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Preface

In mathematics you do not understand things. You just get used
to them.

John L. Von Neumann (1903-1957).
We are servants rather than masters in mathematics.

Charles Hermit (1822-1901).

A mathematical model is an equation or a system of equations used to describe a
natural phenomenon. Many researchers study the qualitative behavior of nonlinear
delay mathematical models in a single species and also species with interactions.
The qualitative analysis of delay models with constant coefficients (autonomous
models) has been studied extensively. We know that the variation of the environment
plays an important role in many biological and ecological dynamical systems. For
example, physical environment conditions such as temperature and humidity and
availability of food, water, and other resources usually vary in time with seasonal or
daily variation. Therefore, more realistic models would be nonautonomous systems.
One of the purposes of our book is to study oscillation and global stability of
specific types of nonautonomous delay models in biology. In particular, our book
presents recent research results on the qualitative behavior of mathematical models
in biology.

The book consists of six chapters and is organized as follows:

In Chap. 1, we discuss the derivation and extensions of logistic models and
some of their applications. This chapter also contains some useful results from
mathematical analysis which are needed throughout the book.

In Chap. 2, we are concerned with oscillation and nonoscillation of different
types of delay logistic models and their modified forms. In particular, we study the
oscillation of models of Hutchinson type, models with delayed feedback, «-delay
logistic models, «-delay models with several delays, models with nonlinear delays,
hyperlogistic models, delay models with harvesting, and models with varying
capacity.

vii



viii Preface

In Chap.3, we discuss the local and global stability of different types of
delay logistic models. In particular, we are concerned with the local and global
stability of autonomous logistic models and the uniform and 3/2 global stability of
nonautonomous delay logistic models. Also we discuss a generalized logistic model
and models with impulses.

In Chap.4, we discuss autonomous and nonautonomous logistic models with
piecewise arguments.

In Chap. 5, we discuss the oscillation of autonomous and nonautonomous ““food-
limited” population models with delay times and impulsive effects as well as the
existence of periodic solutions. Also we study the 3/2 global stability of the classical
model and the 3/2 uniform stability of a model with a parameter /. In addition, we
discuss the global stability of models with impulses and more generalized models,
“food-limited” population models with periodic coefficients, and the existence of
periodic solutions.

In Chap. 6, we are concerned with oscillation, global stability, and periodicity
of some diffusive logistic models. In particular, we present oscillation results of a
diffusive Malthus model with several delays, oscillation results of an autonomous
diffusive logistic model with a Neumann boundary condition (flux conditions),
oscillation results of a nonautonomous diffusive logistic model with several delays
and a Neumann boundary condition (flux conditions), global stability of the delay
logistic diffusion model with a Neumann boundary condition, and periodicity and
stability of a periodic diffusive logistic model of Volterra-type with instantaneous
and delay effects.

We wish to express our thanks to our families and friends.

Kingsville, TX, USA Ravi P. Agarwal
Galway, Ireland Donal O’Regan
Mansoura, Egypt Samir H. Saker
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Chapter 1
Logistic Models

In so far as the theorems of mathematics relate to reality, they
are not certain, and in so far as they are certain they do not
relate to reality.

Every thing should be made as simple as possible but not
simpler.

Albert Einstein (1879-1955).

Biology is moving from being a descriptive science to being a
quantitative science.

John Whitmarsh, National Inst. of Health, 2005 Joint AMS.

All processes in organisms, from the interaction of molecules to complex functions
of the brain and other organs, obey physical laws. Mathematical modeling is an
important step towards uncovering the organizational principles and dynamic behav-
ior of biological systems. In general mathematical models can take many forms
depending on the time scale and the space structure of the problem. For example, in
population dynamics, if there is a complete overlap between generations, then the
population changes in a continuous manner and studies of such systems involve the
use of differential equations. For example, the equation

N'(t) = rN(t) (1 - %)

(1.1)
is used to model the changes in population dynamics and is called the logistic
equation.

If there is no overlap between generations, then the appropriate models are dis-
crete and the changes are described by difference equations relating the population
in a generation n + 1 with size N(n + 1) to that in the generation n with size N (n).
In this case the dynamics of the population can be written by the difference equation

Nmn+1) = f(N(n)), for n >0, (1.2)

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology, 1
DOI 10.1007/978-3-319-06557-1__1, © Springer International Publishing Switzerland 2014



2 1 Logistic Models

where f : R — R is a continuous function representing the density. For example,
in equation (1.2) if

(r+1)N®n)

T DM S0, K >0,
I+Nm/K T

J(N(n)) :=

we obtain the discrete analogy of (1.1) which is called the Beverton—Holt equation.
If f(N(n)) = N(n)e"1=N"_ then we obtain the Ricker equation which can be
considered as the discrete analogy of (1.1). For other models and applications
we refer the reader to [1, 4, 6-9, 11, 18-20, 23, 35-37, 40, 43, 44, 50-52, 55—
63,65,72,80,83].

1.1 The Logistic Models

Motivated by Malthus’ Essay on the Principle of Population [45], Verhulst [76]
proposed the first-order differential equation

dN
— =7rN 1.3
o =7 (1.3)

as the geometric growth of a population in the absence of environmental constraints,
where N is the density of the population and r = b — ¢ is a constant net per capita
growth rate or the intrinsic growth rate, where the birth rate is b and c is the death
rate. The solution of (1.3) is given by

N(t) = Noe™,

where N is the size of the population at t = 0. The assumption that r > 0 implies
a generation of the population, while r < O implies that the generation of the
population do not contribute in a significant manner to the future, that is, generations
are not capable of replacing each other, and the assumption that » = 0 implies that
there is no change in the population.

To develop equation (1.3) and remove the restrictions imposed on the growth in
Eq. (1.3), Verhulst [76] assumed that a stable population would have a saturation
level characteristic of the environment. To achieve this the exponential model was
augmented by a multiplicative factor, 1 — f(N/K), which represents the fractional
deficiency of the current size from the saturation level K. He then argued that this
unbounded growth must be restrained by the Malthusian “struggle for existence”
and proposed the model

1 dN N



1.2 Extended Logistic Models 3

Here R is the realized per capita rate of growth, r is the maximum per capita rate of
growth in a given environment, f is an unspecified function of population density,
and the constant X is the carrying capacity of the environment. Assuming a simple
linear functional relationship yields what Verhulst later called the “logistique”
equation (to differentiate it from the Malthusian “logarithmique’)

dN N
N (1_?). (15)

1.2 Extended Logistic Models

Turner et al. [74] suggested a generalization of the logistic growth and they termed
their equation the generic logistic equation. They proposed the model

dN(t) —r (N(t))H'ﬂ(l—V) |:1 _ (M)ﬂ}y , (16)

dt K

where B, y are positive exponents and y < 1 + 1. Blumberg [16] introduced
another growth equation based on a modification of the Verhulst logistic growth
equation to model population dynamics or organ size evolution. Blumberg observed
that the major limitation of the logistic equation was the inflexibility of the inflection
point. He further observed that attempts to modify the constant intrinsic growth rate
term, r, treating this as a time-dependent polynomial to overcome this limitation,
often lead to an underestimation of future values. Blumberg proposed the model

AN(@) N@OT
o= (t)[l—T} , (1.7)

which is consistent with the generic equation whena =2 —y, = 1, and y < 2.
Von Bertalanffy [15] introduced his growth equation to model fish weight growth.
Here the Verhulst logistic growth equation was modified to accommodate crude
“metabolic types” based upon physiological reasoning. He proposed the form

NGO _ i [ (YO
T =rN3(t) [1 ( I ) } (1.3)

which is a special case of the Bernoulli differential equation. Richards [54] extended
the growth equation developed by Von Bertalanffy to fit empirical plant data and
used the equation

dN(t) N@)\?
N — vy [1—(7) } (1.9)
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1.3 Delay Logistic Models

Retarded functional differential equations or delay differential equations form a
class of mathematical models which allow the systems rate of change to depend
on its past history. A cut forest, after replanting, will take at least 20 years before
reaching any kind of maturity. Hence, any mathematical model of forest harvesting
and regeneration clearly must have time delays built into it. Usually any model of
species dynamics without delays is an approximation at best.

As a very simple, but typical, example consider the equation

N (t)=—-pN (@) +rN(—1).

This equation is used to model the time evolution of the population N(¢) of adult
individuals, with per capita mortality rate & > O and per capita reproduction rate
r > 0. The delay T > 0 expresses the fact that newborns take some time to become
adults.

Delay time introduced in any system may lead to instability and there seems to
be a common belief that incorporating delays can destabilize almost any system.
However, the effects of delays may be rather complicated. A rough way of
incorporating time delays is to write Eq. (1.5) as

N'(t) = rN(@) [1 - N(IT_T)} (1.10)

where N(¢) is the population at time ¢, r is the growth rate of the species, and K > 0
is called the carrying capacity of the habitat (note that here there is no immigration
or emigration). The per capita growth rate in (1.10) is a linear function of the
population N and the term [K—N(¢—1)]/ K denotes the feedback mechanism which
takes t units of time to respond to change in the population size. Equation (1.10)
was first introduced into ecology by Hutchinson [32].

1.4 Some Results from Analysis

In this section, we present some definitions and results from mathematical analysis
which will be needed throughout this book.

We say that the subset S C C([a, b], R) is equicontinuous if for every ¢ > 0
there exists a § = 6(¢) > O such that | f(z;) — f(2)| < € forall t;,t, € [a, b] with
|t — t2] < 8 and for all f € S.

The set S is called uniformly bounded if there exits a positive number B such
that | f(¢)| < Bforallt € [a,b] and for all f € S.

Theorem 1.4.1 (Arzela—Ascoli Theorem). A subset S in C([a, b], R) is relatively
compact if and only if it is uniformly bounded and equicontinuous on |[a, b].
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A function g : R" — R” is said to be a Holder continuous function if there exists
positive constants C and 0 < E < 1 such that

lg(w) —g(v)| < C lu—v|® forallu,v € R",

We now present some fixed point theorems that we will use throughout this book.

Theorem 1.4.2 (Schauder Fixed Point Theorem). LetS be a closed, convex, and
nonempty subset of a Banach space X. Let F : S — S be a continuous mapping
with F(S) a relatively compact subset of X. Then F has at least one fixed point
inS.

Theorem 1.4.3 (Tychonov—Schauder Fixed Point Theorem). Let X be a locally
convex linear space, let S be a closed convex subset of X, andlet F : S — S be a
continuous mapping with F(S) compact. Then F has a fixed point in S.

Theorem 1.4.4 (Knaster’s Fixed Point Theorem). Let X be a partially ordered
Banach space with ordering <. Let M be a subset of X with the following
properties: the infimum of M belongs to M and every nonempty subset of M has a
supremum which belongs to M. Let F : M — M be an increasing mapping, i.e.,
x <y implies Fx < Fy. Then F has a fixed point in M.

Next in this section we present some inequality results.

Theorem 1.4.5 (Gronwall Inequality). Suppose u : [0,f] — R, B > O isa
continuous function and there exist ¢ and k > 0 such that

u(t) <c +k/t u(s)ds, fort €l0,p].
0

Then u(t) < ce*' fort € [0, B].

Theorem 1.4.6 (Gronwall-Bellman Inequality). Let f and g be nonnegative
continuous functions on 0 < t < T and there exist ¢ such that

f@) <c —i—/(; g(s) f(s)ds, forte]0, T].

Then f(t) < cexp (fot g(s)ds)fort € [0, T].

Theorem 1.4.7 (Halanay Lemma). Let t) be a real number and t be a nonnega-
tive number. If m : [ty — 7, 00) — [0, 00) satisfies

m/(t) <—pm(t)+o ( sup m(s)) , fort > 1,

SE[t—1.t]
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and if p > o, then there exist positive numbers ¢ and n such that
m(t) < te T fort > 1.

Theorem 1.4.8 (Barbalat [3]). Letr f : (0,00) — R be Riemann integrable and
uniformly continuous. Then lim;_, o, f(¢) = 0.

Theorem 1.4.9 (Green’s formula). If ¢ and  are both twice continuously
differentiable on U in R" for n > 1, then

d 0
/(vfmp gAY dx = / (w% —¢%) as.
U U

where AU is the boundary of the region U and N is the outward pointing unit
normal of surface element dS.

Theorem 1.4.10. The set M C Loola, b] is compact if and only if for every € > 0,
there exists a dilatation of the interval [a, b] to a finite number of measurable subsets
E; C l[a,b] such that for every E; we have sup, cg. | f(t) — f(s)| < € for all
feM.

Also we will use some results in degree theory in this book. In the following, we
present some results of Mawhin [25, Theorem 7.2].

Let X and Y be two Banach spaces and let L : DomL C X — Y be a linear
operator. A linear mapping L : DomL C X — Y (with KerL = L~'(0) and
ImL = L(DomlL)) is called a Fredholm mapping if KerL has finite dimension
and Im L is closed in Y and has finite codimension. The codimension of Im L is
the dimension of Y/Im L, i.e., the dimension of the cokernel of L. When L is a
Fredholm mapping, its index is the integer IndL = dim KerL —codim ImL.If L
is a Fredholm mapping of index zero then there exists continuous projections

P:X— KerL and Q:Y—Y/ImL.

Let Kp : ImL — DomL N KerP be the inverse of the restriction Lp of L to
DomL N KerP,sothat LKp =1 and KpL =1 — P.

Let Q be a nonempty, open, and bounded subset of X and let N : X — Y.
The mapping N is said to be L-compact on Q if the mapping ON : Q@ — Y is
continuous, QN (L) is bounded, and K,(I —Q)N: Q — X is compact (i.e., it is
continuous and Kp (I — Q)N(RQ) is relatively compact).

Let T : Q — R”. The degree of T at x relative to Q is written deg{T, 2, x}. For
more details about the degree theory, we refer the reader to the book [34].
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Theorem 1.4.11. Suppose L is a linear Fredholm mapping of index zero and N is
L-compact in Q2. Assume

(1) Lx # ANXx forevery x € 0Q2 N DomL and A € (0, 1),

(2) ONx # 0 forevery x € 02N KerL, and

(3) deg{JON|KerL, 2N KerL,0} # 0, where J : ImQ — KerL is any
isomorphism and deg denotes the Brouwer degree.

Then Lx = Nx has at least one solution in DomL N Q.



Chapter 2
Oscillation of Delay Logistic Models

On earth there is nothing great but man, in man there is nothing
great but mind.

William R. Hamilton (1805-1865).

Every problem in the calculus of variations has a solution,
provided the word solution is suitably understood.

David Hilbert (1862-1943).

The qualitative study of mathematical models is important in applied mathematics,
physics, meteorology, engineering, and population dynamics. In this chapter, we are
concerned with the oscillation of solutions of different types of delay logistic models
about their positive steady states. One of the main techniques that we will use in the
proofs is the so-called linearized oscillation technique. This technique compares
the oscillation of a nonlinear delay differential equation with its associated linear
equation with a known oscillatory behavior.

In this chapter we establish oscillation results for a variety of autonomous and
nonautonomous delay models. It is possible to extend the theory in this chapter
to other models, for example, models with impulses and models with distributed
delays. Results for other models (which are based on the ideas in this chapter) can be
found in the reference list. Chapter 2 presents the current approach in the literature
on oscillation of delay equations.

2.1 Models of Hutchinson Type

In this section, we are concerned with the oscillation of an equation of Hutchinson
type about the positive equilibrium point. First, we consider the equation

’ N(it—1
N'(@t) = rN(t) [1 —g}, @2.1)
K
R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology, 9

DOI 10.1007/978-3-319-06557-1__2, © Springer International Publishing Switzerland 2014



10 2 Oscillation of Delay Logistic Models

where N(¢) is the population at time #, r is the growth rate of the species, and K > 0
is called the carrying capacity of the habitat (note that here there is no immigration
or emigration). The solution N(¢) of (2.1) is said to be oscillatory about the positive
steady state K if N(t,) — K = 0, forn = 0,1,2,.. and lim,,, 7, = o0. The
solution N(¢) of (2.1) is said to be nonoscillatory about K if there exits 7y > 0 such
that |[N(¢) — K| > 0 for ¢t > ty. A solution N(¢) is said to be oscillatory (here we
mean oscillatory about zero) if there exists a sequence {¢,} such that N(¢,) = 0, for
n=20,1,2,... and lim,_c0 t, = 00. A solution N(t) is said to be nonoscillatory if
there exits 7y > 0 such that |[N(¢)| > 0 for t > ¢.

Together with (2.1), we consider solutions of (2.1) which correspond to the initial
condition

N(@)=¢()for —7 <t <0, 2.2)

¢ € C([—7,0],[0,00)), and ¢(0) > 0. '
Clearly the initial value problem (2.1), (2.2) has a unique positive solution for all
t > 0. This follows by the method of steps. We begin with the usual result in any
book on oscillation and we quote here the linearized oscillation theorem taken from
[30].

Theorem 2.1.1. Consider the nonlinear delay differential equation

X O+ pifiltx(t =) =0, 2.3)
i=1
where fori =1,....,n,
pi € (0,00), 1; € [0,00), fi € C[R,R], (2.4)
Ji(w)

ufi(w) >0 for u+# 0and lin}) =1, (2.5)
u—>

u

and there exits a positive constant § such that

either fi(u) <u for0<u<$§ andi =1,2,...,n,

2.6
or fiw)>u for —§<u<0andi =1,2,...,n. (2.6)

Then every solution of (2.3) oscillates if and only if every solution of the linearized
equation

YO+ Y piyt—7)=0 2.7

i=1

oscillates.
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Corollary 2.1.1 ([30]). Assume that (2.4)—(2.6) hold. Then each one of the
following two conditions is sufficient for the oscillation of all solutions of (2.3):

S 1.
(@) > piti > 2

i=1

o (1) (51)-

and when n = 1 the condition pt > 1/e is necessary and sufficient for oscillation.

Now, we establish necessary and sufficient condition for the oscillation of all
positive solutions of the delay logistic model (2.1) about the positive steady state K.

Theorem 2.1.2. Every solution of (2.1) oscillates about K if and only if rt > 1/e.

Proof. The change of variables
N(t) ;= Ke*® (2.8)
reduces Eq. (2.1) to the nonlinear delay equation
X () +rf(x(t—1)) =0, (2.9)
where
fw) =e"—1. (2.10)

Clearly f(u) satisfies the conditions (2.4)—(2.6). Corollary 2.1.1 completes the
proof. ]

We now consider a generalization of the delay logistic equation (2.1) with several
delays of the form

N'(t) = N() |:a—Zﬂ,-N(t —r,-):|, 2.11)

i=1
where
o, B1, Ba,.. .. Bn€(0,00)and0 <71 <1, < T3...< T, = T. (2.12)

Again with (2.11), we associate the initial condition (2.2) and then it follows by the
method of steps that (2.2), (2.11) has a unique solution N(¢) and remains positive
forallz > 0.

Theorem 2.1.3. Assume that (2.12) holds. Then each one of the following condi-

tions implies that every solution of (2.11) oscillates about N* = a/ Y B; :

i=1
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o ee(fn) (50) - (57)
Proof. Set
N(1) = N*e*©.
Then x (¢) satisfies Eq. (2.3), where
pi=PBiN* fori=12...nand fi(u=e"—1. (2.13)

Clearly f;(u) fori = 1,2, .., n satisfy the conditions (2.4)—(2.6). The proof follows
from Corollary 2.1.1. ]

2.2 Models with Delayed Feedback

In order to observe the influence of a feedback mechanism on fluctuations of a
population density N(¢) around an equilibrium K via a constant A, Olach [53]
considered a modified nonlinear delay logistic model of the form

N(z(1))
K

N'(t1) = rN(1) |1 — ] 1>0, (2.14)

A K
8" [1“ NGE@)

where r, K, A € (0, 00) and the term 1 —N(z(¢))/ K denotes a feedback mechanism.
We consider those solutions of (2.14) which correspond to the initial condition

{ N(t) = ¢(t), fort(0) <t <0, (2.15)

¢ € C([z(0), 0].[0,00)). ¢(0) > 0.
It follows by the method of steps that (2.14), (2.15) has a unique positive solution
N(t) forallt > 0.

We discuss in this section the nonoscillation of positive solutions of (2.14) around
the positive equilibrium point K. We begin with the following lemma.

Lemma 2.2.1. Consider the nonlinear retarded differential equation

X(0) 4+ p) f(x(x(0) =0, 1>1>0, (2.16)
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such that for t > ty,

peCmeLRﬂ,teCmmeRﬂ,ﬂ0<uIE&I@zzw, (2.17)

feCRR), uf(u) >0 foruz#0, (2.18)

and
/00 p(t) = oo. (2.19)

Then every nonoscillatory solution x(t) of (2.16) satisfies lim; o x(¢) = 0.

Proof. Suppose that (2.16) has a nonoscillatory solution x (¢) which we shall assume
to be eventually positive (if x(¢) is eventually negative the proof is similar). Since
u f(u) > 0, we note that x'(t) <0 eventually for ¢ > #; > fy. Thus

lim x(¢) = L > 0, exists.
—>00

We claim L = 0. If L > 0, we have

x(n) = L+ / p(s) £ (e (x(5)))ds.

n

which with (2.19) gives a contradiction. Thus lim,,o, x(f) = 0. The proof is
complete. |

To prove the main oscillation results for Eq. (2./4) we need some oscillation
results for the equation

X'(0) 4 p@) |x(z(©)[* sgnx(z(1)) = 0, t > 1> 0. (2.20)

Let Cj,.([to, 0), R) denote the space of continuous functions x : [fy,00) — R
endowed with the topology of local uniform convergence.

Theorem 2.2.1. Suppose that (2.17) holds, A > 1 and for some o € (0, 1)

g&mnmmﬂmmwﬂ“<m. (2.21)

Then (2.20) has a nonoscillatory solution.

Proof. According to (2.21) there is a ¢ > 0 such that

L@ PO < ¢, for t > 1.
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Set

o 1/(A=1)
v(t) = cot®’ @ fort > t,, where ¢y = [ C(A_“W] .
-«

Let S C Cioc([to, 00), R) be the set of functions which satisfy
0 < x(t) <v(t),for t >t
and define the operator
F S — Cioe([ty,0),R)
by

[ p(9)[x(x(s))]*ds. for 1 > 1,

Fx)(@) = % v(t) —v(ty) + F(x)(1) for t € [tg.11),

where t| > f, is such that t(¢) > ¢y for all ¢t > ¢;. Note F(S) C S; to see this note if
x € Sand r > t; then

3

Fe@) = [ pobee)lds = [ po) e (e ds
< cgcﬁ /wsﬁ ds = v(t).

We note that S is a nonempty closed convex subset of Cj,. ([#p, 00), R) and the oper-
ator F is continuous. The functions belonging to the set F(S) are equicontinuous
on compact subintervals of [fy, 00). The Tychonov—Schauder Fixed Point Theorem
guarantees that the operator F has an element y € S such that y = F(y). The proof
is complete. ]

Theorem 2.2.2. Suppose that (2.17)—(2.19) hold, and
0
im

——— =1, A>1 (2.22)
u—0 |u|A sgnu

If (2.20) has a nonoscillatory solution then (2.16) also has a nonoscillatory solution.

Proof. Assume that v(¢) is a nonoscillatory solution of (2.20) such that v(z(¢)) > 0
for t > ty. According to (2.22) there is a ¢; > 1 and § > 0 such that f(u) < cju?
for u € [0, §]. From Lemma 2.2.1 we have

o= [ PO s, 1= 10,
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Now choose Ty > fo such that v(z) < § fort > Ty. Let S C Cjoc([t9, 00), R) be the
set of functions satisfying

0 < x(t) < cv(t), for t > Ty,
where clcé‘ < ¢ < 1, and define the operator

F:S— Cloe([l()’ OO),R)

[ p(s) fx(z(s)) ds, for ¢ > 1,

F(x)(r) = % ex[v(t) = v(t)] + F(x)(t1), for t € [T, 1),

where #; > Ty is such that 7(¢) > T for all ¢ > ¢#,. Note F(S) C S; to see this note
if x € Sand r > ¢, then

F(x(1)) = / p(s)er [x(x())]* ds < c1c§/ p(s) () ds < eav(t).

The remainder of the proof is similar to that of Theorem 2.2.1. |

Consider (2.14) about the positive steady state K. The transformation N(¢) =
Ke*® transforms Eq. (2.14) to Eq. (2.16) with

fw) =|1—e"|sgnu.

Clearly the function f(u) satisfies the hypothesis (2.18) and (2.22) so the above
results apply to (2.14).

2.3 «a-Delay Models

Aiello [2] considered the nonautonomous delay logistic model

a—1

_NE@) , t>0, (2.23)

N'(t) = r(1)N() [1 - W} ‘1 ©

where K, o are positive constants, @ # 1, r(¢z) and 7(¢) are positive continuous
functions defined on [0, co) such that

7(t) <t, and Ilim (1) = oc. (2.24)
—00
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Our aim in this section is to study the oscillation and nonoscillation of all positive
solutions of (2.23) about the positive steady state K. We consider (2.23) with an
initial condition

N(t) = ¢(t), forr(0) <t <0,

2.25
¢ € C([£(0),01.0.50)). $(0) >0, 22
The change of variables
_NO
y(t) = X 1 (2.26)
in (2.23) gives us the nonlinear delay equation y (1) = —r(1)y(t()[l +
y(0)] |y (x(2))|*". Since N(r) > 0in (2.23) then y(¢) > —1.
In this section we consider
Y (@) ==r@yEo)1+yOlyEe)*". = . (2.27)
Assume that
/ r(s)ds < oo (2.28)
or
fwr(s)ds = o0. (2.29)

From the change of variables (2.26), we see that the oscillation or nonoscillation of
(2.23) about K is equivalent to the oscillation or nonoscillation of (2.27) about zero.
In the following, we are concerned with the existence of a nonoscillatory solution
of (2.27) and the results in this section are adapted from [2].

First, we consider the case when (2.28) holds. Note for ¢t > ¢, the function r(¢)
is positive and

o
/ r(s)ds = R, where 0 < R < oo. (2.30)
1o

Theorem 2.3.1. Assume that (2.24), (2.28), and (2.30) hold. Then (2.27) has a
positive, nonoscillatory solution bounded away from zero.

Proof. Note if y is a positive solution of (2.27) then

Y () = —r(O[ + yOl(r(z(t)))". (2.31)
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Let ¢ denote the locally convex space of continuous functions on [fg, o0) with the
topology of uniform convergence on compact sets of R. Define the set S C ¢ as

y is nonincreasing

y(t) = Ca, to<t<T
S=1veo:Czy0) = Coexp(~ fir(ds), 12T
T t .
% <exp (fto r(s)ds), t>T;

here C, > 0 is defined so that

[Cy + 1]C0‘:‘_1 <exp (— /t r(S)dS),
T

and T is sufficiently large so that t(z) > ¢y for all # > T'. Such a constant C, exists
since the function

h(u) == (u+ Du*™!
is monotone increasing and
h(0) =0and h(1) =2.

Since 0 < e™® < 1 (here R is as in (2.30)) there is a uy such that i(uy) = e K.
Then let C,, be any constant satisfying the inequality 0 < Cy < 1y, and

[Co +1]CH" <R

necessarily follows. Let R(¢) = ftz r(s)ds. Note that, since r(¢) > Oand T > 1y,
we have

/t r(s)ds < R(t).
T

We can easily see that S C ¢ is nonempty, since y(t) = C, is in S. In addition, S is
a closed convex subset of ¢. Let y € S and define the map

for 1o <t < T,

o
Cuexp (— f} FNBOIEON 4 for ¢ = 7.

Fy@)=

Clearly F y(t) is continuous, nonincreasing and satisfies

=C,, for to <t < T,

Fy(t
y(){gca, for ¢ > T,
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and since y(t) < C,, we have by definition that

1+ yENEE)* " <e <1, and %%)) < k0 < g

R

Then

/t r(s)(1 + y(s)(y(z(s)))*ds - /I o R r(s)y(z(s))ds
T y(s) “r y(s)

t t
5/ e_ReR(S)r(s)dsff r(s)ds,
T T

S0,

t
Fy() > Cyexp (—/ r(s)ds), fort > T.
T

Alsofort > T

Fy@®) _ exp( r@d+yE))oEE)” S)
Fy(@) () y(s)
([ i)
= exp — 5 as
(1) y(s)
<e —R R(s) d )
w([ e e rs
<e ( o r(s)ds) < exp (/mt r(s)ds),

SO,

Fy@@) _

R(t)
<e™W fort>T.
Fy@)

Thus, F(S) C S. Note S is bounded above by C, and bounded below by C,e™ %
We now prove that {F' y : y € S} is equicontinuous on compact sets of [y, 00). Let
Ty and T; be elements in R and let 7;* = max{7, T;} fori = 1, 2. Then

|F y(Ty) — F y(Ty)| = |F y(T}*) = F y(T;)|
exp (_ /Tl* r(6)(1+ ¥ () (E(6)" ds)
T

= CO(
y(s)
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e ( /TTz —r(5)(1+ y(6) ()" ds)‘

y(s)
= Co|l—exp ( /T T —rs)a +§8)(y(r(s)))“ ds)‘
5
=Cojfmew (/ _r(s)dS) -0, asTy > T,
T}

uniformly so {F y : y € S} is equicontinuous on every compact set in [¢y, 00).
Apply the Arzela—Ascoli Theorem to conclude that FS is compact in S. The
Tychonov-Schauder Fixed Point Theorem guarantees a fixed point y* of F. This
y* solves (2.31) from the definition of F. The proof is complete. |

Now, we consider the case when (2.29) holds. First, we prove that every
nonoscillatory solution of (2.27) tends to zero as ¢ tends to infinity.

Theorem 2.3.2. Assume that the conditions of Theorem 2.3.1 hold, except that con-
dition (2.28) is replaced by (2.29) and (2.30) is removed. Then every nonoscillatory
solution of (2.27) will satisfy lim; 0 y(¢) = 0.

Proof. First, we consider the case when y(¢) > 0 forall ¢ > #; > 0. Let

V() = sup{s : t(s) = ¢},

and since lim, oo T(f) = oo there exists T = v*(f;) such that y(t) > 0 and
y(z(¢)) > Oforall ¢t > T. From (2.27) we have

Y @) =—r@0 + yOly (@) <0. (2.32)

Thus,

lim y(¢) = y > 0 exists.

—>0o0
Suppose y > 0. Forallt > T, y(t) > y and y(z(¢)) > y and so (2.32) implies that

Y0 = =@+ yly©,
so integration and (2.29) implies that y(¢) is negative, and this is a contradiction.
Thus y = 0. Next, we consider the case when y(¢) is negative. Let y(¢) be an

eventually negative solution of (2.27), such that

—1 < y()<0and y(z(t)) <O,



20 2 Oscillation of Delay Logistic Models

for t > Ty sufficiently large. Let 77 > T be such that t(¢) > T; for all t > T;.
Now, since y(z(t)) < 0 fort > Tj, we have from (2.27) that

Y () ==rO +yOly®)) [y@)*™" >0, t > Ty. (2.33)
Then
tl_lglo y(t) = —B exists, where 0 < 8 < 1.

Suppose that B # 0. Since y'(t) > 0 and

y(@) <-B, t>T,

we have

YO ==+ y@1p, 1 = T, (2.34)
Now, since y(t) is nonincreasing and lim,_,, y(t) = —p then there exists T, > T}
such that

M+y@®)]=1-B8—-¢>0,
so with (2.34) we have

YO z @ = p—elp*. 12T,
which by integration gives a contradiction. Then 8 = 0 and this completes the
proof. |

Now, we give sufficient conditions for the existence of nonoscillatory solutions
of (2.27) when (2.29) holds and « # 1.

Theorem 2.3.3. Assume that (2.24) and (2.29) hold and o # 1. Furthermore
suppose that

t
lim sup/ r(s)ds <h, where 0 <# < oo.
t—00 ()

Then (2.27) has a nonoscillatory solution.

Proof. Let ¢ denote the locally convex space of continuous functions on [z, 00)
with the topology of uniform convergence on compact sets of R. Define the set
SCeoas
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y is nonincreasing

y(1) = Cq, hh=<t<n
— ye@:Cy>y() > Coéexp(—f:1 r(S)ds), Hh<t<oo
@) L Lk r>1

y@)

where 0 < C, < 1 is defined so that
[Co + 1]CE < 1/,

and 7, is sufficiently large so that

t
/ r(s)ds < h, for t > t,.
(1)

The remainder of the proof is similar to that of Theorem 2.3.1 and hence is omitted.
|

From the change of variables y(¢) = N(¢)/K — 1 and Theorems 2.3.1-2.3.3 we
have the following results on the delay logistic Eq. (2.23).

Theorem 2.3.4. Assume that (2.24), (2.28), and (2.30) hold. Then (2.23) has a
positive, nonoscillatory solution bounded away from K.

Theorem 2.3.5. Assume that (2.24) and (2.29) hold. Then every nonoscillatory
solution of (2.23) will satisfy lim;_,o, N(t) = K.

Theorem 2.3.6. Assume that (2.24) and (2.29) hold and a # 1. Furthermore
suppose that

t
lim; 00 sup/ r(s)ds < h, where 0 <h < oo.
()
Then (2.23) has a nonoscillatory solution.

The following examples illustrate the theory.

Example 1. Consider the nonlinear delay logistic equation
/ 1
N (1) =S NOA =N -1)/K)[1 — N —-0)/KI*, 1> 1,
where K is a positive constant. Here 7 (t) = 1/¢2, and for t, > 0,
o0
/ (1/s*)ds = 1/ty < .
fo

The conditions of Theorem 2.3.4 are satisfied, so there exists a nonoscillatory
solution to this equation which is bounded away from K.
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Example 2. Consider the nonlinear delay logistic equation
N'(t) = rN@t)(1 = N(t —7)/K) |1 = N(t —7)/K|*. 1 > tq,

where K is a positive constant. Here () = r > 0 satisfies

o0
/ rds = oo.
to

The conditions of Theorem 2.3.5 are satisfied, so there exists a nonoscillatory
solution to this equation for any t > 0 and by Theorem 2.3.5 it tends to K when ¢
tends to infinity.

It is important to establish necessary conditions for the existence of nonoscil-
latory solutions to (2.23). Li [38] considered this problem and established these
conditions by analyzing the generalized characteristic equation corresponding to
(2.27). These conditions are equivalent to the sufficient and necessary conditions
for the existence of positive solutions of (2.23).

We begin with the following theorem which gives the characteristic equation of
(2.27).

Theorem 2.3.7. A necessary and sufficient condition for the existence of a
nonoscillatory solution of (2.27) is that there exist a constant Cy, a function A(t),
and t such that

At) = |Ca|a—1 (1 + Cy exp (_/’ r(s)/\(s)ds))

t (1)
X exp (/( : r(s)A(s)ds + (1 —a)/ r(s))&(s)ds). (2.35)

Theorem 2.3.8. Assume that o € (0, 1). Then (2.29) is a necessary and sufficient
condition for every solution of (2.27) to be oscillatory.

Proof. (i) Necessity. If (2.29) does not hold, we can assume that there exists a
constant

1

k =:
Q-a)(1+4+ Cy)CeV’

where C, is a positive number, such that

/oo r(s)ds <k.

to
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Let Ty = inf;>, 7(¢) and let C([Tp, 00), R) denote the locally convex space of
continuous functions on [T}, oo) with the topology of uniform convergence on
compact sets of [T, 00). Define the subset 2 of C ([T, 00), R) by

Q={xeC(Ty,x),R):x(t) >0, |x@)]<e(l+ Ca)C;H, t > Tp}.

Let x € Q and define a mapping F on €2 by

|Ca|a—1 (1 + Cy exp (— f;o r(s)x(s)ds))
(Fx)(1)=1 xexp ( Sl r©)x(s)ds + (1—a) [50 r(s)x(s)ds), t >t
(F x)(to), to>t>Tp.

Then as in the proof of Theorem 2.3.1 we have F x(¢) is continuous and
F(2) C Q. Also {F x : x € Q} is equicontinuous and uniformly bounded.
Apply the Arzela—Ascoli Theorem to conclude that F  is compact in 2. Now,
by using the Tychonov—Schauder Fixed Point Theorem, we see that there exists
a A € Q such that for ¢z > ¢, we have

M) = 1C "™ (14 Cue™ I 0200%)

t (1)
X exp (/( : r(s)A(s)ds + (1 — oe)/T r(s)A(s)ds). (2.36)

By Theorem 2.3.7, (2.27) has a nonoscillatory solution.
(if) Sufficiency. If (2.27) has an eventually positive solution, by Theorem 2.3.7
there exit Cy, t;, and a continuous function A(¢) satisfying

Alr) = (1 + Cae—ft’l ’(S))L(s)ds)

(1)

% |Ca|"‘_l exp (/t r(s)A(s)ds + (1 — oc)/

r(s)k(s)ds)
(0

(1)

> |Co|* " exp ([t r(s)A(s)ds + (1 —Ot)/

r(s)l(s)ds)
(1)

> |Cy|“ exp ((1 —a)/t r(s))\(s)ds).
Set

z(t) = exp(—(1 — a)/t r(s)A(s)ds)
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and note
20 = =G (1= a)r(n)a(n).
Integrate and we have by (2.29) that
M2 = 7o

a contradiction. Similarly, we can show that (2.27) has no eventually negative
solution y(¢) with 1 + y(¢) > 0. The proof is complete. |

Now, we consider the case when o > 1.

Theorem 2.3.9. Assume that o > 1. Then a necessary and sufficient condition for
the existence of a nonoscillatory solution of (2.27) is that there exists a positive
continuous function A(t) such that fort > T

t (1)
exp (/( : r(s)A(s)ds + (1 — oz)/T r(s)/\(s)ds) <mA(t), (2.37)

where m and T are some positive constants.

Proof. (i) Sufficiency. We only consider the case (since the other case is similar)
when

/00 r(s)A(s)ds < oo.

to

Then there exist o, T and C, > 0 such that

o0
1
/ r($)A(s)ds <o, (14+C)C2" < —.
T mo

Let Ty = inf;>, 7(¢). Define a mapping F on C([Ty, 00), R") as follows
S @A+ y )y (cs)ds, =T
(Fy)t):=1{ (Fy)T)+ Caexp(— [5, r(s)A(s)ds)
~Caexp(— [ r(A(s)ds), Ty<t <T.

Clearly F is an increasing operator. Set

t
vo 1= Cqy exp(—/ r()A(s)ds), yny1=Fy,, n=1,2,....
T
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Then we have that
o) = yi@) = ... =2 yu(t) = ... =20, for t = Tg. (2.38)

In fact

nw=Ewo= [ (1 + Cyexp(— /T | r(u)Mu)du))

t

7(s)
X (Cg exp(—oe/ r(u))k(u)du) ds
T
<Cj(1+Cy)m /00 r(s)A(s)ds exp (— /t r(s)k(s)ds))
t T

< Coexp (— | t r(s)l(s)ds)) — @), (=T
T

Continue to obtain (2.38). Then lim, o y,(t) = y(t) > 0, ¢t > T, exists.
From the Lebesgue’s Dominated Convergence Theorem

@+ y)y ()ds, =T

1) :=
Yo (F )(T) + Cyexp(— f1 r()A(s)ds)
—C, exp(— sz r(A(s)ds), To<t <T.
It is easy to see that y(¢) > 0 on [Tp, T] and hence y(t) > O for all ¢ > Tj.
Therefore, y(t) is a positive solution of (2.27) on [T, c0).

(ii) Necessity. If (2.27) has an eventually positive solution then from Theo-
rem 2.3.7 there exists a continuous positive function A(¢) such that

At) = (l + Cy exp (_ [’ r(s)){(s)ds))

xC¥ 'exp </[ r(s)A(s)ds + (1 — oe)/
(1) n

(1)
r(s)l(s)ds)

t (1)
= Co‘z‘_l exp (/ r(s)A(s)ds + (1 — a)/ r(s))t(s)ds)_ (2.39)
(1) I3t

Let m = 1/C0‘j‘_1. Then (2.39) implies (2.37). If (2.27) has an eventually
negative solution, then
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t

(1)
AMt) = (1=]Cy]) [CE ' exp (/ )r(s))t(s)ds +(0- oz)/ r(s))k(s)ds),

(

where |C,| < 1. Thus (2.37) is also true. The proof is complete. [ |

From Theorems 2.3.8 and 2.3.9 one can immediately derive some explicit neces-
sary and sufficient conditions for the oscillation and the existence of nonoscillatory
solutions of (2.23) about the positive steady state K.

2.4 «-Models with Several Delays

In this section, we consider the nonlinear delay logistic equation with several delays
of the form

m ap—1
/ N(hi (1)) N(hi (1)) |™
N'(t) = l;rk(t)N(t) [1 -— - — L 1>0, (240
where oy <1,k =1,...,mora; > 1,k = 1,..., munder the conditions:
(b1) re, k =1,2,...,m, are Lebesgue measurable functions essentially bounded
in each finite interval [0, b], r; > 0,
(b)) hy : [0,00) — R are Lebesgue measurable functions, h;(t) < ft,
lim; o0 hg(t) =00,k =1,2,...,m.
The case oy = 1,k = 1,...,m, will be considered in detail in Sect. 2.6.

We consider positive solutions of (2.40) with an initial condition

%N(z) = (1), for 7, <1 <0, (2.41)

¢ € C([T*,O], [07 OO)), ¢(0) > O’

where

1<k<m

T4 = min (tir>1£{hk(t)}).

Clearly the initial value problem (2.40), (2.41) has a unique positive solution for all
t > 0. This follows from the method of steps. In this section we consider

X () =~ @ + 1Y e @Oxu ) xGuc )™ 120, (242)

k=1
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and it is also possible to consider

¥ (0) = = [e(@) + 1Y re@x (o) e G )" 1 = 1,

k=1

x(t) = @), t <ty, and x(ty) = xo > —1,

where
(b3) ¢ : (—00,1ty) — is a Borel measurable bounded function.
We also consider the delay differential inequalities

xX(6) < =[x (@) + 1) re(@)x (i () [x (i ()", 1 = 0, (2.43)
k=1

xX'(1) = = [x(t) + 1] D r@)x (hie (1)) [x (hie ()|, £ = 0. (2.44)
k=1

In the following we discuss the nonoscillation of solutions of (2.42) which is
equivalent to the nonoscillation of positive solutions of (2.40) about K. The results
in this section are adapted from [5].

In the following we assume o < 1,k = 1,2,...,m, and that (b;) — (b,) hold
and we consider solutions of (2.42), (2.43), and (2.44) for which 1 + x(z) > 0.

We prove the following comparison theorem.

Theorem 2.4.1. The following statements are equivalent:

(1) Either inequality (2.43) has an eventually positive solution or inequality (2.44)
has an eventually negative solutions.

(2) There exist ty > 0, ¢ : (—00,ty) — R, with either ¢(t) > 0, C > 0, or
o(t) <0, —1 <C < 0, such that the inequality

u(t) > (1 + C exp {—/t u(s)ds}) i(Fku)(t), (2.45)
fo k=1

where

|CI* re(t) x expl [y () u(s)ds}
(Fe)(t) = 1 xexp{(1 —ax) [ u(s)ds}.  if he() = 1o
2 expl [, u(s)ds} o (), if hi (1) < 1o

has a nonnegative locally integrable solution on [ty, 00).
(3) Equation (2.42) has a nonoscillatory solution.
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Proof. 1) = (2) Let x be a solution of (2.43) and x(z) > O for ¢ > t;. Then there
exists fo > t| such that sy () > ¢t fort > t9, k = 1,...,m. Denote ¢(t) = x(2),
t <ty,and C = x(tp). Let

u(t) = _;(t()t), 1> 1.

Then u(t) > 0 and

C exp{— flg u(s)ds}, t=>ty,

D=3 0 t < to.

(2.46)

Then by substituting x in (2.43) we obtain inequality (2.45). Similarly (2.45) can be
obtained, if x(¢) < 0 is a solution of (2.44).
2) = 3). Let uy be a nonnegative solution of inequality (2.45) with
p(t) <0, —1<C <0.

Denote a sequence

uy (t) = (1 + Cexp %—/ un_l(s)ds}) > (Freun—1)(@0). (2.47)

k=1
Inequality (2.45) implies u; (t) < uo(¢). By induction, we have
0 <uy(t) < up—1(t) < uo(?).

Then there exits a pointwise limit of the nonincreasing nonnegative limit u, (¢). Let

lim u,(t) = u(t).

n—00
Then by the Lebesgue Convergence Theorem

nli)nc}o(Fkun)(t) = (Fuw@®), k=12,....,m.

Thus (2.47) implies that

u(t) = (l + C exp {—/t u(s)ds%) Z(Fku)(t).
fo k=1

Hence the function x(¢) defined by (2.46) is an eventually negative solution of
(2.42). Now let uy be a nonnegative solution of inequality (2.45) with ¢(¢) > 0,
C > 0.Let C; = —C, ¢1(t) = —@(t). Then u is also a solution of (2.45) with
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C, (respectively ¢;(¢)) instead of C (respectively, ¢(¢)). As in the previous case
it follows that there exists an eventually negative solution of (2.42). Implication
3) = 1) is evident. The proof is complete. |

Corollary 2.4.1. Suppose there exist ty and A > 1 such that the inequality

ut) > A rr(t) exp{
o]

t

hie (1)
u(s)ds} X exp { 1- ak)/ u(s)ds} (2.48)

k(@)

has a nonnegative, locally integrable solution, where the sum contains only such
terms for which hy(t) > ty. Then (2.42) has a nonoscillatory solution.

In the following we give some necessary and sufficient conditions for the
existence of nonoscillatory solutions of (2.42).

Theorem 2.4.2. There exists a nonoscillatory solution of (2.42) if and only if
o0
/ re()dt <oo, k=1,2,...,m. (2.49)
0

Proof. First, suppose that (2.49) holds. Then there exist #y and A > 1 such that

Aexp{Z/ Zrk(t)dt} < 2.
o k=1

For any nonnegative u

m t hie ()
A Z re(t) exp %/h u(s)ds} X exp { 1- (xk)/ u(s)ds§

k=1 k(1)

<A Z”k(t) exp %/t u(s)ds} .
k=1 fo
Let

u(t) =2y (1)

k=1

From the above inequalities we see that u is a solution of inequality (2.48).
Corollary 2.4.1 implies that (2.42) has an eventually positive solution.

Suppose now that for some i, 1 <i < m, we have fooo ri(t)dt = oo. Let x be
a positive or negative solution of (2.42) for ¢t > t,. There exists #y > ¢, such that
hp(t) >t fort >tyandk = 1,2,...m. Let

—x'(1)

u(t) = x0) , 1=

to.
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Then u(¢) > 0 and x(¢) satisfies (2.46) where C = x(¢p). Substituting x in (2.42)
we obtain for t > ¢,

i ICI* T () (1 + € expi— [, u(s)ds})

u(t) =
X exp{—ay ftg"(t) u(s)ds} exp{ft[t) u(s)ds).
Then
t
u(t) > min{l, 1 4+ C}|C|* " r;(t) exp{(1 — ai)/ u(s)ds}.
1o
Hence
||~ '
i(t) < t —(1 -« d
0 = e e Rt —a) [ uwyds)
and so
t d |C|1_ai t 1 ' dt}d
ri(s)ds < — u(s)exp{—(1 — «; u(t)dtlds
[ s = S | et e [ uwan
|C|1—Ol[ t
= 1-— —(1 — d
ey (1ot ) [ )
'
~ min{l,1+ C}|C|
Hence
o0
/ ri(s)ds < oo,
to
which gives a contradiction. The proof is complete. |
It is also possible to establish results when o = 1 for k = 1,2,...,m (see
Sect. 2.6 where a more general situation is considered).
Next, we consider the case when oy, > 1 fork =1,2,...,m.

Lemma 2.4.1. [fh € Ly[a, b], then the linear integral operator

[M x(s)ds, it h(1) € [a, b]

(Hx)(t) = 0. if h(t) ¢ [a.b]

is a completely continuous operator in Loo[a, b].
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Proof. Let € > 0 be given. Divide H ([a, b]) N [a, b] into a finite number of subsets
F;,i =1,...,n, such that for every s, s, € F; we have |s; — 55| < €. Let

E;=h"(F),i=1,....n, Ey=1{t €a.b]: h(t) ¢ [a. D]},

S ={x € Leola,b]: ||x]| =1} and M = H(S).

For dilatation E;,i = 1,2,..., we have
h(s)
sup |[(Hx)(t) — (Hx)(s)| = sup | x(wydw| < sup |h(t) — h(s)| < e.
ts€E; tsEE; h(t) ts€E;

If i = 0 then sup, ;cp, |(Hx)() — (Hx)(s)| = 0. Now Theorem 1.4.10 implies
M = H(S) is a compact set. |

Theorem 2.4.3. Suppose for some ¢ > 0, there exists a nonoscillatory solution of
the linear delay differential equation

xX(1) ==& ) r()x(he(1)). (2.50)
k=1

Then there exists a nonoscillatory solution of (2.42).

Proof. Letty > 0, C,and ¢ : (—00, 1)) — R be such that
—1<C <0, o) <0, |p)]<|C|< /@D,

and hence C < ¢(t) < 0. Now (2.50) with x(¢) = ¢(t), t < ty, and x(t)) = Xxo
with xo = C has a negative solution x(¢) < 0. Let

_ %)
xo(t)

Then wy(t) > 0 and

t
xo(t) =C exp{—/ wo(s)ds}, t>t.
to
By substituting x in (2.50), we have

S exp{f}f 0 wo(s)ds}, if hg(t) > to,
t) = t k
wo(?) 8121%( ) X { exp{ft(t) wd”d”%y if he(t) < to.
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Consider now two sequences
t m
wy(t) = (1 + C exp {—/ wn_l(s)ds}%) Z re(t)
fo k=1

IC % exp {fhtk(,) wn_l(s)ds}
X 4 X exp {—(Olk -1) ft';"(’) Vn— l(s)ds}, if i (t) > to,
exp {ﬁ Wae 1(s)ds} M if hy (1) < to,

V() = (1 + Cexp %—/t vn_,(s)ds}}) > )
o k=1

I exp |y va1(s)ds )
X 4 X exp {_(Olk l)f,}”(l) Wy l(s)ds} if hi(t) > to,
exp {fm Vn— l(S)dS} w, if hi(t) < to,
where vo = 0. We have
ol @)™~ < |C|" ! <e
Then
wo(t) = wi (1), vi(t) = vo(t) =0, and wo(t) > vo(r).
Hence by induction
0 <wu(t) w1 (t) < ... <wolt), va(t) > vui(t) > ... > vo(t) =0,

and w, () > v,(t). There exist pointwise limits of the nonincreasing nonnegative
sequence wy, (¢) and of the nondecreasing sequence v, (¢). If we denote

w(t) = lim w,(¢) and v(t) = lim v,(?),
n—oo n—o00

then by the Lebesgue Convergence Theorem, we conclude

w(t) = (1 + C exp {—/t w(s)ds}}) irk(t)
0 k=1

|C | exp {fhtk(l) w(s)ds}
x xexp{—(ak — 1) [0 v(s)ds}, if () >1,  (2.51)
exp {j,; w(s)ds} Lo O 56 (1) < 1,



2.5 Models with Harvesting 33

v(t) = (1 + C exp %—/[ v(s)ds}}) irk(t)
fo k=1

|C | exp {fhtk(l) v(s)ds}
x 3 xexpi—(ay — 1 m® o (s)ds L if (1) > 1, (2.52)
1o

exp {ftfJ v(s)ds} W, if hi(t) < 1.

Fix b > 1y and denote the operator F : Lyo[ty, b] — Leolto, b] by

(Fu)(t) = (1 + Cexp { - /l u(s)ds}}) > o)
fo k=1

|C | exp {fhtk(t) u(s)ds}
x { xexp {—(ozk -1 ft(}:"(t) u(s)ds}, if hi(t) > 1o,

exp |, u(s)ds } LB, if i (6) < to.
Note for every function u from the interval v < u < w, we have v < Fu < w.
Lemma 2.4.1 implies that the operator F is completely continuous on the space
Lo[to, b] (for every b > ty). Then by the Schauder Fixed Point Theorem there
exists a nonnegative solution of equation u = Fu. Let

t
(1) = C exp{— [, u(s)ds}, t >t
e(1), t <to.
Then x () is a negative solution of (2.42), which completes the proof. ]

2.5 Models with Harvesting

In this section we study the dynamics of a population affected by harvesting, i.e.,

‘2_];7 =r(N(t),t)N(t) — E(N(),1), (2.53)

where E(N,t) is a harvesting strategy for the population.
We consider the delay model

N'(1) = r(t)N() [a = Zka(hk(l)):| — Y a@N(@@), =0, (254
k=1 I=1
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with
N(1) = ¢(1), t <0, N(O) = No, (2.55)

under the following conditions:

(ay) a>0,b; >0;

(az) r(t) =0, c;(¢) > 0 are Lebesgue measurable and locally essentially bounded
functions;

(az) hi(t), gi(t) are Lebesgue measurable functions, hx(t) < ¢, gi(t) < t,
lim; o0 Mg (1) = 00, lim;—e0 g1 (1) = 00;

(a4) ¢ : (—00,0) — Ris aBorel measurable bounded function, ¢(¢) > 0, Ny > 0.

In this section we obtain sufficient conditions for positiveness, boundedness, and
extinction of solutions of equation (2.54). The results in this section are adapted
from [14]. An absolutely continuous function N (: R — R) on each interval [0, 5]
is called a solution of problem (2.54), (2.55), if it satisfies equation (2.54) for almost
all t € [0, 00) and equality (2.55) for ¢ < 0.

First, we present some lemmas (the proofs can be found in [12, 13], and [30])
which will be used in the proof of the main results. Consider the linear delay
differential equation

X0+ Y a)x(gn) =0, 120, (2:56)
=1

and a corresponding differential inequality

Y0+ a)y@) <0, t=0. (2.57)
=1

Lemma 2.5.1. Suppose that for the functions c;, g;, hypotheses (a,) — (az) hold.
Then

(1) If y(¢) is a positive solution of (2.57) for t > ty, then y(t) < x(t), t > ty, where
x(t) is a solution of (2.56) and x(t) = y(t),t < to.

(2) For every nonoscillatory solution x(t) of (2.56), we have lim,_, o, x(t) = 0.

3) If

n

1
supZ/ ci(s)ds < —, (2.58)
ming g (f) e

t>0 =1

then equation (2.56) has a nonoscillatory solution.

If in addition, 0 < @(t) < Ny, then the solution of the initial value
problem (2.56)—(2.55), where N(t) in (2.55) is replaced by x(t), is positive.
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Consider also the linear delay equation

X+ a®x(g®) —a@)x() =0, t>0. (2.59)

=1

A solution X(¢, s) of the problem

X0+ Y ax(@@) —a®x@®) =0, t =,

=1
x(t)=0, t<s, x(5) =1,

is called a fundamental function of (2.59).

Lemma 2.5.2. Suppose for the functions c;, g;, hypotheses (a;) — (a3) hold, a is a
locally bounded function such that a(t) > 0,

>awzaw. [ [Zm(t)—a(r)}oo, (260)
I=1 0 I=1

and

Jim sup [a(f)(l —G@) + Y a®)(G) - gz(l))} <1 (2.61)

=1

where G(t) = max; g;(t). Then

(1) If there exists a nonoscillatory solution of (2.59), then for some ty and t > tg
we have X(t,s) > 0 fort > s > to, where X(t, s) is a fundamental function of
(2.59).

(2) For every nonoscillatory solution x(t) of (2.59) we have lim;_, o x(t) = 0.

Let
h(t) = min{hi (D)}, (1) = min{g (0)}.

In addition to (a;) — (a4) consider the following hypothesis:
(as). h(t) is a nondecreasing continuous function.

If in (2.54) we neglect harvesting terms, i.e., assume ¢; = 0, then the positive
equilibrium becomes a/ Y \'_, by.

Theorem 2.5.1. Suppose (ay) — (as) hold,

o) < Ny < for t <O, (2.62)

a
Z’:=1 bi
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and

supZ/g ci(s) exp {){(t)/g r(r)dr} ds < %, (2.63)

>0 7= Jg() 1(1)

where

x(t) =a [exp %a sup/[ r(E)dS% — 1i| .
>0 Jh()

Then for any solution of (2.54)—(2.55), we have

t
0 < N() 5% exp {a sup/}l r(s)ds% . (2.64)

t>0 Jh(r)

Proof. Suppose (2.64) is not valid. Then either there exists a f > 0 such that

t
0<N@) < W,Lexp%asup/ r(s)ds}, 0<t<it,
w=1 bk >0 Jh()
- a ! ‘o
N(t) = —=7——exp %a sup/ r(s)ds}, N (t) > 0, (2.65)
e=1 bk >0 Jh()

or there exists a # > 0 such that

t
0<N@) < asupf r(s)ds%, 0<t<t, Nt)=0. (2.66)
h

a
N~ g OXP
Zk:l bk { t>0 Jh(t)
Suppose we have the first possibility for a solution N (#) of (2.54)—(2.55). Denote by
Hh<b<--<Il<...

a sequence of all points 7, such that

N(h(t)) = , N'(h(t)) > 0.

a
>imibi
Now

a - a
NO) =N < = N(O) > =
Zk=1bk Zk=lbk
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and (as) imply that the set {#; } is not empty. Suppose ¢* is a point where we have a
local maximum for N(¢). We prove that if

N(t*) > ———, then t* € U[h(tk) 1]

Zz—lb

Let #; be the greatest among all points of the sequence {#; } satisfying h(f;) < t*.
Suppose first

N
(t) N Zl 1

for some ¢ and h(#;) < t < t. The definition of #; and ¢* imply t* < ¢ and hence
€ [h(te), t].

Now suppose

N(t) > for h(ty) <t < t.

a
ST b

Suppose there exists a smallest point ¢’ such that

a
N() = =——-
Zi=1bi

Then (2.54) implies N /(t) < 0, tx <t < t'. Hence in this interval N(¢) has no
maximal points. Thus i(t;) < t* < t;.

If such a ¢’ does not exist then N ’(t) < 0 fort > t; and so once again /(t;) <
t* <ty.

Equation (2.54) implies now that

N () < ar)N(), hit) <t <1*, N((n)) = Zm“ -
i=1%i

Then

¥

a
N@*) < —5——exp a/ r(s)ds
2i=1bi { hae)
‘ " )
< — exp{a/ r(s s}
> iz bi W)

a t
< m—exp%a sup/ r(s)ds},
Y1 bi >0 Jh()

which contradicts our assumption (2.65).
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Suppose now there exists a # > 0 such that (2.66) holds. After substituting

N(t) = exp { [0 t r(s) |:a -3 ka(hk(s)):| ds§ x(1), (2.67)
k=1

in (2.54)—(2.55), we have the system

x/(t) = —Zc;(t)exp{—/
I=1 &

t

O [a - ka(hkm)} ds} x(g1(0)),
it k=1

(2.68)

fort > 0, and (we assume r(¢) =0, t < 0)
x(t) = ¢(t), for t <0, x(0) = N. (2.69)

Consider now the initial value problem
n
YO ==Y pi)y(gi(0).t >0, (2.70)
I=1

y(@) =y (@), 1 <0, y(0) = yo, (2.71)

where

t

(1) = C/(I)CXP{—/ o r(s) |:a - Zka(hk(S))i| ds} :
it k=1

It is evident that if ¥ (1) = @(¢), yo = Ny, then the solutions of (2.68)—(2.69) and
(2.70)—(2.71) coincide. Inequalities (2.64) and (2.63) imply that

t

pi(s)ds
),

(1)

= Z t c1(s) exp % /S r(t) |:Zka(hk(t)) —a] d‘L’} ds
=1 8 k=1

g() 1(s)

IA

supZ/’ cz(s)exp{%(t) ' r(f)dr} ds < é,

>0 7= Je() gi(s)

where

x(t) =a [exp {a sup/[ r(E)dé} — 1i| .
>0 Jh()
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Note (2.62) which say ¢(#) < Ny. Thus Lemma 2.5.1 yields that if ¢ () = ¢(¢),
yo = Ny, then y(¢) > 0,7 > 0. Hence x(¢) > 0, ¢ > 0. Consequently by (2.67)
we have N(t) > 0, ¢+ > 0, which contradicts assumption (2.66). The proof is
complete. |

Theorem 2.5.2. . Suppose (al) — (a5) hold, then for every eventually positive
solution of (2.54)—(2.55) there exists to > 0 such that (2.64) holds for t > t.

