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Preface

In mathematics you do not understand things. You just get used
to them.

John L. Von Neumann (1903–1957).

We are servants rather than masters in mathematics.

Charles Hermit (1822–1901).

A mathematical model is an equation or a system of equations used to describe a
natural phenomenon. Many researchers study the qualitative behavior of nonlinear
delay mathematical models in a single species and also species with interactions.
The qualitative analysis of delay models with constant coefficients (autonomous
models) has been studied extensively. We know that the variation of the environment
plays an important role in many biological and ecological dynamical systems. For
example, physical environment conditions such as temperature and humidity and
availability of food, water, and other resources usually vary in time with seasonal or
daily variation. Therefore, more realistic models would be nonautonomous systems.
One of the purposes of our book is to study oscillation and global stability of
specific types of nonautonomous delay models in biology. In particular, our book
presents recent research results on the qualitative behavior of mathematical models
in biology.

The book consists of six chapters and is organized as follows:
In Chap. 1, we discuss the derivation and extensions of logistic models and

some of their applications. This chapter also contains some useful results from
mathematical analysis which are needed throughout the book.

In Chap. 2, we are concerned with oscillation and nonoscillation of different
types of delay logistic models and their modified forms. In particular, we study the
oscillation of models of Hutchinson type, models with delayed feedback, ˛-delay
logistic models, ˛-delay models with several delays, models with nonlinear delays,
hyperlogistic models, delay models with harvesting, and models with varying
capacity.
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viii Preface

In Chap. 3, we discuss the local and global stability of different types of
delay logistic models. In particular, we are concerned with the local and global
stability of autonomous logistic models and the uniform and 3/2 global stability of
nonautonomous delay logistic models. Also we discuss a generalized logistic model
and models with impulses.

In Chap. 4, we discuss autonomous and nonautonomous logistic models with
piecewise arguments.

In Chap. 5, we discuss the oscillation of autonomous and nonautonomous “food-
limited” population models with delay times and impulsive effects as well as the
existence of periodic solutions. Also we study the 3/2 global stability of the classical
model and the 3/2 uniform stability of a model with a parameter l . In addition, we
discuss the global stability of models with impulses and more generalized models,
“food-limited” population models with periodic coefficients, and the existence of
periodic solutions.

In Chap. 6, we are concerned with oscillation, global stability, and periodicity
of some diffusive logistic models. In particular, we present oscillation results of a
diffusive Malthus model with several delays, oscillation results of an autonomous
diffusive logistic model with a Neumann boundary condition (flux conditions),
oscillation results of a nonautonomous diffusive logistic model with several delays
and a Neumann boundary condition (flux conditions), global stability of the delay
logistic diffusion model with a Neumann boundary condition, and periodicity and
stability of a periodic diffusive logistic model of Volterra-type with instantaneous
and delay effects.

We wish to express our thanks to our families and friends.

Kingsville, TX, USA Ravi P. Agarwal
Galway, Ireland Donal O’Regan
Mansoura, Egypt Samir H. Saker
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Chapter 1
Logistic Models

In so far as the theorems of mathematics relate to reality, they
are not certain, and in so far as they are certain they do not
relate to reality.
Every thing should be made as simple as possible but not
simpler.

Albert Einstein (1879–1955).

Biology is moving from being a descriptive science to being a
quantitative science.

John Whitmarsh, National Inst. of Health, 2005 Joint AMS.

All processes in organisms, from the interaction of molecules to complex functions
of the brain and other organs, obey physical laws. Mathematical modeling is an
important step towards uncovering the organizational principles and dynamic behav-
ior of biological systems. In general mathematical models can take many forms
depending on the time scale and the space structure of the problem. For example, in
population dynamics, if there is a complete overlap between generations, then the
population changes in a continuous manner and studies of such systems involve the
use of differential equations. For example, the equation

N
0

.t/ D rN.t/

�
1 � N.t/

K

�
(1.1)

is used to model the changes in population dynamics and is called the logistic
equation.

If there is no overlap between generations, then the appropriate models are dis-
crete and the changes are described by difference equations relating the population
in a generation nC 1 with size N.nC 1/ to that in the generation n with size N.n/.
In this case the dynamics of the population can be written by the difference equation

N.nC 1/ D f .N.n//; for n � 0; (1.2)

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology,
DOI 10.1007/978-3-319-06557-1__1, © Springer International Publishing Switzerland 2014
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2 1 Logistic Models

where f W R ! R is a continuous function representing the density. For example,
in equation (1.2) if

f .N.n// WD .r C 1/N.n/

1C rN.n/=K
; r > 0; K > 0;

we obtain the discrete analogy of (1.1) which is called the Beverton–Holt equation.
If f .N.n// D N.n/er.1�N.n/, then we obtain the Ricker equation which can be
considered as the discrete analogy of (1.1). For other models and applications
we refer the reader to [1, 4, 6–9, 11, 18–20, 23, 35–37, 40, 43, 44, 50–52, 55–
63, 65, 72, 80, 83].

1.1 The Logistic Models

Motivated by Malthus’ Essay on the Principle of Population [45], Verhulst [76]
proposed the first-order differential equation

dN

dt
D rN (1.3)

as the geometric growth of a population in the absence of environmental constraints,
where N is the density of the population and r D b � c is a constant net per capita
growth rate or the intrinsic growth rate, where the birth rate is b and c is the death
rate. The solution of (1.3) is given by

N.t/ D N0e
rt ;

where N0 is the size of the population at t D 0: The assumption that r > 0 implies
a generation of the population, while r < 0 implies that the generation of the
population do not contribute in a significant manner to the future, that is, generations
are not capable of replacing each other, and the assumption that r D 0 implies that
there is no change in the population.

To develop equation (1.3) and remove the restrictions imposed on the growth in
Eq. (1.3), Verhulst [76] assumed that a stable population would have a saturation
level characteristic of the environment. To achieve this the exponential model was
augmented by a multiplicative factor, 1 � f .N=K/, which represents the fractional
deficiency of the current size from the saturation level K. He then argued that this
unbounded growth must be restrained by the Malthusian “struggle for existence”
and proposed the model

1

N

dN

dt
D R D r

�
1 � f .N

K
/

�
: (1.4)



1.2 Extended Logistic Models 3

Here R is the realized per capita rate of growth, r is the maximum per capita rate of
growth in a given environment, f is an unspecified function of population density,
and the constant K is the carrying capacity of the environment. Assuming a simple
linear functional relationship yields what Verhulst later called the “logistique”
equation (to differentiate it from the Malthusian “logarithmique”)

dN

dt
D rN

�
1 � N

K

�
: (1.5)

1.2 Extended Logistic Models

Turner et al. [74] suggested a generalization of the logistic growth and they termed
their equation the generic logistic equation. They proposed the model

dN.t/

dt
D r .N.t//1Cˇ.1��/

"
1 �

�
N.t/

K

�ˇ#�
; (1.6)

where ˇ; � are positive exponents and � < 1 C 1
ˇ

. Blumberg [16] introduced
another growth equation based on a modification of the Verhulst logistic growth
equation to model population dynamics or organ size evolution. Blumberg observed
that the major limitation of the logistic equation was the inflexibility of the inflection
point. He further observed that attempts to modify the constant intrinsic growth rate
term, r; treating this as a time-dependent polynomial to overcome this limitation,
often lead to an underestimation of future values. Blumberg proposed the model

dN.t/

dt
D rN ˛.t/

�
1 � N.t/

K

��
; (1.7)

which is consistent with the generic equation when ˛ D 2 � �; ˇ D 1; and � < 2.
Von Bertalanffy [15] introduced his growth equation to model fish weight growth.
Here the Verhulst logistic growth equation was modified to accommodate crude
“metabolic types” based upon physiological reasoning. He proposed the form

dN.t/

dt
D rN

2
3 .t/

"
1 �

�
N.t/

K

� 1
3

#
; (1.8)

which is a special case of the Bernoulli differential equation. Richards [54] extended
the growth equation developed by Von Bertalanffy to fit empirical plant data and
used the equation

dN.t/

dt
D rN.t/

"
1 �

�
N.t/

K

�ˇ#
: (1.9)
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1.3 Delay Logistic Models

Retarded functional differential equations or delay differential equations form a
class of mathematical models which allow the systems rate of change to depend
on its past history. A cut forest, after replanting, will take at least 20 years before
reaching any kind of maturity. Hence, any mathematical model of forest harvesting
and regeneration clearly must have time delays built into it. Usually any model of
species dynamics without delays is an approximation at best.

As a very simple, but typical, example consider the equation

N
0

.t/ D ��N .t/C rN .t � �/ :

This equation is used to model the time evolution of the population N.t/ of adult
individuals, with per capita mortality rate � > 0 and per capita reproduction rate
r > 0. The delay � > 0 expresses the fact that newborns take some time to become
adults.

Delay time introduced in any system may lead to instability and there seems to
be a common belief that incorporating delays can destabilize almost any system.
However, the effects of delays may be rather complicated. A rough way of
incorporating time delays is to write Eq. (1.5) as

N
0

.t/ D rN.t/

�
1 � N.t � �/

K

�
; (1.10)

whereN.t/ is the population at time t , r is the growth rate of the species, andK > 0

is called the carrying capacity of the habitat (note that here there is no immigration
or emigration). The per capita growth rate in (1.10) is a linear function of the
populationN and the term ŒK�N.t��/�=K denotes the feedback mechanism which
takes � units of time to respond to change in the population size. Equation (1.10)
was first introduced into ecology by Hutchinson [32].

1.4 Some Results from Analysis

In this section, we present some definitions and results from mathematical analysis
which will be needed throughout this book.

We say that the subset S � C.Œa; b�, R) is equicontinuous if for every � > 0

there exists a ı D ı.�/ > 0 such that jf .t1/ � f .t2/j < � for all t1; t2 2 Œa; b� with
jt1 � t2j < ı and for all f 2 S:

The set S is called uniformly bounded if there exits a positive number B such
that jf .t/j � B for all t 2 Œa; b� and for all f 2 S:

Theorem 1.4.1 (Arzela–Ascoli Theorem). A subset S in C.Œa; b�;R/ is relatively
compact if and only if it is uniformly bounded and equicontinuous on Œa; b�:
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A function g W Rn ! Rn is said to be a Hölder continuous function if there exists
positive constants C and 0 � E � 1 such that

jg.u/ � g.v/j � C ju � vjE for all u; v 2 Rn:

We now present some fixed point theorems that we will use throughout this book.

Theorem 1.4.2 (Schauder Fixed Point Theorem). Let S be a closed, convex, and
nonempty subset of a Banach space X. Let F W S ! S be a continuous mapping
with F.S/ a relatively compact subset of X. Then F has at least one fixed point
in S.

Theorem 1.4.3 (Tychonov–Schauder Fixed Point Theorem). Let X be a locally
convex linear space, let S be a closed convex subset of X, and let F W S ! S be a
continuous mapping with F.S/ compact. Then F has a fixed point in S.

Theorem 1.4.4 (Knaster’s Fixed Point Theorem). Let X be a partially ordered
Banach space with ordering �. Let M be a subset of X with the following
properties: the infimum of M belongs to M and every nonempty subset of M has a
supremum which belongs to M . Let ± W M ! M be an increasing mapping, i.e.,
x � y implies ±x � ±y: Then ± has a fixed point in M .

Next in this section we present some inequality results.

Theorem 1.4.5 (Gronwall Inequality). Suppose u W Œ0; ˇ� ! R, ˇ > 0 is a
continuous function and there exist c and k � 0 such that

u.t/ � c C k

Z t

0

u.s/ds, for t 2 Œ0; ˇ�:

Then u.t/ � cekt for t 2 Œ0; ˇ�.
Theorem 1.4.6 (Gronwall–Bellman Inequality). Let f and g be nonnegative
continuous functions on 0 � t � T and there exist c such that

f .t/ � c C
Z t

0

g.s/f .s/ds, for t 2 Œ0; T �:

Then f .t/ � c exp
�R t

0
g.s/ds

�
for t 2 Œ0; T �:

Theorem 1.4.7 (Halanay Lemma). Let t0 be a real number and � be a nonnega-
tive number. If m W Œt0 � �;1/ ! Œ0;1/ satisfies

m
0

.t/ � ��m.t/C %

 
sup

s2Œt��;t �
m.s/

!
; for t � t0;
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and if � > %, then there exist positive numbers � and 	 such that

m.t/ � �e�	.t�t0/; for t � t0:

Theorem 1.4.8 (Barbalat [3]). Let f W .0;1/ ! R be Riemann integrable and
uniformly continuous. Then limt!1 f .t/ D 0:

Theorem 1.4.9 (Green’s formula). If 
 and  are both twice continuously
differentiable on U in R

n for n � 1, then

Z
U

. �
 � 
� / dx D
Z
@U

�
 
@


@N
� 
 @ 

@N

�
dS;

where @U is the boundary of the region U and N is the outward pointing unit
normal of surface element dS .

Theorem 1.4.10. The set M � L1Œa; b� is compact if and only if for every � > 0,
there exists a dilatation of the interval Œa; b� to a finite number of measurable subsets
Ei � Œa; b� such that for every Ei we have supt;s2Ei jf .t/ � f .s/j < � for all
f 2 M:

Also we will use some results in degree theory in this book. In the following, we
present some results of Mawhin [25, Theorem 7.2].

Let X and Y be two Banach spaces and let L W DomL � X ! Y be a linear
operator. A linear mapping L W DomL � X ! Y (with KerL D L�1.0/ and
ImL D L.DomL/) is called a Fredholm mapping if KerL has finite dimension
and ImL is closed in Y and has finite codimension. The codimension of ImL is
the dimension of Y= ImL; i.e., the dimension of the cokernel of L: When L is a
Fredholm mapping, its index is the integer IndL D dimKerL�co dim ImL: If L
is a Fredholm mapping of index zero then there exists continuous projections

P W X ! KerL and Q W Y ! Y= ImL:

Let KP W ImL ! DomL \ KerP be the inverse of the restriction LP of L to
DomL \KerP; so that LKP D I and KPL D I � P:

Let � be a nonempty, open, and bounded subset of X and let N W X ! Y.
The mapping N is said to be L-compact on � if the mapping QN W � ! Y is
continuous, QN.�/ is bounded, and Kp.I �Q/N W � ! X is compact (i.e., it is
continuous and KP .I �Q/N.�/ is relatively compact).

Let T W� ! R
n: The degree of T at x relative to� is written degfT;�; xg: For

more details about the degree theory, we refer the reader to the book [34].
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Theorem 1.4.11. Suppose L is a linear Fredholm mapping of index zero and N is
L-compact in �. Assume

(1) Lx ¤ 
Nx for every x 2 @� \DomL and 
 2 .0; 1/;
(2) QNx ¤ 0 for every x 2 @� \KerL, and
(3) deg fJQN jKerL; � \KerL; 0g ¤ 0, where J W ImQ ! KerL is any

isomorphism and deg denotes the Brouwer degree.

Then Lx D Nx has at least one solution in DomL \�.



Chapter 2
Oscillation of Delay Logistic Models

On earth there is nothing great but man, in man there is nothing
great but mind.

William R. Hamilton (1805–1865).

Every problem in the calculus of variations has a solution,
provided the word solution is suitably understood.

David Hilbert (1862–1943).

The qualitative study of mathematical models is important in applied mathematics,
physics, meteorology, engineering, and population dynamics. In this chapter, we are
concerned with the oscillation of solutions of different types of delay logistic models
about their positive steady states. One of the main techniques that we will use in the
proofs is the so-called linearized oscillation technique. This technique compares
the oscillation of a nonlinear delay differential equation with its associated linear
equation with a known oscillatory behavior.

In this chapter we establish oscillation results for a variety of autonomous and
nonautonomous delay models. It is possible to extend the theory in this chapter
to other models, for example, models with impulses and models with distributed
delays. Results for other models (which are based on the ideas in this chapter) can be
found in the reference list. Chapter 2 presents the current approach in the literature
on oscillation of delay equations.

2.1 Models of Hutchinson Type

In this section, we are concerned with the oscillation of an equation of Hutchinson
type about the positive equilibrium point. First, we consider the equation

N
0

.t/ D rN.t/

�
1 � N.t � �/

K

�
; (2.1)

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology,
DOI 10.1007/978-3-319-06557-1__2, © Springer International Publishing Switzerland 2014

9
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whereN.t/ is the population at time t , r is the growth rate of the species, andK > 0

is called the carrying capacity of the habitat (note that here there is no immigration
or emigration). The solution N.t/ of (2.1) is said to be oscillatory about the positive
steady state K if N.tn/ � K D 0; for n D 0; 1; 2; :: and limn!1 tn D 1. The
solution N.t/ of (2.1) is said to be nonoscillatory about K if there exits t0 � 0 such
that jN.t/ �Kj > 0 for t � t0. A solution N.t/ is said to be oscillatory (here we
mean oscillatory about zero) if there exists a sequence ftng such that N.tn/ D 0; for
n D 0; 1; 2; ::. and limn!1 tn D 1: A solution N.t/ is said to be nonoscillatory if
there exits t0 � 0 such that jN.t/j > 0 for t � t0:

Together with (2.1), we consider solutions of (2.1) which correspond to the initial
condition

�
N.t/ D 
.t/ for � � � t � 0;


 2 C.Œ��; 0�; Œ0;1//; and 
.0/ > 0:
(2.2)

Clearly the initial value problem (2.1), (2.2) has a unique positive solution for all
t � 0: This follows by the method of steps. We begin with the usual result in any
book on oscillation and we quote here the linearized oscillation theorem taken from
[30].

Theorem 2.1.1. Consider the nonlinear delay differential equation

x
0

.t/C
nX
iD1

pifi .x.t � �i // D 0; (2.3)

where for i D 1; : : : ; n;

pi 2 .0;1/; �i 2 Œ0;1/; fi 2 C ŒR;R�; (2.4)

ufi .u/ > 0 for u ¤ 0 and lim
u!0

fi .u/

u
D 1; (2.5)

and there exits a positive constant ı such that

either fi .u/ � u for 0 � u � ı and i D 1; 2; : : : ; n;

or fi .u/ � u for � ı � u � 0 and i D 1; 2; : : : ; n:

	
(2.6)

Then every solution of (2.3) oscillates if and only if every solution of the linearized
equation

y
0

.t/C
nX
iD1

piy.t � �i / D 0 (2.7)

oscillates.
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Corollary 2.1.1 ([30]). Assume that (2.4)–(2.6) hold. Then each one of the
following two conditions is sufficient for the oscillation of all solutions of (2.3):

.a/
nP
iD1

pi �i >
1
e
I

.b/

�
nQ
iD1

pi

� 1
n
�

nP
iD1

�i

�
> 1

e
I

and when n D 1 the condition p� > 1=e is necessary and sufficient for oscillation.

Now, we establish necessary and sufficient condition for the oscillation of all
positive solutions of the delay logistic model (2.1) about the positive steady stateK.

Theorem 2.1.2. Every solution of (2.1) oscillates about K if and only if r� > 1=e:

Proof. The change of variables

N.t/ WD Kex.t/ (2.8)

reduces Eq. (2.1) to the nonlinear delay equation

x
0

.t/C rf .x.t � �// D 0; (2.9)

where

f .u/ D eu � 1: (2.10)

Clearly f .u/ satisfies the conditions (2.4)–(2.6). Corollary 2.1.1 completes the
proof. �

We now consider a generalization of the delay logistic equation (2.1) with several
delays of the form

N
0

.t/ D N.t/

"
˛ �

nX
iD1

ˇiN.t � �i /
#
; (2.11)

where

˛; ˇ1; ˇ2; : : : ; ˇn 2 .0;1/ and 0 � �1 < �2 < �3 : : : < �n � �: (2.12)

Again with (2.11), we associate the initial condition (2.2) and then it follows by the
method of steps that (2.2), (2.11) has a unique solution N.t/ and remains positive
for all t � 0:

Theorem 2.1.3. Assume that (2.12) holds. Then each one of the following condi-

tions implies that every solution of (2.11) oscillates about N� D ˛=
nP
iD1

ˇi W
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.i/ ˛e

�
nP
iD1

ˇi �i

�
>

�
nP
iD1

ˇi

�
I

.i i/ ˛e

�
nQ
iD1

ˇi

� 1
n
�

nP
iD1

�i

�
>

�
nP
iD1

ˇi

�
:

Proof. Set

N.t/ D N �ex.t/:

Then x.t/ satisfies Eq. (2.3), where

pi D ˇiN
�; for i D 1; 2; : : : ; n and fi (u/ D eu � 1: (2.13)

Clearly fi .u/ for i D 1; 2; ::; n satisfy the conditions (2.4)–(2.6). The proof follows
from Corollary 2.1.1. �

2.2 Models with Delayed Feedback

In order to observe the influence of a feedback mechanism on fluctuations of a
population density N.t/ around an equilibrium K via a constant 
; Olach [53]
considered a modified nonlinear delay logistic model of the form

N
0

.t/ D rN.t/

ˇ̌̌
ˇ1 � N.�.t//

K

ˇ̌̌
ˇ



sgn

�
ln

K

N.�.t//

�
; t � 0; (2.14)

where r; K; 
 2 .0;1/ and the term 1�N.�.t//=K denotes a feedback mechanism.
We consider those solutions of (2.14) which correspond to the initial condition

�
N.t/ D 
.t/; for �.0/ � t � 0;


 2 C.Œ�.0/; 0�; Œ0;1//; 
.0/ > 0:
(2.15)

It follows by the method of steps that (2.14), (2.15) has a unique positive solution
N.t/ for all t > 0:

We discuss in this section the nonoscillation of positive solutions of (2.14) around
the positive equilibrium point K: We begin with the following lemma.

Lemma 2.2.1. Consider the nonlinear retarded differential equation

x
0

.t/C p.t/f .x.�.t/// D 0; t � t0 � 0; (2.16)
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such that for t � t0;

p 2 C.Œt0;1/;RC/; � 2 C.Œt0;1/;RC/; �.t/ < t; lim
t!1 �.t/ D 1; (2.17)

f 2 C.R;R/; uf .u/ > 0 for u ¤ 0; (2.18)

and
Z 1

t0

p.t/ D 1: (2.19)

Then every nonoscillatory solution x.t/ of (2.16) satisfies limt!1 x.t/ D 0:

Proof. Suppose that (2.16) has a nonoscillatory solution x.t/which we shall assume
to be eventually positive (if x.t/ is eventually negative the proof is similar). Since
uf .u/ > 0, we note that x

0

.t/ < 0 eventually for t � t1 � t0: Thus

lim
t!1 x.t/ D L � 0, exists:

We claim L D 0: If L > 0; we have

x.t1/ � LC
Z 1

t1

p.s/f .x.�.s///ds;

which with (2.19) gives a contradiction. Thus limt!1 x.t/ D 0: The proof is
complete. �

To prove the main oscillation results for Eq. (2.14) we need some oscillation
results for the equation

x
0

.t/C p.t/ jx.�.t//j
 sgnx.�.t// D 0; t � t0 � 0: (2.20)

Let Cloc.Œt0;1/;R/ denote the space of continuous functions x W Œt0;1/ ! R
endowed with the topology of local uniform convergence.

Theorem 2.2.1. Suppose that (2.17) holds, 
 > 1 and for some ˛ 2 .0; 
/

lim
t!1 sup t Œ�.t/��˛ Œp.t/�.
�˛/=
 < 1: (2.21)

Then (2.20) has a nonoscillatory solution.

Proof. According to (2.21) there is a c > 0 such that

t Œ�.t/��˛ Œp.t/�.
�˛/=
 < c; for t � t0:
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Set

v.t/ D c0t
˛=.˛�
/; for t � t0; where c0 D

h ˛


 � ˛ c
.
�˛/=
i1=.
�1/

:

Let S � Cloc.Œt0;1/;R/ be the set of functions which satisfy

0 � x.t/ � v.t/, for t � t0

and define the operator

F W S ! Cloc.Œt0;1/;R/

by

F.x/.t/ D
� R1

t
p.s/Œx.�.s//�
ds; for t � t1;

v.t/ � v.t1/C F.x/.t1/ for t 2 Œt0; t1/;

where t1 > t0 is such that �.t/ � t0 for all t � t1: Note F.S/ � S; to see this note if
x 2 S and t � t1 then

F.x.t// �
Z 1

t

p.s/Œv.�.s//�
ds D
Z 1

t

p.s/ c
0 Œ�.s/�
˛ 

˛�
 ds

� c
0 c




�˛

Z 1

t

s



˛�
 ds D v.t/:

We note that S is a nonempty closed convex subset of Cloc.Œt0;1/;R/ and the oper-
ator F is continuous. The functions belonging to the set F.S/ are equicontinuous
on compact subintervals of Œt0;1/: The Tychonov–Schauder Fixed Point Theorem
guarantees that the operator F has an element y 2 S such that y D F.y/. The proof
is complete. �

Theorem 2.2.2. Suppose that (2.17)–(2.19) hold, and

lim
u!0

f .u/

juj
 sgn u
D 1; 
 > 1: (2.22)

If (2.20) has a nonoscillatory solution then (2.16) also has a nonoscillatory solution.

Proof. Assume that v.t/ is a nonoscillatory solution of (2.20) such that v.�.t// > 0
for t � t0: According to (2.22) there is a c1 > 1 and ı > 0 such that f .u/ � c1u


for u 2 Œ0; ı�: From Lemma 2.2.1 we have

v.t/ D
Z 1

t

p.s/Œv.�.s//�
ds; t � t0:
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Now choose T0 > t0 such that v.t/ < ı for t � T0: Let S � Cloc.Œt0;1/;R/ be the
set of functions satisfying

0 � x.t/ � c2v.t/, for t � T0;

where c1c
2 < c2 < 1; and define the operator

F W S ! Cloc.Œt0;1/;R/

by

F.x/.t/ D
� R1

t
p.s/ f .x.�.s/// ds; for t � t1;

c2Œv.t/ � v.t1/�C F.x/.t1/; for t 2 ŒT0; t1/;

where t1 > T0 is such that �.t/ � T0 for all t � t1: Note F.S/ � S; to see this note
if x 2 S and t � t1 then

F.x.t// �
Z 1

t

p.s/ c1 Œx.�.s//�

 ds � c1c



2

Z 1

t

p.s/ Œv.�.s//�
 ds � c2 v.t/:

The remainder of the proof is similar to that of Theorem 2.2.1. �

Consider (2.14) about the positive steady state K: The transformation N.t/ D
Kex.t/ transforms Eq. (2.14) to Eq. (2.16) with

f .u/ D j1 � euj sgn u:

Clearly the function f .u/ satisfies the hypothesis (2.18) and (2.22) so the above
results apply to (2.14).

2.3 ˛-Delay Models

Aiello [2] considered the nonautonomous delay logistic model

N
0

.t/ D r.t/N.t/

�
1 � N.�.t//

K

� ˇ̌̌
ˇ1 � N.�.t//

K

ˇ̌̌
ˇ
˛�1

; t > 0; (2.23)

where K, ˛ are positive constants, ˛ ¤ 1; r.t/ and �.t/ are positive continuous
functions defined on Œ0, 1/ such that

�.t/ � t; and lim
t!1 �.t/ D 1: (2.24)



16 2 Oscillation of Delay Logistic Models

Our aim in this section is to study the oscillation and nonoscillation of all positive
solutions of (2.23) about the positive steady state K: We consider (2.23) with an
initial condition

�
N.t/ D 
.t/; for �.0/ � t � 0;


 2 C.Œ�.0/; 0�; Œ0;1//; 
.0/ > 0:
(2.25)

The change of variables

y.t/ D N.t/

K
� 1 (2.26)

in (2.23) gives us the nonlinear delay equation y
0

.t/ D �r.t/y.�.t//Œ1 C
y.t/� jy.�.t//j˛�1. Since N.t/ > 0 in (2.23) then y.t/ > �1.

In this section we consider

y
0

.t/ D �r.t/y.�.t//Œ1C y.t/� jy.�.t//j˛�1 ; t � t0: (2.27)

Assume that
Z 1

t0

r.s/ds < 1 (2.28)

or
Z 1

t0

r.s/ds D 1: (2.29)

From the change of variables (2.26), we see that the oscillation or nonoscillation of
(2.23) aboutK is equivalent to the oscillation or nonoscillation of (2.27) about zero.
In the following, we are concerned with the existence of a nonoscillatory solution
of (2.27) and the results in this section are adapted from [2].

First, we consider the case when (2.28) holds. Note for t � t0 the function r.t/
is positive and

Z 1

t0

r.s/ds D R; where 0 < R < 1: (2.30)

Theorem 2.3.1. Assume that (2.24), (2.28), and (2.30) hold. Then (2.27) has a
positive, nonoscillatory solution bounded away from zero.

Proof. Note if y is a positive solution of (2.27) then

y
0

.t/ D �r.t/Œ1C y.t/�.y.�.t///˛: (2.31)
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Let ' denote the locally convex space of continuous functions on Œt0;1/ with the
topology of uniform convergence on compact sets of R. Define the set S � ' as

S WD

8̂̂
ˆ̂<
ˆ̂̂̂:

y is nonincreasing
y.t/ D C˛; t0 � t < T

y 2 ' W C˛ � y.t/ � C˛ exp
�
� R t

T
r.s/ds

�
; t � T

y.�.t//

y.t/
� exp

�R t
t0
r.s/ds

�
; t � T I

here C˛ > 0 is defined so that

ŒC˛ C 1�C ˛�1
˛ � exp

�
�
Z t

T

r.s/ds

�
;

and T is sufficiently large so that �.t/ � t0 for all t � T . Such a constant C˛ exists
since the function

h.u/ WD .u C 1/u˛�1

is monotone increasing and

h.0/ D 0 and h.1/ D 2:

Since 0 < e�R < 1 (here R is as in (2.30)) there is a u0 such that h.u0/ D e�R:
Then let C˛ be any constant satisfying the inequality 0 < C˛ < u0; and

ŒC˛ C 1�C ˛�1
˛ � e�R

necessarily follows. Let R.t/ D R t
t0
r.s/ds. Note that, since r.t/ � 0 and T � t0,

we have

Z t

T

r.s/ds � R.t/:

We can easily see that S � ' is nonempty, since y.t/ D C˛ is in S. In addition, S is
a closed convex subset of ': Let y 2 S and define the map

F y.t/ D
(

C˛; for t0 � t < T;

C˛ exp
�
� R t

T
r.s/.1Cy.s//.y.�.s///˛

y.s/
ds
�
; for t � T:

Clearly F y.t/ is continuous, nonincreasing and satisfies

F y.t/

� D C˛; for t0 � t < T;

� C˛; for t � T;
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and since y.t/ � C˛; we have by definition that

.1C y.s//.y.�.s///˛�1 � e�R < 1; and
y.�.t//

y.t/
� eR.t/ � eR:

Then

Z t

T

r.s/.1C y.s//.y.�.s///˛ds

y.s/
�
Z t

T

e�R r.s/y.�.s//ds
y.s/

�
Z t

T

e�ReR.s/r.s/ds �
Z t

T

r.s/ds;

so,

F y.t/ � C˛ exp

�
�
Z t

T

r.s/ds

�
; for t � T:

Also for t � T

F y.�.t//

F y.t/
D exp

�Z t

�.t/

r.s/.1C y.s//.y.�.s///˛

y.s/
ds

�

� exp

�Z t

�.t/

e�R r.s/y.�.s//
y.s/

ds

�

� exp

�Z t

�.t/

e�ReR.s/r.s/ds
�

� exp

�Z t

�.t/

r.s/ds

�
� exp

�Z t

t0

r.s/ds

�
;

so,

F y.�.t//

F y.t/
� eR.t/; for t � T:

Thus, F.S/ � S: Note S is bounded above by C˛ and bounded below by C˛e�R.
We now prove that fF y W y 2 Sg is equicontinuous on compact sets of Œt0;1/: Let
T1 and T2 be elements in R and let T �

i D maxfT; Tig for i D 1; 2. Then

jF y.T1/ � F y.T2/j D jF y.T �
1 / � F y.T �

2 /j

D C˛

ˇ̌̌
ˇ̌exp

 
�
Z T �

1

T

r.s/.1C y.s//.y.�.s///˛

y.s/
ds

!
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� exp

 Z T �

2

T

�r.s/.1C y.s//.y.�.s///˛

y.s/
ds

!ˇ̌̌
ˇ̌

� C˛

ˇ̌
ˇ̌̌
1 � exp

 Z T �

2

T �

1

�r.s/.1C y.s//.y.�.s///˛

y.s/
ds

!ˇ̌ˇ̌̌

� C˛

ˇ̌̌
ˇ̌1 � exp

 Z T �

2

T �

1

�r.s/ds
!ˇ̌̌
ˇ̌ ! 0; as T1 ! T2;

uniformly so fF y W y 2 Sg is equicontinuous on every compact set in Œt0;1/:

Apply the Arzela–Ascoli Theorem to conclude that F S is compact in S. The
Tychonov-Schauder Fixed Point Theorem guarantees a fixed point y� of F . This
y� solves (2.31) from the definition of F . The proof is complete. �

Now, we consider the case when (2.29) holds. First, we prove that every
nonoscillatory solution of (2.27) tends to zero as t tends to infinity.

Theorem 2.3.2. Assume that the conditions of Theorem 2.3.1 hold, except that con-
dition (2.28) is replaced by (2.29) and (2.30) is removed. Then every nonoscillatory
solution of (2.27) will satisfy limt!1y.t/ D 0:

Proof. First, we consider the case when y.t/ > 0 for all t > t1 > 0: Let

v�.t/ D supfs W �.s/ D tg;

and since limt!1 �.t/ D 1 there exists T D v�.t1/ such that y.t/ > 0 and
y.�.t// > 0 for all t � T: From (2.27) we have

y
0

.t/ D �r.t/Œ1C y.t/�.y.�.t///˛ � 0: (2.32)

Thus,

lim
t!1 y.t/ D � � 0 exists.

Suppose � > 0. For all t � T , y.t/ � � and y.�.t// � � and so (2.32) implies that

y
0

.t/ � �r.t/Œ1C ���˛;

so integration and (2.29) implies that y.t/ is negative, and this is a contradiction.
Thus � D 0: Next, we consider the case when y.t/ is negative. Let y.t/ be an
eventually negative solution of (2.27), such that

�1 < y.t/ < 0 and y.�.t// < 0;
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for t � T0 sufficiently large. Let T1 > T0 be such that �.t/ � T0 for all t � T1:

Now, since y.�.t// < 0 for t � T1; we have from (2.27) that

y
0

.t/ D �r.t/Œ1C y.t/�y.�.t// jy.�.t//j˛�1 > 0; t � T1: (2.33)

Then

lim
t!1 y.t/ D �ˇ exists, where 0 � ˇ < 1:

Suppose that ˇ ¤ 0. Since y
0

.t/ > 0 and

y.�.t// � �ˇ; t � T1;

we have

y
0

.t/ � �r.t/Œ1C y.t/�ˇ˛; t � T1: (2.34)

Now, since y.t/ is nonincreasing and limt!1 y.t/ D �ˇ then there exists T" � T1
such that

Œ1C y.t/� � 1 � ˇ � " > 0;

so with (2.34) we have

y
0

.t/ � �r.t/Œ1 � ˇ � "�ˇ˛; t � T";

which by integration gives a contradiction. Then ˇ D 0 and this completes the
proof. �

Now, we give sufficient conditions for the existence of nonoscillatory solutions
of (2.27) when (2.29) holds and ˛ ¤ 1.

Theorem 2.3.3. Assume that (2.24) and (2.29) hold and ˛ ¤ 1. Furthermore
suppose that

lim
t!1 sup

Z t

�.t/

r.s/ds < „; where 0 < „ < 1:

Then (2.27) has a nonoscillatory solution.

Proof. Let ' denote the locally convex space of continuous functions on Œt0;1/

with the topology of uniform convergence on compact sets of R. Define the set
S � ' as
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S D

8̂̂
<̂
ˆ̂̂:

y is nonincreasing
y.t/ D C˛; t0 � t < t1

y 2 ' W C˛ � y.t/ � C˛ exp
�
� R t

t1
r.s/ds

�
; t1 � t < 1

y.�.t//

y.t/
� e„; t � t1

where 0 < C˛ < 1 is defined so that

ŒC˛ C 1�C ˛�1
˛ � 1=e„;

and t1 is sufficiently large so that

Z t

�.t/

r.s/ds < „; for t � t1:

The remainder of the proof is similar to that of Theorem 2.3.1 and hence is omitted.
�

From the change of variables y.t/ D N.t/=K � 1 and Theorems 2.3.1–2.3.3 we
have the following results on the delay logistic Eq. (2.23).

Theorem 2.3.4. Assume that (2.24), (2.28), and (2.30) hold. Then (2.23) has a
positive, nonoscillatory solution bounded away from K.

Theorem 2.3.5. Assume that (2.24) and (2.29) hold. Then every nonoscillatory
solution of (2.23) will satisfy limt!1N.t/ D K:

Theorem 2.3.6. Assume that (2.24) and (2.29) hold and ˛ ¤ 1. Furthermore
suppose that

limt!1 sup
Z t

�.t/

r.s/ds < „; where 0 < „ < 1:

Then (2.23) has a nonoscillatory solution.

The following examples illustrate the theory.

Example 1. Consider the nonlinear delay logistic equation

N
0

.t/ D 1

t2
N.t/.1 �N.t � �/=K/ j1 �N.t � �/=Kj2 ; t > t0;

where K is a positive constant: Here r.t/ D 1=t2; and for t0 > 0;

Z 1

t0

.1=s2/ds D 1=t0 < 1:

The conditions of Theorem 2.3.4 are satisfied, so there exists a nonoscillatory
solution to this equation which is bounded away from K:
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Example 2. Consider the nonlinear delay logistic equation

N
0

.t/ D rN.t/.1 �N.t � �/=K/ j1 �N.t � �/=Kj2 ; t > t0;

where K is a positive constant: Here r.t/ D r > 0 satisfies

Z 1

t0

rds D 1:

The conditions of Theorem 2.3.5 are satisfied, so there exists a nonoscillatory
solution to this equation for any � > 0 and by Theorem 2.3.5 it tends to K when t
tends to infinity.

It is important to establish necessary conditions for the existence of nonoscil-
latory solutions to (2.23). Li [38] considered this problem and established these
conditions by analyzing the generalized characteristic equation corresponding to
(2.27). These conditions are equivalent to the sufficient and necessary conditions
for the existence of positive solutions of (2.23).

We begin with the following theorem which gives the characteristic equation of
(2.27).

Theorem 2.3.7. A necessary and sufficient condition for the existence of a
nonoscillatory solution of (2.27) is that there exist a constant C˛; a function 
.t/,
and t1 such that


.t/ D jC˛j˛�1
�
1C C˛ exp

�
�
Z t

t1

r.s/
.s/ds

��

� exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

t1

r.s/
.s/ds

!
: (2.35)

Theorem 2.3.8. Assume that ˛ 2 .0; 1/: Then (2.29) is a necessary and sufficient
condition for every solution of (2.27) to be oscillatory.

Proof. .i/ Necessity. If (2.29) does not hold, we can assume that there exists a
constant

k DW 1

.2 � ˛/.1C C˛/C ˛�1
˛

;

where C˛ is a positive number, such that

Z 1

t0

r.s/ds � k:
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Let T0 D inft�t0 �.t/ and let C.ŒT0;1/;R/ denote the locally convex space of
continuous functions on ŒT0;1/ with the topology of uniform convergence on
compact sets of ŒT0;1/. Define the subset � of C.ŒT0;1/;R/ by

� D fx 2 C.ŒT0;1/;R/ W x.t/ � 0; jx.t/j � e.1C C˛/C
˛�1
˛ ; t � T0g:

Let x 2 � and define a mapping F on � by

.F x/.t/D

8̂̂
<
ˆ̂:

jC˛j˛�1 �1C C˛ exp
�
� R t

T0
r.s/x.s/ds

��
� exp

�R t
�.t/
r.s/x.s/ds C .1 � ˛/ R �.t/

T0
r.s/x.s/ds

�
; t � t0;

.F x/.t0/; t0 � t � T0:

Then as in the proof of Theorem 2.3.1 we have F x.t/ is continuous and
F.�/ � �: Also fF x W x 2 �g is equicontinuous and uniformly bounded.
Apply the Arzela–Ascoli Theorem to conclude that F� is compact in�. Now,
by using the Tychonov–Schauder Fixed Point Theorem, we see that there exists
a 
 2 � such that for t � t0 we have


.t/ D jC˛j˛�1 �1C C˛e
� R t

T0
r.s/
.s/ds

�

� exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

T0

r.s/
.s/ds

!
: (2.36)

By Theorem 2.3.7, (2.27) has a nonoscillatory solution.
.ii/ Sufficiency. If (2.27) has an eventually positive solution, by Theorem 2.3.7

there exit C˛; t1, and a continuous function 
.t/ satisfying


.t/ D
�
1C C˛e

� R t
t1
r.s/
.s/ds

�

� jC˛j˛�1 exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

t1

r.s/
.s/ds

!

� jC˛j˛�1 exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

t1

r.s/
.s/ds

!

� jC˛j˛�1 exp

�
.1 � ˛/

Z t

t1

r.s/
.s/ds

�
:

Set

z.t/ D exp.�.1 � ˛/
Z t

t1

r.s/
.s/ds/



24 2 Oscillation of Delay Logistic Models

and note

z
0

.t/ � � jC˛j˛�1 .1 � ˛/r.t/z.t1/:

Integrate and we have by (2.29) that

lim
t!1 z.t/ D �1;

a contradiction. Similarly, we can show that (2.27) has no eventually negative
solution y.t/ with 1C y.t/ > 0. The proof is complete. �

Now, we consider the case when ˛ > 1.

Theorem 2.3.9. Assume that ˛ > 1: Then a necessary and sufficient condition for
the existence of a nonoscillatory solution of (2.27) is that there exists a positive
continuous function 
.t/ such that for t � T

exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

T

r.s/
.s/ds

!
� m
.t/; (2.37)

where m and T are some positive constants.

Proof. .i/ Sufficiency. We only consider the case (since the other case is similar)
when

Z 1

t0

r.s/
.s/ds < 1:

Then there exist %, T and C˛ > 0 such that

Z 1

T

r.s/
.s/ds < %; .1C C˛/C
˛�1
˛ <

1

m%
:

Let T0 D inft�t0 �.t/. Define a mapping F on C.ŒT0;1/;RC/ as follows

.F y/.t/ W D

8̂<
:̂

R1
t
r.s/.1C y.s//y˛.�.s//ds; t � T

.F y/.T /C C˛ exp.� R t
T0
r.s/
.s/ds/

�C˛ exp.� R T
T0
r.s/
.s/ds/; T0 � t � T:

Clearly F is an increasing operator. Set

y0 WD C˛ exp.�
Z t

T

r.s/
.s/ds/; ynC1 D F yn; n D 1; 2; : : : .
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Then we have that

y0.t/ � y1.t/ � : : : � yn.t/ � : : : � 0; for t � T0: (2.38)

In fact

y1.t/ D .F y0/.t/ �
Z 1

t

r.s/

�
1C C˛ exp.�

Z s

T

r.u/
.u/du/

�

�
 
C˛
˛ exp.�˛

Z �.s/

T

r.u/
.u/du

!
ds

� C˛
˛ .1C C˛/m

Z 1

t

r.s/
.s/ds exp

�
�
Z t

T

r.s/
.s/ds/

�

� C˛ exp

�
�
Z t

T

r.s/
.s/ds/

�
D y0.t/; t � T:

Continue to obtain (2.38). Then limn!1 yn.t/ D y.t/ � 0, t � T0, exists.
From the Lebesgue’s Dominated Convergence Theorem

y.t/ W D

8̂
ˆ̂<
ˆ̂̂:

R1
t
r.s/.1C y.s//y˛.�.s//ds; t � T

.F y/.T /C C˛ exp.� R t
T0
r.s/
.s/ds/

�C˛ exp.� R T
T0
r.s/
.s/ds/; T0 � t � T:

It is easy to see that y.t/ > 0 on ŒT0; T � and hence y.t/ > 0 for all t � T0:

Therefore, y.t/ is a positive solution of (2.27) on ŒT;1/:

.i i/ Necessity. If (2.27) has an eventually positive solution then from Theo-
rem 2.3.7 there exists a continuous positive function 
.t/ such that


.t/ D
�
1C C˛ exp

�
�
Z t

t1

r.s/
.s/ds

��

�C˛�1
˛ exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

t1

r.s/
.s/ds

!

� C˛�1
˛ exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

t1

r.s/
.s/ds

!
: (2.39)

Let m D 1=C˛�1
˛ : Then (2.39) implies (2.37). If (2.27) has an eventually

negative solution, then
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.t/ � .1�jC˛j/ ˇ̌C˛�1
˛

ˇ̌
exp

 Z t

�.t/

r.s/
.s/ds C .1 � ˛/
Z �.t/

t1

r.s/
.s/ds

!
;

where jC˛j < 1: Thus (2.37) is also true. The proof is complete. �

From Theorems 2.3.8 and 2.3.9 one can immediately derive some explicit neces-
sary and sufficient conditions for the oscillation and the existence of nonoscillatory
solutions of (2.23) about the positive steady state K.

2.4 ˛-Models with Several Delays

In this section, we consider the nonlinear delay logistic equation with several delays
of the form

N
0

.t/ D
mX
kD1

rk.t/N.t/

�
1 � N.hk.t//

K

� ˇ̌̌
ˇ1 � N.hk.t//

K

ˇ̌̌
ˇ
˛k�1

; t > 0; (2.40)

where ˛k < 1; k D 1; : : : ; m or ˛k > 1; k D 1; : : : ; m under the conditions:

(b1/ rk; k D 1; 2; : : : ; m, are Lebesgue measurable functions essentially bounded
in each finite interval Œ0; b�, rk � 0;

.b2/ hk W Œ0;1/ ! R are Lebesgue measurable functions, hk.t/ � t;

limt!1 hk.t/ D 1; k D 1; 2; : : : ; m.

The case ˛k D 1; k D 1; : : : ; m, will be considered in detail in Sect. 2.6.
We consider positive solutions of (2.40) with an initial condition

�
N.t/ D 
.t/; for �� � t � 0;


 2 C.Œ��; 0�; Œ0;1//; 
.0/ > 0;
(2.41)

where

�� D min
1�k�m

�
inf
t�0fhk.t/g

�
:

Clearly the initial value problem (2.40), (2.41) has a unique positive solution for all
t � 0: This follows from the method of steps. In this section we consider

x
0

.t/ D � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � 0; (2.42)
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and it is also possible to consider

x
0

.t/ D � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � t0;

x.t/ D '.t/; t < t0; and x.t0/ D x0 > �1;

where
.b3/ ' W .�1; t0/ ! is a Borel measurable bounded function.
We also consider the delay differential inequalities

x
0

.t/ � � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � 0; (2.43)

x
0

.t/ � � Œx.t/C 1�

mX
kD1

rk.t/x.hk.t// jx.hk.t//j˛k�1 ; t � 0: (2.44)

In the following we discuss the nonoscillation of solutions of (2.42) which is
equivalent to the nonoscillation of positive solutions of (2.40) about K: The results
in this section are adapted from [5].

In the following we assume ˛k < 1; k D 1; 2; : : : ; m, and that .b1/ � .b2/ hold
and we consider solutions of (2.42), (2.43), and (2.44) for which 1C x.t/ > 0:

We prove the following comparison theorem.

Theorem 2.4.1. The following statements are equivalent:

.1/ Either inequality (2.43) has an eventually positive solution or inequality (2.44)
has an eventually negative solutions.

.2/ There exist t0 � 0; ' W .�1; t0/ ! R; with either '.t/ � 0; C > 0, or
'.t/ � 0; �1 <C < 0; such that the inequality

u.t/ �
�
1C C exp

�
�
Z t

t0

u.s/ds

	� mX
kD1
.Fku/.t/; (2.45)

where

.Fku/.t/ D

8̂
<
:̂

jC j˛k�1 rk.t/ � expfR t
hk.t/

u.s/dsg
� expf.1 � ˛k/

R hk.t/
t0

u.s/dsg; if hk.t/ � t0
rk.t/

jC j expfR t
t0

u.s/dsg j'.hk.t//j˛k ; if hk.t/ < t0

has a nonnegative locally integrable solution on Œt0;1/:

.3/ Equation (2.42) has a nonoscillatory solution.
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Proof. 1/ ) .2/ Let x be a solution of (2.43) and x.t/ > 0 for t � t1: Then there
exists t0 > t1 such that hk.t/ � t1 for t � t0; k D 1; : : : ; m. Denote '.t/ D x.t/;

t < t0, and C D x.t0/: Let

u.t/ D �x0

.t/

x.t/
; t � t0:

Then u.t/ � 0 and

x.t/ D
(
C expf� R t

t0
u.s/dsg; t � t0;

'.t/; t < t0:
(2.46)

Then by substituting x in (2.43) we obtain inequality (2.45). Similarly (2.45) can be
obtained, if x.t/ < 0 is a solution of (2.44).
2/ ) 3/: Let u0 be a nonnegative solution of inequality (2.45) with

'.t/ � 0; � 1 < C < 0:

Denote a sequence

un.t/ D
�
1C C exp

�
�
Z t

t0

un�1.s/ds
	� mX

kD1
.Fkun�1/.t/: (2.47)

Inequality (2.45) implies u1.t/ � u0.t/: By induction, we have

0 � un.t/ � un�1.t/ � u0.t/:

Then there exits a pointwise limit of the nonincreasing nonnegative limit un.t/: Let

lim
n!1 un.t/ D u.t/:

Then by the Lebesgue Convergence Theorem

lim
n!1.Fkun/.t/ D .Fku/.t/; k D 1; 2; : : : ; m:

Thus (2.47) implies that

u.t/ D
�
1C C exp

�
�
Z t

t0

u.s/ds

	� mX
kD1
.Fku/.t/:

Hence the function x.t/ defined by (2.46) is an eventually negative solution of
(2.42). Now let u0 be a nonnegative solution of inequality (2.45) with '.t/ � 0;

C > 0: Let C1 D �C; '1.t/ D �'.t/: Then u is also a solution of (2.45) with
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C1 (respectively '1.t/) instead of C (respectively, '.t/). As in the previous case
it follows that there exists an eventually negative solution of (2.42). Implication
3/ ) 1/ is evident. The proof is complete. �

Corollary 2.4.1. Suppose there exist t0 and A > 1 such that the inequality

u.t/ � A

mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

	
� exp

(
.1 � ˛k/

Z hk.t/

t0

u.s/ds

)
(2.48)

has a nonnegative, locally integrable solution, where the sum contains only such
terms for which hk.t/ � t0. Then (2.42) has a nonoscillatory solution.

In the following we give some necessary and sufficient conditions for the
existence of nonoscillatory solutions of (2.42).

Theorem 2.4.2. There exists a nonoscillatory solution of (2.42) if and only if

Z 1

0

rk.t/dt < 1; k D 1; 2; : : : ; m: (2.49)

Proof. First, suppose that (2.49) holds. Then there exist t0 and A > 1 such that

A exp

(
2

Z 1

t0

mX
kD1

rk.t/dt

)
< 2:

For any nonnegative u

A

mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

	
� exp

(
.1 � ˛k/

Z hk.t/

t0

u.s/ds

)

� A

mX
kD1

rk.t/ exp

�Z t

t0

u.s/ds

	
:

Let

u.t/ D 2

mX
kD1

rk.t/:

From the above inequalities we see that u is a solution of inequality (2.48).
Corollary 2.4.1 implies that (2.42) has an eventually positive solution.

Suppose now that for some i , 1 � i � m; we have
R1
0
ri .t/dt D 1: Let x be

a positive or negative solution of (2.42) for t � t1: There exists t0 > t1 such that
hk.t/ � t1; for t � t0 and k D 1; 2; : : : m. Let

u.t/ D �x0

.t/

x.t/
; t � t0:
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Then u.t/ � 0 and x.t/ satisfies (2.46) where C D x.t0/: Substituting x in (2.42)
we obtain for t � t0

u.t/ D
( Pm

kD1 jC j˛k�1 rk.t/.1C C expf� R t
t0

u.s/dsg/
� expf�˛k

R hk.t/
t0

u.s/dsg expfR t
t0

u.s/dsg:

Then

u.t/ � minf1; 1C C g jC j˛k�1 ri .t/ expf.1 � ˛i /
Z t

t0

u.s/dsg:

Hence

ri .t/ � jC j1�˛i
minf1; 1C C g jC ju.t/ expf�.1 � ˛i /

Z t

t0

u.s/dsg

and so

Z t

t0

ri .s/ds � jC j1�˛i
minf1; 1C C g jC j

Z t

t0

u.s/ expf�.1 � ˛i /
Z s

t0

u.�/d�gds

D jC j1�˛i
minf1; 1C C g jC j

�
1 � expf�.1 � ˛i /

Z t

t0

u.s/dsg
�

� jC j1�˛i
minf1; 1C C g jC j :

Hence
Z 1

t0

ri .s/ds < 1;

which gives a contradiction. The proof is complete. �

It is also possible to establish results when ˛k D 1 for k D 1; 2; : : : ; m (see
Sect. 2.6 where a more general situation is considered).

Next, we consider the case when ˛k > 1 for k D 1; 2; : : : ; m.

Lemma 2.4.1. If h 2 L1Œa; b�; then the linear integral operator

.Hx/.t/ D
( R h.t/

a
x.s/ds; if h.t/ 2 Œa; b�

0; if h.t/ … Œa; b�

is a completely continuous operator in L1Œa; b�:
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Proof. Let � > 0 be given. Divide H.Œa; b�/ \ Œa; b� into a finite number of subsets
Fi , i D 1; : : : ; n, such that for every s1; s2 2 Fi we have js1 � s2j < �. Let

Ei D h�1.Fi /; i D 1; : : : ; n; E0 D ft 2 Œa; b� W h.t/ … Œa; b�g;

S D fx 2 L1Œa; b� W jjxjj D 1g and M D H.S/:

For dilatation Ei , i D 1; 2; : : :, we have

sup
t;s2Ei

j.Hx/.t/ � .Hx/.s/j D sup
t;s2Ei

j
Z h.s/

h.t/

x.w/dwj � sup
t;s2Ei

jh.t/ � h.s/j < �:

If i D 0 then supt;s2E0 j.Hx/.t/ � .Hx/.s/j D 0. Now Theorem 1.4.10 implies
M D H.S/ is a compact set. �

Theorem 2.4.3. Suppose for some " > 0; there exists a nonoscillatory solution of
the linear delay differential equation

x
0

.t/ D �"
mX
kD1

rk.t/x.hk.t//: (2.50)

Then there exists a nonoscillatory solution of (2.42).

Proof. Let t0 > 0; C , and ' W .�1; t0/ ! R be such that

�1 < C < 0; '.t/ � 0; j'.t/j < jC j < "1=.˛k�1/;

and hence C � '.t/ � 0: Now (2.50) with x.t/ D '.t/, t < t0, and x.t0/ D x0
with x0 D C has a negative solution x0.t/ < 0: Let

w0 D �x
0

0.t/

x0.t/
:

Then w0.t/ > 0 and

x0.t/ D C expf�
Z t

t0

w0.s/dsg; t � t0:

By substituting x0 in (2.50), we have

w0.t/ D "

mX
kD1

rk.t/ �
(

expfR t
hk.t/

w0.s/dsg; if hk.t/ � t0;

expfR t
t0

w0.s/dsg '.hk.t//C
; if hk.t/ < t0:
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Consider now two sequences

wn.t/ D
�
1C C exp

�
�
Z t

t0

wn�1.s/dsg
	� mX

kD1
rk.t/

�

8̂
ˆ̂<
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

wn�1.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
vn�1.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

wn�1.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0;

vn.t/ D
�
1C C exp

�
�
Z t

t0

vn�1.s/dsg
	� mX

kD1
rk.t/

�

8̂
ˆ̂<
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

vn�1.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
wn�1.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

vn�1.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0;

where v0 D 0: We have

j'.hk.t//j˛k�1 < jC j˛k�1 < ":

Then

w0.t/ � w1.t/; v1.t/ � v0.t/ D 0; and w0.t/ � v0.t/:

Hence by induction

0 � wn.t/ � wn�1.t/ � : : : � w0.t/; vn.t/ � vn�1.t/ � : : : � v0.t/ D 0;

and wn.t/ � vn.t/: There exist pointwise limits of the nonincreasing nonnegative
sequence wn.t/ and of the nondecreasing sequence vn.t/: If we denote

w.t/ D lim
n!1 wn.t/ and v.t/ D lim

n!1 vn.t/;

then by the Lebesgue Convergence Theorem, we conclude

w.t/ D
�
1C C exp

�
�
Z t

t0

w.s/dsg
	� mX

kD1
rk.t/

�

8̂
ˆ̂<
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

w.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
v.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

w.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0;

(2.51)
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v.t/ D
�
1C C exp

�
�
Z t

t0

v.s/dsg
	� mX

kD1
rk.t/

�

8̂̂
<̂
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

v.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
w.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

v.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0:

(2.52)

Fix b � t0 and denote the operator F W L1Œt0; b� ! L1Œt0; b� by

.F u/.t/ D
�
1C C exp

�
�
Z t

t0

u.s/dsg
	� mX

kD1
rk.t/

�

8̂̂
<̂
ˆ̂̂:

jC j˛k�1 exp
nR t
hk.t/

u.s/ds
o

� exp
n
�.˛k � 1/ R hk.t/

t0
u.s/ds

o
; if hk.t/ � t0;

exp
nR t
t0

u.s/ds
o j'.hk.t//j˛k

jC j ; if hk.t/ < t0:

Note for every function u from the interval v � u � w; we have v � F u � w:
Lemma 2.4.1 implies that the operator F is completely continuous on the space
L1Œt0; b� (for every b � t0). Then by the Schauder Fixed Point Theorem there
exists a nonnegative solution of equation u D F u. Let

x.t/ D
(
C expf� R t

t0
u.s/dsg; t � t0;

'.t/; t < t0:

Then x.t/ is a negative solution of (2.42), which completes the proof. �

2.5 Models with Harvesting

In this section we study the dynamics of a population affected by harvesting, i.e.,

dN

dt
D r.N.t/; t/N.t/ �E.N.t/; t/; (2.53)

where E.N; t/ is a harvesting strategy for the population.
We consider the delay model

N
0

.t/ D r.t/N.t/

"
a �

mX
kD1

bkN.hk.t//

#
�

nX
lD1

cl .t/N.gl .t//; t � 0; (2.54)
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with

N.t/ D '.t/; t < 0; N.0/ D N0; (2.55)

under the following conditions:

.a1/ a > 0; bk > 0;

.a2/ r.t/ � 0; cl .t/ � 0 are Lebesgue measurable and locally essentially bounded
functions;

.a3/ hk.t/; gl .t/ are Lebesgue measurable functions, hk.t/ � t; gl .t/ � t;

limt!1 hk.t/ D 1; limt!1 gl.t/ D 1;
.a4/ ' W .�1; 0/ ! R is a Borel measurable bounded function, '.t/ � 0; N0 > 0.

In this section we obtain sufficient conditions for positiveness, boundedness, and
extinction of solutions of equation (2.54). The results in this section are adapted
from [14]. An absolutely continuous function N (W R ! R) on each interval Œ0; b�
is called a solution of problem (2.54), (2.55), if it satisfies equation (2.54) for almost
all t 2 Œ0;1/ and equality (2.55) for t � 0.

First, we present some lemmas (the proofs can be found in [12, 13], and [30])
which will be used in the proof of the main results. Consider the linear delay
differential equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// D 0; t � 0; (2.56)

and a corresponding differential inequality

y
0

.t/C
nX
lD1

cl .t/y.gl .t// � 0; t � 0: (2.57)

Lemma 2.5.1. Suppose that for the functions cl , gl , hypotheses .a2/ � .a3/ hold.
Then

.1/ If y.t/ is a positive solution of (2.57) for t � t0, then y.t/ � x.t/, t � t0, where
x.t/ is a solution of (2.56) and x.t/ D y.t/; t � t0.

.2/ For every nonoscillatory solution x.t/ of (2.56), we have limt!1 x.t/ D 0.

.3/ If

sup
t�0

nX
lD1

Z
mink gk.t/

cl .s/ds � 1

e
; (2.58)

then equation (2.56) has a nonoscillatory solution.

If in addition, 0 � '.t/ � N0, then the solution of the initial value
problem (2.56)–(2.55), where N.t/ in (2.55) is replaced by x.t/, is positive.
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Consider also the linear delay equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// � a.t/x.t/ D 0; t � 0: (2.59)

A solution X.t; s/ of the problem

x
0

.t/C
nX
lD1

cl .t/x.gl .t// � a.t/x.t/ D 0; t � s;

x.t/ D 0; t < s; x.s/ D 1;

is called a fundamental function of (2.59).

Lemma 2.5.2. Suppose for the functions cl , gl , hypotheses .a2/� .a3/ hold, a is a
locally bounded function such that a.t/ � 0,

nX
lD1

cl .t/ � a.t/,
Z 1

0

"
nX
lD1

cl .t/ � a.t/
#

D 1; (2.60)

and

lim
t!1 sup

"
a.t/.t �G.t//C

nX
lD1

cl .t/.G.t/ � gl.t//
#
< 1; (2.61)

where G.t/ D maxl gl .t/. Then

.1/ If there exists a nonoscillatory solution of (2.59), then for some t0 and t � t0
we have X.t; s/ > 0 for t � s � t0, where X.t; s/ is a fundamental function of
(2.59).

.2/ For every nonoscillatory solution x.t/ of (2.59) we have limt!1 x.t/ D 0:

Let

h.t/ D min
k

fhk.t/g; g.t/ D min
l

fgl.t/g:

In addition to .a1/ � .a4/ consider the following hypothesis:
.a5/: h.t/ is a nondecreasing continuous function.

If in (2.54) we neglect harvesting terms, i.e., assume cl � 0, then the positive
equilibrium becomes a=

Pm
kD1 bk .

Theorem 2.5.1. Suppose .a1/ � .a5/ hold,

'.t/ � N0 <
aPm
kD1 bk

for t < 0; (2.62)
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and

sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

�
~.t/

Z t

gl .t/

r.�/d�

	
ds � 1

e
; (2.63)

where

~.t/ D a

�
exp

�
a sup

t>0

Z t

h.t/

r.�/d�

	
� 1

�
:

Then for any solution of (2.54)–(2.55), we have

0 < N.t/ � aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

	
: (2.64)

Proof. Suppose (2.64) is not valid. Then either there exists a Nt > 0 such that

0 < N.t/ � aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

	
; 0 � t < Nt ;

N.Nt / D aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

	
; N

0

.Nt / > 0; (2.65)

or there exists a Nt > 0 such that

0 < N.t/ � aPm
kD1 bk

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

	
; 0 � t < Nt ; N.Nt / D 0: (2.66)

Suppose we have the first possibility for a solutionN.t/ of (2.54)–(2.55). Denote by

t1 < t2 < � � � < tk < : : : ;

a sequence of all points tk , such that

N.h.tk// D aPm
iD1 bi

; N
0

.h.tk// > 0:

Now

N.0/ D N0 <
aPm
kD1 bk

; N.Nt / > aPm
kD1 bk

;
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and .a5/ imply that the set ftkg is not empty. Suppose t� is a point where we have a
local maximum for N.t/. We prove that if

N.t�/ >
aPm
iD1 bi

; then t� 2
[
k

Œh.tk/; tk�:

Let tk be the greatest among all points of the sequence ftkg satisfying h.tk/ < t�.
Suppose first

N.t/ � aPm
iD1 bi

;

for some t and h.tk/ < t � tk . The definition of tk and t� imply t� < t and hence
t� 2 Œh.tk/; tk�:

Now suppose

N.t/ >
aPm
iD1 bi

, for h.tk/ < t � tk:

Suppose there exists a smallest point t 0 such that

N.t 0/ D aPm
iD1 bi

:

Then (2.54) implies N
0

.t/ < 0; tk � t < t 0: Hence in this interval N.t/ has no
maximal points. Thus h.tk/ < t� < tk .

If such a t 0 does not exist then N
0

.t/ � 0 for t > tk and so once again h.tk/ <
t� < tk .

Equation (2.54) implies now that

N
0

.t/ � ar.t/N.t/; h.tk/ � t � t�; N.h.tk// D aPm
iD1 bi

:

Then

N.t�/ � aPm
iD1 bi

exp

(
a

Z t�

h.tk/

r.s/ds

)

� aPm
iD1 bi

exp

�
a

Z tk

h.tk/

r.s/ds

	

� aPm
lD1 bi

exp

�
a sup
t>0

Z t

h.t/

r.s/ds

	
;

which contradicts our assumption (2.65).
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Suppose now there exists a Nt > 0 such that (2.66) holds. After substituting

N.t/ D exp

( Z t

0

r.s/

"
a �

mX
kD1

bkN.hk.s//

#
ds

)
x.t/; (2.67)

in (2.54)–(2.55), we have the system

x
0

.t/ D �
nX
lD1

cl .t/ exp

(
�
Z t

gl .t/

r.s/

"
a �

mX
kD1

bkN.hk.s//

#
ds

)
x.gl .t//;

(2.68)
for t > 0; and (we assume r.t/ D 0; t < 0/

x.t/ D '.t/; for t < 0; x.0/ D N0: (2.69)

Consider now the initial value problem

y
0

.t/ D �
nX
lD1

pl .t/y.gl .t//; t > 0; (2.70)

y.t/ D  .t/; t < 0; y.0/ D y0; (2.71)

where

pl.t/ D cl .t/ exp

(
�
Z t

gl .t/

r.s/

"
a �

mX
kD1

bkN.hk.s//

#
ds

)
:

It is evident that if  .t/ D '.t/; y0 D N0, then the solutions of (2.68)–(2.69) and
(2.70)–(2.71) coincide. Inequalities (2.64) and (2.63) imply that

nX
lD1

Z t

g.t/

pl .s/ds

D
nX
lD1

Z t

g.t/

cl .s/ exp

( Z s

gl .s/

r.�/

"
mX
kD1

bkN.hk.�// � a
#
d�

)
ds

� sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

�
~.t/

Z s

gl .s/

r.�/d�

	
ds � 1

e
;

where

~.t/ D a

�
exp

�
a sup
t>0

Z t

h.t/

r.�/d�

	
� 1

�
:
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Note (2.62) which say '.t/ � N0. Thus Lemma 2.5.1 yields that if  .t/ D '.t/;

y0 D N0, then y.t/ > 0; t > 0. Hence x.t/ > 0; t > 0. Consequently by (2.67)
we have N.t/ > 0; t > 0, which contradicts assumption (2.66). The proof is
complete. �

Theorem 2.5.2. . Suppose .a1/ � .a5/ hold, then for every eventually positive
solution of (2.54)–(2.55) there exists t0 � 0 such that (2.64) holds for t � t0.

Proof. Suppose N.t/ is an eventually positive solution of (2.54)–(2.55). If

N.t/ � aPn
kD1 bk

;

for some t0 � 0 and t � t0, then the statement of the theorem is true.
Suppose now that

N.t/ >
aPn
kD1 bk

;

for some t1 � 0 and t � t1. Now (2.54) implies that

N
0

.t/ � �
nX
lD1

cl .t/N.gl .t//; t � t2;

for some t2 � t1. Lemma 2.5.1 implies that 0 < N.t/ � x.t/; t � t2, where x.t/ is
a solution of the equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// D 0; t � t1; x.t/ D N.t/; t � t2;

and limt!1 x.t/ D 0. Then limt!1N.t/ D 0. We have a contradiction with our
assumption.

Hence there exists a sequence ftng; limn!1 tn D 1, such that

N.h.tn// D aPn
kD1 bk

:

The end of the proof is similar to the corresponding part of the proof of
Theorem 2.5.1. �

Consider now

N
0

.t/ D r.t/N.t/

"
a � b0N.t/ �

mX
kD1

bkN.hk.t//

#
�

nX
lD1

cl .t/N.gl .t//: (2.72)
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Theorem 2.5.3. Suppose b0 > 0, hypotheses .a1/ � .a4/ hold,

'.t/ � N0 <
a

b0
; (2.73)

and

sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

��
a
Pm

kD1 bk
b0

� Z s

gl .s/

r.u/du

	
ds � 1

e
: (2.74)

Then for any solution of (2.72)–(2.73) we have

0 < N.t/ � a

b0
: (2.75)

Proof. We follow the scheme of the proof in Theorem 2.5.1. Suppose (2.75) is not
true. Then either there exists Nt > 0 such that

0 < N.t/ � a

b0
; 0 � t < Nt ; N.Nt / D a

b0
;N

0

.Nt/ > 0; (2.76)

or there exists Nt > 0 such that

0 < N.t/ � a

b0
; 0 � t < Nt ; N.Nt / D 0: (2.77)

Suppose the first possibility (2.76) holds. Then for 0 < t < Nt we have

N
0

.t/ � r.t/N.t/Œa � b0N.t/�; N.0/ D N0:

Denote by x a solution of the problem

x
0

.t/ D r.t/x.t/Œa � b0x.t/�; x.0/ D N0: (2.78)

Then

N.t/ � x.t/ <
a

b0
; 0 � t � Nt ;

since the solution of (2.78) tends to a=b0 and is always less than a=b0. We have a
contradiction with assumption (2.76).

Suppose now that for Nt > t0 (2.77) holds. Substituting in (2.72),

N.t/ D exp

( Z t

0

r.s/

"
a � b0N.s/ �

mX
kD1

bkN.hk.s//

#
ds

)
x.t/; (2.79)
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we have the system

x
0

.t/ D �
nX
lD1

pl .t/x.gl .t//; t > 0; (2.80)

x.t/ D '.t/; t < 0; x.0/ D N0;

where

pl.t/ D cl .t/ exp

(
�
Z t

gl .t/

r.s/

"
a � b0N.s/ �

mX
kD1

bkN.hk.s//

#
ds

)
:

Inequalities (2.75) and (2.74) imply that

nX
lD1

Z t

g.t/

pl .s/ds

�
nX
lD1

Z t

g.t/

cl .s/

� exp

( Z s

gl .s/

r.�/

"
mX
kD1

bkN.hk.�//C b0N.�/ � a
#
d�

)
ds

� sup
t>0

nX
lD1

Z t

g.t/

cl .s/ exp

��
a
Pm

kD1 bk
b0

� Z s

gl .s/

r.�/d�

	
ds � 1

e
:

As in the proof of Theorem 2.5.1, Lemma 2.5.1 implies N.t/ > 0; 0 � t � Nt . This
contradiction proves the theorem. �

Similar reasoning to that in Theorem 2.5.2 yields the next result.

Theorem 2.5.4. Suppose b0 > 0, .a1/ � .a4/ hold. Then for every eventually
positive solution of (2.72)–(2.55) there exists a t0 � 0 such that (2.75) holds for
t � t0.

Now we obtain sufficient extinction conditions for solutions of the logistic
equation with harvesting. To this end consider the following equation which is more
general than (2.54):

N
0

.t/ D N.t/

"
a.t/ �

mX
kD1

bk.t/N.hk.t//

#
�

nX
lD1

cl .t/N.gl .t//; t � 0: (2.81)
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Theorem 2.5.5. Suppose a.t/ � 0, bk � 0 are locally essentially bounded
functions and for cl , hk , gl conditions .a2/; .a3/ hold. Suppose in addition (2.60)–
(2.61) hold. Then for any solution of (2.81)–(2.55) either

lim
t!1N.t/ D 0

or there exists Nt > 0 such that N.Nt / < 0.

