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PREFACE 
 

 
 

Biological and biomedical sciences are becoming more interdisciplinary, 
and scientists of the future need interdisciplinary training instead of the 
conventional disciplinary training. Just as Sean Eddy (2005) wisely pointed 
out that sending monolingual diplomats to the United Nations may not 
enhance international collaborations, combining strictly disciplinary 
scientists trained in either mathematics, computational science or molecular 
biology will not create a productive interdisciplinary team ready to solve 
interdisciplinary problems.  

Molecular biology is an interdisciplinary science back in its heyday, and 
founders of molecular biology were often interdisciplinary scientists. Indeed, 
Francis Crick considered himself as “a mixture of crystallographer, 
biophysicist, biochemist, and geneticist” (Crick, 1965). Because it was too 
cumbersome to explain to people that he was such a mixture, the term 
“molecular biologist” came handy. To get the crystallographer, biophysicist, 
biochemist, and geneticist within himself to collaborate with each other 
probably worked better than a team with a crystallographer, a biophysicist, a 
biochemist and a geneticist who may not even be interested in each other’s 
problems. 

Bioinformatics was born in response to the interdisciplinary demand of 
modern biological and biomedical sciences as a joint effort by among 
mathematicians, computational scientists and biologists of all colors and 
shades. It is a peculiar branch of science. A conventional branch of science 
such as quantum mechanics in physics or population genetics in biology will 
typically have a few classic publications laying down its theoretical 
foundation, delineating its boundary and interface with other related 
sciences, formulating its central questions, and highlighting the spectacular 
views within and beyond that particular mansion of science. Once the 
mansion has been skeletally constructed, subsequent works will only serve to 



Preface xi
 
beautify the mansion but will not alter the general structure of the mansion
which remains easily recognizable by people within the mansion and those
in its neighbourhood. There is little controversy as to how the mansion
looks, even when viewed from different perspectives. 

Bioinformatics is different. I have been told that bioinformatics was not
built by one or a few visionary giants of science, and that it is not even a
single mansion. Instead, it is the Wild West before the law arrives (Eddy,
2005), dotted by a large number of trailer houses or even temporary tents
that have been built and found workable elsewhere in the kingdom of
science. Many people living in this rough terrain do not know where they
belong but, after living here for some time, found it necessary to give the
dwelling a label. When someone murmured the word “bioinformatics”,
everyone thought it a godsend and the town of bioinformatics was born, and
the inhabitants begin to call themselves bioinformaticians. 

Bioinformaticians differ dramatically in their views and their descriptions
of their town. This is partially reflected in the flagship journal of the field,
Bioinformatics. Most papers in the journal were treated by conventional
biologists as Wild West stories and ignored with a passion, except for a few
that get a great deal of attention and citation by proclaiming the finding of
gold. The only consensus among bioinformaticians seems to be that
bioinformatics deals with very big computational problems. However, when
asked about what the very big problems are, most bioinformaticians, to
paraphrase Peter Medawar, will become instantly solemn and shifty-eyed,
solemn because they think that they have something profound to declare, and
shifty-eyed because they really have nothing to declare. 

Such a perception of bioinformatics is witty but unfair, because
bioinformatics does have a root to trace to and a central theme with a focus.
For many years, a challenging question near and dear to the mind of many
leading biologists is how living cells work. A living cell is a system with
cellular components interacting with each other and with extracellular
environment, and these interactions determine the fate of the cell, e.g.,
whether a stem cell is going to become a liver cell, a brain cell, or a
cancerous cell. It then became quite obvious that, to understand how living
cells work, those cellular components and their interactions would need to be
identified and characterized. The most important cellular components
happened to be universally acknowledged to be the genome, the transcripts
and the proteins. The characterization and analysis of these three types of
cellular components leads to genomics, transcriptomics and proteomics that
jointly drive the development of bioinformatics. 

Genomics leads to two developments. The first is to allow a much faster
identification of proteins by combining mass spectrometry data with
genomic databases. Second, genomic sequences have enabled SAGE
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(sequential analysis of gene expression) and microarray technology which 
have spawned transcriptomics which is a synonym of functional genomics. 
Biologists can now routinely monitor the gene expression at the genomic 
scale over time or compare gene expression between control cells and 
treatment cells or along the developmental path of a particular cell type.  

There are two major problems with the transcriptomic data. The first is 
that the relative abundance of transcripts as characterized by SAGE or 
microarray experiments is not always a good predictor of the relative 
abundance of proteins, yet proteins are true workhorses in the cell. Many 
proteins that are produced as a result of alternative splicing and 
posttranslational modification will not reveal their mystery in our analysis of 
transcriptomic data. It should be quite clear that, in order to characterize the 
cellular components and their interactions, one needs the corroboration of 
proteomic, genomic and transcriptomic data. 

At this point, one is tempted to conclude that bioinformatics has three 
facets labelled proteomics, genomics and transcriptomics and that it deals 
mainly with characterizing cellular components and their interactions. But 
bioinformatics goes beyond this. Genes and genomes have evolved from 
time immemorial, as do interactions among genes and gene products. The 
genomic change is particularly well exemplified by the infectious diseases 
caused by the influenza viruses, the SARS virus, and HIV, all evolving 
quickly as a result of mutation, recombination and selection. Studying the 
dynamic nature of genes and genomes, tracing their phylogenetic 
relationships and reconstructing their ancestral states allow biologists to gain 
the advantage perceived by Aristotle thousands of years ago, i.e., “He who 
sees things grow from the very beginning has the most advantageous view of 
them.”  For this reason, molecular evolution is now an essential component 
of bioinformatics. 

Many books have now been written on bioinformatics. They tend to fall 
on two extremes. In one extreme are books featuring computational details 
with a great deal of mathematics (e.g., Pevzner, 2000), while in the other 
extreme one finds books treating bioinformatics mostly as a giant black box 
(e.g., Baxevanis and Ouellette, 2005). The former is for computational 
scientists and mathematicians who, after reading the book, will remain 
computational scientists and mathematicians. The latter is for biologists who, 
after reading the book, will remain biologists. Such books often have limited 
contribution to creating interdisciplinary scientists needed in modern 
biological and biomedical sciences. 

Most biologists cannot appreciate the beauty of mathematics without 
having the equations rendered to numbers. Remarkably, neither can 
mathematicians and computational scientists appreciate the beauty of 
biology without having the cells and bugs rendered to numbers. This book is 
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my effort to render both mathematical equations and biology to numbers. It 
is aimed at creating truly interdisciplinary scientists to prosper in the Wild 
West of bioinformatics. 

Although the book covers bioinformatics methods at a level more 
advanced than most other bioinformatics books, the extensive numerical 
illustration of these methods should make it accessible to most senior 
undergraduate students and graduate students majoring in science and 
software engineering. An additional advantage of using it as a textbook is 
that nearly all algorithms in the book are implemented in a free and user-
friendly computer program (DAMBE).  

Practising biologists with reasonably good programming skills should be 
able to implement most algorithms themselves and check the output against 
numerically illustrated examples in the book. They should soon find such 
learning experience intellectually rewarding and mentally satisfying. Some 
of them might even be pleasantly surprised to learn that they can quickly 
create a much needed computational method that their computer technicians 
have failed to create in a whole year.  

I have tried my best to “make everything as simple as possible, but not 
simpler”. While most numerical illustrations of advanced computational 
algorithms in this book are toy examples, they require only simple 
extensions to tackle real data. To paraphrase the late C. C. Li, it is not 
necessary to create a rainbow spanning the sky to demonstrate how a 
rainbow forms – a small one is convincing enough.  

 “Please read the book”. 
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Chapter 1 

BLAST AND FASTA 
Mathematics in string searching algorithms 

 
 

1. INTRODUCTION 

One might find it odd to start a book on bioinformatics and the cell with 
BLAST and FASTA and I have received two kinds of objections from 
readers of the book draft. The first argued that any book on a new subject 
should provide some historical background so that the reader can position 
himself or herself in proper historical context. The following one-paragraph 
history of genomics, transcriptomics and proteomics is added in response to 
this objection. 

Genomics is often considered to have started in 1986 when two 
significant events happened. First, the U. S. Department of Energy (DOE) 
announced the Human Genome Initiative aiming to produce a reference 
human genome sequence. Second, Leroy Hood developed the first automatic 
DNA sequencer, which paved the way for the official beginning of the 
Human Genome Project in 1990. The year 1995 witnessed the completion of 
the first three bacterial genome sequencing projects, with the Haemophilus 
influenzae Rd KW20 genome in July (Fleischmann et al., 1995), the 
Synechocystis sp. PCC 6803 genome in August (Kaneko et al., 1996; 
Kaneko et al., 1995), and the Mycoplasma genitalium G-37 genome in 
October (Fraser et al., 1995). The first working draft of the entire human 
genome was completed in 2000, soon to be followed by the simultaneous 
publication of the human genome in Nature and Science in February, 2001 
(Lander et al., 2001b; Venter et al., 2001). Transcriptomics started mainly 
with the development of gene arrays such as macroarrays (Chuang et al., 
1993; Tao et al., 1999) and microarrays (Schena, 1996; Schena, 2003) and 
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serial analysis of gene expression (Madden et al., 1997; Saha et al., 2002;
Velculescu et al., 1995; Velculescu et al., 1997; Zhang et al., 1997). The
terms “proteome” and “proteomics” were coined by Marc Wilkins and 
colleagues in 1994 (Ezzell, 2002), and large-scale proteomic research started 
with sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE 
(Laemmli, 1970). Subsequent perfection of isoelectric focusing leads to the 
most frequently used protein separation method, the 2D-SDS-PAGE. Large-
scale peptide analysis methods have been developed by John Yates and 
colleagues (Washburn et al., 2001; Yates, 2004a, 2004b). Mass spectrometry 
used in combination with affinity purification and/or chemical cross-linking 
has made significant contributions to protein interaction networks (Figeys, 
2003b, 2003a; Vasilescu and Figeys, 2006). Protein arrays have recently 
been developed to directly assess protein-protein interactions (Figeys, 2002; 
Sloane et al., 2002; Wilson and Nock, 2002). The characterization and 
analysis of genomes, transcriptomes and proteomes have driven the 
development of bioinformatics and resulted in many new insights in 
understanding how living cells function (or fail to function as in cancer). 

The second objection against starting the book with BLAST and FASTA 
is based on (1) the approach might mislead the reader to think that this book 
is all about something everybody knows and (2) few people would agree, 
with good reasons, that any branch of science starts with a homology search 
algorithm. If one is to write a book progressing from genomics to 
transcriptomics and proteomics, then naturally one should start with 
sequencing genomic fragments, contig assembly to assemble the sequence 
fragments to a contiguous genome, and sequence annotation to show the 
location of biologically interesting genes and motifs on the genome. This 
should then be followed by the characterization and analysis of transcripts 
and proteins in the cells, and finally bring the reader to a new horizon with a 
new concept and perception of a living cell. Why start with BLAST and 
FASTA?  

The reasoning above is indeed eloquent and compelling, but it is 
unfortunately against an important pedagogical principle, i.e., any theme of 
presentation should begin with a common, ideally universal, entry point. 
This pedagogical principle points unambiguously to BLAST and FASTA. 
Many colleagues of mine share the opinion that BLAST and FASTA in 
bioinformatics are equivalent to PCR in molecular biology wet labs and 
deserve more recognition. 

Yet my choice of starting with BLAST and FASTA is not just because of 
the pedagogical principle, but more because of two other reasons. First, the 
mathematics and computation underlying these two widely used 
computational tools represent the common denominator of mathematics and 
algorithms in many other bioinformatics tools. Second, while a large number 
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of researchers use BLAST and FASTA daily, very few actually understand
the statistical and computational aspects of them. A simple but systematic
presentation of the mathematical, statistical and computational aspects of
these bioinformatics tools will not only help researchers to better interpret
their BLAST and FASTA output and implement these methods in their own
programs, but also foster better appreciation of bioinformatics as an
interdisciplinary science and of its major players - in this case David
Lipman, Samuel Karlin, Stephen Altschul, William Pearson and many of
their colleagues. 

BLAST and FASTA belong to the category of sequence search and
annotation tools. Once genomic scientists obtain a long contig or a genomic
sequence by contig assembly, the next step is obviously to find out what the
long stretch of A, C, G, T means. This is the subject of sequence annotation.
Sequence annotation is perhaps the most misunderstood subject. Laypersons
may equate sequence annotation to adding personal scribbles to the margin
of a novel, without realizing that a great deal of mathematics and
computation, as well as a great deal of biology, is needed to do the job.  

The pivotal component of sequence annotation is gene finding. There are
two major categories of computational tools for gene-finding. The first is
based on known genes in molecular databases, and uses homology search
tools such as FASTA (Pearson and Lipman, 1988) and BLAST (Altschul et
al., 1990; Altschul et al., 1997). The second, better known as gene
prediction, is based on known gene structures, and represented by
GENSCAN (Burge and Karlin, 1997). Existing software for gene-finding
often combine both approaches, e.g., GenMark (Hayes and Borodovsky,
1998), GLIMMER (Salzberg et al., 1998), Orpheus (Frishman et al., 1998),
Projector (Meyer and Durbin, 2004) and YACOP (Tech and Merkl, 2003). 

The methods for finding sequence similarities caught the attention of
biologists when an oncogene (i.e., a gene in a virus that causes a cancer-like
transformation of the infected cell), v-sys, was found to be similar to PDGF,
the platelet-derived growth factor (Doolittle et al., 1983; Waterfield et al.,
1983). The increasing number of genes and genomes deposited in GenBank
(Benson et al., 2005) implies increasing importance of methods for finding
genes by homology search. Indeed, sequence similarity search has been
claimed to be the most effective method for exploiting the information in the
rapidly growing molecular sequence databases (Pearson, 1998).  

Conventional methods for similarity searchers are based on local
sequence alignment using dynamic programming (Smith and Waterman,
1981a). For a given scoring scheme, such methods will guarantee the finding 
of the optimal alignment. However, such methods are very slow. FASTA
and BLAST use heuristic methods for similarity search. They may miss
homologous sequences, but are very fast. With terabytes of molecular
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sequences in the database to search through, the speed becomes more 
important than sensitivity of homology detection.  

A similarity search will generate a similarity score, which needs to be 
evaluated for its statistical significance. BLAST became more popular than 
FASTA partially because the early versions of FASTA did not evaluate the 
statistical significance of the resulting sequence matches. Latter versions of 
FASTA have incorporated such evaluations. 

We will first offer a simple but detailed presentation of the mathematics 
involving string matching, which allows us to design a filter to eliminate a 
large number of insignificant matches. The string search algorithms used in 
FASTA and BLAST are then presented at a level to allow programmers to 
implement the algorithms in their own software. 

2. MATHEMATICS OF STRING MATCHING 

2.1 Basic concepts 

Given PA, PC, PG, PT in a target (database) sequence, the probability of a 
query sequence (Q), say, ATTGCC, having a perfect match of the target 
sequence (D) is: 

2 2
A C G Tp P P P P=  (1.1) 

Let LD be the target sequence length and LQ be the query sequence 
length, the number of possible “matching operations”, i.e., number of times 
one can shift Q against D in search for a perfect match of LQ letters, is 

  (  -    1)D Qn L L= +  (1.2) 

For example, with Q = ATG and D = CGATTGCCCG, LQ = 3, LD = 10, 
n = 8. 

The probability distribution of the number of matches follows 
(approximately) a binomial distribution with p defined in Eq. (1.1), n defined 
in (1.2), and q = 1 - p: 
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If PA = PC = PG = PT = 0.25, then p = 0.253 = 0.015625, and q = 1 – p = 
0.984375. With LQ = 3, LD = 10, we have n = 8. So the probabilities of 
having 0, 1, 2, …, r exact matches of three letters are p(0) = 0.881626, p(1) = 
0.111953, p(2) = 0.00622 and so on. The probability of having at least one 
match is simply 1 – p(0) = 0.118373565. 

 Binomial distribution is troublesome in computation when n is large 
because computers will have overflow errors to get the factorial with a large 
n. When np < 1 and n is very large, the binomial distribution can be 
approximated by the Poisson distribution with mean and variance equal to 
np. The mathematical detail of converting the binomial probability 
distribution to the Poisson distribution is shown below: 
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 (1.4) 

The approximation assumes a large n and a small p near 0, so that (n – x 
+ 1) ≈ n, p/q ≈ p/1 = p, and (1 - p)n ≈ e-np. The Poisson distribution has only 
one parameter λ, and P(x) is very easy to compute. To use the Poisson 
distribution to approximate the binomial example above with n = 8 and p = 
0.015625, we have λ = np = 0.125, and p(0) = 0.882496903, p(1) = 
0.110312113, p(2) = 0.006894507, and so on. The probability of having at 
least one match is simply 1 – p(0) = 0.117503097. Although our n is not 
very large and p not very small, these values are still quite similar to those 
from the binomial distribution. 

The simple mathematics concerning string matching has practical 
applications. For example, in serial analysis of gene expression or SAGE 
(Velculescu et al., 1995), it is important to know how many transcribed 
RNA may not contain the recognition site (GTAC) of the NlaIII restriction 
enzyme and consequently would be missed by the method. Suppose the 
genome is slightly GC biased with PC = PG = 0.3 and PA = PT = 0.2. What is 
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the probability that a transcribed RNA will not have the GTAC? In this case 
Q = GTAC and D is a specific transcribed RNA. Assuming LD = 3000, we 
have n = (3000 – 4 +1), p = 0.32×0.22, and the Poisson parameter λ = 
10.7892. The probability that a transcript does not have the restriction site is 
0.000020621. However, if LD =  300, the probability that a transcript does 
not have the restriction site is 0.343283. Thus, the SAGE method is strongly 
biased against short mRNA. 

Another string matching problem in SAGE is whether a sequence 
fragment of 14 nucleotides are sufficient to identify a gene uniquely in a 
genome, say a human genome with 3×109 bp. With LQ = 14 and LD = 3×109 
and assuming equal nucleotide frequencies of 0.25 in the human genome, we 
have the Poisson parameter λ = 11.17587085, and the probability of having 
at least one random match is 0.999986. Thus, a sequence fragment of 14 
nucleotides cannot uniquely identify a gene product with typical eukaryotic 
genomes. This obvious fact is often not recognized. For example, the EMBL 
site (http://www.embl-heidelberg.de/info/sage/) on SAGE states that “But 
scientists don’t need to read long sequences. They’ve discovered that just 
fourteen letters are enough to match a RNA to the precise gene that produced 
it.” This is false. One can verify this easily by searching the tags in a 
published SAGE experiment characterizing human transcriptome 
(Velculescu et al., 1999) against human protein-coding genes. Some tags 
have more than 100 matches, although to my knowledge no published paper 
based on SAGE experiment has mentioned such multiple-match tags. 
Fourteen letters are not enough, and long SAGE (Ryo et al., 2000; Saha et 
al., 2002) is necessary. 

The examples above involve matching the entire query string Q against 
the target string D. Now we consider the problem of matching a substring of 
Q against a substring of D. We designate the length of the shared substring 
as L. 

Given Q, D, LQ and LD, and assuming PA = PC = PG = PT = 0.25, the 
probability of finding an exact match of at least L (L ≤ LQ and L ≤ LD) 
consecutive letters is p = 0.25L = 2-2L. The match of L consecutive letters 
between Q and D can happen at m = (LQ – L +1) positions on Q and at n = 
(LD – L +1) positions on D. You might have noted, in the BLAST output, 
terms such as “Effective length of query” and “Effective length of database”. 
These terms are equivalent to m and n, respectively. There are mn possible 
matching operations, each with a probability of 0.25L of getting a match of L 
consecutive letters. The expected number of matches with length at least L is 
therefore  

  0.25LE mn=  (1.5) 
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Most BLAST web interfaces allow you to input a cutoff E-value. 
Suppose we are to BLAST sequence Q of length 10 against genomic 
sequence D of length 10,000,000. Does it make sense to set the E-value to 
0.01? It does not, because we expect nearly 10 perfect matches of Q against 
D by random chance in this case. In other words, it is impossible for any 
returned match to have an E-value of 0.01. The smallest E-value among the 
returned matches (i.e., those perfect matches) will be nearly 10. A user-
friendly implementation of the BLAST or FASTA algorithm would ignore 
the input E-value and return all perfect matches or at least display a tactful 
message saying that the user has committed a small and forgivable sin, but a 
strict implementation of the algorithm will simply return you with no match 
(A computational tool is user-friendly when the computer programmer 
works under the assumption that some users are fools). 

In BLAST and FASTA literature, one may also encounter an equation in 
the following form 

  RE mne λ−=  (1.6) 

Eq. (1.6) and Eq. (1.5) are equivalent with λ = - ln(0.25) = 1.386294361 
and R = L, where the value of 0.25 arises from the assumption of equal 
nucleotide frequencies.  

Noting that 0.25 = 2-2, we can also rewrite Eq. (1.5) as 

2  2 2L SE mn mn− −= =  (1.7) 

where S = 2L. Eq. (1.7) has become particularly useful because it was found 
through computer simulations (Altschul, 1996; Altschul et al., 1997; 
Pearson, 1998; Waterman and Vingron, 1994) that, when S is computed with 
a particular scoring scheme, Eq. (1.7) can be applied to situations involving 
two strings not only with consecutive matched letters, but also with 
mismatches and gaps. 

Figure 1-1 shows the output from BLASTing a nucleotide query 
sequence against a local BLAST database containing all annotated 
Mycoplasma genitalium coding sequences. From the output (Figure 1-1) we 
see 35 matches, 3 mismatches, 1 gap and 2 gap extensions. The scoring 
scheme has the match score (M) equal to 1, mismatch score (MM) equal to -
3, gap open penalty (Go) equal to 5 and gap extension penalty (Ge) equal to 2 
(Figure 1-1). When the raw score (R) is computed according to this scoring 
scheme, and the bit-score (S) is computed with R and two scaling factors λ 
and K, Eq. (1.7) can be used to obtain the E-value: 
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- -

  35 1  3 (-3) -1 5 - 2 2  17

 -  ln( ) 1.37 17 - ln(0.711)
      34.1

ln(2) ln(2)

  2   26 520557 2   0.000735S S

R

R K
S

E mn

λ

= × + × × × =

×
= = ≈

= = × × =

 (1.8) 

where λ and K, shown in every BLAST output, are scaling constants 
(Altschul et al., 1997, and literature cited therein) estimated from computer 
simulation. Note that the E-value is calculated in the same way as in Eq. 
(1.7). 

BLASTN 2.2.4 [Aug-26-2002]
...
Query= Seq1  38 
Database: MgCDS

480 sequences; 526,317 total letters
Score    E

Sequences producing significant alignments:       (bits) Value
MG001 1095  bases                                  34   7e-004
Score = 34.2 bits (17), Expect = 7e-004
Identities = 35/40 (87%), Gaps = 2/40 (5%)

Query: 1  atgaataacg--attatttccaacgacaaaacaaaaccac 38
||||||||||  |||||||||||  |||||| ||||||||

Sbjct: 1  atgaataacgttattatttccaataacaaaataaaaccac 40

Lambda        K        H
1.37    0.711     1.31 

Matrix: blastn matrix:1 -3
Gap Penalties: Existence: 5, Extension: 2
…
effective length of query: 26
effective length of database: 520,557  

Figure 1-1. Output from a nucleotide BLAST query. 

One may note that L in Eq. (1.5) is the same as R given M = 1, because R 
= L×M = L in case of exact string match with no mismatches or gaps 
involved. Because S = 2L in (1.7) and because L = R with ungapped match 
and M = 1, we have S = 2R. This relationship between S and R is similar to 
their relationship specified in the second equation in in Eq. (1.8). Note that R 
will increase with the length of the query and target sequences. With large R, 
S is approximately equal to 2R, i.e.,  

 -  ln( ) 2 (with large R)
ln(2)

R KS Rλ
= ≈  (1.9) 
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The E-value can be used as the λ parameter in the Poisson distribution in 
Eq. (1.4) to get the probability of having 0, 1, ..., x matches that are as good 
or better than the reported match. For our example, p(0) = 0.999265217, p(1) 
= 0.000734513, and so on. According to the Poisson distribution in Eq. (1.4), 
the probability of having at least one match (i.e., x ≥ 1) that is as good or 
better than the reported match, or in other words the probability of having a 
raw score (R) at least as large as the observed raw score (Robs), is 

( 1) ( ) 1 (0) 1 1
RE mne

obspr x pr R R p e e
λ−− −≥ = ≥ = − = − = −  (1.10) 

where we have substituted E with the expression in Eq. (1.6). Note that 
BLAST scales the E value with a parameter K, which makes the BLAST 
output of the E value a bit too conservative and is perhaps not necessary.  

The last term in Eq. (1.10) has a rather special term associated with it in 
probability theory. In short, the probability distribution  

( )
Rmnep R e

λ−−=  (1.11) 

with the ugly and cumbersome exponential of an exponential, is a special 
form of the extreme value distribution or EVD, also referred to as the 
Gumbel distribution in honor of the pioneer of the statistics of extremes 
(Gumbel, 1958). The EVD is used in BLAST (Altschul et al., 1990; Altschul 
et al., 1997) and FASTA (Pearson, 1998) to attach statistical significance to 
a match score between two sequences. 

The E-value is the expected number of random matches with match 
scores that are equally good or better than the reported one. It is not a 
probability. This should have been obvious to anyone, yet my students often 
refer to it as a probability (which partially reflects how ineffective I am as a 
teacher). However, when E is very small, then it can be approximately 
interpreted as the probability of finding one match that is as good as or better 
than the reported one. This is shown below based on the Poisson 
distribution: 

0
(1)  because lim 1E E

E
p e E E e− −

→
= ≈ =  (1.12) 

An inverse problem is to obtain the length of an exact match given a 
critical E-value. For example, the E-value is an input parameter during a 
BLAST search. One can take such an input E-value to find the critical length 
of exact string matches, designated as Lcrit. This Lcrit allows us to quickly 
eliminate all exact string matches shorter than Lcrit. So how to obtain Lcrit?  
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A naïve approach is to try to solve the following equation for Lcrit: 

-2 2  2 ( 1)( 1)2crit critL L
crit Q crit D critE mn L L L L −= = − + − +  (1.13) 

It turns out that Eq. (1.13) does not have an analytical solution for Lcrit 
because Lcrit is an implicit function of Ecrit. To obtain Lcrit given Ecrit, one 
would have to use numerical solution by iteration. Efficient iteration 
methods are available (Press et al., 1992), but one may also use the 
approximate method below: 

ln
 

2ln(2)

guess

crit
crit guess

E
E

L L

⎛ ⎞
⎜ ⎟
⎝ ⎠= +  (1.14) 

where 

22 guessL
guess Q DE L L −=  (1.15) 

ln

2 ln(2)

crit

Q D
guess

E
L L

L

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= −  (1.16) 

Lguess is derived from Eq. (1.13) by assuming LQ >> Lcrit and LD >> Lcrit, 
so that (LQ - Lcrit +1) ≈ LQ and (LD - Lcrit +1) ≈ LD. For this reason Lguess 
should be constrained to be no larger than (LD – 1) or (LQ – 1). 

Now if we have LQ = 100, LD = 10000, Ecrit = 0.01, then Lguess = 
13.28771, and, 

22 0.876
ln( / ) /  ln(4) 13.192251

guessL

crit guess crit

E mn
L L E E

−= =
= + =

 (1.17) 

Thus, when BLASTing a query sequence of 100 bases against a database 
sequence of 10,000 bases with a critical E-value of 0.01, we may ignore 
those with an exact string match shorter than 13 bases. Table 1-1 shows that 
Eq. (1.14) is good over a wide range of LQ and LD values. I should 
emphasize here again that one should set sensible Ecrit for calculating Lcrit. 
For example, if LQ = 10 and LD = 10,000,000 bases, one would be silly to 
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compute Lcrit by setting Ecrit = 0.01 or smaller. As I have mentioned before, it 
is impossible to have any sequence match with Ecrit = 0.01 or smaller in this 
case. Consequently, any Lcrit calculated from such a Ecrit would be of no use. 

Table 1-1. Selected results computing Lcrit by applying Eq. (1.14) with Ecrit = 0.01. The values 
in last column is the E-value based on Lcrit and are very close to the preset critical value of 
0.01. 
LQ LD Lquess Eguess Lcrit E 
1000 10000 14.94868 0.009847 14.93754 0.0100 
1000 1000 13.28771 0.009756 13.26988 0.0100 
10000 100 13.28771 0.008760 13.19225 0.0100 
1000 15 10.25827 0.003792 9.55885 0.0112 
100 15 8.59730 0.004560 8.03089 0.0108 
15 15 7.22882 0.003419 6.45470 0.0118 
15 1000 10.25827 0.003792 9.55885 0.0112 
15 10000 11.91923 0.002718 10.97942 0.0123 
15 1000000 14.00000 0.007450 13.78770 0.0111 

3. STRING-MATCHING ALGORITHMS IN FASTA 
AND BLAST  

Heuristic local similarity search algarithms, which both FASTA and 
BLAST algorithms belong to, generally include the following three steps: (1) 
finding an exactly or inexactly matched string segment, (2) evaluating the 
statistical significance of the match, and (3) if the match is statistically 
significant, extending the matched string segment in both directions by 
dynamic programming. The second step has already been covered in the 
previous section, and the third step will be covered in the chapter on 
sequence alignment. This section will cover the FASTA and BLAST 
algorithms used in the first step. It is the difference in this first step that is 
responsible for the higher sensitivity of the FASTA algorithm than the 
BLAST algorithm. 

3.1 FASTA 

The FASTA set of programs  (Pearson, 1994; Pearson and Lipman, 1988) 
in fact implements a number of different search algorithms, and I will 
illustrate only the basic ones here. The purpose is to give computer 
programmers sufficient details for them to implement the algorithm for 
homology searching in their own programs. 

Suppose we wish to find the similarity between the following query 
sequence (Q) and the target sequence (D), with sites numbered from 0 
according to the disputable convention of computation: 
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   0123456789012345678 
Q: ACCGCGACCCTGACGAATA 
D: ACCGCGATGACGAATA 
 
The FASTA algorithm consists of three steps in achieving the heuristic 

local alignment. First, it uses a special form of hashing (illustrated below) to 
hash D for a given word length. For simplicity, we start with a word length 
of 1 (in which case “word” and “letter” become synonymous, i.e., a letter is 
a word of length 1), with the resulting hash table shown in Table 1-2. We 
note that word A occurs at positions 0, 6, 9, 12, 13, and 15 in D, and these 
numbers occupy the first row in Table 1-2. Word C occurs at positions 1, 2, 
4 and 10 and the numbers occupy the second row of Table 1-2 and so on. 
The numbers in Table 1-2 will be referred to as HD numbers or HD values, 
where H stands for “hash” and the subscript D stands for the target 
(database) sequence. HD values are needed in the second step. For a fixed 
word length, the computation of HD values could in fact be done before the 
user has submitted any query, and consequently would belong to what is 
called database pre-processing. 

Table 1-2. First step in the FASTA algorithm: generating a hash table of the target sequence 
D with a word length of 1. HD values are the sites of the corresponding base (A, C, G and T) 
found in D, e.g, base A is found at site 0, 6, 9, 12, 13 and 15, respectively. 
Base HD 
A 0 6 9 12 13 15 
C 1 2 4 10   
G 3 5 8 11   
T 7 14     

 
In algorithmic terms, a hash table is made of an array of N elements each 

being a linked list of variable lengths. The hash table in Table 1-2 has an 
array of four elements (designated A, C, G, and T) each with a linked list of 
length 6, 4, 4, and 2, respectively. 

In the second step of the FASTA algorithm, we designate the site number 
of Q as SQ and compute SQ – HD (Table 1-3). For example, nucleotide A 
occurs at site 0 in Q, and the differences (i.e., SQ – HD) between this 0 and 
the six HD values for A in Table 1-2 (0, 6, 9, 12, 13, and 15), are 
consequently (0 – 0), (0 – 6), (0 – 9), (0 – 12), (0 – 13) and (0 – 15), 
respectively (first row of SQ – HD values in Table 1-3). Similarly, nucleotide 
C occurs at site 1 in Q. Because the HD values for C is 1, 2, 4, and 10, 
respectively (Table 1-2), we have (1-1) = 0, (1-2) = 01, (1-4) = -3, and (1-10) 
= -9. These values occupy the second row of the SQ-HD values in Table 1-3. 
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Table 1-3. Second step in the FASTA algorithm: computing the difference between the site 
number of the query sequence Q (SQ) and HD.  
Q SQ SQ - HD 
A 0 0 -6 -9 -12 -13 -15 
C 1 0 -1 -3 -9   
C 2 1 0 -2 -8   
G 3 0 -2 -5 -8   
C 4 3 2 0 -6   
G 5 2 0 -3 -6   
A 6 6 0 -3 -6 -7 -9 
C 7 6 5 3 -3   
C 8 7 6 4 -2   
C 9 8 7 5 -1   
T 10 3 -4     
G 11 8 6 3 0   
A 12 12 6 3 0 -1 -3 
C 13 12 11 9 3   
G 14 11 9 6 3   
A 15 15 9 6 3 2 0 
A 16 16 10 7 4 3 1 
T 17 10 3     
A 18 18 12 9 6 5 3 

 
The third (and the last) step is simply to compile a frequency distribution 

of (SQ – HD) values. We note that there are 10 (SQ – HD) values equal to 0. 
This means 10 matched letters between Q and D without shifting either 
sequence left or right. We can also find 11 (SQ – HD) values equal to 3 in 
Table 1-3, which means that by shifting D 3 positions to the right against Q, 
we will get a match of 11 letters: 

 
Q: ACCGCGACCCTGACGAATA 
D: ---ACCGCGATGACGAATA 
 
For matching two long sequences, it is more informative to generate a 

histogram of the (SQ – HD) values (Figure 1-2). The histogram not only helps 
us visually see which value has the highest frequency, but is also very useful 
for obtaining nonintersecting matched segments. For example, knowing that 
one can get a match of 10 letters without shifting D left or right relative to Q 
and that one can get a match of 11 letters by shifting D 3 spaces to the right 
against Q helps us identify two non-intersecting matched segments as 
follows, with the first having 7 consecutive matches and the second having 9 
consecutive matches: 

 
Q: ACCGCGACCCTGACGAATA 
D: ACCGCGA---TGACGAATA 
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One might wish to have a formal definition of “nonintersecting matched 
segments”. They are matched segments that do not overlap and are often 
defined with reference to intersecting matched segments. Take the following 
two sequences for example: 

 
Q: ACCGCGACCCTGACGAATA 
D: ACCGCGACGACCCTGACGAATA 
 
There are two intersecting matched segments below, i.e., matched 

segments that overlap: 
 
Q: ACCGCGAC...... 
D: ACCGCGAC...... 
 
Q: .....GACCCTGACGAATA 
D: .....GACCCTGACGAATA 
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Figure 1-2. Frequency distribution of SQ – HD values in Table 1-3. 

While FASTA algorithms are for local sequence alignment, the trick it 
offers for finding nonintersecting segments is very important in aligning two 
very long sequences with sequence length in the range of millions. For such 
sequences, direct application of dynamic programming is often impractical 
because of limited memory in computers to store the matrices, e.g., with two 
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sequences with their lengths in the order of 1,000,000, and with the scoring 
matrix containing only integer values each taking four bytes, the matrix 
alone would consume 4×1012 bytes. Few computers today have such a large 
amount of memory. However, one can use FASTA to first find 
nonintersecting segments and use them as anchor points and then align the 
sequences between anchor points by applying the dynamic programming 
algorithms which will be explained in the chapter on sequence alignment.  

It is easy to see that, with increasing length of Q and D, (SQ – HD) values 
will be too many, their frequency distribution will become less informative, 
and the computation will be more tedious, if we continue to use a word 
length of 1. In practical FASTA applications, the word length is almost 
always larger than 1 and would increase with the sequence length.  

We now illustrate the application of the algorithm with a word length of 
2. There are 16 dinucleotides and their occurrences in sequence D are listed 
in the first four columns of Table 1-4. These four columns are equivalent to 
Table 1-2 containing HD values. The sequence Q is then represented as 
overlapping dinucleotides. For example, a sequence “AACG” would be 
represented as three overlapping dinucleotides as “AA”, “AC” and “CG”. 
Such a representation of sequence  Q, together with SQ and SQ-HD values, are 
compiled in the last six columns in Table 1-4.  

Note that the hash table in Table 1-4, represented by the first four 
columns, is made of an array of 16 elements each with a linked list with its 
length varying from 0 to 3. Also note that the hash table would be mostly 
empty had we used a word length of 3 or 4 for comparing Q and D. The 
word length should increase with the sequence length of Q and D. 

We have many fewer (SQ – HD) values with a word length of 2 (Table 1-
4) than with a word length of 1 (Table 1-3). This implies a substantial saving 
of computational time. We note eight (SQ – HD) values equal to 3 (Table 1-
4), implying eight dinucleotide matches between Q and D. These eight 
overlapping dinucleotides are TG, GA, AC, CG, GA, AA, AT, and TA: 

 
Q: ACCGCGACCCTGACGAATA 
D: ---ACCGCGATGACGAATA 
 
In practical computation involving nucleotide sequences, a word length 

of 4 is frequently used because tetranucleotides AAAA, AAAC, …, TTTT 
correspond to byte values 0, 1, …, 255. In other words, each tetranucleotide 
can be stored in only one byte, with A, C, G, T each represented by two bits, 
i.e., 00, 01, 10 and 11, respectively. This means that AAAA is coded by the 
binary number 00000000, AAAC by 00000001, ……, and TTTT by 
11111111. BLAST databases also use this encoding to save storage space for 
nucleotide sequences. 
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Table 1-4. Illustration of the FASTA algorithm with word length of 2. (1) A hash table of 16 
dinucleotides (DiNuc) for D, with the numbers indicating the position of the dinucleotides in 
D, e.g., dinucleotide AA occurs at position 12 of D). (2) Q in overlapping dinucleotide 
representation and its corresponding site index (SQ). (3) Computation of the (SQ – HD) values. 
For example, the first AC in Q occurs at site 0, so its SQ = 0. AC occurs in D at positions 0 
and 9, respectively, which are its HD values. So the two (SQ – HD) values for the first 
dinucleotide AC in Q is (0 – 0) and (0 – 9), respectively.  
(1)    (2)  (3)   
DiNuc HD   Q SQ SQ – HD 
AA 12   AC 0 0 -9  
AC 0 9  CC 1 0   
AG    CG 2 0 -2 -8 
AT 6 13  GC 3 0   
CA    CG 4 2 0 -6 
CC 1   GA 5 0 -3 -6 
CG 2 4 10 AC 6 6 -3  
CT    CC 7 6   
GA 5 8 11 CC 8 7   
GC 3   CT 9    
GG    TG 10 3   
GT    GA 11 6 3 0 
TA 14   AC 12 12 3  
TC    CG 13 11 9 3 
TG 7   GA 14 9 6 3 
TT    AA 15 3   
    AT 16 10 3  
    TA 17 3   

3.2 BLAST 

While FASTA is often found in many European data centers, BLAST is 
the main, and often the only, search engine in sequence database servers 
hosted in North America. So it is relevant for a bioinformatics student to 
gain some familiarity with the algorithm. 

The BLAST algorithm has three steps. For BLAST servers, the first is the 
pre-processing of the database sequences and does not consume query time 
(because it is done before the user submits the query). Each database 
sequence of length LD is chopped into overlapping words of a fixed length L, 
with word i starting at position i where i = 1, 2, ..., (LQ-L+1). The frequently 
occurring words are eliminated to reduce the chance of random matching, 
and low-complexity words (e.g., AAAAAAA) are eliminated to reduce the 
bias in calculating probabilities and expected values. For example, if 
sequence D = “AAAAA” and sequence Q = “AAAA”, then matching the 
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two sequences will lead to two exact matches of length 4. Our expectation, 
according to Eq. (1.5) and assuming equal nucleotide frequencies, is much 
smaller than two: 

-2 2 4

4 1 4 4 1 1

4 1 5 4 1 2

2 1 2 2 0.0078125

Q

D

L

m L

n L

mnμ − ×

= − + = − + =

= − + = − + =

= = × × =

 (1.18) 

The remaining words are organized into hash tables. For a powerful 
BLAST server, these hash tables for database sequences can be stored in 
memory. If the word length is 4, then a hash table will contain an array of 
256 elements each with a linked list. The hash table for the following partial 
COI sequence from Masturus lanceolatus is shown in Table 1-5. 

 
CGCUGAUUUUUCUCAACCAACCAUAAAGAUAUCGGCACCCUUUAUUUAGUAUUUGGUGCAUG 

AGCCGGAAUAGUGGGAACGGCCUUAAGCCUGCUCAUUCGAGCGGAGCUAAGUCAACCUGGGG 

CUCUCCUUGGAGACGACCAAAUUUACAAUGUCAUCGUCACAGCACAUGCAUUUGUAAUAAUU 

UUCUUUAUAGUAAUACCAAUUAUGAUCGGGGGCUUUGGAAAUUGACUCAUCCCUCUUAUGAU 

UGGGGCCCCUGAUAUGGCCUUUCCCCGGAUGAACAAUAUGAGCUUUUGACUAUUACCCCCCU 

CUUUCCUCCUCCUCCUUGCUUCUUCAGGCGUCGAAGCAGGUGCCGGAACGGGGUGGACUGUC 

UACCCUCCUUUAGCCGGAAAUUUAGCCCACGCAGGCGCCUCUGUUGACUUAACAAUCUUUUC 

CCUUCAUCUGGCCGGCAUCUCCUCAAUUCUAGGGGCCAUUAACUUUAUCACAACAAUCAUUA 

AUAUGAAACCACCUGCAAUUUCUCAAUACCAAACCCCCUUGUUUGUGUGAGCAGUCCUCAUC 

ACGGCAGUACUUCUUCUUCUCUCGCUCCCAGUCCUUGCAGCU 

Table 1-5. Hash table for the partial COI sequence from Masturus lanceolatus. 
Tetranucleotides not present in the sequence will have an empty linked list. 
Word Index Linked list 
AAAA 0      
AAAC 1 501 526    
AAAG 2 24     
AAAT 3 142 224 389   
AACA 4 279 422 485   
AACC 5 14 18 115 502 527 
AACG 6 77 356    
AACT 7 474     
AAGA 8 25     
AAGC 9 86 343    
AAGG 10      
…       
TTTG 254 51 174 219 292 537 
TTTT 255 6 7 184 291 429 
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In the second step, the query sequence (Q) is chopped into words of the 
same length, and frequently occurring words (e.g., if A is very frequent, then 
a word made of all A’s is also expected to be frequent and have a high 
chance of being encountered by random chance) as well as words of low 
complexity (e.g., known sequence repeats) are discarded. The remaining 
words are then searched against the hash table of the database sequences 
(Ds). For example, if the word length is set to 4, and the first tetranucleotide 
in Q is AAGG, then its index is 0×64+0×16+2×4+2 = 10 (Note that A, C, G, 
T are coded here as 0, 1, 2, 3) and we can immediately confirm its absence in 
D because there is no entry in the linked list indexed by 10 (Table 1-5). 
Similarly, if the search word is TTTG, then its index is 3×64+3×16+3×4+2 = 
254, and we immediately know that it occurs at positions 51, 174, 219, 292, 
and 537 (These numbers, generated by computer, are 0-based, i.e., the first 
nucleotide is at position 0). Each match is a seed to be extended in both 
directions.  

Third, the length of the consecutive exact matches is checked against a 
cutoff score. For example, one can use Eq. (1.14). Alternatively, the bit-
score (S) can be used as a critical cutoff value: 

critical 2 2 2S =log (mn) - log (E) = log (mn/E)  (1.19) 

where m and n are effective query and database length, respectively, and the 
E-value  is taken from user input (see the previous section for more details). 
If an observed S value (Sobs), calculated according to Eq. (1.8), is greater 
than Scritical, then the query is reported, otherwise it can be ignored. 

FASTA is generally considered to be more sensitive than BLAST in 
homology detection. This may be attributed to the fact that BLAST starts 
with exact string matching, while FASTA starts with inexact string 
matching. The BLAST algorithm has problems in finding sequence 
similarities between extremely GC-biased and extremely AT-biased 
sequences, e.g.,  

 
S: CCA CGA GGT AAA ATT ... ... 
T: CCG CGG GGC AAG ATC ... ... 
 
The two sequences are identical at the amino acid level and differ only at 

the third codon positions. One is AT-rich with its third codon positions all 
being A or T, whereas the other is GC-rich with its third codon positions all 
being C or G. BLAST will fail to report the sequence similarity because it 
does not have an exact match to start with. In contrast, FASTA will readily 
identify the sequence similarity. You should apply the FASTA algorithm to 
these two sequences as an exercise.  
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Although FASTA is generally more sensitive than BLAST, I should add 
here that both are heuristic algorithms that can find a solution that is quite 
good but not necessarily optimal. To guarantee the finding of the best 
match(es), one needs to use the sequence alignment method with dynamic 
programming (the subject of the next chapter). 

Heuristic algorithms are used often in solving problems that are 
computation intensive, and are of great practical value. A well known 
example to illustrate the point is the problem of searching for the largest corn 
in a large cornfield versus the problem of searching for a “very large” corn, 
say within the top 1%. The first involves the measuring and comparison of 
all corns in the cornfield, which may be extremely laborious, although you 
are guaranteed to find the largest corn. In contrast, the second problem can 
be easily solved by taking a random sample of corns, fitting a statistical 
distribution to the corns, finding the size of the corn that lies above 99% of 
the distribution, and using this criterion to search for the corn that is larger 
than the fixed criterion (or simpler, if the sample is sufficiently large, 
picking the largest corn in the sample). In addition, after estimating the 
density of the corn and measuring the size of the cornfield, we can estimate 
the total number of corns in the field and obtain a fairly good estimate of the 
size of the largest corn. The formulation and solution of the second problem 
belong to the heuristic approach. 

The heuristic approach is used not only in biology or science, but also in 
sociology, psychology and economics. For example, Herbert A. Simon, 
Nobel laureate in economics in 1978, contributed significantly to the 
revelation of practical human decision-making as a process of searching for 
satisfactory solutions by heuristic methods rather than optimal solutions by 
optimality models. Choosing a religion to guide our behavior is in most 
cases based on the result of a heuristic approach. In our life time, we will 
never be able to do an exhaustive comparison of different religions, and we 
typically adopt one that seems to work pretty well for us and for our 
families. The happy ending in the movie “Pretty Woman” is a good example 
of a successful application of a fast heuristic approach. Indeed, one may 
never get married if one is determined to find the best spouse. However, a 
student of mine has brought my attention to the increasing divorce rate 
which serves as a good illustration of the failure of the heuristic approach in 
building a family. This highlights an important point concerning heuristic 
method. Being heuristic does not mean that one would settle with any 
solution, even a very haphazard one. So don’t take me responsible for your 
hasty heuristic approach in real life. 
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4. HOMOLOGY SEARCH AND SEQUENCE 
ANNOTATION 

Both genomic sequencing and large-scale characterization of expressed 
sequence tags (ESTs) demand efficient computational tools for automatically 
annotating the large number of the resulting sequence reads. I have already 
mentioned at the beginning of the chapter that two major categories of gene-
annotation methods are in current use, with one based on known genes in 
molecular databases, and the other based on known gene structures.  

I wish to highlight two important points here. First, the rapid increase of 
well-annotated genomic databases coupled with the improvement of the 
special-purpose databases for protein functional classification such as COG 
(Tatusov et al., 2003; Tatusov et al., 1997), pFAM (Bateman et al., 1999; 
Bateman et al., 2004), SMART (Letunic et al., 2004; Letunic et al., 2002; 
Ponting et al., 1999; Schultz et al., 2000), pSort (Nakai and Horton, 1999) 
and CDD (Marchler-Bauer et al., 2005; Marchler-Bauer et al., 2002) has 
dramatically increased the popularity of the first approach. A number of EST 
annotation platforms using the first approach are now available (Ayoubi et 
al., 2002; Davila et al., 2005; Koski et al., 2005; Mao et al., 2003; Martin et 
al., 2004; Paquola et al., 2003), based on searching against the non-
redundant GenBank files or/and special-purpose databases for protein 
functional classification. 

Second, the proliferation of the primary databases and of the secondary 
sequence annotation platforms have given rise to two major problems for 
practicing researchers (Marchler-Bauer et al., 2005; Marchler-Bauer et al., 
2002). The first is that any large-scale query against any of these primary 
databases such as COG (Tatusov et al., 2003; Tatusov et al., 1997), pFAM 
(Bateman et al., 1999; Bateman et al., 2004), SMART (Letunic et al., 2004; 
Letunic et al., 2002; Ponting et al., 1999; Schultz et al., 2000) will take 
unbearable amount of time. To make things worse, different databases 
contain overlapping but not identical subsets of proteins and protein families, 
and one often has to query these databases sequentially in order to maximize 
the chance of having a good hit. Second, different databases have different 
methods for classifying proteins into functional families and a sequence 
query against different databases may yield conflicting results. CDD 
(Marchler-Bauer et al., 2005; Marchler-Bauer et al., 2002) was created 
mainly in response to these two problems. First, it imports and cross-
validates the protein annotations from major protein function databases such 
as COG (Tatusov et al., 2003; Tatusov et al., 1997), pFAM (Bateman et al., 
1999; Bateman et al., 2004), SMART (Letunic et al., 2004; Letunic et al., 
2002; Ponting et al., 1999; Schultz et al., 2000), removes redundant 
annotations, resolves annotation conflicts and augment the database entries 
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by adding other curated protein sequences. Second, CDD uses the RPS-
BLAST search engine to dramatically increase the search speed. This is 
augmented by pre-computation of much of the output. The joint effect of 
these improvements results in more hits, fewer conflicts and shorter search 
time than before. One particular advantage of CDD is its web API 
(Application Programming Interface) which allows programmers to perform 
automated searches and annotations. 

5. POSTSCRIPT 

A student of mine once told me that she always found it miraculous to 
receive many homologous sequences from diverse organisms after 
BLASTing a human gene against GenBank. The various forms of nature’s 
creation are so intricately and closely related to each other, and people of 
different races or different nations are so similar to each other genetically, 
that she found it a mystery that modern humans were still so ready and 
willing to kill and torture each other. “Aren’t we killing ourselves by killing 
people with their genomes essentially identical to ourselves?” she asked. 

I think we are, and we should stop. I can’t resist the temptation of 
concluding this chapter with a quote from Albert Einstein (Einstein et al., 
1931, p. 6) when he was discussing man’s relationship to others: “This 
subject brings me to that vilest offspring of the herd mind - the odious 
militia. The man who enjoys marching in line and file to the strains of music 
falls below my contempt; he received his great brain by mistake - the spinal 
cord would have been amply sufficient. This heroism at command, this 
senseless violence, this accursed bombast of patriotism - how intensely I 
despise them! War is low and despicable, and I had rather be smitten to 
shreds than participate in such doings.” 

Yet in spite of Einstein’s antiwar stance, his successes have often been 
depicted with military analogies, such as how the established castles of 
physics came tumbling down at the trumpet of his theory of relativity, as if 
Einstein is a military general bent on conquering. In a similar vein, Louis 
Pasteur was accredited with military and strategic genius, that “he had 
something of Napoleon in his way of always taking the initiative, of 
suddenly changing the terrain, of showing up where he was least expected, 
of suddenly concentrating his forces in a narrow sector to make the 
breakthrough, …… Without a doubt, Pasteur’s saga was as stirring as 
Napoleon’s!” (Jacob, 1988, p. 248). 

Why does a life of saving have to be glorified with a life of killing? 
Why should human evolution in the 21st century still be shaped by the 

ugly selection force called wars? 
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Einstein signed his last letter, one week before his death, giving 
permission to have his name on a manifesto urging all nations to give up 
nuclear weapons. May the international peace he had dreamed of all his life 
arrive sooner! 



 

Chapter 2 

SEQUENCE ALIGNMENT 
 

 
 

1. INTRODUCTION 

Sequence alignment is not only the essential first step in molecular 
phylogenetics, quantification of substitution patterns, and dating of 
speciation and gene duplication events, but also a powerful tool for identify 
mutations leading to genetic diseases. For example, aligning the β-
hemoglobin gene sequence from one type of β-thalassemia against the 
normal β-hemoglobin gene immediately reveals an insertion of T at site 79 
(Figure 2-1).  

10        20        30        40        50      60   

----|----|----|----|----|----|----|----|----|----|----|----|--

Normal  ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT

Thalas. ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGT

************************************************************** 

70        80        90       100       110       120     

--|----|----|----|----|----|----|----|----|----|----|----|----

Normal  GGATGAAGTTGGTGGT-GAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGG...... 

Thalas. GGATGAAGTTGGTGGTTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGG......

**************** ***************************************
 

Figure 2-1. Alignment between the normal and mutant β-hemoglobin gene sequences. 

The insertion creates an inframe stop codon and results in a truncated β-
hemoglobin protein. When the β-hemoglobin locus is heterozygous with one 
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mutant and one normal gene, the carrier is said to have β-thalassemia minor 
and can be easily detected by gel electrophoresis because the mutant β-
hemoglobin, being much shorter than the normal, would migrate much faster 
on the gel under an electric field. 

This chapter covers (1) pairwise global and local alignment by dynamic 
programming with different scoring schemes, from the simplest scoring 
scheme with match/mismatch scores and gap penalties all specified by 
constants, to more useful scoring scheme with match/mismatch scores 
specified by a similarity matrix and gap penalties specified by the affine 
function, (2) profile alignment between one sequence and a set of aligned 
sequences which is essential for practical implementation of multiple 
sequence alignment, and (3) multiple alignment that is reduced to pair-wise 
alignment and profile alignment by using a guide tree. Most textbooks on 
bioinformatics omit the affine function, and no textbook I know of includes 
any detailed explanation of profile alignment. 

Dynamic programming algorithms constitute a general class of 
algorithms not only used in sequence alignment, but also in many other 
applications. For example, the Viterbi algorithm and the forward algorithm 
used in hidden Markov models (HMM) are also dynamic programming 
algorithms. We will cover HMM in great detail and illustrate with numerical 
examples latter. Learning the dynamic programming algorithms used in 
sequence alignment paves the way for more advanced applications in latter 
chapters. 

Sequence alignment methods, especially those for obtaining multiple 
alignments, are central to molecular biology, evolution and phylogenetics. 
One of the global sequence alignment programs, ClustalW (Higgins and 
Sharp, 1988; Thompson et al., 1994) is probably the second most used 
bioinformatics tool next to the BLAST suite of programs (Altschul et al., 
1990; Altschul et al., 1997). 

2. PAIRWISE ALIGNMENT 

Given two strings S (=s1s2...sn) and T (=t1t2...tm), a pairwise alignment of 
S and T is defined as an ordered set of pairings of (si, tj) and of gaps (si,−) 
and (−,tj), with the constraint that the alignment is reduced to the two 
original strings when all gaps in the alignment are deleted. A prefix of S, 
specified here as Si, is a substring of S equal to s1s2...si, where i ≤ n.  

An optimal alignment is operationally defined as the pairwise alignment 
with the highest alignment score for a given scoring scheme. For this reason, 
an optimal alignment is meaningless without the specification of the scoring 
scheme.  
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Alignment by dynamic programming guarantees that the resulting 
alignment is the optimal alignment or one of the equally optimal alignments. 
We will first illustrate the global pairwise alignment (Needleman and 
Wunsch, 1970) followed by local pairwise alignment (Smith and Waterman, 
1981b). Local sequence alignment is for searching local similarities between 
sequences, e.g., homeobox genes which are not similar globally but all share 
a very similar homeodomain motif. The best known algorithm for local 
alignment is Smith and Waterman (1981b).  

Here we will first learn a simple dynamic programming algorithm for 
pairwise alignment using a simple scoring scheme with constant gap penalty. 
This is then extended in two ways, first by introducing a similarity matrix to 
replace match and mismatch scores, and second by introducing the affine 
function to better approximate the origin of the insertion and deletion during 
sequence evolution. 

2.1 Pairwise alignment with constant gap penalty 

2.1.1 Global alignment 

Suppose we want to align two sequences S and T with S = ACGT and T 
= ACGGCT. A simple scoring scheme is used with a constant gap penalty 
(G) of -2, a match score (M) of 2 and a mismatch score (MM = -1).   Global 
alignment with the dynamic programming approach is illustrated 
numerically in Figure 2-2. One sequence of the two sequences occupies the 
top row and will be referred to hereafter as the row sequence (sequence S in 
our example). The other sequence occupies the first column and will be 
referred hereafter as the column sequence (sequence T in our example). 
Based on these two sequences, two matrices are computed. The first is the 
scoring matrix to obtain the alignment score, with the dimensions (n+1, 
m+1). The second is the backtrack matrix needed to obtain the actual 
alignment, with the dimensions (n,m). In Figure 2-2, the two matrices are 
superimposed, with the scoring matrix being the numbers and the backtrack 
matrix being made of arrows. The backtrack matrix is sometimes called the 
traceback matrix. However, the word traceback is marked by an annoying 
red wavy line in Microsoft WORD. So my choice of the two is obvious. 

A value in row i and column j in the scoring matrix is the alignment score 
between a prefix of S and a prefix of T, i.e., Sj and Ti. This will become clear 
later.  

The first row and the first column of the scoring matrix is filled with i×G 
(where i = 0, 1, ..., n) and j×G (where j = 0, 1, ..., m), respectively.  They 
represent consecutive insertion of gaps. For example, the number -8 in the 
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last cell of the first row of the scoring matrix implies the following 
alignment with four consecutive gaps in the column sequence and an 
alignment score of -8: 

 
ACGT 
---- 

 

 

Figure 2-2. . Computation involved in obtaining the scoring and the backtrack matrices 
(superimposed) with the match score equal to 2, mismatch -1 and the gap penalty equal to -2. 
There are two equally optimal alignments each with an alignment score of 4. 

Similarly, the number of -12 in the last cell of the first column of the 
scoring matrix implies the following alignment with six consecutive gaps on 
the row sequence and an alignment score of -12: 

 
------ 
ACGGCT 
 
The first cell where we need to compute the score is the one 

corresponding to the first character of S and T, i.e., the cell with a value of 2. 
To compute the value for the cell, we need values in three other cells, one to 
its left, one above it and one to its upleft, with their cell values designated as 
L, U and UL, respectively. Note that the cell has an upleft (UL) value of 0, a 
top value (U) equal to -2, and a left value (L) equal to -2. The following 
three values are calculated: 

A C G T

0 -2 -4 -6 -8

A -2 2 0 -2 -4

C -4 0 4 2 0

G -6 -2 2 6 4

G -8 -4 0 4 5

C -10 -6 -2 2 3

T -12 -8 -4 0 4
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DIAG = UL + IF(Corresponding characters match, M, MM) = 0 + 2 = 2 
LEFT = L + G = -2 + (-2) = -4 
UP = U + G = -2 + (-2) = -4 
 
The IF function above takes the value of M if the two corresponding 

nucleotides match, or MM if they do not. The maximum of these three 
values is DIAG, i.e., 2, which was entered as the first computed element in 
the scoring matrix. The cell is also filled with an upleft arrow because DIAG 
is the maximum of the three values. If LEFT (or UP) happened to be the 
maximum of the three, we would have put a left-pointing (or up-pointing) 
arrow in the corresponding cell in the backtrack matrix.  

The computation is from left to right and from top to bottom. For the 
second cell, the maximum of the three values is LEFT (= 0), and the 
corresponding cell in the backtrack matrix is filled with a left-pointing 
arrow. We continue the computation to the bottom right cell, with the final 
value in the bottom-right value equal to 4. This is the alignment score. You 
may note that the cell corresponding to the nucleotide G in the row sequence 
and the second G in the column sequence is special with two arrows. You 
will find that the DIAG and UP values are both equal to 4 in this cell. Hence 
both the upleft and the up-pointing arrows in this cell. Such a cell implies the 
existence of equally optimal alignments. 

The aligned sequences are obtained directly from the backtrack matrix. 
We start from the bottom-right cell and follow the direction of the arrow in 
the cell. The upleft arrow in the bottom-right cell means that we should stack 
the two corresponding nucleotides (T and T) in the row and column 
sequences (Figure 2-3). Note that you would be stacking the two 
corresponding nucleotides regardless of whether they are the same or 
different as long as an upleft arrow is in the cell. A left-pointing or up-
pointing arrow in the cell means a gap in the column sequence or row 
sequence, respectively.  

(a) (b)

654321 654321
ACG--T AC-G-T
ACGGCT ACGGCT

 

Figure 2-3. The protocol of obtaining the sequence alignment by following the backtrack 
matrix. The numbers in the first row show the order of obtaining the alignment site by site 
from the last to the first (i.e., backtracking). 

The upleft arrow in the bottom-right cell leads us to the cell containing an 
up-pointing arrow, meaning a gap in the row sequence, i.e., we stack a gap 
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character “-” over the corresponding nucleotide (C) in the column sequence   
(Figure 2-3). This up-pointing arrow brings us to the special cell with two 
arrows, one pointing upleft and the other up (Figure 2-2). This leads to 
alternative construction of the sequence alignment. If we choose the up-
pointing arrow, we will stack a gap character over the corresponding 
nucleotide (G) in the column sequence and proceed to the cell with a value 
of 6 and an upleft arrow. This ultimately leads to the sequence alignment in 
Figure 2-3a. Alternatively, we may choose to follow the upleft arrow and 
stack the two nucleotides (G in both sequences) as shown in Figure 2-3b. 
This ultimately leads to the alternative sequence alignment in Figure 2-3b.  

Both alignments in Figure 2-3 have four matches, two gaps, and zero 
mismatch. So the alignment score is 4×M+2×G+0× (MM) = 4, which we 
already know after completing the scoring matrix whose bottom-right cell 
contains the alignment score. 

Recall that each cell with a score and an arrow specifies an optimal 
alignment between a prefix of S and a prefix of T, i.e., Sj and Ti. For 
example, the first cell with a calculated value of 2 and an upleft arrow 
specifies the optimal alignment of S1 ( = ‘A’) and T1 (= ‘A’) with an 
alignment score of 2 (which is the match score). The next cell to the right, 
with a score of 0 and a left arrow, specifies the optimal alignment of S2 and 
T1 (The 0 score results from a match and a gap penalty): 

 
AC 
A- 
 
The cell with a score of 4 and two arrows specifies two equally optimal 

alignments both with an alignment score of 4: 
 
Alignment 1: 
ACG- 
ACGG 
 
Alignment 2: 
AC-G 
ACGG 
 
When sequences are long, there might be many equally optimal 

alignments and few computer programs would try to find and output all of 
them. Instead, only one path is followed, leading to the output of only one of 
the potentially many equally optimal alignments.  

Dynamic programming guarantees that the resulting alignment is optimal 
given the scoring scheme. In other words, there is no alignment that can have 
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an alignment score greater than 4 given the two sequences and the scoring 
scheme of M = 2, MM = -1 and G = -2. However, an optimal alignment may 
change when the scoring scheme is changed. This is illustrated in Figure 2-4, 
where the use of scoring scheme 1 would result in Alignment 1 (with 
alignment score = 14) better than Alignment 2 (with alignment score = 12) 
but the use of scoring scheme 2 would lead to the opposite, with Alignment 
2 (alignment score = 20) much better than Alignment 1 (alignment score = 
9).  

Alignment 1: ACCCAGGGCTTA
ACCCGGGCTTAG

Alignment 2: ACCCAGGGCTTA-
ACCC-GGGCTTAG

Scoring scheme 1: M = 2, MM = 0, G = -5
Scoring scheme 2: M = 2, MM = -1, G = -1

Alignment  Match  Mismatch  Gap  Score1  Score2
1 7 5 0     14        9
2 11 0 2     12       20

 

Figure 2-4. Illustration of the dependence of optimal alignment on scoring scheme. Score1 
and Score2 in the bottom table refer to Scoring scheme 1 and Scoring scheme 2, respectively. 

Because there is no objective way of choosing the right scoring scheme, 
it is therefore important to keep in mind that sequence alignment is a method 
of data exploration instead of an analytical method that will lead to a single 
best solution. For this reason, nearly all computer programs for sequence 
alignment allow the user to try various scoring schemes and post-alignment 
manual editing. 

2.1.2 Local alignment 

Local sequence alignment (Smith and Waterman, 1981b) is similar to 
global alignment presented above, with only three major differences. First, 
the first row and the first column of the scoring matrix is filled with zero 
instead of i×G. Second, whenever the cell value becomes negative (i.e., the 
maximum of the three values is smaller than 0), the cell value is set to 0. 
Thus, when two sequences have a short but perfect local match, and little 
similarity elsewhere, the alignment score of the short but perfect match is not 
affected by the low similarity elsewhere. Third, because a local alignment 
can end anywhere in the matrix, we will not trace back from the cell in the 
bottom-right corner of the score matrix. Instead, we find the maximal score 
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in the matrix and trace back from that point until we reach a cell with a value 
of 0, which indicates the start of the local alignment. 

In Chapter 1 we have already covered two widely used heuristic methods 
for local alignment, i.e., BLAST and FASTA. In Chapter 7 we will learn 
Gibbs sampler which is another method for searching local similarities and 
local alignment. 

2.1.3 The simple scoring scheme needs extension 

The simple scoring scheme that we have used has three major problems. 
First, transitions (i.e., substitutions between nucleotides A and G and 
between C and T) generally occur more frequently than transversions (When 
A or G is replaced by C or T). This suggests that we should not treat 
transitional differences and transversional differences with the same 
mismatch score. Instead, transitions should be penalized less than 
transversions. Second, there are often ambiguous bases in input the 
sequences, e.g., R for A or G and Y for C or T. An A-R pair is neither a 
strict match nor a strict mismatch, but has a probability of 0.5 being a match 
and a probability of 0.5 being a transition. The simple scoring scheme we 
have used cannot handle these problems, which necessitates the use of a 
similarity matrix. 

The simple scoring scheme also has another, perhaps even more serious 
problem, caused by constant gap penalty. A biologist will complain loudly 
that an alignment method is wrong if it considers the two alternative 
alignments in Figure 2-3 as equally good, and would have chosen the 
alignment in Figure 2-3a as a better alignment. The simplest solution to this 
problem is to use what is called an affine function for gaps. In the following 
sections, we will learn these two extensions, first with a similarity matrix 
and second with an affine function. 

2.2 Pairwise alignment with a similarity matrix 

2.2.1 DNA matrices 

One example of a similarity matrix is the “transition bias matrix” (Table 
2-1) used in DAMBE (Xia, 2001; Xia and Xie, 2001b) for multiple 
alignment with a star tree. A start tree contains only one internal node with 
all leaves connected to this same internal node. The meaning of the top 4×4 
matrix (bolded values in Table 2-1) is easy to understand. The first four 
diagonal values of 30 are equivalent to the match score, a mismatch score 
involving a transversion or a transition is -30 or 0, respectively, because 
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transitions in general occur much more frequently than transversions and 
consequently penalized less (Table 2-1). The rest of the matrix (Table 2-1) 
involves ambiguous codes specified in Table 2-2, according to the 
Nomenclature Committee of the International Union of Biochemistry (1985). 

Table 2-1. A similarity matrix accommodating the transition bias frequently observed in 
nucleotide substitutions. 
A C G U R Y M W S K D H V B N 
30               

-30 30              
0 -30 30             

-30 0 -30 30            
15 -30 15 -30 15           

-30 15 -30 15 -30 15          
0 0 -15 -15 -8 -8 0         
0 -15 -15 0 -8 -8 -8 0        

-15 0 0 -15 -8 -8 -8 -15 0       
-15 -15 0 0 -8 -8 -15 -8 -8 0      

0 -20 0 -10 0 -15 -10 -5 -10 -5 -3     
-10 0 -20 0 -15 0 -5 -5 -10 -10 -10 -3    

0 -10 0 -20 0 -15 -5 -10 -5 -10 -7 -10 -3   
-20 0 -10 0 -15 0 -10 -10 -5 -5 -10 -7 -10 -3  
-8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 

 

Table 2-2. IUB codes of nucleotides. 
Code Meaning Complement 
A A T 
C C G 
G G C 
T/U T A 
M A or C K 
R A or G Y 
W A or T W 
S C or G S 
Y C or T R 
K G or T M 
V A or C or G B 
H A or C or T D 
D A or G or T H 
B C or G or T V 
X/N G or A or T or C X 
- Gap (not G or A or T or C) - 
 
The coding scheme is often refereed to as the IUB code or IUB notation. For 
example, R represents either A or G, so an A-R pair has a probability of 0.5 
being an A-A match and a probability of 0.5 being an A-G transition. The 
corresponding score (=15 in Table 2-1) is consequently somewhere between 
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a perfect match and a transition. In contrast, Y stands for either C or T/U and 
an A-Y pair is always a transversion, with a score of -30 (Table 2-1). 

2.2.2 Protein matrix 

Amino acids differ from each other in volume, charge, polarity and many 
other properties (Figure 2-5), and amino acid residues in a protein confer to 
the protein different properties. Proteins with long half-life (>1 day) 
typically have glycine, valine or methionine at their N-terminus, whereas 
those with short half-life (a few minutes) typically have positively charged 
residues (arginine, lysine) at their N-terminus. A small amino acid residue 
such as glycine and alanine at the penultimate site (the second amino acid 
site in the nascent peptide) allows the initiator methionine to be efficiently 
cleaved (Moerschell et al., 1990). Amino acid replacements involving very 
different amino acids are generally selected against (Xia and Li, 1998). For 
this reason, a scoring scheme with only match and mismatch is rarely used 
for protein sequence alignment.  

H2N CH C

CH3

OH

O
Ala

H2N CH C

CH2

OH

O

CH2

CH2

NH

C

NH2

NH

Arg

H2N CH C

CH2

OH

O

C

NH2

O

Asn

Asp
H2N CH C

CH2

OH

O

C

OH

O

Cys
H2N CH C

CH2

OH

O

SH

H2N CH C

CH2

OH

O

CH2

C

OH

O

Glu

H2N CH C

CH2

OH

O

CH CH3

CH3

Leu

H2N CH C

CH2

OH

O

OH

Ser

H2N CH C

CH2

OH

O

CH2

C

NH2

O

Gln

H2N CH C

CH2

OH

O

CH2

CH2

CH2

NH2

Lys

H2N CH C

CH

OH

O

OH

CH3

Thr

H2N CH C

H

OH

O
Gly

H2N CH C

CH2

OH

O

CH2

S

CH3

Met

H2N CH C

CH2

OH

O

HN

Trp

H2N CH C

CH2

OH

O

OH

Tyr

H2N CH C

CH2

OH

O

N

NH

His

H2N CH C

CH2

OH

O
Phe

H2N CH C

CH

OH

O

CH3

CH2

CH3

Ile

HN

C OH

O
Pro

H2N CH C

CH

OH

O

CH3

CH3

Val

 

Figure 2-5. Structural formula of 20 amino acids. 
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A frequently used example to illustrate the effect of an amino acid being 
replaced by a different amino acid is the sickle-cell anemia. Sickle-cell 
anemia is caused by a single amino acid replacement in the β-chain of the 
human hemoglobin at the six position, with a glutamate residue replaced by 
a valine residue (Figure 2-6). Glutamate is negatively charged and 
hydrophilic, and tends to stay on the surface of the protein in the aqueous 
environment in the blood. In contrast, valine is a non-polar and hydrophobic 
residue and tends to shrink into the middle of the protein. The deformed 
protein molecules then form bundles and distort the red blood cell that 
carries them, resulting in the characteristic shape of a sickle (Figure. 2-6). It 
is generally true that amino acids of different polarity rarely replace each 
other (Xia and Li, 1998), whereas amino acids with similar polarity can 
replace each other quite frequently (Xia and Kumar, 2006).  

Hb-A: Val-His-Leu-Thr-Pro-Glu-Glu……
Hb-S: Val-His-Leu-Thr-Pro-Val-Glu……  

Figure 2-6. Sickle-cell anemia is caused by a single amino acid replace of a glutamate residue 
at the sixth position (Hb-A allele) by a valine residue (Hb-S allele). The mutant deformed 
hemoglobin molecules distort the red blood cell which progresses from the normal disk-like 
shape to the sickle-like shape. 

Frequently used substitution matrices for protein sequences are of two 
types, the PAM matrix (Dayhoff et al., 1978) and the BLOSUM matrix 
(Henikoff and Henikoff, 1992). The letter codes for amino acids proposed by 
the Nomenclature Committee of the International Union of Biochemistry 
(1985) are shown in Table 2-3. These codes are now universally adopted by 
the scientific community. I have omitted an introduction of these matrices 
because (1) the limit of page size of the book precludes the presentation of 
20×20 matrices and (2) an excellent introduction of these matrices 
appropriate for readers of this book is already available (Higgs and Attwood, 
2004). In short, both PAM and BLOSUM matrices are derived from 
sequence alignment related proteins, with the former based on global 
alignment and the latter based on local alignment. The PAM1 matrix is 
based on comparisons of sequences with no more than 1% divergence and 
all other PAM matrices are derived from this PAM1 matrix. The requirement 
of proteins with no more than 1% divergence is necessary for reliable global 
alignment. The most frequently used BLOSUM matrix is BLOSUM 62 
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which is calculated from comparisons of sequences with no less than 62% 
divergence. BLOSUM xx matrix is based on sequence blocks with no less 
than xx% divergence, i.e., all BLOSUM matrices are based on observed 
alignments in contrast to the PAM matrices all derived from the PAM1 
matrix. BLOSUM 62 is the default matrix in BLAST 2.0.  

Table 2-3. IUB letter codes of amino acids. 
1-letter 3-letter Meaning Codon(1] 
A Ala Alanine GCT,GCC,GCA,GCG 
B  Asp or Asn GAT,GAC,AAT,AAC 
C Cys Cysteine TGT,TGC 
D Asp Aspartic GAT,GAC 
E Glu Glutamic GAA,GAG 
F Phe Phenylalanine TTT,TTC 
G Gly Glycine GGT,GGC,GGA,GGG 
H His Histidine CAT,CAC 
I Ile Isoleucine ATT,ATC,ATA 
K Lys Lysine AAA,AAG 
L Leu Leucine TTG,TTA,CTT,CTC,CTA,CTG 
M Met Methionine ATG 
N Asn Asparagine AAT,AAC 
P Pro Proline CCT,CCC,CCA,CCG 
Q Gln Glutamine CAA,CAG 
R Arg Arginine CGT,CGC,CGA,CGG,AGA,AGG 
S Ser Serine TCT,TCC,TCA,TCG,AGT,AGC 
T Thr Threonine ACT,ACC,ACA,ACG 
V Val Valine GTT,GTC,GTA,GTG 
W Trp Tryptophan TGG 
X Xxx Unknown  
Y Tyr Tyrosine TAT,TAC 
Z  Glu or Gln GAA,GAG,CAA,CAG 
* End Terminator  TAA,TAG,TGA 
(1) assuming the standard genetic code. 

 
 

2.3 Pairwise alignment with gap penalty specified by the 
affine function 

The second extension of the simple scoring scheme is to replace the 
constant gap penalty with what is called an affine function. The problem 
with the constant gap penalty is exemplified in the two optimal alignments in 
Figure 2-3. From a biological point of view, the alignment with two 
independent gaps (Figure 2-3b) is less likely than the one with only one gap 
of length 2 (Figure 2-3a). So we should find a gap penalty scheme that 
favors the alignment in Figure 2-3a against the one in Figure 2-3b. The 
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affine function, which is used in BLAST (Altschul et al., 1990; Altschul et 
al., 1997), is the simplest of the gap penalty schemes that will do the job. 
One particular advantage of the affine function is that it allows the alignment 
to be completed in time proportional to MN, where M and N are the length 
of the two sequences to be aligned. 

The affine function for gap penalty is specified as 

( ) ( )G x a bx= − +  (2.1) 

where x is the length of the gap, and a and b are the gap open and gap 
extension penalties, respectively. The gap penalty increases linearly with the 
length of the gap. BLAST has its defaults with a = 5 and b = 2, together with 
the match score (M) = 1 and mismatch score (MM) = -3. 