Proof. Suppose N(t) is an eventually positive solution of (2.54)—(2.55). If
a
N(t) £ —=—,
( ZZ:I by

for some #y > 0 and ¢ > t,, then the statement of the theorem is true.
Suppose now that

a
N> ——.
Zk=1 by

for some #; > 0 and t > ¢;. Now (2.54) implies that
n
N'(@) ==Y aON@®). t >0,
=1

for some #, > ¢;. Lemma 2.5.1 implies that 0 < N(¢) < x(¢), t > t,, where x(¢) is
a solution of the equation

X0+ amx(@@)=0.t>n, x(t)=N@).t <n,
=1

and lim, o, x () = 0. Then lim; . N(t) = 0. We have a contradiction with our
assumption.
Hence there exists a sequence {z,}, lim,_.oc#, = 00, such that

N(h(t,)) = ﬁ
k=1

The end of the proof is similar to the corresponding part of the proof of
Theorem 2.5.1. ]

Consider now

N'(t) = r()NQ) [a —byN (1) — Zbuv(hk(t))} — Y a@N(g@). 2.72)
k=1 =1



40 2 Oscillation of Delay Logistic Models
Theorem 2.5.3. Suppose by > 0, hypotheses (ay) — (a4) hold,

@(t) < No < b%’ (2.73)

and

supZ/ ci(s) exp { |:aZZ—0=1bki| /s r(u)du} ds < é. (2.74)
g g

>0 7= Jg() 1(s)

Then for any solution of (2.72)—(2.73) we have

0<N(t) < b% (2.75)

Proof. We follow the scheme of the proof in Theorem 2.5.1. Suppose (2.75) is not
true. Then either there exists 7 > 0 such that

0<N@t) < bi, 0<t<7, NG) = bi,N’(f) >0, (2.76)
0 0

or there exists f > 0 such that

0<N(z)5bﬁ, 0<t<i, N@{) =0. 2.77)
0

Suppose the first possibility (2.76) holds. Then for 0 < ¢ < ¢ we have

N'(t) < r@N®la —byN(@)]. N(©O) = No.
Denote by x a solution of the problem

X (1) = r()x(0)[a — box (1)], x(0) = No. (2.78)
Then

N(t)Sx(t)<i, 0<r<t,
bo

since the solution of (2.78) tends to a/by and is always less than a/by. We have a
contradiction with assumption (2.76).
Suppose now that for 7 > #q (2.77) holds. Substituting in (2.72),

N(t) = exp § /: r(s) |:a —boN(s) — Zka(hk(S)):| ds} x(1), (2.79)

k=1
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we have the system

X () ==Y p)x(gi(1). t >0, (2.80)

=1
x(t) =p(t), t <0, x(0) = Ny,

where

t

1(1)

pi(0) = ci(t)exp { - [ r(s) [a — b (s) - Zka(hm))} ds} .
8 k=1

Inequalities (2.75) and (2.74) imply that

Yo piods
=1

1=1 g(?)

X €xp { /S r(7) |:Zka(hk(r)) + boN(7) —ai| dt} ds
& k=1

1(5)

< supZ/t c;(s)exp{[azg—:lh‘] /S r(‘C)d‘L’} ds < é.
g

>0 125 Js() 165)

As in the proof of Theorem 2.5.1, Lemma 2.5.1 implies N(¢) > 0, 0 < ¢ < . This
contradiction proves the theorem. ]

Similar reasoning to that in Theorem 2.5.2 yields the next result.

Theorem 2.5.4. Suppose by > 0, (a;) — (a4) hold. Then for every eventually
positive solution of (2.72)—(2.55) there exists a ty > 0 such that (2.75) holds for
t > 1.

Now we obtain sufficient extinction conditions for solutions of the logistic
equation with harvesting. To this end consider the following equation which is more
general than (2.54):

N'(t) = N() [a(r) - Zbkmzv(hk(z))] — Y a@N(g@), t 20. (281)

k=1 =1



42 2 Oscillation of Delay Logistic Models

Theorem 2.5.5. Suppose a(t) > 0, by > 0 are locally essentially bounded
functions and for c;, hy, g; conditions (a3), (az) hold. Suppose in addition (2.60)—
(2.61) hold. Then for any solution of (2.81)—(2.55) either

lim N(¢t) =0
—>00

or there exists t > 0 such that N(f) < 0.

Proof. 1t is sufficient to prove that for every positive solution N(#) of (2.81)—(2.55)
we have lim,_,, N(¢) = 0.
Suppose N () > 0 is a solution of (2.81)—(2.55). Equation (2.81) implies

N'(6) + ) el®)N(gi(0) —a()N(@) 0.
=1

Lemma 2.5.2 guarantees that there exists 7y > 0, such that the fundamental function
X(t, s) of the equation

X0+ ) e)x (@) —a)x() =0 (2.82)
=1

is positive for # > s > fy. Then the variation of constant formula [30] implies

N(t) = x(t) + /t X(t,s) f(s)ds,

where x(¢) is a solution of (2.82) with the initial condition x(¢) = N(t), t < t,
and f(¢) is a nonpositive function. Hence 0 < N(¢) < x(¢). Lemma 2.5.2 implies
that

lim x(¢) = 0.
—>00

Thus lim;—c N(¢) = 0. The proof is complete. |

2.6 Models with Nonlinear Delays

We return now to Sect. 2.4 when o = 1,k = 1,...,m. Consider the delay logistic
model with several delays

| NOw(0)

N = NOY S (o) [ a

} . he(t) <t (2.83)
k=1
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Motivated by (2.83) in this section we consider first the scalar delay differential
equation

X (1) = =) e (e () [ (0) + 1] (2:84)

k=1
under the following conditions

(c1) re, k =1,2,...,m, are Lebesgue measurable functions essentially bounded
in each finite interval [0, b], r; > 0,

m

co m t
/ > r(n)dt = oo, lim inf ) / re(s)ds > 0;
O —00

k=1 Y maxg hi (1)

(c2) hx : [0,00) — R are Lebesgue measurable functions, h(t) < ¢,
lim; o0 My (t) = 00,k =1,2,...,m.
Together with (2.84), we consider for each ¢y > 0 an initial value problem

X(1) ==Y n@x() [x(0) + 1], 1 =10, (2.85)
k=1
x(t) = @(t), t <ty, and x(fy) = xo > —1, (2.86)

where
(c3) ¢ : (—o00,t)) — Ris a Borel measurable bounded function.
Consider the linear delay differential equation

X O+ r®)x () =0 (2.87)

k=1

and the delay differential inequalities

X+ Y rOx (i) <0, £ =0, (2.88)
k=1

X+ rOx () = 0. ¢ >0. (2.89)
k=1

The following Lemma follows a standard argument (see the proof of
Theorem 2.4.1).

Lemma 2.6.1. Assume that (c¢1) — (c3) hold. Then the following statements are
equivalent:
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(1) There exits a nonoscillatory solution of (2.87).

(2) There exists an eventually positive solution of t inequality (2.88).
(3) There exists an eventually negative solution of (2.89).

(4) There exists ty > 0 such that the inequality

u(t) > ri () exp(
oo (]

has a nonnegative locally integrable solution.

If x(t), y(), z(t), t > 0, are positive solutions of (2.87), (2.88), (2.89),
respectively, x(t) = y(t) = z(t), t <O, then y(t) < x(t) < z(¢t) fort > 0.

t
u(s)ds) , t =1, ut) =0, t <ty, (2.90)
k(1)

Lemma 2.6.2. Assume that for the equation
m
X (@) + Y ar®)x(g() =0, >0, (2.91)
k=1

assumptions (c;) — (c2) hold.

@) Ifar(t) < ri(t), gr(t) = hi(2), and (2.87) has a nonoscillatory solution, then
(2.91) has a nonoscillatory solution.

(@) Ifar(t) = r(t), g (t) < hi(t), and all solutions of (2.87) are oscillatory, then
all solutions of (2.91) are oscillatory.

Theorem 2.6.1. Assume that (c,) — (c3) hold. Suppose that for every sufficiently
small € > 0 all solutions of the linear delay differential equation

X+ A=) n®x(he(t) =0, t >t (2.92)
k=1

are oscillatory. Then all solutions of (2.85) are oscillatory.

Proof. Suppose (2.85) has a nonoscillatory solution. Then by the condition x(¢) +
1 > 0 either there exists a positive solution x(¢) > 0 for all t > T > ¢, or there
exists a solution x (¢) such that

—1<x(t) <0, fort>T.

We can assume /iy (t) > to for all ¢t > T, since lim;—, o 1 (1) = o0.
First, we suppose that x(¢) > 0 for ¢t > T. From (2.85), we have

X (0) + Y re@x () < 0. 1 =10,

k=1

Lemma 2.6.1 implies for ¢ = 0 that (2.92) has a nonoscillatory solution, which
gives a contradiction.
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Suppose now
—1<x(t) <0, for t >T.
Let us introduce the function « as a solution of
x (1) = —u()x (1) [x(t) + 1], x(T) =xo < 0. (2.93)

Now, since x(7) + 1 > 0, we have x (¢) > 0 and this implies that u(z) > 0. From
(2.93) we obtain

exp (— [y u(s)ds + c)

x(1) =— ,
1 +exp (— 7 u(s)ds + c)

where ¢ = In[|xg| /(1 + x¢)] . Substituting in (2.85) we have

exp (_ th u(s)ds + c) _ irk(t) exp (— ;’k(ht) u(s)ds + c) |
1 +exp <— f; u(s)ds + c) k=1 1 + exp (— ka(t) u(s)ds + c)

Hence

u(t) = re(t) exp(

t

1 + exp (— [7 u(s)ds + c)

L 2.94)
1 + exp (— f;”‘([) u(s)ds + c)

u(s)ds)
110

Equality (2.94) implies that u(z) > ) r¢(¢) and from (c;) we have
k=1

[Too u(t)dt = oo.

Consequently there exists 77 > T such that

1 +exp (— f} u(s)ds + c)
max > (1—¢), fort > T.

Isk=m 1 4 exp (— f;’k(t) u(s)ds + c)

Then,

1

u) > (1 —¢) Z re (1) exp (/ u(s)ds).
k=1 h

k(1)

From Lemma 2.6.1, (2.92) has a nonoscillatory solution, which is a contradiction.
The proof is complete. u
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From Lemma 2.6.2 and Theorem 2.6.1 we have the following oscillation
comparison theorem.

Theorem 2.6.2. Suppose a;(t) > ri(t), gr(t) < hi(¢t), and the assumptions of
Theorem 2.6.1 hold. Then all the solutions of the equation

X+ ar®Ox (@)1 +x(0)] =0, >0, (2.95)
k=1

are oscillatory.

Theorem 2.6.3. Assume that (c;) — (c3) hold. Suppose for every sufficiently small
& > 0 there exists a nonoscillatory solution of the linear delay differential equation

m
X O+ (1 +e) ) nx(he(®) =0. 1 =1, (2.96)
k=1
Then (2.85) has a nonoscillatory solution.
Proof. From Lemma 2.6.1 for some T > t, and for ¢ > T there exists a nonnegative

solution 1 of

t

ut) > (1+¢) Zrk(t) exp (/
k=1 h

This inequality implies that uo(f) > Y (), and hence by (c;) we have that
k=1

u(s)ds), t>T. 2.97)

k(@)

(e9)
/ uy(s)ds = oo.
T
Let ¢ be some negative number. Then there exists 77 > T such that

1 —exp (— f;l uo(s)ds + c)
max < (1+e¢)), fort > Ty, (2.98)

k<m m
t=k=my —exp (— 7{’1"([) > re(s)ds + c)
k=1

and by (c;) fort > Tj, we have

k=1

> 1.
1 —exp (— f;l uo(s)ds + c)

. oom 1 —exp (— ;’l"(’) > rr(s)ds + c)
12}2;11 exp |:/h Z Ik (s)ds:|

k(1) k=1
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From (2.97) and (2.98), we have

1 —exp (— thl uo(s)ds + c)

m t
up(t) > Z 1 (1) exp (f uo(s)ds) —
P () I — exp (_ 0

o 2 rk(s)ds + c)

k=1
(2.99)
Let us fix #; > T} and consider the nonlinear operator
m t
(Fiu)(t) = Z re(t) exp (/ u(s)ds)
P hie(0)
1 —exp (— f;l u(s)ds + c)
X he () m
1 —exp (— Jr7 3 re(s)ds + c)
k=1
in the Banach space Lo[77, #;]. We have
m exp (f;l u(s)ds)
(Fu(t) = Y ret)——
= e (J, & 9)uts)ds)
1 —exp (— f}] u(s)ds + c)
X , (2.100)

| he ()
—exp | — [r," 2 rk(s)ds + ¢

k=1

where (i (z,5) = 1,if s < h(¢t) < t, and & (¢,5) = 0, if hi(¢) < s. The operator
F} is continuous. Consider all functions v € L[T1, t1] such that

D () < v(t) < (o).
k=1

We have (Fiv)(t) > Y ri(t). Inequality (2.98) implies that
k=1

F0) <3 r (r)exp(

1 —exp (— f;l uo(s)ds + C)

1 —exp (— fﬁl"(” kgl re(s)ds + c)

<48 ) r (t)exp(
o]

t

uo(s)ds)

k(@)

X

t

uo(s)ds) < uy(t).

k(@)
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Hence for each v such that
D k() < v(1) < u(t)
k=1
we have
3" rt) < (F)(0) < uo(0).
k=1
Then by Knaster’s Fixed Point Theorem (see Sect. 1.4), there exists u; such that

Zrk(l) Su(t) <up(t) and uy = Fuy.
k=1

This means that
t

1 —exp (— f;} ui(s)ds + c)

| he () <
—exp|—Jp > rk(s)ds + ¢
k=1
(2.101)

w(t) =Y r(t)exp (/ u](s)ds)
k=1 h

k(1)

Consider the operator

t

1 —exp (— f;l u(s)ds + c)
1 —exp (— ;llk(l) ui(s)ds + c) '

(Fu)(t) = Y () exp ( [ u(s)ds)
k=1 h

k(@)

If

Do nt) < v() < w(0),

k=1

then (2.101) and (2.98) imply

/t ul(s)ds) 1 —exp (— f}l ui(s)ds + c)

(F)(0) = Y ryenp
2 ,; ¢ R () 1 —exp (— fThlk(z) u(s)ds + c)

< ui (1),
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and
(F2v)(1)
m Com 1—exp (— f;l é:l re(s)ds + c)
> kZ::lrk(t)exp </hkm kZ::l rk(S)dS> R (_ ;llk(t) o(s)ds + c)
> i 7 ().
k=1
Hence

Y ore) < (Fav)(6) < w(¢)

k=1

and as in the previous case we obtain that there exists a solution u, of the equation
u = Fou such that

Do) Swp(t) < (o).
k=1

By induction we prove that there exists a solution u,, of the equation u = F, u which
satisfies

Zrk(t) = Mn([) = l/tn_l(t),
k=1

where

1 —exp (— f;] u(s)ds + c)
1 —exp (— ﬁlk(l) Up—1(8)ds + c) .

(Fyu)(t) = ;rkmexp ( /h )u(s)ds)

t
k(@
A monotone bounded sequence {u,} has a limit u = lim,_, o, u, () and this limit is
a solution of the equation

1 —exp (— f}l u(s)ds + c)
1 —exp (— ﬁlk(t) u(s)ds + c).

— X d
u(t) ;rk(z)ep(/h o s)

t
Kk
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From this, we have that

exp (— [7 u(s)ds + c)

x(t) =—
1 +exp (— [y u(s)ds + c)

(where ¢ = In[|x(Ty)| /(1 + x(T})]) is a positive solution of (2.85) for T} <t < 1,.
Since ¢, is an arbitrary number, we have a positive solution for all # > Tj. The proof
is complete. |

For the remainder of this section we consider
X0+ Y n @ fillx ()] =0 (2.102)
k=1

under the following assumptions:

(al) re(t) = 0, k = 1,...,m, are Lebesgue measurable locally essentially
bounded functions;

(a2) hy :[0,00) — R, for k = 1,...,m, are Lebesgue measurable functions
hie(t) < t,limt, oy (t) = 00;

(@3) fr :R—=> R,k =1,...,m, are continuous functions, x f; (x) > 0 for x # 0.

Together with (2.102), we consider for each 7y > 0 an initial value problem
X0+ Y @) fillx ()] =0, 1 = 1, (2.103)
k=1

x(t) = ¢(t), t <to, x(f) = Xo. (2.104)
We also assume that the following hypothesis holds:

(ad) ¢ :(—o0, ty) — Ris a Borel measurable bounded function.

We will also use the following lemma (whose proof is standard) which can be
found in [33].

Lemma 2.6.3. Suppose there exists an index k such that

/00 re(t)dt = oo (2.105)
0

and x(t) is a nonoscillatory solution of (2.103). Then lim,_,, x(t) = 0.

Theorem 2.6.4. Assume that (a\) — (a4) and (2.105) hold. Furthermore assume
that
i @ _
im —/—— =

u—o0o U

1, k=1,2,...,m. (2.106)
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If for some & > 0 all solutions of the linear equation

X0+ 1 —e) Y ) x(hi() = 0. 1 = 1o, (2.107)
k=1

are oscillatory, then all solutions of (2.103) are also oscillatory.

Proof. Assume (2.103) has a nonoscillatory solution x(¢). Then, by Lemma 2.6.3
we have that lim,_, o x(¢) = 0.
Assume that there exists #; > ty sufficiently large such that x(z) > 0 for¢ > #

and Ay (t) > t; for t > t,. From condition (2.106) there exists #3 > , such that

felxe(hie(®))) = (1= e)x (e (1)) t = 1.
Hence
X0+ 1—e) Y n@Ox(u() <0, =1
k=1

Now Lemma 2.6.1 implies that (2.107) has a nonoscillatory solution. This is a
contradiction.

Suppose now, x(¢) < 0 for ¢t > ¢, for some #; sufficiently large such that /() >
t; fort > t,. Let

y(@) = —x(0), &) =—fi(=y)

and the functions g; satisfy all the assumptions for fi, and y(z) is an eventually
positive solution of the equation

YO+ ) gy (i (1)) = 0.
k=1
As was shown above, we have
YO+ 1=8)) n@)y () <0.
k=1

for t, > t;. Now Lemma 2.6.1 implies that (2.107) has a nonoscillatory solution.
This contradiction proves the theorem. |

Theorem 2.6.5. Assume that (a1) —(a4) hold. Suppose forallk = 1, ..., m, either
fi(x) <x for x >0 or fr(x)>x forx <0, (2.108)

and there exists a nonoscillatory solution of the linear delay differential
equation (2.87).
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Then there exists a nonoscillatory solution of (2.103).

Proof. Suppose fr(x) < xforx >0,k = 1,...,m. By Lemma 2.6.1 there exist
to > 0 and Mo(l) >0,t > 1, uo(l) = 0,1 < 1y, such that

up(t) > i (1) exp(

Let us fix b > fy and consider the nonlinear operator F : Loo[ty, 5] = Loo[to, D]
given by

m hy (1) t
(Fu)(t) = Z re(t) fr (exp (—/ u(s)ds)) exp (/ u(s)ds).
k=1 to 1o

For any function u from the interval 0 < u < uy we have

m hi (¢ t
0<(Fu@) < Z re (1) exp (_/ )u(s)ds) exp (/ u(s)dS)
k=1 fo fo
< t
=< ];rk( ) exp (/hk(

Hence 0 < Fu < up. Lemma 2.4.1 implies that the operator F is completely
continuous in L [t, b]. Then by the Schauder Fixed Point Theorem, there exists a
nonnegative solution of the equation u = Fu. Let

uo(s)ds) , 1> 1y,

¢
k()

t

uo(s)ds) < uy(t).
)

exp (— f[f) u(s)ds), t > 1,
0, t <l.

x(1) ={

Then x () is an eventually positive solution of (2.87).
If fi(x) > x,x <0,k = 1,...,m, then (2.87) has an eventually negative
solution, which completes the proof of the theorem. |

Consider (2.83). Let N(t) = Ke*"). Then x is a solution of (2.102) with
fe(x) = f(x) =e" — 1.

Note fi(u) > uforu < 0 and u fi (u) > 0 for u # 0.
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2.7 Hyperlogistic Models

In this section, we are concerned with the oscillation of the delay hyperlogistic
models. First, we consider an autonomous delay hyperlogistic model of the form

N'@®) =rNO ] [1 - W} i, (2.109)
j=l1

where r, K, t; € (0,00), and«; = p;/q; are rational numbers with ¢; odd, p; and
q; are co-prime, 1 < j < m, and

[]n* =-1.
j=1

By making a change of variables

x(t) = % -1,
Eq. (2.109) becomes
XO+r[+xO[ [ (¢ —7) =0. (2.110)

J=1

We are interested in those solutions x(¢) of (2.110) satisfying x(¢) > —1 which
correspond to solutions N(¢) of (2.109) satisfying N(¢) > 0. Thus we consider the
initial condition

x(1) =¢@) = -1, 1 €fto—1.10],
{ ¢ € C ([to—.10].[~1,00)) and P(to) > —1, (2.111)

where 7 = max{ty,..., T, }. Now (2.110), (2.111) has a unique solution x(; #o, ¢)
on [ty — t,00) and x(¢) > —1 for t > t,. We will show that all solutions of (2.110)
m

and (2.111) are oscillatory when Z a; < 1, but at least one nonoscillatory solution

j=1
m m

exists when Zoe_, > 1. For the case where ZC{ 7 = 1, we will establish an
Jj=1 Jj=1

equivalence, as far as oscillation is concerned, between (2.110) and its so-called

quasilinearized equation

YO +r[[y@e—-z)=o0. (2.112)
j=1

The results in this section are adapted from [84].
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m
The case Zaj <L
j=1
m
Theorem 2.7.1. If ¢ = Zotj < 1, then every solution of (2.110)—(2.111)
j=l1
oscillates.

Proof. Assume that (2.110)—(2.111) has a nonoscillatory solution x(¢). We first
suppose that x (¢) is eventually positive. Then, by (2.110), we eventually have

X)) =-r(+x@) [[x¥¢-1) <0,

j=1
which implies that x (¢) is eventually decreasing. Thus

x(t —1;) > x(t), eventually, for j =1,...,m,

m
and hence (note o = Z aj)
j=1

XO+rA+xO)xO) =X O+r0+x@) [[x9¢—1)=0.
Jj=1

Thus

%xl_“(t) <-(0-ar[l+x@®)]<-01-o)r,

which implies that
x!7%(t) - —o00, ast — oo.
This is impossible since x(¢) > 0 eventually and 1 —« > 0.

We next suppose that x(¢) is eventually negative. Noting that x(¢) > —1 for
t > 0, we have eventually

X' (1)

—r(l+x@) [[x“@—1))

Jj=1

r(+x@) [][-x@ -] >o0.
j=1
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which implies that x(¢) is eventually increasing, so there exists 77 > 0 such that
x(t—1;)<x()<O0forj=1,...,mand

1+ x()>14+x(T7) >0, forallt > T;.
Therefore
X' (1) + (14 x(0)x*(t)

>xO+r(d+x@) [[xv@¢-1)=0 t>T.
j=l1

and hence

%xl_“(t) < —r(l—a)(1+x(2))

<-—r(l-a)(+x(T1)) <0, t >T.

Integrating the above inequality from 7} to ¢ > 0 and letting t — o0, we get
x'7%(t) — —o0, as t — oo. This is a contradiction to the fact that x(t) > —1 for
t > 0 and completes the proof. |

m
The case Zaj > 1.
Jj=1
We now recall the following well-known result.

Lemma 2.7.1. Every solution of (2.112) with Z a; = 1 oscillates if and only if
j=1

= 1
r TP > .
TR
=1
Moreover, the above inequality holds if and only if

m
y/(t) +r 1_[ Y% (t —t;) <0, has no eventually positive solution,
j=1
m
y/(t) +r 1_[ Y% (t — ;) = 0, has no eventually negative solution.
j=1

m
Theorem 2.7.2. Ifa = Z aj > 1, then (2.110) has a nonoscillatory solution.
j=1
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Proof. Choose rational numbers ; = :_j € [0.00) with s; odd, 1 < j < m,
such that
m m
Bj <aj, forj=1,...,m, Z'BJ =1, l_[(—l)ﬂf - _1
j=1 j=1

Let € > 0 satisfy

- 1
re E ﬂj‘[j < -.
e

j=1

Then, by Lemma 2.7.1, the equation

m
X +re[[xPi—-1)=0 (2.113)
j=l1

has a positive solution x(¢) defined on [ty, co) for some #, > 0. It is clear that
x(t) > O0ast — oo. Since B; < a; and

m m

E IBj < E Olj,

Jj=1 j=1
we have

Hx“f(t -1;)

lim (1 +xy—— =0
[[xfr@—1)
j=1

Thus, there exists t; > f( such that

A+ x@) [[x¥@—1) <e[[xP(t—1)). fort =1,
j=1 j=1
and hence for ¢ > ¢, we see that

XO+rA+x@O) [[x¥ -t <x'@O+er [[xP—1) =0 (2114)

j=1 j=1
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Set y(t) = In(1 + x(¢)). Then, from (2.114), we have

V(@) +r 1_[ [ey(’_”) — l]aj <0, fort > 1,

Jj=1

which yields

y(t) > r/l_[ [e2¢ ) —1]" ds, fort>1. (2.115)

¢ /=1

Define X to be the set of piecewise continuous functions z : [t; — t,00) — [0, 1]
and endow X with the usual pointwise ordering <, that is,

U= Zl(l) < Zz(l), for t >t — 1.

Then (X; <) becomes an ordered set. It is obvious that for any nonempty subset
M of X, inf(M) and sup(M) exist. Thus (X; <) is a complete lattice. Define a
mapping W on X as follows:

m

s | [TleC ) — 1] ds, 1 = 1,
(U2)@) = 0 J=1
(¥ 2)(@) + (1 - %) h—t<t<t.

For each z € X, we see that

Oom
0<(\Pz)(t)<m/l_[ ey(s %) —1 ds <1, fort > ty,
y =

and
0<(Wz)(t) <1, for tely—r1,1t].

This shows that WX € X. Moreover, it can be easily verified that ¥ is a monotone
increasing mapping. Therefore, by the Knaster—Tarski Fixed Point Theorem (see
Sect. 1.4), we have that there exists a z € X such that ¥ 7z = z, that s,

OOm

ﬁ/ [[[ere = —1]" ds, 1 > 1.
;=1 (2.116)
W)+ (-5, n-T=t=h.

z2(t) =
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By (2.116), z(t) is continuous on [¢; — T, 00). Moreover, since z(t) > 0 for ¢ €
[t, — 7,11), we must have z(¢) > 0, forall t > ¢;. Set w(t) = y(¢)z(¢). Then w(z) is
positive, continuous on [f; — t, 00), and satisfies

© m
w(t) = r/ [Tlerc= —1]" ds, fort > 1. 2.117)

¢ J=1

Differentiating (2.117) yields

o0
d n .
EW(Z) + r/ l_[ [ew(s_’f) — 1]% =0, fort > 1,

¢ J=1

which shows that e¥*) —1 is a positive solution of (2.110) on [t;, 00). This completes
the proof. |

The case Zaj =1

j=1
The following theorem establishes an equivalence between the oscillation of
(2.110)—(2.111) and the oscillation of (2.112).

m
Theorem 2.7.3. When Za‘/ = 1, every solution of (2.110)—(2.111) oscillates if
j=1
and only if every solution of (2.112) oscillates.

Proof. =: Assume that (2.112) has a nonoscillatory solution y(¢). Since —y(¢) is
also a solution of (2.112), we may assume that y(¢) is eventually positive. We, will
prove that (2.110)—(2.111) has a nonoscillatory solution for some #;. To this end, we
only need to prove that the equation

m
d) +r[Ja-e ) =0 (2.118)
j=1

has an eventually positive solution. Let 7y be such that y(t — 7) > 0 fort > f¢,.
Using the inequality 1 —e™ < x for x > 0, we have for ¢ > ¢, that

m m
Yoy +r[Ja-es <y'@+r[[ye—mp=0. @119
j=1 Jj=1

It can be easily shown that y(t) — 0, as t — oo. Integrating the above inequality
from ¢ to oo, we obtain

R m
y(1) Zr/l_[(l—e_y("’f))“f, for t > 1.
¢ /=1
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Now an argument similar to the proof of Theorem 2.7.2 shows that (2.119) would
have an eventually positive solution z(¢) on [tg, 00) satisfying z(¢) > O for all # > #,.
<: Assume, for the sake of contradiction, that (2.110)-(2.111) has a non-
oscillatory solution x(¢) for every #y. Then 1 + x(¢) > 0, for t > 5. We now
distinguish two cases:
Case (i):  x(t) is eventually positive.
Then there exists T > t; such that x(¢) > 0, for ¢t > T. From (2.110) it follows
that

XO+r[]x@—) <X @+r0+x@) [[x¥ @ —1)) =0. 2.120)

j=1 j=1

This, together with Lemma 2.7.1, implies that (2.112) has a nonoscillatory

solution, contrary to the assumption that every solution of (2.112) oscillates.
Case (ii):  x(t) is eventually negative.

Since 1 4+ x(t) > Ofort >ty and x(¢) < O for¢t > T for some T > f,, we have

X =r(+x@) [[l-xt -7 >0, fort>T,
j=1

from which we can easily see that x(¢t) — 0 as ¢ — oco. On the other hand, in
view of Lemma 2.7.1, we can choose € € (0, 1) such that

“ 1
r(l—e)> ajt; > - (2.121)

J=1

Now, let 71 > T be sufficiently large such that 1 > 1 4+ x(¢) > 1 —¢, fort > T.
Then by (2.110), we have for t > T + t that

X +ra—o[xv@-1)
j=1

>x'O+r(+xo) [[x¥¢-1) =0, (2.122)
j=1

which is also a contradiction since, by Lemma 2.7.1, (2.122) implies that the
inequality
m
X (t)+r(l—e)l_[x°‘f(t—rj) >0
j=1

cannot have an eventually negative solution. This completes the proof. ]
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The following corollary is an immediate result from Theorem 2.7.3 and
Lemma 2.7.1.

Corollary 2.7.1. If Z aj = 1, then every solution of (2.110)—(2.111) oscillates
j=1

(or every positive solution of (2.111) oscillates about the steady state K) if and

only if

“ 1
r E (Xj‘[ >—.
e

Jj=1

Next, in the following we consider the nonautonomous hyperlogistic delay model

m o ﬂj
N' @) =r@NO ] [1 - W} ,for 1 >0, (2.123)
j=1

where0 < 1y <15 <...< 1y, B1,..., B are rational numbers with denominators
that are positive odd integers, and

r € C([ty, 00),[0,0)), K > 0.
We will establish some sufficient conditions for the oscillation of all positive

solutions of (2.123) about K. The results are adapted from [71]. To prove the main
results we study the oscillation of the equation

m
X @)+ p@ [ |x@ =] signlx(t — ;)] =0, t =10, (2.124)
j=l
where
p € C([t),00),[0,00)), 0 <11 =T = ...Z Ty, a; >0, j =1,2,...,m,

and then apply the obtained results on the hyperlogistic model (2.123).
We will consider the equation

x/(t) +p@)f(x(t—11),...,x({ —1y)) =0, fort > 1, (2.125)
where the function f satisfies the following condition (H):
(H). f €e CR™",R), f(x1,...,Xx,) is nondecreasing on each x;, i = 1,...,m,
and

x; >0,fori =1,....m= f(x1,...,xy) >0,

x; <0, fori=1,....m= f(x1,...,xy) <0,
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and
lim M =M > 0.
@1 et)=>(0...0) o
H |/
j=1
We will apply the results on the equation
X () + > pi @) xP (t—1;) =0, fort =1, (2.126)
j=1
where i, ..., B, are rational numbers with denominators that are positive odd

integers and
pj € C([tp,00),[0,00)), for j =1,2,...,m.

In the following, we consider the case when
m
> a1 (2.127)
j=1

and study the oscillatory behavior of (2.124) in terms of p(¢) and the delays
Tlyeuoes Ty

The following lemma whose proof is standard (see [21]) will be needed to prove
the main results.

Lemma 2.7.2. Assume that (H) holds, and for large t,
p(s) #0, fors e [t,t + 1], (2.128)

where T = max{ty, 72, ..., Tn}. Then (2.125) has an eventually positive solution if
and only if the corresponding inequality,

X @)+ pO) fx(t =11)s .. x (E—1T0) <0, > 1o, (2.129)

has an eventually positive solution.

Associated with (2.125), we consider the equation
x/(t) +q@)f(x(t—11),...,x({—1y)) =0, fort > 1, (2.130)

where ¢ € C([ty, 00), [0,00)). Applying Lemma 2.7.2, we have the following
lemma.
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Lemma 2.7.3. Assume that (H) and (2.128) hold, and that for large t

p ) =q (). (2.131)
If every solution of (2.125) oscillates, then every solution of (2.130) oscillates.
Theorem 2.7.4. Assume that (2.127) holds. Then the following conclusions hold:
(i) Ifthere exists A > 0 such that
Zm:aje—*ff <1, (2.132)
Jj=1
and

. . )L-[
Jlim inf [p(t)exp (—e*")] > 0, (2.133)

then every solution of (2.124) oscillates.
(if) If (2.128) holds and there exists i > 0 such that

m
D ajem > 1, (2.134)
j=1
and
tlim sup [p(t) exp (—e"")] < oo, (2.135)
—00

then (2.124) has an eventually positive solution.

Proof. (i) From (2.132) and (2.133), we may choose A, < A < Aand T > £

such that
Zaje_“f < Zaje_)“’f < Zaje_lﬂf <1, (2.136)
=1 7=l J=1
and
1 m
p) = hettexp | S Doaj— 1M, =T (2.137)
j=1
Set

1 m
@) =dieMexp | S| D ey —1) et (2.138)
j=1
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By Lemma 2.7.3, it suffices to prove that every solution of the equation

x/(t) +q(t) 1_[ \x(t — rj)\a/ sign[x(t—1)] =0, t=>t, (2.139)
j=1

oscillates. Assume the contrary, and let x (¢) be an eventually positive solution
of (2.139). Then there exists a 77 > T such that

1>x(t—1,) > Oandx/(t) <0, fort > Ty.

Let y(t) = —Inx(¢) fort > Ty — 7,,. Then y(¢) > 0 fort > T} — 1,,,, and from
(2.139) we have

y'(@) =qt)exp | y(@) — Zajy(t —1;) |, fort > T. (2.140)

Jj=1

m
Set ] = Za je% Then 0 < [ < 1. We consider the following three
j=1
possible cases.
m
Case (1): Consider the case when y(f) < Za/e(x‘*)‘”ffy(t — 7;) eventu-
j=1
ally holds.

Choose T> > T such that

m
y(@) < Zaje@‘_“)ffy(t —1;), fort > 7.
j=1

Consequently, we have for ¢ > T, that

m — . m

y(t) - Z Olje’ht AT y(t _ Tj) B Za

oMl — oAl eM=1)
j=1 J=1

‘e_A,ZTj y(l B tj)
Y eM—1j) °

Set z(t) = y(t)e'". Then

m
) £ Y aje Nzt — 1), fort = Th. (2.141)
j=1

This implies that

lim z(¢t) = 0. (2.142)
—>00
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From (2.142), it follows that there exists a 73 > T, such that

1
y(t) < Ee*", t> T, (2.143)

which, together with (2.140), implies for ¢t > T3 that

Y@ =q@exp| | 1= a; | y(@)
j=l1

1 m
> q(t) exp 3 I—Zaj M| =AM
=1

It follows that
y(t) = y(T3) + M =Bt > T,
which contradicts (2.143).

m
Case (2):  Consider the case when y(t) — Z otje()“_h)ff y(t — 7;) is oscil-
j=1
latory.

In this case, there exists an increasing infinite sequence {#, } of real numbers
with 75 < t; < t, < ... such that

m
Yt) =Y ey, — 1), n=1.2,..., (2.144)
j=l
and
y@) > Y eyt — 1)), 1€ (tmrita), n = 1,2, (2.145)
j=1
Set

u(t) = y(0) = Y _ajeM Uy — 1),

Jj=1

Then u(t) is oscillatory and there exists an increasing infinite sequence {&,} of
real numbers such that

M(En) = max{u(t) Llhypy—1 <t < Ign},
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andu'(§,) =0,n =1,2,....Note
m
W (&) =y () — Y a;eM Uy (E, — 1)),
j=l1
and fort > T
m
y (@) =q@t)exp | ut) + Zaj (™M™ U — Nyt —1)) |. (2.146)
j=l1
It follows that

qE)exp [uE) + ) oMU —1)y(E, — 1))

j=1

m
— Zaie(luf)»z)fiq(gn —1)
i=1

m
xexp | u(§, — 1)+ Zaj(e(kl—kz)rj — Dy —1 — 1))
j=1

1 m
< At exp 3 Za-/ — 1| MG
j=1

A1—A2)T;
X exp lrgizlsxm{u(én -1} + E laj (MU _1)y(E, — 11 — ;)
=

Consequently, we have

w(E) + Y@M 1)y, — 1)

Jj=1

m
e, (oA1=A)T; N o
< lfﬁnlaﬁﬁ{u(én Tt)} + leaj (e 7 l)y(%‘n 7 Tj)
j=

1 m
-3 Daj -1 A=t n=1.23... (2.147)
j=1
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If

lim sup u(¢) = lim sup u(§,) = oo,
t—>00 n—o0

then there exists a subsequence {£,, } of {§,} such that
u(bn) =max{u(r) : <t <&}, k=12,....
Hence, from (2.147), we have

0< Y aj(e™ ™5 —1) [y, — ;) = y(En — 11 — 7))]

j=1
1 m
<= Zaj — 1| (1 —e MMyt <0, k =1,2,... .
j=1
This is a contradiction. If
lim sup u(¢) = lim sup u(§,) < oo,

—>00 n—o0

then from (2.147),

0 < lim sup (u(§&,)

n—o0

+ Y (@MY 1) [y, — 1) = y(E — 1 —T)])

Jj=1

<lim sup { max {u(§, — 7;)}
n—oo | 1<i<m

1 m
-3 Za_, —1] (1 —eMm)eMi L = o0,
i=1

This is also a contradiction.

m
Case (3):  Consider the case when y(f) > Za je@‘_“)f/ y(t — t;) eventu-

j=1
ally holds.

Let T, > T3 be such that

m
y() > Zaje‘“_m”'y(t —1;), t > Ty
j=1
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It follows from (2.140) that

Y0 =q@)exp | y(t) =Y a;y(t — 1))

Jj=1

> g(t)exp[(1— P07 r(1)], fort > Ty.
Setc =1 —e® )7 Then 0 < ¢ < 1, and the above inequality reduces to
Y (0O = q(1), for 1 = T.

Integrating the above inequality from 7} to oo, we obtain

o0 o0 1

/Q(t)df < /y/(t)e"'f"(’)dt < 2o (M) < oo,
c

T4 T4

which contradicts the definition of ¢ ().
Cases 1, 2, and 3 complete the proof of (7).
(if) By (2.134) and (2.135), we may choose (; >  and T' > ¢, such that

m m
D ajem >y ajemMY > 1, (2.148)
j=l j=1
and
m
p) < peexp | [ Y aje i 1|t | 1= T, (2.149)
j=1

Set o(t) = e*" and x(t) = e *?) . Thenfort > T,

x (1) + p(t) H |x(t —1)[" sign[x(t — 7))

Jj=1

m
= —p0e™ + p(o) [Tem?™
j=1

m m
= 1_[ e L p(t) — e exp Zaje_’“’f —1]em |t <0.
j=1 j=1
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This shows that the inequality

x'(t) + p() 1_[ |x(r — rj)\a/ sign[x(t—1)] <0, t>1,
j=1

has an eventually positive solution. In view of Lemma 2.7.2, the corresponding
equation (2.124) also has an eventually positive solution. The proof is com-
plete. |

Applying Theorem 2.7.4 on the special form
x/(t) + p(?) |x(t — tj)|a signx(—1)] =0, t > 1, (2.150)
where
p € C(Jty, 00),[0,00)), T >0, o > 0,

we have immediately the following result.
Corollary 2.7.2. Assume that @ > 1. Then the following conclusions hold:

(i) If there exists A > v 'Ina such that (2.133) holds, then every solution of
(2.150) oscillates.
(ii) If p(t) # 0 on any interval of length v, and there exists i < Tt~ 'Ina such that
(2.135) holds, then (2.150) has an eventually positive solution.
m
Note that if Z a; > 1, then it follows that there exists a unique Ao > 0 such
j=1
that

m
E aje_l‘”f =1.
j=1

Therefore, applying Theorem 2.7.4 to the following equation which is a special form
of (2.124)

x'(t) + C exp(e) 1—[ |x( — tj)|aj sign[x(t —1)] =0, t >1, (2.151)
j=1

where C > 0, we have that every solution of (2.151) oscillates if A > g and (2.151)
has an eventually positive solution in A < Ay.
In the following, we apply Theorem 2.7.4 to (2.125), (2.126), and (2.123).
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m

Theorem 2.7.5. Assume that (H) holds and Zaj > 1. Then the following
j=1

conclusions hold:

(i) If there exists A > 0 such that (2.132) and (2.133) hold, then every solution of
(2.125) oscillates.
(i) If (2.128) and

o

/p(t)dt =00 (2.152)

to

hold and there exists . > 0 such that (2.134) and (2.135) hold, then (2.125)
has an eventually positive solution.

Proof. (i) Assume the contrary, and let x(¢) be an eventually positive solution of
(2.125). Then from (2.125) and (2.133), we easily see that tl_i)m x(t) = 0. Then
o0

from (2.125) and (H) there exists a T} > f( such that
1>x({—1,) >0, and x/(t) <0, for t>T,
and
1 “ .
Fx@t=1), ..., x(t — 1)) > oM [Tl —n]”. =T (2153
Jj=1
Substituting (2.153) into (2.125), we have
1 “ o
x'(1) + SMp(@) [][x¢—7)H]" <0, for 1 =T. (2.154)
j=1

This shows that the inequality (2.154) has an eventually positive solution. In
view of Lemma 2.7.2, the corresponding equation,

x'(t) + %Mp(t) l_[ lx(t —7j)|[*sign[x(t —t)] =0, t =19, (2.155)

Jj=1

also has an eventually positive solution. But, by Theorem 2.7.4, (2.132) and
(2.133) imply that every solution of (2.155) oscillates, and this contradiction
completes the proof of (i).
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(i1) In view of Theorem 2.7.4, (2.128), (2.134), (2.135), and (2.152) imply that the
equation

X0 +2Mp() [ [ Ix(t — )| sign(x(t =) =0. t =10, (2.156)
j=1

has an eventually positive solution x(¢) with lim;—. x(#) = 0. From this,
(H), and (2.156), there exists a T, > fo such that

x(t —1,) >0, and x/(t) <O0for t>T,,

and

S =1).. . x@—1) <2M [[Ixt =)™, =T (2157

j=1
Substituting (2.157) into (2.156), we have
X ()4 pO) f(x(t —11).....x(t —Tp)) <0, 1> Ts. (2.158)

This shows that inequality (2.158) has an eventually positive solution. In view
of Lemma 2.7.2, the corresponding equation (2.125) also has an eventually

positive solution. The proof is complete. ]
m
Theorem 2.7.6. Assume that Z B; > m, and that there exists A > 0 such that
j=1
m
Z ﬂje_)lfj <m, (2.159)
j=1
and
m
. . . _ At
tl_l)rgo inf l_[ p(t) | exp ( me ) > 0. (2.160)

j=1
Then every solution of (2.126) oscillates.

Proof. Assume the contrary, and let x(¢) be an eventually positive solution of
(2.126). It follows from (2.126) that there exists a T' > f, such that

x(t —1ty) >0, and x,(t) <0, for t>T.
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From (2.126), we have

moom

X0 +m|[]pi® l_[[x(t—r_,)]%/fo, t>T. (2.161)

j=1 j=1
This shows that inequality (2.161) has an eventually positive solution. In view of
Lemma 2.7.2, the corresponding equation,

1

x/(t) +m 1_[ p;(t) l_[ |x(t — tj)|%sign [x(—1)] =0, t>1, (2.162)

Jj=1 Jj=1

also has an eventually positive solution. But Theorem 2.7.4, (2.159), and (2.160)
imply that every solution oscillates. This contradiction completes the proof. ]

Now, we consider equation (2.123). Note that if

m
H(_l)ﬂj =1,
j=1
then by making a change of variables,

x()=1In [%} ,

one can write (2.123) as
m :
X0 +r@ ][ =117 =0, for 1> 0. (2.163)
ji=1

Set
f(x],...,xm) = l_[(ex_/ _ 1)/3/
i=1

Then f satisfies condition (H) for By, ..., Bum.
Hence, in view of Theorem 2.7.5, we have immediately the following result.

Theorem 2.7.7. Assume that

[TV =1 and iﬂ, > 1.
j=1

j=1
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Then the following conclusions hold:

(i) If there exists A > O such that

> Bjet <1, (2.164)
j=1
and
. . M
Jlim inf [r(1)exp (—e*')] > 0, (2.165)
then every positive solution of (2.123) oscillates about K.
(ii) Ifr(t) # O for any interval of length t, where T = max {1y, ..., T},
(e}
/ r(s)ds = oo, (2.166)
0

and there exists | > 0 such that

> Bjet > 1, (2.167)

Jj=1
and

. t
Jlim sup [r(1)exp (—e"')] < oo, (2.168)

then (2.123) has a solution greater than K eventually.

2.8 Models with a Varying Capacity

In the delay logistic equations we assumed that the carrying capacity K > 0
is a constant. The variation of the environment plays an important role in many
biological and ecological dynamical systems. It is realistic to assume that the
parameters in the models are positive periodic functions of period w.

Consider the nonautonomous delay logistic model

(2.169)

N'(0) = rON () [1 - M} ,

K(1)
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where m is a positive integer and w > 0. Assume r and K are positive periodic
functions of period w. We consider solutions of (2.169) corresponding to the initial
condition

% N(t) = (), formw <t <0, (2.170)

¢ € C[[-mw,0],RT], ¢(0) > 0.
It is easy to see that there exist a unique positive periodic solution N *(¢) of (2.169).

Theorem 2.8.1. If

/°° rON*®) 4 _ o, 2.171)
0

K(7)
then every nonoscillatory solution N(t) of (2.169) satisfies

;1—1310 N(@) = N*(0). (2.172)

Proof. Assume that N(t) > N*(t) for ¢ sufficiently large (the proof when N(¢) <
N*(t) is similar and will be omitted). Set

N(1) = N*(1)e*®. (2.173)

Then z(¢) > 0 for ¢ sufficiently large, and for ¢ large

Z@) + % (e'=m) —1) =0, (2.174)
SO
d(0) = ——r(tgr;(—t) (e —1) <0.

Thus, z(¢) is decreasing, and therefore
tﬁ)noloz(t) =« € [0, 00).
We claim o = 0. If @ > 0, then there exist ¢ > 0 and 7, > 0 such that for ¢t > T,
O<a—e<z(t) <a+e.

However, then from (2.174), we find

r(ON*(@)

() + 0

(e**-1)<0, t>T,
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By integrating from 7 to oo and using (2.171) we immediately get a contradiction.
Hence o = 0. Thus

Jim (N(1) = N*(1)) = lim N*(@)(e —1) = 0.

This completes the proof. |

Theorem 2.8.2. Assume that r and K are positive periodic functions of period @
such that (2.171) holds. Suppose for every sufficiently small ¢ > 0 all solutions of
the linear delay differential equation

X () + @ —g)%x(t —mw) =0, t> 1, (2.175)

are oscillatory. Then all solutions of (2.169) are oscillatory about N*(t).

Proof. Assume that (2.169) has a solution which does not oscillate about N *(t).
Without loss of generality we assume that N(¢) > N*(¢), so that z(r) > 0; here
z is defined in Theorem 2.8.1. (The case N(¢) < N*(¢) implies that z(t) < 0 and
the proof is similar. In fact, we will see below that if z(¢) is a negative solution
of (2.176) then U(t) = —z(¢) is positive solution of (2.176)). It is clear that N(¢)
oscillates about N *(¢) if and only if z(¢) oscillates about zero. Also

() + % fz(t —mw)) =0, (2.176)
where
fw) = ("= 1.
Note that
t 2% =1

Then by Theorem 2.6.4, since every solution of (2.175) oscillates, then every
solution of (2.176) oscillates. Thus every positive solution of (2.169) oscillates about
N*(t). The proof is complete. |

Next we discuss the oscillation of (2.169) about the positive periodic function
K (t). The result is adapted from [86].

Theorem 2.8.3. Assume the following:

(i) K is a nonconstant positive differentiable periodic function of period .
(ii) r is positive and continuous for t > 0 such that
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t
1
lim inf r(¢) > 0, and lim inf / r(s)ds > —. 2.177)
t—00 t—>00 [0 e
Then every positive solution of (2.169) is oscillatory about K.
Proof. If we define y(t) = In[N(¢)/K(¢)], then y is governed by

K'(1)
K@)’

Y () =r(@)[1 —e’ O] — (2.178)

and the oscillation of N about K is equivalent to that of y about zero and thus it is
sufficient to consider the usual oscillation of y. We simplify (2.178) by letting

. K()
Q(t) = In( K1) ) (2.179)
and note that (2.178) becomes
Y (0 +r@) [T 1] = 0 (). (2.180)

Suppose now the conclusion of the theorem is false. Then there exists an eventually
positive or eventually negative solution for (2.180).

Let us first assume that (2.180) has an eventually positive solution y. Since Q is
a nonconstant periodic function, there exist two sequences {t,;} and {t,;/} such that
lim,, 00 t,; = 00, lim, 5 t,;/, and

—00 < g1 = Q(1) < g2 <00,
q1=0@)and ¢, =0(,), n=12,.... (2.181)
Let
u(t) = y@)—Q(@), fort =T,
(where y(t — mw) > 0 fort > T). Note that (2.180) becomes
W (1) =r(0)[1—e )] <. (2.182)
We claim u(t) + g; > 0. Suppose for some ¢ > ?", u(t) + q = 0. Since y(t) > 0,
we have u(¢) + Q(¢t) = y(¢t) > 0 and hence u(t,) + ¢q1 = y(t,) > 0 showing that

u(t) + q1 < 0is not possible. Therefore,

u(t) +q; >0, forlarget > T. (2.183)
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Let z(#) = u(t) + g1 and we see that

W) =u @)=y @)- 0 ()
=r(t) [1 — eY(’_”’“’)]
_ r(t) [1 _ eu(t—mw)+Q(t—mw)]

IA

—r(t) [ut —mw) + Q(t —mw)] < —r(t)z(t —mw). (2.184)

Note that (2.184) has an eventually positive solution and this is impossible due to
(2.177) (a standard argument is used here).

Let us now consider the case when y(¢) is an eventually negative solution of
(2.169). This implies that

NO 1 fortarge 1 (2.185)
—_— or large r. .

The boundedness of K (due to periodicity) and (2.185) imply that N(¢) is bounded.
It follows from (2.169) that N’ (t) > 0 eventually and this implies that

lim N(t) =1 > 0. (2.186)
t—>o0

Integrating (2.169), we have

Y N(t — mw)

Hence

Tim infr (1) (1 - M) — 0.

K(1)
But liminf; oo r(¢) > 0, so

lim s NG —mw)
up —— =1,
t—>00 P K([)

i.e., there exists a sequence {f; } such that

N(ty — mw)
im ——= =
k—o0 K(t)
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Since N(r) < K, we see that lim; ., N(f) = ! = min,¢jo,) K(). But then

* Nt —mw)
/ 7€) (1_ <0 )dl

infr(t) /'oo
— K(t) — N(t — mw)) dt
S — A (K(1) = N( )
s o0
, _ infr@® (K(t) — min K(t)) dt = oo,
max;efo.o) K(t) Jy r€f0.0]

which contradicts (2.187). This completes the proof. |



Chapter 3
Stability of Delay Logistic Models

The essence of mathematics lies in its freedom.

Georg Cantor (1845-1915).

As for everything else, so for a mathematical theory: beauty can
be perceived but not explained.

Arthur Cayley (1821-1895).

The stability of the equilibrium points is important in the study of mathematical
models. The equilibrium point N is locally stable if the solution of the model N (¢)
approaches N as time increases for all the initial values, in some neighborhood of
N. The equilibrium point N is globally stable for a mathematical model if for all
initial values the solution of the model approaches N as time increases. A model
is locally or globally stable if its positive equilibrium point is locally or globally
stable.

To study local asymptotic stability, we use a standard approach to analyze the
stability of a linearization about the trivial solution. The stability of the trivial
solution of the linearized equation depends on the location of the roots of the
associated characteristic equation. If all the roots of the characteristic equation for
the linearized equation have negative real parts, and if all the roots are uniformly
bounded away from the imaginary axis, then the trivial solution of the linear
equation is locally asymptotically stable.

In this chapter we present the current approach on stability (local, global, and
uniform) for autonomous and nonautonomous delay equations. We note that the
theory in Chap. 3 can be extended (using the ideas in this chapter) to cover other
models, for example models with distributed delays.
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3.1 Autonomous Models of Hutchinson Type

In this section we discuss autonomous models of Hutchinson type.

3.1.1 Local Stability

First we consider the local stability of a Hutchinson type model

N'(t) = rN(@t) [1 - W} , fort >0, 3.1)

where N(¢) is the population at time #, r is the growth rate of the species, and K > 0
is called the carrying capacity of the habitat (note that there is no immigration or
emigration). It is well known that the trivial solution of (3.1) is unstable, since the
linearization of (3.1) about N = 0 satisfies the linear equation d N (t)/dt ~ rN(t)
which shows that N = 0 is unstable with exponential growth. Next, we consider
the perturbations about the positive steady state K. Set

N*@"=N@®)/K, t*=rt, t° =rr,

where the asterisk denotes dimensionless quantities. Then (3.1) becomes, on
dropping the asterisks for algebraic convenience, but keeping in mind that we are
now dealing with non-dimensional quantities,

N'(t) = N@)[1 = N(t — 7)]. (3.2)
Linearizing about the steady state, N = 1, by writing N(¢) = 1 + n(¢) we have

) (3.3)

and its corresponding characteristic equation is given by
pA) =Ar+e M =0. (3.4)
Clearly if T = 0, (3.4) has a real root A = —1 which shows that n = 0 is stable

with exponential decay, which leads to the local stability of the steady state K. On
the other hand for r > 0 we have

Py =~ +e=S@—1/0) <0,
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when 7 < 1/e which shows that there exists a real root in the interval [—1/7,0]
which means that there exists a nonoscillatory solution of (3.3) which also tends to
zero as ¢ tends to infinity and if T > 1/e, Eq. (3.4) has no real roots which leads to
the oscillation of all solutions (see Sect. 2.1).

Now, we wish to know whether there are any solutions of (3.4) with ReA > 0
which would imply that the trivial solution is unstable with exponential growth. Let
A = u +iwbe aroot of (3.4) where p and w are real numbers. We claim that there
is a real number j( such that all solutions of (3.4) satisfy Re A < wg. To see this,
note A = e [T 50 |A| = e7#7, and so, if |A| — oo then e ** — oo which
requires that 4 — —oo. Thus there must be a number 1y which bounds Re A from
above.

Setz = 1/A, and

f@ =14z,
Then f(z) has an essential singularity at z = 0. So by Picard’s Theorem, f(z) has
infinitely many complex roots in the neighborhood of z = 0. Now, from (3.4) we
have
u=—e " coswr, w=e H* sinwr. (3.5)
The aim now is to determine the range of t such that u < 0.
First, let w = 0. Then we have u = —e™#*, and this has no positive roots since
e " > 0 for all ut. Consider the case w # 0. From (3.5) if w is a solution then —w
is also a solution, so we consider w > 0 without loss of generality. From
u=—e " coswr,
1 < 0 requires wt < /2 since —e " < 0 for all uz. Multiplying
w=¢e " sinwr,
by t we have
te M sinwt = tw < /2.
Next we consider the generalized delay logistic equation
o0

N'(t) +a[N@t) = N*]=rN@) | 1=

Jj=1

N —1;
Ne—m) | oo, (3.6)
K;

and establish some sufficient conditions for the local asymptotic stability of the

positive steady state N*. The results are adapted from Gopalsamy [26]. By using
the transformation
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N(t) = N* + x(1),

we see that the Eq. (3.6) reduces to the nonlinear delay equation

o0
X(1) +ax() + [N* +x0] Y _bjx(t—1,) =0, t>0, (3.7)
j=1
where
r > r .
= > bj. by = < i=12. (3.8)
j=1 /
We assume that @ is a nonnegative constant, N *, bj, vj for j =1,2,3,... are

positive constants such that

o0

E bj =b<oo, 0<infr; =1, <supt; =% < o0. (3.9)
; j :

j=1 J

With (3.6) we associate the initial condition

{N(t)=¢(t), for —t* <t <0, (3.10)

¢ € C([—7*,0],[0,00)), and ¢(0) > 0.

It follows from the substitution N(1) = N* 4 x(¢) that the asymptotic stability
(local or global) of N* of (3.6) is equivalent to that of the trivial solution of (3.7)
where the relevant initial condition for (3.7) is inherited from (3.10) through the
substitution N(t) = N* + x(t).

Theorem 3.1.1. Assume that (3.9) holds, and

o0
TN* Y b < 7/2. (3.11)
j=1

Then the trivial solution of (3.7) is locally asymptotically stable (or equivalently, the
positive steady state N* of (3.6) is locally asymptotically stable).

Proof. The linear variational equation corresponding to the trivial solution
of (3.7) is

o0
Z(0) +az(t) + N* Y bzt —1)) =0, 1 >0, (3.12)
j=1

and its associated characteristic equation is given by
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o0
Ata+N*> bje i =0. (3.13)
j=1

It is well known that the trivial solution of (3.12) is asymptotically stable in the sense
that every solution z of (3.12) corresponding to the initial function ¢ : [—7*,0] —
(—o0, 00),

z2(s) = ¢(s), s € [-1*,0], ¢ is continuous on [—7*,0],

is such that (i). |z(¢)| is nonincreasing in ¢ for ¢t > 0 and (ii). lim, o |2(¢)] = O
if and only if ReA < —o < 0 for some positive number o where A is any root
of (3.13). The asymptotic stability of the trivial solution of (3.12) implies the local
asymptotic stability of the trivial solution of (3.7).

We show (3.13) cannot have roots with nonnegative real parts. Suppose A =
W +ivis aroot of (3.13) where  and v are real numbers and suppose that ;> 0.
Then we have from (3.13) that

o0
n+a =—N*ije_’”f Cos UT;, (3.14)
j=1
o0
v=N"* ije_’“/ sinut;. (3.15)

=1

It follows from (3.15) and p > O that

o0
v < N* > b;,
j=1

which with (3.11) implies that

o0
|z S N*T* ) b; <7/2. (3.16)
j=1

Since u + a > 0, u > 0, we have from (3.14) and (3.16) that

o
—(u+a)/N* <0and — (u+a)/N* = ije_’”f cosvr; >0, (3.17)

Jj=1

which is impossible. Suppose now that (3.13) has a sequence of roots A, = w, +iv,
(n=1,2,3,...)such that u,, < 0 and u,, — 0 as n — co. We now show that this
is not possible. Since f defined by
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oo
fA)=A+a+ N*ije_“’,
j=1
is analytic in A, the zeros of f are isolated and hence any limit point of the roots

of (3.13) cannot be in the finite part of the complex plane. Let us suppose that we
have

Un <0, v, >0, u, >0, v, > 00 as n — oo.