Proof. It is sufficient to prove that for every positive solution N.t/ of (2.81)–(2.55)
we have limt!1N.t/ D 0.

Suppose N.t/ > 0 is a solution of (2.81)–(2.55). Equation (2.81) implies

N
0

.t/C
nX
lD1

cl .t/N.gl .t// � a.t/N.t/ � 0:

Lemma 2.5.2 guarantees that there exists t0 � 0, such that the fundamental function
X.t; s/ of the equation

x
0

.t/C
nX
lD1

cl .t/x.gl .t// � a.t/x.t/ D 0 (2.82)

is positive for t � s � t0: Then the variation of constant formula [30] implies

N.t/ D x.t/C
Z t

t0

X.t; s/f .s/ds;

where x.t/ is a solution of (2.82) with the initial condition x.t/ D N.t/; t � t0,
and f .t/ is a nonpositive function. Hence 0 < N.t/ � x.t/. Lemma 2.5.2 implies
that

lim
t!1 x.t/ D 0:

Thus limt!1N.t/ D 0. The proof is complete. �

2.6 Models with Nonlinear Delays

We return now to Sect. 2.4 when ˛k D 1, k D 1; : : : ; m. Consider the delay logistic
model with several delays

N
0

.t/ D N.t/

mX
kD1

rk.t/

�
1 � N.hk.t//

K

�
; hk.t/ � t: (2.83)
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Motivated by (2.83) in this section we consider first the scalar delay differential
equation

x
0

.t/ D �
mX
kD1

rk.t/x.hk.t// Œx.t/C 1� (2.84)

under the following conditions

.c1/ rk; k D 1; 2; : : : ; m, are Lebesgue measurable functions essentially bounded
in each finite interval Œ0; b�, rk � 0;

Z 1

t0

mX
kD1

rk.t/dt D 1; lim
t!1 inf

mX
kD1

Z t

maxk hk.t/
rk.s/ds > 0I

.c2/ hk W Œ0;1/ ! R are Lebesgue measurable functions, hk.t/ � t;

limt!1 hk.t/ D 1; k D 1; 2; : : : ; m.
Together with (2.84), we consider for each t0 � 0 an initial value problem

x
0

.t/ D �
mX
kD1

rk.t/x.hk.t// Œx.t/C 1� ; t � t0; (2.85)

x.t/ D '.t/; t < t0; and x.t0/ D x0 > �1; (2.86)

where
.c3/ ' W .�1; t0/ ! R is a Borel measurable bounded function.

Consider the linear delay differential equation

x
0

.t/C
mX
kD1

rk.t/x.hk.t// D 0 (2.87)

and the delay differential inequalities

x
0

.t/C
mX
kD1

rk.t/x.hk.t// � 0; t � 0; (2.88)

x
0

.t/C
mX
kD1

rk.t/x.hk.t// � 0; t � 0: (2.89)

The following Lemma follows a standard argument (see the proof of
Theorem 2.4.1).

Lemma 2.6.1. Assume that .c1/ � .c3/ hold. Then the following statements are
equivalent:
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(1) There exits a nonoscillatory solution of (2.87).
(2) There exists an eventually positive solution of t inequality (2.88).
(3) There exists an eventually negative solution of (2.89).
(4) There exists t0 � 0 such that the inequality

u.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
; t � t0; u.t/ D 0; t < t0; (2.90)

has a nonnegative locally integrable solution.

If x.t/, y.t/, z.t/, t � 0; are positive solutions of (2.87), (2.88), (2.89),
respectively, x.t/ D y.t/ D z.t/, t < 0; then y.t/ � x.t/ � z.t/ for t � 0:

Lemma 2.6.2. Assume that for the equation

x
0

.t/C
mX
kD1

ak.t/x.gk.t// D 0; t � 0; (2.91)

assumptions .c1/ � .c2/ hold.

.i/ If ak.t/ � rk.t/; gk.t/ � hk.t/; and (2.87) has a nonoscillatory solution, then
(2.91) has a nonoscillatory solution.

.ii/ If ak.t/ � rk.t/; gk.t/ � hk.t/; and all solutions of (2.87) are oscillatory, then
all solutions of (2.91) are oscillatory.

Theorem 2.6.1. Assume that .c1/ � .c3/ hold. Suppose that for every sufficiently
small " � 0 all solutions of the linear delay differential equation

x
0

.t/C .1 � "/
mX
kD1

rk.t/x.hk.t// D 0; t � t0; (2.92)

are oscillatory. Then all solutions of (2.85) are oscillatory.

Proof. Suppose (2.85) has a nonoscillatory solution. Then by the condition x.t/C
1 > 0 either there exists a positive solution x.t/ > 0 for all t � T � t0 or there
exists a solution x.t/ such that

�1 < x.t/ < 0; for t � T:

We can assume hk.t/ � t0 for all t � T; since limt!1 hk.t/ D 1:

First, we suppose that x.t/ > 0 for t � T: From (2.85), we have

x
0

.t/C
mX
kD1

rk.t/x.hk.t// � 0; t � t0:

Lemma 2.6.1 implies for " D 0 that (2.92) has a nonoscillatory solution, which
gives a contradiction.
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Suppose now

�1 < x.t/ < 0; for t � T:

Let us introduce the function u as a solution of

x
0

.t/ D �u.t/x.t/ Œx.t/C 1� ; x.T / D x0 < 0: (2.93)

Now, since x.t/C 1 > 0; we have x
0

.t/ > 0 and this implies that u.t/ � 0: From
(2.93) we obtain

x.t/ D �
exp

�
� R t

T
u.s/ds C c

�

1C exp
�
� R t

T
u.s/ds C c

� ;

where c D ln Œjx0j =.1C x0/� : Substituting in (2.85) we have

u.t/
exp

�
� R t

T
u.s/ds C c

�

1C exp
�
� R t

T
u.s/ds C c

� D
mX
kD1

rk.t/
exp

�
� R hk.t/

T
u.s/ds C c

�

1C exp
�
� R hk.t/

T
u.s/ds C c

� :

Hence

u.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1C exp
�
� R t

T
u.s/ds C c

�

1C exp
�
� R hk.t/

T
u.s/ds C c

� : (2.94)

Equality (2.94) implies that u.t/ �
mP
kD1

rk.t/ and from .c1/ we have

Z 1

T

u.t/dt D 1:

Consequently there exists T1 � T such that

max
1�k�m

1C exp
�
� R t

T
u.s/ds C c

�

1C exp
�
� R hk.t/

T
u.s/ds C c

� � .1 � "/; for t � T1:

Then,

u.t/ � .1 � "/
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
:

From Lemma 2.6.1, (2.92) has a nonoscillatory solution, which is a contradiction.
The proof is complete. �
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From Lemma 2.6.2 and Theorem 2.6.1 we have the following oscillation
comparison theorem.

Theorem 2.6.2. Suppose ak.t/ � rk.t/; gk.t/ � hk.t/, and the assumptions of
Theorem 2.6.1 hold. Then all the solutions of the equation

x
0

.t/C
mX
kD1

ak.t/x.gk.t//Œ1C x.t/� D 0; t � 0; (2.95)

are oscillatory.

Theorem 2.6.3. Assume that .c1/ � .c3/ hold. Suppose for every sufficiently small
" � 0 there exists a nonoscillatory solution of the linear delay differential equation

x
0

.t/C .1C "/

mX
kD1

rk.t/x.hk.t// D 0; t � t0: (2.96)

Then (2.85) has a nonoscillatory solution.

Proof. From Lemma 2.6.1 for some T � t0 and for t � T there exists a nonnegative
solution u0 of

u.t/ � .1C "/

mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�
; t � T: (2.97)

This inequality implies that u0.t/ �
mP
kD1

rk.t/; and hence by .c1/ we have that

Z 1

T

u0.s/ds D 1:

Let c be some negative number. Then there exists T1 � T such that

max
1�k�m

1 � exp
�
� R t

T1
u0.s/ds C c

�

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� < .1C "/; for t � T1; (2.98)

and by .c1/ for t � T1, we have

min
1�k�m exp

"Z t

hk.t/

mX
kD1

rk.s/ds

# 1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

�

1 � exp
�
� R t

T1
u0.s/ds C c

� > 1:
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From (2.97) and (2.98), we have

u0.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

� 1 � exp
�
� R t

T1
u0.s/ds C c

�

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� :

(2.99)

Let us fix t1 > T1 and consider the nonlinear operator

.F1u/.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

�

�
1 � exp

�
� R t

T1
u.s/ds C c

�

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

�

in the Banach space L1ŒT1; t1�. We have

.F1u/.t/ D
mX
kD1

rk.t/
exp

�R t
T1

u.s/ds
�

exp
�R t

T1
�k.t; s/u.s/ds

�

�
1 � exp

�
� R t

T1
u.s/ds C c

�

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� ; (2.100)

where �k.t; s/ D 1, if s < hk.t/ < t , and �k.t; s/ D 0, if hk.t/ < s. The operator
F1 is continuous. Consider all functions v 2 L1ŒT1; t1� such that

mX
kD1

rk.t/ � v.t/ � u0.t/:

We have .F1v/.t/ �
mP
kD1

rk.t/: Inequality (2.98) implies that

.F1v/.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�

�
1 � exp

�
� R t

T1
u0.s/ds C c

�

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

�

� .1C "/

mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�
� u0.t/:
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Hence for each v such that

mX
kD1

rk.t/ � v.t/ � u0.t/

we have

mX
kD1

rk.t/ � .F1v/.t/ � u0.t/:

Then by Knaster’s Fixed Point Theorem (see Sect. 1.4), there exists u1 such that

mX
kD1

rk.t/ � u1.t/ � u0.t/ and u1 D F u1:

This means that

u1.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u1.s/ds

� 1 � exp
�
� R t

T1
u1.s/ds C c

�

1 � exp

�
� R hk.t/

T1

mP
kD1

rk.s/ds C c

� :

(2.101)

Consider the operator

.F2u/.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1 � exp
�
� R t

T1
u.s/ds C c

�

1 � exp
�
� R hk.t/

T1
u1.s/ds C c

� :

If

mX
kD1

rk.t/ � v.t/ � u1.t/;

then (2.101) and (2.98) imply

.F2v/.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u1.s/ds

� 1 � exp
�
� R t

T1
u1.s/ds C c

�

1 � exp
�
� R hk.t/

T1
u1.s/ds C c

�

� u1.t/;
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and

.F2v/.t/

�
mX
kD1

rk.t/ exp

 Z t

hk.t/

mX
kD1

rk.s/ds

! 1 � exp

�
� R t

T1

mP
kD1

rk.s/ds C c

�

1 � exp
�
� R hk.t/

T1
u0.s/ds C c

�

�
mX
kD1

rk.t/:

Hence

mX
kD1

rk.t/ � .F2v/.t/ � u1.t/

and as in the previous case we obtain that there exists a solution u2 of the equation
u D F2u such that

mX
kD1

rk.t/ � u2.t/ � u1.t/:

By induction we prove that there exists a solution un of the equation u D Fn u which
satisfies

mX
kD1

rk.t/ � un.t/ � un�1.t/;

where

.Fnu/.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1 � exp
�
� R t

T1
u.s/ds C c

�

1 � exp
�
� R hk.t/

T1
un�1.s/ds C c

� :

A monotone bounded sequence fung has a limit u D limn!1 un.t/ and this limit is
a solution of the equation

u.t/ D
mX
kD1

rk.t/ exp

�Z t

hk.t/

u.s/ds

� 1 � exp
�
� R t

T1
u.s/ds C c

�

1 � exp
�
� R hk.t/

T1
u.s/ds C c

� :
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From this, we have that

x.t/ D �
exp

�
� R t

T
u.s/ds C c

�

1C exp
�
� R t

T
u.s/ds C c

�

(where c D ln Œjx.T1/j =.1C x.T1/�) is a positive solution of (2.85) for T1 � t � t1:

Since t1 is an arbitrary number, we have a positive solution for all t � T1: The proof
is complete. �

For the remainder of this section we consider

x
0

.t/C
mX
kD1

rk.t/fkŒx.hk.t//� D 0 (2.102)

under the following assumptions:

.a1/ rk.t/ � 0; k D 1; : : : ; m, are Lebesgue measurable locally essentially
bounded functions;

.a2/ hk W Œ0;1/ ! R, for k D 1; : : : ; m; are Lebesgue measurable functions
hk.t/ � t , lim tt!1hk.t/ D 1;

.a3/ fk W R ! R; k D 1; : : : ; m, are continuous functions, xfk.x/ > 0 for x ¤ 0.

Together with (2.102), we consider for each t0 � 0 an initial value problem

x
0

.t/C
mX
kD1

rk.t/fkŒx.hk.t//� D 0; t � t0; (2.103)

x.t/ D 
.t/; t < t0; x.t0/ D x0: (2.104)

We also assume that the following hypothesis holds:

.a4/ 
 W .�1; t0/ ! R is a Borel measurable bounded function.

We will also use the following lemma (whose proof is standard) which can be
found in [33].

Lemma 2.6.3. Suppose there exists an index k such that
Z 1

0

rk.t/dt D 1 (2.105)

and x.t/ is a nonoscillatory solution of (2.103). Then limt!1 x.t/ D 0.

Theorem 2.6.4. Assume that .a1/ � .a4/ and (2.105) hold. Furthermore assume
that

lim
u!1

fk.u/

u
D 1; k D 1; 2; : : : ; m: (2.106)
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If for some " > 0 all solutions of the linear equation

x0.t/C .1 � "/
mX
kD1

rk.t/ x.hk.t// D 0; t � t0; (2.107)

are oscillatory, then all solutions of (2.103) are also oscillatory.

Proof. Assume (2.103) has a nonoscillatory solution x.t/. Then, by Lemma 2.6.3
we have that limt!1 x.t/ D 0:

Assume that there exists t1 � t0 sufficiently large such that x.t/ > 0 for t � t1
and hk.t/ � t1 for t � t2: From condition (2.106) there exists t3 � t2 such that

fk.x.hk.t/// � .1 � "/x.hk.t//; t � t3:

Hence

x
0

.t/C .1 � "/
mX
kD1

rk.t/x.hk.t// � 0; t � t3:

Now Lemma 2.6.1 implies that (2.107) has a nonoscillatory solution. This is a
contradiction.

Suppose now, x.t/ < 0 for t � t1 for some t1 sufficiently large such that hk.t/ �
t1 for t � t2: Let

y.t/ WD �x.t/; gk.y/ D �fk.�y/

and the functions gk satisfy all the assumptions for fk; and y.t/ is an eventually
positive solution of the equation

y
0

.t/C
mX
kD1

rk.t/gk.y.hk.t/// D 0:

As was shown above, we have

y
0

.t/C .1 � "/
mX
kD1

rk.t/y.hk.t// � 0;

for t2 � t1. Now Lemma 2.6.1 implies that (2.107) has a nonoscillatory solution.
This contradiction proves the theorem. �

Theorem 2.6.5. Assume that .a1/�.a4/ hold. Suppose for all k D 1; : : : ; m, either

fk.x/ � x for x > 0 or fk.x/ � x for x < 0; (2.108)

and there exists a nonoscillatory solution of the linear delay differential
equation (2.87).
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Then there exists a nonoscillatory solution of (2.103).

Proof. Suppose fk.x/ � x for x > 0, k D 1; : : : ; m. By Lemma 2.6.1 there exist
t0 > 0 and u0.t/ � 0, t � t0, u0.t/ D 0, t < t0, such that

u0.t/ �
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�
; t � t0:

Let us fix b > t0 and consider the nonlinear operator F W L1Œt0; b� ! L1Œt0; b�
given by

.F u/.t/ D
mX
kD1

rk.t/fk

 
exp

 
�
Z hk.t/

t0

u.s/ds

!!
exp

�Z t

t0

u.s/ds

�
:

For any function u from the interval 0 � u � u0 we have

0 � .F u/.t/ �
mX
kD1

rk.t/ exp

 
�
Z hk.t/

t0

u.s/ds

!
exp

�Z t

t0

u.s/ds

�

�
mX
kD1

rk.t/ exp

�Z t

hk.t/

u0.s/ds

�
� u0.t/:

Hence 0 � F u � u0: Lemma 2.4.1 implies that the operator F is completely
continuous in L1Œt0; b�. Then by the Schauder Fixed Point Theorem, there exists a
nonnegative solution of the equation u D F u. Let

x.t/ D
(

exp
�
� R t

t0
u.s/ds

�
; t � t0;

0; t < t0:

Then x.t/ is an eventually positive solution of (2.87).
If fk.x/ � x, x � 0, k D 1; : : : ; m, then (2.87) has an eventually negative

solution, which completes the proof of the theorem. �

Consider (2.83). Let N.t/ D Kex.t/. Then x is a solution of (2.102) with

fk.x/ D f .x/ D ex � 1:

Note fk.u/ � u for u � 0 and ufk.u/ > 0 for u ¤ 0.
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2.7 Hyperlogistic Models

In this section, we are concerned with the oscillation of the delay hyperlogistic
models. First, we consider an autonomous delay hyperlogistic model of the form

N
0

.t/ D rN.t/

mY
jD1

�
1 � N.t � �j /

K

�˛j
; t � 0; (2.109)

where r; K; �j 2 .0;1/; and ˛j D pj =qj are rational numbers with qj odd, pj and
qj are co-prime, 1 � j � m; and

mY
jD1

.�1/˛j D �1:

By making a change of variables

x.t/ D N.t/

K
� 1;

Eq. (2.109) becomes

x
0

.t/C r Œ1C x.t/�

mY
jD1

x˛j


t � �j

� D 0: (2.110)

We are interested in those solutions x.t/ of (2.110) satisfying x.t/ � �1 which
correspond to solutions N.t/ of (2.109) satisfying N.t/ � 0: Thus we consider the
initial condition �

x.t/ D 
.t/ � �1; t 2 Œt0 � �; t0� ;

 2 C .Œt0 � �; t0� ; Œ�1;1// and 
.t0/ > �1; (2.111)

where � D maxf�1; : : : ; �mg: Now (2.110), (2.111) has a unique solution x.t I t0; 
/
on Œt0 � �;1/ and x.t/ > �1 for t � t0: We will show that all solutions of (2.110)

and (2.111) are oscillatory when
mX
jD1

˛j < 1; but at least one nonoscillatory solution

exists when
mX
jD1

˛j > 1: For the case where
mX
jD1

˛j D 1; we will establish an

equivalence, as far as oscillation is concerned, between (2.110) and its so-called
quasilinearized equation

y
0

.t/C r

mY
jD1

y˛j .t � �j / D 0: (2.112)

The results in this section are adapted from [84].
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The case
mX
jD1

˛j < 1.

Theorem 2.7.1. If ˛ D
mX
jD1

˛j < 1, then every solution of (2.110)–(2.111)

oscillates.

Proof. Assume that (2.110)–(2.111) has a nonoscillatory solution x.t/: We first
suppose that x.t/ is eventually positive. Then, by (2.110), we eventually have

x
0

.t/ D �r.1C x.t//

mY
jD1

x˛j .t � �j / < 0;

which implies that x.t/ is eventually decreasing. Thus

x.t � �j / � x.t/; eventually, for j D 1; : : : ; m;

and hence (note ˛ D
mX
jD1

˛j )

x
0

.t/C r.1C x.t//x˛.t/ � x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0:

Thus

d

dt
x1�˛.t/ � �.1 � ˛/r Œ1C x.t/� � �.1 � ˛/r;

which implies that

x1�˛.t/ ! �1; as t ! 1:

This is impossible since x.t/ > 0 eventually and 1 � ˛ > 0:
We next suppose that x.t/ is eventually negative. Noting that x.t/ > �1 for

t � 0; we have eventually

x
0

.t/ D �r.1C x.t//

mY
jD1

x˛j .t � �j /

D r.1C x.t//

mY
jD1

��x.t � �j /

˛j

> 0;



2.7 Hyperlogistic Models 55

which implies that x.t/ is eventually increasing, so there exists T1 > 0 such that
x.t � �j / � x.t/ < 0 for j D 1; : : : ; m and

1C x.t/ > 1C x.T1/ > 0; for all t > T1.

Therefore

x
0

.t/C r.1C x.t//x˛.t/

� x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0; t > T1;

and hence

d

dt
x1�˛.t/ � �r.1 � ˛/.1C x.t//

< �r.1 � ˛/.1C x.T1// < 0; t > T1:

Integrating the above inequality from T1 to t > 0 and letting t ! 1; we get
x1�˛.t/ ! �1; as t ! 1: This is a contradiction to the fact that x.t/ > �1 for
t � 0 and completes the proof. �

The case
mX
jD1

˛j > 1.

We now recall the following well-known result.

Lemma 2.7.1. Every solution of (2.112) with
mX
jD1

˛j D 1 oscillates if and only if

r

mX
jD1

˛j �j >
1

e
:

Moreover, the above inequality holds if and only if

y
0

.t/C r

mY
jD1

y˛j .t � �j / � 0; has no eventually positive solution,

y
0

.t/C r

mY
jD1

y˛j .t � �j / � 0; has no eventually negative solution.

Theorem 2.7.2. If ˛ D
mX
jD1

˛j > 1, then (2.110) has a nonoscillatory solution.
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Proof. Choose rational numbers ˇj D rj
sj

2 Œ0;1/ with sj odd, 1 � j � m;

such that

ˇj � ˛j ; for j D 1; : : : ; m;

mX
jD1

ˇj D 1;

mY
jD1

.�1/ˇj D �1:

Let � > 0 satisfy

r�

mX
jD1

ˇj �j � 1

e
:

Then, by Lemma 2.7.1, the equation

x
0

.t/C r�

mY
jD1

xˇj .t � �j / D 0 (2.113)

has a positive solution x.t/ defined on Œt0;1/ for some t0 � 0: It is clear that
x.t/ ! 0 as t ! 1: Since ˇj � ˛j and

mX
jD1

ˇj <

mX
jD1

˛j ;

we have

lim
t!1.1C x.t//

mY
jD1

x˛j .t � �j /
mY
jD1

xˇj .t � �j /
D 0:

Thus, there exists t1 > t0 such that

.1C x.t//

mY
jD1

x˛j .t � �j / < �
mY
jD1

xˇj .t � �j /; for t � t1;

and hence for t � t1, we see that

x
0

.t/C r .1C x.t//

mY
jD1

x˛j .t � �j / < x0

.t/C � r

mY
jD1

xˇj .t � �j / D 0: (2.114)
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Set y.t/ D ln.1C x.t//: Then, from (2.114), we have

y
0

.t/C r

mY
jD1

�
ey.t��j / � 1
˛j < 0; for t � t1;

which yields

y.t/ > r

1Z
t

mY
jD1

�
ey.s��j / � 1
˛j ds; for t � t1: (2.115)

Define X to be the set of piecewise continuous functions z W Œt1 � �;1/ ! Œ0; 1�

and endow X with the usual pointwise ordering �, that is,

z1 � z2 , z1.t/ � z2.t/; for t � t1 � �:

Then .X I �/ becomes an ordered set. It is obvious that for any nonempty subset
M of X , inf.M/ and sup.M/ exist. Thus .X I �/ is a complete lattice. Define a
mapping ‰ on X as follows:

.‰ z/.t/ D
( r
y.t/

1Z
t

mY
jD1

�
ey.s��j /z.s��j / � 1
˛j ds; t � t1;

t
t1
.‰ z/.t/C

�
1 � t

t1

�
; t1 � � � t � t1:

For each z 2 X; we see that

0 � .‰ z/.t/ � r

y.t/

1Z
t

mY
jD1

�
ey.s��j / � 1
 ds < 1; for t � t1;

and

0 � .‰ z/.t/ � 1; for t 2 Œt1 � �; t1� :

This shows that ‰X 	 X: Moreover, it can be easily verified that ‰ is a monotone
increasing mapping. Therefore, by the Knaster–Tarski Fixed Point Theorem (see
Sect. 1.4), we have that there exists a z 2 X such that ‰ z D z; that is,

z.t/ D
( r
y.t/

1Z
t

mY
jD1

�
ey.s��j /z.s��j / � 1
˛j ds; t � t1;

t
tj
.‰ z/.t1/C .1 � t

t1
/; t1 � � � t � t1:

(2.116)
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By (2.116), z.t/ is continuous on [t1 � �;1/: Moreover, since z.t/ > 0 for t 2
Œt1 � �; t1/, we must have z.t/ > 0; for all t � t1: Set w.t/ D y.t/z.t/: Then w.t/ is
positive, continuous on Œt1 � �;1/, and satisfies

w.t/ D r

1Z
t

mY
jD1

�
ew.s��j / � 1
˛j ds; for t � t1: (2.117)

Differentiating (2.117) yields

d

dt
w.t/C r

1Z
t

mY
jD1

�
ew.s��j / � 1
˛j D 0; for t � t1;

which shows that ew.t/�1 is a positive solution of (2.110) on Œt1;1/: This completes
the proof. �

The case
mX
jD1

˛j D 1:

The following theorem establishes an equivalence between the oscillation of
(2.110)–(2.111) and the oscillation of (2.112).

Theorem 2.7.3. When
mX
jD1

˛j D 1; every solution of (2.110)–(2.111) oscillates if

and only if every solution of (2.112) oscillates.

Proof. )W Assume that (2.112) has a nonoscillatory solution y.t/. Since �y.t/ is
also a solution of (2.112), we may assume that y.t/ is eventually positive. We, will
prove that (2.110)–(2.111) has a nonoscillatory solution for some t0: To this end, we
only need to prove that the equation

z
0

.t/C r

mY
jD1

.1 � e�z.t��j //˛j D 0 (2.118)

has an eventually positive solution. Let t0 be such that y.t � �/ > 0 for t � t0:

Using the inequality 1 � e�x � x for x � 0; we have for t � t0 that

y
0

.t/C r

mY
jD1

.1 � e�y.t��j //˛j � y
0

.t/C r

mY
jD1

y˛j .t � �j / D 0: (2.119)

It can be easily shown that y.t/ ! 0; as t ! 1: Integrating the above inequality
from t to 1, we obtain

y.t/ � r

1Z
t

mY
jD1

.1 � e�y.t��j //˛j ; for t � t0:
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Now an argument similar to the proof of Theorem 2.7.2 shows that (2.119) would
have an eventually positive solution z.t/ on Œt0;1/ satisfying z.t/ > 0 for all t � t0:

(W Assume, for the sake of contradiction, that (2.110)–(2.111) has a non-
oscillatory solution x.t/ for every t0. Then 1 C x.t/ > 0; for t � t0. We now
distinguish two cases:

Case (i): x.t/ is eventually positive.
Then there exists T � t0 such that x.t/ > 0; for t � T . From (2.110) it follows
that

x
0

.t/C r

mY
jD1

x˛j .t � �j / � x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0: (2.120)

This, together with Lemma 2.7.1, implies that (2.112) has a nonoscillatory
solution, contrary to the assumption that every solution of (2.112) oscillates.

Case (ii): x.t/ is eventually negative.
Since 1C x.t/ > 0 for t � t0 and x.t/ < 0 for t � T for some T � t0; we have

x
0

.t/ D r.1C x.t//

mY
jD1

Œ�x.t � �j /�˛j > 0; for t � T;

from which we can easily see that x.t/ ! 0 as t ! 1: On the other hand, in
view of Lemma 2.7.1, we can choose � 2 .0; 1/ such that

r.1 � �/
mX
jD1

˛j �j >
1

e
: (2.121)

Now, let T1 > T be sufficiently large such that 1 > 1C x.t/ > 1� �; for t � T:

Then by (2.110), we have for t � T C � that

x
0

.t/C r.1 � �/
mY
jD1

x˛j .t � �j /

� x
0

.t/C r.1C x.t//

mY
jD1

x˛j .t � �j / D 0; (2.122)

which is also a contradiction since, by Lemma 2.7.1, (2.122) implies that the
inequality

x
0

.t/C r.1 � �/
mY
jD1

x˛j .t � �j / � 0

cannot have an eventually negative solution. This completes the proof. �
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The following corollary is an immediate result from Theorem 2.7.3 and
Lemma 2.7.1.

Corollary 2.7.1. If
mX
jD1

˛j D 1; then every solution of (2.110)–(2.111) oscillates

(or every positive solution of (2.111) oscillates about the steady state K) if and
only if

r
mX
jD1

˛j � >
1

e
:

Next, in the following we consider the nonautonomous hyperlogistic delay model

N
0

.t/ D r.t/N.t/

mY
jD1

�
1 � N.t � �j /

K

�ˇj
; for t � 0; (2.123)

where 0 < �1 � �2 � : : : � �m, ˇ1; : : : ; ˇm are rational numbers with denominators
that are positive odd integers, and

r 2 C.Œt0;1/; Œ0;1//; K > 0:

We will establish some sufficient conditions for the oscillation of all positive
solutions of (2.123) about K. The results are adapted from [71]. To prove the main
results we study the oscillation of the equation

x
0

.t/C p.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j signŒx.t � �j /� D 0; t � t0; (2.124)

where

p 2 C.Œt0;1/; Œ0;1//; 0 < �1 � �2 � : : : � �m; ˛j > 0; j D 1; 2; : : : ; m;

and then apply the obtained results on the hyperlogistic model (2.123).
We will consider the equation

x
0

.t/C p.t/f .x.t � �1/; : : : ; x .t � �m// D 0; for t � t0; (2.125)

where the function f satisfies the following condition .H/:
.H/: f 2 C.Rm;R/; f .x1; : : : ; xm/ is nondecreasing on each xi ; i D 1; : : : ; m;

and

xi > 0, for i D 1; : : : ; m ) f .x1; : : : ; xm/ > 0;

xi < 0; for i D 1; : : : ; m ) f .x1; : : : ; xm/ < 0;
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and

lim
.x1;:::;xm/!.0;:::;0/

jf .x1; : : : ; xm/j
mY
jD1

ˇ̌
xj
ˇ̌˛j D M > 0:

We will apply the results on the equation

x
0

.t/C
mX
jD1

pj .t/ x
ˇj


t � �j

� D 0; for t � t0; (2.126)

where ˇ1; : : : ; ˇm are rational numbers with denominators that are positive odd
integers and

pj 2 C.Œt0;1/; Œ0;1//; for j D 1; 2; : : : ; m:

In the following, we consider the case when

mX
jD1

˛j > 1 (2.127)

and study the oscillatory behavior of (2.124) in terms of p.t/ and the delays
�1; : : : ; �m:

The following lemma whose proof is standard (see [21]) will be needed to prove
the main results.

Lemma 2.7.2. Assume that .H/ holds, and for large t ,

p.s/ ¤ 0; for s 2 Œt; t C ��; (2.128)

where � D maxf�1; �2; : : : ; �mg: Then (2.125) has an eventually positive solution if
and only if the corresponding inequality,

x
0

.t/C p.t/f .x.t � �1/; : : : ; x .t � �m// � 0; t � t0; (2.129)

has an eventually positive solution.

Associated with (2.125), we consider the equation

x
0

.t/C q.t/f .x.t � �1/; : : : ; x .t � �m// D 0; for t � t0; (2.130)

where q 2 C.Œt0;1/; Œ0;1//: Applying Lemma 2.7.2, we have the following
lemma.
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Lemma 2.7.3. Assume that .H/ and (2.128) hold, and that for large t

p .t/ � q .t/: (2.131)

If every solution of (2.125) oscillates, then every solution of (2.130) oscillates.

Theorem 2.7.4. Assume that (2.127) holds. Then the following conclusions hold:

.i/ If there exists 
 > 0 such that

mX
jD1

˛j e
�
�j < 1; (2.132)

and

lim
t!1 inf

�
p.t/ exp


�e
� �
 > 0; (2.133)

then every solution of (2.124) oscillates.
.ii/ If (2.128) holds and there exists � > 0 such that

mX
jD1

˛j e
���j > 1; (2.134)

and

lim
t!1 sup Œp.t/ exp .�e�� /� < 1; (2.135)

then (2.124) has an eventually positive solution.

Proof. (i) From (2.132) and (2.133), we may choose 
2 < 
1 < 
 and T > t0
such that

mX
jD1

˛j e
�
�j <

mX
jD1

˛j e
�
1�j <

mX
jD1

˛j e
�
2�j < 1; (2.136)

and

p.t/ � 
1e

1t exp

2
41
2

0
@ mX
jD1

˛j � 1
1
A e
1t

3
5 ; t � T: (2.137)

Set

q.t/ D 
1e

1t exp

2
41
2

0
@ mX
jD1

˛j � 1
1
A e
1t

3
5 : (2.138)
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By Lemma 2.7.3, it suffices to prove that every solution of the equation

x
0

.t/C q.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/� D 0; t � t0; (2.139)

oscillates. Assume the contrary, and let x.t/ be an eventually positive solution
of (2.139). Then there exists a T1 > T such that

1 > x.t � �m/ > 0 and x
0

.t/ � 0; for t � T1:

Let y.t/ D � ln x.t/ for t � T1 � �m: Then y.t/ > 0 for t � T1 � �m; and from
(2.139) we have

y0.t/ D q.t/ exp

2
4y.t/ �

mX
jD1

˛j y.t � �j /
3
5 ; for t � T1: (2.140)

Set l D
mX
jD1

˛j e
�
2�j : Then 0 < l < 1: We consider the following three

possible cases.

Case (1): Consider the case when y.t/ �
mX
jD1

˛j e
.
1�
2/�j y.t � �j / eventu-

ally holds.

Choose T2 > T1 such that

y.t/ �
mX
jD1

˛j e
.
1�
2/�j y.t � �j /; for t � T2:

Consequently, we have for t � T2 that

y.t/

e
1t
�

mX
jD1

˛j e

1t�
2�j
e
1t

y.t � �j /
e
1.t��j /

D
mX
jD1

˛j e
�
2�j y.t � �j /

e
1.t��j /
:

Set z.t/ D y.t/e�
1t : Then

z.t/ �
mX
jD1

˛j e
�
2�j z.t � �j /; for t � T2: (2.141)

This implies that

lim
t!1z.t/ D 0: (2.142)
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From (2.142), it follows that there exists a T3 > T2 such that

y.t/ <
1

2
e
1t ; t � T3; (2.143)

which, together with (2.140), implies for t � T3 that

y
0

.t/ � q.t/ exp

2
4
0
@1 �

mX
jD1

˛j

1
Ay.t/

3
5

� q.t/ exp

2
41
2

0
@1 �

mX
jD1

˛j

1
A e
1t

3
5 D 
1e


1t :

It follows that

y.t/ � y.T3/C e
1t � e
1T3 ; t � T3;

which contradicts (2.143).

Case (2): Consider the case when y.t/ �
mX
jD1

˛j e
.
1�
2/�j y.t � �j / is oscil-

latory.

In this case, there exists an increasing infinite sequence ftng of real numbers
with T3 < t1 < t2 < : : : such that

y.tn/ D
mX
jD1

˛j e
.
1�
2/�j y.tn � �j /; n D 1; 2; : : : ; (2.144)

and

y.t/ >

mX
jD1

˛j e
.
1�
2/�j y.t � �j /; t 2 .t2n�1; t2n/; n D 1; 2; : : : (2.145)

Set

u.t/ D y.t/ �
mX
jD1

˛j e
.
1�
2/�j y.t � �j /:

Then u.t/ is oscillatory and there exists an increasing infinite sequence f�ng of
real numbers such that

u.�n/ D maxfu.t/ W t2n�1 � t � t2ng;
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and u0.�n/ D 0, n D 1; 2; : : : : Note

u0.�n/ D y0.�n/ �
mX
jD1

˛j e
.
1�
2/�j y0.�n � �j /;

and for t � T1

y
0

.t/ D q.t/ exp

2
4u.t/C

mX
jD1

˛j .e
.
1�
2/�j � 1/y.t � �j /

3
5 : (2.146)

It follows that

q.�n/ exp

2
4u.�n/C

mX
jD1

˛j .e
.
1�
2/�j � 1/y.�n � �j /

3
5

D
mX
iD1

˛i e
.
1�
2/�i q.�n � �i /

� exp

2
4u .�n � �i /C

mX
jD1

˛j .e
.
1�
2/�j � 1/y.�n � �i � �j /

3
5

< 
1e

1�n exp

2
41
2

0
@ mX
jD1

˛j � 1
1
A e
1.�n��1/

3
5

� exp

2
4 max
1�i�mfu.�n � �i /g C

mX
jD1

˛j .e
.
1�
2/�j � 1/y.�n � �1 � �j /

3
5 :

Consequently, we have

u .�n/C
mX
jD1

˛j .e
.
1�
2/�j � 1/y.�n � �j /

< max
1�i�mfu.�n � �i /g C

mX
jD1

˛j .e
.
1�
2/�j � 1/y.�n � �1 � �j /

� 1

2

0
@ mX
jD1

˛j � 1
1
A .1 � e�
1�1/e
1�n ; n D 1; 2; 3; : : : . (2.147)
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If

lim sup
t!1

u.t/ D lim sup
n!1

u.�n/ D 1;

then there exists a subsequence f�nk g of f�ng such that

u


�nk
� D maxfu.t/ W T2 � t � �nk g; k D 1; 2; : : : .

Hence, from (2.147), we have

0 <

mX
jD1

˛j .e
.
1�
2/�j � 1/ �y.�nk � �j / � y.�nk � �1 � �j /




< �1
2

0
@ mX
jD1

˛j � 1
1
A .1 � e�
1�1/e
1�nk < 0; k D 1; 2; : : : :

This is a contradiction. If

lim sup
t!1

u.t/ D lim sup
n!1

u.�n/ < 1;

then from (2.147),

0 < lim sup
n!1

.u.�n/

C
mX
jD1

˛j .e
.
1�
2/�j � 1/ �y.�nk � �j / � y.�nk � �1 � �j /



/

� lim sup
n!1

8<
: max
1�i�mfu.�n � �i /g

�1
2

0
@ mX
jD1

˛j � 1
1
A .1 � e�
1�1/e
1�n

9=
; D �1:

This is also a contradiction.

Case (3): Consider the case when y.t/ �
mX
jD1

˛j e
.
1�
2/�j y.t � �j / eventu-

ally holds.

Let T4 > T3 be such that

y.t/ �
mX
jD1

˛j e
.
1�
2/�j y.t � �j /; t � T4:
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It follows from (2.140) that

y
0

.t/ D q.t/ exp

2
4y.t/ �

mX
jD1

˛j y.t � �j /
3
5

� q.t/ exp
�

1 � e.
2�
1/�1� r.t/
 ; for t � T4:

Set c D 1 � e.
2�
1/�1 : Then 0 < c < 1, and the above inequality reduces to

y
0

.t/e�cy.t/ � q.t/; for t � T4:

Integrating the above inequality from T4 to 1, we obtain

1Z
T4

q.t/dt �
1Z
T4

y
0

.t/e�cy.t/dt � 1

c
e�cy.T4/ < 1;

which contradicts the definition of q.t/.
Cases 1, 2, and 3 complete the proof of .i/.

.ii/ By (2.134) and (2.135), we may choose �1 > � and T > t0 such that

mX
jD1

˛j e
���j >

mX
jD1

˛j e
��1�j > 1; (2.148)

and

p.t/ � �1e
�1t exp

2
4
0
@ mX
jD1

˛j e
��1�j � 1

1
A e�1t

3
5 ; t � T: (2.149)

Set '.t/ D e�1t and x.t/ D e�'.t/: Then for t � T ,

x
0

.t/C p.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/�

D �'.t/e�'.t/ C p.t/

mY
jD1

e�˛j '.t��j /

D
mY
jD1

e�˛j '.t��j /
8<
:p.t/ � �1e�1t exp

2
4
0
@ mX
jD1

˛j e
��1�j � 1

1
A e�1t

3
5
9=
; � 0:
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This shows that the inequality

x0.t/C p.t/

mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/� � 0; t � t0;

has an eventually positive solution. In view of Lemma 2.7.2, the corresponding
equation (2.124) also has an eventually positive solution. The proof is com-
plete. �

Applying Theorem 2.7.4 on the special form

x
0

.t/C p.t/
ˇ̌
x.t � �j /

ˇ̌˛
sign Œx.t � �/� D 0; t � t0; (2.150)

where

p 2 C.Œt0;1/; Œ0;1//; � > 0; ˛ > 0;

we have immediately the following result.

Corollary 2.7.2. Assume that ˛ > 1: Then the following conclusions hold:

(i) If there exists 
 > ��1 ln˛ such that (2.133) holds, then every solution of
(2.150) oscillates.

(ii) If p.t/ ¤ 0 on any interval of length � , and there exists � < ��1ln˛ such that
(2.135) holds, then (2.150) has an eventually positive solution.

Note that if
mX
jD1

˛j > 1; then it follows that there exists a unique 
0 > 0 such

that

mX
jD1

˛j e
�
0�j D 1:

Therefore, applying Theorem 2.7.4 to the following equation which is a special form
of (2.124)

x0.t/C C exp.e
t /
mY
jD1

ˇ̌
x.t � �j /

ˇ̌˛j
sign Œx.t � �1/� D 0; t � t0; (2.151)

where C > 0, we have that every solution of (2.151) oscillates if 
 > 
0 and (2.151)
has an eventually positive solution in 
 < 
0.

In the following, we apply Theorem 2.7.4 to (2.125), (2.126), and (2.123).
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Theorem 2.7.5. Assume that .H/ holds and
mX
jD1

˛j > 1: Then the following

conclusions hold:

(i) If there exists 
 > 0 such that (2.132) and (2.133) hold, then every solution of
(2.125) oscillates.

(ii) If (2.128) and

1Z
t0

p.t/dt D 1 (2.152)

hold and there exists � > 0 such that (2.134) and (2.135) hold, then (2.125)
has an eventually positive solution.

Proof. (i) Assume the contrary, and let x.t/ be an eventually positive solution of
(2.125). Then from (2.125) and (2.133), we easily see that lim

t!1x.t/ D 0: Then

from (2.125) and .H/ there exists a T1 > t0 such that

1 > x.t � �m/ > 0; and x
0

.t/ � 0; for t � T1;

and

f .x.t � �1/; : : : ; x.t � �m// � 1

2
M

mY
jD1

�
x.t � �j /


˛j
; t � T1: (2.153)

Substituting (2.153) into (2.125), we have

x0.t/C 1

2
Mp.t/

mY
jD1

�
x.t � �j /


˛j � 0; for t � T1: (2.154)

This shows that the inequality (2.154) has an eventually positive solution. In
view of Lemma 2.7.2, the corresponding equation,

x0.t/C 1

2
Mp.t/

mY
jD1

jx.t � �j /j˛j sign Œx.t � �1/� D 0; t � t0; (2.155)

also has an eventually positive solution. But, by Theorem 2.7.4, (2.132) and
(2.133) imply that every solution of (2.155) oscillates, and this contradiction
completes the proof of (i).
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(ii) In view of Theorem 2.7.4, (2.128), (2.134), (2.135), and (2.152) imply that the
equation

x0.t/C 2Mp.t/

mY
jD1

jx.t � �j /j˛j sign Œx.t � �1/� D 0; t � t0; (2.156)

has an eventually positive solution x.t/ with limt!1 x.t/ D 0: From this,
.H/, and (2.156), there exists a T2 > t0 such that

x.t � �m/ > 0, and x
0

.t/ � 0 for t � T2;

and

f .x.t � �1/; : : : ; x.t � �m// � 2M

mY
jD1

jx.t � �j /j˛j ; t � T2: (2.157)

Substituting (2.157) into (2.156), we have

x
0

.t/C p.t/f .x.t � �1/; : : : ; x.t � �m// � 0; t � T2: (2.158)

This shows that inequality (2.158) has an eventually positive solution. In view
of Lemma 2.7.2, the corresponding equation (2.125) also has an eventually
positive solution. The proof is complete. �

Theorem 2.7.6. Assume that
mX
jD1

ˇj > m; and that there exists 
 > 0 such that

mX
jD1

ˇj e
�
�j < m; (2.159)

and

lim
t!1 inf

8<
:
2
4 mY
jD1

pj .t/

3
5 exp


�me
t �
9=
; > 0: (2.160)

Then every solution of (2.126) oscillates.

Proof. Assume the contrary, and let x.t/ be an eventually positive solution of
(2.126). It follows from (2.126) that there exists a T > t0 such that

x.t � �m/ > 0; and x
0

.t/ � 0; for t � T:
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From (2.126), we have

x
0

.t/Cm

2
4 mY
jD1

pj .t/

3
5

1
m mY
jD1

�
x.t � �j /


 ˇj
m � 0; t � T: (2.161)

This shows that inequality (2.161) has an eventually positive solution. In view of
Lemma 2.7.2, the corresponding equation,

x
0

.t/Cm

2
4 mY
jD1

pj .t/

3
5

1
m mY
jD1

jx.t � �j /j
ˇj
m sign Œx .t � �1/� D 0; t > t0; (2.162)

also has an eventually positive solution. But Theorem 2.7.4, (2.159), and (2.160)
imply that every solution oscillates. This contradiction completes the proof. �

Now, we consider equation (2.123). Note that if

mY
jD1

.�1/ˇj D �1;

then by making a change of variables,

x.t/ D ln

�
N.t/

K

�
;

one can write (2.123) as

x
0

.t/C r.t/

mY
jD1

�
ex.t��j / � 1
ˇj D 0; for t � 0: (2.163)

Set

f .x1; : : : ; xm/ D
mY
jD1

.exj � 1/ˇj :

Then f satisfies condition .H/ for ˇ1; : : : ; ˇm:
Hence, in view of Theorem 2.7.5, we have immediately the following result.

Theorem 2.7.7. Assume that

mY
jD1

.�1/ˇj D �1 and
mX
jD1

ˇj > 1:
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Then the following conclusions hold:

.i/ If there exists 
 > 0 such that

mX
jD1

ˇj e
�
�j < 1; (2.164)

and

lim
t!1 inf

�
r.t/ exp


�e
t �
 > 0; (2.165)

then every positive solution of (2.123) oscillates about K.
.ii/ If r.t/ ¤ 0 for any interval of length � , where � D max f�1; : : : ; �mg;

1Z
0

r.s/ds D 1; (2.166)

and there exists � > 0 such that

mX
jD1

ˇj e
���j > 1; (2.167)

and

lim
t!1 sup

�
r.t/ exp


�e�t �
 < 1; (2.168)

then (2.123) has a solution greater than K eventually.

2.8 Models with a Varying Capacity

In the delay logistic equations we assumed that the carrying capacity K > 0

is a constant. The variation of the environment plays an important role in many
biological and ecological dynamical systems. It is realistic to assume that the
parameters in the models are positive periodic functions of period !:

Consider the nonautonomous delay logistic model

N
0

.t/ D r.t/N.t/

�
1 � N.t �m!/

K.t/

�
; (2.169)
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where m is a positive integer and ! > 0: Assume r and K are positive periodic
functions of period !. We consider solutions of (2.169) corresponding to the initial
condition

�
N.t/ D '.t/; for m! < t < 0;
' 2 C ŒŒ�m!; 0�;RC�; '.0/ > 0: (2.170)

It is easy to see that there exist a unique positive periodic solution N �.t/ of (2.169).

Theorem 2.8.1. If

Z 1

0

r.t/N �.t/
K.t/

dt D 1; (2.171)

then every nonoscillatory solution N.t/ of (2.169) satisfies

lim
t!1N.t/ D N �.t/: (2.172)

Proof. Assume that N.t/ > N �.t/ for t sufficiently large (the proof when N.t/ <
N �.t/ is similar and will be omitted). Set

N.t/ D N �.t/ez.t/: (2.173)

Then z.t/ > 0 for t sufficiently large, and for t large

z
0

.t/C r.t/N �.t/
K.t/



ez.t�m!/ � 1� D 0; (2.174)

so

z0.t/ D �r.t/N
�.t/

K.t/



ez.t�m!/ � 1� < 0:

Thus, z.t/ is decreasing, and therefore

lim
t!1 z.t/ D ˛ 2 Œ0;1/:

We claim ˛ D 0: If ˛ > 0; then there exist " > 0 and T" > 0 such that for t � T";

0 < ˛ � " < z.t/ < ˛ C ":

However, then from (2.174), we find

z0.t/C r.t/N �.t/
K.t/

.e˛�" � 1/ � 0; t � T";
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By integrating from T" to 1 and using (2.171) we immediately get a contradiction.
Hence ˛ D 0. Thus

lim
t!1.N.t/ �N �.t// D lim

t!1N �.t/.ez.t/ � 1/ D 0:

This completes the proof. �

Theorem 2.8.2. Assume that r and K are positive periodic functions of period !
such that (2.171) holds. Suppose for every sufficiently small " � 0 all solutions of
the linear delay differential equation

x
0

.t/C .1 � "/r.t/N
�.t/

K.t/
x.t �m!/ D 0; t � t0; (2.175)

are oscillatory. Then all solutions of (2.169) are oscillatory about N �.t/:

Proof. Assume that (2.169) has a solution which does not oscillate about N �.t/:
Without loss of generality we assume that N.t/ > N �.t/; so that z.t/ > 0; here
z is defined in Theorem 2.8.1. (The case N.t/ < N �.t/ implies that z.t/ < 0 and
the proof is similar. In fact, we will see below that if z.t/ is a negative solution
of (2.176) then U.t/ D �z.t/ is positive solution of (2.176)). It is clear that N.t/
oscillates about N �.t/ if and only if z.t/ oscillates about zero. Also

z0.t/C r.t/N �.t/
K.t/

f .z.t �m!// D 0; (2.176)

where

f .u/ D .eu � 1/:

Note that

lim
u!0

f .u/

u
D 1:

Then by Theorem 2.6.4, since every solution of (2.175) oscillates, then every
solution of (2.176) oscillates. Thus every positive solution of (2.169) oscillates about
N �.t/: The proof is complete. �

Next we discuss the oscillation of (2.169) about the positive periodic function
K.t/: The result is adapted from [86].

Theorem 2.8.3. Assume the following:

.i/ K is a nonconstant positive differentiable periodic function of period !:
(ii) r is positive and continuous for t � 0 such that
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lim inf
t!1 r.t/ > 0, and lim inf

t!1

Z t

t�m!
r.s/ds >

1

e
: (2.177)

Then every positive solution of (2.169) is oscillatory about K:

Proof. If we define y.t/ D lnŒN.t/=K.t/�; then y is governed by

y
0

.t/ D r.t/
�
1 � ey.t�m!/
 � K

0

.t/

K.t/
; (2.178)

and the oscillation of N about K is equivalent to that of y about zero and thus it is
sufficient to consider the usual oscillation of y: We simplify (2.178) by letting

Q.t/ D ln.
K.t0/

K.t/
/ (2.179)

and note that (2.178) becomes

y
0

.t/C r.t/
�
ey.t�m!/ � 1
 D Q

0

.t/: (2.180)

Suppose now the conclusion of the theorem is false. Then there exists an eventually
positive or eventually negative solution for (2.180).

Let us first assume that (2.180) has an eventually positive solution y: Since Q is
a nonconstant periodic function, there exist two sequences ft 0

ng and ft 00

n g such that
limn!1 t

0

n D 1, limn!1 t
00

n , and

�1 < q1 � Q.t/ � q2 < 1;

q1 D Q.t
0

n/ and q2 D Q.t
00

n /, n D 1; 2; : : : . (2.181)

Let

u.t/ D y.t/ �Q.t/; for t � T;

(where y.t �m!/ > 0 for t � T /: Note that (2.180) becomes

u
0

.t/ D r.t/
�
1 � ey.t�m!/
 < 0: (2.182)

We claim u.t/C q1 > 0. Suppose for some t � T , u.t/C q1 � 0: Since y.t/ > 0,
we have u.t/CQ.t/ D y.t/ > 0 and hence u.t

0

n/C q1 D y.t
0

n/ > 0 showing that
u.t/C q1 � 0 is not possible. Therefore,

u.t/C q1 > 0, for large t � T: (2.183)
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Let z.t/ D u.t/C q1 and we see that

z
0

.t/ D u
0

.t/ D y
0

.t/ �Q0

.t/

D r.t/
�
1 � ey.t�m!/


D r.t/
�
1 � eu.t�m!/CQ.t�m!/


� �r.t/ Œu.t �m!/CQ.t �m!/� � �r.t/z.t �m!/: (2.184)

Note that (2.184) has an eventually positive solution and this is impossible due to
(2.177) (a standard argument is used here).

Let us now consider the case when y.t/ is an eventually negative solution of
(2.169). This implies that

N.t/

K.t/
< 1; for large t: (2.185)

The boundedness of K (due to periodicity) and (2.185) imply that N.t/ is bounded.
It follows from (2.169) that N

0

.t/ > 0 eventually and this implies that

lim
t!1N.t/ D l > 0: (2.186)

Integrating (2.169), we have

ln
l

N.t0/
D
Z 1

t0

r.t/

�
1 � N.t �m!/

K.t/

�
dt < 1: (2.187)

Hence

lim
t!1 inf r.t/

�
1 � N.t �m!/

K.t/

�
D 0:

But lim inft!1 r.t/ > 0, so

lim
t!1 sup

N.t �m!/
K.t/

D 1;

i.e., there exists a sequence ftkg such that

lim
k!1

N.tk �m!/
K.tk/

D 1:
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Since N.t/ < K, we see that limt!1N.t/ D l D mint2Œ0;!� K.t/: But then

Z 1

t0

r.t/

�
1 � N.t �m!/

K.t/

�
dt

� inf r.t/

maxt2Œ0;!� K.t/

Z 1

t0

.K.t/ �N.t �m!// dt

� inf r.t/

maxt2Œ0;!� K.t/

Z 1

t0

�
K.t/ � min

t2Œ0;!� K.t/
�
dt D 1;

which contradicts (2.187). This completes the proof. �



Chapter 3
Stability of Delay Logistic Models

The essence of mathematics lies in its freedom.

Georg Cantor (1845–1915).

As for everything else, so for a mathematical theory: beauty can
be perceived but not explained.

Arthur Cayley (1821–1895).

The stability of the equilibrium points is important in the study of mathematical
models. The equilibrium point N is locally stable if the solution of the model N.t/
approaches N as time increases for all the initial values, in some neighborhood of
N . The equilibrium point N is globally stable for a mathematical model if for all
initial values the solution of the model approaches N as time increases. A model
is locally or globally stable if its positive equilibrium point is locally or globally
stable.

To study local asymptotic stability, we use a standard approach to analyze the
stability of a linearization about the trivial solution. The stability of the trivial
solution of the linearized equation depends on the location of the roots of the
associated characteristic equation. If all the roots of the characteristic equation for
the linearized equation have negative real parts, and if all the roots are uniformly
bounded away from the imaginary axis, then the trivial solution of the linear
equation is locally asymptotically stable.

In this chapter we present the current approach on stability (local, global, and
uniform) for autonomous and nonautonomous delay equations. We note that the
theory in Chap. 3 can be extended (using the ideas in this chapter) to cover other
models, for example models with distributed delays.

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology,
DOI 10.1007/978-3-319-06557-1__3, © Springer International Publishing Switzerland 2014
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3.1 Autonomous Models of Hutchinson Type

In this section we discuss autonomous models of Hutchinson type.

3.1.1 Local Stability

First we consider the local stability of a Hutchinson type model

N
0

.t/ D rN.t/

�
1 � N.t � �/

K

�
; for t � 0; (3.1)

whereN.t/ is the population at time t , r is the growth rate of the species, andK > 0

is called the carrying capacity of the habitat (note that there is no immigration or
emigration). It is well known that the trivial solution of (3.1) is unstable, since the
linearization of (3.1) about N D 0 satisfies the linear equation dN.t/=dt ' rN.t/

which shows that N D 0 is unstable with exponential growth. Next, we consider
the perturbations about the positive steady state K. Set

N �.t�/ D N.t/=K; t� D rt; �� D r�;

where the asterisk denotes dimensionless quantities. Then (3.1) becomes, on
dropping the asterisks for algebraic convenience, but keeping in mind that we are
now dealing with non-dimensional quantities,

N
0

.t/ D N.t/Œ1 �N.t � �/�: (3.2)

Linearizing about the steady state, N D 1, by writing N.t/ D 1C n.t/ we have

dn

dt
' �n.t � �/; (3.3)

and its corresponding characteristic equation is given by

p.
/ D 
C e�
� D 0: (3.4)

Clearly if � D 0, (3.4) has a real root 
 D �1 which shows that n D 0 is stable
with exponential decay, which leads to the local stability of the steady state K. On
the other hand for � > 0 we have

p.�1=�/ D �1
�

C e D e

�
.� � 1=e/ � 0;
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when � � 1=e which shows that there exists a real root in the interval Œ�1=�; 0�
which means that there exists a nonoscillatory solution of (3.3) which also tends to
zero as t tends to infinity and if � > 1=e; Eq. (3.4) has no real roots which leads to
the oscillation of all solutions (see Sect. 2.1).

Now, we wish to know whether there are any solutions of (3.4) with Re
 > 0

which would imply that the trivial solution is unstable with exponential growth. Let

 D �C iw be a root of (3.4) where � and w are real numbers. We claim that there
is a real number �0 such that all solutions of (3.4) satisfy Re
 < �0: To see this,
note 
 D e�Œ�Ciw�� so j
j D e��� ; and so, if j
j ! 1 then e��� ! 1 which
requires that � ! �1. Thus there must be a number �0 which bounds Re
 from
above.

Set z D 1=
, and

f .z/ D 1C ze��=z:

Then f .z/ has an essential singularity at z D 0. So by Picard’s Theorem, f .z/ has
infinitely many complex roots in the neighborhood of z D 0. Now, from (3.4) we
have

� D �e��� cos w�; w D e��� sin w�: (3.5)

The aim now is to determine the range of � such that � < 0.
First, let w D 0. Then we have � D �e��� ; and this has no positive roots since

e��� > 0 for all ��: Consider the case w ¤ 0: From (3.5) if w is a solution then �w
is also a solution, so we consider w > 0 without loss of generality. From

� D �e��� cos w�;

� < 0 requires w� < �=2 since �e��� < 0 for all ��: Multiplying

w D e��� sin w�;

by � we have

�e��� sin w� D �w < �=2:

Next we consider the generalized delay logistic equation

N
0

.t/C aŒN.t/ �N �� D rN.t/

2
41 �

1X
jD1

N.t � �j /
Kj

3
5 ; t > 0, (3.6)

and establish some sufficient conditions for the local asymptotic stability of the
positive steady state N �. The results are adapted from Gopalsamy [26]. By using
the transformation
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N.t/ D N � C x.t/;

we see that the Eq. (3.6) reduces to the nonlinear delay equation

x
0

.t/C ax.t/C ŒN � C x.t/�

1X
jD1

bj x.t � �j / D 0; t > 0; (3.7)

where

r

N � D
1X
jD1

bj ; bj D r

Kj

; j D 1; 2; : : : . (3.8)

We assume that a is a nonnegative constant, N �; bj , �j for j D 1; 2; 3; : : : are
positive constants such that

1X
jD1

bj D b < 1; 0 < inf
j
�j D �� � sup

j

�j D �� < 1: (3.9)

With (3.6) we associate the initial condition
�
N.t/ D 
.t/; for � �� � t � 0;


 2 C.Œ���; 0�; Œ0;1//; and 
.0/ > 0:
(3.10)

It follows from the substitution N.t/ D N � C x.t/ that the asymptotic stability
(local or global) of N � of (3.6) is equivalent to that of the trivial solution of (3.7)
where the relevant initial condition for (3.7) is inherited from (3.10) through the
substitution N.t/ D N � C x.t/:

Theorem 3.1.1. Assume that (3.9) holds, and

��N �
1X
jD1

bj < �=2: (3.11)

Then the trivial solution of (3.7) is locally asymptotically stable (or equivalently, the
positive steady state N� of (3.6) is locally asymptotically stable).

Proof. The linear variational equation corresponding to the trivial solution
of (3.7) is

z
0

.t/C az.t/CN �
1X
jD1

bj z.t � �j / D 0; t > 0, (3.12)

and its associated characteristic equation is given by
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C aCN �
1X
jD1

bj e
�
�j D 0: (3.13)

It is well known that the trivial solution of (3.12) is asymptotically stable in the sense
that every solution z of (3.12) corresponding to the initial function 
 W Œ���; 0� !
.�1;1/,

z.s/ D 
.s/; s 2 Œ���; 0�; 
 is continuous on Œ���; 0�;

is such that (i). jz.t/j is nonincreasing in t for t � 0 and (ii). limt!1 jz.t/j D 0

if and only if Re
 � �� < 0 for some positive number � where 
 is any root
of (3.13). The asymptotic stability of the trivial solution of (3.12) implies the local
asymptotic stability of the trivial solution of (3.7).

We show (3.13) cannot have roots with nonnegative real parts. Suppose 
 D
�C i� is a root of (3.13) where � and � are real numbers and suppose that � � 0.
Then we have from (3.13) that

�C a D �N �
1X
jD1

bj e
���j cos ��j ; (3.14)

� D N �
1X
jD1

bj e
���j sin��j : (3.15)

It follows from (3.15) and � � 0 that

j�j � N �
1X
jD1

bj ;

which with (3.11) implies that

j�j �j � N ���
1X
jD1

bj < �=2: (3.16)

Since �C a > 0; � � 0; we have from (3.14) and (3.16) that

� .�C a/=N � � 0 and � .�C a/=N � D
1X
jD1

bj e
���j cos ��j > 0; (3.17)

which is impossible. Suppose now that (3.13) has a sequence of roots 
n D �nCi�n
(n D 1; 2; 3; : : :) such that �n < 0 and �n ! 0 as n ! 1. We now show that this
is not possible. Since f defined by
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f .
/ D 
C aCN �
1X
jD1

bj e
�
�j ;

is analytic in 
, the zeros of f are isolated and hence any limit point of the roots
of (3.13) cannot be in the finite part of the complex plane. Let us suppose that we
have

�n < 0; �n > 0; �n ! 0; �n ! 1 as n ! 1:

We have from (3.13) that

�n C a D �N �
1X
jD1

bj e
��n�j cos �n�j ; (3.18)

�n D N �
1X
jD1

bj e
��n�j sin�n�j ; (3.19)

for n D 1; 2; 3; : : : ; and this implies that

�n � N �e��n��

1X
jD1

bj ;

which leads to

1 � N �
1X
jD1

bj

 
e��n��

�n

!
! 0; as n ! 1;

and this is a contradiction. Thus (3.13) can have only roots with negative real parts,
and this completes the proof. �

3.1.2 3
2
-Global Stability

In this subsection we are interested in the 3=2 global stability of the positive steady
state K of (3.1). Motivated by (3.1) (let N.t/ D K.y.t/ C 1/) in this section we
examine

y
0

.t/ D �˛y.t � 1/Œ1C y.t/�; ˛ > 0: (3.20)

If we were considering (3.1) then ˛ D r� . The global stability result in this section
is due to Wright [78].
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We consider solutions of (3.20) which correspond to the initial condition

�
y.t/ D 
.t/; for � 1 � t � 0; 
 2 C Œ�1; 0�

1C 
.t/ � 0 for t 2 Œ�1; 0� and 1C 
.0/ > 0:
(3.21)

By the method of steps we see that (3.20), (3.21) has a solution y with 1Cy.t/ >
0 for t � 0.

Theorem 3.1.2. Let y be a solution of (3.20), (3.21). If ˛ � 3=2, then
limt!1 y.t/ D 0.

Proof. If y.t/ is nonoscillatory, then y.t/ > 0 or y.t/ < 0 for some t � t0 � 0:

Note also from (3.20) that

1C y.t/ D .1C y.t0// exp

�
�˛

Z t�1

t0�1
y.u/du

�
: (3.22)

Without loss of generality we assume that y.t/ > 0, since the case when y.t/ < 0

is similar and will be omitted. Now, since y.t/ > 0 for t � t0; then (3.20) implies
that

y
0

.t/ < 0, for t � t0 C 1:

Hence y.t/ is positive and strictly decreasing and there exists c such that

lim
t!1 y.t/ D c � 0:

Let c > 0. Then

lim
t!1 y

0

.t/ D �˛c.1C c/;

which leads to a contradiction with y.t/ > 0. Therefore c D 0. This means that
every nonoscillatory solution of (3.20) satisfies

lim
t!1 y.t/ D 0:

To complete the proof, we prove that every oscillatory solution of (3.20) satisfies

lim
t!1 y.t/ D 0:

First, we prove every oscillatory solution is bounded above. Let t2 > t1 > 0 be
arbitrary two consecutive zeros of y.t/ such that y.t/ > 0 for t 2 Œt1; t2�, and
assume that y.t/ attains its maximum at t�: Then y

0

.t�/ D 0; which implies that
y.t� � 1/ D 0: Letting t0 D t� � 1 in (3.22), we have
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1C y.t�/ D exp

 
�˛

Z t��1

t��2
y.�/d�

!
< e˛;

since y.�/ > �1. Hence y.t�/ < e˛ � 1: This proves that y.t/ is bounded above by
(e˛ � 1/:

Define

u D lim
t!1 supy.t/ and v D � lim

t!1 infy.t/: (3.23)

Let � be a positive constant such that, for t � t1 D t1.�/ > 0;

� v � � < y.t/ < u C �: (3.24)

If y.T / is a local maximum or minimum with T > t1 C 2; then y.T � 1/ D 0; and

�˛.u C �/ < .ln.1C y.T // D/ � ˛
Z T�1

T�2
y.�/d� < ˛.v C �/;

which leads to

� 1C exp.�˛.u C �// < y.T / < �1C exp.˛.v C �//: (3.25)

From the definition of u; v we see that there is a T > 0 such that y.T / is a local
maximum and y.T / > u � �; and a T

0

> 0 such that y.T
0

/ is a local minimum and
y.T

0

/ < �v C �: Hence,

u � � < exp.˛.v C �// � 1; v � � < 1 � exp.�˛.u C �//: (3.26)

Since (3.26) is true for all � > 0; this leads to

u � e˛v � 1; v � 1 � e�˛u: (3.27)

It follows that v < 1 and that, if one of u and v is zero, then so is the other, and so
limt!1 y.t/ D 0. Therefore, we assume in the following that

u > 0; 0 < v < 1. (3.28)

If ˛ � 1; then from (3.27), we have

1C u � ev � exp.1 � e�u/;

and this implies that

1C u � exp.1 � e�u/ � 0: (3.29)
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However, since u > 0, we have

1C u � exp.1 � e�u/

D
Z u

0

Z u1

0

.1 � e�u2 / exp.1 � e�u2 � u2/du2du1 > 0;

a contradiction with (3.29). This proves the theorem when ˛ � 1:

Now we assume that ˛ > 1: Let T be a maximum or minimum point such that
T > t1 C 3, so that y.T � 1/ D 0. For t > 0

ln.1C y.t// D �˛
Z t�1

T�2
y.�/d� D ˛

Z T�2

t�1
y.�/d�;

and so for t1 C 1 < t < T � 1; by (3.24) we have

�˛.v C �/.T � t � 1/ < ln.1C y.t// < ˛.u C �/.T � t � 1/:

Hence,

�1C expf�˛.v C �/.T � t � 1/g
< y.t// < �1C expf˛.u C �/.T � t � 1/g: (3.30)

Let � 2 Œ0; 1� be an arbitrary constant. The inequalities (3.24) and (3.30) yield

ln.1C y.T //

D �˛
Z T�1

T�2
y.�/d� D �˛

Z T�1��

T�2
y.�/d� � ˛

Z T�1

T�1��
y.�/d�

� ˛.1 � �/.v C �/C ˛

Z T�1

T�1��
.1 � e�˛.vC�/.T�t�1//d�

� ˛.1 � �/.v C �/C ˛� � Œ1 � expf�˛�.v C �/g�
v C �

; (3.31)

and

ln.1C y.T //

� �˛.1 � �/.u C �/C ˛

Z T�1

T�1��
.e˛.uC�/.T�t�1/ � 1/d�

� �˛.1 � �/.u C �/C ˛� C Œ1 � expf�˛�.u C �/g�
u C �

: (3.32)

We can find (as before) T such that y.T / > u � �: Using this in (3.31) and letting
� ! 0; we obtain
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ln.1C u/ � ˛.1 � �/v C ˛� � Œ1 � expf�˛�v�g
v

: (3.33)

Letting � D 1; we get from (3.33) that

ln.1C u/ � ˛ � Œ1 � exp.�˛v/�

v
: (3.34)

If ˛v � � ln.1 � v/; we may let � D � ln.1 � v/=˛v in (3.33) and obtain

ln.1C u/ < ˛v � .1 � v

v
/ ln.1 � v/ � 1: (3.35)

Next, we choose a minimum point T for which y.T / < �vC�:Using this in (3.32),
letting � ! 0 and setting

� D ln.1C u/

˛u
� 1;

we obtain

� ln.1 � v/ � ˛u � 1C u

u
ln.1C u/C 1: (3.36)

We now claim if 1 < ˛ � 3=2, u > 0 and v > 0 then

ln.1C u/ < v � v2

6
; and � ln.1 � v/ < u C u2

6
: (3.37)

The claim follows at once from (3.34) and (3.36) if we show that

˛v � 1C e�˛v � v2 � v3

6
; (3.38)

whenever

˛ � 3

2
; ˛v < � ln.1 � v/; (3.39)

and that

3

2
v C

�
1 � v

v

�
ln

�
1

1 � v

�
� 1 < v � v2

6
; (3.40)

and

3

2
u �

�
1C u

u

�
ln .1C u/C 1 < u C u2

6
: (3.41)
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Since u > 0, we have

.1C u/ ln.1C u/ � u

D
Z u

0

�Z s

0

d�

1C �

�
ds �

Z u

0

Z s

0

.1 � �/d�ds D u2

2
� u3

6
;

which is (3.41). Also, since 0 < v < 1; we have

v � .1 � v/ ln.
1

1 � v
/

D
Z v

0

�Z s

0

d�

1 � �
�
ds �

Z u

0

Z s

0

.1C �/d�ds D v2

2
C v3

6
;

which is (3.40). It remains to be proved that (3.38) is true whenever (3.39) is true.
Let W D 1 � e�w: We have from (3.39) that

˛v � 1C e�˛v D
Z ˛v

0

.1 � e�w/dw <

Z � ln.1�v/

0

.1 � e�w/dw

D
Z v

0

W

W � 1dW

<
1

1 � v

Z v

0

WdW D v2

2.1 � v/
:

If 0 < v < 0:45, we have

v2

2.1 � v/
< 0:925v2 < v2.1 � v

6
/;

and so we have (3.38) for such a v: Since ˛ � 3=2; we have

˛v � 1C e�˛v D
Z ˛v

0

.1 � e�w/dw <

Z 3v=2

0

.1 � e�w/dw

�
Z 3v=2

0

.w � 1

2
w2 C 1

6
w3/dw

D 9

8
v2 � 9

16
v3 C 27

128
v4;

and the last expression is less than v2 � v3=6 provided that

81v2 � 152v C 48 < 0;

which is equivalent to

�
v � 76

81

�2
<
1888

.81/2
D
�
43:45

81

�2
;
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and this is true when

1 � v � .76 � 43:45/
81

D 0:402;

and so certainly for v > 0:45. This proves the claim. Let v3 D v3.u/ be the smaller
root of

ln.1C u/ D v3 � v23
6
: (3.42)

Clearly, v3 > 0. We also define v4 by

� ln.1 � v4/ D u C u2

6
: (3.43)

Equation (3.43) yields

v4 D 1 � expf�u � u2

6
g < u:

Hence by the claim above, we have

0 < v3 < v < v4 < u: (3.44)

Thus,

1

1C u

du

dv3
D 1 � v3

3
;

1

1 � v4

dv4
du

D 1C u

3
;

and so

dv4
dv3

D .1C u/.1C u

3
/.1 � v4/.1 � v3

3
/:

Hence, by (3.42) and (3.43), we have

ln.
dv4
dv3

/ D ln.1C u/C ln.1C u=3/C ln.1 � v4/

C ln.1 � v3=3/ � 3

2
fln.1C u/ � ug < 0:

Then,

d.v4 � v3/=du < 0;
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and so (note v4 ! 0 and v3 ! 0 as u ! 0) we have v4 < v3 for u > 0: This
contradicts (3.44) and so for 1 < ˛ � 3=2 we must have

u D v D 0:

This completes the proof. �

3.1.3 Global Exponential Stability

In this subsection we discuss global exponential asymptotic stability. Motivated
by (3.1) in this subsection we examine the problem,

x
0

.t/ D �rx.t � �/Œ1C x.t/�; r , � 2 .0;1/: (3.45)

We consider solutions of (3.45) which correspond to the initial condition

�
x.t/ D 
.t/; for � � � t � 0; 
 2 C Œ��; 0�

1C 
.t/ � 0 for t 2 Œ��; 0� and 1C 
.0/ > 0:
(3.46)

By the method of steps we see that (3.45), (3.46) have a solution x with 1 C
x.t/ > 0 for t � 0. The results in this section are adapted from [85].

