapping protein-protein interactions by
mass spectrometry. Curr Opin Biotechnol 17: 394-399.

Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W., 1995, Serial
analysis of gene expression. Science 270: 484-487.

Velculescu, V.E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M.A., Bassett,
D.E., Jr., Hieter, P., Vogelstein, B., and Kinzler, K.W., 1997,
Characterization of the yeast transcriptome. Cell 88: 243-251.

Velculescu, V.E., Madden, S.L., Zhang, L., et al., 1999, Analysis of human
transcriptomes. Nat. Genet. 23: 387-388.

337

Venter, J.C., and Adams, M.D., and Myers, E.W., et al., 2001, The sequence
of the human genome. Science 291: 1304-1351.

Vilas, G.L., Corvi, M.M., Plummer, G.J., Seime, A.M., Lambkin, G.R., and
Berthiaume, L.G., 2006, Posttranslational myristoylation of caspase-
activated p21-activated protein kinase 2 (PAK2) potentiates late
apoptotic events. Proc. Natl. Acad. Sci. U S A 103: 6542-6547.

Viterbi, A.J., 1967, Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transactions on
Information Theory 13: 260–269.

Waddell, P.J., 1995, Statistical methods of phylogenetic analysis: including
Hadamard conjugations, LogDet transforms, and maximum
likelihood. Ph.D. thesis. New Zealand: Massey University.

Wang, H.C., and Hickey, D.A., 2002, Evidence for strong selective
constraint acting on the nucleotide composition of 16S ribosomal
RNA genes. Nucleic Acids Res 30: 2501-2507.

Wang, H.C., Singer, G.A., and Hickey, D.A., 2004, Mutational bias affects
protein evolution in flowering plants. Mol Biol Evol 21: 90-96.

Wang, H.C., Xia, X., and Hickey, D.A., 2006, Thermal adaptation of
ribosomal RNA genes: a comparative study. J. Mol. Evol. 63: 120-
126.

Wang, J., Delabie, J., Aasheim, H., Smeland, E., and Myklebost, O., 2002,
Clustering of the SOM easily reveals distinct gene expression
patterns: results of a reanalysis of lymphoma study. BMC
Bioinformatics 3: 36.

Wang, R.F., Campbell, W., Cao, W.W., Summage, C., Steele, R.S., and
Cerniglia, C.E., 1996, Detection of Pasteurella pneumotropica in
laboratory mice and rats by polymerase chain reaction. Lab. Anim.
Sci. 46: 81-85.

Washburn, M.P., Wolters, D., and Yates, J.R., 3rd, 2001, Large-scale
analysis of the yeast proteome by multidimensional protein
identification technology. Nat Biotechnol 19: 242-247.

Waterfield, M.D., Scrace, G.T., Whittle, N., et al., 1983, Platelet-derived
growth factor is structurally related to the putative transforming
protein p28sis of simian sarcoma virus. Nature 304: 35-39.

Waterman, M.S., and Vingron, M., 1994, Rapid and accurate estimates of
statistical significance for sequence data base searches. Proc. Natl.
Acad. Sci. U S A 91: 4625-4628.

Weber, J.L., and Myers, E.W., 1997, Human whole-genome shotgun
sequencing. Genome Res. 7: 401-409.

Weeks, D.L., Eskandari, S., Scott, D.R., and Sachs, G., 2000, A H+-gated
urea channel: the link between Helicobacter pylori urease and
gastric colonization. Science 287: 482-485.

Weiner, P., 1973, Linear Pattern Matching Algorithms. In 14th IEEE Annual
Symposium on Switching and Automata Theory, pp. 1-11.

Weir, B.S., 1990, Genetic data analysis. Sinauer Associates, Inc.,
Sunderland.

References

338

Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L.,

and Somogyi, R., 1998, Large-scale temporal gene expression
mapping of central nervous system development. Proc. Natl. Acad.
Sci. USA. 95: 334-339.

