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1Structures of Cytochrome 
P450 Enzymes

Thomas L. Poulos and Eric F. Johnson

T� L� Poulos ()
Departments of Molecular Biology and Biochemistry, 
Pharmaceutical Sciences, and Chemistry, 2206 Natural 
Sciences 1, Mail Code 3900, University of California, 
Irvine, CA 92697-3900, USA
e-mail: poulos@uci�edu

E� F� Johnson
Department of Molecular and Experimental Medicine, 
The Scripps Research Institute, 10550N, Torrey Pines 
Rd�, La Jolla, CA 92037-1000, USA
e-mail: johnson@scripps�edu

1.1  Introduction

The first cytochrome P450 structure, P450cam 
or CYP101A1, was solved in the early 1980s [1, 
2], followed by the second, P450BM3, in 1993 
[3]� At the time of the 3rd edition of this book 
published in 2004, there were a total of 13 unique 
P450 crystal structures deposited in the Protein 
Data Bank (PDB)� As of April 2014, the PDB 
lists 449 entries with the name P450 in the title 
and of these about 54 are unique structures� The 
many new structures solved since the 3rd edi-
tion include various substrate/ligand complexes, 
P450s in various conformational states, and a few 
new P450-redox protein complexes� This wealth 
of new structural information has been particu-
larly useful in a better understanding of P450 dy-
namics and how the P450 active site adapts to 
substrates of diverse sizes and shapes�

1.2  Overall Architecture

There now are a sufficient number of structures 
to safely state that the overall P450-fold is quite 
conservative� While it remains the case that there 
are no nonheme proteins that exhibit the P450-
fold, there now are a small handful of examples 
of enzymes that exhibit the P450-fold but do not 
catalyze traditional P450 chemistry� These in-
clude the NO reductase, P450nor [4, 5], prosta-
cyclin synthase [6–8], allene oxide synthase [8–
11], P450BSβ [12], and a related peroxygenase, 
CYP152L1 [13], which hydroxylates fatty acids 
but does so using H2O2 as the oxidant�

The structures of six P450s are shown in 
Fig� 1�1, while Fig� 1�2 highlights some of the 
key secondary structural elements� Although the 
overall fold is maintained, the precise position-
ing of various structural elements differs substan-
tially� In general, the closer to the heme, the more 
conserved the structure, especially helices I and 
L, which directly contact the heme� As expected, 
those regions controlling substrate specificity dif-
fer the most, especially the B′ helix. For example, 
in P450eryF, the B′ helix is oriented about 90° 
from the orientation observed in P450cam� The 
effect is a substantial change in local environ-
ment, which is required for substrate selectivity�

Not too surprisingly, the most conserved ele-
ments of the P450 structure center on the heme–
thiolate oxygen activation chemistry� The most 
noteworthy is the β-bulge segment housing the 
Cys ligand (Fig� 1�3), just prior to the L helix� 
This rigid architecture is required to both protect 

P� R� Ortiz de Montellano et al� (eds�), Cytochrome P450, DOI 10�1007/978-3-319-12108-6_1  
© Springer International Publishing Switzerland 2015



4 T. L. Poulos and E. F. Johnson

that Cys ligand and hold it in place in order to 
be within H-bonding distances of two peptide 
NH groups, although the H-bonding geometry is 
good for only one H-bond� This arrangement is 
not only found in all P450s but also in two close-
ly related enzymes, nitric oxide synthase (NOS) 

and chloroperoxidase (CPO)� Both NOS and 
CPO are heme–thiolate enzymes that, like P450s, 
catalyze monooxygenation reactions� Like  P450, 
the Cys ligand in CPO is near peptide bond NH 
groups [14]� NOS is similar, except that an H-
bond is provided by the indole ring N atom of a 

Fig. 1.1  A representative example of known P450 structures illustrating the common three-dimensional fold
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conserved Trp residue [15–17]� Such an H-bond-
ing arrangement is not unique to heme–thiolate 
proteins, but is a characteristic feature of proteins 

containing Cys–Fe ligation, and was first ob-
served in the ferredoxins [18]� These H-bonds aid 
in regulating the heme iron redox potential [19, 
20]� Without such H-bonds, the redox potential 
would be too low for reduction by redox partners� 
Thus, it appears that the protein must provide a 
suitable electrostatic environment around the Cys 
ligand in order to maintain the redox potential in 
a physiologically accessible range� The same is 
true for a close cousin to P450, the peroxidases� 
Here histidine (His) serves as the axial ligand, 
but, in this case, it is necessary to increase rather 
than decrease the redox potential [21]� As a re-
sult, the His ligand H-bonds with a buried Asp 
residue that imparts greater imidazolate character 
to the His, thus lowering the heme iron redox po-
tential [22–26]�

The other highly conserved region involved 
in O2 activation is the portion of helix I near the 
heme Fe (Fig� 1�4)� Thr252 is involved in a local 
helical distortion in P450cam such that the threo-
nine (Thr) side-chain OH donates an H-bond to a 
peptide carbonyl oxygen that would normally be 
involved in an α-helical H-bond. This Thr is not 
strictly conserved� For example, P450eryF con-
tains an Ala instead of a Thr [27] and P450cin has 
an Asn [28]� Even so, these outliers also exhibit a 
similar distortion in the I helix� This arrangement 
is thought to be quite important for the proper 
delivery of protons to the iron-linked oxygen re-
quired for cleavage of the O–O bond, thus gener-
ating the active Fe–O hydroxylating species� The 
growing consensus is that ordered solvent at the 
active site serves as the direct proton donor to the 
iron-linked dioxygen [29–32]� P450–oxy com-
plexes tend to be rather unstable, which is why 
there are only two crystal structures of P450–oxy 
complexes: P450cam [31, 33] and P450eryF 
[34]� In the P450cam–oxy complex, the I helix 
opens up slightly which provides sufficient room 
for two new waters to move into the active site� 
These waters form an H-bonded network that is 
thought to be important for the proper delivery 
of protons to dioxygen in order to promote het-
erolytic cleavage of the O–O bond (Fig� 1�4)� 
While the positioning of new waters in the ac-
tive site requires changes in the I helix, there are 
no changes in the P450eryF–oxy complex except 

Fig. 1.3  The Cys ligand “loop” in P450cam� The dashed 
lines indicate key hydrogen bonding interactions that aid 
in stabilizing the Cys ligand� Cys cysteine

 

Fig. 1.2  The structure of P450cam (PDB: 5CP4) with 
key helical segments labeled� PDB Protein Data Bank
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for the repositioning of a water molecule� Since 
the conserved Thr252 found in P450cam is re-
placed by Ala in P450eryF (Fig� 1�5), the I helix 
is already in an open conformation similar to that 
of P450cam–oxy� It appears that P450eryF uses 
a substrate-assisted mechanism [35] since a sub-
strate OH anchors the key water in place via H-
bonding and is essential for activity� While the 
details of the proton shuttle machinery may differ 
from one P450 to the next, the surrounding pro-
tein groups and, in at least one case, the substrate, 
generally position solvent in the active site for 

proton delivery to dioxygen resulting in cleavage 
of the O–O bond�

1.3  Structural Features for 
Membrane Binding

In contrast to prokaryotic P450s, eukaryotic 
P450s are generally membrane-bound proteins� 
Most eukaryotic P450s are incorporated into the 
endoplasmic reticulum� However, several mam-
malian P450s that participate in the synthesis of 

Fig. 1.5  A comparison of the solvent-mediated hydrogen 
bonding network in oxy-P450eryF (PDB: 1Z8O) and the 
oxy complex of P450cam� Unlike in P450cam, there is 
very little movement of the I helix in P450eryF when O2 

binds� This is probably because Thr252 in P450cam is re-
placed by Ala245 in P450eryF� As a result, the I helix is 
already more open in P450eryF

 

Fig. 1.4  A comparison of the I helix region in ferric and 
oxy-P450cam (PDB: 2A1M)� When O2 binds, the I helix 
opens up and the H-bond between Thr252 and Glu248 is 

broken� This opening enables additional waters to move 
into the active site that are thought to be critical for com-
pleting a protein relay network required for O2 activation
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sterols, steroids, and bile acids are located on 
the matrix side of the mitochondrial inner mem-
brane� A longer N-terminal polypeptide chain of 
roughly 30–50 amino acids precedes the cata-
lytic domain in eukaryotic P450s and mediates 
membrane targeting� In the case of mitochondrial 
P450s, the targeting sequences are cleaved dur-
ing import of the protein into the mitochondrion 
[36]� In contrast, the leader sequences of micro-
somal P450s are retained and inserted into the 
endoplasmic reticulum during protein synthe-
sis [37]� The insertion process stops at the end 
of a hydrophobic stretch of roughly 20 amino 
acid residues, which are likely to form a helix in 
order to reduce the energetic costs of placing the 
polar peptide backbone in the nonpolar core of 
the bilayer [38]� A short linker region of about 
ten amino acids, which often includes positively 
charged amino acid residues, connects the trans-
membrane helix (TMH) to a generally conserved 
proline at the N-terminus of the structurally con-
served P450-fold� The length of the 20 amino 
acid TMH corresponds roughly to the 3-nm 
width of the hydrocarbon core of the bilayer [39]� 
Additionally, the polar head groups of the phos-
pholipids add another 1 nm outer layer on each 
side of the hydrophobic core, suggesting that a 
portion of the linker region resides in the polar 
head group layer�

The TMH is not required for function, as illus-
trated by the expression and successful reconsti-
tution of several P450 monooxygenases in which 
this region was deleted [40–44]� Almost all of the 
currently available crystal structures have been 
determined for microsomal P450s expressed and 
crystallized without the TMH [45]� Initial struc-
tures of the human aromatase, CYP19A1, are an 
exception� Although the full-length aromatase 
was crystallized, the TMH and linker regions 
were disordered in the crystal [46]� Subsequently, 
engineered mutants of aromatase were expressed 
in Escherichia coli without the TMH, and these 
structures were not significantly affected by the 
absence of TMH [47]�

Recently, additional evidence for the helical 
nature of the TMH was obtained from solid-
state nuclear magnetic resonance (NMR)  stud-
ies of rabbit microsomal CYP2B4 incorporated 

into magnetically oriented bicelles [48] and 
from a crystal structure reported for full-length, 
Saccharomyces cerevisiae CYP51A1, a sterol 
14α-demethylase [49]� This crystal structure in-
cludes the linker region, TMH, and an additional 
amphipathic helix at the N-terminus� Interac-
tions of the latter with a neighboring molecule in 
the crystal lattice contributed to a well-ordered 
N-terminus for structure determination� As a re-
sult, the predicted helical secondary structure of 
the TMH was confirmed, and a role for the ad-
ditional amphipathic N-terminal helix in mem-
brane binding to the distal leaflet of the bilayer 
was proposed, as illustrated in Fig� 1�6� Although 
the N-terminal amphipathic helix is not a general 
feature of microsomal P450s, this structure sug-
gests that some P450s with extended N-terminal 
sequences could exhibit additional membrane 
interactions with the distal leaflet of the bilayer� 
In the S� cerevisiae CYP51A1 structure, the C-
terminal end of the 24-residue TMH lies along 
the surface of the catalytic domain and passes 
from the proximal face to the distal face of the 
P450 along a trajectory that is roughly parallel 
with β-sheet 1, Fig. 1�6� The C-terminal end of 
the TMH helix corresponds to the linker region 
and is amphipathic with polar residues exhibiting 
hydrogen-bonding interactions with the catalytic 
domain and hydrophobic residues on the outer 
surface� This suggests that the observed trajec-
tory is likely to be maintained when the enzyme 
is bound to the membrane [49]� As depicted in 
Fig� 1�6, a portion of the catalytic domain is like-
ly to protrude into the membrane when the TMH 
resides in the lipid core� The surface of the cata-
lytic domain surrounding this region is relatively 
hydrophobic for CYP51A1 (Fig� 1�7) as well as 
other membrane P450s [45, 50], which is likely 
to facilitate interactions with the lipid core of the 
bilayer�

This hydrophobic surface is formed by the 
N-terminal portion of the catalytic domain to-
gether with the helix F–G region, and there are 
distinctive structural differences between mam-
malian P450s and soluble prokaryotic P450s for 
this portion of the catalytic domain� The initial 
comparison of the first structure of a microsomal 
P450, CYP2C5, with structures of CYP102 and 



8 T. L. Poulos and E. F. Johnson

Fig. 1.7  Surface rendering of full-length, Saccharomyces 
cerevisiae CYP51A1, (PDB: 4KOF) with acidic and basic 
residues colored black and gray, respectively� Note the rela-
tive absence of charged residues on the surface of the catalyt-

ic domain surrounding the entrance channel and the TMH� 
Itraconazole is depicted as a stick figure in the entrance 
channel� The hydrophobic surface surrounding the entrance 
channel is oriented toward the membrane in Fig� 1�6� efj1

 

Fig. 1.6  Hypothetical model for the membrane binding 
of microsomal P450s� The cartoon depicts the experi-
mentally determined fold of full-length, Saccharomyces 
cerevisiae CYP51A1 (PDB: 4KOF)� For reference, the 
structure of the TMH is flanked by modeled arrays of 
phospholipid molecules depicted as CPK atoms� The am-
phipathic N-terminal helix is positioned at the transition 