Lemma 3.1.1. If x is a nonoscillatory of (3.45), (3.46) then limt!1x.t/ D 0.

Proof. Suppose x is eventually positive, so x0.t/ < 0 for t large. Thus
limt!1 x.t/ D l � 0. Since x is bounded then x0.t/ is bounded and hence
by Barbalat’s Theorem (see Sect. 1.4) limt!1 x0.t/ D 0. From (3.45) we have
0 D �r l .1C l/. Thus l D 0

Suppose x is eventually negative, so x0.t/ > 0 for t large and so we have
limt!1 x.t/ D m � 0. Also 0 D �r m .mC l/. Note 1Cm � 0. We need to only
consider the case when m D �1, and in this case for t large x0.t/ < �r.1 � 1

2
/ 1
2

which yields limt!1 x.t/ D �1, a contradiction since 1Cx.t/ > 0. Thusm D 0.
�

We say that the trivial solution of (3.45) is globally exponentially asymptotically
stable if for any solution x.t/ of (3.45) corresponding to a given initial function


 W Œ��; 0� ! R; where 
.0/ > �1;

then there exist positive numbers T , M; ı such that

jx.t/j � Me�ıt ; for t � T:
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To prove the main results, we need an estimate on the lower and upper bounds of
the oscillatory solution of (3.45).

Lemma 3.1.2. If x.t/ is a solution of (3.45), (3.46), then there exists a number
T0 > 0 such that

exp.�r�.e�r� � 1// � 1 � x.t/ � er� � 1; t � T0: (3.47)

Proof. If x.t/ is a nonoscillatory solution of (3.45), then by Lemma 3.1.1 1 C
x.t/ ! 1 as t ! 1 and there exists a t1 � 0 such that (3.47) holds.

Suppose that x is an oscillatory solution and let ftng be a sequence of zeros of x
such that limn!1 tn D 1: Let t� be the point where x attains its local maximum.
Then, from (3.45), we have

0 � x
0

.t�/ D �rx.t� � �/Œ1C x.t�/�;

and therefore x.t���/ � 0; and as a consequence of this, there exists � 2 Œt���; t��
such that x(�/ D 0: An integration of (3.45) over Œ�; t�� yields

ln


x.t�/C 1

� D �r
Z t�

�

x.t � �/dt � r

Z t�

t���
dt D r�;

so

x.t�/C 1 � er� : (3.48)

Since x.t�/ is an arbitrary local maximum, then

x.t/C 1 � er� for t � t1 (3.49)

where t1 is the first zero of the oscillation solution. Let t�� be the point where x
attains its local minimum. Then (like above) there exists � 2 Œt�� ��; t��� such that
x.�/ D 0: An integration of (3.45) over Œ�; t��� using (3.49) yields

ln


x.t��/C 1

� � �r
Z t��

�

.er� � 1/ dt

� �r.er� � 1/
Z t�

t����
dt D �r�.er� � 1/;

implying

x.t��/C 1 � expf�r�.er� � 1/g:
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Since x.t��/ is an arbitrary local minimum then

x.t/ � expf�r�.er� � 1/g � 1; for t � t1: (3.50)

This completes the proof. �

Note if we use the lower bound in (3.47) then we can obtain immediately that

1C x.t/ � exp .r � .1 � exp.�r� .er� � 1//// for t � T1 � T0:

Now, we are ready to prove the main result for the global exponential stability
of (3.45).

Theorem 3.1.3. Assume that r; � 2 .0;1/ and satisfy

r� exp.r�.1 � exp.�r�.e�r� � 1//// < 1: (3.51)

Then the trivial solution of (3.45), (3.46) is exponentially globally asymptotically
stable.

Proof. We rewrite (3.45) in the form

x
0

.t/ D �a.t/x.t � �/; (3.52)

where a.t/ D rŒ1C x.t/� and define u by

u D �.t/ D
Z t

t0

a.s/ds; t � t0

where t0 is a nonnegative number. By Lemma 3.1.1 and Lemma 3.1.2, we note that
��1.:/ exists and u.t/ ! 1; as t ! 1: Furthermore

�.t � �/ D u �
Z ��1.u/

��1.u/��
a.s/ds; t � � D ��1

 
u �

Z ��1.u/

��1.u/��
a.s/ds

!
:

Let

x.t/ D x.��1.u// D y.u/;

and then y satisfies

dy.u/

du
D �y.u � 	.u//; (3.53)

where

	.u/ D
Z ��1.u/

��1.u/��
a.s/ds D

Z t

t��
a.s/ds

� r� exp.r�.1 � exp.�r�.e�r� � 1////:
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We rewrite (3.53) by using the mean value theorem in the form

dy.u/

du
D �y.u/C .y.u/ � y.u � 	.u///

D �y.u/C 	.u/y
0

.�/; for � 2 Œu � 	.u/; u�;

and for all u for which y.u/ ¤ 0;

d

du
jy.u/j � � jy.u/j C 	.u/

 
sup

s2Œu�2	.u/;u�
jy.s/j

!

� � jy.u/j C 	�
 

sup
s2Œu�2r�er� ;u�

jy.s/j
!
; (3.54)

where 	� is the left-hand side of (3.51). Now, since 	 � 	� < 1; it follows
from (3.53) and (3.54) and Halanay’s Lemma (see Sect. 1.4) that there exist positive
numbers M and ˛ such that

jy.u/j � Me�˛u; (3.55)

which is also true if y.u/ D 0. Thus we have

jx.t/j � Me
�˛ R tt0 a.s/ds

� M exp.�˛ exp.r�Œ1 � exp.�r�.er� � 1/�/ .t � t0//:

The proof is complete. �

Consider the logistic equation with variable delay of the form

N
0

.t/ D rN.t/

�
1 � N.t � �.t//

K

�
, for t � 0; (3.56)

where r > 0 and �.t/ < t and limt!1 �.t/ D �0 > 0: Motivated by (3.56) in this
section we consider

x
0

.t/ D �r.1C x.t//x.t � �.t//: (3.57)

We consider solutions of (3.57) corresponding to the initial condition

x.s/ D 
.s/; 1C 
.s/ � 0; 1C 
.0/ > 0; s 2 Œ� sup
u>0

�.u/; 0�:

Theorem 3.1.4. Let � W Œ0;1/ ! Œ0;1/ be such that �.t/ ! �0 > 0; as t ! 1
and
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r�0 exp.r�0.1 � exp.�r�0.e�r�0 � 1//// < 1: (3.58)

Then the trivial solution of (3.57) is exponentially asymptotic stable.

Proof. We consider solutions of (3.57) which satisfy 1 C x.t/ > 0 for t � t0. We
rewrite (3.57) in the form

x
0

.t/ D �r.1C x.t//x.t � �0/C r.1C x.t//.x.t � �0/ � x.t � �.t///: (3.59)

Our strategy in the proof is to compare (3.59) with

z
0

.t/ D �r.1C z.t//z.t � �0/; (3.60)

since we know from Theorem 3.1.3 and condition (3.58) that the trivial solution
of (3.60) is exponentially globally asymptotically stable. By the non-linear variation
of constant formula (see [64]) we can represent the solution of (3.59) in the form

x.t/ D z.t/C r

Z t

t0

.T .t; s; xs/U0/.1C x.s/.x.s � �0/ � x.s � �.s///ds; (3.61)

for t � t0 � 0; where z denotes a solution of (3.60) with

z.s/ D x.s/; s 2 Œ� sup
t>0

�.t/; 0�;

and T .t; s; xs/U0 is a solution of

@.T .t; s; xs/U0/

@t
D �r.T .t; s; xs/U0/; t � s � 0;

T .s; s; xs/U0 D xs D x.s C �/; � 2 Œ��0; 0�;

associated with the linear variational system corresponding to (3.60). From the
properties of (3.60) we see that there exist numbers B0; B1; ˇ > 0 such that

jz.t/j � B0e
�ˇ.t�t0/; t � t0 � 0; (3.62)

kT .t; s; xs/U0k � B1e
�ˇ.t�s/; t � s � t0 � 0; (3.63)

for sufficiently large t0: We have from (3.61), (3.62), and (3.63),

jx.t/j � B0e
�ˇ.t�t0/ C B1

Z t

t0

e�ˇ.t�s/
ˇ̌̌
x

0

.�.s//
ˇ̌̌
j�0 � �.s/j ds; t � t0; (3.64)

where �.s/ lies between s � �0 and s � �.s/; s � t0: Using the boundedness of
solutions of (3.57) (see Lemma 3.1.2), one can estimate x

0

.�.s// and therefore
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jx.t/j � B0e
�ˇ.t�t0/ C B2

Z t

t0

e�ˇ.t�s/ j�0 � �.s/j ds; t � t0; (3.65)

for some constant B2 > 0 representing an upper bound of x
0

.t/ for t � t0: An
application of the Gronwall–Bellman inequality (see Sect. 1.4) to (3.65) leads to

jx.t/j � B0e
ˇt0 exp

�
t

�
�ˇ C B2

1

t

Z t

t0

j�0 � �.s/j ds
��

: (3.66)

Since �.t/ ! �0 > 0 as t ! 1; for every " > 0 there exists a t0 such that
Z t

t0

j�0 � �.s/j ds < "t; t � t0;

and hence if t0 is sufficiently large we have from (3.66) that

jx.t/j � B0e
ˇt0 exp .t .�.ˇ � B2"// : (3.67)

Since " is arbitrary the exponential asymptotic stability of the trivial solution
of (3.57) follows. The proof is complete. �

3.2 A Nonautonomous Hutchinson Model

In this section we examine the nonautonomous nonlinear delay logistic model of
Hutchinson’s type

N
0

.t/ D r.t/N.t/

�
1 � N.t � �/

K

�
: (3.68)

3.2.1 3
2
�Uniform Stability

Motivated by (3.68) (let N.� t/ D K.y.t/ C 1/ and ˛ D r � ) in this section we
examine the equation

y
0

.t/ D �˛.t/y.t � 1/Œ1C y.t/�; (3.69)

where ˛ is a positive continuous function of t .
We consider solutions of (3.69) which correspond to the initial condition for any

t0 � 0

�
y.t/ D 
.t/; for t0 � 1 � t � t0; 
 2 C Œt0 � 1; t0�
1C 
.t/ � 0 for t 2 Œt0 � 1; t0� and 1C 
.t0/ > 0:

(3.70)
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In this case

1C y.t/ D .1C y.t0// exp� R t
t0
˛.s/y.s�1/ds

> 0;

and so

y.t/ > �1; for all t � t0:

The results in this section are adapted from [17, 70].
The zero solution of (3.69) is uniformly stable if, for any " > 0; there exists a

ı."/ > 0 such that t0 � 0 and k
k D supt2Œt0�1;t0� j
.t/j < ı imply jy.t I t0; 
j < "

for all t � t0 where y.t I t0; 
/ is a solution of (3.69) with the initial value 
 at t0.
We need the following lemma in the proof of the main result.

Lemma 3.2.1. Suppose that there exists a constant ˛0 > 0 such that

Z t

t�1
˛.s/ds � ˛0 � 3

2
for t � 1: (3.71)

Let 	 2 .1; 2/ be a constant satisfying ˛0	 < 3=2 and let y.t/ be a solution of (3.69)
on Œt0 � 1,1/ such that y.t1/ D 0 for some t1 � t0 C 1 .t0 � 0/: Then, for any
� < 	 � 1, jy.t/j � �for t 2 Œt0 � 1; t1� implies jy.t/j � � for all t � t1.

Proof. Suppose that it is not true. Then there exists t2 > t1 such that

jy.t2/j D �; jy.t2 C �/j > �

for a sufficiently small � > 0 and jy.t/j � � for t1 � t � t2: We assume y.t2/ D
� > 0 (since the proof in the case when y.t2/ D �� is similar). Hence, there exists
a t3 2 .t2; t2 C �/ such that

y
0

.t3/ > 0 and y.t3/ > �: (3.72)

From (3.69), it is easy to prove that there exists t4 > t3 such that y
0

.t4/ D 0 and
y.t4/ > �: Clearly t4 < t2 C 1 and y.t4 � 1/ D 0: Since jy.t/j � � for all
t 2 Œt0 � 1; t2�;

ˇ̌̌
y

0

.t/
ˇ̌̌

� ˛.t/ jy.t � 1/j Œ1C jy.t/j� � �	˛.t/; t 2 Œt4 � 1; t2�;

and hence

jy.t � 1/j D jy.t4 � 1/ � y.t � 1/j

�
Z t4�1

t�1
�	˛.u/du; t 2 Œt4 � 1; t2�:
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Consequently, for all t 2 Œt4 � 1; t2�
ˇ̌
ˇy 0

.t2/
ˇ̌
ˇ � min

�
�	˛.t/; �	2˛.t/

Z t4�1

t�1
˛.u/du

	
:

Thus

� D y.t2/ D
Z t2

t4�1
y

0

.s/ds

�
Z t2

t4�1
min

�
�	˛.s/; �	2˛.s/

Z t4�1

s�1
˛.u/du

	
ds:

If 	
R t4
t4�1 ˛.s/ds � 1; then

y.t2/ �
Z t2

t4�1
�	˛.s/ds <

Z t4

t4�1
�	˛.s/ds � �;

which is a contradiction.
If 	

R t4
t4�1 ˛.s/ds > 1; choose q 2 .0; 1/ such that 	

R t4
t4�1�q ˛.s/ds D 1: Then

y.t2/

�
Z t4�1Cq

t4�1
�	˛.s/ds C

Z t4

t4�1Cq
�	2˛.s/

Z t4�1

s�1
˛.u/duds

D �	2
Z t4

t4�1Cq
	

Z t4�1Cq

t4�1
˛.s/˛.u/duds C �	2

Z t4

t4�1Cq

Z t4�1

s�1
˛.s/˛.u/duds

� �	˛0 � 1

2
�	2

Z t4

t4�1Cq
d

�Z s

t4�1Cq
˛.u/du

�2

D �.	˛0 � 1

2
/ < �.

3

2
� 1

2
/ D �:

This contradicts the assumption y.t2/ D �: The proof is complete. �

Theorem 3.2.1. Suppose that there exists a constant ˛0 > 0 such that (3.71) holds.
Then the zero solution of (3.69) is uniformly stable.

Proof. Let 	 2 .1; 2/ be such that 	˛0 < 3=2: Then for every � 2 .0; 	 � 1/ we
choose a ı D ı.�/ > 0 so small that

� WD .1C ı/e˛0ıe˛0..1Cı/e˛ı�1/ � 1 < �:
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Consider a solution y.t/ D y.t I t0; 
/ of (3.69) with t0 � 0 and with k
k D
supt2Œt0�1;t0� j
.t/j < ı: Suppose that jy.t4/j > � for some t4 > t0: Then it follows
from ı < � that there exist constants t2 and t3 such that

t0 < t2 < t3 � t4; jy.t2/j D �; jy.t3/j > �; jy.t/j < �;
for all t 2 Œt0 � 1; t2/, jy.t/j > � for all t 2 .t2; t3�; and y

0

.t3/y.t3/ > 0: Suppose
that y.t/ > 0 for t2 � t � t3 (the case when y.t/ < 0 is similar so the proof is
omitted). It is easy to see from Lemma 3.2.1 that there exists a t1 2 .t3 � 1; t3/ such
that y.t1/ D 0: For t 2 Œt0; t0 C 1�; we have

ˇ̌
ˇŒln.y.t/C 1/�

0

ˇ̌
ˇ � ı˛.t/;

and hence

jŒln.y.t/C 1/�j
� jŒln.y.t0/C 1/�j C jln.y.t/C 1/ � ln.y.t0/C 1/j

� ln.1C ı/C ı

Z t

t0

˛.t/ � ln.1C ı/C ı˛0;

and therefore, we have

y.t/ � .1C ı/eı˛0 � 1;
and

y.t/ � 1

.1C ı/
e�ı˛0 � 1:

That is

jy.t/j � .1C ı/eı˛0 � 1 < �; t 2 Œt0; t0 C 1�:

Similarly, for t0 C 1 < t < t0 C 2; we can show that

jy.t/j � .1C ı/eı˛0e˛0..1Cı/e˛ı�1/ � 1 D �:

Therefore, we have t3 > t0 C 2 and hence, t1 > t3 � 1 > t0 C 1: Therefore,
jy.t/j � � holds for t 2 Œt0 � 1; t1�: Thus by Lemma 3.2.1 we have jy.t/j � � for
all t � t1, which contradicts the assumption that jy.t3/j > �: Hence if t0 > 0 and
k
k D supt2Œt0�1;t0� j
.t/j < ı; then

jy.t I t0; 
/j � � < ", for all t � t0:

The proof is complete. �
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3.2.2 3
2
-Global Stability

In this subsection we examine the 3
2
-global stability of (3.69). We consider the

solution of (3.69) which corresponds to the initial condition (3.70). The results in
this section are adapted from [68].

Before we state and prove the main results we prove the following lemma which
will be used in the proof of the main results.

Lemma 3.2.2. Let 0 < ˇ < 1=2: The system of inequalities

(
u � ev�ˇv2 � 1;
v � 1 � e�u�ˇu2 ;

(3.73)

has a unique solution .u; v/ D .0; 0/ in the nonnegative quadrant fu; v/ W v � 0,
u � 0g.

Proof. Assume that (3.73) has another solution in the first quadrant of the v � u
plane besides .0; 0/, say .v0; u0/: Then u0 > 0 and 0 < v < 1: Define �1 to be the
curve:

u D ev�ˇv2 � 1;

and �2 to be the curve:

v D 1 � e�u�ˇu2 :

Clearly

du

dv

ˇ̌̌
ˇ
.0;0/

D 1;
d2u

dv2

ˇ̌̌
ˇ
.0;0/

D 1 � 2ˇ;

d3u

dv3

ˇ̌̌
ˇ
.0;0/

D 1 � 6ˇ; for �1;

du

dv

ˇ̌
ˇ̌
.0;0/

D 1;
d2u

dv2

ˇ̌
ˇ̌
.0;0/

D 1 � 2ˇ;

d3u

dv3

ˇ̌̌
ˇ
.0;0/

D 12ˇ2 � 6ˇ C 2; for �2:

Hence �2 lies above �1 near .0; 0/. The existence of (v0; u0/ implies that the curves
�1 and �2 must intersect at a point in the first quadrant besides .0; 0/. Let .v1; u1/
be the first such point, i.e. v1 is smallest. Then the slope of �1 at .u1; v1/ is no less
than the slope of �2 at .u1; v1/; i.e.
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.1 � 2ˇv1/e
v1�ˇv21 � 1

1C 2ˇu1
eu1Cˇu21 ;

or

.1 � 2ˇv1/.1C 2ˇu1/ � eu1�v1Cˇ.v21Cu21/:

Let


.x/ D 1 � e�x�ˇx2 � x:

Then 
.0/ D 0 and 

0

.x/ < 0; for x > 0, since 2ˇ < 1: Thus


.x/ < 0 for x > 0 and v1 D 
.u1/C u1 < u1:

Then u1 > v1: Using the inequality ex > 1C x .x > 0/; we have

1C 2ˇ.u1 � v1/ � 4ˇ2u1v1 > 1C u1 � v1 C ˇ.v21 C u21/;

or

.�1C 2ˇ/.u1 � v1/ � 4ˇ2u1v1 > ˇ.v21 C u21/;

which is a contradiction since 0 < ˇ < 1=2: This completes the proof. �

Lemma 3.2.3. Assume that

Z t

t�1
˛.s/ds � 3

2
; for all large t . (3.74)

Let y.t/ be an oscillatory solution of (3.69), (3.70). Then y.t/ is bounded above and
below from �1 for t � 0.

Proof. Let t0 > 0 be large enough so that (3.74) holds for all t � t0: Let t� be a local
maximum point of y.t/ (t � t0 C1/: Then y

0

.t�/ D 0 and by (3.69) y.t� �1/ D 0:

Integrating (3.69) from t� � 1 to t�; we have

1C y.t�/ D e� R t�
t��1 ˛.s/y.s�1/ds:

Since y.s � 1/ > �1, by (3.74)

1C y.t�/ � e
R t�
t��1 ˛.s//ds � e3=2;
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and y.t�/ � e3=2 � 1: Consequently,

lim sup
t!1

y.t/ � e3=2 � 1:

Next, let t� be a local minimum point of y.t/ .t � t0 C 3/: Then

y
0

.t�/ D 0 and y.t� � 1/ D 0:

Integrating (3.69) from t� � 1 to t� and using the fact that

y.s � 1/ � e3=2 � 1;

we have

1C y.t�/ � e
R t�
t��1 ˛.s/.1�e3=2/ds D e�.e3=2�1/ R t�t��1 ˛.s/ds � e�.e3=2�1/ 32 :

Hence,

y.t�/ � e�.e3=2�1/ 32 � 1;

and

lim
t!1 infy.t/ � e�.e3=2�1/ 32 � 1 > �1:

The proof is complete. �

The following inequalities were used previously and will be used in the following
theorem. Note

3

2
v C .1 � v/

v
ln.

1

1 � v
/ � 1 � v � 1

6
v2; 0 � v < 1; (3.75)

3

2
� 1

v

h
1 � e� 3

2 v
i

� v � 1

6
v2; 0 � v < 1: (3.76)

Note that if u1 � 3, then we have

3

2
u1 � ln.1C u1/ � u1 C 1

6
u21:

For 2 < u1 < 3, we have

1

2
u1 <

3

2
<
2

3
C ln 3 <

1

6
u21 C ln.1C u1/;
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and this implies that

3

2
u1 � ln.1C u1/ � u1 C 1

6
u21;

and then from u1 > 2, we have

3

2
u1 � ln.1C u1/ � u1 C 1

6
u21; (3.77)

3

2
u � .1C u/ ln.1C u/

u
C 1 � u C 1

6
u2; 0 � u: (3.78)

Theorem 3.2.2. If (3.74) holds, and

Z 1

0

˛.t/dt D 1; (3.79)

then every solution y.t/ of (3.69), (3.70) satisfies

lim
t!1y.t/ D 0: (3.80)

Proof. First, let y.t/ be an nonoscillatory solution of (3.69), (3.70). Then there
exists a t0 such that y.t/ is of one sign for t � t0: Without loss of generality we
consider the case when y.t/ � 0 for t � t0 (since the case when y.t/ is nonnegative
is similar). Since 1Cy.t/ � 0; by (3.69) we have y

0

.t/ � 0: Thus y.t/ is increasing
and

lim
t!1y.t/ D �c � 0; exists:

Integrating (3.69) from t0 C 1 to t; we get

� ln.1C y.t//C ln.1C y.t0 C 1//

D
Z t

t0C1
˛.s/y.s � 1/ds � �c

Z t

t0C1
˛.s/ds:

From (3.79), the right hand side tends to �1 as t ! 1 unless c D 0. On the
other hand, the left-hand side has a finite limit. Therefore c D 0. Hence every
nonoscillatory solution y.t/ of (3.69) satisfies (3.80).

To complete the proof we need to prove also that every oscillatory solution
satisfies (3.80). Let y.t/ be an oscillatory solution of (3.69). By Lemma 3.2.3 y.t/
is bounded above and below away from �1 for t � 0:
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Let

u D lim sup
t!1

y.t/; � v D lim inf
t!1 y.t/: (3.81)

Then

0 � v < 1 and 0 � u < 1:

To complete the proof it suffices to prove that u D v D 0: For any "; choose
t0 D t0."/ such that

�v1 � �v � " < y.t � 1/ < u C " � u1; for t � t0:

We assume that " is small enough so that 0 < v1 < 1 and t0 is large enough so
that (3.74) holds for t � t0 � 2: Using (3.69), we have

y
0

.t/ � ˛.t/Œ1C y.t/�v1; t � t0; (3.82)

and

y
0

.t/ � �˛.t/Œ1C y.t/�u1; t � t0: (3.83)

Let ft�n g be an increasing sequence such that t�n � t0, y
0

.t�n / D 0;

lim
n!1 t�n D 1 and lim

n!1y.t�n / D u:

By (3.69), y.t�n � 1/ D 0: For t 2 Œt�n � 1; t�n �; we can integrate (3.82) from t � 1 to
t�n � 1 and get

� lnŒ1C y.t � 1/� � v1

Z t�n �1

t�1
˛.s/ds;

or

y.t � 1/ � �1C e�v1
R t�n �1
t�1 ˛.s/ds , for t 2 Œt�n � 1; t�n �:

By (3.69), it follows that

y
0

.t/ � ˛.t/Œ1C y.t/�

�
1 � e�v1

R t�n �1
t�1 ˛.s/ds

�
; t 2 Œt�n � 1; t�n �:

Combining this with (3.82), we have

.lnŒ1C y.t/�/
0 � min

�
˛.t/v1; ˛.t/

�
1 � e�v1

R t�n �1
t�1 ˛.s/ds

�	
; (3.84)
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for t 2 Œt�n � 1; t�n �: We prove that

lnŒ1C y.t�n /� � v1 � 1

6
v21:

There are two possibilities.

Case 1.
R t�n
t�n �1 ˛.s/ds � � ln.1�v1/

v1
:

Then by (3.84) we have

lnŒ1C y.t�n /� �
Z t�n

t�n �1
˛.t/

�
1 � e�v1

R t�n �1
t�1 ˛.s/ds

�
dt

D
Z t�n

t�n �1
˛.t/

h
1 � e�v1

R t
t�1 ˛.s/dsCv1

R t
t�n �1

˛.s/ds
i
dt

�
Z t�n

t�n �1
˛.t/

h
1 � e� 3

2 v1e
v1
R t
t�n �1

˛.s/ds
i
dt

D
Z t�n

t�n �1
˛.t/dt � e� 3

2 v1

Z t�n

t�n �1
˛.t/e

v1
R t
t�n �1

˛.s/ds
dt

D
Z t�n

t�n �1
˛.t/dt � e� 3

2 v1
1

v1

�
e

v1
R t�n
t�n �1

˛.s/ds � 1
�

D
Z t�n

t�n �1
˛.t/dt � 1

v1
e

�v1

�
3
2�R t�n

t�n �1
˛.s/ds

� �
1 � e�v1

R t�n
t�n �1

˛.s/ds
�
:

The function


.x/ D x � 1

v1
e�v1.

3
2�x/.1 � e�v1x/;

is increasing for 0 � x � 3=2: Thus for

Z t�n

t�n �1
˛.t/dt � � ln.1 � v1/

v1
� 3

2
;

we have

lnŒ1C y.t�n /� � � ln.1 � v1/

v1
� 1

v1
e

�v1
�
3
2C ln.1�v1/

v1

� �
1 � eln.1�v1/




D � ln.1 � v1/

v1
� e�v1

�
3
2C ln.1�v1/

v1

�
:
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Using the fact that e�x > 1 � x for x > 0 and (3.75) we have

lnŒ1C y.t�n /� � 3

2
v1 � .1 � v1/ ln.1 � v1/

v1
� 1 � v1 � 1

6
v21:

For

Z t�n

t�n �1
˛.t/dt � 3

2
< � ln.1 � v1/

v1
;

we have

lnŒ1C y.t�n /� �
Z t�n

t�n �1
˛.t/dt � 1

v1

�
e� 3

2 v1e
v1
R t�n
t�n �1

˛.s/ds � e� 3
2 v1

�
:

The function

f .x/ D x � 1

v1
e� 3

2 v1ev1x
;

is increasing for 0 � x � 3
2
: Thus by (3.76), we have

lnŒ1C y.t�n /� � 3

2
� 1

v1

h
1 � e� 3

2 v1
i

� v1 � 1

6
v21:

Case 2.

� ln.1 � v1/

v1
�
Z t�n

t�n �1
˛.s/ds � 3

2
:

Choose � 2 .0; 1/ such that

Z t�n

t�n ��
˛.s/ds D � ln.1 � v1/

v1
:

Then by (3.84) and (3.74),

lnŒ1C y.t�n /�

�
Z t�n ��

t�n �1
˛.s/v1ds C

Z t�n

t�n ��
˛.t/

�
1 � e�v1

R t�n �1
t�1 ˛.s/ds

�
dt

� v1

Z t�n ��

t�n �1
˛.s/ds C

Z t�n

t�n ��
˛.s/ds
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�e� 3
2 v1

Z t�n

t�n ��
˛.t/e

v1
R t
t�n �1

˛.s/ds
dt

D v1

Z t�n ��

t�n �1
˛.s/ds C

Z t�n

t�n ��
˛.s/ds

� 1

v1
e�v1.

3
2 /

�
e

v1
R t�n
t�n �1

˛.s/ds � ev1
R t�n ��

t�n �1
˛.s/ds

�

D v1

Z t�n ��

t�n �1
˛.s/ds C

Z t�n

t�n ��
˛.s/ds

� 1

v1
e

�v1

�
3
2�R t�n

t�n �1
˛.s/ds

� �
1 � e�v1

R t�n
t�n ��

˛.s/ds
�

D v1

Z t�n ��

t�n �1
˛.s/ds C

Z t�n

t�n ��
˛.s/ds � e�v1

�
3
2�R t�n

t�n �1
˛.s/ds

�

D v1

Z t�n

t�n �1
˛.s/ds C .1 � v1/

Z t�n

t�n ��
˛.s/ds � e�v1

�
3
2�R t�n

t�n �1
˛.s/ds

�

� 3

2
v1 � .1 � v1/ ln.1 � v1/

v1
� 1:

Since,

g.s/ D v1x � e�v1.
3
2�x/;

is increasing for 0 � x � 3=2 we have

lnŒ1C y.t�n /� � v1 � 1

6
v21:

Letting n ! 1 and " ! 0; we have

lnŒ1C u� � v � 1

6
v2:

or

u � ev� 1
6 v2 � 1: (3.85)



108 3 Stability of Delay Logistic Models

Next, let fs�
n g be an increasing sequence such that s�

n � t0 C 1; y
0

.s�
n / D

0; limn!1 y.s�
n / D �v and limn!1 s�

n D 1: We show that

� lnŒ1C y.s�
n /� � u1 C 1

6
u21:

For t 2 Œs�
n � 1; s�

n �; integrating (3.83) from t � 1 to s�
n � 1; we have

lnŒ1C y.t � 1/� � u1

Z s�n �1

t�1
˛.s/ds;

or

y.t � 1/ � �1C exp

 
u1

Z s�n �1

t�1
˛.s/ds

!
:

By (3.69)

Œln.1C y.t//�
0 � �˛.t/

�
eu1

R s�n �1
t�1 ˛.s/ds � 1

�
; for t 2 Œs�

n � 1; s�
n �: (3.86)

There are three subcases to consider.

Case (I).
R s�n
s�n �1 ˛.s/ds � 1:

Integrating (3.83) from s�
n � 1 to s�

n ; we have

� ln.1C y.s�
n // � u1

Z s�n

s�n �1
˛.s/ds � u1 � u1 C 1

6
u21:

Case (II).

1 <

Z s�n

s�n �1
˛.s/ds � 3=2 � ln.1C u1/

u1
:

Clearly u1 > 2 in this case. We have by (3.77) that

� ln.1C y.s�
n // � u1

Z s�n

s�n �1
˛.s/ds � 3

2
u1 � ln.1C u1/ � u1 C 1

6
u21:

Case (III).

3=2 � ln.1C u1/

u1
<

Z s�n

s�n �1
˛.s/ds � 3=2:
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Choose � 2 .0; 1/; such that

Z s�n ��

s�n �1
˛.s/ds D 3=2 � ln.1C u1/

u1
:

Then by (3.83) and (3.86), we have

�Œln.1C y.t//�
0 � min

�
˛.t/u1; ˛.t/

�
eu1

R s�n �1
t�1 ˛.s/ds � 1

�	
:

Consequently

� lnŒ1C y.s�
n /�

�
Z s�n ��

s�n �1
˛.s/u1ds C

Z s�n

s�n ��
˛.t/

�
eu1

R s�n �1
t�1 ˛.s/ds � 1

�
dt

� u1

�
3

2
� ln.u1 C 1/

u1

�
C e

3
2 u1

Z s�n

s�n ��
˛.t/e

�u1
R t
s�n �1

˛.s/ds
dt

�
Z s�n

s�n ��
˛.t/dt D u1

�
3

2
� ln.u1 C 1/

u1

�

C 1

u1

"
e

u1

�
3
2�R s�n ��

s�n �1
˛.s/d

�
� eu1

�
3
2�R s�n

s�n �1
˛.s/d

�#
�
Z s�n

s�n ��
˛.t/dt:

� u1

�
3

2
� ln.u1 C 1/

u1

�

C 1

u1

"
1C u1 � 1 � u1

 
3

2
�
Z s�n

s�n �1
˛.s/d

!#
�
Z s�n

s�n ��
˛.t/dt

due to the choice of � and since ex � 1C x for x � 0: Thus

� lnŒ1C y.s�
n /�

� u1

�
3

2
� ln.u1 C 1/

u1

�
C 1 � 3

2
C
Z s�n

s�n �1
˛.t/dt �

Z s�n

s�n ��
˛.t/dt

D u1

�
3

2
� ln.u1 C 1/

u1

�
� 1

2
C
Z s�n ��

s�n �1
˛.t/dt

� 1 � ln.1C u1/C 3

2
u1 � ln.u1 C 1/

u1

D 1 � .1C u1/ ln.1C u1/

u1
C 3

2
u1 � u1 C 1

6
u21
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by (3.78). Thus we have shown that

� lnŒ1C y.s�
n /� � u1 C 1

6
u21:

Letting n ! 1 and " ! 0; we have

� ln.1 � v/ � u C 1

6
u2:

or

1 � v � e�u� 1
6 u2 :

Since u; v satisfy the inequalities in (3.73) with ˇ D 1=6; by Lemma 3.2.2
u D v D 0. This completes the proof. �

In the following we discuss the periodic delay logistic equation

N
0

.t/ D r.t/N.t/

�
1 � N.t � n�/

K.t/

�
; (3.87)

with the assumption that n is a positive integer, � is a positive constant, r; K are
positive continuous periodic functions of period �: With (3.87) assume

�
N.t/ D '.t/; for n� < t < 0;
' 2 C ŒŒ�n�; 0�;RC�; '.0/ > 0: (3.88)

We note that if (3.87) has a periodic solution of period � , then such a solution is also
a periodic solution of the periodic logistic equation

N
0

.t/ D r.t/N.t/

�
1 � N.t/

K.t/

�
: (3.89)

Conversely if (3.89) has a periodic solution of period � , then such a solution is
also a periodic solution of the periodic logistic equation (3.87). The unique periodic
solution N � of (3.89) is given by

N � D
�Z 1

0

r.t � s/
K.t � s/ exp

�
�
Z s

0

r.t � u/du

�
ds

��1

D 1 � exp.� R �
0
r.s/ds/R �

0
r.t�s/
K.t�s/ exp


� R s
0
r.t � u/du

�
ds
:

In the following, we establish some sufficient conditions for the global stability
of (3.87). The result is adapted from [86].
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Theorem 3.2.3. Assume that r andK are positive continuous periodic functions of
period � > 0: If

Z n�

0

r.t/dt � 3

2
; (3.90)

then the periodic delay equation (3.87) has a unique periodic solution N �.t/ and
all other solutions N.t/ of (3.87), (3.88) satisfies

lim
t!1ŒN.t/ �N �.t/� D 0; (3.91)

Proof. Let N.t/ be any positive solution of (3.87), (3.88) and define v such that

lnŒ1C v.t/� D lnN.t/ � lnN �.t/: (3.92)

and note that v is given by

dv

dt
D �a.t/Œ1C v.t/�v.t � n�/; (3.93)

where

a.t/ D r.t/N �.t/
K.t/

: (3.94)

It is sufficient to prove that the solution of (3.93) with the initial condition

1C v.s/ � 0, 1C v.0/ > 0; for s 2 Œ�n�; 0�;

satisfies

lim
t!1 v.t/ D 0: (3.95)

We let

w D �.t/ D
Z t

t0

a.s/ds; (3.96)

where t0 is any nonnegative number and note that w ! 1, as t ! 1 and ��1.t/
exists. Also

�.t � n�/ D
Z t�n�

t0

a.s/ds D w �
Z ��1.w/

��1.w/�n�
a.s/ds;
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and hence

.t � n�/ D ��1.w �
Z ��1.w/

��1.w/�n�
a.s/ds/: (3.97)

If we define

v.t/ D v.��1.w// D z.w/; (3.98)

then we have from (3.93), (3.97), and (3.98) that

d z.w/

dw
D �Œ1C z.w/�z.w � 	.w//; (3.99)

where

	.w/ D
Z ��1.w/

��1.w/�n�
a.s/ds D

Z t

t�n�
a.s/ds D

Z n�

0

a.s/ds: (3.100)

From the fact that N � is a positive periodic solution of (3.89) of period � we have

0 D
Z n�

0

.N �/0.s/
N �.s/

ds D
Z n�

0

r.s/ds �
Z n�

0

a.s/ds;

and hence
Z n�

0

r.s/ds D
Z n�

0

a.s/ds:

Thus (3.99) simplifies to

d z.w/

dw
D �Œ1C z.w/�z.w �

Z n�

0

r.s/ds/; (3.101)

which is the familiar autonomous delay logistic equation. Now, if (3.90) holds, then
by Theorem 3.1.2 (here in Sect. 3.1.2, ˛ D 1 :

R n�
0
r.s/ds) we have limw!1 z.w/ D

0 and then by (3.96) it follows that limt!1 v.t/ D 0: The proof is complete. �

3.2.3 Global Exponential Stability

Motivated by (3.68) in this section we consider

y
0

.t/ D �r.t/.1C y.t//y.t � �/ (3.102)
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where � > 0. We are interested in solutions of (3.102) corresponding to the usual
initial condition 
 of the form

1C 
.s/ � 0; 1C 
.0/ > 0; s 2 Œ��; 0�:

Theorem 3.2.4. Let r be a non-negative continuous function defined on Œ0;1/ such
that Z 1

t0

r.s/ds D 1 for any t0 � 0; (3.103)

and

lim
t!1

Z t

t��
r.s/ds D r�:

If

r� exp.r�.1 � exp.�r�.e�r� � 1//// < 1;

then the trivial solution of (3.102) is exponentially globally asymptotically stable.

Proof. Let x.t/ be a solution of (3.102). As in the proof of Theorem 3.1.3 we
introduce the variables u and ı where (here t0 is a nonnegative number)

u D ı.t/ D
Z t

t0

r.s/ds;

and

x.t/ D x.ı�1.u// D z.u/;

so that

d z

du
D �.1C z.u//z.u � ı�.u//;

where

ı�.u/ D
Z t

t��
r.s/ds:

Since

lim
u!1 ı�.u/ D lim

t!1

Z t

t��
r.s/ds D r�;

the conclusion follows from Theorem 3.1.4. The proof is complete. �
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Motivated from (3.56) we consider

x
0

.t/ D �r.t/.1C x.t//x.t � �.t//: (3.104)

We consider solutions of (3.104) corresponding to the initial condition 
 of the form

1C 
.s/ � 0; 1C 
.0/ > 0; s 2 Œ� sup
u>0

�.u/; 0�:

Theorem 3.2.5. Assume the following.

(i) r is a nonnegative continuous function defined for t � 0 such that

Z 1
r.s/ds D 1; and

Z 1
r.s/e�asds < 1; for any a > 0I (3.105)

(ii) � is a continuous real value for t � 0 such that there exists a positive constant
�0 satisfying

Z 1
j�.s/ � �0j r.s/ds < 1; and lim t!1

Z t

t��0
r.s/ds D r�:

If

r� exp.r�.1 � exp.�r�.e�r� � 1//// < 1; (3.106)

then the trivial solution of (3.104) is globally asymptotically stable.

Proof. We rewrite (3.104) in the form

x
0

.t/ D �r.t/.1Cx.t//x.t��0/Cr.t/.1Cx.t//.x.t��0/�x.t��.t//; (3.107)

and compare it with

y
0

.t/ D �r.t/.1C y.t//y.t � �0/; (3.108)

since we know that from Theorem 3.2.4 that the trivial solution of (3.108) is
exponentially globally asymptotically stable. The variational system associated
with (3.108) is

d .t/

dt
D �r.t/y.t � �0/ .t/ � r.t/.1C y.t// .t � �0/; (3.109)

where y denotes any solution of (3.108). Since y.t/ ! 0; as t ! 1 exponentially,
we have immediately from (3.105) (second condition)

Z 1
r.s/y.s/ds < 1,
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implying

lim
t!1

Z t

t��0
r.s/y.s/ds D 0: (3.110)

We now let

A.t/ D r.t/y.t � �0/,

z.t/ D  .t/ exp

�Z t

T

A.s/ds

�
; for t � T > t0:

Note that (3.109) simplifies to

z
0

.t/ D �Q.t/z.t � �0/; (3.111)

where

Q.t/ D r.t/.1C y.t// exp

�Z t

t��0
A.s/ds

�
I (3.112)

since y.t/ ! 0; and

exp

�Z t

t��0
A.s/ds

�
! 0, as t ! 1;

we have

lim
t!1

Z t

t��0
Q.s/ds D r�: (3.113)

It follows from (3.113) and Theorem 3.1.3 (see the proof in Theorem 3.1.3) that the
trivial solution of (3.111) is exponentially globally asymptotically stable. We have
from the nonlinear variation of constant formula

y.t/ D x.t/C
Z 1

t

.T .t; s; xs/X0/r.s/

�.1C x.s//.x.s � �0/ � x.s � �.s///ds; (3.114)

where x is any solution of (3.104). By the boundedness of all solutions of (3.104)
we have for some constant K1,ˇ̌̌

ˇ
Z 1

t

.T .t; s; xs/X0/r.s/.1C x.s//.x.s � �0/ � x.s � �.s///ds
ˇ̌̌
ˇ

� K1

Z 1

t

k.T .t; s; xs/X0/k jr.s/j
ˇ̌̌
x

0

.�.s//
ˇ̌̌
j�0 � �.s/j ds

� K2

Z 1

t

r.s/ j�0 � �.s/j ds ! 0; as t ! 1;
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where �.s/ lies between s � �0 and s � �.s/; s � t0 and K2 is a positive number
such that

k.T .t; s; xs/X0/k jr.s/j
ˇ̌̌
x

0

.�.s//
ˇ̌̌

� K2; for some t � s � 0:

The conclusion follows from (3.114) and (3.105). This completes the proof. �

3.3 A Generalized Logistic Model

In this section we consider the generalized model

N
0

.t/ D r.t/N.t/f

�
1 � N.t � �.t//

K

�
: (3.115)

Motivated by (3.115) in this section we consider

y
0

.t/ D r.t/.1C y.t//f .�y.t � �.t/// (3.116)

where r and � are continuous functions defined on Œ0,1/ such that r.t/ > 0, 0 �
�.t/ < � (let �0 � supt>0 �.t/), f is a continuous function on .�1;1/ such that
yf .y/ > 0 for y ¤ 0: The results in this section are adapted from [85].

Under the standard type of initial condition

1C 
.s/ � 0; 1C 
.0/ > 0 for s 2 Œ� sup
t>0

�.t/; 0�/;

we see that the solutions of (3.116) satisfy 1C y.t/ > 0 for t � 0:

Lemma 3.3.1. Assume that
Z 1

0

r.s/ds D 1:

Then every solution of (3.116) is either oscillatory or tends to zero as t ! 1
monotonically.

Proof. Assume y is an nonoscillatory solution of (3.116) and suppose that

y.t/ > 0; y.t � �.t// > 0, for t � T > 0:

From (3.116), since yf .y/ > 0 for y ¤ 0; we have y
0

.t/ < 0 for t � T; so

lim
t!1y.t/ D ˛ � 0: (3.117)
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Suppose ˛ > 0. Then y.t/ � ˛ and �y.t/ � �˛ for t � T: Let

�m D sup
t�T

f .�y.t � �.t//:

It follows from (3.116) that

y
0

.t/ � �mr.t/.1C y.t// � �mr.t/.1C ˛/;

so

y.t/ � y.T / � �m.1C ˛/

Z t

T

r.s/ds ! �1; as t ! 1;

showing that it becomes negative for t sufficiently large, and this contradiction
implies that ˛ D 0: The convergence to zero of an eventually negative solution
of (3.116) can be treated similarly and is omitted. The proof is complete. �

Lemma 3.3.2. Assume thatZ t

t��.t/
r.s/ds; is bounded for t > 0. (3.118)

Then every oscillatory solution of (3.116) is bounded for t � 0; and if y.tk/ is a
local maximum then

y.tk/ � exp

�
M

Z tk

tk��.tk/
r.s/ds

�
� 1; (3.119)

where

M WD sup
y>�1

f .�y/ D sup
�y<1

f .�y/:

Proof. Let fJkg denote a sequence of nonoverlapping intervals on Œ0,1/ such that
y is a zero at the end-points of any Jk and y is of the same sign in the interior of Jk:
Let tk denote a typical local maximum for y. This means that y

0

.tk/ D 0; and this
implies that

f .�y.tk � �.tk// D 0; which leads to y.tk � �.tk// D 0:

Assuming that y > 0 on .tk � �.tk/; tk/ an integration of (3.116) on Œtk � �.tk/; tk�

leads to

ln.1C y.tk// D
Z tk

tk��.tk/
r.s/f .�y.s � �.s//ds � M

Z tk

tk��.tk/
r.s/ds;

from which (3.119) follows. This completes the proof. �
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Theorem 3.3.1. The trivial solution of (3.116) is (locally) uniformly stable if

Z t

t��.t/
r.s/ds ! 0; as t ! 1: (3.120)

Proof. Let y denote any solution of (3.116). Let " > 0 be given and

M."/ D supfjf .�y/j I jyj � "g:

There exists a T ."/ > 0 satisfying

Z t

t��.t/
r.s/ds <

"

2.1C "/M."/
; for t � T ."/: (3.121)

We show that for any


 W Œt0 � �0; t0� ! R; t0 � T ."/; k
k D sup
t2Œt0��0;t0�

j
.t/j < 1

2
";

jy.t I t0; 
/j < "; for all t � t0: (3.122)

Suppose that (3.122) does not hold. Then there exists a solution y.t/ D y.t I t0; 
/
with t0 > T ."/ and k
k D supt2Œt0��0;t0� j
.t/j < 1

2
" satisfying jy.t3/j � " for

t3 > t0: Let v.y/ D y2,

t2 D infft > t0 W jy.t/j > "g; t1 D infft < t2 W jy.t/j D "

2
g:

Note v.y.t1// D 1
4
"2, v.y.t2// D "2, 1

4
"2 < v.t/ < "2 for t 2 .t1; t2/ and

dv
dt
.y.t//jtDt2 > 0.
We claim t1 � t2 � �.t2/. Suppose t1 < t2 � �.t2/. Now

0 <
dv

dt
.y.t//tDt2 D 2 y.t2/ r.t2/ Œ1C y.t2/� f .�y.t2 � �.t2///: (3.123)

However y.t2/ y.t2��.t2// > 0 since t1 < t2��.t2/ < t2, so we have a contradiction
with (3.123). Thus t1 � t2 � �.t2/.

On integrating (3.116), we have

1

2
" D jy.t2/j � jy.t1/j �

Z t2

t1

r.s/.1C jy.s/j/ jf .�y.s � �.s///j ds

� .1C "/M."/

Z t2

t2��.t2/
r.s/ds <

1

2
"; (3.124)
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which is a contradiction and hence (3.122) holds. It is well known that solutions
of (3.116) depend continuously on the initial date, from which it follows that for any
t0 2 Œ0; T ."/�; there exists a ı."/ such that if 
 W Œt0 � �0; t0� ! R and k
k < ı."/;

then

jy.t I t0; 
/j < 1

2
": (3.125)

Combining (3.122) together with (3.125), we derive the result and this completes
the proof. �

Theorem 3.3.2. Assume that (3.120) holds and

Z 1

0

r.s/ds D 1: (3.126)

Then the trivial solution of (3.116) is globally attractive.

Proof. It follows from Theorem 3.3.1 that the trivial solution of (3.116 is uniformly
(locally) stable. We now show that every solution of (3.116) approaches the trivial
solution as t ! 1. By Lemma 3.3.1 and condition (3.126), every nonoscillatory
solution of (3.116) tends to zero as t ! 1:By Lemma 3.3.2 all oscillatory solutions
are bounded on .0;1/:

Let y.t/ be an oscillatory solution of (3.116) which does not tend to zero as
t ! 1: There exist " > 0 and sequences ftng; ft 0

ng as n ! 1 such that for each n,
either

y.tn/ D 0; y.t
0

n/ D "; y.t
0

n/ � 0, and 0 < y.t/ < ";

for tn < t < t
0

n < tnC1 or

y.tn/ D 0; y.t
0

n/ D �"; y 0

.t
0

n/ < 0; and 0 > y.t/ > �";

for tn < t < t
0

n < t
0

nC1:
We consider the former case since the later case can be treated similarly.

Integrating (3.116) over .tn; t
0

n/; and using Lemma 3.3.2 for large n, and letting L
be the bound for .1C y.s//f .�y.s � �.s/// on Œ��0;1/; yields

" D y.t
0

n/ � y.tn/ �
Z tn

t
0

n

r.s/.1C y.s//f .�y.s � �.s///ds

� L

Z tn

t
0

n

r.s/ds � L

Z tn

t
0

n��.t 0n/
r.s/ds < ";

which is impossible. The proof is complete. �
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3.4 Models with Impulses

Consider the impulsive delay logistic model

N
0

.t/ D r.t/N.t/

�
1 � N.t � �/

K

�
; t � 0; t ¤ tk (3.127)

where r 2 C.Œ0;1/;RC/; � > 0; with the following impulsive condition

N.tCk / �K D bk


N.t�k � 0/ �K� ; t D tk; k D 1; 2,. . . , (3.128)

such that 0 � t1 < t2 < : : : < tk < tkC1 < : : : with limk!1 tk D 1; fbkg is
a sequence of positive numbers with bk � 1 and x

0

.t/ denotes the left-hand side
derivative of x.t/: The results in this section are adapted from [82].

We consider solutions of (3.127), (3.128) corresponding to the initial condition

N.t/ D 
.t/ � 0; where t 2 Œ��; 0�; 
 2 C Œ��; 0�; and 
.0/ > 0: (3.129)

From the method of steps, we see that (3.127), (3.128), and (3.129) have a unique
solution N.t/ defined on Œ��;1/; with N.t/ > 0 for all t � 0:

Motivated by (3.127), (3.128) in this section we consider

x
0

.t/C r.t/x.t � �/.1C x.t// D 0; t � 0; t ¤ tk; (3.130)

x.tCk / D bkx.t
�
k /; t D tk; k D 1; 2, : : : : (3.131)

We consider solutions x corresponding to the initial condition

�
x.t/ D 
.t/ � �1; where t 2 Œ��; 0�;

 2 C Œ��; 0� and 
.0/ > �1; (3.132)

and note x.t/ > �1 for all t � 0:

Since 0 < bk � 1; we have only the following two possibilities to consider:

1Y
kD1

bk D 0; (3.133)

and

1Y
kD1

bk D b 2 .0; 1�: (3.134)

First, we consider the case when (3.133) holds.
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Theorem 3.4.1. Assume that (3.133) holds, and that

Z t

t��
r.s/

Y
s���tk<s

b�1
k ds � 1 for all large t. (3.135)

Then every solution of (3.130), (3.131), (3.132) tends to zero.

Proof. Let x.t/ be a solution of (3.130), (3.131), and (3.132). Then x.t/ > �1 for
t � 0: Set

y.t/ D x.t/
Y

0�tk<t
b�1
k ; t � 0: (3.136)

By (3.130), (3.131), we have

y
0

.t/C a.t/y.t � �/
2
41C

Y
0�tk<t

bk.t/y.t/

3
5 D 0; t � 0; (3.137)

where

a.t/ D r.t/
Y

t���tk<t
b�1
k : (3.138)

Then a.t/ is piecewise continuous on Œ0,1/ and by (3.135) we have

Z t

t��
a.s/ds � 1; t � T; for some large T � 2�: (3.139)

We need only to prove that y.t/ is bounded. If y.t/ is nonoscillatory, then by (3.137)
jy.t/j is eventually nonincreasing, and so y.t/ is bounded. Now we assume that y.t/
is oscillatory. If y.t/ is unbounded, we prove that

lim
t!1 supy.t/ D 1 and lim

t!1 infy.t/ D �1: (3.140)

Indeed, if limt!1 inf y.t/ > �1; then there is ˛ 2 .0;1/ such that y.t/ � �˛
for t � 0: Thus, by (3.137) we have

y
0

.t/ � ˛a.t/

2
41C y.t/

Y
0�tk<t

bk

3
5 ; t � �: (3.141)

Let t� > T C � be a local left-sided maximum point of y.t/. We prove that y.t�/ �
e˛ �1; which implies that limt!1 supy.t/ � e˛ �1 < 1; and so y.t/ is bounded.
We need only to suppose that y.t�/ > 0: Then y

0

.t�/ � 0: By (3.137), we have
y.t���/ � 0: Thus, there is a 	� 2 Œt���; t�/ such that y.	�/ D 0 and y.t/ > 0 for
t 2 .	�; t��: Noting that 0 < bk � 1 and using (3.141), we get
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y
0

.t/ � ˛a.t/ Œ1C y.t/� ; t 2 Œ	�; t��: (3.142)

Integrating (3.142) from 	� to t� we have

ln.1C y.t�// � ˛

Z t�

	�

a.s/ds � ˛;

which yields y.t�/ � e˛ �1: Similarly, we may prove that if limt!1 supy.t/ < 1
then limt!1 inf y.t/ > �1: Therefore, we have shown that if y.t/ is unbounded,
then (3.140) holds.

Now, let fSng be an increasing infinite sequence such that T C 4� < Sn with
Sn ! 1 as n ! 1; and y.Sn/ D maxT�t�Snfy.t/g > 0: Clearly, fy.Sn/g is
increasing, y.Sn/ ! 1 as n ! 1; y

0

.Sn/ � 0: Also, choose sn 2 .T C 2�; Sn/

such that y.sn/ D minT�t�snfy.t/g < 0: Then sn ! 1; y.sn/ ! �1 as n ! 1;

and y
0

.sn/ � 0: By (3.137), we have y.Sn � �/ � 0 and y.sn � �/ � 0: Thus there
are �n 2 ŒSn � �; Sn/ and 	n 2 Œsn � �; sn/ such that y.�n/ D y.	n/ D 0; y.t/ > 0

for t 2 .�n; Sn� and y.t/ < 0 for t 2 .	n; sn�: We easily see that sn < �n: Set

Mn D y.Sn/
Y

0�tk<�n
bk; mn D �y.sn/

Y
0�tk<�n

bk:

It is clear that 0 < mn < 1: From (3.137), we have

y
0

.t/ � �a.t/y.sn/
2
41C y.t/

Y
0�tk<�n

bk.t/

3
5 ; for �n � t � Sn; (3.143)

and

� y 0

.t/ � a.t/y.Sn/

2
41C y.t/

Y
0�tk<�n

bk.t/

3
5 ; for 	n � t � sn: (3.144)

By integration, we have,

ln

2
41C y.t/

Y
0�tk<�n

bk.t/

3
5 � mn

Z Sn

�n

a.s/ds � mn;

and

� ln

2
41C y.t/

Y
0�tk<�n

bk.t/

3
5 � Mn

Z sn

	n

a.s/ds � Mn:
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That is

�
ln.1CMn/ � mn;

� ln.1 �mn/ � Mn;

which yields by Lemma 3.2.2 (with u D mn; v D Mn and ˇ D 0/ that
mn D Mn D 0: This contradiction implies that y.t/ is bounded and so the proof
is complete. �

Next, we consider that case when (3.134) holds.

Theorem 3.4.2. Assume that (3.134) holds, and that
Z 1

0

r.t/dt D 1; (3.145)

and Z t

t��
r.s/

Y
s���tk<s

b�1
k ds � 3

2
; for all large t. (3.146)

Then every solution of (3.130), (3.131), and (3.132) tends to zero.

Proof. Let x.t/ be a solution of (3.130), (3.131), and (3.132). Define y.t/ as
in (3.136). Then y.t/ satisfies (3.137). It suffices to show that

lim
t!1y.t/ D 0: (3.147)

If y.t/ is nonoscillatory, then by (3.137) jy.t/j is eventually decreasing. In this
case, we easily prove (3.147) by using (3.145) and the fact that 0 < bk � 1: Now
we assume that y.t/ is oscillatory. We shall prove that y.t/ is bounded above, and is
bounded below away from �1. Set a.t/ D r.t/

Q
t���tk<t b

�1
k : By (3.146), choose

T > 2� such that Z t

t��
a.s/ ds � 3

2
; for t � T: (3.148)

Let t�.> T C 2�/ be a local maximum point of y.t/ with y.t�/ > 0: Then the
left derivative y

0

.t�/ � 0; and by (3.137), y.t� � �/ � 0: Thus, there exists � 2
Œt� � �; t�/ such that y(�/ D 0 and y.t/ > 0 for t 2 .�; t��: Clearly y.t/ > �b�1
for t � 0: Thus from (3.137), we have

y
0

.t/ � �b�1a.t/.1C y.t//; for � � t � t�;

which yields

ln.1C y.t�// � b�1
Z t�

�

a.s/ds � 3=.2b/;
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or

y.t�/ � e3=.2b/ � 1;

which proves that

y.t/ � e3=.2b/ � 1; for all t � T C 2�:

Next, let t� > T C 3� be a local minimum point of y.t/ with y.t�/ < 0: Then
y

0

.t�/ � 0 and y.t� � �/ � 0; by (3.137). Thus, there exists a 	 2 Œt� � �; t�/ such
that y.	/ D 0 and y.t/ < 0 for t 2 .	; t��: For 	 � t � t�; from (3.137) we have

�y 0

.t/ � .e3=.2b/ � 1/a.t/.1C y.t//:

Integrating this from 	 to t�, we get

� ln.1C b y.t�// � .e3=.2b/ � 1/
Z t�

	

a.s/ds � 3

2
b.e3=.2b/ � 1/:

That is

y.t�/ �
h
�1C e�.3=2/b.e3=.2b/�1/

i
b

;

which proves that

y.t/ >

h
�1C e�.3=2/b.e3=.2b/�1/

i
b

, for all t � T C 3�:

Now, set


1 D lim sup
t!1

y.t/ and 
2 D lim inf
t!1 y.t/:

Then
h
�1C e�.3=2/b.e3=.2b/�1/

i
b

� 
2 � 0 � 
1 � e3=.2b/ � 1:

To complete the proof it suffices to prove that 
1 D 
2 D 0: For any 0 < " <

1C b
2; there exists T1 > T C 2� such that

�1
b
< �� � 
2 � " < y.t � �/ < 
1 C � � 
; for t � T1: (3.149)
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Substituting (3.149) into (3.137), we have

y
0

.t/ � �a.t/Œ1C y.t/
Y

0�tk<t
bk�; t � T1; (3.150)

y
0

.t/ � �
a.t/Œ1C y.t/
Y

0�tk<t
bk�; t � T1: (3.151)

Let fSng be an increasing sequence such that Sn � T1 C 2� , limn!1 Sn D
1; y.Sn/ > 0; limn!1 y.Sn/ D 
1; y

0

.Sn/ � 0: By (3.137), we have
y.Sn � �/ � 0: Thus, there is �n 2 ŒSn � �; Sn/ such that y(�n/ D 0 and y.t/ > 0

for �n < t � Sn: Set

˛n D
Y

0�tk<�n
bk:

Then 0 < ˛n < 1 and limn!1 ˛n D b: Now we show that

� ˛ny.t/ � 1 � exp

"
��˛n

Z �n

t

a.s/ds

#
; for �n � � � t � �n: (3.152)

If y.t/ � 0; then (3.152) is clearly true. Now suppose that y.t/ < 0. Choose�
�n 2 .t; �n� such that y.

�
�n/ D 0 and y.s/ < 0 for s 2 Œt;

�
�n�; and we have

y
0

.s/ � �a.s/.1C ˛ny.s//; for s 2 Œt;
�
�n�:

Integrating this from t to
�
�n we obtain

� lnŒ1C ˛ny.t/� � �˛n

Z �

�n

t

˛.s/ds � �˛n

Z �n

t

˛.s/ds;

or

˛ny.t/ � �1C exp

"
��˛n

Z �n

t

a.s/ds

#
;

which shows (3.152). Thus for t 2 Œ�n; Sn�; we have

�˛n y.t � �/ � �1C exp

"
��˛n

Z �n

t��
a.s/ds

#
:



126 3 Stability of Delay Logistic Models

Substituting in (3.137) and noting that y.t/ > 0 for t 2 .�n; Sn�; we have

˛ny
0

.t/ � a.t/Œ1C ˛ny.t/�

"
1 � exp

"
��˛n

Z �n

t��
a.s/ds

##
; t 2 Œ�n; Sn�:

(3.153)

From (3.150) we have

˛ny
0

.t/ � �˛n a.t/ Œ1C �˛ny.t/� ; t 2 Œ�n; Sn�: (3.154)

The rest of the proof is very similar (see [82]) to that of Theorem 3.2.2 and hence is
omitted. �



Chapter 4
Logistic Models with Piecewise Arguments

There is no philosophy, which is not founded upon knowledge of
the phenomena, but to get any profit from this knowledge it is
absolutely necessary to be a mathematician.

Daniel Bernoulli (1700–1782).

When a mathematician has no more ideas he pursues
axiomatics.

Felix Klein (1849–1925).

Differential equation with piecewise continuous argument (or DEPCA) will be
discussed in this chapter. A typical logistic model with a piecewise constant
argument is of the form

dN.t/

dt
D rN.t/ Œ1 �N.Œt �/� ; t � 0; (4.1)

where Œ�� denotes the greatest-integer function. On any interval of the form
Œn; nC 1/ for n D 0; 1; 2; : : : ; by integrating (4.1), we obtain for n � t < nC1 and
n D 0; 1; 2; : : : that

N.t/ D N.n/ expf1 �N.n/�.t � n/g: (4.2)

Taking the limit as t ! nC 1 in (4.2), we find

N.nC 1/ D N.n/ expf1 �N.n/�g; n D 0; 1; 2; : : : . (4.3)

In this chapter we discuss autonomous and nonautonomous logistic equations with
piecewise arguments.

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology,
DOI 10.1007/978-3-319-06557-1__4, © Springer International Publishing Switzerland 2014
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4.1 Oscillation of Autonomous Models

In this section, we establish some sufficient conditions for the oscillation of the
logistic model with piecewise constant argument

dN.t/

dt
D rN.t/

2
41 �

mX
jD0

pjN Œt � j �
3
5 ; t � 0: (4.4)

The results in this section are adapted from [27].
By a solution of (4.4), we mean a function N.t/ which is defined on the set

f�m;�mC 1; : : : ;�1; 0g [ .0;1/;

and which possesses the following properties:

(i) N.t/ is continuous on Œ0,1/:

(ii) The derivative dN.t/

dt
exists at each point t 2 Œ0;1/ with possible exception of

the points t 2 f0; 1; 2; : : :g where one-sided derivatives exist.
(iii) Equation (4.4) is satisfied on each interval Œn; nC 1/ for n D 0; 1; 2; : : : .

We assume that (4.4) is supplemented with the initial condition

N.0/ D N0 > 0 and N.�j / D N�j � 0; j D 1; 2; 3; : : : ; m. (4.5)

Lemma 4.1.1. Let N0 > 0 and N.�j / D N�j � 0 for j D 1; 2; 3; : : : ; m be
given. The initial value problem (4.4) and (4.5) has a unique positive solution N.t/
given by

N.t/ D Nn exp

8<
:r

2
41 �

mX
jD0

pjNn�j

3
5 .t � n/

9=
; ; n � t < nC 1; (4.6)

and n D 0; 1; 2; : : :, where the sequence fNng satisfies the difference equation

NnC1 D Nn exp

8<
:r

2
41 �

mX
jD0

pjNn�j

3
5
9=
; ; n D 0; 1; 2; : : : : (4.7)

Proof. For every n D 0; 1; 2; : : : and n � t < nC 1; (4.4) becomes

dN.t/

dt
D rN.t/

2
41 �

mX
jD0

pjNn�j

3
5 ; n � t < nC 1; (4.8)
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where we use the notations Nn D N.n/ for n 2 f�m;�mC 1; : : : ;�1; 0; 1; 2; : : :g:
By integrating (4.8) from n to t we obtain (4.6) and by continuity, as t ! nC1 (4.6)
implies (4.7). Let fNng be a solution of the difference equation (4.7) defined on

f�m;�mC 1; : : : ;�1; 0g [ .0;1/

by (4.5) and (4.6). Then one can show by direct substitution into (4.4) that N.t/
satisfies (4.4) and (4.5). It is also clear that N0 > 0 implies that N.t/ > 0 for t > 0.
The proof is complete. �

We note that N0 > 0 implies that N.t/ > 0 for t > 0 for any N�j 2 R;
j D 1; 2; : : : ; m. However, we assume in (4.5) that N�j � 0. The following lemma
is extracted from [30] and will be used in the proof of the main oscillation results.

Lemma 4.1.2. Consider the equation

dx.t/

dt
C

mX
jD0

pj f .x.Œt � j �// D 0; (4.9)

where

p0; p1; : : : ; pm � 0;

mX
jD0

pj > 0; mC p0 ¤ 1;

and the function f satisfies

8<
:

f 2 C.R;R/;uf .u/ > 0 for u ¤ 0,
f .u/ � u for u � 0 .or f .u/ � u for u � 0);

limu!0
f .u/

u D 1:

(4.10)

Then every solution of (4.9) oscillates if and only if the equation


 � 1C
mX
jD0

pj 

�j D 0

has no positive roots.

Now, we are ready to state and prove the main oscillation theorem of (4.4) which
provides necessary and sufficient condition for the oscillation of all positive solution
about the positive steady state

N � WD
0
@ mX
jD0

pj

1
A

�1

: (4.11)
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Theorem 4.1.1. Let N0 > 0 and N�j � 0 for j D 1; 2; 3; : : : ; m be given and

r 2 .0;1/; p0; p1; : : : ; pm � 0;

mX
jD0

pi > 0; mC r ¤ 1:

Then every solution of (4.4) and (4.5) oscillates aboutN � if and only if the equation


 � 1C rPm
jD0 pj

mX
jD0

pj 

�j D 0 (4.12)

has no positive roots.

Proof. Let N.t/ be the positive solution of (4.4) and (4.5), and set

N.t/ D N �ex.t/; t � 0:

Then x.t/ satisfies the equation

dx.t/

dt
C

mX
jD0

rN �pjf .x.Œt � j �// D 0; t � n; (4.13)

where

f .u/ D eu � 1; (4.14)

together with the initial condition

x.j / D log

�
N.j /

N �

�
; for j D 0; 1; 2; : : : ; m:

Clearly N.t/ oscillates about N � if and only if x.t/ oscillates about zero. Also
we observe that the function f defined in (4.14) satisfies the conditions in (4.10).
To complete the proof apply Lemma 4.1.2. �

4.2 Stability of Autonomous Models

In this section, we are concerned with the global attractivity of the logistic models
with piecewise constant argument

dN.t/

dt
D rN.t/

2
41 �

mX
jD0

pjN.Œt � j �/
3
5 ; t � 0; (4.15)
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where dN.t/=dt means the right-hand side derivative at t of the function N.t/.
As usual, we assume that (4.15) is supplemented with an initial condition

N.0/ D N0 > 0 and N.�j / D N�j � 0; j D 1; 2; 3; : : : ; m. (4.16)

In Sect. 4.1, we proved that the initial value problem (4.15) and (4.16) has a unique
positive solution N.t/:

The results in this section are adapted from [27].

Theorem 4.2.1. Assume the following:

(i) r 2 .0;1/; p0; p1; : : : ; pm � 0;
Pm

jD0 pj > 0; mC r ¤ 1I
(ii) er.mC1/ < 2:

Then all solutions of (4.15) corresponding to (4.16) satisfy

lim
t!1N.t/ D N �: (4.17)

Proof. By using the change of variables (see Sect. 4.1) it is sufficient to prove that
every solution x.t/ of the equation

dx.t/

dt
C

mX
jD0

rN �pjf .x.Œt � j �// D 0; t � n; (4.18)

where

f .u/ D eu � 1; (4.19)

satisfies

lim
t!1 x.t/ D 0: (4.20)

First, we assume that x.t/ is eventually nonnegative. From (4.18) we see that

dx.t/

dt
� 0 for n � t < nC 1; (4.21)

where n is sufficiently large, say n � n0: It follows that x.t/ is nonincreasing for
n � n0 and so

lim
t!1 x.t/ D l � 0 exists.

We claim l D 0: Assume that, for of the sake of contradiction that l > 0: Then

˛ �
mX
jD0

rN �pj .el � 1/ D r .el � 1/ > 0;
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and (4.18) yields

dx.t/

dt
� �˛; n � t < nC 1; for n � n0:

We note that

x.t/ � x.n/ � �˛.t � n/;

and as t ! nC 1; we have

x.nC 1/ � x.n/ � �˛; for n � n0: (4.22)

Asn ! 1; (4.22) implies that 0 D l � l � �˛ < 0 which is impossible and
so (4.20) holds for nonnegative solutions.