Wen, Y., Marcus, E.A., Matrubutham, U., Gleeson, M.A., Scott, D.R., and
Sachs, G., 2003, Acid-adaptive genes of Helicobacter pylori. Infect.
Immun. 71: 5921-5939.

Williams, C.L., Preston, T., Hossack, M., Slater, C., and McColl, K.E., 1996,
Helicobacter pylori utilises urea for amino acid synthesis. FEMS
Immunol Med Microbiol 13: 87-94.

Wilson, D.S., and Nock, S., 2002, Functional protein microarrays. Curr Opin
Chem Biol 6: 81-85.

Wright, F., 1990, The 'effective number of condons' used in a gene. Gene 87:
23-29.

Wright, G.L., Jr., 2002, SELDI proteinchip MS: a platform for biomarker
discovery and cancer diagnosis. Expert Rev Mol Diagn 2: 549-563.

Xia, X., 1996, Maximizing transcription efficiency causes codon usage bias.
Genetics 144: 1309-1320.

Xia, X., Hafner, M.S., and Sudman, P.D., 1996, On transition bias in
mitochondrial genes of pocket gophers. J. Mol. Evol. 43: 32-40.

Xia, X., 1998a, The rate heterogeneity of nonsynonymous substitutions in
mammalian mitochondrial genes. Mol Biol Evol 15: 336-344.

Xia, X., 1998b, How optimized is the translational machinery in Escherichia
coli, Salmonella typhimurium and Saccharomyces cerevisiae?
Genetics 149: 37-44.

Xia, X., and Li, W.H., 1998, What amino acid properties affect protein
evolution? J Mol Evol 47: 557-564.

Xia, X., 2000, Phylogenetic Relationship among Horseshoe Crab Species:
The Effect of Substitution Models on Phylogenetic Analyses. Syst.
Biol. 49: 87-100.

Xia, X., 2001, Data analysis in molecular biology and evolution. Kluwer
Academic Publishers, Boston.

Xia, X., and Xie, Z., 2001a, AMADA: Analysis of microarray data.
Bioinformatics 17: 569-570.

Xia, X., and Xie, Z., 2001b, DAMBE: Software package for data analysis in
molecular biology and evolution. J. Hered. 92: 371-373.

Xia, X., and Xie, Z., 2002, Protein structure, neighbor effect, and a new
index of amino acid dissimilarities. Mol Biol Evol 19: 58-67.

Xia, X., 2003, DNA methylation and mycoplasma genomes. J. Mol. Evol.
57: S21-S28.

Xia, X., 2004, A peculiar codon usage pattern revealed after removing the
effect of DNA methylation. In Fourth International Conference on
Bioinformatics of Genome Regulation and Structure. Vol. 1
Novosibirsk, Russia: IC&G, Novosibirsk, pp. 216-220.

Xia, X., 2005a, Content sensors based on codon structure and dna
methylation for gene finding in vertebrate genomes. In

339

Bioinformatics Of Genome Regulation And Structure II. Kolchanov,
N. and Hofestadt, R. (eds). Springer, pp. 21-29.

Xia, X., 2005b, Predicting protein production from transcriptomic data. In
The 11th International Conference on Information Systems Analysis
and Synthesis. Vol. 1. Aguilar, J., Chu, H.W., St-Amand, J., Galkin,
I. and Chatzimisios, P. (eds.) Orland, Florida, USA: International
Institute of Informatics and Systematics, pp. 7-10.

Xia, X., 2005c, Mutation and selection on the anticodon of tRNA genes in
vertebrate mitochondrial genomes. Gene 345: 13-20.

Xia, X., and Palidwor, G., 2005, Genomic Adaptation to Acidic
Environment: Evidence from Helicobacter pylori. Am Nat 166: 776-
784.

Xia, X., and Yuen, K.Y., 2005, Differential selection and mutation between
dsDNA and ssDNA phages shape the evolution of their genomic AT
percentage. BMC Genet 6: 20.