Figure 2-7 illustrates the computation involved in aligning two sequences 
with M = 1, MM = -3 and the gap penalty specified with a = 5 and b = 2, i.e., 
the default BLAST scoring scheme. Note that, while the first value in the 
matrix is still 0 (Figure 2-7) as before, the next value on the first row or first 
column is -7 which results in -(a + 1b) = -(5 + 1 × 2) = -7 (Note that a shift 
leftward or downward means inserting a gap either in the row or in the 
column sequence, respectively, and the first gap is associated with both the 
gap open and gap extension penalties. The values after -7 on the first row or 
on the first column are decreased by gap extension only, i.e., if a gap is 
already open, additional gaps will only suffer from gap extension penalties. 

We again need to calculate three values in each remaining cells. In 
general, we calculate the DIAG, LEFT and UP values as specified below and 
fill the cell with the maximum of the three, 

 
DIAG = UL + if(match, M, MM) 
LEFT = L – If(GapOpened already, 0, a) – b 
UP = U – if(GapOpened already, 0, a) – b 
 
For the first cell, DIAG = 1 because of the match of the two 

corresponding nucleotides, i.e., the A-A pair. The UP and LEFT values are 
both -9. So we have 1 in the cell with an upleft arrow (Figure 2-7). For the 
next cell, we have 

 
DIAG  = -7 -3 = -10 
UP = -9 - 2 = -11 
LEFT = 1 - 5 - 2 = -6 
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A C G T

0 -7 -9 -11 -13

A -7 1 -6 -8 -10

C -9 -6 2 -5 -7

G -11 -8 -5 3 -4

G -13 -10 -7 -4 0

C -15 -12 -9 -6 -7

T -17 -14 -11 -8 -5  

Figure 2-7. Pairwise alignment with M = 1, MM = -3, and gap penalty defined by an affine 
function with a = 5 and b = 2. 

Note that LEFT value for this cell is penalized with both the gap open 
and gap extension penalty because the proceeding cell (with value = 1) has 
an upleft arrow, i.e., no gap (Figure 2-7). If the proceeding cell had a left-
pointing arrow, which means that the gap has already been opened, only the 
gap extension penalty would be applied. The largest value of the three is 
LEFT (= -6), and the cell is therefore filled with -6 with a left-pointing 
arrow. This process continues until we get to the last cell, with a value of -5. 
This is the alignment score based on the scoring scheme with gap penalties 
specified with the affine function. 

There are a few cells that need some explanation. The first is the cell with 
a value of -4 corresponding to the nucleotide G in the row sequence and the 
second nucleotide G in the column sequence. The cell has two arrows, one 
pointing up and one pointing upleft (Figure 2-7). This is because both the 
DIAG and UP values are equal to -4: 

DIAG  = -5 + 1 = -4 
UP = 3 – (5 + 2) = -4 
Had this cell been the last cell, i.e., if we were aligning the partial row 

sequence of “ACG” against the partial column sequence “ACGG”, we would 
get two alternative optimal alignments both with alignment score of -4: 

 
Alignment 1: ACG- 
             ACGG 
 
Alignment 2: AC-G 
             ACGG 
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The other cell with two arrows is in the last column, second row from the 
bottom. Had this cell been the last cell, i.e., if we were aligning the row 
sequence of “ACGT” against the partial column sequence “ACGGC”, we 
would get two alternative optimal alignments both with alignment score of -
7 (i.e., three matches, one mismatch and one gap open and one gap extension 
penalty): 

Alignment 1: ACGT- 
             ACGGC 
 
Alignment 2: ACG-T 
             ACGGC 
 
The trickiest cell is at the second last column and second last row, i.e., 

the one with an UP value of -6 and an up-pointing arrow. The DIAG and 
LEFT values for this cell are simple: 

 
DIAG = -7 – 3 = -10 
LEFT = -9 – 2 = -11 
 
However, the UP value depends on which of the arrows in the cell above 

(i.e., the cell with a value of -4 and two arrows) we should take. If we take 
the up-pointing arrow (i.e., a gap has already been opened), then UP = -4 – 2 
= -6. However, if we take the upleft arrow (i.e., no gap opened yet), then UP 
= -4 – (5 + 2) = -11. We should choose the maximum value, i.e., -6, and this 
constrains the previous cell (i.e., the cell with a value of -4 and two arrows) 
to have an up-pointing arrow. In other words, after we have put a -6 value 
into the cell, the cell above will no longer have two arrows but will only 
have an up-pointing arrow. It is for this reason that I have set the upleft 
arrow in that cell to grey but left the up-pointing arrow black. 

Now following the backtrack arrows, we obtain the alignment in Figure 
2-3a. The alignment has four matches and one gap of length 2. So the 
alignment score is 4 × 1 – (5 + 2 × 2) = -5, which confirms that our scoring 
matrix (Figure 2-7) has been obtained correctly (note that the lower right 
value in the scoring matrix is the alignment score). 
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3. MULTIPLE SEQUENCE ALIGNMENT 

3.1 Profile alignment 

Profile alignment aligns one sequence (designated T) against a set of 
already aligned sequences in the form of a profile (designated S), or align 
two profiles S1 and S2. It is an essential technique for multiple sequence 
alignment. There are various approaches to profile alignment.  The simplest 
is to get a consensus sequence from S (designated CS) and align T and CS by 
using the pairwise alignment method we learned in previous sections. 
Whenever we insert a gap in CS, we insert a corresponding gap in all 
sequences in S. However, we will learn a mathematically more acceptable 
approach in this section. 

Suppose we want to align sequence T = “ACG” against S containing the 
following three aligned sequences: 

 
AC-GT 
AC-GT 
GCCAT 
 
The first step in profile alignment is to represent S with a site-specific 

frequency profile. The set of three aligned sequences have five symbols (A, 
C, G, T and the gap symbol “-”) and can be represented by the profile shown 
in the first five rows in Figure 2-8. The first column is a list of the five 
symbols, followed by five data columns corresponding to five aligned sites. 
The first data column represents the frequencies of symbols in the first 
aligned site, with the frequencies of A and G being 2/3 and 1/3, respectively. 
The second data column represents the frequencies of the second aligned site 
with the frequency C being 1 and the frequencies of other symbols being 0, 
and so on. Thus, S can always be represented by a site-specific profile in the 
form of a N×L matrix where N is the number of symbols and L is the 
sequence length. It is important to note that any phylogenetic information 
among sequences in S is lost in converting the set of aligned sequences to a 
profile. 

The profile representation in the Clustal family of programs (Higgins and 
Sharp, 1988; Thompson et al., 1994) uses all ambiguous codes (Tables 2-2 
and 2-3). In addition, two synonymous pairs of ambiguous codes are used in 
Clustal, the X/N pair and the T/U pair. It would be computationally more 
efficient to pre-processing the sequences to use either X or N (or either T or 
U) but not both, especially when one uses a programming language that does 
not support pointers, e.g., Visual Basic or Java. 
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A 2/3 0 0 1/3 0
C 0 1 1/3 0 0
G 1/3 0 0 2/3 0
T 0 0 0 0 1
- 0 0 2/3 0 0
0 -3 -6 -9 -12 -15

A -3 5/3 -4/3 -5/3 -14/3 -23/3

C -6 -4/3 11/3 10/3 1/3 -8/3

G -9 -13/3 2/3 3 5 2
 

Figure 2-8. Application of dynamic programming to profile alignment. T (=“ACG”) is the 
column sequence, and the “row sequence” is a profile.  

The second step is to perform a special version of the dynamic 
programming to generate the score matrix and backtrack matrix. With the 
length of T being 3 and the length of S being 5, there are only 15 cells to fill 
in. Because one needs to compute three values (DIAG, UP and LEFT) for 
each cell, the total number of values to compute is 45. Yet even for such a 
small problem, manual computation is quite difficult and error-prone.  

The score matrix and the backtrack matrix (Figure 2-8) were obtained 
with a special scoring scheme. There are two kinds of matches, a match 
involving two identical nucleotides, or a match involving two gap symbols. 
The match score for the former and latter are designated MNuc and MGap, 
respectively, with corresponding values set to 2 and 1, respectively, in the 
example. There are also two kinds of mismatches, one involving a 
transitional difference and the other a transversional difference. They are 
designated as MMs and MMv, respectively, with corresponding values set to 
1 and -1, respectively, in this example. In order not to make things too 
complicated, we use constant gap penalty with G = -3.  

We now illustrate how the score matrix and backtrack matrix (Figure 2-
8) are computed. For the first cell, the UP and LEFT values are simple: 

 
UP = -3 + G = -3 – 3 = -6 
LEFT = -3 + G = -3 -3 = -6 
 
For the DIAG value, we should keep in mind that the nucleotide A in the 

column sequence has a probability of 2/3 of an A-A match and a probability 
of 1/3 of a A-G transition. This leads to 
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DIAG = 0 + 2/3 × MNuc + 1/3 × MMs =5/3  
 
Because DIAG is the maximum of the three, it is used to fill the first cell, 

together with the associated upleft arrow (Figure 2-8). The second cell (to 
the right the first cell) is simple because the profile at the second site 
contains C only. So the computation is the same as in regular pairwise 
alignment: 

 
DIAG = -3-1 =-4 
UP = -6 -3 = -9 
LEFT = 5/3 - 3 = -4/3 
 
Because LEFT is the largest of the three, the cell is filled with -4/3 

together with a left-pointing arrow. 
The cell likely to cause some confusion is the third, i.e., the one with a 

value of -5/3 and a left-pointing arrow. Note that an upleft arrow in that cell 
implies that A will pair with C with a probability of 1/3, penalized by MMv 
= -1, and pair with “-” with a probability of 2/3, penalized by G = -3. 
Therefore, 

 
DIAG = -6 - 2/3×3 - 1/3×1 = -25/3 
 
The calculation of UP is simply UP = -9 -3 = -12. A left-pointing arrow, 

however, implies a gap in the column sequence, so we have a gap with a 
probability of 2/3 of facing a gap in the row profile, with Mgap = 1, and a 
probability of 1/3 of facing a C, with G = -3. Therefore,  

 
LEFT = -4/3 + 2/3×1 - 1/3×3 = -5/3.  
 
Because LEFT is the largest of the three, the cell is filled with -5/3 and a 

left-pointing arrow. The rest of the cells are relatively straightforward. The 
alignment can again be obtained by tracing the backtrack matrix (Figure 2-
8): 

 
AC-GT 
AC-GT 
GCCAT 
AC-G- 
 
The profile alignment outlined above represents an extension of the 

pairwise alignment, with the row sequence replaced by a profile. One can 
also replace the column sequence by a profile to align two profiles instead of 
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two sequences. This approach is used in Clustal for multiple sequence 
alignment. 

One might argue that the profile alignment has a serious problem as 
follows. T may be phylogenetically more closely related to some sequences 
than others in S. However, the profile alignment approach does not take this 
into consideration. This critique is justified. Unfortunately, alternative 
approaches by combining both phylogenetic reconstruction and multiple 
sequence alignment (Hein, 1990, 1994; Sankoff et al., 1973) are generally 
too computationally intensive to be practical. However, recent advances in 
Gibbs sampler has paved alternative ways for pairwise sequence alignment 
(Zhu et al., 1998) and multiple sequence alignment conditional on a 
phylogenetic tree (Holmes and Bruno, 2001; Jensen and Hein, 2005). 

3.2 Multiple alignment with a guide tree 

The main difficulty in aligning multiple sequences by dynamic 
programming is the rapidly increased need for memory and computational 
power. While aligning three sequences by dynamic programming has been 
implemented (Huang, 1993), it is not practical to align more than three 
sequences. For this reason, only heuristic approaches that reduce the 
multiple alignment problem to pairwise and profile alignment problems have 
been widely used for multiple sequence alignment. The most well known 
representative of this approach is the Clustal family of programs (Higgins 
and Sharp, 1988; Thompson et al., 1994). 

Multiple alignment in Clustal consists of three steps. The first is to 
perform all pairwise alignments by dynamic programming. With N 
sequences, there are N(N-1)/2 pairwise alignments, leading to a triangular 
matrix of alignment scores. The second step is to construct a guide tree by 
using the alignment score matrix as a sequence similarity matrix in 
conjunction with a clustering algorithm. Alternatively, one can convert the 
similarity matrix into a distance matrix and then use either UPGMA or 
neighbor-joining method (Saitou and Nei, 1987) to build guide tree such as 
the one shown in Figure 2-9. Clustal uses this latter approach. The third and 
final step is to traverse the node to align sequences by pairwise alignment 
and profile alignment (the pairwise alignments in the first step, typically an 
approximate one, are not reused here).  

The multiple alignment starts from the most similar sequences. So we 
move to internal node 11 and align Seq2 and Seq6. We then move to internal 
node 10 and align Seq5 against a sequence profile representing aligned Seq2 
and Seq6 using the method outlined in Figure 2-8. A profile is then created 
to represent the three aligned sequences (Seq2, Seq6 and Seq5). Moving to 
internal node 9, we found one child node (internal node 9) has two child 
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nodes with two unaligned sequences (Seq3 and Seq4) which are then first 
aligned by using the dynamic programming method. A profile is then created 
to represent the aligned Seq3 and Seq4. This profile is then aligned against 
the profile presenting the aligned Seq2, Seq6 and Seq5. The process 
continues until all sequences are aligned.  

It is easy to see why we should start with the most similar sequences 
because any alignment error will be propagated in subsequent alignment. 
Obviously, a wrong guide tree will bias the subsequent alignment which in 
turn will bias subsequent phylogenetic reconstruction based on the 
alignment. Unfortunately, a guide tree built from alignment scores is 
typically a very poor tree. For this reason, it is better to input a well 
established tree, whenever available, as a guide tree for multiple sequence 
alignment.  

Seq2: AACU…

Seq6: AACU…
11

Seq5: AACU…

10

Seq3: AACC…

Seq4: AACC…
12

9

Seq7: AACA…

Seq8: AACA…
13

Seq1: AACG…

8

 

Figure 2-9. An example of a guide tree for multiple sequence alignment of eight sequences, 
called leaves. The internal nodes are numbered from 8 to 13 (with terminal nodes, or leaves, 
numbered from 0 to 7). 

An alternative method of multiple sequence alignment is to use a star tree 
instead of fully resolved bifurcating tree as a guide tree. One starts with 
pairwise alignment to obtain a matrix of alignment scores in the same way as 
in ClustalW. This matrix is then converted to a distance matrix. We first 
align two sequences with the smallest distance to build the first sequence 
profile. The next sequence with the average distance closest to the sequence 
profile is the aligned to the sequence profile using the algorithm illustrated in 
Figure 2-8. A new sequence profile is obtained from these three sequences 
and the next sequence with the smallest average distance to those in the 
profile is aligned against the profile using the algorithm illustrated in Figure 
2-8. This process continues until all sequences have been aligned.  

This method is simpler than the method in ClustalW because one does 
not need to align two sequence profiles, i.e., in every step, the alignment is 
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done between a sequence and a profile. The “Quick multiple alignment” 
function in my program DAMBE (Xia, 2001; Xia and Xie, 2001b) represents 
a crude implementation of this method of multiple alignment. 

4. SEQUENCE ALIGNMENT WITH SECONDARY 
STRUCTURE 

Figure 2-10 shows two sequences, S and T, being a fragment of a 
fictitious rRNA gene from two related species. The fragment forms a stem-
loop structure. For simplicity, suppose that T was derived from S through the 
intermediate T’ in two steps. First, the C at position 11 was deleted. Second, 
a substitution from A to G at position 5 leads to a correlated substitution 
from T(U) to C to maintain the stem of length 5. The resulting sequence is T. 

1234567890123456
S: CACGACCAATCTCGTG
T: CACGGCCAATCCGTG

Correct alignment:
1234567890123456

S: CACGACCAATCTCGTG
T: CACGGCCAAT-CCGTG

S: CACGA
|||||
GUGCU

TT’’:CACGA:CACGA
||||||||||
GUGCUGUGCU

T: CACGG
|||||
GUGCC

Missing link

Conventional alignment:
S: CACGACCAATCTCGTG
T: CACGGCCAATC-CGTG

Deletion of C in the 
loop at position 11 of S

A substitution from A to 
G at position 5 leads to a 
correlated substitution of 
T(U) to C

 

Figure 2-10. Illustration that the correct alignment may differ from the optimal alignment. 
Note that T becomes U in the secondary structure. 

If we constrain the alignment with the secondary structure information, 
i.e., the first five and the last five nucleotides of S are respectively 
homologous to the first five and the last five nucleotides of T, then the 
resulting alignment (designated as the correct alignment in Figure 2-10) 
correctly identifies the gap at position 11. However, any currently used 
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alignment program based on linear sequence information, with any sensible 
scoring scheme, would recover the ‘conventional alignment’ (Figure 2-10) 
that identified the gap at position 12. The two C’s at position 11 in the 
‘conventional alignment’ are nicely aligned but are not homologous given 
the evolutionary steps given above in generating T. It is easy to see that the 
conventional alignment will have a greater alignment score than the correct 
alignment and consequently is more “optimal”. Thus, optimal alignment (the 
alignment with the largest alignment score) may not necessarily be the 
correct alignment. 

Aligning rRNA genes with the constraint of secondary structure has now 
been frequently used in practical research in molecular evolution and 
phylogenetics (Hickson et al., 2000; Kjer, 1995; Notredame et al., 1997; 
Xia, 2000; Xia et al., 2003a). However, one cannot always assume that 
rRNA secondary structure is stable over time. It is now well established that 
variation in rRNA secondary structure is strongly affected by the optimal 
growth temperature in prokaryotes (Galtier and Lobry, 1997; Hurst and 
Merchant, 2001; Nakashima et al., 2003; Wang and Hickey, 2002; Wang et 
al., 2006). 

5. ALIGN NUCLEOTIDE SEQUENCES AGAINST 
AMINO ACID SEQUENCES 

During the evolution of protein-coding genes, an entire codon or multiple 
codons may be deleted or inserted, but it is much rarer to see an insertion or 
deletion (often abbreviated as indel) of one or two nucleotides because such 
indel events lead to frameshifting mutations that almost always disrupt the 
original protein function and are strongly selected against. However, 
alignment of protein-coding nucleotide sequences often produce indels of 
one or two bases as alignment artifacts. The correctly aligned sequences 
should have complete codons, not one or two nucleotides, inserted or 
deleted. 

One way to avoid the above alignment problem is to align the protein-
coding nucleotide sequences against amino acid sequences, which was 
implemented in software DAMBE (Xia, 2001; Xia and Xie, 2001b). The 
approach obviously requires amino acid sequences which can be obtained in 
two ways. First, if you have nucleotide sequences of good quality, then you 
can translate the sequences into amino acid sequences, which can be done 
automatically in DAMBE which implements all known genetic codes for 
translating protein-coding sequences from diverse organisms. Second, if you 
are working on nucleotide sequences deposited in GenBank, then typically 
you will find the corresponding translated amino acid sequences.  
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The alignment of protein-coding nucleotide sequences is typically done 
in three steps. First, the nucleotide sequences are translated into amino acid 
sequences. These amino acid sequences are then aligned, and the nucleotide 
sequences are then aligned against the aligned amino acid sequences.  

Here is a simple illustration. Suppose we are to align the following two 
protein-coding sequences designated S1 and S2, respectively: 

 
S1 ATG CCG GGA TAA 
S2 ATG CCC GGG ATT TAA 
 
Step 1: Translate the sequences into amino acid sequences (one-letter 

notation) to get: 
 
S1 MPG* 
S2 MPGI* 
 
Step 2: Align the amino acid sequences: 
 
S1 MPG-* 
S2 MPGI* 
 
This alignment implies the deletion of an amino acid (and its associated 

codon) just before the termination codon. 
Step 3. Align the protein-coding nucleotide sequences against aligned 

amino acid sequences. This is done by essentially mapping the codon 
sequences to the aligned amino acid sequences. Keep in mind that a gap in 
the aligned amino acid sequences correspond to a triplet gap in nucleotide 
sequences: 

 
S1 ATG CCG GGA --- TAA 
S2 ATG CCC GGG ATT TAA 
   *** **  *** *   *** 
 
This alignment, designated as Alignment 1, has 10 matches, 2 

mismatches, and 1 gap of length 3. Recall that the main objective of 
sequence alignment is to identify homologous sites and it is important to 
note that different alignments may lead to different interpretations of 
sequence homology. With the alignment above, sites 6 of the two sequences 
(G in S1 and C in S2) are interpreted as a homologous site, so is site 9 (A in 
S1 and G in S2). These interpretations are not established facts. They are 
only inferences of what might have happened. 
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Depending on the scoring scheme, a nucleotide-based sequence 
alignment, i.e., without using aligned amino acid sequences as a mapping 
reference, may well generate the following alignment designated Alignment 
2, with 12 matches, 0 mismatch and two gaps of lengths 1 and 2, 
respectively: 

 
S1 ATG CC- GGG A-- TAA 
S2 ATG CCC GGG ATT TAA 
   *** **  *** *   *** 
 
Note three different interpretations of the homologous sites between 

Alignment 1 and Alignment 2. First, the nucleotide G at site 6 of S1 is now 
interpreted to be homologous to the nucleotide G at site 7 of S2. Second, the 
nucleotide A at site 9 of S1 is now interpreted as homologous to the 
nucleotide A at site 10 of S2. Which of the two alignments makes more 
sense? If Alignment 1 is correct but we used a nucleotide-based alignment 
method and end up with Alignment 2, then the estimation of the genetic 
distance between the two sequences will be biased. The genetic distance 
measures the evolutionary dissimilarity between two sequences, often 
estimated by ignoring the indel sites. It is often used as an index of sequence 
divergence time in molecular phylogenetics, when calibrated by fossils with 
known divergence time. In this particular case, if we perform site-wise 
deletion of indels, then S1 and S2 would appear more similar to each other in 
Alignment 2 than in Alignment 1. Biased estimation of the genetic distance 
often results in failure in molecular phylogenetic reconstruction. 

Given that a protein-coding gene is unlikely to remain functional after 
two consecutive indel mutations as in Alignment 2, we may argue that 
Alignment 1 based on the alignment of amino acid sequences is better than 
Alignment 2. However, there are also cases where a nucleotide-based 
alignment is better. Now consider the following two protein-coding 
sequences: 

     3   6   9  12  15 
S1 ATG CCC GTA TAA 
S2 ATG CCC GTG TTA TAA 
 
Of the following three alignments, designated as Alignment 1, Alignment 

2 and Alignment 3, all involving one indel of length 3, which one makes 
more sense to you? 

 
Alignment 1: 
S1 ATG CCC GTA --- TAA 
S2 ATG CCC GTG TTA TAA 
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   *** *** **      *** 
 
Alignment 2: 
S1 ATG CCC GT- --A TAA 
S2 ATG CCC GTG TTA TAA 
   *** *** **    * *** 
 
Alignment 3 
S1 ATG CCC G- --TA TAA 
S2 ATG CCC GTG TTA TAA 
   *** *** *    ** *** 
 
Alignment 1 is the outcome of aligning nucleotide sequences against 

aligned amino acid sequences, and the other two alignments are from 
nucleotide-based alignments. The three alignments represent three 
alternative hypotheses, all involving a gap of length 3, but differ in the 
position of the gap. Alignment 1 has only 11 matches, whereas the other two 
alignments each have 12 matches. In this case, the two hypotheses 
represented by alignments 2 and 3 is more likely true than alignment 1. In 
short, aligning protein-coding sequences against aligned amino acid 
sequences is not necessarily better than aligning the nucleotide sequences 
directly unless the latter produces frameshifting deletions or insertions.  

6. POSTSCRIPT 

A student has once told me that it is humiliating to have human gene 
sequences aligned against those of chimpanzees, monkeys or even snakes 
and turtles. I suspect that people of the past would also find it humiliating to 
have our earth displaced from the center of the universe and ranked among 
the other planets. Indeed it would have been much nicer, at least esthetically 
more charming and spiritually more enlightening, to have human genes all 
quite different from genes of all other living creatures. It would also have 
been nicer to have our earth centered in the universe with all stars and 
galaxies orbiting around us. That would instill into our mind a certain 
confidence that a supernatural custodian is looking after our wellbeing. We 
would have been more coherent when preaching to our children. 

But nature, as beautiful as she is, does not always seem to be our maid 
working according to our dictation or wistful thinking. We are part of 
nature’s creation and have been shaped by the same two sculptors of 
biodiversity called mutation and selection as all the other creatures. From 
this perspective we can better appreciate the truth that not only all humans 
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are created equal, but also are all other creatures populating the earth. 
Sequence alignment is a powerful tool to help us position ourselves properly 
in the nature of things. 



 

Chapter 3 

CONTIG ASSEMBLY 
 

 
 

1. INTRODUCTION 

A contig is defined as a contiguous sequence assembled from a set of 
sequence fragments, typically by string matching and local sequence 
alignment. Contig assembly refers to the process of assembling many 
sequence fragments into one long genomic sequence or a few long contigs 
(Figure 3-1). Although the first automatic sequencer was developed by 
Leroy Hood in 1986 and the Human Genome Project was in full swing in 
1990, all automatic sequencers still suffer from the problem of limited read 
length of ~700 bases. Consequently, any genome-sequencing project will 
always involve the sequencing of a large number of sequence fragments. 
These fragments need to be assembled to contigs and finally to a complete 
genomic sequence.  

Seq1 CACACGA......
Seq2 TTCTTCT......
Seq3 TCCTCAT......
Seq4 AATACCA......
……

Contig assembly software

TTCTCTAGGCCACACGAC……  

Figure 3-1. Contig assembly 
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A contig is a reconstructed nucleotide sequence from more than one 
sequence fragment. The fragments are assembled by identifying overlapping 
sequence fragments based on local string matching and alignment methods 
that identify the overlapping ends of the sequence fragments and statistical 
methods that evaluate the significance of the matched sequence ends. A 
computer program for contig assembly will take as input a set of sequence 
fragments, and output one or more reconstructed contigs. It is important to 
recognize the fact at the very beginning that a reconstructed contig or 
genomic sequence may not be the same as the real sequence. 

Contig assembly is really the first step in the pipeline of genomic 
analysis and, in this sense, should have been covered in the first chapter of a 
book on bioinformatics. However, contig assembly requires the 
understanding of algorithms in string matching and sequence alignment. For 
this reason, the subject is better covered after the reader has gained 
familiarity with string matching covered in Chapter 1 and sequence 
alignment covered in Chapter 2. 

Two types of contig assembly programs are in current use. The first is 
the Phred/Phrap/Consed combo (Gordon et al., 1998) used in hierarchical 
shotgun sequencing (e.g., the government-sponsored Human Genome 
Project) together with post-assemblers such as the GigAssembler (Kent and 
Haussler, 2001) to merge the contigs into a genome. This divide-and-
conquer approach cuts genomes into mapped mega pieces which are further 
cut into mapped smaller pieces. So contig assembly involves assembling the 
sequence fragments derived from each small genomic segment. The second 
is the Celera (Myers et al., 2000; Weber and Myers, 1997) and PCAP 
(Huang et al., 2003) assemblers for whole-genome shotgun sequencing. In 
this case, contig assembly has to deal with all fragments derived from the 
entire genome. 

The contig assembly algorithm used in these programs involves three 
steps. The first is to perform pairwise matching of sequence ends (including 
the complimentary sequences) to identify “mate pairs” with the 3’-end of 
one mate overlapping the 5’-end of the other. The confidence of the overlap 
can be assessed by statistical methods detailed in the first chapter that has 
also been used to assess the significance of an exact string match in BLAST 
(Altschul et al., 1990; Altschul et al., 1997) and FASTA (Pearson, 1998). 
The confidence is enhanced by searching the putative mate pair against EST 
databases to see if both overlap the same segment of an EST. The 
Goldenpath human genome assembly is produced by first building an initial 
set of sequence contigs and then using paired plasmid ends, ESTs, BAC end 
pairs, etc., to order and orient these individual contigs into larger assemblies 
(Kent and Haussler, 2001). 
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The second step is the actual assembly. If a sequence fragment is 
involved in only one or two mate pairs, then assembling these mate pairs is 
unambiguous. Contig assembly of sequence fragments from prokaryotic 
genome sequencing projects is generally unambiguous because of the rarity 
of sequence repeats in prokaryotic genomes. Sequence repeats are frequent 
in eukaryotic genomes, and a fragment can be involved in many more than 
two mate pairs. For example, if fragment i is really flanked by fragments j 
and k in a eukaryotic genome, but fragment j has N repeats in the genome, 
say fragments j1, j2, ..., jN, then fragment i would be involved in at least N 
mate pairs. Now we will have a hard time deciding which of the putative 
mate pairs represents true neighborhood relationship. 

Both greedy and non-greedy algorithms are used to treat the resulting 
putative pairs. The greedy one will assemble the two mates into one. If the 
assembly of the two is wrong, the error will be propagated to subsequent 
longer contigs. A non-greedy algorithm will generate a directed graph based 
on pairwise matching. We will have more details on the non-greedy 
algorithm latter in the chapter.  

The third step is to resolve conflicts. As we will see latter, sequence 
repeats can lead to multiple alternative assembled contigs. It is important to 
have a criterion to assess alternative assemblies. 

Contig assembly involves a great deal of mathematics and computational 
algorithms. We will first provide a skeletal outline of the contig assembly 
and then explain each step with more details.  

2. SKELETAL OUTPUT OF CONTIG ASSEMBLY 

Given a set of N sequence fragments, we first obtain N complementary 
sequence fragments. The necessity of this step is shown in Figure 3-2 where 
two sequence fragments labeled 2 and 6 were from the top strand and four 
sequence fragments were from the bottom strand. The 3’-end sequence of 
fragment 3 is the same as the 5’-end of the complementary sequence of 
fragment 2, but not the same with any part of fragment 2 itself. Similarly, the 
5-end of fragment 5 is the same as the 3’-end of the complementary 
sequence of fragment 6. Any practical contig assembly will involve many 
fragments, but we will use the fragments depicted in Figure 3-2 for 
subsequently illustrations. 

In contig assembly literature, the two DNA strands are often referred to 
as the plus strand and the minus strand. When we have N sequence 
fragments and N complementary sequence fragments, contig assembly 
ideally should generate a plus strand and a minus strand that will be 
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complementary to each other. This can be used for validating the contig 
assembly algorithm. 

5’TACCACAATTACACGA..........................ACGCC 3’
3’ATGGTGTTAATGTGCT..........................TGCGG 5’

2 6

4
3

5
1

 

Figure 3-2. Six sequence fragments from the double-stranded genomic sequence. Fragments 2 
and 6 are collinear with the top DNA strand whereas fragments 1, 3, 4 and 5 are collinear with 
the bottom DNA strand. 

Contig assembly starts by doing pairwise comparisons between 
fragments i and j. Each pairwise comparison consists of (1) matching the 3’-
end of fragment i with 5’-end of fragment j and (2) matching the 5’-end of 
fragment i with 3’-end of fragment j. Each match is evaluated for its 
statistical significance. The result of these N*(N-1)/2 pairwise comparisons 
is summarized in a matrix of matching scores (Figure 3-3). Note that a 
practical contig assembly in a shotgun sequencing project will typically 
involve hundreds of thousands of sequence fragments and consequently a 
matrix with many millions of elements. However, only good scores are kept 
for identifying mate pairs. So the actual number of scores that need to be 
kept in computer memory is much smaller. 

2  3  4  5  6

1   P  P  P  P  P
2      G  P  P  P
3         G  G  P 
4            G  P
5               G

 

Figure 3-3. Matrix of matching scores for assembling the six fragments in Figure 3-2. 
Symbols P and G stand for poor and good matching scores, respectively. Only good matching 
scores need to be kept. 

In actual computation, the simplest generic data structure for individual 
sequence fragment is as follows: 

 
DataStructure dsFragment 
 dsFragment fragmentWhose3EndMatchingMy5End() 
 int goodMatchScore1() 



3. Contig assembly 53
 

 int arrayDimension1 
 dsFragment fragmentWhose5EndMatchingMy3End() 
 int goodMatchScore2() 
 int arrayDimension2 
End DataStructure 
 
It is worth noting the difference between two kinds of string matches. 

The first is the overlapping match (Figure 3-4) used in contig assembly, and 
the second is the non-overlapping match (Figure 3-4) that is marked and 
discarded. Relevant statistical methods for evaluating the quality of an 
overlapping match have already been presented in the first chapter.  

 

Overlapping match                                  Non-overlapping match

5’ 3’ 5’ 3’ 5’ 3’

 

Figure 3-4. Contig assembly uses only overlapping matches. 

From the pairwise comparisons of the six sequence fragments and their 
complements, we obtain the matrix in Figure 3-3 and an array of 
dsFragments from which one can construct a graph to obtain the contigs 
(Figure 3-5) by following the directed path. Note that there are two paths. 
The first is made of fragments 2, 3, 5 and 6 in the order of 2→3→5→6 and 
the second is made of fragments 2, 3, 4, 5, and 6 in the order of 
2→3→4→5→6. Both lead to the same assembled contig. Fragment 1 has no 
arrow to link it to any other fragments and will not be assembled with any 
other fragment. 

 

5’-2-3’

5’-1-3’ 5’-6-3’

5’-5-3’

5’-4-3’

5’-3-3’

 

Figure 3-5. Directed graph constructed from the matrix of good matching scores in Figure 3-
3. Only good (statistically significant) scores contribute to the graph construction. An arrow 
directing from fragment i to fragment j means that the 3-end of fragment i overlaps the 5’-end 
of fragment j with a good score, i.e., each arrow links a mate pair. 
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There are two major difficulties with the non-greedy algorithm (Figure 3-
5). The first is the large number of possible pathways to construct the contig. 
Take a sequencing project with 10× coverage for example (“10× coverage” 
means that the total length of all sequenced fragments is 10 times as long as 
the estimated genomic length). Each node in the directed graph will on 
average have 10 connections, with some nodes having many more. As the 
number of possible paths increases rapidly with increasing number of 
sequence fragments, it becomes difficult to decide which path to follow. We 
all know the difficulty when encountering two roads that diverged in the 
yellow wood, but we cannot afford the luxury of idly gazing down both as 
far as we could. We have to decide which paths are likely the right ones and 
let the computer help us travel down all of them and finally check to see if 
they are all the same. Fortunately, modern computers can go very fast, 
especially when your instruction is clear. 

The second problem with the non-greedy algorithm (Figure 3-5) results 
from sequence repeats leading to (1) spurious connections and conflicting 
paths and (2) cyclic paths in the directed graph that trap the program that 
follows the paths to obtain contigs (Figure 3-6). The cyclic path is produced 
because the 3’-end of fragment 4 (i.e., T--A--C--T---G) is the same as the 5’-
end of fragment 3. The path that would lead to a shortened contig is caused 
by the 3’-end of fragment 1 (G-T--A—C) being the same as the 5’-end of 
fragment 4. 

 

=====A--C---G-T--A--C--T---G==============A--C---G-T--A--C--T---G===========

=====A--C---G-T--A--C 1
============A--C---G-T--A 2

T--A--C--T---G======= 3
G-T--A--C--T---G 4

T---G=========== 5

5’-1-3’ 5’-3-3’ 5’-2-3’ 5’-4-3’ 5’-5-3’

Cyclic Path

Wrong Path leading to a contig shorter than the true one

 

Figure 3-6. The problem of sequence repeats in contig assembly. The top is the true genomic 
sequence with one segment repeated (shown in bold). The five fragments, with numeric labels 
to the right, were obtained from the genomic sequence.  

The conventional approach to solve conflicting assemblies is to use the 
Bellman-Ford algorithm to find the shortest path (Kent and Haussler, 2001; 
Thayer et al., 1999). However, the shortest path does not imply the correct 
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assembly. As illustrated in Figure 3-6, the shortest path will result in 
omission of repeated sequences. The human and mouse genomes from 
Celera, assembled from the whole-genome shotgun sequencing that is 
relatively vulnerable to sequence repeats, have many fewer sequence repeats 
(which most likely represent artifacts from contig assembly) than the one 
from Human Genome Project (Istrail et al., 2004). There are also substantial 
differences between different human genome assemblies (e.g., between 
NCBI and University of California at Santa Cruz, or UCSC) from public 
effort (Rouchka et al., 2002). While these different public assemblies have 
now been coordinated to provide a unique human genome assembly, it is not 
clear how discrepancies are resolved. A discrepancy between the two may 
mean both being wrong or one being wrong and one right. Forcing a 
consensus does not always mean that the result will be right.  

Once when I get to this point in the classroom, a student suddenly asked 
why the two public assemblies could not both be right. My answer was that 
both assemblies were from the same source of fragments and therefore could 
not both be right when there were substantial differences. Whenever there 
was a substantial difference, either assembly A is wrong or assembly B is 
wrong or both are wrong. The student could not understand the logic and I, 
at my wit’s end, suddenly recalled what Voltaire said in his Philosophical 
Dictionary that, given the evil we observe in this world, “Either God wishes 
to expunge the evil from this world and cannot; or He can and does not wish 
to; or he neither wishes to nor can.” Equipped with this sudden rush of 
insight, I explained that “both assemblies being correct given the 
differences” was logically similar to “God wishes and can, given the 
observed evil”, both being logically impossible. The student wanted me to 
show the connection between the two statements. Taking it literally, I draw a 
circle containing “both assemblies being correct given the differences” in the 
left of the paper and another circle containing “God wishes and can given the 
observed evil” in the right of the paper and draw an arrow from the left circle 
to the right circle. Unfortunately, the student claimed that this was not the 
connection she wanted. In the end, I was left more confused than the student. 
(Voltaire probably did not read Isaiah 45:7, King James Version, where one 
finds God stating “I form the light and create darkness, I make peace and I 
create evil, I am the LORD who does all of these”. All religions share the 
notion of the good and the evil, especially oriental ones which are rich in 
dialectical thoughts. According to dialectics, the good cannot be defined or 
known without the evil. In contrast to the first law of logic, i.e., the law of 
identify which states that A is A and cannot be anything else, the first law of 
dialectics is the law of the negation of negation which states that A can be A 
only if it is not a non-A. In other words, A cannot be A unless the presence 
of a non-A is a condicio sine qua non. Therefore, God cannot create the 
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good without creating the evil at the same time, or create light without 
creating darkness at the same time. We cannot see anything when confined 
in total darkness or when staring into pure light. A balance of light and 
darkness is necessary for us to see. For the same reason Solomon had wisely 
stated in Ecclesiastes 7:16-17 that “Be not overly righteous, …… Be not 
overly wicked”. In this sense, the Bible is quite dialectical. From this point 
of view we see that Voltaire was logical but not philosophical.) 

Another problem with contig assembly, other than those getting both my 
students and me confused, is that the ending sequences are often of poor 
quality, making it difficult to have exact matches. However, modern 
automatic DNA sequencers can perform quality analysis and automatically 
chop off sequence ends that are poor. 

3. STRING MATCHING OF TWO SEQUENCE ENDS 

Contig assembly needs to do N×(N-1)/2 pairwise comparisons of the 
ending sequences to identify overlapping matches. With N in the order of 
10,000-100,0000 or more, the computational burden is huge and efficient 
string matching methods are needed. String matching algorithms most 
familiar to biologists are BLAST (Altschul et al., 1990; Altschul et al., 
1997), FASTA (Lipman and Pearson, 1985), and the global alignment by 
dynamic programming (Needleman and Wunsch, 1970) popularized by 
Clustal (Higgins and Sharp, 1988).  

String matching algorithms are classified into exact and inexact matching 
(Gusfield, 1997). Commonly used string matching algorithms are hash tables 
which have been covered in the first chapter, suffix trees (McCreight, 1976; 
Ukkonen, 1995; Weiner, 1973) which is a data-structure that facilitates rapid 
finding of an exact match of a substring in a string, and pairwise alignment 
by dynamic programming (Needleman and Wunsch, 1970). Hash tables and 
suffix trees are representatives of the exact string matching algorithm, 
whereas sequence alignment by dynamic programming is a representative of 
the inexact string matching algorithms. We have covered hash tables and 
sequence alignment by dynamic programming in previous chapters. Here we 
briefly mention the suffix tree. 

If S = t1t2...ti...tn, then Si = titi+1...tn is the suffix of S that starts at position 
i. The suffixes of a string (S = ACCGCGATGACGAATA) are shown in the 
left column in Figure 3-7. S is a suffix of itself starting at position 1. The 
middle column (Figure 3-7) contains the sorted suffixes, and the right panel 
is a suffix tree. A related concept is a trie (from retrieve) in which each 
nucleotide is a node on the tree, with branches linking its neighboring nodes 
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(e.g., the top leaf ‘GACGAATA<’ would have been written as ‘G-A-C-G-A-
A-T-A<’). 

A suffix greatly decreases the time needed to search one string of length 
M against another string of length N. Optimized searching algorithms, such 
as the Boyer-Moore algorithms (Gusfield, 1997), can finish the search in no 
more than M+N comparisons. The suffix tree need only M character 
comparisons.  

A

C

G

T

ATA<

C

T

CGCGATGACGAATA<

GAATA<

A<

GACGAATA<

CGCGATGACGAATA<

G
A

CGATGACGAATA<

ATA<

TGACGAATA<

A

CGATGACGAATA<

ATA<

CGAATA<
TGACGAATA<

A<

GACGAATA<

AA

AATATA

ACCGCGATGACGAATAATA

ACGAATAAATA

ATAGAATA

ATGACGAATACGAATA

CCGCGATGACGAATAACGAATA

CGAATAGACGAATA

CGATGACGAATATGACGAATA

CGCGATGACGAATAATGACGAATA

GAATAGATGACGAATA

GACGAATACGATGACGAATA

GATGACGAATAGCGATGACGAATA

GCGATGACGAATACGCGATGACGAATA

TACCGCGATGACGAATA

TGACGAATAACCGCGATGACGAATA

 

Figure 3-7. Suffixes of S = ACCGCGATGACGAATA (left column), alphabetically sorted 
suffixes (middle) and a suffix tree (right). The trailing ‘<’ indicates the ending character node. 

Suppose now we wish to find whether the 5’-end of sequence T (= 
GAATACGACTGACGATGGA) matches the 3’-end of S. We can start with 
the first four nucleotides of T, i.e., GAAT. By referring to the suffix tree in 
Figure 3-7, we can quickly find GAAT (italicized letters in the suffix tree). 
Because the last ‘T’ in GAAT is not the ending character node (Figure 3-7), 
we need to extend the match until we encounter the ending character node. 
In this case, the extension is successful because the last character node A on 
the suffix tree matches the fifth character of T. So we conclude that S and T 
have an overlapping match of length five. If our extension fails before 
reaching the ending character node, then the match is not an overlapping 
match, i.e., it is one of the non-overlapping matches depicted in Figure 3-4. 
Such non-overlapping matches are not used to generate mate pairs. 

The trie structure and suffix trees are used frequently in storing large 
dictionaries in spell-checking programs, where many branches may originate 
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from one node (e.g., 26 branches may originate from a node in the English 
language). The trie or suffix tree for DNA sequences has at most four 
branches originating from each node. 

An alternative string matching method is illustrated in Figure 3-8, using 
the same two strings S and T. The binary coding is similar to that used in 
BLAST (Altschul et al., 1990; Altschul et al., 1997), i.e., A:00, C:01, G:10, 
T:11, with each nucleotide taking up two bits. This allows four nucleotides 
to be packed into a single byte (8 bits). To know whether the 3’-end of S 
matches the 5’-end of T (or any other sequence), we obtain a list of suffix 
numbers of S starting at the last byte of S (i.e., 00001100) and shifting 
leftwards with the step length of two bits (i.e., one nucleotide). This is 
illustrated in Figure 3-8. Note that the binary number of 00001100 is equal 
to the decimal number of 12: 

7 6 5 4 3 2 1 000001100=0 2 0 2 0 2 0 2 1 2 1 2 0 2 0 2
               0 0 0 0 8 4 0 0 12

+ + + + + + +
= + + + + + + + =
i i i i i i i i  (3.1) 

S: ACCGCGATGACGAATA
T: GAATACGACTGACGATGGA
Recoding A:00, C:01, G:10, T:11
S: 00010110011000111000011000001100
T: 10000011000110000111100001100011101000
From 3’-end of S: 

00001100 12
1000001100 524

011000001100 1548
From 5’-end of T:
10000011 131
1000001100 524
100000110001 2097
Conclusion: The last 5 nucleotides of S 
matches the first 5 nucleotides of T because 
the shared number of 524.  

Figure 3-8. A simple illustration of an exact string matching method. 

Similarly, we obtain a list of prefix numbers of T starting from the first 
byte of T and shifting rightward with the step length of two bits. A prefix 
number in T that matches a suffix number in S implies an overlapping 
match. In our case, the number 524 is shared between the prefix numbers of 
T and the suffix numbers of S, leading to the conclusion of an overlapping 
match of 5 nucleotides (Figure 3-8). Because the suffix and prefix numbers 
are ordered from small to large, a search for a matching number can be done 
quickly. My program DAMBE (Xia, 2001; Xia and Xie, 2001b) has a contig 
assembly function, partially based on Huang’s (1992), includes a crude 
implementation of these string matching methods. 
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When an exact overlapping match is identified by methods in the 
previous section, it is important to know whether the match is statistically 
significant or may happen by random occurrence. So we need a filter to 
eliminate poor matches and establish good matches. This is covered in the  
chapter on BLAST and FASTA. 

4. NEW DEVELOPMENT IN CONTIG ASSEMBLY 

There are still many unsolved or even unsolvable problems with contig 
assembly (Pevzner et al., 2001). For this reason, all assembled genomes 
from multicellular eukaryotes have gone through a seemingly everlasting 
process of revision. However, a new development in sequencing and contig 
assembly in my laboratory might be worth mentioning. 

Consider piecing together a jigsaw puzzle. We first would find all the 
edge pieces and then optionally sort pieces into similar colors. This divide-
and-conquer approach is used often in efficient computation. What are the 
edge pieces in contig assembly? 

We propose to use single-copy genes to dramatically reduce the 
computation time and error rate in contig assembly. In spite of genome 
duplication events during evolutionary time, many genes are single-copy and 
highly conserved in extant genomes. For example, the budding yeast has 
about 3500 single-copy genes (Goffeau and al., 1996). The human genome 
shares 1308 gene families with the genomes of Caenorhabditis elegans, 
Drosophila melanogaster and Saccharomyces cerevisiae, 43.1% of which 
are single-copy genes in these organisms and in humans (Hughes et al., 
2001; Lander et al., 2001a; McLysaght et al., 2002; Panopoulou et al., 
2003). The number of families shared between the human genome and the 
genomes of C. elegans and D. melanogaster increases to 3044, most of 
which are single-copy genes (Panopoulou et al., 2003). Approximately 3,700 
of the genes in the Arabidopsis Col-0 genome are single-copy, and are 
distributed throughout the genome.  

We can exploit these single-copy genes (SCGs) in contig assembly in 
three steps. First, we extract all fragments matching each SCG and perform 
SCG-anchored contig assembly. Second, the genome can be restriction-
digested to obtain the physical distance between SCGs (Dij). Third, routine 
contig assembly can be done for the remaining sequences. When conflicting 
assemblies arise, we can choose the assembly that fits best the Dij values. 
This criterion is obviously superior over the shortest-path criterion in the 
Bellman-Ford algorithm used in current contig assemblers. This contig 
assembly strategy, once implemented in a user-friendly manner, should 
dramatically increase the efficiency of contig assembly and, in particular, 
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improve the accuracy of the assembled genome and the quality of all 
downstream genomic analyses. 

5. POSTSCRIPT 

A genome typically has many genes, and genes and gene products 
interact with each other in many ways in a living cell, creating many 
different relationships among them. Contig assembly identifies one of the 
relationships among genes, the neighborhood relationship. 

The importance to understand the relationships among genes has been 
highlighted by using the Greek legend of the Delphi boat (Danchin, 2002). 
Delphi is the location where the son of the Greek god Zeus, Apollo, 
established a priesthood. The female priests could often enter into a mental 
state in which they were prone to murmur an encoded prophecy of the future 
called an oracle. For this reason the word Delphi and Oracle have been 
associated with prophecy of the future and have both been adopted by 
software companies. The female priests might also ask passersby questions, 
and one of the question is whether a boat made of wooden planks remains 
the same boat after all of its original planks have gone rotten over time and 
been sequentially replaced by new planks. From the owner’s point of view, 
the boat is the same boat because it is not the individual planks that define 
the boat, but the relationships among planks, as well as the constraints 
imposed by these relationships on the size and shape of individual planks, 
that define the boat. While having a list of planks is an essential step in 
building a boat, it is only after we have identified the relationship among 
planks can we actually build the boat. 

The relevance of the Delphi boat to genomics is that, although we often 
claim to be in the postgenomic era, all we really have at the moment is really 
just a list of genes equivalent to a pile of wooden planks. We still know very 
little about the relationship among the genes and gene products and 
consequently are still far from building a real boat (a functional genome in 
this case). Contig assembly does help to identify the neighborhood 
relationship although the neighborhood relationship identified by current 
genomic technology is still often wrong for most multicellular eukaryotic 
genomes. 

If the boat we are trying to build is a living cell, then we are not even 
close to get a good parts list. A cell is a chemical system with numerous 
components interacting with each other to determine the state of the cell, i.e., 
whether it is to become a functional liver cell or to turn cancerous. Three 
classes of the interacting cellular components are considered to be 
particularly important, the genome, the transcriptome (i.e., the collection of 
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RNA molecules transcribed from the genome, often defined with reference 
to cell type and time) and the proteome (i.e., all proteins translated from 
mRNAs, also often defined with reference to cell type and time). As we will 
learn latter, the assembled genomic sequences have greatly accelerated the 
characterization and quantification of transcriptomes and proteomes. 



 

Chapter 4 

DNA REPLICATION AND VIRAL EVOLUTION 
 

 
 

1. INTRODUCTION 

We have learned in the previous chapters the fundamental tools for 
homology searches, sequence alignment, and contig assembly to assemble 
sequence fragments into a genome. If you are not a biology student, you may 
ask why we take all this trouble to sequence and assemble genomes. To this I 
have two answers. The first is that we, at this point in the book, are still at 
the early stage of data collection in genomics. The tremendous value of 
obtaining well assembled genomes will become obvious when we progress 
further into the book and have acquired more biological knowledge and 
genomic analysis such as descriptive, comparative and functional genomics. 
The second answer, which is more relevant to your question, is that the 
genomic sequences, even not annotated, can already be used to derive 
biological insights and to test interesting predictions derived from biological 
hypotheses. 

This chapter, together with Chapter 8, serves three purposes. First, they 
will not only provide essential biological concepts, especially for non-
biology majors, to pave the way for studying latter biological problems, but 
also present these concepts in the framework of molecular evolution shaped 
by the three essential biological processes: genome replication, transcription 
and translation. Without such biological concepts we are likely to get lost in 
the jungle of disconnected biological entities. Second, they illustrate 
biological research that can be done with molecular sequences, you will soon 
realize that the less we know about the genome, the fewer inferences we can 
make. In fact, you will soon realize that inferences built upon uncertain 
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inferences makes you feel uncomfortable very quickly. Third, we need to 
have some variation after three chapters of computational algorithms. An 
ancient Chinese administrator (晏子 or Yan Zi) recognized the importance 
of variation and diversity about 2500 years ago. When asked by the king for 
his opinion on another official who always agreed whole-heartedly with the 
king, 晏子 answered that, although water is essential in cooking, adding 
water to water can never generates gourmet food (若以水济水，谁能食之
？). So I should give you something more than just plain water. 

In this chapter, we will focus on DNA replication to show that even 
unannotated genomes can be useful in addressing biologically interesting 
questions, i.e., the relationship between bacteria and their parasites, the 
bacteriophage (or phage for short). Just in case the reader happens to have 
only limited knowledge in biology, I will outline basic viral and bacterial 
biology and then perform a very limited genomic analysis based on one of 
the simplest genomic properties, the genomic GC% (often referred to as GC 
content), to see how mutation and selection can shape viral genomes. 

I have to say here that I am hesitant about including this chapter because 
of dramatically different feedbacks from colleagues, with one condemning 
the chapter by saying that it is like an ugly tumor on an otherwise beautiful 
nymph. As tumors are featured far more prominently in science than 
nymphs, I hope that you would not mind seeing a tumor sticking out 
somewhere. 

2. FUNDAMENTALS OF VIRUSES 

Sir Peter Medawar has described the virus as “a piece of bad news 
wrapped up in protein” (Medawar and Medawar, 1983, p. 275), and the “bad 
news” comes in a variety of colors and shapes. The viral diversity serves as a 
bridge connecting the organic chemicals to living organisms. In one extreme 
of this diversity, nature presents us with some “bad news” that are never 
observed to have been wrapped in a protein coat, and such “bad news” are 
called viroids that are infectious agents of plants comprised of just a single-
stranded circular RNA molecule of about 300 nucleotides (Gora-Sochacka, 
2004). On the other extreme of viral diversity, nature also features some 
giant viruses, unfortunately called miniviruses, that blurs the distinction 
between viruses and the parasitic cellular organisms (La Scola et al., 2003; 
Raoult et al., 2004). The largest known minivirus has a 400-nanometer 
particle size that is comparable to Mycoplasma and a genome size of 
1,181,404 bp that is longer than that of Mycoplasma genitalium whose 
genome size is only 580,074 bp (Raoult et al., 2004).  
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Viroids are not considered as viruses, and mimivirus exhibits many 
features that distinguish it from other large DNA viruses (Raoult et al., 
2004). This chapter will cover viruses that lie between these two extremes. 

 

2.1 The virion and the viral genome 

A viral particle outside of a living cell is called a virion, which consists 
of an outer shell and an interior core. The outer shell, made of capsid 
proteins, protects the contents of the core and has proteins interacting with 
the receptor on the cell membrane of the host cell, therefore conferring the 
host specificity. For example, HIV-1, the cause of AIDS, binds to the 
chemokine receptor CCR5 found on human lymphocytes and macrophages. 
The interior core contains the viral genome and, in some viral species, one or 
more enzymes needed to start the process of reproduction within the host 
cell. The genome encodes proteins needed for viral reproduction but not 
provided by the host cell.  

The smallest virus is probably the hepatitis B virus with a genome size of 
~3 kb and a virion particle size of ~42 nm. The parvoviruses have smaller 
capsids (18-26 nm), but a larger genome (5 kb) 

Just like the more complicated cellular organisms, a virus needs all three 
essential biological processes, i.e., genome replication, transcription and 
translation, to reproduce itself. It needs to orchestrate these three processes 
to be efficient. Take phage λ for example. If the phage would generate many 
copies of its genome but not a corresponding number of head and tail 
proteins, or if it would generate too many tail proteins but too few head 
proteins, then it would simply be too wasteful to be tolerated by nature. 
According to Charles Darwin (Darwin, 1859), our mother nature is not 
particularly forgiving for those straying away too far from life’s imperatives 
of passing one’s genome to the next generation. 

The information for orchestrating the three essential biological processes 
is stored in the genome, and different viruses have different ways of storing 
the information. Viral genomes can be classified into four types: double-
stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded 
RNA (dsRNA) and single-stranded RNA (ssRNA). The four types of viruses 
differ significantly in the genome size. Based on the 118 bacteriophage 
(which are viruses parasitizing their bacterial hosts) genomes retrieved from 
NCBI on September, 2003, with 79 dsDNA phage species, 27 ssDNA phage 
species, 4 dsRNA phage species and 8 ssRNA phage species, the average 
genomic sequence lengths are 39,297, 6,274, 6,658, and 3,801 for dsDNA, 
ssDNA, dsRNA and ssRNA, respectively.  
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2.2 Variation in viral genome size can be explained by 
variation in mutation rate 

The variation in genome size is explained by different mutation rate 
operating on different genomes. It is necessary here to introduce the concept 
of fitness in evolutionary biology. Fitness of an individual is defined 
theoretically as the propensity of leaving offspring in future generations, and 
is measured operationally in two ways. The first, called absolute fitness is 
measured by the number of offspring brought up to breeding age. The 
second, called relative fitness, is typically measured as the ratio the absolute 
fitness of a mutant over the absolute fitness of a wild type individual. J. B. S. 
Haldane (1937) argued that, in equilibrium populations, the effect of 
deleterious mutation on average fitness depends primarily on the mutation 
rate and is independent of the severity of the mutations. In particular, the 
average fitness ( w ) at equilibrium depends on the genomic mutation rate 
according to the following equation 

Lw e μ−=  (4.1) 

for haploid or asexual diploid populations (Hopf et al., 1988; Kondrashov 
and Crow, 1988), where μ is the deleterious mutation rate per nucleotide site 
and L the genomic length.  For competing species that co-exist for a long 
time, the average species fitness should all be 1, i.e.,  

1Le μ− ≈  (4.2) 

which means that, on average, each genome should produce an equally 
mutation-free genome. This implies that a species with a large μ will 
necessarily have a small L because a genome with a large μ and a large L 
would reduce the fitness ( w )so that the carrier of such a genome will be 
eliminated by natural selection. The late John Maynard-Smith has taken a 
slightly different modeling approach but reached the same conclusion 
(Maynard Smith, 1989, pp.20-24).  

That μL should be approximately constant for genomes in haploid 
organisms and asexual diploid organisms has been well documented 
empirically (Table 4 in Drake et al., 1998). Mutation rate μ is relatively 
lower in dsDNA than in ssDNA or in RNA viruses, which explains why 
dsDNA viral genomes can be substantially longer than other viral genomes. 
It is mainly because of the low mutation rate in dsDNA viruses that efficient 
vaccines can be developed against them to protect us from their infection.  

One interesting exception to this rule is the Hepatitis B viruses which are 
dsDNA viruses but with a very small genome of ~3 kb. The genomic 
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replication in Hepatitis B viruses involves a lengthy mRNA stage. In other 
words, the genome is copied to mRNA molecules which not only serve as 
templates for making proteins, but ultimately also serve as templates for 
making a complementary DNA strand. This lengthy mRNA stage means that 
the mutation rate should be high, and we can predict that its genome size 
should be small. Indeed, the hepatitis genome, with a length of just about 3 
kb, is among the smallest viral genomes. This is a good example in which an 
exception to the rule actually supports the rule in a different way. 

2.3 A representative virus: Phage λ 

The phage λ virion, once attached to the cell wall of its host (Escherichia 
coli), injects its DNA into the bacterium (Figure 4-1). The linear viral DNA 
is then circularized into a supercoil (over-twisted DNA molecule). If the host 
cell is in good shape, then the phage will often initiate its lysogenic cycle by 
integrating its DNA to the circular bacterial chromosome and have its 
genome co-replicated with the host genome. In its integrated form, the viral 
genome is called a provirus (or prophage). Not all dsDNA viruses have the 
lysogenic cycle. 

 

Figure 4-1. Schematic illustration of the lytic and lysogenic cycles of the phage lambda 

Under certain conditions, typically when the host cell is not in a good 
shape to replicate quickly, e.g., when exposed to UV radiation, the phage 
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DNA is able to free itself out and enter the lytic cycle. Now the phage DNA 
is quickly replicated and transcribed, and the resulting mRNA quickly 
translated into phage proteins. The replicated phage DNA and phage proteins 
are assembled into new phage virions. Finally, the phage lysozyme is 
produced to lyse the host cell membrane to release the phage virions to 
initiate a new cycle of infection. It seems that phage λ is a pretty faithful 
practitioner of Sun Tzu’s military strategy. When the environment is 
deteriorating and when one can do little about it, then taking-off is the best 
strategy (三十六计，走为上计). 

3. FUNDAMENTALS OF BACTERIAL SPECIES 

Bacterial species used to be grouped into the gram-negative and gram-
positive ones, with Escherichia coli being the representative of the former 
and Bacillus subtilis being the representative of the latter. These two are 
naturally the most studied bacterial species. 

Competition is very intensive in the micro-world and most bacterial 
species need to be extremely efficient in order to stay in the game of survival 
and reproduction. E. coli cells replicates once every 20 minutes with 
unlimited nutrients. During this period it needs to replicate its genome of 
about 5 megabases (mb) long, transcribe millions of RNA molecules, and 
make millions of protein molecules. If some E. coli cells get lazy and leave 
their offspring at a slower rate, then they will soon be replaced by faster-
replicating ones. This process is called negative selection in contrast to 
positive selection which preserves the fittest mutants.  

Most bacterial genomes are circular DNAs made of A, C, G and T. 
Bacterial genomes differ dramatically in genomic AT%. It is likely that 
nucleotides A and T are abundant in bacterial species with an AT-rich 
genome because otherwise such bacterial species would be inefficient in 
replicate their DNA because few building blocks are available. Below we 
develop a more formal argument to show that genomic AT% of bacterial 
species is indicative of cellular AT availability. It is important to know 
something about the cellular environment inside a bacterial cell, especially 
from a phage perspective. It would be a fatal mistake if a phage squeezes its 
AT-rich genome into a bacterial host with few A and T available. 

The importance of the environment reminds me of another story of Yan 
Zi (晏子) when he was serving as the prime minister of kingdom Qi (齐国). 
When he was visiting the neighboring kingdom Zhu, the king of Zhu and his 
aids plotted to insult him. During the banquet, two guards pushed a man in 
chains across the court. The king rose to ask what happened and was told 
that the man in chains was a native of kingdom Qi and was caught for 
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stealing. The king then turned to 晏子 and asked if people of kingdom Qi 
loved stealing. 晏子 replied with a smile, “I heard that orange trees produce 
excellent fruits when growing in the south of the Huai River, but terrible 
fruits when growing in the north of the river – the different environments 
make them so. People become excellent citizens when living in kingdom Qi, 
but degrade to thieves when living in kingdom Zhu – the different 
environments make them so.” 

Some of my students are pretty good at invoking the same argument. 
They would tell me that they were A+ students when taught by other 
professors, but became B- students when taught by me – the different 
professors make them so.  

4. GENOMIC AT% OF BACTERIAL SPECIES IS 
INDICATIVE OF CELLULAR AT AVAILABILITY  

Let us return to the cellular environment of bacterial cells. We will first 
develop a model to show the following conjecture is plausible, i.e., the 
genomic AT% in rapidly replicating bacterial species can be used as an 
index of the availability of nucleotides A and T for DNA replication in 
cellular medium. We will then use this index to (1) study the evolution and 
adaptation of the bacteriophage genomic AT% in response to the differential 
nucleotide availability of the host and (2) test the prediction of an association 
between phage genomic AT% and their host genomic AT%, and (3) test the 
prediction that double-stranded DNA (dsDNA) phage should exhibit better 
adaptation than single-stranded DNA (ssDNA) phage. You may be wonder 
where these predictions come from. Their formulation will be detailed latter. 

Designate the amount of the four deoxyribonucleotides dATP, dCTP, 
dGTP and dTTP available for DNA replication as VdA, VdC, VdG and VdT, 
respectively. Note that these are abstract terms and may not correspond to 
the cellular concentration of dNTPs or rNTPs. Suppose a single-stranded 
DNA genome of length L is composed of A, C, G, and T with frequencies 
NA, NC, NG and NT, respectively (NA + NC + NG + NT = L). The 
polymerization reaction is characterized as  

1

pk

n nM M M +• + → •  (4.3) 

 
where Mn• stands for an elongating (or propagating in chemistry 
terminology) DNA strand with n monomer residues (i.e., nucleotides), M is 
the monomer, and kp is the propagating constant. According to the law of 
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mass action, and assuming that kp is the same for adding any of the four 
nucleotides to the elongating chain, the elongation rate (r) during DNA 
replication can be modeled as  

[ ] [ ] [ ] [ ]C GA TN NN N
p dA dC dG dT

dLr k V V V V
dt

= =  (4.4) 

Bacterial species often need, and typically are selected, to replicate 
rapidly. For example, E. coli in unlimited culture conditions can replicate 
once every 20 minutes. It is therefore reasonable to assume natural selection 
to operate on increasing r for such organisms. According to Eq. (4.4), if VdA 
is the largest, then r is increased with increasing NA and decreasing NG, NC 
and NT, with the constraint of NA + NC + NG + NT = L. Without functional 
constraints such as the genetic code, the maximum r is achieved when NA  = 
L  and NC = NG = NT =0. This means that, in order to maximize r with 
differential nucleotide availability, the genomic nucleotide usage should 
evolve to adapt to the availability of nucleotide availability by maximizing 
the usage of the nucleotide of the highest availability. Similar conclusions 
have also been derived elsewhere on optimization at the molecular level 
(Xia, 1996). 

One should note that the model above does not consider the effect of 
differential depletion of the nucleotides. For example, consider that VdA is 
the largest among the four at the beginning of DNA replication. If a rapidly 
replicating genome is made entirely of A, then A will be differentially 
depleted leading to a reduced VdA which consequently may become smaller 
than VdC, VdG and VdT. This means that the replication of the remaining A-
rich part of the genome would be slow, thus compromising the statement 
above that “The maximum r is achieved when NA  = L  and NC = NG = NT 
=0”. However, the qualitative conclusion that, if VdA is larger than VdC, VdG 
and VdT, then NA should be larger than NG, NC and NT remains correct. 

When VdC = VdG = VdA = VdT = V, then Eq. (4.4) becomes: 

A C G TN N N N LdLr kV kV
dt

+ + += = =  (4.5) 

so that r is independent of NA, NC, NG, and NT. This might be interpreted to 
mean that, with equal availability of the nucleotides for DNA replication, 
there is no selection on genomic nucleotide usage and genomic nucleotide 
frequencies can vary freely. However, the replication of a large, rapidly 
elongating and AT-rich genome may differentially reduce VdC, VdG, VdA, and 
VdT. For example, rapid replication of a large AT-rich genome will reduce 
VdA and VdT and increase the time for adding the remaining A and T to the 
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elongation chain. Thus, even with VdC =VdG = VdA = VdT = V at the 
beginning of the replication, we would still expect the genomic AT% to be 
near 50% instead of fluctuating to extreme values. 

For a double-stranded genome where NA = NT = NAT and NC = NG =NCG, 
Eq. (4.4) becomes 

( ) ( ) CGAT NN
dA dT dC dG

dLr k V V V V
dt

= =  (4.6) 

If VdA•VdT >> VdC•VdG, then increasing NAT in the genome will increase 
r, with the maximum r achieved when NAT = L and NCG = 0, i.e., the genome 
should evolve towards AT-richness. Again, this assumes no differential 
depletion of A and T and should be interpreted qualitatively to mean that, 
with VdA•VdT >> VdC•VdG, we should have NAT > NCG. 

If VdA•VdT = VdC•VdG, then r becomes independent of NAT and NGC. 
However, this again does not necessarily mean that there is no selection to 
constrain genomic AT% and that genomic AT% can consequently vary 
freely. As we have argued before, a large, rapidly replicating and AT-rich 
genome will differentially reduce nucleotides A and T and lead to VdA•VdT 
<< VdC•VdG which is unfavorable for replicating an AT-rich genome. Thus, 
with VdA•VdT = VdC•VdG, we expect the genomic AT% to be near 50% 
instead of fluctuating to extreme values. 

In summary, we expect an extremely GC-rich bacterial genome to 
indicate relatively high VdC•VdG, an extremely AT-rich bacterial genome to 
indicate relatively high VdA•VdT, and a bacterial genome with GC% = 50% to 
indicate (VdA•VdT) ≈ (VdC•VdG). It is important to note that, although rATP 
and dATP cencentrations are generally higher than other rNTPs and dNTPs, 
this does not preclude the possibility that some bacterial species have greater 
AT availability than others. 

Based on the reasoning above, we may infer that different genomic AT% 
values in different bacterial species indicate different AT availability in the 
cells of these bacterial species. By using the genomic AT% of bacterial 
species as an index of AT availability, we now study how bacteriophage 
genomic GC% evolve in response to different nucleotide availability in 
different hosts.  

5. FORMULATING THE HYPOTHESIS AND 
PREDICTIONS 

Assuming that it is beneficial for the phage to replicate its genome 
rapidly, we can make two testable predictions. First, a phage genome should 
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evolve to become AT-rich in a host with a high genomic AT% (indicating 
VdA•VdT >> VdC•VdG in its cell), and GC-rich in a host with a low genomic 
AT% (indicating VdA•VdT << VdC•VdG in its cell). This will lead to a positive 
correlation between the phage genomic AT% and the host genomic AT%. 
Such a correlation has in fact been known for a long time (Gibbs and 
Primrose, 1976).  

Second, because the rate of spontaneous deamination (Figure 4-2), which 
leads to C→T or C→U mutations depending on whether C is methylated or 
not, is about 100-fold higher in the ssDNA than in dsDNA (Frederico et al., 
1990), we expect such mutations to reduce the effectiveness of natural 
selection optimizing the genomic AT% of the ssDNA phage in response to 
their host genomic AT%. In particular, with low host AT availability, natural 
selection should favor the reduction of the phage genomic AT%, but the 
C→T(U) mutation mediated by the spontaneous deamination in the ssDNA 
phage would counteract against natural selection and increase the genomic 
AT% of the ssDNA phage.  
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Figure 4-2. Spontaneous deamination converts a cytosine to a uracil. 

One more point worth making is that, while A% is constrained to equal 
T%, and C% equal G%, in dsDNA phage, genomic A% and T% can evolve 
independently in ssDNA phage. We can therefore specifically predict an 
increase in the genomic T% in ssDNA phage without an associated increase 
in the genomic A%. We will test these predictions. There are many 
complications involved in testing these predictions (Xia and Yuen, 2005). 
However, we will ignore them at the moment. 

6. ARE OUR PREDICTIONS SUPPORTED? 

The positive relationship between the phage genomic AT% and their host 
genomic AT% is shown separately for the dsDNA and ssDNA phages 
(Figure 4-3). Such a positive relationship itself is trivial because the 
relationship has been known for nearly 30 years (Gibbs and Primrose, 1976). 
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However, the difference between the dsDNA and ssDNA phages is 
scientifically interesting. The regression line for the ssDNA phage has a 
higher intercept (t = 2.83, p = 0.0028) and a lower slope (t = 2.04, p = 0.0221) 
than that for the dsDNA phage (Figure 4-3) based on a generalized linear 
model (Xia and Yuen, 2005). 
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Figure 4-3. Relationship between the phage genomic AT% and the host genomic AT%. Data 
points for ssDNA and dsDNA phages are plotted separately with their respective linear 
regression lines. 

The increased intercept and decreased slope in the ssDNA phage relative 
to the dsDNA phage are easy to interpret in light of the finding that the rate 
of spontaneous deamination, which increases the C→T(U) mutation rate, is 
about 100-fold higher in ssDNA than in dsDNA (Frederico et al., 1990). 
This spontaneous deamination features prominently among all other factors 
contributing to the degradation of DNA (Lindahl, 1993). When host genomic 
AT% is low (the left extreme of Figure 4-3), indicating low availability of 
nucleotides A and T in the cellular medium according to equations (4.4) and 
(4.6), natural selection should cause the phage genome to reduce its AT%, 
but the C→T(U) mutation mediated by the high rate of spontaneous 
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deamination in the ssDNA phage goes against natural selection and increases 
phage genomic AT%. In other words, the C→T(U) mutations reduce the 
effect of the natural selection that pushes the phage genomic AT% 
downwards. This would raise the intercept and decrease the slope of the 
regression for the ssDNA phage relative to the regression line for the dsDNA 
phage. 

Note that the C→T(U) mutations act in the same direction as the natural 
selection when the host genomic AT% is high indicating high availability of 
nucleotides A and T in the cellular medium according to equations (4.4) and 
(4.6). In this case, natural selection should favor phage genomes to become 
AT-rich, and the C→T(U) mutation mediated by the high rate of 
spontaneous deamination in the ssDNA phage also increases phage AT%, 
i.e., the two acting in the same direction. Such an interpretation is consistent 
with the right side of Figure 4-3 in which few points are below the 
regression line and with little scatter above and below the regression line, 
especially when the host genomic AT% is extremely high. 

To further substantiate this interpretation, we can test whether the 
increased intercept and decreased slope for the regression line of the ssDNA 
phage in Figure 4-3 is really due to an increase in the genomic T% instead of 
the genomic AT%. This can be done because A and T do not need to be 
equal to each other in number for ssDNA. We expect an increased genomic 
T% but not genomic A% in the ssDNA phage. Such an inference is 
consistent with plotting the genomic A% and T% separately for the ssDNA 
phage against the host AT% (Figure 4-4).  

The difference between the two regression lines in Figure 4-4 is 
significant (Xia and Yuen, 2005). The regression line for the genomic T% 
has a significantly increased intercept (P = 0.0068, one-tailed test) and 
decreased slope (P = 0.0323, one-tailed test). Also, the relationship between 
the phage genomic A% and the host genomic AT% is stronger than that 
between the phage genomic T% and the host genomic AT%, with the 
Pearson correlation coefficient being 0.87857 and 0.60249, respectively.  

The results above corroborate our interpretation that C→T(U) mutations 
contribute significantly to the relationship in nucleotide frequency 
distribution between the phage genome and the host genome. In particular, 
the increased intercept and decreased slope for ssDNA phage in Figure 4-4 
can be largely attributed to the C→T(U) mutations mediated by the 
spontaneous deamination. 

The pattern in Figure 4-4, however, can have an alternative explanation. 
First, it is important to note that the host genomic AT% is only indicative of 
VdA•VdT. If VdT is similar in all hosts, but VdA differs substantially among 
hosts, then VdA•VdT will also differ substantially and phage genomic AT% 
will consequently be selected to adapt to the host environment of different 
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VdA•VdT. However, for ssDNA phages in such a scenario with the hosts 
differing much in VdA but little in VdT, only the genomic A%, but not the 
genomic T%, of the ssDNA phages will show a good correlation with the 
host genomic AT%. This is also consistent with the pattern in Figure 4-4. 
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Figure 4-4. The genomic A% and T% of the ssDNA phage plotted against their host genomic 
AT%. The regression lines are separately fitted for the phage genomic A% and T%, 
respectively 

Mutation and selection are two sculptors of nature, but the effect of 
mutation on the evolution of genomes in general and proteins in particular is 
only recently appreciated (Gu et al., 1998; Hickey and Singer, 2004; Lobry, 
2004; Wang et al., 2004), notably after the pioneering work of Sueoka 
(1961). The C→T(U) mutations mediated by spontaneous deamination 
(Frederico et al., 1990, 1993; Lindahl, 1993; Sancar and Sancar, 1988), in 
particular, have been invoked to explain the strand-asymmetry in nucleotide 
frequency distribution in vertebrate mitochondrial genomes (Reyes et al., 
1998; Tanaka and Ozawa, 1994; Xia, 2005c), in the bacterial genomes 
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(Lobry, 1996; Lobry and Sueoka, 2002; McInerney, 1998), and in coding 
sequences (Beletskii and Bhagwat, 1996, 1998, 2001; Beletskii et al., 2000). 
The result presented above shows how the C→T(U) mutations can operate 
together with selection to shape the genomic AT% of dsDNA phage and the 
genomic A% and T% in ssDNA phage.  

Previous studies have shown that spontaneous mutation appears to be 
AT-biased in different genomes and genetic backgrounds (Gojobori et al., 
1982; Li et al., 1984; Marcelino et al., 1998; Wang et al., 1996), and the 
evidence is convincing based on the comparison between functional genes 
and their pseudogene counterparts (Gojobori et al., 1982; Li et al., 1984). 
However, mutation alone is often insufficient to explain the observed genetic 
variation.  

Two different kinds of AT-richness have been documented for 
mitochondrial genomes alone demanding two different explanations (Xia, 
1996). The first kind is represented by (1) the insect mitochondrial genomes 
where most codons end with A and T and (2) the mammalian mitochondrial 
D-loop which is not transcribed and very AT-rich. Both the D-loop and the 
third codon position of protein-coding genes evolve rapidly. In the insect 
mitochondrial genomes, the number of A-ending codons roughly equals the 
number of T-ending codons. In the D-loop, the number of A and T are 
distributed roughly equally in the two strands. This first kind of AT-richness 
was attributed to AT-biased mutation (Xia, 1996). The second kind of AT-
richness is represented by the coding sequences in vertebrate mitochondrial 
genomes, where most codons in four-fold degenerate codon families end 
with A but few end with T. This cannot be explained by the mutation 
hypothesis invoking AT-biased mutation because such mutations would lead 
to roughly equal number of A-ending and T-ending codons in four-fold 
degenerate codon families.  