In a similar way, it follows that (4.20) is true for nonpositive solutions.
To complete the global attractivity it remains to prove that (4.20) is also true for

oscillatory solutions. Now, assume that x.t/ is neither eventually nonnegative nor
eventually nonpositive. Hence, there exists a sequence of points {�ng such that

m < �1 > �2 < : : : < ��n < �nC1 : : : ;

lim
n!1 �n D 1; x.�n/ D 0; n D 0; 1; 2; : : : ;

and in each interval .�n; �nC1/ the function x.t/ assumes both positive and negative
values. Let tn and sn be points in .�n; �nC1/ such that for n D 1; 2; : : :

x.tn/ D maxŒx.t/�; �n; < t < �nC1

and

x.sn/ D minŒx.t/�; �n; < t < �nC1:

Then for n D 1; 2; : : :

x.tn/ > 0 and D�x.tn/ � 0; (4.23)

while

x.sn/ < 0 and D�x.sn/ � 0; (4.24)

where D�x is the left derivative of x. Furthermore, if tn … N;

0 D dx.tn/

dt
D D�x.tn/ D �

mX
jD0

rN �pj
�
ex.Œtn�j �/ � 1
 ; (4.25)
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and if tn 2 N;

0 � D�x.tn/ D �
mX
jD0

rN �pj
�
ex.tn�j�1/ � 1
 : (4.26)

Similarly, if sn … N

0 D dx.sn/

dt
D D�x.tn/ D �

mX
jD0

rN �pj
�
ex.Œsn�j �/ � 1
 ; (4.27)

and if sn 2 N

0 � D�x.sn/ D �
mX
jD0

rN �pj
�
ex.tn�j�1/ � 1
 : (4.28)

Next, we claim that for each n D 1; 2; : : :

x.t/ has a zero Tn 2 Œ�n; tn/ \ Œtn �m � 1; tn/ (4.29)

and

x.t/ has a zero Sn 2 Œ�n; sn/ \ Œsn �m � 1; sn/: (4.30)

If for example (4.29) were false, then (4.25) and the hypothesis that

mX
jD0

pj > 0

together would lead to a contradiction. Also (4.30) is true due to a similar reason.
By integrating (4.13) from Tn to tn and using the fact that tn � Tn � mC 1; we note
immediately that

0 D x.tn/ � x.Tn/C
mX
jD0

rN �pj
Z tn

Tn

�
ex.Œs�j �/ � 1
 ds

� x.tn/ �
mX
jD0

rN �pj .tn � Tn/ � x.tn/ � r.mC 1/:

That is,

x.tn/ < r.mC 1/; n D 1; 2; : : :
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and

x.t/ < r.mC 1/; for t � �1.

By integrating (4.14) from Sn to sn and using the fact that sn � Sn � m C 1 and
using the hypothesis (ii) of the theorem, we find

0 D x.sn/ � x.Sn/C
mX
jD0

rN �pj
Z sn

Sn

�
ex.Œs�j �/ � 1
 ds

� x.sn/C
mX
jD0

rN �pj
�
er.mC1/ � 1
 .mC 1/

� x.sn/C r.mC 1/:

That is

x.sn/ � �r.mC 1/; n D 1; 2; : : : ,

and so

x.t/ � �r.mC 1/; t � �1:

Then we have established that

�M < x.t/ < M; for t � �1; (4.31)

where

M D r.mC 1/:

By using (4.31) and an argument similar to that used above we find that

�M.�e�M C 1/ < x.t/ < M.eM � 1/; t � �1:

Using induction, we can prove that

� Ln < x.t/ < Rn; (4.32)

where

L0 D R0 D M; � LnC1 D M.�e�Ln C 1/; RnC1 D M.eRn � 1/; (4.33)

along with

�M � �Ln � �LnC1 < 0 < RnC1 � Rn � M: (4.34)
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Set

L WD lim
n!1Ln; R WD lim

n!1Rn:

In view of (4.32), we have that limt!1 x.t/ D 0 holds if we show that

L D R D 0: (4.35)

To this end, from (4.33) and (4.34), we have

� L D M.e�L � 1/; R D M.eR � 1/; �M � �L � 0 � R � M: (4.36)

Hence, �L and R are the zeros of the function

'.
/ D M.e
 � 1/ � 


in the interval �M � 
 � M: We have

'.�1/ D '.1/ D 1; '.0/ D 0;

and also ' is decreasing in .�1;� logM/ and increasing in .� logM;1/: Note
also that in view of hypothesis (ii), M 2 .0; 1/ and

'.M/ D M.eM � 1/ �M < M.2 � 1/ �M D 0:

Therefore, '.
/ has exactly one zero in .�1;M/ namely 
 D 0: Thus, �L and R
the zeros of '.
/ in Œ�M;M� are both zero. This proves (4.35) and completes the
proof of theorem. �

Now we establish some sufficient conditions for the global attractivity of N �
of (4.15). The results in this section are adapted from [75]. To prove the main results
it is sufficient, as in the proof of Theorem 4.2.1, to prove that every solution of (4.13)
satisfies condition (4.20).

We consider a sufficient condition for the global attractivity of the solution
x.t/ D 0 for the general differential equation with piecewise constant arguments

dx.t/

dt
D �

mX
jD0

rN �pjf .x.Œt � j �//; t � 0; (4.37)

where p0 > 0 and

�
f .x/ 2 C1.�1;1/; f .0/ D 0, f 0.x/ > 0; x 2 .�1;1/;

limx!�1 f .x/ D �1 and limx!1 f .x/ D 1:
(4.38)
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As a special case when f .x/ D ex � 1; we establish the main results for (4.15).
As usual by integrating both sides of (4.37) from n to t on the interval Œn; n C 1/,
n D 0; 1; 2; : : : ; we find

x.t/ � x.n/ D �
mX
jD0

rN �pj
Z t

n

f .x.n � j //dt

D �rN �
mX
jD0

pj f .x.n � j //.t � n/:

Now, the solution of (4.37) is written for 0 � n � t < nC 1 as

x.t/ D x.n/ � rN �
mX
jD0

pj f .x.n � j //.t � n/:

As t ! nC 1; we have

xnC1 D xn � rN �
mX
jD0

pj f .xn�j /; n D 0; 1; 2; : : : ; (4.39)

where

xn D x.n/; n D 0; 1; 2; : : : :

To show that

lim
t!1 x.t/ D 0;

it is enough to show that

lim
n!1 xn D 0:

For simplicity, we put

r1 D rN �p0 > 0; r2 D rN �
mX
jD1

pj � 0 and '.x/ D x � r1f .x/: (4.40)

Then r D r1 C r2 and (4.39) is written as

xnC1 D '.xn/ � rN �
mX
jD1

pj f .xn�j /; n D 0; 1; 2; : : : : (4.41)

Lemma 4.2.1. In (4.39), if xn is eventually nonpositive or eventually nonnegative,
then limn!1 xn D 0:
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Proof. In (4.39) assume there exists an integer n0 such that xn is eventually
nonpositive for n � n0. From (4.37) and (4.38) it is easy to see that xn � xnC1 � 0

for n � n0 Cm� 1. Let ˛ D limn!1 xn. Then f .˛/ D 0 so ˛ D 0. The other case
is similar. �

To establish the main global stability results we need the following useful
lemmas.

Lemma 4.2.2. Assume that '.x/ attains a unique local maximum at

L� < 0; (4.42)

and for L � 0; put

F.L/ � minf'.L/; '.'.maxfL�; Lg/ � r2f .L//g
�r2f .'.maxfL�; Lg/ � r2f .L//: (4.43)

If F.L/ > L for any L < 0, then

lim
n!1 xn D 0:

Proof. In the case when xn is eventually nonpositive or eventually nonnegative by
Lemma 4.2.1 we have limn!1 xn D 0: Now, assume that xn is not eventually
nonnegative or eventually nonpositive. Then as in the proof of Theorem 4.2.1, we
can take a sequence f�kg1

kD1 such that

m < �1 < �2 < : : : < �n < �nC1 < : : : ; lim
n!1 �n D 1; x.�n/ D 0

and

x.t/ > 0 on .�2n�1; �2n/; xn < 0; on .�2n; �2nC1/

and

�nC1 � �n > mC 1; n D 1; 2; : : : :

Let tn be a point that attains a maximal value of x.t/ on .�2n�1; �2n/ and sn be a
point that attains a minimal value of x.t/ on .�2n; �2nC1/, that is for n D 1; 2; : : :

x.tn/ D maxŒx.t/�; �2n�1 < t < �2n

and

x.sn/ D minŒx.t/�; �2n < t < �2nC1:

Then, we have for n D 1; 2; : : : ; tn and sn are positive integers,

x.tn/ > 0; D
�x.tn/ � 0; while x.sn/ < 0; and D�x.sn/ � 0;
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where D�x is the left-hand derivative of x at t . Then.

0 � D�x.tn/ D �rN �
mX
jD0

pj f .x.tn � j � 1// (4.44)

and

0 � D�x.sn/ D �
mX
jD0

rN �pjf .x.sn � j � 1//: (4.45)

Following the reasoning in the proof of Theorem 4.2.1, we show that for each n D
1; 2; : : :

x.t/ has a zero Tn 2 Œtn �m � 1; tn/ (4.46)

and

x.t/ has a zero Sn 2 Œsn �m � 1; sn/: (4.47)

By integrating (4.37) from Tn to tn and using the fact that tn � Tn � m C 1 we
note that

0 D x.tn/ � x.Tn/C
mX
jD0

rN �pj
Z tn

Tn

f .x.Œs � j �//ds

� x.tn/ �
mX
jD0

rN �pj .tn � Tn/ � x.tn/ � r.mC 1/:

That is,

x.tn/ � r.mC 1/; n D 1; 2; : : :

and

x.t/ � r.mC 1/; t � �1.

By integrating (4.37) from Sn to sn and using the fact that sn � Sn � mC 1 we find

0 D x.sn/ � x.Sn/C
mX
jD0

rN �pj
Z sn

Sn

f .x.Œs � j �//ds

� x.sn/C r.mC 1/f .r.mC 1//:

That is

x.sn/ � �r.mC 1/f .r.mC 1//; n D 1; 2; : : : ,
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and so

x.t/ � �r.mC 1/f .r.mC 1//; t � �2:

Then

�
xn � R1 D r.mC 1/; n � �1
xn � L1 D �r.mC 1/f .r.mC 1//; n � �2:

Next, let Lk be a lower bound of xn for n > �2k: Then,

xn � Lk; for n > �2k:

We know that '.x/ has a unique local maximum at x D L� < 0: We consider an
upper bound of xn for n > �2.kC1/�1: Then,

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.xn�1/ � rN �
mX
jD1

pj f .Lk/

� '.maxfL�; Lkg/ � r2f .Lk/:

That is,

xn � RkC1; for n > �2.kC1/�1;

where

RkC1 D '.maxfL�; Lkg/ � r2f .Lk/:
Next, we consider a lower bound of xn for n > �2.kC1/. Then

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/

� minf'.Lk/; '.RkC1/g � r2f .RkC1/

D minf'.Lk/; '.'.maxfL�; Lkg/ � r2f .Lk//g
�r2f .'.maxfL�; Lkg/ � r2f .Lk//:

Put LkC1 D F.Lk/: Then,

xn � LkC1 for n > �2.kC1/:

By assumption,

Lk < F.Lk/ D LkC1:
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Finally, we show that

lim
k!1Rk D 0 and lim

k!1Lk D 0:

Assume that Lk is a lower bound of xn for n > �2k: Since

RkC1 D '.maxfL�; Lkg/ � r2f .Lk/
is an upper bound of xn for n > �2.kC1/�1; we have that if limk!1Lk D 0; then

lim
k!1Rk D '.0/ � r2f .0/ D 0:

Thus it is sufficient to show that limk!1Lk D 0: By (4.43), F.0/ D 0 and

Lk < LkC1 D F.Lk/ � 0; for any Lk < 0;

and hence we see limk!1Lk D 0 by successive iterations. Thus, we get
limn!1 xn D 0: The proof is complete. �

Lemma 4.2.3. Assume that '.x/ attains a unique local maximum at R� > 0; and

R� � '.R�/C r2: (4.48)

Put

H.L/ D r1f .L/C r2f .'.R
�/ � r2f .L//; for L � 0: (4.49)

If

r1 > r2 � 0 and lim
L!�1H.L/ < 0; (4.50)

then limn!1 xn D 0:

Proof. In the case when xn is eventually nonpositive or eventually nonnegative by
Lemma 4.2.2, we have limn!1 xn D 0: Now, assume that xn is not eventually
nonnegative nor eventually nonpositive. Then as in the proof of Theorem 4.2.1, we
can take a sequence {�kg1

kD1 such that

m < �1 < �2 < : : : < �n < �nC1 < : : : ; lim
n!1 �n D 1; x.�n/ D 0

and

x.t/ > 0; on .�2n�1; �2n/; x.t/ < 0, on .�2n; �2nC1/

and

�nC1 � �n > mC 1; n D 1; 2; : : :
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and for n > �2

�r.mC 1/f .r.mC 1// � xn:

Now, let the local maximum of '.x/ be attained at x D R� > 0: Then, for

n > �1; xn < '.R
�/C r2 � R�:

Since

0 < '.R�/ � r2f .L/ � '.R�/C r2 � R�;

we have

.1 � r1f 0.'.R�/ � r2f .L///r2f 0.L/ � 0; for L < 0:

Therefore,

f 0.'.R�/ � r2f .L// � 1=r1:

Thus

H 0.L/ D f 0.L/fr1 � r22 .f 0.'.R�/ � r2f .L//g

� f 0.L/
�
r1 � r22

r1

�
> 0:

Since H.L/ is a strictly monotone increasing function of L on .�1; 0� and
limL!�1H.L/ < 0; there exists an L1 < 0 such that

L1 < �r.mC 1/f .r.mC 1// and H.L1/ < 0:

Then

'.L1/ � r2f .'.R�/ � r2f .L1// D L1 �H.L1/ > L1: (4.51)

Thus, L1 is a lower bound of xn for n > �2; that is xn > L1 for n > �2: Next, let us
consider an upper bound of xn for n > �3: Since for n > �3,

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.R�/ � r2f .L1/;

and we have that for

R2 D '.R�/ � r2f .L1/ > 0; xn � R2; for n > �3:
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Moreover, we have that for L1 < 0;

R� �R2 D R� � .'.R�/ � r2f .L1//
> R� � .'.R�/C r2/ � 0;

from which we get 0 < R2 < R�: Let us consider a lower bound of xn for n > �4:

Since 0 < R2 < R�; we see that for n > �4;

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.L1/ � r2f .R2/:

Then, for

L2 D '.L1/ � r2f .R2/ < 0; xn � L2; n > �4;

and by (4.51), we have L1 < L2 < 0: Next assume that for k � 1;

�
Rk D '.Rk�1/ � r2f .Lk�1/; 0 < Rk < Rk�1 � R�;
Lk D '.Lk�1/ � r2f .Rk/; L1 � Lk�1 < Lk < 0;

and

�
xn � Rk; n > �2k�1;
xn � Lk; n > �2k:

We consider an upper bound of xn for n > �2.kC1/�1: Then

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.Rk/ � r2f .Lk/:

Therefore, for

RkC1 D '.Rk/ � r2f .Lk/ > 0; xn � RkC1; n > �2.kC1/�1;

and

RkC1 D '.Rk/ � r2f .Lk/ < '.Rk�1/ � r2f .Lk�1/ D Rk:

Similarly, let us consider a lower bound of xn for n > �2.kC1/: Then, for n > �2.kC1/;

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.Lk/ � r2f .RkC1/;
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and for

LkC1 D '.Lk/ � r2f .RkC1k/ < 0; xn � LkC1; n > �2.kC1/:

Moreover,

LkC1 D '.Lk/ � r2f .RkC1/ > '.Lk�1/ � r2f .Rk/ D Lk:

Finally, we show that

R D lim
k!1Rk D 0 and L D lim

k!1Lk D 0:

Since

R D '.R/ � r2f .L/; L D '.L/ � r2f .R/;
we have that

r1f .R/C r2f .L/ D 0; r1f .L/C r2f .R/ D 0:

By assumption

0 � r2 < r1 < 1; f .R/ D f .L/ D 0;

and hence R D L D 0. Thus, we get limn!1 xn D 0: �

Remark 3. In the proof of Lemma 4.2.3, we need the condition limL!�1H.L/ < 0

in (4.50) which becomes

r1 C r2 � r2

r1
er1Cr2�1 > 0:

Lemma 4.2.4. Assume that '.x/ attains a unique local maximum at R� > 0; and

R� < '.R�/C r2: (4.52)

Then, there exists a unique L� < 0 such that

R� D '.R�/ � r2f .L�/ (4.53)

and

R� > '.R�/ � r2f .L/; L� < L � 0: (4.54)

Define, for L � L�;

G.L/ W D minf'.L/; '.'.R�/ � r2f .L//g
�r2f .'.R�/ � r2f .L//: (4.55)
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If

r1 > r2 and G.L/ > L; for any L � L�; (4.56)

then limn!1 xn D 0:

Proof. Since

0 < R� < '.R�/C r2 and f
0

.L/ > 0;

we have

lim
L!�1.r1f .R

�/C r2f .L// D r1f .R
�/ � r2 < r1f .R�/

D lim
L!0

.r1f .R
�/C r2F.L//:

Hence, by the mid-point theorem, there exists a unique L� < 0 such that

r1f .R
�/C r2F.L

�/ D 0;

that is

R� D '.R�/ � r2f .L�/:

In the case when xn is eventually nonpositive or eventually nonnegative by
Lemma 4.2.1 we have limn!1 xn D 0: Therefore we assume that xn is not
eventually nonnegative nor eventually nonpositive. Then there exists a sequence
f�kg1

kD1 (as in Lemma 4.2.2) such that

xn � R1 D r.mC 1/; n � �1;

xn � �r.mC 1/f .r.mC 1//; n � �2:

Put

L1 D �r.mC 1/f .r.mC 1//:

Now, we consider the following two cases:

Case 1. L� < L1:

Then we have L1 < 0 and xn � L1 for n � �2: Next, for n � �3; consider an
upper bound of xn: Since n � j � 1 > �2; 1 � j � m;

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.R�/ � r2f .L1/:

Put

R2 D '.R�/ � r2f .L1/:
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Then

0 � R2 < '.R
�/ � r2f .L�/ D R�;

and we have xn � R2 for n > �3: Next, for n � �4; consider a lower bound of xn.
Since

'.L1/ < 0 � '.R2/;minf'.L1/; '.R2/g D '.L1/:

For n > �4; n � j � 1 > �3; 1 � j � m and

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.L1/ � r2f .R2/:

Put

L2 D maxfL1 ; '.L1/ � r2f .R2/g:
Then L1 � L2 < 0 and xn � L2; n > �4: Similarly, consider an upper bound of xn
for n > �5: Then,

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.R2/ � r2f .L2/:

Put

R3 D '.R2/ � r2f .L2/:
Then

0 < R3 D '.R2/ � r2f .L2/ < '.R�/ � r2f .L1/ D R2 < R
�

and xn � R3 for n > �5:
Next let us assume that for some positive integer k � 2;

�
Rk D '.Rk�1/ � r2f .Lk�1/; 0 < Rk < Rk�1;
Lk D maxfLk�1 ; '.Lk�1/ � r2f .Rk/g; Lk�1 � Lk < 0;

and

�
xn � Rk; n > �2k�1;
xn � Lk; n > �2k:

Consider an upper bound of xn for n > �2.kC1/�1: Then

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.Rk/ � r2f .Lk/:
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Put

RkC1 D '.Rk/ � r2f .Lk/:
Then

RkC1 D '.Rk/ � r2f .Lk/ < '.Rk�1/ � r2f .Lk�1/ D Rk;

and

xn � RkC1; n > �2.kC1/�1:

Similarly, let us consider a lower bound of xn for n > �2.kC1/: Then, for n > �2.kC1/;

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.Lk/ � r2f .RkC1/:

Put

LkC1 D maxfLk ; '.Lk/ � r2f .RkC1/g:
Then

LkC1 � Lk and xn � LkC1; n > �2.kC1/�1:

Thus by induction, we get a strictly monotone decreasing sequence fRkg1
kD1 and a

monotone increasing sequence fLkg1
kD1: Now, put

R D lim
k!1Rk and L D lim

k!1Lk:

Then, we have

R D '.R/ � r2f .L/; L D maxfL; '.L/ � r2f .R/g � '.L/ � r2f .R/:

Thus

r1f .R/C r2f .L/ D 0; r1f .L/C r2f .R/ � 0:

Since f .R/ D �.r2=r1/f .L/ and by assumption

r1 > r2; .r1 � r22 =r1/f .L/ � 0;

we get that f .R/ D f .L/ D 0; and hence R D L D 0. Thus, we get

lim
n!1 xn D 0:
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Case 2. L1 � L�:

Then we have xn � L1 for n � �2: Next, for n � �3; consider an upper bound
of xn: Then

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.R�/ � r2f .L1/:

Put

R2 D '.R�/ � r2f .L1/:

Then we have xn � R2 for n > �3: Next, for n � �4; consider a lower bound of xn.
Then

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/

� minf'.L1/; '.R2/g � r2f .R2/:

Put

L2 D minfL1 ; '.L1/g; '.R2/g � r2f .R2/:
Then, we have xn � L2; n > �4: Now, we restrict our attention to the lower bound
of xn and assume that for some positive integer k, xn � Lk for n � �2k: Suppose
that Lk � L�: Consider an upper bound of xn for n > �2.kC1/�1: Then,

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/ � '.R�/ � r2f .Lk/:

Put

RkC1 D '.R�/ � r2f .Lk/:
Then xn � RkC1; n > �2.kC1/�1:Now, consider a lower bound of xn for n > �2.kC1/:
Then, for n > �2.kC1/;

xn D '.xn�1/ � rN �
mX
jD1

pj f .xn�j�1/

� minf'.Lk/; '.RkC1/g � r2f .RkC1/:

Put

LkC1 D minf'.Lk/; '.RkC1/g � r2f .RkC1/:
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Then

LkC1 D minf'.Lk/; '.'.R�/ � r2f .Lk//g � r2f .'.R�/ � r2f .Lk//:

Then

xn � LkC1; n > �2.kC1/C1:

Thus by the assumption, we have

LkC1 D G.Lk/ > Lk:

Since G.L/ > L for any L < L�; there exists some positive integer k0 such that

Lk0�1 � L� < Lk0:

Then

xn � Lk0 > L
�; n � �2k0C1:

For

L > L�; '.R�/ � r2f .L/ < '.R�/ � r2.f .L�/ D R�:

Hence as before we obtain limn!1 xn D 0: The proof is complete. �

Lemma 4.2.5. Assume that '.x/ attains a unique local maximum at R� D 0: Then

R� < '.R�/C r2; (4.57)

and there exists a unique L� D 0 such that

R� D '.R�/ � r2f .L�/: (4.58)

For any L < 0 and G.L/ in Lemma 4.2.4, if

G.L/ > L; (4.59)

then limn!1 xn D 0:

Proof. The proof of this lemma is similar to that in Lemma 4.2.4 and hence is
omitted. �

Next we consider the special case f .x/ D ex � 1 and establish the conditions
F.L/ > L for any L < 0 in Lemma 4.2.3, G.L/ > L for any L < L� in
Lemma 4.2.4 and G.L/ > L for any L < 0 in Lemma 4.2.5.
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Lemma 4.2.6. Put

'�.x/ D x � .r1 C r2/f .x/; � 1 < x < 1: (4.60)

Assume

0 < r1 C r2 � 2: (4.61)

Then

�
.'�/2 .L/ > L; for any L < 0;
.'�/2 .R/ < R; for any R > 0;

(4.62)

and for (4.39)–(4.41) with r2 D 0, limn!1 xn D 0:

Proof. First, consider the following function:

g1.t/ D t C t e.r1Cr2/.1�t/; 0 < t < 1:

Then, for f .x/ D ex � 1;


'��2 .x/ D '�.'�.x// D '�.x/ � .r1 C r2/.e

'�.x/ � 1/
D x C .r1 C r2/f2 � ex � ex�.r1Cr2/.ex�1/g:

Thus,
8<
:

.'�/2 .x/ � x D .r1 C r2/f2 � g1.ex/g;
g0
1.t/ D 1C f1 � .r1 C r2/tge.r1Cr2/.1�t/;

g
00

1 .t/ D .r1 C r2/f.r1 C r2/t � 2ge.r1Cr2/.1�t/:
Therefore, we have

g0
1.t/ � g0

1

�
2

r1 C r2

�
D 1 � e.r1Cr2/�2 � 0; 0 < t < 1;

and hence, g1.t/ is a strictly monotone increasing function of t on .0;1/: Thus
�
g1.t/ < g1.1/ D 2; t < 1,
g1.t/ > g1.1/ D 2; t > 1,

which implies (4.62).
Now, putting r2 D 0 in (4.61), we have that r � 2 which implies that (see for

example [47]) the solution of (4.39)–(4.41) satisfies limn!1 xn D 0. The proof is
complete. �

Remark 4. Lemma 4.2.6 implies that if

0 < r D r1 � 2 and r2 D 0; (4.63)

then limn!1 xn D 0:
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Lemma 4.2.7. Assume in (4.40),

r1 > r2 > 0; r1 > 1 and r1 C r2 � r2

r1
e.r1Cr2�1/ � 0: (4.64)

Then, '.x/ attains a unique local maximum at L� D � log r1 < 0:

(a) For L � 0; put

G1.L/ D '.L/ � r2f .R�
L/ � L; G�

1 .L/ D r1f .L/C r2f .R
�
L/;

R�
L D '.L�/ � r2f .L/:

Then, each of the following holds:

(i) limL!�1G�
1 .L/ � 0;

(ii) G�
1 .L

�/ < 0;
(iii)



G�
1

�0

.L/ D 0 for some L < L�; then G�
1 .L/ < 0:

Hence, G�
1 .L/ < 0 and G1.L/ > 0; for any L � L�:

(b) For L � 0; put

G2.L/ D '.R�
L/ � r2f .R�

L/ � L; R�
L D '.L�/ � r2f .L/: (4.65)

Then, each of the following holds:

(i) limL!�1G2.L/ D C1;

(ii) G2.L�/ D .'�/2.L�/ � L� > 0;
(iii) .G2/

0 .L/ < 0 for any L < L�:

Hence, G2.L/ > 0 for any L � L�:
(c) For L � 0; put

G3.L/ D '.RL/ � r2f .RL/ � L; RL D '.L/ � r2f .L/: (4.66)

Then, G3.L/ D .'�/2.L/ � L > 0 for any L� � L < 0:

Proof. (a) (i) By assumptions, we have

lim
L!�1G�

1 .L/ D r2

r1
e.r1Cr2/�1 � .r1 C r2/ � 0:

(ii) Since '0.x/ D 1 � r1ex; we have from (4.64), L� D � log r1 < 0;

R�
L D � log r1 C .r1 C r2/ � 1 � r2eL;

and

G�
1 .L

�/ D 1 � .r1 C r2/C r2

r1
e.r1Cr2/.1�1=r1/:
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Now, consider

g2.x/ D 1 � .x C r2/C r2

x
e.xCr2/�1�r2=x; 1 < x � 2 � r2:

Then,

g0
2.x/ D �1C

�
�x � r2

x2
C 1

� r2
x
e.xCr2/�1�r2=x � �1C r2

x
e1�r2=x;

1 < x � 2 � r2:

For

g3.t/ D te1�t ;
r2

2 � r2 � t < 1;

we have

g0
3.t/ D .1 � t /e1�t > 0; r2

2 � r2 � t < 1;

and hence,

g3.t/ < g3.1/;
r2

2 � r2 � t < 1:

Therefore, we get

g0
2.x/ < �1C g3.1/ D 0; 1 < x � 2 � r2:

Thus, g2.x/ is a strictly decreasing function on Œ1; 2 � r2� and G�
1 .L/ <

g2.1/ D 0:

(iii) Since



G�
1

�0
.L/ D r1e

L C r2

r1
er1Cr2�1�r2eL.�r2eL/;



G�
1

�0
.L/ D 0 implies that

r1e
L D r22

r1
eLer1Cr2�1�r2eL :

Therefore, if


G�
1

�0
.L/ D 0; for some L� � L; then, since

ex > 1C x for x > 0 and .r1 C r2/ >
r2

r1
er1Cr2�1
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we have

G�
1 .L/ D r1e

L C r2

r1
er1Cr2�1�r2eL � .r1 C r2/

� .r1 C r2/

�
r2e

L C 1

er2e
L

� 1
�
< 0:

Hence, from (a) (i)–(iii), we get G1.L/ > 0; for L � L�:
(b) (i) We have that

R�
L D � log r1 � .r1 C r2/ � 1 � r2eL;

and hence
(
G2.L/ D � log r1 C 2.r1 C r2/ � 1 � r2eL � r1Cr2

r1
er1Cr2�1�r2eL � L;

limL!�1G2.L/ D 1:

(ii) Since L� < 0 by Lemma 4.2.6, we see that

G2.L
�/ D .'�/2.L�/ � L� > 0:

(iii) We have that

G0
2.L/ D �r2eL

�
1 � r1 C r2

r1
er1Cr2�1�r2eL

�
� 1;

lim
L!�1G0

2.L/ D �1 < 0:

Thus

G0
2.L

�/ D �r2
r1

�
1 � r1 C r2

r1
e.r1Cr2/.1�1=r1/

�
� 1

D r1 C r2

r1

�
r2

r1
e.r1Cr2/.1�1=r1/ � 1

�
:

Put

g4.t/ D .2t � 1/e2.1�t/ � 1; 1
2

� t < 1:

Then, we can easily see that

g4.t/ < g4.1/ D 0;
1

2
� t < 1:

Therefore, we have that

r2

r1
e.r1Cr2/.1�1=r1/ � 1 � 2 � r1

r1
e2.1�1=r1/ � 1 D g4.1=r1/ < g4.1/ D 0;
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from which we get

G0
2.L

�/ < 0; and L� < 0:

Now, we have for L � L�;

G
00

2 .L/ D �r2eL
�
1 � .1 � r2eL/r1 C r2

r1
er1Cr2�1�r2eL

	
:

Thus, for L� < 0; G
00

2 .L�/ D 0 implies that by r2 > 0;

r1 C r2

r1
er1Cr2�1 D er2e

L�

1 � r2eL�

:

Now, the equations

r1 C r2 D 2; r1 C r2 � r2

r1
er1Cr2�1 D 0

have the unique solution (r�
1 ; r

�
2 / such that

r�
1 D 2e

e C 2
< 2; r�

2 D 4

e C 2
< 1:

Then, for any r1 and r2 such that (4.64) holds, we easily see that

0 � r2 � r�
2 , 1 � r1 � 2 � r2:

For a fixed number r2 such that 0 < r2 � r�
2 D 4=.e C 2/ < 1, the function

p.r1; r2/ D ..r1Cr2/=r1/er1Cr2�1 is a strictly monotone increasing function
of r1 on Œ1; 2 � r2�. Thus, for 0 < r2 � r�

2 < 1,

p.r1; r2/ � p.2 � r2; r2/ D 2e

2 � r2 � 2e

2 � r�
2

D e C 2:

The equation ex=.1 � x/ D e C 2 has a unique positive solution x� D
0:60995 : : : < 1; and the function h1.x/ D ex=.1�x/ is a strictly monotone

increasing function on Œ0; 1/: Thus, if G
00

2 .
�
L/ D 0 for some

�
L < 0, then

r1 C r2

r1
er1Cr2�1�r2e

�

L D 1

1 � r2e
�

L

and r2e
�

L � x� < 1 for any r1 and r2 which satisfy (4.64). Then,

G0
2.

�
L/ D �r2e

�

L

 
1 � 1

1 � r2e
�

L

!
� 1 D .r2e

�

L/2 C r2e
�

L � 1
1 � r2e

�

L
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and

�
r2e

�

L

�2
C r2e

�

L � 1 < .x�/2 C x� � 1 D �0:01800 : : : < 0:

Thus G0
2.

�
L/ < 0 so G

0

2.L/ < 0 for L � L�: Hence from (b) (ii), we get
G2.L/ � G2.L

�/ > 0 for any L � L�:
(c) By Lemma 4.2.6, we see thatG3.L/ D .'�/2 .L/�L > 0 for anyL� � L < 0:

�

Remark 5. Lemma 4.2.7 implies that if (4.64) holds, then the conditions in
Lemma 4.2.2 are satisfied and then limn!1 xn D 0:

Similar reasoning as in the proof of Lemma 4.2.7 (see [75]) yields the following
results.

Lemma 4.2.8. Assume that

1 > r1 > r2 > 0 and r1 C r2 � r2

r1
e.r1Cr2�1/ � 0: (4.67)

Then, '.x/ attains a unique local maximum at R� D � log r1 > 0:

(a) For L � 0; put

G4.L/ D '.L/ � r2f .R�
L/ � L; G�

4 .L/ D r1f .L/C r2f .R
�
L/;

R�
L D '.R�/ � r2f .L/:

Then there exists a unique
�
L < 0 such that

R� D '.R�/ � r2f .
�
L/; (4.68)

and each of the following holds:

(i) limL!�1G�
4 .L/ � 0;

(ii) G�
4 .

�
L/ < 0;

(iii)


G�
4

�0
.

�
L/ > 0:

Hence, G4.L/ > 0 for any L � �
L < 0:

(b) For L � 0; put

G5.L/ D '.
�
R

�
L/ � r2f .

�
R

�
L/ � L; �

R
�
L D '.R�/ � r2f .L/: (4.69)

Then, G5.
�
R

�
L/ > '.L/ and G5.L/ D '�.

�
R

�
L/ � L > G4.L/ > 0 for any

L � �
L:
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Remark 6. Lemma 4.2.8 implies that if (4.67) holds, then the conditions in
Lemma 4.2.3 are satisfied and then limn!1 xn D 0:

Lemma 4.2.9. Assume in (4.40),

r1 D 1; r2 > 0; and r2e
.r2�1/ � 1: (4.70)

Then, '.x/ attains a unique local maximum at R� D 0; (4.57)–(4.59) hold, and we
have the following:

(a) In Lemma 4.2.8 (a), for G4.L/ with R� D 0, G4.L/ > 0 for any L <
�
L D 0:

(b) For (4.69) with R� D 0, G5.L/ D '�.
�
R

�
L/ � L > 0 for any L <

�
L D 0:

Remark 7. Lemma 4.2.9 implies that if (4.70) holds, then (4.57)–(4.59) in
Lemma 4.2.5 are satisfied and then limn!1 xn D 0:

Theorem 4.2.2. Assume that

r 2 .0;1/; p0; p1; : : : ; pm � 0; and
mX
jD0

pi > 0 (4.71)

holds. Also suppose either (4.63) or (4.64) or (4.67) or (4.70) hold. Then for any
solution N.t/ of (4.15) we have limt!1N.t/ D N �.

Proof. The result follows from the previous four Remarks. �

4.3 Stability of Nonautonomous Models

In this section we examine nonautonomous logistic models with piecewise constant
arguments. We begin with the logistic model

N 0.t/ D r.t/N.t/

�
1 � N.Œt �/

K

�
, t � 0; (4.72)

with N.0/ D y0 > 0, r W Œ0;1/ ! Œ0;1/ is a continuous function and K is
a positive constant. First of all, by using the method of steps, we see that every
solution y.t/ of (4.72) is positive for all t � 0: Thus, the change of variables x.t/ D
log.N.t/�K/ reduces (4.72) to

x0.t/ D �r.t/ 
ex.Œt � � 1� ; t � 0: (4.73)

We begin by presenting some global attractivity results from [46]. Let k be a
nonnegative integer. On any interval Œk; k C 1/, (4.73) is expressed as

x0.t/ D �r.t/ 
ex.Œk� � 1� : (4.74)
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It is clear that x.t/ is monotone on Œk; k C 1� and that x.k/ D 0 implies x.t/ D 0

on Œk,1). Also integrating (4.74) from k to t , we have

x.t/ � x.k/ D � 
ex.k/ � 1�
tZ
k

r.s/ds: (4.75)

We therefore obtain as t ! k C 1; in (4.75),

x.k C 1/ D x.k/ � 

ex.k/ � 1�

kC1Z
k

r.s/ds: (4.76)

Lemma 4.3.1. Let x.t/ be a solution of (4.73). Assume that

kC1Z
k

r.s/ds � 2; for k D 0; 1; 2; : : : ; (4.77)

and that there exists an increasing sequence of positive integers ftng such that
.�1/nx.tn/ > 0 and x.tn/x.tn C 1/ < 0; for n D 1; 2; : : : : Then the following
is valid

�1
2
< x.t2mC3/ < 0 < x.t2mC2/ <

1

3
; for m D 0; 1; 2 : : : .

Proof. In view of the definition of ftng and the monotonicity of x.t/ on Œk; k C 1�,
we notice that if tn C 1 < tnC1 then jx.t/j is nonincreasing on [tn C 1; tnC1], which
implies

�
x.tn C 1/ � x.tnC1/ < 0, if n is even;
0 < x.tnC1/ � x.tn C 1/; if n is odd.

(4.78)

Note that,

x.t2mC1/ < 0 < x.t2mC1 C 1/, for m D 0; 1; : : : :

Let Am D �x.t2mC1/. Then Am > 0: It follows immediately from (4.77) and (4.76)
that

x.t2mC1 C 1/ D x.t2mC1/ � 

ex.t2mC1/ � 1�

t2mC1C1Z
t2mC1

r.s/ds

� �Am C 2.1 � e�Am/: (4.79)
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Let


.x/ D �x C 2.1 � e�x/;

and observe that 
0.x/ D �1C 2e�x (also 
0.x/ D 0 when x D log 2). Note


.Am/ � 
.log 2/ D 1 � log 2 <
1

3
:

Hence, by (4.78) and (4.79) we obtain that

0 < x.t2mC2/ < x.t2mC1 C 1/ <
1

3
; for m D 0; 1; : : : :

Next, let Bm D x.t2mC2/. Then 0 < Bm < 1
3

and

x.t2mC1 C 1/ D x.t2mC2/ � 

ex.t2mC2/ � 1�

t2mC2C1Z
t2mC2

r.s/ds

� Bm � 2.eBm � 1/: (4.80)

Let

 .x/ D x � 2.ex � 1/:

Since  0.t/ D 1 � 2ex < 0 for x > 0; it follows that

 .Bm/ �  .
1

3
/ D 7

3
� 2e 13 > �1

2
:

Thus, by (4.78) and (4.80) we conclude that

0 > x.t2mC3/ � x.t2mC2 C 1/ > �1
2
; for m D 0; 1; : : : .

The proof is complete. �

Theorem 4.3.1. Assume that (4.77) holds and

1Z
0

r.s/ds D 1: (4.81)

Then the positive steady state N.t/ D K of (4.72) is globally attractive.
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Proof. It suffices to show that if (4.77) and (4.81) are satisfied, then every solution
x.t/ of (4.73) tends to 0 as t ! 1. Suppose the solution x.t/ of (4.73) is
nonoscillatory. Suppose x.t/ is eventually positive (the case when x.t/ is eventually
negative is similar). Then from (4.73) we have eventually that x.t/ is decreasing,
so limt!1 x.t/ D ˛ � 0. If ˛ > 0 we get as usual (i.e., there exists t0 � 0

with x0.t/ � �r.t/ .e˛ � 1/ for t � t0) a contradiction if we use (4.81). Thus
limt!1 x.t/ D 0.

It remains to consider the case when x.t/ is oscillatory. Let f�n W �n < �nC1 W
n D 1; 2; : : :g be the zeros of x.t/. We only have to consider the case when �n is not
integer for n D 1; 2; : : :. Then there exists a sequence of positive integers ftng such
that

tn < �n < tnC1 and x.tn/x.tn C 1/ < 0; for n D 1; 2; : : : :

Without loss of generality, we may assume that

.�1/nx.tn/ > 0; for n D 1; 2; : : : :

Put Am D �x.t2mC1/ and Bm D x.t2mC2/ and then Am and Bm are positive for
m D 0; 1; : : :. From Lemma 4.3.1, we may assume that

0 < Am <
1

2
, for m D 0; 1; : : : :

We claim that Am tends to 0 as m ! 1: We first show that 0 < AmC1 < Am for
m D 0; 1; : : :. Using

e�x > 1 � x C 1

2
x2 � 1

6
x3; for x > 0;

we have from (4.79) that

Bm � x.t2mC1 C 1/ � �Am C 2.1 � e�Am/

< �Am C 2.Am � A2m
2

C A3m
6
/

D Am � A2m C A3m
3

� g�.Am/: (4.82)

It is easy to see that g�.x/ is an increasing function on Œ0,1/ and so

Bm < g
�.Am/ < g�.

1

2
/ <

1

3
: (4.83)

Next, for 0 < x < 1
3
; we have for � 2 .0; 1/ that

ex D 1C x C x2

2
C e�x

6
x3 < 1C x C x2

2
C x3

3
,



4.3 Stability of Nonautonomous Models 159

because ex < 2: Using the above fact, we have from (4.80) that

AmC1 � �x.t2mC2 C 1/ � �Bm C 2.eBm � 1/

< �Bm C 2.Bm C B2
m

2
C B3

m

6
/

D Bm C B2
m C 2B3

m

3
� h�.Bm/: (4.84)

Thus, (4.82) and (4.84) become

AmC1 < h�.g�.Am//; for m D 0; 1; : : : : (4.85)

Furthermore, notice that

g�.x/ < x; if 0 < x <
1

2
; (4.86)

and we obtain

x � h�.g�.x// D x � f.x � x2 C x3

3
/C .x � x2 C x3

3
/2

C2

3
.x � x2 C x3

3
/3g

> x � .x � x2 C x3

3
/ � .x � x2 C x3

3
/2 � 2

3
x3

D x2.x � 5

3
x2 C 2

3
x3 � 1

9
x4/

D x3

3
.3 � 5x/C x5

9
.6 � x/ > 0, for 0 < x <

1

2
: (4.87)

This implies, together with (4.85), that

0 < AmC1 < h�.g�.Am// < Am; for m D 0; 1; : : : : (4.88)

Consequently, there exists ˛ 2 Œ0; 1
2
/ such that Am ! ˛; as m ! 1: If ˛ > 0;

then we have asm ! 1 in (4.85) ˛ � h�.g�.˛//; which contradicts (4.87). Hence
Am ! 0 as m ! 1:

Now we look at the behavior of x.t/. Recall that jx.t/j is nonincreasing on Œtn C
1; tnC1� if tn C 1 < tnC1 and that

jx.tn/j D max
tn�t��n

jx.t/j and jx.tn C 1/j D max
�n�t�tnC1 jx.t/j :
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If follows from (4.82) and (4.86) that 0 < Bm < g�.Am/ < Am, and hence jx.t/j �
Am for all t 2 Œt2mC1; t2mC3�: Finally, by (4.88), we conclude that x.t/ tends to 0 as
t ! 1: The proof is complete. �

In the following, we consider the logistic model with piecewise constant
arguments

dN.t/

dt
D r.t/N.t/

8<
:1 �

mX
jD0

ajN Œt � j �
9=
; ; t � 0 (4.89)

and establish some sufficient conditions for an arbitrary solutionN.t/ satisfying the
initial conditions of the form

N.0/ D N0 > 0 and N.�j / D N�j � 0; j D 1; 2; : : : ; m; (4.90)

to converge to the positive equilibrium N � D 1=.
Pm

jD0 aj / as t ! 1; here aj �
0, j D 0; 1; : : : ; m � 1, am > 0,

Pm
jD0 aj > 0 and r W Œ0;1/ ! .0;1/ is

a continuous function. The results are adapted from [69]. Using a method similar
to Lemma 4.1.1, one can easily see that (4.89) together with (4.90) has a unique
solution N.t/ which is positive for all t � 0: On any interval of the form Œn; nC 1/

for n D 0; 1; 2; : : :, we can integrate (4.89) and obtain for n � t < n C 1 and
n D 0; 1; 2; : : :

N.t/ D N.n/ exp

8<
:
2
41 �

mX
jD0

ajN.n � j /
3
5Z t

n

r.s/ds

9=
; : (4.91)

Letting t ! nC 1, we get that

N.nC 1/ D N.n/ exp

8<
:rn

2
41 �

mX
jD0

ajN.n � j /
3
5
9=
; ; (4.92)

where rn D R nC1
n

r.s/ds:

Lemma 4.3.2. LetN.t/ be a solution of (4.89), (4.90). IfN.t/ is eventually greater
(respectively less) than N � (i.e., N is a nonoscillatory solution about N �) then
limt!1N.t/ exists and is positive. Furthermore if

Z 1

0

r.t/dt D 1; (4.93)

then limt!1N.t/ D N �:
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Proof. From (4.91), we know that N.t/ is positive for t � 0: Assume that N.t/ is
eventually greater thanN � (the case whenN.t/ is eventually less thanN � is similar
and the proof is omitted). By (4.89) we have eventually

dN.t/

dt
� r.t/N.t/

8<
:1 �

mX
jD0

ajN
�
9=
; ;

which implies that N.t/ is eventually decreasing and so limt!1N.t/ exists. Set
˛ D limt!1N.t/: We will show that (4.93) implies that ˛ D N �: Indeed suppose
˛ > N �: Then there exists t0 > m such that N.t � m/ � ˛ for t � t0, since N.t/
eventually decreases to ˛: Using this in (4.89), we have

dN.t/

dt
� r.t/N.t/

8<
:1 � ˛

mX
jD0

aj

9=
;

D �
� ˛

N � � 1
�
r.t/N.t/; for t � t0:

Integrating from t0 to t , we have

ln
N.t/

N.t0/
� �

� ˛

N � � 1
� Z t

t0

r.s/ds;

which implies that limt!1 ln N.t/

N.t0/
D �1. Then limt!1N.t/ D 0, contradicting

˛ > 0. The proof is complete. �

In the following, we first prove that the oscillatory solutions of (4.89) are
bounded.

Lemma 4.3.3. Assume that a solution N.t/ (4.89), (4.90) is oscillatory about N �:
If for some constant M > 0, we have

Z nC1

n�m
r.s/ds � M; for all n D m;mC 1; : : : ; (4.94)

then N.t/ is bounded above and is bounded below away from zero.

Proof. First, we prove that N.t/ is bounded from above. Suppose lim supt!1
N.t/ D 1: Since N.t/ is both unbounded and oscillatory, there exists a t� > m

such that

N.t�/ D max
0�t�t�

N.t/ > N �:

Since N.t/ > 0 for t � 0 it follows from (4.89) that

dN.t/

dt
� r.t/N.t/, for t � m: (4.95)
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From now on, let D�N.t/ denote the leftsided derivative of N.t/: Then

D�N.t�/ D r.t�/N.t�/

8<
:1 �

mX
jD0

ajN.Œt
� � j �/

9=
; � 0;

if t� … f0; 1; 2; : : :g and so
Pm

jD0 ajN.Œt� � j �/ � 1: Thus there exists a � 2
ŒŒt��m�; t�� such thatN.�/ D N � andN.t/ > N � for t 2 .�; t��: Integrating (4.95)
from � to t�, we have

N.t�/
N � � exp

 Z t�

Œt��m�
r.s/ds

!
� exp

 Z Œt��C1

Œt���m
r.s/ds

!
� eM :

If t� 2 f0; 1; 2; : : :g; then

0 � D�N.t�/ D r.t�/N.t�/

8<
:1 �

mX
jD0

ajN.t
� � j � 1/

9=
; ;

and so
Pm

jD0 ajN.t��j�1/ � 1: This implies that there exists a � 2 Œt��m�1; t�/
such that N.�/ D N � and N.t/ > N � for t 2 .�; t��: By (4.95), we have

N.t�/
N � � exp

 Z t�

�

r.s/ds

!
� exp

 Z t�

t��m�1
r.s/ds

!
� eM :

Consequently, lim supt!1N.t/ � N �eM :This contradiction shows that N.t/ is
bounded above and satisfies

N.t/ � N �eM , for t � m: (4.96)

Substituting this into (4.89), we have for t > 2m that

dN.t/

dt
� r.t/N.t/

8<
:1 �

mX
jD0

ajN
�eM

9=
; D r.t/N.t/.1 � eM /: (4.97)

Next we showN.t/ is bounded below away from zero. Suppose lim inft!1N.t/D0.
Since N.t/ is oscillatory about N �, there exists t� > 3m such that
N.t�/ D min0�t�t� N.t/ < N �: Clearly D�N.t�/ � 0: If t� 2 f0; 1; 2; : : :g then

D�N.t�/ D r.t�/N.t�/

8<
:1 �

mX
jD0

ajN.Œt� � j �/
9=
; � 0;
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which shows that there exists 	 2 ŒŒt� �m�; t�/ such that N.	/ D N � and N.t/ <
N � for t 2 .	; t��: By (4.97), we have

N.t�/
N � � exp

�
.1 � eM /

Z t�

	

r.s/ds

�
� exp

 
.1 � eM /

Z Œt��C1

Œt��m�
r.s/ds

!

� Me.1�eM /:

If t� 2 f0; 1; 2; : : :g; then

D�N.t�/ D r.t�/N.t�/

8<
:1 �

mX
jD0

ajN.t� � j � 1/
9=
; ;

which shows that there exists 	 2 Œt� � m � 1; t�/ such that N.	/ D N � and
N.t/ < N � for t 2 .	; t��: By (4.97), we have

N.t�/
N � � exp

�
.1 � eM /

Z t�

t��m�1
r.s/ds

�
� Me.1�eM /:

Consequently lim inft!1N.t/ � N � e�M .eM�1/, which is a contradiction. The
proof is complete. �

Combining Lemma 4.3.2 with Lemma 4.3.3, we immediately see that if (4.94)
holds, then the solution N.t/ of (4.89) is bounded above and bounded below from
zero. Now, we are ready to provide sufficient conditions for the global stability of
the positive equilibrium N � of (4.89).

Theorem 4.3.2. Let N.t/ be a solution of (4.89), (4.90). Assume that

Z nC1

n�m
r.s/ds � 3

2
, for n D m;mC 1; : : : (4.98)

and Z 1

0

r.s/ds D 1: (4.99)

Then

lim
t!1N.t/ D N �: (4.100)

Proof. In view of Lemma 4.3.2, it suffices to prove that (4.100) holds if N is an
oscillatory solution about N �. By Lemma 4.3.3, N.t/ is bounded from above and
bounded from below away from zero. Let

u D lim sup
t!1

N.t/, v D lim inf
t!1N.t/: (4.101)
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Then 0 < v � N � � u < 1: It suffices to prove that u D v D N �: For any
" 2 .0; v/; choose an integer T D T ."/ > 0, such that

v1 � v � " < N.t �m/ < u C " � u1, for t � T: (4.102)

Using (4.89), we have

dN.t/

dt
� r.t/N.t/

n
1 � v1

N �
o
; for t � T; (4.103)

and

dN.t/

dt
� �r.t/N.t/

n u1
N � � 1

o
; for t � T: (4.104)

Let fTng be an increasing sequence such that Tn � T C 2m, D�N.Tn/ � 0,
N.Tn/ > N �, limn!1N.Tn/ D u and limn!1 Tn D 1: If Tn … f0; 1; 2; : : :g;
then by (4.89), we have

mX
jD0

ajN.
�
t� � j 
/ � 1;

which implies that there exists �n 2 ŒŒTn � m�; Tn� such that N.�n/ D N � and
N.t/ > N � for t 2 .�n; Tn�: If Tn 2 f0; 1; 2; : : :g then

mX
jD0

ajN.t
� � j � 1/ � 1;

and so there exists �n 2 ŒTn � m � 1; Tn/ such that N.�n/ D N � and N.t/ > N �
for t 2 .�n; Tn�: Thus by (4.98),

Z Tn

�n

r.s/ds � 3

2
:

For T � t � �n; by integrating (4.103) from t to �n, we get

ln

�
N.�n/

N.t/

�
�
�
1 � v1

N �
� Z �n

t

r.s/ds

or

N.t/ � N � exp

 
�
�
1 � v1

N �
� Z �n

t

r.s/ds

!
; for T � t � �n: (4.105)
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For j D 0; 1; 2; : : : ; m, we define the sets

E1j D ft 2 Œ�n; Tn� W Œt � j � � �ng;
E2j D ft 2 Œ�n; Tn� W Œt � j � � �ng:

Then E1j [ E2j D Œ�n; Tn�, j D 0; 1; 2; : : : ; m: Note that t 2 Œ�n; Tn� implies
Œt �m� � �n: For t 2 E1j , we have

N.Œt � j �/ � N � � N � exp

 
�
�
1 � v1

N �
� Z �n

Œt�m�
r.s/ds

!
,

and for t 2 E2j , by (4.105) we have

N.Œt � j �/ � N � exp

 
�
�
1 � v1

N �
� Z �n

Œt�j �
r.s/ds

!

� N � exp

 
�
�
1 � v1

N �
� Z �n

Œt�m�
r.s/ds

!
;

since Œt � j � � Œt �m� � Œ�n �m� � ŒŒTn �m��m� � ŒŒT Cm��m� D T: Hence

dN.t/

dt
� r.t/N.t/

 
1 � exp

 
�
�
1 � v1

N �
� Z �n

Œt�j �
r.s/ds

!!
:

Denote 1 � v1
N�

by v�: Then 0 < v� < 1: Thus for t 2 Œ�n; Tn�, we have

d lnN.t/

dt
� min

(
r.t/v�; r.t/

 
1 � exp

 
�v�

Z �n

Œt�m�
r.s/ds

!!)
: (4.106)

We now prove that

ln

�
N.Tn/

N �

�
� v� � .v�/2

6
: (4.107)

There are two possibilities:

Case 1.
R Tn
�n
r.s/ds � � ln. v1

N� /
v�

D � ln.1�v�/

v�
:

By (4.106),

ln

�
N.Tn/

N �

�
�
Z Tn

�n

r.t/

 
1 � exp

 
�v�

Z �n

Œt�m�
r.s/ds

!!
dt

D
Z Tn

�n

r.t/

�
1 � exp

�
�v�

�Z t

Œt�m�
r.s/ds �

Z t

�n

r.s/ds

���
dt



166 4 Logistic Models with Piecewise Arguments

�
Z Tn

�n

r.t/

�
1 � exp

�
�v�

�
3

2
�
Z t

�n

r.s/ds

���
dt

D
Z Tn

�n

r.t/dt � e� 3
2 v�

Z Tn

�n

r.t/ exp

�
v�
Z t

�n

r.s/ds

�
dt

D
Z Tn

�n

r.t/dt � e� 3
2 v�

v�

Z Tn

�n

r.t/

�
exp

�
v�
Z t

�n

r.s/ds

�
� 1

�
dt

D
Z Tn

�n

r.t/dt � e
�v�

�
3
2�R Tn�n r.s/ds

�

v�

�
1 � exp

�
�v�

Z t

�n

r.s/ds

��
:

Note that g.x/ D x � e
�v�. 32�x/

v�
.1 � e�v�x/ is increasing for 0 � x � 3

2
:

For
R Tn
�n
r.s/ds � � ln.1�v�/

v�
� 3

2
, we have

ln

�
N.Tn/

N �

�

� � ln.1 � v�/
v� � 1

v� exp

�
�v�

�
3

2
C ln.1 � v�/

v�

���
1 � eln.1�v�/

�

D � ln.1 � v�/
v� � exp

�
�v�

�
3

2
C ln.1 � v�/

v�

��

� � ln.1 � v�/
v� �

�
1 � v�

�
3

2
C ln.1 � v�/

v�

��

� �1C 3

2
v� � .1 � v�/ ln.1 � v�/

v�

� 3

2
v� � 1

v�

Z v�

0

�Z y

0

dx

1 � x
�
dy

� 3

2
v� � 1

v�

Z v�

0

Z y

0

.1C x/dxdy D v� � .v�/2

6
: (4.108)

For
R Tn
�n
r.s/ds � 3

2
< � ln.1�v�/

v�
, we have

ln

�
N.Tn/

N �

�

�
Z Tn

�n

r.t/dt � 1

v�

�
e� 3

2 v�

exp

�
v�
Z t

�n

r.s/ds

�
� e� 3

2 v�

�

� 3

2v� � 1

v� .1 � e� 3
2 v�

/ � v� � .v�/2

6
:
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Case 2. � ln.1�v�/

v�
<
R Tn
�n
r.s/ds � 3

2
:

Choose hn 2 .�n; Tn� such that

Z Tn

hn

r.s/ds D � ln.1 � v�/
v� :

Then by (4.106) and (4.98), we have

ln

�
N.Tn/

N �

�
�
Z hn

�n

v�r.s/ds

C
Z Tn

hn

r.t/

 
1 � exp

 
�v�

Z �n

Œt�m�
r.s/ds

!!
dt

D v�
Z hn

�n

r.s/ds C
Z Tn

hn

r.s/ds

�
Z Tn

hn

r.t/ exp

�
�v�

Z t

Œt�m�
r.s/ds C v�

Z t

�n

r.s/ds

�
dt

� v�
Z hn

�n

r.s/ds C
Z Tn

hn

r.s/ds

�e� 3
2 v�

Z Tn

hn

r.t/ exp

�
v�
Z t

�n

r.s/ds

�
:

Thus

ln

�
N.Tn/

N �

�
� v�

Z hn

�n

r.t/dt C .1 � v�/
Z Tn

hn

r.t/dt

� exp

�
�v�

�
3

2
�
Z Tn

�n

r.s/ds

��

D � .1 � v�/ ln.1 � v�/
v� C v�

Z Tn

�n

r.t/dt

� exp

�
�v�

�
3

2
�
Z Tn

�n

r.s/ds

��

� � .1 � v�/ ln.1 � v�/
v� C 3

2
v� � 1;

since h.x/ D xv� � e�v�. 32�x/ is increasing for 0 � x � 3
2
: Thus according to

(4.108),



168 4 Logistic Models with Piecewise Arguments

ln

�
N.Tn/

N �

�
� v� � .v�/2

6
:

This completes the proof of (4.107).
Let n ! 1 and " ! 0 in (4.107), and we have

ln
� u

N �
�

�
�
1 � v

N �
�

� 1

6

�
1 � v

N �
�2
: (4.109)

Next, let fSng be an increasing sequence such that Sn � T C m, D�N.Sn/ � 0;

N.Sn/ < N �, limn!1N.Sn/ D v and limn!1 Sn D 1: If Sn … f0; 1; 2; : : : ; mg,
then by (4.89), we have

mX
jD0

ajN.ŒSn � j �/ � 1;

which implies that there exists 	n 2 ŒŒSn � m�; Sn� such that N.	n/ D N � and
N.t/ < N � for t 2 .	n; Sn�: If Sn 2 f0; 1; 2; : : :g then

mX
jD0

ajN.Sn � j � 1/ � 1;

and so there exists 	n 2 ŒSn � m � 1; Sn/ such that N.	n/ D N � and N.t/ < N �
for t 2 .	n; Sn�: Thus by (4.98),

Z Sn

	n

r.s/ds � 3

2
:

For T � t � 	n; by integrating (4.104) from t to 	n, we get

ln

�
N.	n/

N.t/

�
� �

� u1
N � � 1

� Z 	n

t

r.s/ds

or

N.t/ � N � exp

�� u1
N � � 1

� Z 	n

t

r.s/ds

�
; for T � t � 	n: (4.110)

For j D 0; 1; 2; : : : ; m, we define the sets

F1j D ft 2 Œ	n; Tn� W Œt � j � � 	ng;
F2j D ft 2 Œ	n; Tn� W Œt � j � � 	ng:
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Then F1j [ F2j D Œ	n; Sn�, j D 0; 1; 2; : : : ; m: Note that t 2 Œ	n; Sn� implies
Œt �m� � 	n: For t 2 F1j , we have

N.Œt � j �/ � N � � N � exp

�� u1
N � � 1

� Z 	n

Œt�m�
r.s/ds

�
,

and for t 2 F2j , by (4.110), we have

N.Œt � j �/ � N � � N � exp

�� u1
N � � 1

� Z 	n

Œt�j �
r.s/ds

�

� N � exp

�� u1
N � � 1

� Z 	n

Œt�m�
r.s/ds

�
:

Hence

dN.t/

dt
� �r.t/N.t/

�
exp

�� u1
N � � 1

� Z 	n

Œt�j �
r.s/ds

�
� 1

�
:

Let u� D u1
N�

� 1. Thus for t 2 Œ	n; Sn�, we have

d lnN.t/

dt
� max

�
�r.t/u�;�r.t/

�
exp

�
u�
Z 	n

Œt�m�
r.s/ds

�
� 1

�	
: (4.111)

We now prove that

� ln

�
N.Sn/

N �

�
� u� C .u�/2

6
: (4.112)

There are three cases to consider:

Case (i).
R Sn
	n
r.t/dt � 1:

Then by (4.111),

� ln

�
N.Sn/

N �

�
� u�

Z Sn

	n

r.t/dt � u� < u� C .u�/2

6
:

Case (ii). 1 <
R Sn
	n
r.t/dt � 3

2
� ln 1Cu�

u�
:

Clearly u� > 2 in this case. We have

� ln

�
N.Sn/

N �

�
� u�

Z Sn

	n

r.t/dt � 3

2
u� � ln



1C u�� < u� C .u�/2

6
:
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Case (iii). 3
2

� ln 1Cu�

u�
<
R Sn
	n
r.t/dt � 3

2
:

Choose gn 2 .	n; Sn/ such that

Z Sn

gn

r.t/dt D 3

2
� ln

1C u�

u� :

Then by (4.111),

� ln

�
N.Sn/

N �

�

� u�
Z gn

	n

r.t/dt C
Z Sn

gn

r.t/

�
exp

�
u�
Z 	n

Œt�m�
r.s/ds

�
� 1

�
dt

� u�
Z gn

	n

r.t/dt �
Z Sn

gn

r.t/C e
3
2 u�

Z Sn

gn

r.t/

�
�u�

Z t

	n

r.s/ds

�
dt

D u�
Z gn

	n

r.t/dt �
Z Sn

gn

r.t/

C 1

u� e
3
2 u�

�
exp

�
�u�

Z gn

	n

r.s/ds

�
� exp

�
�u�

Z Sn

	n

r.s/ds

��

D u�
Z gn

	n

r.t/dt �
Z Sn

gn

r.t/

C 1

u� exp

�
u�
�
3

2
�
Z gn

	n

r.s/ds

��
� exp

�
u�
�
3

2
�
Z Sn

	n

r.s/ds

��
:

This implies that

� ln

�
N.Sn/

N �

�

� u�
Z gn

	n

r.t/dt �
Z Sn

gn

r.t/

C 1

u�

�
1C u� � 1 � u�

�
3

2
�
Z Sn

	n

r.s/ds

��

D u�
Z gn

	n

r.t/dt � 1

2
C
Z gn

	n

r.t/dt D .u� C 1/

Z gn

	n

r.t/dt � 1

2

D 1C 3

2
u� � .1C u�/ ln.1C u�/

u� D 3

2
u� � 1

u�

Z u�

0

�Z x

0

dy

1C y

�
dx

� 3

2
u� �

Z u�

0

Z x

0

.1 � y/dydx D u� C .u�/2

6
:

This proves that (4.112) holds.
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Let n ! 1 and " ! 0 in (4.112), and we have

� ln
� v

N �
�

�
� u

N � � 1
�

C 1

6

� u

N � � 1
�2
: (4.113)

Set x D u
N�

� 1 and y D 1� v
N�
: Then x � 0, 0 � y < 1: By (4.109) and (4.113),

we see that

� � ln.1 � y/ � x C 1
6
x2;

ln.1C x/ � y � 1
6
y2:

(4.114)

In view of Lemma 3.2.2 we see that the system (4.114) has only solution x D y D 0:

This shows that v D u D N � and completes the proof. �

We will now present another result (see [49]) which is different from
Theorem 4.3.2. Consider (4.89), (4.90) with r.t/ is continuous on Œ0;1/,
r.t/ � 0; r.t/ 6� 0, and

a0 > 0 and ak � 0; 1 � k � m: (4.115)

Let

rtl D
Z t

l

r.s/ds; l � t < l C 1 and rl D
Z lC1

l

r.s/ds; l D 0; 1; 2; : : : : (4.116)

Let

N � D 1Pm
kD0 ak

and tl D 1 �
mX
kD0

akN.l � k/; l D 0; 1; 2; : : : : (4.117)

From (4.92) we obtain

N.l C 1/ D N.l/ exp.rl tl /; l D 0; 1; 2; : : : ; (4.118)

and

N.l C 1/�N � D8̂
<̂
ˆ̂:

f1�a0N.l/Rlg .N.l/�N �/�N.l/RlPm
kD1 ak.N.l�k/�N �/;

if tl ¤ 0;

f1�a0N.l/rlg .N.l/�N �/�N.l/rlPm
kD1 ak.N.l�k/�N �/;

if tl D 0;

(4.119)

where

Rl WD exp.rl tl / � 1
tl

:
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Let kl D N.l/ Qf .tl I rl /; l D 0; 1; 2; : : : ;

r D inf
l�0.rl / and Qf .t I r/ D

�
ert�1
t
; t ¤ 0;

r; t D 0:
(4.120)

Lemma 4.3.4. Assume that

0 < rl � 1; l D 0; 1; 2; : : : : (4.121)

Then, for any positive integer l we have

N.l C 1/ � 1

rla0
and 1 � a0kl � 0: (4.122)

Moreover, if r > 0, then there exists a positive constant k such that for any
sufficiently large positive integer l ,

k � kl � 1

a0
; (4.123)

and

lim sup
l!1

N.l/ � 1

a0
and lim inf

l!1N.l/ �
�
1

a0

�2  
a0 �

mX
kD1

ak

!
: (4.124)

Proof. We easily see that (4.121) implies (4.94) and hence by Lemma 4.3.3 (and
Lemma 4.3.2) N.l/ is bounded above and is bounded below from 0. For f .x/ D
xer�ax , where r and a are positive constants, we have

max
0�x<1f .x/ D er�1

a
:

Thus, by (4.118) and (4.121), we see for l � 0,

N.l C 1/ � N.l/ expfrl .1 � a0N.l//g � exp.rl � 1/
rla0

� 1

rla0
:

Put

Ntl D 1 � rla0N.l/; for any l � 1; (4.125)

and note Ntl � 0 for any l � 1. Consider the function

g.x/ D
�
ex�1
x
; x ¤ 0;

1; x D 0:
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Then,

g0.x/ D
�

1
x2

f.x � 1/ex C 1g; x ¤ 0;
1
2
; x D 0;

and for h.x/ D .x�1/exC1; h0.x/ D xex . Then, h.x/ � h.0/ D 0; g0.x/ � 0 and
hence, g.x/ is a strictly monotone increasing function of x on .�1;C1/. Hence,
by (4.117), (4.121) and (4.125), we have that rl tl � Ntl and

a0kl � rla0N.l/g.rl tl / � .1 � Ntl /g.Ntl /; l D 1; 2; : : : :

We easily see that

.1 � x/e
x � 1
x

� 1; for any 0 < x � 1:

Hence, we have (4.122). In (4.117), we see

tl � t l � 1 �
mX
kD0

ak .lim sup
l!1

N.l// > �1:

Put

k �
(
1
2
.lim infl!1N.l//

exp.rt l /�1
t l

> 0; t l ¤ 0;
1
2
.lim infl!1N.l//r > 0; t l D 0:

Then, for any sufficiently large positive integer l ,

0 < k � kl � 1

a0
:

Next, let a sequence flpg1
pD1 satisfy

0 < lim
l!1N.lp/ D lim sup

l!1
N.l/ < C1:

Then, by (4.119) and (4.123), we have that for any sufficiently large positive
integer p,

N.lpC1/ �N �

� .1 � a0klpC1�1/.N.lpC1 � 1/ �N �/

�klpC1�1

 
mX
kD1

ak

!�
min

1�k�mC1N.lpC1 � k/ �N �
�
:
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Let p ! C1, in the above equation and so

lim
p!1 max

1�k�mC1N.lpC1 � k/ � lim sup
l!1

N.l/ ;

lim
p!1 min

1�k�mC1N.lpC1 � k/ � lim inf
l!1 N.l/;

and by (4.123), we have

a0.lim sup
l!1

N.l/ �N �/C .

mX
kD1

ak/.lim inf
l!1 N.l/ �N �/ � 0:

Then, we get

lim sup
l!1

N.l/ �N � � �
(
.

mX
kD1

ak/=a0

)
.lim inf
l!1 N.l/ �N �/

�
(
.

mX
kD1

ak/=a0

)
N �;

and hence, we have

lim sup
l!1

N.l/ �
(
1C .

mX
kD1

ak/=a0

)
N � D 1

a0
:

Similarly, let a sequence flpg1
pD1 satisfy

lim
p!1N.lp/ D lim inf

l!1 N.l/ > 0:

By (4.119) and (4.123), we have that for any sufficiently large positive integer l ,

N.lpC1/ �N � � .1 � a0klpC1�1/.N.lpC1 � 1/ �N �/

�klpC1�1.
mX
kD1

ak/. max
1�k�mC1N.lpC1 � k/ �N �/:

Therefore from a similar argument to the above we get

a0.lim inf
l!1 N.l/ �N �/C .

mX
kD1

ak/.lim sup
l!1

N.l/ �N �/ � 0:

Then,

lim inf
l!1 N.l/ �N � � �

(
.

mX
kD1

ak/=a0

)
.lim sup
l!1

N.l/ �N �/
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and

lim inf
l!1 N.l/ � f1C .

mX
kD1

ak/=a0/gN � � f.
mX
kD1

ak/=a0g lim sup
l!1

N.l/

D 1

a0
� f.

mX
kD1

ak/=a0/g lim sup
l!1

N.l/:

Thus, by the first part of (4.124),

lim inf
l!1 N.l/ � 1

a0
�
(
.

mX
kD1

ak/=a0

)
1

a0
D
�
1

a0

�2 (
a0 �

mX
kD1

pk

)
:

The proof is complete. �

Now we have our main result.

Theorem 4.3.3. Assume that

a0 >

mX
kD1

ak and 0 < rl � 1; l D 0; 1; 2; : : : : (4.126)

Then

jN.l C 1/ �N �j � max
0�k�m jN.l � k/ �N �j; l D 0; 1; 2; : : : ; (4.127)

which implies that solutions of (4.89), (4.90) have the contractivity property.
Moreover, if r D infl�0 rl > 0, then the positive equilibrium N � of (4.89), (4.90) is
globally asymptotically stable.