of the polar head group and the hydrophobic layers with 
its hydrophobic surface oriented toward the lipid layer� 
The heme and bound inhibitor, itraconazole, are also 
rendered as CPK atoms� Itraconazole passes out of the 
access channel between helices A′ and F′, which are ori-
ented toward the lipid portion of the bilayer� TMH trans-
membrane helix
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CYP101 [50, 51] indicated that the N-terminal 
portion of the catalytic domain from the linker 
region and to the helix B–C loop of CYP2C5 is 
shifted significantly toward the proximal face 
when compared to structures of prokaryotic 
P450s (Fig� 1�8)� The generality of this observa-
tion was established by a retrospective analysis 
of a larger number of structures from diverse 
eukaryotic and soluble prokaryotic P450s by 
Denisov et al� [52]� As a result of this shift in 
position, the heme A-ring propionate is oriented 
toward the proximal side of the heme plane in 
most mammalian membrane P450s, where it 
often interacts with basic amino acid side chains� 
Notable exceptions are eukaryotic CYP51A1 
and the non-monooxygenases, CYP8A1, a pros-
tacyclin synthase and CYP74A1, a plant allene 
oxide synthetase� The heme A-ring propionate 
resides more typically on the distal side of the 
heme plane in prokaryotic P450s, with some ex-
ceptions. This shifted N-terminal/β-sheet domain 
resides near the connector between helices F and 
G, which is typically longer in eukaryotic P450s 
than in soluble, prokaryotic P450s� The structure 
of the F–G helical region varies extensively be-
tween mammalian P450s and often exhibits two 

short helices, F′ and G′. Together these elements 
form the hydrophobic surface near the N-termi-
nus of the catalytic domain that is likely to be 
inserted into the membrane [45, 50]�

The orientation of the hydrophobic surface 
toward the membrane is supported by studies 
indicating that antibody epitopes in this region 
are inaccessible to the antibody when CYP2B4 
is in its native membrane [53], whereas epitopes 
on other portions of the molecule react with their 
respective antibodies� These and other epitope-
mapping studies indicate that extensive por-
tions of the surfaces of drug-metabolizing P450s 
are accessible to the antibodies when bound to 
membranes, as shown in Fig� 1�9 and reviewed 
in more detail [54]� Atomic force microscopy ex-
periments estimate that the height of microsomal 
CYP2B4 above a model phospholipid membrane 
is roughly 35–45 nm [55]� This would require a 
portion of the protein to be buried in the mem-
brane, which is likely to be the hydrophobic 
region near the N-terminus of the catalytic do-
main� Additionally, studies of the association of 
CYP2B4 with Langmuir–Blodgett phospholipid 
monolayers indicate that the protein displaces an 
area that is larger than a single TMH [56]� This 

Fig. 1.8  Superposition of CYP101A1 ( light gray) and 
CYP2C8 ( dark gray)� The hemes are shown as stick fig-
ures with oxygen atoms colored black� The heme iron is 
depicted by a sphere� Although helices I through K su-

perimpose well, the N-terminal region is shifted outward 
for CYP2C8 relative CYP101� Different orientations are 
evident for the heme A-ring propionates
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result would be consistent with the penetration 
of the hydrophobic surface of the protein into the 
adjacent leaflet of the lipid bilayer�

Molecular dynamics (MD) simulations of the 
binding of human microsomal P450s with phos-
pholipid bilayers, reported initially for CYP2C9 
[57–59] and CYP3A4 [52, 60], observed stable 
binding orientations for the catalytic domains 
with the hydrophobic surface of the catalytic 
domain immersed in the proximal leaflet of the 
phospholipid bilayer, Fig� 1�10� The structure of 
the catalytic domain was reported to be stable 
and exhibiting dynamic motion with root-mean-
square deviation (RMSD) values of less than 
2�5 Å from the starting structures�

The maximum heights of the catalytic do-
mains above the membrane surface in these MD 
simulations are similar to that of 35–45 nm deter-
mined by atomic force microscopy for CYP2B4 
[55]� Additionally, the tilt of the heme plane rela-
tive to the membrane normal, Fig� 1�10, in the 
models of membrane-binding interactions can be 
compared to results from biophysical studies for 
this angle� This tilt angle has been estimated for 
CYP17A1 and CYP21A2 based on the anisotro-
pic decay of the absorption spectrum following 
photodissociation of carbon monoxide complex-
es by polarized light� This approach gives two 
solutions for the angle of the orientation of the 
heme plane relative to the membrane normal of 
either 43° or 27° and 52° or 12°, respectively for 

the two enzymes [61]� The larger values are simi-
lar to a single value for tilt angle of 59�7 ± 4�1° 
estimated from the dichroic ratio observed for 
the absorption of visible light by the heme chro-
mophore of P450 3A4 bound to nanodisc mem-
branes� Tilt angles for the heme in the initial MD 
simulations for P450 2C9 were reported to be 
55 ± 5° [58], and in additional MD simulations 
for P450s 1A2, 2A6, 2C9, 2D6, 2E1, and 3A4, 
using similar conditions, the heme-tilt angles 
differed between P450s and ranged from 56 ± 5° 
for CYP3A4 to 72 ± 6° for CYP2D6 [59]� Differ-
ences between P450s are not unexpected, as the 
distal surfaces of microsomal P450s differ signif-
icantly, and these differences are likely to affect 
the angle tilt and extent of membrane insertion�

Heme-tilt angles observed for CYP3A4 in 
MD simulations from two different studies were 
reported to be 68�7°–75�9° [60] and 56 ± 5° [59]� 
The reported differences between the two MD 
simulations could reflect differences in the model 
membranes used in the simulations, as well as 
different initial models for the N-terminus used 
in the MD simulations� As structures for the na-
tive N-terminal domains were not available for 
CYP3A4, and the other proteins characterized in 
these studies, they were modeled de novo with 
the hydrophobic portion of the N-terminus mod-
eled as a TMH� The structure of the linker region 
in these proteins is less certain, and is likely to 
vary between P450s� X-ray crystal structures of 

Fig. 1.9  CPK rendering of the proximal (a) and distal 
surfaces (b) of CYP2C5 (PDB: 1N6B)� Antibody epit-
opes recognized when the P450s are bound to microsom-
al membranes are colored dark gray, as reviewed [54]� 
Several conserved amino acid side chains that have been 
implicated in P450 reductase interactions with CYP2B4 

[156] are colored medium gray� The orientation of the 
protein is similar to that depicted in Fig� 1�6 efj-1 with 
the N-terminus of the catalytic domain positioned toward 
the bottom of the figure� (Reproduced from Cytochrome 
P450, Third Edition with permission from Springer 
Science+Business Media)
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mammalian microsomal P450s have generally 
been determined for proteins without their N-ter-
minal TMH, and, in most cases, the native linker 
regions of family 2 P450s were modified to cor-
respond to the linker region of CYP2C3, as de-
scribed for CYP2C5, [40, 41, 50]� Moreover, the 
structures of these short N-terminal regions have 
not been defined for many P450s� CYP3A4 is an 
exception [62, 63], and the native linker region 
exhibits an Aʺ helix following a turn that directs 
the polypeptide chain along β-sheet 1 from the 
N-terminus of the catalytic domain near the hy-
drophilic proximal face toward the hydrophobic 
distal surface� This trajectory is similar, but not 
identical, to that observed more recently for the 
structure of full-length S� cerevisiae CYP51A1, 
Fig� 1�6� The initial model used by Baylon et al� 
[60] incorporated a flexible link between helix Aʺ 
and the TMH, which provides some flexibility 
for the orientation of the TMH independently of 
the catalytic domain during the MD simulation� 

The initial model used by Berka et al� [59] for the 
N-terminus CYP3A4 was based on their earlier 
equilibrated CYP2C9 model obtained following 
a 0.25 μs MD simulation [58]� Interestingly, the 
helix Aʺ region and the TMH of the initial model 
of P450 2C9 were built as a continuous helix, but 
a kink developed between helix Aʺ region and the 
TMH during the MD simulation that allowed the 
polar Arg side chains in the linker region to reside 
in the polar region of the bilayer, and the TMH 
to span the lipid core of the membrane, as illus-
trated in Fig� 1�10 by a 1 μs equilibrated model 
from a later study [59]. Helix Aʺ may not be a 
generally conserved feature for linker regions, 
as the same segment of the native linker regions 
does not exhibit an Aʺ helix in the structure of 
human CYP1A2 [64], and is not evident in the 
MD simulation model of CYP1A2 [59]� Both 
CYP1A2 and CYP3A4 exhibit short N-terminal 
helices that are roughly orthogonal to the TMH 
and that are positioned at the interface between 

Fig. 1.10  Immersion of CYP2C9 in a dioleoylphos-
phatidylcholine (DOPC) lipid bilayer. ( Left) Overlaid 
snapshots of CYP2C9 taken at 0.1 and 1 μs molecular 
dynamics (MD) simulations showing that the catalytic 
domain is immersed in a membrane depression framed 
by lipid phosphate groups (shown as orange spheres)� 
Water molecules are not shown for clarity� The N-termi-
nal helix shows precessional movement about the bilayer 
normal� The fold of the catalytic domain is conserved 
and agrees with that observed in X-ray crystallography 
experiments. ( Right) Snapshot taken at 1 μs of MD sim-
ulation showing positions of active site access and egress 