The large number of A-ending codons with few T-ending codons in 
mammalian mitochondrial genomes prompted the proposal of the 
transcription hypothesis of codon usage (Xia, 1996), based on the 
observation that cellular concentration of ATP is much higher than that of 
the other three rNTPs (Table 2.1 in Bridger and Henderson, 1983, pp. 4-5; 
Colby and Edlin, 1970; Table 2.1 in Kornberg and Baker, 1992). For 
example, in the exponentially proliferating chick embryo fibroblasts in 
culture, the concentration of rATP, rCTP, rGTP and rUTP, in units of (moles 
×10-12 per 106 cells), is 1890, 53, 190, and 130, respectively, in 2-hour 
culture, and 2390, 73, 220, and 180, respectively, in 12-hour culture. The 
transcription hypothesis of codon usage states that, with the high availability 
of rATP and relatively low availability of the other three rNTPs, especially 
rCTP, the transcription efficiency can be increased by maximizing the use of 
A in the third codon position of protein-coding genes. The limitation of 
rCTP is well-exemplified by the protozoan parasite, Trypanosoma brucei, in 
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mammalian blood. The parasite maintains its de novo synthesis pathway for 
CTP and inhibiting its CTP synthetase effectively eradicates the parasite 
population in the host (Hofer et al., 2001). This suggests that little CTP can 
be salvaged from the host. In contrast, the parasite does not have de novo 
synthesis pathways for purines, suggesting that the parasite can obtain the 
purines by its salvage pathway. C-limitation appears to be a general feature 
in bacterial species, and a biochemical explanation has been offered to 
explain the general C-limitation in bacterial species (Rocha and Danchin, 
2002). C-limitation has also been invoked to explain the length of coding 
sequences (CDSs), i.e., a long CDS with many Cs may take inordinately 
long to be transcribed and should therefore be selected against (Xia et al., 
2006). 

The variation of the genomic AT% in the dsDNA phage and the genomic 
A% and T% in the ssDNA phage in our study cannot be explained by the 
C→T(U) mutations alone, and we believe that the correlations shown in 
Figure 4-3 and Figure 4-4 are mainly the work of natural selection favoring 
the AT-rich phage in AT-rich hosts and AT-poor phage in AT-poor hosts. 
The data from ssDNA phage helped us to conclude that it is the C→T(U) 
mutations, instead of AT-biased mutations, are mainly responsible for the 
difference between the ssDNA and dsDNA phages we observe in Figure 4-3 
and Figure 4-4. The results here corroborate a previous finding (Xia, 2005c) 
that spontaneous deamination has profound effect on the strand-biased 
nucleotide and codon frequency distributions and on the codon-anticodon 
adaptation in another kind of intracellular genomes, i.e., the vertebrate 
mitochondrial genomes. 

In short, the phage genomic AT% has evolved in response to the 
availability of A and T in their host cells. In particular, the difference in the 
relationship between the ssDNA phage and dsDNA phage, can be partially 
explained by the difference in (1) selection operating to maximize the rate of 
DNA replication and (2) the C→T(U) mutation mediated by the high rate of 
spontaneous mutations in the ssDNA phage.  

The key message from this chapter is that researchers in bioinformatics 
need to gain a certain degree of familiarity with biology, especially 
molecular biology and microbiology. The next three chapters bring us back 
to core bioinformatics tools, but Chapter 8 will again expose us to more 
fundamentals of biology, especially on the three essential biological 
processes: DNA replication, transcription and translation. 
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7. A SHORT PLAY FEATURING PHAGES AND 
BACTERIA 

(Phage virions advancing towards bacterial cells) 
Bacteria: Hey. Stop! We are peace-loving creatures. 
Phages: But we see restriction enzymes made inside your cells with a clear 

purpose of cutting us into pieces. Such weapons of mass destruction 
cannot be tolerated, and we have been called upon to come in and kill 
you. 

Bacteria: But look, the restriction enzymes we make are called 8-cutters. 
They have a recognition site with 8 nucleotides. The chance of having 
such a lengthy recognition site found in your tiny little genome is 
extremely small. In fact, if you BLAST this recognition site against your 
genome, you will find absolutely no match. On the other hand, you will 
find several matches of the restriction site against our own larger 
genomes. This shows that the restriction enzyme is really for maintaining 
our own genomic integrity under special circumstances. 

Phages: Glad to know that your restriction site does not have any match 
against our genome, which suggests the right timing for our preemptive 
strikes. It would have been too late if you already have a restriction 
enzyme that can find a cutting site in our genome. 

(So phages invade the bacterial cells, proliferate and finally vote to destroy 
the bacterial cells. Remaining bacterial cells all shrink into a corner and 
look hostile towards the advancing phages.) 

Phages: Be nice to us, otherwise we will come to vote inside you, too! 
 

(Just in case you do not know, the production of restriction enzymes in 
bacterial hosts imposes strong selection against their respective phage to 
such an extent that almost all phage genomes exhibit strong avoidance of the 
restriction sites. You may take an Escherichia coli or Bacillus subtilis 
genome to verify this point quite easily.) 



 

Chapter 5 

GENE AND MOTIF PREDICTION 
 

 
 

1. INTRODUCTION 

Two major categories of gene and motif ab initio annotation methods are 
in current use. The first is based on known genes in molecular databases, and 
uses homology search tools such as FASTA (Pearson and Lipman, 1988) 
and BLAST (Altschul et al., 1990; Altschul et al., 1997), which are the 
subject of Chapter 1. The second, better known as gene and motif prediction, 
is based on known gene structures such as exon-intron structures in 
eukaryotic protein-coding genes, and represented by GENSCAN (Burge and 
Karlin, 1997). It might be of interest to note that both Stephen F. Altschul 
and Chris Burge published their respective works on BLAST and 
GENSCAN when they were in the research group of Samuel Karlin in 
Department of Mathematics, Stanford University.  

While some gene and motif prediction methods, such as Gibbs sampler 
that will be covered in a latter chapter, do not require known differences 
between coding and non-coding sequences or between motifs and non-
motifs, most gene prediction methods are based on known sequence 
differences between protein-coding sequences and non-coding sequences 
and between motifs and non-motifs. The differences are often characterized 
into two categories, the signal sensors and content sensors. The signal sensor 
refers to signals with strong site dependence, i.e., knowing a nucleotide, an 
amino acid or a word (e.g., a nucleotide triplet or an amino acid doublet) at 
site i greatly improves our prediction of the nucleotide, amino acid or word 
at site i+k (where k is any integer). For example, a long word called anti-
Shine-Dalgarno sequence (Shine and Dalgarno, 1975b) at site i in bacterial 
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mRNA greatly improves our prediction of the presence of an ATG triplet 
about 10 bases downstream. The content sensor, on the other hand, is not 
supposed to have detectable site dependence. For example, in a long intron 
or in a DNA sequence that has never been transcribed during its evolutionary 
history, knowing a nucleotide at site i generally will not improve our 
prediction of what nucleotide should be found at site i+k. However, even for 
such a sequence, its nucleotide, dinucleotide or trinucleotide frequencies 
(generally referred to as word frequencies) may help us to know whether it is 
coding or non-coding. These word frequencies are typical example of 
content sensors.  

Extensive studies have been carried out to characterize the differences 
among different sequence states (e.g., transcription start and termination 
sites, translation initiation and termination sites, exons, introns, poly-A site, 
etc.), leading to a variety of signal sensors such as the relatively uniform 
splicing sites (Burge, 1998; Foissac and Schiex, 2005; Gelfand, 1989; 
Tenney et al., 2004) and the much less uniform exon-exon junctions in 
spliced mRNA (Gelfand, 1992), and content sensors such as unusual 
frequency distributions of words (Borodovsky and McIninch, 1993b; 
Gelfand et al., 1992; Pevzner et al., 1989) that can be potentially used in 
gene-finding. All these pieces of information can be combined in a Bayesian 
framework to increase the confidence of gene prediction. We will have a 
very gentle exposure to Bayes’ theorem in this chapter and Bayesian 
inference in Chapters 13 and 14.  

In this chapter we will first learn a few commonly used techniques for 
characterizing the features of signal sensors and content sensors. This will be 
followed, in the next chapter, by an in-depth account of hidden Markov 
models that combine information from both the signal sensors and content 
sensors. Before we get into serious bioinformatic tools, please allow me to 
smuggle into the book some basic terminology involved in informal decision 
making. 

2. BAYES’ THEOREM AND ODDS RATIOS 

With N alternative and discrete hypotheses individually designated as θi 
(where i = 1, 2, …, N), the observation Y and the prior probabilities 
associated with each hypothesis as P(θi), Bayes’ theorem expresses the 
probability of θi being true, given the observed Y, as 
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When there are only two alternative hypotheses, the theorem is reduced 
to the familiar form in basic statistical books: 
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P(θi|Y) is the posterior probability for hypothesis θi, P(Y|θi) is the 
likelihood defined as the conditional probability of having the observation Y 
given hypothesis θi, and P(θi) is the prior probability. The numerator and 
denominator are know as the joint and marginal probabilities, respectively. 

Suppose we believe that an average reader of this book has a probability 
of 0.6 of university-level mathematical training. This naturally means that 
40% or readers are believed not to have the training. We also have some 
sampling data to show that those with the university-level mathematics 
training will have a probability of 0.9 of getting as far as this chapter, and 
those without will have a probability of 0.2 of getting to this chapter. Now 
suppose a reader has come to this chapter. What is the probability that the 
reader actually has university-level mathematical training? 

This problem, clearly involving conditional probabilities, can be easily 
solved by applying Bayes’ theorem. We have two hypotheses, i.e., either the 
reader has the university-level mathematical training, defined as θYes, or he 
does not, defined as θNo. We also define the observation of “reaching this 
chapter” as Y. Before we have this observation, our best guess of the reader 
having university-level training is 0.6. This leads to the specification of the 
two prior probabilities: 

( ) 0.6
( ) 1 ( ) 0.4

Yes

No Yes

P
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θ
θ θ

=
= − =

 (5.3) 

Because our sampling data show that a reader has a probability of 0.9 of 
getting to this chapter if he has university-level math training and a chance 
of 0.2 if he does not, we can now specify the two likelihoods: 

( | ) 0.9
( | ) 0.2

Yes Yes

No No

L P Y
L P Y

θ
θ

= =
= =

 (5.4) 
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Now the probability of the reader having university-level training (the 
posterior probability), given the observation that he has reached this chapter, 
is simply 

0.9 0.6( | ) 0.871
0.9 0.6 0.2 0.4YesP Yθ ×

= =
× + ×

 (5.5) 

The knowledge that the reader has reached this chapter has changed the prior 
probability of 0.6 to 0.871. The probability that θNo is true is naturally 0.129. 

It is important to keep in mind the fact that, if a prior probability is zero, 
then the associated posterior probability is also zero. For example, if P(θYes) 
is zero, then P(θYes|Y) is also zero, and no evidence to the contrary will ever 
change it. Thus, a scientist has an obligation not to take extreme views when 
adopting a Bayesian approach. Setting a prior probability to extreme values 
has done much harm in world politics. Setting the prior probability of a 
certain country having WMD to 1 will always lead to a posterior probability 
of 1, and no evidence to the contrary will ever change it. 

We now introduce an index to measure how likely a hypothesis is relative 
to its alternative: the odds ratio which is defined as the ratio of the two 
probabilities each associated with a hypothesis. For example, the odds ratio 
of the two likelihood values in Eq. (5.4), also known as the likelihood ratio, 
is  

( | ) 0.9 4.5
( | ) 0.2
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P Y
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θ
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Ω = = =  (5.6) 

Classical statistical decision making is based solely on the observation 
and nothing else. So in this case, given the observation of the reader having 
reached this chapter, θyes is 4.5 times as likely as θNo. On the other hand, if 
we do not know that the reader has reached this point, then we only have the 
odds ratio of the two prior probabilities 
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P
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The two posterior probabilities combine information from both our prior 
knowledge (expressed in prior probabilities) and our new observation and 
yield the following odds ratio 
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You may already know that Bayes’ theorem can also be expressed as 

'' 'Ω = Ω Ω  (5.9) 

You can numerically verify the correctness of this formulation by using 
the three values in Eq. (5.6)-(5.8). This expression shows that the odds ratio 
of the posterior probabilities is equal to the likelihood ratio multiplied by the 
odds ratio of the prior probabilities 

Let us now have a more relevant, but also a bit more complicated, 
example. Suppose that a bacterial genome of length L contains N protein-
coding genes of length X1, X2, …, XN. Suppose we randomly pick up a 
sequence fragment of length z bases, the probability that it is within a coding 
sequence is 
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where the numerator is the number of possible ways of landing the segment 
fragment of z bases long within a coding sequence and the denominator is 
the number of possible ways of landing the fragment of z bases within the 
genome. For numerical illustration, let’s fix z = 90 bases and work with a 
linear genome that is so simple that it has a length of only 10,000 bases and 
contains only two protein-coding genes of lengths 900 bases and 3000 bases, 
respectively, and three non-coding sequences, with one between the two 
coding genes, one at the 5’-end and the other at the 3’-end of the genome. 
This gives  

(900 90 1) (3000 90 1) 0.37554
10000 90 1

p − + + − +
= =

− +
 (5.11) 

Just in case that you are not a biology major, we define an open reading 
frame (ORF) as a series of consecutive sense codons flanked by an inframe 
upstream initiation codon (e.g., ATG) and an inframe downstream 
termination codon (e.g., TAA). By analyzing a set of known protein-coding 
genes and intergenic sequences from the genome, you found that the 
probability of a protein-coding gene having an ORF at least 90 bases long is 
0.95 and the probability of an intergenic sequence having an ORF at least 90 
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bases long is only 0.1. Now if you have a sequence of 90 bases long that 
happens to be an ORF, what is the probability that it is a coding sequence? 

Again we have two hypotheses, i.e., the 90-base segment is a protein-
coding gene (θYes) or it is not (θNo). Our prior probabilities are 

( ) 0.37554
( ) 0.62446
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P
P
θ
θ

=
=

 (5.12) 

The likelihood values associated with the two hypotheses, given the 
observation that the 90-base segment is an ORF is 
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The probability that θYes is correct is then  

0.95 0.37554( | ) 0.851
0.95 0.37554 0.1 0.62446YesP Yθ ×

= =
× + ×

 (5.14) 

Thus, knowing the 90-base segment is an ORF greatly increased the 
chance that it is a coding sequence (from the prior probability of 0.37554 to 
the posterior probability of 0.851). The concept of odds ratios will be used in 
position weight matrix in the next section and latter chapters. 

3. CHARACTERIZING FEATURES OF SIGNAL 
SENSOR 

3.1 Position weight matrix 

Position weight matrix (PWM) is a simple technique for characterizing 
sequence motifs from a set of aligned training sequences. The resulting 
PWM can be used to scan sequence fragments and generate a PWM score 
for each sequence fragment, with a large score associated with a higher 
likelihood of the fragment being one of the motifs. PWM is not only quite 
useful in its own right, but is also an essential building block in Gibbs 
sampler used often in detecting regulatory sequences in DNA or functional 
motifs in proteins. We will cover Gibbs sampler for motif prediction in a 
latter chapter. Here we will first describe the details of computing a PWM 
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and obtaining a PWM score for each sequence, and then highlight a few of 
its limitations. 

Suppose we want to characterize the translation initiation signal in 
eukaryotic mRNAs. According to Kozak’s scanning model (Kozak, 1982, 
1984, 1989), the translation initiation signal in eukaryotic mRNAs includes 
the initiation codon together with a few bases flanking the initiation codon. 
So we may take, say five bases, flanking the initiation codon from each 
known mRNAs as sequence input (i.e., training sequences) to generate 
PWM.  

In this illustrative example, we will use only protein-coding genes on 
human chromosome 22, which is the shortest and first sequenced human 
autosome (Dunham et al., 1999). The chromosome contains 508 annotated 
protein-coding genes with real names, i.e., not genes named as LOC###### 
where “#’ is an integer number. The raw sequence data are partially 
displayed below, with the left column being the gene name: 

 
A4GALT        ATACCATGTCCAA 
ACO2          ACAAAATGGCGCC 
ACR           GGAGTATGGTTGA 
ADM2          CCGCCATGGCCCG 
...... 
 
At this point we hardly see (unless you already have trained eyes) any 

similarity among the 13-base sequences other than the fact that they all have 
the initiating ATG codon in the middle with 5 bases flanking on each side. 

The first step in generating PWM is to obtain site-specific nucleotide 
frequencies (or amino acid frequencies if we are characterizing a sequence 
motif shared among proteins in a protein family). If the motif has extremely 
biased nucleotide usage, then that would provide a straightforward way of 
predicting such a motif. However, the result of nucleotide frequencies (Table 
5-1) does not show particularly biased nucleotide usage except that the three 
sites occupied by the initiation codon. 

Designate fij as the site-specific frequency for nucleotide i (i = 1, 2, 3, 4 
corresponding to A, C, G, and T) at site j (=1, 2, …, 13 in our example in 
Table 5-1), and the number of sequences as N, the probability of 
encountering nucleotide i at site j is estimated as  

1

,  e.g.,
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In contrast, the probability of encountering nucleotide i without any site 
information is estimated as 

,  . .,

1563 0.2367
508 13
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where L is sequence length. 

Table 5-1. Site-specific nucleotide frequencies from the 508 named protein-coding genes on 
human chromosome 22.  The initiation codon ATG is located at sites 6-8. 

 
Site A C G U 
1 75 173 171 89 
2 105 216 144 43 
3 199 70 212 27 
4 124 236 83 65 
5 60 276 143 29 
6 502 6 0 0 
7 0 0 0 508 
8 0 0 508 0 
9 98 71 274 65 
10 141 227 89 51 
11 49 154 221 84 
12 89 144 196 79 
13 121 151 134 102 
Sum 1563 1724 2175 1142 

 
Given a sequence, say, S = ACGGTACCACGTT, we have two 

hypotheses, i.e., it belongs to the 13-base translation initiation signal (θYes) 
or it does not (θNo). It should share the site dependence with the training 
sequences if θYes is true, and not if θNo is true. In the latter, it does not. The 
likelihoods of observing sequence S, given the two different hypotheses, are 
specified, respectively, as 

1 2 3 4 13

3 4 3 3

( | ) ...

( | )
Yes Yes A C G G T

No No A C G T

L p S p p p p p
L p S p p p p

θ

θ

= =

= =
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In statistical inference, you will often encounter notations equivalent to 
p(S|θYes) or p(S|θNo). You should instantly recognize it as a likelihood 
function. You may note that, for P(S|θNo), the order of sites is irrelevant. 



86 Chapter 5
 
P(S|θNo) remains the same if you rearrange the nucleotides in sequence S in 
any order. For P(S|θYes), the order is important and rearrangement of the 
nucleotides in S will change P(S|θYes). 

If P(S|θYes) is much larger than P(S|θNo), then we tend to consider S as a 
member of the 13-base translation initiation sequence, especially when the 
initiation codon is excluded from computation. One convenient index would 
seem to be the odds ratio of P(S|θYes)/P(S|θNo), which you should recognize 
as the likelihood ratio. The problem is that both P(S|θYes) and P(S|θNo) would 
become very small when S has even a moderate length. For example, 
assuming equal nucleotide frequencies, P(S|θNo) = 0.2513 = 0.000000015. 
Computation involving small numbers is always plagued by rounding errors 
and overflows. For this reason, it is not the odds ratio but the logarithm of 
the odds ratio (or log-odds for short) that is used as a measure of how likely 
that the sequence belongs to the 13-base translation initiation site. This log-
odds (or log-likelihood ratio) is called the sequence score of the position 
weight matrix (PWMS): 

1 2

1 2
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2 2 2 2
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Using the logarithm of base 2 makes it easy to see the difference between 
P(S|θYes) and P(S|θNo), i.e., PWMS = 1 when the ratio is 2, PWMS = 2 when 
the ratio is 4, etc. One does not have to use base 2 and there is no agreed-
upon convention for choosing any base. Also, sometimes likelihood ratio, 
instead of its logarithm, is used as PWMS. 

 The PWM is a matrix to facilitate the computation of PWMS. It is of the 
same dimensions as the site-specific frequency matrix, i.e., 4 by 13 in our 
case. The site-specific frequency matrix in Table 5-1 is presented as a 13 by 
4 matrix, instead of a 4 by 13 matrix, because of the limitation of page 
width. Each individual entry in PWM is 
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In practice, PWMij is computed with the following equation which is 
computationally more efficient than Eq. (5.19): 
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5. Gene and motif prediction 87
 
where L is the sequence length (13 in our case), i = 1, 2, 3 and 4 
corresponding to A, C, G and T, j = 1, 2, …, 13 indicating the site number, 
fi,j is the nucleotide frequency of nucleotide i at site j, e.g., fA,1 = 75 (Table 5-
1) and fi is the overall nucleotide frequency of nucleotide i, e.g., fA = 1563 
(Table 5-1). One may also use the genomic nucleotide frequencies for fi, 
especially when the nucleotide frequencies are highly biased in the motif 
relative to the genomic frequencies.  

A positive PWMij value means it is more likely, and a negative PWMij 
value means it is less likely, to find nucleotide i at position j than random 
expectation based on pi values only. A PWMij value of 0 means that finding 
nucleotide i at position j is not informative in discriminating between motifs 
and non-motifs. 

Note that fij may be zero, e.g., fG6 = fT6 = fA7 = fC7 = fG7 = fA8 = fC8 = fT8 = 
0 in Table 5-1, and no logarithm is defined for zero. One common approach 
to avoid this problem is to add what is called pseudocounts. Define α as a 
scaling variable for computing pseudocounts, we have 
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where i = 1, 2, 3, 4 corresponding to A, C, G, and T or 1, 2, …, 20 
corresponding to the 20 amino acids, respectively, and N = 4 for nucleotide 
sequences or 20 for amino acid sequences. Now we modify Eq. (5.20) to 
take the following form: 
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You may wonder how to choose the α value. The allowable values are 
between 0 and 1, and some programs such as Gibbs Motif Sampler 
(Thompson et al., 2004; Thompson et al., 2003) have a default value of 0.1. 
Strangely enough, I have never seen any rules proposed to govern the choice 
of the α value. So I will add a few sentences on this topic. 

It is important to know the consequences choosing different α values 
because it affects the PWM score (PWMS) that we need to calculate for each 
sequence. If α = 0, then PWMS is expected to be 0 for a sequence randomly 
generated from the pool of background nucleotide frequencies (i.e., pA, pC, 
pG, pT). With α > 0, PWMS is no longer expected to be 0 and the 
interpretation of its absolute value becomes impossible. For this reason, to 
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paraphrase Albert Einstein, the α value should be as small as possible, but 
not smaller. I recommend 0.01 because such a small α value has little effect 
on PWMS. The default α value in DAMBE (Xia, 2001; Xia and Xie, 2001b) 
is 0.01. 

The PWM obtained with Eq. (5.22) based on all the 13-base translation 
initiation site from the annotated human chromosome 22 sequences is shown 
in Table 5-2, with α = 0.05. The largest values are found at sites 6-8 
corresponding to ATG in the middle of the 13-mer. Highlighting the largest 
values in each row flanking ATG results in the recovery of Kozak’s 
translation initiation consensus, i.e., RCCATGG (Table 5-2). In translation 
literature, A in ATG is often designated as site 1, and the first R is referred 
to as -3R and the last G as +4G. Advocates of the scanning model often 
attribute much significance to these two sites as important signals for 
recognition of translation initiation, so does nearly every textbook on 
molecular biology.  

Table 5-2. PWM derived from the site-specific frequencies in Table 5-1, using Eq. (5.22) and 
with the last row of Table 5-1 as fi values. Pseudocounts equal to 5% of the actual frequencies 
were used. The Kozak translation initiation consensus is in bold. PWM values computed with 
DAMBE (Xia, 2001; Xia and Xie, 2001b). The standard deviation in the last column (Std) is 
an indication of the amount of information at each site and is highly correlated with 
Shannon’s information entropy (Shannon, 1948). 
Site A C G U Std 
1 0.0726 0.7140 0.5377 0.3675 0.2731 
2 0.3307 0.9354 0.3913 -0.1780 0.4553 
3 0.9284 -0.0167 0.7350 -0.4293 0.6367 
4 0.4731 1.0279 -0.0072 0.1086 0.4656 
5 -0.0761 1.1967 0.3856 -0.3954 0.6915 
6 1.9941 -0.7772 -0.8254 -0.9879 1.4316 
7 -0.8980 -0.8743 -0.8254 2.3190 1.5927 
8 -0.8980 -0.8743 1.6783 -0.9879 1.3001 
9 0.2745 -0.0075 0.9900 0.1086 0.4476 
10 0.5896 0.9870 0.0373 -0.0671 0.4931 
11 -0.1958 0.6042 0.7750 0.3173 0.4249 
12 0.1988 0.5428 0.6612 0.2652 0.2207 
13 0.4515 0.5860 0.3331 0.4905 0.1047 

 
It is important to keep in mind that a consensus sequence obtained by the 

PWM method does not mean that it has anything to do with translation 
initiation. In fact, the interpretation of +4G has been controversial. It has 
been suggested that +4G may have little to do with initiation site 
recognition, but is constrained by the requirement for particular type of 
amino acid residue at the N-terminus of the protein (Cigan and Donahue, 
1987). One piece of supporting evidence came from a detailed study of an 
influenza virus NS cDNA derivative (Grunert and Jackson, 1994) which 
showed that both +4 and +5 sites were important and changes at these sites 
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reduced protein production. In contrast, the +6 site (the third codon position 
of the second codon) is less important. A simple explanation of this result is 
that changes at the +4 and +5 sites alter the amino acid, whereas those at the 
+6 site may not. 

Recent studies, especially those involving the removal of the initiator 
methionine (Met) and myristoylation, revived the alternative explanation of 
amino acid constraint for the presence of +4G in protein-coding genes. First, 
amino-terminal modifications of nascent peptides occur in nearly all proteins 
in both prokaryotes and eukaryotes, and the removal of the initiator Met, 
which occurs soon after the amino terminus of the growing polypeptide 
chain emerges from the ribosome, is not only an important amino-terminal 
modification in itself, but also required for further amino-terminal 
modifications. The efficiency of removing the initiator Met depends heavily 
on the penultimate (the second) amino acid, with the efficient cleavage 
occurring only when the penultimate amino acid is small (Moerschell et al., 
1990). Alanine (Ala) and glycine (Gly) happen to be the two smallest amino 
acids and both are coded by G-starting codons, i.e., Ala by the GCN (where 
N stands for any nucleotide) and Gly by the GGN codons. The need for 
removing the initiator Met in proteins implies the presence of many Ala and 
Gly at the penultimate amino acid position and consequently many +4G due 
to the GCN and GGN codons coding for Ala and Gly, respectively.  

Another factor contributing to the prevalence of +4G, but independent of 
the efficiency of translation initiation, is the myristoylation process. For 
example, in Coxsackievirus B3, the initiation codon is flanked by both -3R 
and +4G, and viral mutants with a mutation from +4G to +4C is not viable 
(Harkins et al., 2005). This may seem to confirm what one would expect 
based on the necessity of the Kozak consensus for efficient translation 
initiation in highly expressed genes. However, it turns out that the +4G is 
required in Coxsackievirus B3 not because it is essential for translation 
initiation, but because it is needed for coding Gly (coded by GGN). The Gly 
at the amino terminus, after the removal of the initiator methionine, is 
needed to attach to a myristoyl (C14H28O2) fatty acid side chain, and 
myristoylation occurs only on a Gly residue (Farazi et al., 2001). 
Myristoylation may involve many proteins, and are implicated in protein 
subcellular relocalization (Farazi et al., 2001), apoptosis (Sakurai and 
Utsumi, 2006; Vilas et al., 2006), signal transduction (de Vries et al., 2006; 
Rowe et al., 2006), and the virulence and colonization of pathogens 
(Bentham et al., 2006; Breuer et al., 2006; Harkins et al., 2005; Provitera et 
al., 2006; Robert-Seilaniantz et al., 2006). The need for myristoylation in 
proteins would contribute to the presence of +4G in CDSs.  

We thus have two alternative hypotheses for the presence of +4G in 
protein-coding genes. The conventional translation initiation hypothesis 
argues that the presence of +4G is necessary for highly expressed proteins, 
with two predictions. First, the selection favoring +4G should drive the 
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increased usage of amino acids coded by GNN codons (e.g., Ala coded by 
GCN, Asp by GAY, Glu by GAR, Gly by GGN, and Val by GUN) at the 
penultimate amino acid site. Second, the +4G should be more prevalent in 
highly expressed than in lowly expressed genes. In contrast, the amino acid 
constraint hypothesis, based on the amino-terminal modification involving 
the removal of the initiator Met and myristoylation, has two different 
predictions. First, not all GNN codons should have increased usage, but only 
GCN coding Ala and GGN coding Gly should have increased usage. Second, 
highly expressed genes may need more efficient N-terminal processing and 
may consequently need more GCN and GGN codons. This may increase the 
frequency of +4G in highly expressed genes relative to lowly expressed 
genes.  

To those two alternative hypotheses, one could add still one more. It is 
known that translation initiation is often the rate-limiting step during protein 
production (Bulmer, 1991; Liljenstrom and von Heijne, 1987), and it is 
advantageous fro the ribosome to move quickly down the translation 
initiation site. Because tRNAAla consistently has more gene copies in both 
eukaryotes and prokaryotes, alanine codons are expected to be translated 
faster than other codons. For this reason, highly expressed genes should have 
alanine codons right after the initiation codon so that ribosome can quickly 
move downstream to clear the translation initiation site. This hypothesis, 
which may be termed tRNA hypothesis of translation initiation, has unique 
predictions. First, it predicts only alanine codons (GCN) should be the 
greatest contributor to +4G, and this pattern should be stronger in highly 
expressed genes than lowly expressed genes. Second, it predicts that any 
species, being it prokaryotes or eukaryotes, should feature +4G regardless of 
how translation is initiated, as long as tRNAs for amino acids coded by GNN 
codons are the most abundant. 

Let us get back to PWM. In artificial intelligence literature, the process of 
obtaining the PWM is called training, and the application of the PWM to 
classify unknown sequence fragments as containing or not containing a 
translation initiation signal is called prediction. Suppose we want to use the 
PWM in Table 5-2 for prediction. What we will do is to scan each 13-mer 
along an unknown sequence (S) and compute a PWM scores (PWMS) for 
each 13-mer. For example, a sequence S = CCACCATGGCTGTG….. will 
have the following overlapping 13-mer’s, starting at positions 1, 2, …: 

 
CCACCATGGCTGT 
CACCATGGCTGTG 
ACCATGGCTGTG. 
…… 
 
Once PWM is computed, PWMS for each 13-mer is computed as 
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where L is the length of the sequence fragment (= 13 in our case) and PWM 
values are from Table 5-2. For the first fragment, i.e., CCACCATGGCTGT,  

,1 ,2 ,3 ,13...
0.7140 0.9354 0.9284 ... 0.4905 14.2398

C C A TPWMS PWM PWM PWM PWM= + + + +

= + + + + =
 (5.24) 

The neutrophil cytosolic factor 4 (NCF4) gene happens to have its 
translation initiation sequence identical to CCACCATGGCTGT, so its 
PWMS is 14.2398. In contrast, the sequence flanking the initiation codon in 
the IGLVIV-59 gene, which is a pseudogene, is TTGTGCTGACTCA, with 
its PWMS equal to only 7.2119.  

It is important to keep in mind that the interpretation of PWMS becomes 
more difficult with the inclusion of pseudocounts. Without the pseudocounts, 
the rule of thumb concerning PWMS (or log-odds in general when base 2 is 
used in logarithm) is that a PWMS greater than 10 is taken as significant, 
i.e., P(S|θYes) is about 1000 times greater than P(S|θNo). A PWMS of 0 means 
the two hypotheses are equally likely. This interpretation is not valid with 
the addition of pseudocounts. For this reason, whenever possible one should 
compute PWMS without pseudocounts or use very small pseudocounts so 
that the interpretation above can still be approximately correct. When α = 
0.01, PWMS is 12.3897 for NCF4 and 2.0437 for IGLVIV-59 (Recall that, 
when α = 0.5, SWMS for IGLVIV-59 is 7.2119 which is difficult to interpret 
because 7.2119 seems to be substantially larger than 0). We may say that the 
13-mer from NCF4 is likely a true translation initiation signal, whereas that 
from IGLVIV-59 has already decayed into background as a pseudogene 
typically would. In other words, we can infer that it is a pseudogene by 
looking at the 13-base fragment at its putative initiation site.  

Thus, by scanning along the sequence and computing PWMS for each 
13-mer, we can quickly obtain the distribution of putative translation 
initiation signals along an unknown nucleotide sequence. This is particularly 
useful when one has already identified the ORFs (open reading frames) by 
other methods and wants to refine the prediction by identifying the exact 
location of the translation initiation signals. Figure 5-1 illustrates the result 
of scanning the 5-end of the NCF4 gene.  

The peak score (Figure 5-1) corresponds to the 13-mer with 5 bases 
flanking the initiation ATG. What is particularly interesting is that the scores 
are generally smaller than 0. Recall that random combination of nucleotides 
according to the four pi values should result in the expected value of PWMS 
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equal to 0. The observation that PWMS scores are generally substantially 
smaller than 0 implies that, other than the 13-mer with the initiating ATG in 
the middle, selection has acted in such a way as to make all other 13-mer’s 
to contain weaker translation initiation signals than randomly assembled 
sequences. In other words, there is selection to reduce conflicting translation 
initiation signals in the 5’-end of coding genes.  
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Figure 5-1. Illustration of scanning the 5’-end of the NCF4 gene (30 bases upstream of the 
initiation codon ATG and 27 bases downstream of ATG. The highest peak, with PWMS = 
12.3897, corresponds to the 13-mer with 5 bases flanking the ATG. PWMS computed with α 
= 0.01. 

Note that the interpretation above depends much on the choice of the α in 
computing pseudocounts in Eq. (5.21). If α is substantially larger than 0, 
e.g., in the range of 0.1 or larger, then a sequence generated from a random 
combination of the four pi values will no longer be expected to have a 
PWMS of 0, and the above interpretation would be quite inappropriate. 

There seems to be some periodicity in PWMS (Figure 5-1). It might be 
worth the effort of applying the fast Fourier transform to quantify the 
periodicity.  

PWM is implemented in my program DAMBE (Xia, 2001; Xia and Xie, 
2001b). One may use it to solve practical problems where PWM is 
appropriate. 
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3.2 Perceptron 

The perceptron is a binary classifier, being one of the simplest artificial 
neural networks invented in 1957 at the Cornell Aeronautical Laboratory by 
Frank Rosenblatt (Rosenblatt, 1958). I will abbreviate “artificial neural 
networks” as just “neural networks” from now on. Perceptron is also one of 
the earliest neural networks that became widely known and contributed to 
the increased research effort on neural networks in the early 1960s. The 
fancy name must have contributed to its early popularity. Had it been labeled 
just as “a novel classifier”, “a linear classifier” or, even worse, “a linear 
binary classifier that cannot handle the XOR problem”, it would probably 
never see its light of day. Note that these latter labels are in fact far more 
meaningful than the word “perceptron”. It seems that human beings, through 
some miraculous mechanisms of evolution, have developed a particular 
fascination with words suffixed with “-tron”. Whoever can understand and 
exploit this human fascination seems to be one step closer to success. 
Animals are known to exploit preexisting fascination of other animals to 
increase their chance of survival and reproduction, leading to the proposal of 
the sensory exploitation hypothesis (Arnqvist, 2006; Ryan et al., 1990; 
Sakaluk, 2000). 

The perceptron met its bumpy journey in late 1960s. Because of the 
theoretical objection against the perceptron concept and the highlight of its 
limitations by Minsky and Papert (1969), enthusiasm and funding for 
research in artificial intelligence in general and perceptrons in particular 
decreased substantially until the field was revived again in the 1980s. 
Although the single-layer Perceptrons were proven to be incapable of 
learning the "exclusive or (XOR)" operation (Minsky and Papert, 1969), 
later extensions of the multi-layer perceptrons are able to handle such non-
linear problems (Freund, 1998; Lerner et al., 1995; Rossi and Conan-Guez, 
2005). An alternative for solving the XOR problem is to use the support 
vector machine or SVM (Burges, 1998). 

Perceptron has been used in bioinformatics research since 1980s. The 
identification of translational initiation sites in E. coli (Stormo et al., 1982a) 
is perhaps the first publication of applying the perceptron algorithm in 
identifying gene features. The algorithm has also been used recently for 
finding the ATP/GTP-binding motif (Hirst and Sternberg, 1991). 

The perceptron is conceptually similar to Fisher’s two-group linear 
discriminant function analysis (Fisher, 1936) for continuous variables, often 
referred to as LDA (for linear discriminant function analysis). LDA is used 
when we have N variables, M cases, and a M×N matrix, with the first m1 
cases belonging to one group and the next m2 (=M-m1) cases belonging to 
the other group. The objective is to derive a linear function of the N 
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variables to maximize the difference between the two groups (or, in the 
machine-learning literature, maximize the signal/noise ratio). I will introduce 
you to Fisher’s LDA in the section dealing with content sensors.  

With the perceptron for discriminating between two groups of sequences, 
we designate one group as the positive group and the other as the negative 
group. The objective is to obtain a weight matrix that can be used to obtain 
scores for the unknown sequences and assign these sequences different 
membership according to the scores. 

Here is how perceptron works. Suppose we have two groups of 
sequences designated as POS (for positive) and NEG (for negative) groups, 
respectively. The following two groups of sequences represent one of the 
simplest perceptron problems. We will use this fictitious data set to illustrate 
the perceptron algorithm: 

 
POS1 ACGT 
POS2 GCGC 
 
NEG1 AGCT 
NEG2 GGCC 

 
In practical applications, the sequences will typically be longer than 4 

and each group will typically contain a very large number of sequences. The 
two groups do not necessarily have to contain exactly the same number of 
sequences, although statistics involved would be simpler when they do. Here 
we will ignore the statistics part entirely and focus only on the algorithmic 
aspect of perceptron. Note that we will often refer to sequences in the POS 
group as POS sequences and those in the NEG group as NEG sequences. 

Our task is to find a weighting matrix that can be used to assign a score to 
each sequence in such a way that sequences in the POS group will have high 
scores (typically larger than 0) and those in the NEG group will have low 
scores (typically smaller than 0). The weight matrix and sequence scores are 
the principal output from perceptron training. From now on, we will use 
symbols S, PS, and W to designate an input sequence, the perceptron score 
for the input sequence, and the weight matrix, respectively. 

The first step is to initialize W, which is a 4×L matrix for nucleotide 
sequences and a 20×L matrix for amino acid sequences. W should be 
initialized with non-zero values. You will see why you should not initialize 
the weighting matrix with all zero values. For molecular sequences, M is 
typically initialized with values of one (Table 5-3).  

The perceptron algorithm involves the iteration of two steps: (1) taking 
sequences from the NEG and POS groups sequentially (or randomly when a 
very large number of sequences are present in each group or when the 
perceptron cannot converge) and computing PS for each input sequence, and 
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(2) updating the values in W based on PS. For each sequence S, PS is 
computed as 

,
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S j
j

PS W
=

=∑  (5.25) 

Table 5-3. The weighting matrix (W) for the fictitious example with two sequences of length 
4 in each group, initialized with values of 1. The first row designates sites 1-4. 
Base 1 2 3 4 
A 1 1 1 1 
C 1 1 1 1 
G 1 1 1 1 
T 1 1 1 1 

 
Take the POS1 sequence in the fictitious example, its PS based on the 

initialized W in Table 5-3 is 

1 ,1 ,2 ,3 ,4 4POS A C G TPS W W W W= + + + =  (5.26) 

In fact, PS will be 4 for every sequence with the freshly initialized W 
with values of 1. What might be slightly confusing is the updating of W. It is 
done according to the following rules (there could be slight variation of the 
rules in different applications): 
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where j = 1, 2, …, L where L is sequence length (=4 in our fictitious 
example). 

Let us start with the NEG sequences in the fictitious example. Note that 
you would waste computational time by starting with sequences in the POS 
group because the resulting PS will all be 4 and consequently, according to 
the rules for updating W, no updating is made with positive PS from POS 
sequences when PS = 4 > 0.  

PS for NEG1, i.e., S = AGCT is 4. According to the rules for updating W 
in Eq. (5.27), we should update W by reducing the relevant Wij values by 1. 
The updated W is shown in Table 5-4a, with WA,1, WG,2, WC,3 and WT,4 in the 
original W (Table 5-3) reduced by 1, with updated values highlighted in 
bold.  
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The next input sequence is NEG2 (=GGCC) which has PS = 2 based on 
the updated W in Table 5-4a. According to the rules of updating W in Eq. 
(5.27), we should again subtract 1 from Wij values corresponding to the 
sequences, i.e., WG,1, WG,2, WC,3 and WC,4 all have their values reduced by 1. 
This update changes the weighting matrix from that in Table 5-4a to that in 
Table 5-4b.  

Table 5-4. The first round of the training process in the perceptron algorithm. Updated values 
are highlighted in bold. 
NEG1: AGCT, PS = 4, update Base 1 2 3 4 
 A 0 1 1 1 
(a) C 1 1 0 1 
 G 1 0 1 1 
 T 1 1 1 0 
      
NEG2: GGCC, PS = 2, update A 0 1 1 1 
 C 1 1 -1 0 
(b) G 0 -1 1 1 
 T 1 1 1 0 
      
POS1: ACGT, PS = 2, no update A 0 1 1 1 
 C 1 1 -1 0 
(c) G 0 -1 1 1 
 T 1 1 1 0 
      
POS2: GCGC, PS = 2, no update A 0 1 1 1 
 C 1 1 -1 0 
(d) G 0 -1 1 1 
 T 1 1 1 0 

 
We can proceed with POS1 and POS2 sequences, but both have PS = 2 

and, according to the rules of updating W, no change should be made. At this 
point, no input sequence will lead to updating of W, i.e., the two NEG 
sequences will both have PS = -2 and the two POS sequences will both have 
PS = 2. So we conclude that the perceptron has already converged.  

One problem with the perceptron algorithm is that it may not converge, 
e.g., when it is applied to solving an XOR problem that will be detailed 
latter. For this reason, computer programs implementing the perceptron 
algorithm will allow you to input a maximum number of iterations. 

You might have noticed that some cells may never be involved in 
computing PS for any input sequence, especially when the training set 
contains few sequences. This could cause problems in using W for 
classifying unknown sequences. For example, a sequence of TAAA would 
have a score of 4 and we would consequently assign it to the POS group 
although it bears no similarity to any sequences in the training sequences in 
the POS group. The reason for this is that the Wij values corresponding to 
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TAAA are never involved in computing PS during the training process and 
have still retained the initial value of 1.  

To avoid this problem, we will take the final W from perceptron training 
in Table 5-4 and set to 0 all Wij values not involved in computing PS for any 
input sequences. The post-processed W is shown in Table 5-5. An alternative 
is to set to 0 all Wij values that have never been updated during the iteration. 

Table 5-5. Final W after setting all Wij values not involved in computing PS to 0. Those 
involved in computing PS are highlighted in bold. 
Base 1 2 3 4 
A 0 0 0 0 
C 0 1 -1 0 
G 0 -1 1 0 
T 0 0 0 0 

 
With the postprocessed W, the two POS sequences will still have PS = 2 

and the two NEG sequences still have PS = -2. However, for a sequence 
such as TAAA, PS = 0, i.e., the perceptron is absolutely unable to classify it 
into either the POS or the NEG group. The final W (Table 5-5) , trained with 
the extremely limited training set of only two sequences in the POS and the 
NEG groups, shows explicitly that it can only classify sequences with C or G 
in the second and third sites because all values in the first and last columns 
are zero (Table 5-5). You may find this obvious by looking at the four short 
training sequences. 

Some readers have criticized me for not using a “biologically more 
realistic” example instead of the 4-nucleotide sequences. My objective is 
equivalent to demonstrating a rainbow with just a few droplets of water. 
Those who insist on seeing a real rainbow spanning the sky would probably 
have to find one for themselves in their practical research. 

The perceptron is ideally suited for two groups of objects (be they 
sequences or any other objects) that are linearly separable. This can be better 
understood in comparison with what are not linearly separable (e.g., the 
XOR problem). So we will illustrate both in an intuitive way, with 
nucleotide sequences in the form of “ACGTXYACGT”. Suppose that the 
“XY” is “TT” in sequences of the POS group, and can be any other non-
“TT” dinucleotides in the NEG group. These two groups of sequences can be 
easily separated by the perceptron algorithm. Note that the XY in the 
sequences contains either 0, 1 or 2 T’s, and the sequences in the positive 
group, with their XY containing 2 T’s, is linearly separable from sequences 
with their XY containing 0 or 1 T’s. 

Now suppose the XY in our sequences in the POS group contains only 
one T, i.e., either X or Y is a T but not both. The XY in the sequences in the 
negative group can either be TT or contain no T (e.g., XY = “CG”). This is 
one of the simplest XOR problems that a conventional perceptron cannot 
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handle. The iteration will continue forever without convergence. Note that 
XY in POS sequences in this case contains only one T and they are no longer 
linearly separable from the NEG sequences containing either 0 or two T’s. 
This XOR problem has plagued the first application of the perceptron 
algorithm to the study of the translation initiation sites in Escherichia coli 
(Stormo et al., 1982a), resulting in failure to converge on a solution to 
separate the sequences with the translation initiation site from those without.  

The perceptron has not been used often to solve problems in molecular 
biology and bioinformatics, and this is mainly caused by the overemphasis 
that perceptrons cannot deal with the XOR problem. In fact, many XOR 
problems can be reduced to non-XOR problems and be solved easily by 
perceptrons. For example, the XOR problem in the previous paragraph can 
be reduced to a non-XOR problem by using dinucleotide sequences, i.e., AC, 
CG, GT, TX, XY, ..., GT and then solved by the perceptron method. In this 
case, we will have a W with dimensions 16×(L-1) because there are 16 
possible dinucleotides.  

In the previous section on position weight matrix, we have used a set of 
508 named protein-coding genes and, from each gene, extracted the 13-mer 
for illustrating the computation involved. We may use that set of 13-mers as 
the POS group and randomly generate 1000 (or more) 13-mers with the 
same nucleotide frequencies. These two set of sequences can then be fed into 
perceptron for analysis. Table 5-6 shows the output of the weight matrix 
from the dinucleotide-encoded sequences.  

Table 5-6. Weighting matrix obtained with the dinucleotide-encoded perceptron. Frequent 
dinucleotides at sites flanking the ATG codon are in bold. The last row list either the most 
frequent dinucleotide at the site or, if no dinucleotide is more frequent than others, the 
consensus dinucleotides. 
 1 2 3 4 5 6 7 8 9 10 11 12 
AA -1 -2 0 -1 0 -2 -1 -1 0 -1 -1 0 
AC -1 -3 1 2 -2 -2 -2 -2 -2 1 -4 -1 
AG 1 -1 -4 -1 -2 -2 -3 -4 -2 -2 -2 -3 
AT 1 -2 -1 0 -1 9 -1 1 -1 -1 1 1 
CA -2 4 0 1 1 -2 0 -2 -1 0 0 0 
CC 1 -2 -5 -1 -2 -1 -1 -2 0 -3 -1 0 
CG -2 0 -1 -3 -3 -1 -4 -3 -5 0 -2 -6 
CT -1 -3 -2 -2 -1 0 -1 1 -1 1 0 2 
GA -2 -1 1 -2 1 -1 -2 0 -2 -1 -1 -2 
GC -3 -2 1 -7 1 -3 -2 -1 1 0 0 0 
GG -3 -1 -4 -1 -4 -2 -2 3 0 -3 -2 -4 
GT -3 1 1 0 -5 -5 0 -1 -5 -2 -4 0 
TA -3 -5 -1 -3 1 -2 -3 -2 0 -4 -1 -1 
TC 2 -1 -2 1 -1 0 -1 -2 -1 -1 1 -3 
TG 1 1 -1 -2 -2 -1 10 -2 1 -2 0 0 
TT -3 -1 -1 1 1 -3 -5 -1 0 0 -2 -1 
 TC CA RN NN NA AT TG GG     
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The weight matrix in Table 5-6 reached convergence after only 19 
iterations. The final weight matrix (Table 5-6) can be used to assign scores 
to 13-mers, with those having high scores more likely to contain the 
translation initiation signals. The most frequently or consensus dinucleotides 
in Table 5-6 can be used to reconstruct a consensus sequence (Figure 5-2). In 
this particular case, the consensus happens to contain the Kozak translation 
initiation consensus.  

UC
CA
RN
NN
NA
AU
UG
GG

UCRNNAUGG  

Figure 5-2. Construction of a consensus (UCRNNAUGG) from overlapping dinucleotides. 

To summarize, the input to a perceptron consists of two groups of 
sequences of the same length and our objective is to find a scoring function 
to maximize the difference between the two groups. The scoring function is 
in the form of a weighting matrix, derived from training the perceptron with 
the two groups of sequences. The weighting matrix can be used to compute a 
score for a sequence according to Eq. (5.25). The output from training a 
perceptron is a weighting matrix and a score for each input sequence. A 
perceptron that has achieved convergence will have positive sequence scores 
in the POS group and negative sequence scores in the NEG group. An 
unknown sequence is classified into the POS group when its score is larger 
than 0, and into the NEG group when its score is smaller than 0. Perceptron 
algorithms are implemented in my program DAMBE (Xia, 2001; Xia and 
Xie, 2001b). 

In one study using the perceptron algorithm to characterize the translation 
start site (TSS) in E. coli (Stormo et al., 1982b) involving 124 true TSSs and 
78000 other sites (OSs), the perceptron was unable to converge. However, 
all 124 true TSSs have perceptron score (PS) greater than 0, whereas only 64 
out of 78000 OSs have PS greater than 0. Now if we have a site with PS > 0, 
what is the probability that it is a true TSS? 

A student with a Bayesian inclination may go through a circuitous route 
to answer the question as follows. Define Y as the event of having a site with 
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PS > 0. Let θYes stand for the hypothesis of the site being a true TSS, and θNo 
the hypothesis of the site not being a TSS. The two prior probabilities are 

( ) 124 / 78124 0.001587
( ) 1 ( ) 0.998413

Yes

No Yes

P
P P
θ
θ θ

= =
= − =

 (5.28) 

The two likelihood functions are 

( | ) 124 /124 1
( | ) 64 / 78000 0.000821

Yes

No

P Y
P Y

θ
θ

= =
= =

 (5.29) 

Now the answer to the question (i.e., what is the probability of a site 
being a true TSS given its PS > 0) is 

( | ) ( )( | )
( | ) ( ) ( | ) ( )

1 0.001587                0.659
1 0.001587 0.000821 0.998413

Yes Yes
Yes

Yes Yes No No

P Y PP Y
P Y P P Y P

θ θ
θ

θ θ θ θ
=

+

×
= =

× + ×

 (5.30) 

This calculation is correct but unnecessary. A smart student will note that 
there are a total of 188 (= 124 + 64) sites that have PS > 0 (i.e., event Y is 
observed). Out of these 124 are true TSSs (i.e., θYes is true). Thus, by 
definition 

( | ) 124 /188 0.6596YesP Yθ = =  (5.31) 

4. CHARACTERIZING FEATURES OF CONTENT 
SENSORS 

Content sensors are typically frequencies of various kinds, e.g., 
nucleotide, dinucleotide, and trinucleotide frequencies. For example, triplet 
frequencies or nucleotide frequencies at the three different positions of the 
triplets are often different between exons and introns. Once a sequence is 
compiled into these frequency tables, the site-specific information is lost. 
Any sensor that does not include site-specific information is a content sensor 
and is the topic in this section.  

We will illustrate a few special content sensors that can help discriminate 
between coding exons and non-coding sequences (e.g., introns), based on the 



5. Gene and motif prediction 101
 
sequence pattern created by DNA methylation. DNA methylation is a 
process that simply cannot be avoided in a book with the word “cell” in its 
title. In short, DNA methylation plays a key role in gene regulation in many 
vertebrate species, and is a ubiquitous biochemical process particularly 
pronounced in vertebrate genomes, with its main function being tissue-
specific gene regulation (Bestor and Coxon, 1993; Rideout et al., 1990; Sved 
and Bird, 1990). A typical representative of the vertebrate methyltransferase 
is the mammalian DNMT1 with five domains of which the NlsD, ZnD and 
CatD domains bind specifically to unmethylated CpG, methylated CpG and 
hemimethylated CpG sites, respectively (Fatemi et al., 2001). Methylation of 
C (at its #5 carbon atom) in the CpG dinucleotide greatly elevates the 
mutation rate of C to T through spontaneous deamination of the resultant 
m5C (Brauch et al., 2000; Tomatsu et al., 2004), where the superscript 5 
indicates the #5 carbon atom, generating strong footprints in both 
prokaryotic and vertebrate genomes (Xia, 2003, 2004, 2005a).  

4.1 Indices of content sensors related to DNA 
methylation and spontaneous deamination 

Here we develop indices to capture the differential substitution patterns 
in coding and non-coding sequences. Designate the nucleotide frequencies of 
a sequence as pA, pC, pG and pT, and the sequence length as L. Consider both 
coding and non-coding sequences as a linear sequence of consecutive non-
overlapping triplets, and the nucleotide frequencies at the three sites of a 
triplet as pi1, pi2 and pi3, where i = 1, 2, 3, and 4 corresponding to nucleotide 
A, C, G, and T, respectively.  

For non-coding sequences, there is no codon structure. So we expect pi1 ≈ 
pi2 ≈ pi3 ≈ pi, where pi is the average of pi1, pi2, and pi3. For coding sequences, 
various mutation and selection processes will create heterogeneity in 
nucleotide frequencies among the three sites (Xia, 1998a). Take NCG codon 
for example, where N stands for any of the four nucleotides. DNA 
methylation and spontaneous deamination tend to change these NCG codons 
to NTG and NCA codons (the latter resulting from CpG→TpG mutations in 
the complementary strand), with the former change being nonsynonymous 
and the latter synonymous. Because nonsynonymous substitution is 
generally deleterious and consequently selected against by natural selection, 
they are much rarer than the synonymous substitutions in a large number of 
protein-coding genes in many organisms studied (Xia, 1998a; Xia et al., 
1996; Xia and Li, 1998), we should expect NCG→NCA mutations more 
often than NCG→NTG mutations. This tends to increase the frequency of A 
at the third codon position. Similarly, dicodons such as “NNC GNN” tend to 
mutate synonymously to “NNT GNN” with DNA methylation and 
spontaneous deamination, increasing the frequency of T at the third codon 
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position. Thus, in contrast to non-coding sequences where we expect pi1 ≈ pi2 
≈ pi3 ≈ pi, we should expect pi1 ≠ pi2 ≠ pi3 ≠ pi in coding sequences. This 
suggests that the deviation of pij (where j = 1, 2 and 3 corresponding to the 
three triplet sites) from pi can contribute to the discrimination between 
coding and non-coding sequences. A measure of this deviation that is 
independent of L is as follows: 
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where fij stands for the number of nucleotide i at triplet position j, fi is the 
mean number of nucleotide i averaged over the three codon (triplet) 
positions, and Ni is the sum of nucleotide i in the sequence. We expect ϕNuc 
to be greater for coding sequences than for non-coding sequences. 

Following a similar line of reasoning, we expect the dinucleotide 
frequencies at triplet positions (1,2), (2,3) and (3,1) to be similar to each 
other in non-coding sequences but different in coding sequences. Designate 
the number of dinucleotides as fij.k, where ij = AA, AC, ..., TT, respectively, 
and k = 1, 2, 3 corresponding to the triplet positions (1,2), (2,3) and (3,1), 
respectively. The deviation of fij.k from fij, which is the number of 
dinucleotide i averaged over the three triplet positions, should also contribute 
to the discrimination between coding and non-coding sequences. A measure 
of this deviation that is independent of L is: 
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For short sequences, fij may be zero, in which case ϕDiNuc is not defined, 
or very small, in which case ϕDiNuc would fluctuate widely. To avoid this 
problem, the computation can be done by setting valid fij as a value larger 
than a certain number, e.g., 6, and the denominator will be the number of 
valid fij values instead of a fixed 16.  

DNA methylation and spontaneous deamination decrease the CG-
containing triplets and increase the UG- and CA-containing triplets. 
However, their effect is stronger on introns than on coding sequences 
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because of weaker selection constraints on introns than on coding sequences, 
e.g., all CGN→TGN, CGN→CAN and NCG→NTG mutations are 
nonsynonymous. Nonsynonymous mutations are generally deleterious (Xia 
and Li, 1998) and tend to be selected against in coding sequences but not in 
non-coding sequences. For this reason, the intensity of methylation effect 
(designated Im) should be greater in introns than in coding sequences: 

 

' '
NUG,UGN,NCA,CAN NUG,UGN,NCA,CAN NCG,CGN NCG,CGN

m
NUG,UGN,NCA,CAN NCG,CGN

(f  - f ) - (f  - f )
I = 

f  +f
 (5.34) 

 
where f is the sum of frequencies of those subscripted codons, and f’ 
is the corresponding expectation computed simply by  
 

'
ijk triplet i j kf N P P P=  (5.35) 

 
where Ntriplet is the total number of non-overlapping triplets in the 
sequence. A more reasonable expectation would be (by taking AAA 
and AAG for illustration): 
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where NLys is the number of triplets identical to lysine codons. 
However, such a formulation is not equally applicable to non-coding 
sequences. Note that the reading frame is usually unknown. So one 
will need to compute over six possible reading frames (three on each 
strand). 

Among UG- and CA-containing codons that tend to be increased by 
DNA methylation of CpG dinucleotides, five (AUG, CAA, CAC, CAU, and 
UUG) are generally avoided in coding sequences in vertebrate genomes, 
either caused by reduced amino acid usage or other unknown factors. 
Designating these avoided UG- and CA-containing triplets as f1 and the 
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other UG- and CA-containing triplets as f2, we define the triplet avoidance 
index as  

' '
2 2 1 1

ta
1 2

(f  - f ) - (f  - f )I
f  + f

=  (5.37) 

Polypurine and polypyrimidine stretches are ubiquitous among 
eukaryotic genomes (Birnboim et al., 1979; Mills et al., 2002; Ohno et al., 
2002), but their frequencies in coding sequences are constrained by the 
necessity of codons with mixed purines and pyrimidines. For this reason, the 
polypurine and polypyrimidine triplets tend to be more frequent in non-
coding sequences than in coding sequences. We define the following index 
to measure the tendency of polypurine and polypyrimidine triplets:  

' '
RRR,YYY RRR,YYY Mixed Mixed

pp
RRR,YYY Mixed

(f  - f ) - (f  - f )
I  = 

f  + f
 (5.38) 

4.2 Are these indices useful in discriminating between 
coding and non-coding sequences? 

Here we demonstrate the utility of these indices in discriminating 
between introns and coding sequences by using the annotated DNA 
sequence of human chromosome 22 (ref_chr22.gbk) in GenBank. Human 
chromosome 22 is perhaps the best annotated human chromosome sequence 
being the first to be sequenced and having undergone many revisions. The 
CDSs, exons and introns were extracted according to the sequence 
annotation in the FEATURES table, and their triplet/codon frequencies were 
computed, by using DAMBE (Xia, 2001; Xia and Xie, 2001b). The indices 
shown in Eq. (5.32)-(5.38) were also computed by DAMBE for introns and 
CDSs. Whether the indices are useful can be assessed by how well they can 
discriminate between coding sequences and introns. 

We will take a first look at the coding and non-coding sequences that are 
at least 2000 bases long. As I have mentioned before, the indices are likely 
to fluctuate widely with short sequences. Focusing on long sequences will 
allow us to extract the difference in these indices between the two groups 
more efficiently. We will refer to these sequences with L ≥ 2000 as the 
training set and will use the discriminant function derived form this training 
set to screen other human chromosome 22 sequences. 

The mean and standard deviation of the five indices (Table 5-7) reveal 
substantial difference in these indices between the coding and non-coding 
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(intron) sequences, in the direction as we have expected. For example, the 
mean ϕNuc and ϕDiNuc are both much smaller in introns than in coding 
sequences (Table 5-7), with p = 0.0000. We will subject this training set to 
Fisher’s two-group linear discriminant analysis (Fisher, 1936) to obtain a 
function that can be used to assign an unknown sequence to either the coding 
or non-coding group. 

Table 5-7. Mean and standard deviation of the five indices defined in Eqs. (5.32)-(5.38) for 
coding and non-coding sequences in the training set. For intron sequences, the indices differ 
little for the six different triplet frames (i.e., 3 on each strand), and the numerical results are 
presented only for the triplet frame starting with the first intron site. 
SeqName SeqType ϕNuc ϕDiNuc Ipp Im Ita 
CELSR1 Coding 0.3508 0.5257 -0.0734 0.3073 -0.1205 
MYO18B Coding 0.2329 0.3169 0.2074 0.4091 0.0298 
EP300 Coding 0.1865 0.2780 0.1519 0.4748 0.0747 
PKDREJ Coding 0.1525 0.2146 0.1185 0.2551 0.0130 
CACNA1I Coding 0.3670 0.5595 -0.0173 0.3484 -0.1476 
… … … … … … … 
Mean  0.2507 0.3822 0.1069 0.3790 -0.0219 
Std  0.0775 0.1090 0.0854 0.1029 0.1720 
       
LOC40205 Intron 0.0046 0.0110 0.2194 0.4284 0.2308 
SYN3 Intron 0.0033 0.0081 0.2318 0.4266 0.2100 
LARGE Intron 0.0107 0.0178 0.2131 0.3983 0.2376 
OSBP2 Intron 0.0046 0.0124 0.2050 0.4382 0.2394 
SEZ6L Intron 0.0034 0.0126 0.2307 0.4216 0.2363 
… … … … … … … 
Mean  0.0318 0.0768 0.2106 0.4348 0.2362 
Std  0.0166 0.0302 0.0499 0.0825 0.0821 

 
I have previously mentioned the similarity between perceptron and 

Fisher’s discriminant analysis. The former takes two groups of vectors 
(which is not limited to nucleotide or amino acid sequences) and produce a 
weighting matrix that can be used to obtain sequence scores to allow the 
assignment of unknown sequences to either one or the other group. The latter 
takes a data matrix made of two groups as in Table 5-7 and generate a linear 
discriminant function which is also used to generate a score to allow the 
assignment of unknown sequences to either one or the other group.  

The computation involved in the two-group discriminant function 
analysis is not difficult and the method is implemented in my program 
DAMBE (Xia, 2001; Xia and Xie, 2001b). Running the analysis on the data 
generates the desired discriminant function and its associated statistics 
(Table 5-8). 
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Table 5-8. Coefficients of the two-group discriminant function (DiscFunc). 
 ϕNuc ϕDiNuc Ipp Im Ita 
Mean 0.1413 0.2295 0.1587 0.4069 0.1072 
DiscFunc 69.7357 -3.9504 -0.2009 -0.0802 -4.2111 

 
Just as the weighting matrix from training a perceptron can be used to 

obtain a score for an unknown sequence for assigning it to either one group 
or the other, the coefficients of the discriminant function in Table 5-8 can be 
used to get a score for a sequence with its five computed indices for 
classifying it to either one group or the other. The score for each sequence is 
computed as  

1 2 3

4 5

( ) ( ) ( )

( ) ( )
Nuc Nuc DiNuc DiNuc pp pp

m m ta ta

S a a a I I

a I I a I I

ϕ ϕ ϕ ϕ= − − − − −

− − − −  (5.39) 

where a1 to a5 are in the second row of Table 5-8, and the five means are in 
the first row of Table 5-8. For example, if we have a sequence whose five 
indices are computed to be 0.0566, 0.1969, 0.1201, 0.7027, and 0.5351, 
respectively, its S value according to Eq. (5.39) will be -4.6763. As it is 
smaller than 0, it is assigned to the second (i.e., intron) group. A sequence 
with its five indices equal to 0.4098, 0.6509, 0.0571, 0.3916, and -0.0553, 
respectively, would have a S value equal to 20.6884, resulting its assignment 
to the first (i.e., coding sequence) group. Thus, by computing the indices 
based on sequence information only, we can predict whether it is coding or 
non-coding. 

The classification of the training set of 1935 sequences (L ≥ 2000) by the 
discriminant function is quite promising (Table 5-9), with only 8 
misclassifications out of 1935 sequences. It is prone for one to claim an error 
rate of 0.0041 (= 8/1935), which is both misleading and meaningless. For 
example, if we have two groups with 2 coding and 2000 non-coding 
sequences, even a blind classifier that assigns every sequence as non-coding 
would have only 2 misclassifications out of the 2002 sequences. Should you 
claim that this is a very good classifier with an error rate of only 0.001 
(=2/2002)? 

A more acceptable error assessment is by the weighted error rate 
expressed as follows 

1. 2.

1 2

2

wrong wrong

w

N N
N Nε

+
=  (5.40) 
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where N1 and N2 are the number of sequences in the first and second groups, 
respectively, and N1.wrong and N2.wrong are the misclassified cases in the first 
and second groups, respectively. This error rate for the training set is 0.0276 
(Table 5-9). For the fictitious example with 2 coding and 2000 non-coding 
sequences and a blind classifier that assigns all sequences to the non-coding 
group, εw ≈ 0.5, which reveals the truth that the blind classifier is no better 
than a random classifier. 

Table 5-9. Results of classification with the discriminant function. 
  Classified to  
L (bases) From CDS Intron Error 
≥2000 CDS 105 6 0.0276 
 Intron 2 1822  
1000-1999 CDS 225 18 0.0376 
 Intron 1 876  
500-999 CDS 155 23 0.0717 
 Intron 10 696  
200-499 CDS 80 29 0.2494 
 Intron 156 514  

 
I wish to illustrate the discriminating power of these indices by a 

particular “intron” that has its index values similar to coding sequences, and 
is classified by the linear discriminant function (Table 5-9) as a coding 
sequence. The “intron” belongs to a gene annotated as “LOC284861” in the 
ref.chr22.gbk file, starts with GT and ends with AG, and is “derived by 
automated computational analysis” according to the FEATURES table in the 
GenBank file. However, it is annotated as part of the coding sequence in 
other cloned homologous human cDNA sequences (GenBank accession: 
AL117481, AL122069, AL133561). 

There are three lines of evidence to suggest that this “intron” is not an 
intron. First, when the intron and its two flanking exons are treated as a 
single exon, there is no embedded stop codon. Second, it has at least four 
indels when aligned with the GenBank sequence XM_375042, and all indels 
are inframe triplets. Such indel events are typical of coding sequences. Third 
and perhaps the most important, aligning the “intron” with other homologous 
human cDNA genes shows that its starting GT and ending AG are not 
conserved, which is not what we would expect if the starting GT and ending 
AG represent true donor and acceptor sites. All these suggest that the 
“misclassification” of the intron as a coding sequence by the discriminant 
function may in fact represent correct identification.  

Another indication of the discrimination power of these indices is that 
when sequences annotated as hypothetical genes are excluded, then the error 
rate of the classification is decreased overall by nearly one order of 
magnitude. This suggests that a high proportion of hypothetical genes are not 
true genes. 



108 Chapter 5
 

The discriminant function (Table 5-8) derived from this training set  can 
be used successfully in discriminating between the CDS and the intron 
sequences not in the training set, but the power of discrimination offered by 
these five indices decreases with decreasing sequence length (Table 5-9). 
Many exons in eukaryotic genomes are quite short, highlighting the 
difficulty in gene prediction. 

At this point I would like to introduce you to a classroom example 
typically used to illustrate the hidden Markov models. The example involves 
a dishonest casino dealer who switches between a fair die and a loaded die 
(i.e., two hidden states). If the loaded die differ much from the fair die, e.g., 
if the probability of having 6 is nearly 1 for the loaded die, then a short 
stretch of 6’s is sufficient to identify the point of switching. Note that a 
stretch of 6’s implies a high frequency of 6 which is equivalent to a content 
sensor. However, if the casino dealer switches to the loaded die, tosses it 
only once, and immediately switches back to the fair die, then it becomes 
very difficult to catch her (I am not sure if I should use him or her but most 
new books seem to use “her” as default.). The same applies to gene 
prediction. If exons and introns (hidden states) are long, then it is easy to 
identify them. If they are short, then it is often theoretically impossible to 
identify them by content sensors only.  

The next chapter is on hidden Markov models, which uses information in 
both signal and content sensors. It is a powerful computational tool that 
anyone interested in bioinformatics should not miss. 



 

Chapter 6 

HIDDEN MARKOV MODELS 
 

 
 

1. INTRODUCTION 

In the previous chapter we have developed basic understanding of signal 
and content sensors in structure-based gene prediction. Hidden Markov 
models (HMMs) can incorporate information in both signal and content 
sensors, and is frequently applied in structure-based gene prediction (Baldi 
and Brunak, 2001; Durbin, 1998; Pevzner, 2000). However, HMMs are also 
used in many other contexts. For this reason I have intentionally chosen to 
illustrate the application of HMMs in predicting protein secondary structure 
instead of in gene prediction. However, I do expect you to know how to use 
HMMs in gene prediction once you have learned how to use HMMs in 
predicting protein secondary structure. 

Before illustrating the utility of HMMs, we will first give a brief 
introduction to Markov models sufficient for comprehending HMMs. In 
particular, we wish to know (1) two categories of parameters, the frequency 
parameters and the rate parameters in the transition probability matrix that 
characterize a 1st-order Markov model, also known as a Markov chain, (2) 
how to obtain the equilibrium frequencies, and (3) how to calculate the 
likelihood of a given sequence of events that follow a Markov model. These 
are the minimal requirement for a reasonable understanding of HMMs. 

HMMs are illustrated numerically because most readers, just like me, 
cannot see the beauty of equations until they are rendered to numbers. You 
will learn the essential elements in a HMM, how to train a HMM, how to 
reconstruct the most probable path of hidden states by using the Viterbi 
algorithm, how to compute the likelihood of a particular sequence of events 
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by using the forward algorithm, and how to estimate parameters in a HMM. 
If you are a programmer, you will be able to implement the algorithms 
associated with HMM once you have finished this chapter. 

2. MARKOV MODELS 

A Markov model is typically used to model the dynamic change of a 
random variable over time. For example, the pitch of music from your stereo 
reaching your ear over time t1, t2, …, tk can be represented as Xt1, Xt2, …, 
Xtk. The Xti values constitute a realization of the random variable X. 
However, Markov models are equally applicable over a one-dimensional 
space. For example, along the linear DNA, nucleotides change over site 1, 2, 
…, i and can be represented as X1, X2, …, Xi. 

Suppose a DNA sequence of length L, with each site coded only as 
purine (R) and pyrimidine (Y). The proportions of R and Y are designated as 
pR and pY, respectively. What is the probability that a nucleotide at site i, 
designated as Xi, is R (or Y)? Without any further information, our 
prediction of a site being occupied by R (or Y) is simply pR (or pY). For a 
fictitious sequence of alternating purine and pyrimidine triplets,  

S = RRRYYYRRRYYY……,  
pR = pY = 0.5. For the partially sequenced human chromosome 22 with 10 
contigs (accession NT_028395, NT_011519, NT_011520, NT_011521, 
NT_011523, NT_011525, NT_019197, NT_113818, NT_011526, 
NT_113961, dated 02-MAR-2006) with 35,017,877 base pairs (bp), pR and 
pY are nearly equal, being 0.50047 and 0.49953, respectively. Without any 
further information, our prediction of a site being occupied by R and Y in 
human chromosome 22 is 0.50047 and 0.49953, respectively. These are also 
our best possible estimates of pR and pY when there is no site dependence. 

Now we consider a slightly more realistic case with the minimal site 
dependence, with the probability of Xi+1 being either R or Y depending only 
on whether Xi is R or Y. We use PRR, and PRY to designate the conditional 
probabilities of R and Y, respectively, at site i+1 given R at site i, and PYR 
and PYY to designate the conditional probabilities of R and Y at site i+1 
given Y at site i. Some authors (Higgs and Attwood, 2004, p. 234; Weir, 
1990, p. 238) give the estimate of the conditional probabilities in the 
following form: 

RR
RR

R

NP
N

=  (6.1) 
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where NR and NRR are the number of R’s and RR doublets in the sequence. 
What they have in mind is a very long sequence. Suppose we have only a 
short sequence S’ equal to the first 12 nucleotides of S, i.e.,  
 

S’ = RRRYYYRRRYYY. 
 
Now Eq. (6.1) will result in weird estimates. For example, PYY and PYR 

would be 2/3 and 1/6, respectively. These PYY and PYR values have two 
problems, one major and one minor. The major one is that they are 
probabilistically incorrect because the two do not even sum up to 1 as they 
should. The minor one is that, given the regular alternating patterns of purine 
triplets and pyrimidine triplets in S’, our intuition suggests that PYR should 
be equal to PRY. The estimated PYR (= 1/6) being half of PRY (= 2/6) 
according to Eq. (6.1) makes us feel uncomfortable. A mathematically more 
consistent alternative for PYY and PYR (which is also a maximum likelihood 
estimate) is 

''

XK
XK

XKK

NP
N

=
∑

 (6.2) 

where the denominator is the summation of all dinucleotides starting with 
nucleotide X. This yields PYY = 4/5 and PYR = 1/5. The two now do sum up 
correctly to 1, eliminating the major problem we mentioned above. 
Moreover, the difference between PYR and PRY is now somewhat smaller, 
alleviating the minor problem. A still more reasonable estimate of PXK, 
assuming that the last nucleotide is followed by R with a probability pR and 
by Y with a probability pR, is 

' '' '

;
1 1

YR R YY Y
YR YY

YK YKK K

N p N pP P
N N

+ +
= =

+ +∑ ∑
 (6.3) 

For sequence S, PRR = 2/3, PRY = 1/3, PYR = 1.5/6 and PYY = 4.5/6 
according to Eq. (6.3). Thus, the major problem is again solved and the 
minor problem is further alleviated although PYR and PRY are still not the 
same as from our intuition.  

To simplify the presentation of Markov models, let us just assume that 
we have a long sequence of alternative purine triplets and pyrimidine 
triplets, so that indeed PRR = PYY = 2/3 and PYR = PRY = 1/3. These four 
values, arranged in a 2×2 matrix (Table 6-1), constitute what is called the 
transition probability matrix for a 1st-order Markov model which is also 
known as a Markov chain. The four corresponding elements for human 
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chromosome 22 are also included in Table 6-1. We note that a purine is more 
likely to be followed by a purine than by a pyrimidine and that a pyrimidine 
is more likely followed by a pyrimidine than by a purine, and that this 
pattern, obvious enough for S, is also true for human chromosome 22 (Table 
6-1). This helps us to predict the probability of Xi+1 given Xi. Take S for 
example, without information on Xi, our prediction of Xi+1 being R is pR (= 
0.5). In contrast, with Xi = R, our prediction of Xi+1 being R is PRR (= 2/3).  

Table 6-1. Two transition probability matrices, one for S and one for human chromosome 22, 
for the Markov chain with two states (R and Y). Note that values in each row in a transition 
probability matrix are constrained with a row sum of 1. 

 S Human Chr22 
 R Y R Y
R 2/3 1/3 0.56683 0.43317
Y 1/3 2/3 0.43398 0.56602

 
Other than the transition probability matrix illustrated in Table 6-1, we 

need to know the frequency parameters, typically arranged in the form of a 
vector designated by pi, to characterize the Markov chain. For our example 
with only two states (R and Y), the two frequency parameters are the 
probabilities of R and Y at site i, designated by pR.i and pY.i, respectively. In 
other words, the vector pi contains two elements, pR.i and pY.i. 

We now learn how to obtain equilibrium frequencies of R and Y given 
the transition probability matrix. Suppose Xi-1 = R, so pR.i-1 = 1 and pY.i-1 = 0, 
and pR.i and pY.i are naturally equal to PRR and PRY, respectively. In matrix 
algebra, and using the transition probability matrix for sequence S (Table 6-
1), we have 

[ ]

[ ] [ ]

1 . 1 . 1

2/3 1/3
1 0 2/3 1/3

1/3 2/3

RR RY
i i R i Y i

YR YY

P P
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= = ⎢ ⎥
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 (6.4) 

At site i+1, i+2, etc., we expect 

[ ] [ ]1

2 1

9 8

2/3 1/3
2 / 3 1/ 3 0.55556 0.44444

1/3 2/3
[0.51852  0.48148]

......
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 (6.5) 
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If we continue the multiplication, eventually the two frequencies will 
approach pR = pY = 0.5. These equilibrium frequencies can be obtained more 
easily by solving the equation pi = pi-1M with the constraints that  

. . 1

. . 1

. . 1

R i R i

Y i Y i

R i Y i

p p
p p
p p

−

−

=

=

+ =

 (6.6) 

Solving the resulting simultaneous equations, we have 

. .;YR RY
R i Y i

RY YR RY YR

P Pp p
P P P P

= =
+ +

 (6.7) 

which are the equilibrium frequencies. The equilibrium frequencies are 
conventionally designated as πR and πY, respectively. For the fictitious 
sequence S, πR = pR = 0.5 and πY = pY = 0.5. For human chromosome 22, πR 
= pR = 0.50047 and πY = pY = 0.49953. 