Proof. Note

jN.l C 1/ �N �j

� .1 � a0kl /jN.l/ �N �j C kl .

mX
kD1

ak/. max
1�k�m jN.l � k/ �N �j/

� f1 � kl .a0 �
mX
kD1

ak/g. max
0�k�m jN.l � k/ �N �j/; l D 0; 1; 2; : : : ;

from which by (4.126), we get (4.127). Moreover, if r > 0, then by Lemma 4.3.4,

1 � kl .a0 �
mX
kD1

ak/ < 1 � k.a0 �
mX
kD1

ak/ < 1;
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for any large positive integer l , and hence, liml!1N.l/ D N �. The proof is
complete. �

Next we discuss the equation

8<
:

dN.t/

dt
D N.t/r.t/

˚
1 � aN.t/ �Pm

iD0 biN.n � i/� ;
n � t < nC 1; n D 0; 1; 2; : : : ;

N.0/ D N0 > 0; and N.�j / D N�j � 0; j D 1; 2; : : : ; m;

(4.128)

where r.t/ is a nonnegative continuous function on Œ0;C1/;

r.t/ 6� 0;

mX
iD0

bi > 0; bi � 0; i D 0; 1; 2; : : : ; m and aC
mX
iD0

bi > 0:

The results below are adapted from [48]. Note the positive equilibrium of (4.128) is

N � D 1

aCPm
jD0 bj

:

For r > 0 and �1 < ˛ < 1, put

f .t I r/ D
�
.1 � t / ert�1

t
; t ¤ 0;

r; t D 0;
(4.129)

and consider the conditions of r > 0 such that

f .t I r/ � 2

1 � ˛ ; for any t < 1: (4.130)

For �1 < ˛ < 1, consider the function g.Y I˛/ of Y on .�1; 1/:

g.Y I˛/ D
(

1
2.˛CY / ln .1C˛/.1CY /

.1�˛/.1�Y / ; Y ¤ �˛
1

1�˛2 ; Y D �˛: (4.131)

Lemma 4.3.5. Under the conditions that 0 < OY < ˛ for 0 < ˛ < 1, and
˛ < OY < 0 for �1 < ˛ < 0, there exists a unique solution OY D OY .˛/ of the
equation:

1

1 � OY 2 D g. OY I˛/; �1 < ˛ < 1: (4.132)

In particular, OY .0/ D 0 and

lim
˛!0

OY .˛/ D OY .0/: (4.133)
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Proof. For Y ¤ �˛,

g0.Y I˛/ D 1

˛ C Y

n
1

1�Y 2 � 1
2.˛CY / ln .1C˛/.1CY /

.1�˛/.1�Y /
o

D 1

˛ C Y
f 1

1 � Y 2 � g.Y I˛/g:

Moreover, for ˛ ¤ 0,

g.0I˛/ D g.˛I˛/ D 1

2˛
ln
1C ˛

1 � ˛ D 1C ˛2

3
C ˛4

5
C : : : ;

and
(
g0.0I˛/ D 1

˛
f1 � g.0I˛/g D �˛.1

3
C ˛2

5
C � � � /;

g0.˛I˛/ D 1
2˛

f 1
1�˛2 � g.˛I˛/g D ˛.1

3
C 2˛2

5
C : : :/:

Thus, for �1 < ˛ < 1 and ˛ ¤ 0, there is a solution OY D OY .˛/ such that
0 < OY < ˛ for 0 < ˛ < 1 and ˛ < OY < 0 for �1 < ˛ < 0, and it satisfies
the equation

g0. OY I˛/ D 0;

and hence

1

1 � OY 2 D g. OY I˛/;

and, since 0 < OY < ˛ for 0 < ˛ < 1 or ˛ < OY < 0 for �1 < ˛ < 0, we have

g00. OY I˛/ D 1

˛ C OY f� .�2 OY /
.1 � OY 2/2 � g0. OY I˛/g

D 1

˛ C OY
2 OY

.1 � OY 2/2 > 0:

Hence, under the conditions that 0 < OY < ˛ for 0 < ˛ < 1 and ˛ < OY < 0 for
�1 < ˛ < 0, this solution OY D OY .˛/ of (4.132), is unique for 0 < j˛j < 1. We see
that OY D OY .0/ D 0 is a unique solution of (4.132). Further, we have

lim
˛!C0

OY .˛/ � 0; and lim
˛!�0

OY .˛/ � 0;

and hence, lim˛!0
OY .˛/ D 0, from which we have (4.133). The proof is complete.

�
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Remark 8. Note that for 0 < j˛j < 1, the equation

1

1 � Y 2 D g.Y I˛/;

has another solution OY D �˛, but this solution does not satisfy the conditions
0 < OY < ˛ for 0 < ˛ < 1 and ˛ < OY < 0 for �1 < ˛ < 0.

Lemma 4.3.6. For �1 < ˛ < 1, let OY .˛/ be defined as in Lemma 4.3.5 and put

Or.˛/ D 2.1C ˛/

1 � OY 2.˛/ and Ot .˛/ D ˛ C OY .˛/
1C ˛

: (4.134)

Then, Or.˛/ is a strictly monotone increasing function of ˛ on the interval .�1; 1/;
and

lim
˛!�1C0 Or.˛/ D 0 and lim

˛!1�0 Or.˛/ D C1; (4.135)

and hence,

lim
˛!�1C0

OY .˛/ D �1 and lim
˛!1�0

OY .˛/ D 1: (4.136)

Moreover,

8<
:

Ot .˛/ < 1; f 0.Ot.˛/I Or.˛// D 0;

f 0.t I Or.˛// > 0; �1 < t < Ot .˛/;
f 0.t I Or.˛// < 0; Ot .˛/ < t < 1:

Hence, for any 0 < r � Or.˛/, we have

�
f .t I r/ � f .t I Or.˛// � f .Ot .˛/I Or.˛// D 2

1�˛ ; for t < 1;
f .t I Or.˛// < 2

1�˛ ; for t < 1; t ¤ Ot .˛/: (4.137)

Further, for �1 < ˛ < 0, we have that Or.˛/ < Or.1C2˛/, and for any r < Or.1C2˛/,

1C f̨ .t I r/ > 0; for any t < 1: (4.138)

Proof. From (4.129), we have for t ¤ 0,

f 0.t I r/ D ert

t 2
Œe�rt � f1 � rt.1 � t /g� (4.139)

and

lim
t!0

f 0.t I r/ D r.
r

2
� 1/:
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We see that

f 0.0I 2/ D 0;

and for r � 2,

f .t I r/ � f .t I 2/ � f .0I 2/ D 2 D 2

1 � 0 ; for any t < 1;

from which we get (4.137) for ˛ D 0. Now consider the case 0 < j˛j < 1. Since
OY .˛/ ¤ �˛, we have

2.˛ C OY .˛//
1 � OY 2.˛/ D ln

.1C ˛/.1C OY .˛//
.1 � ˛/.1 � OY .˛// ;

and hence

e
� 2.˛C OY .˛//

1� OY 2.˛/ � .1 � ˛/.1 � OY .˛//
.1C ˛/.1C OY .˛// D 0:

Note

Or.˛/Ot .˛/ D 2.˛ C OY .˛//
1 � OY 2.˛/ ;

and

1 � Or.˛/Ot .˛/.1 � Ot .˛// D 1 � 2.˛ C OY .˛//
.1C ˛/.1C OY .˛//

D .1 � ˛/.1 � OY .˛//
.1C ˛/.1C OY .˛// :

Hence, from (4.139), we have f 0.Ot .˛/I Or.˛// D 0: Further,

e Or.˛/Ot .˛/ � 1 D .1C ˛/.1C OY .˛//
.1 � ˛/.1 � OY .˛// � 1 D 2.˛ C OY .˛//

.1 � ˛/.1 � OY .˛// ;

and hence,

f .Ot .˛/I Or.˛// D .1 � Ot .˛//e
Or.˛/Ot .˛/ � 1

Ot .˛/ D 2

1 � ˛ :

Since 8<
:

limt!�1 f .t I Or.˛// D 1; f 0.t I Or.˛// > 0;
for t < 0 which has a sufficiently large jt j;

f .1I r/ D 0 and f 0.1I r/ D 1 � e�r < 0; for r > 0;
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we see that

f 0.t I Or.˛// > 0; for � 1 < t < Ot .˛/;
and f 0.t I Or.˛// < 0; for Ot .˛/ < t < 1:

Hence, from (4.134), we get (4.137) for 0 < j˛j < 1. From (4.134) and (4.137),
we can see that Or.˛/ is a strictly monotone increasing function of ˛ on the interval
.�1; 1/, and hence (4.135) and (4.136) hold.

If �1 < ˛ < 0, then 2
1�˛ < 1

�˛ . Hence, we obtain (4.138). The proof is
complete. �

From Lemma 4.3.6, we have the following corollary for a fixed r > 0.

Corollary 4.3.1. For any r > 0, we have

8̂̂
<̂
ˆ̂̂:

�1 < Or�1.r/ < 1; Ot . Or�1.r// < 1; and f 0.Ot . Or�1.r//I r/ D 0

and(
f .t I r/ � f .Ot . Or�1.r//I r/ D 2

1�Or�1.r/
; for t < 1;

f .t I r/ < 2
1�Or�1.r/

; for t < 1 and t ¤ Ot. Or�1.r//;

(4.140)

where for r > 0; ˛ D Or�1.r/ means Or.˛/ D r and Or.˛/ is defined as in
Lemma 4.3.6.

Proof. The proof is derived directly from Lemma 4.3.6. �

Corollary 4.3.2. For a fixed r > 0, let 1 > t D Ot ¤ 0 be the solution of the
equation

G.t I r/ � e�rt � f1 � rt.1 � t /g D 0; (4.141)

and put

Or D 1 � 2

f .Ot I r/ : (4.142)

Then,

Or�1.r/ D Or and Ot. Or�1.r// D Ot : (4.143)

Proof. By Lemma 4.3.6 and Corollary 4.3.1, we see that there exists a unique
solution 1 > Ot ¤ 0 of (4.141). Since

f 0.t I r/ D ert

t 2
G.t I r/;

we have f 0.Ot I r/ D 0, and by (4.142), f .Ot I r/ D 2
1�Or , from which by (4.140), we

get the conclusion. �
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Corollary 4.3.3. For a fixed �1 < ˛ < 1 and ˛ ¤ 0, let q D Oq ¤ 0 be a solution
of the equation

H.qI˛/ � .1 � ˛/eq � 2.q � ˛/ � .1C ˛/e�q D 0; (4.144)

and put

Ot D e�Oq � .1 � Oq/
Oq and Or D Oq

Ot : (4.145)

Then,

Or.˛/ D Or and Ot.˛/ D Ot : (4.146)

Proof. By Lemma 4.3.6, we see that there exists a unique solution Oq ¤ 0 of (4.144).

For Op D 1�e�Oq

Oq ¤ 1, put

Ot D 1 � Op ¤ 0 and Or D Oq
1 � Op : (4.147)

Then, Op D 1 � Ot ; Oq D Or Ot , and by (4.144),

.1 � ˛/.e Oq � 2C e�Oq/ D 2fe�Oq � . Oq � 1/g

and

Op
1 � Op D 1 � e�Oq

e�Oq � .1 � Oq/ :

Hence,

Op
1 � Op .e

Oq � 1/ D 2

1 � ˛ and e�Oq D 1 � Op Oq: (4.148)

Therefore, we have Ot ¤ 0 and

f .Ot I Or/ D 2

1 � ˛ and f 0.Ot I Or/ D e Or Ot
Ot 2 G.Ot I Or/ D 0; (4.149)

from which by Lemma 4.3.6, we get the conclusion. �

Lemma 4.3.7. Let ˇ� > 0; and

QQf .xI r; ˇ; �/ D x
er.ˇ��x/ � 1
ˇ � �x : (4.150)
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Then, for t D 1 � �

ˇ
x and Qr D ˇr , we have

QQf .xI r; ˇ; �/ D 1

�
f .t I Qr/: (4.151)

Proof. Since r.ˇ � �x/ D Qrt and ˇ � �x D ˇt , we get (4.150). �

Note from (4.128) after integrating from n to t we have that

N.t/ D N.n/ exp

( Z t

n

r.s/.1 � aN.s/ �
mX
iD0

biN.n � i//ds
)
;

n � t < nC 1; n D 0; 1; 2; : : : ; (4.152)

and so N.t/ > 0 for all t > 0. An easy computation yields that for t 2 Œn; nC 1/,

d

dt

"
1

N.t/
exp

( Z t

n

r.s/ds.1 �
mX
iD0

biN.n � i//
)#

D ar.t/ exp

( Z t

n

r.s/ds.1 �
mX
iD0

biN.n � i//
)
: (4.153)

Put
(
rn D R nC1

n
r.�/d�; tn D 1 �Pm

iD0 biN.n � i/;
N � D 1

.aCPm
iD0 bi /

:
(4.154)

Lemma 4.3.8. If

1C aN.n/
exp

nR t
n
r.s/ds tn

o
� 1

tn
> 0; for tn ¤ 0;

and

1C aN.n/

Z t

n

r.s/ds > 0; for tn D 0;

then we have for n � t < nC 1,

N.t/ D

8̂̂
<
ˆ̂:

N.n/ expfR tn r.s/ds tng
.1CaN.n//

"
.expfR tn r.s/ds tng�1/

tn

# ; tn ¤ 0;

N.n/

1CaN.n/ R tn r.s/ds ; tn D 0;

(4.155)
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and

N.t/ �N �

D

8̂̂
<̂
ˆ̂̂:

1�b0N.n/ exp.rtntn/�1
tn

1CaN.n/ exp.rtntn/�1
tn

.N.n/�N �/�Pm
iD1 A.n/ bi .N.n�i/ �N �/;

if tn ¤ 0;
1�b0N.n/rtn
1CaN.n/rtn .N.n/�N

�/�Pm
iD1 B.n/ bi .N.n � i/�N �/; if tn D 0;

(4.156)

where

A.n/ D N.n/
exp.rtntn/�1

tn

1C aN.n/
exp.rtntn/�1

tn

, B.n/ D N.n/rtn
1C aN.n/rtn

, rtn D
Z t

n

r.s/ds: (4.157)

In particular,

N.nC 1/ D
8<
:

N.n/ expfrntng
1CaN.n/ expfrntng�1

tn

; for tn ¤ 0;

N.n/

1CaN.n/rn ; for tn D 0;
(4.158)

and

N.nC 1/ �N �

D

8̂̂
<
ˆ̂:

1�b0N.n/ exp.rntn/�1
tn

1CaN.n/ exp.rntn/�1
tn

.N.n/ �N �/�Pm
iD1 C.n/ bi .N.n � i/ �N �/;

if tn ¤ 0;
1�b0N.n/rn
1CaN.n/rn .N.n/ �N �/ �Pm

iD1 D.n/ bi .N.n � i/ �N �/; if tn D 0;

(4.159)

where

C.n/ D N.n/
exp.rntn/�1

tn

1C aN.n/
exp.rntn/�1

tn

and D.n/ D N.n/rn

1C aN.n/rn
:

Proof. If
R t
n
r.s/ds D 0, then N.t/ D N.n/; t 2 Œn; nC 1/.

Assume Z t

n

r.s/ds > 0; t 2 Œn; nC 1/:

From (4.153), we have (4.155). Then

N.t/ D

8̂̂
<̂
ˆ̂̂:

N.n/Cf.aCPm
iD0 bi /N

��Pm
iD0 biN.n� i/gN.n/.e

R t
n r.s/dstn�1/=tn

1C aN.n/f.eR tn r.s/dstn � 1/=tng
; tn ¤ 0;

N.n/Cf.aCPm
iD0 bi /N

��Pm
iD0 biN.n� i/gN.n/ R tn r.s/ds

1C aN.n/
R t
n r.s/ds

, tn D 0;
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from which we have (4.156). �

If a � Pm
iD0 bi > 0 then for 0 < rn < C1,

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

j1 � b0N.n/ exp.rntn/�1
tn

j CPm
iD1 biN.n/

exp.rntn/�1
tn

1C aN.n/
exp.rntn/�1

tn

<
1CPm

iD0 biN.n/
exp.rntn/�1

tn

1C aN.n/
exp.rntn/�1

tn

�1; tn ¤ 0;

j1 � b0N.n/rnj CPm
iD1 biN.n/rn

1C aN.n/rn
<
1CPm

iD0 biN.n/rn
1C aN.n/rn

� 1; tn D 0:

We easily get the next result when a � Pm
iD0 bi > 0.

Theorem 4.3.4. If

a �
mX
iD0

bi > 0; (4.160)

then the solutions of (4.128) have the contractivity property, that is,

jN.nC 1/ �N �j � max
0�i�m jN.n � i/ �N �j: (4.161)

Moreover, if

lim sup
n!1

rn > 0; (4.162)

then

lim
n!1N.n/ D N �; (4.163)

and hence, the positive equilibrium N � D 1=.a C b/ of (4.128) is globally
asymptotically stable.

Hereafter with (4.128) we consider the case �Pm
iD0 bi < a <

Pm
iD0 bi . Note

that if rn D 0, then N.nC 1/ D N.n/.
For simplicity, we assume rn > 0 and put

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

x.n/ D .
Pm

iD0 bi /N.n/; x� D .
Pm

iD0 bi /N � D 1
.1C˛/ ;

˛ D a
.
Pm
iD0 bi /

> �1; ai D bi
.
Pm
iD0 bi /

� 0; 0 � i � m;

Qf .t I r/ D
�
ert�1
t
; t ¤ 0;

r; t D 0;

Nr D supn�0 rn and r D infn�0 rn:

(4.164)
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Then,

tn D 1 �
mX
iD0

aix.n � i/;

and (4.158) and (4.159) become respectively

x.nC 1/ D x.n/ expfrntng
1C ˛x.n/ Qf .tnI rn/

(4.165)

and

x.nC 1/ � x� D 1 � a0x.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

.x.n/ � x�/

�
mX
iD1

aix.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

.x.n � i/ � x�/: (4.166)

Theorem 4.3.5. Let N.t/ denote any solution of (4.128) and Or.˛/ be defined as in
Lemma 4.3.6. If a � 0 or �b0 < a < 0 and

(
Nr < C1; for a � 0;

r > 0 and Nr < Or.1C 2a
b0
/; for � b0 < a < 0; (4.167)

then

lim inf
n!1 N.n/ > 0: (4.168)

Proof. By our assumptions, Nr > 0.
For the case a � 0, the proof is similar to those in Lemmas 4.3.2 and 4.3.3.

Now assume �b0 < a < 0; r > 0, and Nr < Or.1 C 2a
b0
/. In (4.165), first we see

tn � 1 � a0x.n/, and for

g.x/ D xe Nr.1�a0x/;

we see

g0.x/ D .1 � Nra0x/e Nr.1�a0x/;

and hence,

g.x/ � 1

Nra0 e
Nr.1� 1

Nr / D 1

Nra0 e
Nr�1:

Hence, for r � rn � Nr ,

x.n/erntn � x.n/ern.1�a0x.n// � max.
1

ra0
er�1;

1

Nra0 e
Nr�1/:
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By assumption, we see that there is a constant ı such that

0 < ı < minf1 � Or�1. Nr/
2=a0

C ˛; ˛ C a0g:

Then,

�1 < 1C 2

a0
.˛ � ı/ < 1; Nr < Or.1C 2

a0
.˛ � ı//;

and by (4.134) and (4.137) in Lemma 4.3.6,

1C ˛x.n/ Qf .tnI rn/ � 1C ˛

a0
f .1 � a0x.n/I rn/

> 1C ˛

a0

2

1 � f1C 2
a0
.˛ � ı/g

D ı

ı � ˛ > 0:

Thus, from (4.165), we have that

x.nC 1/ � max.
1

ra0
er�1;

1

Nra0 e
Nr�1/

ı � ˛
ı

:

Hence, in any case considered, we have x.t/ � NM < C1.
Next we prove

lim inf
n!1 x.n/ > 0 for 0 < r � ri � Nr < Or.1C 2a

b0
/:

Let us consider the solution c > 0 of the following equation:

a0c � 1 and a0c Qf .1 � a0cI Nr/ D 1: (4.169)

We easily see that there exists a unique solution c > 0 of this equation. Put Oc D
min.c; x�/ > 0. If

x.n � j / < Oc; 0 � j � m; n � 0;

then by (4.169),

0 <
1 � a0x.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

D 1 � .˛ C a0/x.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

< 1;
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and by (4.165) and (4.166),

x.nC 1/ � x�

�
 
1 � .˛ C a0/x.n/ Qf .tnI rn/

1C ˛x.n/ Qf .tnI rn/

!
.x.n/ � x�/ > x.n/ � x�;

and hence,

x.nC 1/ > x.n/; n � 0:

If x.n/ � Oc; n � 0, then by (4.165),

x.nC 1/ � M Oc; n � 0;

where

M Oc D Oc expfNr min.1 � a0 Oc � .
mX
iD1

ai / NM;0/gı � ˛
ı

:

Similarly, if for some 1 � j � m, x.n � j / � Oc; n � j , then by (4.165), we see
x.n C 1/ � M

j

Oc ; n � j . Hence, if for some 0 � j � m, x.n � j / � Oc; n � m,
then

x.nC 1/ � M; n � m;

where

M D min
0�j�mM

j

Oc > 0:

Suppose that there is a subsequence fnlg1
lD1 such that

lim
l!1 x.nl C 1/ D 0:

Then, there is an l � 1 such that nl � m and

x.nl C 1/ < x.nl / and x.nl C 1/ < M:

Therefore, by the above discussions, we see that

x.nl � j / < Oc; 0 � j � m;

and hence, we have

x.nl C 1/ > x.nl /;

which is a contradiction. Thus, we get lim infn!1 x.n/ > 0 and (4.168). �
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Remark 9. If �b0 < a < 0 and Nr � Or.1 C 2a
b0
/, then it may occur that

1C˛x.n/ Qf .tnI rn/ � 0 for some rn and x.n� i/; 0 � i � m; n � 0. In particular,
if m D 0 and

rn � Or
�
1C 2a

b0

�
; for � b0 < a < 0;

then for �1 < ˛ D a
b0
< 0,

1C f̨ .Ot .1C 2˛/I rn/ � 1C f̨ .Ot .1C 2˛/I Or.1C 2˛//

D 1C 2˛

1 � .1C 2˛/
D 0;

and hence there exists an

0 < N.n/ < .1 � Ot .1C 2˛//=b0

such that

1C f̨ .1 � b0N.n/I rn/ D 0: (4.170)

In this case, we cannot define N.nC 1/ by (4.158) [see also (4.172)].

Now, let us consider the contractivity of solutions and the global stability for the
positive equilibrium N � of (4.128). First, we study the case m D 0 in (4.128). For
simplicity, we assume rn > 0 and put

� 1 < ˛ D a

b0
< 1; x.n/ D b0N.n/ > 0; and x� D 1

1C ˛
> 0: (4.171)

If

1C ˛x.n/
expfrn.1 � x.n//g � 1

1 � x.n/ > 0; for x.n/ ¤ 1

and

1C ˛rn > 0; for x.n/ D 1;

then from (4.164), (4.165) and (4.129), we have

x.nC 1/ D x.n/ expfrn.1 � x.n//g
1C f̨ .1 � x.n/I rn/ ; (4.172)

and from (4.166), we have

x.nC 1/ � x� D F.x.n/; rnI˛/.x.n/ � x�/; (4.173)
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where

F.x; r; ˛/ D 1 � f .1 � xI r/
1C f̨ .1 � xI r/ : (4.174)

We easily see that for �1 < ˛ < 1 .�b0 < a < b0/,
8<
:
1C f̨ .1 � x.n/I rn/ > 0; and � 1 � F.x.n/; rnI˛/ < 1;
,
f .1 � x.n/I rn/ � 2

1�˛ :
(4.175)

Remark 10. Note that for x > 0 and r > 0, f .1 � xI r/ > 0 and in this case,
F.x; r I˛/ < 1; for �1 < ˛ < 1. In (4.175), if

0 < rn � Or.˛/; x.n/ ¤ x�; and F.x.n/; rnI˛/ D �1;

then

0 < rn � Or.˛/; x.n/ ¤ x�; and f .1 � x.n/I rn/ D 2

1 � ˛ ;

and by (4.137) in Lemma 4.3.6, we see that

1 � x.n/ D Ot .˛/; rn D Or.˛/

and

x.nC 1/ � x� D x� � x.n/;
but x.n/ ¤ x.nC 1/: Then,

1 � x.nC 1/ ¤ Ot .˛/;
and for 0 < rnC1 � Or.˛/,

0 < f .1 � x.nC 1/I rnC1/ <
2

1 � ˛ ;

and hence

jx.nC 2/ � x�j < jx.nC 1/ � x�j:

Theorem 4.3.6. Assume m D 0 and �b0 < a < b0, and put �1 < ˛ D a
b0
< 1.

(i) If

rn � Or.˛/; (4.176)
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then the solutions of (4.128) have the contractivity property, that is,

jN.nC 1/ �N �j � jN.n/ �N �j: (4.177)

(ii) If

� Nr < Or.1C 2˛/; if � 1 < ˛ < 0; and
0 < lim supn!1 rn < Or.˛/ or lim supn!1 rn D Or.˛/; (4.178)

then

lim
n!1N.n/ D N �; (4.179)

and hence, the positive equilibrium N � D 1=.a C b0/ of (4.128) is globally
asymptotically stable.

(iii) If

rn > Or.˛/; (4.180)

then there exists an N.n/ > 0 such that

jN.nC 1/ �N �j > jN.n/ �N �j: (4.181)

Proof. By (4.137) and (4.138) in Lemma 4.3.6, we have that for �1 < ˛ < 1 and
rn � Or.˛/,

0 < f .1 � x.n/I rn/ � f .1 � x.n/I Or.˛//

� 2

1 � ˛ and 1C f̨ .1 � x.n/I rn/ > 0:

Then, we have (4.175) and by (4.173),

jx.nC 1/ � x�j � jx.n/ � x�j;

from which (4.177) holds.
Now, assume (4.178). Then, by (4.138) in Lemma 4.3.6, 1C f̨ .1�x.n/I rn/ > 0.

If

0 < lim sup
n!1

rn < Or.˛/;

then by Theorem 4.3.5 and (4.137) and (4.138) in Lemma 4.3.6, for a sufficiently
large n,

F.x.n/; rnI˛/ < 1;
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and

lim inf
n!1 F.x.n/; rnI˛/

D lim inf
n!1

�
�1C 2 � .1 � ˛/f .1 � x.n/I rn/

1C f̨ .1 � x.n/I rn/
�
> �1:

Hence, there is a subsequence fnlg1
lD1 and a constant �1 such that

lim
l!1 jF.x.nl /; rnl I˛/j � �1 < 1;

from which we get (4.179). By (4.137), and (4.138) in Lemma 4.3.6, we have for
any t < 1,

1C f̨ .t I Or.˛// > 0; f .t I Or.˛// � 2

1 � ˛ ;

and for any x > 0,

jF.x� C F.x; Or.˛/I˛/.x � x�/; Or.˛/I˛/F.x; Or.˛/I˛/j

D j
�

�1C 2 � .1 � ˛/f .1 � x� � F.x; Or.˛/I˛/.x � x�/I Or.˛//
1C f̨ .1 � x� � F.x; Or.˛/I˛/.x � x�/I Or.˛//

�

�
�

�1C 2 � .1 � ˛/f .1 � xI Or.˛//
1C f̨ .1 � xI Or.˛//

�
j < 1:

Hence, if

lim sup
n!1

rn D Or.˛/;

then from (4.173),

x.nC 2/ � x� D F.x.nC 1/; rnC1I˛/.x.nC 1/ � x�/

D F.x� C F.x.n/; rnI˛/.x.n/ � x�/; rnC1I˛/F.x.n/; rnI˛/.x.n/ � x�/;

and from the proof of Theorem 4.3.5, there is a constant �2 such that

lim sup
n!1

jF.x� C F.x.n/; rnI˛/.x.n/ � x�/; rnC1I˛/F.x.n/; rnI˛/j

� �2 < 1;

from which we get (4.179). Now (4.179) implies the positive equilibrium N �
of (4.128) is globally asymptotically stable.
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If (4.180) holds, then from (4.128), (4.175), and (4.137), we can easily see that
there exists an N.n/ > 0 such that (4.181) holds. The proof is complete. �

Theorem 4.3.7. Assume that m D 0 and r.t/ � r > 0 in (4.128).

(i) For any solution N.n/ of (4.128), lim infn!1N.n/ > 0, if and only if,

(
r < C1; for 0 � b0 � a; �a < b0 < 0 or 0 � a < b0;

r < Or.1C 2˛/; for � b0 < a < 0 and � 1 < ˛ D a
b0
< 0:

(4.182)

(ii) For any solutionN.n/ of (4.128), we have that jN.nC1/�N �j � jN.n/�N �j,
if and only if,

(
r < C1; for a � b0 � 0; or � a < b0 < 0;
r � Or.˛/; for � b0 < a < b0 and ˛ D a

b0
:

(4.183)

Now, for m � 1, assume that b0 > 0; bi � 0; 1 � i � m and
Pm

iD1 bi > 0, and
we consider sufficient conditions for the contractivity of solutions and the positive
equilibriumN � of (4.128) to be globally asymptotically stable. We have for (4.166),

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

j1 � a0x.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

j CPm
iD1

aix.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

� 1;

,
0 <

x.n/ Qf .tnI rn/ � 1
1C ˛x.n/ Qf .tnI rn/

� 1; for
1 � a0x.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

< 0;

˛ C a0 � Pm
iD1 ai ; for

1 � a0x.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

� 0:

(4.184)

If (4.184) holds, then from (4.166),

jx.nC 1/ � x�j � max.jx.n/ � x�j; j
Pm

iD1 aix.n � i/Pm
iD1 ai

� x�j/

� max
0�i�m jx.n � i/ � x�j:

Note that by (4.164), a0CPm
iD1 ai D 1 and ˛ > a0 > �1. Since x.n� i/ > 0; 1 �

i � m and

tn < 1 � a0x.n/ < 1;

using (4.129) and (4.164), we get the following sufficient conditions for (4.184):

�
rn < C1; if ˛ � 1;

f .1 � a0x.n/I rn/ � 2a0
1�˛ ; if � a0 CPm

iD1 ai < ˛ < 1:
(4.185)
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Thus, for

�a0 C
mX
iD1

ai < ˛ < 1;

f .1 � a0x.n/I rn/ � 2a0

1 � ˛ D 2

1 � .1 � 1�˛
a0
/
; (4.186)

and we see that the condition of rn to ˛ for m � 1, corresponds to that of Q̨ D
1 � 1�˛

a0
> �1 in place of ˛ in Theorem 4.3.6 for m D 0. Note that

� 1 < Q̨ < 1C 2˛

a0
< 1; for � a0 < ˛ < 0; (4.187)

and if

˛ C a0 D
mX
iD1

ai ;

then

Q̨ D 1 � 1 � ˛
a0

D �1:

Theorem 4.3.8. Assumem � 1; b0 > 0 and
Pm

iD1 bi �b0 < a <
Pm

iD0 bi , and put

� 1 < Q̨ D .a �Pm
iD1 bi /
b0

< ˛ D a

.
Pm

iD0 bi /
< 1: (4.188)

(i) If

rn � Or. Q̨ /; (4.189)

then solutions of (4.128) have the contractivity property, that is,

jN.nC 1/ �N �j � max
0�i�m jN.n � i/ �N �j: (4.190)

(ii) If
� Nr � Or.1C 2˛/; if � 1 < ˛ < 0;
0 < lim supn!1 rn < Or. Q̨ / or lim supn!1 rn D Or. Q̨ /; (4.191)

then

lim
n!1N.n/ D N �; (4.192)

and hence, the positive equilibrium N � D 1=.a C Pm
iD0 bi / of (4.128) is

globally asymptotically stable.
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Proof. We see tn < 1� a0x.n/. For (4.188) and rn � Or. Q̨ / we have from (4.137) in
Lemma 4.3.6 and (4.186),

f .1 � a0x.n/I rn/ � f .1 � a0x.n/I Or. Q̨ // � 2a0

1 � ˛ :

Then, by (4.185) and (4.184), we have

� 1 � j1 � a0x.n/ Qf .tnI rn/j C .
Pm

iD1 ai /x.n/ Qf .tnI rn/
1C ˛x.n/ Qf .tnI rn/

� 1; (4.193)

and by (4.166),

jx.nC 1/ � x�j � max

�
jx.n/ � x�j; j

Pm
iD1 aix.n � i/Pm

iD1 ai
� x�j

�

� max
0�i�m jx.n � i/ � x�j; (4.194)

which implies (4.190).
Suppose first, rn � Or. Q̨ /; n � 0. Then, there exists a constant ˇ such that

lim
n!1 max

0�i�m jx.n � i/ � x�j D ˇ � 0;

and hence,

lim sup
n!1

jx.n/ � x�j D ˇ � 0:

Then, there is a subsequence fnkg1
kD1 such that

lim
k!1 jx.nk C 1/ � x�j D ˇ;

and by (4.193),

ˇ D lim
k!1 jx.nk C 1/ � x�j

� lim sup
k!1

j1 � a0x.nk/ Qf .tnk I rnk /j C .
Pm

iD1 ai /x.nk/ Qf .tnk I rnk /
1C ˛x.nk/ Qf .tnk I rnk /

� lim sup
k!1

. max
0�i�m jx.nk � i/ � x�j/

� lim sup
k!1

j1 � a0x.nk/ Qf .tnk I rnk /j C .
Pm

iD1 ai /x.nk/ Qf .tnk I rnk /
1C ˛x.nk/ Qf .tnk I rnk /

ˇ � ˇ:
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Suppose that ˇ > 0. Then, by the above inequalities, we have

lim supk!1
j1 � a0x.nk/ Qf .tnk I rnk /j C .

Pm
iD1 ai /x.nk/ Qf .tnk I rnk /

1C ˛x.nk/ Qf .tnk I rnk /
D 1

and
lim supk!1 jx.nk � i/ � x�j D ˇ; 0 � i � m:

Thus, there is a subsequence fn1l g1
lD0 of fnkg1

kD0 such that

lim
l!1 jx.n1l C 1 � i/ � x�j D ˇ; 0 � i � 1 and

lim sup
l!1

jx.n1l � i/ � x�j D ˇ; 1 � i � m:

Hence using similar reasoning we see that there are subsequences fnjl g1
lD0 of

fnj�1
l g1

lD0; j D 2; 3; � � � ; m, such that

lim
l!1 jx.njl C 1 � i/ � x�j D ˇ; 0 � i � j

and lim sup
l!1

jx.njl � i/ � x�j D ˇ; j � i � m:

Finally, we get a subsequence fnlg1
lD0 of fnml g1

lD0, such that

liml!1 jx.nl � i/ � x�j D ˇ; �1 � i � m;

liml!1
j1�a0x.nl / Qf .tnl Irnl /jC.

Pm
iD1 ai /x.nl /

Qf .tnl Irnl /
1C˛x.nl / Qf .tnl Irnl /

D 1;

because, if there is a subsequence fnj g1
jD1 of fnlg1

lD0 such that

lim
j!1

j1 � a0x.nj / Qf .tnj I rnj /j C .
Pm

iD1 ai /x.nj / Qf .tnj I rnj /
1C ˛x.nj / Qf .tnj I rnj /

< 1;

then

ˇ D limj!1 jx.nj C 1/ � x�j
� limj!1

j1 � a0x.nj / Qf .tnj I rnj /j C .
Pm

iD1 ai /x.nj / Qf .tnj I rnj /
1C ˛x.nj / Qf .tnj I rnj /

� limj!1 jx.nj / � x�j < ˇ;
which is a contradiction. Then, by (4.194), we can see that

lim
n!1

j1 � a0x.n/ Qf .tnI rn/j C .
Pm

iD1 ai /x.nj / Qf .tnj I rnj /
1C ˛x.n/ Qf .tnI rn/

D 1
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and

lim
n!1 jx.n/ � x�j D ˇ: (4.195)

Suppose �1 < ˛ < 0; supn�0 rn � Or.1C 2˛/ and (4.191). Assume that there is a
subsequence fnpg1

pD1 such that

1 � a0x.np/ Qf .tpI rnp / � 0:

Then, from (4.194), we have

lim
p!1

x.np/ Qf .tnp I rnp / � 1
1C ˛x.np/ Qf .tnp I rnp /

D 1;

that is;

lim
p!1 x.np/ Qf .tnp I rnp / D 2

1 � ˛ :

Thus, by Theorem 4.3.5,

lim
p!1 x.np/ D x� � Q̌ > 0; lim

p!1 x.np C 1/ D x� C Q̌ > 0; and j Q̌j D ˇ:

Since �1 < Q̨ � ˛ < 1C 2˛ < 1; and

2

1 � ˛ D lim
p!1 x.np/ Qf .tnp I rnp / � 1

a0
f .Ot . Q̨ /I Or. Q̨ //

D 1

a0

2

1 � Q̨ D 2

1 � ˛ ;

by (4.137) in Lemma 4.3.6, we have

lim
p!1 tnp D lim

p!1f1 � a0x.np/g D Ot. Q̨ / and lim
p!1 rnp D Or. Q̨ /;

and hence,

lim
p!1 x.np/ D 1

a0
.1 � Ot . Q̨ // and lim

p!1 x.np � i/ D 0; 1 � i � m;

which contradicts Theorem 4.3.5, because

�1 < Q̨ < 1C 2˛

a0
< 1 for � 1 < ˛ < 0:
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Hence, we have

1 � a0x.n/ Qf .tnI rn/ � 0;

for a sufficiently large n, and from (4.195),

lim
n!1

1 � .a0 �Pm
iD1 ai /x.n/ Qf .tnI rn/

1C ˛x.n/ Qf .tnI rn/
D 1:

Then, by

˛ C a0 >

mX
iD1

ai ;

and Theorem 4.3.5, we get limn!1 rn D 0, which is a contradiction. Therefore, we
have for the case rn � Or. Q̨ /, limn!1 jx.n/ � x�j D 0 and (4.192) holds. Also by
Theorem 4.3.5 there is a positive constant M such that

tn � 1 � a0x.n/ �
 

mX
iD1

ai

!
M < 1 � a0x.n/:

Then, the above discussion for the case rn � Or. Q̨ /, is also applicable to the case

lim sup
n!1

rn D Or. Q̨ /:

Hence, we get (4.192), and the proof is complete. �

Remark 11. Note that
Pm

iD1 bi > 0 and rn � Or.1C 2˛/ for �1 < ˛ < 0, implies
that

Pm
iD1 aix.n � i/ > 0 and 1C ˛x.n/ Qf .tnI rn/ > 0.

Finally in this section we consider
8̂<
:̂

dx.t/

dt
D x.t/r.t/f1 � ax.t/ � b0x.tl / �Pm

jD1 bj x.�j .t//g;
tl � t < tlC1; l D 0; 1; 2; : : : ;

x.t/ D 
.t/ � 0; �� � t � t0 and 
.t0/ > 0;
(4.196)

where dx.t/

dt
means that the right-hand side derivative at t of the function x.t/, and

r.t/ is a nonnegative continuous function on Œt0;1/; r.t/ 6� 0; 
.t/ is continuous
on the interval Œ��; t0�, b0 > 0; �0.t/ is the following piecewise constant delay:

�0.t/ D tl ; tl � t < tlC1; l D 0; 1; 2; � � � ; (4.197)

�j .t/ is piecewise continuous on .t0;1/, �� � �j .t/ � �0.t/ � t; 1 � j � m, and

�.t/ � inf
0�j�m �j .t/ ! C1; as t ! C1:
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Assume

aC
mX
jD0

bj > 0; (4.198)

and put x� D 1=.aCPm
jD0 bj / and

(
bj D bC

j C b�
j ; b

C
j � 0; b�

j � 0; 0 � j � m; b D Pm
jD0 bj ;Ob D Pm

jD0 jbj j < C1; bC D Pm
jD0 b

C
j � 0; and b� D Pm

jD0 b�
j � 0:

(4.199)

For simplicity, we assume r.t/ > 0; t � t0, and Ob > 0.
Let D�x.t/ be the left-hand side derivative at t of the function x.t/.

Lemma 4.3.9. (a) Assume

a � Ob: (4.200)

Then,

aC b� > 0;
bC

aC b� � bC C jb�j
a

� 1: (4.201)

If for Nt � t0,

x.Nt / > x� and D�x.Nt/ � 0; (4.202)

then

x.Nt/ � x� � bC

aC b� max
0�j�m jx.�j .Nt// � x�j; (4.203)

and if for t � t0,

x.t/ < x� and D�x.t/ � 0; (4.204)

then

x.t/ � x� � � bC

aC b� max
0�j�m jx.�j .t// � x�j: (4.205)

(b) Suppose

aC b� � 0: (4.206)

(i) If for Nt � t0,

x.Nt / > x� and D�x.Nt/ � 0; (4.207)
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then

jb�jx.�j .Nt // � jb�jx.Nt / 0 � j � m; imply bC > 0; min
0�j�m x.�j .

Nt// � x�:
(4.208)

In particular, if aC b� > 0, then

x.Nt / < 1

aC b� : (4.209)

(ii) If for t � t0,

x.t/ < x�; and D�x.t/ � 0; (4.210)

then

jb�jx.�j .t// � jb�jx.t/; 0 � j � m; imply bC > 0; max
0�j�m x.�j .t// � x�:

(4.211)

Proof. By assumption (4.198) and (4.200), we see (4.201). Suppose that

max
0�j�m jb�jx.�j .Nt// � jb�jx.Nt/:

Then, from (4.196) and (4.202), we have

0 � D�x.Nt / D x.Nt /r.Nt/fa.x� � x.Nt //CPm
jD0 bj .x� � x.�j .Nt ///g

D x.Nt /r.Nt/fa.x� � x.Nt //CPm
jD0 b�

j .x
� � x.�j .Nt ///

CPm
jD0 b

C
j .x

� � x.�j .Nt ///g
� x.Nt /r.Nt/f.aC b�/.x� � x.Nt //CPm

jD0 b
C
j .x

� � x.�j .Nt ///g:
(4.212)

Then, a � Ob and

bC

aC b� max
0�j�m jx.�j .Nt // � x�j < x.Nt / � x�;

implies

0 � D�x.Nt / < 0;

which is a contradiction. Hence, we get (4.203).
Similarly, from (4.204), we can prove (4.205).
Now, suppose (4.206) and (4.207). Then, by (4.212) and (4.198), we can easily

obtain (4.208) and (4.209).
Similarly, from (4.206), (4.210) and (4.198), we get (4.211). The proof is

complete. �
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Corollary 4.3.4. Assume b� D 0 � a, and let x.t/ be the solution of (4.196).
If x.t/ is eventually greater (respectively, less) than x�, then x.t/ is monotone
decreasing and greater (respectively, monotone increasing and less) than x�.

Lemma 4.3.10. Assume a C b� > 0 or a D b� D 0, and let x.t/ be the solution
of (4.196). If x.t/is eventually greater (respectively, less) than x�, then limt!1 x.t/

exists and is positive. Furthermore, if

Z 1

t0

r.t/dt D 1;

then we have limt!1 x.t/ D x�.

Proof. On any interval of the form Œtl ; tlC1/ for n D 0; 1; 2; � � � , we can integrate the
differential equation in (4.196) together with the initial conditions, and we obtain for
tl � t < tlC1 and n D 0; 1; 2; � � �

x.t/ D x.tl / expf
Z t

tl

r.s/.1 � ax.s/ �
mX
jD0

bj x.�j .s///dsg:

Thus we see that (4.196) has a unique solution x.t/ which is positive for t � t0.
Assume that x.t/ is eventually greater than x�. Let

lim sup
t!1

x.t/ D x� C ˇ; where ˇ � 0:

If x.t/ is not eventually decreasing, then by Lemma 4.3.9, it is the case that
aC b� > 0 and b� < 0, and hence, a > 0. Suppose ˇ > 0. Then, for

0 < � < .aC b�/=.aC jb�j/ < 1;

there exist a sequence fNtkg1
kD1 such that

x.Ntk/ > x�; D�.Ntk/ � 0; x.Ntk/ > x� C ˇ.1 � �/; and

x� � x.t/ � x� C ˇ.1C �/; for t � Nt1 � t0:

Then,

0 � D�x.Ntk/ D x.Ntk/r.Ntk/fa.x� � x.Ntk//CPm
jD0 bj .x� � x.�j .Ntk///g

D x.Ntk/r.Ntk/fa.x� � x.Ntk//CPm
jD0 b�

j .x
� � x.�j .Ntk///

CPm
jD0 b

C
j .x

� � x.�j .Ntk///g
< x.Ntk/r.Ntk/f�aˇ.1 � �/ � b�ˇ.1C �/g
< x.Ntk/r.Ntk/f�.aC b�/C .aC jb�j/�/gˇ
< 0;
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which is a contradiction. Hence, ˇ D 0; and

lim
t!1 x.t/ D x�:

Next, let us consider the case that x.t/ is eventually decreasing and bounded below
by x�. Then, limt!1 x.t/ exists. Set

ˇ WD lim
t!1 x.t/ � x� � 0:

We will show that
Z 1

t0

r.t/dt D C1 implies ˇ D 0:

Indeed, suppose ˇ > 0. Take � such that

0 < � < =.�b�x�/; if b� < 0; and � > 0; if b� D 0:

Then, there exists Nt0 � t0 such that

ˇ � x.�.t// � x� � ˇ C �; for t � Nt0;

since x.t/ � x� eventually decreases to ˇ. By (4.212), we have

D�x.t/ � x.t/r.t/

8<
:�.aC

mX
jD0

bj /ˇ � .
mX
jD0

b�
j /�

9=
;

D �
�
ˇ

x� C b��
	
x.t/r.t/; for t � Nt0:

Integrating from Nt0 to t , we have

ln
x.t/

x.Nt0/ � �
�
ˇ

x� C b��
	 Z t

Nt0
r.s/ds;

which in turn implies, due to ˇ

x�
C b�� > 0 and

R1
t0
r.t/dt D C1,

lim
t!1 ln.

x.t/

x.Nt0/ / D �1:

Hence, limt!1 x.t/ D 0, contradicting x.t/ � x� C ˇ > x� > 0. The case that
x.t/ is eventually less than x� is similarly proved. Thus, the proof is complete. �
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From Lemmas 4.3.9 and 4.3.10, we see that under the conditions

aC b� > 0 or a D b� D 0; and
Z 1

t0

r.t/dt D C1;

in the analysis of global stability we need to investigate only the case that a solution
x.t/ is oscillatory about x�. If there is a point Nt � t0 such that for

t0 � t � Nt ; jx.t/ � x�j � jx.Nt/ � x�j;

then the conditions (4.207) and (4.208), or (4.210) and (4.211) in Lemma 4.3.9,
really occur.

The following lemma is elementary.

Lemma 4.3.11. For tl � t < tlC1,

x.t/ D x.tl / exp.
R t
tl
r.s/f1 � b0x.tl / �Pm

jD1 bj x.�j .s//gds/
1C ax.tl /

R t
tl
r.s/ exp.

R s
tl
r.�/f1 � b0x.tl / �Pm

jD1 bj x.�j .�//gd�/ds
;

(4.213)

and
8<
:

x.t/ � x� D f1 � .aC b0/klg.x.tl / � x�/

� x.tl /
R t
tl
r.s/fPm

jD1 bj .x.�j .s//�x�/g exp.
R s
tl
r.�/f1�b0x.tl /�Pm

jD1 bj x.�j .�//gd�/ds
1Cax.tl /

R t
tl
r.s/ exp.

R s
tl
r.�/f1�b0x.tl /�Pm

jD1 bj x.�j .�//gd�/ds ;
(4.214)

where

kl D x.tl /
R t
tl
r.s/ exp.

R s
tl
r.�/f1 � b0x.tl / �Pm

jD1 bj x.�j .�//gd�/ds
1C ax.tl /

R t
tl
r.s/ expfR s

tl
r.�/f1 � b0x.tl / �Pm

jD1 bj x.�j .�//gd�/ds
:

(4.215)

Theorem 4.3.9. Assume aC b� > 0 or a D b� D 0, and

Z 1

t0

r.t/dt D C1:

Then, for any

Nr D sup
t�t0

Z t

�.t/

r.s/ds < C1;

there exists Nt1 � t0 such that for any t � Nt1,

M � x.t/ � NM; (4.216)
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where

NM D

8̂<
:̂

1
aCb�

; if aC b� > 0; and Nr � ln aCb
aCb�

;
1

aCb e
Nr ; if aC b� > 0; and Nr < ln aCb

aCb�
;

1
b
e Nr ; if a D b� D 0;

(4.217)

and

M D minf1; e Nr.1�bC NM/g
aC b C a.e Nr.1�b� NM/ � 1/=.1 � b� NM/

> 0: (4.218)

Hence, for Nr < C1, any solution x.t/ of (4.196) is persistent.

Proof. By Lemmas 4.3.9 and 4.3.10 and (4.213), there exists a Nt1 � t0 such that for
any t � Nt1, (

x.t/ < 1
aCb�

; aC b� > 0;
x.t/ � x�e Nr ; aC b� � 0;

and in the case aC b� > 0, we see

1

aC b� � 1

aC b
e Nr ; if and only if Nr � ln

aC b

aC b� :

Then, by Lemmas 4.3.9 and 4.3.10 and (4.213), we have that for t � Nt1,

x.t/ � x� minf1; e Nr.1�bC NM/g
1C ax�.expfNr.1 � b� NM/g � 1/=.1 � b� NM/

D M > 0;

from which we obtain (4.218). The proof is complete. �

Theorem 4.3.10. Assume (4.196)–(4.199), and for (4.213),

8<
:
b� D 0; and b � 2b0 < a;
or

maxf�b�; Ob � 2b0g < a:
(4.219)

Put

� 1 < Q̨ D .a �
mX
iD1

bi /=b0 < ˛ D a=.

mX
iD0

bi / < 1 and Qrl D
Z tlC1

tl

r.t/dt:

(4.220)
If

8̂<
:̂

Qrl < C1; for a � Ob;
Qrl � Or. .aCb0/�b

b0
/; for b� D 0; b � 2b0 < a < b;

Qrl � aCb�

a
Or.1 � .aCb�/. Ob�a/

ab0
/; for maxf�b�; Ob � 2b0g < a < Ob;

(4.221)
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then, solutions of (4.196) have the contractivity property, that is,

max
tl�t�tlC1

jx.t/ � x�j � max
�.tl /�t�tl

jx.t/ � x�j: (4.222)

If
�

supl�0 Qrl � Or.1C 2˛/; if � 1 < ˛ < 0; and
0 < lim supl!1 Qrl < Or. Q̨ /; or lim supl!1 Qrl D Or. Q̨ /; (4.223)

then

lim
l!1 x.tl / D x�; (4.224)

and hence, the positive equilibrium x� of (4.196) is globally asymptotically stable.

Proof. Assume tl < NtlC1 � tlC1 and

jb�jx.t/ � jb�jx.NtlC1/; for �.tl / � t � tl and D�x.NtlC1/ � 0:

Then, from (4.196),

0 � D�x.NtlC1/ � x.NtlC1/r.NtlC1/f1 � .aC b�/x.NtlC1/ � b0x.tl /g
and hence,

.aC b�/x.NtlC1/ � 1 � b0x.tl /:
Then, in (4.214) and (4.215),

1 � b0x.tl / �
mX
jD1

bj x.�j .�// � 1 � b0x.tl / � b�.1 � b0x.tl //
aC b�

D a

aC b� � ab0

aC b� x.tl /:

Consider QQf .xI r; ˇ; �/ in (4.217) in Lemma 4.3.7 with

ˇ D a

aC b� and � D ab0

aC b� :

Then,

x.tl /

Z tlC1

tl

r.s/ exp.
Z s

tl

r.�/f1 � b0x.tl / �
mX
jD1

bj x.�j .�//g/d�/ds

� QQf .x.tl /I Qrl ; ˇ; �/:
Hence by Lemma 4.3.7 and the similar proofs in Theorem 4.3.4 for a � Ob, and
Theorem 4.3.8, we can easily obtain the result. �
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4.4 Global Stability of Models of Volterra Type

In this section we discuss a model of Volterra type, namely

dN.t/

dt
D N.t/

2
4r � cN.t/ �

1X
jD0

djN.Œt � j �/
3
5 ; t � 0; (4.225)

where r > 0, c > 0, di .j D 0; 1; 2; : : :/ are nonnegative and
P1

jD0 dj < 1:

The results in this section are adapted from [42]. Using the following substitution
in (4.225)

a D c

r
; b D 1

r

1X
jD0

dj ; cj D dj

0
@ 1X
jD0

dj

1
A

�1

; (4.226)

we have

dN.t/

dt
D rN.t/

2
41 � aN.t/ � b

1X
jD0

cjN.Œt � j �/
3
5 ; t � 0; (4.227)

where

1X
jD0

cj D 1: (4.228)

The initial conditions associated with (4.227) are assumed to be of the form

N.�j / D ˇj � 0; ˇ0 > 0; fˇj g 2 `1: (4.229)

It is easily seen that the initial conditions provided for (4.227) guarantee that

N.0/ > 0; sup
j�0

fN.�j /g < 1;

and integration of (4.227) on an interval of the form Œn; t/, n � t < nC 1 leads to

N.t/ D N.n/ exp

8<
:
Z t

n

r

0
@1 � aN.s/ � b

1X
jD0

cjN.n � j /
1
A ds

9=
; ;

for n � t < n C 1: For N.0/ D ˇ0 > 0; it follows that N.t/ > 0 on Œ0; 1/, now
letting n D 0 and t ! 1 we find that N.1/ > 0 since the sum of the terms from
the initial values ˇj remain bounded. Thus N.1/ > 0 and N.1/ is finite. Repetition
of this procedure shows that N.t/ is defined for t � 0 and remains continuous for
t 2 Œ0;1/ and satisfies N.t/ > 0 for t > 0.
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Consider (4.227) on an interval of the form Œn; n C 1/ for n D 0; 1; : : :,
and (4.227) becomes

dN.t/

dt
D P.n/N.t/ � raN 2.t/; t 2 Œn; nC 1/; (4.230)

where

P.n/ D r

2
41 � b

1X
jD0

cjN.n � j /
3
5 ; n D 0; 1; 2; : : : . (4.231)

We can rewrite (4.230) in the form

d

dt

�
1

N.t/
eP.n/t

�
D raeP.n/t ; t 2 Œn; nC 1/: (4.232)

An integration on both sides of (4.232) from n to t leads to

N.nC 1/ D N.n/eP.n/.t�n/

1C raN.n/feP.n/.t�n/ � 1g=P.n/ ; t 2 Œn; nC 1/: (4.233)

Letting t ! nC 1; we obtain

N.nC 1/ D N.n/eP.n/

1C raN.n/feP.n/ � 1g=P.n/ ; n D 0; 1; 2 : : : : (4.234)

The right-hand side of (4.234) has a removable singularity when P.n/ D 0; and we
will assume that the right-hand side of (4.234) is suitably defined by

N.nC 1/ D N.n/eP.n/

1C raN.n/
; for P.n/ D 0; (4.235)

so as to make the right-hand side of (4.234) continuous. It is now easy to see that for
the given initial values (4.229) one can calculate successively the valuesN.1/; N.2/;
N.3/; : : : and with this, one can compute N.t/ in (4.233). Thus an iterative solution
of (4.227) is possible. The properties of (4.227) are now determined by (4.234) and
vice versa.

Lemma 4.4.1. Let N.n/ denote the solution of (4.234). Then

N.n/ � M D 1

a

�
er

er � 1
�
; n D 1; 2; : : : . (4.236)

Proof. We note that the function

f .p/ D pep

ep � 1 ; p 2 R;
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is increasing on .�1;1/ since

f 0.p/ D p.ep � 1 � p/
.ep � 1/2 ; p 2 R:

Note

P.n/ D r

2
41 � b

1X
jD0

cjN.n � j /
3
5 < r:

Hence from (4.234) we have

N.nC 1/ � 1

ra
f .P.n// D P.n/eP.n/

rafeP.n/ � 1g

� 1

ra
f .r/ D 1

ra

rer

fer � 1g D 1

a

�
er

er � 1
�

D M;

from which the boundedness of N.n/ follows. The proof is complete. �

Lemma 4.4.2. Let N.t/ be a solution of (4.227). Then

lim
t!1 supN.t/ < 1: (4.237)

Proof. From Lemma 4.4.1, we have N.t/ � M; n D 1; 2; 3; : : :. By the continuity
of the solution of (4.227), N.t/ is bounded in each interval Œn; n C 1/, n D
1; 2; 3; : : :. Suppose now the assertion of (4.237) is not true. Then there exists a
sequence ftkg; tk ! 1; as k ! 1 and tk ¤ nk such that

N.tk/ � M; tk 2 .nk; nkC1/ and lim
k!1N.tk/ D 1; N

0

.tk/ � 0:

Hence from (4.227), we have

0 � N 0.tk/ D rN.tk/

0
@1 � aN.tk/ � b

1X
jD0

cjN.Œtk � j �/
1
A

� rN.tk/f1 � aN.tk/g � rN.tk/

�
1 � er

er � 1
�
< 0;

which is impossible. Hence the result follows. �

In the following, we study the linear stability of the positive steady state N � D
1=.aC b/ of (4.227):
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Theorem 4.4.1. Assume that b < a. Then the positive steady state N � of (4.227)
is uniformly asymptotically stable.

Proof. Set y.t/ D N.t/ �N �; and then (4.227) becomes

dy.t/

dt
D �r.y.t/CN �/

2
4ay.t/C b

1X
jD0

cj y.Œt � j �/
3
5 ; t � 0: (4.238)

Thus the stability of N � of (4.227) is equivalent to the stability of the trivial
solution of (4.238). If we ignore the nonlinear terms in (4.238) (and write y as x
for convenience), then the linearization of (4.238) is

dx.t/

dt
D �raN �x.t/ � rbN �

1X
jD0

cj x.Œt � j �/; t � 0: (4.239)

On the interval n � t < nC 1; (4.239) can be written as

dx.t/

dt
D �raN �x.t/ � rbN �

1X
jD0

cj x.n � j /; n � t < nC 1: (4.240)

The solution of (4.240) on the interval n � t < nC 1 is

x.t/ D e�raN�.t�n/x.n/ � b

a
.1 � e�raN�.t�n//

1X
jD0

cj x.n � j /: (4.241)

We let t ! nC 1 and obtain for n D 0; 1; 2; : : : ;

x.nC 1/ D e�raN�

x.n/ � b

a
.1 � e�raN�

/

1X
jD0

cj x.n � j /; (4.242)

which is a linearization of the difference equation (4.234) at the positive equilibrium
N � D 1=.a C b/: In order to determine the stability of the linear difference
equation (4.242), we will ignore the nonhomogeneous terms involving the value
N.�j / D ˇj �N � (j D 1; 2; : : :/; that is, we drop the expression

g.n/ D �b
a
.1 � e�raN�

/

1X
jDnC1

cj x.n � j /: (4.243)

From (4.242), we have for n D 0; 1; 2; : : : the following Volterra difference equation

x.nC 1/ D e�raN�

x.n/ � b

a
.1 � e�raN�

/

nX
jD0

cj x.n � j /: (4.244)
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From the boundedness of solutions of fˇj g and the convergence of
P1

jD0 cj ,
jg.n/j ! 0; as n ! 1: Now, the asymptotic stability of zero solution of (4.242) is
guaranteed by the asymptotic stability of the zero solution of (4.244), which can be
decided by its characteristic equation. As is known the solution x D 0 is uniformly
asymptotically stable if and only if all the roots of the characteristic equation

D.
/ D 
 � e�raN� C b

a
.1 � e�raN�

/

1X
jD0

cj 

�j D 0 (4.245)

lie in the open unit disk of the complex plane. To complete the proof it suffices to
show that D.
/ has no zeros with j
j � 1: Note that for j
j � 1,

ˇ̌̌
ˇ̌
ˇ

1X
jD0

cj 

�j
ˇ̌̌
ˇ̌
ˇ �

1X
jD0

cj
ˇ̌

�j ˇ̌ �

1X
jD0

cj D 1; (4.246)

and if there exists a zero 
0 of D.
/ with j
0j � 1; then by (4.246) we obtain

ˇ̌
ˇ
 � e�raN�

ˇ̌
ˇ D b

a
.1 � e�raN�

/

ˇ̌
ˇ̌̌
ˇ

1X
jD0

cj 

�j
ˇ̌
ˇ̌̌
ˇ � b

a
.1 � e�raN�

/: (4.247)

Now, by using b < a,

j
0j � e�raN� C b

a
.1 � e�raN�

/ D b

a
C .1 � b

a
/e�raN�

� b

a
C .1 � b

a
/ D 1;

which is a contradiction. The proof is complete. �

The following lemma is well known.

Lemma 4.4.3. Let N.t/ denote an arbitrary positive bounded solution of (4.227).
Suppose that

lim
t!1 supN.t/ D QN and lim

t!1 infN.t/ D LN:

Then there exist sequences ftng and fsng such that tn ! 1; sn ! 1 as n ! 1 for
which

ˇ̌
N.tn/ � QN ˇ̌ � 1

n
;
dN.t/

dt
� �2

n
; n D 1; 2; : : : ; (4.248)

ˇ̌
ˇN.sn/ � LN

ˇ̌
ˇ � 1

n
;
dN.t/

dt
� 2

n
; n D 1; 2; : : : : (4.249)
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Lemma 4.4.4. Let r , a be positive numbers, let b, cj .j D 0; 1; 2; : : :/ be
nonnegative numbers and cj satisfy (4.228). If a > b, then all positive solutions
N.t/ of (4.227) satisfy

lim
t!1 infN.t/ � ı > 0: (4.250)

Proof. We first prove that

lim
t!1 supN.t/ D QN <

2

aC b
: (4.251)

From Lemma 4.4.2, QN must exist. Suppose on the contrary that

lim
t!1 supN.t/ D QN � 2

aC b
: (4.252)

From Lemma 4.4.3, there exists ftkg such that tk ! 1 as k ! 1 for which

ˇ̌
N.tk/ � QN ˇ̌ � 1

k
; N 0.tk/ � � 2

k
:

From (4.228) and the boundedness of N.Œt � j �/; there exists n0 such that

" < .1=b/. QN �N �/.a � b/;
1X

jDn0C1
cj jN.Œtk � j �/ �N �j < ":

From (4.252), we have for tk large enough, 0 < N.Œtk � j �/ < QN: Hence for
sufficiently large k we have

� 2
k

� N 0.tk/ D rN.tk/

0
@1 � aN.tk/ � b

1X
jD0

cjN.Œtk � j �/
1
A

D rN.tk/

0
@�a.N.tk/ �N �/ � b

1X
jD0

cj .N.Œtk � j �/ �N �/

1
A

� rN.tk/

0
@�a.N.tk/ �N �/C b

1X
jD0

cj jN.Œtk � j �/ �N �j
1
A

D rN.tk/

0
@�a.N.tk/ �N �/C b

n0X
jD0

cj jN.Œtk � j �/ �N �j
1
A

CbrN.tk/
n0X

jDn0C1
cj jN.Œtk � j �/ �N �j :
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Letting k ! 1; we have

0 � r QN
0
@�a. QN �N �/C b

n0X
jD0

cj . QN �N �/C b"

1
A

� r QN
0
@�a. QN �N �/C b

1X
jD0

cj . QN �N �/C b"

1
A

D r QN 
�a. QN �N �/C b. QN �N �/C b"
�

D r QN 
�.a � b/. QN �N �/C b"
�
< 0:

This is a contradiction and hence (4.251) holds. From (4.251), there is a T > 0 such
that

N.t/ <
2

aC b
; t > T . (4.253)

Hence for t > n0 C T; we have

dN.t/

dt
D rN.t/

2
41 � aN.t/ � b

1X
jD0

cjN.Œt � j �/
3
5

D rN.t/

2
41 � bN � � aN.t/ � b

1X
jD0

cj .N.Œt � j �/ �N �/

3
5

� rN.t/

2
4 a

aC b
� aN.t/ � b

n0X
jD0

cj .N.Œt � j �/ �N �/ � b"
3
5

� rN.t/

2
4 a

aC b
� aN.t/ � b

n0X
jD0

cjN
� � b"

3
5

� rN.t/

�
a

aC b
� aN.t/ � b"

�

D rN.t/

�
a � b
aC b

� b" � aN.t/
�
:

Since

L D a � b
aC b

� b" > 0
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and the solution of the equation

u0.t/ D ru.t/ŒL � au.t/�; u.0/ > 0

is bounded above from zero, by the comparison principal, we conclude that the
result of the lemma holds. The proof is complete. �

Theorem 4.4.2. If the conditions of Lemma 4.4.4 hold, then all positive solution
N.t/ of (4.227) satisfy

lim
t!1N.t/ D N � D 1

aC b
: (4.254)

Proof. In order to prove (4.254), it is sufficient to prove that

lim
t!1 sup jN.t/ �N �j D 0: (4.255)

Suppose (4.255) is not valid, then at least one of the following holds for some �� > 0
and �� > 0 W

lim
t!1 supN.t/ D QN D N � C ��; (4.256)

lim
t!1 infN.t/ D LN D N � � ��: (4.257)

Suppose that (4.256) holds. Then there exists a sequence ftng such that

tn ! 1; N 0.tn/ � �2
n
; N.tn/ ! QN as n ! 1: (4.258)

It follows that

�2
n

� dN.tn/

dt
D rN.tn/

2
41 � aN.tn/ � b

1X
jD0

cjN.Œtn � j �/
3
5

D rN.tn/

2
4�a.N.tn/ �N �/ � b

1X
jD0

cj .N.Œtn � j �/ �N �/

3
5

� rN.tn/

2
4�a.N.tn/ �N �/C b

1X
jD0

cj jN.Œtn � j �/ �N �j
3
5

� rN.t/

2
4�a.N.tn/ �N �/C b

n0X
jD0

cj jN.Œtn � j �/ �N �j C b"

3
5 :
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Letting n ! 1; we obtain

0 � �r QN.
0
@a�� � b

1X
jD0

cj �
� � b"

1
A < 0;

and this is not possible. For the case (4.257), we choose a sequence

tn ! 1; N 0.tn/ � 2

n
; N.tn/ ! LN; as n ! 1:

Then, we have

2

n
� dN.tn/

dt
D rN.tn/

2
41 � aN.tn/ � b

1X
jD0

cjN.Œtn � j �/
3
5

D rN.tn/

2
4�a.N.tn/ �N �/ � b

1X
jD0

cj .N.Œtn � j �/ �N �/

3
5

� rN.tn/

2
4a.N � �N.tn// � b

1X
jD0

cj jN.Œtn � j �/ �N �j
3
5

D rN.t/

2
4a.N � �N.tn// � b

n0X
jD0

cj jN.Œtn � j �/ �N �j � b"
3
5 :

We let n ! 1; to obtain

0 � r LN
0
@a�� � b

n0X
jD0

cj �� � b"
1
A � r LN.a � b/�� � r LNb" > 0;

which is not possible. Thus (4.254) holds and the proof is complete. �

Combining Theorems 4.4.1 and 4.4.2, we have the following global attractivity
result.

Theorem 4.4.3. If b < a, then the positive equilibrium N � D 1=.aCb/ of (4.227)
is globally asymptotically stable.



Chapter 5
Food-Limited Population Models

If a nonnegative quantity was so small that is smaller than any
given one, then it certainly could not be anything but zero. To
those who ask what the infinity small quantity in mathematics is,
we answer that it is actually zero. Hence there are not so many
mysteries hidden in this concept as they are usually believed
to be.

Leonhard Euler (1707–1783)

The real end of science is the honor of the human mind.

Gustav J. Jacobi (1804–1851)

Smith [66] reasoned that a food-limited population in its growing stage requires
food for both maintenance and growth, whereas, when the population has reached
saturation level, food is needed for maintenance only. On the basis of these
assumptions, Smith derived a model of the form

dN.t/

dt
D rN.t/

K �N.t/
K C crN.t/

(5.1)

which is called the “food limited” population. Here N , r , and K are the mass
of the population, the rate of increase with unlimited food, and the value of N
at saturation, respectively. The constant 1=c is the rate of replacement of mass in
the population at saturation. Since a realistic model must include some of the past
history of the population, Gopalsamy, Kulenovic and Ladas introduced the delay
in (5.1) and considered the equation

dN.t/

dt
D rN.t/

K �N.t � �/
K C crN.t � �/ ;

as the delay “food-limited” population model, where r , K; c, and � are positive
constants.

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology,
DOI 10.1007/978-3-319-06557-1__5, © Springer International Publishing Switzerland 2014
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In this chapter we discuss autonomous and nonautonomous “food-limited”
population models with delay times.

5.1 Oscillation of Delay Models

Motivated by the model

N 0.t/ D r.t/N.t/
K �N.h.t//
1C s.t/N.g.t//

; t � 0; (5.2)

in this section we consider

x0.t/ D �r.t/x.h.t// 1C x.t/

1C s.t/Œ1C x.g.t//�
; t � 0; (5.3)

with the following assumptions:

.A1/ r.t/ and s.t/ are Lebesgue measurable locally essentially bounded functions
such that r.t/ � 0 and s.t/ � 0.

.A2/ h; g W Œ0;1/ ! R are Lebesgue measurable functions such that h.t/ � t;

g.t/ � t; lim
t!1h.t/ D 1, and lim

t!1g.t/ D 1.

Note the oscillation (or nonoscillation) of N about K is equivalent to oscillation
(nonoscillation) of (5.3) about zero (let x D N=K � 1).
One could also consider for each t0 � 0 the problem

x0.t/ D �r.t/x.h.t// 1C x.t/

1C s.t/Œ1C x.g.t//�
; t � t0; (5.4)

with the initial condition

x.t/ D '.t/; t < t0; x.t0/ D x0: (5.5)

We also assume that the following hypothesis holds:
.A3/ ' W .�1; t0/ ! R is a Borel measurable bounded function.

An absolutely continuous function x.W R ! R/ on each interval Œt0; b� is called a
solution of problems (5.4) and (5.5), if it satisfies (5.4) for almost all t 2 Œt0;1/ and
the equality (5.5) for t � t0. Equation (5.3) has a nonoscillatory solution if it has
an eventually positive or an eventually negative solution. Otherwise, all solutions
of (5.3) are oscillatory. The results in this section can be found in [10]. In the
following, we assume that .A1/–.A3/ hold and we consider only such solutions
of (5.3) for which the following condition holds:

1C x.t/ > 0: (5.6)

The proof of the following lemma follows a standard argument (see the proof in
Theorem 2.4.1 and see Lemma 2.6.1).
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Lemma 5.1.1. Let .A1/ and .A2/ hold for the equation

x0.t/C r.t/x.h.t// D 0; t � 0: (5.7)

Then the following hypotheses are equivalent:

.1/ The differential inequality

x0.t/C r.t/x.h.t// � 0; t � 0 (5.8)

has an eventually positive solution.
.2/ There exists t0 � 0 such that the inequality

u.t/ � r.t/ exp

�Z t

h.t/

u.s/ds

	
; t � t0; u.t/ D 0; t < t0 (5.9)

has a nonnegative locally integrable solution.
.3/ Equation (5.7) has a nonoscillatory solution.

If

lim
t!1 sup

Z t

h.t/

r.s/ds <
1

e
; (5.10)

then (5.7) has a nonoscillatory solution. If

lim
t!1 inf

Z t

h.t/

r.s/ds >
1

e
; (5.11)

then all the solutions of (5.7) are oscillatory.

Lemma 5.1.2. Let x.t/ be a nonoscillatory solution of (5.3) and suppose that
Z 1

0

r.t/

1C s.t/
dt D 1: (5.12)

Then limt!1 x.t/ D 0.