We have from (3.13) that

o0
n +a=—N* ije_“”/ COS U, Tj, (3.18)
j=1
o0
v, =N* ije_“"’f sin v, t;, (3.19)
j=1

forn = 1,2,3,..., and this implies that
o0
U, < N¥e Hnt ij,
—
which leads to

e_/‘LnT*

o

I§N*ij( )—)0, asn — oo,
. Un
j=1

and this is a contradiction. Thus (3.13) can have only roots with negative real parts,
and this completes the proof. |

3.1.2  3-Global Stability

In this subsection we are interested in the 3/2 global stability of the positive steady
state K of (3.1). Motivated by (3.1) (let N(t) = K(y(t) + 1)) in this section we
examine

V(1) = —ay(t — D[l + y(1)]. o« > 0. (3.20)

If we were considering (3.1) then « = rt. The global stability result in this section
is due to Wright [78].
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We consider solutions of (3.20) which correspond to the initial condition

y(t) =¢(t), for —1 <t =<0, ¢ € C[-1,0]

1+ ¢(t) >0 for 1 € [-1,0] and 1+ ¢(0) > 0. (3.21)

By the method of steps we see that (3.20), (3.21) has a solution y with 1+ y(¢) >
0 fort > 0.

Theorem 3.1.2. Let y be a solution of (3.20), (3.21). If « < 3/2, then
lim/ 00 y(2) = 0.

Proof. 1f y(t) is nonoscillatory, then y(¢) > 0 or y(t) < O for some ¢t > f, > 0.
Note also from (3.20) that

=1
14+ y(@) =14 y(t))exp (—a/ 1 y(u)du) . (3.22)

Without loss of generality we assume that y(¢) > 0, since the case when y(¢) < 0
is similar and will be omitted. Now, since y(¢t) > 0 for ¢t > fy, then (3.20) implies
that
y'(t) <0, fort>1y+ 1.

Hence y () is positive and strictly decreasing and there exists ¢ such that

lim y(t) =c>0.

—>00
Let ¢ > 0. Then

lim y/(t) = —ac(l +c¢),
=00

which leads to a contradiction with y(t) > 0. Therefore ¢ = 0. This means that
every nonoscillatory solution of (3.20) satisfies

tl—l>nolo (@) =0.
To complete the proof, we prove that every oscillatory solution of (3.20) satisfies
lim y(¢) = 0.
—>00
First, we prove every oscillatory solution is bounded above. Let t, > #; > 0 be
arbitrary two consecutive zeros of y(¢) such that y(t) > 0 for t € [t1,1,], and

assume that y(¢) attains its maximum at £*. Then y (1*) = 0, which implies that
y(* —1) = 0. Letting £, = t* — 1 in (3.22), we have
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*

t*—1
L4+ y(*) = exp (—a/ y@)d;) <o

since y(¢) > —1. Hence y(¢*) < e* — 1. This proves that y(z) is bounded above by
(e* —1).
Define
u= tl_lglo supy(¢) andv = —tl_l)Igo inf y(t). (3.23)
Let € be a positive constant such that, for t > ¢ = t,(¢) > 0,

—v—e<yt)<u+e. (3.24)

If y(T) is a local maximum or minimum with 7 > ¢; + 2, then y(T — 1) = 0, and

T—1
—a(u+¢€) < (In(l1 4 y(T)) =) —a/ y(§)de <a(v+e),
T—2
which leads to
— 14+ exp(—a(u+¢€)) < y(T) < —1+exp(a(v+ €)). (3.25)
From the definition of u, v we see that there is a T > 0 such that y(7T) is a local
maximum and y(T) > u—e,anda T > 0 such that y(7") is a local minimum and
y(T") < —v + €. Hence,
u—e <expla(v+e)—1, v—e <1 —exp(—a(u+ ¢€)). (3.26)
Since (3.26) is true for all € > 0, this leads to

u<e®—1, v<1—e 9, (3.27)

It follows that v < 1 and that, if one of u# and v is zero, then so is the other, and so
lim; o0 y(¢) = 0. Therefore, we assume in the following that

u>0, O<v<l. (3.28)
If « < 1, then from (3.27), we have
l+u<e’ <exp(l—e™),
and this implies that

l4+u—exp(l—e™) <0. (3.29)
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Howeyver, since u > 0, we have
I14+u—exp(l—e™)

u uj
= / / (1—e")exp(l —e™ —up)dusduy > 0,
0o Jo

a contradiction with (3.29). This proves the theorem when o < 1.
Now we assume that ¢ > 1. Let 7 be a maximum or minimum point such that
T >t +3,sothat y(T —1) = 0.Fort > 0

—1 T2
(1 + y(0)) = —a / it =a / (@),

—1

andsoforty +1 <t < T — 1, by (3.24) we have
—a(v4+e)(T—t—1)<In(l+y@) <a(m+e)(T —t—1).
Hence,

—1 +exp{—a(v+e)(T —t —1)}
< y(@) < —1+expla(u+e)(T —t — 1)} (3.30)

Let t € [0, 1] be an arbitrary constant. The inequalities (3.24) and (3.30) yield
In(1 + y(T))

T—1 T—1—t T—1
=—a/T y@)dz:—afm y@)dé—a[ y(©)de

- T—1—1
T—1
<a(l—7)(Wv+e)+ a/ (1— e—oz(v+e)(r_,_1))a,§
T—1—1
< a(l— 1)+ €) + ar — L=z £ O] .
V+e€

and

In(1 + y(T))
T—1
> —O[(l _ 'C)(M + 6) + Ol/ (ea(u+e)(T—l—l) _ l)dé‘

T—1—1
[1 —exp{—at(u+ €)}]
u+e '

> —a(l—1)(u+¢€)+ar+ (3.32)

We can find (as before) 7" such that y(T) > u — €. Using this in (3.31) and letting
€ — 0, we obtain
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[1 —exp{—atv]}

Inl+u) <a(l—1)v+oar— . (3.33)
Letting T = 1, we get from (3.33) that
In(1 4+ u) < a— [l_ex—i’(_“vn. (3.34)
If v > —In(1 — v), we may let t = —In(1 — v)/av in (3.33) and obtain
In(l 4 1) < v — (——")In(1 —v) — 1. (3.35)

\4

Next, we choose a minimum point 7 for which y(7") < —v+e€. Using this in (3.32),
letting € — 0 and setting

In(1
-L':n(—_'_u)fl
ou

)

we obtain

14+u
u

—In(1 —v) <ou-— In(1 + u) + 1. (3.36)

We now claimif 1 <@ <3/2,u > 0andv > 0 then

v? u?
ln(1+u)<v—g, and —1In(l—v) <u+ 5 (3.37)

The claim follows at once from (3.34) and (3.36) if we show that

3

av—1+e @ <y?— %, (3.38)
whenever
3
o< 5 av < —In(l —v), (3.39)
and that
3 1—v 1 V2
- 1 -1 - —, 3.40
2v+( y )n(l—v) V7% (340)
and

3 1 2
S (VY mtwy + 1 <ut L (3.41)
2 u 6
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Since u > 0, we have

AI+w)n(l+u)—u

:[OM(/OS1€:-90)‘]S>/ /(I—Q)deds—

which is (3.41). Also, since 0 < v < 1, we have

N|:N
|
o S,

v—(l—v)ln(

1
)
1—v

v s 4o v2 v3
= ds > 1+ 0)dods = — + —
/0(/01—9)s//(+) =2t

which is (3.40). It remains to be proved that (3.38) is true whenever (3.39) is true.
Let W =1 —e™". We have from (3.39) that

av —In(1—v)
av—14+e ™ = / (1—e"dw < / (1—e™)dw
0 0

%
= | —aw
y W—1

2

1 v v
< / WdwW = ————.
1—vJo 2(1—v)

If 0 < v < 0.45, we have

2

V 1%
—— < 0.925 < V(1 — -),
2(1—v) ev=9)

and so we have (3.38) for such a v. Since o < 3/2, we have

av 3v/2
av—1+e* = / (1—-e")dw < / (1—e™™)dw
0 0

IA

3v/2 1 5 1 3
- = —w’)d
/0 (w 2w + 6w) w

9 9 27
A S B

v,
8 16 128

and the last expression is less than v — v*/6 provided that

81v* — 152v + 48 < 0,

76 1888 43.45\2
v - 4, Y b
81 (81) 81

which is equivalent to
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90

and this is true when

(76 — 43.45)

and so certainly for v > 0.45. This proves the claim. Let v = v3(u) be the smaller

root of
2
V3

In(1 +u) =v3 — r

Clearly, v3 > 0. We also define v4 by
2

u
—ln(l—V4):u+€.

Equation (3.43) yields
2

vy =1 —exp{—u— %} <u.

Hence by the claim above, we have
O<wvy<v<wv<u.

Thus,
1 d 1 d
du _y_n dv
14+udv; 3 1—vs du 3
and so

R R R}

dV3
Hence, by (3.42) and (3.43), we have
dV4
ln(d—) =In(1 + u) + In(1 + u/3) + In(1 — vy)
V3

+ In(1 —v3/3) < %{ln(l +u) —u} <0.

Then,
d(vy —v3)/du <0,

(3.42)

(3.43)

(3.44)
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and so (note v4 — 0 and v3; — 0 as u — 0) we have v4 < v3 for u > 0. This
contradicts (3.44) and so for 1 < @ < 3/2 we must have

u=v=0.

This completes the proof. n

3.1.3 Global Exponential Stability

In this subsection we discuss global exponential asymptotic stability. Motivated
by (3.1) in this subsection we examine the problem,

X (1) =—rx(t —0)[1 +x(1)]. r. 7€ (0, 00). (3.45)
We consider solutions of (3.45) which correspond to the initial condition

x()=¢(), for —t <t <0, ¢ € C[-1,0] (3.46)
1+ ¢() =0 for t € [-7,0] and 1 + ¢(0) > 0. '

By the method of steps we see that (3.45), (3.46) have a solution x with 1 +
x(t) > 0 for ¢ > 0. The results in this section are adapted from [85].

Lemma 3.1.1. If x is a nonoscillatory of (3.45), (3.46) then lim;_, 5o x(t) = 0.

Proof. Suppose x is eventually positive, so x'(t) < 0 for ¢ large. Thus
lim; 00 x(t) = [ > 0. Since x is bounded then x’(¢) is bounded and hence
by Barbalat’s Theorem (see Sect. 1.4) lim;—o x'(¢) = 0. From (3.45) we have
O0=—-rl(1+41[).Thus/ =0

Suppose x is eventually negative, so x’(¢) > 0 for ¢ large and so we have
lim; 00 X(t) =m < 0. Also0 = —rm (m +[). Note 1 +m > 0. We need to only

consider the case when m = —1, and in this case for ¢ large x'(¢) < —r(1 — %) %
which yields lim;_,» x(¢#) = —o0, a contradiction since 1+ x(¢) > 0. Thus m = 0.
|

We say that the trivial solution of (3.45) is globally exponentially asymptotically
stable if for any solution x (¢) of (3.45) corresponding to a given initial function

¢ : [-1,0] > R, where ¢(0) > —1,
then there exist positive numbers 7, M, § such that

lx(t)| < Me™*, for t > T.
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To prove the main results, we need an estimate on the lower and upper bounds of
the oscillatory solution of (3.45).

Lemma 3.1.2. If x(t) is a solution of (3.45), (3.46), then there exists a number
To > 0 such that

exp(—rt(e™ —1)—1<x(@t)<e"—1,t>Ty. (3.47)

Proof. If x(t) is a nonoscillatory solution of (3.45), then by Lemma 3.1.1 1 +
x(t) = 1l ast — oo and there exists a #; > 0 such that (3.47) holds.

Suppose that x is an oscillatory solution and let {z,} be a sequence of zeros of x
such that lim,, ;o 1, = 00. Let t* be the point where x attains its local maximum.
Then, from (3.45), we have

0<x(t*)=—rx(t* =)l +x1").

and therefore x (t*—1) < 0, and as a consequence of this, there exists { € [t*—1, %]
such that x(¢) = 0. An integration of (3.45) over [, *] yields

In(x(@t*)+1)=—r /;* x(t—1)dt <r : dt =rr,
t*—1
SO
x(t*)+1<e". (3.48)
Since x(¢*) is an arbitrary local maximum, then
x@®)+1<e”™ fort>rn (3.49)

where t; is the first zero of the oscillation solution. Let ¢** be the point where x
attains its local minimum. Then (like above) there exists y € [t** — , 1**] such that
x (@) = 0. An integration of (3.45) over [, t**] using (3.49) yields

1F*

—r/ (e"" —1)dt
n

*

t
(" —1) dt = —rz(e'" = 1),

1x*

v

In (x (™) + 1)

v

-7

implying

x(@*) + 1> exp{—rz(e™ - 1)}.
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Since x (¢**) is an arbitrary local minimum then
x(t) = exp{—rz(e'" — 1)} — 1, fort > 1. (3.50)

This completes the proof. u

Note if we use the lower bound in (3.47) then we can obtain immediately that
14+ x() <exp(rt(l—exp(—rz(e'" —1)))) for t > T, > T.

Now, we are ready to prove the main result for the global exponential stability
of (3.45).

Theorem 3.1.3. Assume that r, T € (0, 00) and satisfy
rrexp(rt(l —exp(—rz(e™ " —1)))) < 1. (3.51)

Then the trivial solution of (3.45), (3.46) is exponentially globally asymptotically
stable.

Proof. We rewrite (3.45) in the form
x (1) = —a(t)x(t — 1), (3.52)

where a(t) = r[1 + x(¢)] and define u by

u=o() = /la(s)ds, >t

4]

where £ is a nonnegative number. By Lemma 3.1.1 and Lemma 3.1.2, we note that
o~ !(.) exists and u(t) — oo, as t — oo. Furthermore

o~ (u) o~ (u)
o(t—1)=u —/ a(s)ds, t—t=0""(u —/ a(s)ds | .
o~ (u)—t o~ (u)—t

x(t) = x(07 W) = y(w),

Let

and then y satisfies

d
Oy ), (3.53)

where

o = | T s = /;a(s)ds

“Hu)—t

IA

rrexp(rt(l —exp(—rz(e™"" —1)))).
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We rewrite (3.53) by using the mean value theorem in the form

dy(w) _

T =y + (y(u) — y(u—n(u)))

= —y(u) + )y (). for¢ € [u—n(u),ul.

and for all u for which y(u) # 0,

SE€[u—2n(u),ul

d
P ly@)| < -1y + n(u)( sup Iy(S)I)
u
<—lyw|+n* ( [_szl{p } ]Iy(s)l), (3.54)

where n* is the left-hand side of (3.51). Now, since n < n* < 1, it follows
from (3.53) and (3.54) and Halanay’s Lemma (see Sect. 1.4) that there exist positive
numbers M and « such that

ly(] = Me™", (3.55)
which is also true if y(u) = 0. Thus we have
()] < Me™fatas
< M exp(—aexp(rt[l —exp(—rz(e'" — 1)]) (t — tp)).
The proof is complete. ]
Consider the logistic equation with variable delay of the form

Nt — (1))

N'(t) = rN@t) [1 - e

] , fort >0, (3.56)

where r > 0 and 7(¢) < ¢t and lim; o, T(¢) = 79 > 0. Motivated by (3.56) in this
section we consider

X (1) = —r(1 4+ x(0)x( — (1)) (3.57)
We consider solutions of (3.57) corresponding to the initial condition

x(s) =¢(s), 1 +¢(s) >0, 1 +¢(0) >0, s € [—supt(u),0].
u>0

Theorem 3.1.4. Let 7 : [0,00) — [0, 00) be such that t(t) — 19 > 0, ast — o0
and
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rtoexp(rto(l1 —exp(—rto(e™™ — 1)))) < 1. (3.58)

Then the trivial solution of (3.57) is exponentially asymptotic stable.

Proof. We consider solutions of (3.57) which satisfy 1 + x(¢) > 0 forz > #,. We
rewrite (3.57) in the form

x,(t) =—r(1+x@)x(t —1)+r(1+x@)(x( —1) —x( —1())). (3.59)
Our strategy in the proof is to compare (3.59) with

2 (1) = —r(1 +2()z(t — ), (3.60)

since we know from Theorem 3.1.3 and condition (3.58) that the trivial solution

of (3.60) is exponentially globally asymptotically stable. By the non-linear variation
of constant formula (see [64]) we can represent the solution of (3.59) in the form

t
x(t) =z(t) + r/ (T(t,s,x:)Up)(1 4+ x(s)(x(s — 19) — x(s — t(s)))ds, (3.61)
fort >ty > 0, where z denotes a solution of (3.60) with
72(s) = x(s), s € [—supz(t),0],
t>0

and T'(t, s, x;)Uj is a solution of

AT (t,s, x5)Uo)
ot
T(s,s,x)Uy = x;, =x(s +0), 6€[—1,0],

=—r(T(t,s,x)Up), t>52>0,

associated with the linear variational system corresponding to (3.60). From the
properties of (3.60) we see that there exist numbers By, Bj, f > 0 such that

|2(t)| < Boe P ¢ > 15> 0, (3.62)
IT(t,s,x)Upll < Bie P9t >5>1 >0, (3.63)

for sufficiently large #;. We have from (3.61), (3.62), and (3.63),

t
Ix(1)| < Boe—ﬂ(t—to) + Bl/ e P—9)

1o

X GO)| =@l ds. 1210, (3.64)

where £ (s) lies between s — 79 and s — 7(s), s > #y. Using the boundedness of
solutions of (3.57) (see Lemma 3.1.2), one can estimate x (£ (s)) and therefore
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t

|x(t)| < Boe P 4 B, / e PU=) |19 — 2(s)| ds, t > 1o, (3.65)
to

for some constant B, > 0 representing an upper bound of x/(t) for t > t,. An
application of the Gronwall-Bellman inequality (see Sect. 1.4) to (3.65) leads to

1 t
|x (1) < BpeP exp (t (—,B + Bz;/ |to — T(s)| ds)) . (3.66)
4]
Since t(¢t) — 19 > 0 as t — oo, for every & > 0 there exists a #, such that

t
/ |to — t(s)|ds < et, t >t
to

and hence if 1, is sufficiently large we have from (3.66) that
x(1)] = Boe" exp (t (—(B — Bae)). (3.67)

Since ¢ is arbitrary the exponential asymptotic stability of the trivial solution
of (3.57) follows. The proof is complete. |

3.2 A Nonautonomous Hutchinson Model

In this section we examine the nonautonomous nonlinear delay logistic model of
Hutchinson’s type

(3.68)

N'(t) = r()N (1) [1 — M}

K

3.2.1 3-Uniform Stability

Motivated by (3.68) (let N(t¢) = K(y(t) + 1) and @« = r 7) in this section we
examine the equation

¥ (1) = —a()y(t — D[+ y(©)], (3.69)

where « is a positive continuous function of 7.
We consider solutions of (3.69) which correspond to the initial condition for any
th>0

y(t) = (1), fortg—1 <t <1y, ¢ € Clto— 1,1

14+ ¢(t) >0 for 1 €[to—1,10) and 1 + ¢(t) > 0. (3.70)
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In this case
14 y(t) = (1 + y (1)) exp™ Jo @@r6=ds o ¢
and so
y(t) > —1, forall ¢ > 1.

The results in this section are adapted from [17,70].

The zero solution of (3.69) is uniformly stable if, for any ¢ > 0, there exists a
8(e) > O such that 7o > 0 and ||| = sup, (g1 [# (@) < 8 imply |y(z;t0, P| < &
for all 1 > 1ty where y(¢; 1y, ¢) is a solution of (3.69) with the initial value ¢ at #,.

We need the following lemma in the proof of the main result.

Lemma 3.2.1. Suppose that there exists a constant oy > 0 such that

t
3
/ a(s)ds <oy < 3 for t > 1. (3.71)
-1

Let n € (1,2) be a constant satisfying aon < 3/2 and let y(t) be a solution of (3.69)
on [tg — 1,00) such that y(t;) = 0 for some t; > to + 1 (ty > 0). Then, for any
p<n—1|y@)| < pfort € [to — 1, t1] implies |y(t)| < pforallt > t,.

Proof. Suppose that it is not true. Then there exists #, > t; such that

ly@)|=p, [y(2+0)]>p
for a sufficiently small t > 0 and |y ()| < pfort; <t < t,. We assume y(t;) =
o > 0 (since the proof in the case when y(z;) = —p is similar). Hence, there exists
at; € (f,1, + 7) such that
y/(t3) >0 and y(t3) > p. (3.72)
From (3.69), it is easy to prove that there exists #4 > #3 such that y/(t4) = 0 and

y(ts) > p. Clearly t4 < t; + 1 and y(z4 — 1) = 0. Since |y(¢)] < p for all
tefto—1,1],

VO] = @@y = DI+ 1O < prat), 1 € 1 - 1.12),
and hence
@ =Dl =|y(ta=1) =y =1

14—1
< / pna(u)du, t €[ty —1,1].
-1
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Consequently, for all ¢ € [ty — 1, 1,]

14—1
()] < min{pnaa), prla) /_1 oe(u)du} .

Thus

p=yn)= /21 ¥ (s)ds

IA

/tz min {pna(s), onta(s) /14—1 a(u)du} ds.
1—1 s—1

Ifnft:“_l a(s)ds < 1, then

5] 14
y(t2) < / pna(s)ds < / pna(s)ds < p,
14—1 14—1

which is a contradiction.
If nflztl a(s)ds > 1, choose ¢ € (0, 1) such that 1 f;ﬂlw a(s)ds = 1. Then

y(t2)

t4y—1+q 71 14—1
< / pna(s)ds + / onta(s) / a(u)duds
t4—1+q s—1

1y

t4—1
14 t4—1+q ta—1
= pn2/ 77/ a(s)a(u)duds + pn? / a(s)a(u)duds
ty—1+q t4—1 s—1

1 2} s 2
< prao— 301" [ ( / a(u)du)
2 ty—1+q ty—1+q

1 3 1
—P(’?Olo—z)<0(§—§)—,0-

t4—l+q

This contradicts the assumption y(#;) = p. The proof is complete. |

Theorem 3.2.1. Suppose that there exists a constant oy > 0 such that (3.71) holds.
Then the zero solution of (3.69) is uniformly stable.

Proof. Let n € (1,2) be such that noy < 3/2. Then for every € € (0,7 — 1) we
choose a § = §(¢) > 0 so small that

p:i=(1+ S)eao‘ge“‘)(“”)ew_l) —1l<e.
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Consider a solution y(t) = y(¢;ty,¢) of (3.69) with 5 > 0 and with ||¢| =

SUP, e(ro—1.10] |9 (£)| < 8. Suppose that |y(#4)| > p for some #4 > fo. Then it follows
from § < p that there exist constants #, and 73 such that

<ty <tz =ty [y®)=p |y@)|>p |y@]<p
forallt € [ty — 1,1,), |y(t)| > p forall t € (t,,13], and V' (t3)y(t3) > 0. Suppose
that y(¢) > 0 for t, <t < t3 (the case when y(z) < O is similar so the proof is

omitted). It is easy to see from Lemma 3.2.1 that there exists a t; € (t3 — 1,13) such
that y(t;) = 0. Fort € [to, tp + 1], we have

[In(y(r) + D]'| < 8e(2).
and hence

|lIn(y(r) + D]
=< |[In(y () + DI + [In(y(z) + 1) — In(y (%) + 1|

t
<In(l+94)+ 5/ at) <In(l +68) + Sag,
fo
and therefore, we have
y(t) < (1+8)e™™ —1,

and

1 —50{0_
(@) = a ¢

That is
ly(®)| < (14 8)e®™ —1 < p, t€[to. 10 + 1].
Similarly, fortp + 1 < t < ty + 2, we can show that
PO < (1 + 8)et0eno =D _ 1 = p
Therefore, we have t3 > fy + 2 and hence, t; > 3 — 1 > 9 + 1. Therefore,

|y(¢)] < pholds for ¢ € [ty — 1,¢;]. Thus by Lemma 3.2.1 we have |y(¢)| < p for
all ¢ > t;, which contradicts the assumption that |y(#3)| > p. Hence if , > 0 and

ol = SUP; [1p—1.10] | ()| <3, then
|y(t;t, )| < p < e, forallt > t.

The proof is complete. u
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3.2.2 3-Global Stability

In this subsection we examine the %-global stability of (3.69). We consider the
solution of (3.69) which corresponds to the initial condition (3.70). The results in
this section are adapted from [68].

Before we state and prove the main results we prove the following lemma which
will be used in the proof of the main results.

Lemma 3.2.2. Let 0 < B < 1/2. The system of inequalities
u=< e P 1,

(3.73)

p<1—e b
has a unique solution (u,v) = (0,0) in the nonnegative quadrant {u,v) : v > 0,
u > 0}.

Proof. Assume that (3.73) has another solution in the first quadrant of the v — u
plane besides (0, 0), say (vo, up). Then uy > 0 and 0 < v < 1. Define T'; to be the
curve:

and I'; to be the curve:

Clearly

du d*u

=== =1-28
dv | dv? 0.0)

d3

d—l: =1-68, forly,
V7100

du d*u

d_ = 1, ﬁ =1 —2/3,
V10.0) V7 10.0)

d3

X =122 -6p+2, forl.

dv 0.0)

Hence I'; lies above I'| near (0, 0). The existence of (v, ug) implies that the curves
I'; and I', must intersect at a point in the first quadrant besides (0, 0). Let (vy, u;)
be the first such point, i.e. v; is smallest. Then the slope of I'; at (u;, v;) is no less
than the slope of T'; at (u, v;), i.e.
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2 1 2
1—28v evl-/ﬁvl > eu1+/3ul ,
( Bvi) =15 280,

or
1 =28v)(1 +2Bu;) > etV TAVTHu)
Let
p(x)=1- e P _
Then ¢(0) = 0 and ¢’ (x) < 0, for x > 0, since 28 < 1. Thus
¢(x) <0 forx >0and vi = ¢(uy) + u; < uy.
Then u; > v;. Using the inequality e* > 1 + x (x > 0), we have
1+ 2B —vi) — 4B%uvy > 14 up — vy + BV + uy),
or
(=14 28)(ur — v1) = 4B%uv1 > B + uy),

which is a contradiction since 0 < 8 < 1/2. This completes the proof. ]

Lemma 3.2.3. Assume that

/Iil a(s)ds <

Let y(t) be an oscillatory solution of (3.69), (3.70). Then y (t) is bounded above and
below from —1 fort > 0.

NSNS

, foralllarget. (3.74)

Proof. Letty > 0 be large enough so that (3.74) holds for all ¢ > #;. Let t* be a local
maximum point of y(¢) (t > to+ 1). Then y (¢t*) = 0 and by (3.69) y(t* — 1) = 0.
Integrating (3.69) from * — 1 to ¢*, we have

1+ y(t*) — e—f[t:_lot(s)y(s—l)ds.
Since y(s — 1) > —1, by (3.74)

L4 (%) < elfemais < 312
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and y(t*) < e*? — 1. Consequently,

lim sup y(r) < e —1.

—>00

Next, let ¢, be a local minimum point of y(¢) (¢ > ty + 3). Then
y/(t*) =0 and y(tx — 1) = 0.
Integrating (3.69) from z,. — 1 to ¢, and using the fact that
yis—1)<e’?—1,

we have

|4 (1) > eliim@@=¢"2ds _ (=@ =D [Z_ (s 5 o=*=D3

Hence,
V() = e @03
and

lim infy(f) = e~ @7V — 1 > —1.
—>00

The proof is complete.

The following inequalities were used previously and will be used in the following

theorem. Note

3 1— 1 1

Ev—i-( V)ln(l—_v)—lfv—gv2,05v<l,
> 1[1 EE L2 0<v<l
———|l—e — =y, 0< .
5 N sV 6V v

Note that if ; > 3, then we have
3 1
Eul —In(14+uw) <u + guf
For 2 < u; < 3, we have

! <3<2+13<12+1(1+ )
= - <= n - n ,
25273 6! .

(3.75)

(3.76)
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and this implies that

3 1
St —In(1+w) <u + gu%,

and then from u; > 2, we have
3 1
i —In(1 +uy) <u + gbt%,

3 1 In(1 1
—u——( + ) In( +M)+1§u+—u2, 0<u.
2 u 6

Theorem 3.2.2. [f(3.74) holds, and

o0
/ a(t)dt = oo,
0
then every solution y(t) of (3.69), (3.70) satisfies

lim y(¢) = 0.
—>0o0
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(3.77)

(3.78)

(3.79)

(3.80)

Proof. First, let y(t) be an nonoscillatory solution of (3.69), (3.70). Then there
exists a fo such that y(¢) is of one sign for ¢ > #,. Without loss of generality we
consider the case when y () < 0 for ¢ > f, (since the case when y(¢) is nonnegative
is similar). Since 14 y(¢) > 0, by (3.69) we have y/(t) > 0. Thus y(¢) is increasing

and

lim y(t) = —c <0, exists.
—>00

Integrating (3.69) from 7y 4+ 1 to z, we get
—In(1 + y(¢)) + In(1 + y(to + 1))

= /t a(s)y(s—1)ds < —c /l a(s)ds.

o+1 to+1

From (3.79), the right hand side tends to —oo as t — oo unless ¢ = 0. On the
other hand, the left-hand side has a finite limit. Therefore ¢ = 0. Hence every

nonoscillatory solution y(¢) of (3.69) satisfies (3.80).

To complete the proof we need to prove also that every oscillatory solution
satisfies (3.80). Let y(¢) be an oscillatory solution of (3.69). By Lemma 3.2.3 y(¢)

is bounded above and below away from —1 for # > 0.
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Let

u=1lim sup y(t), —v= limlinf y(t). (3.81)
—>00

—>00

Then
O<v<land 0 <u < o0.

To complete the proof it suffices to prove that u = v = 0. For any &, choose
to = to(e) such that

—m=—v—e<ylt-1)<u+e=u, fort>rn,

We assume that ¢ is small enough so that 0 < v; < 1 and 7y is large enough so
that (3.74) holds for r > t, — 2. Using (3.69), we have

V() a@l +yOvi, ¢ =1, (3.82)
and

Y 0) = =+ yOlu, > 1. (3.83)
Let {¢*} be an increasing sequence such that t* > 1o, y'(¢*) = 0,

lim 7 =00 and lim y(¢)) = u.
n—>o00 n—o0

By (3.69), y(¢t; —1) = 0. Fort € [¢tF — 1,¢7], we can integrate (3.82) from ¢ — 1 to
ty — 1 and get

¥ —1
—In[l+y@—-1] < V1/ a(s)ds,
-1

or
Yt —1) = —1 4+ e T 0O o e [1F — 1,1,
By (3.69), it follows that
’ 'f;xk_l
y (@) =a@®[1+ y@)] [1 — e ““)ds] te =11

Combining this with (3.82), we have

(In[1 4 y(1)])" < min {a(l)vl, a(t) [1 _ e lamf“]} , (3.84)
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fort €[ty — 1,¢7]. We prove that

1
Infl + ()] < vi = =07,

There are two possibilities.

Case 1. [li_j a(s)ds < -0,

Then by (3.84) we have

mu+ﬂ¢ﬂs/

i

ity —1 )
() [1 — el Dt(S)d.s:| dt

t¥—1

k-1

ty
— / Ol(t) [1 N e—vl f,t—l a(s)ds+vy '/;:;k_] a(s)ds:| dt
tl

e r
= / a(r) [1 — T ffﬁ‘—l‘*(s)ds] dt
‘

k-1

t tr
=/ a(t)dz—e_%"‘/ oz(t)evlf’fffla(s)dsdt
1

-1 t¥—1
tr)tk 1 f;xk
_3 v a(s)ds
= / a(t)dt —e 2" — |:e s _ l]
tx—1 Vi
n

k-1 Vi

*—

The function

1
o(x) =x — —e‘"l(%_"‘)(l —e Y,
Vi

is increasing for 0 < x < 3/2. Thus for

we have

o In(1 — 3
/ a()dr < -4 =) _ >
t

k—] Vi

_ln(l — 1) B le‘”(%W) [1 _ eln(]—vl)]
Vi Vi

_ln(l — Vl) _ e—v1(%+7ln(lvilvl)).
Vi

In[1 + y(z,)]

IA

105

t;’k - 3 )tn* $)ds IT
= / a(t)dt — ie Vl(z ft,;k_] ot(s)dA) [1 e ft}_la(s)ds] .
t’
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Using the fact that e™ > 1 — x for x > 0 and (3.75) we have

(1—=vy)In(1 —vy)
Vi

1
—lfvl—gvf.

3
In[1 + y(z7)] < EVI -

For

Vi

a 3 In(l-
/ Oé(l)dl <-< _n(—v])’
=1 2

*
n

we have
t*

mn+ﬂ¢ns/"

tF—1

0 N ¢
a(t)dt — 1 |:e%”ev1 f—a@ds _ egv‘:| :
Vi

The function

fy = x— Lot
V1

is increasing for 0 < x < % Thus by (3.76), we have
301 3 1
S L] BN
Case 2.

N W

— by
t/

Vi *—1

Choose 7 € (0, 1) such that

ftn a(s)ds = —M.

* V1

tk—t
Then by (3.84) and (3.74),

In[1 + y ()]
-t ¥ e
= / a(s)vids +/ a(t) |:1 — el Ol(S)dS] dt
t

* __ *
o —1 tF—t
t*

n T ZIT
< v1/ a(s)ds —1—/ a(s)ds
t}’l

-1 tE—1
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*
Iy

eV a(t)e” S ®ds gy
tE—1

*

t:_f [
= Vl[ a(s)ds +[ a(s)ds
ll

* *
F—1 tF—t

__e_

1 3 v ft’?‘ a(s)ds v ft';k_roz(s)ds
vi(3) e Uk —e ey
Vi

t:‘—‘[ tr:k
= v|/ al(s)ds +/ a(s)ds
t

=1 t¥—t

_le—vl (%—ft’é;il ot(s)ds) [1 _ e—vl j'tg’;kta(x)dsi|

Vi

t*

* *
Iy —t n -V (%— :1_] Ot(S)dX)
= a(s)ds + a(s)ds —e n
tE—1 tF—1

0 0 —(2- [E a(s)ds
= / a(s)ds + (1 —vy) a(s)ds —e '<2 Jif—ye® )
¢

k-1 tE—1
3 (1 —=v)In(1l —vy)
v — _
Vi

IA

1.

Since,
g(s) =vix — e_vl(%_x),
is increasing for 0 < x < 3/2 we have
In[l + y(2,)] <vi — év%
Letting n — oo and ¢ — 0, we have
In[l +u] <v-— %vz.
or

u<e e 1. (3.85)
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Next, let {s*} be an increasing sequence such that s* > 7, + 1, y'(s*) =
0, limy—o0 ¥(s) = —v and lim, . 5, = 00. We show that

. 1
=Infl + y(sD] < + cuj.

Fort € [sy — 1, 5], integrating (3.83) from t — 1 to s, — 1, we have
sp—1
In[l14+y@—-1]<u / a(s)ds,
t—1
or

sp—1
y(@—1) < —1+exp <u1/ a(s)ds) .
-1

By (3.69)
[In(1 + y(©))] = —a(r) [e“l ST s _ 1}, fort e [s¥—1,5*].  (3.86)

There are three subcases to consider.
Case (I). fsﬁf_l a(s)ds < 1.
Integrating (3.83) from s — 1 to s, we have

*
i

1 1
iy < [ aGds su <+ g

*__
syi—1

Case (11).

*

5 In(1
1</ w(s)ds < 3/2— @)
sy—1 up

Clearly u; > 2 in this case. We have by (3.77) that
. sy 3 1 )
—In(1 4+ y(s;)) <y a(s)ds < Eul —In(14+w) <u + Eul'
sE—1
Case (11I).
In(1 t
3/2—M <f a(s)ds <3/2.

up x—1
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Choose 7 € (0, 1), such that

sy—T In(1
/ a(s)ds:S/Z_M.

=1 u

Then by (3.83) and (3.86), we have

—[In(1 + y(r))]" < min {a(t)ul,a(t) [eulﬁ“iflwm - 1}} :
Consequently

—In[l + y(s;)]
/" a(s)uds + / ' a(t) I:g“lffil_la(s)ds _ 1] dt

=<
sy—1 sE—t
sy .
<u (é _ M) + e%ul / a(t)e—ulfj’ﬂ;,la(S)dsdt
2 i sF—t

301 1
_[ a(t)dt = u (_ _ M)
sE—t 2 uj

- [em(i—f;;:‘fa(s)d) —eul(%_ﬁ%la@)d)} B /S" a(t)de.
S,

uj *—t

31
<u (__M)
2 IZ51

1 3 s s
+— |:1+u1—1—u1 (——/ oz(s)d):| —/ a(t)dt
u 2 sF—1 sE—1

n

due to the choice of 7 and since e* > 1 + x for x > 0. Thus

—In[1 4 y(s;)]
<u (% - w) 412 +/ oc(t)dt—/sn a(r)di

uj 2 sE—1 sE—t
3 Inw+1D) 1 St
= )= t)dt
“ (2 Ui 2t /;;—1 @)
3 In(u; + 1)

IA

1 —In(1 4+ u) + zu —
2 up

1 In(1 3 1
_ () Ing +M1)+—ulful+—“%
uy 2 6

=1

109
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by (3.78). Thus we have shown that

1
—In[l + y(s)] <us + guf
Letting n — oo and ¢ — 0, we have

1
—In(1—-v) <u-+ guz.
or

Ly

1—v>e "4,
Since u,v satisfy the inequalities in (3.73) with § = 1/6, by Lemma 3.2.2
u = v = 0. This completes the proof. ]

In the following we discuss the periodic delay logistic equation

N'(1) = r()N () [1 - %] , (3.87)

with the assumption that n is a positive integer, t is a positive constant, r, K are
positive continuous periodic functions of period t. With (3.87) assume

{ N(t) = (1), fornt <t <0, (3.88)

¢ € C[[-nt,0],RT], ¢(0) > 0.

We note that if (3.87) has a periodic solution of period t, then such a solution is also
a periodic solution of the periodic logistic equation

N'(t) = r(1)N() [1 - M} .

<0 (3.89)

Conversely if (3.89) has a periodic solution of period 7, then such a solution is
also a periodic solution of the periodic logistic equation (3.87). The unique periodic
solution N* of (3.89) is given by

o) s -1
N* = [ A —Ir(((tl—_ss)) exp (—/0 r(t — u)du) ds:|

1 —exp(— [, r(s)ds)

N Ir(((tt_—ss)) exp (— [y r(t —u)du) ds’

In the following, we establish some sufficient conditions for the global stability
of (3.87). The result is adapted from [86].
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Theorem 3.2.3. Assume that r and K are positive continuous periodic functions of

period t > 0. If
nt
/ r(t)dt <
0

then the periodic delay equation (3.87) has a unique periodic solution N*(t) and
all other solutions N(t) of (3.87), (3.88) satisfies

(3.90)

[\SRINON]

lim [N(t) = N*(t)] = 0, (3.91)
—>00
Proof. Let N(t) be any positive solution of (3.87), (3.88) and define v such that
In[1 +v(#)] =InN@) —In N*(). (3.92)

and note that v is given by

% = —a@®)[1 + v(@)]v(t — n7), (3.93)
where
a(r) = %m(t) (3.94)

It is sufficient to prove that the solution of (3.93) with the initial condition

14+v(s) >0, 1+v(0) >0, fors € [-nt,0],

satisfies
lim v(z) = 0. (3.95)
—>00
We let
t
w=o(t) = / a(s)ds, (3.96)
1o

where 1, is any nonnegative number and note that w — oo, as t — oo and o~ (1)
exists. Also

t—nt o~ (w)
o(t—nrt) = / a(s)ds =w —/ a(s)ds,

to o~ (w)—nt
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and hence
o~ ()
(t—nt)=0""(w— / a(s)ds). (3.97)
o~ l(w)—nt
If we define
V(1) = v(o™ (W) = z(w), (3.98)

then we have from (3.93), (3.97), and (3.98) that

dz(w)
dw

—[1 4+ z(w)]z(w — n(w)), (3.99)

where

o~ (w) t nt
n(w) =/ a(s)ds =/ a(s)ds =[ a(s)ds. (3.100)
o t—nt 0

—l(w)—nt

From the fact that N * is a positive periodic solution of (3.89) of period t we have

. nt (N*)/(s) _ nt B nt
O—/O N*—(s)ds_/o r(s)ds /0 a(s)ds,

and hence

/ " (s)ds = / " ats)ds.

Thus (3.99) simplifies to

dz(w)
dw

= —[1 + z(w)]z(w — /Onr r(s)ds), (3.101)

which is the familiar autonomous delay logistic equation. Now, if (3.90) holds, then

by Theorem 3.1.2 (here in Sect. 3.1.2, ¢ = 1. fom r(s)ds) we have lim,,_, o z(W) =

0 and then by (3.96) it follows that lim, .o v(t) = 0. The proof is complete. |

3.2.3 Global Exponential Stability

Motivated by (3.68) in this section we consider

Y (1) = —r()(1 + y()y(t — 1) (3.102)
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where © > 0. We are interested in solutions of (3.102) corresponding to the usual
initial condition ¢ of the form

14+¢(s) >0, 1 +¢0) >0, se[-10].

Theorem 3.2.4. Let r be a non-negative continuous function defined on [0, 00) such
that

o
/ r(s)ds = oo forany ty > 0, (3.103)
to
and
t

lim/ r(s)ds =r*.

=00 J,_.
If

r*exp(r*(1 — exp(—r*(e_’* -1)) <1,

then the trivial solution of (3.102) is exponentially globally asymptotically stable.

Proof. Let x(t) be a solution of (3.102). As in the proof of Theorem 3.1.3 we
introduce the variables u and § where (here £, is a nonnegative number)

u=246@)= /[ r(s)ds,

to

and
x(t) = x(7' () = z(u),

so that

dz

— = —(1 + z(w)z(u — 8+ (u)),

du
where

8x(u) = /t r(s)ds.

Since

t
lim 84 (u) = Ilim / r(s)ds = r*,
—>00 t—1

u—>00

the conclusion follows from Theorem 3.1.4. The proof is complete. ||
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Motivated from (3.56) we consider
x (1) = —r()(1 + x@)x(t — 7(1)). (3.104)
We consider solutions of (3.104) corresponding to the initial condition ¢ of the form

14+¢(s) >0, 1+ ¢0) >0, se[—supr(n),0].

u>0

Theorem 3.2.5. Assume the following.
(i) ris a nonnegative continuous function defined for t > 0 such that
o0 o0

/ r(s)ds = oo, and [ r(s)e”“ds < oo, foranya > 0;  (3.105)

(ii) t is a continuous real value for t > 0 such that there exists a positive constant
T satisfying
o0 t

/ |T(s) — 10| r(s)ds < oo, and lim,_wo/ r(s)ds =r*.

If
r*exp(r*(1 —exp(—r* (e = 1)) < 1, (3.106)

then the trivial solution of (3.104) is globally asymptotically stable.
Proof. We rewrite (3.104) in the form

x/(t) =—r)A+x@))x(t—1)+r@®)A+x@))(x(t —10)—x(t—7(t)), (3.107)
and compare it with

Y (1) = —r()(1 + y(O))y(t — 1), (3.108)

since we know that from Theorem 3.2.4 that the trivial solution of (3.108) is
exponentially globally asymptotically stable. The variational system associated
with (3.108) is

dy (@) _

= Oy =) = r O+ YO =), (3.109)

where y denotes any solution of (3.108). Since y () — 0, as t — oo exponentially,
we have immediately from (3.105) (second condition)

/oor(s)y(s)ds < 00,
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implying

tl_l)I‘élo /:m r(s)y(s)ds = 0.
We now let
A@0) = r()y( - ),
72(t) = ¥ (t) exp (/Tt A(s)ds) , fort > T > 1.
Note that (3.109) simplifies to

Z(t) = -0@t)zt — w),

where
0 = r 1+ yoye ([ awids):

since y(t) — 0, and

t
exp (/ A(s)ds) — 0, ast — oo,
1—10

we have

—>00

t
lim [ O(s)ds =r*.
=10
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(3.110)

(3.111)

(3.112)

(3.113)

It follows from (3.113) and Theorem 3.1.3 (see the proof in Theorem 3.1.3) that the
trivial solution of (3.111) is exponentially globally asymptotically stable. We have

from the nonlinear variation of constant formula

¥(t) = x(1) + / (T(t, 5, %) Xo)r (s)

X(1 4+ x(5))(x(s — 10) — x(s — (5)))ds,

(3.114)

where x is any solution of (3.104). By the boundedness of all solutions of (3.104)

we have for some constant K,

<& [ 1TCs )X )| ¥ €Ol - 260}l ds

o0
< KZ/ r(s) |t —t(s)|ds - 0, ast — oo,
t

foo(T(t, 8, X5) Xo)r (s)(1 4 x(5)) (x (s — 70) — x(s — 7(s)))ds
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where (s) lies between s — 7p and s — 7(s), s > ty and K; is a positive number
such that

[(T(5.2) Xo)|| IF(9)] [x' (€ (6)| = Ko for some 1 = 5 = 0.

The conclusion follows from (3.114) and (3.105). This completes the proof. |

3.3 A Generalized Logistic Model

In this section we consider the generalized model

N'(t) = r()N@) f (1 - W) . (3.115)
Motivated by (3.115) in this section we consider
YO =r@0 +y0) f(=y(t — (1)) (3.116)

where r and t are continuous functions defined on [0,00) such that r(z) > 0,0 <
7(t) < v (let tp = sup,. t(t)), f is a continuous function on (—oo, oo) such that
vf(y) > 0for y # 0. The results in this section are adapted from [85].

Under the standard type of initial condition

14+ ¢(s)>0,1+¢(0) >0 for s € [-supz(t),0]),

t>0

we see that the solutions of (3.116) satisfy 1 + y(¢) > 0 for ¢ > 0.

Lemma 3.3.1. Assume that
o0
/ r(s)ds = oo.
0

Then every solution of (3.116) is either oscillatory or tends to zero as t — o0
monotonically.

Proof. Assume y is an nonoscillatory solution of (3.116) and suppose that
y(@)>0, y(t—1(t)) >0, fort >T > 0.
From (3.116), since y f(y) > 0 for y # 0, we have y/(t) <Ofort > T, so

lim y(t) =a > 0. (3.117)
—>0o0
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Suppose o > 0. Then y(¢) > ¢ and —y(t) < —a fort > T. Let

—m = sup f(=y(t —z(1)).

t>T

It follows from (3.116) that
V(@) < —mr@)(1+ y(@0) < —mr()(1 +a),

SO
y(t)=y(T) < —m(l + ) /[ r(s)ds — —oo, as t — 0o,
T

showing that it becomes negative for ¢ sufficiently large, and this contradiction
implies that « = 0. The convergence to zero of an eventually negative solution
of (3.116) can be treated similarly and is omitted. The proof is complete. |

Lemma 3.3.2. Assume that
t
/ r(s)ds, is bounded fort > 0. (3.118)
t—1(t)

Then every oscillatory solution of (3.116) is bounded for t > 0, and if y(t) is a
local maximum then

Ik
y(ty) <exp (M/ r(s)ds) -1, (3.119)
k=t (t)

where

M = sup f(-y) = supl S(=y).

y>—1 —y<

Proof. Let {J;} denote a sequence of nonoverlapping intervals on [0,00) such that
y is a zero at the end-points of any Jj and y is of the same sign in the interior of Jy.
Let #; denote a typical local maximum for y. This means that y/(tk) = 0, and this
implies that

f(=y(tx —t(tx)) =0, whichleadsto y(fx —t(t)) = 0.

Assuming that y > 0 on (#; — 7(#), #x) an integration of (3.116) on [ty — t(t;), tx]
leads to

t Tk
(14 36 = [ )£y - wo)ds < M r($)ds,

tr—1(tr) 1 — (k)

from which (3.119) follows. This completes the proof. |
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Theorem 3.3.1. The trivial solution of (3.116) is (locally) uniformly stable if

t
[ r(s)ds — 0, ast — oo. (3.120)
t—1(t)

Proof. Let y denote any solution of (3.116). Let ¢ > 0 be given and

M(e) = sup{| f(=p)I: |yl < &}

There exists a T'(¢) > 0 satisfying

' &
[_I(t)r(s)ds < m, for ¢ > T(S) (3121)

We show that for any

1
¢ :[to—70,00] > Rito > T(e), ¢l = sup |p@)| < ze,
t€[to—10.t0] 2
|y(t;to, p)| <&, forallt > t. (3.122)

Suppose that (3.122) does not hold. Then there exists a solution y(z) = y(¢; o, )
with 79 > T'(¢) and [|¢|| = sup;ey—ry ) [P0 < %8 satisfying |y(t3)| > ¢ for
13 > to. Let v(y) = y?,

. . e
L=inf{t >t :|y@)|>¢e}, 6y =inf{t <t :|y@)| = 5}.

Note v(y(1)) = &, v(y() = & 16 < v(1) < & fort € (11.1) and

LE)]i=r, > 0.
We claim t; > t, — t(t2). Suppose t; < t, — 7(t;). Now

d
0< d—f@@)mz =2y(t) r(L)[1+y(®)] f(—y(t—t(n). (3.123)

However y(t;) y(ta—t(t;)) > Osince t; < t,—1(t2) < t,, so we have a contradiction
with (3.123). Thus #; > t, — 1(t2).
On integrating (3.116), we have

1 e
S&= @)= ly@)l S/t r($)A + yED (s — ()] ds

5]
<1 +e)Mf(e) r(s)ds < %8, (3.124)

h—1(t2)
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which is a contradiction and hence (3.122) holds. It is well known that solutions
of (3.116) depend continuously on the initial date, from which it follows that for any
to € [0, T(g)], there exists a §(¢) such that if ¢ : [t) — 79, %] — Rand ||¢| < é(e),
then

1
[y (5100, P)| < & (3.125)

Combining (3.122) together with (3.125), we derive the result and this completes
the proof. |

Theorem 3.3.2. Assume that (3.120) holds and

/oor(s)ds = 0. (3.126)
0

Then the trivial solution of (3.116) is globally attractive.

Proof. Tt follows from Theorem 3.3.1 that the trivial solution of (3.116 is uniformly
(locally) stable. We now show that every solution of (3.116) approaches the trivial
solution as ¢t — oo. By Lemma 3.3.1 and condition (3.126), every nonoscillatory
solution of (3.116) tends to zero as t — co. By Lemma 3.3.2 all oscillatory solutions
are bounded on (0, 00).

Let y(¢) be an oscillatory solution of (3.116) which does not tend to zero as
t — o0. There exist ¢ > 0 and sequences {t,}, {t,;} as n — oo such that for each n,
either

Y(t2) =0, y(t,) = £ y(1,) = 0,and 0 < y(1) <,
fort, <t < t,; < tp41 OF
y(t,) =0, y(t,;) = —s,y/(t,;) <0, and 0 > y(¢t) > —¢,

fort, <t <t, <t
We consider the former case since the later case can be treated similarly.
Integrating (3.116) over (%,.t,), and using Lemma 3.3.2 for large n, and letting L

be the bound for (1 + y(s)) f(—y(s — z(s))) on [—79, 00), yields

e = y(t)) — y(ty) < / FS) (1 + y(5) f(=y (s — T(5)))ds

n

In In
< L// r(s)ds < L/ r(s)ds < e,
t l,

7 7
l_r(lll)

n

which is impossible. The proof is complete. |



120 3 Stability of Delay Logistic Models
3.4 Models with Impulses

Consider the impulsive delay logistic model

N'(t) = r(1)N(@) (1 - W) L 1>0, t# 1 (3.127)

where r € C([0,00),RT), = > 0, with the following impulsive condition
N@tF)—K=b (Nt —0)—K). t =1, k=12,..., (3.128)
suchthat 0 < t] < fp < ... <ty < g1 < ... with limgeofy = 00, {bi} is
a sequence of positive numbers with by < 1 and x’(¢) denotes the left-hand side
derivative of x (). The results in this section are adapted from [82].
We consider solutions of (3.127), (3.128) corresponding to the initial condition
N(t) = ¢(t) =0, wheret € [-1,0], ¢ € C[—7,0], and ¢(0) > 0.  (3.129)
From the method of steps, we see that (3.127), (3.128), and (3.129) have a unique
solution N(t) defined on [—t, 00), with N(z) > O for all 7 > 0.
Motivated by (3.127), (3.128) in this section we consider
X () +r(O)x(t —t)1+x@1) =0, t>0,1t# 1, (3.130)
xH) =bex(ty), t=t, k=12,.... (3.131)
We consider solutions x corresponding to the initial condition

{ x(t) = ¢(t) = —1, wheret € [—1,0], (3.132)

¢ € C[—1,0] and ¢ (0) > —1,

and note x(¢) > —1 forallz > 0.
Since 0 < by < 1, we have only the following two possibilities to consider:

o0
H b =0, (3.133)
k=1
and
o0
1—[ by = b € (0,1]. (3.134)
k=1

First, we consider the case when (3.133) holds.
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Theorem 3.4.1. Assume that (3.133) holds, and that

t
/ r(s) 1_[ bk_lds <1 forall large t. (3.135)
-7

S—T<tx<s

Then every solution of (3.130), (3.131), (3.132) tends to zero.
Proof. Let x(t) be a solution of (3.130), (3.131), and (3.132). Then x(¢) > —1 for
t > 0. Set

yoy=x@ [] o' =0 (3.136)

o<t <t

By (3.130), (3.131), we have

YO +a)yt -1 |1+ [] b@)y@)| =0, t>0, (3.137)
0<t <t
where
ay=r@) [] »c" (3.138)
t—T<ty <t

Then a(z) is piecewise continuous on [0,00) and by (3.135) we have
t
/ a(s)ds <1, t>T, forsomelarge T > 2. (3.139)
-7

We need only to prove that y(¢) is bounded. If y(¢) is nonoscillatory, then by (3.137)
|y ()| is eventually nonincreasing, and so y(¢) is bounded. Now we assume that y(¢)
is oscillatory. If y(¢) is unbounded, we prove that

lim supy(#) = oo and lim infy(t) = —o0. (3.140)
—>00 [—>00

Indeed, if lim,;_, o inf y(¢) > —o0, then there is o € (0, 00) such that y(¢) > —«
for ¢t > 0. Thus, by (3.137) we have

YO <aa) | 1+y0) [] be|. t== (3.141)

0<t <t

Lett* > T + 7 be a local left-sided maximum point of y(¢). We prove that y(t*) <
e“ — 1, which implies that lim,_,o, sup y(¢) < e* —1 < o0, and so y(¢) is bounded.
We need only to suppose that y(t*) > 0. Then y (1*) > 0. By (3.137), we have
y(t*—1) < 0. Thus, thereisan* € [t*—7,t*) such that y(n*) = Oand y(¢) > 0 for
t € (n*,t*]. Noting that 0 < by < 1 and using (3.141), we get
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Y () <aa@®)[1+y®]. ten*.t*]. (3.142)

Integrating (3.142) from n* to t* we have

*

In(1+y(*) <« [[ a(s)ds < a,
7]*

which yields y(t*) < e® — 1. Similarly, we may prove that if lim,_oc sup y(t) < 0o
then lim,_, o inf y(¢) > —oo. Therefore, we have shown that if y(¢) is unbounded,
then (3.140) holds.

Now, let {S,} be an increasing infinite sequence such that 7 + 4t < §,, with
S, — oo asn — oo, and y(S,) = maxr<<s,{y()} > 0. Clearly, {y(S,)} is
increasing, y(S,) — oo asn — 00, y/(Sn) > 0. Also, choose s, € (T + 21, S,)
such that y(s,) = miny<;<,, {¥(¢)} < 0. Thens, — oo, y(s,) = —o0 asn — 0o,
and y/(sn) < 0. By (3.137), we have y(S, — ) < 0and y(s, — t) > 0. Thus there
are {, € [S, — 7, S,) and 1, € [s, — T, s,) such that y(¢,) = y(n,) =0, y() >0
fort € (¢,, Sy] and y(¢) < Ofort € (n,,s,]. We easily see that s, < {,. Set

My =y [] b mu=—y6) ] b

0=<tx <&y 0=t <tn

It is clear that 0 < m,, < 1. From (3.137), we have

YO <—a@®y@) | 1+y@) [] @ |. forg, <t <8, (3.143)

Oftk<§n
and
—y' O =a@yES) [ 1+30 [ b |, form <r<s. (144
0<tx <ln

By integration, we have,

Sn
In|1+y@) [] b Smn/ a(s)ds < my,

0=tk <&y n

and

—in|1+y0) [] B §Mn/sna(s)ds§Mn.

0<tr < n
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That is

In(1 + M,) < m,,
—In(1 —my) < M,,

which yields by Lemma 3.2.2 (with u = m,, v = M, and § = 0) that
m, = M, = 0. This contradiction implies that y(¢) is bounded and so the proof
is complete. |

Next, we consider that case when (3.134) holds.
Theorem 3.4.2. Assume that (3.134) holds, and that

o0
/ r(t)dt = oo, (3.145)
0
and
t _ 3
rs) [ bi'ds <=, foralllarget. (3.146)
=t S—T<f}<s 2

Then every solution of (3.130), (3.131), and (3.132) tends to zero.

Proof. Let x(t) be a solution of (3.130), (3.131), and (3.132). Define y(¢) as
in (3.136). Then y(¢) satisfies (3.137). It suffices to show that

lim y(¢) = 0. (3.147)
=0

If y(z) is nonoscillatory, then by (3.137) |y(¢)| is eventually decreasing. In this
case, we easily prove (3.147) by using (3.145) and the fact that 0 < by < 1. Now
we assume that y(¢) is oscillatory. We shall prove that y(¢) is bounded above, and is
bounded below away from —1. Seta(t) = r(#) [],_, <, bk_l. By (3.146), choose

T > 27 such that
t
/ a(s)ds <
-7

Let t*(> T + 2t) be a local maximum point of y(¢) with y(¢*) > 0. Then the
left derivative y'(¢*) > 0, and by (3.137), y(t* — t) < 0. Thus, there exists ¢ €
[t* — 7,t*) such that y(¢) = O and y(¢) > O fort € (¢,t*]. Clearly y(¢t) > —b~!
for t > 0. Thus from (3.137), we have

, fort>T. (3.148)

[\SRINON]

V(1) < =b7a(t)(1 + y(t)), fort <1 <t*,

which yields

In(1 4+ y(t*) <b™! [[ a(s)ds < 3/(12b),
¢
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or
y(*) <) —1,
which proves that
y(t) <e¥/® 1, forallt > T + 2.
Next, let . > T + 37 be a local minimum point of y(¢) with y(zx) < 0. Then

y/(t*) < 0and y(t« — ) > 0, by (3.137). Thus, there exists a ) € [t« — T, ?x) such
that y(n) = 0and y(¢) < Ofort € (n,t«]. For n <t < t4, from (3.137) we have

—y' (1) < (¥ —Dya()(1 + y(1)).

Integrating this from 7 to 7., we get

Ix 3
—In(1 + b y(ts)) < (/@D — 1)/ a(s)ds < zb(eW”) —1).
n

That is

[_1 + e—<3/2>b<e3/‘2”>—1>]
5 ,

y(ts) =
which proves that

[_1 + ef<3/2>b<e3/(2b>71)]
b

y(@) > ,forall + > T 4 37.

Now, set

Ay =lim sup y(¢) and A, =lim inf y(¢).
—>00

—>0o0
Then

[_1 T ef<3/z>b<e3/(2b>71)]

- <A <0< </ _q,

To complete the proof it suffices to prove that Ay = A, = 0. Forany 0 < ¢ <
1 + bA,, there exists 71 > T + 27 such that

—1
7<—ILLEAZ—8<y(t—r)</\1+eE)&, fort > T). (3.149)
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Substituting (3.149) into (3.137), we have

Y s pal+y@) [T b 1=, (3.150)
o<ty <t

Y©) z=hat+y@ [T b 12T (3.151)
o<ty <t

Let {S,} be an increasing sequence such that S, > T} + 27, lim, 50 S, =

0o, y(S;) > 0, lim,00 y(Sy) = Aq, y/(Sn) > 0. By (3.137), we have
y(S, — 1) <0. Thus, there is ¢, € [S, — t, S,) such that y({,) = Oand y(z) > 0
for¢, <t <S,. Set

o, = 1_[ bk.