channels computed from the heme moiety using MOLE 
2.0.20. The water channel ( white) points toward the cy-
tosolic environment, whereas solvent channel S ( blue) 
points above the lipid head groups� All other channels 
point inside the bilayer� Channels 2e, 2c, and 3 point into 
the lipid head group region, whereas channels 4 and 2ac 
point below the lipid head groups� The heme tilt angle 
θ (between the heme plane and the bilayer normal z, 
i�e�, defined according to Baylon et al� [60] is depicted� 
(Reprinted with permission from [59], copyright 2013 
American Chemical Society� The channels are designat-
ed as described [93])
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the polar head group and lipid layers of the dis-
tal leaflet of the bilayer in the MD simulations 
of Berka et al� [59]� These models are similar to 
the bimodal membrane binding proposed for full-
length S. cerevisiae CYP51A1 [49]�

Although the MD simulations generally sup-
port the notion that a portion of the distal surface 
is embedded in the membrane surface, the results 
of biophysical experiments and topology studies 
often show differences that are difficult to recon-
cile with a single model� Fluorescent quenching 
of tryptophan residues introduced on the surface 
of CYP2C2 by site-directed mutagenesis sug-
gested that residues 36 and 69 flanking helix A 
and 380 in β-sheet 2 of CYP2C2 are inserted into 
the fatty acyl core of the bilayer, while residue 
80 on helix B and 225 at the turn between helices 
F′ and G′ are in the polar region of the phospho-
lipid bilayer [65], leading the authors to propose 
a more vertical orientation for CYP2C2 than was 
observed in the MD simulations for the closely 
related CYP2C9 [57, 58]� Experimental evidence 
indicates that P450s are present as both mono-
mers and dimers in membranes [66, 67], and a 
more vertical orientation relative to the mem-
brane surface would be consistent with models 
for the dimerization of the catalytic domain of 
N-terminally truncated P450 2C8 in aqueous so-
lution that involve interactions of the helix F–G 
loop region [63]� This model for the dimerization 
of 2C8 is supported by cross-linking studies for 
the membrane-bound full-length CYP2C8 [68]� 
Additionally, these cross-linking studies impli-
cated the linker region and TMH in the dimer-
ization of membrane-bound, full-length CYP2C8 
expressed in mammalian cells or in E� coli mem-
branes� Cys-scanning mutagenesis indicated that 
reactive cysteines reside on a single side of the 
TMH, whereas several consecutive residues were 
reactive in the linker region suggestive of a more 
flexible structure� This flexibility is necessary 
for reorientation of the proximal faces relative 
to TMH in order to form a P450 dimer through 
interactions of the helix F–G region� P450 di-
merization in membranes is thought, in some 
cases, to inhibit reduction by the microsomal 
cytochrome P450 reductase, so the monomer is 

likely to be the predominant functional form of 
the enzyme [66]�

As mitochondrial P450s lack the N-terminal 
TMHs found in microsomal P450s, the inter-
actions of the catalytic domain with the matrix 
side of the inner membrane are likely to be the 
predominant membrane interaction� Consistent 
with a role for the helix A′, F′, and G′ regions in 
membrane binding, these regions exhibit nonpo-
lar, exterior surfaces in structures of mitochon-
drial P450s 11A1 [69, 70], 11B1 [71], and 24A1 
[72]� Moreover, substitutions of more polar resi-
dues for hydrophobic residues on the F′ and G′ 
surfaces increase salt extractability and solubility 
of mitochondrial P450 27A1 [73]� The helix F–G 
region of mitochondrial P450 11A1 is also pro-
tected from chemical modification by membrane 
association [74]� Similarly, microsomal P450s 
expressed without their TMH retain capacities to 
bind to phospholipid membranes, and mutations 
made to the helix F′ and G′ regions of micro-
somal P450s 2C5 [41], 2D6 [75], and 7A1 [76] 
facilitate extraction in high salt buffers� These 
observations suggest the extended loop between 
helices F and G in eukaryotic P450s contributes 
to membrane binding for both mitochondrial and 
microsomal P450s�

1.4  Conformational Dynamics for 
Substrate Access

Many P450 structures are in the so-called closed 
state with no obvious way that substrates can 
gain access to the active site� As a result, sub-
strate entry and product egress may involve 
rather large conformational changes� Once the 
P450cam structure became available, an imme-
diate puzzle was how camphor gains access to 
the active site since the substrate is buried, and 
there is no obvious opening� The substrate-free 
and bound structures showed no differences, al-
though substrate-free P450cam exhibited higher 
thermal motion in the B′, F, and G helices, sug-
gesting that these regions must move to allow 
substrate to enter the active site [77]� The first 
clear indication that conformational changes are 
important in substrate binding was the struc-
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ture of palmitoleic acid bound to P450BM3 
[78], which was followed by a higher-resolution 
structure [79]� Interestingly, the experimentally 
observed conformational change was correctly 
predicted based on computational methods [80, 
81] before the substrate-bound crystal structure 
was solved� The main motion involves the F and 
G helices sliding over the surface of the I helix� 
This motion closes off the entry channel, indicat-
ing that substrates enter near the F/G loop region 
that is similar to that of P450cam�

There now are a handful of P450 structures 
in the open and closed forms and in all of them, 
the F and G helices and the F/G loop undergo 
large changes� Not surprisingly, the most exten-
sive analysis has been with P450cam� In the open 
form [82], the F and G helices move, and the 
B′ helix region becomes disordered. It also has 
been possible to trap the P450cam access channel 
using a series of tethered compounds where the 
substrate is attached to a long linker that extends 
out of the active site [83, 84]� A principal compo-
nent analysis of 30 different tethered compound 
structures indicates that there are three dominant 
conformational states available to P450cam: 
closed, partially open, and fully open [84]�

Two close homologues to P450cam with 
about 46 % sequence identity with P450cam, 
CYP101D1 [85] and CYP101D2 [86], have now 
been characterized� Both catalyze exactly the 
same reaction as P450cam, but there are sub-
stantial differences with respect to the open and 
closed states and the relationship between spin-
state and substrate binding� For example, CY-
P101D2 has been crystallized only in the open 
state, but camphor can be soaked into the crystals 
and binds in the active site [86]� The camphor, 
however, does not bind in a productive mode, 
but instead the carbonyl O atom of the substrate 
H-bonds with the water coordinated to the heme 
iron (Fig� 1�11)� MD simulations of CYP101D2 
show that this P450 can adopt various confor-
mational states, mainly by motions of the F/G 
helical substrate access channel, and provides a 
dynamic picture of substrate binding consistent 
with other P450s [87]� Perhaps the most unex-
pected difference between P450cam and its close 
cousins is that camphor binding to CYP101D1 

gives only about 40 % high spin even with excess 
substrate� In addition, the Fe2S2 ferredoxin that 
supports CYP101D1 catalysis, Arx, is able to re-
duce substrate-free 100 % low-spin CYP101D1, 
while only high-spin substrate-bound P450cam 
can be reduced by its redox partner, Pdx� In ad-
dition, Pdx can support CYP101D1 catalysis, 
while only Pdx can support P450cam catalysis 
[88]� There is nothing obvious in the structures 
that can explain these differences other than the 
fact that in CYP101D2 the substrate can bind to 
the low-spin open state, albeit in a nonproduc-
tive binding mode (Fig� 1�11)� One simple way of 
rationalizing these differences is to hypothesize 
that CYP101D1 can bind camphor in various 
orientations that are consistent with a water mol-
ecule remaining coordinated to the heme iron, 
as in CYP101D2, thus giving a substrate-bound 
mostly low-spin complex� Upon reduction of 
the heme iron, the water ligand is displaced and 
the substrate can “relax” to a productive binding 
mode� This hypothesis requires that CYP101D1 
is “looser” than P450cam and can more readily 
adopt the open conformation� The static X-ray 
structures do not reveal anything obvious to sup-
port this scenario, and proof one way or the other 
must await other approaches more in tune with 
measuring dynamic differences�

Fig. 1.11  The open substrate-binding channel in CY-
P101D2 (PDB: 3NV6) [86]� The substrate camphor binds 
but is not oriented in the productive binding mode� In-
stead, the camphor carbonyl O atom H-bonds with the 
water coordinated to the iron
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1.5  Substrate Access to Membrane 
P450s

Similar to prokaryotic P450s, membrane P450s 
have been crystallized in both open and closed 
conformations� For example, rabbit microsomal 
CYP2B4 and human CYP2B6 have been crystal-
lized in closed forms, as illustrated in Fig� 1�12, 
by a CYP2B6 4-(4-chlorophenyl)-imidazole 
complex [89] and in open forms, as illustrated 
by a complex of CYP2B6 with one molecule of 
amlodipine coordinated to the heme iron and a 
second molecule bound in the entry channel and 
protruding between helix F′ and A′ [90]� These 
two conformations of CYP2B6 differ in the 
positions of the helices A′, A, B′, F, F′, and G. 
Open forms of rabbit CYP2B4 have also been 
determined where the helix F′–G′ and helix B–C 
regions are displaced to a much greater extent 
by ligand and detergent interactions [91, 92]� 
Mammalian drug-metabolizing enzymes such 
as CYP2B4 bind a wide-range of compounds, 
and conformational changes are often associated 
with the capacities of these enzymes to facilitate 
the metabolic clearance of many compounds by 
accommodating large compounds in an open ac-