One can use one of many numerical routines, e.g., the Gauss-Jordan 
elimination (Press et al., 1992, pp. 36-43) to solve for πi by following these 
steps: (1) change the diagonal elements of M to –(1-Pii), (2) transpose M to 
MT, (3) create a vector B with n elements all being 0, (4) add the constraint 
of Σp = 1 by adding 1 to the first row of M, and by setting B(0) = 1, and (4) 
use any numerical routine that solves MTp = B. 

You may ask whether 1st-order Markov model is any better than the 0-
order Markov model. The latter assumes complete independence of 
nucleotides over sites, i.e., whether site i is R has nothing to do with what 
nucleotides are at other sites. Because the 0-order Markov model is a special 
case of the 1st-order Markov model, the question can be addressed by what is 
called a likelihood ratio test. This naturally leads to the calculation of the 
likelihood. 

Likelihood refers to either a probability function conditional on a 
probabilistic model and the empirical observation or the result of such a 
function. For the fictitious sequence S’ (the empirical observation) with only 
12 nucleotides, the likelihoods according to the 0-order and 1st-order Markov 
models are, respectively: 

3 3 3 3
0

2 2 2 2
1

0.000244141

0.000722564
R Y R Y

R RR RY YY YR RR RY YY

L p p p p
L p P P P P P P P

= =

= =
 (6.8) 
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The larger the likelihood, the better the model fits the data. However, the 
absolute magnitude of a likelihood value is not important, what is important 
is the relative magnitude measured as a ratio of two likelihood values. In our 
case, what is important is the ratio of L1/L0 which can be used in a likelihood 
ratio test to help us decide whether the 1st-order Markov model is 
significantly better than the 0-order Markov model. To carry out a likelihood 
ratio test, we calculate, 

2
1 02[ln( ) ln( )] 2.170122511X L L= − =  (6.9) 

which follows approximately the χ2-distribution with one degree of freedom. 
The degree of freedom associated with a likelihood ratio test is the 
difference in the number of parameters between the two models. The 0-order 
Markov model has only two frequencies, pR and pY. Because pR = 1- pY, it is 
not free when pY is known, so there is only one free parameter for the 0-
order Markov model. For the 1st-order Markov chain, we have four elements 
in the transition probability matrix M. However, because the two values in 
each row have to add up to 1, M has only two free parameters. Thus, the 
degree of freedom associated with the likelihood ratio test involving the 1st-
order and 0-order Markov models is (2 – 1) = 1. In general, for a kth-order 
Markov model with n categories of symbols (in our case we have only two 
categories of symbols, i.e., R and Y, so n = 2), the number of parameters is 

( 1) k
paramN n n= −  (6.10) 

For example, the number of parameters for a 3rd-order Markov model for an 
amino acid sequences (n = 20) is 19×203 = 15200. Given that a protein is 
generally only one thousand amino acids long, such a model may have only 
limited use. 

The likelihood ratio test does not reject the 0-order Markov model in 
favour of the 1st-order Markov model for the given S’ (p = 0.14), although 
the site dependence, with purine triplets and pyrimidine triplets following 
each other, is quite obvious. The reason for the failure to reject the 0-order 
Markov model is the short length of S’. If S’ is three times longer, i.e., if it is 
made of the first 36 nucleotides of S, then X2 = 4.888507099 and we can 
reject the 0-order Markov model with p = 0.027036057. 

PR and PY from S happen to be the same as πR and πY. Usually PR and PY 
from a short sequence will not be the same as πR and πY. If one has already 
obtained πR and πY from longer sequences, one should replace PR with πR in 
Eq. (6.8). 
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3. HIDDEN MARKOV MODELS 

3.1 The Essential Elements in a Hidden Markov Model 

The classic illustration of HMM involves a dishonest casino dealer 
stealthily switching between a fair die (F) and a loaded die (L). His 
switching pattern is characterized by the 2×2 transition probability matrix 
(Table 6-2) detailed in the previous section. Now we introduce another kind 
of probability called emission probability. Tossing the fair die leads to 
numbers 1-6 appearing with an equal probability of 1/6, but tossing the 
loaded die always results in number 6. These probabilities of observing 
different numbers conditional on the hidden state are termed emission 
probabilities (Table 6-2).  

Table 6-2. HMM involving a dishonest casino dealer, with the transition probability matrix on 
the left and the emission probabilities on the right (the last 6 columns). 
 F L 1 2 3 4 5 6 
F PFF PFL 1/6 1/6 1/6 1/6 1/6 1/6 
L PLF PLL 0 0 0 0 0 1 

 
Because the casino dealer will not let others know when he switches, the 

two states (F and L) are hidden. Hence the term “hidden Markov model”. 
What one can observe is just a series of numbers, e.g., 

 
Observed symbols: 1435266634521334 
Hidden states:    FFFFFLLLFFFFFFFF 
 
To summarize, a HMM has three essential elements, the transition 

probability matrix, the emission probability matrix, and the observed 
sequence of events. Recall that signal sensors represent information of site 
dependence along a sequence. The transition probability matrix is a 
mathematical instrument making use of signal sensors. If there is little site 
dependence, then the transition probability matrix will be of little use.  

In contrast, content sensors represent word frequencies in a sequence 
without site-dependence. The emission probability matrix is a mathematical 
instrument making use of content sensors. Given a hidden states, the 
emission probabilities are always the same regardless of where the hidden 
state is located on the sequence of observed symbols. If there is no site 
dependence among the sequence of hidden states and if emission 
probabilities do not differ among different hidden states, then the HMM 
would be entirely uninformative. 
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Another illustrative application of HMM is in base-calling (the process of 
converting the four traces from the automatic sequencer to nucleotide 
sequences). In this case the traces are the observed signals, and the bases are 
the hidden states. More advanced applications of HMM can be found in 
phylo-HMM which is a site-dependent probabilistic substitution model 
supposed to be a better approximation to the substitution process in sequence 
evolution (Felsenstein and Churchill, 1996; Siepel and Haussler, 2004a, 
2004b, 2005; Yang, 1995). 

The application of HMM in base-calling is probably not a very well 
thought one. Typically, the association between a base and a particular peak 
is strong, i.e., a given hidden state has a strong and characteristic peak. In 
other words, emission probability matrix is highly informative and base-
calling can generally be quite successful with this emission probability 
matrix only. In contrast, the site dependence of neighbouring nucleotides is 
generally weak and generally does not significantly improve the prediction. 

HMMs are generally associated with three objectives. The first is to 
estimate the parameters of HMM, e.g., the elements in the transition 
probability matrix and in the emission probability matrix, based on an 
observed sequence of events with known hidden states. This is also called 
HMM training. The second is to reconstruct the most probable path of 
hidden states by using the trained HMM and the Viterbi algorithm explained 
in detail later. The last is to obtain the probability of the observed sequence 
of events, also explained in detail later.  

How is HMM associated with gene prediction and motif finding? One 
may consider exons, introns, etc., as hidden states, and a series of nucleotide 
triplets along a genomic sequence as observed symbols. The frequencies of 
different triplets “emitted” in the exon state are often different from those in 
the intron state. Furthermore, an intron is always followed by an exon, so the 
dependence of neighboring states is obviously strong. These different 
emission probabilities and transition probabilities between neighboring 
hidden states allow us to reconstruct the hidden states of exons and introns. 
Another example of HMM application is in predicting protein secondary 
structural elements such as α-helix, β-sheet and turns. These structural 
elements are hidden states that emit different amino acids with different 
frequencies. For example, some amino acids are frequently found in helices 
but rarely in sheets or turns (Xia and Xie, 2002).  

Whether a HMM is successful depends crucially on two things. The first 
is how different are the emission probabilities among different states. Take 
the dishonest casino dealer for example. If the loaded die is loaded only 
slightly, then it will be extremely difficult for us to reconstruct the path of 
hidden states. If the observable nucleotide, dinucleotide and trinucleotide 
frequencies (or other observable symbols) are not very different between 
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coding and non-coding sequences, then the two would be difficult to tell 
apart. For this reason, a purely computational scientist without access to in-
depth knowledge of the differences among different kinds of sequences is 
unlikely to make a successful application of HMM in gene and motif 
prediction. The second is how long the process will stay in each state. For 
example, if the dishonest casino dealer throws the loaded die several times 
consecutively, then a series of 6’s will help us identify the hidden states. 
However, if he never throws the loaded die more than once, then it will be 
essentially impossible for us to reconstruct the hidden states even if the 
loaded die always yields a six. This means that short exons, which are 
frequently encountered in eukaryotic genomes, will be very difficult to 
identify.  

In what follows, I will use empirical data from the HIV1 proteins to 
illustrate the application of HMM in secondary structure prediction. In short, 
we will learn to (1) train a HMM, i.e., obtain the transition probability matrix 
M and emission probability matrix E, from a training sequence with known 
hidden states, (2) reconstruct the sequence of hidden states, known as the 
Viterbi path or the most probable path, by using the Viterbi algorithm 
(Viterbi, 1967), and (3) compute the probability of the observed sequence of 
symbols. These are the three essential tasks closely associated with HMM 
(Rabiner, 1989). The last two tasks require the transition probability matrix 
and the emission probability matrix from task 1. 

3.2 Training HMM 

Suppose we are going to use a training sequence (Figure 6-1) to train a 
HMM for predicting protein secondary structure defined to be either coil 
(C), strand (E) or helix (H). The sequence labelled as RT is a protein 
sequence of HIV1 reverse transcriptase, and the sequence labelled as ST is 
the sequence of known hidden states. Let Nij be the number of transitions 
from state i to state j, which can be easily counted by moving along the ST 
sequence (Figure 6-1). The maximum likelihood estimate of Pij, i.e., the 
transition probability from state i to state j, is 

ij
ij

ikk

N
P

N
=
∑

 (6.11) 

The Pij values from data in Figure 6-1, with relatively large Pii values on 
the diagonal (Table 6-3) are typical of training data where each secondary 
structure elements are made of a series of consecutive amino acids so that a 
state, be it C, E, or H, tends to stay in the same state for several consecutive 
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amino acids before changing into another state (Figure 6-1). Note that each 
row sum should be 1. 

 

ST CCCCCCCEEEEECCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHCCCEEEECCC 
RT PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIGPE 

ST CCCCCCEEEEEECCCCCHHHHHHHHHHHHHHHHHHEEECCCCCCCCCCCCCCE 
RT NPYNTPVFAIKKKDSTKWRKLVDFRELNKSTQDFWEVQLGIPHPAGLKKKKSV 

ST EEEEECCEEEECCCCCCCCEECCEECCCCCCCCCCCCCEECCCCCCCCCCHHH 
RT TVLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAI 

ST HHHHHHHHHHHHHHCCCCEEEEEEECCCCCCCCCCHHHHHHHHHHHHHHHHHH 
RT FQSSMTKILEPFRKQNPDIVIYQYMDDLYVGSDLEIGQHSTKIEELRQHLLRW 

ST CCCCCCCCCCCCCCCCCCCCEECCCCCEECCEECCCCCCCCHHHHHHHHHCCC 
RT GLTTPDKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVNDIQKLVGKLN 

ST HHHHHCCCCHHHHHHHHHCCCCCCCCCCCCCHHHHHHHHHHHHHHHCCCCCEE 
RT WASQIYPGIKVRQLCKLLRGTKALTEVIPLTEEAELELAENREILKEPVHGVY 

ST ECCCHHHHHHHHHCCCCCEEEEEECCCCCCCCCCCCCCCCCCCHHHHHHHHHH 
RT YDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARMRGAHTNDVKQLTEA 

ST HHHHCCCCEEEECCCCCCCCCCHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCC
RT VQKITTESIVIWGKTPKFKLPIQKETWETWWTEYWQATWIPEWEFVNTPPLVK

ST EEEEECCCCCCCCCCC
RT LWYQLEKEPIVGAETF

Figure 6-1. Example of a training sequence (RT) with known hidden states (ST) for protein 
secondary structure prediction. The hidden states are coil (C), strand (E) and helix (H). RT is 
a real HIV1 reverse transcriptase. ST is fictitious but treated here as real. 

Table 6-3. Transition probability matrix estimated from the training data in Figure 6-1. 
 C E H 
C 0.88210 0.06987 0.04803 
E 0.26154 0.73846 0.00000 
H 0.06897 0.00690 0.92414 

 
For the emission probabilities, letting Ek(xj) be the number of amino acid 

xj (j = 1, 2, …, 20 corresponding to the 20 amino acids) emitted from state k, 
the emission probability ek(xj) is 
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Note that the denominator is the sum of all amino acid in state k, and the 
numerator is the number of amino acid xj in state k. So ek(xj) is simply the 
fraction of amino acid xj in state k.  

The ek(xj) values estimated from the training data in Figure 6-1 reveal 
different amino acid frequency distribution among the three secondary 
structure features (Table 6-4). For example, amino acids proline (P) and 
glycine (G) are found frequently in coils, but rarely in strands or helices. 
This should be obvious given the properties of proline and glycine. Proline 
introduces a bend in protein structure due to the cyclic binding of its three-
carbon side chain to the nitrogen of the backbone. Glycine is the smalles 
amino acid, and only a small amino acid allows a sharp turn.  

Table 6-4. Emission probabilities estimated from the training data in Figure 6-1. The column 
heading “AA” stands for amino acid, and C, E, and H stands for coil, strand, and helix, 
respectively. 
AA C E H 
A 0.0262 0.03077 0.05517 
C 0 0 0.01379 
D 0.05677 0.01538 0.03448 
E 0.07424 0.03077 0.13793 
F 0.02183 0.04615 0.02759 
G 0.09607 0 0.01379 
H 0.02183 0 0.01379 
I 0.04803 0.13846 0.08276 
K 0.11354 0.07692 0.11724 
L 0.06987 0.07692 0.11034 
M 0.0131 0.01538 0.01379 
N 0.0393 0 0.02759 
P 0.13974 0.01538 0.01379 
Q 0.0393 0.07692 0.08276 
R 0.02183 0 0.06207 
S 0.0393 0.03077 0.02069 
T 0.08297 0.06154 0.06207 
V 0.0393 0.18462 0.04828 
W 0.03057 0.04615 0.05517 
Y 0.0262 0.15385 0.0069 

 
Two other patterns in Table 6-4 are worth highlighting. Tyrosine (Y) and 

valine (V) are frequently found in strands but not in the other two structures, 
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and leucine (L) and glutamate (E) are frequently found in helices but rare 
elsewhere (Table 6-4 and Figure 6-1). These differences in emission 
probabilities are encouraging. The larger the difference, the better the HMM 
will perform in using the emission probabilities and transition probabilities 
to predict secondary structures. If the three columns of frequencies in Table 
6-4 are similar, then the predictive power of the HMM will rest entirely on 
the information in the transition probability matrix. It is crucially important 
for computational biologists to collaborate with real molecular biologists to 
define the HMM model structure to have hidden states with maximal 
differences in their emission probabilities. 

3.3 The Viterbi algorithm 

Now that we have gone through the training process of obtaining the 
transition probability matrix (Table 6-3) and the emission probabilities 
(Table 6-4), we are ready to proceed with the prediction of protein secondary 
structure of unknown proteins with the Viterbi algorithm illustrated in this 
section. Because there are overlapping characters between the secondary 
structure notation (C, E and H) and the one-letter codes of amion acids, I 
will add the full notation in parenthesis to avoid confusion. 

Suppose we have the following amino acid sequence: 
 
T = YVYVEEEEEEVEEEEEEPGPG  
 
How do we predict its secondary structure? Of course we can use only 

the content sensor as reflected by the emission probabilities (Table 6-4). 
Given the association of L (leucine) and E (glutamate) with helix, P (proline) 
and G (glycine) with coil (C) and Y (tyrosine) and V (valine) with strand 
(E), we can readily write our prediction of the secondary structure referred to 
as the naïve path of hidden states (Naïve): 

 
        123456789012345678901 
T     = YVYVEEEEEEVEEEEEEPGPG  
Naïve = EEEEHHHHHHEHHHHHHCCCC 
 
This seems to make secondary structure prediction really easy, and the 

approach has actually been taken before (Chou and Fasman, 1978b, 1978a; 
Fasman and Chou, 1974). However, incorporating information on site-
dependence can improve the prediction. For example, PEH in the transition 
probability matrix is 0.00000, implying an extremely small probability of E 
(strand) followed by H (helix). Our naïve prediction above with an H (helix) 
at position 5 following an E (strand) at position 4 therefore represents an 
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extremely unlikely event. Another example is at position 11 with T11 = V 
(valine). Our prediction of Naïve11 = E (strand) implies a transition of 
secondary structure from H (helix) at Naïve10 to E (strand) at Naïve11 and 
then back from E (strand) at Naïve11 to H (helix) at Naïve12. The transition 
probability matrix shows us that PHE and PEH are both very small. So T11 is 
very unlikely to be in state E (strand).  

Let us see if the Viterbi algorithm in HMM can do better than the naïve 
prediction. The Viterbi algorithm (Viterbi, 1967) is a dynamic programming 
algorithm. It incorporates both the information in the transition probability 
matrix and the emission probability matrix. The computation involves filling 
a Viterbi matrix and a backtrack matrix (referred to as V and B, respectively, 
hereafter), both of dimension n×L where n is the number of states and L is 
the length of the sequence. In our example, n = 3 and L = 21. Because the 
page is not wide enough for 21 columns, V and B are shown in L×n tables 
(Table 6-5).  

Table 6-5. The V and B matrices from running the Viterbi algorithm using the transition 
probability matrix in Table 6-3 and emission probability matrix in Table 6-4. The values in 
the V matrix are their natural logarithms. The values in the B matrix are pointers, with 0, 1, 
and 2 as pointers to C, E, or H state in the previous site. The last column (HS) is the 
reconstructed hidden states. 
 V Matrix  B Matrix 
 C E H   C(0) E (1) H(2) HS 
Y -4.74057 -2.97041 -6.07535      E 
V -7.54809 -4.96308 -9.18506   1 1 2 E 
Y -9.94622 -7.13807 -14.24069   1 1 2 E 
V -11.71574 -9.13074 -16.01287   1 1 0 E 
E -13.07242 -12.91516 -16.73257   1 1 0 C 
E -15.79838 -16.69959 -18.08925   0 1 0 H 
E -18.52435 -20.48402 -20.14914   0 1 2 H 
E -21.25031 -24.26844 -22.20904   0 1 2 H 
E -23.97627 -27.39268 -24.26893   0 0 2 H 
E -26.70223 -30.11864 -26.32883   0 0 2 H 
V -30.06419 -31.05285 -29.43855   0 0 2 H 
E -32.79015 -34.83727 -31.49844   0 1 2 H 
E -35.51611 -38.62170 -33.55834   0 1 2 H 
E -38.24207 -41.65849 -35.61823   0 0 2 H 
E -40.89289 -44.07621 -37.67813   2 2 2 H 
E -42.95279 -46.13610 -39.73802   2 2 2 H 
E -45.01268 -48.19600 -41.79792   2 2 2 H 
P -46.44005 -50.94904 -46.16040   2 2 2 C 
G -48.90819 -237.91316 -50.52288   0 0 2 C 
P -51.00163 -55.74371 -54.88536   0 0 2 C 
G -53.46976 -242.47474 -58.32104   0 0 0 C 

 
The output in Table 6-5 is from program DAMBE (Xia, 2001; Xia and 

Xie, 2001b) which implements the Viterbi algorithm as well as the forward 
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algorithm (detailed later) for computing the probability of the observed 
sequence of events given the transition probability matrix and the emission 
probability matrix. Here we use manual computation so that you know how 
to get the output yourself. 

The first amino acid Y has no site-dependence information because we 
do not know what goes before it. So the three values in the first row of V 
(Table 6-5) are filled as a function of emission probabilities. Given amino 
acid Y and no other information, the likelihood of the hidden states being C, 
E and H are respectively eC(Y), eE(Y) and eH(Y) which are 0.0262, 0.15385 
and 0.0069, respectively, from Table 6-4. These three values are divided by 
the number of hidden states to give 

(1) 0.0087336245
(1) 0.0512820513 
(1) 0.0022988506

C

E

H

V
V
V

=
=
=

 (6.13) 

You may wonder why these three values are not the same as the three 
values in the first row in the V matrix in Table 6-5. This will be explained 
soon. 

In more concise and more general mathematical terms, Eq. (6.13) is 
written as 

1(1) ( ) /k kV e X n=  (6.14) 

where k = C, E, or H, and n is the number of hidden states (=3 in our 
example). 

An alternative initialization of Vk(1) values is 

11(1) ( )k k XV e X π=  (6.15) 

where πX1 is the equilibrium frequency of X1. We have already learned how 
to compute the equilibrium frequencies in a previous section on 1st-order 
Markov models. This way of initialization is numerically illustrated later 
when we learn the forward algorithm. 

The rest of the rows in V are filled with a more intimidating equation 

( ) ( ) max ( ( 1) )l l i k k klV i e X V i P= −  (6.16) 
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where subscript l refers to the hidden state at site i, and k is the hidden state 
at site i-1, Pkl is the transition probability from hidden state k to hidden state 
l. 

Many intimidating mathematical expressions are in fact quite simple, and 
Eq. (6.16) is no exception, especially when it is rendered into numbers. For 
example, according to the equation, the second row of the V matrix is filled 
with the following three values: 

(2) ( ) max[ (1) , (1) , (1) ]
0.0393 max(0.008733625 0.8821,
0.051282051 0.26154,0.002298851 0.06897)
0.0393 0.013412308 0.000527104

(2) ( ) max[ (1) , (1) , (1) ]
0.006991512

C C C CC E EC H HC

E E C CE E EE H HE

H

V e V V P V P V P

V e V V P V P V P

V

=
= × ×

× ×
= × =
=
=

(2) ( ) max[ (1) , (1) , (1) ]
0.000102569

H C CH E EH H HHe V V P V P V P=

=

 (6.17) 

where V in eC(V), eE(V) and eH(V) is the amino acid V at the second site of 
the amino acid sequence. Don’t confuse it with the V matrix.  

Vl(i) values for i = 3, 4, …, 21 are computed in exactly the same way. 
Each one depends on the Vl(i-1) values. This is typically of all dynamic 
programming algorithms. 

Eq. (6.16) and its numerical rendition in Eq. (6.17) are also very easy to 
understand and to remember. Take VC(2) in Eq. (6.17) for example. The max 
function is to find, given the reconstructed hidden state at the second site is 
C, which of the three possible hidden states in the previous site is most likely 
to transit into C. In our case, it is the hidden state E that is most likely to 
transit into C, with its value of 0.013412308 being the maximum of the 
three. If the reconstructed hidden state is C, how likely is it to emit an amino 
acid V? This is the emission probability eC(V) = 0.0393 (Table 6-4). So 
VC(2) is the probability that the hidden state at the site 2 is C multiplied by 
the probability that the hidden state C emits an amino acid V. With this, the 
computation of VE(2) and VH(2), as well as the rest of Vl(i), is obvious. I 
encourage you to perform the computation by hand. Just in case you wish to 
have some values to check your computation, here are the three Vl(3) values: 
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(3) 0.0000479085
(3) 0.0007942838
(3) 0.0000006537

C

E

H

V
V
V

=
=
=

 (6.18) 

Now you may have a really burning question in your mind. The three 
rows of V matrix that we have computed in Eq. (6.13), Eq. (6.17) and Eq. 
(6.18) are supposed to be the same as the first three rows in the V matrix in 
Table 6-5. Why are they not the same? Please be patient for just one more 
minute. 

You might have noticed that the three Vl(2) values in Eq. (6.17) are 
substantially smaller than the three Vl(1) values in Eq. (6.13), and the three 
Vl(3) values in Eq. (6.18) are substantially smaller than the three Vl(2) 
values in Eq. (6.17). The Viterbi algorithm involves the multiplication of 
many small probabilities and it takes only a short sequence for a computer to 
generate an arithmetic underflow or overflow error (and probably weird 
results long before this). Do you have a solution for this problem now that 
you understand how to compute the V matrix?  

The solution turns out to be simple. In order to avoid arithmetic 
underflow or overflow problems in computation, any practical 
implementation of the Viterbi algorithm would have log-transformed the 
equations so that we do additions instead of multiplications. If you take the 
natural logarithm of Vl(1), Vl(2) and Vl(3) values in equations (6.13), (6.17),  
and (6.18), you should get the values in the first three rows in the V matrix 
in Table 6-5. 

We have not talked about the B matrix (the backtrack matrix), which 
should be filled concurrently with the V matrix. Just as the backtrack matrix 
in the dynamic programming algorithm for sequence alignment is for the 
actual reconstruction of aligned sequences, the backtrack matrix in the 
Viterbi algorithm is for reconstructing the most probable hidden path, also 
known as the Viterbi path. In our example, the Viterbi path is the 
reconstructed secondary structure of the peptide T. 

Each cell in B in Table 6-5 is in fact a pointer (or arrow) to a cell in the 
previous site. The first row of B in Table 6-5 is empty for the obvious reason 
that the first site has no previous site to point to (Table 6-5). The first three 
values in the second site is 1, 1, and 2 (Table 6-5). We will first explain how 
we get these values and what they mean, and finally learn how to reconstruct 
the Viterbi path by following the pointers in the B matrix. 

The entries in the B matrix are obtained from the max function in 
equations (6.16) and (6.17). Take VC(2) in Eq. (6.17) for example. The three 
values within the max function are VC(1)PCC, VE(1)PEC and VH(1)PHC, with 
the maximum being VE(1)PEC. So we should have an arrow pointing from C 
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at the second site to E at the first site. Because it is not convenient to store 
graphic arrows in digital computers, we coded the three hidden states C, E 
and H to 0, 1, and 2, respectively. To represent an arrow from C at the 
second site to E at the first site, we simply put a number 1 under column C 
(B matrix in Table 6-5) at the second site. Because we only have three 
hidden states, a cell in B will contain either a 0 (for C) or 1 (for E) or 2 (for 
H).  

Yes, I could have put real arrows to the B matrix in Table 6-5, but I was 
afraid of spoiling future programmers if everything is made too visual. 
Sometimes it is better to see things with our mind’s eye. However, there is 
nothing preventing you from replacing the numbers by arrows in the B 
matrix in Table 6-5. 

The second value in the second row of B is 1, meaning an arrow pointing 
from state E at the second site to state E at the first site (i.e., a vertical arrow 
pointing up). This is obtained in exactly the same way from VE(2) in Eq. 
(6.17). Among the three values within the matrix function, VC(1)PCE, 
VE(1)PEE, and VH(1)PHE, VE(1)PEE is the largest. So we again have a value of 
1 representing an arrow from state E at the second site to state E at the first 
site.  

For VH(2) in Eq. (6.17), the last of the three values within the max 
function is the largest, yielding a value of 2 representing an arrow from state 
H in the second site to H in the first site. That is, you have another vertical 
arrow pointing upwards. 

Once the V and B matrices are complete, we can backtrack along the B 
matrix to reconstruct the hidden states. We first look at the very last row in 
V (Table 6-5) and find the largest value, which is -53.46976 under column 
C. This means that the last amino acid (i.e., G) should be in state C (i.e., in a 
coil). This brings us to the value in the last row of B under column C in 
Table 6-5. This value is 0 (representing C). Recall that values in the B matrix 
are pointers. A value of 0 in a cell in the B matrix means that the second last 
amino acid (i.e,. P) is also in a coil. Similarly, we know the third and fourth 
last amino acids (G and P, respectively) are also in a coil. We record these 
reconstructed hidden states in the last column in Table 6-5, i.e., a stretch of 
four C’s from the bottom. 

Now we are at the cell containing a value of 2 (for H or helix) under 
column C (the fourth row from the bottom). This means that the next amino 
acid (i.e., amino acid E at site 17) is no longer in state C but in state H. So 
now we move to the value of 2 (the fifth from the bottom) under column H 
in Table 6-5. This cell, together with the 11 cells in proceeding sites, 
contains a value of 2. This means a stretch of amino acids in state H all the 
way to the 6th amino acid (i.e., amino acid E). We again record this stretch of 
H’s in the last column (HS) in Table 6-5. 
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The last value of 2 in this stretch of 2’s is in the 7th row of the B matrix in 
Table 6-5, corresponding to amino acid E. The cell right above this 2 is 0. 
This means that the amino acid at 5th site (i.e., E) is no longer in state H, but 
in state C. This brings us back to column C corresponding to the fifth amino 
acid (amino acid E), where we find a value of 1. This value of 1 means that 
the previous amino acid (the fourth one, amino acid V) is in structure E. This 
brings us to column E at the forth amino acid. This cell has a value of 1 and 
a stretch of 1’s above it all the way to the top. This means that the four 
amino acids at sites 1-4 are all in structure E. If you find yourself confused, 
then just replace those numbers in the B matrix in Table 6-5 by real arrows 
and then follow the arrows to get the reconstructed secondary structure. 

The final reconstructed sequences are shown below (Viterbi), together 
with the naïve reconstruction (Naïve) we have derived by using only 
information in the emission probability matrix: 

 
          123456789012345678901 
T       = YVYVEEEEEEVEEEEEEPGPG 
Viterbi = EEEECHHHHHHHHHHHHCCCC 
Naïve   = EEEEHHHHHHEHHHHHHCCCC 
 
Two hidden states, at site 5 and 11, were reconstructed differently 

between the naïve path and the Viterbi path. A hidden state of H at site 5 in 
the Naïve reconstruction implies a transition from hidden state E directly 
into hidden state H, which has an extremely small probability PEH = 0.00000 
(Table 6-3). The Viterbi path shows first a transition from E to C and then 
from C to H. This is a more likely path than the Naïve reconstruction 
because PEC and PCH are both much larger than 0.00000 (Table 6-3). Another 
difference is at site 11. The naïve reconstruction of state E at this site implies 
a transition of secondary structure from H to E  and then back from E to H. 
The transition probability matrix shows us that PHE and PEH are both very 
small. So a hidden state of E at this site is very unlikely. The transition 
probability matrix shows a large PHH value (Table 6-3). The reconstructed 
hidden state H at this site in the Viterbi path implies that the helix structure 
is more likely to continue across this site instead of switching to some other 
secondary structures. 

We have now covered two of the three major tasks associated with 
HMM, i.e., train a HMM and reconstruct the sequence of hidden states. We 
now deal with the last task, i.e., computing the probability of the observed 
sequence of symbols by the forward algorithm (Rabiner, 1989). 
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3.4 Forward algorithm 

The forward algorithm is for computing the probability of the observed 
sequence of events. Given an observed amino acid sequence T, the 
probability is designated P(T). This probability is useful to understand the 
process generating the sequence. For example, given the transition 
probability matrix and the emission probability matrix, if we find the 
observed sequence (say amino acid sequence T) to have a much smaller 
probability than any of the training sequences of the same length from the 
training set, then we may have to conclude either that the training set is not 
representative (i.e.., the sequence T should not be a member of the training 
set) or that the HMM structure is wrong, i.e., there might be more hidden 
states or the hidden states in the training set might be wrongly assigned. 
HMM is often used to decide whether an amino acid sequence belongs to a 
protein family and P(T) plays an important role in making such a decision. 
In such cases, the HMM is derived from a set of aligned protein sequences 
known to belong to a particular protein family. We classify a new sequence 
T into the protein family when P(T) is large. 

The forward algorithm involves dynamically completing a L×n matrix, 
where L is sequence length and n is the number of hidden states (Table 6-6). 
The matrix is henceforth referred to as the F matrix (F for forward).  

Table 6-6. The F matrix from the forward algorithm. The first column is the amino acid 
sequence (AA), and the last column is the scaling factor s(i) explained in the text. 
AA C E H s 
Y 0.35294 0.58824 0.05882 25.824 
V 0.17282 0.79491 0.03226 9.371 
Y 0.09317 0.90426 0.00258 9.807 
V 0.09124 0.90635 0.00241 7.281 
E 0.52078 0.45909 0.02013 22.082 
E 0.71047 0.19040 0.09914 16.477 
E 0.68601 0.07944 0.23455 13.523 
E 0.55790 0.03897 0.40313 11.704 
E 0.40736 0.02247 0.57018 10.351 
E 0.28088 0.01410 0.70502 9.353 
V 0.23427 0.12798 0.63775 19.865 
E 0.19622 0.03300 0.77078 9.304 
E 0.14736 0.01129 0.84135 8.452 
E 0.11512 0.00610 0.87878 8.120 
E 0.09685 0.00456 0.89858 7.968 
E 0.08706 0.00397 0.90898 7.892 
E 0.08192 0.00369 0.91439 7.853 
P 0.61471 0.00733 0.37797 32.278 
G 0.91292 0.00000 0.08708 16.665 
P 0.97669 0.00853 0.01477 8.615 
G 0.99004 0.00000 0.00996 11.917 
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The three values in the first row, corresponding to the first amino acid 
(i.e., Y) are filled as a function of emission probabilities, exactly as the V 
matrix in the Viterbi algorithm. Given Y and no other information, the 
likelihood of the hidden states being C, E and H are respectively eC(Y), 
eE(Y) and eH(Y) which are 0.0262, 0.15385 and 0.0069, respectively, from 
Table 6-4. One can initialize the first three values by dividing these three 
values by the number of hidden states (= 3) as in Eq. (6.14) or by 
multiplying these values by the equilibrium frequencies of the hidden states 
as in Eq. (6.15). The three values from the first method of initialization are 
equal to Vl(1) in Eq. (6.13). To learn something new, we will use the second 
method of initialization. The equilibrium frequencies for hidden states C, E, 
and H can be computed by using the method explained in a previous section 
on Markov models and are equal to 0.52164009, 0.14806378, and 
0.33029613, respectively. This yields 

(1) 0.01366697
(1) 0.022779613
(1) 0.002279043

C

E

H

F
F
F

=

=
=

 (6.19) 

You may begin to wonder why the three Fl(1) values are not the same as 
the three values in the first row in the F matrix in Table 6-6. It may suddenly 
dawn on you that you need to take their logarithms. So you did, and …… 
they are still quite different. You may begin to wonder if I have made 
computational errors. Rest assured that I did not. You just need to be a bit 
more patient. 

The Fl(i) values with i > 1 are computed according to the following 
equation 

1( 1) ( ) ( )l l i k klk
F i e X F i P++ = ∑  (6.20) 

Again, this seemingly intimidating equation is quite easy to understand 
and simple to compute, especially when it is rendered to numbers. Take the 
second amino acid site (amino acid V) for example. The three Fl(2) values 
are: 
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(2) ( )( (1) (1) (1) )
0.0393(0.01366697 0.8821
+0.022779613 0.26154+0.002279043 0.06897)

=0.000714105
(2) ( )( (1) (1) (1) )

0.003284846
(2) ( )( (1) (1)

C C C CC E EC H HC

E E C CE E EE H HE

H H C CH E EH H

F e V F P F P F P

F e V F P F P F P

F e V F P F P F

= + +

= ×
× ×

= + +
=
= + + (1) )

0.000133377
HHP

=

 (6.21) 

We continue until we obtain the three values for the last amino acid at 
site 21 (i.e., the terminating G). The summation of these last three values is 
the probability of the observed amino acid sequence (T) given the transition 
probability matrix and the emission probability matrix, i.e.,  

1
( ) ( )

n

l
l

P T F L
=

=∑  (6.22) 

where l is the index of hidden states (E, C and H in our example), n is the 
number of hidden states (= 3 in our example) and L is the sequence length of 
T. However, Eq. (6.22) is almost never used in actual computation because, 
without rescaling, Fl(L) will often be too small to be represented in digital 
computers with a large L. The actual computed P(T) in our example is 3×10-

23, a very small value. In practice, we always compute the natural logarithm 
of the probability because the probability itself will be difficult to represent 
in digital computers with a large L. The natural logarithm of the probability 
is -51.8606178. 

You might again wonder why the three Fl(1) values in Eq. (6.19) and the 
three Fl(2) values in Eq. (6.21) are not the same as the six values populating 
the first two rows of F in Table 6-6. The reason is that the forward algorithm 
involves the multiplication of many small probabilities and some 
computational tricks have to be taken to avoid the arithmetic underflow or 
overflow error. You might suggest using the logarithm as we did before with 
the Viterbi algorithm, but this time the logarithm does not help because of 
the summation term in Eq. (6.20). What we typically do is to re-scale the 
Fl(i) values by a scaling factor s(i). In DAMBE (Xia, 2001; Xia and Xie, 
2001b), the three Fl(i) values are re-scaled to  
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'

''

( ) ( ) ( );
1( )

( )

l l
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F i s i F i

s i
F i

=

=
∑

 (6.23) 

For example, the three Fl(1) values are re-scaled to 

'

'

'

(1)(1) 0.352917995
(1) (1) (1)

(1) 0.588230967

(1) 0.058851038

C
C

C E H

E

H

FF
F F F

F
F

= =
+ +

=

=

 (6.24) 

It is these re-scaled values that are presented in Table 6-6. The last 
column in Table 6-6 is the scaling factor in Eq. (6.23) that can be used to 
compute P(T): 

1

1

1( )

ln[ ( )] ln( )

L

i
i

L

i
i

P T
s

P T s

=

=

=

= −

∏

∑

 (6.25) 

 where L is the sequence length. 

3.5 HMM and gene prediction 

Many methods have been used for gene prediction in prokaryotic 
genomes (Borodovsky and McIninch, 1993a; Krogh et al., 1994; Salzberg et 
al., 1998) and eukaryotic genomes (Besemer and Borodovsky, 2005; Burge 
and Karlin, 1997; Burge and Karlin, 1998). The application of HMM in gene 
prediction involves defining the structure of HMM with selected hidden 
states, training the defined HMM with genomic sequences of known hidden 
states to estimate the parameters in the transition probability matrix and the 
emission probability matrix, and finally apply the method to predict genes 
(i.e., reconstruct hidden states) by using the Viterbi and forward algorithms. 

It is not trivial to define the model structure of HMM in gene prediction. 
Current methods for gene prediction in eukaryotic genomes, e.g., 
GENSCAN (Burge and Karlin, 1997), focus on the prediction of coding 
exons and exon-intron junctions. Note that introns can be inserted into the 
5’-UTR (untranslated region) or 3’-UTR of a gene, creating non-coding 
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exons. Such exons are the most difficult to predict. The first coding exon is 
the one containing the initiation codon ATG and ending at the first 5’ splice 
junction. The last coding exon is the one containing the termination codon 
and extending into the 3-UTR. HMMs used in Gene prediction typically 
involve many hidden states, e.g., GENSCAN involve 17 hidden states. 

4. POSTSCRIPT 

We see informal applications of HMM in our daily life. By making a 
telephone call, parents with their ears trained from many years of experience 
can often detect hidden troubles of their children based only on the voice of 
the latter. In contrast, people unfamiliar to each other often find it 
frustratingly difficult to predict each other’s behavior. The same applies to 
different nations, such as between the United States and Iran. If two people 
or two nations have hardly been trained to understand each other, disasters 
are almost never far when they both claim to known what the other party 
intends to do. 

I once heard a story about the late Stephen Jay Gould giving a talk on 
evolution to the congregation of an All Souls Church in New York. When 
the guest and hosts were having lunch together, someone suggested that they 
should go around the table to introduce themselves. At that point Gould said 
something that seemed to be extraordinarily rude, something to the effect 
that he did not really care who the hosts were as he would never see them 
again. The name of Gould instantly became synonymous to rudeness among 
the church members. 

However, soon after the incident, the members of the church learned 
from the newspaper that Gould had died of cancer and that his lecture in the 
church was in fact Gould’s last public engagement – he reserved all the rest 
of his time to finish his 1464-page magnum opus entitled “The Structure of 
Evolutionary Theory”. They realized that, at that moment when the 
seemingly rude remark erupted, Gould must have felt melancholy, as 
everyone would, knowing that his days were numbered, and that he was 
merely stating a heart-breaking truth that he would never see anyone around 
the table again.  

Stephen Jay Gould had spent all his life fighting two kinds of 
fundamentalists, the religious fundamentalists who believe that God is a 
micromanager of everything and the evolutionary fundamentalists who 
believe that every bit of biodiversity manifests adaptation and every bit of 
adaptation results from natural selection. I would have expected Gould to 
have an easy time with members of a very liberal church. Yet 
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misunderstanding still arose, and the misunderstanding could last for along 
time if Gould’s death had not been on the newspaper. 

It is truly enigmatic and paradoxical that, with the advanced 
computational algorithms helping us to infer the unknown, we still do not 
seem to make any progress in understanding each other and in understanding 
ourselves. The ancient Greek sage, Plato, has discovered the root cause of all 
misunderstanding and evil. It is called arrogance. Plato illustrated his point 
with his famous allegory of the cave.  

Imagine prisoners chained inside a cave since childhood, with their heads 
immobilized in such a way that their eyes were fixed on a gigantic wall. 
Immediately behind the prisoners was a road along which men, animals and 
other things traveled. Behind the road was an enormous fire that projected 
the shadow of the travelers to the wall that the prisoners were facing. Also, 
the voice of the travelers was echoed from the wall in such a way that the 
prisoners believed that the words came from the shadows. Gradually, the 
prisoners became quite good at identifying the travelers by their shadows 
and voices. The shadows and the voices, as well as the interpretation of the 
shadows and voices by the prisoners, constituted the reality of the prisoners.  

Now suppose a prisoner was freed and went outside the cave. Gradually 
he would comprehend a new reality from what he could sense. Once thus 
enlightened, he naturally would want to return to the cave to convey the new 
reality to his fellow prisoners. Unfortunately, once back in the cave, he 
found himself much less able to identify the travelers by their shadows than 
his fellow prisoners. Being thus perceived as inferior by his fellow prisoners, 
he failed completely in communicating the new reality to his fellow 
prisoners who believed to know better. The fellow prisoners were too 
arrogant to listen. 

It is the arrogance in the mind of the prisoners that prevents them from 
comprehending the new reality. It is the arrogance in the mind of the 
religious fundamentalists and the evolutionary fundamentalists that prevents 
them from understanding each other. It is the arrogance in the mind of the 
presidents and primer ministers that prolongs the misunderstanding among 
nations. An arrogant mind can never perceive the need of training. In the 
Christian Bible, arrogance is called Satan. 

The fundamental message from this chapter is this. An HMM algorithm, 
no matter how algorithmically elegant and mathematically rigorous, will be 
of absolutely no value if it is not properly trained. May our mind never be 
transformed into such an algorithm in reality. 



 

Chapter 7 

GIBBS SAMPLER 
Identify functional motifs in DNA and proteins 

 
 

1. INTRODUCTION 

In Chapters 5 on the position weight matrix and perceptron, we have 
learned how to characterize a sequence motif by using a set of aligned 
training sequences. This chapter introduces a new computational technique 
used to identify regulatory motifs in DNA or functional motifs in proteins. 
There are in fact a number of computational techniques for such 
identifications. However, the most widely used technique is perhaps Gibbs 
sampler (Geman and Geman, 1984), named after the mathematical physicist, 
J. W. Gibbs. 

Gibbs sampler is a method for simplifying computation in parameter 
estimation when analytical solution is very difficult or impossible to obtain. 
In biology, it has been used in the identification of functional motifs in 
proteins (Mannella et al., 1996; Neuwald et al., 1995; Qu et al., 1998), 
biological image processing (Samso et al., 2002), pairwise sequence 
alignment (Zhu et al., 1998) and multiple sequence alignment (Holmes and 
Bruno, 2001; Jensen and Hein, 2005). However, the most frequent biological 
application of Gibbs sampler remains in the identification of regulatory 
sequences of genes (Aerts et al., 2005; Coessens et al., 2003; Lawrence et 
al., 1993; Qin et al., 2003; Thijs et al., 2001; Thijs et al., 2002a; Thijs et al., 
2002b; Thompson et al., 2004; Thompson et al., 2003). 

It is important to recognize the fact that a genome comes alive mainly 
through transcription and translation. The efficiency of both transcription 
and translation depends on the associated sequence motifs, with transcription 
affected by promoter sequences and other associated motifs that can enhance 
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or inhibit transcription, and translation affected by the translation initiation 
signal such as translation initiation site. These sequence motifs can be 
discovered by Gibbs sampler. 

In this chapter we will focus only on gene and motif prediction involving 
Gibbs sampler, but the basic algorithm is essentially the same for other 
applications. Before we detail the algorithm with numerical illustrations, it is 
helpful to first give a concrete example of its application in motif finding. 

Suppose a molecular biologist studying yeast cycle has identified a set of 
co-expressed genes (i.e., genes that increase or decrease their transcription 
level synchronously over time) by microarray (Schena, 1996; Schena, 2003) 
or SAGE (Saha et al., 2002; Velculescu et al., 1995) experiment. He wants 
to know if the co-expressed genes are also co-regulated, i.e., if they may 
share a certain yet-unknown promoter sequences controlled by the same or 
similar transcription factor. Suspecting that the promoter is somewhere 
upstream of the translation initiation codon, he extracted the upstream 
sequences from these coexpressed genes (Figure 7-1a) and hope to get the 
aligned regulatory motifs in the form shown in Figure 7-1b. This scenario is 
where the Gibbs sampler will shine. 

(a)
S1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
S2 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG
S3 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA
……
SN CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

(b)
S1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
S2 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG
S3 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA
……
SN CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

Gibbs sampler

 

Figure 7-1. Application of Gibbs sampler in motif discovery. The sequences shown are 
reverse complement of a subset of erythroid-specific gene sequences, which has been tested 
for the presence of GATA box or TATC box in reverse complement (Rouchka, 1997). 

The main output of Gibbs sampler is typically of two parts. The first is 
the sequences with aligned motifs as shown in Figure 7-1b. The second is a 
position weight matrix derived from the aligned motifs so that we can use it 
to scan new sequences for the presence and location of such motifs. 

In short, the input to Gibbs sampler for motif prediction is a set of 
sequences, the majority of which contain one or more motifs of interest 
(Figure 7-1a). The output is a set of sequences with aligned motifs (Figure 7-
2) together with a position weight matrix that can be used in future motif 
prediction. 
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There are two slightly different applications of Gibbs sampler in motif 
prediction. The first assumes that each sequence contains exactly one motif 
(Lawrence et al., 1993) and the associated algorithm is called site sampler. 
The second is more flexible and allows each sequence to have none or 
multiple motifs (Neuwald et al., 1995) and the algorithm is termed motif 
sampler. We will illustrate the site sampler and then briefly discuss the motif 
sampler. Much of this chapter is based on a previous tutorial on Gibbs 
sampler (Rouchka, 1997). 

2. A NUMERICAL ILLUSTRATION OF THE 
COMPUTATIONAL DETAILS OF GIBBS 
SAMPLER 

We have to first of all face the necessary evil of defining relevant entities. 
For illustration, we will work with nucleotide sequences instead of amino 
acid sequences, although the algorithm is applicable to both. The erythroid 
sequences (Rouchka, 1997) that we will apply Gibbs sampler to are listed 
below (with 3’-end trimmed to the maximum length 50 bases to fit the 
screen): 

 
S1 TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT 
S2 CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG 
S3 TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG 
S4 AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC 
S5 GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC 
S6 AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA 
S7 GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA 
S8 CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT 
S9 TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC 
S10 GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC 
S11 CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG 
S12 GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG 
S13 TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA 
S14 CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC 
S15 ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC 
S16 AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC 
S17 CCAGCACACACACTTATCCAGTGGTAAATACACATCAT 
S18 TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT 
S19 ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA 
S20 TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA 
S21 CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA 
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S22 CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA 
S23 GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT 
S24 TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT 
S25 GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT 
S26 CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG 
S27 CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC 
S28 GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG 
S29 CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC 
 
Let N be the number of input sequences designated as S1, S2, …, Si, …, 

SN, and m be the length of the motif. For our example, N = 29 and m = 6. 
One typically would use different m values if one knows little about the 
length of the motif. 

Let Li be the length of Si, and Ai be the inferred starting position of the 
motif in Si. The objective of Gibbs sampler is to (1) obtain a set of correct Ai 
values to align the motifs in the form of Figure 7-1b, and (2) generate a 
position weight matrix that characterizes the motif by site-specific nucleotide 
frequency distributions. The position weight matrix can be used to scan for 
the presence of the identified motif for purpose of motif prediction. The 
position weight matrix is of dimension m×4, for nucleotide sequences and 
m×20, for amino acid sequences. 

We need first to count all nucleotides, with their numbers designated as 
FA, FC, FG and FT, respectively, in the sequences. The total number of 
nucleotides of all 29 sequences is 1209, with FA, FC, FG and FT equal to 325, 
316, 267 and 301, respectively. These values will be needed for calculating 
pseudocounts (which we encountered in the section on position weight 
matrix in Chapter 5). 

The main algorithm of Gibbs sampler is of two steps. The first is random 
initialization in which a random set of Ai value is chosen and site-specific 
nucleotide frequencies are calculated. The second step is predictive updating 
until a local solution of Ai values is obtained and retained, together with site-
specific nucleotide frequencies that can be made into a position weight 
matrix. This is repeated multiple times and previously stored locally optimal 
solutions are replaced by better ones. Convergence is typically declared 
when two or more local solutions are identical. These steps are numerically 
illustrated in the following sections. 

2.1 Initialization 

We now randomly assign a value to Ai, with the constraint that Ai ≤ Li – 
m +1. So our first set of N “motifs” is essentially a random set of sequences 
of length m and is not expected to have any pattern. Just in case you are 
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curious, the first set of 29 random Ai values happen to be: 29, 31, 23, 28, 10, 
2, 18, 32, 20, 15, 11, 25, 24, 30, 18, 15, 10, 23, 14, 15, 26, 36, 8, 6, 30, 19, 
27, 26, and 14. The site-specific distribution of nucleotides from the 29 
random motifs is shown in Table 7-1. There is hardly any site-specific 
pattern.  

The second column in Table 7-1 will be referred to as C0 vector with 
C0A, C0C, C0G and C0T equal to 278, 279, 230, and 248, respectively. The 
4×6 matrix, occupying the last six columns in Table 7-1, will be referred to 
as C matrix. The C matrix is tabulated from the 29 random motifs whereas 
the C0 vector is tabulated from nucleotides outside of the motifs. Thus, the 
sum of the first, second, third and fourth rows should be equal to FA, FC, FG 
and FT, respectively. Also note that each of the six columns in the C matrix 
should add up to 29. 

Table 7-1. Site-specific distribution of nucleotides from the 29 random motifs of length 6. The 
second column lists the distribution of nucleotides outside the 29 random motifs. 
  Site 
Nuc C0 1 2 3 4 5 6 
A 278 8 7 9 6 10 7 
C 279 3 8 5 10 6 5 
G 230 7 5 6 5 3 11 
T 248 11 9 9 8 10 6 

 

2.2 Predictive update 

The predictive update consists of obtaining N (= 29 in our example) 
random numbers ranging from 1 to N, and use these numbers as an index to 
choose the sequences sequentially to update the site-specific distribution of 
nucleotides (the C matrix) and the associated frequencies (the C0 vector). 
For example, the N numbers in my run of the Gibbs sampler happen to be 
11, 18, 26, 22, 2, 28, 12, 9, 7, 3, 17, 16, 1, 4, 21, 15, 14, 24, 19, 27, 29, 6, 10, 
20, 13, 8, 23, 25, and 5, respectively. This means that S11 will be used first, 
and S5 last, for the first cycle of the predictive update. It is important to use a 
random series of numbers instead of choosing sequences according to the 
input order. The latter increases the likelihood of trapping Gibbs sampler 
within a local optimum. This is repeated multiple times until a local solution 
is reached. I present the detail of the predictive update below. 

Our first randomly chosen sequence happens to be S11 and its randomly 
chosen motif, as has mentioned in the previous section, happens to start at 
11, i.e., A11 = 11, with the motif being AGTGTG. This initial motif will now 
be taken out of C and put into C0 vector. This motif has one A, zero C, and 
three G’s and two U’s. By adding these values to the C0 vector in Table 7-1, 
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we obtain the C0 vector in Table 7-2. We also need to take this motif out of 
the C matrix by subtracting the first A from the first value in the first column 
in the C matrix in Table 7-1 (i.e., new CA,1 = old CA,1 - 1) , the second G 
from the third value in the second column in the C matrix in Table 7-1 (i.e., 
new CG,2 = old CG,2 - 1), and so on. This converts the C matrix in Table 7-1 
to the C matrix in Table 7-2.  

Table 7-2. Site-specific distribution of nucleotides from the 28 random motifs of length 6, 
after removing the initial motif in S11. The second column lists the distribution of nucleotides 
outside the 28 random motifs. 
  Site 
Nuc C0 1 2 3 4 5 6 
A 279 7 7 9 6 10 7 
C 279 3 8 5 10 6 5 
G 233 7 4 6 4 3 10 
T 250 11 9 8 8 9 6 

 
At this point the C matrix is made of the 28 randomly chosen motifs, one 

from each sequence. You will notice that each of the six columns in the C 
matrix has a sum of 28. 

The reason for taking the initial motif in S11 out of the C matrix and put it 
back into the C0 vector is that we are going to find a more likely motif in 
S11, and put it into the C matrix so that the C matrix will against be based on 
29 motifs. How are we going to get a more likely motif? Recall that a 
position weight matrix (PWM) can be used to scan fragments of a sequence 
to get position weight matrix scores (PWMSs). We will make a PWM out of 
the C0 vector and the C matrix and use the resulting PWM to scan S11 and 
get a new motif that has the highest PWMS. 

You may wonder why such a practice would get us anywhere given the 
fact that the C matrix is initially made of random motifs. The resulting PWM 
would exhibit no pattern, and the resulting PWMSs will therefore be 
uninformative. It is a valid point that you have made, but let us wait and see 
if some miracles will happen. 

With the C0 vector and C matrix in Table 7-2, we will now create a new 
Q0 vector and a new Q matrix. The four values in the Q0 vector are 
computed as  

1
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where NCode is the number of different symbols in the sequences (= 4 for 
nucleotide sequences, and i = 1, 2, 3 and 4 corresponding to A, C, G and T). 

Thus, the Q0 vector is just the proportion of A, C, G and T in the 28 
sequences outside of the 28 motifs. However, because C0i may be zero, and 
because we will need to take the logarithm of Q0i, we will add pseudocounts 
to obtain Q0i in the following form. 

1 1
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i N N
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+
=

+∑ ∑
 (7.2) 

where Fi has been defined before , and α is typically a small value, with its 
default being 0.01 in my implementation of Gibbs Sampler in DAMBE (Xia, 
2001; Xia and Xie, 2001b). 

The elements in the Q matrix are computed similarly as follows: 
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where i = 1, 2, 3, and 4 corresponding to A, C, G and T, respectively, N is 
the number of input sequences, and j = 1 2, …, m. The Q0 vector and the Q 
matrix are shown in Table 7-3. 

Table 7-3. Site-specific distribution of nucleotide frequencies derived from data in Table 7-2. 
The second column lists the distribution of nucleotide frequencies outside the 28 random 
motifs. 
  Site 
Nuc Q0 1 2 3 4 5 6 
A 0.2680 0.2495 0.2495 0.2981 0.2251 0.3225 0.2495 
C 0.2679 0.1499 0.2716 0.1986 0.3203 0.2229 0.1986 
G 0.2238 0.2353 0.1623 0.2110 0.1623 0.1380 0.3083 
T 0.2403 0.3410 0.2923 0.2679 0.2679 0.2923 0.2193 

 
Readers who have forgotten PWM might benefit from reviewing Chapter 

5 on PWM. Recall that PWM can be used to obtain a PWM score (PWMS) 
for a motif of length m and the PWMS value measures our confidence in one 
hypothesis (the motif shares the site dependence as those 28 “motifs” 
contributing to the C matrix, designated as θYes) relative to its alternative 
(θNo), given a motif.  

With the Q0 vector and the Q matrix in Table 7-3, we can now scan S11 
for a more likely motif. We compute a PWMS for each motif stating point. 
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For example, for starting point at 1, we have the first 6-mer from S11 equal to 
CATGCC. I provide you with computational details just in case you do not 
feel like to review Chapter 5 on PWM: 

,1 ,2 ,3 ,4 ,5 ,6

3

( | ) 0.000072

( | ) 0 0 0 0 0.000277
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In actual computation, we generally would have taken logarithms to 
avoid possible computer overflow or underflow errors that often occur when 
the motif is long. 

S11 is 40 bases long, with 35 (= 40 – m + 1) possible motif starting points 
(i.e., possible Ai values along the sequence). The 35 PWMS values for these 
35 possible motifs (Table 7-4) are normalized to have a sum of 1 (PNorm in 
Table 7-4). We now proceed to update the initial A11 (=11) by a new A11 
value based on result in Table 7-4. How should we choose the new A11 
value?  

There are two strategies to choose the new A11 value. The first is to 
randomly pickup an Ai value according to the magnitude of PNorm (Table 7-
4). You may visualize a dartboard with 35 slices with their respective areas 
being proportional to PNorm values. When you throw a dart at the dartboard, 
large slices will have a better chance of being hit than small slices. If the dart 
happens to land on the 7th slice, then the initial A11 = 11 will be updated to 
A11 = 7, with the original motif AGTGTG replaced by the new motif 
CTCAAG. 

The second strategy is simply to use the largest PNorm value for updating 
initial A11 to the new A11 value. As the motif starting at site 25 has the 
largest PNorm, we will set the new A11 equal to 25 and replace the initial motif 
(=AGTGTG) by the new motif (=TCACAG). This strategy is faster than the 
first, but seems to be just as sensitive in motif detection as the first. My own 
limited computer simulation does not seem to indicate that the second 
strategy is more likely to trap Gibbs sampler in a local optimum. It may 
sound odd, but there has been no systematic studies evaluating the 
effectiveness of these two strategies. 

Regardless of how the new A11 is chosen, the updating is the same. 
Suppose we have taken the second strategy and set the new A11 equal to 25. 
The C matrix in Table 7-1 is then revised by replacing the original A11 motif 
(=AGTGTG) by the new motif (=TCACAG). This leads to an updated C0 
vector and C matrix (Table 7-5). 
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Table 7-4. Possible locations of the 6-mer motif along S11, together with the corresponding 
motifs and their position weight matrix scores expressed as odds ratios. The last column lists 
the odds ratios normalized to have a sum of 1. 
Site 6-mer Odds Ratio PNorm 
1 CATGCC 0.2598 0.0079 
2 ATGCCC 0.7869 0.0240 
3 TGCCCT 0.6925 0.0211 
4 GCCCTC 0.8516 0.0259 
5 CCCTCA 0.3630 0.0111 
6 CCTCAA 0.8467 0.0258 
7 CTCAAG 0.7025 0.0214 
8 TCAAGT 0.7563 0.0230 
9 CAAGTG 0.7043 0.0214 
10 AAGTGT 0.5126 0.0156 
11 AGTGTG 0.9155 0.0279 
12 GTGTGC 0.6148 0.0187 
13 TGTGCA 0.6449 0.0196 
14 GTGCAG 2.3902 0.0728 
15 TGCAGA 0.3678 0.0112 
16 GCAGAT 0.9444 0.0287 
17 CAGATT 0.4579 0.0139 
18 AGATTG 1.4038 0.0427 
19 GATTGG 1.0343 0.0315 
20 ATTGGT 0.5155 0.0157 
21 TTGGTC 1.0647 0.0324 
22 TGGTCA 0.8382 0.0255 
23 GGTCAC 0.9068 0.0276 
24 GTCACA 0.6167 0.0188 
25 TCACAG 3.1708 0.0965 
26 CACAGC 0.1482 0.0045 
27 ACAGCA 0.5895 0.0179 
28 CAGCAT 0.6445 0.0196 
29 AGCATT 0.4666 0.0142 
30 GCATTT 1.4683 0.0447 
31 CATTTC 0.5841 0.0178 
32 ATTTCA 1.0906 0.0332 
33 TTTCAA 2.5773 0.0784 
34 TTCAAG 1.7817 0.0542 
35 TCAAGG 1.1418 0.0348 

 

Table 7-5. Site-specific distribution of nucleotides from the 29 initial motifs of length 6, after 
replacing the initial A11 motif (=AGTGTG) by the new motif (=TCACAG).  
  Site 
Nuc C0 1 2 3 4 5 6 
A 277 7 7 10 6 11 7 
C 277 3 9 5 11 6 5 
G 232 7 4 6 4 3 11 
T 249 12 9 8 8 9 6 
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We repeat this process for the rest of the sequences to update the rest of 

Ai values. After the last sequence has been updated, we have obtained a new 
set of Ai values, a new set of 29 motifs, together with the associated C matrix 
and Q matrix based on the site-specific frequencies of these motifs. At this 
point we compute a weighted alignment score (i.e., a weighted PWMS) as 
follows: 
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where m is the motif width, and NCode is the number of different symbols in 
the sequences (4 for nucleotide and 20 for amino acid sequences). F is a 
measure of the quality of alignment of the motifs. The larger the F value, the 
better. 

The predictive updating is repeated again and again. Each time when we 
get a new set of Ai values, a new set of motifs and the associated Q0 vector 
and Q matrix, we compute a new F value. If the new F value is greater than 
the previously stored F value, then new F value, the new set Ai values, and 
the new set of motifs will replace the previously stored ones. This continues 
until we reach a local maximum of F or when the preset maximum number 
of local loops has been reached. The resulting F value, the set of Ai values, 
the new set of motifs and the associated PWM are stored as the locally 
optimal output. 

 This process is repeated from the very beginning, i.e., we again perform 
the initialization by choosing a random set of Ai values, and go through the 
local iteration to obtain another locally optimal output. If the new locally 
optimal output is better than previously stored ones (i.e., the new F value is 
larger than the previously stored one), the new output will replace the 
previously stored output. This process is repeated multiple times until 
convergence is reached, i.e., when new F values are the same as the 
previously stored one. The final site-specific nucleotide distribution (Table 
7-6) displays a much stronger pattern than the initial distribution (Table 7-1) 
from 29 randomly chosen motifs.  

Table 7-6. Final site-specific distribution of nucleotides from the 29 identified motifs. Output 
from DAMBE (Xia, 2001; Xia and Xie, 2001b). 
  Site 
Nuc C0 1 2 3 4 5 6 
A 275 3 0 22 0 9 16 
C 285 11 0 0 0 19 1 
G 252 0 7 7 0 0 1 
T 223 15 22 0 29 1 11 
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The final aligned motifs (Figure 7-2) share in general a consensus of 
(C/T)TATC(A/T). Its reverse complement (A/T)GATA(A/G) is known to be 
the binding site of GATA-binding transcription factors (Aird et al., 1994; 
Fong and Emerson, 1992; Moi et al., 1992; Nishimura et al., 2000; Orkin, 
1992; Zon et al., 1991). This discovery of the motif suggests that this set of 
sequences may indeed be co-regulated by the same type of GATA-binding 
transcription factors. Such findings are crucial in transcriptomic and 
proteomic studies aiming to understand gene regulation networks. Although 
we are already in the so-called post-genomic era, we actually know little 
about how genomes work. What we have is mostly a list of genes. 
Algorithms such as Gibbs sampler help us understand interactions among 
genes and gene products. 

1               TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
2           CCCACGCAGCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG
3                   TCGACCCTCTGAACCTATCAGGGACCACAGTCAGCCAGGCAAG
4                AAAACACTTGAGGGAGCAGATAACTGGGCCAACCATGACTC
5                 GGGTGAATGGTACTGCTGATTACAACCTCTGGTGCTGC
6               AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA
7             GCCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA
8                               CATTATCACAAACTTAGTGTCCATCCATCACTGCTGACCCT
9                TCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGC
10                   GCCCCTTCCCCACACTATCTCAATGCAAATATCTGTCTGAAACGGTTCC
11            CATGCCCTCAAGTGTGCAGATTGGTCACAGCATTTCAAGG
12GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGTAAG
13             TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA
14                               CCTTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC
15                       ATTATTTTCCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCC
16                              AGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC
17                    CCAGCACACACACTTATCCAGTGGTAAATACACATCAT
18             TCAAATAGGTACGGATAAGTAGATATTGAAGTAAGGAT
19                 ACTTGGGGTTCCAGTTTGATAAGAAAAGACTTCCTGTGGA
20         TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAGTAGGCTAAGGCCA
21                     CAACCACAACCTCTGTATCCGGTAGTGGCAGATGGAAA
22                                 CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA
23          GAAAAAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT
24                             TGCCTTGTCTGTTGTAGATAATGAATCTATCCTCCAGTGACT
25                GGCCAGGCTGATGGGCCTTATCTCTTTACCCACCTGGCTGT
26                  CAACAGCAGGTCCTACTATCGCCTCCCTCTAGTCTCTG
27              CCAACCGTTAATGCTAGAGTTATCACTTTCTGTTATCAAGTGGCTTCAGC
28                  GGGAGGGTGGGGCCCCTATCTCTCCTAGACTCTGTG
29                               CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC

Figure 7-2. Aligned motifs generated from Gibbs sampler. Output from DAMBE (Xia, 2001; 
Xia and Xie, 2001b). 

I consider it relevant to provide a summary of the GATA box and 
GATA-binding transcription factors so that you can better appreciate the 
application of Gibbs sampler in the proper biological context. A living cell is 
a system with many genetic switches that can be turned on or off in response 
to intracellular and extracellular environment. It is these switches that 
distinguish a normal living cell from a cancer cell or a dead cell. The GATA 
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motif (or GATA box) is one of such switches and it is switched on by 
specific transcription factors (which are proteins that bind to the motif and 
turn on or off the transcription of the gene containing such motifs). One of 
the better known GATA-binding transcription factors is GATA-1 which 
binds to the GATA motif found in cis-elements of the vast majority of 
erythroid-expressed genes of all vertebrate species examine (Evans et al., 
1990; Orkin, 1990). The core promoter of the rat platelet factor 4 (PF4) gene 
contains such a GATA motif and the binding of such GATA motif by 
GATA-binding proteins such as GATA-1 suppresses the transcription of the 
PF4 gene (Aird et al., 1994). It is now known that GATA regulatory motifs 
and the GATA-binding transcription factors are present in a variety of 
organisms ranging from cellular slime mold to vertebrates, including plants, 
fungi, nematodes, insects, and echinoderms (Lowry and Atchley, 2000), 
suggesting that the function of the genetic switch is far beyond 
erythropoiesis.  In human, the GATA motif and the GATA-binding proteins 
are implicated in several diseases (Van Esch and Devriendt, 2001). 

You may have noted that some sequences have a strong 
(C/T)TATC(A/T) motif, whereas others (e.g., the second, the fourth and the 
fifth sequences) have only weak and highly doubtful signals. Computer 
programs implementing Gibbs sampler typically would output a quantitative 
measure of the strength of the signal, and PWMS is the most often used 
index for this purpose (Table 7-7). Recall that PWMS in Chapter 5 is the 
log-odds, but here we use the odds ratio directly as a measure of motif 
strength. Also recall that an odds ratio is the ratio of two probabilities 
associated with two hypotheses. Define θYes as the hypothesis that the 6-mer 
is a motif with its probability specified by the position weight matrix derived 
form the site-specific nucleotide frequencies in Table 7-5, and θNo as the 
hypothesis that the 6-mer is not a motif and has its probabilities specified 
only by the four overall nucleotide frequencies. The odds ratio is the ratio of 
the probability that θYes is true over the probability that θNo is true. One 
generally should take a cutoff value of 20, i.e., θYes is 20 times more likely 
than θNo. In other words, the chance that θYes is true is 95%. 

From a statistical estimation point of view, the matrix in Table 7-5, or the 
position weight matrix that can be derived from it, is in fact what we wish to 
obtain. This matrix is the result of training the Gibbs sampler with the 29 
sequences in the training set, and it allows us to go beyond the motifs in the 
training sequences to scan any unknown sequences or an entire genome to 
find similar motifs. 
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Table 7-7. Output of PWMS as a quantitative measure of the strength of the identified motifs. 
Output from DAMBE (Xia, 2001; Xia and Xie, 2001b). 
SeqName Motif Start Odds-ratio 
Seq1 TTATCA 18 163.6602 
Seq2 CGGTCA 22 14.5511 
Seq3 CTATCA 14 101.8203 
Seq4 AGATAA 17 9.1127 
Seq5 TGATTA 16 12.9266 
Seq6 CTATCT 18 90.7790 
Seq7 TTATCA 20 163.6602 
Seq8 TTATCA 2 163.6602 
Seq9 CTATAA 17 58.1420 
Seq10 CTATCT 14 90.7790 
Seq11 TGGTCA 21 23.3886 
Seq12 TTGTAA 33 38.9024 
Seq13 TTATCT 20 145.9129 
Seq14 TTATCT 2 145.9129 
Seq15 TTATCA 10 163.6602 
Seq16 CTATAA 3 58.1420 
Seq17 TTATCC 13 34.3258 
Seq18 AGATAT 20 8.1245 
Seq19 TGATAA 16 32.0835 
Seq20 AGATAA 24 9.1127 
Seq21 CTGTAT 12 21.5783 
Seq22 CTGTAT 0 21.5783 
Seq23 CTATCT 23 90.7790 
Seq24 TTGTCT 4 60.7395 
Seq25 TTATCT 17 145.9129 
Seq26 CTATCG 15 21.2368 
Seq27 TTATCA 19 163.6602 
Seq28 CTATCT 15 90.7790 
Seq29 TTGTCA 2 68.1272 
Mean   76.3120 
Stdev   57.8163 

 
I should emphasize the fact here that Gibbs sampler, being started from 

random motif selection, may not necessarily converge to the same motif. 
This is both an advantage and a disadvantage of the algorithm. The 
advantage is that repeated running of the algorithm will allow us to identify 
other types of hidden motifs (i.e., other than the reverse complement of the 
GATA motif) in the sequences. The disadvantage is that users not familiar 
with the algorithm often get confused when the same input generates quite 
different results. For example, another set of putative motifs is partially 
shown in Figure 7-3. 
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4                 AAAACACTTGAGGGAGCAGATA...
12           GATTGGTCACAGCATTTCAAGGGAGAGA...
13 TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCT...
14                   CCTTATCTGTGGGGGAGGCT...
15             ATTATTTTCCTTATCAGAAGCAGAGA...
20          TGGCCGCAGGAAGGTGGGCCTGGAAGATA...
21     CAACCACAACCTCTGTATCCGGTAGTGGCAGATG...
22                 CTGTATCCGGTAGTGGCAGATG...
26                           CAACAGCAGGTC...
28                               GGGAGGGT...  

Figure 7-3. An alternative motif that may be returned from running the Gibbs sampler on the 
same set of input sequences. The left column lists the sequence numbers. 

3. MOTIF SAMPLER 

The Gibbs sampler has two versions. The one that we have just illustrated 
is called site sampler. It assumes that each sequence contains exactly one 
motif (Lawrence et al., 1993). The other version is more flexible and allows 
each sequence to have none or multiple motifs (Neuwald et al., 1995) and 
the algorithm is termed motif sampler. The GATA-binding transcription 
factors comprise a protein family whose members contain either one or two 
highly conserved zinc finger DNA-binding domains (Lowry and Atchley, 
2000) and it is consequently likely that a sequence may contain more than 
one GATA box. For example, the erythroid Kruppel-like factor (EKLF, 
which is a zinc finger transcription factor required for β-globin gene 
expression) has in its 5'-region two GATA motifs flanking an E box motif 
characterized by CANNTG (Anderson et al., 1998). This calls for an 
algorithm that can identify multiple motifs in a single sequence. 

The site sampler can be extended to motif sampler by post-processing. 
The C matrix and C0 vector in Table 7-5 can be made into a position weight 
matrix to re-scan the sequences for motifs and compute the associated 
PWMS or odds ratio for all 6-mers in each sequence. All what we need is to 
have a cutoff score to keep those motifs with a PWMS or odds ratio greater 
than the cutoff score. An odds ratio of 20 is a reasonable cutoff score. Table 
7-7 shows the output of motif sampler with a cutoff score of 10. 
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Table 7-8. Motif sampler output from DAMBE (Xia, 2001; Xia and Xie, 2001b). N: number 
of motifs in the sequence; columns under headings 1, 2 and 3 lists details of the identified 
motif in the format of “Start(Motif, Odds ratio)” 
SeqName N 1 2 3 
Seq1 2 10(TTATAA,93.4541) 18(TTATCA,163.6602)  
Seq2 1 22(CGGTCA,14.5511)   
Seq3 1 14(CTATCA,101.8203)   
Seq4 0    
Seq5 1 16(TGATTA,12.9266)   
Seq6 1 18(CTATCT,90.7790)   
Seq7 1 20(TTATCA,163.6602)   
Seq8 2 2(TTATCA,163.6602) 24(CCATCA,10.2098)  
Seq9 1 17(CTATAA,58.1420)   
Seq10 3 14(CTATCT,90.7790) 28(ATATCT,41.4438) 32(CTGTCT,37.7888) 
Seq11 1 21(TGGTCA,23.3886)   
Seq12 2 3(TGGTCA,23.3886) 33(TTGTAA,38.9024)  
Seq13 1 20(TTATCT,145.9129)   
Seq14 1 2(TTATCT,145.9129)   
Seq15 3 1(TTATTT,33.5700) 10(TTATCA,163.6602) 36(TTCTCT,17.7407) 
Seq16 1 3(CTATAA,58.1420)   
Seq17 2 13(TTATCC,34.3258) 21(TGGTAA,13.3555)  
Seq18 0    
Seq19 1 16(TGATAA,32.0835)   
Seq20 0    
Seq21 1 12(CTGTAT,21.5783)   
Seq22 1 0(CTGTAT,21.5783)   
Seq23 1 23(CTATCT,90.7790)   
Seq24 2 4(TTGTCT,60.7395) 26(CTATCC,21.3556)  
Seq25 1 17(TTATCT,145.9129)   
Seq26 1 15(CTATCG,21.2368)   
Seq27 3 19(TTATCA,163.6602) 25(CTTTCT,13.3635) 32(TTATCA,163.6602) 
Seq28 1 15(CTATCT,90.7790)   
Seq29 2 2(UUGUCA,68.1272) 15(TGATAA,32.0835)  

 



 

 

Chapter 8 

BIOINFORMATICS AND VERTEBRATE 
MITOCHONDRIA 
A glimse into the three essential biological processes 

 
 

1. INTRODUCTION 

This chapter has two main purposes. First, I believe that we again need to 
add some variation to the monotonous presentation of computational 
algorithms. The relationship between bioinformatics and the cell is 
analogous to that between hair and skin. Without the cell serving as the skin 
the hair of bioinformatics would have no place to grow. So here we take a 
close look at the skin, in the same spirit as in chapter 4. If you happen to be 
the colleague who told me that Chapter 4 was a tumor on an otherwise 
beautiful nymph, I am afraid that another tumor is coming your way. 

The second purpose of the chapter is to demonstrate the utility of a well 
annotated genome. We have learned much about how to assemble a genome 
and how to use gene and motif finding methods to annotate the genome. It is 
natural for one to ask why we should spend so much effort to obtain an 
annotated genome. This chapter provides a partial answer, i.e., well 
annotated genomes can be used to test biologically far more interesting 
hypotheses than those we encountered in Chapter 4, where our analysis is 
limited to genomic GC% without taking advantage of sequence annotation.  

I have mentioned before that all living systems share three essential 
biological processes: genome replication, transcription and translation. How 
cells function depends on how these three processes are regulated. In this 
chapter we take a quick look at these three processes, not in the context of a 
living cell, but in a much simpler system, the vertebrate mitochondrion.  
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1.1 Mitochondria and mitochondrial genomes 

Since the proposal of the endosymbiotic origin of eukaryotic 
mitochondria (Margulis, 1970), it has now been generally accepted that 
mitochondria of eukaryotes evolved from aerobic bacteria living within their 
host cell, with the most likely ancestor being a member in the Rickettsia 
lineage. There are three lines of evidence supporting this endosymbiotic 
hypothesis. First, genomic analysis of the eukaryotic intracellular parasite, 
Rickettsia prowazekii, has reveal that the functional profiles of R. prowazekii 
genes are similar to those of mitochondrial genes and phylogenetic 
reconstruction indicates that R. prowazekii is more closely related to 
mitochondria than is any other microbe studied (Andersson et al., 1998). 
Second, genomes from various Rickettsia species have exhibited various 
degrees of degradation and reduction (Andersson and Andersson, 1999), 
suggesting that mitochondria represent extremely reduced forms from 
certain ancestral Rickettsia lineage. Third, mitochondrial genomes from 
primitive protozoans such as Reclinomonas americana containing genes 
specifying a multi-subunit eubacterial-type RNA polymerase.  