0=t <ln

Then 0 < «,, < 1 and lim,,_,» &, = b. Now we show that
&n
—a,y() <1—exp —/,LOln/ a(s)ds|, forf, —1 <t <¢,. (3.152)
t

If y(z) > 0, then (3.152) is clearly true. Now suppose that y(t) < 0. Choose
Ly € (t,¢,] such that y(¢,) = 0 and y(s) < O for s € [¢t, {,], and we have

¥ (5) < pa(s)( +apy(s), fors € [1.2,].

Integrating this from ¢ to {, we obtain

& 3
—In[1 +a,y()] < /LOln/ a(s)ds < /LOln/ a(s)ds,
t t

or

El'l
a,y({) <—1+exp |:—,uoz,, / a(s)ds] ,
t

which shows (3.152). Thus for ¢ € [¢,, S,], we have

&n
— oy y(t _T) = -1 + exp |:_/'Lan/
t

-7

a(s)ds:| .
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Substituting in (3.137) and noting that y(¢) > 0 for ¢t € ({,, S,], we have

En
otny/(t) <a@®)[l + a,y ()] |:1 — exp |:—,uoe,,/ a(s)ds:|:| , t €8y, Sh]
(3.153)
From (3.150) we have
any (t) < papa(®) [l + pany(0)], € [En Sal. (3.154)

The rest of the proof is very similar (see [82]) to that of Theorem 3.2.2 and hence is
omitted. |



Chapter 4
Logistic Models with Piecewise Arguments

There is no philosophy, which is not founded upon knowledge of
the phenomena, but to get any profit from this knowledge it is
absolutely necessary to be a mathematician.

Daniel Bernoulli (1700-1782).

When a mathematician has no more ideas he pursues
axiomatics.

Felix Klein (1849-1925).

Differential equation with piecewise continuous argument (or DEPCA) will be
discussed in this chapter. A typical logistic model with a piecewise constant
argument is of the form

dN(1)
dt

= N [1 = N(D]. 120, (“.1)

where [] denotes the greatest-integer function. On any interval of the form
[n,n+1)forn =0,1,2,..., by integrating (4.1), we obtain forn < ¢t < n+ 1 and
n=20,1,2,...that
N(@) = Nn)exp{l — N(n)](t —n)}. (4.2)
Taking the limit as ¢ — n + 1 in (4.2), we find
Nn+1)=Nm)exp{l —Nn)]}, n=0,1,2,.... (4.3)

In this chapter we discuss autonomous and nonautonomous logistic equations with
piecewise arguments.

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology, 127
DOI 10.1007/978-3-319-06557-1__4, © Springer International Publishing Switzerland 2014
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4.1 Oscillation of Autonomous Models

In this section, we establish some sufficient conditions for the oscillation of the
logistic model with piecewise constant argument

dN(t .
dz()_ rN(1) l—jzopj [t—j1|. t=>o0. (4.4)

The results in this section are adapted from [27].
By a solution of (4.4), we mean a function N(¢) which is defined on the set

{-m,—m+1,...,—1,0} U (0, 00),

and which possesses the following properties:

(i) N(¢) is continuous on [0,00).
(i) The derivative dlzt(t) exists at each point ¢ € [0, 00) with possible exception of
the points ¢ € {0, 1,2, ...} where one-sided derivatives exist.

(iii) Equation (4.4) is satisfied on each interval [n,n + 1) forn = 0,1,2,....

We assume that (4.4) is supplemented with the initial condition
N@O)=Ny>0and N(—j)=N_; >0, j=1,2,3,....,m. 4.5)
Lemma4.1.1. Let Ny > 0 and N(—j) = N_; > Ofor j = 1,2,3,....,m be

given. The initial value problem (4.4) and (4.5) has a unique positive solution N(r)
given by

N(t) = Nyexpsr 1—ijN,,_j (t—n)p;,n<t<n+l, (4.6)
j=0
andn = 0,1,2, ..., where the sequence {N,} satisfies the difference equation
Nuy1 = Nyexpar [ 1= piNyj | t.n=012..... (4.7)
j=0

Proof. Foreveryn =0,1,2,...andn <t <n + 1, (4.4) becomes

dN(t)
dt

= rN(t) I—Zp] i |, m<t<n+1, (4.8)
j=0
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where we use the notations N, = N(n) forn € {—-m,—-m+1,...,—1,0,1,2,...}.
By integrating (4.8) from n to t we obtain (4.6) and by continuity, as t — n+1 (4.6)
implies (4.7). Let {N,,} be a solution of the difference equation (4.7) defined on

{-m,—m+1,...,—1,0} U (0, 00)

by (4.5) and (4.6). Then one can show by direct substitution into (4.4) that N(¢)
satisfies (4.4) and (4.5). It is also clear that Ny > O implies that N(¢) > 0 for ¢ > 0.
The proof is complete. |

We note that Ny > 0 implies that N(t) > 0 for ¢t > 0 for any N_; € R,
Jj =1,2,...,m.However, we assume in (4.5) that N_; > 0. The following lemma
is extracted from [30] and will be used in the proof of the main oscillation results.

Lemma 4.1.2. Consider the equation

dx(t)
dt

+Y pi St —j]) =0, (4.9)
j=0
where

m
pOa pl»"'7pl‘rlzo» ij >05 m+p0#17
j=0

and the function f satisfies

feCR,R),uf(u) >0 foruz#0,

fw) = u foru<0 (or f(u) <uforu=>0), (4.10)

lim, o 2% = 1.

Then every solution of (4.9) oscillates if and only if the equation

k—l—i—ijk_j =0
=0
has no positive roots.

Now, we are ready to state and prove the main oscillation theorem of (4.4) which
provides necessary and sufficient condition for the oscillation of all positive solution
about the positive steady state

-1

m
N :=[>"p;| - (4.11)
j=0
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Theorem 4.1.1. Let Ng > Oand N_; > 0 for j = 1,2,3,...,m be given and

m
r € (0,00), po, P1r---»Pm >0, Zp,->0,m+r7él.
=0

Then every solution of (4.4) and (4.5) oscillates about N* if and only if the equation

Al = > piAd 4.12)
Z/ =0 P Z ’

has no positive roots.
Proof. Let N(t) be the positive solution of (4.4) and (4.5), and set
N(t) = N*e* ¢t > 0.

Then x(t) satisfies the equation

dx(t)

+ Y rN*p fx([t = jD) =0, t = n, (4.13)
=0

where
fw)=e"—1, (4.14)
together with the initial condition

N(i
x(j):log[%}, forj =0,1,2,...,m

Clearly N(t) oscillates about N* if and only if x(¢) oscillates about zero. Also
we observe that the function f defined in (4.14) satisfies the conditions in (4.10).
To complete the proof apply Lemma 4.1.2. |

4.2 Stability of Autonomous Models

In this section, we are concerned with the global attractivity of the logistic models
with piecewise constant argument

dN(t)

= NO =Y NG =D | =0 (4.15)

j=0
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where dN(t)/dt means the right-hand side derivative at ¢ of the function N(z).
As usual, we assume that (4.15) is supplemented with an initial condition

N©)=Ny>0 and N(—j) =N_; >0, j =1,2,3,....m. (4.16)

In Sect. 4.1, we proved that the initial value problem (4.15) and (4.16) has a unique
positive solution N(¢).
The results in this section are adapted from [27].

Theorem 4.2.1. Assume the following:

(i) 1 €(0,00), po, pis--vs pn 20,37 g p; >0,m+r # 1
(ii) e"mth < 2.

Then all solutions of (4.15) corresponding to (4.16) satisfy
lim N(r) = N*. 4.17)
=00

Proof. By using the change of variables (see Sect. 4.1) it is sufficient to prove that
every solution x (¢) of the equation

%Jréw*p;f(x([t—j])):o,tzn, (4.18)

where
fuw) =e"—1, (4.19)

satisfies
lim x(1) = 0. (4.20)

First, we assume that x(¢) is eventually nonnegative. From (4.18) we see that
dx(t)
dt

where n is sufficiently large, say n > ng. It follows that x(¢) is nonincreasing for
n > ngy and so

<0 forn<t<n++1, “4.21)

lim x(¢t) = [ > 0 exists.
—>00

We claim / = 0. Assume that, for of the sake of contradiction that / > 0. Then

m

o= ZrN*pj(el—l) =r( —1)>0,
=0
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and (4.18) yields

dx (1)
dt — 7

n<t<n+1, forn > ng.
We note that
x(t)—x(n) < —a(t —n),
andast — n + 1, we have
x(n+1)—xn) <—«a, forn > n. (4.22)

Asn — oo, (4.22) implies that 0 = / — ] < —a < 0 which is impossible and
so (4.20) holds for nonnegative solutions.

In a similar way, it follows that (4.20) is true for nonpositive solutions.

To complete the global attractivity it remains to prove that (4.20) is also true for

oscillatory solutions. Now, assume that x (¢) is neither eventually nonnegative nor
eventually nonpositive. Hence, there exists a sequence of points {{,} such that

m<& >80 <<, <lpgi...,

lim ¢, =00, x(¢,)=0,n=0,1,2,...,
n—o0

and in each interval (&,, £,+1) the function x (¢) assumes both positive and negative
values. Let ¢, and s, be points in (,, {,+1) such that forn = 1,2, ...

x(ty) = maxx ()], Gu, <1 < G
and
x(sp) = minfx()], & <1 < Lppr
Then forn =1,2,...
x(t;) >0 and D™ x(t,) > 0, (4.23)
while
x(s;) <0 and D™ x(s,) <O, (4.24)

where D™ x is the left derivative of x. Furthermore, if ¢, ¢ N,

dx(ty)
0=
dt

m
=D x(ty) =— Y rN*p; [e"t=/D —1], (4.25)
j=0
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and if 7, € N,
m
0<D x(ty) =— ZrN*p_/ [ex=i=D —1]. (4.26)
j=0
Similarly, if s, ¢ N
dx(sy) _ = (s — i
0= d_[” =D x(ty) = —j;)rN*pj [exn=iD 1], (4.27)
and if s, € N
m
0> D x(sy) = — ZrN*pj [extn=i= —1]. (4.28)
j=0
Next, we claim that foreachn =1,2,...
x(t)hasazero T, € [{,,t,) N[ty —m —1,1,) (4.29)
and
x(t) hasazero S, € [{,,5,) N [s, —m —1,5,). (4.30)

If for example (4.29) were false, then (4.25) and the hypothesis that

m
ij >0
j=0

together would lead to a contradiction. Also (4.30) is true due to a similar reason.
By integrating (4.13) from T, to ¢, and using the fact thatt, — 7,, < m + 1, we note
immediately that

m

In .
0= x(ty) = x(T,) + > _rN*p; / [ext=/D —1]ds
j:0 n
> x(ta) = Y PN pj(ty — T,) = x(ty) —r(m + 1).
j=0

That is,

x(ty) <rm+1),n=12,...
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and

x() <r(m+1), fort > (.

By integrating (4.14) from S, to s, and using the fact that s, — S, < m 4+ 1 and

using the hypothesis (ii) of the theorem, we find

0= x(s) = x(S) + Y rN*p; / [0~ _ 1] ds

j=0 "

IA

x(s,) + ZrN*pj [e"" T — 1] (m + 1)
=0

x(s,) +r(m+1).

IA

That is
x(s,)>—-r(m+1),n=12,...,
and so
x@t)=—-r(m+1), t=>1.
Then we have established that
—M <x(t) <M, fort>1{,
where
M =r(m+1).
By using (4.31) and an argument similar to that used above we find that
—M(—e™ 4 1) <x(@t) < M@EM -1), t>¢.
Using induction, we can prove that
— L, <x(t) <R,,
where
Lo=Ry=M, —Lypi=M—e""+1), Ryyr =M™ —1),
along with

-M=<-L,<—-Ly+1 <0< Ry4+1 =R, =M.

431

(4.32)

(4.33)

(4.34)
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Set

L:= lim L,, R:= lim R,.

n—00 n—>oo

In view of (4.32), we have that lim; o, x () = 0 holds if we show that
L=R=0. (4.35)
To this end, from (4.33) and (4.34), we have
—L=MEet—1), R=MER-1), —M<-L<0<R<M. (436)
Hence, —L and R are the zeros of the function
e(A) = M(e* —1) =1
in the interval —M < A < M. We have

@(—00) = p(00) = 00, ¢(0) =0,

and also ¢ is decreasing in (—oo, —log M) and increasing in (—log M, co). Note
also that in view of hypothesis (ii), M € (0, 1) and

oM)=M@EM —1)-M <M2-1)—M =0.

Therefore, ¢(A) has exactly one zero in (—oo, M) namely A = 0. Thus, —L and R
the zeros of ¢(A) in [—M, M] are both zero. This proves (4.35) and completes the
proof of theorem. ||

Now we establish some sufficient conditions for the global attractivity of N*
of (4.15). The results in this section are adapted from [75]. To prove the main results
it is sufficient, as in the proof of Theorem 4.2.1, to prove that every solution of (4.13)
satisfies condition (4.20).

We consider a sufficient condition for the global attractivity of the solution
x(t) = 0 for the general differential equation with piecewise constant arguments

dx(t A .
0 —;Orzv Py fOe(lt = ), 120, (437)

where py > 0 and

f(x) € C'(—=00,00), f(0)=0, f'(x) >0, x € (—00, 00),

limy—oo f(x) = —1 and lim,o f(x) = o0. (4.38)
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As a special case when f(x) = e* — 1, we establish the main results for (4.15).
As usual by integrating both sides of (4.37) from n to ¢ on the interval [n,n + 1),
n=20,1,2,..., wefind

X0 =3 == Y rN*p; [ fetn -

j=0
=—rN* > p; f(x(n— j))(t —n).
Jj=0
Now, the solution of (4.37) is written for0 <n <t <n + 1 as
m
x(t) =x(m) = rN*Y_ p; f(x(n— )t —n).
j=0
Ast — n + 1, we have
xn+1:xn—rN*ijf(xn_j),n:0,1,2,..., (4.39)
j=0
where
X, =x(n), n=0,1,2,....
To show that
lim x(t) =0,
—>00
it is enough to show that
lim x, = 0.
n—>00
For simplicity, we put
rn=rN*py>0,r,= rN*ij >0 and ¢(x) = x —r; f(x). (4.40)
Jj=1
Then r = ry + r; and (4.39) is written as
Xopt = @) =rN* Y " pj f(6—j), n =0,1,2,... . (4.41)
j=1

Lemma 4.2.1. In (4.39), if x,, is eventually nonpositive or eventually nonnegative,
then lim,, o0 X, = O.
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Proof. In (4.39) assume there exists an integer no such that x, is eventually
nonpositive for n > ny. From (4.37) and (4.38) it is easy to see that x, < x,+; <0
forn > ny+m—1.Leta = lim,— o X,. Then f(a) = 0soa = 0. The other case
is similar. |

To establish the main global stability results we need the following useful
lemmas.

Lemma 4.2.2. Assume that ¢(x) attains a unique local maximum at
L* <0, (4.42)
and for L <0, put
F(L) = min{p(L), p(p(max{L", L}) —r2 f(L))}
—r2 f(g(max{L*, L}) — ry f(L)). (4.43)
If F(L) > L forany L < 0, then

lim x, = 0.
n—>00

Proof. In the case when X, is eventually nonpositive or eventually nonnegative by
Lemma 4.2.1 we have lim, - x, = 0. Now, assume that x, is not eventually
nonnegative or eventually nonpositive. Then as in the proof of Theorem 4.2.1, we
can take a sequence {&; }7>, such that

m<§& <b<... <& <<, lim§ =00, x(8)=0
n—>o0
and
x(t) > 0 on (§21—1,&2,), xn <0, on (624, §2041)
and

Epr1—En>m+1, n=1.2,....

Let #, be a point that attains a maximal value of x(¢) on (&,—1, &,) and s, be a
point that attains a minimal value of x(¢) on ({2, {2,+1), thatis forn = 1,2,...

x(t,) = max[x(?)], Con—1 <t <2y

and
x(sp) = min[x ()], & <t < lopy1-
Then, we have forn = 1,2, ..., t, and s, are positive integers,

x(t,) >0, D™ x(t,) >0, while x(s,) <0, and D™ x(s,) <0,
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where D™ x is the left-hand derivative of x at ¢. Then.

0<D7x(t,) ==rN* Y p; f(x(ta = j — 1) (4.44)
j=0
and
0> D x(s,) ==Y rN*p; f(x(sy — j — D). (4.45)
j=0

Following the reasoning in the proof of Theorem 4.2.1, we show that for each n =
1,2,...

x(t)hasazero T, € [t, —m —1,t,) (4.46)
and
x(t)hasazero S, € [s, —m —1,s,). (4.47)

By integrating (4.37) from 7, to f, and using the fact that ¢, — 7, < m + 1 we
note that

0= x(t) = x(T) + YNy [ fe(ls = jpys

=0

> x(t,) — ZrN*pj(t,, —T,) > x(t,) —r(m + 1).
j=0

That is,
x(ty) <rm+1),n=12,...
and
x@t)<r(m+1),t>1.
By integrating (4.37) from S, to s, and using the fact that s, — S, <m + 1 we find

0= x(s0) = x(S) + 3 rN*p; /S " foe(ls — j)ds

j=0
< x(sp) +r(m + 1) f(r(m +1)).

That is

x(s)=—-rm+1)frm+1),n=12,...,
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and so
x(t) = —r(m+ 1D f(r(m+1)),t >0,
Then

Xy <Ry =r(m+1), n>{
Xp = Ly =—r(m+1)f(r(m+1)), n> 0.

Next, let L be a lower bound of x,, for n > 5. Then,
Xn > Ly, forn > &y.

We know that ¢(x) has a unique local maximum at x = L* < 0. We consider an
upper bound of x, for n > {@+1)—1. Then,

Xy = @(xp—1) —rN* ijf(xn—j—l) < @(xp—1) —rN* ijf(Lk)

j=1 j=1
< @(max{L", L¢}) —r2 f(Lk).
That is,
Xy < Rit1, for n > Sptny-1,
where
Rit1 = p(max{L", Li}) — r2 f(Lg).

Next, we consider a lower bound of x, for n > {4 +1). Then

m
Xn = (p(xnfl) - I"N* Z Pj f(xnfjfl)

i=1

min{@(Ly), (Rk+1)} — r2 f (Ri+1)

= min{@(Ly), (@(max{L*, L;}) — ry f (L))}
—ra f(@(max{L*, Ly}) — ra f(Ly)).

Put L4y = F(Lk) Then,

v

Xy, > Lgyy for n > §2(k+l)-

By assumption,

Ly < F(Lg) = Li+1.
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Finally, we show that

lim Ry =0and lim L; =0.

k—00 k—o00
Assume that Ly is a lower bound of x, for n > . Since

Riy1 = @(max{L*, Li}) — ra f(Ly)

is an upper bound of x,, for n > {»x41)—1, we have that if limy o, Ly = 0, then

lim Ry = ¢(0) —ry f(0) = 0.

k—o00
Thus it is sufficient to show that lim;_,, Ly = 0. By (4.43), F(0) = 0 and

Ly < Liy1 = F(Lg) <0, for any Ly <0,

and hence we see limy_o, Ly = O by successive iterations. Thus, we get
lim,, 0 X, = 0. The proof is complete. |

Lemma 4.2.3. Assume that ¢(x) attains a unique local maximum at R* > 0, and

R* > o(R*) +r2. (4.48)
Put
H(L) = ri f(L) + r2 f(¢(R*) =2 f (L)), for L <0. (4.49)
If
n>rnz0 ad lim H(L) <0, (4.50)

then lim,, o0 X, = 0.

Proof. In the case when X, is eventually nonpositive or eventually nonnegative by
Lemma 4.2.2, we have lim,_,~ x, = 0. Now, assume that x, is not eventually
nonnegative nor eventually nonpositive. Then as in the proof of Theorem 4.2.1, we
can take a sequence {& }72, such that

m<§& <bH<...<E <<, nli)rgoé,, =00, x(§,)=0
and
x(t) >0, on (§24—1,21), x(t) <0,0n (52, 821+1)
and

Eir1—&E>m+1,n=12,...
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and forn > &,

—r(m+1) f(r(m+1)) < x,.
Now, let the local maximum of ¢(x) be attained at x = R* > 0. Then, for

n> &, x, <@(R*) +r, <R

Since
0 <@(R*) —rf(L) < @(R*) + 1, < R,
we have
(1 =r1f'(@(R*) —r2 f(L)r2 f(L) = 0, for L <O.
Therefore,
F(@R*) = f(L)) < 1/r1.
Thus

H'(L) = f'(L){r — r; (f((R*) — ro f (L))}
> (L) (rl _ 122) - 0.
r

Since H(L) is a strictly monotone increasing function of L on (—oo,0] and
lim;—oo H(L) < 0, there exists an L; < 0 such that

Ly<—r(m+1)f(r(m+1)) and H(L,) <O0.
Then
@(L1) —ra f(@(R*) = f(L1)) = Ly — H(Ly) > L. 4.51)

Thus, L, is a lower bound of x, for n > &, thatis x, > L; forn > &,. Next, let us
consider an upper bound of x,, for n > £&;. Since forn > &3,

m
Xo = @(Xa1) = rN* Y pj f(xa—j1) < @(R*) = r2f (L),
j=1
and we have that for

Ry = ¢(R*) —ry f(L) >0, x, < Ry, for n > &.
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Moreover, we have that for L < 0,

R*— Ry = R* — (p(R*) — r2 f(L1))
> R* = (¢p(R*) +1r2) 2 0,

from which we get 0 < R, < R*. Let us consider a lower bound of x, for n > &,.
Since 0 < R, < R*, we see that for n > &,

Xp = @(xp—1) —rN* ijf(xn—j—l) > (L) —r f(R2).
=1

Then, for
Ly =@¢(L1)—r2f(Ry) <0, x, > Lo,n > &,
and by (4.51), we have L| < L, < 0. Next assume that for k > 1,

{ R = @(Ri—1) =2 f(Lk-1), 0 < Ry < Rk < R*,
Li =@(Lk—1) =12 f(Ry), Li <Ly <Lg<0,

and

{ Xp < Rp,n > Expy,
Xy = Li, n > &y.

We consider an upper bound of x,, for n > & 1)—1. Then

Xn = @(xXy—1) —TN* i pj S (n—j-1) = 9(Ri) = ro.f (Li).
j=1
Therefore, for
Riv1 = @(Ry) —r2 f(Ly) > 0,x, < R1,n > Exet1y—1,
and
Rip1 = @(Ri) — 2 f(Lic) < ¢(Ri—1) — r2f (Li—1) = Ry
Similarly, let us consider a lower bound of x,, for n > & 1). Then, forn > &y 41y,

Xn = @(u—1) = IN* Y pj f(6u—j—1) = @(L) = r2 f (Rit1)

Jj=1
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and for

Liy1 = @(Li) = r2f(Riyix) <0, X4 = Liy1, 1> Etn)-

Moreover,
Liy1 = ¢(Li) =2 f (R1) > @(Li—1) — r2 f(Ri) = L.

Finally, we show that

R:klirgloRk = (0 and szirgoLk = 0.
Since

R=¢(R)—r f(L), L =¢(L)—rf(R),
we have that

rf(R)+rf(L) =0, rf(L)+rf(R)=0.
By assumption
O0<r<rn<l f(R)=f(L)=0,

and hence R = L = 0. Thus, we get lim,,» x, = 0.
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Remark 3. Inthe proof of Lemma 4.2.3, we need the condition limy —,_o, H(L) <0

in (4.50) which becomes

n o
r4 o — =1t 5 .
ry

Lemma 4.2.4. Assume that ¢(x) attains a unique local maximum at R* > 0, and

R* < o(R*) + rs.
Then, there exists a unique L* < 0 such that
R* = ¢(R*) = f(L")
and
R* > @(R*)—rf(L), L* <L <0.
Define, for L < L*,

G(L) : = min{p(L), ¢(¢(R*) —r2 f(L))}
—r2 f(p(R*) =2 f(L)).

(4.52)

(4.53)

(4.54)

(4.55)
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If
ri>ry, and G(L)> L, forany L < L™, (4.56)
then lim,, o0 X, = 0.
Proof. Since
0<R*<@(R*)+r, and f' (L) >0,
we have
Jim (1 f(R) + 2 f(L) = nf(RY) =2 < f(RY)
= lim (1 f(R") + r2F (L),
Hence, by the mid-point theorem, there exists a unique L* < 0 such that
rf(R*) +rF(L*) =0,
that is
R* = @(R*) = rp f(L7).

In the case when Xx, is eventually nonpositive or eventually nonnegative by
Lemma 4.2.1 we have lim, o, X, = 0. Therefore we assume that x, is not
eventually nonnegative nor eventually nonpositive. Then there exists a sequence
€172, (as in Lemma 4.2.2) such that

Xp < Ry =r(m+1), n=g,
Xp>—r(m+ 1) f(r(m+1)),n>10.
Put
Ly=—-r(m+1)f(r(m+1)).
Now, we consider the following two cases:
Casel. L* < L.

Then we have L; < 0 and x,, > L for n > {,. Next, for n > {3, consider an
upper bound of x,,. Sincen — j — 1> 6,1 < j <m,

Xn = @(en-1) =IN* Y pj f(ujm1) < @(R*) =12 f(L1).
j=1

Put

Ry = (R*) — ra f(Ly).
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Then
0 < R2 < (p(R*) — rzf(L*) = R*,

and we have x,, < R, for n > &;. Next, for n > {4, consider a lower bound of x,.
Since

@(L1) <0 = ¢(R;), min{p(L1), p(R2)} = ¢(L1).
Forn>&,n—j—1>0,1<j <mand
Xn = @) = rN* Y pj f(xu—jm1) = 9(L1) = 2 f(R2).
j=1
Put
L2 = maX{L] . (p(Ll) — rzf(Rz)}.

Then Ly < L, < 0and x, > Ly, n > &. Similarly, consider an upper bound of x,
for n > {s. Then,

Xn = @(u—1) = rN* Y pj f(xu—j-1) < 9(R2) = raf (Lo).
j=1
Put
Ry = ¢(Ry) — ra f(L2).
Then
0 <R3 =@(Ry) =12 f(Ly) < @(R*) =12 f(L1) = Ry < R*

and x, < Rz forn > {s.
Next let us assume that for some positive integer k > 2,

{ R = @(Rg—1) — r2 f(Li—1), 0< Ry < Ry,
Ly =max{Li—1, ¢(Lx—1) —r2f(R)}, Li—1 < Lx <0,

and

Xp < Ri,n > &y,
Xp = Ly, n > &y

Consider an upper bound of x,, for n > & 1)—1. Then

Xn = @) =IN* Y pj f(umjm1) < @(Ri) = r2 f (L)

Jj=1
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Put
Ri+1 = @(Ri) — ra f(Ly)-
Then
Riy1 = @(Rk) — 2 f(Lic) < 9(Ri—1) — 2 f(Li—1) = Ry,
and

Xp < Rkq1,n > Exkg1y—1-

Similarly, let us consider a lower bound of x,, for n > & 1). Then, forn > &4 41y,

X = @(Xy—1) —rN* ijf(xn—j—l) > @(Ly) —raf(Ris1).
i=1

Put
Liw1 = max{L , ¢(Lk) — r2f(Ri41)}.
Then
Liy1 > Ly and x, > Ly, 7> &gyt

Thus by induction, we get a strictly monotone decreasing sequence {R;}72, and a
monotone increasing sequence {L}2 . Now, put

R = klggo R, and L = kli)rgoLk.
Then, we have
R=¢(R)—r f(L), L =max{L,¢(L) —r2f(R)} = ¢(L) — 2 f(R).
Thus
rf(R)+rf(L)=0, rf(L)+rf(R)=0.
Since f(R) = —(r2/r1) f(L) and by assumption
ri >y (ri—r3/r) f(L) >0,
we get that f(R) = f(L) = 0, and hence R = L = 0. Thus, we get

lim x, = 0.
n—>00
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Case?2. L <L*.

Then we have x, > L, forn > {,. Next, for n > {3, consider an upper bound
of x,,. Then

X = @(umt) = rN* Y p; f(amjm1) < @(R*) =2 f(L1).
j=1
Put
Ry = ¢(R*) —ry f(Ly).

Then we have x, < R, for n > &;. Next, for n > ¢,, consider a lower bound of x,,.
Then

m
Xn = (p(xn—l) - I"N* ijf(xn—j—l)

j=1
min{@(L1), p(R2)} — 12 f(R2).

v

Put

Ly =min{Ly, ¢(L1)},p(R2)} — r2 f(R2).

Then, we have x, > L,, n > &;. Now, we restrict our attention to the lower bound
of x, and assume that for some positive integer k, x, > L for n > &;. Suppose
that L, < L*. Consider an upper bound of x, for n > &41)—1. Then,

Xy = @) = IN* Y pj f(xu—jm1) < @(R*) = ra f(Ly).
j=l1

Put
Ri+1 = @(R™) — ra f(Ly).

Then x, < Ri41,n > &+1)—1. Now, consider a lower bound of x,, forn > & 41).
Then, for n > &g +1),

Xn = @) = IN* > pj f(Xa—j-1)

j=1
> min{@(L), 9(Rk41)} — 12 f(Ri+1)-

Put

Li+1 = min{@(Ly), o(Ri+1)} — 12 f (Ri+1)-
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Then
Li+1 = min{p(Ly), o(@(R*) — r2 f (L))} — ra f(p(R™) — 2 f (L))
Then
X 2 Lig1, n > 04141
Thus by the assumption, we have
Li+1 = G(Ly) > L.
Since G(L) > L forany L < L*, there exists some positive integer k such that

Lko—l < L* < Lk(y

Then
Xy > Lgy > L™, n > Coppt1-
For
L>L*¢(R*)—rf(L) <@(R*) —r(f(L*) = R".
Hence as before we obtain lim,_, . X, = 0. The proof is complete. |

Lemma 4.2.5. Assume that ¢(x) attains a unique local maximum at R* = 0. Then
R* < (R*) + 1y, (4.57)
and there exists a unique L* = 0 such that
R* = o(R*) —r2 f(L"). (4.58)
Forany L < 0 and G(L) in Lemma 4.2.4, if
G(L) > L, (4.59)

then lim, o x, = 0.

Proof. The proof of this lemma is similar to that in Lemma 4.2.4 and hence is
omitted. ]

Next we consider the special case f(x) = e* — 1 and establish the conditions
F(L) > L forany L < 0 in Lemma 4.2.3, G(L) > L forany L < L* in
Lemma 4.2.4 and G(L) > L for any L < 0 in Lemma 4.2.5.
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Lemma 4.2.6. Put
e*(x) =x—(r1 +r)f(x), —oo<x<oo. (4.60)
Assume
O<ri+r<2 “4.61)

Then

(@*)*(L) > L, forany L <0,

(¢*)*(R) < R, forany R > 0, (4.62)

and for (4.39)—(4.41) with r, = 0, lim,, o0 X, = 0.
Proof. First, consider the following function:
gi(t) =1+t 0 < < 0.
Then, for f(x) =e* —1,
(")’ () = " (@ () = 9" (x) = (r1 + r2)(e?" @ — 1)
= x4 (r + rn){2 —e* — "=y
Thus,

((/J*)z x)—x=(r + 7‘2){2 _ gl(ex)}’
g(0) = 14 {1 = (r1 + rp)tje 200,
g;’(t) = (r; + r){(r; + ry)t — 231200,

Therefore, we have

) > (

): 1—e*™272 >0, 0<t < o0,
L+

and hence, g1 (?) is a strictly monotone increasing function of # on (0, o). Thus

{gl(t)<g](1)=2, t <1,
g1t)y>g()=2, t>1,

which implies (4.62).

Now, putting r, = 0 in (4.61), we have that r < 2 which implies that (see for
example [47]) the solution of (4.39)—(4.41) satisfies lim,,—, X, = 0. The proof is
complete. ||

Remark 4. Lemma 4.2.6 implies that if
O<r=r; <2 and r, =0, (4.63)

then lim,, o x, = O.
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Lemma 4.2.7. Assume in (4.40),

r
ry>r; > O, ry > 1 andrl —+ry — —2€(r1+r2_1) > 0. (464)
r

Then, ¢(x) attains a unique local maximum at L* = —logr; < 0.

(a) For L <0, put

Gi(L) = (L) =r2f(R)) = L, G{(L) =rif(L) +rf(R]),
R} = @(L") =2 f(L).

Then, each of the following holds:
(i) im0 GF(L) <0,
(i) GF(L*) <0,
(iii) (Gl*) (L) = 0 for some L < L*, then G} (L) < 0.
Hence, G{ (L) <0and G,(L) > 0, forany L < L*.
(b) For L <0, put
Go(L) = ¢(R]) —ra f(R]) — L, R} = ¢(L*) —r2 f(L). (4.65)

Then, each of the following holds:

(i) limp—_oo G2(L) = 00,
(i) Go(L*) = (9*)*(L*) = L* > 0,
(iii) (G1)' (L) < 0 forany L < L*.

Hence, Go(L) > 0 forany L < L*.
(c¢) For L <0, put
G3(L) = @(RL) —rf(RL) — L, R = ¢(L) — 2 f(L). (4.66)

Then, G3(L) = (¢*)*(L) — L > 0 forany L* < L < 0.

Proof. (a) (i) By assumptions, we have

lim GF(L) = 2"+ — (1 + 1) < 0.
L—>—o00 r

(i1) Since ¢’(x) = 1 — rie*, we have from (4.64), L* = —logr; < 0,
R} =—logri+ (r1+r)—1 — rel,
and

"2 i) (=1/n)

GT(L*)=1—(71+V2)+V—
1
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Now, consider
r
ox)=1—(x+nr)+ _2€(x+r2)—1—r2/x, l<x<2-—n.
X

Then,

g;(X) =-1+ (_x _2r2 + 1) r—ze(x+r2)71*72/x <-1+ r_2€17r2/x’
X X X

l<x<2-—r,.

For
r
g3(t) =te' ™, 2 <<,
2—7‘2
we have
() = (1 —1)e'™" >0, <t<l,
— 7
and hence,
’
g(t) < g3(1), —— <t <1.
2—7‘2

Therefore, we get
SHx)<—-14+g(1)=0,1<x<2—-r.
Thus, g2(x) is a strictly decreasing function on [1,2 — r;] and G (L) <
g(1) =0.
(iii) Since

r
(G;k)/ (L) — r]eL + r_2€r1+r2—1—rzel‘ (—VzeL),
1

(G;")/ (L) = 0 implies that

2
y
r

Lerl +ry—1—rpel )

rleL: e

Therefore, if (G;")/ (L) = 0, for some L* < L, then, since

2 _
e*>1+xfor x>0and (r; +rp) > —e 77!
T



4 Logistic Models with Piecewise Arguments
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we have

T ol
GIk(L) — r1€L + _zerl—i-rz I—rye™ (rl + 72)
r

L1
%—1) <o.
erze

< (r1+r2)(

Hence, from (a) (i)—(iii), we get G{(L) > 0, for L < L*.

(b) (i) We have that
R} = —logr) — (r) + 1)) — 1 — ek,

and hence
_ r1+l'2er1+r2—1—r261‘
I

—L,

Gy(L) = —logr; +2(r1 + 1) —1— ryel
limy oo G2 (L) = 0.

(ii) Since L* < 0 by Lemma 4.2.6, we see that
Gy(L*) = (9*)*(L*) = L* > 0.

(iii) We have that
r + 2 er1+r21rzeL) 1’

G)(L) = —ryet (1 —
r
lim Gi(L) = —1 <0.
L—>—00

GyL) =2 (1=

Thus
2 (1 _ Memm)(l—l/n)) 1
r

_ntn 72 n+m)=1/r) _ 4
rnoo\n '

Put
ga(t) = 21 — 1?70 — 1, % <t<l1
Then, we can easily see that
gl < g =0, s <1 <1,

Therefore, we have that
"2 =1/ _ < 27T 2050m) 2 gi(1/ry) < ga(l) = 0.

r r
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from which we get
G5(L*) <0, and L* <0.
Now, we have for L < L*,

r+r o —1—rel
Gy (L) = —rel |1 — (1 — ety L —"2entnine
r

Thus, for L, < 0, G, (L) = 0 implies that by r, > 0,

Lx
rne
I+ r2€r1+r2—1 _ €

I3 1 —rpelx’
Now, the equations

r_zerl-‘rrz—l — 0
r

r+rn=2 r+nrn-

have the unique solution (r;*, r}’) such that

2e " 4
= <2, r, = < L
e+2 e+2

*
1

Then, for any r; and r, such that (4.64) holds, we easily see that
0<rm<ry, 1<rn<2—n.

For a fixed number r; such that 0 < r, < rJ = 4/(e + 2) < 1, the function
p(r1, 1) = ((ry +712)/r1)e"" 27! is a strictly monotone increasing function
of ryon[l,2 —ry]. Thus, for0 < r, <rf <1,

2e 2e
<

=e+2.
2—r " 2—r5 +

p(r,m) = p2—ry, 1) =

The equation e*/(1 — x) = e + 2 has a unique positive solution x* =
0.60995 ... < 1, and the function /{(x) = e*/(1 — x) is a strictly monotone

increasing function on [0, 1). Thus, if G;’ (L) = 0 for some L < 0, then

r + r2er1+l‘2—l—l‘28L — 1

r 1 —rzeL

and ryel < x* < 1 for any r; and r, which satisfy (4.64). Then,

_ — 1 Z 2 Z -1
Gy(L) = —rpe" (1 - —_> _qpo () e
1 —ryel 1 —ryel
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and

N2 _
(rgeL) + el —1 < (x*)? 4+ x*—1=-0.01800... < 0.

Thus GQ(Z) < 0 so G;(L) < 0 for L < L*. Hence from (b) (ii), we get
G,2(L) = Go(L*) > Oforany L < L*.

(c) By Lemma 4.2.6, we see that G3(L) = (¢*)* (L)—L > Oforany L* < L < 0.

|

Remark 5. Lemma 4.2.7 implies that if (4.64) holds, then the conditions in
Lemma 4.2.2 are satisfied and then lim,, s x,, = O.

Similar reasoning as in the proof of Lemma 4.2.7 (see [75]) yields the following
results.

Lemma 4.2.8. Assume that

’
1>r>r>0adr +r,— ="t >0 (4.67)
r
Then, ¢(x) attains a unique local maximum at R* = —logr; > 0.

(a) For L <0, put
G4(L) = ¢(L) —r2 f(R}) — L, Gi(L) =rif(L)+rf(R]).
R} = @(R*) =2 f(L).

Then there exists a unique L < O such that

R* = o(R*) — 1 f (L), (4.68)

and each of the following holds:
(i) lim;——o0 G (L) <0,
(ii) GI(L) <0,
(iii) (G) (L) > 0.
Hence, G4(L) > 0 for any L < L <o.
(b) For L <0, put

Gs(L) = ¢(R,) — raf (R,) — L. Ry = p(R*) —raf(L).  (4.69)

Then, G5(I_?L) > @(L) and Gs5(L) = (p*(I_QL) — L > G4(L) > O for any
L<L.
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Remark 6. Lemma 4.2.8 implies that if (4.67) holds, then the conditions in
Lemma 4.2.3 are satisfied and then lim,, o x,, = O.

Lemma 4.2.9. Assume in (4.40),
ri=1,r>0, andrye™V < 1. (4.70)

Then, ¢(x) attains a unique local maximum at R* = 0, (4.57)—~(4.59) hold, and we
have the following:

(a) In Lemma 4.2.8 (a), for G4(L) with R* = 0, G4(L) > 0 forany L < L=0.
— % —
(b) For (4.69) with R* =0, G5(L) = ¢*(R;) — L > 0forany L < L = 0.

Remark 7. Lemma 4.2.9 implies that if (4.70) holds, then (4.57)—(4.59) in
Lemma 4.2.5 are satisfied and then lim,, o x,, = O.

Theorem 4.2.2. Assume that
r€(0.00), po. pr--.pm =0, and Y p; >0 4.71)
j=0

holds. Also suppose either (4.63) or (4.64) or (4.67) or (4.70) hold. Then for any
solution N(t) of (4.15) we have lim,_.oc N(t) = N*.

Proof. The result follows from the previous four Remarks. |

4.3 Stability of Nonautonomous Models

In this section we examine nonautonomous logistic models with piecewise constant
arguments. We begin with the logistic model

N'(t) = r(t)N(t) (1 - %[t])) ,1 >0, 4.72)

with N(0O) = yo > 0, r : [0,00) — [0,00) is a continuous function and K is
a positive constant. First of all, by using the method of steps, we see that every
solution y(¢) of (4.72) is positive for all # > 0. Thus, the change of variables x(¢) =
log(N(t) / K) reduces (4.72) to

X'(t)=—r@) (e -1), 1t >0. (4.73)

We begin by presenting some global attractivity results from [46]. Let k be a
nonnegative integer. On any interval [k, k + 1), (4.73) is expressed as

X'(t) = —r(@) (e"™ -1). (4.74)
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It is clear that x () is monotone on [k, k + 1] and that x (k) = 0 implies x(¢) = 0
on [k,00). Also integrating (4.74) from k to ¢, we have

t

x(t) —x(k) = —(e*® —1) / r(s)ds. (4.75)

k
We therefore obtain as t — k + 1, in (4.75),

k+1
x(k +1) = x(k) — (e*® —1) / r(s)ds. (4.76)
k

Lemma 4.3.1. Let x(t) be a solution of (4.73). Assume that
k+1
/r(s)ds <2,for k=0,1,2,..., 4.77)
k

and that there exists an increasing sequence of positive integers {t,} such that
(—1)"x(t,) > 0and x(t,)x(t, + 1) < 0, forn = 1,2,... . Then the following
is valid

1 1
—5 < X(tam+3) <0 < x(tam42) < 5, form =0,1,2....

Proof. In view of the definition of {t,} and the monotonicity of x(¢) on [k, k + 1],
we notice that if #, + 1 < #,4 then |x(¢)| is nonincreasing on [¢, + 1, f,+1], which
implies

x(ty +1) < x(ty+1) <0,if niseven,

4.78
0 < x(tht1) < x(t, + 1), ifnisodd. (4.78)

Note that,
X(tam+1) <0 < x(tamg1 + 1), form =0,1,... .

Let A, = —x(t241). Then A,, > 0. It follows immediately from (4.77) and (4.76)
that

Dm+1+1
Kt + ) = x(ni) = (0 = 1) [ r)ds
Dm+1

< —Ay +2(1 —e4m), (4.79)
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Let
d(x)=—x+2(1—e™"),
and observe that ¢’(x) = —1 + 2¢™ (also ¢’(x) = 0 when x = log 2). Note
1
¢(Am) = p(log2) =1—log2 < 3
Hence, by (4.78) and (4.79) we obtain that
1
0 < x(tam+2) < x(tymy1 + 1) < 3 form=0,1,....

Next, let B,, = x(t2m42). Then 0 < B, < % and

t2m+2+1
Kt + 1) = X(taniz) = (1) [ r)ds
Dm+2
> B, —2(eBn —1). (4.80)
Let
Y(x) =x-—2(*—1).
Since ¥/(t) = 1 — 2¢* < 0 for x > 0, it follows that
1 7 | 1
Bn)>Y(z)=-—2e3 >—=.
V(B 2 ¥(3) = 5~ 28 > —

Thus, by (4.78) and (4.80) we conclude that

1
0> x(l2m+3) > x([2m+2 + 1) > —5, form=0,1,....

The proof is complete. |
Theorem 4.3.1. Assume that (4.77) holds and

[e.]

/r(s)ds = 00. (4.81)

0

Then the positive steady state N(t) = K of (4.72) is globally attractive.
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Proof. 1Tt suffices to show that if (4.77) and (4.81) are satisfied, then every solution
x(t) of (4.73) tends to 0 as t — oo. Suppose the solution x(¢) of (4.73) is
nonoscillatory. Suppose x (¢) is eventually positive (the case when x (¢) is eventually
negative is similar). Then from (4.73) we have eventually that x(¢) is decreasing,
so limyoo X(f) = o > 0. If « > 0 we get as usual (i.e., there exists {p, > 0
with x'(t) < —r(t) (e* — 1) for t > t;) a contradiction if we use (4.81). Thus
lim; 00 x(t) = 0.

It remains to consider the case when x(¢) is oscillatory. Let {§, : &, < &,41 :
n =1,2,...} be the zeros of x(¢). We only have to consider the case when &, is not
integer for n = 1,2, .... Then there exists a sequence of positive integers {z,} such
that

th <& <typrand x(f,)x(t, +1) <0, forn =1,2,... .
Without loss of generality, we may assume that
(-1)'x(t,) >0, for n =1,2,....

Put A,, = —x(tym+1) and B,, = x(f2m+2) and then A, and B, are positive for
m =0,1,.... From Lemma 4.3.1, we may assume that

1
O<Am<§,f0rm=0,l,... .

We claim that A,, tends to 0 as m — oo. We first show that 0 < A,,+1 < A,, for
m =0,1,.... Using

2 1 3

1
e " >1—x+=-x"—-=x", for x >0,
2 6

we have from (4.79) that

Bm

IA

x(t2m+l + 1) < _Am + 2(1 - e_Am)

A2 A3
Ay 4+ 2(Ay — 4 B
+ 2 2 7%

A3 .
= A, — A% + ?m = g*(4n). (4.82)

A

It is easy to see that g*(x) is an increasing function on [0,00) and so
By, <g"(An) <g (5) <3 (4.83)

Next, for0 < x < %, we have for 8 € (0, 1) that

2 e@x x2 x3

X
=1 X< -4
e +x+2+6x< —I—x—|—2+3,
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because e* < 2. Using the above fact, we have from (4.80) that

Am+l = _x(12m+2 + 1) =< _Bm + z(eBm - 1)
B? B3
< _Bm+2(Bm+7m+?m)
2B3
=B, + B+ T" = h*(B,). (4.84)
Thus, (4.82) and (4.84) become
Apr1 < h*(g*(4,)), for m =0,1,... . (4.85)
Furthermore, notice that
* : 1
gx)y<x, f 0<x< 5 (4.86)

and we obtain

* ok P X3 2 x32
x—h"(g"(x)) =x—{(x —x +?)+(X—x _,_?)
2 x3
+§(x —x2 + —3 )3}
3 3
2 X 2 X" s 23
> - - - ) — —_— —_ —_—
R e e e - Bl
5 2 1
222 2314
= x"(x 3x +3x 9x)

x3 x° 1
= ?(3—5)6) + 3(6—)6) > 0,for0 < x < X (4.87)

This implies, together with (4.85), that
0 < Aps1 <h*(g*(4y)) < Ap, form=0,1,... . (4.88)

Consequently, there exists @ € [0, %) such that A, —> «,asm — oo. If @ > 0,
then we have as m — oo in (4.85) a < h*(g*(a)), which contradicts (4.87). Hence
A,, = 0asm — oo.

Now we look at the behavior of x(¢). Recall that |x (¢)| is nonincreasing on [, +
1,t,41]if t, + 1 < t,41 and that

|x(z,)] = max |x(¢)| and |x(z, +1)] = max |x(?)].
ZIIS[SEH +1

£ <t<ty
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If follows from (4.82) and (4.86) that 0 < B,, < g*(A,;) < Am, and hence |x(¢)| <
Ay, forall t € [tay+1, tam+3]- Finally, by (4.88), we conclude that x (¢) tends to 0 as
t — oo. The proof is complete. |

In the following, we consider the logistic model with piecewise constant
arguments

N -
dt(’) =rON@® 1= a;Nii=j1p. 120 (4.89)

=0

and establish some sufficient conditions for an arbitrary solution N(¢) satisfying the
initial conditions of the form

N@©)=Ny>0and N(—j) =N_; >0, j =1,2,....m, (4.90)

to converge to the positive equilibrium N* = 1/ (Z'};O aj)ast — oo; here a; >
0,j =0,1,....m—1,a, >0, ZT:O“/’ > 0and r : [0,00) — (0,00) is
a continuous function. The results are adapted from [69]. Using a method similar
to Lemma 4.1.1, one can easily see that (4.89) together with (4.90) has a unique
solution N (¢) which is positive for all # > 0. On any interval of the form [n,n + 1)

forn = 0,1,2,..., we can integrate (4.89) and obtain forn <t < n + 1 and
n=20,12,...
m !
N(t)=Nm)exp{ | 1= a;N(n - j) / r(s)ds b . (4.91)
j=0 g

Letting t — n + 1, we get that

N+ 1)=N@m)expr [1=> a;N@n—j)|¢. (4.92)
j=0

where r, = ["*! r(s)ds.

Lemma 4.3.2. Let N(t) be a solution of (4.89), (4.90). If N(t) is eventually greater
(respectively less) than N* (i.e., N is a nonoscillatory solution about N*) then
lim,_, o N(t) exists and is positive. Furthermore if

/00 r(t)dt = oo, (4.93)
0

then lim,_,oo N(t) = N*.
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Proof. From (4.91), we know that N(¢) is positive for t > 0. Assume that N(¢) is
eventually greater than NV * (the case when N(¢) is eventually less than N * is similar
and the proof is omitted). By (4.89) we have eventually

NGO L oynw) 1= a;N*¢,

Jj=0

which implies that N(¢) is eventually decreasing and so lim,_.., N(?) exists. Set
a = lim,_oo N(t). We will show that (4.93) implies that @ = N*. Indeed suppose
a > N*. Then there exists ty > m such that N(t — m) > « fort > t,, since N(t)
eventually decreases to «. Using this in (4.89), we have

dN(t)
dt

IA

rON@) J1—a) a;

j=0
o
- <F - 1) F()N(1), fort > 1.

Integrating from #j to 7, we have

In N(r) < _ <i — l) /t r(s)ds,

N(lo) - N*
which implies that lim,_,» In % = —oo. Then lim,;—,o, N(t) = 0, contradicting
o > 0. The proof is complete. |

In the following, we first prove that the oscillatory solutions of (4.89) are
bounded.

Lemma 4.3.3. Assume that a solution N(t) (4.89), (4.90) is oscillatory about N*.
If for some constant M > 0, we have

n+1
/ r(s)ds <M, foralln =m,m+1,..., (4.94)
n—m

then N(t) is bounded above and is bounded below away from zero.

Proof. First, we prove that N(¢) is bounded from above. Suppose limsup,_,
N(t) = oo. Since N(¢) is both unbounded and oscillatory, there exists a t* > m
such that

N@*) =  max_ N(@) > N*.

Since N(t) > 0 for t > 0 it follows from (4.89) that

dN(1)
dt

<r@)N(), fort >m. (4.95)
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From now on, let D~ N(¢) denote the leftsided derivative of N(¢). Then
D™N@*) =rt*)N@*) 3 1= a;N([t* = j]) =0,
j=0
if t* ¢ {0,1,2,...} and so ZTZOajN([t* — j]) < 1. Thus there exists a § €

[[t*—m],t*] suchthat N(§) = N* and N(¢t) > N* fort € (§,t*]. Integrating (4.95)
from & to t*, we have

N@t* t* [t*]+1
L < exp / r(s)ds | <exp / r(s)ds | <eM.
N* [ —m] [t%]—m

Ift* €{0,1,2,...}, then

0D N =r(t*)N@E*) 1= a;N@*—j—1)¢.
j=0

and so ZTZOajN(Z*—j—l) < 1. This implies that there exists a § € [t*—m—1,1%)
such that N(§) = N* and N(¢) > N* fort € (§,¢*]. By (4.95), we have

N;]t:) < exp (/; r(s)ds) < exp (/t:_m_l r(s)ds) <eM,

Consequently, limsup,_, .. N(t) < N*e™.This contradiction shows that N(t) is
bounded above and satisfies

N(t) < N*eM, for t > m. (4.96)

Substituting this into (4.89), we have for ¢ > 2 m that

dN(t)

dt

> r(ON@) 1= a;N*e™ b =r(N@)(1 - e™). (4.97)
j=0

Next we show N () is bounded below away from zero. Suppose lim inf; . N (z)=0.
Since N(t) is oscillatory about N*, there exists t« > 3m such that
N(t«) = ming<;<;, N(t) < N*. Clearly D™ N(tx) < 0.Ifz, € {0,1,2,...} then

D™N(t:) = r(t)N(tx) § 1= Y a;N({t« — j]) { 0.
j=0
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which shows that there exists n € [[tx — m], t«) such that N(n) = N* and N(¢) <
N*fort € (n,t]. By (4.97), we have

. e [£4]
N(t*) > exp ((1 - eM)/ r(S)ds) > exp ((1 —e') K r(s)ds)
n

N [tx—m]
> Me(=¢",

Ift, € {0,1,2,...}, then

D™N(t) = r(t)N(t) 3 1= a;N(ta—j = 1) ¢ .
j=0

which shows that there exists n € [t« — m — 1,t) such that N(n) = N* and
N(t) < N*fort € (n,t«]. By (4.97), we have

I

N(@*)
N*

> exp ((1 —eM) r(s)ds) > Me(=¢"),

tx—m—1

Consequently liminf, oo N(t) > N* e™ (eM_l), which is a contradiction. The
proof is complete. ||

Combining Lemma 4.3.2 with Lemma 4.3.3, we immediately see that if (4.94)
holds, then the solution N(¢) of (4.89) is bounded above and bounded below from
zero. Now, we are ready to provide sufficient conditions for the global stability of
the positive equilibrium N * of (4.89).

Theorem 4.3.2. Let N(t) be a solution of (4.89), (4.90). Assume that

n+1 3
/ r(s)ds < =, forn=m,m+1,... (4.98)
n—m 2
and
o0
/ r(s)ds = oo. (4.99)
0
Then
lim N(t) = N*. (4.100)
—>00

Proof. In view of Lemma 4.3.2, it suffices to prove that (4.100) holds if N is an
oscillatory solution about N*. By Lemma 4.3.3, N(¢) is bounded from above and
bounded from below away from zero. Let

u=lim sup N(t), v=lim inf N(7). (4.101)
—>00

—>00



164 4 Logistic Models with Piecewise Arguments

Then 0 < v < N* < u < oo. It suffices to prove that u = v = N*. For any
€ € (0,v), choose an integer T = T'(¢) > 0, such that

visEv—e<N{t—-m)<u+e=u, fort >T. (4.102)

Using (4.89), we have

7, =T(ON®) {1 - N—} fort > T, (4.103)
and
dN(t) "
- 2 —r(ON(©) {N— —1}, fort =T (4.104)

Let {T,} be an increasing sequence such that 7, > T + 2m, D~ N(T,) > 0,
N(T,) > N*, lim,—oo N(T,) = uand lim,0o T, = o00. If T,, ¢ {0,1,2,...},
then by (4.89), we have

d aN([*—jh =1

Jj=0

which implies that there exists &, € [[T, — m], T,] such that N(§,) = N* and
N()> N*fort € (§,,T,].If T, € {0,1,2,...} then

Y aN@F—j -1 <1,
j=0

and so there exists §, € [T, —m — 1, T,) such that N(§,) = N* and N(t) > N*
fort € (&,, T,]. Thus by (4.98),

N W

T
/ r(s)ds <
én

For T <t <§&,, by integrating (4.103) from ¢ to &,, we get

In (]X]((EZ”))) < (1 - %) /f” r(s)ds

or

.
N(t) > N* exp (— (1 - F) / r(s)ds) forT <1 <&, (4.105)
t
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For j =0,1,2,...,m, we define the sets
Ey={telsT]:[t—jl=é&},
Eyy ={t €& Tul: [t —j] <&

Then Ey; U Ey; = [§,,T,], j = 0,1,2,...,m. Note that ¢t € [§,, T,] implies
[t —m] <&, Fort € E,;, we have

N(t—j]) > N* > N*exp <—<l— ;]L)/Eﬂ r(S)dS),

[t—m]

and for ¢ € Ej;, by (4.105) we have

N([t — j]) = N*exp (_ (1 — ];1*)/& r(s)ds)

[r—Jjl

E’I
> N*exp (— (1 — ;1*)[ ]r(s)dS) )
t—m

since [t — j]| = [t —m] = [§, —m] = [[T, —m] —m] > [[T +m] —m] = T. Hence

dN n
d[(t) <r(t)N() (1 — exp (— (1 — %) [[z—_/] r(s)ds)) .

Denote 1 — & by v*. Then 0 < v* < 1. Thus for ¢ € [§,, T,], we have

dInN(z) o . . [E
— = min { r@)v*, r(t) <1 — exp (—v /[t_m] r(s)ds))} . (4.1006)

We now prove that

*\2
In (M) <y*— (G0 (4.107)
N* 6

There are two possibilities:

o .
Case 1. f;’ r(s)ds < —ln(v’i*) = —ln(lV;V ),
By (4.106),

Ty &n
In (%) < /gn r(t) (1 —exp (—v* /[l_m] r(s)ds)) dt
Ty t t
= L:, r(t) (1 —exp (—v* (/[l_m] r(s)ds — /gn r(s)ds))) dt
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T, ¢

/En r(r) (1 —exp (—v* (% — /En r(s)ds))) dt

f; r(t)dt —e™ 2" /&Tn r(t) exp (v* /El r(s)ds) dt

/anM%—f%*/nﬂﬂ(%pcﬁ/qNQM)—l)m
5 ve o Je, &

T, e—v*(%—f;" r(s)ds) t
= / r(dt — ———— (1 —exp (—v*/ r(s)ds)) .
E)l V E’I

*(3-)

Note that g(x) = x — —( —e™"") is increasing for 0 < x < %
For f& r(s)ds < — ln(lv*v ) < %, we have

(N(Tn))
In
N*
< —ln(lv—:‘}*) - %exp (—v* (% + —ln(l‘; V*))) (1 — el““_v*)>
:_MU—vﬂ_ﬁm(_w(§+hM—wﬂ))
v* 2 v*

CIn(1—v) [1 o (E n In(1 —v*))]

v* 2 V¥

IA

_ ¥ _ ™
5—1+§v* (1—v )lil(l v
3 y
< Ty*— — d
=2 / (/0 l—x) '
3 1 V¥ y *\2
5—&——/ /a+mww=w—“). (4.108)
2 v* 0 0 6
For f;’ r(s)ds <3 < M , we have
(N(Tn))
In
N*
T 1 ! 3 %
< / r(t)dt — — (e 2" exp (v*/ r(s)ds) —e 2 )
€n €n
3 1 - (v*)?

—3v *
Sqe et =vi-—
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Case 2. —ln(lv—:v*) < f;" r(s)ds < 3.