Proof. Suppose first x.t/ > 0, t � t1. Then there exists t2 � t1 such that

h.t/ � t1; g.t/ � t1, for t � t2: (5.13)

Let

u.t/ D �x
0.t/
x.t/

; t � t2: (5.14)

Then u.t/ � 0; t � t2 and

x.t/ D x.t2/ exp

�
�
Z t

t2

u.s/ds

	
; t � t2: (5.15)



218 5 Food-Limited Population Models

Substituting this into (5.3) we obtain

u.t/ D r.t/e

�R t
h.t/ u.s/ds

� h
1C c exp

n
� R t

t2
u.s/ds

oi
h
1C s.t/

�
1C c exp

n
� R g.t/

t2
u.s/ds

o�i ; (5.16)

where h.t/ � t , g.t/ � t , for t � t2, and c D x.t2/ > 0. Hence

u.t/ � r.t/

.1C c/.1C s.t//
: (5.17)

From (5.12) we have
R1
t2

u.t/dt D 1.
Now suppose �1 < x.t/ < 0; t � t1. Then there exists t2 � t1 such that (5.13)

holds for t � t2. With u.t/ denoted in (5.14) and c D x.t2/ we have u.t/ � 0 and
�1 < c < 0. Substituting (5.15) into (5.3) and using (5.16), we have

u.t/ � .1C c/r.t/

.1C s.t//
: (5.18)

Thus
R1
t2

u.t/dt D 1. Equation (5.15) implies that limt!1 x.t/ D 0. The proof is
complete. �

Theorem 5.1.1. Suppose (5.12) holds and for some " > 0, all solutions of the linear
equation

x0.t/C .1 � "/ r.t/

1C s.t/
x.h.t// D 0 (5.19)

are oscillatory. Then all solutions of (5.3) are oscillatory.

Proof. First suppose x.t/ is an eventually positive solution of (5.3). Lemma 5.1.2
implies that there exists t1 � 0 such that 0 < x.t/ < " for t � t1. We suppose (5.13)
holds for t � t2 � t1. For t � t2, we have

Œ1C s.t/�.1C x.t//

1C s.t/Œ1C x.g.t//�
� .1C s.t//

1C s.t/.1C "/

� .1C s.t//

.1C s.t//.1C "/
D 1

.1C "/
� 1 � ": (5.20)

Equation (5.3) implies

x0.t/C .1 � "/ r.t/

1C s.t/
x.h.t// � 0; t � t2: (5.21)

Lemma 5.1.1 yields that (5.19) has a nonoscillatory solution. We have a
contradiction.
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Now suppose �" < x.t/ < 0 for t � t1 and (5.13) holds for t � t2 � t1. Then
for t � t2

Œ1C s.t/�.1C x.t//

1C s.t//Œ1C x.g.t//�
� .1C s.t//.1 � "/

1C s.t/
D 1 � ": (5.22)

Hence, (5.19) has a nonoscillatory solution and we again obtain a contradiction
which completes the proof. �

Corollary 5.1.1. If

lim
t!1 inf

Z t

h.t/

r.�/

1C s.�/
d� >

1

e
; (5.23)

then all solutions of (5.3) are oscillatory.

Theorem 5.1.2. Suppose for some " > 0 there exists a nonoscillatory solution of
the linear delay differential equation

x0.t/C .1C "/
r.t/

1C s.t/
x.h.t// D 0: (5.24)

Then there exists a nonoscillatory solution of (5.3).

Proof. Lemma 5.1.1 implies that there exists t0 � 0 such that

w0.t/ � 0; for t � t0; and w0.t/ D 0; for t � t0;

and

w0.t/ � .1C "/
r.t/

1C s.t/
exp

�Z t

h.t/

w0.s/ds

	
: (5.25)

Suppose 0 < c < " and consider two sequences:

wn.t/ D r.t/ exp

�Z t

h.t/

wn�1.s/ds
	

�
1C c exp

n
� R t

t0
�n�1.s/ds

o

1C s.t/
�
1C c exp

n
� R g.t/

t0
wn�1.s/ds

o�

and

�n.t/ D r.t/ exp

�Z t

h.t/

�n�1.s/ds
	

�
1C c exp

n
� R t

t0
wm�1.s/ds

o

1C s.t/
�
1C c exp

n
� R g.t/

t0
�n�1.s/ds

o� ;
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where w0 is as defined above and �0.t/ � 0. We have

w1.t/ D r.t/

1C s.t/
exp

�Z t

h.t/

w0.s/ds

	

� .1C s.t//.1C c/

1C s.t/
�
1C c exp

n
� R g.t/

t0
w0.s/ds

o�

� r.t/

1C s.t/
exp

�Z t

h.t/

w0.s/ds

	

� .1C s.t//.1C "/

1C s.t/
�
1C c exp

n
� R g.t/

t0
w0.s/ds

o�

� w0.t/ (5.26)

from (5.25). Clearly �1.t/ � �0.t/ and w0.t/ � �0.t/. Hence by induction

8<
:
0 � wn.t/ � wn�1.t/ � : : : � w0.t/;
�n.t/ � �n�1.t/ � : : : � �0.t/ D 0;

wn.t/ � �n.t/:

(5.27)

There exist pointwise limits of the nonincreasing nonnegative sequence wn.t/ and
of the nondecreasing sequence �n.t/. Let

w.t/ D lim
n!1 wn.t/ and �.t/ D lim

n!1 �.t/:

Then by the Lebesgue Convergence Theorem, we conclude that

w.t/ D r.t/ exp

�Z t

h.t/

w.s/ds

	

�
1C c exp

n
� R t

t0
�.s/ds

o

1C s.t/
�
1C c exp

n
� R g.t/

t0
w.s/ds

o�

and

�.t/ D r.t/ exp

�Z t

h.t/

�.s/ds

	

�
1C c exp

n
� R t

t0
w.s/ds

o

1C s.t/
�
1C c exp

n
� R g.t/

t0
�.s/ds

o� :
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We fix b � t0 and define the operator T W L1Œt0; b� ! L1Œt0; b� by

T .u.t// D e
R t
h.t/ u.s/ds

r.t/
�
1C c exp

n
� R t

t0
u.s/ds

o�

1C s.t/
�
1C c exp

n
� R g.t/

t0
u.s/ds

o� : (5.28)

For every function u from the interval � � u � w, we have � � T u � w. One
can also check that T is a completely continuous operator on the space L1Œt0; b�.
Then by Schauder’s Fixed Point Theorem there exists a nonnegative solution of
equation u D T u. Let

x.t/ D
(
c exp

n
� R t

t0
u.s/ds

o
; if t � t0;

0; if t < t0;
(5.29)

and then x.t/ is a nonoscillatory solution of (5.3) which completes the proof. �

The results in this section apply to (5.2). For example by applying Theorem 5.1.1
we have the following result.

Theorem 5.1.3. Suppose (5.12) holds and for some " > 0, all solutions of the linear
equation

N 0.t/C .1 � "/ r.t/

1C s.t/
N.h.t// D 0 (5.30)

are oscillatory. Then all solutions of (5.2) are oscillatory about K.

5.2 Oscillation of Impulsive Delay Models

In this section we consider the impulsive “food-limited” population model
8̂
<̂
ˆ̂:

N 0.t/ D r.t/N.t/
K�N.h.t//

KC
mX
iD1

pi .t/N.gi .t//

; t ¤ tk;

N.tCk / �N.tk/ D bk.N.tk/ �K/; for k D 1; 2; : : : I
(5.31)

hereN.tk/ D N.t�k /. In this section, we will assume that the following assumptions
hold:

.A1/ 0 � t0 < t1 < t2 < : : : < tk < : : : are fixed points with
limk!1 tk D 1,

.A2/ bk > �1, k D 1; 2; : : :, K is a positive constant,

.A3/ r.t/ and pi ; i D 1; 2; : : : ; m, are Lebesgue measurable locally
essentially bounded functions, in each finite interval Œ0; b�, r.t/ � 0 and
pi .t/ � 0, for i D 1; 2; : : : ; m,

.A4/ h; gi W Œ0;1/ ! R are Lebesgue measurable functions, h.t/ � t , gi .t/ � t ,
limt!1 h.t/ D 1, limt!1 gi .t/ D 1; i D 1; 2; : : : ; m.
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In this section (motivated by (5.31) with y.t/ D N.t/

K
� 1) we consider the delay

model with impulses

8̂̂
<̂
ˆ̂̂:

y0.t/ D �r.t/ .1C y.t// y.h.t//

1C
mX
iD1

pi .t/ Œ1C y.gi .t//�

; t ¤ tk; t � T0 � 0

y.tCk / � y.tk/ D bky.tk/; for k D 1; 2; : : : ;

(5.32)

where bk > �1 and r , h, pi form D 1; 2; : : : are nonnegative real-valued functions.
We consider (5.32) with the initial condition

y.t/ D '.t/ � 0; '.T0/ > 0; t 2 ŒT �; T0�: (5.33)

Here for any T0 � 0, T � D min1�i�m inft�T0.gi .t/; h.t//, and ' W ŒT �; T0� ! RC
is a Lebesgue measurable function.

For any T0 � 0 and '.t/, a function y W ŒT �;1� ! R is said to be a solution
of (5.32) on ŒT;1� satisfying the initial value condition (5.33), if the following
conditions are satisfied:

1. y.t/ satisfies (5.33);
2. y.t/ is absolutely continuous in each interval .T0; tk/; .tk; tkC1/; tk > T0; k �
k0; y.t

C
k /; y.t

�
k / exist and y.t�k / D y.tk/; k > k0I

3. y.t/ satisfies the former equation of (5.32) in ŒT;1/nftkg and satisfies the latter
equation for every t D tk; k D 1; 2; : : : .

For any t � 0, consider the nonlinear delay differential equation

x0.t/ D �r.t/
1C

0
@ Y
T0�tk<t

.1C bk/

1
A x.t/

1C‰.x.gi .t//
�

Y
h.t/�tk<t

.1C bk/
�1x.h.t//; (5.34)

where

‰.x.gi .t// D
mX
iD1

pi .t/

2
41C .

Y
T0�tk<gi .t/

.1C bk//x.gi .t//

3
5 :

The results in this section are adapted from [77] (in fact as we see below it is easy
to extend the theory in the nonimpulsive case in Sect. 5.1 to the impulsive case).

Lemma 5.2.1. Assume that .A1/–.A4/ hold. Then the solution N.t/ of (5.31)
oscillates about K if and only if the solution y.t/ of (5.32) oscillates about zero.

The proof (which is elementary and straightforward) of the next lemma can be
found in [81].
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Lemma 5.2.2. Assume that .A1/–.A4/ hold. For any T0 � 0; y.t/ is a solution
of (5.32) on ŒT0;1/ if and only if

x.t/ D
0
@ Y
T0�tk<t

.1C bk/

1
A

�1

y.t/ (5.35)

is a solution of the nonimpulsive delay differential equation (5.34).

From Lemmas 5.2.1 and 5.2.2 we see that the solution N.t/ of (5.31) is
oscillatory about K if and only if the solution y.t/ of (5.32) is oscillatory.

We consider only such solutions of (5.32) for which the following condition
holds:

1C y.t/ > 0; for t � T0; (5.36)

and hence, in view of (5.35),

1C
0
@ Y
T0�tk<t

.1C bk/

1
A x.t/ > 0; for t � T0: (5.37)

With y.t/ D N.t/

K
� 1 then from (5.36) and (5.37), we see that

N.t/ D K

0
@1C

Y
T0�tk<t

.1C bk/x.t/

1
A > 0; t � T0:

Thus for the initial condition N.t/ D '.t/ W ŒT �; T0� ! RC; '.T0/ > 0, the
solution of (5.31) is positive on ŒT0;1/.

Lemma 5.2.3. Assume that .A1/–.A4/ hold,

1Z
0

r.t/

 
1C

mX
iD1

pi .t/

!�1
dt D 1; (5.38)

and

Y
T0�tk<t

.1C bk/ is bounded and lim
t!1 inf

Y
T0�tk<t

.1C bk/ > 0: (5.39)

If y.t/ is a nonoscillatory solution of (5.32), then limt!1 y.t/ D 0.

Proof. Suppose first y.t/ > 0 for t � T1 � 0. From (5.35) and .A1/, x.t/ > 0 for
t � T1. Then there exists T2 � T1 such that

h.t/ � T2; gi .t/ � T2; i D 1; 2; : : : ; m; for t � T2: (5.40)
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Let

u.t/ D �x
0.t/
x.t/

; for t � T2: (5.41)

Then u.t/ � 0 for t � T2 and

x.t/ D x.T2/ exp

8<
:�

tZ
T2

u.s/ds

9=
; ; for t � T2: (5.42)

Setting c D x.T2/, we have

u.t/ D r.t/

x.t/

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A x.h.t//

�
1C .

Y
T0�tk<t

.1C bk//x.t/

1C
mX
iD1

pi .t/Œ1C .
Y

T0�tk<gi .t/
.1C bk//x.gi .t//�

� r.t/

x.t/

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A x.t/

� 1

1C
mX
iD1

pi .t/Œ1C
Y

T0�tk<gi .t/
.1C bk/c�

D r.t/

1C
mX
iD1

pi .t/

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A

�
1C

mX
iD1

pi .t/

1C
mX
iD1

pi .t/Œ1C
Y

T0�tk<gi .t/
.1C bk/c�

� r.t/

1C
mX
iD1

pi .t/

.
Y

h.t/�tk<t
.1C bk//

�1

.1C
mX
iD1

pi .t/.1C .
Y

T0�tk<gi .t/
.1C bk/c//

:
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Then from (5.38) and (5.39),

1Z
T2

u.t/dt D 1.

Now suppose �1 < y.t/ < 0. Hence in view of (5.36),

�1 <
Y

T0�tk<gi .t/
.1C bk/x.t/ < 0; t � T1:

Then there exists T2 > T1 such that (5.40) holds for t > T2. With u.t/ denoted
in (5.41) and c D x.T2/, then from (5.37) u.t/ � 0; �1 < c < 0, and we obtain

u.t/ D r.t/

x.t/

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A x.h.t//

�
1C .

Y
T0�tk<t

.1C bk//x.t/

1C
mX
iD1

pi .t/Œ1C .
Y

T0�tk<gi .t/
.1C bk//x.gi .t//�

� r.t/

x.h.t//

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A x.h.t//

1C .
Y

T0�tk<t
.1C bk//c

1C
mX
iD1

pi .t/

D
0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A
0
@1C .

Y
T0�tk<t

.1C bk//c

1
A

� r.t/

1C
mX
iD1

pi .t/

:

Then by (5.37)–(5.39), we have

1Z
T2

u.t/dt D 1. Equation (5.42) implies

limt!1 x.t/ D 0. Use (5.35), and then we have limt!1 y.t/ D 0. The proof
is complete. �

Theorem 5.2.1. Assume that .A1/ and .A2/, (5.38) hold and for some � > 0, all
solutions of the linear equation
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x0.t/C .1 � �/
Y

h.t/�tk<t
.1C bk/

�1 r.t/x.h.t//

1C
mX
iD1

pi .t/

D 0 (5.43)

are oscillatory. Then all solutions of (5.32) are oscillatory.

Proof. Suppose y.t/ is an eventually positive solution of (5.32). Then x.t/ is an
eventually positive solution of (5.34). Lemma 5.2.3 implies that there exists T1 � 0,
such that

0 < .
Y

T0�tk<t
.1C bk//x.t/ < �; for t � T1:

We suppose (5.40) holds for t � T2, and we have

.1C
mX
iD1

pi .t//.1C .
Y

T0�tk<t
.1C bk//x.t//

1C
mX
iD1

pi .t/Œ1C .
Y

T0�tk<gi .t/
.1C bk//x.gi .t//�

�
1C

mX
iD1

pi .t/

1C
mX
iD1

pi .t/.1C �/

�
1C

mX
iD1

pi .t/

.1C �/.1C
mX
iD1

pi .t//

D 1

1C �
� 1 � �: (5.44)

Equation (5.34) implies

x0.t/C .1 � �/
Y

h.t/�tk<t
.1C bk/

�1 r.t/x.h.t//

1C
mX
iD1

pi .t/

� 0; t � T2: (5.45)

This implies that the (5.43) has a positive solution, which is a contradiction.
Now, we suppose

�� < .
Y

T0�tk<t
.1C bk//x.t/ < 0; for t � T1;

and (5.38) holds for t � T2 � T1. Then for t � T2, we also get
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.1C
mX
iD1

pi .t//.1C .
Y

T0�tk<t
.1C bk//x.t//

1C
mX
iD1

pi .t/Œ1C .
Y

T0�tk<gi .t/
.1C bk//x.gi .t//�

�
.1C

mX
iD1

pi .t//.1 � �/

1C
mX
iD1

pi .t/

D 1 � �: (5.46)

Thus (5.43) has a nonoscillatory solution and we again obtain a contradiction. The
proof is complete. �

Theorem 5.2.2. Assume that .A1/ and .A2/ hold and

Y
h.t/�tk<t

.1C bk/ is convergent. (5.47)

Moreover, for some � > 0 if there exists a nonoscillatory solution of the linear delay
differential equation

x0.t/C .1C �/
Y

h.t/�tk<t
.1C bk/

�1 r.t/x.h.t//

1C
mX
iD1

pi .t/

D 0; (5.48)

then there exists a nonoscillatory solution of (5.32).

Proof. Suppose that x.t/ > 0 for t > T0 is a solution of (5.48). Then by (5.34)
there exist T0 � 0 and !0.t/ � 0; t � T0, !0.t/ D 0; T �

0 � t � T0 such that

!0.t/ � .1C �/r.t/

1C
mX
iD1

pi .t/

.
Y

h.t/�tk<t
.1C bk/

�1/ exp

8̂<
:̂

tZ
h.t/

!0.s/ds

9>=
>; : (5.49)

Since
Y

T0�tk<gi .t/
.1C bk/ is convergent, there exists a positive constant c such that

0 < c.
Y

T0�tk<gi .t/
.1C bk// < �:
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Consider the two sequences:

!n.t/ D r.t/

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A exp

8̂<
:̂

tZ
h.t/

!n�1.s/ds

9>=
>;

:

1C c.
Y

T0�tk<gi .t/
.1C bk// exp

8<
:�

tZ
T0

�n�1.s/ds

9=
;

1C
mX
iD1

pi .t/.1C c.
Y

T0�tk<gi .t/
.1C bk// exp �f

gi .t/Z
T0

!n�1.s/dsg/
;

n D 1; 2; : : : ;

�n.t/ D r.t/

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A exp

8̂
<
:̂

tZ
h.t/

�n�1.s/ds

9>=
>; (5.50)

:

1C c.
Y

T0�tk<gi .t/
.1C bk// exp

8<
:�

tZ
T0

!n�1.s/ds

9=
;

1C
mX
iD1

pi .t/.1C c

0
@ Y
T0�tk<gi .t/

.1C bk/

1
A exp �f

gi .t/Z
T0

�n�1.s/dsg/
;

n D 1; 2; : : : ;

where !0 is defined above and �0 � 0. Thus we have

!1.t/ D r.t/

1C
mX
iD1

pi .t/

0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A exp

8̂
<
:̂

tZ
h.t/

!0.s/ds

9>=
>;

�
.1C

mX
iD1

pi .t//.1C c.
Y

T0�tk<gi .t/
.1C bk//

1C
mX
iD1

pi .t/.1C c.
Y

T0�tk<gi .t/
.1C bk// exp �f

gi .t/Z
T0

!0.s/dsg/
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�
r.t/.

Y
h.t/�tk<t

.1C bk/
�1/

1C
mX
iD1

pi .t/

e

tZ
h.t/

!0.s/ds .1C
mX
iD1

pi .t//.1C �/

1C
mX
iD1

pi .t/

� !0.t/: (5.51)

Clearly �1.t/ � �0.t/; !0.t/ � �0.t/. Hence by induction

8<
:

0 � !n.t/ � !n�1.t/ � : : : � !0.t/;

�n.t/ � �n�1.t/ � : : : � �0.t/ D 0; n D 1; 2; : : : ;

!n.t/ � �n.t/:

There exist pointwise limits of the nonincreasing nonnegative sequence !n.t/ and
of the nondecreasing sequence �n.t/. Let !.t/ D limn!1 !n.t/ and �.t/ D
limn!1 �n.t/. Then by the Lebesgue Convergence Theorem, we deduce that

!.t/ D r.t/

0
@ Y
h.t/�tk<t

.1C bk/

1
A exp

8̂<
:̂

tZ
h.t/

!.s/ds

9>=
>;

:

1C c.
Y

T0�tk<gi .t/
.1C bk// exp

8<
:�

tZ
T0

�.s/ds

9=
;

1C
mX
iD1

pi .t/.1C c.
Y

T0�tk<gi .t/
.1C bk// exp �f

gi .t/Z
T0

!.s/dsg/
;

�.t/ D r.t/

0
@ Y
h.t/�tk<t

.1C bk/

1
A exp

8̂<
:̂

tZ
h.t/

�.s/ds

9>=
>;

�
1C c.

Y
T0�tk<gi .t/

.1C bk// exp

8<
:�

tZ
T0

!.s/ds

9=
;

1C
mX
iD1

pi .t/.1C c.
Y

T0�tk<gi .t/
.1C bk//e

�
gi .t/Z
T0

�.s/ds

/

: (5.52)



230 5 Food-Limited Population Models

We fix b � T0 and define the operator T W L1ŒT0; b� ! L1ŒT0; b� by the following

.T u/.t/ D r.t/

0
@ Y
h.t/�tk<t

.1C bk/

1
A exp

8̂<
:̂

tZ
h.t/

u.s/ds

9>=
>;

�
1C c

Y
T0�tk<gi .t/

.1C bk/ exp

8<
:�

tZ
T0

u.s/ds

9=
;

1C
mX
iD1

pi .t/.1C c
Y

T0�tk<gi .t/
.1C bk/e

�
gi .t/Z
T0

u.s/ds

/

: (5.53)

For every function u from the interval � � u � !, we have � � T u � !. Also T is
a completely continuous operator on the space L1ŒT0; b�, and then by the Schauder
Fixed Point Theorem there exists a nonnegative solution of the equation u D T u.
Let

x.t/ D
(
c expf� R t

T0
u.s/dsg; t � T0;

c; T � � t � T0:
(5.54)

Then x.t/ is a nonoscillatory solution of (5.34). Thus by Lemma 5.2.1

y.t/ D
0
@ Y
h.t/�tk<t

.1C bk/
�1
1
A x.t/

is a nonoscillatory solution of (5.32) which completes the proof of Theorem 5.2.2.
�

The results in this section apply to (5.31).

5.3 3
2
-Global Stability

In this section we examine the global attractivity of the “food-limited” population
model

N 0.t/ D r.t/N.t/
1 �N.t � �/

1C c.t/N.t � �/ ; t � 0; (5.55)

where

r.t/ 2 C.Œ0;1/; .0;1//; c.t/ 2 C.Œ0;1/; .0;1//; � > 0:
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We consider solutions of (5.55) which correspond to the initial condition
�

N.t/ D 
.t/; t 2 Œ�; 0�;

 2 C.Œ�; 0�; Œ0;1//; 
.0/ > 0:

(5.56)

Motivated by (5.55) in this section, we will study the global stability of the general
equation

x0.t/C Œ1C x.t/�Œ1 � cx.t/�F .t; x.g.t//� D 0; (5.57)

where F.t; '/ is a continuous functional on Œ0;1/ � Ct , such that F.t; 0/ D 0 for
t � 0 and satisfies a York-type condition

� r.t/

1C c
Mt.�'/ � F.t; '/ � r.t/

1C c
Mt.�'/; (5.58)

where g W Œ0;1/ ! .�1;1/ is a nondecreasing continuous function with g.t/ <
t for t � 0 and limt!1 g.t/ D 1, Mt.'/ D maxf0; sups2Œg.t/;t � '.s/g, c 2 .0;1/

and r 2 C.Œ0;1/; .0;1//. The class Ct is the set of all continuous functions ' W
Œg.t/; t � ! Œ�1;1/ with the sup-norm k'kt D sups2Œg.t/;t � j'.s/j.

Let � D �g.0/. We consider solutions of (5.57) which correspond to the initial
condition

�
x.t/ D 
.t/; t 2 Œ��; 0�;

 2 C.Œ��; 0�; Œ�1; 1

c
//; 
.0/ > �1: (5.59)

In the following, we will establish a 3=2-global attractivity condition for (5.57), and
then apply this condition on equation (5.55) to establish a 3=2-global attractivity
condition. The results in this section are adapted from [73]. To prove the results,
we need the following results (whose proofs are standard; for Lemma 5.3.7 see
Lemma 5.7.3 with c D 1).

Lemma 5.3.1. Assume that c 2 .0; 1�. Then for any v 2 Œ0; 1/

.1 � v/ ln
.1C c/e�cv.1�cv=2/ � 1

c
� �.1C c/v

�
1 � 1C c

2
v � 1 � c

6
v2
�
:

Lemma 5.3.2. Assume that c 2 .0; 1�. Then for any u 2 Œ0;1/

.1C u/ ln
.1C c/ecu.1Ccu=2/ � 1

c
� .1C c/u

�
1C 1C c

2
u � 1 � c

6
u2
�
:

Lemma 5.3.3. Assume that c 2 .0; 1� and v 2 .0; 1/. Then for any x 2 Œ0;1/

ln
1C Œ.1C c/e�cv.1�cv=2/ � 1�e�vx

1C ce�vx
� �cv.1 � cv

2
/C cv2

1C c
x:
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Lemma 5.3.4. Assume that c 2 .0; 1�. Then for 0 < v <

�
1� c

2
C
q

2.1�c/
3

C c2

4

��1

�1
v

ln
.1C c/e�cv.1�cv=2/ � 1

c
� 3

2
.1C c/:

Lemma 5.3.5. Assume that c 2 .0; 1�. Then for any x 2 Œ0;1/

ln
c C ex

1C c
� x

1C c
C cx2

2.1C c/2
� c.1 � c/x3
6.1C c/3

C c.1 � 4c C c2/x4

24.1C c/4

�c.1 � 11c C 11c2 � c3/
120.1C c/5

x5 C c.1C 14c2 C c4/

720.1C c/6
x6:

Lemma 5.3.6. Assume that c 2 .0; 1� and

1 � v �
"
1 � c

2
C
r
2.1 � c/

3
C c2

4

#�1
:

Then

81.1 � 11c C 11c2 � c3/
160

v3 � 1 � 19.1 � c/v
6

C 27.1 � 4c C c2/v2

16

C81.1C 14c2 C c4/

640
v4:

Lemma 5.3.7. The system of inequalities
(

ln 1Cy
1�cy � .1C c/



x � 1�c

6
x2
�
;

� ln 1�x
1Ccx � .1C c/



y C 1�c

6
y2
�

has only a unique solution xDyD0 in the region f.x; y/ W 0 � x � 1, 0 � y < 1=cg.

Theorem 5.3.1. Assume that (5.58) holds. Then the solution x.t; 0; '/ of (5.57),
(5.59) exists on Œ0;1/ and satisfies �1 < x.t; 0; '/ < 1=c.

Theorem 5.3.2. Assume that (5.58) holds and there exists a function r� 2
C.Œ0;1/; .0;1// such that for each " > 0 there is a 	 D 	."/ > 0 satisfying

inf
s2Œg.t/;t � '.s/ � " ) F.t; '/ � 	r�.t/, F.t;�'/ � �	r�.t/ for t � 0 (5.60)

and Z 1

0

r�.s/ds D 1: (5.61)

Then every nonoscillatory solution of IVP (5.57) and (5.59) tends to zero.
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Theorem 5.3.3. Assume that (5.58), (5.60), and (5.61) hold. If there exists a
constant M such that

Z t

g.t/

r.s/ds � M; (5.62)

then the solutions of (5.57), (5.59) satisfy

�1C exp
�
M.1�eM /
1CceM

�

1C c exp
�
M.1�eM
1CceM

� � x.t/ � eM � 1
1C ceM

: (5.63)

We now prove our main result in this section.

Theorem 5.3.4. Assume that (5.58)–(5.61) hold, and

Z t

g.t/

r.s/ds � 3

2
.1C c/ for large t: (5.64)

Then every solution of (5.57), (5.59) tends to zero.

Proof. Let x.t/ be a solution of (5.57) and (5.59) (note also Theorem 5.3.1 so �1 <
x.t/ << 1=c, t � 0). By Theorem 5.3.2, we only consider the case when x.t/ is
oscillatory. First assume that 0 < c � 1. Set

u D lim sup
t!1

x.t/ and v D lim inf
t!1 x.t/: (5.65)

By Theorem 5.3.3, 0 � u < 1 and 0 � v < 1. It suffices to prove that u D v D 0.
For any 0 < " < 1� v, by (5.64) and (5.65) there exists a t0 D t0."/ > g

�2.0/ such
that

Z t

g.t/

r.s/ds � ı0 � 3

2
.1C c/; t � g.t0/; (5.66)

� v1 � �.v C "/ < x.t/ < u C " � u1, t � g.t0/: (5.67)

From (5.57), (5.58), and (5.67), we have

x0.t/
.1C x.t// .1 � cx.t// � r.t/v1

1C c
, t � t0; (5.68)

and

x0.t/
.1C x.t// .1 � cx.t// � �r.t/u1

1C c
, t � t0: (5.69)
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Let flng be an increasing infinite sequence of real numbers such that g.ln/ > t0,
x.ln/ > 0; x

0.ln/ D 0, and limn!1 x.ln/ D u. We may assume that ln is a left local
maximum point of x.t/. It is easy to show that there exists �n 2 Œg.ln/; ln/ such that
x.�n/ D 0 and x.t/ > 0 for t 2 .�n; ln�. By (5.68), we have

x.t/ �
�1C exp

�
�v1

R �n
t
r.s/ds

�

1C c exp
�
�v1

R �n
t
r.s/ds

� , t0 � t � �n;

and [see also (5.57) and (5.58)] for �n � t � ln we have

x0.t/
.1C x.t// .1 � cx.t// � r.t/

1C c

1 � exp
�
�v1

R �n
g.t/

r.s/ds
�

1C c exp
�
�v1

R �n
g.t/

r.s/ds
� ;

which together with (5.68) yields for �n � t � ln

x0.t/
.1C x.t// .1 � cx.t//

� min

8<
:
r.t/v1
1C c

;
r.t/

1C c

1 � exp
�
�v1

R �n
g.t/

r.s/ds
�

1C c exp
�
�v1

R �n
g.t/

r.s/ds
�
9=
; : (5.70)

There are two cases to consider.

Case 1.
R ln
�n
r.s/ds � � 1

v1
ln .1Cc/e�cv1.1�cv1=2/�1

c
� A

Then by (5.66) and (5.70), we have

ln
1C x.ln/

1 � cx.ln/ �
Z ln

�n

r.s/ds � 1C c

cv1
ln
1C c exp

h
�v1

�
ı0 � R ln

�n
r.s/ds

�i
1C ce�ı0v1

:

(5.71)

If
R ln
�n
r.s/ds � A � ı0 D 3

2
.1C c/, then by Lemmas 5.3.1 and 5.3.3

ln
1C x.ln/

1 � cx.ln/ � A � 1C c

cv1
ln
1C ce�v1.ı0�A/

1C ce�ı0v1
� .1C c/

�
v1 � 1 � c

6
v21

�
:

If
R ln
�n
r.s/ds � ı0 D 3

2
.1C c/ < A, then

� 1

v1
ln
.1C c/e�cv1.1�cv1=2/

c
� 1 > 3

2
.1C c/:

From Lemma 5.3.4 we have that

v1 >

"
1 � c

2
C
r
2.1 � c/

3
C c2

4

#�1
:
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Hence from (5.71), Lemmas 5.3.5 and 5.3.6, we have

ln
1C x.ln/

1 � cx.ln/ � ı0 � 1C c

cv1
ln

1C c

1C ce�ı0v1
� .1C c/

�
v1 � 1 � c

6
v21

�
:

Case 2. A <
R ln
�n
r.s/ds � ı0

Choose 	n 2 .�n; ln/ such that
R ln
	n
r.s/ds D A. Then by (5.66), (5.70), and

Lemma 5.3.1 we have

ln
1C x.ln/

1 � cx.ln/

� v1

Z 	n

�n

r.s/ds C
Z ln

	n

r.t/
h
1 � exp

�
�v1

R �n
g.t/

r.s/ds
�i

1C c exp
�
�v1

R �n
g.t/

r.s/ds
� dt

� �.1C c/

�
1 � 3C c

2

�
� 1 � v1

v1
ln
.1C c/ e�cv1.1�cv1=2/ � 1

c

� .1C c/

�
v1 � 1 � c

6
v21

�
:

Combining the above cases we see that

ln
1C x.ln/

1 � cx.ln/ � .1C c/

�
v1 � 1 � c

6
v21

�
:

Letting n ! 1 and " ! 0, we have

ln
1C u

1 � cu
� .1C c/

�
v � 1 � c

6
v2
�
: (5.72)

Now, we show that

� ln
1 � v

1C cv
� .1C c/

�
u C 1 � c

6
u2
�
: (5.73)

Let fsng be an increasing infinite sequence of real numbers such that g.s/ > t0,
x.sn/ < 0; x0.sn/ D 0 and limn!1 x.sn/ D �v. We may assume that sn is a left
local minimum point of x.t/. It is easy to show that there exists 	n 2 Œg.sn/; sn/

such that x.	n/ D 0 and x.t/ < 0 for t 2 .	n; sn�. By (5.69), we get

x.t/ � exp


u1
R 	n
t
r.s/ds

� � 1
1C c exp



u1
R 	n
t
r.s/ds

� , t0 � t � 	n;
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which together with (5.58) yields

� x0.t/
.1C x.t// .1 � cx.t//

� r.t/

1C c

exp
�

u1
R 	n
g.t/

r.s/ds
�

� 1
1C c exp

�
u1
R 	n
g.t/

r.s/ds
� , 	n < t < sn: (5.74)

Note that u1 is bounded and note

1

u1
ln
.1C c/ecu1.1Ccu1=2/ � 1

c
� 3.1C c/

2
:

We consider two cases.

Case I.
R sn
	n
r.s/ds <

3.1Cc/
2

� 1
u1

ln .1Cc/ecu1.1Ccu1=2/�1
c

� B .

From (5.69) and Lemma 5.3.2, we have

� ln
1C x.sn/

.1 � cx.sn// � u1

Z sn

	n

r.s/ds

� u1
3.1C c/

2
� ln

.1C c/ecu1.1Ccu1=2/ � 1
c

� .1C c/

�
u1 C 1 � c

6
u21

�
:

Case II. B <
R sn
	n
r.s/ds <

3.1Cc/
2

Choose hn 2 .	n; sn/ such that
R hn
	n
r.s/ds D B . Then by (5.69) and (5.74) we

have

� ln
1C x.sn/

.1 � cx.sn// � u1

Z hn

	n

r.s/ds C
Z sn

hn

r.t/
h
exp

�
u1
R 	n
g.t/

r.s/ds
�

� 1
i

1C c exp
�

u1
R 	n
g.t/

r.s/ds
�

� .1C c/C .1C c/.3C c/

2
u1

�1C u1
u1

ln
.1C c/ecu1.1Ccu1=2/ � 1

c

� .1C c/

�
u1 C 1 � c

6
u21

�
:

Combining these two cases we have

� ln
1C x.sn/

.1 � cx.sn// � .1C c/

�
u1 C 1 � c

6
u21

�
:
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Letting n ! 1 and " ! 0 we see that (5.73) holds. In view of Lemma 5.3.7, we
see from (5.72) to (5.73) that u D v D 0.

Next assume that c > 1. Set y.t/ D �cx.t/. Then (5.57) reduces to

y0.t/C Œ1C y.t/�Œ1 � c�y.t/�F �.t; y.g.t// D 0, t � 0; (5.75)

where c� D 1=c 2 .0; 1/ and F �.t; '/ D �cF.t;� 1
c
'/ satisfies the York-type

condition

� r�.t/
1C c�Mt.�'/ � F �.t; '/ � r�.t/

1C c�Mt.�'/: (5.76)

Note for large t that

Z t

g.t/

r�.s/ds � 3

2
.1C c�/; (5.77)

so we have limt!1 y.t/ D 0, and this implies that limt!1 x.t/ D 0. The proof is
complete. �

Applying Theorem 5.3.4 on (5.55) we have the following result.

Theorem 5.3.5. Assume that
Z 1

0

r.t/

1C c.t/
dt D 1

and

Z t

t��
r.s/ds � 3

2
.1C c0/ for large t; (5.78)

where c0 D inffc.t/ W t � 0g. Then every solution of (5.55), (5.56) tends to 1.

5.4 3
2
-Uniform Stability

In this section we discuss the uniform stability of the “food-limited” population
model

N 0.t/ D r.t/N.t/
k �N l.t � �/

k C s.t/N l.t � �/ ; t � 0; (5.79)

where r.t/ and s.t/ are positive functions, l; � > 0 are positive constants, and k1=l

is the unique positive equilibrium point of (5.79). The results in this section are
adapted from [67].
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Motivated by (5.79) (let x.t/ D .N.t/=k1=l / � 1) in this section we examine

x0.t/ D r.t/Œ1C x.t/�
1 � .1C x.t � �//l

1C s.t/.1C x.t � �//l ; t � 0: (5.80)

We consider solutions of (5.80), which correspond to the initial condition for any
t0 � 0

�
x.t/ D '.t/; for t0 � � � t � t0; ' 2 C Œt0 � �; t0�
1C '.t/ � 0 for t0 � � � t � t0 and 1C '.t0/ > 0:

(5.81)

The zero solution of (5.80) is said to be uniformly stable if, for " > 0, there exists a
ı."/ such that t0 > 0 and k
k D sups2Œt0��;t0� j'.s/j < ı imply jy.t I t0; '/j < " for
all t � t0 where y.t I t0; '/ is a solution of (5.80) with the initial value ' at t0.

Theorem 5.4.1. If

l

Z t

t��
r.u/

1C s.u/
du � ˛ <

3

2
; t � �; (5.82)

then the zero solution of (5.80) is uniformly stable.

Proof. Since ˛ < 3
2
, there exist ˛1 > 1 and 0 < p < 1; such that

˛1
.1C p/ ˛

.1 � p/l <
3

2
(5.83)

and
ˇ̌
.1C x/l � 1ˇ̌ � l˛1 jxj ; for jxj � p:

For 0 < " < p, we choose a ı D ı."/ > 0 sufficiently small so that ı < p,

p1 � .1C ı/eh1˛ � 1 < "; and p2 � .1C p1/e
h2˛ � 1 < ";

where

h1 � ˛1ı=.1 � ı/l > 0; and h2 � ˛1p1=.1 � p1/l > 0:
Clearly, ı < p1 < p2 < ". Consider a solution x.t/ D x.t I t0; '/ of (5.80) with
initial condition ' at t0, where t0 � 0 and k'k D sups2Œt0��;t0� j'.s/j < ı. We need
to prove that

jx.t/j < "; for all t � t0: (5.84)

For t 2 Œt0; t0 C ��, we have

ˇ̌
Œln.1C x.t//�0

ˇ̌ � h1
lr.t/

1C s.t/
;
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since

ˇ̌
1 � .1C '/l

ˇ̌ � l˛1ı

and

1C s.t/.1C '/l � 1C s.t/.1 � ı/l � .1C s.t//.1 � ı/l :

Hence
ˇ̌̌
ˇln 1C x.t/

1C x.t0/

ˇ̌̌
ˇ � h1l

Z t

t0

r.u/

1C s.u/
du � h1˛; for t 2 Œt0; t0 C ��:

It follows that

1 � .1C ı/eh1˛ < .1 � ı/eh1˛ � 1
< x.t/ < .1C ı/eh1˛ � 1; for t 2 Œt0; t0 C ��

and so

jx.t/j < p1 < "; for t 2 Œt0; t0 C ��:

Repeating the previous argument, we have jx.t/j < p2 < " for all t 2 Œt0C�; t0C2��
and thus

jx.t/j < p2 < "; for t 2 Œt0; t0 C 2��:

There are two cases to consider.

Case 1. x.t/ has no zeros on Œt0 C �; t0 C 2��.
Without loss of generality, we assume that x.t/ > 0 for t 2 Œt0 C �; t0 C 2�� (the

case when x.t/ < 0 is similar). Then by (5.80)

x0.t/ < 0 for t 2 Œt0 C 2�; t0 C 3��:

If x.t/ > 0 for all t � t0 C � , then x0.t/ < 0 for all t � t0 C 2� and

0 < x.t/ � x.t0 C 2�/ < p2 < ", for t � t0 C 2�:

Now let t1 be the smallest zero of x.t/ on .t0 C 2�;1/. Clearly, 0 < x.t/ < p2
for t 2 Œt0 C 2�; t1/ since x.t/ is decreasing on Œt0 C 2�; t1/. Thus jx.t/j < p2 for
t 2 Œt0; t1�. Assume that (5.84) does not hold. Then there must exist t2 > t1 such that
jx.t2/j D p2 and x.t2/x0.t2/ � 0 and jx.t/j < p2; for t0 � t < t2. By (5.80), we
have that x.t/ has a zero in Œt2 � �; t2�, which we call � . Since
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ˇ̌
x0.t2/

ˇ̌ � .1C p2/r.t/
l˛1p2

1C s.t/.1 � p2/l

� .1C p2/˛1lp2

.1 � p2/l
r.t/

1C s.t/
; for t0 � t < t2;

we have for t 2 Œ�; t2� that

j�x.t � �/j � .1C p2/˛1lp2

.1 � p2/l
Z �

t��
r.u/

1C s.u/
du;

and so

ˇ̌
x0.t/

ˇ̌ � .1C p2/
˛1l

.1 � p2/l
r.t/

1C s.t/
jx.t � �/j

�
�
˛1l.1C p2/

.1 � p2/l
�2
p2

r.t/

1C s.t/

Z �

t��
r.u/

1C s.u/
du:

Thus, we get for t 2 Œ�; t2� that

ˇ̌
x0.t/

ˇ̌ � min

(
.1C p2/˛1lp2

.1 � p2/l
r.t/

1C s.t/
; �.t; s/

Z �

t��
r.u/

1C s.u/
du

)
;

and therefore

jx.t2/j �
Z t2

�

min

(
.1C p2/˛1lp2

.1 � p2/l
r.t/

1C s.t/
; �.t; s/

Z �

t��
r.u/

1C s.u/
du

)
dt;

where

�.t; s/ WD
�
˛1l.1C p2/

.1 � p2/l
�2
p2

r.t/

1C s.t/
:

There are two possibilities.

Case I.

Z t2

�

r.t/

1C s.t/
dt
.1C p2/˛1l

.1 � p2/l � 1:

Then

jx.t2/j �
�
˛1l.1C p2/

.1 � p2/l
�2

�p2
Z t2

�

r.t/

1C s.t/

Z �

t��
r.u/

1C s.u/
dudt
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D
�
˛1l.1C p2/

.1 � p2/l
�2

�p2
�Z t2

�

r.t/

1C s.t/

�Z t

t��
r.u/

1C s.u/
du �

Z t

�

r.u/

1C s.u/
du

�
dt

�

<

�
˛1l.1C p2/

.1 � p2/l
�2

�p2
"
3

2

.1 � p2/l
˛1l.1C p2/

Z t2

�

r.t/

1C s.t/
dt � 1

2

�Z t2

�

r.t/

1C s.t/
dt

�2#
;

since

Z t

t��
r.u/

1C s.u/
du <

3

2

.1 � p2/l
˛1l.1C p2/

and

Z t2

�

r.t/

1C s.t/

Z t

�

r.u/

1C s.u/
dudt

D
Z t2

�

d

 
1

2

�Z t2

�

r.u/

1C s.u/
du

�2!
D 1

2

�Z t2

�

r.t/

1C s.t/
dt

�2
:

Using the fact that 3
2
az � 1

2
z2 (here a > 0) is an increasing function for 0 < z < 3

2
a,

we have

jx.t2/j

<

�
˛1l.1C p2/

.1 � p2/l
�2
p2

"
3

2

�
.1 � p2/l
.1C p2/˛1l

�2
� 1

2

�
.1 � p2/l
.1C p2/˛1l

�2#
D p2;

which is a contradiction.

Case II.

Z t2

�

r.t/

1C s.t/
dt
.1C p2/˛1l

.1 � p2/l > 1:

Choose 	 2 .�; t2/ such that

Z t2

	

r.t/

1C s.t/
dt
.1C p2/˛1l

.1 � p2/l D 1:
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Then

jx.t2/j

�
Z 	

�

.1C p2/˛1lp2

.1 � p2/l
r.t/

1C s.t/

C
Z t2

	

�
˛1l.1C p2/

.1 � p2/l
�2
p2

r.t/

1C s.t/

Z �

t��
r.u/

1C s.u/
dudt

D
�
˛1l.1C p2/

.1 � p2/l
�2
p2

Z t2

	

r.t/

1C s.t/
dt

Z 	

�

r.u/

1C s.u/
dudt

C
�
˛1l.1C p2/

.1 � p2/l
�2
p2

Z t2

	

r.t/

1C s.t/

Z �

t��
r.u/

1C s.u/
dudt

D
�
.1C p2/˛1l

.1 � p2/l
�2
p2

Z t2

	

r.t/

1C s.t/
dt

Z 	

t��
r.u/

1C s.u/
dudt

<

�
.1C p2/˛1l

.1 � p2/l
�2
p2

�Z t2

	

r.t/

1C s.t/

�
3

2

.1�p2/l
˛1l.1Cp2/ �

Z t

	

r.u/
1Cs.u/du

�
dt

�

D
�
.1C p2/˛1l

.1 � p2/l
�2
p2

�
3

2

�
.1�p2/l
˛1l.1Cp2/

�2 � 1

2

�
.1�p2/l
˛1l.1Cp2/

�2� D p2;

which is a contradiction.
This shows that if x.t/ has no zero in Œt0 C �; t0 C 2��, then jx.t/j < p2 < " for

all t � t0.

Case 2. x.t/ has a zero t 2 Œt0 C �; t0 C 2��.

We prove that

jx.t/j < p2; for all t � t : (5.85)

In fact, if (5.85) does not hold, then there must be a point t� > t such that jx.t�/j D
p2; x.t

�/ x0.t�/ � 0 and jx.t/j < p2 for t 2 Œt0; t
�/. Following the reasoning

in Case 1 we derive a similar contradiction. The proof of Theorem 5.4.1 is now
complete. �

Theorem 5.4.2. Assume that
Z 1

0

r.t/

1C s.t/
dt D 1: (5.86)

If (5.82) holds, then the zero solution of (5.80) is uniformly and asymptotically
stable.
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Proof. In view of Theorem 5.4.1, it suffices to prove that there exists a ı0 > 0 such
that the solution of (5.80) with the initial condition k'k D supt2Œt0��;t0� j'.t/j < ı0
satisfies

lim
t!1x.t/ D lim

t!1x.t I t0; '/ D 0; t0 � 0:

Let ˛1 > 1 and 0 < p < 1 be such that

˛� � max

�
1;

˛˛1

.1 � p/l
	
<
3

2

and
ˇ̌
.1C x/l � 1ˇ̌ � l˛1 jxj ; for jxj � p:

Since the zero solution of (5.80) is uniformly stable, it follows that for 0 < " < p,
there exists ı0 > 0 such that

jx.t/j D jx.t I t0; '/j < "

2
; for t � t0

provided k'k D supt2Œt0��;t0� j'.t/j < ı0. Set

� WD lim sup
t!1

jx.t/j : (5.87)

Clearly 0 � � < ". We prove that � D 0.
If x.t/ is eventually nonnegative, then by (5.80), x.t/ is eventually decreasing

and hence limt!1 x.t/ D �1 exists. Suppose �1 > 0. Then there exists t1 > t0
such that

1

2
�1 < x.t/ < 2�1; for t � t1:

By (5.80), we have for t � t1 C � that

.lnŒ1C x.t/�/0 D r.t/
1 � .1C x.t � �//l

1C s.t/.1C x.t � �//l

� �Œ.1C 1
2
�1/

l � 1�
.1C 2�1/l

r.t/

1C s.t/
:

Using (5.86), we have

lnŒ1C x.t/� ! �1; as t ! 1;

which contradicts �1 > 0. Hence limt!1 x.t/ D �1 D 0. Similarly, one can show
that if x.t/ is eventually nonpositive then limt!1 x.t/ D 0.
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Now assume that x.t/ is oscillatory. For any 0 < 	 < "��, by (5.87) there exists
t2 > t0 such that jx.t/j < �C 	 for t � t2. Let ft�n g be an increasing sequence such
that t�n � t2 C 2�; x0.t�n / D 0; limn!1 jx.t�n /j D � and t�n ! 1 as n ! 1.
By (5.80), x.t�n � �/ D 0. Thus, we have

ˇ̌
.lnŒ1C x.t/�/0

ˇ̌

� l˛1

.1 �� � 	/l
r.t/

1C s.t/
jx.t � �/j ; for t � t2 C �: (5.88)

This yields

j� ln.1C x.t � �//j

� l.�C 	/˛1

.1 �� � 	/l
Z t�n ��

t��
r.u/

1C s.u/
du; for t 2 Œt�n � �; t�n �:

Consequently,

jx.t � �/j � exp

 
l.�C 	/˛1

.1 �� � 	/l
Z t�n ��

t��
r.u/

1C s.u/
du

!
� 1;

since jln.1C z/j � a implies jzj � ea � 1. Thus for t 2 Œt�n � �; t�n �ˇ̌
.lnŒ1C x.t/�/0

ˇ̌

� l˛1

.1 �� � 	/l
r.t/

1C s.t/

�
"

exp

 
l.�C 	/˛1

.1 �� � 	/l
Z t�n ��

t��
r.u/

1C s.u/
du

!
� 1

#
;

which implies for t 2 Œt�n � �; t�n � that
ˇ̌
.lnŒ1C x.t/�/0

ˇ̌ � min fC1; C2g ; (5.89)

where

C1 W D l.�C 	/˛1

.1 �� � 	/l
r.t/

1C s.t/
;

C2 W D l˛1

.1 �� � 	/l
r.t/

1C s.t/

"
exp

 
l.�C 	/˛1

.1 �� � 	/l
Z t�n ��

t��
r.u/

1C s.u/
du

!
� 1

#
:

There are three cases to consider:

Case I.

l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/
dt � 1:
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Then

jln.1C x.t�n //j

� l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/

�
"

exp

 
l.�C 	/˛1

.1 �� � 	/l
Z t�n ��

t��
r.u/

1C s.u/
du

!
� 1

#
dt

� l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/

�
"

exp

 
.�C 	/

 
˛� � l˛1

.1 �� � 	/l
Z t

t�n ��
r.u/

1C s.u/
du

!!
� 1

#
dt

D �1
�C 	

Z t�n

t�n ��
d

"
exp

 
� l˛1.�C 	/

.1 �� � 	/l
Z t

t�n ��
r.u/

1C s.u/
du

!
� 1

#
e.�C	/˛�

� l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/
dt

D 1

�C 	
e.�C	/˛�

"
1 � exp

 
� l˛1.�C 	/

.1 �� � 	/l
Z t

t�n ��
r.u/

1C s.u/
du

!#

� l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/
dt

� 1

�C 	
e.�C	/˛�

.1 � e.�C	// � 1;

since the function

z ! 1

�C 	
e.�C	/˛�

Œ1 � e.�C	/z� � z

is increasing for 0 � z � ˛� and

l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.u/

1C s.u/
du � 1 � ˛�:

Thus,

jx.t�n /j � exp

�
1

�C 	
e.�C	/˛�

.1 � e.�C	// � 1
�

� 1:
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Case II.

1 <
l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/
dt � ˛� � ln.1C�C 	/

�C 	
:

Then

jln.1C x.t�n //j � l.�C 	/˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/
dt

� ˛�.�C 	/ � ln.1C�C 	/

or

jx.t�n /j � 1

1C�C 	
e.�C	/˛� � 1:

Case III.

˛� � ln.1C�C 	/

�C 	
<

l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.t/

1C s.t/
dt � ˛�:

Choose h 2 .0; �/ such that

l˛1

.1 �� � 	/l
Z t�n �h

t�n ��
r.t/

1C s.t/
dt D ˛� � ln.1C�C 	/

�C 	
:

Then by (5.89)

jln.1C x.t�n //j

�
Z t�n �h

t�n ��
r.t/

1C s.t/
dt

l.�C 	/˛1

.1 �� � 	/l

C l˛1

.1 �� � 	/l
Z t�n

t�n �h
r.t/

1C s.t/

�
"

exp

 
l.�C 	/˛1

.1 �� � 	/l
Z t�n ��

t��
r.u/

1C s.u/
du

!
� 1

#
dt

� .�C 	/

�
˛� � ln.1C�C 	/

�C 	

�

Ce.�C	/˛�

Z t�n

t�n �h
r.t/

1C s.t/
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� exp

 
� l.�C 	/˛1

.1 �� � 	/l
Z t

t�n ��
r.u/

1C s.u/
du

!
dt

� l˛1

.1 �� � 	/l
Z t�n

t�n �h
r.t/

1C s.t/
dt

D .�C 	/

�
˛� � ln.1C�C 	/

�C 	

�

Ce.�C	/˛�

.�C 	/
exp

 
� l˛1.�C 	/

.1 �� � 	/l
Z t�n �h

t�n ��
r.u/

1C s.u/
du

!

�e
.�C	/˛�

.�C 	/
exp

 
� l˛1.�C 	/

.1 �� � 	/l
Z t�n

t�n ��
r.u/

1C s.u/
du

!

� l˛1

.1 �� � 	/l
Z t�n

t�n �h
r.t/

1C s.t/
dt

D .�C 	/

�
˛� � ln.1C�C 	/

�C 	

�

C 1

.�C 	/
exp

 
.�C 	/

 
˛� � l˛1

.1 �� � 	/l
Z t�n �h

t�n ��
r.u/

1C s.u/
du

!!

� 1

.�C 	/
exp

 
.�C 	/

 
˛� � l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.u/

1C s.u/
du

!!

� l˛1

.1 �� � 	/l
Z t�n

t�n �h
r.t/

1C s.t/
dt; since ex � 1C x for all x;

� .�C 	/

�
˛� � ln.1C�C 	/

�C 	

�
C 1C�C 	 � 1

.�C 	/

�.�C 	/

 
˛� � l˛1

.1 �� � 	/l
Z t�n

t�n ��
r.u/

1C s.u/
du

!

� l˛1

.1 �� � 	/l
Z t�n

t�n �h
r.t/

1C s.t/
dt
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D .�C 	/

�
˛� � ln.1C�C 	/

�C 	

�

C1 � ˛� C l˛1

.1 �� � 	/l
Z t�n �h

t�n ��
r.t/

1C s.t/
dt

D .�C 	/

�
˛� � ln.1C�C 	/

�C 	

�

C1 � ˛� C ˛� � ln.1C�C 	/

�C 	

D 1C ˛�.�C 	/ � .1C�C 	/ ln.1C�C 	/

�C 	

and so

jx.t�n //j � exp

�
1C ˛�.�C 	/ � .1C�C 	/ ln.1C�C 	/

�C 	

�
� 1:

Combining all the three cases, we have

jx.t�n //j � maxfA; B , C g; (5.90)

where

A D exp

�
1

�C 	
e.�C	/˛�

.1 � e.�C	// � 1
�

� 1;

B D 1

1C�C 	
e.�C	/˛� � 1,

C D exp

�
1C ˛�.�C 	/ � .1C�C 	/ ln.1C�C 	/

�C 	

�
� 1:

Since

lim
z!0

1

z

�
exp

�
1

z
e˛

�z.1 � ez/ � 1
�

� 1
	

D ˛� � 1

2
< 1;

lim
z!0

1

z

�
1

z C 1
e˛

�z � 1
	

D ˛� � 1 < 1;

and

lim
z!0

1

z

�
exp

�
1C ˛�z � .1C z/ ln.1C z/

z

�
� 1

	
D ˛� � 1

2
< 1
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it follows that there exists ˛0 < 1 such that, for sufficiently small " > 0, we have

exp

�
1

z
e˛

�z.1 � e�z/ � 1
�

� 1 < ˛0z; 1

z C 1
e˛

�z � 1 < ˛0z;

and

exp

�
1C ˛�z � .1C z/ ln.1C z/

z

�
� 1 < ˛0z; for all 0 < z < ":

Thus by (5.90), we get

jx.t�n //j < ˛0.�C 	/:

Letting n ! 1 and 	 ! 0, we have

� � ˛0�;

which, together with ˛0 < 1, implies � D 0. The proof is now complete. �

5.5 Models with Periodic Coefficients

The variation of the environment plays an important role in many biological and
ecological dynamical systems. The assumption of periodicity of the parameters in
the system (in a way) incorporates the periodicity of the environment. It is realistic
to assume that the parameters in the models are periodic functions of period !. We
consider the nonautonomous “food-limited” population model

dN.t/

dt
D r.t/N.t/

K.t/ �N.t �m!/
K.t/C c.t/r.t/N.t �m!/: (5.91)

In this section we discuss (5.91) when K is a periodic function. The results in this
section are adapted from [28]. We first consider the nondelay case.

Theorem 5.5.1. Suppose r; c, andK are continuous and positive periodic function
of period !. Then there exists a unique !-periodic solution N �.t/ of the periodic
differential equation

dN.t/

dt
D r.t/N.t/

K.t/ �N.t/
K.t/C c.t/r.t/N.t/

; (5.92)

such that all other positive solutions of (5.92) satisfy

lim
n!1ŒN.t/ �N �.t/� D 0: (5.93)
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Proof. Let N.t; 0;N0/ denote the unique solution of (5.92) through the initial point
.0;N0/. Let

K� D min
0�t�! K.t/ and K� D max

0�t�! K.t/:

Then it follows from (5.92) that

N0 2 ŒK�; K�� ) N.t; 0;N0/ 2 ŒK�; K��; for t � 0

and in particular

N! � N.!; 0;N0/ 2 ŒK�; K��:

Define the function

f W ŒK�; K�� ! ŒK�; K��

by

f .N0/ D N!:

As N.t I 0;N0/ depends continuously on N0, it follows that f is a continuous
function mapping ŒK�; K�� into itself. Therefore f has a fixed point N �

0 . In view
of the !-periodic of r; c, and K, it follows that the unique solution N �.t/ �
N.t; 0;N �

0 / of (5.92) through the initial point .0;N �
0 / is positive and !-periodic.

This completes the proof of the existence of a positive and !-periodic solution
N �.t/ of (5.92).

Let N.t/ be an arbitrary positive solution of (5.92). We let

N.t/ D N �.t/ex.t/ (5.94)

and note

dx.t/

dt
D F.N �.t/ex.t// � F.N �.t//; (5.95)

where

F.u/ D r.t/
K.t/ � u

K.t/C c.t/r.t/u
:

By the mean-value theorem of differential calculus, we can rewrite (5.95) in the
form

dx.t/

dt
D �A.t/Œex.t/ � 1�; (5.96)

where

A.t/ D 1C r.t/c.t/

ŒK.t/C r.t/c.t/�.t/�2
r.t/N �.t/K.t/; (5.97)
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and �.t/ lies between N �.t/ and N �.t/ex.t/. Define a Lyapunov function V

for (5.96) in the form

V.t/ D V.x.t// D Œex.t/ � 1�2:
Calculating the rate of change of V along the solutions of (5.96) we obtain for
x.t/ ¤ 0 that

dV.t/

dt
D �2A.t/Œex.t/ � 1�2ex.t/ < 0: (5.98)

One can easily see that every positive solution of this equation is bounded. Therefore
x.t/ is also bounded. As r;K, and N � are positive functions and �.t/ lies between
N �.t/ and N �.t/ex.t/, it follows from (5.97) that there exists a positive number �
such that

A.t/ � �; for t � 0:

Thus from (5.98) we have

dV.t/

dt
� �2�ex.t/Œex.t/ � 1�2;

so

V.t/C 2�

Z t

0

ex.s/Œex.s/ � 1�2ds � V.0/ < 1:

Hence

ex.t/Œex.t/ � 1�2 2 L1.0;1/:

Since x.t/ and
:
x.t/ are bounded in Œ0;1/, it follows from Barbalats’ Theorem (see

Sect. 1.4) that

ex.t/Œex.t/ � 1�2 ! 0 as t ! 1:

Thus x.t/ ! 0 as t ! 1 and the result follows from (5.94). This completes the
proof. �

Now we consider the periodic delay differential equation (5.91), namely

N 0.t/ D r.t/N.t/
K.t/ �N.t �m!/

K.t/C c.t/r.t/N.t �m!/; (5.99)

together with the initial condition
�

N.t/ D '.t/; for �m! � t � 0;

' 2 C ŒŒ�m!; 0�;RC�; and '.0/ > 0:
(5.100)

Note the unique positive periodic solutionN �.t/ of (5.92) is also a periodic solution
of (5.99).
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For convenience, we introduce the notations

r� D maxfr.t/ W t 2 Œ0; !�g; r� D minfr.t/ W t 2 Œ0; !�g;

K� D maxfK.t/ W t 2 Œ0; !�g; K� D minfK.t/ W t 2 Œ0; !�g;

N u D K� expŒK�.
r

K
/avm!�; where .

r

K
/av D 1

m!

Z m!

0

r.s/

K.s/
ds; (5.101)

Nl D K� expŒ
K� �N u

K�
ravm!�; where rav D 1

m!

Z m!

0

r.s/ds: (5.102)

Theorem 5.5.2. IfN.t/ is a solution of the initial value problems (5.99) and (5.100)
then there exists a number T D T .'/ such that

Nl � N.t/ � N u; for t � T: (5.103)

Proof. We note that any solution of (5.99) satisfies the differential inequality

N 0.t/ � r.t/N.t/ŒK� �N.t �m!/�
K.t/C c.t/r.t/N.t �m!/ : (5.104)

Solutions of (5.104) can be either oscillatory or nonoscillatory about K�.
First, suppose that N.t/ is oscillatory about K�. Then there exists a sequence

ftng; tn ! 1 as n ! 1 of zeros of N.t/ � K� such that N.t/ � K� takes both
positive and negative values on .tn; tnC1/ for n D 1; 2; : : :. Let N.t�n / denote a local
maximum of N.t/ on .tn; tnC1/. Then from (5.104), we obtain

0 D N 0.t�n / � r.t�n /N.t�n /ŒK� �N.t�n �m!/�
K.t�n /C c.t�n /r.t�n /N.t�n �m!/;

which implies that

N.t�n �m!/ � K�:

This shows that there exists a point � 2 Œt�n � m!; t�n � such that N.�/ D K�.
Integrating (5.104) over Œ�; t�n � we obtain

ln
N.t�n /
N.�/

�
Z t�n

�

K� r.s/
K.s/

ds � K�
Z t�n

t�n �m!
r.s/

K.s/
ds

and

N.t�n / � K� expŒK�.r=K/avm!�: (5.105)
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Since the right side of (5.105) is independent of tn, we conclude that

N.t/ � K� expŒK�.r=K/avm!� D N u; for t > t1 C 2m!: (5.106)

Next assume that N.t/ is non oscillatory about K�. Then it is easily seen that for
every " > 0 there exists a T1 D T1."/ such that

N.t/ < K� C "; for t > T1:

This and (5.106) imply that there exists a T D T .'/ such that

N.t/ � N u for t > T:

In a similar way we can derive a lower bound for positive solutions of (5.99). In fact
from (5.99) we find

N 0.t/ � r.t/N.t/
K� �N.t �m!/

K.t/C c.t/r.t/N.t �m!/: (5.107)

Let N.t/ be an oscillatory solution about K� and let fsng ! 1 as n ! 1 be such
that

N.sn/ �K� D 0; for n D 1; 2; : : : ,

and N.t/�K� takes both positive and negative values on .tn; tnC1/. Let s�
n be such

that N.s�
n / is a local minimum of N.t/. Then from (5.107), we obtain

0 D N 0.s�
n / � r.s�

n /N.s
�
n /

K� �N.s�
n �m!/

K.s�
n /C c.s�

n /r.s
�
n /N.s

�
n �m!/;

which implies that

N.s�
n �m!/ � K�:

This show that there exists a point 	 2 Œs�
n � m!; s�

n � such that N.	/ D K�.
Integrating (5.107) over Œ	; s�

n � we find

ln
N.s�

n /

K�
�
Z s�n

	

r.s/.K� �N u/

K�
ds

D K� �N u

K�

Z s�n

	

r.s/ � K� �N u

K�

Z s�n

s�n �m!
r.s/ds

and

N.s�
n / � K� exp

 
K� �N u

K�

Z s�n

s�n �m!
r.s/ds

!
D Nl:
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Hence

N.s/ � Nl; for t � t1 C 2m!: (5.108)

Next, assume thatN.t/ is nonoscillatory aboutK�. One can easily show in this case
that for every positive " there exists a T2 D T2."/ such that

N.t/ > K� � "; for t > T2:

This and (5.108) imply that there exists a T2 D T2.'/ such that

N.t/ � Nl � "; for t � T2:

The proof is complete. �

We will derive sufficient conditions for the global attractivity of N �.t/ with
respect to all other positive solutions of (5.99) and (5.100). As before we set

N.t/ � N �.t/ex.t/; (5.109)

in (5.99) and note that

x0.t/ D G.x.t �m!// �G.0/; (5.110)

where

G.u/ D r.t/
K.t/ �N �.t/eu

K.t/C c.t/r.t/N �.t/eu
: (5.111)

We can rewrite (5.110) in the form

x0.t/ D �B.t/ x.t �m!/; (5.112)

where

B.t/ D K.t/r.t/Œ1C r.t/c.t/��.t/

ŒK.t/C c.t/r.t/�.t/�2
(5.113)

and �.t/ lies between N �.t/ and N.t �m!/. Clearly

Bl D K�r�.1C r�c�/Nl
.K� C c�r�N u/2

� B.t/ � K�r�.1C r�c�/N u

.K� C c�r�Nl/2
D Bu: (5.114)

Theorem 5.5.3. Assume that the positive periodic functions r.t/;K.t/, and c.t/
satisfy the condition

� � K� exp

�
K� � r

K

�
av
m!

� Z m!

0

Œ1C r.s/c.s/�
r.s/

K.s/
ds < 1: (5.115)
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Then every solution of (5.99) and (5.100) satisfies

lim
t!1ŒN.t/ �N �.t/� D 0: (5.116)

Proof. It suffices to prove that every solution x of (5.112) and (5.113) satisfies

lim
t!1x.t/ D 0: (5.117)

Consider V.t/ D V.x.t// given by

V.t/ D
�
x.t/ �

Z t

t�m!
B.s Cm!/x.s/ds

�2

C
Z t

t�m!
B.s C 2m!/

�Z t

s

B.u Cm!/x2.t/du

�
ds; (5.118)

which in view of (5.112) yields

dV.t/

dt
D 2

�
x.t/ �

Z t

t�m!
B.s Cm!/x.s/ ds

�
Œ�B.t Cm!/x.t/�

CB.t Cm!/x2.t/

Z t

t�m!
B.s C 2m!/ds

�B.t Cm!/

Z t

t�m!
B.u Cm!/x2.u/du: (5.119)

Using the inequality

2x.t/x.s/ � x2.t/C x2.s/;

and simplifying (5.119) we obtain

dV.t/

dt
� �B.t Cm!/x2.t/

�
�
2 �

Z t

t�m!
B.s Cm!/ds �

Z t

t�m!
B.s Cm!/ds

�

� �B.t Cm!/x2.t/.1 � �/: (5.120)

It follows from (5.115) that V is eventually nonincreasing say for t � T . Clearly
all solutions of (5.99) are bounded and so by (5.109) and (5.110), x is uniformly
continuous on Œ0;1/. Integrating (5.120) over ŒT; t � and taking into account the
inequality (5.115), we get

V.t/C 2Bl.1 � �/
Z t

T

x2.s/ds � V.T / < 1:
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Hence x2 2 L1.T;1/ and by Barbalat’s Theorem (see Sect. 1.4)

lim
t!1x

2.t/ D 0:

The proof is complete. �

5.6 Global Stability of Models with Impulses

In this section, we are concerned with the global stability of “food-limited”
population models with impulsive effects. We consider the model

8<
:
N 0.t/ D p.t/N.t/

1 �N.t � �/
1C 
N.t � �/ ; t � 0; t ¤ tk;

N.tCk / D N.tk/
1Cbk ; k 2 N;

(5.121)

where p 2 C Œ0;1/ with p > 0, 
 2 .0;1/, � > 0, bk > �1 for all k 2 N: The
aim in this section is to establish some sufficient conditions which ensure that every
solution of (5.121) tends to 1 as t ! 1. The results in this section are adapted from
[41]. Let the sequence tk.k 2 N/ be fixed and satisfy the condition,

0 < t1 < t2 < : : : < tkC1 ! 1; as k ! 1:

We only consider solutions of (5.121) with initial conditions of the form
�
N.t/ D 
.t/; for � � � t � 0;


 2 C.Œ��; 0�; Œ0;1//; and 
.0/ > 0:
(5.122)

Lemma 5.6.1. Suppose that any � > 0 there exists an integer N such that

nCmY
kDn

.1C bk/ < 1C �; for n > N and m � 0: (5.123)

If in addition

C1Z
0

p.s/
Y

0�tk<s
.1C bk/

�1ds D 1; (5.124)

then every non-oscillatory solution of
8<
:x

0.t/ D p.t/
1 � ex.t��/
1C 
ex.t��/

; t ¤ tk;

x.tCk / D .1C bk/x.tk/; k 2 N
(5.125)

tends to zero as t tends to infinity.
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Proof. Without loss of generality, suppose that x.t/ is an eventually positive
solution of (5.125). Then there is a T1 � 0 such that x.t��/ > 0 for t � T1; t ¤ tk .
Thus (5.125) implies that x.t/ is decreasing in .tk; tkC1� with tk � T1. Let

lim inf
t!C1 x.t/ D ˛:

Then ˛ � 0. First we prove ˛ D 0. Since x.tk/ is a left locally minimum value of
x.t/, there is a subsequence fx.tkj /g such that

lim
j!C1 x.tkj / D ˛:

If ˛ ¤ 0; then ˛ > 0. Choose � > 0 such that ˛ � � > 0. Again there is a
T > T1; T ¤ tk such that x.t � �/ > ˛ � �; for t � T . Hence (5.125) implies

x0.t/ � p.t/
1 � e˛��

1C 
e˛�� ; t � T; t ¤ tk:

Integrating the above inequality from T to tkj ; we get

Y
T�tk<tkj

.1C bk/
�1x.tkj / � x.T /

� 1 � e˛��

1C 
e˛��

tkjZ
T

p.s/
Y

T�tk<s
.1C bk/

�1ds:

Let either

lim sup
j!C1

Y
T�tk<tkj

.1C bk/ D 0 or lim sup
j!C1

Y
T�tk<tkj

.1C bk/ ¤ 0;

and it follows that 1 � �1 or �x.T / � �1; a contradiction. Then ˛ D 0.
Now for any t � T; there is a tkj such that tkj � t < tkjC1

. Suppose that
tkj < tkjC1 < : : : < tkjCl � t . Then

0 < x.t/ < x.tCkjCl / D .1C bkjCl /x.tkjCl /

� .1C bkjCl /x.tCkjCl�1/

D .1C bkjCl /.1C bkjCl�1/x.tkjCl�1/

� : : : �
lY

sD0
.1C bkjCs/x.tkj /:
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From (5.123), there is a constant A > 0 such that
lY

sD0
.1 C bkjCs/ � A for any

l and any kj . Thus 0 < x.t/ � Ax.tkj /. Then limt!C1 x.t/ D 0. The proof is
complete. �

Lemma 5.6.2. Suppose that (5.123), (5.124) hold and there is a constant M > 0

such that

tZ
t��
p.s/

Y
s�tk<t

.1C bk/ds � M; t � 0: (5.126)

Then every oscillatory solution of (5.125) is bounded.