There are several eukaryotic lineages that do not have mitocondria. 
Among these amitochondriate lineages, the retortamonads is most likely to 
represent the ancestral amitochondriate state (Lang et al., 1997), whereas 
others such as Encephalitozoon cuniculi may result from a secondary loss of 
the organelle (Katinka et al., 2001). Thus, the mitochondrial eukaryotic 
lineage that is the closest relative of the retortamonads likely represents the 
oldest lineage where ancestral mitochondria originated.  

The closest relative to the amitochondriate retortamonads is the Jakobid 
assemblage represented by Reclinomonas americana, a heterotrophic 
flagellate, with a mitochondrial genome much larger and more complicated 
than the one found in vertebrate mitochondrion (Lang et al., 1997). The R. 
americana mtDNA is of 69034 bases long, contains 97 genes with 4 genes 
specifying a multi-subunit eubacterial-type RNA polymerase. In contrast, 
vertebrate mitochondrial genomes are about 16500 bases long, and contain 
only 13 protein-coding genes, 2 rRNA genes, and about 22 tRNA genes. 

It is quite obvious that genomes evolve over time and can experience 
dramatic changes. From an evolutionary point of view, there are only two 
major sculptors of nature, mutation and selection. Of course there are other 
factors contributing to evolutionary changes but we will limit ourselves to 
only mutation and selection. Anyone who, in their young days, has ever 
involved in a love triangle would know how complex and unmanageable our 
life could become when we go from two to three. 

Here we will learn a few important observations on vertebrate 
mitochondrial replication and illustrate how these two factors interact with 
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the three essential biological processes, i.e., DNA replication, transcription 
and translation. What is particularly relevant to bioinformaticians is that such 
interactions will generate signals that can be detected, characterized and 
studied. 

1.2 DNA-Replication and Strand-biased mutation 
spectrum 

Vertebrate mitochondrial genome has two strands of different buoyant 
densities and consequently named the H-strand and the L-strand. The H-
strand is the sense strand for one protein-coding gene (ND6) and 8 tRNA 
genes and the L-strand is the sense strand for 12 protein-coding genes, 2 
rRNA genes and 14 tRNA genes. The two strands have different nucleotide 
frequencies, with the H-strand rich in G and T and the L-strand rich in A and 
C (Jermiin et al., 1995; Perna and Kocher, 1995). This asymmetrical 
distribution of nucleotides has been explained as follows (Reyes et al., 1998; 
Tanaka and Ozawa, 1994) based on the strand-displacement model of 
mitochondrial DNA (mtDNA) replication (Bogenhagen and Clayton, 2003; 
Clayton, 1982, 2000; Shadel and Clayton, 1997). 

During mtDNA replication (Figure 8-1), the L-strand is first used as a 
template to replicate the daughter H-strand, while the parental H-strand was 
left single-stranded for an extended period because the complete replication 
of vertebrate mtDNA takes nearly two hours (Clayton, 1982, 2000; Shadel 
and Clayton, 1997).  

Parental H

Parental L

Daughter H

OH

OL
Daughter L

 

Figure 8-1. The parental H-strand is left single-stranded for an extended period of time during 
mtDNA duplication  
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Mitochondrial DNA is prone to damage from free oxygen radicals that 
occur during the production of ATP through the electron transport chain. 
Spontaneous deamination (Figure 8-2) of both A and C (Lindahl, 1993; 
Sancar and Sancar, 1988) occurs frequently in human mitochondrial DNA 
(Tanaka and Ozawa, 1994). Deamination of A leads to hypoxanthine that 
forms stronger base pair with C than with T, generating an A/T→G/C 
mutation. Deamination of C leads to U, generating C/G→U/A mutations. 
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Figure 8-2. Spontaneous deamination of nucleotides. 

Among these two types of spontaneous deamination, the C→U mutation 
occurs more frequently than the A→G mutation (Lindahl, 1993). In 
particular, the C→U mutation mediated by the spontaneous deamination 
occurs in single-stranded DNA more than 100 times as frequently as double-
stranded DNA (Frederico et al., 1990). This implies that nucleotide C on the 
H strand, which is left single-straded for hours, is prone to mutation to U. 
Note that these C→U mutants will immediately be used as a template to 
replicate the daughter L-strand, leading to a G→A mutation in the L-strand 
after one round of DNA duplication. Therefore, the H-strand, left single-
stranded for an extended period during DNA replication, tend to accumulate 
A→G and C→U mutations and become rich in G and T while the L-strand 
will become rich in A and C. 

Table 8-1 lists nucleotide frequency distributions among human 
mitochondrial genomes. Two contrasts can be made, the first between the 14 
tRNA genes collinear with the L-strand and the eight tRNA genes collinear 
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with the H-strand, and the second between the 12 protein-coding genes 
collinear with the L-strand and the ND6 gene collinear with the H-strand. 
Those genes, be it tRNA-coding or protein-coding, collinear with the L-
strand are significantly more AC-rich than those collinear with the H-strand 
(Table 8-1). The two rRNA genes are collinear with the L-strand and their 
AC-richness is similar to tRNA genes collinear with the L-strand. This 
pattern is similar for all vertebrate mitochondrial genomes. 

 

Table 8-1. Nucleotide frequency distribution among human mitochondrial genes. tRNAL and 
tRNAH are concatenated tRNA genes collinear with L-strand and H-strand, respectively. 
ND6 are collinear with the H-strand. 
SeqName L PA PC PG PT 
(RNA genes)     
ssu-rRNA 954 0.3281 0.2652 0.1918 0.2149 
lsu-rRNA 1558 0.3504 0.2561 0.1739 0.2195 
tRNAL(1) 1025 0.3571 0.1990 0.1522 0.2917 
tRNAH(2) 552 0.2409 0.1431 0.2862 0.3297 
(Protein-coding genes)     
ND1 957 0.2853 0.3595 0.117 0.2382 
ND2 1044 0.3123 0.3343 0.0967 0.2567 
COX1 1542 0.2717 0.2996 0.1621 0.2665 
COX2 684 0.2865 0.3129 0.1491 0.2515 
ATP8 207 0.3865 0.3333 0.0628 0.2174 
ATP6 681 0.2996 0.3377 0.1072 0.2555 
COX3 781 0.2676 0.3188 0.1498 0.2638 
ND3 346 0.2919 0.2948 0.1098 0.3035 
ND4L 297 0.2828 0.3098 0.1212 0.2862 
ND4 1378 0.3019 0.3454 0.0994 0.2533 
ND5 1812 0.3035 0.3427 0.1065 0.2472 
CYTB 1135 0.2881 0.3419 0.1172 0.2529 
ND6 525 0.1943 0.0724 0.3581 0.3752 
(1) pooled tRNA genes collinear with the L-strand (n = 14). 
(2) pooled tRNA genes collinear with the H-strand (n = 8). 

1.3 The effect of strand-biased mutation on codon usage 

When transitional mutations (i.e., C↔U and G↔A) happen at the first or 
the second codon positions, they are mostly nonsynonymous. Such 
nonsynonymous mutations are typically purged off by purifying selection. 
However, if such mutations happen at the third codon position, then they are 
synonymous and tend to escape purifying selection and accumulate under 
the biased mutation pressure. Given the AC-biased mutation on the L-strand 
and GT-biased mutation on the H-strand, we may make the following 
predictions: 
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(1) Most codons in the 12 CDS sequences (that are collinear with the L-
strand) end with A or C. Specifically, we should expect NNY codon families 
to be dominated by C-ending codons, NNR codon families dominated by A-
ending codons, and NNN codons dominated by A-ending and C-ending 
codons. 

(2) The codon bias in the ND6 gene on the opposite strand should be the 
opposite, and  

(3) The 8 tRNA sequences collinear with the H-strand should be richer in 
G and T than the 14 tRNA sequences collinear with the L-strand.  

These expectations have been confirmed by research on both eubacterial 
genomes (Lobry, 1996; Lobry and Sueoka, 2002; McInerney, 1998) and 
vertebrate mitochondrial genomes (Xia, 2005c). While many vertebrate 
mitochondrial DNAs (mtDNAs) are available, I will present data from only 
two teleost fish, Erpetoichthys calabaricus (GenBank accession: 
NC_005251) and Masturus lanceolatus (NC_005837) and two mammalian 
species, Mus musculus (NC_005089) and Bos taurus (NC_001567). There is 
no particular reason for choosing these species except for an effort to capture 
the rather limited diversity of vertebrate mitochondrial genomes. 

The codon usage of the 12 CDS sequences collinear with the L-strand is 
consistent from this mutation bias, with the third codon position of the most 
frequent codon in each synonymous codon family (refereed to simply as 
codon family hereafter) being either A or C. In particular, NNY codon 
families are dominated by the C-ending codons, and NNR and NNN codon 
families are dominated by the A-ending codons (Table 8-2). While I present 
only data from the cow mtDNA, other vertebrate mtDNAs exhibit similar 
patterns. The remarkable consistency in this pattern from teleost fish to 
mammals demonstrates the power of the AC-biased mutation on the L-
strand.  

The observation that NNN codon families are dominated by NNA 
codons, instead by both NNA and NNC codons, might have adaptive 
significance (Xia, 1996) based on the observation that cellular concentration 
of ATP is much higher than that of the other three rNTPs (Colby and Edlin, 
1970). For example, in the exponentially proliferating chick embryo 
fibroblasts in culture, the concentration of ATP, CTP, GTP and UTP, in the 
unit of (moles ×10-12 per 106 cells), is 1890, 53, 190, and 130, respectively, 
in 2-hour culture, and 2390, 73, 220, and 180, respectively, in 12-hour 
culture. The transcription hypothesis of codon usage (Xia, 1996) states that, 
with the high availability of A and relatively low availability of the other 
three rNTPs, the transcription efficiency can be increased by maximizing the 
use of A in the third codon position of protein-coding genes. However, I now 
believe that an alternative hypothesis, invoking differential mutations 
mediated by different nucleotide pools (Bebenek et al., 1992 and references 
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cited therein), may be a better explanation for the slightly more frequent A-
ending codons than C-ending codons. Not only do the four ribonucleotides 
differ greatly in concentration, but the deoxyribonucleotides also differ 
greatly in concentration, with dATP being the most abundant in 
mitochondria. The abundance of dATP is expected to increase A-biased 
mutation rate during DNA replication. This would explain why NNA codons 
tend to be more frequent than NNC codons. 

 

Table 8-2. Codon usage in the cow mtDNA. Two-fold C- or U-ending codons (top) are 
dominated by C-ending codons. Two-fold A- or G-ending codons (middle) are dominated by 
A-ending codons. Four-fold degenerate codons (bottom) are dominated by A-ending codons, 
followed by C-ending codons. Other vertebrate mitochondrial genomes exhibit similar 
patterns. 
Codon AA Freq RSCU   Codon AA Freq RSCU 
UGC C 16 1.524  AUC I 160 1.029 
UGU C 5 0.476  AUU I 151 0.971 
GAC D 46 1.438  AAC N 102 1.291 
GAU D 18 0.563  AAU N 56 0.709 
UUC F 130 1.156  AGC S 42 0.955 
UUU F 95 0.844  AGU S 9 0.205 
CAC H 63 1.355  UAC Y 72 1.125 
CAU H 30 0.645  UAU Y 56 0.875 
AGA * 1 0.444  UUA L 100 1.038 
AGG * 0 0   UUG L 10 0.104 
UAA * 7 3.111  AUA M 214 1.705 
UAG * 1 0.444   AUG M 37 0.295 
GAA E 73 1.698  CAA Q 79 1.837 
GAG E 13 0.302   CAG Q 7 0.163 
AAA K 88 1.814  UGA W 91 1.82 
AAG K 9 0.186   UGG W 9 0.18 
GCA A 102 1.693  CGA R 42 2.71 
GCC A 90 1.494  CGC R 11 0.71 
GCG A 1 0.017  CGG R 3 0.194 
GCU A 48 0.797  CGU R 6 0.387 
GGA G 93 1.927  UCA S 98 2.227 
GGC G 60 1.244  UCC S 64 1.455 
GGG G 19 0.394  UCG S 4 0.091 
GGU G 21 0.435  UCU S 47 1.068 
CUA L 283 2.938  ACA T 150 2 
CUC L 95 0.986  ACC T 95 1.267 
CUG L 29 0.301  ACG T 14 0.187 
CUU L 61 0.633  ACU T 41 0.547 
CCA P 85 1.789  GUA V 82 1.964 
CCC P 63 1.326  GUC V 46 1.102 
CCG P 3 0.063  GUG V 9 0.216 
CCU P 39 0.821  GUU V 30 0.719 
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In contrast to the L-strand with mutations favoring A and C, the H-strand 
is expected to accumulate mutations in the opposite direction, i.e., favoring 
G and T. Consequently, we should predict that the third codon position of 
the ND6 gene, which is the only one of the 13 protein-coding sequences 
collinear with the H-strand in vertebrate mtDNA, should be dominated by 
either G or U. This prediction is also borne out by the empirical evidence 
(Table 8-3). In particular, NNY codon families are dominated by the U-
ending codons, and NNR and NNN codon families are dominated by the G-
ending codons. 

 

Table 8-3. Codon frequencies for the two teleost species combined (Teleost) and the two 
mammalian species combined (Mammal) for the ND6 gene collinear with the H-strand in the 
mitochondrial genome. The most frequently used codons are bolded for large N. 

Codon AA Teleost Mammal  Codon AA Teleost 
Mamm
al 

AGA * 1 0  AUA M 12 8 
AGG * 0 0  AUG M 10 14 
UAA * 0 2  AAC N 1 1 
UAG * 1 0  AAU N 3 8 
GCA A 9 3  CCA P 2 1 
GCC A 2 1  CCC P 2 0 
GCG A 5 3  CCG P 2 0 
GCU A 16 8  CCU P 3 5 
UGC C 0 0  CAA Q 0 0 
UGU C 4 5  CAG Q 1 1 
GAC D 1 0  CGA R 1 1 
GAU D 3 10  CGC R 0 0 
GAA E 2 8  CGG R 6 0 
GAG E 10 9  CGU R 3 1 
UUC F 4 3  AGC S 1 1 
UUU F 19 23  AGU S 4 6 
GGA G 9 12  UCA S 2 3 
GGC G 3 2  UCC S 0 1 
GGG G 18 21  UCG S 2 2 
GGU G 14 17  UCU S 16 6 
CAC H 1 0  ACA T 0 3 
CAU H 0 0  ACC T 0 1 
AUC I 0 1  ACG T 3 2 
AUU I 12 27  ACU T 4 8 
AAA K 0 2  GUA V 6 10 
AAG K 0 3  GUC V 2 2 
CUA L 4 2  GUG V 17 9 
CUC L 0 0  GUU V 24 22 
CUG L 4 0  UGA W 4 4 
CUU L 8 4  UGG W 4 5 
UUA L 26 25  UAC Y 4 2 
UUG L 14 14  UAU Y 13 17 
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The third codon position pairs with the first position (the wobble site) of 

the tRNA anticodon. Given what we know of the strand-biased mutation and 
the biased codon usage, can we predict what nucleotide should occupy the 
tRNA wobble site? There are three alternative hypotheses proposed (Xia, 
2005c), one termed mutation hypothesis, the second codon-anticodon 
adaptation hypothesis and the third the wobble-versatility hypothesis. 

2. THREE HYPOTHESES ON TRNA ANTICODON 

It might help to gain a bit familiarity with the generic structure of the 
tRNA anticodon loop in order to better appreciate the three alternative 
hypotheses that will be detailed below. The anticodon in almost all tRNA 
sequences from all species share the regular feature of being flanked by two 
nucleotides on either side to form a loop that is held together by a stem 
(Figure 8-3). For example, the anticodon loop (AC loop) of tRNAAla in M. 
musculus is 24AUUGAUUUGCAUUCAAU40 where the starting and 
ending numbers indicate the position of the AC loop in the tRNA sequence 
(numbered from 1), with the anticodon (5’-UGC-3’) flanked by two 
nucleotides on either side (bolded) to form a loop that is held together by a 
stem made of the first and the last four nucleotides. Such a regular AC loop 
and its anticodon can be easily identified by dynamic programming.  

 

Figure 8-3. The stem-loop structure of the anticodon loop of tRNAGly. The anticodon 3’-
AGG-5’ is often written as GGA. 

A few tRNA sequences have an anticodon flanked by three nucleotides, 
e.g., tRNAVal in Erpetoichthys calabaricus and tRNASer1 in the blue whale, 
Balaenoptera musculus. Some tRNA sequences have a suspicious AC loop. 
For example, the AC loop of tRNATrp is 26GAGCCUUCAAAGCCC42 with 
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a stem that has a mismatch. For such tRNA sequences with an irregular AC 
loop, one may identify AC loop by aligning the tRNA sequences against 
other isoaccepting tRNA sequences with a regular AC loop.  

The two groups of Leu codons (CUN and UUR) are generally treated as 
two separate synonymous codon families because they have different 
tRNAs. The same applies to the two groups of Ser codons (AGY and UCN).  

2.1 The mutation hypothesis 

The strand-specific mutation bias is visible in RNA sequences (Table 8-
1), with the 8 tRNA sequences (pooled) collinear with the H-strand being 
particularly rich in T and the two rRNA genes and the 14 tRNA sequences 
(pooled) collinear with the L-strand being particularly rich in A. This pattern 
is consistent from the teleost fish to mammalian species. 

Given the strand-specific mutation bias in vertebrate mitochondrial 
genomes, what can we predict about the anticodon evolution of the tRNA 
sequences? In vertebrate mitochondrial genome, each tRNA anticodon 
essentially has to wobble in order to translate two or four synonymous 
codons. This suggests that the wobble position may not be strongly 
constrained and may be shaped by the strand-specific mutation bias. If the 
strand-specific mutation pressure is the dominant force in shaping anticodon 
evolution, then the 14 tRNA sequences collinear with the L-strand may have 
their wobble positions occupied by A, and the 8 tRNA sequences collinear 
with the H-strand may have their wobble positions occupied by U. This is 
the mutation hypothesis in a nutshell. 

2.2 The codon-anticodon adaptation hypothesis 

In contrast to the mutation hypothesis, the codon-anticodon adaptation is 
a selectionist hypothesis. Since the discovery of the correlation between 
codon usage and tRNA abundance in Escherichia coli (Gouy and Gautier, 
1982; Ikemura, 1981) and Saccharomyces cerevisiae (Bennetzen and Hall, 
1982), much progress has been made in understanding codon usage and 
codon-anticodon adaptation (Bulmer, 1987, 1991) in the context of 
maximizing transcription and translation rates (Akashi, 2003; Eyre-Walker, 
1996; Xia, 1996, 1998b). In short, suppose two synonymous codons i and j, 
with codon i having many cognate tRNA to translate it and codon j having 
few or no cognate tRNA to translate it. In order to maximize translation 
efficiency in highly expressed protein-coding genes, we predict that natural 
selection should favor the use of codon i against codon j in highly expressed 
genes, leading to a strong association between frequently used codons and 
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the abundance of their cognate tRNA. This prediction has been empirically 
substantiated numerous number of times. 

Almost all publications consider mutation as disruptive to the evolution 
and maintenance of codon usage bias and the associated codon-anticodon 
adaptation (Akashi, 1995, 1997; Berg, 1996; Berg and Martelius, 1995; Xia, 
1996). In other words, while selection is supposed to be the main force 
driving and maintaining the evolution of synonymous codons towards 
maximizing the codon that matches the anticodon of the most abundant 
tRNA, mutation is thought to reduce codon usage bias and disrupt codon-
anticodon adaptation and is invoked whenever one fails to see strong codon 
usage bias or codon-anticodon adaptation. The relative abundance of 
different tRNA species is often, albeit implicitly, taken as prefixed, and this 
tRNA bias then drives codon usage bias. In spite of studies on the effect of 
mutation spectrum on GC content and amino acid usage (Lobry, 2004; 
Sueoka, 1961), there has been no empirical documentation of mutation 
pressure that maintains codon usage bias, and neither is there any report 
demonstrating that codon usage bias drives tRNA bias. 

Given the codon usage bias in 12 of the 13 CDS sequences maintained by 
the strand-specific mutation pressure, it is easy to see from Table 8-2 that the 
overall codon usage bias at the genomic level is (1) C-ending codons most 
frequent in NNY codon families and (2) A-ending codons most frequent in 
NNR and NNN codon families. Such a codon usage may drive the wobble 
sites of the anticodon towards G for tRNA translating NNY codons or U for 
tRNA translating NNR or NNN codons, regardless of which strand the 
tRNA gene is on. Such anticodon evolution would increase the translation 
efficiency for the 12 protein-coding genes collinear with the L-strand but 
reduce the translation efficiency for the lone ND6 gene collinear with the H-
strand. If the selection for translation efficiency is strong, then the 12 
protein-coding genes would “out-vote” the lone ND6 gene.  

2.3 The wobble versatility hypothesis 

The wobble versatility hypothesis has been implicitly proposed before 
(e.g., Agris, 2004; Tong and Wong, 2004). Given that each synonymous 
codon family is translated by a single tRNA species in vertebrate 
mitochondria, the versatility of this single tRNA in translating two or four 
synonymous codons are important for the translation machinery. According 
to the conventional base-pairing rule first proposed for  fungal mitochondria 
(Heckman et al., 1980; Martin et al., 1990), two-fold degenerate codons 
ending with C or U are translated by tRNA with a wobble G at its anticodon 
wobble site because G can pair not only with  C, but also with U (Figure 8-
4), two-fold degenerate codons ending with A or G are translated by tRNA 
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with a wobble U at its anticodon wobble site because U can pair with both A 
and G, and four-fold degenerate codons are translated by tRNA with a 
wobble U at its anticodon wobble site. The versatility of U at the anticodon 
wobble site in pairing with other nucleotides has subsequently been 
substantiated in a number of species (Andachi et al., 1989; Barrell et al., 
1980; Inagaki et al., 1995; Sibler et al., 1986; Yokobori et al., 2001; 
Yokoyama and Nishimura, 1995).  
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Figure 8-4. Canonical base-paring between nucleotides. The energy taken to break a G/U pair 
is roughly half of an A/T pair. 

 
According to the wobble versatility hypothesis, the use of U and G at the 

wobble site of the tRNA anticodon can be predicted with no reference to 
codon usage, although codon-anticodon adaptation can then evolve as 
secondary adaptation given that wobble U and G are strictly maintained by 
selection for maximizing wobble versatility. 

In summary, the mutation hypothesis predicts that the wobble site should 
most likely be A for tRNA genes collinear with the L-strand and T for tRNA 
collinear with the H-strand. The codon-anticodon adaptation hypothesis 
predicts that the wobble site should be G for NNY codon families to match 
the most abundant C-ending codon, and U for NNR and NNN codon 
families to match the most abundant A-ending codon. The wobble versatility 
hypothesis happens to have exactly the same prediction as the codon-
anticodon adaptation hypothesis. It predicts that the wobble site should be G 
for NNY codon families because G can pair with both C and U, U for NNR 
codon families because U can pair with both A and G, and U for NNN 
families because U is the most versatile in wobbling. When two different 
hypotheses generate the same predictions, it becomes difficult to evaluate 
their respective validity. We will first evaluate the mutation hypothesis 
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against the two selectionist hypotheses, and then make an attempt to evaluate 
the two selectionist hypotheses. 

3. EMPIRICAL EVALUATION OF THE THREE 
ALTERNATIVE HYPOTHESES 

3.1 Evaluation of the mutation hypothesis against the 
two selectionist hypotheses 

Because the three hypotheses have explicit predictions of the wobble 
nucleotide in tRNA anticodons, a direct evaluation of the hypotheses is to 
compile the nucleotide at the tRNA anticodon wobble site to see which 
hypotheses provide the correct prediction. Empirical data (Table 8-4) 
strongly support the two selectionist hypotheses.  

Table 8-4. Anticodon (AC) of the 22 tRNA genes from the four species and their associated 
synonymous codon families (SCF). “C” stands for “complementary strand”, i.e., not on the 
same strand as the 12 protein-coding genes. Note that the first nucleotide of the anticodon 
(AC) is the wobble site. 
tRNA Strand SCF AC 
Ala C GCN UGC 
Arg  CGN UCG 
Gly  GGN UCC 
Leu  CUN UAG 
Pro C CCN UGG 
Ser C UCN UGA 
Thr  CAN UGU(1) 
Val  GUN UAC 
Ser  AGY GCU 
His  CAY GUG 
Ile  AUY GAU 
Asn C AAY GUU 
Asp  GAY GUC 
Cys C UGY GCA 
Phe  UUY GAA 
Tyr C UAY GUA 
Gln C CAR UUG 
Glu C GAR UUC 
Leu  UUR UAA 
Lys  AAR UUU 
Met  AUR CAU 
Trp  UGR UCA 
(1) GGU in Mus musculus, which might be due to sequencing error because the anticodon 
loop is irregular. 
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There are two points worth highlighting in Table 8-4. First, for each 
tRNA, the anticodon is the same in all vertebrates from teleost fish to 
mammals. This implies that the selection at the wobble site must be very 
strong. Second, the wobble site is always G for tRNAs recognizing NNY 
codon families, and always U for tRNAs recognizing NNR and NNN codon 
families (with only one exception, involving tRNAMet, which leads to 
another very interesting story told later). This is consistent regardless of 
which strand the tRNA sequence is on.  

While the prediction of the selectionist hypotheses are consistent with the 
result, the prediction of the mutation hypothesis, that the wobble site should 
depend on which strand the tRNA gene is located, is clearly not supported 
(Table 8-4). Thus the mutation hypothesis can be readily rejected. 

 

3.2 Evaluating the two selectionist hypotheses 

The vertebrate mitochondrial data are unable to distinguish between the 
wobble versatility hypothesis and the codon-anticodon adaptation hypothesis 
that I have mentioned before because both hypotheses have exactly the same 
predictions for the anticodon wobble site. This illustrates a case in which the 
same observation can have two different interpretations both being entirely 
consistent with the observation. We see this often in real life. A man running 
after another may be interpreted as one in full pursuit of the other or as both 
trying to catch a departing train. We need more information to discriminate 
between these two interpretations. What information do we need to 
discriminate between the codon-anticodon adaptation hypothesis and the 
wobble versatility hypothesis? 

The codon usage of the four-fold degenerate arginine codons (CGN) in 
the mitochondrial genome of four species: Caenorhabditis elegans 
(nematode), Marchantia polymorpha (plant), Pichia canadensis (fungi), and 
Saccharomyces cerevisiae (fungi) sheds light on resolving these two 
hypotheses (Table 8-5). In these four mitochondrial genomes, the four 
synonymous CGN codons, with CGU being the most dominant (Table 8-5), 
are translated by a single tRNA just as in vertebrate mitochondria. The 
wobble versatility hypothesis would have predicted a “versatile” U in the 
tRNA anticodon wobble site for these four-fold degenerate codons. 
However, this is not true because the wobble anticodon site is A instead of U 
in all four mitochondrial genomes. On the other hand, given that the CGU 
codon is the most dominant of the four synonymous arginine codons in all 
four mitochondrial genomes, the hypothesis of anticodon adaptation would 
predict an A at the anticodon wobble site, which is true for all four species.  

 



162 Chapter 8
 
Table 8-5. Codon usage of the four-fold degenerate arginine codons in four species. 
Species Accession CGA CGC CGG CGU 
C. elegans NC_001328 1 0 1 29 
M. polymorpha NC_001660 260 165 118 286 
P. canadensis NC_001762 0 1 0 19 
S. cerevisiae NC_001224 0 2 1 18 

 
It is important to highlight the fact that none of the species in Table 8-5 is 

a vertebrate. Even if my interpretation of the result in Table 8-5 is correct, it 
is not necessarily generalizable to vertebrates. Furthermore, the limited result 
does not conclusively reject the wobble versatility hypothesis.  

Scientists have a tendency to hold on to their own petty hypothesis and to 
discredit the hypothesis of others. However, it often happens that, when 
people of the two different camps learn to appreciate each other, the two 
seemingly incompatible hypotheses suddenly begin to merge into a single 
hypothesis. The codon-anticodon adaptation hypothesis and the wobble 
versatility hypothesis serve as a good example of two different hypotheses 
integrating into each other to form a more general hypothesis outlined in the 
next section. 

4. INTEGRATING THE CODON-ANTICODON 
ADAPTATION HYPOTHESIS (CAAH) AND THE 
WOBBLE VERSATILITY HYPOTHESIS (WVH) 

Here we develop a general hypothesis of codon-anticodon adaptation. 
Let’s be more explicit on the cost of wobble translation. Define  

 
CU-G: cost of wobble pairing between U and G,  
CO: cost of wobble pairing other than the two above, 
 
Let’s also define the cost of perfect Watson-Crick paring as 0. Given that 

U is more versatile at wobbling than other nucleotides, we expect CO > CU-G 
> 0. The general hypothesis assumes that natural selection will drive the 
codon-anticodon coevolution in such a way as to minimize the total wobble 
cost (designated Cw) in translating a protein molecule. Below we derive 
predictions from the general hypothesis (refereed to as GH hereafter) and 
compare them with those from the codon-anticodon adaptation hypothesis 
(referred to as CAAH hereafter) and the wobble versatility hypothesis 
(referred to as WVH hereafter). 
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4.1 Four-fold NNN codons 

Consider first a single four-fold codon family. Designate the number of 
codons ending with A, C, G, and U as NA, NC, NG, and NU, respectively. The 
wobble costs involving an A, C, G or U at the wobble site are, respectively, 

0
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( )
( )
( )

wA A O C O G O U

O A C G

wC O A C U
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C C N N N C
C C N N N C

−

−
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 (8.1) 

Eq. (8.1) provides a means of estimating the relative magnitude of CO, 
CU-G. For example, we may replace NA, NC, NG and NU by M. polymorpha 
data in Table 8-5 to get 
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wA O

wC O

wG O U G

wU O U G

C C
C C
C C C
C C C

−

−

= + +

= + +

= + +

= + +
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We can see immediately that CwC > CwA because 286 > 118. Because we 
know that nature has chosen nucleotide A at the anticodon wobble site of the 
tRNA, CwA should also be smaller than CwG and CwU. This gives us two 
inequalities. From CwA < CwG, we have 
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From CwA < CwU, we have 

(260 165 118) (165 286) 118
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 (8.4) 
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 Eq. (8.4) suggests that the cost associated with wobble pairing may be 

quite small, roughly the same as pairing between U and G. Given this, it 
becomes easy to understand that the tRNA for translating the CGN codon 
family (Table 8-5) should have nucleotide A at its wobble site in C. elegans, 
P. Canadensis and S. cerevisiae because CwA is by far the smallest.  

4.2 Two-fold NNY codon families 

Designate C-ending and U-ending codons by NC and NU, respectively, 
and the total cost of wobble pairing as CwG when the wobble site of the 
anticodon is G and as CwA when the wobble site is A (we do not need to 
consider the case when the wobble site is U or C because such cases have 
never been observed and because neither wobble versatility hypothesis nor 
codon-anticodon adaptation hypothesis would predict a wobble site that is C 
or U in NNY codon families). We can now express CwG and CwA as 

0
0

wG C U U G

wA C O U

C N N C
C N C N

−= × +

= + ×
 (8.5) 

The multiplication by 0 in Eq. (8.5) arises from our definition that perfect 
Watson-Crick pairing has zero wobble cost. Now we consider three special 
cases. 

First, if NC > NU, then CwG < CwA, and GH predicts that the anticodon 
wobble site should be occupied by a G. This prediction is shared by both 
CAAH and WVH. 

Second, if NC = NU = N/2, then Eq. (8.5) is reduced to 

2

2

wG U U G U G

wA C O O

NC N C C

NC N C C

− −= =

= =
 (8.6) 

Because CU-G < CO, we have CwG < CwA, and GH predicts that the 
anticodon wobble site should be a G. This is the same prediction as WVH. In 
this case, CAAH has no prediction. 

Third, when NC << NT, especially in the extreme case when NC = 0 and 
NT = N, then Eq. (8.5) is reduced to 
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C NC
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−=
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Because CwG > CwA, GH predicts an A at the anticodon wobble site. In 
this case, WVH would still predict a G at the wobble site because it ignores 
the codon frequencies, but CAAH would predict an A at the wobble site, 
which is the same prediction as GH. Only in this particular case when NC << 
NT can CAAH and WVH be clearly differentiated. 

4.3 Two-fold NNR codon families 

Following the same reasoning above, we can come to the following 
conclusions. When NA > NG, then GH, CAAH and WVH all have the same 
prediction that the anticodon wobble site should be a U. When NA = NG, then 
CwU < CwC, and GH predicts a U at the anticodon wobble site, the same 
prediction as WVH.. In this case, CAAH has no specific prediction. In the 
extreme case when NA = 0 and NG = N, then 

0
wU U G

wC

C NC
C

−=

=
 (8.8) 

Because CwC < CwU, GH predicts a C at the anticodon wobble site. This is 
the same prediction as that of CAAH but different from that of WVH which 
predicts a U at the anticodon wobble site. Only in this particular case can 
CAAH and WVH be clearly differentiated.  

 

5. CONFLICT BETWEEN TRANSLATION 
INITIATION AND ELONGATION 

By now we have resolved almost all controversies except for one little 
puzzle. We have previously noted an exception in Table 8-4. All tRNA 
translating two-fold codon families ending with A or G has a nucleotide U at 
its anticodon wobble site except for tRNAMet. The tRNAMet anticodon is 3’-
UAC-5’ (or CAU for short), with the wobble site being C instead of U, and 
forms a Watson-Crick match with the AUG codon instead of the AUA 
codon, in spite of the fact that the latter is used much more frequent than the 
former. The ability of the CAU anticodon to pair with the AUA codon is 
achieved by modifying the C in the anticodon CAU to 5-formylcytidine 
(Matsuyama et al., 1998; Moriya et al., 1994). A similar case involves the 
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methylation of guanine in starfish tRNASer

 to translate all four AGN codons 
(Matsuyama et al., 1998). 

The use of the CAU anticodon instead of a UAU anticodon in vertebrate 
mitochondrial tRNAMet is unexpected from two existing hypotheses of 
anticodon usage, i.e., CAAH and WVH, mentioned before. CAAH predicts 
that the anticodon should match the most abundant codon, i.e., AUA instead 
of AUG. So the anticodon should be UAU instead of the observed CAU. 
WVH (Agris, 2004; Tong and Wong, 2004; Xia, 2005c) states that the 
anticodon should maximize its wobble versatility in paring with synonymous 
codons. Because U can pair with both A and G, this hypothesis also predicts 
an UAU anticodon to maximize its paring versatility with the AUA and 
AUG codons. The fact that the observed tRNAMet anticodon is CAU instead 
of the predicted UAU is intriguing. After all, why not just use the UAU 
anticodon that can pair with both AUA and AUG codons instead of having a 
CAU anticodon and then chemically modifying it to pair with AUA codons? 

This unexpected tRNAMet anticodon has been attributed to a compromise 
between translation initiation and elongation (Xia, 2005c) as follows. AUG 
is not only the most frequently used initiation codon, but also the most 
efficient initiation codon in Escherichia coli (Romero and Garcia, 1991) and 
Saccharomyces cerevisiae (Nett et al., 2001). In E. coli, the most efficient 
non-AUG initiation codon is AUA and its rate of initiation is only 7.5% of 
AUG (Romero and Garcia, 1991). In yeast mitochondria, a mutation of the 
initiation AUG to AUA in the COX2 gene caused at least a five-fold 
decrease in translation (Mulero and Fox, 1994), and similar finding was also 
duplicated in another yeast mitochondrial gene COX3 (Folley and Fox, 
1991). Assuming the generality of these findings, an anticodon matching 
AUG will increase the initiation rate and would be favored by natural 
selection because translation initiation is often the limiting step in protein 
production (Bulmer, 1991; Liljenstrom and von Heijne, 1987). This presents 
a conflict between translation initiation and translation elongation. An AUG-
matching anticodon would increase translation initiation rate but decrease 
translation elongation rate because an overwhelming majority of methionine 
codons are AUA in vertebrate mitochondrial genomes. The fact that all 
known vertebrate tRNAMet genes feature an AUG-matching codon implies 
that nature has chosen to maximize the translation initiation rate (Xia, 
2005c). This hypothesis that invokes a conflict between translation initiation 
and translation elongation to explain the usage of the CAU anticodon in 
tRNAMet will be referred hereafter as the translation conflict hypothesis. 

Two consequences can be derived from the translation conflict 
hypothesis. First, we should expect a relative reduction of AUA usage 
because the AUG-matching anticodon imposes selection against the use of 
AUA codons as AUA would need to be wobble-translated by a chemically 
modified CAU anticodon. To fix ideas, let us focus only on AUR 
(methionine) and UUR (leucine) codon families. The reason for choosing 
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UUR instead of any other XYR codon families is because other XYR codon 
families do not have a middle U and the middle nucleotide in a codon is 
known to affect the nucleotide at the third codon position. 

For the 12 CDSs that are collinear with the AC-rich L-strand, the 
mutation favors A-ending codon (Reyes et al., 1998; Tanaka and Ozawa, 
1994; Xia, 2005c). For UUR codons, because the anticodon wobble site is U 
and form Watson-Crick base pair with A, we also expect UUA codon to be 
preferred against UUG codons. Thus, both mutation and the tRNA-mediated 
selection favor the use of UUA against UUG codons. However, for the 
methionine codons, the AUG-matching tRNAMet anticodon would favor the 
AUG codon against the AUA codon. Thus, the tRNA-mediated selection and 
the mutation bias are in opposite directions. If we define 

100  XUA
XUA

XUA XUG

NP
N N

=
+

 (8.9) 

for each of these two codon families, where NXUA and NXUG are the number 
of XUA and XUG codons, respectively, we should find PAUA to be smaller in 
the AUR codon family than PUUA in the UUR codon families. 

An argument against using Eq. (8.9) is that the result would be biased in 
favor of supporting the prediction of PAUA < PUUA because the initiation 
codon, which is AUG in most cases, was not excluded. A more convincing 
comparison should compute PAUA after excluding initiation codons entirely. 
This is what we are going to use. 

For the ND6 gene collinear with the GT-rich H-strand, the strand-biased 
mutation spectrum favors G-ending codons in the two XUR codon families. 
For the methionine codon family, the AUG-matching anticodon also favors 
the AUG codon against the AUA codon. So the AUA codon will be 
depressed by both the strand-biased mutation and the tRNA-imposed 
selection. The tRNA-imposed selection is absent against UUA codon in the 
UUR codon families because their respective tRNA anticodons all match the 
A-ending codons (Xia, 2005c). Thus, for the ND6 gene, we also expect PAUA 
to be smaller in the AUR codon family than PUUA in the UUR codon 
families. 

Many vertebrate mitochondrial genomes can be used to test the 
prediction that PUUA should be greater than PAUA. For ease of presentation, 
we will use only 30 vertebrate species covering a wide range of taxonomic 
diversity. These include six each from mammals, birds, reptiles (now a 
nearly obsolete taxonomic term), amphibians and fish. Results from these 
species, summarized in Table 8-6, substantiates the predictions based on the 
translation conflict hypothesis.  



168 Chapter 8
 
Table 8-6. Results from the 12 CDS sequences collinear with the L-strand and ND6 collinear 
with the H-strand from 30 representative vertebrate species. 
  12 CDS ND6 
Species Accession PUUA PAUA PUUA PAUA 
Homo sapien NC_001807 87.8 87.1 53.3 22.2 
Mus musculus NC_005089 94.2 93.4 65.2 40.0 
Bos Taurus NC_006853 90.1 87.8 62.5 40.0 
Canis familiaris NC_002008 85.3 85.5 43.8 50.0 
Equus caballus NC_001640 86.4 87.5 25.0 11.1 
Capra hircus NC_005044 94.4 88.5 68.8 66.7 
Gallus gallus NC_001323 94.9 88.2 31.6 25.0 
Struthio camelus NC_002785 89.2 87.9 27.3 0.0 
Coturnix chinensis NC_004575 95.7 88.0 28.6 0.0 
Anser albifrons NC_004539 92.2 82.9 41.7 0.0 
Gavia stellata NC_007007 88.0 91.9 7.1 33.3 
Alectura lathami NC_007227 83.1 80.4 61.1 25.0 
Alligator mississippiensis NC_001922 94.2 84.4 64.7 33.3 
Alligator sinensis NC_004448 78.2 76.1 45.5 37.5 
Chelonia mydas NC_000886 99.1 98.6 30.4 75.0 
Shinisaurus crocodilurus NC_005959 94.2 89.0 42.9 33.3 
Abronia graminea NC_005958 92.0 91.2 42.9 12.5 
Chrysemy picta NC_002073 92.7 94.5 50.0 33.3 
Ambystoma laterale NC_006330 95.0 91.5 91.3 71.4 
Aneides hardii NC_006338 92.6 85.4 45.0 77.8 
Xenopus laevis NC_001573 93.6 88.6 64.7 75.0 
Kaloula pulchra NC_006405 87.9 76.7 47.8 0.0 
Alytes obstetricans NC_006688 90.5 80.1 57.1 0.0 
Rana nigromaculata NC_002805 91.3 69.1 66.7 40.0 
Cyprinus carpio NC_001606 97.7 79.1 62.5 20.0 
Danio rerio NC_002333 89.6 78.9 57.1 50.0 
Salanx ariakensis NC_006918 73.9 46.9 77.8 0.0 
Carassius auratus NC_002079 93.9 75.5 60.0 40.0 
Anguilla rostrata NC_006547 89.1 83.2 57.9 66.7 
Auxis rochei NC_005313 82.8 38.8 83.3 12.5 

 
Table 8-6 shows that mean PUUA is significantly greater than mean PAUA 

in both the 12 CDSs collinear with the L-strand (90.32 versus 82.56, DF = 
29, T = 4.256, p = 0.0000, one-tailed test) and the ND6 gene (52.12 versus 
33.05, DF = 29, T = 3.762324119, p = 0.0004, one-tailed test). In short, the 
prediction that AUA codon usage is reduced is empirically supported by 
genes from both DNA strands. We may conclude that the first prediction, 
that AUA codon usage should be reduced given the CAU anticodon in 
tRNAMet, is generally supported by the empirical analysis. 

The observation of a relative deficiency of AUA codons can be 
interpreted in two ways. If methionine usage remains constant among 
vertebrate mitochondrial genomes, then a deficiency of AUA in a genome 
implies an equal amount of surplus in AUG. On the other hand, if the 
number of methionine codons (NMet) is weakly constrained, then the 
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selection against AUA codons may result in a net loss of methionine codons. 
This would lead to a positive association between PAUA and NMet, i.e., small 
PAUA is associated with small NMet. The empirical data supports the latter 
inference, i.e., reduction of AUA codons leads to a reduction in methionine 
usage in the genome (Figure 8-5). 
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Figure 8-5. Genomic reduction of AUA codons is associated with a reduction in methionine 
usage. PAUA is defined in equation and arcsine-transformed; NMet – Number of methionine 
codons. 

 
It is important to recognize that the results presented above, while all 

consistent with the translation conflict hypothesis, do not exclude the 
possibility that AUA codon usage may be reduced for reasons unrelated to 
the CAU anticodon in tRNAMet. It would be nice to have a mitochondrial 
genome in which the tRNAMet anticodon is not CAU but UAU. If such a 
genome also has a reduced AUA usage relative to UUA codons, then we 
cannot interpret the reduced AUA usage in the vertebrate mitochondrial 
genomes as a response to the selection mediated by the CAU anticodon in 
tRNAMet. On the other hand, if such a genome does not exhibit a deficiency 
of AUA codons relative to UUA codons, but instead exhibit an increased 
AUA codon usage favored by the UAU anticodon, then the translation 
conflict hypothesis is strengthened. 
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It is also important to keep in mind that the 30 species above do not 
represent independent data points. For example, their common ancestor 
could have somehow evolved a reduced PAUA relative to PUUA, and this 
character has been inherited among all its descendents. This means that all 
30 species could be equivalent to just single data point. For this reason, 
corroborative evidence needs to be sought in other species. 

In this context the mitochondrial genomes of four urochordates 
(Halocynthia roretzi, Ciona intestinalis, C. savignyi, and Doliolum 
nationalis) deposited in GenBank are particularly useful in providing 
corroborative evidence. All four genomes have two tRNAMet genes, one with 
CAU anticodon and the other with a UAU anticodon (Gissi et al., 2004; 
Hoffmann et al., 1992; Kondow et al., 1998; Yokobori et al., 2005; 
Yokobori et al., 1999; Yokobori et al., 2003). This would eliminate the 
hypothesized selection against AUA codon usage. We can therefore predict 
that PAUA should not be underused relative to PUAU for these urochordate 
genomes, in contrast to the vertebrate mitochondrial genomes in which the 
only tRNAMet has a CAU anticodon that would favor a decreased usage of 
AUA codons. In other words, we should expect PUUA - PAUA to be near 0, in 
contrast to vertebrate mitochondrial genomes where PUUA - PAUA  is generally 
greater than 0. This prediction is confirmed (Table 2). The mean PUUA - PAUA 
is only -3.225, in contrast to the vertebrate mitochondrial genome where the 
mean PUUA - PAUA values are significantly greater than 0 (p = 0.0001 for the 
12 CDSs collinear with the L-stand and p = 0.0004 for ND6 collinear with 
the H-strand). 

Table 8-7. Results from the 13 CDSs from the four urochordate species. 
Species ACCESSION PUUA PAUA PUUA-PAUA 
H. roretzi NC_002177 60.7 67.3 -6.6 
C. intestinalis  NC_004447  92.6 90.5 2.1 
C. savignyi  NC_004570 75.1 83.5 -8.4 
D. nationalis  NC_006627 71.0 71.0 0.0 

 
In conclusion, the translation conflict hypothesis is empirically 

supported. The presence of a CAU anticodon matching the AUG methionine 
codon represents a significant selection force against AUA codon usage in 
vertebrate mitochondrial genomes, resulting in PAUA smaller than PUUA. The 
reduced AUA codon usage is associated with a reduced methionine usage in 
the vertebrate mitochondrial genomes. When such selection is weakened in 
the urochordate mitochondrial genomes containing CAU-tRNAMet and 
UAU-tRNAMet, the AUA codon is no longer strongly selected against, and 
PAUA becomes similar to PXUA. 

I should finally mention here that, although the conceptual framework 
that leads to the prediction of strand-asymmetry in mutation spectrum is 
based on the classical strand-displacement model of mtDNA replication 
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(Bogenhagen and Clayton, 2003; Clayton, 1982; Shadel and Clayton, 1997) 
the prediction can also be derived from the strand-coupled model of 
bidirectional mtDNA replication (Holt and Jacobs, 2003; Holt et al., 2000; 
Yang et al., 2002). Many studies have documented an excess of (G+T) in the 
leading strand and an excess of (A+C) in the lagging strand in most 
prokaryotic genomes examined (Francino and Ochman, 1997; Freeman et 
al., 1998; Grigoriev, 1998; McLean et al., 1998; Perriere et al., 1996) and 
spontaneous deamination has also been invoked as the main factor 
contributing to the strand asymmetry (Lobry and Sueoka, 2002). Thus, if the 
H-strand is the leading strand, and the L-stand the lagging one, then we 
would also predict an excess of (G+T) in the H-strand and of (A+C) in the 
L-strand, just as we would expect from the strand-displacement model of 
mtDNA replication. 

One limitation of this study is that it cannot be generalized to invertebrate 
mitochondrial genomes although they also have about 13 protein-coding 
genes and 22 tRNA genes. There are several major differences between 
vertebrate and invertebrate mtDNA. First, invertebrate mitochondrial 
genomes are generally extremely AT-rich and the distribution of the protein-
coding genes is less asymmetrical between the two strands than in vertebrate 
mitochondrial genomes. Take the common honey bee mtDNA for example. 
Nine of the 13 CDSs are collinear with the L-strand and 4 are collinear with 
the H-strand, in contrast to 12 CDSs collinear with the L-strand and only 1 
collinear with the H-strand in vertebrate mitochondrial genomes.  

6. POSTSCRIPT 

In both Chapter 4 and this chapter, I have tried to illustrate the value of 
thinking from an evolutionary point of view. I did this because there are two 
contrasting and radical views of evolution in science that harms biology in 
general and bioinformatics in particular. In one extreme, many biologists, 
especially traditional molecular biologists, regard evolutionary biology as 
totally irrelevant and have little hesitation to proclaim “what is true for the 
colon bacillus is true for the elephant” (attributed to Jacques Monod, Jacob, 
1988, p. 290). In the other extreme, many evolutionary biologists consider 
evolution as the key to every problem in biology and indulge themselves 
with the assertion that “Nothing in biology makes sense except in the light of 
evolution” (Dobzhansky, 1973). Some have gone even further by claiming 
that “in a sense all evolution is adaptation” (Medawar and Medawar, 1983, 
p. 1). 

Extreme views, especially when taken out of the context in which they 
are formed, would often become so radical as to serve no purpose other than 
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brainwashing the unwary and thwarting healthy communication that is so 
essential for science, especially for the normal development of the 
interdisciplinary bioinformatics. 

Historians have often been criticized for not taking averages, but why 
neither do biologists? 



 

 

Chapter 9 

CHARACTERIZING TRANSLATION 
EFFICIENCY 
Indices of codon usage 

 
 

1. INTRODUCTION 

The genome comes alive mainly through transcription and translation. 
The previous chapter on Gibbs sampler can be used to discover sequence 
motifs that serve as genetic switches regulating transcription and translation. 
In this chapter, we focus on a few simple but useful indices that can be used 
to measure the efficiency of translation elongation. You are expected to have 
read Chapter 8 and have already gained familiarity with biological concepts 
involving codon, tRNA, and anticodon in tRNAs. 

Many unicellular organisms, especially bacterial species, need to grow 
and replicate the cell rapidly in order not to be out-competed by others. For 
example, an E. coli cell replicates once every 20 minutes with unlimited 
nutrients. To replicate a cell, not only the genome needs to be replicated, but 
a large amount of proteins have to be produced, with some proteins produced 
in nearly half a million copies in an E. coli cell. For such highly expressed 
proteins, it is very important for their coding genes to have efficient coding 
strategy to maximize the rate of transcription and translation.  

One way to increase the translation efficiency is to maximize the usage of 
codons that match the anticodon of the most abundant cognate tRNA (Gouy 
and Gautier, 1982; Ikemura, 1992; Xia, 1998b, 2005c). For example, the 
amino acid glycine can be coded by GGA, GGC, GGG and GGU codons, 
but tRNAGly species that translates GGY codons (Y stands for either C or U) 
are much more abundant than tRNAGly species that translate GGR codons in 
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E. coli cells. What codons should E. coli use to code glycine? Obviously 
natural selection should favor those that maximize the usage of CCY codons 
against GGR codons given the differential tRNA availability. 

There are two different notations of tRNA. For example, a glycine tRNA 
may be written either as GGY-tRNAGly where GGY is the codons that the 
tRNA can translate, or ACC-tRNAGly where ACC is the tRNA anticodon 
written in the 5’ to 3’ direction. The first notation is often used when a tRNA 
species is known to carry a glycine and to translate GGY codons, but the 
tRNA sequence and consequently the anticodon are unknown. The second 
notation is used when the anticodon is known. The two notations do not 
cause confusion because, given the tRNAGly part of the notation, it is 
unlikely for one to take ACC as a glycine codon. 

Translation efficiency depends partially on the coding strategy of an 
mRNA and is reflected in codon usage bias which is often measured by two 
classes of indices, one class being codon-specific and the other being gene-
specific. A representative of the first class is the relative synonymous codon 
usage or RSCU (Sharp et al., 1986), and a representative of the second class 
is the codon adaptation index, or CAI (Sharp and Li, 1987).  

Other than CAI, several other indices have been proposed to measure 
codon usage bias of protein-coding genes. All these indices (including CAI) 
measure codon usage bias in two ways. One is to measure the deviation of 
codon usage from random expectation or from equal codon usage. The 
random expectation can be derived as follows. Designating the genomic 
nucleotide frequencies as PA, PC, PG and PT, respectively, the expected 
probability of a codon, e.g., ACG, is simply PAPCPG. A representative of this 
type of codon usage indices is the effective number of codons (Wright, 
1990) which measures codon usage bias by the deviation of codon usage 
from equal codon usage.  

The other codon usage indices measure codon usage bias by their degree 
of using translationally favored codons. They differ fundamentally in how 
they define translationally favored codons. The frequency of optimal codons, 
or Fop (Ikemura, 1985), defines translationally optimal codons as those 
forming Watson-Crick base pair with the anticodon of major tRNA species 
in each codon family. The codon adaptation index (CAI) defines 
translationally optimal codons as those frequently represented in highly 
expressed genes. The codon bias index, or CBI (Bennetzen and Hall, 1982) 
defines translationally favored codons as those not only frequently 
represented by highly expressed genes but also forming Watson-Crick base 
pair with the anticodon of major tRNA species.  Comparative studies 
(Coghlan and Wolfe, 2000; Comeron and Aguade, 1998) suggest that CAI is 
the best in predicting gene expression levels. For this reason, we will only 
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detail the computation and application of CAI. Readers interested in other 
indices may read the original publications. 

It is natural for one to ask why we should not use indices derived directly 
from relative tRNA abundance or why such indices often do not perform 
better than CAI which ignores tRNA but is based entirely on the codon 
usage of highly expressed genes. We will provide answers to these questions 
once we know how to compute RSCU and CAI. 

2. RSCU (RELATIVE SYNONYMOUS CODON 
USAGE) 

RSCU measures codon usage bias for each codon within each codon 
family. It is essentially a normalized codon frequency so that the expectation 
is 1 when there is no codon usage bias. A codon is overused if its RSCU 
value is greater than 1 and underused if its RSCU value is less than 1. It is 
computed directly from input sequences.  

The general equation for computing RSCU is 
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where i refers to a codon family and j to a specific codon within the family. 
For example, i may refer to the alanine codon family with four codons 
(GCU, GCC, GCA, and GCG) and j to a specific codon such as GCU. In this 
case, the numerator is the frequency of GCU and denominator is the 
summation of the four codon frequencies divided by the number of codons 
in the codon family, i.e., 4. 

For biology students, it is always easier to learn by numerical examples. 
Suppose we counted the codon frequencies of one particular protein-coding 
sequence and have obtained the codon frequencies (Table 9-1). The RSCU 
for the GCU codon is computed, according to Eq. (9.1), as 

( )
52 0.84

52 91 103 2
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GCURSCU = =
+ + +

 (9-2) 



176 Chapter 9
 
which is displayed in Table 9-1. Biology students are recommended to cover 
up the last column in Table 9-1 and finish the computation of the rest of the 
RSCU values.   

Table 9-1. Data for illustrating the calculation of RSCU. AA-amino acid; T-codon frequency. 
Codon AA N RSCU 
GCU Ala 52 0.84 
GCC Ala 91 1.47 
GCA Ala 103 1.66 
GCG Ala 2 0.03 
GAA Glu 78 1.64 
GAG Glu 17 0.36 
... ... ... ... 

 

3. CAI (CODON ADAPTATION INDEX) 

CAI has been used extensively in biological research. Other than its 
primary use for measuring the efficiency of translation elongation, it has 
contributed to the finding that functionally related genes are conserved in 
their expression across different microbial species (Lithwick and Margalit, 
2005), to the prediction of protein production (Futcher et al., 1999; Gygi et 
al., 1999), and to the optimization of DNA vaccines (Ruiz et al., 2006).  

3.1 Computation and basic properties of CAI 

While RSCU characterizes codon usage bias in each codon family, CAI 
quantifies the codon usage bias in one gene. It is based on (1) the codon 
frequencies of the gene and (2) the codon frequencies of a set of known 
highly expressed genes (often referred to as the reference set). The reference 
set of genes is used to generate a column of w values computed as: 

 

.max

ij
ij

i

RefCodFreq
w

RefCodFreq
=  (9-3) 

where RefCodFreqij is the frequency of codon j in synonymous codon family 
i, and RefCodFreqi.max is the maximum codon frequency in synonymous 
codon family i. For example, if the four alanine codons GCA, GCC, GCG 
and GCU have frequencies 20, 4, 4, and 2, respectively, then their associated 
w value are 1, 0.2, 0.2 and 0.1, respectively. The codon whose frequency is 
RefCodFreqi.max is often referred to as the major codon (whose w is 1), and 
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the other codons in the synonymous codon family are referred to as minor 
codons. The major codon is assumed to be the translationally optimal codon. 

It is easy to see the relationship between wij and RSCU. The former is 
obtained by dividing each RSCU by the largest RSCU value within each 
codon family. With the w values for a particular species, we can now 
compute the CAI value of any protein-coding sequence from the species by 
using the following equation: 
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where n is the number of sense codons (excluding codon families with a 
single codon, e.g., AUG for methionine and UGG for tryptophan in the 
standard genetic code). Note that the exponent is simply a weighted average 
of ln(w). Because the maximum of w is 1, ln(w) will never be greater than 0. 
Consequently, the exponent will never be greater than 0. Thus, the maximum 
CAI value is 1. The minimum CAI depends on the w values for minor 
codons in each codon family. If the minor codons all have w values close to 
zero, then the minimum CAI will also be very close to zero. 

A gene with a CAI value greater than 0.7 is often considered to be highly 
expressed (Sharp and Li, 1987; Takahashi et al., 2003). However, this 
interpretation is questionable because the value of CAI depends on what 
reference set of genes is used. For the same reason, CAI values are not 
comparable between or among different species. One should never say 
something like “Gene A may be more highly expressed in human than in 
mouse because its CAI value is 0.8 in human and only 0.4 in mouse”. Such a 
statement is wrong in at least two ways. First, CAI values for mouse are 
computed with a set of mouse genes as reference and those for human are 
computed with a set of human genes as reference. They are not comparable. 
Second, CAI is not an index of gene expression, but an index of translation 
elongation efficiency. Strictly speaking, it is not even correct to say that “the 
mRNA from human gene A can be translated more efficiently than that from 
human gene B because the former has a CAI value twice as larger as the 
latter”. The reason is that the translation process involves initiation, 
elongation and termination. CAI is a measure of the efficiency of translation 
elongation, not that of translation initiation or termination. 

One can also derive a similar amino acid adaptation index (AAAI) to 
measure the bias of amino acid usage: 
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where wi is obtained by dividing each of the 20 amino acid frequencies by 
the highest frequency, i.e., the most highly used amino acid will have its wi = 
1. For computing AAAI, we can use the copy number of tRNA genes as the 
reference set because most frequently used amino acids typically have more 
associated tRNA to carry them and because tRNA concentration is positively 
related to the copy number of tRNA genes, at least in several bacterial 
species and the yeast (Duret, 2000; Ikemura, 1992; Kanaya et al., 1999; 
Percudani et al., 1997). 

It is important to keep in mind that CAI and AAAI are, respectively, 
gene-specific and peptide-specific, not codon-specific or amino acid-
specific. It makes no sense to say that a codon has a CAI value of 0.75. 

3.2 Problems with CAI and its current implementation 

CAI has three major problems. Two problems are related to the 
compilation of the reference set of highly expressed genes, and one related to 
the computer implementation. Most published papers use the cai program in 
the EMBOSS (Rice et al., 2000) distribution (typically referred to as the 
EMBOSS.cai program). I will consequently use EMBOSS.cai to illustrate 
implementation problems. Because the implementation problem is 
intertwined with the reference set, I will not try to separate the problems into 
reference-set-related and implementation-related. 

3.2.1 Problem when w = 0 

The first problem with CAI occurs when w = 0. It often happens that only 
a few genes are known to be highly expressed, even for model organisms 
such as the yeast (Saccharomyces cerevisiae). The number of codons one 
can compile from a small number of genes is consequently small, leading to 
some w values to be zero. For example, the frequently used codon usage 
table in the EMBOSS compilation Eyeastcai.cut for the budding yeast 
contains a number of zeros. In particular, in the CCN (coding for arginine) 
codon family, there are 43 CGT codons, but no CCG, CGA, or CGC codon.  

The overuse of CGT and the avoidance of CCG, CGA and CGC codons 
in highly expressed genes make sense because the yeast genome contains six 
tRNAArg genes all with anticodon ACG forming Watson-Crick base-pairing 
with the CGT codon, but no other tRNAArg gene forming Watson-Crick base 
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pairing with the other three CGN codons. The highly expressed genes 
included in the Eyeastcai.cut file apparently have strong codon usage bias 
favoring the CGT codon, taking advantage of the six ACG-tRNAArg genes to 
facilitate translation of arginine codons. While this illustrates well the codon-
anticodon adaptation, it causes practical problems with computing CAI. 

Given the 43 CGT codon and no other CGN codon in the reference set, 
the associated w value is therefore 1 for CGT but 0 for the other three. 
However, computing CAI requires taking the logarithm of w but there is no 
logarithm defined for w = 0. Different implementations of CAI typically 
would try to use some methods to avoid taking the logarithm of 0, but the 
resulting CAI can be outrageous. For example, if one uses the following 
sequence consisting of CGA, CGC, CGG codons only: 

 
S = CGACGCCGGCGACGCCGGCGACGCCGGCGACGCCGG 
 

as input to the EMBOSS.cai program (which is perhaps the most frequently 
used CAI calculator in practical research and available online at 
http://bioportal.cgb.indiana.edu/cgi-bin/emboss/cai), the resulting CAI value 
is 1 (the maximum CAI), which is totally unexpected and absolutely absurd. 

We know that, among CGN codons, only CGT is represented in the 
reference set and all other three CGN codons have zero representation in the 
reference set. The sequence S consists of only CGA, CGC and CGG codon 
only but no CGT, and we therefore would expect the CAI to be at its 
minimum, i.e., 0. A CAI of 1 from EMBOSS.cai for sequence S is of course 
wrong. Unfortunately, given the scanty documentation of EMBOSS 
programs, one does not even know where to send bug reports without 
extensive searching through the internet. The implementation of CAI in 
DAMBE (Xia, 2001; Xia and Xie, 2001b) gives a CAI value of 0 for 
sequence S, with a note stating that there is insufficient information for 
computing CAI for the sequence. 

Another way to avoid having w = 0 is to collect all sequenced protein-
coding genes for a species and then choose those sequences with large CAI 
values as a reference set to compile a codon usage table. A compilation with 
all w values greater than 0 is available for the budding yeast in the EMBOSS 
compilation as Eysc_h.cut. The problem with this approach is that we are not 
sure if the included sequences in such a reference set are truly highly 
expressed. 

3.2.2 Problems with codon families containing a single codon 

EMBOSS.cai does not exclude codon families with a single codon in 
computing CAI. It is important to exclude such codons. Note that, for such 
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codons (e.g., AUG and UGG in the standard genetic code), their 
corresponding w value will always be 1 regardless of codon usage bias of the 
gene. Although such codons will not contribute to the numerator in Eq. (9-4) 
because ln(1) = 0, they contribute to the denominator. If a gene happens to 
use a high proportion of methionine and tryptophan, then it will have a high 
CAI value even if the codon usage is not at all biased. Just add a string of 
ATG triplets to a sequence will substantially increase its CAI.  

Because EMBOSS.cai does not exclude codon families with a single 
codon, one should be cautious in interpreting results from it. For example, if 
the input sequence consists of multiple ATG codons, such as  

S = ATGATGATG…… 
then the EMBOSS.cai program will yield a CAI value of 1, based on the web 
interface of EMBOSS.cai available at http://bioportal.cgb.indiana.edu/cgi-
bin/emboss/cai. Of course such a CAI value is wrong. A correctly computed 
CAI value should not depend on the frequencies of methionine and 
tryptophan. The implementation of CAI in DAMBE (Xia, 2001; Xia and 
Xie, 2001b) gives a CAI value of 0 for sequence S, with a note stating that 
there is insufficient information for computing CAI for the sequence. 

3.2.3 Problems with amino acids coded by two different codon 
families 

EMBOSS.cai also produce other perplexing output. Suppose we now use 
a sequence consisting entirely of CGT codons and expect the resulting CAI 
to be 1 by using the Eyeastcai.cut reference set (Recall that the reference set 
contains 43 CGT codons but no CGA, CGC or CGG codon). The resulting 
CAI value from the EMBOSS.cai program is 0.140 instead of 1. This is 
again unexpected. It turns out that amino acid arginine is coded by two 
codon families, the CGN codon family we have mentioned, and the AGR 
codon family. The largest codon frequency among these six codons is 314 
(for AGA codon). So the w value for CGT is not 1 (43/43) as we have 
thought, but is only 0.1369 (= 43/314). For standard genetic code, there are 
three amino acids (arginine, leucine and serine) each coded by two different 
codon families. EMBOSS.cai does not separate the two codon families for 
each amino acid, but treated them as three six-member codon families. This 
is not appropriate because the codon usage bias in one codon family (e.g., 
the CGN codon family) translated by one set of tRNAs is much obscured by 
the codon usage in another codon family (e.g., the AGR codon family) 
translated by another set of tRNA genes. 

The implementation of CAI in DAMBE (Xia, 2001; Xia and Xie, 2001b) 
separates the “six-codon family” into two separate codon families, with one 
family containing two codons and another containing four. For example, one 
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arginine codon family contains the two AGR codons and the other contains 
the four CGN codons.  

3.2.4 Problems with initiation and termination codons 

Strictly speaking, CAI is an index measuring the efficiency of translation 
elongation. So its calculation should not include initiation and termination 
codons because these special codons are more related to translation initiation 
and termination than translation elongation. EMBOSS.cai does not exclude 
the termination codons. However, because each protein-coding gene is 
generally expected to contain only one termination codon, the effect of 
including the termination codon in computing CAI is small with long gene 
sequences. 

The implementation of CAI in DAMBE (Xia, 2001; Xia and Xie, 2001b) 
does not exclude the initiation codon in prokaryotic genomes, but excludes 
the termination codon in computing CAI. 

3.2.5 The problem with the compilation of the reference set of genes 

Early reference sets of genes include known highly expressed genes such 
as genes coding for ribosomal proteins. An average E. coli cell in the 
exponential growing phase contains about 15,000 ribosomes made of two 
subunits. The large subunit contains the 5S rRNA (120 bases long) and 23S 
rRNA (about 2900 bases long, e.g., E. coli K12 strain has seven 23S rRNA 
genes, with six being 2904 bases long and one being 2905 bases long), 
together with 31 different proteins. The small subunit contains the 16S 
rRNA (1542 bases long) and 21 different proteins. Nearly all ribosomal 
proteins are present in single copies in each ribosome. This implies that 
ribosomal proteins are all highly expressed and exist in about 15,000 copies 
per cell. 

The first large-scale compilation of reference sets is derived from 
TransTerm (Brown et al., 1994; Dalphin et al., 1996), which also outputs 
CAI values for genes from species with a reference set of highly expressed 
genes. Such genes, together with associated parameters such as CAI, are 
compiled for each species in a file named ****.dat, where ‘****’ is usually a 
four letter code made from the organism’s genus and species. For example, 
the codon usage table for Homo sapiens is Hsap.dat. The subset of genes 
with the highest CAI values are found in the file named ****_H.dat. 
TransTerm also outputs these files in GCG format (Dalphin et al., 1996), 
named as ****.cod. Note that gene sequences in the ****_H.dat files are not 
necessarily highly expressed genes because their expression is not verified 
by gene expression studies. 
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These ****.dat files can be formatted as codon frequency tables that can 
be used as the reference set of genes for computing CAI values. The first 
large-scale distribution of the reformatted codon frequency tables came with 
the release of EMBOSS (Rice et al., 2000). The EMBOSS-reformatted 
codon frequency tables are stored in files named E*.cut where the prefix E is 
presumably for EMBOSS and the file type “cut” is for codon usage table. 
The * part in the file is typically a species designation, but unfortunately is 
not standardized. Because EMBOSS is open-source, and consequently 
because everybody can contribute to it with little restriction, there was an 
undesirable proliferation of E*.cut files. For example, you will find 
Ehum.cut, Ehuman.cut, Eeco.cut, Eeco_h.cut, Eecoli.cut, Emus.cut, etc. In 
some cases, the species is easy to tell. For example, the first two file names 
in the previous sentence refer to human, the next three refer to Escherichia 
coli, with the middle one referring to highly expressed E. coli genes (i.e., 
from genes with high CAI values, not from genes experimentally verified to 
be highly expressed), and the last refers to Mus musculus. Names ending 
with cp refer to chloroplast genes. For example, Emzecp.cut, is from maize 
chloroplast genes. File names ending with mt are from mitochondrial genes. 
For example, Eyscmt.cut is derived from the yeast (Saccharomyces 
cerevisiae) mitochondrial genes.  

There are two major problems with the EMBOSS compilation of 
reference genes. First, the nonstandard species designation, coupled with a 
lack of documentation typically associated with open-source software, has 
led to a profound confusion as to which file refers to which species, who 
compiled the reference codon usage table and how the table is obtained. 
Second, the reference set of genes are supposed to be highly expressed, but it 
is difficult to define highly expressed genes in multicellular eukaryotes 
because a gene may be highly expressed only in a certain tissue at a certain 
time.  

I present below two alternatives to CAI computation. One is a minor 
revision of CAI computation by using a codon frequency table derived from 
anticodons of all tRNA genes in a genome. The rest of the computation is the 
same as the conventional CAI. The other is an entirely different measure of 
codon usage bias, but also based on the distribution of tRNA anticodons. 

4. INDICES OF CODON-ANTICODON 
ADAPTATION 

One may think that, because efficiency of translation elongation depends 
much on whether the codon usage maximizes the use of codons 
corresponding to the most abundant tRNA species (Bennetzen and Hall, 
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1982; Gouy and Gautier, 1982; Ikemura, 1981, 1982; Ikemura, 1992; Xia, 
1998b), we can use tRNA relative abundance as the basis for a reference set. 
It is less controversial to define translationally optimal codons as those 
matching the anticodon of most abundant tRNA species than as those 
matching the most frequent codons in a subset of highly expressed genes 
because the latter may not be representative of highly expressed genes.  

From the frequencies of tRNA anticodons, one can obtain the frequencies 
of codons that form Watson-Crick base pairs with the anticodons and use 
such a codon frequency table as a reference set for computing CAI. Such a 
reference set, with all the w values based on the tRNA-derived “codon 
frequencies”, is presented in Tables 9-2 and 9-3.  

Table 9-2. tRNAs translating two-fold codon families from Saccharomyces cerevisiae.  
AA(1) Codon(2) T(3) w(4) F(5) 
Arg AGA 11 1 314 
Arg AGG 1 0.091 1 
Asn AAC 10 1 208 
Asn AAU 0 0 11 
Asp GAC 16 1 202 
Asp GAU 0 0 112 
Cys UGC 4 1 3 
Cys UGU 0 0 39 
Gln CAA 9 1 153 
Gln CAG 1 0.111 1 
Glu GAA 14 1 305 
Glu GAG 2 0.143 5 
His CAC 7 1 102 
His CAU 0 0 25 
Leu UUA 7 0.7 42 
Leu UUG 10 1 359 
Lys AAA 7 0.5 65 
Lys AAG 14 1 483 
Phe UUC 10 1 168 
Phe UUU 0 0 19 
Ser AGC 2 1 6 
Ser AGU 0 0 4 
Tyr UAC 8 1 141 
Tyr UAU 0 0 10 
(1) Amion acid carried by tRNA 
(2) Codons forming Watson-Crick base pair with the anticodon of tRNA 
(3) Copy number of tRNA gene. 
(4) wi equals Ti divided by the maximum T within each codon family 
(5) the codon frequencies of highly expressed yeast protein-coding genes compiled in the 

Eyeastcai.cut file distributed with EMBOSS (Rice et al., 2000). 
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The idea of using the relative frequencies of tRNA anticodons to define 
translationally optimal codons is not new. Both the frequency of optimal 
codons, or Fop (Ikemura, 1985) and the codon bias index, or CBI (Bennetzen 
and Hall, 1982) incorporate the relative frequencies of tRNA anticodons as a 
reference to identify translationally optimal codons. 

Table 9-3. tRNA data in the genome of the budding yeast, Saccharomyces cerevisiae. Only 
four-fold codon families are included. Symbols as in Table 9-2. 
AA Codon T w F 
Ala GCA 5 0.455 6 
Ala GCG 0 0 0 
Ala GCC 0 0 130 
Ala GCU 11 1 411 
Arg CGA 0 0 0 
Arg CGG 1 0.167 0 
Arg CGC 0 0 0 
Arg CGU 6 1 43 
Gly GGA 3 0.188 1 
Gly GGG 2 0.125 2 
Gly GGC 16 1 9 
Gly GGU 0 0 459 
Ile AUA 2 0.154 0 
Ile AUC 0 0 181 
Ile AUU 13 1 149 
Leu CUA 3 1 14 
Leu CUG 0 0 1 
Leu CUC 1 0.333 1 
Leu CUU 0 0 2 
Pro CCA 10 1 211 
Pro CCG 0 0 0 
Pro CCC 0 0 2 
Pro CCU 2 0.2 10 
Ser UCA 3 0.273 7 
Ser UCG 1 0.091 1 
Ser UCC 0 0 133 
Ser UCU 11 1 192 
Thr ACA 4 0.364 2 
Thr ACG 1 0.091 1 
Thr ACC 0 0 164 
Thr ACU 11 1 151 
Val GUA 2 0.143 0 
Val GUG 2 0.143 5 
Val GUC 0 0 231 
Val GUU 14 1 278 

 
The approach of using relative tRNA abundance as the reference is 

particularly attractive given the high correlation between relative tRNA 
abundance and the copy number of tRNA genes (Duret, 2000; Ikemura, 
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1992; Kanaya et al., 1999; Percudani et al., 1997). The availability of many 
genomes as well as the ease of identifying tRNA genes (Lowe and Eddy, 
1997) allow us to quickly obtain all tRNA genes in a genome, identify their 
anticodons and the codons that form Watson-Crick base pair with these 
anticodons. These codons can then form a “codon usage” table and used as a 
reference set for computing CAI.  

In general, the most frequently used codons in each codon family (last 
column in Table 9-2 and Table 9-3) correspond to the most abundant tRNA 
species translating that codon family, although there are exceptions. We will 
look at these exceptions in more detail later. 

4.1 CAI with a tRNA anticodon-derived codon usage 
table 

It is simple to replace the reference set in CAI computation by the codon 
usage table derived from tRNA anticodons. For any particular species, what 
we need to do is to compile the copy number of each tRNA genes, identify 
the anticodon of each tRNA gene, and obtain a frequency table of their 
anticodons. This table of anticodon frequency can be directly translated into 
a table of codons that form Watson-Crick base-pairing with these 
anticodons. A codon frequency table obtained in this way can then be used 
as a reference set to compute CAI, referred hereafter as tCAI to distinguish it 
from the conventional CAI. This approach has been made easy by the 
proliferation of genomic sequencing projects and the tRNA scanning 
software (Lowe and Eddy, 1997).  

Tables 9-2 and 9-3 together show such a codon usage table for the 
budding yeast, Saccharomyces cerevisiae, together with calculated w values 
for computing tCAI. The resulting tCAI for yeast protein-coding genes and 
the conventional CAI based on EMBOSS compilation Eysc_h.cut are highly 
correlated, with r = 0.98 (Figure 9-1). This suggests the potential of using 
tRNA anticodons as a reference set for computing codon adaptation index. 

The ultimate test of an index of translation elongation efficiency is on 
whether it can, together with the relative mRNA concentration, predict 
protein production. CAI has been used for this purpose (Futcher et al., 1999; 
Gygi et al., 1999). When the data in these two papers are used, tCAI is very 
slightly (but not significantly) better in predicting protein production than 
CAI (details in the last section of the chapter). 

The high correlation between the tRNA-based CAI and the conventional 
CAI may lead one to conclude that the former is a highly satisfactory 
replacement for the latter, without any evils associated with the poorly 
defined and poorly documented reference sets associated with the latter. 
Unfortunately, this is not true. 
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Figure 9-1. CAI based on tRNA anticodons of the yeast (Saccharomyces cerevisiae), 
designated tCAI, and conventional CAI based on EMBOSS compilation of Eysc_h.cut. 
Computed by ignoring all codons with their corresponding w values equal to 0 (because no 
logarithm is defined for 0). 