Choose h,, € (§,, T,] such that

T ¥
/ r(s)ds = _ln(l—v).
hfl

V*

Then by (4.106) and (4.98), we have

Iy
In (%) /Sn Vvir(s)ds

7—;‘1 Eﬂ
+/hn r(1) (1 —exp (—v [[tm]r(s)ds)) dt

hy T
v*/ r(s)ds—i—/ r(s)ds
En hn

Ty t t
_/ r(t) exp (—v* / r(s)ds +v* / r(s)ds) dt
hn [t—m] &n

v* /hn r(s)ds + /Tn r(s)ds

Sn h n

T, ‘
—e V" /h,, r(t) exp (v* /E” r(s)ds).

hn Ty
In (%7;”)) <y* /s r(t)dt + (1 —v*) /h r(t)dt

T
—exp (—v* (% - /En r(s)ds))

* * Ty
=_(1—v )In(1 —v*) +v*/ r(0)d1

*
V E}l

—exp (—v* (% - /&Tn r(s)ds))

I —v*)In(1 —v* 3
Sl Ll B WY
v

IA

IA

Thus

since h(x) = xv* — e (379 s increasing for 0 < x < % Thus according to
(4.108),
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! (N(Tn)) . )
n <y* -
N* 6

This completes the proof of (4.107).
Letn — oo and ¢ — 0 in (4.107), and we have

(R B

Next, let {S,} be an increasing sequence such that S, > T 4+ m, D™N(S,) < 0,
N(S,) < N*, lim,—00 N(S,) = vand lim, o S, = c0. If S, ¢ {0,1,2,...,m},
then by (4.89), we have

> a NS - jD = 1.,

=0

which implies that there exists 1, € [[S, — m], S,] such that N(n,) = N* and
N(t) < N*fort € (n,,S,]. If S, € {0, 1,2, ...} then

Y aNS—j - =1,

j=0

and so there exists 7, € [S, —m — 1, S,) such that N(,) = N* and N(t) < N*
for t € (n,, Sy]. Thus by (4.98),

/S" r(s)ds <

M

[\OR OS]

For T <t < n,, by integrating (4.104) from # to n,,, we get

In (%) > — (% - 1) /tnn r(s)ds
or

n
N(t)fN*exp((%—l)/ r(s)ds), forT <t <n,. (4.110)
t

For j =0,1,2,...,m, we define the sets

Fij=1{te (s Tul = (2 = J1 = na}s
F2j = {t € [nn»Tn] : [t_j] = nﬂ}'
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Then F\; U F>; = [n4,S4], j = 0,1,2,...,m. Note that ¢t € [n,,S,] implies
[t —m] < n,.Fort € Fy;, we have

N([t — j]) < N* < N*exp ((;_1 - 1) /["" r(s)ds),

t—m)]

and for ¢ € F3;, by (4.110), we have

N(lt - j)) < N* < N*exp (( = -1) /[ n_"” r(s)ds)

u Nn
< N*exp( - —1 / r(s)ds) )
(31,

Hence

dN(t) uy i
T > —r(t)N(t) (exp ((F - 1) /[t_j] r(s)ds) - 1) .

Letu* = g% — 1. Thus for ¢ € [n,, S,], we have

dInN(t) - . L™
— = max {—r(t)u ,—r(1) (exp (u /[t_m]r(s)ds) - 1)} . (4111

We now prove that

N(S) (u*)?
—1n (W) §M*+T. 4.112)
There are three cases to consider:
Case (i). fni" r(t)de <1.
Then by (4.111),
N S S *\2
—ln( ( ”)) <u*/ r()dt <u* <u* + %
)

n

Case (ii). 1< [ r(t)dt <3 —InlHE,

Clearly u* > 2 in this case. We have

N(S, Sn 3 *)2
—1In (%) < u*/n” r(t)dt < Eu* —ln(l +u*) <u*+ %
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Case (iii). 3 —In ™ < [ r()dr < 3.

Choose g, € (1, Sy) such that

N *
n 3 1
/ F(O)dt = 2 —n —
., 2 u*

Then by (4.111),
(N(Sn))
—In
N*
8n n M
* 1)dt + t( (* d)—l)dt
u /ﬂn r(t) /5:,1 r(t)|exp|u /[;m]r(s) s
&n Sn Sn t
* tydt — 1)+ e t(—* d)dt
u /n,, r(t) /g,, rit)+e /gn rt) | —u /ﬂnr(s) s
n S’l
=u* /g r(t)dt—/ r (1)
n Sn
+ui*e%”* (exp (—u* /n,,g r(s)ds) —exp (—u* /n” r(s)ds))
o Sn
=u* /é r(l)dt—/ r(1)
n &n
n Sn
+ui* exp (u* (% - /j r(s)ds)) —exp (u* (% - /7;" r(s)ds)) )

This implies that
(N(Sn))
—In
N*
gl’l Sll
u*/ r(t)dt—/ r(t)
n 8n
1 * * 3 S”
+—1+u" —1—u ——/ r(s)ds
u* 2

&n 1 &n 8n 1
= u*/ r(t)dt — 3 +/ r@®)dt = (w* +1) r(t)dt — =

IA

IA

IA

n Mn 2
3 1+ u*)In(1 +u*) 3 1 [ (1 d
:1+_u*_(+u)n(+u):_u*__/ 4\
2 u* 2 u* 0 0 1+y
3 *
fiu —/ /(l—y)dydx—u +(u)

This proves that (4.112) holds.
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Letn — oo and € — 0in (4.112), and we have

—m(;Jf(ﬁ;—0+é(;*—O? (4.113)

Setx = g% —landy = 1— 5. Thenx > 0,0 < y < 1. By (4.109) and (4.113),
we see that

{—ma—y)§x+éﬁ, @4.114)

In(1 4+ x) <y —1y%

In view of Lemma 3.2.2 we see that the system (4.114) has only solutionx = y = 0.
This shows that v = u = N* and completes the proof. |

We will now present another result (see [49]) which is different from
Theorem 4.3.2. Consider (4.89), (4.90) with r(¢) is continuous on [0, c0),
r() >0, r(t) # 0, and

ap>0anda;, >0, 1 <k <m. 4.115)
Let
t [+1
rf =f r(s)ds, | <t <l+1landr =/ r(s)ds, [ =0,1,2,.... (4.116)
i i
Let
1 m
N*= ———andf; =1-— axN( —k),1=0,1,2,.... 4.117)
> k=0 Gk ,;)
From (4.92) we obtain
NI +1)=N{)exp(rity), L =0,1,2,..., (4.118)
and
NI +1)-N* =
{1—aoN(D)R;} (N()-N*)—N()R; Y ;' ax(N(I—k)—N™),
. 70, L @119
{1—agN()ri} (N()-N*)—N)r; Y i— ar(N(I—k)—N™),
if; =0,
where
R, = exp(rit;) — 1 .

]
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Letk; = N(I) f(t:r1), 1 =0,1,2,...,

r= }25(”) and f(t;r) = r, . 0' (4.120)

Lemma 4.3.4. Assume that
O<rn<1,1=0,1,2,.... (4.121)

Then, for any positive integer | we have

1
N(+1)<—and 1—apk; > 0. (4.122)
riao
Moreover, if r > 0, then there exists a positive constant k such that for any
sufficiently large positive integer [,

k <k =< l, (4.123)
ap

and

1 1)\° "
lim sup N(/) < — and lim inf N()> (—) (ao - Zak). (4.124)
ao
k=1

[—00

Proof. We easily see that (4.121) implies (4.94) and hence by Lemma 4.3.3 (and
Lemma 4.3.2) N(/) is bounded above and is bounded below from 0. For f(x) =
xe' 7% where r and a are positive constants, we have

r—1

max f(x) =

0<x<oo
Thus, by (4.118) and (4.121), we see for [ > 0,

xp(r; — 1 1
N( + 1) < N(D) exp{ri(1 — agN(1))} < % = nay’

Put
5, =1—ragN(l), forany [ > 1, (4.125)

and note #; > 0 for any / > 1. Consider the function

e—l séo

g(x) = 1’ =0
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Then,

xlz{(x —De* + 1}, x #0,
1

’ _
gx) = X =0,

2
and for h(x) = (x—1)e*+1, h'(x) = xe*. Then, h(x) > h(0) =0, g’(x) > 0and

hence, g(x) is a strictly monotone increasing function of x on (—oo, +00). Hence,
by (4.117), (4.121) and (4.125), we have that r;f; < f; and

aok; < riagN(Dg(riy) <1 —1)g(@), 1 =1,2,... .
We easily see that

e* —1

(I=x)

<1, forany0 < x < 1.

Hence, we have (4.122). In (4.117), we see
m
>t =1- Zak (limsup N(1)) > —o0.
k=0 [—00

Put

S(timinfy oo N(1) Z2EL= > 0, 1, # 0,

k=
- 3 (liminf; e N(1))r > 0, t; =0.

Then, for any sufficiently large positive integer /,

O<k=<k =<—.
ao

Next, let a sequence {/,,}72 | satisfy

0< llim N(l,) = limsup N(I) < +o0.
—00

[—o00

Then, by (4.119) and (4.123), we have that for any sufficiently large positive
integer p,

N(l,41)—N*
< (I —aok;,,,~1)(N(lp41 —1) = N*)

e (Z ) (1in, Mt == °).
k=1 -
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Let p — 400, in the above equation and so

lim max N(I,H_l —k) < hmsupN(l)

P> 1<k<m+

lim min N(l,y1 —k) > liminf N(I),
=00

P> I<k<m—+1

and by (4.123), we have
ao(hmsupN(l) —N™) + (Zak)(hmmfN(l) —N*) <0.
k=1

Then, we get

limsupN(I) — N* < —%(Zak)/ao§ (l1m1an(l)—N )

[—00 k=1
< %(Zak)/ao§ N*,
k=1
and hence, we have

limsup N(I) <

[—o00

1+ (Zak)/ao} Nt

k=1
Similarly, let a sequence {/,}72, satisfy

lim N(l,) = liminf N(I) > 0.
p—>o0 |—00

By (4.119) and (4.123), we have that for any sufficiently large positive integer /,

N(p+1) = N* = (1 —aok;, 1)) (N(lp41 —1) = N¥)

ki, \— 1(2%)( max N(lp+1 k) —N™).
k=1

Therefore from a similar argument to the above we get

ao(hmlan(l)—N )—i—(Zak)(hmsupN(l)—N )>0.
k=1 =

Then,

m

liminf N(/) - N*>— { > ak)/ao} (hmsup N() = N*)
k=1
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and

%

liminf N(1) 2 {14 ()_a)/a0}N™ = {()_ai)/ao} limsup N (1)
k=1 k=1 o

- = a)/a} limsup V().
k=1 -

Thus, by the first part of (4.124),

1 " 1 1)\° “
liminf N(I) > — — — = — — .
iminf N() = - {(Zak)/ao} () {ao Zpk}
k=1 k=1
The proof is complete. |
Now we have our main result.
Theorem 4.3.3. Assume that
ap>Y arand 0<r <1,1=0.1,2,.... (4.126)
k=1
Then
INC+1)—N* < n}{ax IN(—k)—N*|,1=0,1,2,..., 4.127)
0<k<m

which implies that solutions of (4.89), (4.90) have the contractivity property.
Moreover, if r = infj>o r; > 0, then the positive equilibrium N* of (4.89), (4.90) is
globally asymptotically stable.

Proof. Note
IN(I +1)— N*|

< (1 —aok))[N(l) = N*| +k1(2ak)(lg§m IN(l —k) = N*|)
k=1 =t=

< {1 —ki(ao— Zak)}(og}czgcm INC—k)=N*|), 1 =0,1,2,...,
k=1 -

from which by (4.126), we get (4.127). Moreover, if r > 0, then by Lemma 4.3.4,

1 —k;(ao—Zak) < l—lg(ao—Zak) <1,

k=1 k=1
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for any large positive integer /, and hence, lim;—,oo N(I) = N*. The proof is
complete. |

Next we discuss the equation

WO = N(t)yr(1) {1 —aN(t) — Y7o biN(n — i)},

n<t<n+1,n=0,12,..., (4.128)
N@©) =Ny >0, and N(—j)=N_; >0, j =1,2,...,m,
where r () is a nonnegative continuous function on [0, +00),

m m
rt)#0,Y b >0.b;>0,i=0,1,2,....mand a+ Y b >0.
i=0 i=0

The results below are adapted from [48]. Note the positive equilibrium of (4.128) is

1

NY =
a-+ Z]:obj

Forr > 0and -1 <o < 1, put

(1-0<=Lr #0,

tr) = 4.129
fan =11 A #129)
and consider the conditions of » > 0 such that
2
ft;r) < 1o forany ¢t < 1. (4.130)
—a
For —1 < « < 1, consider the function g(Y; &) of Y on (-1, 1):
1 (+e)(1+Y)
In /22 Y # —«
g¥:a) = 2(‘;‘“') (1=o)(1-Y) (4.131)

= Y =—a

Lemma 4.3.5. Under the conditions that 0 < Y < o for 0 < o < 1, and

a<Y¥ <0 for —1 < a < 0, there exists a unique solution Y = )?(a) of the
equation:

i g(V:a), -1 <a < 1. (4.132)

In particular, ?(0) = 0 and

lim Y () = Y(0). (4.133)
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Proof. ForY # —a,

' 1 I I (+a)(14Y)
gYia) = T { =77~ 27 N a1 }
1 1
cr7 oy s

Moreover, for « # 0,

1 1+« o? ot
0;x) = ) = —1 =14+ —=—4+—=—+...,
g0 a) = g(a;a) 7 nl—oz + 3 + 5 +

and

¢'(0;0) = g{l—g(o @) =—a(t+ < 4.0,
glea) = i —gwa)) =all + 22 4.,

Thus, for -1 < o < 1 and @ # 0, there is a solution Y = ?(a) such that
0<Y <afor0 <o <landa <Y < 0for—1 < a < 0, and it satisfies
the equation

and hence

= = 8(Y;a),

and,sinceO<I? <aforO<a<lora<Y <O0for—1<a < 0, we have

R 1 (—2Y) N
g'(Yia) = —{— —— —g'(Y:a)}
a+Y (1-Y?)?2

1 2Y

— >0
a+ Y (1-72)2

Hence, under the condition§ thatAO <Y <afor0<a <landa <Y < 0 for
—1 < a <0, this solution Y = Y (&) of (4.132), is unique for 0 < |a| < 1. We see
that Y = Y (0) = 0 is a unique solution of (4.132). Further, we have

lim Y () >0, and 11m Y(ot) <0,
a—>+0

and hence, lim, ¢ Y (o) = 0, from which we have (4.133). The proof is complete.
|
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Remark 8. Note that for 0 < || < 1, the equation

=72 = 8(:).

has another solution ¥ = —, but this solution does not satisfy the conditions
O0<Y <aforO<a<landa <Y <Ofor—1 <a <0.

Lemma 4.3.6. For —1 < a < 1, let )A’(ot) be defined as in Lemma 4.3.5 and put

R 2(1 + ) an a+ Y ()
r(a) = 7@ and t (o) = Tia (4.134)

Then, 7 (@) is a strictly monotone increasing function of a on the interval (—1, 1),
and

a_11_1111+0r(a) =0 and all)lln_or(a) = 400, (4.135)
and hence,

a_ll_IIll_H)Y(CU) = —1 and all)rln_OY(a) = 1. (4.136)
Moreover,

(@) <1, f/({(a);F(@) =0,
f(t;F(a)) > 0, —o0 < t < f(at),
fl(t: 7 () <0, f(@) <t <1.

Hence, for any 0 < r < r(a), we have

f@;r) < f(t:7(@) < fi(@); (@) = 25, fort <1, 4.137)
flt:7 (@) < . fort <1, t #i(a). '

Further, for —1 < a < 0, we have that i (a) < F(1+42«), and for any r < 7 (142a),
14+af(t;r) >0, foranyt < 1. (4.138)

Proof. From (4.129), we have for ¢t # 0,

rt

fltsr) = e[—z[e—” —(—r(1=0)] (4.139)

and

lim f/(t:r) = r(5 = D).
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We see that
1'(0;2) =0,

and forr <2,

Ft:r) < f(t:2) < f(0:2) =2 =

2
——, forany ¢ < 1,
1-0
from which we get (4.137) for « = 0. Now consider the case 0 < || < 1. Since
Y (a) # —a, we have

2@+ Y @) _ (+a)(+Y@)

1 - 72(a) 1-e)(1-Y (@)
and hence
_detfe@) (1 —a)(1— Y (@)
e 1@ — _ =0
(1+a)1+Y(x)
Note
o 2(a+ Y (@)
ra)t(a) = TP fz(a) )
and

2 + Y (@)
1+ a)(1 + Y ()

_ (-1 -Y(@)
(1+a)(1+ Y (@)

Hence, from (4.139), we have f’(f(a); 7(ar)) = 0. Further,

1 - F@)i@)(1—i@) =1—-

Jwiw - 1+00+¥@) | 2@+¥@)
(1—a)(1-Y(a) (1-a)(1-Y ()
and hence,
. A B . e?(a)f(oz) -1 _ 2
fE(@); (@) = (1 — () o~ Toa
Since

for t < 0 which has a sufficiently large |¢],

{ lim, oo f(£;7 () = 1, f'(t;7()) > 0,
f(;r) =0 and f'(1;r)=1—e"" <0, for r >0,
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we see that

f'(t;7(a)) >0, for —oo <t < i(x),
and f'(t;7(a)) <0, for f(a) <t < 1.

Hence, from (4.134), we get (4.137) for 0 < |¢| < 1. From (4.134) and (4.137),
we can see that 7 () is a strictly monotone increasing function of ¢ on the interval
(=1, 1), and hence (4.135) and (4.136) hold.

2

If -1 < a < 0, then = < }a Hence, we obtain (4.138). The proof is

complete. |
From Lemma 4.3.6, we have the following corollary for a fixed r > 0.
Corollary 4.3.1. For any r > 0, we have

1< Y r) <1, tG7(r)) < 1, and f'(tGF~'(r));r) =0
and

ftir) < fEE )ir) = =i fort < 1, (4.140)
ft;r) < Tzlm,fort < landt # t(7F7(r)),
where for r > 0, a = 7-(r) means 7 () = r and 7 () is defined as in
Lemma 4.3.6.
Proof. The proof is derived directly from Lemma 4.3.6. ||

Corollary 4.3.2. For a fixedr > 0, let | >t = # 0 be the solution of the
equation

Griry=e —{1-rt(1-1)} =0, (4.141)
and put
P (4.142)
r=1—-—=-mr—. .
f;r)
Then,
PN = Fand i(FTN(r) = 7. (4.143)

Proof. By Lemma 4.3.6 and Corollary 4.3.1, we see that there exists a unique
solution 1 > ¢ # 0 of (4.141). Since

fmm=%ﬂmm

we have f’(f; r) = 0, and by (4.142), f(f; r) = ﬁ, from which by (4.140), we
get the conclusion. ]
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Corollary 4.3.3. Forafixed—1 <a < land o # 0, let ¢ = § # 0 be a solution
of the equation

Hg:a) =1 —-a)e? —2(q—a)— (1 +a)e? =0, (4.144)
and put
. el (1—-g j
t:e—fq)andf=% (4.145)
Then,
Pa) = Fand i(a) = i. (4.146)

Proof. By Lemma 4.3.6, we see that there exists a unique solution q # 00of (4.144).

For p = 1_27[’ # 1, put
f=1-—p#0andi = ~ (4.147)
1—p
Then, p =1— f, q= 77, and by (4.144),
(1—a)e?—2+e %) =2{e7—(g-1)}
and
p 1= ed
I—p ei—(1-§)
Hence,
P _ 51 an
~(e?—1) = ande 9 =1— pq. (4.148)
1—-p -«
Therefore, we have ¢ # 0 and
N N et
f@:7) = and f'(t;7) = —=G(;7) = 0, (4.149)
| 12
from which by Lemma 4.3.6, we get the conclusion. ]
Lemma 4.3.7. Let By > 0, and
= er(ﬂ—yx) —1
fsrBy) =x———. (4.150)

B—ryx
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Then, fort = 1 — %x and 7 = PBr, we have

f(x;r,ﬂ,y) = %f(t;?). (4.151)

Proof. Since r(f — yx) = rt and § — yx = Bt, we get (4.150). |

Note from (4.128) after integrating from n to ¢ we have that

N@) = N(n)exp{/t r(s)(1 —aN(s) — ZbiN(n —i))ds} ,

n .
i=0

n<t<n+1,n=0,1,2,..., (4.152)

and so N(¢) > 0 for all ¢t > 0. An easy computation yields that for ¢t € [n,n + 1),

d| 1 ! - ,
n |:N(t) exp L r(s)ds(1 — ;b[N(n — l))} :|
t m
=ar(t)exp {/ r(s)ds(l — ZbiN(n — i))§ . (4.153)
n i=0
Put
n+1 m .
{ o= T @A = 1S NG =D, @154
T @+Xiiobi)”
Lemma 4.3.8. If
exp {fnt r(s)ds tn} -1
14+ aN(n) ; >0, for t, #0,
and
t
1+ aN(n)/ r(s)ds >0, fort, =0,
then we have forn <t <n + 1,
N(n) exp{jz r(s)ds ty }
(exp{j;); r(s)ds ty }—l) ’ ln 7é 0’
N(t) = ¢ (FaNm)| ————— (4.155)
N(n)

1+aN@®) [} r(s)ds’
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and
N(@)—N*
exp(r,,tn) 1
S (N(1)—N*)= S, A() bi (N(—i) — N*),
_ 14+aN@ )exp(r,,tn) 1
- if t, #0,
NG (N(n)~N*)= X7y Bn) by (N(n = )=N*). if 1, =0,
(4.156)
where
N( )exp(r”t,,) 1 N P ¢
A(n) = -, B(n) = &, rh = / r(s)ds. (4.157)
14 aN(n )M 1 +aNmn)r} i
In particular,
N(n) exp{rnta} fOr t # 0
N+ 1) = 1+7vﬂ(fg>“"""z,§”’ ‘ (4.158)
m for l,, = O,
and
Nn+1)—N*
1—boN(n )LXP('I;M) 1 .
T mm (V) = N*)= 3L, C) bi (N = 1) = N*),
- if t, #0,
W (N(n) = N*) = Y0, D(n) by (N(n — i) = N*), if 1, =0,
(4.159)
where
N( )CXP(rnfrx) 1 N
Cn) = — and D(n) = _ N,
14+ aN(@n )‘”‘P(’;—’n) 1+ aN@n)r,
Proof. Iffnt r(s)ds = 0,then N(t) = N(n), t € [n,n + 1).
Assume
t
/ r(s)ds >0, t €[n,n+1).
n
From (4.153), we have (4.155). Then
N+t S0 bON" = T biN G = DN ™ ),
N(t) = L+ aN(m)f(eh rosn —1)/1,} , T
Nm)+{(a+ Xy b)N* =D "L biN(n — i)}N(n) [, r(s)ds L —o

1+aN(n) [, r(s)ds
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from which we have (4.156). |
Ifa> )" ,b > 0thenfor0 <r, < +oo,

|1 _ b(]N(I’l) exp(r?ntn)—l | + er‘n=1 bi N(n)exp(r;,ntn)—l
1+ aN(n)22u)=L
BT N () et
=0 X(I[)l _17t717éov
1+ aN(n)M
[1—boN(n)ry| + > i, bi N(n)rn 1+ Y biN(n)ry,

<1, =0.
1+aN®n)ry, 1+aN®n)ry, - §
We easily get the next result whena > »"/L b; > 0.
Theorem 4.3.4. If
m
> b >0, (4.160)
i=0

then the solutions of (4.128) have the contractivity property, that is,

|N(n+1)—N*|foréliasxm|N(n—i)—N*|. (4.161)
Moreover, if
limsupr, > 0, 4.162)
n—00
then
nll{go N(n) = N7, (4.163)

and hence, the positive equilibrium N* = 1/(a + b) of (4.128) is globally
asymptotically stable.

Hereafter with (4.128) we consider the case —) ;—,b; < a < Y i=,b;. Note
that if r, = 0, then N(n + 1) = N(n).
For simplicity, we assume r, > 0 and put

x(n) = (Iny bON@). x* = (T b)N* = i

@ =gt 2 Tl a = gy 20 0=i=m 1o
Fury =17 170 '
r, t =0,

F =8up,sqr, and r = inf, >0 7.
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Then,
t,=1-— Za,-x(n —1i),
i=0
and (4.158) and (4.159) become respectively

x(n) exp{ratn}
1+ le(l’l)f(tn; rn)

and

o l—aoxm i),
) e ft T
N~ aix(n) f(tasra)

; 1 +OKX(I1)];(Z”;V”)

(x(n—i)—x%). (4.166)

Theorem 4.3.5. Let N(t) denote any solution of (4.128) and 7 (&) be defined as in
Lemma 4.3.6. Ifa > 0 or —by < a < 0and

r < 4o0, for a > 0,

L>Oandf<f(l+i—‘;),f0r_b0<a<0’ (4167)

then

liminf N(n) > 0. (4.168)

n—o0

Proof. By our assumptions, 7 > 0.

For the case a > 0, the proof is similar to those in Lemmas 4.3.2 and 4.3.3.
Now assume —by < a < 0, r > 0,and 7 < 7(1 + i—;’). In (4.165), first we see
t, <1 —agx(n), and for

g(x) = xel1=am)
we see
g'(x) = (1 — Fagx)e" 17409
and hence,
glx) < _Le’_‘(l_%) = _Le;_l.
ray rag

Hence, forr <r, <7,

x(n)e™n < x(n)e1=awxm) < max(iel_l, Le;_l).
- - ray ray
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By assumption, we see that there is a constant § such that

1— 777
O<é’<min{r—(r) +a, 0+ ap}.

2/a0
Then,
-1 <1+—(a—8)<1 r<r(1+—(oe—8))
ao

and by (4.134) and (4.137) in Lemma 4.3.6,

1+ ax(n) f (ta: 1)

IV

1+ 2 £(1 = apx(n): )
aop

+(x 2
ap1— {1+ Z(@—¥)}

Thus, from (4.165), we have that

1 1 -, 06—
x(n+1) < max(—e L —e™h oc'
rag rao 8

Hence, in any case considered, we have x(t) < M < 4o0.
Next we prove

2
liminfx(n) > 0forO<r <r, <rF <r(l + _a)
n—00 b
Let us consider the solution ¢ > 0 of the following equation:
aoc < 1 and age f (1 —agc; 7) = 1. (4.169)

We easily see that there exists a unique solution ¢ > 0 of this equation. Put ¢ =
min(c, x*) > 0. If

x(n—j)y<eé, 0<j<m,n=>0,
then by (4.169),

1 - aox(n)f(tn, ) 1 (o + ao)x(n)f(fn, rn)
14 ax(n) f (tp:rm) 1+ ax(n) f (ta; 1)
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and by (4.165) and (4.166),

x(n+1)—x*

(et a)xe) f i)
N 1+ ax(n) f(ta; )

) (x(n) —x*) > x(n) — x*,

and hence,

x(n+1)>x(@m), n>0.
If x(n) = ¢, n > 0, then by (4.165),

x(n+1)>M;, n=>0,
where

§—«
5

M; = éexp{Fmin(l —aoé — (>_ a;)M.0)}

i=1

Similarly, if for some 1 < j < m,x(n —j) > ¢, n > j,then by (4.165), we see

x(n+1)2MEJ, n > j.Hence,ifforsome 0 < j <m,x(n—j)>¢, n>m,
then

xn+1)>M, n>m,
where

M = min M!>0.

T 0<j=m
Suppose that there is a subsequence {n; }{2, such that
ll_i)r&x(n; +1)=0.
Then, there is an / > 1 such that n; > m and
x(nj+1)<x(n) and x(n; +1) <M.
Therefore, by the above discussions, we see that
x(np—j)<¢é, 0<j<m,
and hence, we have
x(n;+1) > x(ny),

which is a contradiction. Thus, we get liminf,_, o, x () > 0 and (4.168). [ |
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Remark 9. If —by < a < O and ¥ > 7F(l + i—‘;), then it may occur that

1 +ax(n)f(t,,;r,,) < 0forsome r, and x(n —i), 0 <i <m, n > 0. In particular,
if m = 0 and

2
Van(l+b—a),f0r—bo<a<0,
0

then for -1 < a = ;—O <0,

1+ af(f(1420);r,) < 14+ af(f(1 + 2a); 7(1 + 2a))
20

=1 _— =
T+ 20)

’

and hence there exists an
0 < N®n) <-4+ 2a))/by
such that
1+ af(1—>byN(n);r,) = 0. (4.170)

In this case, we cannot define N(n + 1) by (4.158) [see also (4.172)].

Now, let us consider the contractivity of solutions and the global stability for the
positive equilibrium N* of (4.128). First, we study the case m = 0 in (4.128). For
simplicity, we assume r,, > 0 and put

1
—l<a=2L <1, x(n) =bN@n) > 0, and x* = 0. (@171
bo l+a
If
(1 — —1
1 4+ ax(n) expiry (1 = x(n)); > 0, for x(n) # 1
1—x(n)

and

1+ ar, >0, forx(n) =1,

then from (4.164), (4.165) and (4.129), we have

x(n) exp{ra (1 — x(n))}

x(n+1) = 1+af(l—x@);r,)

(4.172)

and from (4.166), we have

x(n+1)—x* = F(x(n), ry;a)(x(n) —x*), (4.173)
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where

1—f(1—x;r)

F(x,r,a) = m

(4.174)

We easily see that for —1 <« < 1 (=by < a < by),

l14+af(l1—xm);r,) >0, and — 1 < F(x(n),r,;a) <1,
& (4.175)
fl=x@)ir) < 1%

Remark 10. Note that for x > 0 and r > 0, f(1 — x;r) > 0 and in this case,
F(x,r;a) < 1,for —1 < a < 1.1In (4.175), if

0<r, <F(a), x(n) #x*, and F(x(n),r,;a) = —1,

then

0 <7y < 7(@). x(n) % x*, and f(1— x(n)ir,) = %

and by (4.137) in Lemma 4.3.6, we see that
1 —x(n) =f(a), r, = Fa)
and
x(n+1)—x* =x*—x(n),
but x(n) # x(n + 1). Then,
1—x(n+1) # (),

and for 0 < r,4 < 7 (),

0< f(l=—x(m+1); rpey) <

’

l—«o
and hence
|x(n +2) —x*| < |x(n + 1) — x¥|.
Theorem 4.3.6. Assume m = 0 and —by < a < by, and put —1 < a = b“—o < 1.
(i) If

rm < F(a), (4.176)
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then the solutions of (4.128) have the contractivity property, that is,

IN(n +1) = N*| <|N(n) — N*|. (4.177)
(i) If
r<'r(1+2a),zf—}<ot<'0, and A 4.178)
0 < limsup,_, o, 7n < 7(a) or limsup,_, 1, = 7 (@),
then
lim N(n) = N*, (4.179)
n—>oo

and hence, the positive equilibrium N* = 1/(a + by) of (4.128) is globally
asymptotically stable.

(iii) If
ry > Fa), (4.180)
then there exists an N(n) > 0 such that
IN(n+1)— N*| > |[N(n) — N*|. (4.181)

Proof. By (4.137) and (4.138) in Lemma 4.3.6, we have that for —1 < o < 1 and
rf’l E f(a)’

0< fl—x@):r) = f(1 —x(n):7 ()

< and 1 + af (1 — x(n);r,) > 0.

l—«

Then, we have (4.175) and by (4.173),
|x(n + 1) —x*| < |x(n) — x*|,

from which (4.177) holds.
Now, assume (4.178). Then, by (4.138) in Lemma 4.3.6, 1 4+« f (1—x(n); ;) > 0.
If

0 <limsupr, < F(a),
n—o0

then by Theorem 4.3.5 and (4.137) and (4.138) in Lemma 4.3.6, for a sufficiently
large n,

F(x(n),rpia) <1,
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and

liminf F(x(n), r,; o)
n—00

2—(1—a)f(1 —x(n);r,)
(_1+ [+ af(l—x(m):im) )>_L

= lim inf
n—>00

Hence, there is a subsequence {#,};2, and a constant y; such that

lim |F(x(n),rps)| <y < 1,
|—00

from which we get (4.179). By (4.137), and (4.138) in Lemma 4.3.6, we have for
any t < 1,

L+af(t:7(@) >0, f(t:7(a)) <

)

l—«a

and for any x > 0,

|F(x™ + F(x,7(a):a)(x —x%), 7(e): ) F(x, 7 () )|
_ 1 2—(1—Ot)f(l—X*—F(X,f(a):a)(x—x*)f(“)))
= | (_ + 1+ af(l—x*— F(x,F(a); ) (x — x*); F(a))

2— (1—a) f(1 - x:7(2))
X(_1+ I+ af(l—xi7(@) )'<L

Hence, if

limsupr, = 7 (a),
n—>o00

then from (4.173),
x(n+2)—x*=F(x(n+1),rmepa)(x@+1)—x%)
= F(x* + F(x(n), ra:a)(x(n) = x*). a1 0) F(x(n), raz ) (x (n) — x™),
and from the proof of Theorem 4.3.5, there is a constant y, such that
limsup | F(x* + F(x(n), ry; o) (x(n) — x%), rpe1: @) F(x(n), ry; )|
n—00

=wm<l,

from which we get (4.179). Now (4.179) implies the positive equilibrium N*
of (4.128) is globally asymptotically stable.
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If (4.180) holds, then from (4.128), (4.175), and (4.137), we can easily see that
there exists an N(n) > 0 such that (4.181) holds. The proof is complete. ]

Theorem 4.3.7. Assume thatm = 0andr(t) =r > 0in (4.128).
(i) For any solution N(n) of (4.128), liminf,_,oo N(n) > 0, if and only if,

r < 4o0, for0<by<a, —a<by<0o0r0<a < by,

r<f(1+2a),for—b0<a<0and—1<oe=;‘—0<0.

(4.182)

(ii) For any solution N(n) of (4.128), we have that [IN(n+1)—N*| < |[N(n)—N*|,
if and only if,

r <+4oo, fora=>by>0,or —a<by<O0,

r < F(a), for —b0<a<boandot=b“—0.

(4.183)

Now, for m > 1, assume that by > 0, b; > 0, 1 <i <mand ) ;_,b; > 0, and
we consider sufficient conditions for the contractivity of solutions and the positive
equilibrium N * of (4.128) to be globally asymptotically stable. We have for (4.166),

1 —agx(n) f (ta; 1) aix(n) f (ta; 1)

~ |+ >0, = =
L +ax(n)f (. ry) I +ax(n)f (. ry)
<~
0 < x(n)f([n;in)_l < 1. for 1_QOX(n)f(tn;rn) <0, (4.184)
1 +ax(n)f(t;ra) 1+ ax(n)]i(t,,;r,l)

for 1 —apx(n)f(ty;ry) ~0.

a+ag> Y a;, 3 B
Di=1 14+ ax()f(t,:r)

If (4.184) holds, then from (4.166),

Yoiaix(n—i)
Z:‘n=1ai

[x(n + 1) — x*| < max(|Jx(n) — x*|,|

—x*))

< max |x(n—i)—x*|.
0<i<m

Note that by (4.164), a0+zl'»":1 a; =landa > ag > —1.Sincex(n—i) >0, 1 <
I < m and

t, <1—agx(@n) <1,
using (4.129) and (4.164), we get the following sufficient conditions for (4.184):

r, < +oo, ifa >1,
F(l—apx(n);r,) < 22 if —ay+ Yriai<a <l

I—a’

(4.185)
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Thus, for

—ao—i—Zai <a<l,
i=1
2
l—«
1—(1- W)
and we see that the condition of r, to « for m > 1, corresponds to that of @ =
1-— 1;—0“ > —1 in place of @ in Theorem 4.3.6 for m = 0. Note that

S(1 —apx(n);ry) < lzfoa = , (4.186)

2
l<a<1+Z <1 for —ag<a <0, (4.187)
ao
and if
m
O{—}—ao:Zai,
i=1
then
- l—«
a=1-— = —1.
ap

Theorem 4.3.8. Assumem > 1, by > 0and ) i bi—by <a < Y /., b;, and put
_@-ynb) o

—l<a <o

- 1. 4,188
b T b) (4. 188)

(i) If
r < F(@), (4.189)

then solutions of (4.128) have the contractivity property, that is,

IN(n + 1) — N*| < max |[N(n—i)— N*|. (4.190)
0<i<m
(i) If
rsrl+2e), if —1<a <, L (4.191)
0 < limsup,_, o, 7y < 7 (&) or limsup,_, 1, = 7(&),
then
lim N(n) = N*, (4.192)
n—>o0

and hence, the positive equilibrium N* = 1/(a + Y [_,b;) of (4.128) is
globally asymptotically stable.
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Proof. We seet, < 1 —aox(n).For (4.188) and r, < 7#(&) we have from (4.137) in
Lemma 4.3.6 and (4.186),

2610
l—a

S —apx(n);ry) < f(1 —apx(n); 7 (@)) <
Then, by (4.185) and (4.184), we have

< Maox () f i)l + (il a)x ) f (i) _ |

= , (4.193)
1+ ax(n) f(tu; )
and by (4.166),
" oaix(n—i
|x(n + 1) — x*| < max (|x(n) —x*, |% — x*|)
i=14i
< max |x(n —i) —x*|, (4.194)

which implies (4.190).
Suppose first, r, < 7#(&), n > 0. Then, there exists a constant 8 such that

lim max |[x(n—i)—x*|=8>0,
n—00 0<i<m

and hence,

limsup |x(n) —x*| = B > 0.
n—>00

Then, there is a subsequence {n {2, such that
lim |x(ny + 1) —x*| = B,
k—o00

and by (4.193),

B = lim [x(n; + 1) —x¥|
k—o00
< lim sup |1 — aox(nk)f(tnk;rnk” + (NZ?LI ai)x(nk)f(t"k;rnk)
k—00 1+ ax(ng) f (tngs )
x limsup( max |x(ny —i) — x*|)
k—o00 O0=<i<m
< limsup |1 _aox(nk)f(tnk;rnk)| + (Z;n=1 ai)x(nk)f(tnk;rﬂk)ﬁ < ,B

k00 1+ otx(nk)f(tnkirnk)
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Suppose that 8 > 0. Then, by the above inequalities, we have

|1 = a0x (). f (tn s )| + (1 @) x (00) f (i 7)

- 1
L+ ax () f (T )

limsup, _, o,

and
limsup, o [Xx(ng —i) —x*| =B, 0<i <m.

Thus, there is a subsequence {n}}[’io of {ny}32, such that
Jim |x(n] +1—i)—x*=p,0<i <1and
—>00

limsup |x(n] —i) —x*| =B, 1 <i <m.
[—00

Hence using similar reasoning we see that there are subsequences {n{ 372, of
{”zj_l}?io, J =2.,3,---,m, such that

lim |x(n] +1—i)—x*|=H,0<i<j
l—>o00

and limsup |x(nlj - —x*=8,j<i=<m.
=00

Finally, we get a subsequence {n;}72 of {n}"}72, such that
limj oo |x(ny —i) —x*| =B, =1 <i <m,

|1—a0x(”l).f(tn[§l'n1)|+(¥1m=1 ai)x("l)-f(t”l ) =1
Ltax(ng) f(tny 3rny)

lim; o0

because, if there is a subsequence {n ; };’O:l of {n;}72, such that

. aox (n) f (ta, i )+ Cry @) x (n)) f (b, i 7))
1m

j=oo Lt ax(n)) f(ta 1))

<1,

then
ﬁzlimj—mo |x(nj+1)_x~*| B
|1 —aox(n;) f(ta;s )| + Qi @)x () f (tyi )

L+ ax(n)) f iy 1)
xlimj o0 [x (1) — x| < B,

which is a contradiction. Then, by (4.194), we can see that

i L= aox@) f @)l + QUi a)x () /i) _
n—>00 1+ ax(n) f (ty: 1)
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and

lgglo |x(n) —x*| = B. (4.195)

Suppose —1 < & < 0, sup,~o7, < 7(1 + 2) and (4.191). Assume that there is a
subsequence {n p};’,"zl such that

1 —aox(np)f(t,,;r,,p) <0.

Then, from (4.194), we have

x(01p) f (tnyirn) =1
p—oo | 4 ax(np)f(tnp; Tn,)

that is,

2

sl X ) g3 ny) = 0

Thus, by Theorem 4.3.5,
lim x(n,) = x*—f >0, lim x(n, + 1) =x*+ >0, and |B| = B.
p—>00 p—>00

Since -1 <& <a <1+4+2a<1,and

2

l—«a

s 1 .
= lim x(np) f(tn,:ra,) < — f({(@): F(&))
p—>00 aO
1 2 2

al—-a |-«

)

by (4.137) in Lemma 4.3.6, we have
lim #,, = lim {1 —aox(n,)} = (@) and lim r,, = #(&),
p—>00 p—>00 p—>00
and hence,
i 1 n . . .
lim x(n,) = —(1 —1#(@)) and lim x(n, —i) =0, 1 <i <m,
p—>00 ao p—>00

which contradicts Theorem 4.3.5, because

5 20
—l<a<l4+—<lfor—1<a<0.
ap
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Hence, we have

1 —aopx(n) f(ta: 1) > 0,

for a sufficiently large n, and from (4.195),

lim 1—(ap — Z;n:l aizx(n)fN(ln; Tn) -1
n—00 1 +ax(n)f(ln;rn)

Then, by

m
o+ ag > E a;,

i=1

and Theorem 4.3.5, we get lim,_, 7, = 0, which is a contradiction. Therefore, we
have for the case r, < F(&), lim,—0 |x (1) — x*| = 0 and (4.192) holds. Also by
Theorem 4.3.5 there is a positive constant M such that

t, <1—agx(n)— <Za,~)M <1—apx(n).

i=1
Then, the above discussion for the case r, < F(&), is also applicable to the case

limsupr, = 7(&).
n—>o0

Hence, we get (4.192), and the proof is complete. |
Remark 11. Note that Y/, b; > 0 and r, < 7(1 + 2a) for =1 < « < 0, implies
that Y 'L a;x(n —i) > 0and 1 + ax(n) f (ty;rs) > 0.

Finally in this section we consider

B0 = x(O)r ({1 —ax(t) — box (1) = Y7 byx(z; (1))},
l]§[<t[+1,l=0,1,2,..., (4.196)
x(1) =¢(t) =0, —z =1 <o and $(fo) > O,
where di‘]y) means that the right-hand side derivative at ¢ of the function x(¢), and
r(¢) is a nonnegative continuous function on [fy, 00), r(z) # 0, ¢(¢) is continuous
on the interval [—z, o], by > 0, 70(?) is the following piecewise constant delay:

TO(I):ZI9 [1§t<tl+lv 12071,27"'9 (4197)
7, (1) is piecewise continuous on (fy, ), == < 7;(t) < 7o(f) <t, 1 < j <m, and

z(t) = inf t1;(t) > 400, as t — 4o0.
0<,j<m
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Assume

m
a+y b;>0, (4.198)
j=0

and put x* = 1/(a + 3_7_(b;) and

by =bf +b7. b 20,57 <0.0<j <m b=,
b=Y"_ylbjl <+oo, b* =¥"_ b} >0, andb™ = Y_ b7 <0.

(4.199)
For simplicity, we assume r(¢) > 0, t > ty, and b > 0.
Let D~ x(t) be the left-hand side derivative at ¢ of the function x (¢).
Lemma 4.3.9. (a) Assume
a>b. (4.200)
Then,
bt bt +1|b~
a+b” >0, < + 1671 <1. (4.201)
a+b- a
Iffort > to,
x(@) > x* and D™ x(f) > 0, (4.202)
then
* + 7 *
_ < . _
x(@)—x* < = Orsr}eg(m |x(z;(F)) — x™, (4.203)
and if fort > to,
x(@) <x* and D x() <0, (4.204)
then
+
* . _ *
S0 =" 2~ max [x(50) - . (4.205)
(b) Suppose
a+b” >0. (4.206)

(i) If for t = to,

x(@) > x* and D™ x(f) >0, (4.207)
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then

b1 @) = 716D 0 < j < m, imply b* >0, min x(z;() < x*.
<j=m

(4.208)
In particular, if a + b~ > 0, then
f . 4.209
x(0) < —5= (4209
(ii) If fort > ty,
x(@) <x*, and D" x() <0, (4.210)

then

b~ |x(t; () > [b™|x(2). 0 < j <m, implyb™* >0, Jmax x(7;(1) = x*.
<j<m
4.211)
Proof. By assumption (4.198) and (4.200), we see (4.201). Suppose that

omax b7 |x (7; (1)) = b7 |x(2).

Then, from (4.196) and (4.202), we have

0 < D™x(t) = x(O)r(H{a(x* — x (1)) + 2T b (x* — x(z; (1))}
= x(O)rfa(x* = x(@®) + X7 by (x* = x(z; (1))
+ 20 bF (% — x(x; (D))}
< x(OrOf(a+b7)x* —x @) + Yo bF (x* — x(r; (D))}
4.212)
Then, a > l; and

+

g max (e (D) x| < 6D — ",

implies
0 <D x(f) <0,

which is a contradiction. Hence, we get (4.203).

Similarly, from (4.204), we can prove (4.205).

Now, suppose (4.206) and (4.207). Then, by (4.212) and (4.198), we can easily
obtain (4.208) and (4.209).

Similarly, from (4.206), (4.210) and (4.198), we get (4.211). The proof is
complete. |
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Corollary 4.3.4. Assume b~ = 0 < a, and let x(t) be the solution of (4.196).
If x(t) is eventually greater (respectively, less) than x*, then x(t) is monotone
decreasing and greater (respectively, monotone increasing and less) than x*.

Lemma 4.3.10. Assume a + b~ > 0ora = b~ = 0, and let x(t) be the solution
of (4.196). If x (t)is eventually greater (respectively, less) than x*, then lim, oo x (1)
exists and is positive. Furthermore, if

/too r(t)dt =

then we have lim, o x (1) = x*.

Proof. On any interval of the form [t;, ;1) forn = 0, 1,2, - - -, we can integrate the
differential equation in (4.196) together with the initial conditions, and we obtain for
hH <t<tiyrandn =0,1,2,.--

x(t) = x(tl)exp{[ r(s)(1 —ax(s) — ijx(rj (s)))ds}.
1 j:()

Thus we see that (4.196) has a unique solution x (¢) which is positive for ¢ > t,.
Assume that x (¢) is eventually greater than x*. Let

limsupx(z) = x* + B, where 8 > 0.

t—>00

If x(¢) is not eventually decreasing, then by Lemma 4.3.9, it is the case that
a+ b~ >0and b~ < 0, and hence, a > 0. Suppose B > 0. Then, for

O<e<(@+b7)/(a+1b7]) <1,
there exist a sequence {7; }3° | such that

x(f) > x*, D) >0, x(f) > x* + B(1 —¢€), and

x*<x@)<x*+ B0 +e), fort > 1, > t.
Then,

0 < D7x(f) = x(G)r(t)la(x* — x (%)) + 27, b (X* —x(7; (%))}
= 2@ @ate - ) + by " = x(x )
+ b (= x (5 )}
< x(t)r(t){—ap(l —€) —b"B(1 + €)}
< x()rt){—(a+b7) + (a+ [b7)e)}p
<0,
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which is a contradiction. Hence, 8 = 0, and

lim x(¢) = x*.

—>00

Next, let us consider the case that x(¢) is eventually decreasing and bounded below
by x*. Then, lim,_, o, X (¢) exists. Set

B := lim x(t) —x* > 0.
—>00
We will show that
o0
/ r(t)dt = +oo implies g = 0.
to
Indeed, suppose 8 > 0. Take € such that
0<e</(=b~x"), if b~ <0, and € >0, if b~ = 0.
Then, there exists fy > fy such that
B <x(z(t))—x*<pB+e, fort > i,

since x(¢) — x* eventually decreases to 8. By (4.212), we have

D™ x(t)

IA

xOr@) {—(a+ Y b)B— () _by)e
j=0

=0

=— % xﬁ* + b_e} x()r(t), fort > f.

Integrating from £, to ¢, we have

O { N b_e} [ r(s)ds,

x(to) ~ x*

which in turn implies, due to ﬂ* +b7e > 0and f[;’o r(t)dt = 4o0,

X

Hence, lim, oo x(¢) = 0, contradicting x(t) > x* + B > x* > 0. The case that
x(t) is eventually less than x* is similarly proved. Thus, the proof is complete. W
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From Lemmas 4.3.9 and 4.3.10, we see that under the conditions

o0
a+b”>00r a=5b" =0, and/ r(t)dt = o0,

4]

in the analysis of global stability we need to investigate only the case that a solution
x(t) is oscillatory about x*. If there is a point f > fo such that for

fo<t <t |x(t)—x"|<|x@)—x"|,

then the conditions (4.207) and (4.208), or (4.210) and (4.211) in Lemma 4.3.9,
really occur.
The following lemma is elementary.

Lemma 4.3.11. Fort; <t < tj41,

x(@) exp(f; r($){1 = box (1) = X7, byx(z; (s))}ds)

x(t) = .
1 +ax(t) f; r(s)yexp(f; r(@){1 —box(1) — 37—, b;x(z;(0))}do)ds
(4.213)
and
x(@) —x* ={1—(a+ bo)ki}(x(t) — x*)
() fy rIZ] by (e )=} exp(f;) r(@){1—box (1) =] bjx(xj (@)}do)ds  (4.214)
1+ax(t[)f,'l r(s) exp(f,‘; r(o){l—box(tl)—Z?;] bjx(tj(0))}do)ds ’
where

x(@) [, r(s)exp(f; r(@){1 —box () — Y7, b; x(x;(0))}do)ds

Tt ax(t;) f; r(syexpl, r(o){1 —box(n) = X_7_; b;x(z; (0))do)ds
(4.215)

Theorem 4.3.9. Assumea +b~ >0o0ra =5b" =0, and

/ r(t)dt = +oo.
4]

Then, for any

t
r= sup/ r(s)ds < +oo,

1210 Jz(r)
there exists 1| > tq such that for any t > 1y,

M<x(t)<M, (4.216)
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where
a+b_ ifa+b- >0, andlena‘:zb_,
M= ?Té Flifa+bT > o and 7 <In 4t2 (4.217)
ye’ s iffa=>b"
and
M= min{1, e7!=7 4} > 0. 4.218)

a+b+a(e1=b"M) _1)/(1—b=M)
Hence, for v < 400, any solution x(t) of (4.196) is persistent.
Proof. By Lemmas 4.3.9 and 4.3.10 and (4.213), there exists a f; > fo such that for

anyt > 1,

x(t)<a+b_ a+b” >0,
x(t) <x*e", a+b” >0,
and in the case a + b~ > 0, we see

1 1 a+b
< .
a+b- " a+b a+b-

e, ifand only if 7 > In

Then, by Lemmas 4.3.9 and 4.3.10 and (4.213), we have that for ¢ > 71,

0> x* min{1, "0 D) — M >0
N = eplf—b-M) — )/ (I —b-M)

from which we obtain (4.218). The proof is complete. |
Theorem 4.3.10. Assume (4.196)—(4.199), and for (4.213),
b= =0, and b —2by < a,

or (4.219)
max{—b~,b —2by} < a.

Put
141
—1<a—(a—Zb)/b0<oe—a/(Zb)<land F= / r(t)dt.
i=1 1
(4.220)

If

7] < +o0, fora > b,

< f(%), forb= =0, b—2by<a <b, (4.221)

< SHTR() - WO for max{—b~. b — 2bo} < a < b,

=
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then, solutions of (4.196) have the contractivity property, that is,

max |x(f) —x*| < max |x(¢)—x*|. (4.222)
U=t=h+1 ()=t=y
If
sup;>o 71 < F(1 +2a), if =1 <a <0, and (4.223)
0 < limsup,_, o, 71 < F(&), or limsup,_,, 71 = F(&), '
then
lim x(¢) = x¥, (4.224)
[—o00

and hence, the positive equilibrium x* of (4.196) is globally asymptotically stable.

Proof. Assume t; < ZTH.] < /41 and

[~ |x(t) < [b7[x(f141), forz(t) <t <t and D™ x(f41) = 0.
Then, from (4.196),
0 < D™x(ti+1) < x(@+0)r (481 — (a + b7)x(f141) — box (1)}
and hence,
(a+b7)x(t41) <1 —box(tr).
Then, in (4.214) and (4.215),

b~ (1 —box (1))

L—box(u) = Y bjx(t;(0)) = 1= box(n) = ——==

Jj=1
a ab()

- - ).
a1 aro

Consider f(x; r, B,v) in (4.217) in Lemma 4.3.7 with

ab()
—— and Yy = m

Then,

xw) [ ryess( [ CHO)1 — box(@) — 3 byx(ry(0))do)ds

Jj=1

< fGe):i B y).

Hence by Lemma 4.3.7 and the similar proofs in Theorem 4.3.4 for a > b, and
Theorem 4.3.8, we can easily obtain the result. |
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4.4 Global Stability of Models of Volterra Type
In this section we discuss a model of Volterra type, namely

dN(t)
dt

=N@) |r—cN@&) =Y d;N([t—j]|. t=0. (4.225)
j=0

where r > 0,¢ > 0,d; (j = 0,1,2,...) are nonnegative and Zj’;o dj < oo.
The results in this section are adapted from [42]. Using the following substitution
in (4.225)

-1

c 1 & =
a = ;’ b = ;-z{:tib Cj ==dj z{:ab 3 (4“226)
j=0 Jj=0
we have
dN(t .
dt() =rN@) | 1=aN@&) =bY e;N([t—jD |, 120,  (4227)
j=0
where
S =1 (4.228)
j=0

The initial conditions associated with (4.227) are assumed to be of the form
N(=j) = B; 2 0. o> 0, {B;} € £, (4.229)
It is easily seen that the initial conditions provided for (4.227) guarantee that
N(0) > 0, sup{N(—j)} < oo,
j=0

and integration of (4.227) on an interval of the form [n,¢), n <t <n + 1 leads to

N(t) = N(n) exp /tr L—aN(s)—=b)Y ¢;N(n—j)|dsy.

n =0
forn <t <n+ 1. For N(O) = By > 0, it follows that N(z) > 0 on [0, 1), now
letting » = 0 and ¢t — 1 we find that N(1) > O since the sum of the terms from
the initial values 8; remain bounded. Thus N(1) > 0 and N(1) is finite. Repetition
of this procedure shows that N(¢) is defined for # > 0 and remains continuous for
t € [0, 00) and satisfies N(¢) > 0 fort > 0.
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Consider (4.227) on an interval of the form [n,n + 1) for n = 0,1,...,
and (4.227) becomes

d];,lt(t) = P(n)N(t) —raN?(t), ten,n+1), (4.230)
where
Piny=r|1=bY c;Nn—j)|. n=012,.... (4.231)
j=0

We can rewrite (4.230) in the form

d {1
o (me})(”)’) =rae?™ tenn+1). (4.232)

An integration on both sides of (4.232) from # to ¢ leads to

N(n)eP(n)(t—n)

N+1) =17 raN(n){e?™=n —1}/P(n)’

tenn+1).  (4.233)

Letting t — n + 1, we obtain

N(n)et™

N+ 1) = 1+ raN(m){ef™ —1}/P(n)’ "=

0,1,2.... (4.234)

The right-hand side of (4.234) has a removable singularity when P(n) = 0, and we
will assume that the right-hand side of (4.234) is suitably defined by

N(n)et™

N(n+1):l+r—aN(n)’

for P(n) =0, (4.235)
so as to make the right-hand side of (4.234) continuous. It is now easy to see that for
the given initial values (4.229) one can calculate successively the values N(1), N(2),
N(3), ... and with this, one can compute N(¢) in (4.233). Thus an iterative solution
of (4.227) is possible. The properties of (4.227) are now determined by (4.234) and
vice versa.

Lemma 4.4.1. Let N(n) denote the solution of (4.234). Then

1 r
N(n)SMz—( ¢ ),n=1,2,.... (4.236)
al\e —1

Proof. We note that the function

pe’
er —

f(p) =

. PER,
1[7
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is increasing on (—oo, 00) since

(e”—=1—p)

S =5 PR

Note
o0
Pn)y=r|1 —chjN(n —-j)|<r
j=0
Hence from (4.234) we have

P(n)ef™
ra{ef™ — 1}

S 0= =1 (F) =
ra

E{e’—l} al\e —1

NG+ 1) < — f(P(n)) =
ra

from which the boundedness of N(n) follows. The proof is complete. ]
Lemma 4.4.2. Let N(t) be a solution of (4.227). Then

lim sup N(t) < oo. (4.237)
—>0o0

Proof. From Lemma 4.4.1, we have N(t) < M, n = 1,2,3,.... By the continuity
of the solution of (4.227), N(¢) is bounded in each interval [n,n + 1), n =
1,2,3,.... Suppose now the assertion of (4.237) is not true. Then there exists a
sequence {t}, ty — 00, as k — oo and #; # nj such that

N(t) = M. 1 € (x.mieq1) and  lim N() = oo, N'(t) > 0.
—00

Hence from (4.227), we have

0<N'(t) =rN@) | 1 —aN@)—b Y ¢;N([i — j])
j=0

< PN(@O{T — aN ()} < rN(1) [1 - 1] <o,

which is impossible. Hence the result follows. |

In the following, we study the linear stability of the positive steady state N* =
1/(a + b) of (4.227).
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Theorem 4.4.1. Assume that b < a. Then the positive steady state N* of (4.227)
is uniformly asymptotically stable.

Proof. Set y(t) = N(t) — N*, and then (4.227) becomes

d 00
%z—r(J’(l)-i-N*) ay(l)+bZij([[—j]) , t>0. (4.238)

j=0

Thus the stability of N* of (4.227) is equivalent to the stability of the trivial
solution of (4.238). If we ignore the nonlinear terms in (4.238) (and write y as x
for convenience), then the linearization of (4.238) is

dx(t)
dt

= —raN*x(t) —=rbN* Y c;x([t — j]). ¢ >0. (4.239)
j=0

On the interval n <t < n + 1, (4.239) can be written as

dx (1) . .y .
T —raN*x(t) —rbN chx(n —j)n<t<n+l. (4.240)

j=0
The solution of (4.240) on the intervaln <t <n + 1is
b o0
x() =N () = —(1— e N )N eix(n — ). (4.241)
a
j=0

Welett — n + 1 and obtain forn =0,1,2, ...,
b o0
x(n+1)=e "N x@n) - ;(1 — e 7aN )chx(n -, (4.242)
j=0

which is a linearization of the difference equation (4.234) at the positive equilibrium
N* = 1/(a + b). In order to determine the stability of the linear difference
equation (4.242), we will ignore the nonhomogeneous terms involving the value
N(—j)y=8; —N*(j =1,2,...), thatis, we drop the expression

_ b —raN* = ) .
g =——(1—e )j;n:“cjxm ). (4.243)

From (4.242), we have forn = 0, 1,2, ... the following Volterra difference equation

x(n+1) = e_’“N*x(n) — g(l — e_’“N*) chx(n - - (4.244)
j=0
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From the boundedness of solutions of {f;} and the convergence of Z?‘;o ¢,
|g(n)| — 0, as n — oo. Now, the asymptotic stability of zero solution of (4.242) is
guaranteed by the asymptotic stability of the zero solution of (4.244), which can be
decided by its characteristic equation. As is known the solution x = 0 is uniformly
asymptotically stable if and only if all the roots of the characteristic equation

« b P ,
DA)=A—e "N 4 —(1—e V) § A =0 (4.245)
a
Jj=0

lie in the open unit disk of the complex plane. To complete the proof it suffices to
show that D(A) has no zeros with |A| > 1. Note that for |A| > 1,

(o]

o0 o0
S| = =Y e =1, (4.246)
=0 j=0 j

j= =0

and if there exists a zero Ao of D(A) with |Ag| > 1, then by (4.246) we obtain

* b I e i b *
A — —raN*| _ Z 1— —raN A7 < =(1 - —raN . 4.247
) e a( e ) E icj = a( ¢ ) ( )

j=0

Now, by using b < a,

« b * b b _
|AO| < e—raN + _(] _ e—raN ) = -+ (1 _ _)e—laN
a a a

S

b
<Z4ra-2=1,
a a
which is a contradiction. The proof is complete. |
The following lemma is well known.
Lemma 4.4.3. Let N(t) denote an arbitrary positive bounded solution of (4.227).
Suppose that
lim sup N(r) = N and lim inf N(t) = N.
—>00 t—>00

Then there exist sequences {t,} and {s,} such that t, — 00, s, — 00 as n — oo for
which

_. 1 dN@) 2
|N(t,) = N| < -, > n=12,..., (4.248)
n dt n
. 1 dN(¢ 2
‘N(sn)—N‘f—, @ _2 12 (4.249)
n dt n
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Lemma 4.4.4. Let r, a be positive numbers, let b, ¢c; (j = 0,1,2,...) be
nonnegative numbers and c; satisfy (4.228). If a > b, then all positive solutions
N(t) of (4.227) satisfy

lim inf N(¢) > § > 0. (4.250)
—>00
Proof. We first prove that
~ 2
li N@)=N < . 4.251
Jim sup N (z) > (4.251)
From Lemma 4.4.2, N must exist. Suppose on the contrary that
li N() =N > 2 (4.252)
im su = . .
t—00 P “a+b

From Lemma 4.4.3, there exists {#;} such that #; — 0o as k — oo for which
_ 1 2
N()—N| < —, N'(tx)>—=.
|N (1) | < X (k) = A
From (4.228) and the boundedness of N ([t — j]), there exists ng such that

e < (1/b)(N — N*)(a — b),

> ¢ IN(t—jD - N*| <.

j=no+1

From (4.252), we have for #; large enough, 0 < N([ty — j]) < N. Hence for
sufficiently large k we have

2 < N = N [ 1—aN@) b Y e Nl — )
j=0

=rN(t) | —a(N(t) — N™) _bzcj(N([tk —JjD—=N%)
j=0

< rN(@) | —a(N(@w) = N*)+b Y _c; IN(i — j)) — N¥|
j=0

= rN(t) | —a(N(t) = N*) +b Y c; IN(tx = j)) = N*|
j=0

no
+brN(t) Y ¢j IN(i — jD) — N*|.
Jj=no+1
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Letting k — oo, we have

Jj=0

0<rN (—a(N—N*)+bXO:cj(N—N*)+bs)

IA

rN (—a(N—N*) +b) cj(N—-N¥ +be)

j=0
=rN (=a(N = N*) +b(N = N*) + be)
=rN (—(a —b)(N — N*) + be) < 0.