Xia, X., 2006, Topological bias in distance-based phylogenetic methods:
problems with over- and underestimated genetic distances.
Evolutionary Bioinformatics 2: 375–387.

Xia, X., and Kumar, S., 2006, Codon-based detection of positive selection
can be biased by heterogeneous distribution of polar amino acids
along protein sequences. In COMPUTATIONAL SYSTEMS
BIOINFORMATICS: Proceedings of the Conference CSB 2006. Vol.
4. Markstein, P. and Xu, Y. (eds). Imperial College Press, pp. 335-
340.

Xia, X., Wang, H.C., Xie, Z., Carullo, M., Huang, H., and Hickey, D.A.,
2006, Cytosine usage modulates the correlation between CDS length
and CG content in prokaryotic genomes. Mol Biol Evol 23: 1450-
1454.

Xia, X., 2007, Molecular phylogenetics: mathematical framework and
unsolved problems. In Structural approaches to sequence evolution.
Bastolla, U., Porto, M., Roman, H.E. and Vendruscolo, M. (eds).
Springer, pp. 171-191.

Xia, X.H., Xie, Z., and Kjer, K.M., 2003a, 18S ribosomal RNA and tetrapod
phylogeny. Syst. Biol. 52: 283-295.

Xia, X.H., Xie, Z., Salemi, M., Chen, L., and Wang, Y., 2003b, An index of
substitution saturation and its application. Mol. Phylogenet. Evol.
26: 1-7.

Xiao, L., Wang, K., Teng, Y., and Zhang, J., 2003, Component plane
presentation integrated self-organizing map for microarray data
analysis. FEBS Lett 538: 117-124.

Yamaoka, Y., Kita, M., Kodama, T., Imamura, S., Ohno, T., Sawai, N.,
Ishimaru, A., Imanishi, J., and Graham, D.Y., 2002, Helicobacter
pylori infection in mice: Role of outer membrane proteins in
colonization and inflammation. Gastroenterology 123: 1992-2004.

Yang, M.Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E.,
Jacobs, H.T., and Holt, I.J., 2002, Biased incorporation of

References

340

ribonucleotides on the mitochondrial L-strand accounts for apparent
strand-asymmetric DNA replication. Cell 111: 495-505.

Yang, Z., 1995, A space-time process model for the evolution of DNA
sequences. Genetics 139: 993-1005.

Yang, Z., and Nielsen, R., 2000, Estimating synonymous and
nonsynonymous substitution rates under realistic evolutionary
models. Mol Biol Evol 17: 32-43.

Yang, Z., 2002, Phylogenetic analysis by maximum likelihood (PAML).
Version 3.12. London: University College.

Yates, J.R., 2004a, Mass spectral analysis in proteomics. Annu Rev Biophys
Biomol Struct 33: 297-316.

Yates, J.R., 2004b, Mass spectrometry as an emerging tool for systems
biology. Biotechniques 36: 917-919.

Yip, T.T., and Lomas, L., 2002, SELDI ProteinChip array in oncoproteomic
research. Technol Cancer Res Treat 1: 273-280.

Yokobori, S., Ueda, T., Feldmaier-Fuchs, G., Paabo, S., Ueshima, R.,
Kondow, A., Nishikawa, K., and Watanabe, K., 1999, Complete
DNA sequence of the mitochondrial genome of the ascidian
Halocynthia roretzi (Chordata, Urochordata). Genetics 153: 1851-
1862.

Yokobori, S., Suzuki, T., and Watanabe, K., 2001, Genetic code variations in
mitochondria: tRNA as a major determinant of genetic code
plasticity. J. Mol. Evol. 53: 314-326.

Yokobori, S., Watanabe, Y., and Oshima, T., 2003, Mitochondrial genome
of Ciona savignyi (Urochordata, Ascidiacea, Enterogona):
comparison of gene arrangement and tRNA genes with Halocynthia
roretzi mitochondrial genome. J Mol Evol 57: 574-587.