There is a serious problem that limits the utility and interpretation of 
tCAI . For some species, the number of tRNA genes is relatively small, with 
the consequence that some w values are zero (Tables 9-2 and 9-3). These w 
values typically correspond to codons that are rarely used in highly 
expressed genes, but more frequent in lowly expressed genes. If we ignore 
all codons with their corresponding w values equal to 0, then the resulting 
CAI values for highly expressed genes will be little affected, but CAI values 
for lowly expressed genes tend to be elevated. This is already visible in 
Figure 9-1 which compares the conventional CAI based on the reference 
codon usage table Eysc_h.cut and the tRNA-based CAI. The effect is more 
obvious with Escherichia coli with fewer tRNA genes (Figure 9-2). 

The seriousness of the problem is not well illustrated with the yeast or E. 
coli data because they are not the species with the fewest tRNA genes. For 
example, Mycoplasma genitalium G37 genome (NC_000908) contains only 
38 tRNA genes, and M. pulmonis genome (NC_002771) contains only 29 
tRNA genes (of which only 28 may be functional because one of the two 
tRNATrp genes, MYPU_TRNA_TRP_1, does not form the anticodon loop 
properly, i.e., it does not have the seven-nucleotide anticodon loop formed 
by the anticodon flanked by two nucleotides and held by a stem). Such a 
small number of tRNA genes will result in about half of the w values being 
zero. The resulting w values would generate a very high CAI value for every 
gene (i.e., most genes will have CAI = 1) if we ignore all codons with their 



9. Characterizing translation efficiency 187
 
corresponding w values equal to zero. Therefore, while the yeast result 
(Figure 9-1) suggests the potential of using tRNA genes to compute CAI, it 
is necessary to develop an alternative index of codon usage bias. 
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Figure 9-2. Relationship between tCAI and conventional CAI (based on EMBOSS 
compilation of Eeco_h.cut) for Escherichia coli. Computed by ignoring all codons with their 
corresponding w values equal to 0 (because no logarithm is defined for 0). 

4.2 Codon-anticodon adaptation index (CAAI) 

 
Before we start developing our new index, it is important to review a few 

exceptional codon families in Table 9-2 and Table 9-3. We have previously 
asked why indices based on tRNA availability, indirectly measured by the 
number of tNRA gene copies because the two are generally positively 
correlated in several bacterial species and the budding yeast (Duret, 2000; 
Ikemura, 1992; Kanaya et al., 1999; Percudani et al., 1997), often do not 
perform as well as CAI which ignores tRNA but is based entirely on the 
codon usage of highly expressed genes. Examining the exceptional codon 
families in Table 9-2 and Table 9-3 will help answer the question. 

Table 9-2 and Table 9-3 show that codon usage of highly expressed 
genes does not always match the tRNA gene with the largest number of gene 
copies in the genome. Although the codon that forms perfect base-pairing 
with the tRNA anticodon is preferentially used within each codon family in 
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most cases, there is an obvious exception involving cysteine (Table 9-
2).There are four tRNACys genes with the anticodon matching codon UGC 
but no tRNACys

 with an anticodon matching codon UGU. We would have 
expected UGC codon to be preferentially used over the UGU codon. 
However, the opposite is true (Table 9-2). While there has been no 
satisfactory explanation for highly expressed genes to prefer UGU codon 
against UGC codon, the observation that codon usage of highly expressed 
genes do not always match the tRNA gene with the largest number of gene 
copies in the genome may explain why indices based on relative tRNA 
abundance may not perform as well as indices based on the codon frequency 
of known highly expressed genes.  

Similar exceptions are also present in the four-fold codon families (Table 
9-3). For example, there is no tRNAGly with an anticodon matching perfectly 
the GGU codon, yet the codon is by far the most frequently used in highly 
expressed protein-coding genes (Table 9-3). Another exception is tRNAThr. 
There is no tRNAThr with an anticodon that forms Watson-Crick base pair 
with codon ACC, yet ACC is the most frequently used codon in the codon 
family (Table 9-3). In particular, while the exceptional case in Table 9-2 
involves an infrequently used amino acid (cysteine), the exceptional cases in 
Table 9-3 involve relatively frequently used amino acids (glycine and 
threonine). It is difficult to argue that natural selection favouring an 
increased efficiency of translation for highly expressed genes should turn a 
blind eye on glycine and threonine codon families while imparting a strong 
effect on other codon families. 

The exceptional cases are not unique in the yeast, but can also be found 
in many other species (although not always the same codon families being 
exceptional). Because of these exceptions, we cannot always be sure of 
which codon is translationally optimal. For example, based on tRNA copy 
numbers, we would have predicted codons UGC, GGC, and ACU to be 
translationally optimal in the UGY, GGN and ACN codon families, 
respectively. However, based on the codon frequencies of known highly 
expressed genes, we expect codons UGU, GGU and ACC to be 
translationally optimal in the UGY, GGN and CAN codon families, 
respectively. This should be kept in mind when we learn indices of codon 
usage bias such as RSCU and CAI. 

Readers who still remember the codon-anticodon adaptation hypothesis 
and the wobble versatility hypothesis that we encountered in Chapter may 
have noticed these two hypotheses, specifically formulated for vertebrate 
mitochondrial genomes, are not applicable for eukaryotic nuclear genomes. 
We have already mentioned exceptions to the codon-anticodon adaptation 
hypothesis (i.e., the cysteine codon family in Table 9-2, and glycine and 
threonine codon families in Table 9-3). The wobble versatility hypothesis is 
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also not very useful in predicting the wobble nucleotide in eukaryotic tRNA 
encoded by nuclear genomes. For example, the wobble versatility hypothesis 
states that tRNA translating Y-ending codons should have nucleotide G at 
the wobble site (the first nucleotide of the anticodon) because G can pair 
with both C and U. However, however, most tRNAs translating Y-ending 
codons within the four-fold degenerate codon families have nucleotide A 
(Table 9-3). 

Because the exceptional cysteine codon family in Table 9-2 involves an 
under-used amino acid (cycteine accounts for about 1% in protein-coding 
genes in the genome of the budding yeast, Saccharomyces cerevisiae and 
2.2% in the 890 protein-coding sequences in human chromosome 22), its 
effect on the codon usage index is small. More serious problems are present 
in Table 9-3 because exceptions involve frequently used amino acids such as 
glycine and threonine. If we use relative tRNA copy number to generate w 
(Tables 9-2 and 9-3), and if the input sequence happens to contain many 
GGU (glycine codon) and ACC (threonine codon), then the input sequence 
will have a rather small CAI value, although the biased usage of these 
codons is characteristic of highly expressed genes (Table 9-3). 

We note in Table 9-3 that each four-fold codon family is generally 
translated by at least two types of tRNAs, one with a wobble U at the tRNA 
anticodon to translate R-ending codons and the other with a wobble G at the 
tRNA anticodon to translate Y-ending codons (where R stands for A or G 
and Y stand for C or T/U). As we have briefly explored in Chapter 8 on the 
cost of wobble pairing, there might be little cost in wobble-translating G-
ending codons given a wobble U at the tRNA anticodon. So the wobble U 
may not imply any selection against G-ending codons. Similarly, there might 
be little selection against U-ending codons when the wobble site of the 
tRNA anticodon is G. Thus, we may simply collapse the four-fold codon 
families into “two-fold” codon families with R-ending and Y-ending codons. 

Table 9-4 results from collapsing Table 9-3 into R-ending and Y-ending 
codons. This has three advantages. First, it eliminates the exceptional codon 
families that do not show the nice association between tRNA gene copy 
number and codon frequencies of highly expressed genes. Second, it has 
essentially eliminated all zero w values. Third, it reduces codon usage bias 
not associated with selection for optimizing codon-anticodon adaptation. For 
example, in extremely AT-biased genome maintained by strong AT-biased 
mutation spectrum, a four-fold codon family may have many A-ending and 
T-ending codons but few C-ending or G-ending codons. Such mutation-
mediated codon usage bias has little to do with maximizing translation 
elongation rate and should not confound the computation of an index such as 
CAI intended to measure efficiency of translation elongation. By collapsing 
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such codons into R-ending and Y-ending codons, such mutation-mediated 
codon usage bias is eliminated or at least substantially reduced. 

Table 9-4. Collapsing Table 9-3 to R-ending and Y-ending codons. Symbols as in Table 9-2. 
AA Codon T w F 
Ala GCR 5 0.455 6 
Ala GCY 11 1 541 
Arg CGR 1 0.167 0 
Arg CGY 6 1 43 
Gly GGR 5 0.313 3 
Gly GGY 16 1 468 
Ile AUR 2 0.154 0 
Ile AUY 13 1 330 
Leu CUR 3 1 15 
Leu CUY 1 0.333 3 
Pro CCR 10 1 211 
Pro CCY 2 0.2 12 
Ser UCR 4 0.364 8 
Ser UCY 11 1 325 
Thr ACR 5 0.455 3 
Thr ACY 11 1 315 
Val GUR 4 0.286 5 
Val GUY 14 1 509 

 
We now again have two roads diverged in the yellow wood. One is to 

continue to compute CAI, by using a reference codon usage table with four-
fold codon families collapsed as in Table 9-4. Now for each input sequence 
for which we need to compute the CAI value, we count the codon 
frequencies in the two-fold families and use the w values in Table 9-2 but, 
for four-fold codon families, we count the frequencies of all R-ending and 
Y-ending codons and use the w values in Table 9-4. This allows us to use 
tRNA-derived codon frequencies for any species. The only disadvantage is 
that there are still some w values being zero, and we would always feel 
guilty for not using all the information in the data. 

The other road we can take is to develop an entirely new index. Note that 
all codon families in Tables 9-2 and 9-4 are effectively “two-fold” after 
collapsing the four-fold codon families into the R-ending and Y-ending 
codons. Designating the codon frequencies of such a “two-fold” codon 
family i as Ni1 and Ni2, the deviation of Ni1 and Ni2 from equal codon usage 
can be measured by: 

2 2 2
2 1 2 1 2( ) ( ) ( )i i i i i i
i

i i i

N E N E N NX
E E M
− − −

= + =  (9.6) 

where Mi = (Ni1 + Ni2), and Ei = Mi  / 2. 



9. Characterizing translation efficiency 191
 

Summing up the Xi
2 values would generate an overall measure of codon 

usage bias for the gene. However, there are two problems. First, Xi
2 is 

dependent on the number of codons in codon family i so that a codon family 
with a large (Ni1 + Ni2) tends to have a larger Xi

2. To eliminate the 
dependence we need to divide the summation of Xi

2 by the summation of Mi. 
Second, we have not yet incorporated the information of the reference set. 
This we can do by introducing a sign function for codon family i: 

1 2 1 2[( )( )]i i i i iS sign N N T T= − −  (9.7) 

where Ti1 and Ti2 stand for the frequencies of the two tRNA-derived codons, 
i.e., the column headed by T in Tables 9-2 and 9-4. The sign function is 
positive when the codon usage bias is in the same direction as the tRNA 
bias, and negative when it is not. These considerations now lead to a new 
index called codon-anticodon adaptation index (CAAI, following the 
wisdom that two A’s are better than one):  

( )2

1

n

i i
i

n

i
i

S X
CAAI

M

==
∑

∑
 (9.8) 

where Si determines whether Xi
2 is to be positive or negative. Obviously, if 

codon usage is biased to favor the codon with the fewest cognitive tRNA 
species, then the contribution of the codon usage bias should be negative. 

The value of CAAI ranges from -1 to 1 and can be interpreted in the 
same way as a correlation coefficient. The relationship between CAAI for 
Escherichia coli K12 (NC_000913) and the conventional CAI computed 
with the EMBOSS compilation Eeco_h.cut is stronger (Figure 9-3), with R2 
= 0.7294, than that between tCAI and CAI (Figure 9-2), with R2 = 0.6634. 
Thus, it seems that CAAI is a better replacement of CAI than tCAI. The 
relationship in Figure 9-3 also appears more linear and more normally 
distributed than that in Figure 9-2. This makes it easy to re-scale CAAI to be 
within the range of 0 and 1 as CAI. The linear relationship (Figure 9-3) 
implies that any analysis involving CAI can also be performed with CAAI 
with no further data transformation. 

A more objective check of the relative value of CAAI and CAI is to see 
which one is better associated with the translation initiation signal, based on 
the assumption that a highly expressed protein should not only have strong 
codon usage bias to speed up translation elongation, but also a strong 
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initiation signal to increase initiation efficiency. For prokaryotes, the 
initiation site is located by the binding of Shine-Dalgarno (SD) sequence of 
small subunit rRNA to the anti-SD sequence on the 5’-end of mRNA 
upstream of the initiation codon (Shine and Dalgarno, 1974, 1975a). The 
efficiency of translation initiation depends, in a non-linear fashion, on the 
binding strength (S) and the distance of the binding to the initiation codon 
(D). One can obtain a set of known highly expressed proteins in E. coli, 
characterize S and D, and check to see if CAI or CAAI is a better predictor 
of features of S and D in highly expressed genes. 

y = 0.8853x - 0.3361
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Figure 9-3. Relationship between CAAI and conventional CAI (based on EMBOSS 
compilation of Eeco_h.cut) for Escherichia coli. Results from DAMBE(Xia, 2001; Xia and 
Xie, 2001b) 

5. WHY CAI OR CAAI SHOULD NOT BE TAKEN AS 
A MEASURE OF GENE EXPRESSION? 

There is a great deal of confusion concerning the relationship between 
CAI (or CAAI) and gene expression, especially when gene expression refers 
to the expression level of mRNA. As I have emphasized before, CAI and 
CAAI are intended to measure the efficiency of translation elongation. When 
there are selection favoring an increased production of a certain protein, then 
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the selection can act at both the translation level and transcription level, so 
that the protein-coding gene may both be transcriptionally and translationally 
highly expressed. For this reason, an index such as CAI or CAAI that 
increases with translation efficiency will also be spuriously increased with 
transcription efficiency. 

There is no theoretical basis that CAI or CAAI should always be 
positively correlated with mRNA level. In fact, it is easy to think of 
scenarios when CAI or CAAI would be negatively correlated with mRNA 
level. Let us first learn a fact about CAI or CAAI that might at first erode 
your confidence in such indices. The fact is that these indices depend on the 
AT% (or GC% sometimes referred to as GC content) of the gene, with AT-
rich genes having low CAI or CAAI values (Figure 9-4).  
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Figure 9-4. Dependence of CAI or CAAI on AT% of the gene, based on Escherichia coli K12 
data (NC_000913). 

This dependence of CAI and CAAI of a gene on the AT% of the gene 
may at first appear disconcerting, but is in fact quite natural given the fact 
that CAI and CAAI essentially measure codon-anticodon adaptation. 
Consider a two-fold codon family ending with either C or U. Such a codon 
family is typically translated by a tRNA with a G at the wobble site, because 
G can pair with both C and U. Given the wobble G in the anticodon, we 
would expect C-ending codons to be maximally used. However, for an AT-
rich gene, the codon usage is almost necessarily dominated by U in this Y-
ending codon family. So we have poor codon-anticodon adaptation in these 
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AT-rich genes. This would contribute to low CAI and CAAI values 
associated with high AT% as we can observe in Figure 9-4.  

Is this explanation correct or sufficient? At this point a smart student will 
typically raise a strong objection as follows. Instead of considering only the 
Y-ending codons in the previous paragraph, we consider both R-ending and 
Y-ending codons, assuming that the former is translated by tRNA with a U 
at the anticodon wobble site and the latter by tRNA with a G at the anticodon 
wobble site. This is summarized in Figure 9-5.  
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Figure 9-5. Effect of increasing and decreasing AT% on CAI and CAAI, assuming that R-
ending codons are translated by tRNA with a U at its anticodon wobble site and Y-ending 
codons by tRNA with a G at its anticodon wobble site. A small “A” and a large “G” mean the 
R-ending codon family contains few A-ending codons but many G-ending codons. C3 – 
nucleotide at the third codon position; AC1 – nucleotide at the first anticodon position.  

We focus first on the right half of Figure 9-5 with AT-rich genes in 
which R-ending codon families are dominated by A-ending codons and Y-
ending codon families are dominated by U-ending codons (Figure 9-5, right 
half). While the Y-ending codon families of these genes will be biased to 
have many U-ending codons and few C-ending codons, resulting in fewer 
Watson-Crick C/G pairs and more wobble U/G pairs during translation, the 
AT-richness also implies more A-ending codons and fewer G-ending codons 
in R-ending codon families, resulting in more Watson-Crick A/U pairs and 
fewer G/U wobble pairs during translation. The latter should contribute to an 
increased CAI or CAAI and offset the CAI-decreasing effect of Y-ending 
codon families. Moreover, for GC-rich genes (the left part of Figure 9-5), Y-
ending codon families should improve their contribution to CAI (or CAAI) 
because these codon families now should feature many C-ending codons and 
few U ending codons. In contrast, R-ending codons should now contribute 
poorly to CAI (or CAAI) because they now have many G-ending codons that 
need to be wobbly translated (Figure 9-5). So the argument in the previous 
paragraph does not seem logical or sufficient to explain the negative 
correlation between CAI (and CAAI) and AT%. 
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The answer to the objection turns out to be quite simple. While Y-ending 
codons are typically translated by one type of tRNA with a wobble G at its 
anticodon, R-ending codons typically have two types of tRNA, one with a U 
at the anticodon wobble site to translate A-ending codons and the other with 
a C at the anticodon wobble site to translate G-ending codons. This is 
summarized in Figure 9-6. In short, it is the Y-ending codon families whose 
contribution to CAI or CAAI is sensitive to the AT% of the gene. The 
contribution of R-ending codon families may be largely ignored. Focusing 
on the Y-ending codon families only, we can see easily that genes with high 
AT% should have few C/G pairs and many wobble U/G pairs during 
translation. This explains well the negative relationship between gene AT% 
and CAI or CAAI. 
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Figure 9-6. A more realistic display of the effect of increasing and decreasing AT% on CAI 
and CAAI. Symbols mean the same as in Figure 9-5. 

For readers who want to see real data instead of a graphic abstraction, I 
list the human tRNA distribution in Table 9-5.  

Table 9-5. Frequency distribution of tRNA genes in human.  
AA(1) Codon tRNA with anticodon NtRNA

(2) 
Ala GCA TGC 9 
Ala GCG CGC 5 
Ala GCC GGC 0 
Ala GCU AGC 29 
Arg AGA TCT 6 
Arg AGG CCT 5 
Arg CGA TCG 6 
Arg CGG CCG 5 
Arg CGC GCG 0 
Arg CGU ACG 7 
Asn AAC GTT 28 
Asn AAU ATT 1 
Asp GAC GTC 18 
Asp GAU ATC 0 
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AA(1) Codon tRNA with anticodon NtRNA

(2) 
Cys UGC GCA 30 
Cys UGU ACA 0 
Gln CAA TTG 11 
Gln CAG CTG 21 
Glu GAA TTC 12 
Glu GAG CTC 13 
Gly GGA TCC 9 
Gly GGG CCC 7 
Gly GGC GCC 15 
Gly GGU ACC 0 
His CAC GTG 11 
His CAU ATG 0 
Ile AUA TAT 5 
Ile AUC GAT 5 
Ile AUU AAT 14 
Leu UUG CAA 6 
Leu UUA TAA 7 
Leu CUA TAG 3 
Leu CUG CAG 10 
Leu CUC GAG 0 
Leu CUU AAG 12 
Lys AAA TTT 17 
Lys AAG CTT 17 
Phe UUC GAA 12 
Phe UUU AAA 0 
Pro CCA TGG 7 
Pro CCG CGG 4 
Pro CCC GGG 0 
Pro CCU AGG 10 
Ser UCA TGA 5 
Ser UCG CGA 4 
Ser UCC GGA 0 
Ser UCU AGA 11 
Ser AGC GCT 8 
Ser AGU ACT 0 
Thr ACA TGT 8 
Thr ACG CGT 6 
Thr ACC GGT 0 
Thr ACU AGT 10 
Tyr UAC GTA 14 
Tyr UAU ATA 1 
Val GUA TAC 5 
Val GUG CAC 16 
Val GUC GAC 0 
Val GUU AAC 11 
(1) amino acid 
(2) Number of tRNA gene copies. 
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In general, Y-ending codons are translated by one type of tRNA with a 
wobble G at its anticodon, while R-ending codons typically have two types 
of tRNA, one with a U at the anticodon wobble site to translate A-ending 
codons and the other with a C at the anticodon wobble site to translate G-
ending codons. 

At this point a smart student may again argue that Table 9-5 is irrelevant. 
The dependence of CAI and CAAI on AT% is demonstrated for E. coli 
(Figure 9-4), but the tRNA data in Table 9-5 is for human. The human data 
would be relevant if we have shown a negative correlation between CAI (or 
CAAI) and AT% in human genes but, to explain the negative correlation 
between CAI (or CAAI) and AT% in E. coli genes (Figure 9-4), don’t we 
need tRNA data from E. coli? 

This is an excellent question. Some people, in response to this question, 
will quote the dogmatic assertion that “what is true for E. coli is also true for 
the cow, only truer”. This is not the right way of carrying out science. The 
proper response is to present tRNA data for E. coli to demonstrate the same 
pattern seen in human tRNA data (Table 9-6 and Table 9-7). 

Table 9-6 shows the frequency distribution of tRNA genes in E. coli that 
translate Y-ending codons in each codon family. These codons are translated 
by one type of tRNA with a wobble G at its anticodon. The anticodon 
wobble site of almost all these tRNA genes is occupied by a G, with tRNAArg 
being the only exception. This is consistent with the wobble versatility 
hypothesis (Xia, 2005c) stating that the wobble site of tRNA anticodons is 
determined by the necessity of wobble pairing. Given the anticodon wobble 
nucleotide being G, an increase in U-ending codons and a decrease of C-
ending codon as a consequence of AT-richness in the gene naturally will 
lead to a decrease in codon-anticodon adaptation, i.e., more U/G wobble 
pairing and fewer C/G pairing during translation. 

In contrast to Y-ending codons that are typically translated by tRNA with 
a wobble G at its anticodon wobble site, R-ending codons in E. coli, similar 
to those in human, are typically translated by two types of tRNAs, one with a 
U and the other with a C at the anticodon wobble site (Table 9-7). This is 
similar to human tRNA (Table 9-5). Therefore, an increase in GC% in a 
gene has relatively little effect on its codon-anticodon adaptation for R-
ending codons.  

To summarize, Y-ending codons are typically translated by one type of 
tRNA with a wobble G at its wobble site, and R-ending codons are typically 
translated by two types of tRNA, one with a C and another with a U at its 
wobble site. This is generally true from E. coli to human. When AT% of the 
gene increases, resulting in many U-ending codons in Y-ending codon 
families, the increased U/G wobbling will decrease the CAI value of those 
AT-rich genes. The increased AT% would also increase A-ending codons 
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and decrease G-ending codons, but such increases in AT% has little effect on 
codon-anticodon adaptation because R-ending codons generally have two 
types of tRNA for translation. When GC% increases, or in the extreme case 
when all Y-ending codons are C-ending codons, the resulting perfect C/G 
pairing increases the CAI value. This explains the negative relationship 
between CAI (or CAAI) and AT% (Figure 9-4). 

 

Table 9-6. Frequency distribution of tRNA genes for translating Y-ending codons in E. coli. 
Y-ending codons in each codon family are typically translated by tRNA with a wobble G at 
the anticodon. Symbols as in Table 9-5. 
AA Codon tRNA with anticodon NtRNA 
A GCC GGC 2 
A GCU AGC 0 
C UGC GCA 1 
C UGU ACA 0 
D GAC GUC 3 
D GAU AUC 0 
F UUC GAA 2 
F UUU AAA 0 
G GGC GCC 4 
G GGU ACC 0 
H CAC GUG 1 
H CAU AUG 0 
I AUC GAU 3 
I AUU AAU 0 
L CUC GAG 1 
L CUU AAG 0 
N AAC GUU 4 
N AAU AUU 0 
P CCC GGG 1 
P CCU AGG 0 
R CGC GCG 0 
R CGU ACG 4 
S AGC GCU 1 
S AGU ACU 0 
S UCC GGA 2 
S UCU AGA 0 
T ACC GGU 2 
T ACU AGU 0 
V GUC GAC 2 
V GUU AAC 0 
Y UAC GUA 3 
Y UAU AUA 0 
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Table 9-7. Frequency distribution of tRNA genes for translating R-ending codons in E. coli. 
R-ending codons in each codon family are typically translated by two types of tRNAs, one 
with a wobble U and the other with a wobble C at the anticodon. Symbols as in Table 9-5. 
AA Codon tRNA with anticodon Freq 
A GCA UGC 3 
A GCG CGC 0 
E GAA UUC 4 
E GAG CUC 0 
G GGA UCC 1 
G GGG CCC 1 
K AAA UUU 6 
K AAG CUU 0 
L CUA UAG 1 
L CUG CAG 4 
L UUA UAA 1 
L UUG CAA 1 
P CCA UGG 1 
P CCG CGG 1 
Q CAA UUG 2 
Q CAG CUG 2 
R AGA UCU 1 
R AGG CCU 1 
R CGA UCG 0 
R CGG CCG 1 
S UCA UGA 1 
S UCG CGA 1 
T ACA UGU 1 
T ACG CGU 2 
V GUA UAC 5 
V GUG CAC 0 

 
It is important to keep in mind that AT-rich genes may be transcribed 

more efficiently than GC-rich genes simply because the nucleotide pool 
typically features more A and T than G and C. Nucleotide C is particularly 
rare. ATP is much higher than that of the other three rNTPs (Colby and 
Edlin, 1970). For example, in the exponentially proliferating chick embryo 
fibroblasts in culture, the concentration of ATP, CTP, GTP and UTP, in the 
unit of (moles ×10-12 per 106 cells), is 1890, 53, 190, and 130, respectively, 
in 2-hour culture, and 2390, 73, 220, and 180, respectively, in 12-hour 
culture. Relative abundance of dNTP exhibits similar patterns. The surplus 
in A and deficiency in C has been proposed to affect RNA synthesis and 
DNA replication (Rocha and Danchin, 2002; Xia, 2005c; Xia et al., 1996; 
Xia et al., 2006; Xia and Yuen, 2005), although there is little direct evidence 
supporting the claim that the rate of RNA synthesis is in any way affected by 
AT% of the RNA. 

If AT-rich genes indeed are transcribed more efficiently, then they will 
have high mRNA levels and at the same time low CAI values. The negative 
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correlation between CAI and mRNA level has indeed been documented for 
AT-rich genes (dos Reis et al., 2003; Jia and Li, 2005). This should highlight 
the point that CAI and CAAI are not measures of gene expression at the 
mRNA level because, at least for AT-rich genes, the indices are expected to 
be negatively correlated with the mRNA level (which unfortunately is often 
referred to as “gene expression” without the qualification of “at the 
transcription level”).  

Before we finish this section, the reader may wonder if, in this particular 
case, we may reasonably claim that “what is true for E. coli is also true for 
the human”. We have shown the human tRNA data (Table 9-5), which 
would make sense of a negative correlation between CAI (or CAAI) and 
AT% in human genes. However, we have not yet seen such a negative 
correlation for human genes. So here I will just briefly mention that the 
negative correlation is present and statistically significant for not only 
human, but also the cow, the mouse and the budding yeast. 

6. WILL AT-RICH MRNA BE TRANSLATED 
INEFFICIENTLY? 

One highly pertinent question arising from the reasoning in the previous 
section is whether AT-rich mRNAs will be translated inefficiently because 
of the increased pairing of U-ending codons with the G at the tRNA 
anticodon wobble site. The answer to this question may not be obvious and 
requires some discussion from an evolutionary point of view.  

According to the canonical codon-anticodon pairing rules first proposed 
for fungal mitochondria (Heckman et al., 1980; Martin et al., 1990), Y-
ending codons can be wobble-translated by tRNA with a wobble G at the 
anticodon because G can not only pair with C but also wobble-pair with U, 
and R-ending codons by tRNA with a wobble U at the anticodon (through 
U/A and U/G pairing). To facilitate the exposition, let us designate the 
nucleotide at the anticodon wobble site as A1, G1, C1 and U1 respectively 
(where the superscript 1 indicates the wobble site at the first position of the 
tRNA anticodon), and that at the third codon position as A3, G3, C3 and U3, 
respectively. These canonical codon-anticodon pairing rules imply two 
Watson-Crick pairs, U1/A3 and G1/C3, as well as two wobble pairs, U1/G3 
and G1/U3, respectively. 

If U1/G3 pair is not as good as C1/G3 in term of translation efficiency and 
accuracy, then there should be selection in favor of the origin of tRNA genes 
with C1 to eliminate the necessity of U1/G3 pairs in translation. Similarly, if 
G1/U3 is not as good as A1/U3, then selection should favor the origin of 
tRNA genes with A1 to eliminate the necessity of G1/U3 pairs in translation. 
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Tables 9-5, 9-6 and 9-7 show that A-ending and G-ending codons are 
frequently translated by separate tRNAs with U1 and C1, respectively, but C-
ending and U-ending codons are almost always translated by tRNA with 
only G1. This implies that G1/U3 pairs may be as good as perfect Watson-
Crick pairs (e.g., A1/U3, and G1/C3), i.e., selection for the origin of tRNA 
genes with A1 to reduce or eliminate G1/U3 pairs is weak. In contrast, wobble 
U1/G3 likely is not as good as perfect Watson-Crick pairing, and selection 
has resulted in the origin of tRNAs with C1 to replace the U1/G3 pair by the 
C1/G3 pair in translation. In other words, both C1 tRNA and U1 tRNA are 
needed to translate G-ending and A-ending codons, respectively. 

If the reasoning above is correct, i.e., if G1/U3 pairs are as good as 
Watson-Crick pairs, then an increase in U-ending codons with a consequent 
increase in G1/U3 pairs during translation of AT-rich genes does not 
necessarily imply inefficient translation, although such an increase would 
still reduce CAI or CAAI. If this is true, then CAI and CAAI are not good 
measures of translation efficiency for AT-rich genes.  

On the other hand, if G1/U3 pairs are not as good as Watson-Crick pairs 
but A1 tRNA did not originate because of some unknown evolutionary 
constraints, then AT-rich genes may be translated inefficiently and the 
negative correlation between CAI (and CAAI) and AT% does not invalidate 
their application to AT-rich genes. An extension of this argument is that if 
AT-rich genes cannot be translated efficiently, yet the cell requires a large 
quantity of proteins from some of these genes, then the only way to meet the 
cellular need is to increase transcriptional efficiency to produce many 
mRNAs. This would also contribute to the association of low CAI (or CAAI) 
and high gene expression at the transcription level. As I have mentioned 
before, such negative correlation between the two has already been 
documented (dos Reis et al., 2003; Jia and Li, 2005). This is another warning 
against interpreting CAI (or CAAI) as an index of gene expression at the 
transcriptional level. 

7. CODON ADAPTATION INDEX AND 
PROTEOMICS: CLARRIFICATION OF SOME 
MISUNDERSTANDINGS 

Proteins are involved in all three essential biological processes, i.e., DNA 
replication, transcription and translation. Their functions include metabolic 
interactions, signal transduction, gene regulation, transport, cellular 
structures, organelle constituents, storage reserves, protection, and cellular 
homeostasis. Normal function of living cells depends much on normal 
production of proteins, and many of the known human genetic diseases are 
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caused by the overproduction or underproduction of certain proteins. Many 
human genetic diseases can be attributed to the overproduction or 
underproduction of certain proteins. Therefore, proteins constitute one of the 
most important cellular components in the cell, and the understanding of 
their interactions is believed to be the key to many unresolved biological 
problems today, including cancer (Chen et al., 2005; Sparre et al., 2005).  

Given the importance of proteins in understanding cellular functions, a 
biologist naturally would wish to characterize the protein production, 
especially the temporal change of protein production and their interactions 
(Figeys, 2002; Sloane et al., 2002; Wilson and Nock, 2002), in the living 
cells. However, it has been difficult to characterize the expressed proteome 
in spite of the recent advances in protein separation, identification and 
quantification (Figeys, 2003b, 2003a; Vasilescu and Figeys, 2006; Washburn 
et al., 2001; Yates, 2004a, 2004b). Large-scale proteomics is handicapped by 
the difficulties in (1) separating certain proteins, especially hydrophobic 
membrane proteins and those with extreme isoelectric points and (2) 
identifying rare proteins (Chen et al., 2005; Gygi et al., 1999; Kolkman et 
al., 2005; Sparre et al., 2005; Tian et al., 2004).  

One alternative is to characterize the expressed transcriptome and predict 
the proteome from the transcriptome. The ease in generating transcriptomic 
data by the microarray (Diehn et al., 2000; Epstein and Butow, 2000; 
Gaasterland and Bekiranov, 2000; Holstege et al., 1998; Schena, 1996; 
Schena, 2003) or SAGE (Madden et al., 1997; Saha et al., 2002; Velculescu 
et al., 1995; Velculescu et al., 1997; Zhang et al., 1997) experiments has 
fostered the hope that protein production can be predicted from 
transcriptomic data. In particular, the reproducibility of the SAGE method 
has been shown to be excellent (Dinel et al., 2005).  

However, the relationship between the mRNA and protein levels in cells 
is either poor or moderate (Baliga et al., 2002; Chen et al., 2002; Futcher et 
al., 1999; Griffin et al., 2002; Gygi et al., 1999; Ideker et al., 2001; Tian et 
al., 2004). The best result was obtained by using the transcriptomic data 
obtained by SAGE (Velculescu et al., 1997) and the proteomic data acquired 
by 2D-gel electrophoresis and capillary liquid chromatography-tandem mass 
spectrometry (Gygi et al., 1999), with a correlation of 0.93 between the 
mRNA abundance and the protein abundance. However, this reported 
correlation of 0.93 is misleading because it results mainly from a few 
outlying points with very high mRNA abundance and protein abundance. 
This problem is illustrated in Figure 9-7. 
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Figure 9-7. Inappropriate use of Pearson correlation in case of outliers. The figure has 23 
points with 22 being randomly generated. The correlation is near 0 when the outlying point is 
removed. 

 
It is statistically inappropriate to use such a correlation coefficient to 

characterize the relationship between two variables (e.g., between the 
mRNA abundance and the protein abundance) with outliers. The correlation 
coefficient between mRNA abundance and protein abundance drops quickly 
from 0.93 to around 0.3 when the few extremely highly expressed genes 
were removed (Gygi et al., 1999). 

While transcriptomic data measure the number of mRNA molecules in 
the cell, it is not expected to be a good predictor of protein production by 
itself. Two protein-coding genes may have the same mRNA level, but one 
may be translated more efficiently than the other and consequently produce 
more proteins. Translation efficiency is partially reflected by the codon 
usage and amino acid usage. If a mRNA uses codons recognized by most 
abundant tRNA, and if the resulting protein is made mostly of abundant 
(typically energetically cheap) amino acids, then we expect more proteins 
produced from this mRNA than an alternative mRNA whose codons are 
recognized by few tRNA and whose resulting proteins are made mostly of 
rare and energetically expensive amino acids. For this reason, codon usage 
bias and amino acid usage can improve significantly the prediction of protein 
abundance, especially in predicting protein abundance with low mRNA 
abundance. CAI measures the component of translation efficiency reflected 
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by codon usage bias and is expected to contribute to predicting protein 
production. 

There are often misunderstandings of CAI. For example, it was thought  
“that codon bias is a measure of protein abundance” (Gygi et al., 1999) and 
expected to be able to predict protein production by itself. The codon usage 
bias in Gygi et al. (1999) is CAI (Sharp and Li, 1987) taken from the yeast 
proteome database (YPD) (Hodges et al., 1999). As we know now, CAI is 
not a measure of protein abundance. Instead, it is a measure of how well a 
coding sequence is adapted to the translation machinery (Bulmer, 1991; 
Ikemura, 1981; Sharp and Li, 1987; Xia, 1998b). If two protein-coding genes 
of equal lengths have the same copy number of their mRNA, then the gene 
with a higher CAI value is expected to be translated more efficiently than the 
one with a lower CAI, everything else being equal. CAI does not indicate 
whether a gene will be transcribed or not. A gene may be highly expressed in 
one particular tissue at one particular time, but it may be turned off in other 
tissues or at other times, and consequently has no mRNA in the cell. Thus, 
the codon usage bias should not be used alone to predict protein abundance 
as previously suggested (Futcher et al., 1999), but instead should be 
incorporated into a model together with the mRNA abundance to predict 
protein abundance. 

The misunderstanding of CAI by Gygi et al (1999) led to wrong data 
analysis and wrong conclusions. I particularly wish to highlight the 
significance of the result concerning gene ENO1 because the mRNA and 
protein abundance of this gene was used by Gygi et al. (1999) to support two 
major claims in their paper. First, they concluded that mRNA abundance is 
insufficient to predict the protein abundance. This claim is also echoed by 
others (Griffin et al., 2002; Tian et al., 2004). Instead of providing statistical 
substantiation, Gygi et al. (1999) provided a concrete example to show that 
genes with similar mRNA abundance such as ENO1 and FRS2 both with the 
mRNA abundance value of 0.7 differ in protein abundance by more than 20-
fold (e.g., the protein abundance values for ENO1 and FRS2 are 44.2 and 
2.3, respectively).  

Although ENO1 and FRS2 do not differ in mRNA abundance, they differ 
greatly in CAI which is 0.93 and 0.451 for ENO1 and FRS2, respectively. In 
other words, ENO1 mRNA is expected to be translated into proteins much 
more efficiently than FRS2. Given the same mRNA abundance of 0.7, we 
naturally should expect the ENO1 mRNA to be translated into many more 
copies of proteins than the FRS2 mRNA. This is exactly what has been 
observed, a vindication of incorporating codon usage bias in a model for 
predicting the protein abundance. In fact, there are 13 genes with the lowest 
average mRNA abundance of 0.7 (Gygi et al., 1999), and ENO1 is the only 
gene with a very high CAI value and also a high protein abundance value of 
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44.2. The predicted protein abundance value for ENO1 is almost exactly the 
same as the observed value when both mRNA and CAI are incorporated into 
the prediction (Xia, 2005b). So there is nothing extraordinary for ENO1 to 
have its protein abundance much higher than other genes with similar 
mRNA abundance. One should not use its high protein production relative to 
FRS2 as evidence to support the claim that mRNA abundance is a poor 
predictor of protein abundance. 

The second major claim made by Gygi et al. (1999) is that codon usage 
bias is a poor predictor of protein production because ENO1 and ENO2 both 
have high CAI values but the protein abundance value for the latter is much 
greater than the former. As mentioned before, codon usage bias says nothing 
about whether a gene will be transcribed or not. It measures how efficient a 
transcribed mRNA can be translated by the translation machinery in the cell. 
As Gygi et al. (1999) has recognized, ENO1 is down-regulated, and ENO2 
up-regulated in transcription, in their culture conditions, with the former has 
few transcripts relative to the latter (0.7 and 289, respectively). The 
observation that they have different protein abundance does not in any way 
belittle the utility of codon usage bias in predicting protein abundance. In 
fact, the predicted protein abundance value for ENO2 is also quite similar to 
its observed value (Xia, 2005b), i.e., consistent with the model that both 
mRNA abundance and codon usage bias are important predictors of protein 
abundance. As the previous contrast between ENO1 and FRS2 has shown, 
codon usage bias is crucial in supplying the answer missed by mRNA 
abundance alone. 

This illustration above vindicates the wisdom of R. A. Fisher that “No 
aphorism is more frequently repeated in connection with field trials, than 
that we must ask Nature few questions, or ideally, one question at a time. 
The writer is convinced that this view is wholly mistaken. Nature, he 
suggests, will respond to a logical and carefully thought-out questionnaire; 
indeed, if we ask her a single question, she will often refuse to answer until 
some other topic has been discussed” (Fisher, 1926). When Gygi et al. 
(1999) asked if CAI could predict protein production, nature refused to give 
them the right answer. When they asked if mRNA abundance could predict 
protein production, they again were given a wrong answer. However, when 
both mRNA and CAI were taken into account to predict protein production, 
a very good answer was given (Xia, 2005b). 

The example above reminded me of an anecdote involving the former 
Chinese premier Zhou Enlai that highlights the importance of having a 
global view of things. After the establishment of the People’s Republic of 
China, the government launched a nationwide campaign against 
pornography and prostitution. The effort resulted in a complete eradication 
of prostitution in mainland China. In a news conference celebrating this 
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major socialist achievement, a western reporter suddenly asked Premier 
Zhou if China still had prostitutes. All Chinese officials present were 
surprised to hear Premier Zhou answering “Yes”, and all applauded when 
Premier Zhou added that “They are in Taiwan”. It turned out that the western 
reporter was hoping that Premier Zhou would answer “No” given the special 
occasion so that he could then claim that Chinese leadership did not consider 
Taiwan as part of China. A global view of things by Premier Zhou saved the 
day. It is time for biologists to take a global view of the cell instead of asking 
nature a single question at a time. 

As I mentioned before, the utility of an index of translation efficiency 
ultimately depends on its ability to predict protein abundance. Two previous 
publications (Futcher et al., 1999; Gygi et al., 1999) have evaluated the 
utility of CAI by studying its relationship to protein production. Futcher et 
al. (1999) noted that log-transformation of the protein abundance data 
linearized its relationship with CAI and stabilized variance of protein 
abundance over the range of CAI. I present in Table 9-8 Pearson correlation 
coefficients between the log-transformed data and the two indices of codon 
usage bias, CAAI and CAI. Two points are worth noting. First, there is a 
clear relationship between the two variables, indicating that these indices of 
codon usage bias can contribute to a better prediction of protein abundance. 
Second, CAAI consistently exhibits a highly correlation than the 
conventional CAI. 

Table 9-8. Pearson correlation coefficients between protein abundance and indices of codon 
usage CAAI and CAI. 
 lnGygi(2) lnFut1(2) lnFut2(2) 
CAAI 0.7072 0.8464 0.7372 
CAI-Gygi(1) 0.6989 0.8055 0.7229 
CAI-Futcher(1) 0.7024 0.7736 0.5935 
(1) CAI values differ slightly between Futcher et al. (1999) and Gygi et al. (1999), likely 

caused by using slightly different reference sets (which were not specified in the papers). 
(2) Log-transformed protein abundance in Futcher et al. (1999) and Gygi et al. (1999). 

Protein abundance was measured by Futcher et al. (1999) in glucose and ethanol media, 
designated lnFut1 and lnFut2, respectively in the Table. 

 
The misunderstanding of codon usage bias by Gygi et al. (1999) and their 

conclusion that codon usage bias is a poor predictor of protein abundance 
have the unfortunate consequence that several subsequent studies of the 
relationship between mRNA and protein levels have ignored codon usage 
bias all together (Baliga et al., 2002; Chen et al., 2002; Griffin et al., 2002; 
Ideker et al., 2001; Tian et al., 2004) by citing conclusions in Gygi et al. 
(1999). It seems that science can move backwards quite easily. 



 

 
 

Chapter 10 

PROTEIN ISOELECTRIC POINT 
 

 
 

1. INTRODUCTION 

Proteins have ionizable groups such as carboxyl groups and amino 
groups. Since the charge of these groups depends on pH, a protein molecule 
can have different charges at different pH. The isoelectric point of a protein 
is the pH at which the protein carries not net charge.  

Why should a book entitled “bioinformatics and cell” have a chapter on 
protein isoelectric point (pI) and its computation? There are several answers 
to this question, all related to the aphorism that proteins are the workhorses 
in the cell and that an understanding of a living cell cannot come into shape 
without a good understanding of proteins housed in the cell.  

First, pI is important in understanding enzyme-substrate interactions. An 
enzyme and its substrate should not be both positively charged or both 
negatively charged because the two will repulse each other. To know 
whether the enzyme is positively charged or negatively charged at a given 
ambient pH, we need to know pI of the protein. The protein is positively 
charged if its pI is greater than the pH and negatively charged if its pI is 
smaller than the pH.  

Second, biologists have tried for a long time to characterize and analyze 
proteins in living cells. Large-scale proteomic research started with sodium 
dodecyl sulfate polyacrylamide gel electrophoresis or SDS-PAGE (Laemmli, 
1970). Subsequent perfection of isoelectric focusing leads to the 
development of 2D-SDS-PAGE. While large-scale peptide analysis methods 
have been developed by John Yates and colleagues recently (Washburn et 
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al., 2001; Yates, 2004a, 2004b), 2D-SDS-PAGE remains the most frequently 
used proteomic method. Indeed, 2D-SDS-PAGE has almost become 
synonymous to proteomic research (Liebler et al., 2002, p. 36). 
Understanding 2D-SDS-PAGE requires an understanding of pI. For 
example, if the pI values of proteins in a cell ranges from 2 to 14 and you 
intend to use an isoelectric-focusing strip with a fixed pH range between 3 
and 7 in your 2D-SDS-PAGE, then you know that you will miss many 
proteins. It is now routine for researchers to extract all annotated coding 
sequences in a genome, translate them into proteins, obtain their molecular 
mass and theoretical pI values, and generate an in silico 2D-SDS-PAGE to 
improve the experimental design of a real 2D-SDS-PAGE. This in silico 2D-
SDS-PAGE can also be used as the expected pattern to compare with the 
observed pattern on a real 2D-SDS-PAGE. Those proteins found at the same 
location in both the in silico gel and the real gel may be assumed to have 
undergone no posttranslational modification, whereas those whose 
coordinates do not match between the in silico gel and the real gel are good 
candidates for studying posttranslational modification. 

Third, the stability of a protein often depends on the electrostatic 
interaction between its positively charged and negatively charged groups on 
the surface of protein at its physiological condition. When the pH deviates 
substantially from the physiological pH, the electrostatic interaction is 
disrupted and the protein will denature. For example, at extremely low pH 
(acidic), the carboxyl group is protonated and negative charges are 
decreased, whereas more of the amino groups are positively charged. Such a 
protein will tend to lose its stability, become less compact and finally 
denature. 

Fourth, if a highly expressed protein happens to have its pI equal to the 
cytoplasmic pH, then there is no electrostatic repulsion among different 
copies of this protein when it is mass produced. Because the protein is not 
charged, its solubility is the lowest, and different copies of this protein may 
aggregate and precipitate, which is often bad for the cell. The “amyloid 
precursor protein” causing Alzheimer disease and the prion protein causing 
the mad cow disease are examples of the undesirable protein aggregation and 
precipitation. From an evolutionary point of view, one should expect 
directional selection driving the protein pI away from the physiological pH, 
and the directional selection should be strong in highly expressed proteins 
than in lowly expressed proteins. There are known cases where natural 
selection has shaped protein pI. For example, Helicobacter pylori, a bacterial 
species colonizing mammalian stomach, features a set of membrane proteins 
that are positively charged, and this positively charged membrane is likely 
important in alleviating the influx of protons (H+) in the acidic stomach fluid 
into the bacterial cytoplasm (Sachs et al., 2003; Xia and Palidwor, 2005). 
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This chapter begins with a brief review of the basic concepts of 
biochemistry related to computing protein pI. The method of computing 
protein pI based on computer iterations is then presented. This is then 
followed by special sections illustrating bioinformatics applications of pI.  

2. AMINO ACID AND PROTEIN ISOELECTRIC 
POINT 

We need to know the ionization constant (Ka) and a few associated 
concepts. Ka measures the tendency of a chemical to give up proton. With an 
ionizing reaction below involving a weak acid: 

- +RCOOH=RCOO  + H  (10.1) 

Ka is expressed as  

- +

a
[RCOO ][H ]

[RCOOH]
K =  (10.2) 

which will be re-designated as Ka1 hereafter for the ionization constant in an 
amino acid ionization reaction involving a weak acid. The ionization 
constant involving a weak base will be designated as Ka2.  

Take the base-10 logarithm (lg) of both sides of Eq. (10.2), we have 

-
+

a1
[RCOO ]lg lg[H ]+ lg
[RCOOH]

K =  (10.3) 

Recall that, in chemistry, pH is defined as –lg[H+] and pKa1 as -lgKa1. So 
the equation above becomes the well known Henderson-Hasselbalch 
equation: 

-

a1
[RCOO ]+lg
[RCOOH]

pH pK=  (10.4) 

For weak bases such as amines, the Henderson-Hasselbalch equation is 

2
a2 +

3

[NH ]+lg
[NH ]

pH pK=  (10.5) 
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An amino acid is a weak base and a weak acid at the same time. It exists 
as a cation at low pH, and an anion at high pH. The amino acid at the 
intermediate pH when it carries no net charge (i.e., the positive and the 
negative charge cancel each other) is called a zwitterion: 

a1 a2+ + - -
3 3 2

pK pK
NH -RCH-COOH NH -RCH-COO NH -RCH-COO⎯⎯⎯→ ⎯⎯⎯→←⎯⎯⎯ ←⎯⎯⎯
 

The isoelectric point of an amino acid is defined as the pH at which the 
amino acid exists as a zwitterion. Thus, given the condition that [RCOO-] in 
Eq. (10.4) equals [NH3

+] in Eq. (10.5), i.e., the negative charge equals the 
positive charge, we have  
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where [AA] is the total concentration of the amino acid. The final pH in Eq. 
(10.6) is defined as the isoelectric point of the amino acid and is designated 
by a new symbol pI, i.e., it is the pH at which [RCOO-] = [NH3

+]. The pKa 
values for the ionizable residues are listed in Table 10-1. 

Table 10-1. The ionizable residues in proteins and their approximate pKa values. The last four 
columns illustrate the calculation of pI for protein polA2 from Halobacteria NRC1. 
Amino acid group pKa

(1) pKa
(2) N pH = 3 pH = 4.2227 pH = 5 

Arginine 12.5 12.50 95 95.0000 95.0000 95.0000 
Lysine 10.0 10.79 31 31.0000 31.0000 30.9999 
Histidine 6.0 6.50 38 37.9880 37.8004 36.8352 
Tyrosine 10.4 10.95 40 0.0000 0.0000 0.0000 
Cysteine 8.3 8.30 18 -0.0001 -0.0015 -0.0090 
Glutamic acid 4.1 4.25 115 -6.1226 -55.6905 -97.6374 
Aspartic acid 4.1 3.91 161 -17.6374 -108.2869 -148.8972 
N-terminal α-amino 8.0 8.56 1 1.0000 1.0000 0.9997 
C-terminal α-carboxyl 3.1 3.56 1 -0.2159 -0.8214 -0.9650 
(1) From Berg et al. (2002). 
(2) The average of 16 sets of values that I collected from journal papers, books and web 

pages 
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Each peptide has a H2N- group at one end and a –COOH group at the 
other end, and its charge depends mainly on the ionization of the side chain 
of amino acid residues (Table 10-1). Note that the pKa values depend on 
temperature, ionic strength and other less well defined factors, so that values 
in Table 10-1 are approximate. Also note that there are only seven amino 
acids that have ionizable residues. Other amino acid residues are irrelevant 
in computing protein pI. 

The pI of a protein is typically computed by an iterative method 
illustrated in Table 10-1, with the polA2 protein from Halobacteria NRC1 
and the pKa values in the third column in Table 10-1. First, one counts the 
frequencies of the seven ionizable amino acid residues in Table 10-1 (shown 
in the column headed with ‘N’). Next, for each amino acid, we compute the 
proportion of positively charged and negatively charged residues, designated 
by PNH3+ and PRCCO-, respectively: 
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From equations (10.4) and (10.5), we can derive these two proportions as 
follows: 
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PRCOO- in Eq. (10.8) is interpreted in two similar ways. For example, with 
N Glu residues, PRCOO- means the proportion of the residues that carry the 
negative charge at a given pH. For a single Glu residue, PRCOO- means the 
probability that the residue will be in a negatively charged state. Similarly, 
for N Arg residues, PNH3+ means the proportion of the residues that are 
positively charged at a given pH. For a single Arg residue, PNH3+ means the 
probability that the residue will be in a positively charged state. 

With the 95 Arg residues in Table 10-1, the number of positively charged 
Arg residues, given pH = 3 is 

+
3 3 12.50NH

195 95
10 1ArgArgN N P+ −= = × =

+
 (10.10) 

Similarly, the number of negatively charged Asp residues out of the total 
of 161 in Table 10-1, given pH = 3, is 

-

3 3.91

3 3.91RCOO

10161 17.63745
1 10AspAsp

N N P−

−

−= = × =
+

 (10.11) 

Such calculations are done for each of the amino acids to generate the 
forth column in Table 10-1 headed by ‘pH = 3’. The negative sign is used to 
indicate those that carry negative charges. The summation of the column is 
141.0119, which means that the protein is positively charged at pH = 3.The 
iterative procedure then finds a pH value at which the protein is negatively 
charged. Suppose the next value is pH = 5 and we repeat the procedure to 
generate the last column in Table 10-1 headed by ‘pH = 5’. Now the 
summation becomes -83.6737, i.e., the protein is negatively charged at pH = 
5. Now we know that the pH at which the protein carries no net charge must 
lie between 3 and 5. Suppose we happen to be lucky to try pH = 4.222657 
and repeat the procedure to generate the fifth column in Table 10.1. Now the 
sum of the values is very close to 0, i.e., the positively charged and 
negatively charged residues cancel each other. Therefore, pI = 4.222657. 
Many efficient numerical algorithms are available to find pI (Press et al., 
1992) to any degree of accuracy. The software DAMBE (Xia, 2001; Xia and 
Xie, 2001b) implements this iterative procedure to compute the protein pI. 
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3. GENOMIC PROFILING OF PROTEIN 
ISOELECTRIC POINT: A CASE STUDY WITH 
HELICOBACTER PYLORI 

Genomic pI profiling refers to the computation and graphic display of pI 
for all genome-derived proteins. Figure 10-1 is a genomic pI profiling for 
Escherichia coli. The saddle-shaped distribution is typical of most species 
from prokaryotes to eukaryotes. There are several reasons for such a saddle-
shaped distribution, but we will postpone the presentation of the reasons to 
the last section of the chapter. 
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Figure 10-1. Frequency distribution of pI values of genome-derived proteins from E. coli. 

 
The genomic pI profile for the bacterial pathogen, Helicobacter pylori 

(Figure 10-2) is quite different from that of E. coli. The conspicuous peak of 
basic proteins has been interpreted as a mechanism protecting the organism 
against its acidic environment, i.e., the mammalian stomach (Sachs et al., 
2003; Xia and Palidwor, 2005). Note that a protein is acidic if its pI is 
smaller than 7 and basic if its pI is greater than 7. However, whether the 
protein is positively or negatively charged depends on its environmental pH. 
A protein will be positively charged when the environmental pH is lower 
than its pI, and negatively charged when the environmental pH is higher than 
its pI. For H. pylori, its environmental pH is near 1 but its cytoplasmic pH 
can be maintained around pH near 5. Most of its proteins have their pI 
greater than its cytoplasmic pH and are consequently positively charged. 

Why does the pI profile of H. pylori miss the conspicuous peak visible in 
the pI profile of E. coli around pH = 5? From an evolutionary point of view, 
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when we see differences among different species, we typically think in two 
ways. The first is that the pI profile has little to do with the survival and 
reproduction of the species and can drift in any way and take up any shape. 
The alternative hypothesis is that the differences between the species are 
respectively beneficial to the organisms living in different environments. It is 
in this context that we will examine in detail the pI profile of H. pylori. 
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Figure 10-2. Frequency distribution of pI values of genome-derived proteins from H. pylori. 

H. pylori (Figure 10-3) is one of the terminal lineages in the highly 
invasive Helicobacter complex. It thrives in the acidic environment of 
mammalian stomach, causing gastric and duodenal ulcers and gastric cancer 
in human (Correa, 1997; Hamajima et al., 2004; Hunt, 2004; Menaker et al., 
2004; Siavoshi et al., 2004).  

 

Figure 10-3. Microscopic image of H. pylori (From Paul Stokes Hoffman, University of  
Virginia). 
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Being an acid-resistant neutralophile (Bauerfeind et al., 1997; 
Rektorschek et al., 2000; Sachs et al., 1996; Scott et al., 2002), H. pylori is 
capable of surviving for at least 3 hours at pH 1 with urea (Stingl et al., 
2001) and maintaining a nearly neutral cytoplasmic pH between pH 3.0 and 
7.0 (Matin et al., 1996; Scott et al., 2002; Stingl et al., 2002b). These 
properties allow it to survive and reproduce in the human stomach where the 
gastric fluid has a pH averaging about 1.4 over a 24-h period (Sachs et al., 
2003).  

The buffering action of the gastric epithelium and limited acid diffusion 
through the gastric mucus were previously thought to protect the bacterium 
against stomach acidity, but both empirical studies (Allen et al., 1993) and 
theoretical modeling (Engel et al., 1984) have suggested that the protection 
is rather limited (Matin et al., 1996; Sachs et al., 2003). Recently it has also 
been shown that mucus does not hinder proton diffusion and a trans-mucus 
pH gradient is abolished when the luminal pH drops to < 2.5 (Baumgartner 
and Montrose, 2004). It is therefore necessary for H. pylori to have acid-
resistance mechanisms to colonize the gastric mucosa successfully (Sachs et 
al., 2003). 

H. pylori has evolved two mechanisms protecting itself against the acidic 
environment in the mammalian stomach. The first involves the urease gene 
cluster ureABIEFGH. The constitutively expressed cytoplasmic urease, 
coded by ureAB, catalyzes urea to generate 2NH3 + CO2 to buffer against the 
H+ influx into either the periplasm or the cytoplasm (Mobley et al., 1991; 
Rektorschek et al., 2000; Sachs et al., 2003; Stingl et al., 2002a) and to 
facilitate the extrusion of H+ from the cytoplasm in the form of NH4

+ (Stingl 
et al., 2002a). However, urease is an apoenzyme requiring a nickel to be 
active. The ureEFGH gene cluster, whose expression is acid-induced, codes 
for nickel-sequestrating proteins that insert nickel into the urease, leading to 
increased and sustained urease activity (Sachs et al., 2003; Wen et al., 2003; 
Williams et al., 1996).  

The urease, once activated, naturally needs a constant supply of urea as 
its substrate, and the cell has two sources of urea supply, one intrinsic and 
one extrinsic. The extrinsic source refers to urea present in saliva and 
stomach fluid. The exposure to gastric acid results in a large increase in urea 
influx into the cell due to the pH-gating of the urea channel protein UreI 
(Bury-Mone et al., 2001; Weeks et al., 2000). The intrinsic source comes 
from efficient conversion of arginine to urea in the cytoplasm by the highly 
expressed arginase in H. pylori (Mendz and Hazell, 1996). For this reason, 
arginine is underused in H. pylori proteins and the positively charged 
membrane in H. pylori is mainly maintained by a surplus of positively 
charged lysine residues (Xia and Palidwor, 2005). 

The second acid-resistant mechanism in H. pylori is the restriction of 
acute proton entry across its membranes by having a high frequency of 
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positively charged amino acids in the inner and outer membrane proteins 
(Sachs et al., 2003; Scott et al., 1998; Valenzuela et al., 2003). This is 
supported by recent discovery of a basic proteome (Tomb et al., 1997), a set 
of basic membrane proteins (Baik et al., 2004) in H. pylori, and an extensive 
genomic analysis (Xia and Palidwor, 2005). 

The membrane proteins have long been suspected to play an important 
role in acid resistance in H. pylori (Alm et al., 2000; Huynen et al., 1998; 
Solnick et al., 2004; Yamaoka et al., 2002). In a recent characterization of 
34 membrane proteins of H. pylori STR 26695 (Baik et al., 2004), four 
proteins (HP0243, HP0072, HP0512 and HP1563) have pI values ranging 
from 5.86 to 6.25, whereas the rest 30 have pI greater than 7. The average pI 
is 8.9221 for these 34 membrane proteins, whereas the average calculated pI 
value for the other 1542 proteins annotated in the genomic sequence 
(NC_000915) is 8.2147. The two average pI values are significantly 
different by a two-sample t-test (DF = 1572, t = 2.075, p = 0.0382, two-
tailed test). Thus, membrane proteins are significantly more basic than the 
rest of the proteins in H. pylori. 

A comparison of the H. pylori membrane proteins with those in the 
related H. hepaticus, may shed light on whether the basic membrane proteins 
in H. pylori result from adaptation in response to the acidic environment. If 
H. hepaticus, which is not acid resistant, also features a set of equally basic 
or even more basic membrane proteins, then the set of basic membrane 
proteins in H. pylori is likely an ancestral trait evolved before H. pylori 
became a stomach parasite and consequently should not be interpreted as 
resulting from adaptation in response to the acidic stomach environment. In 
contrast, if the set of basic membrane proteins is unique in H. pylori, then we 
would have more confidence in interpreting the basic membrane proteins as 
an adaptation. 

BLASTing (Altschul et al., 1990; Altschul et al., 1997) those 34 H. 
pylori membrane proteins by their corresponding CDSs against the 1875 
CDSs in the related H. hepaticus genome, with a cutoff e-value of 0.0001, 
revealed several interesting patterns (Xia and Palidwor, 2005). The four H. 
pylori membrane proteins with pI < 7 all have homologs in the H. hepaticus 
genome (NC_004917). In contrast, among the rest of 30 membrane proteins 
with pI > 7, only one has a homolog in the H. hepaticus genome. It is 
important to note that, out of the 1576 predicted protein-coding genes in the 
genomes of H. pylori strain 26695, 938 found matches in the genome of H. 
hepaticus. Similarly, 941 out of 1492 predicted protein-coding genes in the 
genome of H. pylori strain J99 (NC_000921) have matches in the genome of 
H. hepaticus (Suerbaum et al., 2003). With this reference in mind, the 
number of matches for H. hepaticus 26695 membrane proteins in the H. 
hepaticus genome is relatively small. This suggests that nearly all those 
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positively charged membrane proteins in H. pylori are unique, and most 
likely result from the evolution along the H. pylori lineage. These basic 
membrane proteins may either have evolved quickly along the H. pylori 
lineage so as to be beyond recognition in the H. hepaticus genome, or 
represent differential gain of genes in the H. pylori lineage or differential 
loss of genes in the H. hepaticus lineage. In any case, this result lends more 
support to the interpretation that the basic membrane proteins and the 
functional consequence that they alleviate the influx of H+ into the H. pylori 
cell have resulted from adaptation to the acidic environment.  

The interpretation above appears rather straightforward. However, 
science is never so simple. Almost any observed pattern in science can have 
multiple interpretations that seem perfectly consistent with the data. While 
two other alternative hypotheses, i.e., preadaptation and exaptation, have 
been evaluated against the adaptation hypothesis for the origin and 
maintenance of a basic proteome in H. pylori before (Xia and Palidwor, 
2005), there is at least another hypothesis that has not been examined. 

4. AN ALTERNATIVE EXPLANATION OF H. 
PYLORI DATA 

As mentioned previously, a protein in a solution with a pH equal to the 
protein pI is not charged. If highly expressed proteins happen to have their pI 
equal to the cytoplasmic pH, then there is no electrostatic repulsion among 
these proteins when they are mass-produced. Because the proteins are not 
charged, their solubility is at the lowest, and they may aggregate and 
precipitate, which is often harmful to the cell. The “amyloid precursor 
protein” causing Alzheimer disease and the prion protein causing the mad 
cow disease are examples of the undesirable protein aggregation and 
precipitation.  

A prediction arising from this simple observation is that organisms tend 
to avoid having proteins, especially those highly expressed ones, with their 
pI equal to intracellular pH because of the negative (purifying) selection 
against protein precipitation. Because most living organisms have 
physiological pH nearly neutral, their pI profiles should exhibit a saddle-
shaped curve with relatively few proteins at their physiological pH but with 
a peak at the acidic pH range and another peak at the basic pH range. For E. 
coli living in mammalian intestine where the pH is about 8-9, we should 
expect relatively few proteins with pI in the range of 8-9, which is true 
(Figure 10-1). 

One may note that the “valley” of the pI profile for E. coli (Figure 10-1) 
is not all that shallow, i.e., there are still many proteins that have theoretical 
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pI in the range of 8-9. Will these proteins precipitate upon translation? There 
are two possible explanations. One is that some proteins will immediately be 
modified to assume a different pI, and the other is that these proteins are not 
mass produced and the chance of them forming aggregations and precipitate 
is consequently small. We can have a quick examination of the latter by 
plotting CAI or CAAI against pI, with the expectation that proteins with pI 
values in the range of 8-9 should not have high CAI values. Empirical data 
appear to support this expectation (Figure 10-4). Among proteins with CAI 
values greater than 7 and presumably are highly expressed, few have pI 
values in the range of 8-9 (Figure 10-4). 
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Figure 10-4. Few E. coli proteins with pI near environmental pH of 8-9 have high CAI values 
(an index of protein production). CAI and pI computed for all E. coli proteins longer than 33 
amino acid residues, with the reference codon usage table Eeco_h.cut by using DAMBE (Xia, 
2001; Xia and Xie, 2001b). 

The data and reasoning above suggest that highly expressed proteins may 
indeed evolve (through their coding genes) to avoid having pI near the 
physiological pH of the organism as a mechanism to avoid forming protein 
aggregation and precipitation. This hypothesized precipitation-avoidance can 
explain the contrasting pI profiles in E. coli (Figure 10-1) and H. pylori 
(Figure 10-2). E. coli lives in mammalian intestine with a pH around 8-9. So 
we expect it to have few proteins with pI in the range of 8-9 because such 
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proteins would tend to be uncharged, form aggregations and precipitate. For 
H. pylori, we expect it to have few proteins to have pI around 5 because that 
is its physiological (intracellular) pH when colonizing the mammalian 
stomach. This explains why the peak in the pH range 5-7 in E. coli (Figure 
10-1) should be missing in H. pylori (Figure 10-2). 

Now we have two valid hypotheses both of which can explain why H. 
pylori should have a basic set of proteins (or having its pI profile shifting to 
the right). Both hypotheses invoke selection, and interpret the basic set of 
proteins as an adaptation in response to selection in the acidic environment. 
However, the two hypotheses differ in what selection force is operating. To 
facilitate discussion, let us designate the adaptation hypothesis presented in 
the previous section as positive-shell hypothesis (PSH for short) and the 
adaptation hypothesis in this section as the precipitation-avoidance 
hypothesis (PAH for short). 

In summary, PSH states that basic proteins in H. pylori are favored by 
selection because they foster the formation of a positively charged 
membrane to alleviate proton influx into the cell, whereas PAH argues that 
the basic proteins are favored (and acidic proteins selected against) to avoid 
precipitation. One may note that the two hypotheses are not mutually 
exclusive, and one may find supportive evidence for both hypotheses.  

When the two hypotheses are expressed explicitly in this way, they 
clearly have different predictions. If PSH is correct, then it is the membrane 
proteins that should be affected most and they should spearhead the change 
in pI than the rest of the proteins. We have already investigated a small set of 
membrane proteins identified before (Baik et al., 2004) in the previous 
section. We may subject all annotated proteins in H. pylori to bioinformatics 
tools, such as PSORT (Nakai and Horton, 1999), that reveal subcellular 
localization of proteins to identify other membrane proteins and check if it is 
generally true for membrane proteins to evolve towards an increase pI in H. 
pylori relative to its non-acid-resistance sister lineages. 

In contrast, if PAH is correct, then it is those originally acidic and highly 
expressed proteins that are under the strongest selection pressure to evolve to 
have larger pI values. Thus, discriminating between these two hypotheses is 
reduced to test these two predictions. I consider it as a good idea to stop here 
and let the reader evaluate the two hypotheses. 



 

Chapter 11 

BIOINFORMATICS AND TWO-DIMENSIONAL 
PROTEIN SEPARATION 
 

 
 

1. INTRODUCTION 

In Chapter 10 we have briefly mentioned how to generate an expected 
pattern of proteins separated by their differences in isoelectric point and 
molecular mass, by assuming no posttranslational modification. This can 
then be compared with the actual separation pattern obtained by using 2D-
SDS-PAGE which remains arguably the most frequently used proteomic 
method (Liebler et al., 2002, p. 36). Such bioinformatics tools are valuable 
for identifying proteins that are the products of alternative splicing or that 
have undergone posttranslational modification.  

Alternative splicing has now been recognized as the most fundamental 
mechanism in generating the complexity of multicellular eukaryotes. A 
limited number of protein-coding genes in multicellular eukaryotic genomes 
can generate a huge number of different proteins through alternative splicing 
(Ast, 2004). Even a single Dscam gene in Drosophila melanogaster can 
generate 38016 protein variants through alternative splicing (Graveley, 2005; 
Schmucker et al., 2000). While alternative splicing is long known for 
generating the diversity of immunoglobulins, recent studies have shown that 
it affects the expression of many other genes (Kazan, 2003; Lipscombe, 
2005; Stamm et al., 2005), with an estimate of up to 60% of human genes 
(Kornblihtt, 2005; Lee and Wang, 2005) being involved in alternative 
splicing. Large-scale transcriptomic approaches such as microarray (Diehn et 
al., 2000; Epstein and Butow, 2000; Gaasterland and Bekiranov, 2000; 
Holstege et al., 1998; Schena, 1996; Schena, 2003) or SAGE (Madden et al., 
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1997; Saha et al., 2002; Velculescu et al., 1995; Velculescu et al., 1997; 
Zhang et al., 1997) experiments are rather limited in detecting or predicting 
protein products resulting from alternative splicing, and direct proteomic 
methods are needed to characterize the diversity of protein products in 
multicellular eukaryotic cells. 

Protein posttranslational modifications represent another biochemical 
mechanism contributing to the diversity of proteins in living cells. They 
typically involve changes in molecular mass or in charge. Such modified 
proteins will migrate to locations on the gel different from what we expect 
assuming no modification. Therefore, those proteins found at the same 
location in both the in silico gel and the real gel may be assumed to have 
undergone no posttranslational modification, whereas those whose 
coordinates do not match between the in silico gel and the real gel are good 
candidates for studying posttranslational modification. 

The scientific rationale of the 2D-SDS-PAGE is outlined first in this 
chapter for readers not familiar with the method. This is followed by the 
simple computation needed to generate the in silico 2D-SDS-PAGE.  We 
have already learned how to obtain the isoelectric point (pI) for each protein 
in the previous chapter. We only need to learn how to obtain the values for 
the other dimension (i.e., the molecular mass of the protein) and how to 
graphically present the results. 

2. SCIENTIFIC RATIONALE BEHIND THE 2D-SDS-
PAGE 

2D-SDS-PAGE separate proteins by their differences in molecular mass 
and isoelectric point (pI). One may wonder why, given that proteins differ in 
many properties, should protein separation be based on their molecular mass 
and pI. Ideally, proteins should be separated on the basis of their properties 
least affected by the gel environment (e.g., loading buffer). Proteins have 
many different properties, such as molecular mass, charge and structure that 
can all affect protein mobility in the gel. Protein structures, in particular, are 
prone to environmental perturbations. In contrast, the molecular mass of a 
protein is stable and highly predictable as long as no active proteases are 
present in the gel. Similarly, each protein has its characteristic isoelectric 
point (i.e., the pH at which the protein does not carry any net charge, 
designated as pI), although it is not a protein property as rigid as the 
molecular mass. For example, even at a fixed pH, a certain amino group may 
become protonated at time t1, deprotonated at time t2, reprotonated at time t3, 
and so on. However, the proportion of such amino groups, or the probability 
of such an amino group, being protonated remains the same for a given pH, 
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leading to a relatively stable pI. For these reasons, protein separation by gel 
electrophoresis should be based on differences in molecular mass and pI, 
performed in a denaturing gel that reduces the proteins to linear structure. 
This is the scientific rationale behind the development of 2D-SDS-PAGE. 

2D-SDS-PAGE first separate proteins based on their differences in pI by 
using immobilized pH gradient (IPG) strips that are available commercially. 
When loaded onto the strip under an electric field, proteins will migrate to 
the location of the strip with the pH equal to their pI values. At that location 
they do not carry any net charge and consequently will not move in the 
electric field. A protein wandering out of the location will carry charges 
again and will be forced back to the location by the electric field. This 
process, called isoelectric focusing (IEF), separate proteins along the pH 
gradient. 

The second dimension of protein separation in 2D-SDS-PAGE is by 
molecular mass. Proteins are denatured by mercaptoethanol or DDT or the 
like. SDS then binds and imparts negative charge to proteins in roughly 
constant proportion to the length of the protein. This implies that each amino 
acid residue will be pulled roughly by the same electric force, and longer 
proteins, being clumsier in passing through porous materials, migrate more 
slowly than shorter ones. This resolves the protein mixture by molecular 
mass.  

The DNA sequence in a living cell typically codes for many proteins. 
Prokaryotes typically have hundreds or thousands of protein-coding genes in 
their genome. The genome of the yeast, Saccharomyces cerevisiae, which is 
a unicellular eukaryote, contains about 6000 protein-coding genes. Human 
genome contains about 30000 protein-coding genes. However, the limited 
number of genes in the genome of multicellular eukaryotes can generate a 
huge number of different proteins through alternative splicing (Ast, 2004). 
Even a single Dscam gene in Drosophila melanogaster can generate 38016 
protein variants through alternative splicing (Graveley, 2005; Schmucker et 
al., 2000). Displaying and detecting these different proteins on a gel is by no 
means trivial. It is valuable for one to have an expected protein separation 
pattern as a reference to compare against the observed separation pattern on 
a 2D gel. 

3. EXPECTED SEPARATION PATTERN OF 2D-SDS-
PAGE FOR THE GENOME-DERIVED 
PROTEOME 

For a well annotated genome, the protein-coding genes and their 
unmodified protein products are known. These annotated proteins are 
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collectively known as the genome-derived proteome (gdProteome), in 
contrast to the conventional definition of a proteome as the collection of all 
quantifiable proteins in the same cell type at a particular developmental time. 
The latter is a cellular property at a specific time. The former, i.e., 
gdProteome, is a genomic property and does not change with cell type or 
time. 

We have already learned how to compute the pI value of a known protein 
sequence. Here we learn how to compute the molecular mass of an amino 
acid sequence. It is important to know that the molecular mass of an amino 
acid sequence is not the summation of the molecular mass of all constituent 
amino acids, because a peptide is formed by the end-to-end condensation of 
amino acids with loss of water. The molecular mass of the resulting amino 
acid residues (Table 11-1) in a peptide, taken from Caltech’s Protein/Peptide 
MicroAnalytical Laboratory at http://www.its.caltech.edu/~ppmal/, is 
consequently smaller than the molecular mass of intact amino acids by about 
18 (i.e., molecular mass of H2O). 

Table 11-1. Molecular mass of amino acid residues. AA3 and AA1 refer to the 3-letter and 1-
letter notation of amino acids. 
AA3 AA1 AA Mass Residue Mass 
Gly G 75.07 57.052 
Ala A 89.10 71.079 
Ser S 105.10 87.078 
Pro P 115.13 97.117 
Val V 117.15 99.133 
Thr T 119.12 101.105 
Cys C 121.20 103.144 
Ile I 131.17 113.160 
Leu L 131.18 113.160 
Asn N 132.10 114.104 
Asp D 133.10 115.089 
Gln Q 146.15 128.131 
Lys K 146.19 128.174 
Glu E 147.10 129.116 
Met M 149.21 131.198 
His H 155.16 137.142 
Phe F 165.19 147.177 
Arg R 174.20 156.188 
Tyr Y 181.19 163.170 
Try W 204.23 186.213 

 
One may note that Ile and Leu have identical residue mass, and Gln and 

Lys have very similar residue mass. They cause problems in de novo 
sequencing of proteins by mass spectrometry (Carroll et al., 2003). 
Bioinformatics tools to alleviate such problems will be presented in a latter 
chapter on proteomics. 
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The molecular mass of a peptide is the summation of the molecular mass 
of the constituent residues plus an extra proton (with a molecular mass of 1) 
at the N-terminal and an extra –OH (with a molecular mass of 17) at the C-
terminal. Thus, the molecular mass of an amino acid sequence 
AACAGGRQD is 847.893.  

The migration distance (D) can be expressed as a function of protein 
molecular mass (M). The following equation appears general enough to fit 
the relationship between D and M very well: 

bMD ae=  (11.1) 

where a and b are constants that can be estimated by a simple linear 
regression of observed D on M values, after log-transformation of the two 
sides of the equation. Figure 11-1 shows the relationship between D and M, 
with a and b estimated to be 16.573 and -0.0283, respectively, based on my 
sample of a subset of secreted proteins of the gastric pathogen Helicobacter 
pylori (Bumann et al., 2002). 

y = 16.573e-0.0283x

R2 = 0.9997
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Figure 11-1. Relationship between migration distance (D) and molecular mass (M). 