This is a contradiction and hence (4.251) holds. From (4.251), thereis a T > 0 such
that

N(1) < L t>T. (4.253)

2
a+b

Hence fort > ny + T, we have

J B oo
MO~ v 1—aN(t)—bZCfN([f‘”)}

j=0

=rN@) | 1=bN*—aN(t)—b Y c;(N(t — j]) - N*):|

=0

> rN(t) aaﬂ —aN(t) —chj(N([t —JjD —N*)—bsi|

=0

v

_ .
FN() a“ﬂ —aN@) -bY ¢;N* —b8:|
- j=0

FN(1) ﬁ —aN(@t) — be}

v

fa—b

=N a+b

— be — aN(t)i| .

Since

a—>b
- 0
a+b be >
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and the solution of the equation
W' () = ru(®)[L — au(t)], u(0) >0

is bounded above from zero, by the comparison principal, we conclude that the
result of the lemma holds. The proof is complete. |
Theorem 4.4.2. If the conditions of Lemma 4.4.4 hold, then all positive solution
N(t) of (4.227) satisfy

1

lim N(t) = N* = . 4.254

Aim N(2) Py (4.254)
Proof. In order to prove (4.254), it is sufficient to prove that

lim sup [N(t) — N*| = 0. (4.255)

—>00

Suppose (4.255) is not valid, then at least one of the following holds for some p* > 0
and px > 0:

Ilim supN(t) = N = N* + p*, (4.256)

—>00

lim inf N(r) = N =N*—p,. (4.257)
—00

Suppose that (4.256) holds. Then there exists a sequence {¢,} such that

t, — 0o, N'(t,) > —%, N(t,) > N asn — oco. (4.258)
It follows that
_% < % =rN(,) | 1 —aN(@,) —bg:)ch([tn —JjD
= rN(ty) _—a(N(tn) —~N*)—b i)cj(N([tn —Jjh- N*)_
L i= J
< rN(t) _—a(N(tn) —N")+b i)cj IN([tn = jD = N*|
| j= i
<rN@) | —a(N(t,) = N*) + b ic, IN([tn — D) = N*| + be

J=0
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Letting n — oo, we obtain

o
0<—rN( ap*—chjp*—bs <0,
=0

and this is not possible. For the case (4.257), we choose a sequence
/ 2 \7
t, > oo, N'(t,) < —, N(t,) > N, asn — oo.
n

Then, we have

2 dNG)
n

z— =rN(t,) l—aN(ln)—bjz:;CjN([ln_j])

= rN(t) | —a(N(t;) = N*)=b > ¢;(N(lts — j]) = N¥)
L j=0

PN@) [ a(N* = N(@) —=b Y e IN(t, — j) — N*|
j=0

v

= rN(@) | a(N* = N@)) =b Y ¢; IN(ty = j1) = N*| — be
j=0

We let n — 00, to obtain

no
0>rN apx —chjp* —be | > r]\v/(a—b)p* —rNbe > 0,
j=0
which is not possible. Thus (4.254) holds and the proof is complete. ]

Combining Theorems 4.4.1 and 4.4.2, we have the following global attractivity
result.

Theorem 4.4.3. Ifb < a, then the positive equilibrium N* = 1/(a + b) of (4.227)
is globally asymptotically stable.



Chapter 5
Food-Limited Population Models

If a nonnegative quantity was so small that is smaller than any
given one, then it certainly could not be anything but zero. To
those who ask what the infinity small quantity in mathematics is,
we answer that it is actually zero. Hence there are not so many
mysteries hidden in this concept as they are usually believed

to be.

Leonhard Euler (1707-1783)
The real end of science is the honor of the human mind.

Gustav J. Jacobi (1804—1851)

Smith [66] reasoned that a food-limited population in its growing stage requires
food for both maintenance and growth, whereas, when the population has reached
saturation level, food is needed for maintenance only. On the basis of these
assumptions, Smith derived a model of the form

dN(t) K — N(t)
o - VN raNo SRY

which is called the “food limited” population. Here N, r, and K are the mass
of the population, the rate of increase with unlimited food, and the value of N
at saturation, respectively. The constant 1/c is the rate of replacement of mass in
the population at saturation. Since a realistic model must include some of the past
history of the population, Gopalsamy, Kulenovic and Ladas introduced the delay
in (5.1) and considered the equation

AN(1) K—N( —1)
dt rN(t)K +crN(t—1)°

as the delay “food-limited” population model, where r, K, ¢, and t are positive
constants.

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology, 215
DOI 10.1007/978-3-319-06557-1__5, © Springer International Publishing Switzerland 2014
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In this chapter we discuss autonomous and nonautonomous “food-limited”
population models with delay times.

5.1 Oscillation of Delay Models

Motivated by the model

K — N(h(2)) -0 (5.2)

NG =rONOToNGo)y |2

in this section we consider

14+ x(2) -0 53)

x'(t) = _r([)x(h(t))l +sO[1 + x(g@))]’ =

with the following assumptions:

(A1) r(t) and s(¢) are Lebesgue measurable locally essentially bounded functions
such that 7(¢) > 0 and s(¢) > 0.

(A2) h,g :[0,00) — R are Lebesgue measurable functions such that h(t) < ¢,
gt) < t,tl_iE&h(t) = 00, and tl_i)r&g(t) = o0.
Note the oscillation (or nonoscillation) of N about K is equivalent to oscillation
(nonoscillation) of (5.3) about zero (let x = N/K — 1).
One could also consider for each #;, > 0 the problem

ey 14+ x(t)
xX'(t) = r(l)X(h(t))l SO0 T xG@O)] t > 1o, (5.4)
with the initial condition
x(t) = (1), t <ty, x(ty) = Xo. 5.5)

We also assume that the following hypothesis holds:
(A3) ¢ : (—o00,ty) — Ris a Borel measurable bounded function.

An absolutely continuous function x (: R — R) on each interval [ty, b] is called a
solution of problems (5.4) and (5.5), if it satisfies (5.4) for almost all ¢ € [ty, o0) and
the equality (5.5) for ¢ < ty. Equation (5.3) has a nonoscillatory solution if it has
an eventually positive or an eventually negative solution. Otherwise, all solutions
of (5.3) are oscillatory. The results in this section can be found in [10]. In the
following, we assume that (A1)—(A3) hold and we consider only such solutions
of (5.3) for which the following condition holds:

1+ x(t) > 0. (5.6)

The proof of the following lemma follows a standard argument (see the proof in
Theorem 2.4.1 and see Lemma 2.6.1).
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Lemma 5.1.1. Let (A1) and (A2) hold for the equation
x'@) +r(x(h(t)) =0, t>0. (5.7)
Then the following hypotheses are equivalent:

(1) The differential inequality
xX'(t) +r(@)x(h(t) <0, >0 (5.8)

has an eventually positive solution.
(2) There exists ty > 0 such that the inequality

t

u(t) > r(t)exp {/}( : u(s)ds} Lt >t u(t) =0, <ty (5.9)

has a nonnegative locally integrable solution.
(3) Equation (5.7) has a nonoscillatory solution.

If
! 1
lim sup/ r(s)ds < —, (5.10)
t—00 h(t) e
then (5.7) has a nonoscillatory solution. If

t
1
lim inf/ r(s)ds > —, (5.11)
h e

—>0o0 ()
then all the solutions of (5.7) are oscillatory.
Lemma 5.1.2. Let x(t) be a nonoscillatory solution of (5.3) and suppose that

() B
/O 1+S(t)dt—oo. (5.12)

Then lim,;_, o, x(t) = 0.

Proof. Suppose first x(¢) > 0, ¢ > t;. Then there exists #, > ¢; such that

h(t) =1, gt) =1, fort > 1. (5.13)
Let
_ X
u(t) = X0 t> 1. (5.14)

Then u(t) > 0,7 > t, and

x(t) = x(tp) exp{—/t u(s)ds} , > 1. (5.15)
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Substituting this into (5.3) we obtain

[1 + cexp {— fttz u(s)ds}]

M([) = r(l‘)e(fht(,)u(s)ds)

, (5.16)
[1 + (1) (1 + cexp {— ftf(l) u(s)ds})]
where h(t) <t,g(t) <t,fort > t;,and ¢ = x(t;) > 0. Hence
r) (5.17)

“OZ T o0 s

From (5.12) we have ft(;o u(t)dt = co.
Now suppose —1 < x(¢) < 0,7 > t;. Then there exists t, > t; such that (5.13)

holds for ¢ > t,. With u(¢) denoted in (5.14) and ¢ = x(z,) we have u(¢) > 0 and
—1 < ¢ < 0. Substituting (5.15) into (5.3) and using (5.16), we have

(1 +o)r ()

Thus flfo u(t)dt = oo. Equation (5.15) implies that lim,_, », x(#) = 0. The proof is
complete. |

Theorem 5.1.1. Suppose (5.12) holds and for some & > 0, all solutions of the linear
equation

r(t)
1+ s()

X(6) + (1—e) x(h(t)) =0 (5.19)

are oscillatory. Then all solutions of (5.3) are oscillatory.

Proof. First suppose x(¢) is an eventually positive solution of (5.3). Lemma 5.1.2
implies that there exists #; > 0 such that 0 < x(¢) < e fort > ¢,. We suppose (5.13)
holds for ¢t > t, > 1. Fort > t,, we have

[(L+sOIA+x@) _  (A+50)
L+s@O[1+x(g@)] ~ 1+s@)(1+e)
(1+s@) 1

T Utso)ite (+e - I-e (5:20)
Equation (5.3) implies
YO+ 0—e—D @y <0, 121 (5.21)
1+ (1) -0 = '

Lemma 5.1.1 yields that (5.19) has a nonoscillatory solution. We have a
contradiction.
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Now suppose —¢ < x(t) < O for ¢t > ¢; and (5.13) holds for ¢ > ¢, > t;. Then
fort > t,

[L+sOI0+x(0) _ (+50)1—e) _

1+ s()[1 + x(g())] ~ T+ 5(0) 1—e. (5.22)

Hence, (5.19) has a nonoscillatory solution and we again obtain a contradiction
which completes the proof. ]

Corollary 5.1.1. If

t
1
lim inf/ @ L (5.23)
t—>00 h(t) 1 =+ S(T) e
then all solutions of (5.3) are oscillatory.

Theorem 5.1.2. Suppose for some ¢ > 0 there exists a nonoscillatory solution of
the linear delay differential equation

r(t)
14 5()

X(6)+ (1+¢) x(h(t)) = 0. (5.24)

Then there exists a nonoscillatory solution of (5.3).
Proof. Lemma 5.1.1 implies that there exists 7o > 0 such that
wo(t) >0, for t > ty, and wy(¢) = 0, for t < ¢,

and

wo(t) = (1 + 8)1 -ri—(i)(t) exp { /]( : wo(s)ds} . (5.25)

Suppose 0 < ¢ < ¢ and consider two sequences:
t
w(t) = r(t) exp{/ wn_l(s)ds}
h(t)
1+ cexp {— ft; v,,_l(s)ds}

1+ 5(t) (1 + cexp {— &) w,z_l(s)ds})

fo

X

and

t

vu(t) = r(t)exp {/h( : vn_l(s)ds€

1+ cexp {— ftf) wm_l(s)ds}
1+ 5(7) (1 + cexp {— &) vn_l(s)ds}),

fo

X
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where wy is as defined above and vy (¢) = 0. We have
T er [, mo
1) = d
M) = s e { | wo)ds
1+ s@)(1+c)
1+ s(t) (1 + cexp {— ftg(t) wo(s)ds})

X

r() ’
=1 + (1) P %/}Z(z) WO(S)dS}
IT+s@)1+e

1+ s(t) (1 + cexp {— 5() wo(s)ds})

]

X

< wo(?) (5.26)
from (5.25). Clearly v (¢) > vo(t) and wo(t) > vo(t). Hence by induction

0 < Wn(t) < anl(t) <...= WO(t)»
V() = vp—1(t) = ... = y(t) = 0, 5.27)
wp(t) > v,(2).

There exist pointwise limits of the nonincreasing nonnegative sequence w, () and
of the nondecreasing sequence v, (¢). Let

w(t) = lim w,(¢) and v(z) = lim v(¢).
n—>00 n—>00

Then by the Lebesgue Convergence Theorem, we conclude that

t

w(t) = r(t)exp { /h( : w(s)ds}

1+ cexp {— ft(t) v(s)ds}
1+ 5(1) (1 + cexp {— ftf(’) w(s)ds})

X

and

v(t) = r(t)exp %f/z) v(s)ds}

1+ cexp {— ftf) w(s)ds}

* 1+ s(t) (1 + cexp {— lf(t) v(s)ds}) ‘




5.2 Oscillation of Impulsive Delay Models 221

We fix b > t; and define the operator T : Loo[to, b)] — Loolto, b] by

r(t) (1 + cexp {— fti u(s)ds})
1+ s(7) (1 + cexp {— flf(t) u(s)ds}) .

T(u(r)) = elio 1©4ds (5.28)

For every function u from the interval v < u < w, we have v < Tu < w. One
can also check that T is a completely continuous operator on the space Lo[to, b].
Then by Schauder’s Fixed Point Theorem there exists a nonnegative solution of
equation u = Tu. Let

cexp {—fl; u(s)a’s}, if t> 1,
0, ift <tp,

x(t) = { (5.29)

and then x (¢) is a nonoscillatory solution of (5.3) which completes the proof. W

The results in this section apply to (5.2). For example by applying Theorem 5.1.1
we have the following result.

Theorem 5.1.3. Suppose (5.12) holds and for some ¢ > 0, all solutions of the linear
equation

r()

NO+0-a770

N(h()) =0 (5.30)

are oscillatory. Then all solutions of (5.2) are oscillatory about K.

5.2 Oscillation of Impulsive Delay Models

In this section we consider the impulsive “food-limited” population model

N'(t) = r(t)N(t) —==NE@D) - p £ g,
K+ NG (1) (5.31)

i=l1

N(t) = N(tx) = bi(N(tx) — K), fork =1,2,...;

here N(#;) = N(t_). In this section, we will assume that the following assumptions
hold:

(A1) 0<ty<t) <t <...<tg <...arefixed points with
limg 00 1 = 00,

(A2) by > —1,k =1,2,..., K is a positive constant,

(A3) r(t)and p;,i = 1,2,...,m, are Lebesgue measurable locally
essentially bounded functions, in each finite interval [0,b], r(tf) > 0 and
pi(t) = 0,fori =1,2,...,m,

(A4) h,g;:[0,00) — Rare Lebesgue measurable functions, h(¢) <t, g;(t) <t,
lim; 00 A(t) = 00, lim; 00 gi (1) = 00,i =1,2,...,m.
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In this section (motivated by (5.31) with y(¢) = % — 1) we consider the delay
model with impulses

Y(0) = —r)— LFYOYRO)
L+ pi@ [+ y(gi(®)] (5.32)

i=1

y(t,j) —y(ty) = bry(ty), fork =1,2,...,

where by > —l and r, h, p; form = 1,2, ... are nonnegative real-valued functions.
We consider (5.32) with the initial condition

y(@) =) >0, o(Ty) >0, t €[T™,T. (5.33)

Here for any Ty > 0, T~ = min <; <, inf;>7,(g: (¢), h(¢)), and ¢ : [T, To] — R4
is a Lebesgue measurable function.

For any T > 0 and ¢(¢), a function y : [T, 0o] — R is said to be a solution
of (5.32) on [T, o¢] satisfying the initial value condition (5.33), if the following
conditions are satisfied:

1. y(t) satisfies (5.33);

2. y(t) is absolutely continuous in each interval (7o, ty), (tx, tk+1), tx > To, k >
ko, y(t,j), y(t,) existand y(z;7) = y(t). k > ko:

3. y(t) satisfies the former equation of (5.32) in [T, 00)\{#} and satisfies the latter
equation for every t = t,k = 1,2,....

For any ¢ > 0, consider the nonlinear delay differential equation

1+ ] a+60|x®

To<ty <t

1+ W(x(gi(1))

<[] a+b)xh). (534)

h(t)<ty <t

x'(t) = —r()
where

Uix(g@) =Y p@ |1+ [ Q+b)x(g@)

i=l1 To<tr<gi(t)
The results in this section are adapted from [77] (in fact as we see below it is easy
to extend the theory in the nonimpulsive case in Sect. 5.1 to the impulsive case).

Lemma 5.2.1. Assume that (A1)-(A4) hold. Then the solution N(t) of (5.31)
oscillates about K if and only if the solution y(t) of (5.32) oscillates about zero.

The proof (which is elementary and straightforward) of the next lemma can be
found in [81].
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Lemma 5.2.2. Assume that (A1)—(A4) hold. For any Ty > 0, y(t) is a solution
of (5.32) on [Ty, 00) if and only if

—1

xoy=| [] a+b| y© (5.35)

To<ty <t

is a solution of the nonimpulsive delay differential equation (5.34).

From Lemmas 5.2.1 and 5.2.2 we see that the solution N(f) of (5.31) is
oscillatory about K if and only if the solution y(¢) of (5.32) is oscillatory.

We consider only such solutions of (5.32) for which the following condition
holds:

14 y(t) >0, forr > Ty, (5.36)
and hence, in view of (5.35),
L+ J] 4560 |x@) >0, fort =T (5.37)
To<ty <t

With y(t) = % — 1 then from (5.36) and (5.37), we see that

Noy=K[1+ ] a+box@)] >0 1=T.

To<ti <t

Thus for the initial condition N(¢) = ¢(¢) : [T, Ty] — R4,¢(Ty) > 0, the
solution of (5.31) is positive on [T}, 00).

Lemma 5.2.3. Assume that (A1)—(A4) hold,
o0 m —1
/r(t) <1 + Zpi(t)) dt = oo, (5.38)
0 i=1

and

[] (+bx)isbounded and lim inf [T (1+ ) > 0. (5.39)
—>00

To<ty <t To<typ <t

If y(t) is a nonoscillatory solution of (5.32), then lim,_,o y(t) = 0.

Proof. Suppose first y(t) > 0 fort > T} > 0. From (5.35) and (A1), x(¢) > 0O for
t > T\. Then there exists 7, > T; such that

h(l) > T, g,‘(l) >T, i=12,....m, for t >T,. (5.40)
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Let
u(t) = —);/((t’)) for t > T, (5.41)
Then u(t) > 0 for ¢t > T3 and
t
x(t) = x(Ty) exp {—/u(s)ds} , for t > T>. (5.42)
T

Setting ¢ = x(7T3), we have

) = - ( [T « +bk)1) *(h(0))

h(t) <ty <t

L+ J] a+bpx

To<ty <t

1+ Zpi(t)[l +( l_[ (14 bi))x(gi(1))]

i=1 To<trx<gi ()

X

h(t)<ty <t

g ( T «a +bk)-l) NG

1

X
L+ o+ [] (+boe]
i=1

To<tk<gi(t)

-0 ( I (1+bk)—1)
h

LD pin) \Osist

i=l1

1+ Zpi (1)
X m =
14> pl+  [] (+boe]
i=l1 To<tk<gi(t)
( [T a+on
r(t) h(t) <t <t

L+ p@) A+ p@A+C [ A+boe)

i=1 i=1 To<tx<gi(t)
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Then from (5.38) and (5.39), / u(t)dt =
Now suppose —1 < y(¢) < 0 Hence in view of (5.36),

-1< J] (+b)x@) <0, t=Ti.

To<tr<gi(t)

Then there exists 7> > T such that (5.40) holds for t > T,. With u(z) denoted
in (5.41) and ¢ = x(73), then from (5.37) u(t) > 0, —1 < ¢ < 0, and we obtain

)= "0 T a+v07 | >y

x(l) h(t) <ty <t

L+ ( [T a+b)x®

To<n <t
X
L+ pol+C [ a+b)x@@)]
i=l1 To<tp<gi(t)
L+ ] a+boe
Zx(rh(g)) [T a+607" | xhe)——2%
h(t)<t <t 1+Zpi(t)

[T a+eo™ {1+ ] A+

h(t) <y <t To<tp<t
r(t)
X
1+ Z pi(t)
i=1
o0
Then by (5.37)-(5.39), we have /u(t)dt = oo. Equation (5.42) implies
T
lim; 00 x(¢) = 0. Use (5.35), and then we have lim;_,o y(¢) = 0. The proof
is complete. |

Theorem 5.2.1. Assume that (A1) and (A2), (5.38) hold and for some € > 0, all
solutions of the linear equation
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X' () + (1 —¢) ]_[ 1+ bk)“w =0 (5.43)

h(t)<tg <t 1+ Z pi(t)

are oscillatory. Then all solutions of (5.32) are oscillatory.

Proof. Suppose y(t) is an eventually positive solution of (5.32). Then x(¢) is an
eventually positive solution of (5.34). Lemma 5.2.3 implies that there exists 77 > 0,
such that

0<( J] A+b)x@) <e. fort=T.

To<t <t

We suppose (5.40) holds for ¢t > T,, and we have

(1+Zp,(r))<1+( [T a+b)x@)

To<ty <t
1+ Zp,-(t)[l +( 1_[ (1 + br))x(gi ()]
i=1 To<t<gi(t)
1+Zp,~(t) 1+Zpi(l)
> i=1 - i=1

14> pA+e)  (+ed+ > pil0)

i=1 i=1

1
>1—e. 5.44
l+e™ ¢ (5.44)

Equation (5.34) implies

YO+ (—o ] (+by LXEO)
Mzt L+ i)
i=1

<0, t>T. (5.45)

This implies that the (5.43) has a positive solution, which is a contradiction.
Now, we suppose

—e < ( [] A +b)x@) <0, for 1> 1,

To<ty <t

and (5.38) holds for # > T, > T). Then for t > T,, we also get
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A+ p)A+( J] a+b)x@)

i=1 To<tr<t
L+ p+C J] (0 +b)x(gi )]
i=l1 To<tr<gi(t)

A+ pi)(1—e)

> =1 — =1-c. (5.46)
1+ i)
i=1
Thus (5.43) has a nonoscillatory solution and we again obtain a contradiction. The
proof is complete. n

Theorem 5.2.2. Assume that (A1) and (A2) hold and

1—[ (1 + by) is convergent. (5.47)

h(t) <t <t

Moreover, for some € > 0 if there exists a nonoscillatory solution of the linear delay
differential equation

r(t)x(h(t
YO+ e [ (b LD o s
h(t)<tp <t 1+ Z pi (l)
i=1
then there exists a nonoscillatory solution of (5.32).

Proof. Suppose that x(t) > 0 for t > Ty is a solution of (5.48). Then by (5.34)
there exist 7o > 0 and wo(¢) > 0,¢ > Ty, wo(t) = 0, T, <t < Tj such that

oz LEXLCTT awew] [owdsp. 649
1+ Zpi(l) h(t) <t <t h()

i=1

Since l_[ (1 + by) is convergent, there exists a positive constant ¢ such that

To<tk<gi(t)

0<c( 1—[ (1+by) <e.

To<ty<gi ()
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Consider the two sequences:

wy (1) = r(1) ( H 1+ bk)l) exp /a)n—l(s)ds

h(t)<ty <t ()

t+eC JT a+b0) exp{—/un_l(s)ds}

To<tx<gi(t)

To
m gi (1) ’
ey poa e [T a+byen—t [ oeds)
i=1 To<tr<gi (1) To

n=12,...,

un(t)zr(r)( I1 <1+bk)—‘)exp / Va1 (9)ds (5.50)

h(t)<ty <t ht)

treC T[] (+bexp {—/wn_l(s)ds}

To<tr<gi(t) To

gi(1)

1+Zp,»<r)(1+c( I <1+bk>)exp—{ [ Vi1 (5)ds})

i=1 To<tr<gi(t) To

n=12,...,

where wy is defined above and vy = 0. Thus we have

i) = *( [1 <1+bk>—1) exp | [ wn(s)ds

i=1

A+ p)A+ecC [ a+bo)

i=1 To<tr<gi (1)
X

gi(t)

Yo +eC [T a+ben— [ andsh
i=1

To<ty<gi (1) To
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r()( H (1 +bp)™ /a)o(s)ds 1+ Zpi(t))(l + €)
i=1

h(t) <ty <t

eh(r)
m m
L+ pi(0) L+ pilo)
i=1 i=1
< wy(?). (5.51)
Clearly v;(¢) > vo(t), wo(t) = vo(t). Hence by induction

0<w,(t) S w,—1(t) < ... < wo(t),
v(t) = v (0) > ... > v(E)=0, n=1,2,...,
60,1(l) > Un(l)'

There exist pointwise limits of the nonincreasing nonnegative sequence w,(¢) and

of the nondecreasing sequence v,(t). Let w(f) = lim,_o w,(¢) and v(t) =
lim,— 00 U, (¢). Then by the Lebesgue Convergence Theorem, we deduce that

t

w(t) =r(t) 1_[ (1+by) | exp /a)(s)ds

h(t)<ty <t ht)

t

14+ ¢( l_[ (1 4+ bi)) exp —/U(s)ds
To

To<txk<gi(t)

m gi (1)
Yo+ [T a+ben—t [ o
i=1 To<tr<gi(t) To

t

v(t) = r(1) 1_[ (14 by) | exp /U(s)ds

h(t)<t <t h(t)

t

L+eC [T +boyexp —/w(s)ds

To<tx<gi (1) To

X . (5.52)

gi (1)

— v(s)ds

L+ A +eC [ A+bge o )

i=1 To<tx<gi (1)
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We fix b > T and define the operator T : Loo[Ty, b] = Loo[T0, b] by the following

t

(Tu)(t) = r(t) l_[ (14 bi) | exp /u(s)ds

h(t) <ty <t ()

t

1+¢ l_[ (1+ b)exp —/u(s)ds

To<tr<gi(t) To

x . (5.53)

8 (1)

m - u(s)ds
L+ pd+c J[ A+bge ™ )

i=l To<tx<gi(1)

For every function u from the interval v < u < w, wehave v < Tu < w. Also T is
a completely continuous operator on the space Lo[T0, b], and then by the Schauder
Fixed Point Theorem there exists a nonnegative solution of the equation u = T u.
Let

cexp{— thO u(s)ds}y, t=> Ty,
c, T-<t<T,

x(1) = (5.54)

Then x(¢) is a nonoscillatory solution of (5.34). Thus by Lemma 5.2.1

yor=[ J] a+b07"|x0

h(t)<ty <t

is a nonoscillatory solution of (5.32) which completes the proof of Theorem 5.2.2.
]

The results in this section apply to (5.31).

5.3 3-Global Stability

In this section we examine the global attractivity of the “food-limited” population
model

I-Ne-79) (5.55)

N'(1) = V(I)N(f)m, >

where

r(t) € C([0, 00), (0, 0)), c(t) € C([0, 00), (0,00)), T > 0.
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We consider solutions of (5.55) which correspond to the initial condition

N(1) = ¢(1), 1 €[r.0],

¢ € C([z,0],[0,00)), $(0) > 0. (5.56)

Motivated by (5.55) in this section, we will study the global stability of the general
equation
X)) + [+ xOI[1 —ex (O] F (1, x(g(1)] = 0, (5.57)

where F (¢, ¢) is a continuous functional on [0, c0) x C;, such that F(¢,0) = O for
t > 0 and satisfies a York-type condition

- 1r§:)c Mi(=¢) < F(t.9) < %Mt(—rp), (5.58)

where g : [0, 00) — (—00, 00) is a nondecreasing continuous function with g(¢) <
t fort > 0 and lim;00 g(7) = 00, M;(p) = max{0, sup,e(y () (s)}, ¢ € (0,00)
and r € C([0,00), (0,00)). The class C; is the set of all continuous functions ¢ :
[g(1). 1] — [~1, 00) with the sup-norm [|¢ll, = sup, iz [0(s)].

Let © = —g(0). We consider solutions of (5.57) which correspond to the initial
condition

x(t) =¢@), 1 € [-.0],
p € Cr.0L1-1. ). $(0) > ~1. 03
In the following, we will establish a 3/2-global attractivity condition for (5.57), and
then apply this condition on equation (5.55) to establish a 3/2-global attractivity
condition. The results in this section are adapted from [73]. To prove the results,
we need the following results (whose proofs are standard; for Lemma 5.3.7 see
Lemma 5.7.3 with ¢ = 1).

Lemma 5.3.1. Assume that ¢ € (0, 1]. Then for any v € [0, 1)

1+c¢ Il—c ,
v——v .
2 6

(1 + c)e—cv(l—cv/Z) -1
In
C

(1=v) Z—(1+c)v(1—

Lemma 5.3.2. Assume that ¢ € (0, 1]. Then for any u € [0, 00)

1 cu(l4cu/2) __ 1 1 1—
(1+u)ln( +o)e 2(1+c)u(1+ —;Cu— 66u2).
c

Lemma 5.3.3. Assume that ¢ € (0,1] and v € (0, 1). Then for any x € [0, 00)

1+ [(1 + c)e—cv(l—cv/Z) _ 1]e—vx CV2
n

cv
1 < —cv(l = =
1+ ce™ = —o( 2)+1+c

X.
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-1
Lemma 5.3.4. Assume that ¢ € (0, 1]. Then for 0 <v < |:1—%+ 2(13_0)—}—%}

1 (1 + c)e—cv(l—cv/z) —1
——1In

3
< —(1 .
% c _2( +o)

Lemma 5.3.5. Assume that ¢ € (0, 1]. Then for any x € [0, 00)

1 c+er X n cx? c(l=c)x3  c(1—4dc+c?)x*
n _
I+c¢c " 14+c¢ 2(14+¢)? 6(1+¢)3 24(1 + ¢)*
cl—=1le+ 112 =¢c%) o c(l+ 14 +c*)
— X
120(1 + ¢)? 720(1 + ¢)®

Lemma 5.3.6. Assume that ¢ € (0, 1] and

-1
c 2(1—c¢) 2
I>=v>|1--+ +—1 .

2 3 4
Then
81(1 — 11c¢ + 11c¢? —c3)v3 -1 19(1 —c)v N 27(1 — 4c¢ + c*)?
160 6 16
81(1 + 14¢% + ¢*
n (1+ l4c +C)v4.
640

Lemma 5.3.7. The system of inequalities

lnllj—cyyf(l—i-c)(x—%xz),

1—x 1—c
—In{2E < (40 (v + 5557

has only a unique solution x=y=0in the region {(x,y) : 0 <x <1,0<y < 1/c}.

Theorem 5.3.1. Assume that (5.58) holds. Then the solution x(t,0, @) of (5.57),
(5.59) exists on [0, 00) and satisfies —1 < x(¢,0,¢) < 1/c.

Theorem 5.3.2. Assume that (5.58) holds and there exists a function r* €
C([0, 00), (0, 00)) such that for each ¢ > 0 there is a n = n(e) > 0 satisfying

[ir}f) ]co(s) >e= F(t,) 2 nr*(t), F(t,—¢) < —nr*(t) fort >0  (5.60)
sE(g(t).t

and
/ r*(s)ds = co. (5.61)
0

Then every nonoscillatory solution of IVP (5.57) and (5.59) tends to zero.
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Theorem 5.3.3. Assume that (5.58), (5.60), and (5.61) hold. If there exists a
constant M such that

t
/ r(s)ds < M, (5.62)
g(1)

then the solutions of (5.57), (5.59) satisfy

1 o (20
ey = x() = I i (5.63)
1+cexp(l+“ju) +ce
We now prove our main result in this section.
Theorem 5.3.4. Assume that (5.58)—(5.61) hold, and

! 3
/ r(s)ds < =(1 4+ c¢) forlarge t. (5.64)

g 2

Then every solution of (5.57), (5.59) tends to zero.

Proof. Let x(t) be a solution of (5.57) and (5.59) (note also Theorem 5.3.1 s0 —1 <
x(t) << 1/c, t = 0). By Theorem 5.3.2, we only consider the case when x(¢) is
oscillatory. First assume that 0 < ¢ < 1. Set

u = lim sup x(¢) and v = lim inf x(¢). (5.65)
t—>00

t—>o0

By Theorem 5.3.3,0 < u < oo and 0 < v < 1. It suffices to prove that u = v = 0.
Forany 0 < & < 1 — v, by (5.64) and (5.65) there exists a tp = t5(¢) > g~ 2(0) such
that

t
/ r(s)ds <éy = E(1 +c¢), t > g(t), (5.66)
g(0) 2

—vi=—(+e)<x(@t)<u+te=u, t>gt). (5.67)

From (5.57), (5.58), and (5.67), we have

x'(t) - r(t)v . (5.68)
T+xt)(A—cx(®) ~ 1+¢ = '
and
(@) L Tr@Om fo. (5.69)

1I+x@)A—cx(@) = 1+c
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Let {/,} be an increasing infinite sequence of real numbers such that g(l,) > fto,
x(l,) > 0,x'(I,) = 0, and lim,, & x({,) = u. We may assume that [, is a left local
maximum point of x(¢). It is easy to show that there exists ¢, € [g(l,), [,) such that
x(¢,) =0and x(¢) > Ofort € (¢,,1,]. By (5.68), we have

—1 +exp (—v1 ff” r(s)ds)
1+ cexp (—v1 ff" r(s)ds)

and [see also (5.57) and (5.58)] for £, <t <[, we have

x(t) = , o <t <&,

X'(1) B () 1 —exp (—vl ;E’t)r(s)ds)

I+x@) (A —cx@) ~ l+cq 4 ¢ exp <_V1 ;f,) r(s)ds)’

which together with (5.68) yields for ¢, <t <,

x'(1)
(I+x(@) (A —cx(2))

rom r@) 1R (o[ re)ds)

< min , (5.70)
Ite 1T4+epcexp (—vl fg(t) r(s)ds)
There are two cases to consider.
Case 1. f;”: r(s)ds < —ﬁ In (1+C)E_WIC(I_NI/2)_1 =4
Then by (5.66) and (5.70), we have
In
1+ x(ly) I l4+c lHcexp [—v] (80 _fin r(s)ds)]
In ——— < r(s)ds — In = .
1—cx(,) & v 1 + ce—%m
(5.71)

If [, r(s)ds < A < 8 = 2(1 + ¢), then by Lemmas 5.3.1 and 5.3.3

1 l, 1 1 —vi(8—A4) 1—
1n—+x(1) <A- +cln +ee <(04+c)|vi— cv% .
1—cx(l,) vy 1 + cedovt 6

Iff;“: r(s)ds <8 = 3(1+c) < A, then

1 (1 + c)e—cw(l—cvl/z)
——1n
Vi C

3
—1>=(1 .
> S +0)

From Lemma 5.3.4 we have that

-1
o N 2(1—c¢) N c?
. 2 3 4|
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Hence from (5.71), Lemmas 5.3.5 and 5.3.6, we have

14 x(l,) 1+c 1+ ¢ —c,
_ < 8y = 1 < B .
n 1 —Cx(ln) = CcVy n 1+ ce—80v1 — ( + C) Vi 6 Vi

Case2. A < f;’;’ r(s)ds < &
Choose 1, € (&y,!,) such that fnl: r(s)ds = A. Then by (5.66), (5.70), and
Lemma 5.3.1 we have

N 14+ x(,)
1—cx(y,)

nn L r(t) [1 —exp (—vl o r(s)ds)]
< v1/ r(s)ds +/ dt
Gn i 1+ cexp (—v1 ;E’t) r(s)ds)

3+¢ 1—vi . (1+c)e~ml=en/2
1— - In

5—(1+c)( 5

1—
<({+4vc¢) (vl— 6cvf).
Combining the above cases we see that

T4 x() _ I —c
lnrx(l”)_(l‘i‘C)(Vl— V%)

Vi C

Letting n — oo and ¢ — 0, we have

1 1—
In tu <(Q+c)|v- ). (5.72)
1—cu 6
Now, we show that
1-— 1-—
“hh— < (1 +¢) (u+ cuz). (5.73)
1+cv

Let {s,} be an increasing infinite sequence of real numbers such that g(s) > fo,
x(s,) < 0,x'(s,) = 0 and lim, 00 x(5,) = —v. We may assume that s, is a left
local minimum point of x(¢). It is easy to show that there exists 1, € [g(s,), )
such that x(n,) = 0 and x(¢) < 0 fort € (n,, s,]- By (5.69), we get

(1) < exp (uy [ r(s)ds) — 1
T 14 cexp(uy [ r(s)ds)

» lo =1 =1,
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which together with (5.58) yields

—xX'()
(1+x(1)) (1 —cx(1))

r(t) P (ul Jey r(s)ds) —1

Tt qcexp (ul o) r(s)ds)

s My <t < 8. 5.74)

Note that u; is bounded and note

1. (14 c)ecmliten/2) 1 3(1 4¢)
—1In < .
uj C 2

We consider two cases.
S 1 1 cup (14-cuy/2) _q
CaseI. [ r(s)ds < 3do) 1y, (doetTra/7-1
Mn 2 uj c

From (5.69) and Lemma 5.3.2, we have

1 " Sn
—1 LA x(sn) u / r(s)ds
Tn

B.

" exG)

3(1 + C) (1 + c)ecu1(1+cu1/2) -1
< u —1In
2 c
l—c,
<(1+4c¢) u1+—6 uj ).

Casell. B < [," r(s)ds < kg

Choose h, € (1, sy) such that fnﬁ" r(s)ds = B. Then by (5.69) and (5.74) we
have

L4 x(sn)  _ " ["" Fs)ds + /Sn r(r) [CXP (u1 Jety r(s)ds) — 1]

— n— =
(I —cx(sn)) M b1+ cexp (u1 et r(s)ds)
1+¢)3+c¢
<(4+c)+ ()2#“1
1+ u | (1 + c)ecu1(1+cu1/2) —1
— n
up C

1—
<(+c¢) (Ml +Tcu%).

Combining these two cases we have

14 x(sp) l—c,
_lnmf(l+6)(u1+ 6 ul).
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Letting n — oo and ¢ — 0 we see that (5.73) holds. In view of Lemma 5.3.7, we
see from (5.72) to (5.73) that u = v = 0.
Next assume that ¢ > 1. Set y(f) = —cx(¢). Then (5.57) reduces to

V(@) + [T+ yOIl—c*y@O]F*(t, y(g(t)) =0, t >0, (5.75)

where ¢* = 1/c¢ € (0,1) and F*(t,¢) = —CF(Z,—%(/J) satisfies the York-type
condition
rr(t)
1+c*

r*(t)
14 c*

M (—¢) < F*(t,p) < M;(—9). (5.76)

Note for large ¢ that
! 3
/ r*(s)ds < (1 +c"), (5.77)
g 2

so we have lim;_, o, y(¢) = 0, and this implies that lim;_, o x(¢) = 0. The proof is
complete. |

Applying Theorem 5.3.4 on (5.55) we have the following result.

()] _
/(; 1_{_C(I)a’t—oo

Theorem 5.3.5. Assume that

and
! 3
/ r(s)ds < 5(1 + ¢o) for large t, (5.78)
t—t1

where ¢y = inf{c(t) : t > 0}. Then every solution of (5.55), (5.56) tends to 1.

5.4 3-Uniform Stability

In this section we discuss the uniform stability of the “food-limited” population
model

NI
k- N —7) >0, (5.79)

N'@) =r(ON®— SONTG—0" 7

where r(¢) and s(t) are positive functions, /, 7 > 0 are positive constants, and k'/!
is the unique positive equilibrium point of (5.79). The results in this section are
adapted from [67].
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Motivated by (5.79) (let x(t) = (N(z)/k'/!) — 1) in this section we examine
1—(1 t —1))
A+xC—o) (5.80)
L+s(@O1+x(—1))

We consider solutions of (5.80), which correspond to the initial condition for any
th=>0

x'(1) =r@[1 + x(0)]

x(t) =¢(t), fortg—t <t <ty, p € Clty — 7, to]

5.81
14+ ¢()>0fortg—1 <t <ty and 1+ ¢(ty) > 0. (5-:81)

The zero solution of (5.80) is said to be uniformly stable if, for ¢ > 0, there exists a
8(e) such that 7o > 0 and ||@|| = sup,ep,—q ) [9(s)] < &8 imply |y (270, ¢)| < & for
all t >ty where y(¢; 9, ¢) is a solution of (5.80) with the initial value ¢ at ¢,.

Theorem 5.4.1. If

or(u) 3
_— — .82
Z/I_T1+S(u)du§oe<2,tzr, (5.82)

then the zero solution of (5.80) is uniformly stable.

Proof. Since o < %, there exist ¢; > 1 and 0 < p < 1, such that

(+pa 3 (5.83)

o0 ——
1-pf 2

and
|(1 +x)' — 1| <lo|x|, for |x|] <p.
For 0 < ¢ < p, we choose a § = §(g) > 0 sufficiently small so that § < p,
p=04+8e"—1<e and pr= 1+ p)e* —1<e,
where
hi=o8/(1—8) >0, and hy, = a1 p1 /(1 — p1)! > 0.

Clearly, § < p; < p» < &. Consider a solution x(t) = x(¢; ty, ¢) of (5.80) with
initial condition ¢ at fy, where fp > 0 and ||@[| = supye(— ) [#(5)] < 8. We need
to prove that

|x(t)] < e, forallt > t,. (5.84)
For t € [ty, ty + 7], we have

Ir(t)
1+ s@)’

|[In(1 + x(@)])'] < hy
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since
1—(+¢)| <laé
and
L+ s +¢) = 1+s0)1=8)" = 1 +s0)(1-35).
Hence
'nlli_;c((tto)) fhlZ/mt%dufhla, for z € [t0, o + 7.

It follows that

1— (148" < (1—8)eM—1

<x(1) < (1 +8)eM —1, fort €[ty 10 + 7]
and so
|x(®)| < p1 <&, fort e [ty, 1o+ 7].

Repeating the previous argument, we have |x(¢)| < p, < eforallt € [ty+1, tp+27]
and thus

[x()| < pa <&, fort e[ty ty+ 21].

There are two cases to consider.

Case 1. x(t) has no zeros on [ty + T,y + 27].
Without loss of generality, we assume that x(¢) > 0 for ¢ € [ty + 7, to + 27] (the
case when x (¢) < 0 is similar). Then by (5.80)

x'(t) <0 fort € [ty + 21,10 + 317].
If x(z) > Oforallt >ty + 7, then x'(t) < Oforall t >ty + 27 and
0<x(t) <x(ty+21) < pp <eg, for t >ty+ 2t.
Now let #; be the smallest zero of x(¢) on (fy + 27, 00). Clearly, 0 < x(t) < p»
for t € [ty + 21,1) since x(¢) is decreasing on [ty + 27, ;). Thus |x(¢)| < p, for
t € [to, t1]. Assume that (5.84) does not hold. Then there must exist z, > #; such that

|x(62)| = p2 and x(t2)x'(tz) > 0 and |x(¢)| < p,, forty <t < t,. By (5.80), we
have that x (¢) has a zero in [t, — 7, £;], which we call &. Since
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lOllpz
1+ 51— p2)
_ U+ palpy  r()

1=p)t 1+s@)

X' ()| = (1 + p2)r()

forty <t < 1y,

we have for ¢ € [£, 1] that

(1 + p2)ailps /E r(u)

|—x(t —7)| < (1= o) _. 1 +s() u,

and so
ol r(t)
(1= p2)' 14 5(1)

<[a11(1+p2)r riey 5 r@
=l a=p) | P45 S THsw™™

Thus, we get for ¢ € [£, 1] that

X' ()] = (1+ pa) lx(t —7)|

N a+pailpy @) £
"] < , u(t, duy ,
O] =miny = T M) L T s

and therefore

2 V(A4 palpy (@) £

)| < , duy dt,
'X(Z)"/s "N T Trs0 MOV L T s
where
(t,5) := |:0111(1 + P2)1|2 r(t)
HE= 1T a=p | P1+50)
There are two possibilities.
Case L
15
fz r(1) dt(1+172)alll§1
¢ 1+s@)  (1—po)

Then

arl(l + p2>]2

x(r <|——————
) <[ SR

) [f_rw
XPZ/S 50 ) T s
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B [am +p2)]2
L a-p)

S ) ([ rw) C o
X [/; 5 s0) (/_ 1+S(u)du_./s 1+s(u)d”) ””}

al(1+ po) 7
<[ (1= p)! }

3 1=-p) (2 r@) L/ [ r@) 2
Xp2[§a11(1+p2) : 1+S(t)dt_§(/g 1+s(t)dt)}’

Lor(u) 3 (1—py)
/t_f 5@ = 2.l + py)

since

and

© o) [ )
/S T+ e 1~|—s(u)dudl

e (1 ) N 1/ @ 2
_/E d(i(/s 1+s(u)d”)>_§(/g 1+s(t)d[)'

Using the fact that %az - %zz (here a > 0) is an increasing function for 0 < z < %a,
we have

[x(£2)]
<[a11(1+p2)}2p §( (1= p) )2_1( (1= py) )2 .
A—p)' | 2\ + pyert) 2\ + pyaul ’
which is a contradiction.

Case II.

> 1.

/'2 r(t) dt(l—i-Pz)Olll
¢ 1+s@®)  (1—py)

Choose 1 € (£, ;) such that

/lz r(t) di (1 + pz)Ot11 _
g 1+s@ (1=p)
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Then

|x (22)]
- /" (I + p2)ailpy  r(1)
“Je (A=p)t 1450)

2Tonl(1+ po)7? r(t) )
+/n [ (1—po) ] T o THsw ™!

Tl +p)T? [ @) T (u)
_[ (1—py)t } pz/,, 1+S(l)dt/g 1+S(u)dudt

al(l+p)1 (2 r@) [ r@
+[ 1y ] ”zfn T s@ Joe T s@ ™

[0+ p)ail TP 2 or(@) Tor(
= a=p | ”2/,7 1+s<z>d‘/l_fl+s<u)d”d‘

C[Qtpad P T O (3t g g
(1= p,) D2 , 1+s00) 5 arl(1+p2) ; T+s(u)
_[da +P2)0511_2p E( (1-py)! )2_l< (1-py)! )2 —p
(1= pa) 2| 5 \al(@+p2) 5 \al(+p2) 2

which is a contradiction.
This shows that if x(¢) has no zero in [ty + 7, % + 27], then |x(¢)| < p» < ¢ for
all £ > 1.

Case 2. x(t)hasazerof € [ty + 7,19 + 27].

We prove that
|x(@)| < p,, forall ¢t >17. (5.85)

In fact, if (5.85) does not hold, then there must be a point t* > 7 such that |x (t*)| =
P2, x(t*) X'(t*) = 0 and |x(¢t)] < p, fort € [to,t*). Following the reasoning
in Case 1 we derive a similar contradiction. The proof of Theorem 5.4.1 is now
complete. |

Theorem 5.4.2. Assume that

() .
/O 1+S(t)dt—oo. (5.86)

If (5.82) holds, then the zero solution of (5.80) is uniformly and asymptotically
stable.
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Proof. In view of Theorem 5.4.1, it suffices to prove that there exists a §, > 0 such
that the solution of (5.80) with the initial condition [@|| = sup;e(,—r 4 [9()] < o
satisfies

lim x(¢) = lim x(¢;t,9) =0, f) > 0.
—>00 —>00
Leto; > 1and 0 < p < 1 be such that

o = max 1& <g
B A-ptf 2

and
|(1 +x) — 1| <lay |x|, for |x| < p.

Since the zero solution of (5.80) is uniformly stable, it follows that for 0 < ¢ < p,
there exists 8o > 0 such that

P
[x ()] = |x(t:10,0)| < X for t > 1,

provided [[l| = sup, gy [€(0)] < 0. Set

A :=limsup |x(?)]. (5.87)
—>00

Clearly 0 < A < e. We prove that A = 0.

If x(¢) is eventually nonnegative, then by (5.80), x(¢) is eventually decreasing
and hence lim;_,» x () = A; exists. Suppose A; > 0. Then there exists #; > £
such that

1
EAI <x(t) <2A;, fort=>1.

By (5.80), we have for t > #; + 7 that
1—(1+x(t—-1)
1L+ s@)(1+x(t - 1))

- —[A+ 380" =11 r()
- (I +2A)" 14+s@)

(n[1 + x()]) = r(@)

Using (5.86), we have
In[l + x(t)] > —o0, as t — oo,

which contradicts A; > 0. Hence lim;_, x(¢) = A; = 0. Similarly, one can show
that if x (¢) is eventually nonpositive then lim,_, o, x(z) = 0.
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Now assume that x (¢) is oscillatory. For any 0 < n < e—A, by (5.87) there exists
t, > to such that [x(¢)] < A+ nfort > t,. Let {t,"} be an increasing sequence such
that t* > £, 4+ 27, x/(t*) = 0, lim,—e0 [x(t*)| = A and t* — oo asn — oo.
By (5.80), x(¢; — ) = 0. Thus, we have

{(ln[l + x(t)])’|
- lay r(t)
T (=A=' T+5)

|x(t —7)|, for t > 1, + 1. (5.88)

This yields
|[—In(1 4+ x(r — 7))|
_ LA+ /’n*—f r(u)

du, for t € [ty —1,1]].

=A=' S 1+ !
Consequently,
(A +may ("7 r(u)
r— < d -1,
= nl= e ((1 sl | Trsm

since |In(1 + z)| < a implies |z] < e* — 1. Thus for ¢ € [t — 7,1}

|(n[1 + x(1)])'|
- loy r(t)
TA-A-nl14+s@0)

IA+nar (777 r(u)
- [‘”‘P (m J. v s(u)d”) - 1} |

which implies for ¢ € [t — r,¢7] that

|(n[1 + x(1)])'| < min{Cy, G5}, (5.89)

where

C = I(A+nay  r(t)
T A=A 1+s0)

R r(t) I(A+may ["7° r(u) B
CZ"(I—A—n>ll+s(r){e"p(a—A—n)l/t_f 1+s(u)d”) 1]

There are three cases to consider:
Case L

Loy W)

<1.
(I=A=n! Jpe 1+s@)  —
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Then

[In(1 + x (7))

- la Wor(r)
TA=A=n) Jp T+s()

A+ 777 r(u)
" [exp (@25 [ ) - 1} “
- loy /fn* r(t)
T (1=A-p) t"*—r1+s(t)
" log ! r(u)
x|:exp((A+n) (oz _(1—A—n)’ llf_r1+s(u)du))—1i| dt
-1 oA+ 1 rw e
T At l;f‘l[e"p( (A=) ,;11+s<u>d“) 1} "
lay fn r(t)
Ta=a—y) /,_ s
R ST B B C % /) B A C)
T [1 exP( a0 e T 50"

B lay /’" r(t) it
(=A== St 1450
1
A+n

=

e(Atme™ (1 _ p(Atmy _ 1

since the function

7 — ;e(Aﬂ)a* [1—e@+m]_ 7
A+n

is increasing for 0 < z < o™ and

la W r(u)
1 <a.
(l—A—n)l/,n*_Tl—i-s(u)duf =

Thus,

1 *
x (2] fexp( el (1—e<A+">)—1) ~1.
n
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Case II.

Then

or

Case I11.

1

O{*_ln(l+A+17)

5 Food-Limited Population Models

b
<_;@_7/‘ Oy cgr U+ AED)
(1—A—-n) t"*_fl-l-s(l‘) A+
. MA+nm1/ﬁ r)
In(1 7 =
[In( +x(n))|_(1_A_,7)z e L4 5(1)

<a*(A+n—-In(1+A+n

x| < ——
D = AT

ZOl]

et _ g

*
trt r (Z‘) - %

A+n

Choose /1 € (0, 7) such that

2

Loy "h ()

A=A—n) oo T+s0" ~

Then by (5.89)

[In(1 + x(2,))|

<[¢% rt) LA+ ey
TS 145 (1-A—p)
la Woor(r)

+
(I=A—=n)! Sy 14 5(t)
x | exp (A + oy /l;_f
(1 - A-— 77)[ 11—t

5(A+m(f Atn

+e(A+n)a* /tn r(0)
t*—h 14 s()

r(u)
1+ s(u)

_In(1+ A+

o
A=A =n) Sy THs0" =

. In(+A+07)

A+n

) i
)
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I(A+nay [ r(u)
X exp <_(1—A—77)’ /tn*_I N +S(u)a’u dt
e Wor(@)
(I=A=n)" Jron T+ 5(0)

~ . In(1+A+)
—(A+m(a—~—7;;;—J

e e lon(Atm) (77" r()
+——¢€X P Ee— du
&+ (=A=' Jyee T+5W

_e(A'H’)“* exp (- la(A+n) (% r(u) du
(A+m) (I=A=n) Jyr—r 1+ 5()

e /t” r0
(IT=A=n Joen 14500

— @+ ("
1 . lay W ()
(A+m“pQA+m(“_a—A—mlgf1+wwd0)

1 . Loy W r(u)
(A+m“pQA+m<a_a—A—mALﬂ1+wmmJ)

[ n t
— il ; / r) dt, sincee® > 1+ x forall x,
(A=A =n)" Jix—n 1+ (1)

_ma+A+m)
A+

+

In(1+ A 1+ A —1
§(A+n)(a*—n(+ +n)) +A+7

A+ (A+n)
lay W r(u)
u
A Sy T @)

e /ﬁ ro
(I=A=n) Sz 1 +5()

—(A+1n) (a* T
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i ln(1+A+r)))
:A _—_—
() (o - 2
la M)
1-—
ot e 1150
ln(1+A+n))
A
= A+ )( A+n
ot 4o ln(1+A+n)
A+n
14+ A In(1 + A
:1+a*(A+n)_(+ +m)n(l+A+17)
A+7

and so

x(t9))] < exp (1 b dFAtDAF AL ’7)) —1.

A+

Combining all the three cases, we have

|x(t¥))| < max{A4, B, C}, (5.90)
where
A= exp (;emﬂ)a*(l ooy _ 1) 1
A+n
B = ;e(A‘F'ﬂa* _ 1’
I1+A+n
1+ A In(1+ A
C:exp(1+a*(A+n)_( +A+n)n(l+ +n))_1'
A+
Since
1 1« 1
R (ST N I
=07 Z 2
1 1 *
1m—{—e°‘z—1} =a*—-1<1,
=0z (z+1
and

1 1 In(1 1
=07 Z 2
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it follows that there exists ¢p < 1 such that, for sufficiently small ¢ > 0, we have

I« 1 *
exp|—e* “(1—e®)—1)—1<ayz, —e* *—1 < apz,
Z z+1

and

B (14+2)In(1+2)

exp (1 +a*z
z

)—l<aoz, forall0 < z < &.

Thus by (5.90), we get
XD < (A + 7).
Letting n — oo and n — 0, we have
A < oA,

which, together with op < 1, implies A = 0. The proof is now complete. ]

5.5 Models with Periodic Coefficients

The variation of the environment plays an important role in many biological and
ecological dynamical systems. The assumption of periodicity of the parameters in
the system (in a way) incorporates the periodicity of the environment. It is realistic
to assume that the parameters in the models are periodic functions of period w. We
consider the nonautonomous “food-limited” population model

dN() K(@)— Nt —mw)
4 TN e S ONG —me)

(5.91)

In this section we discuss (5.91) when K is a periodic function. The results in this
section are adapted from [28]. We first consider the nondelay case.

Theorem 5.5.1. Suppose r, c, and K are continuous and positive periodic function
of period w. Then there exists a unique w-periodic solution N*(t) of the periodic
differential equation

dN(t) K(t) — N(@)
- ONO e or N D)

(5.92)

such that all other positive solutions of (5.92) satisfy

Tim [N(1) = N*(0)] = 0. (5.93)
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Proof. Let N(t,0, Ny) denote the unique solution of (5.92) through the initial point
(0, No). Let

K. = min K(tf) and K* = max K(¢).
0<t<w

0<i<w
Then it follows from (5.92) that
Ny € [K«, K*] = N(¢,0, Ny) € [K«, K*], for t >0
and in particular
N, = N(w,0, Ny) € [K«, K*].
Define the function
S [Ks, K¥] = [Ks, K]
by
S (No) = No.

As N(t;0, Ny) depends continuously on Ny, it follows that f is a continuous
function mapping [K,, K*] into itself. Therefore f has a fixed point M. In view
of the w-periodic of r,¢, and K, it follows that the unique solution N*(t) =
N(t,0, Ny) of (5.92) through the initial point (0, N;') is positive and w-periodic.
This completes the proof of the existence of a positive and w-periodic solution
N*(t) of (5.92).

Let N(¢) be an arbitrary positive solution of (5.92). We let

N(t) = N*(t)e*? (5.94)
and note
d;gt) = F(N*(1)e"®) — F(N*(1)). (5.95)
where
Flw) = r(n )

K@)+ c(t)r(tu’
By the mean-value theorem of differential calculus, we can rewrite (5.95) in the

form

dx(t) 3 )
= A(t)[e 1], (5.96)

where

14+ r(t)c(?)

= & + reeop DN OKO: (5.97)

A(t)
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and £(¢) lies between N*(¢) and N*(t)e*®. Define a Lyapunov function V
for (5.96) in the form

V() = V(x(@)) =[5V — 1]

Calculating the rate of change of V' along the solutions of (5.96) we obtain for
x(t) # 0 that

dv
d[(t) = 24 —1]?* < 0. (5.98)

One can easily see that every positive solution of this equation is bounded. Therefore
x(t) is also bounded. As r, K, and N* are positive functions and & (¢) lies between
N*(t) and N*(t)e*®, it follows from (5.97) that there exists a positive number 1
such that

A(t) > p, for t > 0.
Thus from (5.98) we have

dVvi(t
df ! < el 1,
SO
t
V) + 2,u/ e We*® —1]2ds < V(0) < oo.
0
Hence

ex(t)[eX(t) —1]? € L(0, 0).

Since x(¢) and x(z) are bounded in [0, 00), it follows from Barbalats’ Theorem (see
Sect. 1.4) that

eV 12 >0 as t - co.

Thus x(t) — 0 as ¢t — oo and the result follows from (5.94). This completes the
proof. |

Now we consider the periodic delay differential equation (5.91), namely

K(t)— N(t —mw)

N'(t) =r(t)N(t , 5.99
O =rON ) e e OrONG = ma) (5-99)

together with the initial condition
N(t) =¢(t), for —mw <t <0, (5.100)

¢ € C[[-mw,0],R*], and ¢(0) > 0.