Yokobori, S., Oshima, T., and Wada, H., 2005, Complete nucleotide
sequence of the mitochondrial genome of Doliolum nationalis with
implications for evolution of urochordates. Mol Phylogenet Evol 34:
273-283.

Yokoyama, S., and Nishimura, S., 1995, Modified nucleotides and codon
recognition. In tRNA: structure, biosynthesis and function. Soll, D.
and RajBhandary, U. (eds). ASM Press, Washington, pp. 207-223.

Zhang, L., Zhou, W., Velculescu, V.E., Kern, S.E., Hruban, R.H., Hamilton,
S.R., Vogelstein, B., and Kinzler, K.W., 1997, Gene expression
profiles in normal and cancer cells. Science 276: 1268-1272.

Zhu, J., Liu, J.S., and Lawrence, C.E., 1998, Bayesian adaptive sequence
alignment algorithms. Bioinformatics 14: 25-39.

Zon, L.I., Gurish, M.F., Stevens, R.L., Mather, C., Reynolds, D.S., Austen,
K.F., and Orkin, S.H., 1991, GATA-binding transcription factors in
mast cells regulate the promoter of the mast cell carboxypeptidase A
gene. J. Biol. Chem. 266: 22948-22953.

Zwickl, D., and Holder, M., 2004, Model parameterization, prior
distributions, and the general time-reversible model in Bayesian
phylogenetics. Syst Biol 53: 877-888.

POSTSCRIPT

The thought of a reader reaching the end of a book always sends a
thrilling feeling to the author. For me, it is like a sweet childhood dream
come true. I used to have many dreams during my early childhood, in many
colors and shades. They all turned into black and white when I reached nine
years of age, when my father, a devoted communist falsely accused of being
counterrevolutionary, died of torture in China, being a victim of abused
power.

I have heard that many Chinese children today no longer dream about
becoming authors of science. Instead, they want to become American
president, and their parents would typically beam with pride when the
youngsters expressed such ambitions. This has been terrifying to me. The
world cannot afford to have many American presidents – just one seems to
be damaging enough. It would seem more desirable for our younger
generations to have modest dreams of writing books that are somewhat
readable from the beginning to the end.

Dreaming of writing a book is nice and noble. Dreaming of becoming
American president could be brutal and bloody. May the young minds not be
corrupted by the evil of power!

Extreme power disrupts harmony, and harmony is the essence of life. We
biologists know only too well that harmony manifests at all levels of
organization of living beings, and disrupting harmony destroys not only the
beauty of life, but also life itself. Yet harmony among different cellular
components interacting within a cell and harmony among different cells
interacting within an organism can only be achieved by these cells and
cellular components following certain rules. If some cells break the rule, if
they get out of the checking system, disasters such as cancer emerge, often
with the consequence that either the misbehaving cell has to die or the
organism has to die. Overtime multicellular organisms have evolved very

Postscript 343

complicated checking systems to safeguard against misbehaving cells. Life
is charming with these checking systems, but turns ugly when such checking
systems are broken.

Human communities and societies are not much different. People,
including national leaders such as presidents and prime ministers, will want
to gather more power to break the checking system. According to major
religions, every individual has a sinful nature and has to be checked. Perhaps
no one had better understanding of the sinful nature of human beings than
the founding fathers of the United States of America who, based on this
fundamental understanding, established a great political checking system
that dramatically alleviated the detrimental effect of misbehaving leaders.
They recognized every human to have a good half and a sinful half. The
good half can be employed to accomplish public services, but the evil half
deserves constant monitoring and checking.

How far has the present American administration deviated from the path
chosen by the founding fathers! Instead of drawing a line within ourselves to
recognize the good half and the sinful half, they draw a line among nations
to recognize good nations and rogue nations. Everything good is “American”
and everything else is “un-American”. How similar this is to former
communist regimes where everything good was communist and everything
bad was anti-communist!