Now that we have protein pI, molecular mass and migration distance 
based on the molecular mass, the location of the protein on the 2D gel is 
defined. However, there is still one thing missing. A protein dot in a real 2D-
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SDS-PAGE gel always features at least three types of information. That is, 
not only does it show the protein pI and the migration distance, it also 
reveals the protein abundance (i.e., big dots for highly expressed proteins 
and small dots for lowly expressed proteins). While we already know how to 
draw a protein dot on the 2D graph by using protein pI as the X-coordinate 
and D as the Y-coordinate, we need a measure of protein abundance so that 
different proteins will have different dot size. The in silico gel would not 
look professional if all dots were of the same size. 

We know that highly expressed proteins exhibit strong codon usage bias. 
Thus, we can use an index of codon usage bias as an approximate measure of 
the dot size. This is not ideal, but is used for the lack of anything better. We 
have learned in Chapter 9 a number of indices for measuring codon usage 
bias, such as the effective number of codons (Wright, 1990), the codon 
adaptation index or CAI (Sharp and Li, 1987), the frequency of optimal 
codons or Fop (Ikemura, 1985), and the codon bias index or CBI (Bennetzen 
and Hall, 1982). Comparative studies (e.g.,Coghlan and Wolfe, 2000) 
suggest that CAI is the best in predicting gene expression levels. The in 
silico 2D-SDS-PAGE in Figure 11-2 is produced in this way by using CAI 
as a measure of protein abundance, i.e., the protein coding gene with a large 
CAI value will have a large dot. It includes all protein-coding genes longer 
than 100 in the budding yeast, Saccharomyces cerevisiae.  

The in silico 2D-SDS-PAGE (Figure 11-2) reveals a set of highly 
expressed, positively charged, and relatively small proteins on the lower 
right of the gel. Many of these proteins contain a positively charged binding 
domain that may interact electrostatically with DNA and RNA (recall that 
DNA and RNA, with the phosphate backbone, are negatively charged and 
therefore exhibits affinity to positively charged proteins.  

The protein pI values in Saccharomyces cerevisiae range from 3.2 to 
13.1. This suggests that one should use an isoelectric focusing strip covering 
this range in a real 2D-SDS-PAGE. The in silico 2D-SDS-PAGE for E. coli 
exhibits a similar pattern with a number of small and positively charged 
proteins.  

One may think that, if the yeast proteins already generate a rather 
crowded in silico 2D-SDS-PAGE, then it would be totally messy to display a 
much large number of possible proteins in a multicellular eukaryote. This 
concern seems unnecessary. Recent gene expression studies (e.g.,Velculescu 
et al., 1999) have demonstrated that tissue-specific genes in multicellular 
organisms are relatively few. By taking advantage of such gene expression 
studies, we can produce tissue-specific in silico 2D-SDS-PAGE much 
simpler than that in Figure 11-2. Furthermore, eukaryotic proteins are 
distributed according to subcellular locations. For example, one can isolate 
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ribosomes and study their 82 or so proteins (50 in the large ribosomal 
subunit and 32 in the small subunit). 

Figure 11-2. In silico 2D-SDS-PAGE of genome-derived proteins in the budding yeast, 
Saccharomyces cerevisiae, with four protein dots labeled. The annotations are in the form of 
“Gene name, pI, molecular mass”. RPL4B, RPL18A and RPL39 are protein components of 
the large (60S) ribosomal subunit, all with high pI values and positively charged, which 
indicates the possibility of their electrostatic interaction with the negatively charged 
ribosomal RNA. RPP1A (acidic ribosomal protein P1α) is a component of the ribosomal stalk 
involved in the interaction between translational elongation factors and the ribosome. 
Produced with DAMBE (Xia, 2001; Xia and Xie, 2001b). 
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4. POSTTRANSLATIONAL MODIFICATION 

4.1 Importance in studying posttranslational 
modification 

While outstanding progresses have been made in characterizing 
transcriptomic data by microarray (Diehn et al., 2000; Epstein and Butow, 
2000; Gaasterland and Bekiranov, 2000; Holstege et al., 1998; Schena, 
1996; Schena, 2003) or SAGE (Madden et al., 1997; Saha et al., 2002; 
Velculescu et al., 1995; Velculescu et al., 1997; Zhang et al., 1997) 
experiments, it is important to recognize the fact that an understanding of 
how living cells work ultimately depends on how well we understand the 
proteins in the cell.  

Many proteins are not functional until they have undergone 
posttranslational modification. Take glucagon production for example. The 
gene coding for glucagon is transcribed and translated into proglucagon in 
both pancreas and intestine. However, proglucagon is cut to produce 
glucagon in the pancreas, but glucagon-like peptides in the intestine. The 
difference in glucagon production between the pancreas and the intestine is 
obvious at the protein level but not at the transcriptomic level.  

A similar example is the differential production of different forms of 
somatostatin. Somatostatin SS-14 is secreted from pancreas, whereas SS-28 
is the predominant form produced in the intestine. Both SS14 and SS-28 are 
derived from the same prosomatostatin which in turn is derived from 
preprosomatostatin. The difference in the production of SS-14 and SS-28 
between the pancreas and the intestine is again obvious at the protein level 
but not at the transcriptomic level. 

Posttranslational modification (PTM) of proteins plays a central role in 
protein activation and gene regulation. A fundamental and challenging 
aspect of proteomics is the identification of proteins that have undergone 
PTMs. 

4.2 Posttranslational modification changes the migration 
pattern of proteins on 2D-SDS-PAGE 

Nearly all PTMs result in a deviation of the protein dot from the expected 
in silico location. For this reason, an in silico 2D gel can facilitate the 
identification of PTM events. 

A major class of PTMs involves addition of a function group that may 
alter both protein pI and molecular mass. For example, the amino group in 
the lysine is normally positively charged, but acetylation (the addition of an 
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acetyl group, usually at the N-terminus of the protein or the lysine residue) 
results in the loss of the positive charge and a consequent decrease in pI 
(Figure 11-3). The modification also decreases migration distance because of 
the increased molecular mass. Thus, acetylation of amino acid residues in a 
protein will change the location of the affected protein on the gel. 

             O 
             ║ 
H3C ⎯ C ⎯ S ⎯ CoA  +  H2N ⎯ Protein  ⎯→ 

             O 
             ║ 
H3C ⎯ C ⎯ HN ⎯ Protein  +  H ⎯ S ⎯ CoA  

Figure 11-3. Acetylation. Acetyl Coenzyme A (Acetyl CoA) attaches to the amino group of 
an amino acid residue (e.g., lysine, whose amino group typically exist in the form of ⎯NH3

+). 

Acetylation plays a crucial role in gene expression. Eukaryotic genomic 
DNA typically wraps itself around a group of proteins in the nucleus called 
histones to form nucleosomes. Histones are rich in lysine residues and are 
consequently positively charged. These positively charged lysine residues 
interact electrostatically with the negatively charged DNA backbone to 
facilitate the formation of nucleosomes. RNA polymerases, which transcribe 
RNA from DNA, generally cannot access transcription start site when DNA 
is tightly wrapped around histones. Acetylation of the lysine residues 
removes the positive charge and allows the DNA to “melt” away from 
histones. This opens the transcription start site so that gene transcription can 
happen. 

In vertebrates, when DNA is methylated at the 5-carbon of nucleotide C 
in CpG dinucleotides, these methylated CpG will attract methyl-CpG 
binding domain (MBD) of a number of proteins such as MBD1, MBD2, 
MBD3, and MeCP2. The resulting protein-DNA complex will recruit histone 
deacetylase which will remove acetyl-CoA from lysine residues to restore 
the positive charge of the amino group. These positively charged lysine 
residues then allow histones to bind tightly to DNA to prevent transcription.  

Acetylation is observed only in eukaryotes. Aside from histones in the 
nucleus, about 59% and 90% of proteins in the cytoplasm are acetylated, 
mostly at the N-terminus. Proteins with its N-terminus acetylated are more 
resistant to degradation, with their lifetime extended from between seconds 
and hours up to days. Prokaryotic proteins, mitochondrial proteins and 
chloroplast proteins are not acetylated.  

Another PTM that is unique in eukaryotes is glycosylation which 
involves the attachment of sugar molecules to specific amino acids in a 
polypeptide chain. This modification changes the molecular mass resulting 
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in a change of the protein in the location of the 2D gel. Because small sugar 
molecules are water soluble, glycosylated proteins are also more soluble in 
water. 

Glycosylation exists in two forms. The N-glycosylation involves the 
attachment of sugars to the nitrogen in the side chain of the amino acid 
asparagine (Asn). It requires a characteristic sequence of Asn-Xaa-Ser or 
Asn-Xaa-Thr where Xaa is any amino acid except proline. It is interesting 
that some N-glycosylation sites are never used, indicating that amino acids 
flanking the N-glycosylation sites might also be important. One can use the 
perceptron algorithm detailed in Chapter 5 to investigate this possibility, by 
collecting two sets of peptide sequences containing the N-glycosylation sites 
together with, say, 10 flanking amino acids. One set (the positive group) 
would include all those known to have undergone N-glycosylation in some 
tissue or at certain developmental stage, and the other set (the negative 
group) would include all those “N-glycosylation sites” that have never been 
N-glycosylated. Running the perceptron algorithm or its multilayer 
derivatives should shed light on the differences between the two groups. 

The other form of glycosylation, called O-glycosylation, involves the 
attachment of sugars to the oxygen in the side chain of the amino acids 
serine or threonine. No specific sequence motif is associated with this form 
of glycosylation. 

The most common and ubiquitous form of reversible protein 
modification is phosphorylation, which is crucial in signal transduction and 
enzyme regulation in the cell. It involves the addition of a phosphate (PO4) 
group to the oxygen of the side chain of an amino acid residue, typically 
serine, threonine, and tyrosine residues. Such a modification would increase 
the negative charge of the protein, resulting in a downshift in pI. In addition, 
the involved protein will become more hydrophilic because of the charged 
(polar) phosphate group. 

Reversible protein modifications such as phosphorylation typically 
involve a pair of enzymes working in opposite directions. Recall that 
acetylation and deacetylation require acetylase and deacetylase. 
Phosphorylation requires various protein kinases and dephosphorylation 
requires protein phosphatases. 

Some PTMs involve the modification of certain function groups that may 
also change pI and molecular mass of the involved protein. For example, 
citrullination (or deimination which convert arginine to citrulline) results in 
the loss of charge in normally positively charged arginine residue, resulting 
in a downshift of protein pI. 

Some PTMs involve the removal of certain function groups. For 
example, deamination removes an amide functional group from a chemical 
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compound, and converts asparagine and glutamine residues to aspartic acid 
and glutamic acid residues. The modification reduces pI. 

There are many other PTM events that occur frequently in a living cell 
and that can affect protein pI and migration distance. While great progress 
has been made in characterizing transcripts in living cells, very limited 
progress has been made to understand proteins. The true bottle neck in 
advancing our understanding of a living cell from a systems science point of 
view is proteomic analysis. It is for this reason that nearly all recently 
established institutions with an emphasis on systems biology feature strong 
proteomic expertise. 



 

Chapter 12 

SELF-ORGANIZING MAP AND OTHER 
CLUSTERING ALGORITHMS 
 

 
 

1. INTRODUCTION 

Self-organizing map (SOM) and other clustering algorithms have now 
become very popular in microarray data analysis. It might be beneficial to 
have an overview of clustering and classification methods used in 
bioinformatics before a numerical illustration of these algorithms. In 
particular, we need to understand some special terms in computational 
science such as classification and clustering, as well as supervised and 
unsupervised learning. Because clustering algorithms are frequently used in 
large-scale gene expression studies, especially in microarray experiments, I 
will also provide the scientific context in which the clustering algorithms are 
applied. In addition, because almost all clustering algorithms used in 
analyzing microarray data require a distance or a similarity index, we will 
also have a subsection on distances and similarities to help the reader in 
choosing which distance or similarity index to use. Finally we will 
numerically illustrate two algorithms, the UPGMA algorithm (Sneath, 1962) 
as a representative of the hierarchical clustering and the SOM algorithm 
(Kohonen, 2001) as a representative of the non-hierarchical clustering. These 
two algorithms are perhaps the most frequently used in analyzing microarray 
data. 

1.1 Classification and clustering 

Classification in bioinformatics and computer science is different from 
classification in taxonomy. Instead of referring to a method for organizing 
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species into genera, families and higher taxa, classification in computer 
science refers to a class of algorithms that assign an entity with a set of 
measurable attributes (properties) to pre-defined groups, after the algorithm 
has already learned from a data set, termed training data, with many 
representative entities with known group identification. For example, one 
may characterize the expression of K genes for each of N liver cancer 
patients (Group 1) and M non-liver-cancer persons (Group 2) to obtain data 
in Figure 12-1 and apply a classification algorithm to learn the differences 
between the two groups. The result of learning from the training data can 
then be used to predict whether a person with measured properties E1, E2, …, 
Ek belongs to Group 1 or Group 2.  

Group E1 E2 Ek

1 E1,1 E1,2 … E1,K
1 E2,1 E2,2 … E2,K
…
1 EN,1 EN,2 … EN,K
2 EN+1,1 EN+1,2 … EN+1,K
2 EN+2,1 EN+2,2 … EN+2,K
…  

Figure 12-1. Illustrative data layout for training two-group classification, with the first N 
rows (cases) belonging to Group 1 and the next M rows belonging to Group 2. 

 
Both the single-layer perceptron and the two-group discriminant function 

analysis (better known as Fisher’s linear discriminant function analysis or 
LDA) we covered in Chapter 5 are classification algorithms. In the case of 
perceptron, we may start with two groups of sequences (e.g., 10-base 
sequences flanking the initiation codon AUG from eukaryotes as the positive 
group and those from prokaryotes as the negative group) and the result of 
learning is a matrix that can be used to calculate a score to assign a new 10-
base sequence to either the positive group (if the score is greater than 0) or 
the negative group (if the score is smaller than 0). Perceptron can work with 
either sequences or numerical data, but LDA works only with numerical 
data. Performing LDA with the type of data in Figure 12-1 results in a liner 
discriminant function that can be used to assign a person with measured 
properties E1, E2, …, Ek to Group 1 or Group 2.  

People in computer sciences often talk about supervised learning and 
unsupervised learning. Supervised learning refers to the training process in 
which a classification algorithm derives the classification function from 
training data with known group identification. The training processes 
involving the perceptron algorithm and its multi-layer derivatives, LDA and 
its multi-group derivatives, support vector machine or SVM (Burges, 1998), 
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etc., are all examples of supervised learning. In short, supervised learning is 
associated with classification into predefined groups. 

What is then clustering? Clustering works with input data that do not 
have group identification, i.e., do not have the first column in Figure 12-1. 
Clustering algorithms are classified into hierarchical and non-hierarchical 
clustering algorithms. Representatives of the hierarchical clustering 
algorithms include conventional single-linkage, complete-linkage and 
average linkage algorithms, with the average linkage being used most often. 
The UPGMA (unweighted pair-group method with arithmetic mean) 
algorithm used during the early stage of molecular phylogenetics (Sneath, 
1962; Sokal and Michener, 1958) is one of the average-linkage algorithms. 
Representatives of the non-hierarchical clustering algorithms include the K-
mean (Hartigan, 1975) and self-organizing map or SOM (Kohonen, 2001). 
SOM is used extensively in analyzing microarray data (Chen et al., 2001; 
Covell et al., 2003; Kim et al., 2005; Lamendola et al., 2003; Ordway et al., 
2005; Seo et al., 2005; Toronen et al., 1999; Trutschl et al., 2005; Wang et 
al., 2002; Xiao et al., 2003), and one may have difficulty understanding 
publications on microarray data without proper background knowledge of 
SOM. 

1.2 Clustering and gene expression 

One of the main objectives in gene expression studies is the identification 
of co-regulated genes and regulator-regulatee relationships. The first step in 
achieving the objective is to identify co-expressed genes. Clustering 
algorithms are used particularly often in identifying co-expressed genes (Xia 
and Xie, 2001a). Take human development for example. If we designate the 
time of zygote formation as t0, what genes are activated at t1, t2, …, tn? How 
do the products of these activated genes activate other genes and lead to the 
developmental cascade? If we know that Gene A activates Gene B which in 
turn activates Gene C, then we are in a good position to understand how 
living cells work. Note that “Gene X activates Gene Y” is understood to 
mean “the protein product of Gene X activates the transcription of Gene Y”. 
If Genes A, B, and C are all activated by Gene D, then we know that Genes 
A, B, and C most likely share the same regulatory sequences controlled by 
the same transcription factor. 

Microarray data publicly available are typically in the form of matrices 
each summarizing the expression profiles of thousands of gene loci either 
over a period of time or among different experimental conditions or cell 
types. Such data can provide two kinds of information that is related to 
transcription pathways and gene interactions. The first is the co-expressed 
genes whose expression may be controlled by the same gene product, e.g., 
their regulatory sequences may bind to the same transcription factor. The 
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second is the regulator-regulatee relationship, in which one group of genes 
(regulatees) increase or decrease their expression consistently with the 
increase or decrease of the expression of another group of genes (regulators). 

The co-expressed genes can be identified by calculating pair-wise 
similarity or dissimilarity indices among genes based on their expression 
profiles, and then clustered into gene clusters by using one of the many 
available clustering techniques (e.g., Bittner et al., 1999; e.g., Chen et al., 
1999; Heyer et al., 1999). Pearson correlation and the jackknife correlation 
(Heyer et al., 1999) have been proposed. The former is not robust against 
outliers and the latter is too time-consuming to compute. An alternative is 
the nonparametric Spearman’s rS that is easy to compute and robust against 
one or multiple outliers.  

For dissimilarity measures, the Euclidean distance has been suggested 
(Chen et al., 1999; Heyer et al., 1999). Other distances that can be used in 
clustering algorithms include Manhattan metric, percent remoteness, chord 
distance, and geodesic distance (Pielou, 1984). All these distances are metric 
(which is explained in the next section), and satisfy triangular inequality. My 
program AMIADA (Xia and Xie, 2001a), formerly called AMADA, 
implements these distances as well as the Pearson and Spearman 
correlations. 

For clustering algorithms, both hierarchical and non-hierarchical ones 
have been proposed and used in research (Eisen et al., 1998; Tamayo et al., 
1999; Tavazoie and Church, 1998; Tavazoie et al., 1999; Wen et al., 1998). 
The former include single-linkage, complete-linkage and average-linkage 
clustering (Pielou, 1984), and the latter include the k-mean clustering, the 
self-organization map, and the QT-clustering (Heyer et al., 1999). The k-
mean clustering requires the specification of the number of clusters (k) at the 
beginning, but k is unknown to the researcher. If the guessed k value is too 
large, then co-expressed genes may be split into different clusters. If the 
guessed value is too small, then unrelated genes may be forced into the same 
cluster. This problem is partially shared with the method of the self-
organization map. The QT-clustering algorithm (Heyer et al., 1999) has 
three disadvantages. First, it is time-consuming. Second, the criterion of 
choosing the cluster with the largest number of member as the best cluster is 
dubious. A more sensible criterion would be to choose a cluster as the best if 
it has the least overlap with others. Third, the “quality guarantee” is just a 
guessed value. I note that all clusters recovered by the QT-clustering (Heyer 
et al., 1999) can also be recovered by the average-linkage method. So the 
former has no obvious advantage to offset the disadvantages. AMADA 
implements the single-linkage, complete-linkage and average-linkage 
algorithms. 

Clustering aims to recover certain relationships (similarities) among the 
input entities (e.g., patients, genes) that do not have known group affiliation, 
in contrast to classification which works with data with known group 
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affiliations (e.g., data in Figure 12-1). Hierarchical clustering is typically not 
associated with learning. Its ultimate objective is to build a hierarchical tree 
so that neighboring entities are more similar to each other than to those 
separated by more intermediate nodes. In other words, the generation of a 
tree is the end of the analysis and the algorithm does not keep any reusable 
knowledge for assigning data points not in the original data set to clusters on 
the tree. 

In contrast, nonhierarchical clustering is associated with what is called 
unsupervised learning involving a training data set. Because the data points 
in the training set do not have group affiliation, the unsupervised learning 
process is supposed to learn a classification scheme from the training data 
and cluster the data points in the training data set to groups. However, 
clustering the data points is not the end of the analysis. The classification 
scheme (i.e., the knowledge) from the learning process will allow the 
classification of data points not in the original training data set. For example, 
the K-mean algorithm may cluster the training data into N groups and keep 
the centroids of these N groups. Once this is done (i.e., the training is over), 
a data point not in the original training set can be assigned to one of these N 
clusters by computing the distance between this data point and each of the N 
centroids, with the new data point classified into the group whose centroid 
has the smallest distance to the new data point. Similarly, once the training is 
finished for SOM, a new data point can be assigned to one of the nodes by 
checking which node is closest to the new data point. 

We have previously learned that classification in machine-learning 
literature is associated with supervised learning. Now we know that 
nonhierarchical clustering is associated with unsupervised learning. I 
personally do not find it helpful to have terms or categorizations such as 
supervised and unsupervised learning because they do not seem to make 
algorithms easier to understand.  

1.3 Similarity and distance indices 

Almost all clustering algorithms used in analyzing microarray data 
require a distance or a similarity index. So we need to have basic 
understanding of distances and similarities. Representative distances that 
have been used in gene expression studies include the scale-dependent 
Euclidean distance (Bickel, 2003; Sawa and Ohno-Machado, 2003) and 
scale-independent Mahalanobis distance (Chilingaryan et al., 2002) and (1-r) 
where r is Pearson correlation coefficient (Bickel, 2003; Eisen et al., 1998; 
Sawa and Ohno-Machado, 2003). Other distances that could be used in 
clustering algorithms include Manhattan metric, percent remoteness, chord 
distance, and geodesic distance (Pielou, 1984). Mahalanobis distance 
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becomes identical to Euclidean distance with standardized data, i.e., when 
variable X is transformed to x by 

i
i

X

X Xx
s
−

=  (12.1) 

so that mean and standard deviation of the resulting variable x is 0 and 1, 
respectively. Euclidean distance based on standardized data and (1-r) are 
perhaps used most frequently in clustering gene expression data. 
Representative similarity indices include various correlation coefficients 
such as the parametric Pearson correlation and non-parametric Spearman 
correlation and others. 

An ideal distance or similarity index for clustering analysis should be 
metric. Nonmetric distances are likely to produce negative branch lengths in 
cluster analysis that are not only difficult to interpret, but also render 
frequently used optimization criteria (e.g., least-squares or minimum tree 
length) inapplicable. 

So what is a distance in the first place? Designating x and y as two points 
in space, a distance is defined to have the following properties: 

 
D(x,x) = d0 (distance of a point to itself, which is typically 0) 
D(x,y) ≥ d0 
D(x,y) = D(y,x) 
 
What is a metric distance? Designating x, y and z as three points in space, 

a metric distance is defined to have the following additional properties: 
 
D(x,y) = d0 if and only if x = y. 
D(x,z) ≤ D(x,y) + D(y,z), or triangular inequality in Euclid geometry. 
 
An example of a metric distance is the Euclidean distance. If d is a metric 

distance (e.g., Euclidean d), then the following are metric similarities: 
 
1/d 
Cd, where C is a constant 
dmax – d 

 
If s is a metric similarity index then the following are metric distances 
 
1/s 
Cs, where C is a constant 
smax – s 
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Pearson r is a similarity index, and its maximum is 1. Is (1- r) a metric 
distance? As (smax – s) is a metric distance, (1 – r) would be a metric distance 
if r were a metric similarity. Because Euclidean distance is known to be 
metric, we can derive the relationship between Euclidean distance and r to 
help us conclude whether (1-r) is metric. 

Although the formulation of Pearson r between variables x and y can be 
found in any statistical book, I have reproduced it below to facilitate 
presentation: 
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To simplify the inference, we assume that the values of variable x and y 
have already been standardized so that the mean and standard deviation is 0 
and 1, respectively. The variance of a standardized variable is also 1. This 
reduces Eq. (12.2) to 
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The last step is often confusing to students because they have forgotten 
the fact that the variance of a standardized variable x (s2) equals Sxx/(N-1) 
and that s2 = 1 for a standardized variable. Because s2 = 1 = Sxx/(N-1), Sxx = 
N-1. One should already know that Sxx = Syy for standardized variables x and 
y. 

The Euclidian distance is defined as 
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We already know that Sxx = N-1. From Eq. (12.3), we also know that Sxy 
= (N-1)rxy. This leads to 

2 2[( 1) ( 1) ] 2( 1)(1 )xy xy xyd N N r N r= − − − = − −  (12.6) 

Because d2
xy is not a metric distance, (1 – r) also is not a metric distance. 

In this sense, using Euclidean distance computed from standardized 
variables for clustering is better than using (1 – r). However, Euclidean 
distance is scale-dependent but (1 – r) is scale-independent. The scale effect 
is illustrated is Figure 12-2. We note that Gene 1 and Gene 3 increase and 
decrease in their expression synchronously, so do Gene 2 and Gene 4. In 
other words, Gene 1 and Gene 3 are co-expressed, so are Gene 2 and Gene 4. 
However because Gene 1 and Gene 2 are highly expressed and Gene 3 and 
Gene 4 are relatively lowly expressed, the synchronous change in gene 
expression between Gene 1 and Gene 3 and between Gene 2 and Gene 4 will 
not be reflected by Euclidean distance on the original data and the clustering 
analysis will not help us discover co-expressed genes. 

-0.086-0.086-1.458-0.0861.972-0.0860.600-0.772Gene 4

-0.564-0.5640.725-0.5641.369-0.564-1.2081.369Gene 3

-0.086-0.086-1.458-0.0861.972-0.0860.600-0.772Gene 2

-0.564-0.5640.725-0.5641.369-0.564-1.2081.369Gene 1

T70T60T50T40T30T20T10T0

After Normalization

4040204070405030Gene 4

3030503060302060Gene 3

400400200400700400500300Gene 2

300300500300600300200600Gene 1

T70T60T50T40T30T20T10T0

 

Figure 12-2. Original data (top) and standardized data (bottom) to illustrate the effect of scale. 
T0, T10, etc., indicate time points. 

You may note that, before standardization, Euclidean distance d12 
between Gene 1 and Gene 2 is smaller than d13 or d14, and d34 is the smallest 
of all pairwise distances. Application of a clustering algorithm typically will 
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cluster Gene 3 and Gene 4 together, and then Gene 1 and Gene 2 together. In 
other words, the clustering analysis does not cluster co-expressed genes 
together. 

After standardization (Figure 12-2, bottom half) which removes the scale 
effect, d13 = d24 = 0, which implies that Gene 1 should be clustered with 
Gene3 and Gene 2 should be clustered with Gene 4.  

In contrast to Euclidean distance which differs between standardized and 
non-standardized data, the distance d’ = (1-r) does not change with 
standardization, and d’13 = d’24 = 0 for either original or standardized data. 
Applying any cluster algorithm will results in Gene 1 and Gene 3 clustered 
together and Gene 2 and Gene 4 clustered together. If our purpose is to 
cluster co-expressed genes together, then using d’ with either original or 
standardized data or using d with standardized data is better than using d 
with the original data. 

Note that one does not have to standardize the data to remove the scale 
effect. For example, one can just transform the data so that all variables will 
have the same mean and variance. 

2. UPGMA 

We have learned two frequently used distance measures in the previous 
section, the Euclidean distance and (1 – r). Given N genes, there are 
N(N-1)/2 pairwise distances (designated as di,j between gene i and gene j). 
We can apply the UPGMA algorithm to perform hierarchical clustering. 

A matrix of di,j values for five genes (designated as Gi) is shown in 
Figure 12-3. At this point we do not know the relationship among the genes 
and our ignorance is represented by what is called a star tree represented as 
(G1,G2,G3,G4,G5). The UPGMA algorithm starts by finding the smallest di,j 
(designated as dmin) in the matrix and cluster the two associated genes. There 
are two smallest di,j in the matrix, d1,3 = d4,5 = 0.0076. So what should we do? 

0.00760.04580.06870.0534G5
0.05340.06110.0611G4

0.08400.0076G3
0.0916G2

G4G3G2G1

 

Figure 12-3. Distance matrix for illustrating UPGMA 

In this particular example, we can start by either clustering G1 and G3 or 
clustering G4 and G5, and the final tree will be the same. However, identical 
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di,j values sometime may lead to alternative clustering outcome. In particular, 
if di,j = di,k = dmin (or di,j = dj,k = dmin), then there will always be alternative 
trees because there is a clear conflict between clustering (Gi, Gj) and 
clustering (Gi, Gk). In other words, clustering Gi and Gj rules out the 
possibility of clustering Gi and Gk and vice versa. The neighbor-joining 
algorithm (Saitou and Nei, 1987) sometimes also experiences the problem of 
conflicting trees, although almost all phylogenetic programs implementing 
the UPGMA and neighbor-joining algorithms typically output only a single 
tree. While elegant algorithms are available to handle conflicts (Murtagh, 
1984), the only computer program I know of that keeps track of conflicting 
trees from UPGMA and neighbor-joining method is DAMBE (Xia, 2001; 
Xia and Xie, 2001b). 

Fortunately our simple example does not require us to resolve such a 
conflict. So we will proceed to cluster G1 and G3. This leads to a slightly 
more structured tree ((G1,G3),G2,G4,G5) together with a reduced matrix 
shown in Figure 12-4. 

0.00760.06870.0496G5

0.06110.0573G4

0.0878G2

G4G2(G1,G3) G5

G4

G2

G1

G3  

Figure 12-4. Intermediate result of UPGMA after clustering G1 and G3. 

Note that some distances, e.g., d2,4, d2,5, d4,5, in Figure 12-4 are directly 
transferred from the matrix in Figure 12-3. There are three new distances in 
the reduced matrix (Figure 12-4), computed as 

1,2 2,3
2,(1,3)

1,4 3,4
4,(1,3)

1,5 3,5
5,(1,3)

0.0916 0.0840 0.0878
2 2

0.0611 0.0534 0.0573
2 2

0.0496
2

d d
d

d d
d

d d
d

+ +
= = =

+ +
= = =

+
= =

 (12.7) 

Now we again find dmin in the reduced matrix in Figure 12-4, which is d45 
= 0.0076. So we cluster G4 and G5 and obtain a still more structured tree 
together with a still more reduced new matrix (Figure 12-5). 
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0.06490.0534(G4,G5)

0.0878G2

G2(G1,G3)
G5

G4

G2

G1

G3  

Figure 12-5. Intermediate result of UPGMA 

There are two new distances in Figure 12-5, i.e., 

(1,3),4 (1,3),5
(1,3),(4,5)

2,4 2,5
2,(4,5)

0.0534
2

0.0649
2

d d
d

d d
d

+
= =

+
= =

 (12.8) 

The smallest distance now is d(1,3),(4,5) = 0.0534. This implies the 
clustering of (G1,G3) with (G4,G5). Now we have a fully resolved tree 
(Figure 12-6), together with the last distance computed as: 

(1,3),2 (4,5),2
((1,3),(4,5)),2 0.0764

2
d d

d
+

= =  (12.9) 

G3

G1

G4

G5

G2

0.0038

0.0382

0.02290.0115

0.0267

x1

x2

x3

x4

x5

x6

 

Figure 12-6. Final UPGMA tree. 

The branch lengths of the tree can be easily computed. Because d1,3 = d45 
= 0.0076, we have x1 = x2 = d4,5/2 = d1,3/2 = 0.0038, the branch length from 
G1 or G3 to their closest shared node is 0.0038. Similarly, d(1,3),(4,5) = 0.0534, 
so we have (x1 + x3) = (x2 + x6) = d(1,3),(4,5)/2 = 0.0267. Because x1 = 0.0038, 
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so x3 = 0.0267 – x1 = 0.0229. Finally, because d2,((1,3),(4,5)) = 0.0764, so x5 = 
0.0764/2 = 0.0382. This also implies that (x1 + x3 + x4) = 0.0382, so x4 = 
0.0382 – x1 – x3 = 0.0115. Also note that, in our example, x3 = x6. Figure 12-
7 shows a more realistic output from a cluster analysis.  

YAL046C/
YAL014C/
YAL040C/CLN3
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YBL090w/
YBL077w/
biodm
YBL092w
biod5
biod3
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CDC19
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Figure 12-7. Partial output from clustering analysis of gene expression data in the yeast, 
Saccharomyces cerevisiae. Only the first 200 genes from the original data (Cho et al., 1998) 
were used. The expression profiles of the six genes within the box of dashed lines are shown 
in Figure 12-8. Tree generated by AMIADA(Xia and Xie, 2001a). 

Genes clustered together with short branch lengths connecting them 
should have similar expression profiles and are designated as co-expressed 
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genes. I will illustrate the application of clustering analysis with a real 
example. The budding yeast, Saccharomyces cerevisiae, has a very useful 
property that the development of yeast cells in a culture can be synchronized. 
This allows one to monitor gene expression during the progression through 
the yeast cell cycle. In one of such studies (Cho et al., 1998), 6220 
transcripts were monitored and the data set is available to the public. 
Application of the UPGMA algorithm to the yeast gene expression data 
results in many clusters of co-expressed genes. Figure 12-7 displays a partial 
output of the clustering analysis using UPGMA and the standardized 
Euclidean distance for the first 200 genes. 

My program AMIADA (Xia and Xie, 2001a) allows the user to easily 
visualize gene expression profiles. Right-clicking a node on the tree and 
choose ‘Plot expression profiles’ will display the expression profile of genes 
clustered under a node. Figure 12-8 shows a plot of the expression profiles 
for a set of six genes clustered together in Figure 12-7. The synchronized 
increase and decrease in their expression is obvious. Finding co-expressed 
genes is the first step towards identifying co-regulated genes, i.e., genes that 
share regulatory sequences. 
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Figure 12-8. Co-expressed genes from yeast gene expression data (Cho et al., 1998). 

3. SELF-ORGANIZING MAP (SOM) 

Being one of the unsupervised learning algorithms, SOM, like UPGMA, 
takes data that do not have prior group affiliation. It takes a training data set 
and goes through a training process to obtain a SOM of nodes (or artificial 
neurons) which can then be used for classification.  
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Because SOM is also one of the artificial neural network (ANN) 
algorithms, it is necessarily associated with concepts such as nodes (neurons) 
and learning rate. All ANN algorithms have neurons and need learning 
(training). 

3.1 The SOM algorithm 

We start with data in Table 12-1, where data are not standardized. If one 
is interested only in uncovering co-expressed genes, then one should 
standardize the data. The computation is the same regardless of our data 
being standardized or not. 

Table 12-1. Fictitious gene expression data for illustrating the SOM algorithm. T0, T10 and 
T20 represent three time points. The values are between 0 and 100. 
Gene T0 T10 T20 Sum 
1 93 76 87 256 
2 80 81 85 246 
3 89 88 85 262 
4 69 74 96 239 
5 95 89 93 277 
6 65 96 76 237 
7 87 85 96 268 
8 78 89 88 255 
9 87 80 97 264 
10 67 96 55 218 
11 91 90 95 276 
12 76 72 67 215 
13 79 78 94 251 
14 96 76 78 250 
15 66 64 63 193 

 
Data in Table 12-1 is our training data. Most computation in SOM is in 

the training part. Once we have finished training, we will be able to use the 
finished SOM for classification of data points not in the training set. 

We first need to decide the size of SOM, i.e., the number of nodes to 
have and whether the nodes should be arranged in one dimension, two 
dimensions, or higher dimensions. Most SOMs use a two-dimensional grid 
of nodes. There is not optimal way of choosing the number of nodes. Too 
many nodes increases computation and too few nodes may not provide 
sufficient fit to the data. For example, if we have only two nodes, then 
forcing all data points into these two nodes may result in very heterogeneous 
groupings. We will learn latter that a finished SOM provides some ways for 
us to see poorly fit points. If such points do exist, then we should re-run 
SOM with a larger grid of nodes.  
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Let us just start with a 3×3 grid of 9 nodes (Table 12-2), with randomly 
initialized values between 0 and 100 (the lower and upper bounds of our 
training data). Later on we will learn a better way of initialization. The 
random initialization symbolizes a beginning of ignorance. The knowledge 
will be gained through the learning process.  

Table 12-2. A 3×3 grid of 9 nodes each with three randomly initialized values T0, T10 and 
T20. 
 1 2 3 
 T0 T10 T20 T0 T10 T20 T0 T10 T20 
1 2.2 11.5 33.4 41.9 27.6 0.8 6 63.8 51.2 
2 28.5 30.2 47 28.7 51.3 9 61.6 38.2 17.9 
3 40.5 76.1 71.2 79.8 94.6 23.2 76.2 40.9 23.9 

 
We now randomly choose one gene, and suppose we happen to have 

chosen Gene 4 with T0, T10 and T20 equal to 69, 74 and 96, respectively 
(Table 12-1). The Euclidean distances (designated hereafter as d) between 
this gene and each of the 9 nodes (Table 12-3) show that Gene 4 is closest to 
node(3,1), with d = 37.8. This node is then called a winning node. You may 
use a distance other than the Euclidean, but the procedure is the same, i.e., 
you find the winning node which has the smallest distance to Gene 4. 

Table 12-3. Euclidean distance between Gene 4 and each of the nine nodes. 
 1 2 3 
1 111.0 109.0 78.0 
2 77.2 98.5 86.2 
3 37.8 76.4 79.6 

 
The winning node is the node that will get the first chance to learn from 

Gene 4, and its three values will be updated as a consequence of the 
learning. Recall that SOM is an algorithm in neural networks, and all neural 
networks learn. The updated values are given by the following equation 
referred to hereafter as a learning function: 

' (1 )i i iw w pα α= − +  (12.10) 

where w1, w2 and w3 refers to the winning node’s values in T0, T10 and 
T20, respectively, and p1, p2 and p3 refers to the chosen gene’s values in 
T0, T10 and T20, respectively. In our case, p1, p2 and p3 equal 69, 74 and 
96, respectively, and w1, w2 and w3 equal 40.5, 76.1, and 71.2, respectively. 
Of course one can devise many alternative learning functions, but the one I 
have used is the simplest and it works fine. What is a bit tricky is the α 
parameter in Eq. (12.10), which is called the learning rate.  
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What should be the α value? An α equal to 0 implies wi’ = wi, which 
means that the winning node does not learn anything from the chosen gene 
and will never change. An α equal to 1 implies wi = pi, which means that the 
winning node cannot retain any prior knowledge and will always mirror the 
knowledge of the chosen gene that has the smallest distance to it. This 
simple reasoning leads us to conclude that the α value should be greater than 
0 but smaller than 1. 

If α is close to 0, then the learning process is slow and the SOM takes a 
long time to converge. People with a very slow α often call themselves 
conservatives. If α is close to 1, the values of the winning node will change 
back and forth too fast and the node values may fail to stabilize. People with 
a α near 1 tend to call themselves liberals. Unfortunately, it would be very 
inconvenient to have two group of nodes, one with a small α and the other 
with a large α, fighting against each other to generate a winner. As a 
compromise, α will initially be large (close to 1), but will diminish with each 
iteration. This may make conservatives happy because all nodes in SOM will 
end up with a slow α and become conservatives. 

For illustration, let’s start with α = 0.5 (Any value that is not an integer 
or half of an integer may cause headaches for a small fraction of biology 
students). This leads to 

'
1
'
2
'
3

40.5(1- 0.5) 69 0.5 54.7

75.0

83.6

w
w
w

= + × =

=

=

 (12.11) 

These three values will replace the three original values (i.e., 40.5, 76.1 
and 71.2, respectively) of node(3,1). The update of the winning node is now 
complete. 

The next step is to modify the neighbors of the winning node as the 
neighboring nodes will also learn from the chosen gene. This privilege of 
learning as a neighbor is what drives up the housing price near universities. 
Updating the values of neighbors is governed by the following learning 
function 

' (1 )i i n i nw w pα α= − +  (12.12) 

where αn is the learning rate for the neighbors. Again one can use one of 
many possible alternative learning functions, but we will just use Eq. (12.12) 
to keep things simple. In practice, the learning function of neighbors depends 
on how we define neighbors and αn will be larger for immediate neighbors 
than for remote neighbors. For obvious reasons, it should also be smaller 
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than α. If we designate αn1 as the learning rate for the immediate neighbors 
(i.e., nodes in physical contact with the winning nodes), αn2 as the learning 
rate for the neighbors of the immediate neighbors, and so on, then one 
simple way of choosing αn values is to set αn1 = α/2, αn2 = αn1/2, and so on. 

For our illustration, we will just define each node to have a maximum of 
four neighbors, i.e., the one to its left, the one to its right, the one above it 
and the one below it. Thus defined, we need only one αn value which we will 
set to α/2. Now a biology student typically will need a calculator to carry out 
the required arithmetic operations. 

Our winning node is in a corner and consequently has only two 
neighbors, with one above it and one to its right. The updated values of SOM 
are shown in Table 12-4. 

Table 12-4. SOM after updating the winning node, i.e., node(3,1), and its two neighbors, 
node(2,1) and node(3,2). 
 1 2 3 
 T0 T10 T20 T0 T10 T20 T0 T10 T20 
1 2.2 11.5 33.4 41.9 27.6 0.8 6.0 63.8 51.2 
2 38.7 41.1 59.3 28.7 51.3 9.0 61.6 38.2 17.9 
3 54.7 75.0 83.6 77.1 89.5 41.4 76.2 40.9 23.9 

 
Now that we have done with Gene 4, we again repeat the process by 

randomly choosing a gene, computing the Euclidean distance to find the 
winning node, and carry out the updating of the values. We perform this with 
decreasing α and αn values with each cycle of iteration until α equals a 
preset αmin > 0 (We do not want to decrease α to zero because SOM will stop 
learning when α = 0).  

How should we decrease α and αn with each cycle of updating? There is 
no optimal way of decreasing α. In my SOM implementation in AMIADA 
(Xia and Xie, 2001a), I used the following equation: 

1(1 )
G

Q
N

= −  (12.13) 

where NG is the number of genes. In our case, NG = 15 and Q = 0.933, i.e., α 
will be multiplied by Q after each cycle of iteration. 

Continuing the learning process will eventually lead to convergence, i.e., 
when the values in the nodes do not change any more or the change is 
smaller than a pre-fixed small value in two consecutive cycles of iteration. 
The result of the learning process (Table 12-5) is a trained SOM ready for 
classification. 

 



248 Chapter 12
 
Table 12-5. Trained SOM. 
 1 2 3 
 T0 T10 T20 T0 T10 T20 T0 T10 T20 
1 80.7 77.6 73.3 74 77.9 67.3 69.2 79.5 72.2 
2 84.4 81.9 82.1 82.5 81.2 81.4 78.5 77.6 78.2 
3 89.6 85.4 91 88.1 82.9 91.7 79.9 79.1 89.4 

 
Different nodes (Table 12-5) have different properties reflecting our data 

structure, e.g., we know that there are highly expressed genes and lowly 
expressed in the data set. The lower left nodes, i.e., node(3,1) and node(3,2) 
have relatively high expression values at all three time points, and node(1,2) 
and node(1,3) have relatively low expression at all three time points. 
Node(1,1) has its expression decreasing with time, node(3,3) has its 
expression increased at time T20 relative to the two previous time points. 

The trained SOM can now be used for classification. During the 
classification stage, the node values do not change. A new gene with its 
expression values at T0, T10 and T20 can be assigned to a node by 
computing the Euclidean distance between this node and each of the nine 
nodes. The node with the smallest Euclidian distance will have the new gene 
assigned to it. The node to which Gene i is assigned is called the host node 
of Gene i. 

Before we use the trained SOM to do the classification of new genes, it is 
crucial to check how well the SOM fits the training data. This is typically 
done by first assigning the genes in the training data to the nine nodes, and 
then computing the Euclidian distance (or its square) between each gene and 
its host node (Table 12-6). 

Table 12-6. Classification of the 15 genes to the nine nodes. Row and Col indicate the 
coordinates of the host nodes. The last column is the Euclidian distance between each gene 
and its host node. 
Gene T0 T10 T20 Row Col d 
1 93 76 87 3 2 9.69 
2 80 81 85 2 2 4.41 
3 89 88 85 3 1 6.54 
4 69 74 96 3 3 13.77 
5 95 89 93 3 1 6.80 
6 65 96 76 1 3 17.43 
7 87 85 96 3 2 4.90 
8 78 89 88 3 3 10.17 
9 87 80 97 3 2 6.12 
10 67 96 55 1 2 23.00 
11 91 90 95 3 1 6.30 
12 76 72 67 1 2 6.19 
13 79 78 94 3 3 4.84 
14 96 76 78 2 1 13.63 
15 66 64 63 1 2 16.54 
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We instantly notice a few genes that fit poorly into their respective host 
nodes (Table 12-6). For example, gene 10, with three gene expression values 
being 67, 96, and 55 at T0, T10 and T20, respectively, is classified to 
node(1,2) with its node values being 74, 77.9 and 67.3. Although both Gene 
10 and its host node have the largest value at T10 and the smallest value at 
T20, the classification is deemed poor because of the large Euclidean 
distance (= 23, Table 12-6). The classification of Gene 7 to node(3,2) is 
similar, albeit with a smaller distance ( = 17.43). Such large Euclidean 
distances suggest that the SOM does not provide good fit to the dada and we 
should re-run SOM with a larger (more accommodating) grid. 

Application of SOM to the yeast gene expression data (Cho et al., 1998) 
generates many co-expressed genes. Most are similar to those recovered by 
the UPGMA methods, but there are also different ones. These co-expressed 
genes are candidates for further study to check if they are co-regulated, i.e., 
whether they share similar regulatory sequences that are activated by the 
same transcription factors of similar proteins. The Gibbs sampler in Chapter 
7 is one of the key data-mining tools used to identify such regulatory 
sequences.  

It is important to recognize the fact that, although each input data point in 
our example is a vector of three numbers, SOM is not limited to data points 
represented as a vector of numbers. It can be applied to any data for which 
we can (1) define a distance between a data point and the node and (2) 
update the value of the winning nodes and neighboring nodes in response to 
the input. For example, the input data points can be 20-base sequences 
flanking the 5’-splicing site in eukaryotic protein-coding genes, and the node 
can be represented by a sequence profile (illustrated in Chapter 2 on profile 
alignment). The distance between the input sequence and the node sequence 
profile can just be a function of mismatch score or of an alignment score, 
and the updating of the nodes can be done easily by revising the sequence 
profile by adding the input sequence. 

3.2 Variations of the basic SOM algorithm 

I will briefly mention two variations of the basic SOM algorithm as 
presented in the previous section. The first is to replace the random 
initialization step by using the first two principal component scores from 
principal component analysis (PCA) of the matrix containing the gene 
expression data. PCA is a dimension reduction technique to project high 
dimensional data into a low dimensional space, and in this sense it serves a 
similar purpose as SOM.  
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To visualize the application of PCA to SOM initialization, plot the two 
principal component scores and superimpose the grid of node onto the two-
dimensional plot (Figure 12-9). The values of each node, e.g., w1, w2 and w3 
in our example, are then the averages of those points falling within that node. 
The node values are then updated by using the same protocol as we have 
already learned. This dramatically reduces the computation time needed for 
SOM training. 
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Figure 12-9. Using the first two principal component scores to initialize the grid of nodes. 

One may wonder why the grid in Figure 12-9 has five columns but only 
three rows. The reason is that PC1 (the first principal component) typically 
accounts for far more variation in the data than PC2, and the dimension of 
the grid of nodes should be proportional to the variation accounted for by 
each principal component. 

The other variation of the SOM algorithm involves the updating process. 
Instead of updating the winning node and its neighbors with every input data 
point, we simply find a host node for each data point and assign all data 
points to their respective host nodes without updating. Once all data points 
have been mapped onto the grid of nodes, we then compute the node values 
as the mean or median of those data points assigned to the node. This 
process is repeated until convergence is achieved. This variation of the SOM 
algorithm is often referred to as the batch mode of SOM training. 
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MOLECULAR PHYLOGENETICS 
 

 
 

1. INTRODUCTION 

Molecular phylogenetics has been increasingly recognized as an essential 
subject in understanding molecular biology and evolution, and the subject 
has been often included in recent bioinformatics textbooks (Baxevanis and 
Ouellette, 2005; Higgs and Attwood, 2004). It is now a common consensus 
that understanding the dynamic nature of genes, genomes and gene 
interactions over evolutionary time is just as important as understanding the 
dynamic nature of gene expression and gene interaction during the 
development of an individual. We need molecular phylogenetics to facilitate 
our understanding of the dynamic natures of genes, genomes and gene 
interactions. In particular, phylogenetic relationships and dating are essential 
in reconstructing ancestral genes, predicting sites that are important to 
natural selection and, ultimately, understanding genomic evolution.  

Four categories of phylogenetic methods are currently used to construct 
branching patterns during the speciation and gene duplication processes: the 
distance-based, the maximum parsimony, maximum likelihood and the 
Bayesian methods. Here I present the mathematical framework of the first 
three methods and their rationales, provide computational details for each of 
them, illustrate analytically and numerically the potential biases inherent in 
these methods, and outline computational challenges and unresolved 
problems. This is followed by a numerical illustration of the Bayesian 
inference, together with a few numerical illustrations of the Bayesian 
approach that has recently been used in molecular phylogenetics 
(Huelsenbeck et al., 2001). 
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Molecular phylogenetics is now a very advanced subject in biology 
requiring substantial mathematical maturity. However, there are many 
excellent textbooks available (Felsenstein, 2004; Hillis et al., 1996; Li, 1997; 
Nei and Kumar, 2000; Semple and Steel, 2003). This chapter, partially based 
on a previous review (Xia, 2007), will bridge the reader to more advanced 
topics in molecular phylogenetics. Although I have cut several corners to 
simplify and shorten the presentation, the chapter remains the longest in the 
book. 

2. BIODIVERSITY, HISTORICAL INFORMATION, 
AND PHYLOGENETICS 

Phylogenetics aims to organize biodiversity based on genealogical 
(ancestor-descendent) relationships. Biodiversity comes in many colors and 
shades, and unorganized biodiversity can not only dazzle our eyes but also 
confuse our minds. Molecular phylogenetics uses molecular sequence data to 
achieve its three main objectives: (1) to reconstruct the branching pattern of 
different evolutionary lineages such as species and genes, (2) to date 
evolutionary events such as speciation or gene duplication and subsequent 
functional divergence, and (3) to understand and summarize the evolutionary 
processes by substitution models. With the rapid increase of DNA and 
protein sequence data, and with the realization that DNA is the most reliable 
indicator of ancestor-descendent relationships, molecular phylogenetics has 
become one of the most dynamic fields in biology with solid theoretical 
foundations (Felsenstein, 2004; Li, 1997; Nei and Kumar, 2000; Page and 
Holmes, 1998; Semple and Steel, 2003) and powerful software tools 
(Felsenstein, 2002; Kumar et al., 2001; Swofford, 2000; Xia, 2001; Xia and 
Xie, 2001b; Yang, 2002). I will not argue for the importance of molecular 
phylogenetics other than quoting Aristotle’s statement that “He who sees 
things from the very beginning has the most advantageous view of them.” 

It is not always easy to see things from the very beginning. The 
evolutionary process depicted in Figure 13-1 shows an ancestral population 
with a single sequence shared among all individuals that have subsequently 
split into two populations and evolved and accumulated substitutions 
independently. Twelve substitutions have occurred, but only three 
differences can be observed between the sequences from the two extant 
species. The most fundamental difficulty in molecular phylogenetics is to 
estimate the true number of substitutions (i.e., 12) from the observed number 
of differences between extant sequences (i.e., 3). In short, the difficulty lies 
in how to correct for multiple hits. 
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Figure 13-1. Illustration of nucleotide substitutions and the difficulty in correcting multiple 
hits.  After Li (1997). 

The number of substitutions per site is known as a genetic distance. The 
simplest genetic distance between two sequences, known as the p-distance 
(Dp), is simply the number of different sites (N) divided by the sequence 
length (L).  For the two sequences in Figure 13-1, Dp = 3/16. Because Dp 
does not correct for multiple hits, it is typically a severe underestimate of the 
true genetic distance and has to be corrected. 

In the next few sections, I will first detail commonly used substitution 
models, derive genetic distances based on the substitution models, and 
introduce the three categories of molecular phylogenetic methods: the 
distance-based, the maximum parsimony and the maximum likelihood 
methods. Several numerical examples are then presented to demonstrate 
commonly used computational approaches in Bayesian inference, such as 
conjugate prior distributions, discrete approximation and MCMC algorithms. 
Potential problems with these phylogenetic methods will be highlighted. 

3. SUBSTITUTION MODELS 

Substitution models reflect our understanding of how molecular 
sequences change over time. They are the theoretical foundation for 
computing the genetic distance in the distance-based phylogenetic method 
and for computing the likelihood value in the maximum likelihood method 
for phylogenetics. There are three types of molecular sequences, i.e., 
nucleotide, amino acid and codon sequences. Consequently, there are three 
types of substitution models, i.e., nucleotide-based, amino acid-based and 
codon-based. We will focus on nucleotide-based substitution models, with 
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only a brief discussion on amino acid-based and codon-based models to 
highlight a few potential problems. 

3.1 Nucleotide-based substitution models and genetic 
distances 

Let pt be the vector of the four nucleotide frequencies (PA.t, PG.t, PC.t, PT.t) 
at time t. Nucleotide-based substitution models are characterized by a 
Markov chain of four discrete states as follows: 

1

AA AG AC AT

GA GG GC GT
t t t

CA CG CC CT

TA TG TC TT

P P P P
P P P P

p p p M
P P P P
P P P P

+ = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (13.1) 

where M is the transition probability matrix and Pij is the probability of 
changing from state i to state j in one unit of time. Three frequently used 
special cases of Eq. (13.1) will be detailed here: the JC69 model (Jukes and 
Cantor, 1969), the K80 model (Kimura, 1980), and the TN93 model (Tamura 
and Nei, 1993). 

The simplest nucleotide substitution model is the JC69 one-parameter 
model, in which all off-diagonal elements in M are identical and designated 
as α. The four diagonal elements in M are 1-3α constrained by the row sum 
equal to 1. There is a corresponding rate matrix, designated by Q , that differs 
from M only in that the diagonal elements are -3α, constrained by the row 
sum equal to 0. It is often more convenient to derive substitution rates by 
using Q  instead of M, as will be clear latter. Following Eq. (13.1), we have 
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 (13.2) 

Arranging the left side to be PA.t+1 - PA.t and then applying the continuous 
approximation, we have 
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Equation (13.3) is a special case of a general equation. Designate d as the 
vector of the four partial derivatives, the general equation is 

td PQ=  (13.4) 

where Q  is the rate matrix mentioned before. The reason for Q  to be called 
a rate matrix should now be clear. 

Suppose that we start with nucleotide A, what is the probability that it 
will stay as A or change to one of the other three nucleotides after time t? 
Given the initial condition that PA.0 = 1 and PC.0 = PG.0 = PT.0 = 0 and the 
constrain that that PA + PG + PC + PT = 1, Eq. (13.3) can be solved to yield 
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The time t in Eq. (13.5) is the time from the ancestor to the present. 
When we compare two extant sequences, the time is 2t, i.e., from one 
sequence to the ancestor and then back to the other sequence. So Eq. (13.5) 
has its general form as 
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The genetic distance (D), which is the number of substitutions per site, is 
defined as 2tμ where μ is the rate of substitution. For the JC69 mode, μ = 
3α, so αt = D/6. Now we can readily derive D from the JC69 model, 
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designated DJC69, from the p-distance (Dp) defined before (Recall that Dp 
between two sequences is the probability of a site being different between 
two sequences). According to Eq. (13.6), 

694 / 38
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69

3 3
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4 4
43
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4 3
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p ii t

p
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D P e e
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 (13.7) 

For the two sequences in Figure 13-1, Dp = 3/16 = 0.1875 and DJC69 = 
0.21576. The equilibrium frequencies are derived by setting (pi.t+1 – pi.t) in 
Eq. (13.3) to zero. Solving the resulting simultaneous equations with the 
constraint that the four frequencies sum up to 1, we have PA.t =PG.t =PC.t =PT.t 
= 0.25. In summary, the JC69 model assumes that (1) the four nucleotides 
can change into each other with equal probability and (2) the equilibrium 
frequencies are all equal to 0.25. 

The variance of DJC69 can be obtained by using the “delta” method 
(Kimura and Ohta, 1972). When a variable Y is a function of a variable X, 
i.e., Y = F(X), the delta method allows us to obtain approximate formulation 
of the variance of Y if (1) Y is differentiable with respect to X and (2) the 
variance of X is known. The same can be extended to more variables. 

The mathematical concept for the delta method is illustrated below, 
starting with the simplest case of Y = F(X). Regardless of the functional 
relationship between Y and X, we always have 

dY
Y X

dX
Δ ≈ Δ⎛ ⎞

⎜ ⎟
⎝ ⎠

 (13.8) 

( ) ( )
2

2 2  .
dY

Y X
dX

Δ ≈ Δ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (13.9) 

where ΔY and ΔX are small changes in Y and X, respectively. 
Note that the variance of Y is the expectation of the squared deviations of 

Y, i.e.,  

2
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( ) ( )

( ) ( )  .

V Y E Y

V X E X

= Δ

= Δ
 (13.10) 

Replacing (ΔY)2 and (ΔX)2 in Eq. (13.9) with V(Y) and V(X), we have 
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This relationship allows us to obtain an approximate formulation of the 
variance of either Y or X if we know either V(X) or V(Y).  For the variance of 
DJC69, we note that DJC69 is a function of Dp, and the variance of Dp is known 
from the binomial distribution: 
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where L is the length of the two aligned sequences. From the expression of 
DJC69 in Eq. (13.7), we have 
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As students are always eager to have more illustrative examples, and 
because I myself belong to the lesser folks who cannot see the beauty of 
equations without rendering them to numbers, I will present another 
example, taken from a book on population genetics (Li, 1976), in which we 
know the variance of Y and want to estimate the variance of X.  

Given a locus with one dominant allele (A) and one recessive allele (a), 
we have only two distinguishable phenotypes, dominants (AA, Aa) and 
recessives (aa). How to estimate the allele frequency of a and its variance? 

You might be interested to know that the severe human disease cystic 
fibrosis is determined by one locus with a dominant allele and a recessive 
allele. The disease is caused by homozygosity for the recessive allele.  

Let D and R be the observed numbers of dominants and recessives in a 
sample of N random individuals (N = D + R). Our estimate of the frequency 
of allele a, designated q, is 

2 /

/

q R N

q R N

=

=
 (13.14) 
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In the case of cystic fibrosis, the ratio of R/N is about 1/2500. So q = 
1/50. Now we proceed to find the variance of q. From the binomial 
distribution, we know the variance of q2 to be 

2 2
2 (1 )( ) q qV q

N
−

=  (13.15) 

In the framework of the delta method with Y = F(X), we have Y = q2, X 
= q, and dY/dX = 2q. We already know the variance of Y (i.e., q2) in Eq. 
(13.15), and the variance of X can be obtained as follows 
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You might have noticed that, q2 = R/N and (1-q2) = D/N. So we have 

2

2
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4 4 4

q D N DV q
N N N
−

= = =  (13.17) 

In the case of cystic fibrosis, q = 1/50 = 0.02, V(q) = 0.00009996, the 
standard deviation of q is 0.009998, and the 95% confidence interval for q, 
when sample size is large, is (0.0004, 0.0396). 

Joe Felsenstein (pers. comm.) suggests that a bioinformatics book would 
be incomplete without coverage of the EM algorithm. So here comes a 
numerical illustration (the simplest possible, I believe) of the EM algorithm 
to estimate q (the frequency of the recessive allele a). Note that in this 
particular case we do not need to use the EM algorithm to estimate q because 
q is already given in Eq. (13.14). However, gaining some familiarity with the 
EM algorithm may be useful in other situations. 

There are three genotypes involving the cystic fibrosis locus, AA, Aa and 
aa, with AA and Aa indistinguishable phenotypically. Designate p = 1 – q 
and let NAA, NAa and Naa be the number of AA, Aa and aa genotypes, 
respectively. Using the notations above, we have D = (NAA + NAa) and R = 
Naa. Because the EM algorithm works on real data, we will assume that we 
have observed D = 9996 and R = 4.  
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Since we cannot observe NAA and NAa directly (they are indistinguishable 
phenotypically), the two numbers represent incomplete data from a three-
category trinomial distribution. The complete data specification is as 
follows: 

2 2( , , | ) [ ] [2 ] [ ]
!

! ! !
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NC

N N N
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The EM algorithm consists of two steps, the estimation step (or E-step) 
and the maximization step (or M-step). Let us start by setting q = 0.1. For the 
E-step, we estimate NAA and NAa as follows (with the subscript in NAA.1 and 
NAa.1 indicating the first E-step): 
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Substituting these into Eq. (13.18), we can obtain q by the maximum 
likelihood method, i.e., taking the derivative of f(NAA,NAa,Naa|q) with respect 
to q, setting the derivative to 0 and solve the resulting equation for q. This 
gives 

1
2 0.091272727
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Aa aaN Nq

N
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= =  (13.20) 

where the subscript 1 in q1 indicates the first M-step. We now repeat the E-
step according to the following equations equivalent to Eq. (13.19) 
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 (13.21) 

and the M-step according to the following equation equivalent to Eq. (13.20) 
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Repeating the E-step and M-step will result in qi asymptotically 
approaching 0.02, and NAa and NAA approaching 392 and 9604, respectively. 

Let us now come back to molecular phylogenetics and introduce a 
slightly more complicated substitution model. Kimura (1980) noted that 
transitional substitutions typically occur much more frequently than 
transversions, and consequently proposed the two-parameter K80 model in 
which the rate of transitional substitutions (A↔G and T↔C) is designated 
as α and the rate of transversion substitutions (A↔T, A↔C, G↔T and 
G↔C) as β: 
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Substituting this new Q  into Eq. (13.4) and solving the equations with 

the initial condition that PA.0 = 1 and PC.0 = PG.0 = PT.0 = 0 and the constrain 
that that PA + PG + PC + PT = 1 as before, we have 
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Note again that time t in Eq. (13.24) should be 2t when used between two 
extant sequences. So Eq. (13.24) has its general form as 
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where Ps.t and Pv.t are the probabilities that a site differs by a transition and a 
transversion, respectively, between two sequences that have diverged for 
time t, and can be estimated by the proportion of sites differing by a 
transition (P) and a transversion (Q), respectively. This leads to  
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 (13.26) 

 
Recall that the genetic distance is defined as 2tμ where μ = α + 2β for the 

K80 model. Therefore, 
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For the two sequences in Figure 13-1, P = 2/16, Q = 1/16, DK80 = 
0.22073. The equilibrium frequencies are derived by setting d in Eq. (13.4) 
to the 0 vector. Solving the resulting simultaneous equations with the 
constraint that the four frequencies sum up to 1, we have PA.t =PG.t =PC.t =PT.t 
= 0.25. Thus, the K80 model shares with the JC69 model the assumption that 
the equilibrium frequencies are all equal to 0.25. You might have noticed 
this because nucleotide frequencies are not featured in the expression of 
DJC69 or DK80. 

The variance of DK80 can be derived by the delta method as before: 
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Recall that P stands for the proportion of sites that differ by a transitional 
change and Q stands for the proportion of sites that differ by a transversional 
change. Designate R as the proportion of identical sites (R = 1 – P – Q). 
From the trinomial distribution of (R + P + Q)L, we have: 

(1 )
( )

(1 )
( )

( , )  .

P P
V P

L
Q Q

V Q
L

PQ
Cov P Q

L

−
=

−
=

= −

 (13.30) 

Substituting these into Eq. (13.29), we have the variance of DK80: 
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where c = (a + b)/2, with a and b defined in Eq. (13.27). 
Note that Eq. (13.29) is a general equation for computing the variance by 

the delta method. For any function Y = F(X1, X2, ..., Xn), the variance of Y is 
obtained by the variance-covariance matrix of Xi multiplied left and right by 
the vector of partial derivatives of Y with respect to Xi.  

Tamura and Nei (1993) noticed the rate difference between C↔T and 
A↔G transitions and proposed the TN93 model with the following rate 
matrix: 
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where πi designates equilibrium nucleotide frequencies, and the diagonal is 
constrained by the row sum equal to 0.  

Following the same protocol as before, and designate P1, P2 and Q as the 
probabilities of C↔T transitions, A↔G transitions and R↔Y transversions 
(R means either A or G and Y means either C or T), respectively, we can 
obtain,  
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Solving for α1t, α2t and βt from Eqs. (13.33)-(13.35), we have 
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Because we can estimate P1, P2 and Q by the proportion of sites with 
C↔T transitions, A↔G transitions and R↔Y transversions, respectively, 
DTN93 can be readily computed. For the two sequences in Figure 13-1, DTN93 
is 0.2525. The variance of DTN93 can be easily obtained by left- and right-
multiplying the variance-covariance matrix of P1, P2 and Q with the vector 
of the three derivatives of DTN93 with respect to P1, P2 and Q in the same way 
shown in the last term of Eq. (13.29). The variance and covariance of P1, P2 
and Q can be obtained in the same way as in Eq. (13.30).  

Many more substitution models and genetic distances have been 
proposed (Tamura and Kumar, 2002), with the number of all possible time 
reversible models of nucleotide substitution being 203 (Huelsenbeck et al., 
2004). In addition, there are more complicated models underlying the 
LogDet and the paralinear distances (Lake, 1994; Lockhart et al., 1994) that 
can presumably accommodate the nonstationarity of the substitution process. 
Such models have not been implemented in a maximum likelihood 
framework until very recently (Jayaswal et al., 2005). Different substitution 
models often lead to different trees produced and constitute a major source 
of controversy in molecular phylogenetics (Rosenberg and Kumar, 2003; 
Xia, 2000; Xia et al., 2003a). 

3.2 Amino acid-based and codon-based substitution 
models 

Amino acid-based models (Adachi and Hasegawa, 1996; Kishino et al., 
1990) are similar in form to those nucleotide-based models in the previous 
section, except that the discrete states of the Markov chain will be 20 instead 
of only 4. Because of the large size of the transition matrix, the transition 
probabilities are typically derived from empirical transition matrices 
(Dayhoff et al., 1978; Jones et al., 1992).  

There are three inherent difficulties with amino acid-based models. First, 
protein-coding genes often differ much in substitution patterns, and one can 
never be sure if any of the empirical transition matrices is appropriate for the 
protein sequences one is studying. Second, note that an amino acid 
replacement is effected by a nonsynonymous codon replacement. Two 
codons can differ by 1, 2, or 3 sites, and an amino acid replacement 
involving two codons differing by one site is expected to be more likely than 
that involving two codons differing by 3 sites. However, at the amino acid 
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level, there is no information on whether an amino acid replacement results 
in a single nucleotide replacement or a triple nucleotide replacement. Only a 
codon-based model can incorporate this information. Third, two similar 
amino acids are expected to, and do, replace each other more frequently than 
two different amino acids (Xia and Li, 1998). However, the similarity 
between amino acids is difficult to define. For example, polarity may be 
highly conserved at some sites but not at others. Two very different amino 
acids rarely replace each other in functionally important domains but can 
replace each other frequently at unimportant segment. Moreover, the 
likelihood of two amino acids replacing each other also depends on 
neighboring amino acids (Xia and Xie, 2002). For example, whether a 
stretch of amino acids will form a α-helix may depend on whether the 
stretch contains a high proportion of amino acids with high helix-forming 
propensity, and not necessarily on whether a particular site is occupied by a 
particular amino acid.  

The codon-based substitution models (Goldman and Yang, 1994; Muse 
and Gaut, 1994) were proposed to overcome some of the difficulties in 
amino acid-based models. These models share the third difficulty above with 
the amino acid-based models, and have additional problems of their own. 
For example, one cannot get good estimate of codon frequencies because 
protein-coding genes are typically very short. An alternative is to use the 
F3x4 codon frequency model (Yang, 2002; Yang and Nielsen, 2000). 
However, codon usage is affected by many factors, including differential 
ribonucleotide and tRNA abundance as well as biased mutation (Xia, 1996, 
1998b, 2005c). For example, the site-specific nucleotide frequencies are 
poor predictors of codon usage (Table 13-1) of protein-coding genes in 
Escherichia coli K12.  

Table 13-1. Site-specific nucleotide frequencies and codon usage in two codon families. AA – 
amino acid; Ncod – number of codon; Results based on eight highly expressed genes (gapC, 
gapA, fbaB, ompC, fbaA, tufA, groS, groL) from the Escherichia coli K12 genome (GenBank 
Accession: NC_000913) 

Nuc. Freq. by codon sites (CS)  Codon freq. 
Base CS1 CS2 CS3  Codon AA Ncod 
A 0.273 0.32 0.18  AAG Lys 24 
C 0.189 0.24 0.326  AAA Lys 149 
G 0.409 0.16 0.219  CAG Gln 73 
U 0.129 0.28 0.275  CAA Gln 7 

 
A-ending codon are used frequently for coding lysine, but G-ending 

codon used frequently for coding glutamine (Table 13-1). The reason for this 
is simple. Six Lys-tRNA genes in E. coli K12 all have anticodons being 
UUU which can translate the AAA lysine codon better than the AAG lysine 
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codon. For glutamine codons, there are two copies of Glu-tRNA genes (glnX 
and glnV) with a CUG anticodons matching the CAG codon and another two 
copies (glnW and glnU) with the UUG anticodon matching the CAA codon. 
However, the former is more abundant than the latter in the E. coli cell 
(Ikemura, 1992), which would favor the use of CAG against the CAA codon 
for glutamine. One should expect the F3x4 codon frequency model to 
perform poorly in such a situation which unfortunately is frequently 
encountered. 

The complex array of factors contributing to codon usage bias is 
illustrated in Chapter 9. Readers should refer to that chapter in order to 
appreciate the difficulty in developing realistic codon-based models as well 
as the poor performance of several proposed codon-based models in 
molecular phylogenetics. 

4. TREE-BUILDING METHODS 

Three categories of tree-building methods are in common use: the 
distance-based, the maximum parsimony and the maximum likelihood 
methods. These methods have their respective advantages and disadvantages 
and I will provide mathematical details for the reader to understand their 
problems. 

4.1 Distance-based methods 

The distance-based methods build trees from a distance matrix, and are 
represented by UPGMA (Sneath, 1962), the neighbor-joining (NJ) method 
(Saitou and Nei, 1987), the Fitch-Margoliash (FM) method (Fitch and 
Margoliash, 1967) and the FastME method (Desper and Gascuel, 2002). The 
calculation of some genetic distances has already been covered in previous 
sections. Other genetic distances include the paralinear (Lake, 1994) and 
LogDet (Lockhart et al., 1994) distances. A variety of genetic distances, 
together with tree-building algorithms such as UPGMA, NJ, FM and 
FastME (an excellent representative of distance-based methods based on the 
minimum criterion), are implemented in my program DAMBE (Xia, 2001; 
Xia and Xie, 2001b). 

Other than the simplest UPGMA method, each tree-building method 
consists of two steps: (1) the evaluation of branch lengths for a given 
topology by either the least-squares (LS) method, the NJ method or the FM 
method, and (2) the selection of the best tree based on either the minimum 
evolution (ME) criterion or the least-squares or the weighted least-squares 
criterion referred to hereafter as the Fitch-Margoliash (FM) criterion. One 
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should not confuse, e.g., the FM way of evaluating branch lengths with the 
FM criterion for choosing the best tree.  

There are many ways of evaluating branch lengths for a given tree, and I 
will only present the LS method here. For the three-OTU (operational 
taxonomic unit) tree in Figure 13-2A, the branch lengths (xi) can be solved 
uniquely by the following equations: 
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d x x
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Figure 13-2. Topologies for illustrating the distance-based methods. 

For the four-OTU tree in Figure 13-2B, we can write down the equations 
in the same way as in Eq. (13.40), but there will be six equations for five 
unknowns. The LS method finds the xi values that minimize the sum of 
squared deviations (SS), 

' 2 2 2
12 1 2 34 3 4( - ) [ - ( )] ... [ - ( )]  .ij ijSS d d d x x d x x= = + + + +∑  (13.41) 

By taking the partial derivatives with respect to xi, setting the derivatives 
to zero and solving the resulting simultaneous equations, we get 

1 13 12 23 14 24

2 12 13 23 14 24

3 13 23 34 14 24

4 14 13 23 34 24

5 12 23 34

  / 4  / 2 -  / 4  / 4 -  / 4

  / 2 -  / 4  / 4 -  / 4  / 4

  / 4  / 4  / 2 -  / 4 -  / 4

  / 4 -  / 4 -  / 4  / 2  / 4

  -  / 2  / 4 -  / 2  

x d d d d d

x d d d d d

x d d d d d

x d d d d d

x d d d d

= + +

= + +

= + +

= + +

= + + 14 24 13/ 4  / 4  / 4 .d d+ +

 (13.42) 



268 Chapter 13
 

With four OTUs, there are three unrooted trees. There are two commonly 
used global criteria for choosing the best tree. The first is the ME criterion 
based on the tree length (TL) which is the summation of all xi values. The 
tree with the smallest TL is chosen as the best tree. Note that TL can be 
computed directly from dij values without first evaluating xi values. 

In contrast, the FM criterion chooses the tree with the smallest SS  

( )2'
1

1 1

n n ij ij

P
i j i ij

d d
SS

d

−

= = +

−
= ∑ ∑  (13.43) 

where n is the number of OTUs and P often takes the value of 0 or 2. 
Whether a distance-based method will recover the true tree depends 

critically on the accuracy of the distance estimates. We will briefly examine 
this problem with both the ME criterion and the FM criterion. Let TLB and 
TLC be the tree length for Trees B and C in Figure 13-2. Suppose that OTUs 
1 and 3 have diverged from each other so much as to have experienced 
substitution saturation (Xia et al., 2003b) to cause difficulty in estimating the 
true D13. Let pD13 be the estimated D13, where p measures the degree of 
underestimation (p < 1) or overestimation (p > 1). Designate DTL as the 
difference in TL between the two trees, 

12 34 13 24- ( )
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4TL B C

d d pd d
D TL TL

+ +
= − =  (13.44) 

According to the LS method of branch evaluation, Tree B is better than 
Tree C if DTL < 0, and worse than Tree C if DTL > 0. Simple distances such 
as the p-distance or JC69 distance tend to have p < 1 and consequently 
increase the chance of having DTL > 0, i.e., favoring the incorrect Tree C. 
This is the long-branch attraction problem, first recognized in the maximum 
parsimony method (Felsenstein, 1978b). Genetic distances corrected with the 
gamma-distributed rates over sites (Golding, 1983; Jin and Nei, 1990; Nei 
and Gojobori, 1986; Tamura and Nei, 1993) tend to have p > 1 when there is 
in fact no rate heterogeneity over sites, and consequently would favor Tree B 
over Tree C, leading to long-branch repulsion (Waddell, 1995). 

The long-branch attraction and repulsion problem is also present with the 
FM criterion. Let SSB and SSC be SS in Eq. (13.43) for Trees B and C, 
respectively. With P = 0 in Eq. (13.43) and letting DSS = SSB – SSC, we have 
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where x = d13+d24, y = d12+d34 and z = d14+d23.  

We now focus on Tree D, for which y is expected to equal z. Now Eq. 
(13.45) is reduced to  

24 ( )SSD x y= −  (13.46) 

If branch lengths are accurately estimated, then x = y = 10, and DSS = 0, 
i.e., neither Tree B nor Tree C is favored. However, if d13 (i.e., the 
summation of the two long branches) is under- or overestimated, then DSS > 
0 favoring Tree C. This means that both under- and overestimation of the 
distance between divergence taxa will lead to long-branch attraction. This 
can be better illustrated with a numerical example with Tree D in Figure 13-
2 which also displays three distance matrices. The first one is accurate, the 
second one has genetic distances more underestimated for more divergent 
taxa, and the third has genetic distances more overestimated for more 
divergent taxa (e.g., when gamma-distributed rates are assumed when the 
rate is in fact constant over sites). Note that Tree B and Tree C converge to 
Tree D when x5 = 0. Table 13-2 shows the results by applying the ME and 
LS criterion in analyzing the three distance matrices. 