Note the unique positive periodic solution N *(¢) of (5.92) is also a periodic solution
of (5.99).
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For convenience, we introduce the notations
r* =max{r(t):t €[0,w]}, r«=min{r(r):t € [0, o]},

K* =max{K() :t € [0,0]}, Ks«=min{K(t):1 €[0,w]},

1 maw
N" = K* exp[K*(%)avmw], where (%)av = %/0 Ir{((ss)) ds, (5.101)

*

K* — N¥ 1 mow
N; = Ky exp[———r,mo], where r,, = — r(s)ds. (5.102)
K mo Jo

Theorem 5.5.2. If N(t) is a solution of the initial value problems (5.99) and (5.100)
then there exists a number T = T (¢) such that

Ny < N(@t) <N", fort>T. (5.103)
Proof. We note that any solution of (5.99) satisfies the differential inequality

r()N@)[K* — N(t — mw)]

N = O T erONGC —ma)’

(5.104)

Solutions of (5.104) can be either oscillatory or nonoscillatory about K*.

First, suppose that N(¢) is oscillatory about K*. Then there exists a sequence
{t,}, t, = oo asn — oo of zeros of N(t) — K™* such that N(t) — K™* takes both
positive and negative values on (¢, t,+1) forn = 1,2,....Let N(z,") denote a local
maximum of N(¢) on (¢, t,+1). Then from (5.104), we obtain

rONE)IK® = N(t; —mw)]
K(t?) + ct)rE Ny —mow)’

0=N'(t)) <

which implies that
Nt —mw) < K*.

This shows that there exists a point § € [t — mw,t)] such that N(§) = K*.
Integrating (5.104) over [£, ,¥] we obtain

N@E [, r(s) IO
NG 5/; Krm?@ =X /_ O

and

N(ty) < K™ exp[K*(r/K)amo). (5.105)
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Since the right side of (5.105) is independent of #,,, we conclude that
N(t) < K*exp[K*(r/K)ymw] = N*, for t > t] + 2mw. (5.106)

Next assume that N(¢) is non oscillatory about K*. Then it is easily seen that for
every ¢ > 0 there exists a 71 = T (¢) such that

N() < K* +¢, for t > T.
This and (5.106) imply that there exists a T = T'(¢) such that
N(@) <N" for t>T.

In a similar way we can derive a lower bound for positive solutions of (5.99). In fact
from (5.99) we find

Ky — Nt —mw)
Kt)+c)rt)Nt —mw)’

N'(t) = r(t)N(1) (5.107)

Let N(¢) be an oscillatory solution about K and let {s,} — oo as n — oo be such
that
N(s,)— Ky =0, forn=1,2,...,

and N(¢) — K takes both positive and negative values on (,,#,+1). Let s be such
that N(s;y) is a local minimum of N(¢). Then from (5.107), we obtain

Ky« — N(sy —mw)
K(sy) + c(spr(sHN(sy — mw)’

0= N'(sy) = r(s;)N(sy)

which implies that
N(sy —mw) > K.

This show that there exists a point € [s) — mw,s,] such that N(n) = K.
Integrating (5.107) over [n, s;;] we find

n Y6 / T (K = N o
n

K. ~ K.

*—/ r(s) > *—/ r(s)ds
K 1 K s —mo

and

K. — Nt sy
N(sy) > Ky exp *—/ r(s)ds | = Nj.
K *—mw

S
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Hence
N(s) = Ny, for t > 1) +2mo. (5.108)

Next, assume that N () is nonoscillatory about K. One can easily show in this case
that for every positive ¢ there exists a 7, = T;(¢) such that

N(t) > Ky —¢, for t>T,.
This and (5.108) imply that there exists a 75 = T>(¢) such that
N(t) > Ny —e, for t > T,.

The proof is complete. ]

We will derive sufficient conditions for the global attractivity of N*(z) with
respect to all other positive solutions of (5.99) and (5.100). As before we set

N(t) = N*(t)e* ™, (5.109)
in (5.99) and note that
x'(t) = G(x(t —mw)) — G(0), (5.110)

where

K()— N*(t)e"

CwW =D T eroON e (.11
We can rewrite (5.110) in the form
x'(t) = -B(@) x(t — mw), (5.112)
where
K@)ro)[1 + r(0)c@)]()
B(t) = 5.113
= Tko +corozop G119
and ¢ (¢) lies between N *(¢) and N(t — mw). Clearly
_ Kuri(1 4 rics) N K*r*(1+r*c*)N"
B, = K e S B(1) < KorerNy = BY.  (5.114)

Theorem 5.5.3. Assume that the positive periodic functions r(t), K(t), and c(t)
satisfy the condition

r(s)
K(s)

uw=K*exp |:K* (L) ma)i| /mw[l + r(s)c(s)] ds < 1. (5.115)
av 0

K
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Then every solution of (5.99) and (5.100) satisfies

lim [N(1) = N*(0)] = 0. (5.116)

Proof. 1Tt suffices to prove that every solution x of (5.112) and (5.113) satisfies
lim x(¢) = 0. (5.117)
—>00

Consider V() = V(x(t)) given by

2

Vi) = [x(r) _ f "B+ mw)x(s)ds]

+ /l B(s + 2mw) (/t B(u+ mw)xz(t)du) ds, (5.118)

—mw s

which in view of (5.112) yields

avie)
dr

2 |:x(t) — /t B(s + mw)x(s) ds:| [=B(t + mw)x(1)]

+B(t + mw)x*(t) [t B(s + 2mw)ds
, t—mo
—B(t + mw) B(u 4+ mw)x*(u)du. (5.119)
t—mo
Using the inequality
2x()x(s) < x2(t) + x%(s),
and simplifying (5.119) we obtain

dV(r)
dt

< —B(t + mw)x*(t)

X |:2 —/ B(s + mw)ds — / B(s + ma))ds]
< —B(t + mw)x*()(1 — ). (5.120)

It follows from (5.115) that V' is eventually nonincreasing say for t > T. Clearly
all solutions of (5.99) are bounded and so by (5.109) and (5.110), x is uniformly
continuous on [0, co). Integrating (5.120) over [T, ¢] and taking into account the
inequality (5.115), we get

V(t) +2B;(1 — ) /Tt x2(s)ds < V(T) < oo.
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Hence x? € L(T, 0co) and by Barbalat’s Theorem (see Sect. 1.4)
lim x2(z) = 0.
—>00

The proof is complete. |

5.6 Global Stability of Models with Impulses

In this section, we are concerned with the global stability of “food-limited”
population models with impulsive effects. We consider the model

1—-N@{ -
N0 = PONOT s

N(t) = N(te)'7%, k e N,

t>0, t#, 5.121)

where p € C[0,00) with p > 0, 1 € (0,00), T > 0, by > —1 for all k € N. The
aim in this section is to establish some sufficient conditions which ensure that every
solution of (5.121) tends to 1 as # — oo. The results in this section are adapted from
[41]. Let the sequence #; (k € N) be fixed and satisfy the condition,

O<ti<th<...<tlgy = 00, ask — oo.

We only consider solutions of (5.121) with initial conditions of the form

N@)=¢(t), for —1<t=<0,
5.122
% ¢ € C([-7,0],[0,00)), and ¢(0) > 0. ( )
Lemma 5.6.1. Suppose that any € > 0 there exists an integer N such that
n+m
[[a+b) <1+e forn>Nandm=o. (5.123)
k=n
If in addition
+o00
/ p(s) [T 0+ b "ds = oo, (5.124)
0 0<tr <s
then every non-oscillatory solution of
, 1— ex(t—r)
X (t) = P(f)l T dex—0’ t 7& Tk, (5.125)

x(tF) =1 +b)x (), keN

tends to zero as t tends to infinity.
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Proof. Without loss of generality, suppose that x(¢) is an eventually positive
solution of (5.125). Then thereisa 77 > O such that x(t —7) > O fort > T}, t # 1.
Thus (5.125) implies that x () is decreasing in (y, tx+1] with t; > Tj. Let

lim inf =a.
1mt;r}rmx(t) o

Then o > 0. First we prove @ = 0. Since x (#) is a left locally minimum value of
x(t), there is a subsequence {x(Z;)} such that

Iim x(#%.) = .
;Jim_ (%;)

If « # 0, then @ > 0. Choose € > 0 such that « — ¢ > 0. Again there is a
T >T,, T #t;suchthat x(t — 1) > o — €, fort > T. Hence (5.125) implies

1 — %€

e
"< p(t)———, t>T, t # 1.
X0 = PO 12T 1 E b

Integrating the above inequality from 7" to ;, we get

[ a+b0 ") —x(T)

T <tk <tk

tk/-
1 —e*¢

< W/p(s) [T a+b07"ds.

T T<tp<s
Let either

lim sup 1_[ (14+b;) =0 or lim sup l_[ (14 br) #0,

J—>oo T<t<ty; Jj—>too T<t<t;

and it follows that oo < —oo or —x(7") < —o0, a contradiction. Then o = 0.
Now for any ¢ > T, there is a f, such that 7, < 1 < Suppose that
Ty <tgj41 < ... <Ulij41 < t. Then

i

0 < x(1) < x(tk‘tH) = (1 + br;+1)x (t;+1)
< (1 +bk,-+l)x(t]:j_.+1_1)

= (1 + bi;+) (1 + by +1—1)x (T, +1-1)

IA

i
= [T+ bag o))

s=0
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i
From (5.123), there is a constant A > 0 such that 1_[(1 + b, +5) < A for any
s=0
[ and any k;. Thus 0 < x(f) < Ax(t;). Then lim;— 1o x(t) = 0. The proof is

complete. ]
Lemma 5.6.2. Suppose that (5.123), (5.124) hold and there is a constant M > 0
such that
t
/p(s) [] a+bods <M. t=o0. (5.126)
f—t S<tp <t

Then every oscillatory solution of (5.125) is bounded.
Proof. Let x(t) be oscillatory solution of (5.125). Equation (5.125) implies

xX'(t) < p@). 120, 1#q. (5.127)
Choose a sequence {c, } such that

x(cy) =0, where 0 < c; <c¢; <..., with n—lir—Poocn = 400,

x(t) >0, fort € [c2i—1,¢2], and x(¢) <0, fort € [cai, C2i41]-
Let

Xi= sup x(¢t) and X; = inf x(7).
1€[cai—1.¢2i] t€[c2i 2 41]

It suffices to prove that {X;} and {X;} are bounded. First, we prove that {X;} is
bounded above. In this step, there are two cases to consider.

Case 1. X; is the maximum value of x(¢) in [c2;—1, C2;].

In this case, there is a ¢ € (c¢2;—1, ¢2;) such that x; = x(c) > 0, x'(c) > 0.
Equation (5.125) implies x(t — t) < 0. Then there is a § € (¢ — 1, ¢) such that
x (&) = 0. Integrating (5.127) from & to ¢, we get

c

%= x(c) S/p(t) [T O +bode < m.

1<t <c
£ k

Case 2. X; is not the maximum value of x(¢) in [cp;—1, ¢2;].

In this case, there is a tx4; € (czi—1,¢;) such that X; = x(tk++l). We suppose
that

Coi <l < ... <lpyy.

There are two cases to consider.
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Subcase 2.1: x(t,fﬂ._l) >x(tkvj)j=2,...,1

Then x(¢) has maximum x(c) in [c2;—1, tx+1]- By Case 1 we have x(¢) < M.
Hence

i
2= x(t) = (U4 b x(een) - < ]+ b x ()
s=1

I
< M []A+ biwo)
s=1
Subcase 2.2:  There is an integer j* € {2,...,/} with x(tk++j,_1) < x(t4+;+) and
x(tlii-j—]) > x(tetj), j=Jj +1,....1L

Then x (¢) has maximum x (¢) in [ty 4 j«—1, x4 j+]. By Case 1 we have x(c) < M.
Hence

!
L =xt) =0+ bp)x(tep) < ... < 1_[ (1 + brys) X (trtj+)
s=j*

i
M T+ by,

s=j*

IA

From condition (5.123), from Cases 1 and 2, one gets that there is a constant 4 > 0
such that

X = X(tk+1) <M or X = X(tg41) < AM. (5.128)

Next, we prove that {X; } is bounded below. From (5.128), there is a constant B > 0
such that x(¢) < B, for all ¢t > 0. Equation (5.125) implies

1—eB
"ty> ———p(@t), t >0, t#t. 5.129
x()_1+ke3p()’ >0, t #1 ( )

Using a method similar to that in Cases 1 and 2, we get

. 1—eB
F> <
"T 1+ deB
or
. 1—eB AM
X > ———AM.
"T 14 deB

This shows that {X;} is bounded below. The proof is complete. |
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The following result is well known.
Lemma 5.6.3. The system of inequalities

e 1—e¢"
du>1+A)——
andu = (1+ )1+)Lev

1—
142
r= 04D

has only a unique solution u = v = 0 in the region —oo < u <0 <v < +o0.
Lemma 5.6.4. Suppose that A € (0, 1] and (5.123), (5.124) hold. If

t

lim sup / p(s) l_[ (A+bp)ds <1+ A, (5.130)

t—>—+00 L. s<tp<t

then every oscillatory solution of (5.125) tends to zero as t tends to infinity.
Proof. Let x(t) be an oscillatory solution of (5.125). By Lemma 5.6.2, x(z) is
bounded. Let

11m mf x(t) =u and lim sup x(¢) = v.
t—>+00

Then
—o0o<u<0<v<+oo.

For any € > 0, (5.123) implies that there is a N > 0 such that

n+m
l_[(1+bk)<1+e, forn > N and m > 0.
k=n

In addition, for this € there is a 7" > 5 such that

t

/p(s) [] +b0ds <+ +e). foralls =T,

f—1 St <t

and
m=u—cec<ult—1)<v+e=nv.
Then (5.125) implies

ui

X(t)_p(t) , =T, t#ty, (5.131)

—e
1+ Aen
and

eVl

x(t)>p(t) , t>T, t #t.

1+ Ae"
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Choose a sequence {c,} such that x(¢,) = 0, T < ¢ < ¢2 < ..., ¢ —>
400, x(t) > 0, fort € (czi—1,¢2;) and x(¢) < O0fort € (cz;, c2i41)- Let

Xi= sup x(t), X;i= inf  x(¢).
1€(c2i—1.€2i) 1€(e2ic2i41)

Then

lim supX; = v, lim infX; = u.
I—>00 i—>00

We divide the proof into two steps.
Case 1. X; is the maximum value of x(¢) in (c2;—1, C2;).

In this case, there is a ¢ € (¢2;—1, ¢2;) such that X; = x(¢) > 0, x'(¢) > 0, and
x(t —7) < 0. Then there is a £ € (¢ — 7, ¢) such that x(§) = 0. Integrating (5.131)
from £ to ¢, we get

] _ c
T / po) TT -+ b
ui

1-—
< (1 +)&)(1 +€)m

Case 2. X; is not the maximum value of x(z) in (¢pi—1, ¢2;).

In this case, there is a fx4; € (c2i—1,C2;) such that X; = x(tk++l). Suppose
Cri] < tp41 <...<tg4;.Asin Case2in Lemma 5.6.2, thereisac € (cai—1, tk+1)
such that x(c) is a left locally maximum value of x(¢), and we have that there is a
Jj €{1,2,...,1} such that

1 !
£ < [+ bierdx(©@ = [[A + beadd + (1 + 2)

§=j s=J

Then by (5.123), we get

—e"
1+Au1'

1 —e"
Xi = (1 + 6)2(1 + A)m

Leti — +o00, € — 0, and we get

1—e"
<(1+A 5.132
v+ DT (5.132)
Similarly, we have

eV

1+ Xev’

From Lemma 5.6.3, we get from (5.132) and (5.133) that u = v = 0. Then
lim;—, oo x(¢) = 0. This completes the proof. |

u> (1 +A) (5.133)
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Lemma 5.6.5. Suppose that A > 1 and (5.123), (5.124), and (5.130) hold. Then
every oscillatory solution of (5.125) tends to zero as t tends to infinity.

1
Proof. Since A € (1, +00), let M(t) = m and (5.121) becomes

M(t —‘L’)

1
We note T € (0,1). Then by Lemma 5.6.4, we get Lemma 5.6.5. The proof is

complete. |

Lemma 5.6.6. Suppose that A € (0, 1], and (5.123), (5.124) holds. If

t

3
limsup/p(s) ]_[ (14 b)) ds < 5(1 + 1), (5.135)

1—>+o00 pa t—T<ty <t

then every oscillatory solution of (5.125) tends to zero as t — +o0.
Proof. Let x(t) be an oscillatory solution of (5.125). By Lemma 5.6.2, x(¢) is
bounded. Let

lim sup x(¢) =v and hm 1nf x(t) = u.
t—>+00

Then
—o0o<u<0<v<+oo.

From (5.123), for any € > 0, there is a N such that

n+m
[Ta+b)<1+e n=N m=o.
k=n

Again for this € > 0, there is a T > ty such that

2D gy <31+ A)(14€) :=8(1+e€), t>T

/ ]_[ (14b) ' T (5.136)

I—T=<t<s

m=u—e<x(t—t)<v+e=nv, t>T.
Then (5.125) implies

— pl1

e
"< —p@), t>T, t#t. 5.137
YO S fa PO 12T 1 (5.137)
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Choose a sequence {c,, } suchthat x(c,) =0, T <c; <c3 < ..., ¢y > +00,n —>
400, x(t) > 0fort € (ci—1,¢2;) and x(t) < O fort € (¢, C2i41)- Let

Xi= sup x(¢), X;i= inf x(¢).
t€(cai—1.02i) 1€(c2i,C2i+41)
Then
lim supx; = v, lim infX; = u.
1—>00 1 —>00
We first prove
. 1-1 ,
X <(1+21) A—TA (1+e€) (5.138)
or
1-2 1 —en
V<(0+M)0+e?(A-—=4%), where A = ————. 5.139
X = (T +A)( +€)( 6 ) where 1 + Ae ( )
There are two cases to be considered.
Case 1. X; is the maximum value of x(¢) in (c2;—1, C2;).
In this case, there is a ¢ € (c¢2;—1, ¢2;) such that x; = x(¢) > 0, x'(¢) > 0.

By (5.125) we have x(¢ — 7) < 0. Then there is a £ € (¢ — 7, ¢) such that x(§) = 0.
Ift € [§,c], thent — v < &. Integrating (5.137) from ¢ — 7 to £, one gets

&
- 11 (l+bk)x(t—r)§A/p(s) [T (4 +beds. (5.140)
t—t<t <& —1 s<ty <€
Equation (5.125) implies for ¢t > 0 that
§
t-ew(-A [ o) ] (+bo'as)
X'(1) < p(1) = T . (5.141)
1+)Lexp(—A[p(s) [ a+b0ds)
— —T<tp<s

X

Integrating (5.141) f t d noting that
ntegrating ( ) from £ to ¢ and noting tha T4 her

is decreasing, we get
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§
. tmeeea [ po) [T sl
x(c) < / p() i e [T (0 +bor
d 1+MWPA/M@ [T (+botds)

c

= [»0) TT a+50

<t <c
£ k

t

1= Vexpd [ po) ] (4b0'an)

1—T<t}<s
X Et dt
1+ Ae—48 exp(A[p(S) [T +b0ds)
£ —T=Zt <s

t

1—e—A5exp(A/P(S) [T a+bods [T a+b07

c

£ s<tr<c t—t<tp<c
= [ »0) [
§ 1+ de=48 exp(A/p(s) l_[ (1 + by)ds 1_[ (14 b)) 1
3 S<t<c —T1=<t<c

x [T a+boar

<t <c
t

| 1= Vexp(at+ 97 [ ps) T] (1+bods)

S<t<c
< /p(t) [T a+50 . dt
t<tp<c

§ 1 4+ Ae=48 exp(A(1 +6)_1/p(s) [T (+bods)

E St <c

c

14+ A
= t 1+ b)dt — ————
fp(%llf b =
A+

c

1+ e P exp(A(l +€)~! / p(s) 1_[ (1 + by)ds)

St <c
£ k

14 de—48

x In dt.
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Subcase 1.1:

| 1 (14 A)e 205
/p(t) [T a+b0dr < _Zln%(we)

1<t <c
E =k

A

=a(l+e) <8(1+e).

By the monotone property of the function

(1+21) —AS+ Ax(14e)7!
B G 0 MY I s+ |
TA(+ o) n(1+2e )

and using le=4% = (1 + k)e_M(lJTA) — 1, we get that

1+ 14 peA0tAe
x(c)5(1+e)(a— T In Ry )

=(+a+—7 1 + Ae—As+ia

Then Lemma 5.3.3 gives us that

AAZ

Xi=x(c)<(+e) |:a + 1;_—14)&(—)%(1 — )%A) + (8 — oz))i|

=(1—}-6)[0(—(1—}-1)(1—ATA)—}-AS—AQ]

=—(1+e)(1+2) [1—%1—31]
(1 + A)e M=%
A

—(1+ )

Db A1 (L AeT M0 — et

3+ 4 1-4 M=)
:(1+e)[—(1+x)(1— A)— v In e T 2 1]

2
Then from Lemma 5.3.1

x(e) < —(14+ )1 +¢) (1 - iA)

1+ 1+ 1—2
1 Al1- 124242
+(1+¢€) y ( 3 g )

=(1+e)(1+2A) (A— %Az),

265
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ie.,

x()<(1+e)(1+2) (A — %Az) )

Subcase 1.2:

/p(t) l_[ (14 br)dt <86(1 +¢€) <a(l +¢).

1<t <c
E =ik

In this case o > %(1 + A1), 1i.e.,

(1 + L)e240-5) _ |
)

1 3
S > 2(1+A).
a4 U+

From Lemma 5.3.4 we have that

—1
A a-xn 2
A>O—5+ ( )+—>

3 4

Integrating (5.141) from £ to ¢, we get

N L+ A
i = 1 -
X =x(c)<8(1+e) AT o

1+ de M exp(A(1 +€)7'8(1 + €))
X In

1+ de—48

1+ A 1+ A
_(1+e)(8— A 1n1+)te—A5)

1+ A A+ e
—(1+e)(8+ A (ln 1 —AS)).

By a method similar to that in Lemmas 5.3.5 and 5.3.6, we get

Xi=x()=(U+e)(l+21)

=2 1 19(1=2) .  27(1—4A + A2
All— —2A4-(- A A
xAl g Atg!l 6 + 16
81(1— 114 + 1142 — A3 (1 + 1402 + A4
B0y ) g B0
160 640

ie.,

x(@)<(1+e)(d+2) (A — %Az) )

(5.142)

2

(5.143)
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Subcase 1.3:

8(1 4 ¢) z/p(z) [T a+b0de > e +e).

1<ty <c
§

Choose 1 € (£, ¢) such that

c

/p(t) [] (4 +b0dr =a1+e).

1<t <c
" =lk

Integrating (5.137) from & to 7, one gets

n

x < A/p(t) [T (+b0adr

¢ t<ty<n
Integrating (5.137) from 7 to ¢, we get

x(@)—x(m [] A +bo)

N=<tx<c

3
¢ l—exp(—A/[)(x) l—[ (1+bk)lds)
dt.

1—T=l} <s
< [»0) TT a+80 :
n IS¢ 1+Aexp(—A/p(s) l_[ (l+bk)—1ds)

I—T=<t} <s

t—t

t—t

By deleting x (1) and noting

e (L )05 g
e =

T ,
we have
X = x(c)
n c
=a[p0) [T o+ [ oo [T a+b
1<t <n 1<t <c
§ n
1+ e 4 exp(A(1 + €)™ / p(s) [T (1 +byds)
st <c
X dt

§
n

1+ de= 4 exp(A(1 +¢€)! / p(s) 1_[ (1 + by)ds)
§

S<I<c

267
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n c

=A/p(t) [ (1+bk)dt+fp(t) [T (+bod:
£ 1<t <c " 1<t <c
1+ de 4 exp(A(1 +6)’1/p(s) l_[ (1 + by)ds)

1+ 2 i
- n
AA(1 4+ e)!

3
1
1+ de 4 exp(A(1 + €)! / p(s) l_[ (1 + bi)ds)
St <c
£
Using the monotone property of the function

(1+2) 1+ Le—As+Ax(1+o~!
T AA(1 +e)! f 1 + Ae—Ab—AatAx(i+e)~"

on [0,8(1 + €)]

and by Lemma 5.3.1, it follows that

),(\f,' = X(C)

S(l—i—e)(AS—i—(l—A)oc—l—i_ll L+A )

A "1+ AeAa

:(1+e)(A8+(1—A)a—(1+A)(1—%A))

342 1—4
=(1+¢) (—(1 +/\)(1——2 A)——A w)
1-1 ,
=(1+ed+A1)(A4- — 4 )s
where
(14 A)e~ 0= _ 1
w =1In ,
A
ie.,
1-1 ,
x(e) =1+ +A)(A—TA ). (5.144)

Case 2. X; is not the maximum value of x(¢) in (c2;—1, ¢2;).

In this case, there is a ty4; € (cpi—1,C2;) such that x; = x(t,:rl). Suppose
Crimq < tp41 <...<tr4;.Asin Case 2 in Lemma 5.6.2, thereisac € (¢pi—1, tk+1)
such that x(c) is a locally maximum value of x(¢), and there isa j € {1,2,...,[}
such that
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i
& = [0+ bigo)x(e),

s=j

where x(c) satisfies (5.138). Then by (5.123), we get
1—A

F<(4+ex) <1+ +A)(A- TA2).

Leti — +o00, € = 01n (5.138) and (5.139) to obtain

l—e" 1—=X1 [ 1—e")\>
vs(l—'—k)(l—i-/\e”_ 6 (1+Ae”))'

Next we prove

l—e" 1—X4 [ 1—¢e")\>
Mz(l_kk)(l—i—ke“_ 6 (1+Ae”))'

Then by (5.125), we have

v

+ dev’

Let B =
1

x'(t) = Bp(t), t >T, t#t.
There are two cases to consider.

Case 1. X; is the minimum value of x (¢) in (¢;, C2i+1)-

269

(5.145)

(5.146)

(5.147)

In this case, there is a ¢ € (¢, ¢2i4+1) such that x(¢) = % < 0, x'(¢) <0,
and then there isa £ € (¢ — 7,¢) such that x(§) = 0. If t € [£,¢], thent — 7 < §.

Integrating (5.137) from ¢t — 7 to ¢, we get

3

— l_[ (1+bk)x(t—r)zB/p(s) l_[ (1 + by)ds.

t—t<t; <& s<ty <€

—t
Then, we get for ¢ € [§,c], t # t, that

§
t-esp(-8 [ p) ] (+b07'as

—1<
—1 =Tt <s

X (1) = p(r) E

1+/\exp(—B/p(s) 1_[ (1 + by)~lds)

< .
f—1 =TI <S

We consider two subcases.

(5.148)
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Subcase 1.1:
Y 1 (14 e B0=4)
1 1 —1 .
/p(t) [T a+b0dr<( +6)<8+Bn -
3 t<ti<c
In this case, it is easy to see that
_(1+1)B [ 1+AB_ I—ABZ
1-B 2 6
1 —
. _U+HB (1 L1-4 B) .
2 3
Then by Lemma 5.3.2, we get
14 D)e 80— 1 1424 1-2A
n L e ’ L B).
A 2 3
Integrating (5.147) from & to c, one gets
& =2z 8 [ p) [] 1+ bods
£ 1<t <c
14 A)e *BO=%) |
2|:SB+ln( + )ek : (1+¢)
1-2 ,
>+ M) +e)B - TB ).
Then
) =4,
x(@)=%>10+1)A+e)(B - TB ). (5.149)
Subcase 1.2:
§(14¢) > /p(t) [T (+b0dr
£ 1<t <c
1 (14 1)e ™ B0=4)
>(8+Eln( t+ Ae - T ) +e).

Choose 1 € (£, ¢) such that



5.6 Global Stability of Models with Impulses 271

| I (14 A)e B0=4)
/p(t) ]_[ (1+bk)dz=[8+§1n( +Ae n - (1+e).
" 1<tp<c

Integrating (5.147) from £ to 7, integrating (5.148) from 7 to ¢, and deleting x (1),
we get

Xi = x(c)
n c
=8 [ p0) [T @ +dodi+ [ p0) [T 450
¢ 1<ty <n 7 t<ty<c
n
l—exp(—B/p(s) [T a+b07"as)

—Tt<tp <s§

X i dt
m

1+Aexp(—B/p(s) [T a+b0ds)

t—T<ty <s

—1

1<t <n

n
> B/p(t) [T (1t + by
¢

+/p(t) [T a+bod:

" t<tp<c
I+ie B3 exp B(l+€)_1/p(s) l_[ (1+by)ds
1 + A, £ St <c
- —In -
AB(1 +€)7!
1+Ae—Bdexp B(1+e)_1/‘p(x) 1—[ (1+by)ds
3 S=tp <c
n c
= B/p(t) I] a +bk)dt+/p(t) [] (+boar
1<ty <n t<ty<c
§ n
1+Ae_3“+f)_l‘gexp B/p(s) l_[ (14by)ds
1+ A ¢ s<tp<c

— n
AB(1+¢€)7! (142)e 8=
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1=t <n

n
= —(1—B)/p(t) l_[ (1 + by)dt
3

Y AB
+/p(t) I1 (I+b)dt = (1+ (1 +e)(1-=7)

<t <c
n =l

CERED
AB

c

14 Ae™ B3 exp(B(1+e)—1/p(s) [T (+bo)ds)

S<t<c
£ =l

1+A

X In

Using the monotone property of the function

1+ )1 +e) 1+ re BleB0to
X — In

1
"B ) cx €[0,8(1 + )],

we get

x(c)

n
=—-5) [ p0) [] (+bd
&

<t <c

181+ — 1+ +e)(1— %B)

= (1+e) [‘(1 Ly et g 128, “*”e_m_lzg)_l}
I .

B A
By Lemma 5.3.2, we get

Fi=x(c) >0 +e)(1+A)(B - %Bz). (5.150)

Case 2. X; is not the minimum value of x(¢) in (cz;, C2i+1)-

In this case, there is a 4 4; € (¢2i—1, ¢2;) such that X; = x(l,jﬂ). Suppose ¢y; <
tet1 < ... < tr4;. As in Case 2 in Lemma 5.6.2, there is a ¢ € (¢pi—1, tx+1) such
that x(c) is a locally minimum value of x(¢), and x(c) satisfies (5.149) [(5.150)].
Then thereis a j € {1,2,...,/} such that

l
% = [ [0+ b1+ €)x(0).

=J
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By (5.123), we have

> +e)xc)>(1+e)*1+A)(B- %Bz)- (5.151)

Leti — +00, € > 0in (5.149) and (5.151) and we get (5.146). Let
l—e" l—e"
T+et 7 Txre

Then (5.145) and (5.146) become

1 1—2
2 < (14 A)(x — —— 242,

1=y & (5.152)
In——— > (1+ A)(—y — —=y?)

14+ Ax — 6 '

By Lemma 5.3.7, then x = y = 0. Thus u = v = 0. Then x(¢) tends to zero as ¢
tends to infinity. The proof is complete. |

Lemma 5.6.7. Suppose that A € (1,00) and (5.123), (5.130) holds. Then every
oscillatory solution of (5.125) tends to zero as t tends to infinity.

Theorem 5.6.1. Assume —1 < by < 0 for everyk € Nand Y ;2 by = —oc. In
addition if

t

[ 2o T1 a+boas

<
f—t St <t

is bounded, then every positive solution of (5.121) tends to 1 as t tends to infinity.
t
Proof. 1t follows from —1 < by < 0 and/ p(s) 1_[ (1 4+ by)ds is bounded

—1 St <t

that (5.123) holds. Let

yo =x@ [T a+s0™

0<tp <t
An argument similar to that in the proof of Lemma 5.6.2 yields that y (¢) is bounded.

o0
If —1 < by <0, then H(l + br) = 0, if and only if Y ;2 | by = —oo. Hence
k=1

x@)=y@ [T a+bo,

0<t <t

and the conditions of this theorem imply that x (¢) tends to zero as ¢ tends to infinity.
This completes the proof. ]
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Theorem 5.6.2. Suppose (5.123), (5.124), and (5.135) hold. Then every positive
solution of (5.121) tends to 1 as t tends to infinity.

5.7 Global Stability of Generalized Models

In this section we establish some global attractivity conditions of the generalized
“food-limited” population model

N'(t) = r(t)N(1) (%) , >0, (5.153)

where
r € C([0, 00), (0, 0)), A(t) € C([0,00),[0,00)), T > 0,

and « is a ratio of two odd positive integers so that o > 1. The results in this section
are adapted from [39]. We consider solutions of (5.153) under the initial condition

N(@) = (@), t € [-.0],
¢ € C([-7.0],[0,00)), $(0) > 0.

(5.154)
Lemma 5.7.1. Foranyv € [0, 1),
In2e™17/2 — 1) > 2y,
and for any u € [0, 00),
In(2e" 2 _ 1) > 2u.
Proof. Let
f) =207 — ™ and g(v) = (1 — )" /2.
It is easy to see that
g0) =1,¢'(v) = ="+ <0
and
') =271 —g(v)] = —2¢ g’ (£)v > 0, for some £ € (0,v).

It follows that f(v) > f(0) = 1 for v € [0, 1). The other assertion can be similarly
proved. The proof is complete. ]
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Lemma 5.7.2. Assume that v € (0, 1). Then for any x € [0, c0),

1+ [Ze*V(I*V/z) _ l]e*vx v V2

! =—v({l-5)+ 5 1

n = <—v(1-3)+ 3= (5.155)
Proof. Set

a:= ze—v(l—v/Z) -1
and
fG) = In((1 +ae™)/(1+ 7).

Note

£0) = —v(1—v/2), f'(0) = g[e—vﬂ—v/z) _1,
and

7 _ a . 1 2 vy
f (x) - |:(a +evx)2 (1 +evx)2:|v e

Since o < 1, it follows that f " (x) <0 for x > 0. By the mean-value theorem and
the fact that

e¥(1-x/2) <1l+x, forx>0,

we have
F0) = FO) + f/Ox = =v(1 = 3) + [0 — 1]
< =Dy
2T
The proof is complete. u

The following result follows the usual argument in the literature (for complete-
ness we include it here; see also Lemma 5.3.7).

Lemma 5.7.3. The system of inequalities

In £ <2y,

1—v :

(5.156)

has a unique solution (u,v) = (0,0) in the region {(u,v) : =1 <v <0<u < 1}.
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Proof Set
g(x) = exp(2(1 —x)/(1 +x)), f(x) =x—g(g(x))
and
h(x) = (1+ x)°[1 + ()]’ — 16g(x)g(g(x)).
Observe that (1) = 0,

16g(x)g(g(x))
1+ x)2[1 + g

flx)=1-g'(x)g'(gx)) =1—
and for x > 1

' (x) = 2[1 + g)][(1 +x)(1 + g(x)) — 4g(x)]

[1—g(x)]?

28( x)g(g(x ))m

64
(1+)
> 0.

It follows that 2(x) > h(1) = 0 for x > 1, and so f’(x) > O for x > 1. This shows
that f(x) > f(1) = 0 for x > 1. From (5.156), we have

gp) <A <1<p<gQ),
where
A=1=v)/A+v)and p = (1 +u)/(1 —u).
If u > 0, then 1 > 1, and so
w=gR) <glgw) < p.

This contradiction implies that # = v = 0. The proof is complete. ]
The following result follows the usual argument.

Lemma 5.7.4. Suppose that

+o00
(@) _
[ TR = (5.157)

Then every solution of (5.153) and (5.154) that does not oscillate about 1 tends to 1
ast — oo.
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Lemma 5.7.5. Suppose 0 < A(t) < 1fort > 0and

N0
ltlgliggzr (A(S))adsfi (5.158)

Let N(t) = N(t;0,¢) be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N(t) is bounded above and is strictly bounded below by 0.

Proof. Let ty be large enough so that

t
r(s)
ds < 4, forall t > t,.
/ () ’

Let ¢* be a local maximum point of N(¢) fort > #y + 7. Then
N'(¢*)=0and N¢t* —1) = 1.

Integrating (5.153) from t* — t to ¢* yields

r* — N(s — o
N(*) = exp fr(s)N(s) U(s)N—Ei—m ds
< exp / r(s)ds | < et

Consequently,

lim sup N(t) < e*.

=00

Next, let ¢4 be a local minimum point of N(¢) for¢ > o+ 37. Then N'(t4) = 0 and
N(t« — t) = 1. Proceeding as before and using the fact that
1-Nt—1) - 1 —e* - 1—e*
1+ AON@E —7) ~ 1+ A@)e* ~ A0)(A +e?)’

fort > to + 1, we have

*

r(s) 1—e :
N(tx) = exp f 2e(s) |:)L(s)(1+€4)i| @

x—T

1—e*7”
> exp 4|:1+e4:| .
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Hence

. 1—e*]”

The proof is complete. u

The proof of next result is similar to the proof of Lemma 5.7.5 and is thus
omitted.

Lemma 5.7.6. Assume that A(t) > 1 fort > 1 and

t

lim sup / r(s)ds < 3. (5.159)

t—>—+00
t—t

Let N(t) = N(t,0,¢) be a solution of (5.153) and (5.154) which is oscillatory
about 1. Then N(t) is bounded above and strictly bounded below by 0.

Theorem 5.7.1. Suppose 0 < A(t) < 1, fort > 0, and (5.157) holds. If (5.158)
holds, then every solution of (5.153) and (5.154) tends to 1 as t tends to +oo.

Proof. Let

u =1lim sup N(¢) and v = limtinf N(1).
—00

—>o0

Then by Lemma 5.7.5,0 < v < 1 and u > 1. It suffices to show that u = v = 1. For
any ¢ € (0,v), choose #y = ty(&) such that

vi=sv—e<Nlt—-1)<ute=u,t>t (5.160)
and
)
r(s
A”(t)ds§3+8’ t>t—T. (5.161)
-t
Note that
(1 —x) < (1= x) for x <1
(1+ Ax) A1+ x))
and
1— 1-—
( X) > ( X) for x > 1.

(1+Ax) — A1+ x)
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Thus

279

/ < 1——V1 —VI ’ >
N0 =reNE (1 +/\(t)v1) rON® (Mf)(l +V1)) e

and

N'@®) 2 rONG) (1 i;(bgul) ZrONO (Mr)(l Zlu]))

Consequently,
/ r(?)
N(z)sm) ()— =
and
r(r)
N(”Zw) ()1+u1 t> 1.

(5.162)

> 1.

(5.163)

(5.164)

(5.165)

Let R(¢) = r(t)/A%(t). Let { p,} be an increasing sequence such that p, >ty +

lim p, = 400, N'(p,) =0and lim N(p,) = u.
n—00 n—oo

By (5.153), N(p, —t) = 1.For p, — 1t <t < p,, by integrating (5.164) from ¢ — 1

to p, — T, we get

n

N(t —1t) > exp (—

Substituting this into (5.153), if N(t — 7) < 1, we have

1-N(t—r1)

N'(t) < R(t)N(1) |:1+N—(Z—‘L')

} R(t)N(t)l N

Pn—T

1_
1 —exp _1+:11 / R(s)ds

=T
Pn—T

1_
1+ exp _1+: / R(s)ds

t—t

< R)N(@)

If N(t — 1) > 1, by (5.153), N'(¢) < 0, and thus

1 —vy, Pn7T
l—exp(—]+ )
1—v

I + exp (—

N'(1) < R(t)N(t)

er(S)dS) , (pn—71) <t =< pa.

—N( — ‘c)
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Ift € (p, — 7, pu), we have

1—
N'(t) < min % RN 1= d ,R(t)N(t)A(t)} , (5.166)
V]
where
1— Pn—T

1 —exp (—1 n d s R(s)ds)

A0 = = -
— vl n

1 — R(s)d
-I-exp( T, t[f () s)
Since

O<x=00-v)/(14+v) <1,
it follows from Lemma 5.7.1 that

In2e*0=/271 > oy

and so

1
0 <—=InQRe*1=/2 _1)<2.
X
There are two possibilities.

Case 1.

Pn

1
/ R(s)ds < ——In(Qe™U0=0/2 _ 1) = A <3 +¢,
Vo

Pn—T

where vo = (1 —vy)/(1 + vy).

Then
o R(?) |:1 — exp (—vo pnfr R(s)ds):|
InN(p,) < [ e dt
Pt 1+ exp (—vo i R(s)ds)
) R(t) |:1 — exp (—vo (} r(s)ds — } R(s)ds)):|
f" t—t Pn—T d
Pn—T

t
1 + exp (—vo (} R(s)ds — } R(s)ds))

- pn—t
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) R(1) |:1 — exp (—vo (3 +e— } R(s)ds))i|
] — d
e 1+ exp (—vo (3 +e— [ R(s)ds))
Pn—T

t

I+exp|—w|3+e— / R(s)ds

IA

t

pf" R(s)ds — =1 o
= s)ds — —1n
it Vo 1 + e—(3+£)vo
Note that the function
21In[1 + e71G+e=0)
) =y Gl )

V1
is increasing in [0, 3 4 ¢] and we have by Lemmas 5.7.1 and 5.7.2, that

2 1 —vo(3+e—A)
InN(p,) <A——1n te

Vo 1+ e—(B+e)vo

2 1 2 —vo(1—vo/2) _ 1 —vo(3+e—A)
A 2L e Je

Vo 1+ e—v0(3+8—A)

2 2
<A+ — —vo(l—v—0)+m(3+8—A)

Vo 2 2

1 —vo —vo(1=v0/2)
=244+ e)vy— In(2e "0V 70/9 — 1)
Vo

<24

Case 2.

Pn
A< / R(s)ds <3 +e.

Pn—T
Choose &, € (p, — t, pu) such that

Pn

g R(s)ds = A.
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Then by (5.166) and Lemma 5.7.1,

én
N < | REs)ds
Pn—T

Pn—T

o R()|1—exp| —wo / R(s)ds

-7
+ / Pn—T dt

i 1 +exp|—w / R(s)ds

S"
<vo [ R(s)ds
Pn—T

) R(it)|1—exp|—w|3+e— / R(s)ds

+/ o dt
t
& 1 +exp (—vo (3 +e— [ R(s)ds))
Pn—T
&n
= / R(s)ds
Pn—T

Pn
2
+ / R(s)ds — —In By
Vo
S’I
Pn 2
= f R(s)ds + (1 —V())A - —BO
Vo

Pn—T

2

2
<B4+ewy+(1—v)d——In—"—
< B +evo+ (1—vo) B p—T

l—VO

=2+ @+e)v — In(2e"0(—w/2 _ 1)

Vo
<24+ 9,
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where

pll
I+exp|—w|3+e— / R(s)ds

Pn—T

EI'I
1 +exp (—vo (3 +e— [ R(s)ds))
Pn—T

and we have used the fact that the function

By =

2 1 4+ exp[—vi 3+ & —x)]
gx)=——1In + vix
vi 1+exp[—vi(3+¢e+ A—x)]

is increasing on [0, 3 + ¢].
In either cases, we have proved that

InN(p,) <2+¢e)y forn=1,2,....
Letting n — oo and ¢ — 0, we have

1—v

lnu<?2 .
1+v

(5.167)

Next, let {¢,} be an increasing sequence such that g, > t + 7, limg, =
n—>oo

+00, N'(gy) = 0, and lim, oo N(g,) = —v. By (5.153), N(¢, — t) = 1. For
qn —t <t < p,, integrating (5.165) from ¢t — 7 to ¢, — 7, we have

—u Pn—T

/ R(S)dS), Gn —T =t = qn.
1 t—1

1
N(t—r)fexp(—1+
u

Substituting this into (5.153), if N(t — ) > 1, we have

N'(6) = r()N() [ I-NG-7) ]a

1+ AN —1)
1-N(t—r1)
1+ AN —1)
| —exp(—uo [ R(s)ds)
> R()N(1) —
1 +exp (—uo tf R(s)ds)

-7

v

R()N(t)

forg, —t <t <q,.-If Nt — t) < 1, then by (5.153), N'(t) > 0, and thus
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qn—T
1 —exp (—uo / R(s)ds)
-7

N'(t) = R(t)N(t)

qn—T ?
1 + exp (—uo / R(s)ds)
t

where ugp = (1 — u1)/(1 4 u;). Thus
qn—T
1 —exp (—uo i R(s)ds)

-7

— N'(t) <min { —R(t)N(#)ug, —R()N(t)

dn—T

1 +exp (—uo / R(s)ds)
o (5.168)

forg, —7 <t < g,. Note that 0 < —up < 1, and one can easily see that
1 —up(1—up/2)
0 < ——1InQRe ™"/ — 1) < 3.
Ug
There are two cases to consider.
Case 1.

Aqn
1

/ R(s)ds < (3 + &) + — In(2e (7 ®/2) _ 1) = B.
Uo

qn—T
By (5.168) and Lemma 5.7.1,

4qn
—InN(g,) < —uo / R(s)ds < —(3 + &)ug — In(2e 01 7#0/2) _ 1)
qn—T
=< —(1 + 8)140.
Case 2.

4n
B < / R(s)ds <3+«

qdn—T
We choose 1,, € (g, — 7, ¢,) such that

Nn

B = / R(s)ds.

qn—T
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Then by (5.155) and Lemma 5.7.1, we have

qn—T
. o ROlexp(—uo [ R(s)ds)—1]
~InN(gn) < —up [ R(s)ds+ [ i dt

qn—T

nt " 1+4exp(—uy [ R(s)ds)
-7

Mn
<-uy [ R(s)ds
qn—T

" R(t)[exp —up(3 + & — / R(s)ds)] — 1

+ L dt

"+ exp(—up(3 4+ £ — / R(s)ds))

qn—T

Mn 4qn
=—uy | R(s)ds— [ R(s)ds
qn—T Mn
an
1+ exp(—up(3 + ¢ — / R(s)ds))
2 qn—T

- M_o In M

1 + exp(—up(3 +¢— / R(s)ds))

qn—T

—In N(qn)

= (1—uy)B —7R(s)ds+2<1 - %)

Mn

qn
1 +exp(—ug(3+¢e— [ R(s)ds))
+—1In i
Up

1—
<2—(4+euy+ ( ”") In (2¢ 0 (—m0/D=1)
)

< (2 + &)uy,
where we have used the fact that

hx) = —x — — g LR O 67 )
Uuo 2

is increasing on [0, 3 + ¢].
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In either cases, we have proved that —In N(p,) < —(2 + &)up forn = 1,2,....
Letting n — oo and ¢ — 0, we have

1—u
—lnv<-2 . (5.169)
1+u
Let
y=—-10-u/(+u)
and

x={0=-v)/(1+v),

then in view of (5.167), (5.169), and Lemma 5.7.3, we get x = y = 0. This shows
that u = v = 1. The proof is complete. |

By methods similar to those in the proof of Theorem 5.7.1, and by noting that if
A > 1, then

(1—=x)/(1+Ax) =(1—x)/(1+x), forx <1,
and
1-=x)/A+Ax)> (1 —-x)/(1+ x), for x > 1,

one can prove the next result. The details are omitted.

Theorem 5.7.2. Suppose A(t) > 1 fort >0, (5.157), and (5.159) hold. Then every
solution of (5.153) and (5.154) tends to 1 as t tends to +o0.

5.8 Existence of Periodic Solutions

In this section, we consider the equation

AN@) (6 —a(ON() — BON( — (1))
o =N T ONO T dONG =) (5.170)

and establish some sufficient condition which ensures the existence of periodic
solutions. Here a,b,c,d,k,r are continuous w-periodic functions with r > 0,
k>0,a>0,b>0,c>0,and d > 0. The results in this section are adapted
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from [22]. Considering the biological significance of system (5.170), we always
assume that N(0) > 0. The main results will be proved by applying Theorem 1.4.11.
To prove the main results we present some useful lemmas.

Let f be a w-periodic function and define

fl'= min f@), f"= max f(1).

1€[0,0] 1€[0,0]
Lemma 5.8.1. There exists a unique u* > 0 such that

° r(0) =la@) +bOW*
o KO+ (e + dO*

Proof. Let

T ) —la) + b))

Sy = | kO + e +
It is clear that
f) = %dt > 0,
0

41

PR | Tro-la@+ b(t)]%
(o=w) =] AR

o k(0) + [c(t) + d(l)]m

IA

dt <0,

k() + [e) + d(] =L

7 ri¢)—(r"+1)
0 al +b!

and then from the zero point theorem, it follows that there exists a u* €

“yq
(0, c:’Terl) such that f(«*) = 0. Moreover,

ar _ _7 k@la(®) +b@] + r@)e() +d@)]
du {k(t) + [c(t) + d(1)]u}?

dt <0,

that is, f(u) is monotonically decreasing with respect to u, and hence u™* is unique.
The proof is complete. ]
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Theorem 5.8.1. Equation (5.170) has at least one positive periodic solution of
period @

Proof. Let N(t) = exp{x(¢)}. Then (5.170) may be reformulated as

dx(t) _ r(1)—a()expix(r)} — b@) exp{x(r — z(r))}

dt k() + c(t)exp{x ()} + d(t) exp{x(t — t(t))} (5.171)

In order to apply Theorem 1.4.11 to (5.171), we first let
X=Y={x() e CR,R), x(t +w) =x(2)}
and

x| = max |[x(¢)], xeX(orY).
t€[0,w]

Then X and Y are Banach spaces with the norm ||.||. Let

_r(t) —a(t)expix (1)} — b(r) exp{x(t — (1))}
k() + c(t)explx(t)} + d(t) exp{x(t — t(t))}’
dx(t)

Lx=x"= , =
dt

€ X,

1(1)
= — [x()dt, xeX,
()

1(,()
— [z(t)dt, zeY.
Wy

Then it follows that

Ker L=R, Im L={z€Y: [z(r)dt =0; isclosedinY,
0

dim Ker L =1 =codim Im L,

and P, Q are continuous projectors such that
ImP =Ker L, Ker Q=Im L=1Im (I — Q).

Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (of L)

Kp:Im L — KerP N Dom L
is
t

Kp(z) = [zs)ds —

7}z(s) ds dt.
0 00

g~
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Also
o o= L [ 7O —a)explx(s)) = b(s) explx(s = o)
@ ] K6+ 0 explx )} + A6y expixs = to)]
and
1 r(s) — als) explx(s)} — b(s) explx(s — 7(5))}
KT = QN x = / K(5) F o(5) explr(s)} + d(s) explr(s — 1))

0

ds dt

LT[ r(s) —als) expix(s)} — b(s) expix (s — (s))}
[l

w : k(s) + c(s)exp{x(s)} + d(s) exp{x(s — 7(s))}

B (5 1 ) [ 765) = als) explx ()} = b(s) explr(s = T()}
w 2 A k(s) + c(s) exp{x(s)} + d(s) exp{x(s — t(5))}

By the Arzela—Ascoli Theorem, it is easy to see that Kp(I — Q)N(Q) is compact
for any open bounded subset 2 of X and Q N(2) is bounded. Thus, N is L-compact
on Q for any open bounded set € X.

Consider the operator equation L x = AN x, A € (0, 1), that is,

dx(t) _ , r() —a()expix ()} — b(t) expix(t — (1))}

dt k@) + c(t)exp{x (1)} + d(t) exp{x(t — (1))} (5.172)
Let x = x(t) € X be a solution of (5.172) for a certain A € (0,1).
Integrating (5.172) with respect to ¢ over the interval [0, @] yields
1 r(t) —a(t)expix(t)} — b(1) exp{x(t — (1))} ,
A k() + c(t) exp{x(t)} + d(t) exp{x(t — r(t))}dl =0, (5.173)
and therefore
a(t) expix (1)} + b(1) exp{x(r — 7(2))}
A k(t) 4+ c(t)exp{x(t)} + d(t) exp{x(t — 7(2))}
_ 7 r(t) o
A k(@) + c(t)exp{x(t)} + d(t)exp{x(t — (1))}
- b @ - wr"
< / 0= w (5.174)
0
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which together with (5.172) implies

7 |X'(1)| dt = A7
0 0

From (5.173) and the mean-value theorem for integral, we see that there exists § €
[0, ] such that

r(§) —a@®expix(©)} —bE expix — ()} =
k(&) + c(§) expix(§)} + d(§) expix(§ — (§))} ’

and therefore

r(t) —a(t)exp{x(t)} —b(t)exp{x(t —t(t))} Jr < 2wr"
k() + c(t)exp{x ()} + d(t) exp{x(t — (1))} k!

r(§) = a(§) expix(§)} + b(§) expix(§ — z(§))}. (5.175)

Since x(t) € X, there exist t;,#, € [0, ] such that x(¢;) = x!, x(t,) = x*, and
then from (5.175) it follows that

ru

ln{al+bl}’

n{_""
n )
a* + b

IA

]

a(§) +b(&)

r(§) }
a(§) +b(&)

v

x(f2) = In %

from which we derive

w

/ rt 201"
x(t) < x(th) +/ |x'(1)] dt < ln{al —I—bl} + = M,

0

1 u
r 2wr
— = M,
a" + b } k! z

x(t) = x(t2) —/ |X'(t)| dt = ln{
0

and hence

x|l = max |x(¢)| < max{|M,|,|M>|} := B;.
tel0,w]

Clearly, B, is independent of the choice of A. Take B = By + B, where B, > 0 is
taken sufficiently large such that [In(u*)| < B, and define

Q:={x(t) e X: |x|| < B}.
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Whenx € 0Q N Ker L =392 NR, x = B or x = —B, and then

1 [ r(6) = a() exp{x(1)} — b(t) expix}
w A k(t) 4+ c(t)exp{x(t)} + d(t) exp{x}

ON x = dt # 0.

Furthermore, a direct calculation reveals that

deg{JON,Q2 N Ker L,0}

el L 7k(z)[a(z>+b(r>]+r<r)[c<r>+d(t>]
& k(1) + [e(0) + d ()P

dt y #0;

here J is the identity mapping since IP = KerL. Thus all the requirements
in Theorem 1.4.11 are satisfied. Hence (5.171) has at least one solution x*(¢) €
Dom LNQ.Set N*(t) = exp{x*(¢)}. Then N *(¢) is a positive w-periodic solution
of (5.170). The proof is complete. |



Chapter 6
Logistic Models with Diffusions

You know that I write slowly. This is chiefly because I am never
satisfied until I have said as much as possible in a few words,
and writing briefly takes far more time than writing at length.

Carl F. Gauss (1777-1855)

He who does not employ mathematics for himself will some day
find it employed against himself.

Johann F. Herbart (1776-1841)

Population dispersal plays an important role in the population dynamics which
arises from environmental and ecological gradients in the habitat. We assume that
the systems under consideration are allowed to diffuse spatially besides evolving in
time. The spatial diffusion arises from the tendency of species to migrate towards
regions of lower population density where the life is better. The most familiar model
systems incorporating these features are reaction diffusion equations.

This chapter discusses oscillation, global stability, and periodicity of some
diffusive logistic models.

6.1 Introduction

A diffusion mechanism models the movement of many individuals in an environ-
ment or media. The individuals can be very small such as basic particles in physics,
bacteria, molecules, or cells or very large objects such as animals, plants, or certain
kind of events like epidemics, or tumors. The particles reside in a region, which we
call Q, and we assume that it is an open subset of R” (the n'* dimensional space
with Cartesian coordinate system) with n > 1. In particular, we are interested in
the cases of n = 1,2, and 3. The main mathematical variable we consider here is

R.P. Agarwal et al., Oscillation and Stability of Delay Models in Biology, 293
DOI 10.1007/978-3-319-06557-1__6, © Springer International Publishing Switzerland 2014
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the density function of the particles N(z, x), where ¢ is the time and x €  is the
location. The dimension of the population density usually is the number of particles
or organisms per unit area (if n = 2) or unit volume (if n = 3).

Technically, we define the population density function N(¢, x) as follows. Let x
be a point in the habitat £ and let { O, }72, be a sequence of spatial regions (which
have the same dimension as €2) surrounding x; here O, is chosen in a way that
the spatial measurement |O,| of O, (length, area, volume, or mathematically, the
Lebesgue measure) tends to zero as n — oo, and O,, D O, 4. Then

number of organisms in O, at time ¢

N(t,x) = li , 6.1
(t,x) = lim 0] (6.1)
if the limit exists. The total population in any subregion O of 2 at time ¢ is
/ N(t,x)dx. (6.2)
0

The movement of N(¢, x) is called the flux of the population density, which is a
vector. The “high to low” principle now means that the flux always points to the
most rapid decreasing direction of N(z, x), which is the negative gradient of N(¢, x).
This principle is called Fick’s law, and it can be represented as

J(@,x) = —-d(x)VxN(t, x), (6.3)

where J is the flux of N, d(x) is called diffusion coefficient at x, and V, is the
gradient operator

d d d
V=L YW

Ix; ax,” Ax,

).

The number of particles at any point may change because of other reasons like
birth, death, hunting, or chemical reactions. We assume that the rate of change of
the density function due to these reasons is f(z, x, N), which we usually call the
reaction rate. Now, we present a differential equation using the balanced law. We
choose any region O. Then the total population in O is [, N(z, x)dx, and the rate
of change of the total population is

d
mn /0 N(t,x)dx. (6.4)

The net growth of the population inside the region O is

/ £t x. Nt x))dx. 65)
0]
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and the total out flux is
/ J(t,x).n(x)dS, (6.6)
90

where 00 is the boundary of O and n(x) is the outer normal direction at x. Then
the balance law implies

%foN(ﬂx)dx = —/30 J(t.x)-n(x)dS +/0f(t,x,N(t,x))dx. (6.7)

From the divergence theorem in multivariable calculus, we have

/ J(t,x)-n(x)dSz/ div(J(t,x))dx. (6.8)
30 0

Combining (6.3), (6.7), and (6.8) and interchanging the order of differentiation and
integration, we obtain

0
/ EN(t,x)dx = / [div(d(x)VN(t,x)) + f(t,x, N(t,x))]dx. (6.9)
0 o
Since the choice of the region O is arbitrary, then the differential equation

d .

EN(LX) =div(d(x)VyN(t,x)) + f(t,x, N(t,x)), (6.10)
holds for any (¢,x). The (6.10) is called a reaction diffusion equation. Here
div(d(x)V,N(t, x)) is the diffusion term which describes the movement of the
individuals, and f(¢, x, N(t, x)) is the reaction term which describes the birth-death
or reaction occurring inside the habitat or reactor. The diffusion coefficient d(x)
is not a constant in general since the environment is usually heterogeneous. But

when the region of the diffusion is approximately homogeneous, we can assume
that d(x) = d, and then (6.10) can be simplified to

d
EN(t,x)szN—kf(t,x,N), (6.11)
where AN = div(VN) is the Laplacian operator. Sometimes Eq. (6.11) is called a

nonlinear heat equation.
The most popular reaction diffusion equations are

d
EN([’ x) = DAN + kN, diffusive Malthus model, (6.12)
and

0 N
5N(t, x) = DAN + kN (1 - E) , diffusive logistic model. (6.13)
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In general there are three commonly used boundary conditions:

N(t,x) = ¢(x), t>0,x € dR, (Dirichlet),
VN(t,x)n(x)+a(x)N({, x) =¢(x), t>0,x €3, (Robin),
VN(t, x)n(x) = ¢(x), t>0,x €I (Neumann).

6.2 Oscillation of the Malthus Equation

In some applications, some diffusion processes are modeled by the diffusive
Malthus equation

du(x,t)
ot

=a(t)Au— pu(x,t) + qu(x,t), (x,1) € Q x [tg,00) =G, (6.14)

where a, p, g are nonnegative coefficients representing the phenomena which
underlie the diffusion process. For example, in population dynamics the term
aAu corresponds to the diffusion due to local concentration, while —pu and qu
correspond to death and birth rates, respectively. Since such phenomena may lead
to instantaneous changes in population size, it is natural to include delays in the
models under consideration. Consider the delay diffusive Malthus equation

au(ax{t) = a()Au— p(x,Oulx.t —0) +g(x, Dux,t =), (6.15)

where (x,7) € Q X [ty,00) = G the delays 7, o are nonnegative constants, €2 is

a bounded domain in R” with a piecewise smooth boundary 92, and Au(x,t) =
n

Z afu(x,t)
: axz
i=1 !