Nature has created us, probably equal, but not perfect. We commit errors,
seek forgiveness, and try to improve ourselves. The books we write are not
perfect either. We solicit criticisms from our colleagues and seek forgiveness
for serious errors and egregious omissions. We revise the books to improve
them. We cleanse our souls to become better citizens. With the recognition
of imperfection in us, we behave better, our books read better, and the world
moves closer to perfection and harmony.

INDEX

AAAI 177, 178
Acetylation 227, 228, 229
Affine function…24, 25, 30, 34,

35, 36
Align nucleotide sequences

against amino acid sequences
.. 44

Alignment
affine function…24, 25, 30, 34,

35, 36
Align nucleotide sequences

against amino acid
Sequences 44

alignment score…24, 25, 26,
27, 28, 29, 36, 37, 41, 42, 44,
142, 249

global alignment 25, 29, 56
guide tree 24, 41, 42
local alignment…12, 24, 25,

29, 30

Profile alignment…24, 38, 39,
40, 41, 249

score matrix 29, 39, 41
scoring scheme…3, 7, 24, 25,

28, 29, 30, 32, 34, 35, 36, 39,
44, 46

Alignment score…24, 25, 26, 27,
28, 29, 36, 37, 41, 42, 44, 142,
249

AMAMA 234
AMIADA 234, 243, 247
Amino acid

Alanine…32, 34, 89, 90, 175,
176

Arginine…32, 34, 161, 162,
178, 179, 180, 181, 210, 215,
229

Asparagine............ 34, 229, 230
Aspartic acid............... 210, 230
Cysteine........ 34, 188, 189, 210
frequency...................... 84, 178

Index 345

Glutamate 33, 120, 210, 230
Glutamine 34, 230, 265
Glycine…32, 34, 89, 119, 120,

173, 174, 188, 189
Histidine 34, 210
Isoleucine.............................. 34
Leucine 34, 120, 166, 180
Lysine…32, 34, 103, 210, 215,

227, 228, 265
Methionine…32, 34, 89, 166,

167, 168, 169, 170, 177, 180
Phenylalanine 34
positively charged............... 216
Proline 34, 119, 120, 229
Serine.................... 34, 180, 229
Threonine...... 34, 188, 189, 229
Tryptophan 34, 177, 180
Tyrosine…34, 119, 120, 210,

229
Valine…32, 33, 34, 119, 120,

121
Amino Acid

Usage 103, 158, 177, 203
Anticodon loop 156, 160, 186
Backtrack matrix…25, 27, 39, 40,

121, 124
Bacteriophage…63, 64, 66, 67,

68, 70, 71, 72, 73, 74, 75, 76,
77

Bayesian…79, 99, 251, 283, 286,
291

Bayesian approach.. 251, 283, 284
beta distribution…284, 287, 289,

290
Binomial distribution…4, 5, 257,

258, 281
BLAST…1, 2, 3, 4, 6, 7, 8, 9, 11,

15, 16, 17, 18, 19, 21, 24, 30,
35, 50, 56, 58, 59, 77, 78

Capsid....................................... 64
Clustal............... 24, 38, 41, 42, 56
Codon 44

family…153, 158, 163, 164,
167, 174, 175, 176, 177, 178,
180, 185, 187, 188, 189, 190,
191, 193, 194, 197, 198, 199

site 265
synonymous…153, 157, 158,

160, 166, 174, 175, 176
usage bias…158, 174, 175,

176, 179, 180, 182, 187, 188,
189, 191, 203, 204, 205, 206,
225, 266

usage table…178, 179, 181,
182, 185, 186, 190, 218

Codon adaptation index......... 174,
175, 176, 177, 178, 179, 180,
181, 182, 185, 186, 187, 188,
189, 190, 191, 192, 193, 194,
195, 197, 199, 200, 201, 203,
204, 205, 206, 218, 225