When the distances are accurate, the application of both the ME criterion 
and the FM criterion recovers Tree D (the true tree) with x5 = 0, TL = 10, and 
SS = 0. However, ME criterion favors Tree C when long branches are 
underestimated, and Tree B when long branches are overestimated. In 
contrast, the FM criterion would favor Tree C with both under- and 
overestimated distances (Table 13-2) when negative branches are allowed.  

Table 13-2. Effect of under- and over-estimation of genetic distances. 
       
 Correct Under-estimation Over-estimation 
 TreeB TreeC TreeB TreeC TreeB TreeC 
TL 10 10 7.75 7.5 12.5 13 
SS 0 0 0.25 0 1 0 
x5 0 0 -0.25 0.5 0.5 -1 

 
Distance-based methods, when used together with properly estimated 

genetic distances, are generally robust against various biases that handicap 
the maximum parsimony methods (illustrated in the next section). However, 
a recent paper has suggested a few topological biases associated with 
commonly used distance methods (Xia, 2006) which may be summarized 
briefly below. 

With two alternative unlabelled topologies (tree shapes, designated as 
Topology A and Topology B, respectively) for six OTUs (Figure 13-3), we 
have 105 possible unrooted labeled topologies.  
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Figure 13-3. Two unlabelled topologies (tree shapes), with Topology A having three cherries 
and Topology B having two (a cherry is a pair of adjacent leaves descending from the most 
recent common ancestor). 

There are 15 different ways of assigning the six OTUs to the leaves in 
Topology A and 90 different ways of assigning the six OTUs to Topology B. 
If we use randomly generated distance matrices, and if the distance-based 
methods are not biased in favor of one tree shape against the other, then the 
probability of getting Topology A and Topology B should be p = 15/105 and 
q = 90/105, respectively. However, the observed p is greater than 15/105 
(and observed q smaller than 90/105), when either the neighbor-joining 
(Saitou and Nei, 1987), FastME (Desper and Gascuel, 2002) or Fitch-
Margoliash method (Fitch and Margoliash, 1967) is used. This suggests that 
these distance methods may be biased in favor of topologies with more 
cherries (a cherry is a pair of adjacent leaves descending from the most 
recent common ancestor). 

The bias may be explained by the way the xi values are estimated by the 
least-squares method. Designate dij as the genetic distance between two 
OTUs i and j, and dij’ the sum of branches linking OTUs i and j on the 
reconstructed tree. When there are only three OTUs, the three xi values can 
be solved exactly and dij is always equal to dij’. With more than three OTUs, 
dij is equal to dij’ only when OTUs i and j are in the same cherry, i.e., 
separated by only one internal node. A tree with more cherries with have 
more dij values equal to dij’ and may consequently be favored. 

It may not be obvious that dij = dij’ when OTUs i and j are in the same 
cherry. So a bit of explanation is due. For the UPGMA method, whenever 
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two OTUs i and j are clustered, the branching point is set at a distance equal 
to dij/2. So dij = dij’. For the NJ method, with two OTUs A and B separated 
by a single internal node X, the branch lengths between A and X and 
between B and X, designated bAX and bBX, respectively, are computed by the 
NJ method as  
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[ ]
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1 ( 2)
2( 1)

AX AB A B

AX AB B A

b N d R R
N

b N d R R
N

= − + −
−

= − + −
−

 (13.47) 

where N is the number of OTUs, RA = ΣdAi, and RB = ΣdBi (Saitou and Nei, 
1987; Studier and Keppler, 1988). It is now obvious that dAB’ = (bAX + bBX) 
= dAB. These branch lengths, i.e., bAX and bBX specified in Eq. (13.47), are 
also known to be the least-square estimates (Saitou and Nei, 1987). 

For the Fitch-Margoliash method (Fitch and Margoliash, 1967) with two 
OTUs A and B separated by a single node X, the branch lengths are 
computed by first merging all the rest of OTUs into a single OTU, 
designated C, and then using the following equation with x, y, and z 
designating the branch lengths between A and X, B and X and C and X, 
respectively,  
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Eq. (13.48) shows clearly that dAB’ = (x + y) = dAB. For three OTUs, i.e., 
when C is not a composite OTU, these branch lengths are also least-square 
estimates. 

When dij = dij’, it does not contribute to SS in Eq. (13.41) or SS in Eq. 
(13.43). It is possible that Topology A in Figure 13-3 with three dij values 
equal to their corresponding dij’ values, may be favored than Topology B in 
Figure 13-3 with only two dij values equal to their corresponding dij’ values. 

A related, but slightly different explanation for the possible bias in favor 
of topologies with more cherries is as follows. Because the least-squares 
method is a minimization method, the more often the observed dij values 
appear in equations for estimating xi values, the more constraints are 
imposed on the minimization. If we expressed the nine xi’s as functions of dij 
values in the same form as Eq. (13.42), we will find the observed dij values 
appearing in the nine functions 93 times for Topology A but 95 times for 
Topology B. Thus, the minimization problem associated with Topology B is 
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subject to more constraints than that with Topology A. Whether this can 
explain why Topology A is favored needs more study. 

4.2 Maximum parsimony methods 

The maximum parsimony method saw its first effective algorithm in 
1971 (Fitch, 1971), and became immensely popular mainly due to the 
excellent software package PAUP (Swofford, 1993). The method remains 
the best entry point for computer science students to learn molecular 
phylogenetics and for biology students to develop a basic vocabulary of 
computation for communicating with programmers. 

4.2.1 The Fitch algorithm 

In contrast to the distance-based methods, maximum parsimony (MP) 
and maximum likelihood methods are character-based methods. The six 
aligned sequences in Figure 13-4 have nine sites, with sites 2, 4, 9 being 
monomorphic, and the rest of sites being polymorphic. A polymorphic site 
with at least two different states each represented by at least two OTUs is 
defined as an informative site. The MP method operates on informative sites 
only in its search for the best tree. 

S6 CATGCCGGC

S5 TATGCCGGC

S4 GACGTTGAC

S3 TACGTCAAC

S2 AACGTCGGC

S1 AATGCCGGC

∪→(T,C)

∪→(A,T)

∩→(T)

∪→(A,T,G)

∪→(T,G)

123456789

 

Figure 13-4. Computing the minimum number of changes for the first site of the six 
alignment sequences in phylogenetic reconstruction using the maximum parsimony method 

Given a topology, we compute the minimum number of changes for each 
sequence site, with the computation of the first site illustrated in Figure 13-4. 
Each node is represented by a set of characters, with the terminal nodes 
(leaves) each represented by a set containing a single character. The method 
traverses through each internal node, starting from the node closest to the 
leaves. If two sets of the two daughter nodes have an empty intersection, 



13. Molecular Phylogenetics 273
 
then the node will be represented by the union of the two daughter sets, 
otherwise the node will be represented by the intersection. Once the 
operation reaches the root, then the number of union operations is the 
minimum number of changes needed to map the site to the tree.  

Site 1 in Figure 13-4 requires four union operations (Figure 13-4), 
whereas sites 3, 5, and 8 each require only one union operation. Sites 6 and 
7, which are polymorphic with two nucleotide states but not informative, 
will require one change for any topology. So the minimum number of 
changes, also referred to as the tree length, given the topology and the 
sequences in Figure 13-4, is nine. The same computation is done for other 
possible topologies and the tree with the smallest tree length is taken as the 
MP tree. 

One may think that it is necessary to have a 4×L matrix (where L is 
sequence length) to store the possible ancestral states in the internal nodes 
for nucleotide sequences with four bases. In practice, only a vector of L 
elements is sufficient to store the states of the internal nodes by using 
ambiguous coding notation similar to the IUB (International Union of 
Biochemistry) code in Table 2-2 in Chapter 2. For example, according to the 
IUB code, (A,T) is coded as W, (A, T, G) as D, (T,G) as K and (T, C) as Y. 
If we compare the first nucleotide between S5 and S6 (T and C, respectively), 
we would need to look up the Table 2-2 of ambiguous codes to find letter Y. 
Looking up the ambiguous code table for every set of nucleotides in the 
internal node is time consuming. 

To speed up the computation, one will almost always use bitwise 
operations. Here I illustrate the implementation in the DNAPARS program 
in the PHYLIP package (Felsenstein, 2002). First, for nucleotide i, where i = 
A, C, G, T, O (for other such as the gap “-”), we define Ii (i.e., IA, IC, IG, IT 
and IO) as 0, 1, 2, 3, and 4, respectively. We also note that the binary 
notation of the decimal value of 1 is “00000001” which, when left-shifted by 
IA, IC, IG, IT or IO bits, yields decimal values 1, 2, 4, 8 and 16, respectively 
(Table 13-3). 

Table 13-3. Decimal values obtained by left-shifting (<<) the binary 00000001 by Ii. 
Nuc Ii 1<<Ii Decimal 
A 0 00000001 1 
C 1 00000010 2 
G 2 00000100 4 
T 3 00001000 8 
O 4 00010000 16 

 
We can now use bitwise operations to obtain the union and intersection. 

In almost all programming languages, there is an operation called bitwise 
OR that will combine corresponding bits of two binary numbers in such a 
way that the result is 1 if either of the operand bits is 1, and is 0 when both 
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operand bits are 0. The bitwise OR is typically designated by | in C-related 
languages and simply OR in VB (Visual Basic)-related languages. Thus, the 
union of A (represented in binary as 00000001) and G (represented in binary 
as 00000100) is 00000001 | 00000100 = 00000101, which equals a decimal 
value of 5. We consequently assign the value of 5 to the letter R (for either A 
or G according to the IUB coding).  

Similarly, the union of C and T is 00000010 | 00001000 = 00001010, 
which equals a decimal value of 10. We consequently assign the value of 10 
to the letter Y (for either Y or T according to IUB coding). The union of R 
and Y is N (any of the four nucleotides), obtained by 00000101 | 00001010 = 
00001111 which equals the decimal value of 15. The letter N consequently 
gets the value of 15.  

In VB-related languages, we have R = (1 OR 4) = 5 for the union of A 
and G, Y = (2 OR 8) = 10 for the union of C and T, N = (5 OR 10) =15, and 
so on. To help you check the output of the bitwise operations, I have listed 
the nucleotides, their  respective ascii keycodes, assigned values with binary 
notation and the meanings of ambiguous codes in Table 13-4. 

Table 13-4. Nucleotides (Nuc), their ascii code, assigned decimal (binary) values according to 
bitwise operations and their meanings. 
Nuc Ascii Value Meaning 
A 65  1 (00000001) A 
C 67  2 (00000010) C 
M 77  3 (00000011) A or C 
G 71  4 (00000100) G 
R 82  5 (00000101) A or G 
S 83  6 (00000110) C or G 
V 86  7 (00000111) A or C or G 
T 84  8 (00001000) T 
W 87  9 (00001001) A or T 
Y 89 10 (00001010) C or T 
H 72 11 (00001011) A or C or T 
K 75 12 (00001100) G or T 
D 68 13 (00001101) A or G or T 
B 66 14 (00001110) C or G or T 
N 78 15 (00001111) G or A or T or C 
O 79 16 (00010000) - or whatever else 

 
Programming languages also feature a bitwise AND operator to help us 

get intersection. It is represented as & in C-related languages and simply 
AND in VB-related languages. It combines corresponding bits of two binary 
numbers in such a way that the result is 1 if both operand bits are 1, and is 0 
otherwise. Thus, the intersection of A and R is (A & R) = 1 in C-related 
languages, (A AND R) = 1 in VB-related languages (Recall that 1 is the 
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number assigned to A (Table 13-4), so the operation simply means that the 
intersection of A and R is just A. 

The brief introduction of binary operations above suggests a clever trick 
in speeding up the evaluation of a particular tree topology. We define 

 
S = “ACMGRSVTWYHKDBNO???????????????” 
 

so that A = 1, C = 2, M = 3, G = 4, …, N = 15 (which stands for any 
nucleotide), O = 16, and “?” = 31, then the union and intersection of the two 
child nodes can be obtained easily by the bitwise OR and bitwise AND 
operations. For example, if the nucleotide at the left child node is A = 1 and 
the right child node is K = 12 (i.e., T or G), then their union at the parental 
node is 1 | 12 = 13 (which is D standing for A, G or T). Similarly, if the 
nucleotide at the left child node is (T,C) = Y = 10 and the right child node is 
(A, G, T) = D = 13, then their intersection at the parental node is 10 & 13 = 8 
(which is the number assigned to T ). Bitwise operations are very fast, even 
for VB-related languages.  

The evaluation of each tree can also be sped up by first collapsing the 
sites into site patterns. When sequences are long and when the number of 
OTUs few, most sites will have the same site pattern. For example, if all nine 
columns of data in Figure 13-4 are the same as the first column, then we 
only need to evaluate the first column and multiple the number of changes 
by nine to get the tree length. However, when the number of sequences 
increases, this approach becomes less and less effective the probability of 
different sites sharing the same site pattern decreases with the number of 
sequences. 

In summary, the algorithm for the MP method consists of two 
components, one being a tree generation function to generate alternative 
topologies and the other being the tree evaluation function to output the 
minimum number of changes for each alternative tree topology. The 
topology with the smallest number of changes is the MP tree.  

4.2.2 The uphill search and branch-and-bound search algorithms 

The number of possible topologies (Felsenstein, 1978a) increases very 
quickly with the increase in the number of OTUs (n), with the number of 
rooted and unrooted topologies, designated as NR and NU, respectively, being 
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Searching through all possible topologies is called exhaustive search. It is 
often computationally impossible to search all possible trees with a large n. 
Two faster alternatives are commonly used. The first is the uphill search 
which does not guarantee that the resulting tree is the most parsimonious. 
The second is the branch-and-bound approach which does guarantee the 
finding of the most parsimonious tree. 

The uphill search algorithm is illustrated in Figure 13-5 with rooted 
topologies. We first take three OTUs and evaluate all three possible 
alternative topologies. If T1 (Figure 13-5) is the shortest of the three, then 
we ignore the other two topologies (i.e., T2 and T3 in Figure 13-5) and all 
other 4-OTU topologies derived from them. Now we add the fourth OTU at 
all possible positions of T1 and generate the five possible topologies. 
Evaluating these five topologies generates the 4-OTU “MP tree”.  
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Figure 13-5. Illustration of the uphill and branch-and-bound searching algorithm. T1, T2 and 
T3 designate the three 3-OTU topologies. Adding the fourth OTU at all possible positions in 
T1 generates the five 4-OTU topologies under it. The same for T2 and T3 and their respective 
4-OTU topologies. 
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Compared to the exhaustive search evaluating all 15 possible 4-OTU 
topologies, the uphill search is obviously much faster. Computation 
simulations have shown that the uphill search generates optimal or near-
optimal trees. 

The branch-and-bound algorithm for the MP method (Hendy and Penny., 
1982) starts by generating an initial tree with fast algorithms such as the 
uphill search. Designate the length of the initial tree (i.e., the number of 
changes required to account for the sequence variation) as L, which is the 
upper bound of the tree length for the true MP tree. One may also use the 
neighbor-joining method (Saitou and Nei, 1987) to generate a topology and 
then evaluate the topology to obtain L. The resulting topology also allows us 
to know which OTUs tend to have long branches. 

The next step is to rank OTUs according to their branch lengths and take 
the three OTUs with the longest branch lengths to build the 3-OTU 
topologies. More divergent OTUs are added to the tree earlier. Any subtree 
with a tree length > L is eliminated together with all topologies derived from 
such a subtree because adding more OTUs will only lengthen the tree. This 
is why we use more divergent OTUs first because this increases the chance 
of having subtrees with a tree length > L so that such subtrees get eliminated 
early. Take topologies in Figure 13-5 for example. If L = 10 and the 3-OTU 
topologies T2 and T3 already have tree lengths greater than L, then we do 
not need to consider the 4-OTU topologies derived from them because such 
4-OTU topologies cannot be the MP tree. This process continues until the 
true MP tree is found. 

The efficiency of the branch-and-bound algorithm depends much on the 
initial topology. If the initial topology is good, then many non-MP 
alternatives gets eliminated early. If it is bad, then the algorithm will be 
nearly as slow as the exhaustive search. 

4.2.3 The long-branch attraction problem 

The MP method is known to be inconsistent (Felsenstein, 1978b; 
Takezaki and Nei, 1994) and I will provide a simple demonstration here by 
using trees in Figure 13-6. With four species, we have three possible 
unrooted topologies, designated Tk (k = 1, 2, 3), with T1 being the correct 
topology.  
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Figure 13-6. The long-branch attraction problem in the maximum parsimony methods. 

Let Xij be nucleotide at site j for species Si, and L be the sequence length. 
For simplicity, assume that nucleotide frequencies are all equal to 0.25. 
Suppose that the lineages leading to S1 and S3 have experienced full 
substitution saturation, so that 

1 , 1 3 , 3Pr( ) Pr( ) 0.25j ij i j ij iX X X X≠ ≠= = = =  (13.50) 

where Pr stands for probability. The lineages leading to X2 and X4 have not 
experienced substitution saturation and have 

2 4Pr( )j jX X P= =  (13.51) 

where P > 0.25. For simplicity, let us set P = 0.8, and L = 1000. 
We now consider the expected number of informative sites, designated 

by nk (k = 1, 2, 3), favoring Tk. By definition, site j is informative and 
favoring T1 if it meets the following three conditions: X1j = X2j, X3j = X4j, X1j 
≠ X3j. Similarly, site j favors T2 if X1j = X3j, X2j = X4j, X1j ≠ X2j. Thus, the 
expected numbers of informative sites favoring T1, T2 and T3, respectively, 
are 
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 (13.52) 

The equations mean that, in spite of T1 being the true topology, we 
should have, on average, only about 47 informative sites favoring T1 and T3, 
but 150 sites supporting the wrong tree T2. This is one of the several causes 
for the familiar problem of long-branch attraction (Hendy and Penny, 1989) 
or short-branch attraction (Nei, 1996). Because it is the two short branches 
that contribute a large number of informative sites supporting the wrong tree, 
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“short-branch attraction” seems a more appropriate term for the problem 
than “long-branch attraction”.  

4.3 Maximum likelihood methods 

The maximum likelihood (ML) method is introduced into molecular 
phylogenetics by Joe Felsenstein (1981) and popularized by his DNAML 
program in his PHYLIP package (Felsenstein, 2002). It is based on explicit 
substitution models. Many different types of computer simulation have 
demonstrated the superiority of the ML method in recovering the true tree. I 
now use the four aligned sequences in Figure 13-7 to illustrate numerically 
the computation involved in the ML method based on the JC69 model. With 
four sequences, we have three possible unrooted topologies of which one is 
shown in Figure 13-7.  
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65
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L1 = prob.                        + prob.                        + ... +
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T

T

A
A
G
G

A

A
S1 ACATACGT
S2 ACATACGT
S3 GTCGACGT
S4 GTCGACGT

 

Figure 13-7. Likelihood calculation for the first site of the four aligned sequences. 

We do not know the state of the two internal nodes, labeled as nodes 5 
and 6, respectively, in Figure 13-7. So we need to consider all four 
possibilities (i.e., A, C, G, and T) for each node, with 16 possible 
combinations (Figure 13-7). Note that the number of possible combinations 
increases rapidly as 4N, where N is the number of internal nodes. This is one 
of main reasons why likelihood methods in phylogenetics are slow. 

 The sequences have 8 sites, with the first four sites sharing one site 
pattern and the last four sites sharing another site pattern. So we need only 
two site-specific likelihood functions. You may recall that the JC69 model 
assumes that all nucleotides substitute each other with equal probabilities 
and that nucleotide frequencies are equal. This is why we can treat the first 
four sites as having the same site pattern. 

The likelihood function of the first site, given the topology in Figure 13-
7, is the summation of the 16 probabilities corresponding to the 16 
nucleotide combinations of the two internal nodes with unknown nucleotides 
(Figure 13-7). Thus, the likelihood of the first site is, 
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where Pij.t for the JC69 model has already been given in Eq. (13.6) except 
that “8αt” should be replaced by “4αt” because here we are not dealing with 
branch lengths connecting two extant OTUs. Note that L2 = L3 = L4 =L1. We 
can write L5 (= L6 = L7 = L8) in a similar fashion. 

The sequences in Figure 13-7 allow us to simplify Eq. (13.53) greatly. 
Note that S1 = S2 and S3 = S4 (Figure 13-7) so that αt1, αt2, αt3, and αt4 are 
all zero. Now we have 
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With the assumption that all sites evolve independently, the likelihood 

function for all eight sites is simply 
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 The αt5 value that maximizes lnL is 0.27465, which leads to lnL = -
21.02998. The branch length between nodes 5 and 6 is 3αt5 = 0.82396. We 
can do the same calculation for the other two possible topologies, and then 
choose the tree with the largest lnL value as the ML tree. In this particular 
example, the tree in Figure 13-7 is the ML tree because it has the lnL value 
greater than that of the other two trees. One may also find that the ML tree, 
including its estimated branch lengths, is identical to the tree from a 
distance-based method such as the neighbor-joining (Saitou and Nei, 1987), 
the FastME (Desper and Gascuel, 2002) or the Fitch-Margoliash method 
(Fitch and Margoliash, 1967) as long as the JC69 distance is used. 

One can cite many advantages of the maximum likelihood over the 
maximum parsimony method, and one of the frequently cited advantages is 
that the former uses more information than the latter. The maximum 
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parsimony method uses only the informative sites for searching the MP tree, 
whereas maximum likelihood methods, depending on the inherent 
substitution model adopted, can use information on all sites, including 
monomorphic sites.  

There are two major criticisms on the ML method in phylogenetics. The 
first is that the application of the likelihood in phylogenetics is not really a 
ML method in its conventional sense because the topology is not in the 
likelihood function (Nei, 1987; Nei and Kumar, 2000). To see this point, we 
can illustrate the conventional ML method with a simple example. 

Suppose we wish to estimate the proportion of males (p) of a fish 
population in a large lake. A random sample of N fish contains M males. 
With the binomial distribution, the likelihood function is  

!
(1 )  .

!( )!
M N MN

L p p
M N M

−= −
−

 (13.56) 

The maximum likelihood method finds the value of p that maximizes the 
likelihood value. This maximization process is simplified by maximizing the 
natural logarithm of L instead: 
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The likelihood estimate of the variance of p is the negative reciprocal of 
the second derivative, 
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Note that, in contrast to the likelihood in Eq. (13.57) which is a function 
of p (the parameter to be estimated), the likelihood in Eq. (13.55) does not 
have the topology as a parameter. Without the convenient “∂lnL/∂θ = 0” 
formulation, we have to do either exhaustive or branch-and-bound search in 
order to find the topology that maximizes the likelihood. In practice, 
exhaustive or branch-and-bound search is rarely done, which implies that 
few of the published ML trees are authentic ML trees. Thus, Nei’s criticism 
highlights more of a practical difficulty than a theoretical one because the 
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likelihood principle does not require the parameter to be continuous and 
differentiable (Chang, 1996). The criticism can also be applied to other 
phylogenetic methods. However, other methods are generally faster and can 
search the tree space more thoroughly than the ML method. Therefore, while 
it is not particularly controversial to claim that an authentic ML tree is 
generally better than a tree satisfying the MP, ME or FM criterion, it is not 
unreasonable for one to expect the latter to be as good as or better than a 
“ML” tree that is obtained from searching a small subset of all possible 
topologies. This is particularly pertinent with reconstructing very large 
phylogenies (Tamura et al., 2004). 

The second criticism is on the assumptions shared by nearly all the 
substitution models currently implemented in the likelihood framework: (1) 
the substitutions occur independently in different lineages, (2) substitutions 
occur independently among sites, and (3) the process of substitution is 
described by a time-homogeneous (stationary) Markov process. The 
likelihood depends on the assumptions of the substitution model, and we 
generally cannot be sure if the model we use is appropriate. 

Among the three assumptions mentioned above, the first assumption is 
false in taxa with a history of horizontal gene transfer which is rampant in 
bacterial species (Brown, 2003; Eisen, 2000; Koonin, 2003; Kurland et al., 
2003; Medigue et al., 1991; Philippe and Douady, 2003) or with gene 
conversion which is ubiquitous (Aylon and Kupiec, 2004; Drouin, 2002a, 
2002b; Drouin and de Sa, 1995; Drouin et al., 1999; Hickey et al., 1991).  

The problem of the second assumption can be illustrated with the 
following example involving the GAT and GGT codons. Both codons end 
with a T. Whether a T→A substitution would occur depends much on 
whether the second position is an A or a G. The T→A substitution is rare 
when the second codon position is A because a T→A mutation in the GAT 
codon is nonsynonymous, but relatively frequent when the second codon 
position is G because such a T→A mutation in a GGT codon is synonymous. 
So nucleotide substitutions do not occur independently among sites (Xia, 
1998a). This is one of the reasons for using codon-based models but these 
models have their own problems as mentioned before.  

The third assumption is also problematic. Suppose we wish to reconstruct 
a tree from a group of orthologous sequences from both invertebrate and 
vertebrate species. There is little DNA methylation in invertebrate genomes, 
but heavy DNA methylation in some vertebrate genomes. DNA methylation 
greatly enhanced the C→T transition and consequently the G→A transition 
on the opposite strand (Xia, 2003). The net result is a much elevated 
transition/transversion bias and increased AT% in the lineages with DNA 
methylation, violating the third assumption.  
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The transfer of genes from a mitochondrial genome into a nuclear 
genome serves as another illustration of this third problem. The mutation 
spectrum and selection regime may differ substantially between the 
mitochondria and the nucleus, leading to nonstationarity. The gene transfer 
between mitochondrial genome and nuclear genome is an ongoing process in 
plants (Bonen, 2006; Bonen and Calixte, 2006). 

More complicated models have been proposed in response to our 
increased knowledge of the substitution process. However, such parameter-
rich models create two problems. First, the dependence of the likelihood 
value on tree topology decreases as the number of parameters increases 
because tree topology is just one of these parameters. So a better-fit model 
does not imply a more efficient recovery of the true tree. Second, parameter-
rich models require more data for reliable parameter estimation. The 
dilemma is that increasing the sequence length also increases the 
heterogeneity of substitution processes (Xia, 1998a) including heterotachy 
(Kolaczkowski and Thornton, 2004) operating on different sequence 
segments and consequently increase the number of parameters to be 
estimated. Such heterogeneity over sites implies that the consistency of the 
ML method (Chang, 1996; Felsenstein, 1988) is not of much value because 
we cannot get long sequences for a fixed and small number of parameters. 
Take for example the estimation of the proportion of male fish in the lake. If 
we get only six male fish in a sample with no female, then the likelihood 
estimation of p is 1 which is worse than our wildest guess without any data. 

4.4 Bayesian inference 

The Bayesian approach has only recently been used extensively in 
phylogenetic inference (Aris-Brosou, 2003; Aris-Brosou and Yang, 2003; 
Huelsenbeck et al., 2001) as well as in phylogeny-based detection of 
adaptive evolution (Aris-Brosou, 2005). In previous chapters, I have already 
illustrated Bayesian approach involving discrete variables. Here I illustrate 
(1) the basic principle of the Bayesian approach involving a continuous 
variable, and (2) three computational approaches to simplify the evaluation 
of posterior probabilities, i.e., the conjugate prior distributions, the discrete 
approximation  the Markov chain Monte Carlo (MCMC) method.  

4.4.1 Bayes theorem for a continuous variable 

We will use the same example of estimating the proportion (p) of male 
fish in a fish population in a large lake. For a continuous variable such as p, 
the Bayes’ theorem is 
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where p is the parameter of interest, y is the observed sample data, f(p) is the 
prior probability density function for incorporating our prior knowledge on 
p, f(y|p) is the likelihood, and f(p|y) is the posterior probability. The 
numerator and the denominator are often referred to as the joint and 
marginal probabilities, respectively.  

Suppose that we have taken a sample of six fish, all being males. Let N 
be the number of fish in the sample and M be the number of males in the 
sample. So we have N = 6 and M = 6. How should we use the Bayesian 
approach to estimate p (the proportion of males)? 

We have three tasks to accomplish in order to obtain f(p|y). The first is to 
formulate f(p), our prior probability density function (referred hereafter as 
PPDF), the second is to formulate the likelihood, f(y|p), and the third is the 
most tricky, i.e., to get the integration in the denominator of Eq. (13.59). 

The first task, i.e., formulate f(p), should have been done before taking 
the sample. According our conventional wisdom in vertebrate biology, the 
two sexes should be roughly equal in number (especially in a large lake 
where the fish population is most likely outbreeding). So the probability of p 
= 0.5 should be the largest and decrease as p becomes more extreme towards 
0 or 1. Such a conventional wisdom can be described by the versatile beta 
distribution which is a two-parameter density function defined over the 
closed interval 0 ≤ p ≤ 1 and used often as a model for proportions:  
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M N MNf p p p
M N M

− − −−
= −

− − −
 (13.60) 

where N’ = 6 and M’ = 3 to reflect prior belief that p = 0.5 is the most likely. 
The primes in Eq. (13.60) in N’ and M’ indicate that they are for PPDF and 
different from N and M from the sample.  

The PPDF expressed as the beta distribution with N’ = 6 and M’ = 3 is 
shown in Figure 13-8. If you think that the bell-shaped curve of PPDF 
reflects your prior wisdom, then we are in business and can continue with 
our computation. If you want to get another density function to replace f(p) 
in Eq. (13.60), please do so and we will continue just the same. 
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Figure 13-8. Comparison between prior and posterior probabilities. 

The second task in evaluating f(p|y) is to formulate the likelihood 
function f(y|p), which is easy given the binomial distribution: 
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M N MNf y p p p
M N M

−= −
−

 (13.61) 

If you do not like symbols, just substitute N’ = 6, and M’ = 3 into Eq. 
(13.60) and N = 6 and M = 6 into Eq. (13.61). Now the numerator of Eq. 
(13.59), designated as A, becomes  

8 2( ) ( | ) 30 (1 )A f p f y p p p= = −  (13.62) 

Finally we come to the more difficult third task, dealing with the 
denominator of Eq. (13.59). Fortunately for us, I have chosen perhaps the 
simplest possible problem for this illustration. The denominator, designated 
by B, is simply 

1 8 2
0
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B Adp p p dp= = − =∫  (13.63) 

where A is given in Eq. (13.62). Now Eq. (13.59) is reduced to  
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= = = −  (13.64) 
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The result is shown in Figure 13-8 in comparison with the prior 
probability. f(p|y) in Eq. (13.64) is a properly normalized probability density 
function as you can verify that  

1 8 2
0

495 (1 ) 1p p dp− =∫  (13.65) 

The peak of f(p|y) is at p = 0.8, i.e., our prior expectation of p = 0.5 has 
been revised by the actual sample to p = 0.8. You may verify this by taking 
the derivative of f(p|y) in Eq. (13.64) with respect to p, setting the derivative 
to 0 and solving the resulting equation for p, which will yield p = 0.8.  

You may have already noted that, for estimating a Bayesian p, we do not 
need the integral in the denominator of Eq. (13.59). You may verify this by 
taking the derivative of the numerator A in Eq. (13.62) with respect to p, 
setting the derivative to 0 and solving the resulting equation for p, which will 
also yield p = 0.8. It is only when we need to obtain f(p|y), the posterior 
probability density function, that we need the integral in denominator to 
normalize the numerator into a proper probability density function. 

One misunderstanding from students is the following. The assumption of 
equal males and females inherent in the prior can be readily rejected by the 
sampling data of six males because the probability of the assumption being 
true is 0.56 = 0.015625. So why should we use a very unlikely prior? To this 
question, a Bayesian can readily answer by pointing out that the prior should 
be properly assessed before the sampling takes place. However, this does not 
mean that accepting a prior probability density function is not controversial. 
As has been pointed out already (Felsenstein, 2004), many problems exist in 
choosing proper prior probabilities, and a Bayesian is characterized by being 
willing to accept controversial priors. Given the fact that posterior 
probabilities depend on prior probabilities, a Bayesian enjoys a great deal of 
flexibility in generating “desirable” results. Indeed, one may claim that no 
branch of statistics is more closely related to lies and damned lies than 
Bayesian statistics. 

In our simple example, one may note that if the population of fish is 
indeed made of all males, e.g., when there is a high concentration of 
androgen masculinizing all individuals to males (Baron et al., 2004), then 
the likelihood estimate of p = 1 is correct and the Bayesian estimate of p = 
0.8 is wrong, and the wrong estimate may lead to our failure to identify an 
environmental crisis. 

Aside from the controversy in setting prior probabilities, there are cases 
where priors can be assessed properly and there is no denial that Bayesian 
inferences have made significant contributions in virtually any branch of 
natural and social sciences where decision making is involved. For this 
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reason, it is important to learn a few tricks that ease the computation burden 
of Bayesian inference. 

4.4.2 Alternative computational approaches in Bayesian inference 

One should know that, in practice, Eq. (13.59) is rarely used for 
computing the posterior probabilities because the integration in the 
denominator is difficult unless f(θ) and f(y|θ) are very simple (which luckily 
is true in our case). There are three alternative computational approaches. 
The first is to use the conjugate prior distributions (Raiffa and Schlaifer, 
1961), the second is to use the discrete approximation, and the third is the 
MCMC (Markov chain Monte Carlo) approach (Hastings, 1970; Metropolis 
et al., 1953) of which a special case, called Gibbs sampler, has already been 
presented in Chapter 7. I will briefly illustrate these approaches here using 
the same example. 

A conjugate prior distribution is one that, after the mathematical 
operation specified in Eq. (13.59), will result in a posterior distribution, 
f(p|y), belonging to the same family of distributions as the prior. If you do 
not have a statistical handbook, Wikipedia lists many conjugate distributions 
under “Conjugate prior”. For our example involving a stationary and 
independent Bernoulli process in sampling fish, the conjugate prior 
distribution is the beta distribution already specified in Eq. (13.60), with N’ 
= 6 and M’ = 3 reflecting our prior knowledge that p is most likely 0.5. The 
density function of the prior is already shown in Figure 13-8. 

Now we compute the posterior probability. It can be proven that, if the 
prior distribution of p is a beta distribution, then the posterior distribution 
will also be a beta distribution with the two parameters computed according 
to Eq. (13.66) below. In our actual sample with six males and 0 female (N = 
6 and M = 6), 

" ' 3 6 9
" ' 6 6 12

M M M
N N N

= + = + =
= + = + =

 (13.66) 

Now the posterior probability can be calculated by using Eq. (13.60) by 
substituting N’ and M’ in Eq. (13.60) with N" and M'' in Eq. (13.66). The 
resulting f(p|y) is exactly the same as is specified in Eq. (13.64), i.e., you 
have derived f(p|y) without going through the hazardous step of integration. 
In particular, if you subsequently decided to take another sample of fish and 
get 4 males out of 7, all what you need to do is to use N’ = 12, M’ = 9, N = 
7, and M = 4, and recalculate M’’ and N’’ using Eq. (13.66). So you can 
obtain the new posterior probability in no time. 
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The second alternative to the integration specified in the denominator of 
Eq. (13.59) is by the discrete approximation, which is illustrated in Table 13-
5. Although variable p is continuous between 0 and 1, we have discretized it 
into 20 intervals, with pi = 0, 0.05, 0.1, …, 1, and computed f(pi) according 
to Eq. (13.60) and f(y|pi) according to Eq. (13.61). The integral in the 
denominator of Eq. (13.59) is then approximated by 
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which is equal to the value of 2/33 in Eq. (13.63). Thus, we obtained the 
integral by simply taking a weighted arithmetic mean. 

Table 13-5. Approximate the integral in Eq. (13.59) by discretization. 
pi f(pi) f(y|pi) f(y|pi)*f(pi) 
0 0 0 0 
0.05 0.067688 0.000000 0.000000 
0.1 0.243000 0.000001 0.000000 
0.15 0.487688 0.000011 0.000006 
0.2 0.768000 0.000064 0.000049 
0.25 1.054688 0.000244 0.000257 
0.3 1.323000 0.000729 0.000964 
0.35 1.552688 0.001838 0.002854 
0.4 1.728000 0.004096 0.007078 
0.45 1.837688 0.008304 0.015260 
0.5 1.875000 0.015625 0.029297 
0.55 1.837688 0.027681 0.050868 
0.6 1.728000 0.046656 0.080622 
0.65 1.552688 0.075419 0.117102 
0.7 1.323000 0.117649 0.155650 
0.75 1.054688 0.177979 0.187712 
0.8 0.768000 0.262144 0.201327 
0.85 0.487688 0.377150 0.183931 
0.9 0.243000 0.531441 0.129140 
0.95 0.067688 0.735092 0.049757 
1 0 1 0 
Sum 19.999875  1.21187329 

 
Discretizing variable p into finer intervals will have more accurate 

approximation. I will leave it as an exercise for you to discretize variable p 
into intervals of 0.01. This should be easy to do if you are familiar with any 
spreadsheet programs such as Microsoft EXCEL. Any practical computation 
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would have involved smaller intervals. Choosing interval of 0.001 would 
imply the discretization of p into 1000 intervals. 

For Bayesian inference involving a single variable, the discrete 
approximation works very well. However, the approach becomes clumsy 
with multiple variables. For example, with two variables of interval 0.001, 
we would need a 1000 by 1000 grid. Imagine the scenario of having a vector 
of 10 variables!  

The third alternative is by Monte Carlo integration (MC integration), 
which brings us one step closer to MCMC algorithms. In our example, the 
denominator in Eq. (13.59) is approximated by MC integration as 

1

1( | ) ( ) ( | )
n

i
i

f y p f p dp f y p
n =

= ∑∫  (13.68) 

where pi are drawn randomly from the density f(p). This is in fact quite 
similar to the discrete approximation except that pi is drawn from f(p) in MC 
integration in contrast to discretizing p into equal intervals in discrete 
approximation. Note that Eq. (13.68) and Eq. (13.66) are really the same 
except that the former is a plain arithmetic mean of f(y|pi) and the latter is a 
weighted arithmetic mean of f(y|pi). 

For numerical illustration of MC integration, one would need a random 
number generator from the beta distribution. Readers well versed in 
computer languages such as Fortran, C or Visual Basic should be able to find 
such a random number generator in the web, or write one for themselves, or 
just request one from me. However, every university appears to have the 
software Maple installed. So one may just use the following commands to 
generate, say, 1000 random numbers from the beta distribution with N’ = 6 
and M’ = 3: 

 
with(stats): 
stats[random, beta[3,3]](1000); 
 
The resulting random numbers and associated f(p), f(y|p) and f(p)*f(y|p), 

computed according to Eqs. (13.60), (13.61) and (13.62), respectively, are 
partially shown in Table 13-6. The MC integral according to Eq. (13.68) is 
simply the mean of f(y|p), which in our case is 0.0604, slightly smaller than 
the exact integration in Eq. (13.63). The column headed by “f(p|y)” in Table 
13-6 lists the resulting posterior probabilities, which are very close to the 
exact posterior probabilities (last column in Table 13-6) computed according 
to Eq. (13.64). 
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Table 13-6. Numerical illustration of Monte Carlo integration. The first column is the random 
number from the beta distribution. The MC integral is the arithmetic mean of the column 
headed by f(y|p) according to Eq. (13.68). The last column is the exact posterior probability 
from Eq. (13.64). The second last column is the posterior probabilities obtained by dividing 
f(p)*L by the MC integral. 

p f(p) f(y|p) f(p)*L f(p|y) 495p8(1-p)2 
0.797392458 0.783026967 0.257058956 0.201284095 3.33251813 3.321187569 
0.365079937 1.611889587 0.002367706 0.003816481 0.063186769 0.062971934 
0.527481851 1.86368833 0.021539972 0.040143794 0.66463235 0.6623726 
0.807263134 0.726241527 0.276751969 0.200988772 3.32762868 3.316314743 
0.55190323 1.834808541 0.028260355 0.051852341 0.858482468 0.855563628 

0.612808637 1.688971541 0.052960157 0.089448199 1.480930442 1.475895278 
0.573633704 1.794553082 0.035629355 0.063938769 1.058588895 1.054989693 
0.624998494 1.647954515 0.059603783 0.098224323 1.626230512 1.620701328 
0.404049408 1.739445056 0.004351178 0.007568635 0.125308527 0.124882478 

… … … … … … 
 
We are now in a position to introduce the Markov Chain Monte Carlo 

(MCMC) method with the Metropolis algorithm (Metropolis et al., 1953) 
which is a special case of the Metroplis-Hastings algorithm (Hastings, 1970). 
Our interest is the same as above, i.e., the posterior probability density 
function f(p|y). In short, the algorithm consists of three steps. First, we start 
with any p0 satisfying f(p0)*f(y|p0) > 0. Second, we generate a new p* by 
using either one of two jumping functions: (1) a random walk chain or (2) an 
independent chain. For illustration of a random walk chain, we will use the 
following jumping function: 

0

() /10
* [ () 0.5, , ]

z Rnd
p p if Rnd z z
=
= + > −

 (13.69) 

where z is the step length of the random walk, Rnd() is a random number 
generator generating random numbers between 0 and 1, and the division by 
10 is to limit the step length so that the random walk will not be too erratic. 
We also need to constrain p* within the range of, say, (0.00001, 0.99999), 
i.e., when p* is set to 0.00001 when p* ≤ 0 and set to 0.99999 when p* ≥ 1. 
If p* When Rnd() > 0.5, p* is equal to p plus a step length, otherwise p* is p 
minus a step length. This symmetry in the jumping function is required by 
the Metropolis algorithm. 

In the third step, we compute the ratio of 

0 0 0

( * | ) ( *) ( | *)
( | ) ( ) ( | )

f p y f p f y p
f p y f p f y p

α = =  (13.70) 
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Note that the integration in the denominator of Eq. (13.59) for f(p|y) 
cancels out when we compute the ratio α. This is the main advantage of the 
MCMC method.  

If α < 1, then we accept p* with a probability of α and reject p* with a 
probability of (1 - α). If α ≥ 1, then we accept p*. The accepted p* becomes 
p1, and the procedure is repeated according to Eqs. (13.69) and (13.70), with 
p0 replaced by p1, p2, …, pn. 

The chain proceeds with no end. However, it is expected that, when t 
become sufficiently large (e.g., when t = k is typically a large number), the 
chain should approach its stationary distribution and samples from the vector 
(pk+1, pk+1, …, pk+n) are samples from f(p|y). The period from t = 0 to t = k is 
termed the burn-in period. Figure 13-9 is a plot of pt versus t, started with p0 
= 0.111. The chain appears to have converged soon after t = 1000, with pt 
values distributed roughly around 0.8 (Figure 13-9). 
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Figure 13-9. The dynamic behavior of accepted p values along a random walk chain using 
Metropolis algorithm. 

Bayesian phylogenetics is obviously much more complicated than the 
one-parameter case we have illustrated. The parameters in Bayesian 
phylogenetics, often collectively designated as θ, is a collection of the tree 
topology, the rate matrix and the branch lengths, with the likelihood function 
formulated as in the maximum likelihood method. However, the main 
controversy remains to be the justification of the prior probability 
(Felsenstein, 2004; Pickett and Randle, 2005; Zwickl and Holder, 2004) 
which is problematic even for the simple example of estimating p.  
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In summary, the accuracy of phylogenetic reconstruction depends mainly 
on (1) the sequence quality, (2) the correct identification of homologous sites 
by sequence alignment, (3) regularity of the substitution processes, e.g., 
stationarity along different lineages, absence of heterotachy and little 
variation in the substitution rate over sites, (4) consistency, efficiency and 
little bias in the estimation method, e.g., not plagued by the long-branch 
attraction problem, and (5) sequence divergence, i.e., neither too conserved 
as to contain few substitutions nor too diverged as to experience substantial 
substitution saturation. Readers wish to do research in molecular 
phylogenetics and evolution should consult more detailed references 
(Felsenstein, 2004; Hillis et al., 1996; Li, 1997; Nei and Kumar, 2000; 
Semple and Steel, 2003). 

 



 

 

Chapter 14 

FUNDAMENTALS OF PROTEOMICS 
Peptide mass fingerprinting 

 
 

1. INTRODUCTION 

The terms “proteome” and “proteomics” were coined by Marc Wilkins 
and colleagues in 1994 (Ezzell, 2002), with proteomics referring specifically 
to studies of proteins using the method of mass spectrometry (MS). 
Proteomics has since become one of the two major components of what is 
now known as protein science (e.g., Lesk, 2004), with the other component 
being protein structure determination, typically by X-ray crystallography and 
nuclear magnetic resonance. 

Mass spectrometry used in combination with affinity purification and/or 
chemical cross-linking has made significant contributions to protein 
interaction networks (Figeys, 2003b, 2003a; Vasilescu and Figeys, 2006). 
Protein arrays have recently been developed to directly assess protein-
protein interactions (Figeys, 2002; Sloane et al., 2002; Wilson and Nock, 
2002). Ultimately, all proteins, isolated either by conventional 2D gel, 
protein arrays, or other affinity purification methods, have to go through MS 
for protein identification. For this reason, protein identification is the most 
fundamental in proteomics. 

Modern large-scale protein identification is through protein mass 
fingerprinting (Sloane et al., 2002; Washburn et al., 2001; Yates, 2004a, 
2004b), which is the main subject in this chapter. We will first give a brief 
overview of MS, followed by a few computational methods involved in 
peptide mass fingerprinting. 
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2. PROTEIN MASS SPECTROMETRY 

All MS instrumentations include two essential components, an ionizer 
that generates gaseous ions from a sample and a mass analyzer that generates 
the number as well as the mass/charge ratios, i.e., m/z values of each type of 
ions. A computational protocol called charge deconvolution (or just 
deconvolution) uses the m/z values to produce the estimated molecular mass 
of the molecule of interest, e.g., protein or peptide. Deconvolution is 
explained in the next section. 

Two types of ionizers are used frequently in proteomics (Lesk, 2004; 
Liebler et al., 2002), the matrix-assisted laser desorption ionization 
(MALDI) and electrospray ionization (ESI). The MALDI ionizer generates 
predominantly singly charged ions (which may be positive or negative but 
generally only positive ions are analyzed by MS) and used most often in 
peptide mass fingerprinting because of its high accuracy in measuring 
peptide mass. An extension of the MALDI ionizer, termed surface-enhanced 
laser desorption/ionization or SELDI (Forde and McCutchen-Maloney, 
2002; Tang et al., 2004; Wright, 2002; Yip and Lomas, 2002) has recently 
been developed for identifying proteins of different sizes on protein arrays.  

The ESI ionizer generates ions carrying different charges because 
peptides or proteins ionized by ESI ionizers are in aqueous solutions. Recall 
that proteins will carry a net charge when the pH of the solution differs from 
the protein isoelectric point (pI, review Chapter 10 if you have forgotten the 
computation of pI). They become more and more positively charged in 
acidic solutions and more and more negatively charged in basic solutions. 
For MS analysis, the peptides are typically ionized to carry positive charged 
in acidic solutions. Because a protein or a peptide may have multiple lysine, 
arginine and histidine residues, the resulting peptide or protein ions may 
consequently carry multiple charges.  For example, a peptide with molecular 
mass of m may have n different types of charged ions from the ESI ionizer, 
designated as ion1, ion2, …, ionn, carrying z0, (z0+1), (z0+2), …, (z0+n-1) 
positive charges (protons), respectively. Note that we have designated z0 as 
the charge of the least-charged ion. 

Each proton adds one atomic mass to the ion, so the actual molecular 
masses of ion1, ion2, …, ionn carrying z0, (z0+1), (z0+2), …, (z0+n-1) protons 
are (m+z0), (m+z0+1), (m+z0+2), …, (m+z0+n-1), respectively. However, 
MS does not measure the molecular mass of the ions directly. Instead it 
outputs the mion/zion ratios where mion is the mass of the ion (i.e., m plus the 
total mass of extra protons) and zion is the positive charge of the ion (the 
number of the protons). Given the n types of differently charged ions, an 
ESI-MS will output (m+z0)/z0, (m+z0+1)/(z0+1), (m+z0+2)/(z0+1), …, 
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(m+z0+n-1)/ (z0+n-1). Charge deconvolution in the next section takes this 
output to estimate m and z0. 

Aside from an ionizer, a MS will always have a mass analyzer. 
Frequently used mass analyzers are time of flight (TOF), quadrupole or ion 
trap analyzers. Different MS instrumentations are often specified by the 
combination of the ionizer and the mass analyzer. For example, MALDI-
TOF MS is a frequent combination for peptide mass fingerprinting after 
digesting proteins into small peptides, and SELDI-TOF MS is used typically 
for large-scale protein identification in protein arrays involving proteins over 
a wide mass range. 

A mass analyzer has fixed measurement range of m/z values. If the 
maximum m/z range for a given mass analyzer is 2000, then the analyzer can 
measure the mass of a peptide up to the molecular mass of 2000 when ions 
are singly charged, as is the case with MALDI ionizer. If ions carry multiple 
charges, as in the case with ESI ionizers, then the same mass analyzer can be 
used to measure the molecular mass of much larger peptides or even entire 
proteins. For example, if the ion mass is 10000 but it carries 10 positive 
charges, then its m/z ratio is only about 1000, well within the measurement 
range of the mass analyzer. For this reason, MS with an ESI ionizer is able to 
measure the molecular mass of much larger molecules than that with a 
MALDI ionizer. 

There are excellent descriptions of MS hardware in the proteomic 
framework (e.g., Liebler et al., 2002) for readers who are interested in MS 
hardware. I will focus only on what is important but missing in other books 
on proteomics. 

3. CHARGE DECONVOLUTION 

Deconvolution in MS literature refers to the protocol of computing the 
molecular mass from the distribution of multiply charged ions of the 
molecule of interest. Such multiply charged ions are typical in MS with an 
ESI ionizer. MS data obtained with a MALDI ionizer do not need charge 
deconvolution because ions are predominantly singly charged and the 
peptide mass can be derived directly as the m/z ratio minus the proton mass 
(which is 1). 

Let us start with a simple example taken from Liebler (2002, p. 67). An 
ESI-MS analysis of a peptide revealed two ions, ion1 with a mion/zion = 784.7 
and ion2 with a mion/zion = 1567.9. How to estimate the molecular mass (m) 
of the peptide? 

There are two categories of deconvolution methods, one being 
probabilistic and the other deterministic. Here we employ only a 
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representative of the deterministic method because it is simpler and in most 
cases sufficient. 

Recall that we have designated z0 as the charge of the least-charged ion, 
which is ion2 in this example (Note that, with the same m, the more charge, 
the smaller the m/z ratio). Ion1 then carries (z0+1) protons. Each proton adds 
one atomic mass to the peptide, so the expected m/z values for ion1, and ion2, 
designated as mz1, mz2, respectively, can be expressed as 

1 0 0

2 0 0

( 1) /( 1)
( z ) /

mz m z z
mz m z

= + + +

= +
 (14.1) 

The least-square estimation of the two parameters (i.e., m and z0) is to 
minimize the sum of squared deviation (SS) between the observed mzi 
values, i.e., 784.7 and 1567.9, and their respectively expected mz1 and mz2 
in Eq. (14.1): 
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 (14.2) 

To minimize SS, we take partial derivative of SS with respect to m and 
z0, set the two partial derivatives to 0 and solve for m and z0. The two partial 
derivatives are: 
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 (14.4) 

Setting Dm and Dz0 to 0 and solving the simultaneous equations with the 
constraint of z0 > 0 result in m = 1567.9032 and z0 = 1.0006 (which is taken 
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to mean 1). This means that ion1 carries two (=z0+1) protons and ion2 carries 
only one proton. 

One may ask why we can’t just assume z0 = 1, so that the mion/zion for 
ion2 (= 1567.9) can be taken as a direct measure of m. The reason is that z0 is 
often not 1. For long peptides or proteins, the chance of getting singly 
charged ion in an ESI-MS instrumentation is typically quite small. It might 
help to introduce a numerical illustration. 

Amino acid residues that may carry charges are mainly the three basic 
amino acids (arginine, lysine, histidine) and two acidic amino acids 
(glutamic acid and aspartic acid), plus the N-terminal amino acid with an 
amino group and C-terminal amino acid with a carboxyl group. In acidic 
solutions (say pH = 3), the probability of the amino group of the three basic 
amino acids being protonated is nearly 1 according to the following equation 
(see Chapter 10 for its derivation).  

+
a3NH

1
10 1pH pKP −=

+
 (14.5) 

 
You may substitute pH = 3 and the pKa value (12.50, 10.79 and 6.50 for 

arginine, lysine and histidine, respectively, Table 10-1) into the equation to 
verify that the proportion is nearly 1. The probability of the amino group in 
the N-terminal amino acid, with its pKa = 8.56, being protonated is also 
nearly 1.  

The probability of the two acidic amino acids being protonated can be 
calculated according to the following equation:  

a

-
aRCOO

10
1 10

pH pK

pH pKP
−

−=
+

 (14.6) 

Now suppose a protein contains 10 lysine residues and no arginine, 
histidine, aspartic acid and glutamic acid residues. In a solution with pH = 3, 
the 10 lysine residues are protonated, so is the amino group of the N-
terminal amino acid. The C-terminal carboxyl has a probability of 0.21595 
being protonated (You may verify this by substituting pKa = 3.56 for the C-
terminal carboxyl into the equation above). With N copies of such a protein 
in the solution, There will be only two ions, one with its C-terminal carboxyl 
protonated and the other not, with their respectively proportions being 
0.21595 and (1-0.21595). This implies that the net charges of the two ions 
will be 11 and 10, respectively. There will essentially be no ion carrying 
fewer than 10 charges. In this case z0 = 10.  
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One may argue that our example is too artificial, with a protein carrying 
no negatively charged residues such as aspartic acid or glutamic acid 
residues. We will now consider the case when the protein not only contain 
10 lysine residues, but also 10 aspartic acid residues (but no arginine, 
histidine, and glutamic acid residues as before). The proportion of aspartic 
acid residues (whose pKa = 3.91) being protonated is 0.10955 according to 
Eq. (14.6). The frequency distribution of the proteins with 0, 1, …, 10 
aspartic acid residues protonated is then specified by the binomial 
distribution of (p + q)10, where p = 0.10955 and q = 1 - p. Thus, given N 
copies of such a protein in the solution, the proportion of proteins with 0, 1, 
…, 10 aspartic acid residues protonated is 0.31340, 0.38557, 0.21346, 
0.07003 0.01508, 0.00223, 0.00023, 0.00002, 0.00000, 0.00000, and 
0.00000, respectively. The proportion is also the proportion of protein ions 
carrying 10, 9, …, 0 extra protons if we ignore the N-terminal and C-
terminal amino acids (You may take into consideration the N-terminal and 
C-terminal amino acids as an exercise). Obviously, the chance of having a 
protein ion carrying five extra protons is already very small (= 0.00223), and 
the chance of having an ion carrying fewer than three extra protons is 
essentially zero. Thus, the chance of having z0 = 1 is often negligibly small, 
and we consequently cannot assume z0 = 1. In short, it is necessary to 
estimate both z0 and m.  

Now that you are convinced that we cannot assume z0 = 1, we will 
introduce a more complicated example involving a long peptide, with the 
output from ESI-MS shown in Table 14-1. There are 12 types of 
differentially charged ions with their respective m/z ratios. The estimated 
molecular mass of the molecule is about 12358 and the estimated z is listed 
in the last column of Table (14-1). How did we get such estimates?  

Table 14-1. Output from ESI MS with estimated z in the last column. 
Ion m/z Number z 
1 687.72 1000 18 
2 727.91 4600 17 
3 773.39 9000 16 
4 824.93 13400 15 
5 883.74 13400 14 
6 951.67 10000 13 
7 1030.88 8000 12 
8 1124.46 7500 11 
9 1236.91 6500 10 
10 1374.16 6000 9 
11 1545.66 5600 8 
12 1766.29 1000 7 

 
We first will ignore the column headed by “Number” and use only 

information in the column headed by “m/z”. Again recall that z0 is the 
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number of charges (i.e., extra protons) carried by the least charged ion, 
which is ion12 with its m/z = 1766.29. Ion11, ion10, …, and ion1 carry (z0+1), 
(z0+2), … and (z0+11) protons, respectively. Designate m as the mass of the 
peptide. Because the molecular mass of each proton is one, the actual mass 
of ion12, ion11, …, and ion1 is (m + z0), (m + z0 + 1), …, (m + z0 + 11). Thus 
defined, the expected m/z values for ion1, ion2, …, ion12, designated as mz1, 
mz2, …, mz12, respectively, can be expressed as 
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12 0 0
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( 10) /( 10)
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( z 0) /( 0)

mz m z z
mz m z z

mz m z

= + + +

= + + +

= + + +

 (14.7) 

The least-square estimation of the two parameters (i.e., m and z0) is to 
minimize the sum of squared deviation between the observed m/z values 
(i.e., 687.72, 727.91, etc., in Table 14-1) and the expected mz1, mz2, etc., in 
Eq. (14.7): 

2 2 2
1 2 12( - 687.72) ( - 727.91) ... ( -1766.29)SS mz mz mz= + + +  (14.8) 

To minimize SS, one naturally would take partial derivatives of SS with 
respect to m and z0 to obtain Dm and Dz0, set them to 0 and solve the 
simultaneous equations to obtain m and z0, just as we have done before with 
only two ions. However, with 12 ions, Dm and Dz0 may become too 
complicated for analytically solutions of m and z0 to be obtained. So it is 
time to learn how to obtain numerical solutions by numerical iteration.   

We can substitute different values of m and z0 to obtain Dm and Dz0 
values. The m and z0 values that make Dm and Dz0 values closest to 0 are the 
best estimates. Table 14-2 shows such an iteration process.  

Table 14-2. Estimation of m and z0 by computer iteration. 
m z0 Dm' Dz0 

12350 7 -1.61 2012.45 
12360 7 0.38 -533.41 
12370 7 2.37 -3083.39 
12365 7 1.38 -1807.89 
12361 7 0.58 -788.22 
12359 7 0.18 -278.64 
12358 7 -0.02 -23.91 
12357 7 -0.22 230.78 
12358 6 323.38 -512885.17 
12358 8 -206.63 251562.87 
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We first tried m values from 12350 to 12370 and z0 = 7, and we found 
the m value equal to 12358 to yield the smallest Dm and Dz0 values (Table 
14-2). Then we fix m = 12358 but vary z0 values from 6 to 8, and found both 
z0 = 6 and z0 = 8 to be very poor estimates, resulting in very large Dm and 
Dz0 values (Table 14-2). Thus, we conclude that our z0 = 7, and the z values 
in the last column of Table 14-1 are easily obtained because z12 = z0, z11 = z0 
+1, z10 =  z0 +2, …, z1 = z0 + 11. Of course one can continue the iteration 
process to obtain more accurate estimate of m. 

More advanced algorithms would incorporate the column headed by 
“Number” in Table 14-1 into a weighted estimation. However, this is often 
not necessary given the outstanding performance of modern MS.  

One may ask what we should do when some of the ions are missing, e.g., 
ion6 may not get ionized and consequently will not have its m/z value 
reported. One can formulate more advanced probabilistic methods to 
evaluate the probability of missing ions. However, a simpler method is just 
to plot the observed m/z ratio versus the series of n, n-1, n-2, …, 1 where n is 
the number of types of differently charged ions (e.g., 12 in our example in 
Table 14-1). Such a plot, which I call missing-ion plot, for data in Table 14-1 
is shown in Figure 14-1a.  
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Figure 14-1. Missing-ion plot, with one ion missing in (b). 

The curve is smooth when no ion is missing (Figure 14-1). In contrast, 
when one ion is missing (e.g., when ion6 in Table 14-1 with m/z = 951.67 is 
missing), the curve is no longer smooth (Figure 14-1b). The curve would 
become even more twisted if two consecutive ions are missing (by two 
consecutive ions I mean two ions carrying i and i+1 charges, respectively). 
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Modern MS data are so accurate that a missing ion can generally be 
identified by such a plot. 

How many positively-charged ions we should expect to have, given a 
peptide “DAFLGSFLYEYSR”? The last R (arginine residue) and the N-
terminal amino group can both be protonated. So we should have only two 
different positively-charged ions, one with z = 1 and the other with z = 2. 
This is in fact the peptide that provides us with the first example in this 
section where we have ion1 with a mion/zion = 784.7 and ion2 with a mion/zion = 
1567.9. 

4. PEPTIDE MASS FINGERPRINTING 

Peptide mass fingerprinting (PMF) is for protein identification. For 
example, one may perform 2D-SDS-PAGE of liver proteins between a 
normal person and a liver cancer patient. Comparing the two gels, one may 
find a dot that is different between the two. One naturally wishes to know 
what protein the dot represents. Establishing a link from a protein dot on the 
gel to a protein-coding gene on the genome is where PMF shines. Below I 
detail the four essential steps in PMF. 

4.1 Peptide digestion 

The first step in PMF is to cut out the protein dot on the gel and digest it 
into peptides by using one of proteases (Table 14-3). For example, trypsin 
cuts after Arg and Lys residues when the residue is not immediately 
followed by a Pro (Table 14-3). The purpose of including amino acid 
frequencies in Table 14-3 is to correct a misconception. Some authors (e.g., 
Liebler et al., 2002, p. 52) have remarked that chymotrypsin may cleave too 
frequently because it cleaves at three amino acid residues (Phe, Trp and Try) 
to yield too many peptides that are too small to be informative in MS 
analysis. However, for human proteins, trypsin is expected to cut much more 
frequently than chymotrypsin because Arg and Lys account for a total of 
11.58% of all amino acid residues, whereas Phe, Trp and Tyr jointly account 
for only 7.30% of all amino acid residues (Table 14-3). This implies that 
trypsin will cleave the proteins into much smaller peptides than 
chymotrypsin. 

Trypsin is widely used in protein digestion in MS analysis. However, it is 
not suitable for all proteins. For example, the human DEXI gene codes for 95 
amino acids which include only one Arg and no Lys residue. The protein 
consequently cannot produce suitable peptides for MS analysis with trypsin 
digestion. However, 13 of its residues are Phe, Trp and Tyr and it can 
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consequently be cut by chymotrypsin into peptides suitable for MS analysis. 
It also contains nine Glu residues and can be cut by Glu C into peptides 
suitable for MS analysis. On the other hand, the human PRB3 gene codes 
351 amino acid residues but contains only one Glu residue and no Phe, Trp 
or Tyr residue, i.e., Glu C will cut it only once and chymotrypsin will not cut 
it at all. However, it contains 17 Arg and 17 Lys residues and can be cut by 
trypsin into peptides with lengths well suited for MS analysis. A large-scale 
peptide mass fingerprinting will almost always involve digestion with more 
than one protease.  

 

Table 14-3. Amino acid frequencies from 34179 annotated human CDSs from GenBank and 
protease cleavage site. X – cut after the specific amino acid; \Pro – cleavage inhibited if the 
cleavage site is followed by proline. 
AA Percent Trypsin Chymotrypsin Asp N Glu C Lys C 
Ala 7.21      
Arg 5.96 X\Pro     
Asn 3.48      
Asp 4.65   X   
Cys 2.29      
Gln 4.75      
Glu 7.02    X\Pro  
Gly 6.84      
His 2.60      
Ile 4.19      
Leu 9.77      
Lys 5.62 X\Pro    X\Pro 
Met 2.10      
Phe 3.51  X\Pro    
Pro 6.65      
Ser 8.34      
Thr 5.33      
Trp 1.25  X\Pro    
Tyr 2.54  X\Pro    
Val 5.89      
Sum 100 11.58 7.30 4.65 7.02 5.62 

 
It is almost always a good practice to have a rough estimate of the 

average peptide length as well as the distribution of the peptide lengths after 
digestion with a certain protease. For example, suppose we digest a human 
protein with trypsin, which cleaves the protein after the Lys and Arg residue 
when they are not followed by a Pro. From Table 14-3, we know that Lys 
and Arg residues (hereafter referred to as KR residues) jointly account for 
11.58% of the amino acid residues of human proteins and Pro accounts for 
6.65%, which is also the probability that a KR residue is followed by a Pro. 
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Thus, the probability that a KR residue that is not followed by a Pro (i.e., the 
probability of cleavage by trypsin) is 

0.1158(1 0.0665) 0.1081p = − =  (14.9) 

The distribution of the peptide length (l) follows the geometric 
distribution: 

( ) 1( | ) 1 lP L l p p p−= = − , (14.10) 

The expected mean and variance of the peptide length are then, 
respectively, 

2

1( ) 9.25

(1 )( ) 76.32

E L
p

pVar L
p

= =

−
= =

 (14.11) 

In contrast, digesting the same protein with chymotrypsin would generate 
peptides with an expected mean length of 14.67 and an expected variance of 
the peptide lengths equal to 200.67. 

In the genome of the mammalian gastric pathogen, Helicobacter pylori 
(strain 26695), the proportions of Arg, Lys and Pro are 0.0345, 0.0894 and 
0.0328, respectively, based on its 1576 annotated proteins. If we have a 
representative sample of H. pylori proteins and use trypsin to completely 
digest all these proteins, what is the expected mean length of the resulting 
peptides? 

From the three proportions for Arg, Lys and Pro, we can estimate p = 
(0.0345+0.0894)*(1-0.0328) = 0.119836. Thus, the expected mean and 
variance of the peptide lengths, after complete trypsin digestion, are 8.3447 
and 61.2898, respectively. The observed distribution, based on an in silico 
trypsin digestion of a random sample of H. pylori, is close to the expected 
distribution (Figure 14-2). Generally peptides of length between 5 and 21 
residues can be measured accurately by MALDI-TOF MS. The distribution 
in Figure 14-2 has a proportion of 0.504300196 of the peptides with lengths 
between 5 and 21. This means that about half of the digested peptides from 
H. pylori proteins can be measured by MALDI-TOF MS with high accuracy. 
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Figure 14-2. Observed and expected distribution of peptide length, from trypsin digestion of a 
random sample of proteins in H. pylori Str 26695. 

4.2 MS determination of peptide mass 

Now that the protein dot has been reduced to a number of peptides 
(referred to hereafter as query peptides), we proceed to the second step in 
PMF by subjecting these query peptides to MS to obtain peptide masses. 
Suppose we now have determined the peptide mass of n peptides resulting 
from digesting the protein dot from the 2-D gel. We typically will create a 
file, say ProteinDot1.txt, to store these n peptide masses, m1, m2, …, mn. For 
example, one protein dot from a sample of H. pylori proteins could have 
eight peptides with their molecular masses determined by MS: 

 
832.94 
974.05 
1105.16 
1526.68 
1537.92 
1653.86 
1680.87 
2231.42 
 
The list of eight peptide masses, hereafter referred to as query peptide 

masses, will be matched against the peptide mass of all possible peptides 
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from an in silico digestion of all H. pylori proteins to identify the protein. 
This brings us to the third step of creating a database of peptide masses. 

4.3 Protein database and in silico digestion 

The third step of PMF is to obtain a relevant database of proteins and 
perform an in silico digestion, using the same protease that has been used to 
digest the protein dot. If one is working on human, then the relevant database 
of proteins would obviously be human proteins. For example, one may 
retrieve all 34169 annotated human CDSs, translate them into proteins and 
perform an in silico digestion to obtain all possible peptides with their 
respective masses. We have already learned how to compute the molecular 
mass of a peptide in Chapter 11.  

If one is working on H. pylori, then one may retrieve the annotated 
protein-coding genes in sequenced H. pylori genomes and perform in silico 
digestion to obtain all possible peptides with their respectively masses. The 
in silico trypsin digestion of all 1576 annotated proteins in H. pylori strain 
26695 generates 61160 peptides, which are partially shown in Table 14-4. 

The list of peptide masses from the database will be referred to as 
database peptide masses (designated by Mj) to distinguish them from the 
query peptide masses (designated by mi) which pertain to peptides from an 
isolated protein (e.g., a protein dot in a 2D-SDS-PAGE). 

4.4 Protein identification 

The fourth and final step in PMF is to search each of the query peptide 
masses (e.g., the eight query peptide masses from a H. pylori protein dot in 
Section 4.2) against H. pylori database peptide masses (Table 14-4). For 
example, the first query peptide mass, 832.94, matches five database peptide 
masses (Table 14-4), the second query peptide mass, 974.05, matches six 
database peptide masses, and so on. The number of matches depends on the 
accuracy of MS. If peptide mass mi is accurate to 0.5 Dalton, then any 
database peptide within the peptide mass range of (mi – 0.5, mi + 0.5) would 
be considered as a match. 

We note that all eight query peptide masses match peptides from the 
protein with gene index (GeneInd) of 319 (Table 14-4). We can therefore 
conclude that the query peptides come from the gene with GeneInd = 319, 
which has a locus_tag of HP0324 and is described as “outer membrane 
protein (omp10)” in the GenBank file (NC_000915). There is no other gene 
that comes close to this gene in term of the number of matches.  
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Table 14-4. Partial list of peptide masses from trypsin digestion of the 1576 annotated 
proteins in H. pylori strain 26695. GeneInd specifies the gene from which the peptide is from. 
Note that the peptide at the C-terminal of the protein may not end with K (Lys) or R (Arg). 
Mass GeneInd Peptide 
832.934 38 QFTYFK 
832.941 48 NNFPTLK 
832.941 319 FPTINNK 
832.941 476 GFNAPSLK 
832.962 106 LGEAMANK 
…   
974.023 853 GVEAEVQDK 
974.052 319 YYTTDALK 
974.052 507 VYDLSSYK 
974.066 57 ITNEQIEK 
974.066 171 TALVENEAK 
974.066 1235 YSDLALHR 
…   
1105.114 5 DDDNLALSSR 
1105.155 319 EESAAPSWTK 
1105.184 493 VDYNYYLR 
…   
1526.644 87 GLDEAIEFLEEYV 
1526.684 319 VFAFYVGYNYHF 
1526.688 1386 SLGNNLLYNTYVR 
…   
1537.808 71 GVAFSLLSFLEGGLK 
1537.919 319 MLVGASLLTHALIAK 
1538.613 747 FFDLGEYFEEDK 
…   
1653.84 852 IHFAQNYQLFSSAK 
1653.856 319 YFAFLDWQGYGMR 
1653.861 1379 MIGGSENIESAISFAK 
1653.87 510 EIVAYLDEYIIGQK 
…   
1680.817 517 VPNQATFYDDLQAAK 
1680.868 242 IGLNQQEIDAIQNPK 
1680.868 319 ALFVDEHEFEIGFK 
1680.883 1360 MDEVDLIFEEEAIK 
…   
2230.723 1277 FYATLALSCVFLTITNILVK 
2231.42 319 EVTNYQTGYTNIITSVNSVK 
2231.42 1503 DFYEELLYILGLEEQNDK 
2231.499 208 EVDVLGGAMGIITDHSGLQYR 

 
The intuitive argument above linking a protein dot and a protein-coding 

gene on the genome has problems, especially in eukaryotes where proteins 
differ dramatically in lengths. For example, the mammalian dystrophin 
protein coded by the dmd gene contains about 4000 amino acid residues 
coded by about 75 exons. It consequently would have a much large 
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probability (100 times to be exact) of getting a random match than a small 
protein of 40 amino acid residues. We therefore need to develop a statistical 
framework to help us decide whether our identification is correct or not.  

We have two hypotheses, i.e., the protein dot is HP0324 (designated as 
θYes) and it is not (designated as θNo). Designate Yij as the event of query 
peptide mass mi matching database peptide mass Mj of HP0324 (19 peptides 
are generated by in silico digestion of the annotated HP0324 protein, so j = 1 
2, …, 19). The likelihood of Yij, i.e., the probability of Yij happening given 
θYes is true, is generally close to 1 (although molecular mechanisms such as 
posttranslational modification may reduce this value slightly), i.e., 

( | ) 1ij Yesp Y θ ≈  (14.12) 

If the protein dot is not HP0324, then what is the probability of event Yij 
happening? This can be estimated empirically by searching the 17 Mj values 
from HP0324 against the rest of the M values from other H. pylori proteins. 
Designate the number of matches for M1, M2, …, M17 as N1, N2, …, N17, 
respectively, we can estimate 

17

1( | )
17( 17)

j
j

ij No
T

N

p Y
N

θ ==
−

∑
 (14.13) 

where NT is the total number of database peptides results from in silico 
digestion. For simplicity, let’s assume that p(Yij|θNo) = 0.0003. 

Now designating the protein length of HP0324 as LHP0324, and the total 
length of all 1576 H. pylori proteins as LT, we have the prior probabilities for 
θYes and θNo as 

0324 255( ) 0.0005
503015

 
( ) 1 ( ) 0.9995

HP
Yes

Total

No Yes

Lp
L

p p

θ

θ θ

= = =

= − =
 (14.14) 

According to Bayes’ theorem, the probability that θNo is true is 
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 (14.15) 

Thus, with only one Yij event, we cannot reject θNo. However, we have 
eight mi values that all match Mj values from HP0324. So the final 
probability that θNo is true is 0.374888 = 0.0004. So θNo can be conclusively 
rejected and we conclude that the protein dot is indeed HP0324. The 
formulation above can be further refined by taking into consideration the fact 
that peptides of different lengths have different matching probabilities 
against database peptide mass. 

Peptide mass fingerprinting, together with quantification of protein 
abundance, ultimately leads to two types of data for further bioinformatics 
analysis. The first type is between the control and the experiment and the 
second type is what is known as time-course data, obtained by sampling the 
proteome of a cell lineage over different time points. For example, one may 
synchronize the development cycle of yeast cells and sampling the proteome 
at regular time intervals during the yeast cell cycle, or trigger the 
developmental cascade of a stem cell lineage and sample the proteome at 
regular time intervals. These two types of data parallel those from 
transcriptomic experiments and can be analyzed similarly to identify genes 
that are up-regulated or down-regulated at the protein level. 
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POSTSCRIPT 
 

 
 

The thought of a reader reaching the end of a book always sends a 
thrilling feeling to the author. For me, it is like a sweet childhood dream 
come true. I used to have many dreams during my early childhood, in many 
colors and shades. They all turned into black and white when I reached nine 
years of age, when my father, a devoted communist falsely accused of being 
counterrevolutionary, died of torture in China, being a victim of abused 
power. 

I have heard that many Chinese children today no longer dream about 
becoming authors of science. Instead, they want to become American 
president, and their parents would typically beam with pride when the 
youngsters expressed such ambitions. This has been terrifying to me. The 
world cannot afford to have many American presidents – just one seems to 
be damaging enough. It would seem more desirable for our younger 
generations to have modest dreams of writing books that are somewhat 
readable from the beginning to the end.  

Dreaming of writing a book is nice and noble. Dreaming of becoming 
American president could be brutal and bloody. May the young minds not be 
corrupted by the evil of power! 

Extreme power disrupts harmony, and harmony is the essence of life. We 
biologists know only too well that harmony manifests at all levels of 
organization of living beings, and disrupting harmony destroys not only the 
beauty of life, but also life itself. Yet harmony among different cellular 
components interacting within a cell and harmony among different cells 
interacting within an organism can only be achieved by these cells and 
cellular components following certain rules. If some cells break the rule, if 
they get out of the checking system, disasters such as cancer emerge, often 
with the consequence that either the misbehaving cell has to die or the 
organism has to die. Overtime multicellular organisms have evolved very 
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complicated checking systems to safeguard against misbehaving cells. Life 
is charming with these checking systems, but turns ugly when such checking 
systems are broken. 

Human communities and societies are not much different. People, 
including national leaders such as presidents and prime ministers, will want 
to gather more power to break the checking system. According to major 
religions, every individual has a sinful nature and has to be checked. Perhaps 
no one had better understanding of the sinful nature of human beings than 
the founding fathers of the United States of America who, based on this 
fundamental understanding, established a great political checking system 
that dramatically alleviated the detrimental effect of misbehaving leaders. 
They recognized every human to have a good half and a sinful half. The 
good half can be employed to accomplish public services, but the evil half 
deserves constant monitoring and checking.  

How far has the present American administration deviated from the path 
chosen by the founding fathers! Instead of drawing a line within ourselves to 
recognize the good half and the sinful half, they draw a line among nations 
to recognize good nations and rogue nations. Everything good is “American” 
and everything else is “un-American”. How similar this is to former 
communist regimes where everything good was communist and everything 
bad was anti-communist! 

Nature has created us, probably equal, but not perfect. We commit errors, 
seek forgiveness, and try to improve ourselves. The books we write are not 
perfect either. We solicit criticisms from our colleagues and seek forgiveness 
for serious errors and egregious omissions. We revise the books to improve 
them. We cleanse our souls to become better citizens. With the recognition 
of imperfection in us, we behave better, our books read better, and the world 
moves closer to perfection and harmony. 
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