Proof. Let x.t/ be oscillatory solution of (5.125). Equation (5.125) implies

x0.t/ � p.t/; t � 0; t ¤ tk: (5.127)

Choose a sequence fcng such that

x.cn/ D 0; where 0 < c1 < c2 < : : : ; with lim
n!C1 cn D C1;

x.t/ � 0; for t 2 Œc2i�1; c2i �; and x.t/ � 0; for t 2 Œc2i ; c2iC1�:
Let

Oxi D sup
t2Œc2i�1;c2i �

x.t/ and Qxi D inf
t2Œc2i ;c2iC1�

x.t/:

It suffices to prove that f Oxig and f Qxig are bounded. First, we prove that f Oxig is
bounded above. In this step, there are two cases to consider.

Case 1. Oxi is the maximum value of x.t/ in Œc2i�1; c2i �.

In this case, there is a c 2 .c2i�1; c2i / such that Oxi D x.c/ > 0; x0.c/ � 0.
Equation (5.125) implies x.t � �/ � 0. Then there is a � 2 .c � �; c/ such that
x.�/ D 0. Integrating (5.127) from � to c, we get

Oxi D x.c/ �
cZ
�

p.t/
Y

t�tk<c
.1C bk/dt � M:

Case 2. Oxi is not the maximum value of x.t/ in Œc2i�1; c2i �.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Oxi D x.tCkCl /. We suppose
that

c2i�1 < tkC1 < : : : < tkCl :

There are two cases to consider.
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Subcase 2.1: x.tCkCj�1/ � x.tkCj /, j D 2; : : : ; l

Then x.t/ has maximum x.c/ in Œc2i�1; tkC1�. By Case 1 we have x.c/ � M .
Hence

Oxi D x.tCkCl / D .1C bkCl /x.tkCl / : : : : �
lY

sD1
.1C bkCs/x.tkC1/

� M

lY
sD1
.1C bkCs/:

Subcase 2.2: There is an integer j ? 2 f2; : : : ; lg with x.tCkCj ?�1/ < x.ttCj ?/ and

x.tCkCj�1/ � x.tkCj /, j D j ? C 1; : : : ; l .

Then x.t/ has maximum x.c/ in ŒtkCj ?�1; tkCj ? �. By Case 1 we have x.c/ � M .
Hence

Oxi D x.tCkCl / D .1C bkCl /x.tkCl / � : : : �
lY

sDj ?
.1C bkCs/x.tkCj ?/

� M

lY
sDj ?

.1C bkCs/:

From condition (5.123), from Cases 1 and 2, one gets that there is a constant A > 0
such that

Oxi D x.tkCl / � M or Oxi D x.tkCl / � AM: (5.128)

Next, we prove that f Qxig is bounded below. From (5.128), there is a constant B > 0

such that x.t/ � B , for all t � 0. Equation (5.125) implies

x0.t/ � 1 � eB
1C 
eB

p.t/; t � 0; t ¤ tk: (5.129)

Using a method similar to that in Cases 1 and 2, we get

Qxi � 1 � eB
1C 
eB

M

or

Qxi � 1 � eB
1C 
eB

AM:

This shows that f Qxig is bounded below. The proof is complete. �
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The following result is well known.

Lemma 5.6.3. The system of inequalities

v � .1C 
/
1 � eu

1C 
eu
and u � .1C 
/

1 � ev

1C 
ev

has only a unique solution u D v D 0 in the region �1 < u � 0 � v < C1.

Lemma 5.6.4. Suppose that 
 2 .0; 1� and (5.123), (5.124) hold. If

lim sup
t!C1

tZ
t��
p.s/

Y
s�tk<t

.1C bk/ds � 1C 
; (5.130)

then every oscillatory solution of (5.125) tends to zero as t tends to infinity.

Proof. Let x.t/ be an oscillatory solution of (5.125). By Lemma 5.6.2, x.t/ is
bounded. Let

lim inf
t!C1 x.t/ D u and lim sup

t!C1
x.t/ D v:

Then

�1 < u � 0 � v < C1:

For any � > 0; (5.123) implies that there is a N > 0 such that

nCmY
kDn

.1C bk/ < 1C �; for n � N and m � 0:

In addition, for this � there is a T > tN such that

tZ
t��
p.s/

Y
s�tk<t

.1C bk/ds < .1C 
/.1C �/; for all t � T;

and

u1 � u � � < u.t � �/ < v C � � v1:

Then (5.125) implies

x0.t/ � p.t/
1 � eu1

1C 
eu1
; t � T; t ¤ tk; (5.131)

and

x0.t/ � p.t/
1 � ev1

1C 
ev1
; t � T; t ¤ tk:
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Choose a sequence fcng such that x.cn/ D 0; T < c1 < c2 < : : : ; cn !
C1; x.t/ � 0; for t 2 .c2i�1; c2i / and x.t/ � 0 for t 2 .c2i ; c2iC1/. Let

Oxi D sup
t2.c2i�1;c2i /

x.t/; Qxi D inf
t2.c2i ;c2iC1/

x.t/:

Then

lim
i!1 sup Oxi D v; lim

i!1 inf Qxi D u:

We divide the proof into two steps.

Case 1. Oxi is the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a c 2 .c2i�1; c2i / such that Oxi D x.c/ > 0; x0.c/ � 0, and
x.t � �/ � 0. Then there is a � 2 .c � �; c/ such that x.�/ D 0. Integrating (5.131)
from � to c, we get

Oxi D x.c/ � 1 � eu1

1C 
eu1

cZ
�

p.s/
Y

s�tk<c
.1C bk/ds

� .1C 
/.1C �/
1 � eu1

1C 
eu1
:

Case 2. Oxi is not the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Oxi D x.tCkCl /. Suppose
c2i�1 < tkC1 < : : : < tkCl . As in Case 2 in Lemma 5.6.2, there is a c 2 .c2i�1; tkCl /
such that x.c/ is a left locally maximum value of x.t/, and we have that there is a
j 2 f1; 2; : : : ; lg such that

Oxi �
lY

sDj
.1C bkCs/x.c/ �

lY
sDj
.1C bkCs/.1C �/.1C 
/

1 � eu1

1C 
eu1
:

Then by (5.123), we get

Oxi � .1C �/2.1C 
/
1 � eu1

1C 
eu1
:

Let i ! C1; � ! 0, and we get

v � .1C 
/
1 � eu

1C 
eu
: (5.132)

Similarly, we have

u � .1C 
/
1 � ev

1C 
ev
: (5.133)

From Lemma 5.6.3, we get from (5.132) and (5.133) that u D v D 0. Then
limt!C1 x.t/ D 0. This completes the proof. �
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Lemma 5.6.5. Suppose that 
 > 1 and (5.123), (5.124), and (5.130) hold. Then
every oscillatory solution of (5.125) tends to zero as t tends to infinity.

Proof. Since 
 2 .1;C1/; let M.t/ D 1

N.t/
; and (5.121) becomes

M 0.t/ D 1



p.t/M.t/

1 �M.t � �/
1C 1



M.t � �/ : (5.134)

We note
1



2 .0; 1/. Then by Lemma 5.6.4, we get Lemma 5.6.5. The proof is

complete. �

Lemma 5.6.6. Suppose that 
 2 .0; 1�; and (5.123), (5.124) holds. If

lim sup
t!C1

tZ
t��
p.s/

Y
t���tk<t

.1C bk/
�1ds � 3

2
.1C 
/; (5.135)

then every oscillatory solution of (5.125) tends to zero as t ! C1.

Proof. Let x.t/ be an oscillatory solution of (5.125). By Lemma 5.6.2, x.t/ is
bounded. Let

lim sup
t!C1

x.t/ D v and lim inf
t!C1 x.t/ D u:

Then

�1 < u � 0 � v < C1:

From (5.123), for any � > 0; there is a N such that

nCmY
kDn

.1C bk/ < 1C �; n � N; m � 0:

Again for this � > 0, there is a T � tN such that
8̂̂
<̂
ˆ̂̂:

tZ
t��

p.s/Y
t���tk<s

.1Cbk/
ds � 3

2
.1C 
/.1C �/ WD ı.1C �/; t � T;

u1 � u � � < x.t � �/ < v C � � v1; t � T:

(5.136)

Then (5.125) implies

x0.t/ � 1 � eu1

1C 
eu1
p.t/; t � T; t ¤ tk: (5.137)
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Choose a sequence fcng such that x.cn/ D 0; T < c1 < c2 < : : : ; cn ! C1; n !
C1; x.t/ � 0 for t 2 .c2i�1; c2i / and x.t/ � 0 for t 2 .c2i ; c2iC1/. Let

Oxi D sup
t2.c2i�1;c2i /

x.t/; Qxi D inf
t2.c2i ;c2iC1/

x.t/:

Then

lim
i!1 sup Oxi D v; lim

i!1 inf Qxi D u:

We first prove

Oxi � .1C 
/

�
A � 1 � 


6
A2
�
.1C �/ (5.138)

or

Oxi � .1C 
/.1C �/2
�
A � 1 � 


6
A2
�
; where A D 1 � eu1

1C 
eu1
: (5.139)

There are two cases to be considered.

Case 1. Oxi is the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a c 2 .c2i�1; c2i / such that Oxi D x.c/ > 0; x0.c/ � 0.
By (5.125) we have x.t � �/ � 0. Then there is a � 2 .c � �; c/ such that x.�/ D 0.
If t 2 Œ�; c�; then t � � � � . Integrating (5.137) from t � � to � , one gets

�
Y

t���tk<�
.1C bk/x.t � �/ � A

�Z
t��
p.s/

Y
s�tk<�

.1C bk/ds: (5.140)

Equation (5.125) implies for t � 0 that

x0.t/ � p.t/

1 � exp.�A
�Z
t��
p.s/

Y
t���tk<s

.1C bk/
�1ds/

1C 
 exp.�A
�Z
t��
p.s/

Y
t���tk<s

.1C bk/�1ds/

: (5.141)

Integrating (5.141) from � to c and noting that
1 � ex
1C 
ex

is decreasing, we get
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x.c/ �
cZ
�

p.t/

1 � exp.�A
�Z
t��
p.s/

Y
t���tk<s

.1C bk/
�1ds/

1C 
 exp.�A
�Z
t��
p.s/

Y
t���tk<s

.1C bk/�1ds/

Y
t�tk<c

.1C bk/dt

�
cZ
�

p.t/
Y

t�tk<c
.1C bk/

�
1 � e�Aı exp.A

tZ
�

p.s/
Y

t���tk<s
.1C bk/

�1ds/

1C 
e�Aı exp.A

tZ
�

p.s/
Y

t���tk<s
.1C bk/�1ds/

dt

�
cZ
�

p.t/

1 � e�Aı exp.A

tZ
�

p.s/
Y

s�tk<c
.1C bk/ds

Y
t���tk<c

.1C bk/
�1/

1C 
e�Aı exp.A

tZ
�

p.s/
Y

s�tk<c
.1C bk/ds

Y
t���tk<c

.1C bk/�1/

�
Y

t�tk<c
.1C bk/dt

�
cZ
�

p.t/
Y

t�tk<c
.1C bk/

1 � e�Aı exp.A.1C �/�1
tZ
�

p.s/
Y

s�tk<c
.1C bk/ds/

1C 
e�Aı exp.A.1C �/�1
tZ
�

p.s/
Y

s�tk<c
.1C bk/ds/

dt

D
cZ
�

p.t/
Y

t�tk<c
.1C bk/dt � 1C 



A.1C �/�1

� ln

1C 
e�Aı exp.A.1C �/�1
cZ
�

p.s/
Y

s�tk<c
.1C bk/ds/

1C 
e�Aı dt:
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Subcase 1.1:

cZ
�

p.t/
Y

t�tk<c
.1C bk/dt � � 1

A
ln
.1C 
/e�
A.1� 


A /



.1C �/

� ˛.1C �/ � ı.1C �/:

By the monotone property of the function

x � .1C 
/


A.1C �/�1
ln
�
1C 
e�AıCAx.1C�/�1� ;

and using 
e�A˛ D .1C 
/e�
A.1� 
A
2 / � 1, we get that

x.c/ � .1C �/

�
˛ � 1C 



A
ln
1C 
e�AıCA˛

1C 
e�Aı

�

D .1C �/.˛ C 1C 



A
ln
1C ..1C 
/e�
A.1� 
A

2 / � 1/e�AıCA˛

1C 
e�AıCA˛ /:

Then Lemma 5.3.3 gives us that

Oxi D x.c/ � .1C �/

�
˛ C 1C 



A
.�
A.1 � 
A

2
/C 
A2

1C 

.ı � ˛//

�

D .1C �/

�
˛ � .1C 
/.1 � 
A

2
/C Aı � A˛

�

D �.1C �/.1C 
/

�
1 � 
A

2
� 3

2
A

�

�.1C �/
1 � A
A

ln
.1C 
/e�
A.1� 
A

2 / � 1



D .1C �/

�
�.1C 
/

�
1 � 3C 


2
A

�
� 1 � A

A
ln .1C
/e�
A.1� 
A

2 /�1



�
:

Then from Lemma 5.3.1

x.c/ � �.1C 
/.1C �/

�
1 � 3C 


2
A

�

C.1C �/
1C 


A
A

�
1 � 1C 


2
A � 1 � 


6
A2
�

D .1C �/.1C 
/

�
A � 1 � 


6
A2
�
;
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i.e.,

x.c/ � .1C �/.1C 
/

�
A � 1 � 


6
A2
�
: (5.142)

Subcase 1.2:

cZ
�

p.t/
Y

t�tk<c
.1C bk/dt � ı.1C �/ < ˛.1C �/:

In this case ˛ > 3
2
.1C 
/, i.e.,

� 1

A
ln
.1C 
/e�
A.1� 


A / � 1



>
3

2
.1C 
/:

From Lemma 5.3.4 we have that

A >

 
1 � 


2
C
r
2.1 � 
/

3
C 
2

4

!�1
:

Integrating (5.141) from � to c, we get

Oxi D x.c/ � ı.1C �/ � 1C 



A.1C �/�1

� ln
1C 
e�Aı exp.A.1C �/�1ı.1C �//

1C 
e�Aı

D .1C �/

�
ı � 1C 



A
ln

1C 


1C 
e�Aı

�

D .1C �/

�
ı C 1C 



A

�
ln

C eAı

1C 

� Aı

��
:

By a method similar to that in Lemmas 5.3.5 and 5.3.6, we get

Oxi D x.c/ � .1C �/.1C 
/

�A Œ 1 � 1 � 

6

AC 1

8
.1 � 19.1 � 
/

6
AC 27.1 � 4
C 
2/

16
A2

� 81.1 � 11
C 11
2 � 
3/
160

A3 C 81.1C 14
2 C 
4/

640
A4 / �;

i.e.,

x.c/ � .1C �/.1C 
/

�
A � 1 � 


6
A2
�
: (5.143)
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Subcase 1.3:

ı.1C �/ �
cZ
�

p.t/
Y

t�tk<c
.1C bk/dt > ˛.1C �/:

Choose 	 2 .�; c/ such that

cZ
	

p.t/
Y

t�tk<c
.1C bk/dt D ˛.1C �/:

Integrating (5.137) from � to 	, one gets

x � A

	Z
�

p.t/
Y

t�tk<	
.1C bk/dt:

Integrating (5.137) from 	 to c, we get

x.c/ � x.	/
Y

	�tk<c
.1C bk/

�
cZ
	

p.t/
Y

t�tk<c
.1C bk/

1�exp

0
BB@�A

�Z
t��

p.s/

Y
t���tk<s

.1Cbk/�1ds

1
CCA

1C
 exp

0
BB@�A

�Z
t��

p.s/

Y
t���tk<s

.1Cbk/�1ds

1
CCA

dt:

By deleting x.	/ and noting

e�A˛ D .1C 
/e�
A.1� 
A
2 / � 1



;

we have

Oxi D x.c/

� A

	Z
�

p.t/
Y

t�tk<	
.1C bk/dt C

cZ
	

p.t/
Y

t�tk<c
.1C bk/

�
1C 
e�Aı exp.A.1C �/�1

cZ
�

p.s/
Y

s�tk<c
.1C bk/ds/

1C 
e�Aı exp.A.1C �/�1
	Z
�

p.s/
Y

s�tk<c
.1C bk/ds/

dt
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D A

	Z
�

p.t/
Y

t�tk<c
.1C bk/dt C

cZ
	

p.t/
Y

t�tk<c
.1C bk/dt

� 1C 



A.1C �/�1
ln

1C 
e�Aı exp.A.1C �/�1
cZ
�

p.s/
Y

s�tk<c
.1C bk/ds/

1C 
e�Aı exp.A.1C �/�1
	Z
�

p.s/
Y

s�tk<c
.1C bk/ds/

:

Using the monotone property of the function

Ax � .1C 
/


A.1C �/�1
ln

1C 
e�AıCAx.1C�/�1

1C 
e�Aı�A˛CAx.1C�/�1 ; on Œ0; ı.1C �/�

and by Lemma 5.3.1, it follows that

Oxi D x.c/

� .1C �/

�
Aı C .1 � A/˛ � 1C 



A
ln

1C 


1C 
e�A˛

�

D .1C �/

�
Aı C .1 � A/˛ � .1C 
/.1 � 
A

2
/

�

D .1C �/

�
�.1C 
/.1�3C 


2
A/�1 � A

A
$

�

� .1C �/.1C 
/.A � 1 � 

6

A2/;

where

$ D ln
.1C 
/e�
A.1� 
A

2 / � 1



;

i.e.,

x.c/ � .1C �/.1C 
/.A � 1 � 

6

A2/: (5.144)

Case 2. Oxi is not the maximum value of x.t/ in .c2i�1; c2i /.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Oxi D x.tCkCl /. Suppose
c2i�1 < tkC1 < : : : < tkCl . As in Case 2 in Lemma 5.6.2, there is a c 2 .c2i�1; tkCl /
such that x.c/ is a locally maximum value of x.t/, and there is a j 2 f1; 2; : : : ; lg
such that



5.6 Global Stability of Models with Impulses 269

Oxi �
lY

sDj
.1C bkCs/x.c/;

where x.c/ satisfies (5.138). Then by (5.123), we get

Oxi � .1C �/x.c/ � .1C �/2.1C 
/.A � 1 � 

6

A2/:

Let i ! C1; � ! 0 in (5.138) and (5.139) to obtain

v � .1C 
/

 
1 � eu

1C 
eu
� 1 � 


6

�
1 � eu

1C 
eu

�2!
: (5.145)

Next we prove

u � .1C 
/

 
1 � eu

1C 
eu
� 1 � 


6

�
1 � eu

1C 
eu

�2!
: (5.146)

Let B D 1 � ev

1C 
ev
. Then by (5.125), we have

x0.t/ � Bp.t/; t � T; t ¤ tk: (5.147)

There are two cases to consider.

Case 1. Qxi is the minimum value of x.t/ in .c2i ; c2iC1/.

In this case, there is a c 2 .c2i ; c2iC1/ such that x.c/ D Qxi < 0; x0.c/ � 0;

and then there is a � 2 .c � �; c/ such that x.�/ D 0. If t 2 Œ�; c�; then t � � � � .
Integrating (5.137) from t � � to c, we get

�
Y

t���tk<�
.1C bk/x.t � �/ � B

�Z
t��
p.s/

Y
s�tk<�

.1C bk/ds:

Then, we get for t 2 Œ�; c�; t ¤ tk , that

x0.t/ � p.t/

1 � exp.�B
�Z
t��
p.s/

Y
t���tk<s

.1C bk/
�1ds/

1C 
 exp.�B
�Z
t��
p.s/

Y
t���tk<s

.1C bk/�1ds/

: (5.148)

We consider two subcases.
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Subcase 1.1:

cZ
�

p.t/
Y

t�tk<c
.1C bk/dt � .1C �/

 
ı C 1

B
ln
.1C 
/e�
B.1� 
B

2 / � 1



!
:

In this case, it is easy to see that

� .1C 
/B

1 � B
�
1 � 1C 


2
B � 1 � 


6
B2

�

> � .1C 
/B

2

�
1C 1 � 


3
B

�
:

Then by Lemma 5.3.2, we get

ln
.1C 
/e�
B.1� 
B

2 / � 1



>
1C 


2
.B � 1 � 


3
B2/:

Integrating (5.147) from � to c; one gets

Qxi D x.c/ � B

cZ
�

p.t/
Y

t�tk<c
.1C bk/dt

�
"
ıB C ln

.1C 
/e�
B.1� 
B
2 / � 1




#
.1C �/

� .1C 
/.1C �/.B � 1 � 

6

B2/:

Then

x.c/ D Qxi � .1C 
/.1C �/.B � 1 � 

6

B2/: (5.149)

Subcase 1.2:

ı.1C �/ �
cZ
�

p.t/
Y

t�tk<c
.1C bk/dt

> .ı C 1

B
ln
.1C 
/e�
B.1� 
B

2 / � 1



/.1C �/:

Choose 	 2 .�; c/ such that
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cZ
	

p.t/
Y

t�tk<c
.1C bk/dt D

"
ı C 1

B
ln
.1C 
/e�
B.1� 
B

2 / � 1



#
.1C �/:

Integrating (5.147) from � to 	, integrating (5.148) from 	 to c, and deleting x.	/,
we get

Qxi D x.c/

� B

	Z
�

p.t/
Y

t�tk<	
.1C bk/dt C

cZ
	

p.t/
Y

t�tk<c
.1C bk/

�
1 � exp.�B

	Z
t��
p.s/

Y
t���tk<s

.1C bk/
�1ds/

1C 
 exp.�B
	Z
t��
p.s/

Y
t���tk<s

.1C bk/�1ds/

dt

� B

	Z
�

p.t/
Y

t�tk<	
.1C bk/dt

C
cZ
	

p.t/
Y

t�tk<c
.1C bk/dt

� 1C 



B.1C �/�1
ln

1C
e�Bı exp

0
BB@B.1C�/�1

cZ
�

p.s/

Y
s�tk<c

.1Cbk/ds

1
CCA

1C
e�Bı exp

0
BB@B.1C�/�1

	Z
�

p.s/

Y
s�tk<c

.1Cbk/ds

1
CCA

D B

	Z
�

p.t/
Y

t�tk<	
.1C bk/dt C

cZ
	

p.t/
Y

t�tk<c
.1C bk/dt

� 1C 



B.1C �/�1
ln

1C
e�B.1C�/�1ı exp

0
BB@B

cZ
�

p.s/

Y
s�tk<c

.1Cbk/ds

1
CCA

.1C
/e�B
.1� 
B
2 /
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D �.1 � B/
	Z
�

p.t/
Y

t�tk<	
.1C bk/dt

C
cZ
	

p.t/
Y

t�tk<c
.1C bk/dt � .1C 
/.1C �/.1�
B

2
/

� .1C 
/.1C �/


B

� ln

1C 
e�Bı exp.B.1C �/�1
cZ
�

p.s/
Y

s�tk<c
.1C bk/ds/

1C 

:

Using the monotone property of the function

x � .1C 
/.1C �/


B
ln
1C 
e�BıeB.1C�/�1x

1C 

; x 2 Œ0; ı.1C �/�;

we get

x.c/

� �.1 � B/
	Z
�

p.t/
Y

t�tk<c
.1C bk/dt

Cı.1C �/ � .1C 
/.1C �/.1 � 
B

2
/

D .1C �/

�
�.1C 
/C .1C
/.3C
/

2
B � 1 � B

B
ln .1C
/e�
B.1� 
B

2 /�1



�
:

By Lemma 5.3.2, we get

Qxi D x.c/ � .1C �/.1C 
/.B � 1 � 

6

B2/: (5.150)

Case 2. Qxi is not the minimum value of x.t/ in .c2i ; c2iC1/.

In this case, there is a tkCl 2 .c2i�1; c2i / such that Qxi D x.tCkCl /. Suppose c2i <
tkC1 < : : : < tkCl . As in Case 2 in Lemma 5.6.2, there is a c 2 .c2i�1; tkCl / such
that x.c/ is a locally minimum value of x.t/, and x.c/ satisfies (5.149) [(5.150)].
Then there is a j 2 f1; 2; : : : ; lg such that

Qxi �
lY

sDj
.1C bkCs/.1C �/x.c/:
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By (5.123), we have

Qxi � .1C �/x.c/ � .1C �/2.1C 
/.B � 1 � 

6

B2/: (5.151)

Let i ! C1; � ! 0 in (5.149) and (5.151) and we get (5.146). Let

1 � eu

1C 
eu
D x;

1 � ev

1C 
ev
D �y:

Then (5.145) and (5.146) become

8̂<
:̂

ln
1C y

1 � 
y � .1C 
/.x � 1 � 

6

x2/;

ln
1 � x
1C 
x

� .1C 
/.�y � 1 � 

6

y2/:

(5.152)

By Lemma 5.3.7, then x D y D 0. Thus u D v D 0. Then x.t/ tends to zero as t
tends to infinity. The proof is complete. �

Lemma 5.6.7. Suppose that 
 2 .1;1/ and (5.123), (5.130) holds. Then every
oscillatory solution of (5.125) tends to zero as t tends to infinity.

Theorem 5.6.1. Assume �1 < bk � 0 for every k 2 N and
P1

kD1 bk D �1. In
addition if

tZ
t��
p.s/

Y
s�tk<t

.1C bk/ds

is bounded, then every positive solution of (5.121) tends to 1 as t tends to infinity.

Proof. It follows from �1 < bk � 0 and

tZ
t��
p.s/

Y
s�tk<t

.1 C bk/ds is bounded

that (5.123) holds. Let

y.t/ D x.t/
Y

0�tk<t
.1C bk/

�1:

An argument similar to that in the proof of Lemma 5.6.2 yields that y.t/ is bounded.

If �1 < bk � 0; then
1Y
kD1
.1C bk/ D 0, if and only if

P1
kD1 bk D �1. Hence

x.t/ D y.t/
Y

0�tk<t
.1C bk/;

and the conditions of this theorem imply that x.t/ tends to zero as t tends to infinity.
This completes the proof. �
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Theorem 5.6.2. Suppose (5.123), (5.124), and (5.135) hold. Then every positive
solution of (5.121) tends to 1 as t tends to infinity.

5.7 Global Stability of Generalized Models

In this section we establish some global attractivity conditions of the generalized
“food-limited” population model

N 0.t/ D r.t/N.t/

�
1 �N.t � �/

1C 
.t/N.t � �/
�˛
; t � 0; (5.153)

where

r 2 C.Œ0;1/; .0;1//; 
.t/ 2 C.Œ0;1/; Œ0;1//; � > 0;

and ˛ is a ratio of two odd positive integers so that ˛ � 1. The results in this section
are adapted from [39]. We consider solutions of (5.153) under the initial condition

�
N.t/ D 
.t/; t 2 Œ��; 0�;

 2 C.Œ��; 0�; Œ0;1//; 
.0/ > 0:

(5.154)

Lemma 5.7.1. For any v 2 Œ0; 1/;

ln.2e�v.1�v=2/ � 1/ � �2v;

and for any u 2 Œ0;1/,

ln.2eu.1Cu=2/ � 1/ � 2u:

Proof. Let

f .v/ D 2e�v.1�v=2/ � e�2v and g.v/ D .1 � v/ev.1Cv=2/:

It is easy to see that

g.0/ D 1; g0.v/ D �v2ev.1Cv=2/ � 0

and

f 0.v/ D 2e�2vŒ1 � g.v/� D �2e�2vg0.�/v � 0; for some � 2 .0; v/:

It follows that f .v/ � f .0/ D 1 for v 2 Œ0; 1/. The other assertion can be similarly
proved. The proof is complete. �
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Lemma 5.7.2. Assume that v 2 .0; 1/. Then for any x 2 Œ0;1/,

ln
1C Œ2e�v.1�v=2/ � 1�e�vx

1C e�vx
� �v

�
1 � v

2

�
C v2

2
x (5.155)

Proof. Set

a WD 2e�v.1�v=2/ � 1

and

f .x/ WD ln..1C ae�vx/=.1C e�vx//:

Note

f .0/ D �v.1 � v=2/; f 0.0/ D v

2
Œe�v.1�v=2/ � 1�;

and

f
00

.x/ D
�

a

.aC evx/2
� 1

.1C evx/2

�
v2evx:

Since ˛ � 1, it follows that f
00

.x/ � 0 for x � 0. By the mean-value theorem and
the fact that

ex.1�x=2/ � 1C x; for x � 0;

we have

f .x/ � f .0/C f 0.0/x D �v.1 � v

2
/C vx

2
Œev.1�v=2/ � 1�

� �v.1 � v

2
/C v2x

2
:

The proof is complete. �

The following result follows the usual argument in the literature (for complete-
ness we include it here; see also Lemma 5.3.7).

Lemma 5.7.3. The system of inequalities

(
ln 1Cu

1�u � 2v;
� ln 1�v

1Cv � 2u
: (5.156)

has a unique solution .u; v/ D .0; 0/ in the region f.u; v/ W �1 < v � 0 � u < 1g.
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Proof. Set

g.x/ D exp.2.1 � x/=.1C x//; f .x/ D x � g.g.x//

and

h.x/ D .1C x/2Œ1C g.x/�2 � 16g.x/g.g.x//:

Observe that h.1/ D 0,

f 0.x/ D 1 � g0.x/g0.g.x// D 1 � 16g.x/g.g.x//

.1C x/2Œ1C g.x/�2
;

and for x > 1

h0.x/ D 2Œ1C g.x/�Œ.1C x/.1C g.x// � 4g.x/�

C 64

.1C x/2
g.x/g.g.x//

Œ1 � g.x/�2
Œ1C g.x/�2

> 0:

It follows that h.x/ > h.1/ D 0 for x > 1, and so f 0.x/ > 0 for x > 1. This shows
that f .x/ > f .1/ D 0 for x > 1. From (5.156), we have

g.�/ � 
 � 1 � � � g.
/;

where


 D .1 � v/=.1C v/ and � D .1C u/=.1 � u/:

If u > 0, then � > 1; and so

� � g.
/ � g.g.�// < �:

This contradiction implies that u D v D 0. The proof is complete. �

The following result follows the usual argument.

Lemma 5.7.4. Suppose that

C1Z
0

r.t/

Œ1C 
.t/�˛
dt D 1: (5.157)

Then every solution of (5.153) and (5.154) that does not oscillate about 1 tends to 1
as t ! 1.
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Lemma 5.7.5. Suppose 0 < 
.t/ � 1 for t � 0 and

lim sup
t!C1

tZ
t��

r.s/

.
.s//˛
ds � 3: (5.158)

Let N.t/ D N.t I 0; 
/ be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N.t/ is bounded above and is strictly bounded below by 0.

Proof. Let t0 be large enough so that

tZ
t��

r.s/

.
.t//˛
ds � 4; for all t � t0:

Let t� be a local maximum point of N.t/ for t � t0 C � . Then

N 0.t�/ D 0 and N.t� � �/ D 1:

Integrating (5.153) from t� � � to t� yields

N.t�/ D exp

0
@

t�Z
t���

r.s/N.s/

�
1 �N.s � �/

.s/N.s � �/

�˛
ds

1
A

� exp

0
@

t�Z
t���

r.s/ds

1
A � e4:

Consequently,

lim sup
t!1

N.t/ � e4:

Next, let t� be a local minimum point ofN.t/ for t � t0C3� . ThenN 0.t�/ D 0 and
N.t� � �/ D 1. Proceeding as before and using the fact that

1 �N.t � �/
1C 
.t/N.t � �/ � 1 � e4

1C 
.t/e4
� 1 � e4

.t/.1C e4/

;

for t � t0 C � , we have

N.t�/ � exp

0
@

t�Z
t���

r.s/


˛.s/

�
1 � e4


.s/.1C e4/

�˛
ds

1
A

� exp

 
4

�
1 � e4
1C e4

�˛!
:
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Hence

lim inf
t!1 N.t/ � exp

 
4

�
1 � e4
1C e4

�˛!
> 0:

The proof is complete. �

The proof of next result is similar to the proof of Lemma 5.7.5 and is thus
omitted.

Lemma 5.7.6. Assume that 
.t/ � 1 for t � 1 and

lim sup
t!C1

tZ
t��
r.s/ds � 3: (5.159)

Let N.t/ D N.t; 0; 
/ be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N.t/ is bounded above and strictly bounded below by 0.

Theorem 5.7.1. Suppose 0 < 
.t/ � 1, for t � 0, and (5.157) holds. If (5.158)
holds, then every solution of (5.153) and (5.154) tends to 1 as t tends to C1.

Proof. Let

u D lim sup
t!1

N.t/ and v D lim inf
t!1N.t/:

Then by Lemma 5.7.5, 0 < v � 1 and u � 1. It suffices to show that u D v D 1. For
any " 2 .0; v/; choose t0 D t0."/ such that

v1 � v � " < N.t � �/ < u C " � u1; t � t0 (5.160)

and

tZ
t��

r.s/


˛.t/
ds � 3C "; t � t0 � �: (5.161)

Note that

.1 � x/
.1C 
x/

� .1 � x/
.
.1C x//

for x � 1

and

.1 � x/
.1C 
x/

� .1 � x/

.1C x/

for x � 1:
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Thus

N 0.t/ � r.t/N.t/

�
1 � v1

1C 
.t/v1

�˛
� r.t/N.t/

�
1 � v1


.t/.1C v1/

�˛
; t � t0;

(5.162)
and

N 0.t/ � r.t/N.t/

�
1 � u1

1C 
.t/u1

�˛
� r.t/N.t/

�
1 � u1


.t/.1C u1/

�˛
; t � t0:

(5.163)
Consequently,

N 0.t/ � r.t/


˛.t/
N.t/

1 � v1
1C v1

; t � t0; (5.164)

and

N 0.t/ � r.t/


˛.t/
N.t/

1 � u1
1C u1

; t � t0: (5.165)

Let R.t/ D r.t/=
˛.t/. Let fpng be an increasing sequence such that pn � t0 C �

lim
n!1pn D C1; N 0.pn/ D 0 and lim

n!1N.pn/ D u:

By (5.153), N.pn � �/ D 1. For pn � � � t � pn; by integrating (5.164) from t � �
to pn � � , we get

N.t � �/ � exp

�
� 1 � v1
1C v1

pn��R
t��

R.s/ds

�
; .pn � �/ � t � pn:

Substituting this into (5.153), if N.t � �/ � 1; we have

N 0.t/ � R.t/N.t/

�
1 �N.t � �/
1CN.t � �/

�˛
� R.t/N.t/

1 �N.t � �/
1CN.t � �/

� R.t/N.t/

1 � exp

0
@� 1 � v1

1C v1

pn��Z
t��

R.s/ds

1
A

1C exp

0
@� 1 � v1

1C v1

pn��Z
t��

R.s/ds

1
A
:

If N.t � �/ > 1; by (5.153), N 0.t/ < 0, and thus

N 0.t/ � R.t/N.t/

1 � exp

�
� 1 � v1
1C v1

pn��R
t��

R.s/ds

�

1C exp

�
� 1 � v1
1C v1

pn��R
t��

R.s/ds

� :



280 5 Food-Limited Population Models

If t 2 .pn � �; pn/; we have

N 0.t/ � min

�
R.t/N.t/

1 � v1
1C v1

; R.t/N.t/A.t/

	
; (5.166)

where

A.t/ D
1 � exp

�
� 1 � v1
1C v1

pn��R
t��

R.s/ds

�

1C exp

�
� 1 � v1
1C v1

pn��R
t��

R.s/ds

� :

Since

0 < x D .1 � v1/=.1C v1/ < 1;

it follows from Lemma 5.7.1 that

ln 2e�x.1�x=2/�1 � �2x;
and so

0 < � 1
x

ln.2e�x.1�x=2/ � 1/ � 2:

There are two possibilities.

Case 1.

pnZ
pn��

R.s/ds � � 1

v0
ln.2e�v0.1�v0=2/ � 1/ � A � 3C ";

where v0 D .1 � v1/=.1C v1/.

Then

lnN.pn/ �
pnR
pn��

R.t/

�
1 � exp

�
�v0

pn��R
t��

R.s/ds

��

1C exp

�
�v0

pn��R
t��

R.s/ds

� dt

D
pnR
pn��

R.t/

"
1 � exp

 
�v0

 
tR
t��
r.s/ds �

tR
pn��

R.s/ds

!!#

1C exp

 
�v0

 
tR
t��
R.s/ds �

tR
pn��

R.s/ds

!! dt
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�
pnR
pn��

R.t/

"
1 � exp

 
�v0

 
3C " �

tR
pn��

R.s/ds

!!#

1C exp

 
�v0

 
3C " �

tR
pn��

R.s/ds

!! dt

D
pnR
pn��

R.s/ds � 2

v0
ln

1C exp

0
@�v0

0
@3C " �

tZ
pn��

R.s/ds

1
A
1
A

1C e�.3C"/v0 :

Note that the function

f .x/ D x � .2 lnŒ1C e�v1.3C"�x/�/
v1

is increasing in Œ0; 3C "� and we have by Lemmas 5.7.1 and 5.7.2, that

lnN.pn/ � A � 2

v0
ln
1C e�v0.3C"�A/

1C e�.3C"/v0

D AC 2

v0
ln
1C Œ2e�v0.1�v0=2/ � 1�e�v0.3C"�A/

1C e�v0.3C"�A/

� AC 2

v0

�
�v0

�
1 � v0

2

�
C v20
2
.3C " � A/

�

D �2C .4C "/v0 � 1 � v0
v0

ln.2e�v0.1�v0=2/ � 1/

� .2C "/v1:

Case 2.

A <

pnZ
pn��

R.s/ds � 3C ":

Choose �n 2 .pn � �; pn/ such that

pnZ
�n

R.s/ds � A:
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Then by (5.166) and Lemma 5.7.1,

lnN.pn/ �
�nR

pn��
R.s/ds

C
pnZ
�n

R.t/

2
41 � exp

0
@�v0

pn��Z
t��

R.s/ds

1
A
3
5

1C exp

0
@�v0

pn��Z
t��

R.s/ds

1
A

dt

� v0
�nR

pn��
R.s/ds

C
pnZ
�n

R.t/

2
41 � exp

0
@�v0

0
@3C " �

tZ
pn��

R.s/ds

1
A
1
A
3
5

1C exp

 
�v0

 
3C " �

tR
pn��

R.s/ds

!! dt

D v0

�nZ
pn��

R.s/ds

C
pnZ
�n

R.s/ds � 2

v0
lnB0

D v0
pnR
pn��

R.s/ds C .1 � v0/A � 2

v0
B0

� .3C "/v0 C .1 � v0/A � 2

v0
ln

2

1C e�Av0

D �2C .4C "/v0 � 1 � v0
v0

ln.2e�v0.1�v0=2/ � 1/

� .2C "/v1;
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where

B0 D
1C exp

0
@�v0

0
@3C " �

pnZ
pn��

R.s/ds

1
A
1
A

1C exp

 
�v0

 
3C " �

�nR
pn��

R.s/ds

!!

and we have used the fact that the function

g.x/ D � 2

v1
ln

1C expŒ�v1 .3C " � x/�
1C expŒ�v1 .3C "C A � x/� C v1x

is increasing on Œ0; 3C "�.
In either cases, we have proved that

lnN.pn/ � .2C "/v1 for n D 1; 2; : : : :

Letting n ! 1 and " ! 0, we have

ln u � 2
1 � v

1C v
: (5.167)

Next, let fqng be an increasing sequence such that qn � t0 C �; lim
n!1qn D

C1; N 0.qn/ D 0, and limn!1N.qn/ D �v. By (5.153), N.qn � �/ D 1. For
qn � � � t � pn; integrating (5.165) from t � � to qn � � , we have

N.t � �/ � exp

�
� 1 � u1
1C u1

pn��R
t��

R.s/ds

�
; qn � � � t � qn:

Substituting this into (5.153), if N.t � �/ � 1; we have

N 0.t/ D r.t/N.t/

�
1 �N.t � �/

1C 
.t/N.t � �/
�˛

� R.t/N.t/
1 �N.t � �/

1C 
.t/N.t � �/

� R.t/N.t/

1 � exp.�u0
qn��R
t��

R.s/ds/

1C exp

�
�u0

qn��R
t��

R.s/ds

�

for qn � � � t � qn. If N.t � �/ < 1; then by (5.153), N 0.t/ > 0, and thus
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N 0.t/ � R.t/N.t/

1 � exp

�
�u0

qn��R
t��

R.s/ds

�

1C exp

�
�u0

qn��R
t��

R.s/ds

� ;

where u0 D .1 � u1/=.1C u1/. Thus

�N 0.t/ � min

8̂̂
<̂
ˆ̂̂:

�R.t/N.t/u0;�R.t/N.t/
1 � exp

�
�u0

qn��R
t��

R.s/ds

�

1C exp

�
�u0

qn��R
t��

R.s/ds

�
9>>>=
>>>;

(5.168)

for qn � � � t � qn. Note that 0 < �u0 < 1; and one can easily see that

0 < � 1

u0
ln.2e�u0.1�u0=2/ � 1/ < 3:

There are two cases to consider.

Case 1.

qnZ
qn��

R.s/ds � .3C "/C 1

u0
ln.2e�u0.1�u0=2/ � 1/ � B:

By (5.168) and Lemma 5.7.1,

� lnN.qn/ � �u0

qnZ
qn��

R.s/ds � �.3C "/u0 � ln.2e�u0.1�u0=2/ � 1/

� �.1C "/u0:

Case 2.

B <

qnZ
qn��

R.s/ds � 3C ":

We choose 	n 2 .qn � �; qn/ such that

B D
	nZ
qn��

R.s/ds:
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Then by (5.155) and Lemma 5.7.1, we have

� lnN.qn/ � �u0
	nR
qn��

R.s/ds C
qnR
	n

R.t/Œexp.�u0
qn��R
t��

R.s/ds/ � 1�

1C exp.�u0
qn��R
t��

R.s/ds/

dt

� �u0
	nR
qn��

R.s/ds

C
qnZ
	n

R.t/Œexp �u0.3C " �
tZ

qn��
R.s/ds/� � 1

1C exp.�u0.3C " �
tZ

qn��
R.s/ds//

dt

D �u0
	nR
qn��

R.s/ds �
qnR
	n

R.s/ds

� 2

u0
ln

1C exp.�u0.3C " �
qnZ
qn��

R.s/ds//

1C exp.�u0.3C " �
	nZ
qn��

R.s/ds//

� lnN.qn/

D .1 � u0/B �
qnZ
	n

R.s/ds C 2
�
1 � u0

2

�

C 2

u0
ln

1C exp.�u0.3C " �
qnR
qn��

R.s/ds//

2

� 2 � .4C "/u0 C
�
1 � u0

u0

�
ln


2e�u0.1�u0=2/�1�

� .2C "/u0;

where we have used the fact that

h.x/ D �x � 2

u0
ln
1C exp .�u0 .3C " � x//

2

is increasing on Œ0; 3C "�.
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In either cases, we have proved that � lnN.pn/ � �.2C "/u0 for n D 1; 2; : : :.
Letting n ! 1 and " ! 0, we have

� ln v � �2 1 � u

1C u
: (5.169)

Let

y D �.1 � u/=.1C u/

and

x D .1 � v/=.1C v/;

then in view of (5.167), (5.169), and Lemma 5.7.3, we get x D y D 0. This shows
that u D v D 1. The proof is complete. �

By methods similar to those in the proof of Theorem 5.7.1, and by noting that if

 � 1; then

.1 � x/=.1C 
x/ � .1 � x/=.1C x/; for x � 1;

and

.1 � x/=.1C 
x/ � .1 � x/=.1C x/; for x � 1;

one can prove the next result. The details are omitted.

Theorem 5.7.2. Suppose 
.t/ � 1 for t � 0, (5.157), and (5.159) hold. Then every
solution of (5.153) and (5.154) tends to 1 as t tends to C1.

5.8 Existence of Periodic Solutions

In this section, we consider the equation

dN.t/

dt
D N.t/

r.t/ � a.t/N.t/ � b.t/N.t � �.t//
k.t/C c.t/N.t/C d.t/N.t � �.t// (5.170)

and establish some sufficient condition which ensures the existence of periodic
solutions. Here a; b; c; d; k; r are continuous !-periodic functions with r > 0,
k > 0, a > 0, b � 0, c � 0, and d � 0. The results in this section are adapted
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from [22]. Considering the biological significance of system (5.170), we always
assume thatN.0/ > 0. The main results will be proved by applying Theorem 1.4.11.
To prove the main results we present some useful lemmas.

Let f be a !-periodic function and define

f l D min
t2Œ0;!� f .t/; f u D max

t2Œ0;!� f .t/:

Lemma 5.8.1. There exists a unique u� > 0 such that

Z !

0

r.t/ � Œa.t/C b.t/�u�

k.t/C Œc.t/C d.t/�u� dt D 0:

Proof. Let

f .u/ D
!Z
0

r.t/ � Œa.t/C b.t/�u

k.t/C Œc.t/C d.t/�u
dt:

It is clear that

f .0/ D
!Z
0

r.t/

k.t/
dt > 0;

f

�
ru C 1

al C bl

�
D

!Z
0

r.t/ � Œa.t/C b.t/�
ru C 1

al C bl

k.t/C Œc.t/C d.t/�
ru C 1

al C bl

dt

�
!Z
0

r.t/ � .ru C 1/

k.t/C Œc.t/C d.t/�
ru C 1

al C bl

dt < 0;

and then from the zero point theorem, it follows that there exists a u� 2�
0;
ru C 1

al C bl

�
such that f .u�/ D 0. Moreover,

df

du
D �

!Z
0

k.t/Œa.t/C b.t/�C r.t/Œc.t/C d.t/�

fk.t/C Œc.t/C d.t/�ug2 dt < 0;

that is, f .u/ is monotonically decreasing with respect to u, and hence u� is unique.
The proof is complete. �
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Theorem 5.8.1. Equation (5.170) has at least one positive periodic solution of
period !

Proof. Let N.t/ D expfx.t/g. Then (5.170) may be reformulated as

dx.t/

dt
D r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g : (5.171)

In order to apply Theorem 1.4.11 to (5.171), we first let

X D Y D fx.t/ 2 C.R;R/; x.t C !/ D x.t/g
and

kxk D max
t2Œ0;!� jx.t/j ; x 2 X .or Y/:

Then X and Y are Banach spaces with the norm k:k. Let

N x D r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g ; x 2 X;

L x D x0 D dx.t/

dt
; P x D 1

!

!R
0

x.t/dt; x 2 X;

Q z D 1

!

!R
0

z.t/dt; z 2 Y:

Then it follows that

Ker L D R; Im L D
�

z 2 Y W
!R
0

z.t/dt D 0

	
is closed in Y;

dim Ker L D 1 D co dim Im L;

and P; Q are continuous projectors such that

ImP D Ker L; Ker Q D Im L D Im .I �Q/:
Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (of L)

KP W Im L ! KerP \Dom L

is

KP .z/ D
tR
0

z.s/ds � 1

!

!R
0

tR
0

z.s/ ds dt:
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Also

QN x D 1

!

!Z
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds

and

KP .I �Q/N x D
tZ
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds

� 1

!

!Z
0

tZ
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds dt

�
�
t

!
� 1

2

� !Z
0

r.s/ � a.s/ expfx.s/g � b.s/ expfx.s � �.s//g
k.s/C c.s/ expfx.s/g C d.s/ expfx.s � �.s//gds:

By the Arzela–Ascoli Theorem, it is easy to see that KP .I �Q/N.�/ is compact
for any open bounded subset� of X andQN.�/ is bounded. Thus,N isL-compact
on � for any open bounded set � 2 X.

Consider the operator equation Lx D 
N x; 
 2 .0; 1/; that is,

dx.t/

dt
D 


r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g : (5.172)

Let x D x.t/ 2 X be a solution of (5.172) for a certain 
 2 .0; 1/.
Integrating (5.172) with respect to t over the interval Œ0; !� yields

!Z
0

r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/C c.t/ expfx.t/g C d.t/ expfx.t � �.t//gdt D 0; (5.173)

and therefore

!Z
0

a.t/ expfx.t/g C b.t/ expfx.t � �.t//g
k.t/C c.t/ expfx.t/g C d.t/ expfx.t � �.t//gdt

D
!Z
0

r.t/

k.t/C c.t/ expfx.t/g C d.t/ expfx.t � �.t//gdt

�
!Z
0

r.t/

k.t/
dt � !ru

kl
; (5.174)
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which together with (5.172) implies

!Z
0

ˇ̌
x0.t/

ˇ̌
dt D 


!Z
0

ˇ̌
ˇ̌ r.t/ � a.t/ expfx.t/g � b.t/ expfx.t � �.t//g
k.t/C c.t/ expfx.t/g C d.t/ expfx.t � �.t//g

ˇ̌
ˇ̌ dt < 2!ru

kl
:

From (5.173) and the mean-value theorem for integral, we see that there exists � 2
Œ0; !� such that

r.�/ � a.�/ expfx.�/g � b.�/ expfx.� � �.�//g
k.�/C c.�/ expfx.�/g C d.�/ expfx.� � �.�//g! D 0;

and therefore

r.�/ D a.�/ expfx.�/g C b.�/ expfx.� � �.�//g: (5.175)

Since x.t/ 2 X, there exist t1; t2 2 Œ0; !� such that x.t1/ D xl ; x.t2/ D xu; and
then from (5.175) it follows that

x.t1/ � ln

�
r.�/

a.�/C b.�/

	
� ln

�
ru

al C bl

	
;

x.t2/ � ln

�
r.�/

a.�/C b.�/

	
� ln

�
rl

au C bu

	
;

from which we derive

x.t/ � x.t1/C
!Z
0

ˇ̌
x0.t/

ˇ̌
dt � ln

�
ru

al C bl

	
C 2!ru

kl
WD M1;

x.t/ � x.t2/ �
!Z
0

ˇ̌
x0.t/

ˇ̌
dt � ln

�
rl

au C bu

	
� 2!ru

kl
WD M2;

and hence

kxk D max
t2Œ0;!� jx.t/j � maxfjM1j ; jM2jg WD B1:

Clearly, B1 is independent of the choice of 
. Take B D B1 C B2; where B2 > 0 is
taken sufficiently large such that jln.u�/j < B2 and define

� WD fx.t/ 2 X W kxk < Bg:
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When x 2 @� \Ker L D @� \ R; x D B or x D �B; and then

QN x D 1

!

!Z
0

r.t/ � a.t/ expfx.t/g � b.t/ expfxg
k.t/C c.t/ expfx.t/g C d.t/ expfxgdt ¤ 0:

Furthermore, a direct calculation reveals that

degfJQN;� \Ker L; 0g

D sign

8<
:� 1

!

!Z
0

k.t/Œa.t/C b.t/�C r.t/Œc.t/C d.t/�

fk.t/C Œc.t/C d.t/�u�g2 dt

9=
; ¤ 0I

here J is the identity mapping since =P D KerL. Thus all the requirements
in Theorem 1.4.11 are satisfied. Hence (5.171) has at least one solution x�.t/ 2
Dom L\�. SetN �.t/ D expfx�.t/g. ThenN �.t/ is a positive !-periodic solution
of (5.170). The proof is complete. �



Chapter 6
Logistic Models with Diffusions

You know that I write slowly. This is chiefly because I am never
satisfied until I have said as much as possible in a few words,
and writing briefly takes far more time than writing at length.

Carl F. Gauss (1777–1855)

He who does not employ mathematics for himself will some day
find it employed against himself.

Johann F. Herbart (1776–1841)

Population dispersal plays an important role in the population dynamics which
arises from environmental and ecological gradients in the habitat. We assume that
the systems under consideration are allowed to diffuse spatially besides evolving in
time. The spatial diffusion arises from the tendency of species to migrate towards
regions of lower population density where the life is better. The most familiar model
systems incorporating these features are reaction diffusion equations.

This chapter discusses oscillation, global stability, and periodicity of some
diffusive logistic models.

6.1 Introduction

A diffusion mechanism models the movement of many individuals in an environ-
ment or media. The individuals can be very small such as basic particles in physics,
bacteria, molecules, or cells or very large objects such as animals, plants, or certain
kind of events like epidemics, or tumors. The particles reside in a region, which we
call �, and we assume that it is an open subset of Rn (the nth dimensional space
with Cartesian coordinate system) with n � 1. In particular, we are interested in
the cases of n D 1; 2, and 3. The main mathematical variable we consider here is

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology,
DOI 10.1007/978-3-319-06557-1__6, © Springer International Publishing Switzerland 2014
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the density function of the particles N.t; x/, where t is the time and x 2 � is the
location. The dimension of the population density usually is the number of particles
or organisms per unit area (if n D 2) or unit volume (if n D 3).

Technically, we define the population density function N.t; x/ as follows. Let x
be a point in the habitat � and let fOng1

nD1 be a sequence of spatial regions (which
have the same dimension as �) surrounding x; here On is chosen in a way that
the spatial measurement jOnj of On (length, area, volume, or mathematically, the
Lebesgue measure) tends to zero as n ! 1, and On 
 OnC1. Then

N.t; x/ D lim
n!1

number of organisms in On at time t

jOnj ; (6.1)

if the limit exists. The total population in any subregion O of � at time t is

Z
O

N.t; x/dx: (6.2)

The movement of N.t; x/ is called the flux of the population density, which is a
vector. The “high to low” principle now means that the flux always points to the
most rapid decreasing direction ofN.t; x/, which is the negative gradient ofN.t; x/.
This principle is called Fick’s law, and it can be represented as

J.t; x/ D �d.x/rxN.t; x/; (6.3)

where J is the flux of N , d.x/ is called diffusion coefficient at x, and rx is the
gradient operator

rxf .x/ D .
@f

@x1
;
@f

@x2
; � � � ; @f

@xn
/:

The number of particles at any point may change because of other reasons like
birth, death, hunting, or chemical reactions. We assume that the rate of change of
the density function due to these reasons is f .t; x;N /; which we usually call the
reaction rate. Now, we present a differential equation using the balanced law. We
choose any region O . Then the total population in O is

R
O
N.t; x/dx, and the rate

of change of the total population is

d

dt

Z
O

N.t; x/dx: (6.4)

The net growth of the population inside the region O is

Z
O

f .t; x;N.t; x//dx; (6.5)
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and the total out flux is Z
@O

J.t; x/. n.x/dS; (6.6)

where @O is the boundary of O and n.x/ is the outer normal direction at x. Then
the balance law implies

d

dt

Z
O

N.t; x/dx D �
Z
@O

J.t; x/ � n.x/dS C
Z
O

f .t; x;N.t; x//dx: (6.7)

From the divergence theorem in multivariable calculus, we have
Z
@O

J.t; x/ � n.x/dS D
Z
O

div.J.t; x//dx: (6.8)

Combining (6.3), (6.7), and (6.8) and interchanging the order of differentiation and
integration, we obtain

Z
O

@

@t
N.t; x/dx D

Z
O

Œd iv.d.x/rxN.t; x//C f .t; x;N.t; x//�dx: (6.9)

Since the choice of the region O is arbitrary, then the differential equation

@

@t
N.t; x/ D div.d.x/rxN.t; x//C f .t; x;N.t; x//; (6.10)

holds for any .t; x/. The (6.10) is called a reaction diffusion equation. Here
div.d.x/rxN.t; x/) is the diffusion term which describes the movement of the
individuals, and f .t; x;N.t; x// is the reaction term which describes the birth-death
or reaction occurring inside the habitat or reactor. The diffusion coefficient d.x/
is not a constant in general since the environment is usually heterogeneous. But
when the region of the diffusion is approximately homogeneous, we can assume
that d.x/ � d , and then (6.10) can be simplified to

@

@t
N.t; x/ D d�N C f .t; x;N /; (6.11)

where �N D div.rN/ is the Laplacian operator. Sometimes Eq. (6.11) is called a
nonlinear heat equation.

The most popular reaction diffusion equations are

@

@t
N.t; x/ D D�N C kN; diffusive Malthus model; (6.12)

and

@

@t
N.t; x/ D D�N C kN

�
1 � N

K

�
, diffusive logistic model. (6.13)
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In general there are three commonly used boundary conditions:

N.t; x/ D 
.x/; t > 0, x 2 @�; (Dirichlet),

rN.t; x/�n.x/C a.x/N.t; x/ D 
.x/; t > 0; x 2 @�; (Robin),

rN.t; x/�n.x/ D 
.x/; t > 0; x 2 @� (Neumann).

6.2 Oscillation of the Malthus Equation

In some applications, some diffusion processes are modeled by the diffusive
Malthus equation

@u.x; t/

@t
D a.t/�u � pu.x; t/C qu.x; t/; .x; t/ 2 � � Œt0;1/ � G; (6.14)

where a; p; q are nonnegative coefficients representing the phenomena which
underlie the diffusion process. For example, in population dynamics the term
a�u corresponds to the diffusion due to local concentration, while �pu and qu
correspond to death and birth rates, respectively. Since such phenomena may lead
to instantaneous changes in population size, it is natural to include delays in the
models under consideration. Consider the delay diffusive Malthus equation

@u.x; t/

@t
D a.t/�u � p.x; t/u.x; t � �/C q.x; t/u.x; t � �/; (6.15)

where .x; t/ 2 � � Œt0;1/ � G the delays �; � are nonnegative constants, � is
a bounded domain in Rn with a piecewise smooth boundary @�; and �u.x; t/ D
nP
iD1

@2i u.x;t/

@x2i
.

In this section, we are concerned with the oscillation of the diffusive Malthus
model with several coefficients and several delays

@u.x; t/

@t
D a.t/�u �

nX
iD1

pi .x; t/u.x; t � �i /C
mX
jD1

qj .x; t/u.x; t � �j /; (6.16)

where

(H1) a,pi , qj 2 C.Œt0;1/; RC/; �i ; �j 2 Œ0;1/ for i D 1; : : : ; n and j D
1; : : : ; mI

(H2) there exist a positive number p 6 n and a partition of the set
f1; : : : ; mg into p disjoint subsets J1; J2; J3; : : : ; Jp such that j 2 Ji I
implies that �j � �i I
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(H3) Pi.t/ >
P
k2Ji

Qk.t C �k � �i / for t > t0 C �i � �k; and i D 1; : : : ; pI

(H4)
pP
iD1

P
k2Ji

R t��k
t��i Qk.s/ds 6 1; for t � t0 C �i I

here

Pi.t/ D min
x2� pi .x; t/ and Qj .t/ D max

x2� qj .x; t/:

Together with (6.16), we consider three kinds of the boundary conditions:

@u.x; t/

@N
D 0; on .x; t/ 2 @� � Œt0;1/; (6.17)

u.x; t/ D 0; on .x; t/ 2 @� � Œt0;1/; (6.18)

@u.x; t/

@N
C �u D 0; on .x; t/ 2 @� � Œt0;1/; (6.19)

where N is the unit exterior normal vector to @� and �.x; t/ is a nonnegative
continuous function on @� � Œt0;1/:

In this Section, we establish some sufficient conditions for the oscillation of
all solutions of (6.16) subject to the boundary conditions (6.17), (6.18), (6.19),
respectively. A function u.x; t/ 2 C2.G/ \ C1.G/ is said to be a solution of the
problem (6.16) and (6.17) (for example) if it satisfies (6.16) in the domain G and
satisfies the boundary condition (6.17). The solution u.x; t/ of the problem (6.16) is
said to be oscillatory in the domain G � � � Œt0;1/ if for any positive number �
there exists a point .x1; t1/ 2 �� Œ�;1/ such that the equality u.x1; t1/ D 0 holds.
A function U.t/ is called eventually positive (negative) if there exists a number
t1 � t0 such that U.t/ > 0 .< 0/ holds for all t1 � t0.

6.2.1 Oscillation of the Neumann Problem

In this section, we will establish some sufficient conditions for the oscillation of all
solutions of (6.16), (6.17).

In our next theorem we will use the following well-known result [30].

Lemma 6.2.1. Let a 2 .�1; 0/, � 2 .0;1/, t0 2 .�1;1/ and suppose x.t/ 2
C Œt0;1/ satisfies

x.t/ � aC max
s2Œt��;t � x.s/:

Then x.t/ cannot be a nonnegative function.
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Theorem 6.2.1. Assume that .H1/ � .H4/ hold, and every solution of

z
0

.t/C
pX
iD1

2
4Pi.t/ �

X
k2Ji

Qk.t C �k � �i /
3
5 z.t � �i / D 0 (6.20)

oscillates. Then every solution of (6.16), (6.17) is oscillatory in G.

Proof. Assume that (6.16), (6.17) has a nonoscillatory solution. Since the negative
solution of (6.16), (6.17) is also a solution, then without loss of generality we assume
that (6.16), (6.17) has a solution u.x; t/ > 0, u.x; t � �i / > 0, and u.x; t � �j / > 0
in � � Œt1;1/ for some t1 � t0: Set

U.t/ D
Z
�

u.x; t/dx; t � t1;

and thenU.t/ > 0 for t � t1: Integrating (6.16) with respect to x over the domain�;
we have

d

dt

2
4Z
�

u.x; t/dx

3
5 D a.t/

Z
�

�u.x; t/dx �
Z
�

nX
iD1

pi .x; t/u.x; t � �i /dx

C
Z
�

mX
jD1

qj .x; t/u.x; t � �j /dx: (6.21)

From Green’s formula and the boundary condition (6.17), it follows that

Z
�

�u.x; t/dx D
Z
@�

@u.x; t/

@N
dS D 0; t � t1;

where dS is the surface element on @�: Then (6.21) reduces to

d

dt

2
4Z
�

u.x; t/dx

3
5 D �

Z
�

nX
iD1

pi .x; t/u.x; t��i /dxC
Z
�

mX
jD1

qj .x; t/u.x; t��j /dx:

(6.22)

Using the definition of U.t/, Pi.t/, and Qj .t/, we have

U
0

.t/C
nX
iD1

Pi .t/U.t � �i / �
mX
jD1

Qj .t/U.t � �j / � 0; t � t1: (6.23)
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Set

z.t/ D U.t/ �
pX
iD1

X
k2Ji

Z t��k

t��i
Qk.s C �k/U.s/ds; t > t2 D t0 C �i � �k: (6.24)

Then from (6.23)

z
0

.t/C
pX
iD1
ŒPi .t/ �

X
k2Ji

Qk.t C �k � �i /�U.t � �i / � 0; t � t2: (6.25)

Thus from (H3) we see that z.t/ is eventually strictly decreasing. Then an easy con-
tradiction argument using (H4) and Lemma 6.2.1 guarantees that z.t/ is eventually
positive. This implies that U.t/ � z.t/: This with (6.25) yields that z.t/ is a positive
solution of the delay differential inequality

z
0

.t/C
pX
iD1

2
4Pi.t/ �

X
k2Ji

Qk.t C �k � �i /
3
5 z.t � �i / � 0; t � t2: (6.26)

Now the usual standard result (see [30]) guarantees that (6.20) has an eventually
positive solution which contradicts the assumption that every solution of (6.20)
oscillates. The proof is complete. �

6.2.2 Oscillation of the Dirichlet Problem

In this subsection, we will establish some sufficient conditions for the oscillation of
all solutions of (6.16), (6.18). For the following Dirichlet problem in the domain �

�u C ˛u D 0; in .x; t/ 2 � � Œt1;1/; (6.27)

u D 0; on .x; t/ 2 @� � Œt1;1/; (6.28)

in which ˛ is a constant, it is well known that the smallest eigenvalue ˛1 of
problem (6.27) and (6.28) is positive and the corresponding eigenfunction ˆ.x/
is also positive on x 2 �: With each solution u.x; t/ of problem (6.16), (6.18) we
associate a function V.t/ defined by

V.t/ D
Z
�

u.x; t/ˆ.x/dx; t � t1:
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Theorem 6.2.2. Assume that .H1/ � .H4/ hold, and every solution of

z
0

.t/C
pX
iD1

2
4Pi.t/ �

X
k2Jj

Qk.t C �k � �i /
3
5 z.t � �i / D 0; (6.29)

oscillates, where

Pi.t/.t/ D Pi.t/ exp.˛1

tZ
t��i

a.s/ds/; Qk.t/ D Qj .t/ exp.˛1

tZ
t��i

a.s/ds/:

Then every solution of (6.16), (6.18) is oscillatory in G.

Proof. Assume that (6.16), (6.18) has a nonoscillatory solution. Since the negative
solution of (6.16), (6.18) is also a solution, then without loss of generality we assume
that (6.16), (6.18) has a solution u.x; t/ > 0, u.x; t � �i / > 0, and u.x; t � �j / > 0
in � � Œt1;1/ for some t1 � t0: Multiplying (6.16) by ˆ.x/ and integrate with
respect to x over the domain �; we have

d

dt

2
4Z
�

u.x; t/ˆ.x/dx

3
5 D a.t/

Z
�

�u.x; t/ˆ.x/dx

�
Z
�

nX
iD1

pi .x; t/u.x; t � �i /ˆ.x/dx

C
Z
�

mX
jD1

qj .x; t/u.x; t � �j /ˆ.x/dx/: (6.30)

Using Green’s formula and boundary condition (6.18), we obtain

Z
�

�u.x; t/ˆ.x/dx D
Z
@�

�
ˆ.x/

@u

@N
� u

@ˆ.x/

@N

�
dS C

Z
�

u.x; t/�ˆ.x/dx

D �˛1
Z
�

u.x; t/ˆ.x/dx; t � t1;

where dS is the surface element on @�: From the definitions of V.t/, Pi.t/, and
Qj .t/; we get

V
0

.t/C˛1a.t/V .t/C
nX
iD1

P.t/V .t��i /�
mX
jD1

Qj .t/V .t��j / � 0; t � t1: (6.31)
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Set

V.t/ D v.t/ exp.�˛1
tZ

t0

a.s/ds/;

which reduces inequality (6.31) to

v
0

.t/C
nX
iD1

P i .t/v.t � �/ �
mX
jD1

Qj .t/v.t � �j / � 0; t � t1: (6.32)

Set

z.t/ D v.t/ �
pX
iD1

X
k2Jj

Z t��k

t��i
Qk.s C �k/v.s/ds; t > t2 D t0 C �i � �k: (6.33)

Then as in Theorem 6.2.1, we have

z
0

.t/C
pX
iD1
ŒP i .t/ �

X
k2Ji

Qk.t C �k � �i /�z.t � �i / � 0; t � t2: (6.34)

The reminder of the proof is similar to that of Theorem 6.2.1 and will be omitted. �

6.2.3 Oscillation of the Rodin Problem

In this subsection, we establish some sufficient conditions for the oscillation of all
solutions of (6.16) and (6.19)

Theorem 6.2.3. Assume that .H1/ � .H4/ hold, and every solution of

z
0

.t/C
pX
iD1
ŒPi .t/ �

X
k2Ji

Qk.t C �k � �i /�z.t � �i / D 0; (6.35)

oscillates. Then every solution of (6.16), (6.19) is oscillatory in G.

Proof. Assume that (6.16), (6.19) has a nonoscillatory solution. Since the negative
solution of (6.16), (6.19) is also a solution, then without loss of generality we assume
that (6.16), (6.19) has a solution u.x; t/ > 0, u.x; t � �i / > 0, and u.x; t � �j / > 0
in � � Œt1;1/ for some t1 � t0: Set

U.t/ D
Z
�

u.x; t/dx; t � t1;
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then U.t/ > 0 for t � t1: Integrating (6.16) with respect to x over the domain �;
we have

d

dt
Œ

Z
�

u.x; t/dx� D a.t/

Z
�

�u.x; t/dx �
Z
�

nX
iD1

pi .x; t/u.x; t � �i /dx

C
Z
�

mX
jD1

qj .x; t/u.x; t � �j /dx: (6.36)

From Green’s formula and the boundary condition (6.19), it follows that
Z
�

�u.x; t/dx D �
Z
@�

vudS � 0; t � t1;

where dS is the surface element on @�: Then (6.36) reduces to

d

dt

2
4Z
�

u.x; t/dx

3
5C

Z
�

nX
iD1

pi .x; t/u.x; t � �i /dx

�
Z
�

mX
jD1

qj .x; t/u.x; t � �j /dx (6.37)

D �
Z
@�

�udS � 0;

and by using the definition of U.t/, Pi.t/, and Qj .t/ as above and substituting
in (6.37), we have

U
0

.t/C
nX
iD1

PiU.t � �i / �
mX
jD1

QjU.t � �j / � 0; t � t1: (6.38)

The reminder of the proof is similar to that of Theorem 6.2.1 and will be omitted. �

6.3 Oscillation of an Autonomous Logistic Model

In this section, we are concerned with the oscillation of the diffusive delay logistic
model

@N.x; t/

@t
D D

@2N.x; t/

@x2
C rN.x; t/

�
1 � N.x; t � �/

K

�
; (6.39)
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for t > 0 and x 2 .0; l/; supplemented with the homogeneous Neumann-type
boundary conditions

@N.0; t/

@x
D 0 D @N.l; t/

@x
; t � ��; (6.40)

and the initial condition

N.x; s/ D '.x; s/; '.x; 0/ > 0; x 2 Œ0; l�; s 2 Œ��; 0�; (6.41)

where ' is a assumed to be suitably smooth. Our aim is to establish some sufficient
conditions for the oscillation of all positive solutions about K: The results in this
section are adapted from [29].