In this section, we are concerned with the oscillation of the diffusive Malthus
model with several coefficients and several delays

ou(x,t) " e
(az =a(t)Au—Y_ pi(x.Ou(x.t —0;) + Y q;(x.Oux.t —7;), (6.16)
i=1 j=l1
where
H1) a,pi, q; € C([t,0), RY), 0;, 7; € [0,00)fori = 1,...,n and j =
1,....,m;

(H2) there exist a positive number p < n and a partition of the set
{1,...,m} into p disjoint subsets Ji, J», J3, ..., J, such that j € J;;
implies that 7; < o;;
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(H3) Pi(t) > Y Okt + 1 —0;) fort=ty+0; —t,andi =1,...,p;
keJ;

P
H4) Y ¥ ft[__;f Ok (s)ds < 1,for t > 1ty + 0;;
i=lkelJ;

here
P;(t) = min p;(x,¢ d (1) = (x,1).
(1) = min pi(x.1) and  Q;(7) {geagq,(x )

Together with (6.16), we consider three kinds of the boundary conditions:

du(x,t)

N 0, on(x,t) € a2 x [ty, 00), (6.17)
u(x,t) =0, on(x,t)e€ I x[ty,0), (6.18)
aung D =0, on(x.1)€ i x [to, 00). (6.19)

where N is the unit exterior normal vector to d€2and y(x,¢) is a nonnegative
continuous function on 92 x [ty, 00).

In this Section, we establish some sufficient conditions for the oscillation of
all solutions of (6.16) subject to the boundary conditions (6.17), (6.18), (6.19),
respectively. A function u(x,t) € C%(G) N C'(G) is said to be a solution of the
problem (6.16) and (6.17) (for example) if it satisfies (6.16) in the domain G and
satisfies the boundary condition (6.17). The solution u(x, ¢) of the problem (6.16) is
said to be oscillatory in the domain G = Q X [ty, 00) if for any positive number p
there exists a point (xp, f;) € € X [u, 00) such that the equality u(xy, ¢;) = 0 holds.
A function U(t) is called eventually positive (negative) if there exists a number
t; > to such that U(¢) > 0 (< 0) holds for all #; > ¢,.

6.2.1 Oscillation of the Neumann Problem

In this section, we will establish some sufficient conditions for the oscillation of all
solutions of (6.16), (6.17).
In our next theorem we will use the following well-known result [30].

Lemma 6.2.1. Leta € (—00,0), T € (0,00), ty € (—00,00) and suppose x(t) €
Cto, 00) satisfies

x(t) <a+ max x(s).
s€(t—1.1]

Then x(t) cannot be a nonnegative function.
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Theorem 6.2.1. Assume that (H1) — (H4) hold, and every solution of

P
O+ | PO =Y Okt +T—0) |2t —0) =0  (6.20)
i=1 keld;
oscillates. Then every solution of (6.16), (6.17) is oscillatory in G.

Proof. Assume that (6.16), (6.17) has a nonoscillatory solution. Since the negative
solution of (6.16), (6.17) is also a solution, then without loss of generality we assume
that (6.16), (6.17) has a solution u(x,¢) > 0, u(x,t —o0;) > 0, and u(x,t — ;) > 0
in Q2 x [t1, 00) for some #; > ;. Set

U@) = [u(x,t)dx, t>1,

Q

and then U(¢) > Ofort > t;. Integrating (6.16) with respect to x over the domain €2,
we have

d n
— u(x,)dx | =a() | Au(x,t)dx — pi(x,Hu(x,t —o;)dx
all [ounnie [ 5

Q

+/qu(x,t)u(x,t—tj)dx. (6.21)
Q /=1

From Green’s formula and the boundary condition (6.17), it follows that

ou(x,t
/Au(x,t)dxz/ u;;/ )dS=0, t>1,

Q Q2

where d S is the surface element on d2. Then (6.21) reduces to

d n m
7 /u(x,t)dx = —Q/;pi(x,t)u(x,t—oi)dx+f2qj(x,t)u(x,t—rj)dx.

Q /=1
(6.22)

Using the definition of U(¢), P;(¢), and Q(¢), we have

U'ty+Y P(OUt—0) =Y Q;(0) Ut —1)) <0, t>1. (6.23)

i=1 j=1
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Set

P %
) =U0-Y > / k(s + T)U(s)ds, t =1, =1ty +0; — 1. (6.24)

i=1kej; V17O

t—

Then from (6.23)

V4
JO+Y PO =Y Okt + T —o)Ut—0:) <0, t =6, (6.25)

i=1 kelJ;

Thus from (H3) we see that z(¢) is eventually strictly decreasing. Then an easy con-
tradiction argument using (H4) and Lemma 6.2.1 guarantees that z(¢) is eventually
positive. This implies that U(¢) > z(¢). This with (6.25) yields that z(¢) is a positive
solution of the delay differential inequality

P
TO+Y | PO=Y Ot +u—0) |2t —0;) <0, t=1.  (6.26)
i=1 keJ;
Now the usual standard result (see [30]) guarantees that (6.20) has an eventually

positive solution which contradicts the assumption that every solution of (6.20)
oscillates. The proof is complete. |

6.2.2 Oscillation of the Dirichlet Problem

In this subsection, we will establish some sufficient conditions for the oscillation of
all solutions of (6.16), (6.18). For the following Dirichlet problem in the domain 2

Au-+ou=0, in(x,t) € Q x [t], 00), (6.27)
u=0, on(x,t) € IR X [t1,00), (6.28)
in which « is a constant, it is well known that the smallest eigenvalue o of
problem (6.27) and (6.28) is positive and the corresponding eigenfunction ®(x)

is also positive on x € . With each solution u(x, t) of problem (6.16), (6.18) we
associate a function V(¢) defined by

V) = /u(x,t)@(x)dx, t>1.

Q
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Theorem 6.2.2. Assume that (H1) — (H4) hold, and every solution of

p

2O+ Y|P =) Ot +w—0) |2t —oy) =0, (6.29)
i=1 keJ;

oscillates, where

t t

Pi(t)(t) = Pi(t) exp(ay / a(s)ds), @k(t) = Q; (1) exp(a; / a(s)ds).
Then every solution of (6.16), (6.18) is oscillatory in G.

Proof. Assume that (6.16), (6.18) has a nonoscillatory solution. Since the negative
solution of (6.16), (6.18) is also a solution, then without loss of generality we assume
that (6.16), (6.18) has a solution u(x,¢) > 0, u(x,t —0;) > 0, and u(x,t — ;) > 0
in Q x [t;,00) for some ¢; > ty,  Multiplying (6.16) by ®(x) and integrate with
respect to x over the domain €2, we have

d
— u(x,t)®(x)dx | = a(t) | Au(x,t)®(x)dx

_/Zl’i(x,t)u(x,t —0;)®(x)dx
-

+/qu(x,t)u(x,t—rj)cb(x)dx). (6.30)
Q /=1

Using Green’s formula and boundary condition (6.18), we obtain

/Au(x,t)cb(x)dx — / (CD(x);—:’ — ua?:]i’x)) ds —i—/u(x,t)ACD(x)dx
Q Q

02

= —alfu(x,t)cb(x)dx, t>1,
Q

where dS is the surface element on d2. From the definitions of V(¢), P;(t), and
Q;(t), we get

VO +aaVe)+Y  POV(—0)— Y Q;()V(t—1;) <0, t > 1,. (6.31)

i=1 j=l1
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Set

t

V(t) = v(t) exp(—ay /a(s)ds),

o

which reduces inequality (6.31) to

V() + Z Pi(t)v(t —0) — Z 0Vt —7)) <0, t=1. (6.32)

j=1

Set

2(1) = v(t) — Z > / O0,(s+mv(s)ds, t =t =ty + 01 — 1. (6.33)

i=1keJ;

Then as in Theorem 6.2.1, we have

p
JO+Y Pi)- Y Ot +n—o)lelt —0) 0. =06 (634)

i=1 keJ;

The reminder of the proof is similar to that of Theorem 6.2.1 and will be omitted. l

6.2.3 Oscillation of the Rodin Problem

In this subsection, we establish some sufficient conditions for the oscillation of all
solutions of (6.16) and (6.19)

Theorem 6.2.3. Assume that (H1) — (H4) hold, and every solution of

p
@)+ Y [P0) =) Okt + 1 —0p)]e(t —0y) =0, (6.35)

i=1 keJ;

oscillates. Then every solution of (6.16), (6.19) is oscillatory in G.

Proof. Assume that (6.16), (6.19) has a nonoscillatory solution. Since the negative
solution of (6.16), (6.19) is also a solution, then without loss of generality we assume
that (6.16), (6.19) has a solution u(x,?) > 0, u(x,t —o0;) > 0,and u(x,t —7;) > 0
in Q x [t;, 00) for some #; > t,, Set

U@) = /u(x,t)dx, t>1,

Q
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then U(¢) > O for ¢t > t,. Integrating (6.16) with respect to x over the domain €2,
we have

/i pi(x,Hu(x,t —o;)dx
i=1

Q

%[/ u(x,t)dx] =a(l)/Au(x,t)dx—
Q Q

+/qu(x,t)u(x,t —1;)dx. (6.36)
Q /=1
From Green’s formula and the boundary condition (6.19), it follows that
/Au(x,t)dx = —/vudS <0, t>1,

Q Q

where d S is the surface element on d€2. Then (6.36) reduces to

d n
n fu(x,t)dx +/;pi(x,t)u(x,t—o,-)dx
Q '=

Q
Q J

= —/yudS <0,
a0

m

q;(x,Du(x,t —1;)dx (6.37)
=1

and by using the definition of U(r), P;(z), and Q;(f) as above and substituting
in (6.37), we have

U+ PUE—0)— Y QU(t—1,) <0, t>1. (6.38)
i=1 j=l1

The reminder of the proof is similar to that of Theorem 6.2.1 and will be omitted. H

6.3 Oscillation of an Autonomous Logistic Model
In this section, we are concerned with the oscillation of the diffusive delay logistic

model

INGr.1) _ NG
ot B 0x2

+rN(x, 1) [1 _ M}

= (6.39)
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fort > 0 and x € (0,/), supplemented with the homogeneous Neumann-type
boundary conditions

IN(0, ¢t IN(l,t
NOD _ NG (6.40)
dx dx
and the initial condition
N(X,S) = (p(x5s)v (p(xvo) > 07 X € [051]5 s € [_fv O]v (641)

where ¢ is a assumed to be suitably smooth. Our aim is to establish some sufficient
conditions for the oscillation of all positive solutions about K. The results in this
section are adapted from [29].

A function N(x,t) defined on [0, /] x [—t, T) is said to be a classical solution
of the initial boundary value problem (6.39), (6.40), and (6.41) if N is continuously
differentiable in ¢ on (0, T'), twice continuously differentiable on x on (0,/) and
N satisfies Eqgs. (6.39), (6.40), and (6.41) in a pointwise sense. If T = oo, then the
solution N is called a globally defined classical solution of (6.39), (6.40) and (6.41).
In fact one can show that solutions of (6.39), (6.40), and (6.41) remain nonnegative
for all t > 0, x € [0,[]. Suppose this is not the case. There exist #, > 0 and
X € [0, [] such that N(xq, 7o) < 0. Let

(x.0) e T'={(x,0); (x.1) €[0,1] x [0, 10]}.
and define m by
m(x,t) := N(x,1)e ™, (6.42)

where A > 0 will be suitably selected below. It follows from (6.39) and (6.42) that

am(x,t) ’m(x,1) N(x.t —1)
o1 _ pdmnh PPN LI A2 ) 4
o D o2 +m(x,t)|r r e (6.43)
Let
B 92 N(x,t—1)
L_E_DW’ h(x,t)—r—k—rT.

Then (6.43) can be written as follows:
L [m] = h(x,t)m(x,t).
If A is chosen large enough, then the coefficients of m in (6.43) can be made negative

for t € [0,%] and x € [0,/]. By the continuity of m(x,¢) on I', m(x,t) must
have a negative minimum in T, say at (x*,¢*). Hence by the parabolic maximum
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principle, we know that (x*,7*) ¢ T, since otherwise, m(x,t) is a constant for
(x,t) € [0,!] x [0, *] which is impossible from (6.42) and (6.43). From the initial
condition (6.41), we have

(x*,t*) ¢ {(x,1); 0<x <, t =0},
and hence (x*, ¢*) must belong to G where
G={(x,t):0<t<ty, x=0, x=1}.

Let us suppose that x* = 0 and m (0, t*) is a negative minimum of m on I". We have
from the homogeneous Neumann boundary condition for N that dm (0, ¢*)/dx = 0.
The slope of the curve m(x,t™*) is either concave upward or horizontal when x €
[0, 6] for § > O with ¢* fixed, and as a consequence, for any &£ > 0, we can find a
8¢ > 0 such that

2 * *
*m(x,t*) -0 am(x,t*)

2 > 0, o <&, m(x,t*) <0, forx € (0,8,). (6.44)

We note that x* = 0 and /% is negative on I', and hence for a suitable choice of
A > 0, h has a negative maximum on I". We choose a positive number &j such that

deg = m(x*,t*) max h(x,t).
(x.)er

Then from the continuity of m(x, t), there exists a &y such that

m(x, t*)h(x,*) > m(x,t*)(m?xrh(x,t) > 2g9, for x € (0,8).
X,1)€E

Let §; = min{dy, &, }. From (6.43) and (6.44), we have

am(x,t*) Dazm(x,t*)
ot N 0x2
> m(x,t*)h(x,t*) > 2g, forx € (0,8).

&y >

+m(x,t*) |:r —A— r—N(x’;; _ T)i|

This is impossible and so m cannot have a negative minimum at x = 0. A similar

analysis can be used to show that m cannot have a negative minimum at x = /. We

conclude that m > 0 for x € [0,/] and ¢ > —z. It now follows from (6.42) that it is

impossible for N(x, t) to become negative for x € [0,/] and ¢ > 0. We also remark

that if N(x,0) > 0 for x € [0, ], then in fact N(x,t) > 0, fort > 0 and x € [0,/].
For convenience we let u(x,?) = N(x,t)/K — 1 and note u is governed by

buiet) — p 8D (1 4 u(x, ))u(x,t — 1), 1> 05 x € (0,1),

du(x,t) — du(x,t)
dx x=0

6.45
5 s t > —t. ( )
X x=t1
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In order to study the oscillation of (6.39) and (6.40) about K it suffices to investigate
similar characteristics of the trivial solution of (6.45). We note that the positivity of
N of (6.39) implies that any solution of (6.45) satisfies

1+ u(x,t) >0, forx € (0,1), t>0. (6.46)

To prove the main results, we need the following two lemmas.

Lemma 6.3.1. Let f : [ty,00) — [0, 00) be continuously differentiable on (t, 00)
such that

d
f € L][Io, o0) and d—J; € L][IQ,OO).
Then
lim f(1) =0.

Proof. Since % € L[ty, 00), for every ¢ > 0 there exists a positive number 7 such
that for ¢y, t,and t, > t; > T

—dt 2, —dt 2.
/t] T <eg/ [lz T <eg/
We have
t df e’} df e’} df
) — t = —dt| = / —dl—/ —dt
| f(t2) — f(1)] L di i i
< —dt —dt .
= /,l dr ‘+ L e

It follows that lim, oo f(¢) exists, and this together with the facts

f(t)=0and f € Li[ty, o0)

implies that lim, ., f(t) = 0. The proof is complete. ]
Lemma 6.3.2. If Q is differentiable function defined on [0,00) such that both the
limits
. . dO®)
tl—lglo Q) and t1—1>nolo dt
exist, then
do(t
lim 40 =0

t—oo dt
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Proof. Suppose that the result is not true and that lim,_, dgt(’) =c#0.Ifc >0,

then there exists a 7 > 0 such that dQ(¢)/dt > (c/2) for t > T. This implies that

Q@)= Q(T)>c/2=T).

This yields that Q(¢) — oo as t — oo which is a contradiction. By a similar
argument one can deduce that lim,_,, Q(f) = —oo, which again is a contradiction.
The proof is complete. |

In the following, we prove that every nonoscillatory solution of (6.39) and (6.40)
converges to K and we establish some sufficient conditions for the oscillation of all
positive solutions about K.

Theorem 6.3.1. Let D, r, 1, | be positive numbers. If the boundary value prob-
lem (6.39) and (6.40) has a solution (say N) which is nonoscillatory (eventually
positive or negative) about K, then

N(x,t) > K, ast — oo, uniformly in x € (0,/). (6.47)

Proof. To prove that (6.47) holds it is sufficient to prove that every nonoscillatory
solution of (6.45) satisfies

u(x,t) > 0, ast — oo, uniformly in x € (0,/).

Suppose u is an eventually positive solution of (6.45) (if u is eventually negative the
proof is similar). There exists a 7* > 0 such that

u(x,1) >0, fort > T*andx € (0,]).

Define v as follows:
I
v(t) = / ulx,dx, t >T* + 1. (6.48)
0

Then from (6.45), we have

dv(t D Pu(x,t !

& = D/ de — r/ (1 4+ u(x,t))u(x,t —t)dx. (6.49)
dt 0 8X2 0

Using the boundary condition in (6.45), we get

dv(t)
dt

I
= —r[ (A 4+ ulx,))u(x,t —1)dx <0, fort >T* + 1. (6.50)
0
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Since v(t) > Ofort > T* + t, it follows from (6.50) that v(z) — v* > 0ast — oo.
We note from (6.49) that

t

v(t) —vw(T* + 1) + r/

T*+t

i
(/ (1 4+ u(x, s))u(x,s — r)dx) ds =0. (6.51)
0

Since lim,_, o, v(¢) exists, we can conclude from (6.51) that

‘ !
lim r/ / (1 + u(x, s))u(x,s —t)dx | ds exists,
=00 Jrxie \Jo

and therefore
t !
lim r/ / (1 4+ u(x,s))u(x,s —t)dx | ds exists. (6.52)
—>00 0 0

For convenience, we define m as

1 1 t /
mi= g |:/0 u(x,0)dx +/0 /o f(x,s)dsi| , (6.53)

where
f(x,t) = —r(1 4+ u(x,t))u(x,t — ), x € (0,1), t > 0. (6.54)
It can be found from (6.52) to (6.54) that there exists a number m™* such that
Iirgom(t) =m". (6.55)

Let G(x,t,¢,s) denote the Green’s function associated with the Neumann boundary
condition for (6.45). Then any solution of (6.45) satisfies

J1G(x,1,6,000(5,0)dE + [1 [1 G(x,1,8,5) f(C,8)dEds, 1 >0,

u(x,r) = P, 5), s € [-7,0], x €]0,].

Using (6.53), we then have for x € [0,/] and ¢t > O that
! 1
ulx,t)—m() = / G [(X,l,é', 0) — 71| u(¢,0)d¢
0

t / 1
+/0 /0 [G(x’t@»s)—j} f(&.s)dtds.  (6.56)
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It is known that the Green function G(x, ¢, £, s) satisfies

|G(x,t,§', 0) — H <cre =9 _5>1,

Gt 00— =e () 1—5 >0 x€(0,0), {€(0,1), (657)

r—=s

where ¢, ¢;, and ¢ are positive constants. It is easy from (6.57) to see that

I
/ G |:(x,t,§,0) — ;] u(¢,0)d¢ — 0, ast — oo, (6.58)
0

and the convergence in (6.58) is uniform in x € (0,/). Before we consider the
limiting behavior as t — oo of the second integral on the right-hand side of (6.56),
we shall show that

t
/ | f(x,t)|dx — 0, ast — oo. (6.59)
0

It is seen from the eventual positivity of « that if we define v as

I
v(t) =/ u(x,t)dx, t >0,
0

then for all large t > 0

dv !
dv _ —r/ (1 + uCx, £))u(x, t — 7)dx (6.60)
dt 0

i
< —r/ u(x,t —t)dx < 0. (6.61)
0

It follows from (6.60) and (6.61) that

I
fo(ll +u(x,t))u(x,t —t)dx € Li(0,00), 6.62)
Jo u(x,1)dx € Ly(0, 00).
Since u > 0 eventually, we also have from (6.62) that
l
/ u(x,Hu(x,t —t)dx € L1(0, 00). (6.63)
0

We now let

/
P(t):/ W (x,t)dx, t >0, (6.64)
0
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and note that

ap(@)y (! du(x, 1)
7 —2/0 u(x,t) o dx

1
_ 2/ u(x, 1) [D Pulx, 1) —l—f(x,t)} dx
0

0x2
L u(x, 1)\ !
= —2D/ ( ) dx +2/ u(x,t) f(x,t)dx <0. (6.65)
0 dx 0

We have from (6.65) that

. P 2
s (au;f; )) dx € L,(0,00), (6.:66)
J3uCe, 0)[1 4 u(x, D]u(x, 1 — v)dx € Li(0,00).

If F is defined by
!
F@t) = r[ [1 4 u(x,)]ulx,t —1)dx, t>t, (6.67)
0

then from (6.62), we conclude that F € L;(0, co). We now establish that

'dF(t) € L,(0,00). (6.68)

dt

By direct calculation, we have from (6.67), (6.45), and (6.54) that

dt 0x2

u(x,t — 1)
dax2

I
are _ r/ u(x,t —1) {Dazu(x’t) + f(X,l)} dx (6.69)
0

I
—i—r/ [1 4 u(x,1)] %D + f(x,t — r)% dx. (6.70)
0

After simplifying, we have

I I
dF(t) _ —rD/ du(x,t) du(x,t —r)dx . r/ u(x.t — 1) F(x. )dx
0 0

dt ox ox
! _
—rD/ du(x,t) du(x,t T)dx
0 ax ox

l
+r/ [1+ u(x, )] f(x,t —7)dx, 6.71)
0
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and this leads to

dF(t1) D ou(x,t) du(x,t —t
ar 2”)/0 ox ox

!
)dx +r/ u(x,t —7) f(x,t)dx
0

I
+r/ [1 4 u(x,t)] f(x,t)dx. (6.72)
0

We can now obtain that

t i I
F(t)—i—/T |:r/0 u()c,s—r)|f(x,s)|abc+r/0 [1+u(x,s)]|f(x,s)|dxi| ds

F(T)—2r D/ / au(x s) du(x,s — )dxds

dax

! du(x,s) du(x,s — 1) 2
F(T)—I—Dr/; |:/; ( ™ ) +( o ) dxi|ds<oo. (6.73)

It follows from (6.73) that

IA

IA

{ S+ u(x, 1)) | f(x, 1) dx € L1(0,00), (6.74)

JluCet = 1) | f(x.0)| dx € L1(0, 00).

As a consequence of (6.72), (6.74) we see that (6.68) holds. Thus both F' and ‘Z—f
belong to L;(0, c0). By Lemma 6.3.1 it follows that

! !
F@t) = r/o [T4u(x, t)]u(x, t—1)dx = /(; | f(x,t)|dx — 0, ast — oco. (6.75)

To investigate the asymptotic behavior of the second integral on the right-hand side
of (6.56), we let w(¢) be defined by

t pl
w(t) =/0 /0 [G(x,l,{,s)—%} f(¢,s)dtds (6.76)

and proceed to estimate w(z) as follows:

! 1
G(x,1,8,5) — 7‘ | f(¢ s)ldids

t—1

w@)| =
0

Glx.t.0.5) - H f(&.s)| dEds

/
G(x.t.L.5) — H | £(Z.5)| deds. (6.77)

t—1J0
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Using the properties of G in (6.57), we have

[l
s/t; [Olc(ﬁ)l/ﬂf(z,snd;ds
< c/ol (5)1/2 (/Ol |f(§,l—oz)|a’§) doa — 0,

as t — oo by using (6.75). For an arbitrary ¢ > 0,

Il

—1 l
< / / 09 | £(2. )| dtds
T 0

Glxt.ts)— H /(@ 5)| dEds

Glx.1.005) — H (& s)|deds

t pl
<c / / | f(¢,s5)|dlds < e, if T is sufficiently large.
T Jo
By using (6.75) and L’ Hospital’s rule, we have as t — oo that
T ol
Il
T pl
o [ [ e s azas
o Jo
!
_a Jo e [y |/ s)ldgds

Gr.1.0.5) — H /(& s)|deds

— 0.

eczt
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(6.78)

(6.79)

(6.80)

Thus each of the three integrals on the right side of (6.77) can be made arbitrarily

small for large enough ¢ by a suitable choice of 7" and this leads to

t l 1
tlim w(t) = / / |:G(x,t,§', 5) — 7:| f(¢, s)ydetds = 0.
o0 o Jo
It follows from (6.56), (6.58) and (6.81) that
u(x,t) — m(t), ast — oo uniformly in x € (0,/).
We know that

m(t) - m*, ast — oo,

(6.81)

(6.82)
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and therefore
u(x,t) — m®*, ast — oo uniformly in x € (0, /). (6.83)

From (6.53) and (6.83), we have

dm(t —r (!
m()zz—C/(l+u@J»MLt—er
dt I Jo
— _Trl(l +m*)m*, ast — oo. (6.84)
Thus
dm(t -
m(t) — m* and r;lt( ) — Trl(l +m*)m*, ast — oo, (6.85)
and Lemma 6.3.2 implies that
dm(t)
— 0, ast — oo, (6.86)
dt
which leads to
(1 +m"ym* =0. (6.87)

Since m* > 0, it follows from (6.87) that m* = 0 and thus we have
u(x,t) — m(t) - m* = 0as t — oo uniformly in x € (0, /).

This implies that N(x,¢) — K ast — oo. The proof is complete. ]
The following result is well known [30].

Lemma 6.3.3. Let p and t be positive constants, and let z(t) be an eventually
positive solution of 7 (t)+ pz(t—7) < 0. Then for t sufficiently large z(t—1) < Bz(t)
where B = 4/(pt)>.

Theorem 6.3.2. Let D, r, T, | be positive constants and suppose that all positive
solutions of

LR =rol

(6.88)

dt

_yO—ﬂ]
K

are oscillatory about the positive equilibrium K . Then all positive solutions of (6.39)
and (6.40) are oscillatory about the positive equilibrium of (6.39).
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Proof. Tt is known that a necessary and sufficient condition for the oscillation of all
positive solutions of (6.88) about the positive equilibrium is that the equation

A= —re "
has no real roots. This is equivalent to
re’™ > A forall A € (0, 00). (6.89)

It follows from (6.89) that there exists a i > 0 such that

re’™ > A+, forall A > 0. (6.90)
It is enough to show that when (6.89) holds all solutions of (6.45) and (6.46) are
oscillatory. Suppose that u is an eventually positive solution of (6.45) and (6.46)
(if u is an eventually negative solution of (6.45) and (6.46) the proof is similar).
Since u is not oscillatory we have by Theorem 6.3.1 that

r[l + u(t)] — r, ast — oo.
Thus, for 0 < ¢ < r, there exists a 7" such that

r+e>r[l +u(t)]>r—¢e=py, fort >T. (6.91)

We have from (6.45) to (6.46) that

1 !
/ u(x,s)dx = —r[ (1 + u(x, s))u(x,s —7)dx. (6.92)
0 0

Let

I
v(t) := / u(x,s)dx. (6.93)
0
Define A, of real numbers as follows:
A ={A>0: Vv (t) + Av(z) <0, eventually for large t > 0}. (6.94)

We note from (6.93) that A = 0 € A, and that A, is a subinterval of [0,00). The
proof of the theorem will be completed by showing that the set A, has the following
contradictory properties P and P,.

Py : A, is bounded;
Po:leA, = A+ ueA,.
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Let us first verify P;. We have from (6.91) and (6.92) that forzt > T + ¢

dv

7 + pov(t —7) =0, (6.95)

which from Lemma 6.3.3 implies that

4

vit—r1) < V(). (6.96)
PoT)
We have from (6.92)
! I
0= / u(x,s)dx + rf (1 + u(x, s))u(x,s — r)dx, (6.97)
0 0
SO
4 4 4
0<v(@)+T+ewit—1)=<v(@)+(+e-—7v). (6.98)
(pot)
From (6.98) the set A, is bounded above which verifies P;.
In order to verify (P,), let A € A, and set
(1) = e*'v(0), (6.99)
and note that
@' (1) = eV [v/ (t) + Av(t)] < 0, eventually for large ¢. (6.100)

This shows that ¢(¢) is positive and eventually nonincreasing and that
VIO + o+ wv)

!
= —r[ (1 + u(x,s))u(x,s —t)dx + (A + p)v(z)
0

!
_,/ u(x.,s — 1)dx + (A + p)v(t)
0

=
< —re TG — 1) + (A + e ()
<eMp@t)[-ret + A+ )] <0,

and hence it follows that A + pu € A, showing that P, holds.
Note P; and P, are mutually contradictory. Thus (6.45) cannot have eventually
positive solutions. The proof is complete. |
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Corollary 6.3.1. If all solutions of the linear delay differential equation

dy(®) _

T —ry(t — 1)

are oscillatory, then all solutions of the (6.39) and (6.40) are oscillatory about K.

6.4 Oscillation of a Nonautonomous Logistic Model

In this section we discuss the oscillation of the diffusive logistic model with several
delays

IN(x,1)

o = d(@)AN(x,t) + c(t)N(x,1) |:a(l) — Zbi(l)N(x,t -7 (t)):| ,

i=1

(6.101)
where (x,7) € Q x (0,00), 2 is a bounded domain in R” with smooth boundary
02, A is the Laplacian

d? 92 9?
and 7;(¢), 1 < i < n, are positive continuous functions defined on [0,00), a(t),
c(t), d(t), bi(t), ba(t),...,b,(t) are positive, bounded, and continuous functions
on [0,00) and 0 < dyp < d(t), 0 < by < c(¢)b;(t) forsomei € {1,2,...,n}.

We consider boundary conditions of the form

aNa(;.t) =0, (x,1) € 92 x (0, 00),

(6.102)
N(x,t) = ¢(x,t), (x,t) € 90Q x [—1,0],

where u is a the outward unit normal vector, ¢ (x, t) is a nonnegative and nontrivial

continuous function, and T = max; {max,{7;(z)}}. We will assume that there is a

positive constant N * such that

> bi(N* =a(t). 1 =0, (6.103)

i=1

so that N(x,z) = N™* is a stationary solution of (6.101). We establish some
sufficient conditions for the oscillation of all positive solutions of the boundary value
problem (6.101) and (6.102) about N *. The results in this section are adapted from
[79].

Existence and uniqueness theorems for solution of (6.101) and (6.102) follow
from the existence of a unique “heat kernel” g(x,?,{,v) associated with the
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differential operator L[N] = N, = d(t) N, and the boundary condition (6.102).
By means of this kernel (6.101) and (6.102) can be transformed into an integral
equation which is well posed and can be solved by the method of steps.

By a solution of (6.101) and (6.102) we mean a function N(x,?¢) which is
continuously differentiable on the closure of  x [—t, 00) and twice continuously
differentiable on Q2 x [—1, 00). Let N(x,t) be a real continuous function defined on

5_2 X [[0, Q).

Lemma 6.4.1. Suppose that (6.101) and (6.102) has a positive solution N(x,t)
such that N(x,t) — N* is eventually positive. Then the first-order delay differential
inequality

n
YO ==Y N @byt =) (6.104)
i=1
has an eventually positive solution.

Proof. Suppose there is a positive number ¢; such that N(x,t) — N* > 0 on Q x
[t1, 00). For convenience, let

w(x,t) = N(x,t) — N*.
Then from (6.101) and (6.103), we have

ow(x,t)
ot

=d)Aw(x, 1) —c(®)[w(x,t) + N¥] Zbi (w(x,t — 7 (t)). (6.105)

i=1

Integrate both sides of (6.105) with respect to x to obtain

d
m /S; w(x,t)dx

= d(t)/QAw(x,t)dx

—c(t) /Q[w(x, 1)+ N*] Zbi ywx,t —7;(t))dx. (6.106)

i=1

By the Green formula and the boundary condition in (6.102), we obtain

/Aw(x,t)dx:/ w4 2o, (6.107)
Q e op

Pick a number t, > #; + 7. Then

w(x,t) > 0and w(x,t — 7;(¢)) > 0, for (x,1) € Q X [tp, 00).
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In view of (6.106) and (6.107) we have

%/ﬂw(x,t)dx < —Zc(t)N*b,-(r)/Qw(x,z—r,-(;))dx, t>b.

i=1

Set
y(t)=/w(x,t)dx, t>t.
Q

Then y () is an eventually positive solution of (6.104). The proof is complete. N

Lemma 6.4.2. Suppose that (6.101) and (6.102) has a positive solution N(x,t)
such that N(x,t) — N* is eventually negative. Then for any 8 € (0, 1), the first-
order delay differential inequality

Y(@©) == BN*cbi()y(t — u(0)) (6.108)

i=1
has an eventually positive solution.

Proof. Suppose there is a positive number ¢; such that N(x,7) — N* < 0 on Q X
[t1, 00). For convenience, let

N(x,t)

p(x,t) =ln( N ) <0, (x,1) € Q x[t],00).

We assert
y(1) = /Q —p(x.1)dx

is an eventually positive solution of (6.108). To prove this, note first that
from (6.101) and (6.103) we have

dp(x,1)
dr

= d(t)e P AP 4oc(1) |:a(t) -> b (t)N*ep("'t_f"(’))i|

i=1

n
= d(t)e” "D AP — N*c(1) Y bi(1) [er™ 7 —1].

i=1

Integrate the last equality with respect to x over €2 and we obtain

d
_/ p(x,t)dx = a’(z)/ e PN AP
dt Jo o

—N*c(t)Zbi(t)/Q[ep(x"—"'(’))—l]dx. (6.109)
i=1
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Since
9 op(x,t
_{ezi:p(x.t)} — ieip(x,l)m, (x,1) € Q x [t;,00), (6.110)
o au
9 t 1  ON(x,t
px.0)| WOl _ ©.111)
aM 0 N()C,l) a/"' Q
and
PO Ae™PCD = |7 p(x,1))? — Ap(x, 1), (x.1) € 2 x [1],00),
we obtain

/e_p(”)Aep(”)dx :/el’("")Ae—p(”)dx
Q Q

=/ |vp(x,t)|2a’x—/ Ap(x,t)dx
Q Q

=/ |vp(x,r>|2dx—/ dp(x.1)
Q 0 3#

:/;2|Vp(x,t)|2dx. (6.112)

From (6.109) we also obtain

d

- /Q (e, )dx = —d(t) [Q v p(x, D dx

+N*e(t) Z b; (l‘)/ [eI)(X.t—ri(t)) _ 1] dx
i=1 @

n
< N*c(r) Zb,»(t)/ [er=a®) —1]dx. (6.113)
i=1 2
To complete the proof, it is suffices to show that for any § € (0, 1), there is some Ty
such that
[ep(x’t_’f(t)) — 1] < Bp(x.t —1:(2), t > Tp.
In order to do this, pick #, > #; + t so that
p(x,t) <0, and p(x,t —17;(t)) <O0for (x,1) € Q X [t, 00).

For (x,1) € Q X [tp, 00) consider the positive functional V' defined by

p(x.t)
VIpl() := N/Q/O (¥ — )dydx.
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By (6.110)—(6.112), the derivative of V' with respect to (6.101) satisfies
/(p(xt) 8p(x t) dx
= N*d(1) / Ae?SDdx — N*d(r) / e PED NePD g x
Q Q
n
— (N () Db (1) (e — 1) [er®=u® 1] dx

i=1

_N*d(0) /Q v P dix

IA

— (V) e@) Y bito) / (e?™D —1) [P — 1] dx.
i=1 «

We note from (6.101)
d
— | N(x,t)d
dt/Q (x,t)dx

= d(t)/QAN(x,t)dx

+ /Q c(1)N(x,1) l;bi () [N* = N(x.t — 5(t)] dx

f c(t)N(x,1t) Zb () [N* = N(x,t — ()] dx > 0,

i=l1

and so
[ et = Next = mopix = o0
Q
which implies that

[ (ep(x,t) —1) [eP(-’CJ_Ti(l)) _ 1] dx
Q

_ /(ep(x,r) 1) +/(ep<x.t) ) [P o]
Q Q

= / (e?™D —1)2dx
Q
1 *
+W/Q(N(x”)_N YN (x,t —1;(t)) — N(x,t))dx

> / (eP™) — 1)%dx,
Q

319
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by the first mean-value theorem of integrals. As a consequence, we see that

dv
dt

IA

—N*d(z)/Q |vp(x,t)|2dx—(N*)zc(t)Zbi(l)/Q(e”(”)—l)zdx
i=l1

IA

N /Q v p(x. 1) dx

— (N e) > ki) / (N(x,1) — N*)*dx, (6.114)
i=1 Q@

for t > t,. Integrate both sides of (6.114) and recall the assumptions that 0 < dy <
d(t) and 0 < by < b;(t)c(t), and we obtain

t
Vi = Vo + N [ [ 1pee)P deds
153 Q
t
+(N*)2b0/ /(N(x,s)—N*)zdxds.
h JQ
1/2
Hence, by writing (fQ |2 dx) = ||.|| we have

o0 o0
/ /(N(x,s) — N*)2dxds = / [N(Gx,s) — N*||*ds < oo,
123 Q 123
and

/ / v o, s)P dxds = / 19 p(.s)|P ds < oo,
t Q )

so that
[N(x,s) — N*|| € L1(0, o0) and ||vp(x,s)2” € L1(0, 00).
But from the assumption that N(x,7) < N* for (x,t) € Q x [t;, 00), we have

1

e 19N Ol < e 0P,

so that | v N(x,1)]|* € L1(0, 00). Now,

d :
— [V N(x,¢
ZITNC D)

ON(x,t)
ot

= ( ,—AN(x,1)
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= —d(1) |ANGx. )|

+(v c(t)N(x,1) [a(t)—zbi(t)N(x,t—fi(t))] -vN(x,n)
i=1
< —do |AN(x.0)|* + c(t)a(t) [V N(x.1)|?
+N*c(t) Y b [wN. =5 VN0 (6.115)

i=1
where
la@®)| < a,|c(®)| < a,|bi(®)] < b

are bounded functions. Integrate both sides of (6.115) from #, to 7, and we obtain

T
IVNG DI = [N o) + a’o/ IANGe )| dt

5]

n

T T
ca/ IVN G, 1) dr + N*e Zbi/ VNGt = @) IvN(x,0)|l drt
15 i=1 %)

IA

A

T
ca/ VN, 0)|? dt

5]

1/2 1/2

n T T
ene Yo [Croner—aonrad | [T gl
i=1 f 5}

(6.116)
We may now infer from |7 N(x,7)||*> € L1(0,00) and the above inequality that

IAN(x,2)|* € L1(0,00) and ||y N(x,1)||* is bounded on [t,,00). In a similar
fashion, we obtain
T
J
T

T
< dO/ |AN(x,1)|* dt —i—ca/ VNG, 0)| dt

1] 5]

dt

d 2
— [|[YN(x, ¢
TN

1/2

n T
vee ot [ iwne sl

i=1

T
x {/ ||vN<x,z>||2dt§

1/2
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Since ||y N(x,1)||* € L1(0,00) and |AN(x,1)||* € L;(0, 00), we may deduce the
fact that % [V N(x,1)|* € Li(0,00). Also we see

lim / [VN(x,0)>dt = lim |y N(x,0)|* = 0. (6.117)
—>00 Q —>00

Furthermore, since

1d )
—— |N(x,t) = N*
S INGer) = N7

_ / V(1) — N NED 4
o o1

= d(t)/Q(N(x,t) — N*)AN(x,t)dx

—/(N(x,t)—N*)C(Z)N(x,t)Zbi(t)(N(x,t — 7)) — N)dx,
Q

i=1

we have
32 NG - NP
Ed/Q|N(x,t)—N*||AN(x,t)|dx
+an:b,<N*/Q|N(x,t)—N*||N(x,t—r[(t))—N*|dx
i=1
and

— = |IN(x,t) = N*|*| dt

/T 1d
5]

2dt

T 1/2 T 1/2
5d{/ ||N(x,t)—N*||2dr} {/ ||AN(x,r)||2dr}

15 5]

n T 1/2
+c Y biN* %/12 IN(x,1) — N*||2dz}
i=1

T 1/2
x {[ INGe = 7(0) — N*nzdr} .
5]
Consequently we have % [N(x,t) — N*|| € L1(0, 00) in view of the previous facts
that || AN (x,1)||* € L1(0,00) and |N(x,t) — N*||* € L1(0, 00). Also we see that

IN(x.t) — N*| = 0. (6.118)

lim
=00



6.5 Stability of an Autonomous Logistic Model 323

Next, from N(x,1) < N* fort > t, and the boundedness of ||y N (x, t)|| on (, 00),
we see that | N(x,7) — N*| o and ||y N(x,?)| s are bounded (where ||w|,, =
ess sup [w|), and then from the inequality

Iwlly < WIS/ Iwlly* for allo =2
and (6.117) as well as (6.118), we obtain
lim [|[N(x,1) = N*|l, = lim |[vN(x,0)], =0, o >m. (6.119)
Next, from the Sobolev inequality
lull o) = C IVullLrg)

where C is a constant independent of u, we obtain

IN(x. 1) = N¥lloo < M(Q.m,0){[IN(x.1) = N*|ly + [VNCx.1) = N¥[|,}.
(6.120)

where M (2, m, o) is a positive constant independent of N . Finally, from (6.119) to
(6.120), we see that || N(x,t) — N*||,, — 0as ¢ — oo, so that

lim N(x,t) = N*, uniformlyinx € S_Z,
—>00
which implies
tlim p(x,t) =0, uniformlyinx € é (6.121)
—>00
Now, forany t > f, and t3 > ¢,
ePt—u(®) _ op(xiz) — {p(x.t — (1)) — p(x, t3)}ep(xv€z(t))7

where e?(4 ™) — 1 ast — oo. Thus for any B € (0, 1), we can find a ¢4 such that
B < eP&GW) < 1 ¢ > ¢, which implies

ePti—n) _q < Bp(x,t —1;(1)),

as required. The proof is complete. |

6.5 Stability of an Autonomous Logistic Model

In this section, we will establish some sufficient conditions for all positive solutions
of (6.39) and (6.40) to converge as t — oo to the positive equilibrium of (6.39). The
results in this section are adapted from [29].
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Theorem 6.5.1. Let p and q denote the solutions of the following:

dp(t) __ (t=1)
% Z_f_rp(’)[l_pKT]’ (6.122)
p(s) = max,ep N(x,s), s €[-1,0]
dq(t) __ (=17
{ a =40 [1 — % ] (6.123)
q(s) = mingep ) N(x,s), s € [-1,0].
Then every solution N of (6.39) and (6.40) satisfies
q(t) < N(x,t) < p(t), t>0,x¢€]0,[]. (6.124)
Proof. We shall prove that
N(x,t) < p(t), t>0,x¢€][0,1]. (6.125)

Let p.(¢) denote the solution of

= (6.126)

% L — (1) [ 1 - 242 ]
pS(s) = maXXE[O,l] N(xvs) +e s€ [_T5 0]5

where ¢ is an arbitrary positive number. It is sufficient to prove that
N(x,t) < pe(t), t>0. (6.127)

The result will then follow from (6.127) by the continuous dependence of solutions
of (6.126) on the initial conditions and

N(x,t) = lim p(t) = p(). (6.128)
Suppose (6.127) does not hold. Then there exists xq € (0,/), #y > 0 such that
pe(to) — N(xp, 1) <O. (6.129)
Define a function M as follows
M(x.t) = [pe(t) — N(x.0)] e, (x.1) €[0,1] x [0, 1], (6.130)
where A is a positive number to be suitably selected. It follows from (6.129) that
M (x0,1) < 0. (6.131)

As a consequence, M (x, t) will have a negative minimum on [0, /] x [0, zy]. Suppose
that such a minimum of M (x, ) occurs at (x*,¢*) where x* € (0,1), t* € (0, ty].
Then, we have
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oM (x,t)

> 0.
ot

(e %)

"M (x,t
<o, T
(x*,1%) ox

From (6.39), (6.126), and (6.130) we have that

M n) M)
ot 0x2

= M(x,t) [r—k— %pg(t—r)]

t—17—N(x,t—
L M(x, )N (x, 1) [’%( TN ’)] (6.132)
K pe(t) = N(x.1)
We can choose A large and positive such that
t*—1) = N(x*t* —
r—)L—Lpg(t*—r)) o | D 1y P — D — N Il (6.133)
K K pe(t*) — N(x*,t*)

which is possible since the left side of (6.133) can be made arbitrarily large by a
suitable choice of A > 0. By choosing A appropriately one can thus make the right
side of (6.132) positive at (x*, ¢*) while the left side of (6.132) remains nonpositive
at (x*,t*) and this is a contradiction. Hence it follows that an interior negative
minimum of M(x, t) cannot exist for x € (0,/). Since

d oM (x,0)

M(x,0) >0 an =0 atx =0, [,

and we can prove (as before) that M cannot have a negative minimum at the
endpoints of the interval (0,/). Hence it follows that M cannot have a negative
minimum on the closed set [0, [] x [0, #] for #y > 0 from which (6.127) follows. The
conclusion (6.125) is now a consequence of (6.128). The proof of the other half is
similar and the details are omitted. ]

Theorem 6.5.2. Suppose that D € [0, 0), T € [0,00), r € (0,00). If
rt <1, (6.134)
then all positive solutions of the Neumann problem (6.39) and (6.40) satisfy
11_1)1110 N(x,t) =K, (6.135)

and convergence is uniform in x € [0,1].

Proof. In view of the result of Theorem 6.5.1, it is sufficient to show that all positive
solutions of (6.88) satisfy

lim y(¢t) = K.
—>00
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For convenience we let
y(1) = K[1 +w()]

to obtain

dw(t)
de

—r[l + w(®)]w(t — 7). (6.136)

It is sufficient to prove that w(¢) — 0 as t — oco. We consider here two cases.

Case (i). Suppose that w is a nonoscillatory solution and |w(z)| > O eventually
and hence |dw(t)/dt| > 0 eventually for large ¢. It follows from w(z) > 0 and
dw(t)/dt < 0 that lim,_,o w(t) exists and this implies by using (6.136) that
lim; oo dw(t)/dt exists. As a consequence if

lim w(r) = w*,
—>00

then by Lemma 6.3.2

dw(t)
lim =

t—oo dt

0=r[l+w"w*,

and since w* > 0, we conclude that w* = 0. If w is eventually negative, a similar
argument will show that

lim w(t) = 0.
—>00
Case (ii). Suppose that w(z) is oscillatory. Let {u,} and {v,} (n = 1,2,...) denote

the respective magnitudes of the successive minima and maxima of w. One can
derive from (6.136) that these sequences satisfy forn = 2,3,...

I+ v < et
6.137
1—wu, >e "™, ( )

It follows from (6.137) that
Va1 <explrt(l —e ™)) — 1. (6.138)

We shall now show that v, — 0 as n — o0. Let us consider a map V : [0, 00) —
(—00, 00) defined by

V() =explrr(l —e ™) —1. (6.139)
We note that V(0) = 0 and by using (6.134) we have

dV(v)

T = (ro)explrr(l —v—e"™)] < (r7)* (6.140)
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It follows from (6.138) to (6.140) and by the mean-value theorem that there exists
6 € [0, v,] such that

Va1 < V() = V() = V(0) = v, V' ()

<)V < (D)o <. < (r)? vy = 0asn — oo.

Since v, denotes the magnitude of the sequence of maxima of the oscillatory
solution w, it follows from

0 <vyt1 < (ro)™ 2y

that

lim v, = 0.

n—>00
By (6.137) we have

0<u, <l—e",

and this implies that

lim u, = 0.

n—>00

Since the sequences of successive maxima and minima of the oscillatory solution w
converge to zero, we can conclude that

lim w(t) = 0= lim p(¢) = K = lim ¢(¢). (6.141)
t—00 t—00 t—00
By Theorem 6.5.1
q(t) < N(x,t) < p(), t>—-1,x€][0,]],

and hence the result follows from (6.141). The proof is complete. |

6.6 Global Stability of a Volterra-Type Model

Nonlinear periodic equations with diffusion arise naturally in population models
where the birth and death rates, rates of diffusion, rates of interaction, and
environmental carrying capacities are periodic on a seasonal scale. In this section,
we are concerned with periodicity and global stability of the periodic parabolic
logistic model with instantaneous and delay effects of Volterra-type of the form
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u(t, x)

T Au(t, x)
=u(t,x)[a(t,x) = b, x)u(t,x) =D/ cr(t, x)u(t —rT.x)],
(t,x) € [0,00) x 2,
Blu](t,x) =0, (t,x) € ]0,00) x 022,
u(s, x) = up(s, x), (s,x) € [-mT,0]) x Q,

(6.142)

where © is a bounded domain in R” with smooth boundary d€2, and the differential
operator A is defined by

Af(x) = Z o (1, x Zﬂ, (t.x af (x) (6.143)

i,j=1

The results here are adapted from [24]. The system will be studied under the
following assumptions:

(H1) The coefficients o; ; and B; are Holder continuous in x and ¢ and T'-periodic
functions in 7.
(H,) The functions a(t, x) and b(t, x) are T-periodic in T, positive and Holder

continuous on [0, co) X 2.

(H3) The functions ¢, (¢, x) are nonnegative and Holder continuous on [0, c0) X K_Z,
with ¢(¢,x) = Y, ¢, (¢, x) positive and T-periodic.

We also assume that
Blu] = u,

8 6.144
Bl = o 4 yCou, O
with y € C'7*(9R2) and y(x) > 0 on 2.
The corresponding periodic-parabolic boundary-value problem of (6.142) with-
out delay is

Bv(atl, x) Av(t, x) = v(t, x) [a(t, x) — h(t, x)u(t, x)], (¢,x) € [0,00) x Q,
Bl x)y =0, (1.x) € [0. 00) x 392,

(6.145)

where h(t, x) = b(t, x) + c(t, x) has been studied by Hess [31] and some sufficient
condition for global stability of the periodic solution was established. These results
are summarized in the following lemma.

Lemma 6.6.1. The eigenvalue problem

8¢(gt[, x) Ap(t,x) —a(t,x)p(t, x) = o¢(t,x), (t,x) € [0, 00) X £,
Blg](t. x) = 0. (t,x) € [0,00) x %2,
¢ is T-periodic,
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has a principle eigenvalue o, with positive eigenfunction.

(i). If oy > 0, then the trivial solution 0 is globally asymptotically stable in (6.144)
with respect to every nonnegative initial condition.

(ii). If oy < 0, then the problem (6.144) admits a positive T-periodic solution 6(t, x)
which is globally asymptotically stable with respect to every nonnegative
nontrivial initial function.

We begin with the following comparison lemma for the delay system (6.142).

Lemma 6.6.2. If there exists a pair of smooth functions U and U (called upper
and lower solutions of U ) such that U > U on [-mT,00) x Q and they satisfy the
following inequalities:
W0 _ 4.
>U(t,x)[a(t,x) = b, x)U(t,x) =Y c(t,x)U(t —rT,x)].
(t,x) € 0,00) x 2,
WD 40 (1, x)
<U(t.x)[alt,x) = b, x)U(t,x) = Y0 ¢, (t.x)U(t —rT.x)],
(t,x) € [0,00) x 2,
B[U](t,x) > 0 > B[U](t,x), (t,x) € [0,00) x 3L,
U(s,x) > uo(s,x) = U(s,x), (s,x)€[-mT,0] xQ,

then the delay system (6.142) has a unique solution u with U > u > U on
[-mT,0] x Q.
Theorem 6.6.1.

(i) Ifo1 > 0, then the trivial solution 0 is globally asymptotically stable in (6.142)
with respect to every nonnegative initial condition uy.

(ii) Let L = max, T]Xé[c(t,x)/b(t,x)]. If o1 < 0and L < 1 then the positive

T -periodic solution 0(t, x) is globally asymptotically stable in (6.142) with
respect to every nonnegative nontrivial initial function uy.

Proof. To prove (i) we will use Lemmas 6.6.1 and 6.6.2. Let U™ be the nonnegative
solution of the following parabolic problem:

w — AU*(t, x)
=U*(@t,x)[a(t,x)—b(t, x)U*(t, x)], (¢,x) € [0,00) x 2,
B[U*](t,x) =0, (t,x) € [0,00) x 022,
U*(0,x) = up(0, x), x € Q.

Define the function U as U = u on [-mT,0] x Qand U = U* on (0, 00) x Q.
Then (U, 0) is a pair of upper and lower solutions of the time delay system (6.142)
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on [-mT, 0] x Q. Therefore, by Lemma 6.6.2 there exists a unique solution of u
for (6.142) with 0 < u < U™ on [-mT,0] x Q. When o; > 1, it follows from

Lemma 6.6.1 that

Jim flu(r, )| = lim U*(, )

Q) C(Q)

In order to prove (ii), we assume that 07 < 0 and L < 1. Then ¢(¢,x) < Lb(t, x)
on [0, 00) x 2. Hence we obtain on [0, c0) x €2 that
L[b(t,x) + c(t, x)] [b(t, x) + c(t,x)]

c(t,x) < ’(L s ’ and b(t,x) > ,(L -y AL (6.146)

Denote by U(t, x) the solution of (6.145) with initial data uy(0, x). From the
nonnegativity of u, we have for (¢, x) € [0, co) x 2 that

du(t, x)
ot
<u(t,x)[a(t,x) —b(t, x)u(t, x)]

— Au(t, x)

1
<u(t,x)a(t,x)— L——i-l(b([’ X) + c(t, x))u(t, x)].
By Lemma 6.6.1 and the comparison principle for parabolic equations, we have

u(t,x) < (L + 1)U, x), on[0,00) x Q.

Therefore

Jim sup lu(r, ) = (L + DO, )IIC(Q)

< lim (L + D U@ =0 )l g, = (6.147)

For each € > 0, there exists a T such that when (¢, x) € (T, 00) x Q and for each
O<a<L+1

du(t, x)
ot

— Au(t, x)

v

u(t,x)|at,x)—bt, x)ut,x) —(L+1+c¢€) Zcr(l, x)0(t —rT, x):|

r=1

u(t, x) [;l(t,x) —b(t,x)u(t,x) — (L + 14+ €)c(t,x)0(t, x)]

_ [a(t, x) — b(t, x)u(t, x) —ac(t, x)0(, x)
= ult,x) | (L4 1 +e—a)e(t. 00t x) ]
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> u(t, x)[a(t,x) — b, x)u(t, x) —ac(t, x)0(t, x)
LL+1+4+€e—a)
B L+1

(b(t,x) + c(t,x))0(t, x)].

Then by a comparison argument we have u(¢, x) > U (¢, x) on [T, c0) X 5_2, where
U, is the solution of the parabolic problem

WD) )
al 1\,
= Ul(t7 x)[a(t, .X) - b(tvx)Ul(lsx) - (XC(I,)C)O(Z,X) (6148)
LA (p (1, x) + c(t, x))O(1. X))

B[UiJ(t,x) =0 (t,x) € [Te,00) x 022,

with u(T,, x) = U;(T., x) in Q. If there exists 0 < o < 1 such that

LL+1+¢—a)
L+1

=1—a, (6.149)

then it is known from Lemma 6.6.1 that «f(z, x) is a positive T -periodic solution
of (6.148) which is globally asymptotically stable. Relation (6.149) is equivalent to
o = 1 — L? — Le > 0. The arbitrariness of € implies that for L < 1

Jlim lu@,.)— (1 —L»6, )||C(§)=o.

(6.150)

llilglo inf ||u(t, ) — (1 - Lz)e(t’ ) ”C(Q)

Hence from (6.147) and (6.150) we have

Jim sup [lu(z, ) = (1+ )0 ) . g <0,

Jlim 1nf||u(t ) —(1— L6, )||C(Q) 0. (6.151)

Assume by induction that for some integer k

. k—1
tlirglo sup ||u(t, J—0+ LHo(, ) HC&) <0,
s k+1 _
Jlim inf fu, ) — (1 = L6, ) HC(Q) > 0. (6.152)

Then for any € > 0, there exists a T, such that
du(t, x)

ot
< a(t,x)u(t,x) —b(t, x)u*(t, x)

— Au(t, x)

—(1 = L* —eu(t.x) Y e, (t.x)0(t — rT. x)

r=1

= u(t,x) [a(t,x) = b(t, x)u(t,x) — (1 — L* — e)c(t, x)0(t,x)] (6.153)
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in (T, 00) x Q. Hence for any 8 > 1

du(t, x)
ot

< u(t, x) [a(z,x) —b(t, %) (1 - I_Lﬁ#) u(t, x)

—b(t, x) (1_1;#) u(t, x) — (1 — L —e)e(r, x)0(, x):|

— Au(t, x)

W (1 _ I—L‘#) u(, x)
k _

“L‘%) u(t,x) — (1 - L* ~ e)c(t,x)G(f’x)} ’

in (T, 00) x . Then by a comparison argument we have u(¢, x) < U,(¢,x) on

< u(t,x) |:a(t,x) —

—b(t,x) (

[Te, 00) x Q2 where U, is the solution of the parabolic problem

’ b
% — AU, (t,x) = Uy(t, x)a(t,x) — W

(1 _ l_lj‘#) Us(t, x)

1-LF—¢
B
—(1=L* —e)e(r, x)0(1, x),
in (T,, 00) x 2,
B[U>](t,x) =0 (t,x) € [T.,00) x 0L, (6.154)

—b(t,x) ( ) Us(t, x)

with u(T¢, x) = Uy(T, x) in Q. If there exists 8 > 1 such that

B | 1—LF—¢
L+1 B
then it is known by Lemma 6.6.1 that f6(z, x) is the positive solution of (6.154)

which is globally asymptotically stable. The relation (6.155) is equivalent to 8 =
1 + L¥*1 + Le > 1. Therefore, from the arbitrariness of € we have

)—i—(l—Lk—e):l, (6.155)

. k+1
Jim sup [u(z.) — (1 + LHea )| o)

<0. (6.156)

< lim [Ua(t,) = (14 LFD00 )| g <



6.6 Global Stability of a Volterra-Type Model 333

Again for any € > 0, there exists a T, such that
du(t, x)

ot
> a(t, x)u(t,x) — b(t, x)u*(t, x)

— Au(t, x)

—(1+ L' + u(t. x) Y e, (t.x)0( — rT.x)

r=1

= u(t,x) [a(t,x) = b(t,x)u(t,x) — (1 + L*T" + e)c(t, x)0(t, x)],
in (T¢, 00) x Q2. Hence for any 0 < § < 1 and (¢, x) € (T¢, 00) x 2, we have

du(t, x)
ot
> u(t,x)la(t,x) —b(t, x)u(t,x) —c(t, x)0(t, x)

—(1+ L 4+ e = §)c(t,x)0(t, x)]
>u(t,x)a(t,x)—b(t, x)u(t,x) —dc(t, x)0(t, x)

L(1 + LK 4 e =)
L+1

— Au(t, x)

(b(t,x) 4+ c(t,x))0(t, x)].

Then by a comparison argument we have u(t, x) > Us(¢, x) on [T, 00) X Q where
Us is the solution of the parabolic problem

aUs(t, x)
ot
=u(t,x)[a(t,x) —b(t,x)Us(t, x) — Sc(t, x)0(t, x)

L1+ LK 4 e —§)
L+1

— AU3([,X)

(b(t, x) + c(t,x))0(t, x)]
in (T, 00) x 2,

B[Us](¢t,x) =0, (t,x) € [T.,00) x 092, (6.157)

with u(T,, x) = Us(T., x) in Q. If there exists 0 < § < 1 such that

L + Lk*! -8
(1 + te=9) _ (6.158)

8
+ L+1

then it is known by Lemma 6.6.1 that §6(¢, x) is the positive solution of (6.157)

which is globally asymptotically stable. The relation (6.155) is equivalent to § =
1 — L¥*2 — Le < 1. Therefore, from the arbitrariness of € we have



334 6 Logistic Models with Diffusions

tl_])rgo inf ”u(l, J—(1- Lk+2)9(l’ ) Hc(ﬁ)

> 0.

, k
2 Jim U2t = (1= L5706 )| ) 2

The induction argument as above shows that relation (6.152) holds for any positive
even integer k. Letting k — oo in (6.152) yields

llim sup ||u(z,.) — 0(z,.)|| = 0 uniformly on Q.
—00

The proof is complete. ]
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