Codon-anticodon adaptation
hypothesis…156, 157, 159,
161, 162, 164, 188

Codon-anticodon adaptation
index…187, 191, 192, 193,
194, 195, 197, 198, 200, 201,
206, 218

Co-expressed genes…134, 233,
234, 238, 239, 243, 244, 249

Conjugate prior distribution ... 287
conjugate prior distributions... 253
conjugate prior distributions... 283
Content sensors…78, 79, 94, 100,

101, 108, 109, 115
Contig assembly…2, 3, 49, 50,

51, 52, 53, 54, 55, 56, 58, 59,
60, 62
cyclic path 54

Co-regulated gene........... 233, 243
Cyclic path................................ 54
DAMBE…30, 43, 44, 58, 88, 92,

99, 104, 105, 121, 129, 139,

346

142, 143, 145, 147, 179, 180,
181, 212, 218, 226, 240, 266

Dinucleotide frequencies 102
discrete approximation...253, 283,

287, 288, 289
Discriminant function analysis 93,

105, 232
Distance

distance method
Fitch-Margoliash…266, 270,

271, 280
matrix.............. 41, 42, 239, 266

Distribution
binomial...... 4, 5, 257, 258, 281
Poisson............................ 5, 6, 9

DNA methylation…101, 102,
103, 282

DNA replication…62, 63, 68, 69,
76, 150, 151, 154, 199, 201

Dynamic programming…3, 11,
14, 19, 24, 25, 28, 39, 41, 42,
56, 121, 123, 124, 156

Effective length of database 6
Effective length of query 6
Electrophoresis…2, 24, 202, 207,

222
EM algorithm 258, 259
EMBOSS…178, 179, 180, 181,

182, 185, 186, 187, 191, 192
Emission probabilities…115, 116,

118, 119, 120, 122, 128
Euclidean distance…234, 235,

236, 237, 238, 239, 243, 245,
247, 248, 249

E-value.............. 7, 8, 9, 10, 11, 18
Exhaustive search 276, 277
FASTA…1, 2, 3, 4, 7, 9, 11, 12,

13, 14, 15, 16, 18, 19, 21, 30,
50, 56, 59, 78

Fitness....................................... 65
Forward algorithm.................. 127
Gap extension penalty 7, 36, 37

Gap open penalty........................ 7
Gap penalty…25, 26, 28, 30, 34,

35, 36, 39
Gaps…7, 8, 24, 25, 26, 28, 30, 34,

35, 46
GATA box.............. 134, 143, 146
GATA-binding transcription

factors 143, 146
GC content................ 63, 158, 193
Gene prediction…3, 78, 79, 108,

109, 116, 130, 131
Genetic code…34, 44, 69, 177,

180
Genome size 63, 64, 65, 66
GENSCAN 3, 78, 130
Gibbs sampler…30, 41, 78, 83,

133, 134, 135, 136, 137, 140,
143, 144, 145, 146, 173, 249
motif sampler...... 135, 146, 147
site sampler................. 135, 146

Global alignment 25, 29, 56
Glycosylation 228, 229
Guide tree 24, 41, 42
Gumbel distribution.................... 9
Hash table ... 12, 15, 16, 17, 18, 56
Helicobacter pylori…208, 213,

224
Henderson-Hasselbalch equation

.. 209
Hidden Markov model…24, 109,

115, 116, 117, 120, 121, 126,
127, 130, 131, 132

Hidden Markov Model
emission probabilities…115,

116, 118, 119, 120, 122, 128
Forward algorithm.............. 127
Viterbi algorithm…24, 109,

116, 117, 120, 121, 124, 128,
129

Hierarchical clustering…231,
233, 235, 239

Indels 44, 46, 107

Index 347

independent chain................... 290
Informative sites 272, 278, 281
Initiation codon…82, 84, 85, 86,