A function N.x; t/ defined on Œ0; l� � Œ��; T / is said to be a classical solution
of the initial boundary value problem (6.39), (6.40), and (6.41) if N is continuously
differentiable in t on .0; T /, twice continuously differentiable on x on .0; l/ and
N satisfies Eqs. (6.39), (6.40), and (6.41) in a pointwise sense. If T D 1; then the
solutionN is called a globally defined classical solution of (6.39), (6.40) and (6.41).
In fact one can show that solutions of (6.39), (6.40), and (6.41) remain nonnegative
for all t � 0; x 2 Œ0; l�. Suppose this is not the case. There exist t0 � 0 and
x0 2 Œ0; l� such that N.x0; t0/ < 0: Let

.x; t/ 2 � D f.x; t/I .x; t/ 2 Œ0; l� � Œ0; t0�g;

and define m by

m.x; t/ WD N.x; t/e�
t ; (6.42)

where 
 > 0 will be suitably selected below. It follows from (6.39) and (6.42) that

@m.x; t/

@t
D D

@2m.x; t/

@x2
Cm.x; t/

�
r � 
 � r N.x; t � �/

K

�
: (6.43)

Let

L D @

@t
�D @2

@x2
; h.x; t/ D r � 
 � r N.x; t � �/

K
:

Then (6.43) can be written as follows:

L Œm� D h.x; t/m.x; t/:

If 
 is chosen large enough, then the coefficients ofm in (6.43) can be made negative
for t 2 Œ0; t0� and x 2 Œ0; l�: By the continuity of m.x; t/ on �; m.x; t/ must
have a negative minimum in �; say at .x�; t�/: Hence by the parabolic maximum
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principle, we know that .x�; t�/ … �; since otherwise, m.x; t/ is a constant for
.x; t/ 2 Œ0; l� � Œ0; t�� which is impossible from (6.42) and (6.43). From the initial
condition (6.41), we have

.x�; t�/ … f.x; t/I 0 < x < l; t D 0g;
and hence .x�; t�/ must belong to G where

G D f.x; t/ W 0 � t � t0; x D 0; x D lg:
Let us suppose that x� D 0 andm.0; t�/ is a negative minimum ofm on �:We have
from the homogeneous Neumann boundary condition forN that @m.0; t�/=@x D 0:

The slope of the curve m.x; t�/ is either concave upward or horizontal when x 2
Œ0; ı� for ı > 0 with t� fixed, and as a consequence, for any " > 0; we can find a
ı" > 0 such that

@2m.x; t�/
@x2

� 0;
@m.x; t�/

@t
< "; m.x; t�/ < 0; for x 2 .0; ı"/: (6.44)

We note that x� D 0 and h is negative on � , and hence for a suitable choice of

 > 0; h has a negative maximum on �: We choose a positive number "0 such that

4"0 D m.x�; t�/ max
.x;t/2� h.x; t/:

Then from the continuity of m.x; t/, there exists a ı0 such that

m.x; t�/h.x; t�/ � m.x; t�/ max
.x;t/2� h.x; t/ � 2"0; for x 2 .0; ı0/:

Let ı1 D minfı0; ı"0g: From (6.43) and (6.44), we have

"0 >
@m.x; t�/

@t
D D

@2m.x; t�/
@x2

Cm.x; t�/
�
r � 
 � r N.x; t

� � �/
K

�

� m.x; t�/h.x; t�/ � 2"0; for x 2 .0; ı1/:

This is impossible and so m cannot have a negative minimum at x D 0. A similar
analysis can be used to show that m cannot have a negative minimum at x D l . We
conclude that m � 0 for x 2 Œ0; l� and t � ��: It now follows from (6.42) that it is
impossible for N.x; t/ to become negative for x 2 Œ0; l� and t � 0: We also remark
that if N.x; 0/ > 0 for x 2 Œ0; l�, then in fact N.x; t/ > 0; for t > 0 and x 2 Œ0; l�.

For convenience we let u.x; t/ D N.x; t/=K � 1 and note u is governed by

@u.x;t/
@t

D D
@2u.x;t/
@x2

� r.1C u.x; t//u.x; t � �/; t > 0; x 2 .0; l/;
@u.x;t/
@x

ˇ̌
ˇ
xD0 D @u.x;t/

@x

ˇ̌
ˇ
xDl ; t � ��:

)
(6.45)
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In order to study the oscillation of (6.39) and (6.40) aboutK it suffices to investigate
similar characteristics of the trivial solution of (6.45). We note that the positivity of
N of (6.39) implies that any solution of (6.45) satisfies

1C u.x; t/ > 0; for x 2 .0; l/; t > 0: (6.46)

To prove the main results, we need the following two lemmas.

Lemma 6.3.1. Let f W Œt0;1/ ! Œ0;1/ be continuously differentiable on .t0;1/

such that

f 2 L1Œt0;1/ and
df

dt
2 L1Œt0;1/:

Then

lim
t!1 f .t/ D 0:

Proof. Since df

dt
2 L1Œt0;1/; for every " > 0 there exists a positive number T such

that for t1; t2 and t2 > t1 > T

ˇ̌̌
ˇ
Z 1

t1

df

dt
dt

ˇ̌̌
ˇ < "=2;

ˇ̌̌
ˇ
Z 1

t2

df

dt
dt

ˇ̌̌
ˇ < "=2:

We have

jf .t2/ � f .t1/j D
ˇ̌̌
ˇ
Z t2

t1

df

dt
dt

ˇ̌̌
ˇ D

ˇ̌̌
ˇ
Z 1

t1

df

dt
dt �

Z 1

t2

df

dt
dt

ˇ̌̌
ˇ

�
ˇ̌̌
ˇ
Z 1

t1

df

dt
dt

ˇ̌̌
ˇC

ˇ̌̌
ˇ
Z 1

t2

df

dt
dt

ˇ̌̌
ˇ < ":

It follows that limt!1 f .t/ exists, and this together with the facts

f .t/ � 0 and f 2 L1Œt0;1/

implies that limt!1 f .t/ D 0: The proof is complete. �

Lemma 6.3.2. If Q is differentiable function defined on Œ0;1/ such that both the
limits

lim
t!1Q.t/ and lim

t!1
dQ.t/

dt

exist, then

lim
t!1

dQ.t/

dt
D 0:



306 6 Logistic Models with Diffusions

Proof. Suppose that the result is not true and that limt!1 dQ.t/

dt
D c ¤ 0: If c > 0,

then there exists a T > 0 such that dQ.t/=dt > .c=2/ for t > T: This implies that

Q.t/ �Q.T / > c=2.t � T /:

This yields that Q.t/ ! 1 as t ! 1 which is a contradiction. By a similar
argument one can deduce that limt!1Q.t/ D �1; which again is a contradiction.
The proof is complete. �

In the following, we prove that every nonoscillatory solution of (6.39) and (6.40)
converges to K and we establish some sufficient conditions for the oscillation of all
positive solutions about K.

Theorem 6.3.1. Let D, r , �; l be positive numbers. If the boundary value prob-
lem (6.39) and (6.40) has a solution (say N) which is nonoscillatory (eventually
positive or negative) about K, then

N.x; t/ ! K; as t ! 1; uniformly in x 2 .0; l/: (6.47)

Proof. To prove that (6.47) holds it is sufficient to prove that every nonoscillatory
solution of (6.45) satisfies

u.x; t/ ! 0; as t ! 1; uniformly in x 2 .0; l/:

Suppose u is an eventually positive solution of (6.45) (if u is eventually negative the
proof is similar). There exists a T � > 0 such that

u.x; t/ > 0; for t > T � and x 2 .0; l/:

Define v as follows:

v.t/ D
Z l

0

u.x; t/dx; t > T � C �: (6.48)

Then from (6.45), we have

dv.t/

dt
D D

Z l

0

@2u.x; t/

@x2
dx � r

Z l

0

.1C u.x; t//u.x; t � �/dx: (6.49)

Using the boundary condition in (6.45), we get

dv.t/

dt
D �r

Z l

0

.1C u.x; t//u.x; t � �/dx < 0; for t > T � C �: (6.50)
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Since v.t/ > 0 for t > T � C�; it follows from (6.50) that v.t/ ! v� � 0 as t ! 1:

We note from (6.49) that

v.t/ � v.T � C �/C r

Z t

T �C�

 Z l

0

.1C u.x; s//u.x; s � �/dx
!
ds D 0: (6.51)

Since limt!1 v.t/ exists, we can conclude from (6.51) that

lim
t!1 r

Z t

T �C�

 Z l

0

.1C u.x; s//u.x; s � �/dx
!
ds exists,

and therefore

lim
t!1 r

Z t

0

 Z l

0

.1C u.x; s//u.x; s � �/dx
!
ds exists. (6.52)

For convenience, we define m as

m WD 1

l

"Z l

0

u.x; 0/dx C
Z t

0

Z l

0

f .x; s/ds

#
; (6.53)

where

f .x; t/ D �r.1C u.x; t//u.x; t � �/; x 2 .0; l/; t > 0. (6.54)

It can be found from (6.52) to (6.54) that there exists a number m� such that

lim
t!1m.t/ D m�: (6.55)

LetG.x; t; �; s/ denote the Green’s function associated with the Neumann boundary
condition for (6.45). Then any solution of (6.45) satisfies

u.x; t/ D
( R l

0
G.x; t; �; 0/
.�; 0/d� C R t

0

R l
0
G.x; t; �; s/f .�; s/d�ds; t > 0;


.�; s/; s 2 Œ��; 0�; x 2 Œ0; l�.

Using (6.53), we then have for x 2 Œ0; l� and t > 0 that

u.x; t/ �m.t/ D
Z l

0

G

�
.x; t; �; 0/ � 1

l

�
u.�; 0/d�

C
Z t

0

Z l

0

�
G.x; t; �; s/ � 1

l

�
f .�; s/d�ds: (6.56)
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It is known that the Green function G.x; t; �; s/ satisfies

( ˇ̌
G.x; t; �; 0/ � 1

l

ˇ̌ � c1e
�c2.t�s/; t � s � 1;ˇ̌

G.x; t; �; 0/ � 1
l

ˇ̌ � c


1
t�s
�1=2

; t � s > 0; x 2 .0; l/; � 2 .0; l/; (6.57)

where c1; c2, and c are positive constants. It is easy from (6.57) to see that

Z l

0

G

�
.x; t; �; 0/ � 1

l

�
u.�; 0/d� ! 0; as t ! 1; (6.58)

and the convergence in (6.58) is uniform in x 2 .0; l/: Before we consider the
limiting behavior as t ! 1 of the second integral on the right-hand side of (6.56),
we shall show that

Z t

0

jf .x; t/j dx ! 0; as t ! 1: (6.59)

It is seen from the eventual positivity of u that if we define v as

v.t/ D
Z l

0

u.x; t/dx; t > 0;

then for all large t > 0

dv

dt
D �r

Z l

0

.1C u.x; t//u.x; t � �/dx (6.60)

< �r
Z l

0

u.x; t � �/dx < 0: (6.61)

It follows from (6.60) and (6.61) that

( R l
0
.1C u.x; t//u.x; t � �/dx 2 L1.0;1/;R l
0

u.x; t/dx 2 L1.0;1/:
(6.62)

Since u > 0 eventually, we also have from (6.62) that

Z l

0

u.x; t/u.x; t � �/dx 2 L1.0;1/: (6.63)

We now let

P.t/ D
Z l

0

u2.x; t/dx; t > 0, (6.64)
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and note that

dP.t/

dt
D 2

Z l

0

u.x; t/
@u.x; t/

@t
dx

D 2

Z l

0

u.x; t/

�
D
@2u.x; t/

@x2
C f .x; t/

�
dx

D �2D
Z l

0

�
@u.x; t/

@x

�2
dx C 2

Z l

0

u.x; t/f .x; t/dx < 0: (6.65)

We have from (6.65) that

8<
:

R l
0

�
@u.x;t/
@x

�2
dx 2 L1.0;1/,R l

0
u.x; t/Œ1C u.x; t/�u.x; t � �/dx 2 L1.0;1/:

(6.66)

If F is defined by

F.t/ D r

Z l

0

Œ1C u.x; t/�u.x; t � �/dx; t>�; (6.67)

then from (6.62), we conclude that F 2 L1.0;1/: We now establish that

ˇ̌̌
ˇdF.t/dt

ˇ̌̌
ˇ 2 L1.0;1/: (6.68)

By direct calculation, we have from (6.67), (6.45), and (6.54) that

dF.t/

dt
D r

Z l

0

u.x; t � �/
�
D
@2u.x; t/

@x2
C f .x; t/

	
dx (6.69)

Cr
Z l

0

Œ1C u.x; t/�

�
D
@2u.x; t � �/

@x2
C f .x; t � �/

	
dx: (6.70)

After simplifying, we have

dF.t/

dt
D �rD

Z l

0

@u.x; t/

@x

@u.x; t � �/
@x

dx C r

Z l

0

u.x; t � �/f .x; t/dx

�rD
Z l

0

@u.x; t/

@x

@u.x; t � �/
@x

dx

Cr
Z l

0

Œ1C u.x; t/�f .x; t � �/dx; (6.71)
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and this leads to

dF.t/

dt
D �2rD

Z l

0

@u.x; t/

@x

@u.x; t � �/
@x

dx C r

Z l

0

u.x; t � �/f .x; t/dx

Cr
Z l

0

Œ1C u.x; t/�f .x; t/dx: (6.72)

We can now obtain that

F.t/C
Z t

T

"
r

Z l

0

u.x; s��/ jf .x; s/j dxCr
Z l

0

Œ1Cu.x; s/� jf .x; s/j dx
#
ds

� F.T / � 2rD
Z t

T

Z l

0

@u.x; s/

@x

@u.x; s � �/
@x

dxds

� F.T /CDr

Z t

T

"Z l

0

�
@u.x; s/

@x

�2
C
�
@u.x; s � �/

@x

�2
dx

#
ds < 1: (6.73)

It follows from (6.73) that
( R l

0
.1C u.x; t// jf .x; t/j dx 2 L1.0;1/;R l
0

u.x; t � �/ jf .x; t/j dx 2 L1.0;1/.
(6.74)

As a consequence of (6.72), (6.74) we see that (6.68) holds. Thus both F and dF
dt

belong to L1.0;1/: By Lemma 6.3.1 it follows that

F.t/ D r

Z l

0

Œ1Cu.x; t/�u.x; t��/dx D
Z l

0

jf .x; t/j dx ! 0; as t ! 1: (6.75)

To investigate the asymptotic behavior of the second integral on the right-hand side
of (6.56), we let w.t/ be defined by

w.t/ D
Z t

0

Z l

0

�
G.x; t; �; s/ � 1

l

�
f .�; s/d�ds (6.76)

and proceed to estimate w.t/ as follows:

jw.t/j �
Z T

0

Z l

0

ˇ̌̌
ˇG.x; t; �; s/ � 1

l

ˇ̌̌
ˇ jf .�; s/j d�ds

C
Z t�1

T

Z l

0

ˇ̌
ˇ̌G.x; t; �; s/ � 1

l

ˇ̌
ˇ̌ jf .�; s/j d�ds

C
Z t

t�1

Z l

0

ˇ̌̌
ˇG.x; t; �; s/ � 1

l

ˇ̌̌
ˇ jf .�; s/j d�ds: (6.77)
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Using the properties of G in (6.57), we have

Z t

t�1

Z l

0

ˇ̌̌
ˇG.x; t; �; s/ � 1

l

ˇ̌̌
ˇ jf .�; s/j d�ds

�
Z t

t�1

Z l

0

c

�
1

t � s
�1=2

jf .�; s/j d�ds

� c

Z 1

0

�
1

˛

�1=2  Z l

0

jf .�; t � ˛/j d�
!
d˛ ! 0; (6.78)

as t ! 1 by using (6.75). For an arbitrary " > 0;

Z t�1

T

Z l

0

ˇ̌̌
ˇG.x; t; �; s/ � 1

l

ˇ̌̌
ˇ jf .�; s/j d�ds

� c1

Z t�1

T

Z l

0

e�c2.t�s/ jf .�; s/j d�ds

� c1

Z t

T

Z l

0

jf .�; s/j d�ds < "; if T is sufficiently large: (6.79)

By using (6.75) and L’ Hospital’s rule, we have as t ! 1 that

Z T

0

Z l

0

ˇ̌̌
ˇG.x; t; �; s/ � 1

l

ˇ̌̌
ˇ jf .�; s/j d�ds

� c1

Z T

0

Z l

0

e�c2.t�s/ jf .�; s/j d�ds

� c1
R t
0
ec2s

R l
0

jf .�; s/j d�ds
ec2t

! 0: (6.80)

Thus each of the three integrals on the right side of (6.77) can be made arbitrarily
small for large enough t by a suitable choice of T and this leads to

lim
t!1 w.t/ D

Z t

0

Z l

0

�
G.x; t; �; s/ � 1

l

�
f .�; s/d�ds D 0: (6.81)

It follows from (6.56), (6.58) and (6.81) that

u.x; t/ ! m.t/; as t ! 1 uniformly in x 2 .0; l/:

We know that

m.t/ ! m�; as t ! 1; (6.82)
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and therefore

u.x; t/ ! m�; as t ! 1 uniformly in x 2 .0; l/: (6.83)

From (6.53) and (6.83), we have

dm.t/

dt
D �r

l

Z l

0

.1C u.x; t//u.x; t � �/dx

! �r
l
l.1Cm�/m�; as t ! 1: (6.84)

Thus

m.t/ ! m� and
dm.t/

dt
! �r

l
l.1Cm�/m�; as t ! 1; (6.85)

and Lemma 6.3.2 implies that

dm.t/

dt
! 0; as t ! 1; (6.86)

which leads to

.1Cm�/m� D 0: (6.87)

Since m� � 0; it follows from (6.87) that m� D 0 and thus we have

u.x; t/ ! m.t/ ! m� D 0 as t ! 1 uniformly in x 2 .0; l/:

This implies that N.x; t/ ! K as t ! 1: The proof is complete. �

The following result is well known [30].

Lemma 6.3.3. Let p and � be positive constants, and let z.t/ be an eventually
positive solution of z

0

.t/Cpz.t��/ � 0. Then for t sufficiently large z.t��/ < ˇz.t/
where ˇ D 4=.p�/2.

Theorem 6.3.2. Let D, r , �; l be positive constants and suppose that all positive
solutions of

dy.t/

dt
D ry.t/

�
1 � y.t � �/

K

�
(6.88)

are oscillatory about the positive equilibrium K . Then all positive solutions of (6.39)
and (6.40) are oscillatory about the positive equilibrium of (6.39).
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Proof. It is known that a necessary and sufficient condition for the oscillation of all
positive solutions of (6.88) about the positive equilibrium is that the equation


 D �re�
�

has no real roots. This is equivalent to

re
� > 
 for all 
 2 .0;1/: (6.89)

It follows from (6.89) that there exists a � > 0 such that

re
� > 
C �; for all 
 > 0: (6.90)

It is enough to show that when (6.89) holds all solutions of (6.45) and (6.46) are
oscillatory. Suppose that u is an eventually positive solution of (6.45) and (6.46)
(if u is an eventually negative solution of (6.45) and (6.46) the proof is similar).
Since u is not oscillatory we have by Theorem 6.3.1 that

rŒ1C u.t/� ! r; as t ! 1:

Thus, for 0 < " < r; there exists a T such that

r C " > rŒ1C u.t/� > r � " D p0; for t > T . (6.91)

We have from (6.45) to (6.46) that

Z l

0

u.x; s/dx D �r
Z l

0

.1C u.x; s//u.x; s � �/dx: (6.92)

Let

v.t/ WD
Z l

0

u.x; s/dx: (6.93)

Define ƒv of real numbers as follows:

ƒv D f
 � 0 W v
0

.t/C 
v.t/ � 0; eventually for large t � 0g: (6.94)

We note from (6.93) that 
 D 0 2 ƒv and that ƒv is a subinterval of Œ0,1/: The
proof of the theorem will be completed by showing that the setƒv has the following
contradictory properties P1 and P2:

P1 W ƒv is bounded;
P2 W 
 2 ƒv ) 
C � 2 ƒv:
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Let us first verify P1. We have from (6.91) and (6.92) that for t > T C �

dv

dt
C p0v.t � �/ � 0; (6.95)

which from Lemma 6.3.3 implies that

v.t � �/ � 4

.p0�/
2

v.t/: (6.96)

We have from (6.92)

0 D
Z l

0

u.x; s/dx C r

Z l

0

.1C u.x; s//u.x; s � �/dx; (6.97)

so

0 � v
0

.t/C .r C "/v.t � �/ � v
0

.t/C .r C "/
4

.p0�/
2

v.t/: (6.98)

From (6.98) the set ƒv is bounded above which verifies P1:
In order to verify .P2/, let 
 2 ƒv and set

'.t/ D e
tv.t/; (6.99)

and note that

'0.t/ D e
t Œv
0

.t/C 
v.t/� � 0; eventually for large t: (6.100)

This shows that '.t/ is positive and eventually nonincreasing and that

v
0

.t/C .
C �/v.t/

D �r
Z l

0

.1C u.x; s//u.x; s � �/dx C .
C �/v.t/

� �r
Z l

0

u.x; s � �/dx C .
C �/v.t/

� �re�
.t��/
.t � �/C .
C �/e�
�
.t/

� e�
t
.t/
��re
� C 
C �/


 � 0;

and hence it follows that 
C � 2 ƒv showing that P2 holds.
Note P1 and P2 are mutually contradictory. Thus (6.45) cannot have eventually

positive solutions. The proof is complete. �
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Corollary 6.3.1. If all solutions of the linear delay differential equation

dy.t/

dt
D �ry.t � �/

are oscillatory, then all solutions of the (6.39) and (6.40) are oscillatory about K.

6.4 Oscillation of a Nonautonomous Logistic Model

In this section we discuss the oscillation of the diffusive logistic model with several
delays

@N.x; t/

@t
D d.t/�N.x; t/C c.t/N.x; t/

"
a.t/ �

nX
iD1

bi .t/N.x; t � �i .t//
#
;

(6.101)

where .x; t/ 2 � � .0;1/; � is a bounded domain in Rn with smooth boundary
@�; � is the Laplacian

� D @2

@x21
C @2

@x22
C : : :C @2

@x2n
;

and �i .t/; 1 � i � n; are positive continuous functions defined on Œ0,1/; a.t/,
c.t/, d.t/, b1.t/; b2.t/; : : : ; bn.t/ are positive, bounded, and continuous functions
on Œ0,1/ and 0 < d0 � d.t/; 0 < b0 � c.t/bi .t/ for some i 2 f1; 2; : : : ; ng:

We consider boundary conditions of the form

(
@N.x;t/

@�
D 0; .x; t/ 2 @� � .0;1/;

N.x; t/ D 
.x; t/; .x; t/ 2 @� � Œ��; 0�; (6.102)

where � is a the outward unit normal vector, 
.x; t/ is a nonnegative and nontrivial
continuous function, and � D maxifmaxtf�i .t/gg: We will assume that there is a
positive constant N � such that

nX
iD1

bi .t/N
� D a.t/; t � 0; (6.103)

so that N.x; t/ D N � is a stationary solution of (6.101). We establish some
sufficient conditions for the oscillation of all positive solutions of the boundary value
problem (6.101) and (6.102) about N �: The results in this section are adapted from
[79].

Existence and uniqueness theorems for solution of (6.101) and (6.102) follow
from the existence of a unique “heat kernel” g.x; t; �; �/ associated with the
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differential operator LŒN � D Nt D d.t/Nxx and the boundary condition (6.102).
By means of this kernel (6.101) and (6.102) can be transformed into an integral
equation which is well posed and can be solved by the method of steps.

By a solution of (6.101) and (6.102) we mean a function N.x; t/ which is
continuously differentiable on the closure of � � Œ��;1/ and twice continuously
differentiable on�� Œ��;1/: Let N.x; t/ be a real continuous function defined on�
� � Œt0;1/:

Lemma 6.4.1. Suppose that (6.101) and (6.102) has a positive solution N.x; t/
such that N.x; t/�N � is eventually positive. Then the first-order delay differential
inequality

y
0

.t/ � �
nX
iD1

N �c.t/bi .t/y.t � �i .t// (6.104)

has an eventually positive solution.

Proof. Suppose there is a positive number t1 such that N.x; t/ � N � > 0 on � �
Œt1;1/: For convenience, let

w.x; t/ D N.x; t/ �N �:

Then from (6.101) and (6.103), we have

@w.x; t/

@t
D d.t/�w.x; t/ � c.t/Œw.x; t/CN ��

nX
iD1

bi .t/w.x; t � �i .t//: (6.105)

Integrate both sides of (6.105) with respect to x to obtain

d

dt

Z
�

w.x; t/dx

D d.t/

Z
�

�w.x; t/dx

�c.t/
Z
�

Œw.x; t/CN ��
nX
iD1

bi .t/w.x; t � �i .t//dx: (6.106)

By the Green formula and the boundary condition in (6.102), we obtain

Z
�

�w.x; t/dx D
Z
@�

w.x; t/

@�
ds D 0: (6.107)

Pick a number t2 > t1 C �: Then

w.x; t/ > 0 and w.x; t � �i .t// > 0; for .x; t/ 2 � � Œt2;1/:



6.4 Oscillation of a Nonautonomous Logistic Model 317

In view of (6.106) and (6.107) we have

d

dt

Z
�

w.x; t/dx � �
nX
iD1

c.t/N �bi .t/
Z
�

w.x; t � �i .t//dx; t � t2:

Set

y.t/ D
Z
�

w.x; t/dx; t � t2:

Then y.t/ is an eventually positive solution of (6.104). The proof is complete. �

Lemma 6.4.2. Suppose that (6.101) and (6.102) has a positive solution N.x; t/
such that N.x; t/ � N � is eventually negative. Then for any ˇ 2 .0; 1/; the first-
order delay differential inequality

y
0

.t/ � �
nX
iD1

ˇN �c.t/bi .t/y.t � �i .t// (6.108)

has an eventually positive solution.

Proof. Suppose there is a positive number t1 such that N.x; t/ � N � < 0 on � �
Œt1;1/: For convenience, let

p.x; t/ D ln

�
N.x; t/

N �

�
< 0; .x; t/ 2 � � Œt1;1/:

We assert

y.t/ D
Z
�

�p.x; t/dx

is an eventually positive solution of (6.108). To prove this, note first that
from (6.101) and (6.103) we have

@p.x; t/

@t
D d.t/e�p.x;t/�ep.x;t/ C c.t/

"
a.t/ �

nX
iD1

bi .t/N
�ep.x;t��i .t//

#

D d.t/e�p.x;t/�ep.x;t/ �N �c.t/
nX
iD1

bi .t/
�
ep.x;t��i .t// � 1
 :

Integrate the last equality with respect to x over � and we obtain

d

dt

Z
�

p.x; t/dx D d.t/

Z
�

e�p.x;t/�ep.x;t/dx

�N �c.t/
nX
iD1

bi .t/

Z
�

�
ep.x;t��i .t// � 1
 dx: (6.109)
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Since

@

@�
fe˙p.x;t/g D ˙e˙p.x;t/ @p.x; t/

@�
; .x; t/ 2 � � Œt1;1/; (6.110)

@p.x; t/

@�

ˇ̌̌
ˇ
@�

D 1

N.x; t/

@N.x; t/

@�

ˇ̌̌
ˇ
@�

D 0 (6.111)

and

ep.x;t/�e�p.x;t/ D j5p.x; t/j2 ��p.x; t/; .x; t/ 2 � � Œt1;1/;

we obtain Z
�

e�p.x;t/�ep.x;t/dx D
Z
�

ep.x;t/�e�p.x;t/dx

D
Z
�

j5p.x; t/j2 dx �
Z
�

�p.x; t/dx

D
Z
�

j5p.x; t/j2 dx �
Z
@�

@p.x; t/

@�

D
Z
�

j5p.x; t/j2 dx: (6.112)

From (6.109) we also obtain

d

dt

Z
�

�p.x; t/dx D �d.t/
Z
�

j5p.x; t/j2 dx

CN �c.t/
nX
iD1

bi .t/

Z
�

�
ep.x;t��i .t// � 1
 dx

� N �c.t/
nX
iD1

bi .t/

Z
�

�
ep.x;t��i .t// � 1
 dx: (6.113)

To complete the proof, it is suffices to show that for any ˇ 2 .0; 1/; there is some T0
such that

�
ep.x;t��i .t// � 1
 � ˇp.x; t � �i .t//; t � T0:

In order to do this, pick t2 > t1 C � so that

p.x; t/ < 0; and p.x; t � �i .t// < 0 for .x; t/ 2 � � Œt2;1/:

For .x; t/ 2 � � Œt2;1/ consider the positive functional V defined by

V Œp�.t/ WD N �
Z
�

Z p.x;t/

0

.ey � 1/dydx:
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By (6.110)–(6.112), the derivative of V with respect to (6.101) satisfies

dV

dt
D N �

Z
�

.ep.x;t/ � 1/@p.x; t/
@t

dx

D N �d.t/
Z
�

�ep.x;t/dx �N �d.t/
Z
�

e�p.x;t/�ep.x;t/dx

� 
N ��2 c.t/
nX
iD1

bi .t/.e
p.x;t/ � 1/ �ep.x;t��i .t// � 1
 dx

� �N �d.t/
Z
�

j5p.x; t/j2 dx

� 
N ��2 c.t/
nX
iD1

bi .t/

Z
�

.ep.x;t/ � 1/ �ep.x;t��i .t// � 1
 dx:
We note from (6.101)

d

dt

Z
�

N.x; t/dx

D d.t/

Z
�

�N.x; t/dx

C
Z
�

c.t/N.x; t/

nX
iD1

bi .t/
�
N � �N.x; t � �i .t//



dx

D
Z
�

c.t/N.x; t/

nX
iD1

bi .t/
�
N � �N.x; t � �i .t//



dx � 0;

and so Z
�

.N.x; t/ �N.x; t � �i .t///dx � 0;

which implies that
Z
�

.ep.x;t/ � 1/ �ep.x;t��i .t// � 1
 dx
D
Z
�

.ep.x;t/ � 1/2dx C
Z
�

.ep.x;t/ � 1/ �ep.x;t��i .t// � ep.x;t/
 dx
D
Z
�

.ep.x;t/ � 1/2dx

C 1

.N �/2

Z
�

.N.x; t/ �N �/.N.x; t � �i .t// �N.x; t//dx

�
Z
�

.ep.x;t/ � 1/2dx;
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by the first mean-value theorem of integrals. As a consequence, we see that

dV

dt

� �N �d.t/
Z
�

j5p.x; t/j2 dx � 

N ��2 c.t/

nX
iD1

bi .t/

Z
�

.ep.x;t/ � 1/2dx

� �N �d.t/
Z
�

j5p.x; t/j2 dx

� 
N ��2 c.t/
nX
iD1

bi .t/

Z
�

.N.x; t/ �N �/2dx; (6.114)

for t � t2: Integrate both sides of (6.114) and recall the assumptions that 0 < d0 �
d.t/ and 0 < b0 � bi .t/c.t/; and we obtain

V.t2/ � V.t/CN �d0
Z t

t2

Z
�

j5p.x; s/j2 dxds

C 

N ��2 b0

Z t

t2

Z
�

.N.x; s/ �N �/2dxds:

Hence, by writing
�R

�
j : j2 dx

�1=2 D k:k we have

Z 1

t2

Z
�

.N.x; s/ �N �/2dxds D
Z 1

t2

kN.x; s/ �N �k2 ds < 1;

and Z 1

t2

Z
�

j5p.x; s/j2 dxds D
Z 1

t2

k5p.x; s/k2 ds < 1;

so that

kN.x; s/ �N �k 2 L1.0;1/ and
��5p.x; s/2�� 2 L1.0;1/:

But from the assumption that N.x; t/ < N � for .x; t/ 2 � � Œt1;1/; we have

1

.N �/2
k5N.x; t/k2 � k5p.x; t/k2 ;

so that k5N.x; t/k2 2 L1.0;1/: Now,

d

dt
k5N.x; t/k2

D .
@N.x; t/

@t
;��N.x; t/
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D �d.t/ k�N.x; t/k2

C
 

5
(
c.t/N.x; t/

"
a.t/ �

nX
iD1

bi .t/N.x; t � �i .t//
#)

� 5N.x; t/
!

� �d0 k�N.x; t/k2 C c.t/a.t/ k5N.x; t/k2

CN �c.t/
nX
iD1

bi k5N.x; t � �i .t//k k5N.x; t/k ; (6.115)

where

ja.t/j � a; jc.t/j � a; jbi .t/j � bi

are bounded functions. Integrate both sides of (6.115) from t2 to T; and we obtain

k5N.x; T /k2 � k5N.x; t2/k2 C d0

Z T

t2

k�N.x; t/k2 dt

� ca

Z T

t2

k5N.x; t/k2 dt CN �c
nX
iD1

bi

Z T

t2

k5N.x; t � �i .t//k k5N.x; t/k dt

� ca

Z T

t2

k5N.x; t/k2 dt

C N �c
nX
iD1

bi

�Z T

t2

k5N.x; t � �i .t//k2 dt
	 1=2 �Z T

t2

k5N.x; t/k2 dt
	 1=2

:

(6.116)

We may now infer from k5N.x; t/k2 2 L1.0;1/ and the above inequality that
k�N.x; t/k2 2 L1.0;1/ and k5N.x; t/k2 is bounded on Œt2;1/: In a similar
fashion, we obtain

Z T

t2

ˇ̌
ˇ̌ d
dt

k5N.x; t/k2
ˇ̌
ˇ̌ dt

� d0

Z T

t2

k�N.x; t/k2 dt C ca

Z T

t2

k5N.x; t/k2 dt

CN �c
nX
iD1

bi

�Z T

t2

k5N.x; t � �i .t//k2 dt
	 1=2

�
�Z T

t2

k5N.x; t/k2 dt
	 1=2

:
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Since k5N.x; t/k2 2 L1.0;1/ and k�N.x; t/k2 2 L1.0;1/; we may deduce the
fact that d

dt
k5N.x; t/k2 2 L1.0;1/: Also we see

lim
t!1

Z
�

j5N.x; t/j2 dt D lim
t!1 k5N.x; t/k2 D 0: (6.117)

Furthermore, since

1

2

d

dt
kN.x; t/ �N �k2

D
Z
�

.N.x; t/ �N �/
@N.x; t/

@t
dx

D d.t/

Z
�

.N.x; t/ �N �/�N.x; t/dx

�
Z
�

.N.x; t/ �N �/c.t/N.x; t/
nX
iD1

bi .t/.N.x; t � �i .t// �N �/dx;

we have ˇ̌̌
ˇ12
d

dt
kN.x; t/ �N �k2

ˇ̌̌
ˇ

� d

Z
�

jN.x; t/ �N �j j�N.x; t/j dx

Cc
nX
iD1

biN
�
Z
�

jN.x; t/ �N �j jN.x; t � �i .t// �N �j dx

and
Z T

t2

ˇ̌
ˇ̌1
2

d

dt
kN.x; t/ �N �k2

ˇ̌
ˇ̌ dt

� d

�Z T

t2

kN.x; t/ �N �k2 dt
	 1=2 �Z T

t2

k�N.x; t/k2 dt
	 1=2

Cc
nX
iD1

biN
�
�Z T

t2

kN.x; t/ �N �k2 dt
	 1=2

�
�Z T

t2

kN.x; t � �i .t// �N �k2 dt
	 1=2

:

Consequently we have d
dt

kN.x; t/ �N �k 2 L1.0;1/ in view of the previous facts
that k�N.x; t/k2 2 L1.0;1/ and kN.x; t/ �N �k2 2 L1.0;1/: Also we see that

lim
t!1 kN.x; t/ �N �k D 0: (6.118)
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Next, fromN.x; t/ < N � for t > t2 and the boundedness of k5N.x; t/k on .t2;1/;

we see that kN.x; t/ �N �k1 and k5N.x; t/k1 are bounded (where kwk1 D
ess sup jwj/; and then from the inequality

kwk� � kwk.��2/=�
1 kwk2=�2 for all � � 2

and (6.117) as well as (6.118), we obtain

lim
t!1 kN.x; t/ �N �k� D lim

t!1 k5N.x; t/k� D 0; � > m: (6.119)

Next, from the Sobolev inequality

kukLq.�/ � C k5ukLp.�/ ;
where C is a constant independent of u, we obtain

kN.x; t/ �N �k1 � M.�;m; �/fkN.x; t/ �N �k� C k5N.x; t/ �N �k�g;
(6.120)

whereM.�;m; �/ is a positive constant independent of N . Finally, from (6.119) to
(6.120), we see that kN.x; t/ �N �k1 ! 0 as t ! 1; so that

lim
t!1N.x; t/ D N �; uniformly in x 2 �

�;

which implies

lim
t!1p.x; t/ D 0; uniformly in x 2 �

�: (6.121)

Now, for any t > t2 and t3 > t2

ep.x;t��i .t// � ep.x;t3/ D fp.x; t � �i .t// � p.x; t3/gep.x;�i .t//;

where ep.x;�i .t// ! 1 as t ! 1: Thus for any ˇ 2 .0; 1/, we can find a t4 such that
ˇ < ep.x;�i .t// < 1; t � t4; which implies

ep.x;t��i .t// � 1 � ˇp.x; t � �i .t//;
as required. The proof is complete. �

6.5 Stability of an Autonomous Logistic Model

In this section, we will establish some sufficient conditions for all positive solutions
of (6.39) and (6.40) to converge as t ! 1 to the positive equilibrium of (6.39). The
results in this section are adapted from [29].
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Theorem 6.5.1. Let p and q denote the solutions of the following:

(
dp.t/

dt
D rp.t/

h
1 � p.t��/

K

i
;

p.s/ D maxx2Œ0;l� N.x; s/; s 2 Œ��; 0�;
(6.122)

(
dq.t/

dt
D rq.t/

h
1 � q.t��/

K

i
;

q.s/ D minx2Œ0;l� N.x; s/; s 2 Œ��; 0�:
(6.123)

Then every solution N of (6.39) and (6.40) satisfies

q.t/ � N.x; t/ � p.t/; t > 0, x 2 Œ0; l�: (6.124)

Proof. We shall prove that

N.x; t/ � p.t/; t > 0, x 2 Œ0; l�: (6.125)

Let p".t/ denote the solution of

(
dp".t/

dt
D rp".t/

h
1 � p".t��/

K

i
;

p".s/ D maxx2Œ0;l� N.x; s/C "; s 2 Œ��; 0�;
(6.126)

where " is an arbitrary positive number. It is sufficient to prove that

N.x; t/ � p".t/; t > 0. (6.127)

The result will then follow from (6.127) by the continuous dependence of solutions
of (6.126) on the initial conditions and

N.x; t/ � lim
"!0

p".t/ D p.t/: (6.128)

Suppose (6.127) does not hold. Then there exists x0 2 .0; l/; t0 > 0 such that

p".t0/ �N.x0; t0/ < 0: (6.129)

Define a function M as follows

M.x; t/ D Œp".t/ �N.x; t/� e�
t ; .x; t/ 2 Œ0; l� � Œ0; t0�; (6.130)

where 
 is a positive number to be suitably selected. It follows from (6.129) that

M.x0; t0/ < 0: (6.131)

As a consequence,M.x; t/ will have a negative minimum on Œ0; l�� Œ0; t0�: Suppose
that such a minimum of M.x; t/ occurs at .x�; t�/ where x� 2 .0; l/; t� 2 .0; t0�:

Then, we have
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@M.x; t/

@t

ˇ̌̌
ˇ
.x�;t�/

< 0;
@2M.x; t/

@x2

ˇ̌̌
ˇ
.x�;t�/

� 0:

From (6.39), (6.126), and (6.130) we have that

@M.x; t/

@t
�D@

2M.x; t/

@x2

D M.x; t/
h
r � 
 � r

K
p".t � �/

i

� r

K
M.x; t/N.x; t/

�
p".t � � �N.x; t � �/

p".t/ �N.x; t/
�
: (6.132)

We can choose 
 large and positive such that

ˇ̌
ˇr � 
 � r

K
p".t

� � �/
ˇ̌
ˇ >

ˇ̌
ˇ̌ r
K
N.x�; t�/

p".t
� � �/ �N.x�; t� � �/
p".t�/ �N.x�; t�/

ˇ̌
ˇ̌ ; (6.133)

which is possible since the left side of (6.133) can be made arbitrarily large by a
suitable choice of 
 > 0: By choosing 
 appropriately one can thus make the right
side of (6.132) positive at .x�; t�/ while the left side of (6.132) remains nonpositive
at .x�; t�/ and this is a contradiction. Hence it follows that an interior negative
minimum of M.x; t/ cannot exist for x 2 .0; l/: Since

M.x; 0/ > 0 and
@M.x; 0/

@x
D 0 at x D 0; l;

and we can prove (as before) that M cannot have a negative minimum at the
endpoints of the interval .0; l/: Hence it follows that M cannot have a negative
minimum on the closed set Œ0; l�� Œ0; t0� for t0 � 0 from which (6.127) follows. The
conclusion (6.125) is now a consequence of (6.128). The proof of the other half is
similar and the details are omitted. �

Theorem 6.5.2. Suppose that D 2 Œ0;1/, � 2 Œ0;1/, r 2 .0;1/: If

r� < 1; (6.134)

then all positive solutions of the Neumann problem (6.39) and (6.40) satisfy

lim
t!1N.x; t/ D K; (6.135)

and convergence is uniform in x 2 Œ0; l�.
Proof. In view of the result of Theorem 6.5.1, it is sufficient to show that all positive
solutions of (6.88) satisfy

lim
t!1y.t/ D K:



326 6 Logistic Models with Diffusions

For convenience we let

y.t/ D KŒ1C w.t/�

to obtain

dw.t/

dt
D �rŒ1C w.t/�w.t � �/: (6.136)

It is sufficient to prove that w.t/ ! 0 as t ! 1: We consider here two cases.

Case (i). Suppose that w is a nonoscillatory solution and jw.t/j > 0 eventually
and hence jdw.t/=dt j > 0 eventually for large t . It follows from w.t/ > 0 and
dw.t/=dt < 0 that limt!1 w.t/ exists and this implies by using (6.136) that
limt!1 dw.t/=dt exists. As a consequence if

lim
t!1 w.t/ D w�;

then by Lemma 6.3.2

lim
t!1

dw.t/

dt
D 0 D rŒ1C w��w�;

and since w� � 0; we conclude that w� D 0: If w is eventually negative, a similar
argument will show that

lim
t!1 w.t/ D 0:

Case (ii). Suppose that w.t/ is oscillatory. Let fung and fvng (n D 1; 2; : : :) denote
the respective magnitudes of the successive minima and maxima of w: One can
derive from (6.136) that these sequences satisfy for n D 2; 3; : : :

�
1C vnC1 � er�un ;

1 � un � e�r�vn :
(6.137)

It follows from (6.137) that

vnC1 � expŒr�.1 � e�r�vn/� � 1: (6.138)

We shall now show that vn ! 0 as n ! 1: Let us consider a map V W Œ0;1/ !
.�1;1/ defined by

V.v/ D expŒr�.1 � e�r�vn/� � 1: (6.139)

We note that V.0/ D 0 and by using (6.134) we have

dV.v/

dv
D .r�/2 expŒr�.1 � v � e�r�v/� � .r�/2: (6.140)



6.6 Global Stability of a Volterra-Type Model 327

It follows from (6.138) to (6.140) and by the mean-value theorem that there exists
� 2 Œ0; vn� such that

vnC1 � V.vn/ D V.vn/ � V.0/ D vnV
0

.�/

� .r�/2vn � .r�/4vn�1 � : : : � .r�/2nC2v0 ! 0 as n ! 1:

Since vn denotes the magnitude of the sequence of maxima of the oscillatory
solution w, it follows from

0 � vnC1 � .r�/2nC2v0

that

lim
n!1 vn D 0:

By (6.137) we have

0 � un � 1 � e�r�vn ;

and this implies that

lim
n!1 un D 0:

Since the sequences of successive maxima and minima of the oscillatory solution w
converge to zero, we can conclude that

lim
t!1 w.t/ D 0 H) lim

t!1p.t/ D K D lim
t!1 q.t/: (6.141)

By Theorem 6.5.1

q.t/ � N.x; t/ � p.t/; t > �� , x 2 Œ0; l�;

and hence the result follows from (6.141). The proof is complete. �

6.6 Global Stability of a Volterra-Type Model

Nonlinear periodic equations with diffusion arise naturally in population models
where the birth and death rates, rates of diffusion, rates of interaction, and
environmental carrying capacities are periodic on a seasonal scale. In this section,
we are concerned with periodicity and global stability of the periodic parabolic
logistic model with instantaneous and delay effects of Volterra-type of the form
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8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

@u.t; x/

@t
� Au.t; x/

D u.t; x/
�
a.t; x/ � b.t; x/u.t; x/ �Pm

rD1 cr .t; x/u.t � rT; x/
 ;
.t; x/ 2 Œ0;1/ ��;

BŒu�.t; x/ D 0; .t; x/ 2 Œ0;1/ � @�;
u.s; x/ D u0.s; x/; .s; x/ 2 Œ�mT; 0�/ ��;

(6.142)

where� is a bounded domain in Rn with smooth boundary @�; and the differential
operator A is defined by

Af .x/ D
nX

i;jD1
˛i;j .t; x/

@2f .x/

@xi@xj
C

nX
jD1

ˇj .t; x/
@f .x/

@xj
: (6.143)

The results here are adapted from [24]. The system will be studied under the
following assumptions:

.H1/ The coefficients ˛i;j and ˇj are Hölder continuous in x and t and T -periodic
functions in t .

.H2/ The functions a.t; x/ and b.t; x/ are T -periodic in T , positive and Hölder

continuous on Œ0;1/ � �
�:

.H3/ The functions cr .t; x/ are nonnegative and Hölder continuous on Œ0;1/� �
�;

with c.t; x/ D Pm
rD1 cr .t; x/ positive and T -periodic.

We also assume that 8<
:
BŒu� D u;

BŒu� D @u

@�
C �.x/u;

, (6.144)

with � 2 C1C˛.@�/ and �.x/ � 0 on @�:
The corresponding periodic-parabolic boundary-value problem of (6.142) with-

out delay is
8<
:
@v.t; x/

@t
� Av.t; x/ D v.t; x/ Œa.t; x/ � h.t; x/u.t; x/� ; .t; x/ 2 Œ0;1/ ��;

BŒv�.t; x/ D 0; .t; x/ 2 Œ0;1/ � @�;
(6.145)

where h.t; x/ D b.t; x/C c.t; x/ has been studied by Hess [31] and some sufficient
condition for global stability of the periodic solution was established. These results
are summarized in the following lemma.

Lemma 6.6.1. The eigenvalue problem

@
.t; x/

@t
� A
.t; x/ � a.t; x/
.t; x/ D �
.t; x/; .t; x/ 2 Œ0;1/ ��;

BŒ
�.t; x/ D 0; .t; x/ 2 Œ0;1/ � @�;

 is T-periodic,
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has a principle eigenvalue �1 with positive eigenfunction.

(i). If �1 � 0; then the trivial solution 0 is globally asymptotically stable in (6.144)
with respect to every nonnegative initial condition.

(ii). If �1 < 0; then the problem (6.144) admits a positive T-periodic solution �.t; x/
which is globally asymptotically stable with respect to every nonnegative
nontrivial initial function.

We begin with the following comparison lemma for the delay system (6.142).

Lemma 6.6.2. If there exists a pair of smooth functions NU and QU (called upper

and lower solutions of U ) such that NU � QU on Œ�mT ,1/ � �
� and they satisfy the

following inequalities:

@ NU .t; x/
@t

� A NU .t; x/
� NU.t; x/ �a.t; x/ � b.t; x/ NU .t; x/ �Pm

rD1 cr .t; x/ NU .t � rT; x/
 ;
.t; x/ 2 Œ0;1/ ��;

@ QU .t;x/
@t

� A QU .t; x/
� QU.t; x/ �a.t; x/ � b.t; x/ QU .t; x/ �Pm

rD1 cr .t; x/ QU .t � rT; x/
 ;
.t; x/ 2 Œ0;1/ ��;

BŒ NU �.t; x/ � 0 � BŒ QU �.t; x/; .t; x/ 2 Œ0;1/ � @�;
NU.s; x/ � u0.s; x/ � QU.s; x/; .s; x/ 2 Œ�mT; 0� ��;

then the delay system (6.142) has a unique solution u with NU � u � QU on

Œ�mT; 0� � �
�:

Theorem 6.6.1.

(i) If �1 � 0; then the trivial solution 0 is globally asymptotically stable in (6.142)
with respect to every nonnegative initial condition u0.

(ii) Let L D max
Œ0;T ���

�
Œc.t; x/=b.t; x/�: If �1 < 0 and L < 1 then the positive

T -periodic solution �.t; x/ is globally asymptotically stable in (6.142) with
respect to every nonnegative nontrivial initial function u0.

Proof. To prove .i/we will use Lemmas 6.6.1 and 6.6.2. Let U � be the nonnegative
solution of the following parabolic problem:

@U �.t; x/
@t

� AU �.t; x/
D U �.t; x/ Œa.t; x/ � b.t; x/U �.t; x/� ; .t; x/ 2 Œ0;1/ ��;

BŒU ��.t; x/ D 0; .t; x/ 2 Œ0;1/ � @�;
U �.0; x/ D u0.0; x/; x 2 �:

Define the function QU as QU D u0 on Œ�mT; 0� � �
� and QU D U � on .0;1/ � �

�:

Then ( QU ; 0/ is a pair of upper and lower solutions of the time delay system (6.142)
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on Œ�mT; 0� � �
�: Therefore, by Lemma 6.6.2 there exists a unique solution of u

for (6.142) with 0 � u � U � on Œ�mT; 0� � �
�: When �1 � 1; it follows from

Lemma 6.6.1 that

lim
t!1 ku.t; :/k

C.
�

�/
D lim

t!1 kU �.t; :/k
C.

�

�/
D 0:

In order to prove .i i/, we assume that �1 < 0 and L < 1: Then c.t; x/ � Lb.t; x/

on Œ0;1/ � �
�: Hence we obtain on Œ0;1/ � �

� that

c.t; x/ � LŒb.t; x/C c.t; x/�

.LC 1/
and b.t; x/ � Œb.t; x/C c.t; x/�

.LC 1/
: (6.146)

Denote by U.t; x/ the solution of (6.145) with initial data u0.0; x/: From the
nonnegativity of u, we have for .t; x/ 2 Œ0;1/ �� that

@u.t; x/

@t
� Au.t; x/

� u.t; x/ Œa.t; x/ � b.t; x/u.t; x/�

� u.t; x/Œa.t; x/ � 1

LC 1
.b.t; x/C c.t; x//u.t; x/�:

By Lemma 6.6.1 and the comparison principle for parabolic equations, we have

u.t; x/ � .LC 1/U.t; x/; on Œ0;1/ � �
�:

Therefore

lim
t!1 sup ku.t; :/ � .LC 1/�.t; :/k

C.
�

�/

� lim
t!1.LC 1/ kU.t; :/ � �.t; :/k

C.
�

�/
D 0: (6.147)

For each � > 0; there exists a T� such that when .t; x/ 2 .T�;1/ �� and for each
0 < ˛ < LC 1

@u.t; x/

@t
� Au.t; x/

� u.t; x/

"
a.t; x/ � b.t; x/u.t; x/ � .LC 1C �/

mX
rD1

cr .t; x/�.t � rT; x/
#

D u.t; x/ Œa.t; x/ � b.t; x/u.t; x/ � .LC 1C �/c.t; x/�.t; x/�

D u.t; x/

�
a.t; x/ � b.t; x/u.t; x/ � ˛c.t; x/�.t; x/

�.LC 1C � � ˛/c.t; x/�.t; x/
�
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� u.t; x/Œa.t; x/ � b.t; x/u.t; x/ � ˛c.t; x/�.t; x/

�L.LC 1C � � ˛/
LC 1

.b.t; x/C c.t; x//�.t; x/�:

Then by a comparison argument we have u.t; x/ � U1.t; x/ on ŒT�;1/� �
�; where

U1 is the solution of the parabolic problem
8̂̂
ˆ̂<
ˆ̂̂̂:

@U1.t; x/

@t
� AU1.t; x/

D U1.t; x/Œa.t; x/ � b.t; x/U1.t; x/ � ˛c.t; x/�.t; x/
�L.LC1C��˛/

LC1 .b.t; x/C c.t; x//�.t; x/�;

BŒU1�.t; x/ D 0 .t; x/ 2 ŒT�;1/ � @�;

(6.148)

with u.T�; x/ D U1.T�; x/ in �: If there exists 0 < ˛ < 1 such that

L.LC 1C � � ˛/
LC 1

D 1 � ˛; (6.149)

then it is known from Lemma 6.6.1 that ˛�.t; x/ is a positive T -periodic solution
of (6.148) which is globally asymptotically stable. Relation (6.149) is equivalent to
˛ D 1 � L2 � L� > 0: The arbitrariness of � implies that for L < 1

lim
t!1 inf

��u.t; :/ � .1 � L2/�.t; :/��
C.

�

�/
� lim

t!1
��U.t; :/ � .1 � L2/�.t; :/��

C.
�

�/
D 0:

(6.150)

Hence from (6.147) and (6.150) we have

lim
t!1 sup ku.t; :/ � .1C L/�.t; :/k

C.
�

�/
� 0;

lim
t!1 inf

��u.t; :/ � .1 � L2/�.t; :/��
C.

�

�/
� 0: (6.151)

Assume by induction that for some integer k

lim
t!1 sup

��u.t; :/ � .1C Lk�1/�.t; :/
��
C.

�

�/
� 0;

lim
t!1 inf

��u.t; :/ � .1 � LkC1/�.t; :/
��
C.

�

�/
� 0: (6.152)

Then for any � > 0; there exists a T� such that

@u.t; x/

@t
� Au.t; x/

� a.t; x/u.t; x/ � b.t; x/u2.t; x/

�.1 � Lk � �/u.t; x/
mX
rD1

cr .t; x/�.t � rT; x/

D u.t; x/
�
a.t; x/ � b.t; x/u.t; x/ � .1 � Lk � �/c.t; x/�.t; x/
 (6.153)
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in .T�;1/ ��: Hence for any ˇ > 1

@u.t; x/

@t
� Au.t; x/

� u.t; x/

�
a.t; x/ � b.t; x/

�
1 � 1 � Lk � �

ˇ

�
u.t; x/

�b.t; x/
�
1 � Lk � �

ˇ

�
u.t; x/ � .1 � Lk � �/c.t; x/�.t; x/

�

� u.t; x/

�
a.t; x/ � b.t; x/C c.t; x/

LC 1

�
1 � 1 � Lk � �

ˇ

�
u.t; x/

�b.t; x/
�
1 � Lk � �

ˇ

�
u.t; x/ � .1 � Lk � �/c.t; x/�.t; x/

�
;

in .T�;1/ � �: Then by a comparison argument we have u.t; x/ � U2.t; x/ on

ŒT�;1/ � �
� where U2 is the solution of the parabolic problem

@U2.t; x/

@t
� AU2.t; x/ D U2.t; x/a.t; x/ � b.t; x/C c.t; x/

LC 1�
1 � 1 � Lk � �

ˇ

�
U2.t; x/

�b.t; x/
�
1 � Lk � �

ˇ

�
U2.t; x/

�.1 � Lk � �/c.t; x/�.t; x/;
in .T�;1/ ��;

BŒU2�.t; x/ D 0 .t; x/ 2 ŒT�;1/ � @�; (6.154)

with u.T�; x/ D U2.T�; x/ in �: If there exists ˇ > 1 such that

ˇ

LC 1

�
1 � 1 � Lk � �

ˇ

�
C .1 � Lk � �/ D 1; (6.155)

then it is known by Lemma 6.6.1 that ˇ�.t; x/ is the positive solution of (6.154)
which is globally asymptotically stable. The relation (6.155) is equivalent to ˇ D
1C LkC1 C L� > 1: Therefore, from the arbitrariness of � we have

lim
t!1 sup

��u.t; :/ � .1C LkC1/�.t; :/
��
C.

�

�/

� lim
t!1

��U2.t; :/ � .1C LkC1/�.t; :/
��
C.

�

�/
� 0: (6.156)
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Again for any � > 0; there exists a T� such that

@u.t; x/

@t
� Au.t; x/

� a.t; x/u.t; x/ � b.t; x/u2.t; x/

�.1C LkC1 C �/u.t; x/
mX
rD1

cr .t; x/�.t � rT; x/

D u.t; x/
�
a.t; x/ � b.t; x/u.t; x/ � .1C LkC1 C �/c.t; x/�.t; x/



;

in .T�;1/ ��: Hence for any 0 < ı < 1 and .t; x/ 2 .T�;1/ ��, we have

@u.t; x/

@t
� Au.t; x/

� u.t; x/ Œa.t; x/ � b.t; x/u.t; x/ � ıc.t; x/�.t; x/
�.1C LkC1 C � � ı/c.t; x/�.t; x/


� u.t; x/ Œa.t; x/ � b.t; x/u.t; x/ � ıc.t; x/�.t; x/

�L.1C LkC1 C � � ı/
LC 1

.b.t; x/C c.t; x//�.t; x/�.

Then by a comparison argument we have u.t; x/ � U3.t; x/ on ŒT�;1/ � �
� where

U3 is the solution of the parabolic problem

@U3.t; x/

@t
� AU3.t; x/

D u.t; x/ Œa.t; x/ � b.t; x/U3.t; x/ � ıc.t; x/�.t; x/

�L.1C LkC1 C � � ı/
LC 1

.b.t; x/C c.t; x//�.t; x/�

in .T�;1/ ��;
BŒU3�.t; x/ D 0; .t; x/ 2 ŒT�;1/ � @�; (6.157)

with u.T�; x/ D U3.T�; x/ in �: If there exists 0 < ı < 1 such that

ı C L.1C LkC1 C � � ı/
LC 1

D 1; (6.158)

then it is known by Lemma 6.6.1 that ı�.t; x/ is the positive solution of (6.157)
which is globally asymptotically stable. The relation (6.155) is equivalent to ı D
1 � LkC2 � L� < 1: Therefore, from the arbitrariness of � we have
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lim
t!1 inf

��u.t; :/ � .1 � LkC2/�.t; :/
��
C.

�

�/

� lim
t!1

��U2.t; :/ � .1 � LkC1/�.t; :/
��
C.

�

�/
� 0:

The induction argument as above shows that relation (6.152) holds for any positive
even integer k. Letting k ! 1 in (6.152) yields

lim
t!1 sup ku.t; :/ � �.t; :/k ! 0 uniformly on

�
�:

The proof is complete. �
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33. V.L. Kocić, G. Ladas, C. Qian, Linearized oscillations in nonautonomous delay differential

equations. Differ. Integr. Equat. 6, 671–683 (1993)
34. W. Krawcewicz, J. Wu, Theory of Degrees with Applications to Bifurcations and Differential

Equations (Wiley, New York, 1997)
35. Y. Kuang, Global stability for a class of nonlinear nonatonomous delay equations. Nonlinear

Anal. Theor. Meth. Appl. 17, 627–634 (1991)
36. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics

(Academic, New York, 1993)
37. B.S. Lalli, B.G. Zhang, On a periodic delay population model. Q. Appl. Math. 52, 35–42

(1994)
38. G. Li, Oscillatory behavior of solutions to a generalized, nonautonomous, delay logistic

equation. Ann. Differ. Equat. 7, 432–438 (1991)
39. Y. Liu, Global attractivity for a differential-difference population model. Appl. Math. E-Notes

1, 56–64 (2001)
40. P. Liu, X. Cui, Hyperbolic logistic difference equation with infinitely many delays. Math.

Comput. Simul. 52, 231–250 (2000)
41. Y. Liu, W. Ge, Global attractivity in a delay “food-limited’ models with exponential impulses.

J. Math. Anal. Appl. 287, 200–216 (2003)
42. P. Liu, K. Gopalsamy, Global stability and chaos in a population model with piecewise

constant arguments. Appl. Math. Comput. 101, 63–88 (1999)
43. X. Liu, A. Wilmas, Impulsivev stabilizability of autonoumous systems. J. Math. Anal. Appl.

44, 171–182 (1992)
44. J. Luo, Oscillation and linearized oscillation of logistic equation with several delays. Appl.

Math. Comput. 131, 469–476 (2002)
45. T.R. Malthus, An Essay on the Principle of Population (Johnson, London, 1798)
46. H. Matsunga, T. Hara, S. Sakata, Global attractivity for a logistic equation with piecewise

constant argument. Nonlinear Differ. Equat. Appl. 8, 45–52 (2001)



References 337

47. R.M. May, Biological populations with nonoverlapping generation: stable points, stable
cycles and chaos. Science 186, 645–647 (1974)

48. Y. Muroya, Persistence, contractivity and global stability in logistic equations with piecewise
constant delays. J. Math. Anal. Appl. 270, 602–635 (2002)

49. Y. Muroya, A sufficent condition on global stability in a logistic equation with piecewise
constant arguments. Hokkaido Math. J. 32, 75–83 (2003)

50. Y. Muroya, Uniform persistence for Lotka–Volterra type delay differential systems. Nonlinear
Anal. Real World Appl. 4, 689–710 (2003)

51. Y. Muroya, A global stability criterion in scalar delay differential equations. J. Math. Anal.
Appl. 236, 209–227 (2007)

52. Y. Muroya, Y. Kato, On Gopalsamy and Liu’s conjecture for global stability for a population
model. J. Comput. Appl. Math. 181, 70–82 (2005)

53. R. Olach, Observation of feedback mechanism in population model. Nonlinear Anal. 41,
539–544 (2000)

54. F.J. Richards, A Flexible growth function for empirical use. J. Exp. Bot. 10(29), 290–300
(1959)

55. S.H. Saker, Oscillation and global attractivity of hematopoiesis model with delay time. Appl.
Math. Comput. 136(2–3), 27–36 (2003)

56. S.H. Saker, Oscillation Theory of Dynamic Equations on Time Scales: Second and Third
Orders (Lambert Academic Publishing, Germany, 2010)

57. S.H. Saker, S. Agarwal, Oscillation and global attractivity in a nonlinear delay periodic model
of respiratory dynamics. Comput. Math. Appl. 44(5–6), 623–632 (2002)

58. S.H. Saker, S. Agarwal, Oscillation and global attractivity in nonlinear delay periodic model
of population dynamics. Appl. Anal. 81, 787–799 (2002)

59. A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations (World Scientific,
Singapore, 1995)

60. M.B. Schaefer, Some aspects of the dynamics of populations important to the management
of commercial marine fisheries. Bull. Inter-American Tropical Tuna Commission 1, 25–26
(1954)

61. G. Seifert, Certain systems with piecewise constant feedback controls with a time delay.
Differ. Integr. Equat. 4, 937–947 (1993)

62. G. Seifret, Periodic solutions of a certain logistic equations with piecewise constant delays
and almost periodic time dependence. J. Differ. Equat. 164, 451–458 (2000)

63. G. Seifret, Almost Periodic solutions of differential equation with discontinuous delays.
Comm. Appl. Anal. 6, 235–240 (2002)

64. G.A. Shanholt, A nonlinear variation of constant formula for functional differential equations.
Math. Syst. Theor. 6, 343–352 (1972/1973)

65. J.H. Shen, J.S. Yu, Nonlinear delay differential equations with impulsive perturbations. Math.
Appl. 9(3), 272–277 (1996)

66. F.E. Smith, Population dynamics in daphnia magna and a new model for population growth.
Ecology 44, 651–663 (1963)

67. J.W.-H. So, J.S. Yu, On the uniform stability for a food limited population model with time
delay. Proc. Roy. Soc. Edinb. A 125, 991–1002 (1995)

68. J.W.-H. So, J.S. Yu, Global attractivity for a population model with time delay. Proc. Am.
Math. Soc. 123, 2687–2694 (1995)

69. J.W.-H. So, J.S. Yu, Global stability in a logistic equation with piecewise constant arguments.
Hokkaido Math. J. 24, 269–286 (1995)

70. J. Sugie, On the stability of a population growth equation with time delay. Proc. Roy. Soc.
Edenb. A 120, 179–184 (1992)

71. X.H. Tang, Oscillation for first order nonlinear delay differential equations. J. Math. Anal.
Appl. 292, 211–221 (2004)

72. S. Tang, L. Chen, Global attractivity in a “food-limited” population model with impulsive
effects. J. Math. Anal. Appl. 266, 401–419 (2002)



338 References

73. X. Tang, J. Yu, 3/2 global attractivity of the zero solution of the “food-limited” type functional
differential equations. Sci. China Ser. A. 44, 610–618 (2001)

74. M.E. Turner, B.A. Blumenstein, J.L. Sebaugh, A generalization of the logistic law of growth.
Biometrics 25, 577–580 (1969)

75. K. Uesugi, Y. Muroya, E. Ishiwata, On the global attractivity for a logistic equation with
piecewise constant arguments. J. Math. Anal. Appl. 294, 560–580 (2004)

76. P.-F. Verhulst, Notice sur la loi que la population suit dans son accrossemen. Corr. Math. Phys.
10, 113–121 (1838)

77. J. Wang, J. Yan, On Oscillation of a food-limited population model with impulse and delay.
J. Math. Anal. Appl. 334, 349–357 (2007)

78. E.M. Wright, A nonlinear difference-differential equations. J. Reine Angew. Math. 494,
66–87 (1955)

79. S.L. Xie, S.S. Sun, Oscillation of a logistic equation with delay and diffusion. Ann. Polon.
Math. LXII. 3, 219–230 (1995)

80. J. Yan, Q. Feng, Global attractivity and oscillation in a nonlinear delay equation. Nonlinear
Anal. 43, 101–108 (2001)

81. J. Yan, A. Zhao, Oscillation and stability of linear impulsive delay differential equations.
J. Math. Anal. Appl. 227, 187–194 (1998)

82. J.S. Yu, X.H. Tang, Global attractivity in a delay population model under impulsive
peturbations. Bull. Lond. Math. Soc. 34, 319–328 (2002)

83. J.S. Yu, Z.C. Wang, B.G. Zhang, X.Z. Qian, Oscillations of differential equations with
deviating arguments. PanAmerican Math. J. 2, 59–72 (1992)

84. J. Yu, J. Wu, Z. Zou, On a hyperlogistic delay equation. Glasgow Math. J. 38, 255–261 (1996)
85. B.G. Zhang, K. Gopalsamy, Global attractivity in the delay logistic equation with variable

parameters. Proc. Camb. Phil. Soc. 107, 579–590 (1990)
86. B.G. Zhang, K. Gopalsamy, Global attractivity and oscillation in a periodic delay logistic

equation. J. Math. Anal. Appl. 150, 274–283 (1990)



Index

A
Arzela–Ascoli theorem, 4, 19, 23, 289
Autonomous model, 80–96, 128–155
Autonomous Model of Hutchinson type, 80–96

B
Beverton–Holt equation, 2
Bounded above, 18, 85, 86, 101, 103, 123,

161–163, 172, 212, 258, 277, 278, 314
Bounded below, 18, 123, 161–163, 172, 201,

259, 277, 278

C
Completely continuous operator, 30, 33, 221,

230
Contractivity property, 175, 184, 190, 193, 204

D
Delay logistic model, 4, 9–77, 79–126
Dirichlet problem, 299–301

E
Eventually negative solution, 13, 19, 24,

27–29, 44, 52, 55, 59, 75, 76, 117, 216,
313

Eventually positive solution, 13, 23, 25, 27,
29, 39, 44, 52, 54, 55, 58, 59, 61–63,
68–71, 75, 76, 91, 158, 216–218, 226,
257, 297, 306, 313, 316, 317

Exponentially globally asymptotically stable,
93, 95, 113–115

Extended logistic model, 3

F
Food-limited population model, 215–291
Fredholm mapping of index zero, 6, 7

G
Generalized logistic model, 116–119
Generalized model, 116, 274–286
Generic logistic equation, 3
Global exponential asymptotic stability, 91
Global exponential stability, 91–96, 112–116
Globally attractive, 119, 157
Globally stable, 79
Green’s formula, 6, 298, 300, 302
Gronwall inequality, 5
Gronwall–Bellman inequality, 5, 96

H
Halanay lemma, 5
Hyperlogistic model, 53–72

K
Knaster’s fixed point theorem, 5, 48, 57

L
Lebesgue’s dominated convergence theorem,

25
Local asymptotic stability, 79, 81
Locally bounded function, 35
Locally stable, 79, 119
Logistic equation, 3, 94, 110, 127
Logistic model, 1–7
Logistic models with diffusions, 293–334
Logistic models with piecewise arguments,

127–213

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology,
DOI 10.1007/978-3-319-06557-1, © Springer International Publishing Switzerland 2014

339



340 Index

M
Malthus equation, 296–302
Model of Hutchinson type, 9–12, 80–96
Model of Volterra type, 205
Model with a varying capacity, 72–77
Model with delayed feedback, 12–15
Model with harvesting, 33–42
Model with impulses, 9, 120–126, 222,

256–274
Model with nonlinear delays, 42–52
Model with periodic coefficients, 249–256
Model with several delays, 26–33, 42

N
Neumann problem, 297–299, 325
Nonautonomous Hutchinson model, 96–119
Nonautonomous model, 155–204
Nonlinear variation of constant formula, 95,

115
Nonoscillatory solution, 13, 14, 16, 19–24, 27,

29, 31, 34, 35, 44–46, 50–55, 58, 73,
81, 85, 92, 103, 116, 160, 216–219,
221, 223, 227, 230, 232, 298, 300, 301,
306, 326

O
¨�periodic solution, 249, 250, 291
Oscillatory solution, 85, 92, 101, 103, 117,

119, 132, 161, 163, 253, 258, 260, 262,
273, 327

P
Periodic solution, 73, 110–112, 251, 286–291,

328, 329, 331
Picard’s theorem, 81

Positive solution, 10–12, 16, 22, 23, 25–27,
29, 34, 39, 41, 42, 44, 50–52, 55, 56,
58–63, 68–72, 74–76, 111, 128–131,
153, 210, 212, 217, 218, 226, 249–251,
253, 254, 273, 299, 303, 306, 312–317,
323, 325, 332, 333

R
Ricker equation, 2
Rodin problem, 301–302

S
Schauder fixed point theorem, 5, 33, 52
Steady state, 9–11, 15, 16, 26, 60, 80–82, 129,

157, 207, 208

T
T -periodic solution, 329, 331
Trivial solution, 79–83, 91, 93, 95, 96,

113–115, 118, 119, 305, 329
Tychonov-Schauder fixed point theorem, 5, 14,

19, 23

U
Uniformly bounded, 4, 23
Uniform stability, 96–99, 237–249

V
Variational system, 95, 114
Verhulst logistic growth, 3

Z
Zero solution, 97, 98, 207, 209, 238, 242, 243


	Preface
	Contents
	1 Logistic Models
	1.1 The Logistic Models
	1.2 Extended Logistic Models
	1.3 Delay Logistic Models
	1.4 Some Results from Analysis

	2 Oscillation of Delay Logistic Models
	2.1 Models of Hutchinson Type
	2.2 Models with Delayed Feedback
	2.3 α-Delay Models
	2.4 α-Models with Several Delays
	2.5 Models with Harvesting
	2.6 Models with Nonlinear Delays
	2.7 Hyperlogistic Models
	2.8 Models with a Varying Capacity

	3 Stability of Delay Logistic Models
	3.1 Autonomous Models of Hutchinson Type
	3.1.1 Local Stability
	3.1.2 32-Global Stability
	3.1.3 Global Exponential Stability

	3.2 A Nonautonomous Hutchinson Model
	3.2.1 32-Uniform Stability
	3.2.2 32-Global Stability
	3.2.3 Global Exponential Stability

	3.3 A Generalized Logistic Model
	3.4 Models with Impulses

	4 Logistic Models with Piecewise Arguments
	4.1 Oscillation of Autonomous Models
	4.2 Stability of Autonomous Models
	4.3 Stability of Nonautonomous Models
	4.4 Global Stability of Models of Volterra Type

	5 Food-Limited Population Models
	5.1 Oscillation of Delay Models
	5.2 Oscillation of Impulsive Delay Models
	5.3 32-Global Stability
	5.4 32-Uniform Stability
	5.5 Models with Periodic Coefficients
	5.6 Global Stability of Models with Impulses
	5.7 Global Stability of Generalized Models
	5.8 Existence of Periodic Solutions

	6 Logistic Models with Diffusions
	6.1 Introduction
	6.2 Oscillation of the Malthus Equation
	6.2.1 Oscillation of the Neumann Problem
	6.2.2 Oscillation of the Dirichlet Problem
	6.2.3 Oscillation of the Rodin Problem

	6.3 Oscillation of an Autonomous Logistic Model
	6.4 Oscillation of a Nonautonomous Logistic Model
	6.5 Stability of an Autonomous Logistic Model
	6.6 Global Stability of a Volterra-Type Model

	References
	Index