89, 90, 91, 92, 131, 134, 166,
167, 181, 192, 232

Introns…79, 100, 102, 104, 105,
108, 116, 130

Ionization constant.................. 209
Isoelectric point…202, 207, 209,

210, 213, 220, 221
IUB code........................... 31, 273
jumping function 290
Kozak consensus 89
Learning rate........... 244, 245, 246
Least-squares method 270, 271
Likelihood 80, 81, 82, 83, 85, 86,

100, 109, 111, 113, 114, 117,
122, 128, 137, 251, 253, 264,
265, 266, 272, 279, 280, 281,
282, 283, 284, 286, 291

Likelihood ratio test........ 113, 114
Local alignment…12, 24, 25, 29,

30
Long-branch attraction… 268,

269, 277, 278, 292
Mahalanobis distance 235
Markov chain…109, 111, 112,

114, 254, 264, 287
Equilibrium frequencies 109,

112, 113, 122, 128, 256, 261
Markov model…24, 79, 108, 109,

110, 111, 113, 114, 115, 122,
128

Mate pairs 50, 51, 52, 57
Maximum likelihood method 111,

117, 251, 253, 264, 266, 272,
279, 280, 281, 291

Maximum parsimony methods
…251, 253, 266, 268, 269, 272,
278, 280

MCMC.... 253, 283, 287, 289, 290
methylation............................. 282

Methylation…101, 102, 103, 166,
282

Metric distance 236, 237, 238
Metroplis-Hastings 290
Metropolis algorithm...... 290, 291
Microarray…134, 202, 220, 227,

231, 233, 235
Migration distance.. 224, 228, 230
Minivirus 63
Model

frequency parameter ... 109, 112
one-parameter model (JC69)

…254, 255, 256, 261, 268,
279, 280

stationary 282, 287
substitution

amino acid-based…253, 264,
265

codon-based…253, 264, 265,
266, 282

nucleotide-based…46, 47,
253, 254, 264

TN93........................... 254, 262
Two-parameter (K80)….... 254,

260, 261
Molecular mass…208, 220, 221,

222, 223, 224, 226, 227, 228,
229

Molecular phylogenetics…23, 46,
233, 251, 252, 260, 264, 266,
272, 279, 292

Motif…25, 78, 83, 84, 87, 93,
116, 117, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148,
229

Multiple sequence alignment... 24,
38, 41, 42, 133

Mutation
nonsynonymous.......... 103, 152

348

synonymous…12, 38, 101, 131,
152, 153, 157, 158, 160, 161,
166, 174, 175, 176, 208, 282

Mutation rate 65, 66, 72, 101, 154
Mycoplasma 1, 7, 63, 186
Myristoyl 89
Myristoylation 89, 90
Negative selection 67
Neighbor-joining method41,

240, 266, 270, 277, 280
Nonhierarchical clustering...... 235
Nonintersecting segment 14
Nonsynonymous substitution 101,

103, 152, 264, 282
Ka 209

nucleotide substitution............ 282
Nucleotide substitution…31, 253,

254, 264, 282
Odds ratio…79, 81, 82, 83, 86,

141, 144, 146, 147
Operational taxonornic unit

(OTU) 267, 271, 276, 277
orthologous............................. 282
Orthologous 282
Parsimony…251, 253, 266, 268,

269, 272, 278, 281
PAUP...................................... 272
Perceptron…93, 94, 96, 97, 98,

99, 105, 106, 133, 229, 232
Phosphorylation...................... 229
PHYLIP 273, 279
Phylogenetics…23, 24, 44, 46,

233, 251, 252, 253, 260, 264,
266, 272, 279, 281, 291, 292

Poisson distribution 5, 9
Polymerases............................ 228
Position weight matrix…83, 86,

98, 133, 134, 136, 138, 141,
144, 146
PWMS (PWM score)…86, 87,

90, 91, 92, 138, 139, 140,
142, 144, 145, 146

Position weight matrix (PWM)
83, 84, 86, 87, 88, 90, 91, 92,
138, 139, 140, 142

Positive selection...................... 67
Posterior probability . 83, 284, 287
Posttranslational modification

208, 220, 221, 227
Prefix 24, 25, 28, 58, 182
Prior probability 81, 83, 284, 286,

291
Profile alignment…24, 38, 39, 40,

41, 249
Pseudogene......................... 75, 91
Purifying selection.................. 152
random walk chain 290, 291
Rate

heterogeneity 268
Rate matrix 254, 255, 262, 291
Reclinomonas americana 149
Saccharomyces cerevisiae 59,

157, 161, 166, 178, 182, 183,
184, 185, 186, 189, 222, 225,
226, 242, 243

SAGE 5, 6, 134, 202, 220, 227
Score matrix 29, 39, 41
Scoring scheme.....3, 7, 24, 25,

28, 29, 30, 32, 34, 35, 36, 39,
44, 46

SD sequence 192
Secondary structure…43, 44, 109,

117, 118, 119, 120, 124, 126
Self-organizing map…231, 233,

243
Self-organizing map (SOM).. 231,

233, 235, 243, 244, 245, 246,
247, 248, 249, 250

Sequence alignment…3, 11, 14,
19, 23, 24, 25, 27, 28, 29, 32,
38, 41, 42, 43, 45, 46, 48, 49,
50, 56, 62, 124, 133, 292
gap penalty…25, 26, 28, 30,

34, 35, 36, 39

Index 349

Sequence annotation…2, 3, 20,

104, 148
Sequence profile 41, 42, 249
Shine-Dalgarno sequence 78
Signal sensors 78, 79, 115
Spontaneous deamination…71,

72, 73, 74, 76, 101, 102, 151,
171

Standardization 238, 239
Statistical test

likelihood ratio test…81, 82,
86, 113, 114

Strand-bias…76, 150, 152, 156,
167

String matching…4, 5, 6, 18, 49,
50, 56, 58

Substitution
rate 254, 292
saturation 268, 278, 292

Suffix 56, 57, 58
Suffix tree 56, 57
Synonymous substitution........ 101
TCAI............... 185, 186, 187, 191
Transcription…62, 64, 75, 76, 79,

133, 134, 143, 146, 148, 150,
153, 157, 173, 193, 200, 201,
205, 228, 233, 249

Transcription efficiency…....... 75,
153, 193

transition................................. 282
Transition…30, 31, 39, 109, 111,

112, 114, 115, 116, 117, 118,
120, 121, 123, 126, 127, 129,
130, 254, 261, 264, 282
transition bias.................. 30, 31

Transition probability matrix.109,
111, 112, 114, 115, 116, 117,
118, 120, 121, 126, 127, 129,
130, 254

translation 44
Translation efficiency…157, 158,

173, 174, 193, 200, 201, 203,
206

transversion 282
Transversion…30, 32, 260, 261,

282
Tree

Nodes…42, 54, 56, 235, 243,
244, 245, 246, 247, 248, 249,
250, 272, 273, 275, 279, 280

Topology…266, 269, 270, 271,
272, 273, 275, 277, 278, 279,
281, 283, 291

Tree shape 269, 270
tRNA…90, 149, 150, 151, 152,

153, 156, 157, 158, 159, 160,
161, 163, 164, 165, 167, 171,
173, 174, 175, 178, 180, 182,
183, 184, 185, 186, 187, 188,
189, 190, 191, 193, 194, 195,
196, 197, 198, 199, 200, 201,
203, 265

Unrooted tree.......................... 268
UPGMA…41, 231, 233, 239,

240, 241, 243, 249, 266, 270
Urease..................................... 215
Virion 64, 66
Viterbi algorithm…24, 109, 116,

117, 120, 121, 124, 128, 129
Wobble…156, 157, 158, 159,

160, 161, 162, 163, 164, 165,
166, 167, 188, 189, 193, 194,
195, 197, 198, 199, 200, 201

Wobble versatility hypothesis
…158, 159, 161, 162, 164, 188,
197

XOR problem 93, 96, 97, 98
Zwitterion 210