cess channel [45]� Mitochondrial P450s also ex-
hibit open and closed structures� CYP11A1 and 
CYP11B1 exhibit closed structures for substrate 
complexes with the helix F and F′ region block-
ing the substrate access channel described earlier 
for CYP101, Fig� 1�13� In contrast, mitochondrial 
CYP24A1 was crystallized in an open conforma-
tion with a large cleft between helices A′ and he-
lices F′–G′. As discussed in the previous section, 
these helices are likely to bind to the membrane, 
and the hydrophobic substrates cholesterol and 
vitamin D3, respectively, could enter each en-
zyme from the membrane� Most P450 substrates 
exhibit partition coefficients that favor the hydro-
phobic environment of the bilayer over the aque-
ous phase, which suggests that the concentration 
of substrate in the membrane may be higher than 
in solution under physiological conditions�

Structures obtained with bound ligands are 
often closed, and substrate access channels re-
main closed during MD simulations that are of 
short duration compared to substrate dissociation 
rates� Nevertheless, a number of solvent channels 
have been identified in X-ray crystal structures 
and during MD simulations in an aqueous me-
dium for soluble and truncated membrane P450s 

Fig. 1.12  Open (PDB: 3UA5) and closed (PDB: 3IBD) 
conformations of human CYP2B6� The open structure has 
two molecules of amlodipine ( spheres) with one molecule 
of amlodipine bound to the heme iron via nitrogen coor-
dination and the second amlodipine in the open-substrate 
access channel� The closed structure has one molecule of 

4-(4-chlorophenyl)imidazole ( spheres) coordinated to the 
heme iron with a closed substrate entrance channel� The 
heme is rendered as a stick figure with the iron shown as a 
sphere� Nitrogen and oxygen atoms are colored light gray 
and black, respectively
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[93]� As shown in Fig� 1�10, several of these 
channels are oriented into the lipid portion of 
the bilayer in MD simulations� Comparisons of 
the duration and extent of opening during MD 
simulations, for the catalytic domains in an aque-
ous environment and bound to membranes, are 
qualitatively similar and reveal differences in the 
frequency and duration of channel opening that 
reflect interactions between the catalytic domain 
and the membrane [57–60]� These solvent chan-
nels are thought to open and coalesce to form 
substrate access channels as seen for open con-
formations of soluble and membrane P450s de-
termined by X-ray crystallography [93]�

1.6  Substrate Complexes: Specific 
P450s

A fascinating structural feature of P450s is the 
ability to adapt to substrates of various sizes and 
shapes, yet retain the overall P450-fold and P450 
electron transfer and O2 activation chemistries� 
Most of our detailed understanding of protein–
substrate interactions derives from highly spe-
cific P450s that bind their respective substrates 
tightly and thus generate crystals that diffract 
well� Several substrates for various specific 
P450s are shown in Fig� 1�14� The size and shape 

of the various substrates shown in Fig� 1�14 are 
sufficiently diverse that the structural basis for 
what controls substrate specificity can, at least in 
part, be understood� As expected, all substrates 
are situated such that the atom to be hydroxylated 
is within 4–5 Å of the heme iron� Thus, regio- 
and stereoselective hydroxylation by the Fe(IV)-
O species is achieved by specific protein–sub-
strate interactions that hold the substrate in the 
correct position� The exception is P450BM3� The 
structure of the P450BM3 heme domain with 
palmitoleic acid [78] and N-palmitoylglycine 
[79] show that the fatty acid substrate is ≈ 7–8 Å 
from the iron which is too far for hydroxylation� 
However, NMR results indicate that the substrate 
moves to be within 3 Å of the iron upon reduction 
from Fe(III) to Fe(II) [94]� Precisely how reduc-
tion is linked to such a large repositioning of the 
substrate remains unknown�

P450cam and P450epoK [95] represent 
the two extremes of substrate size and shape� 
Hence, a comparison between these two struc-
tures provides some insights on which regions 
of the structure change most in response to the 
requirements of substrate specificity� The two 
regions that differ the most between P450epoK 
and P450cam are the F, G, B′ helices, and the 
F/G loop (Fig� 1�15). The B′ helix is rotated 90° 
in P450epoK compared to P450cam� This re-

Fig. 1.13  Open (PDB: 3KNV) and closed (PDB: 3NAO) 
conformations of mitochondrial rat CYP24A1 and bo-
vine CYP11A1, respectively� The heme is rendered as 

a stick figure with the iron shown as a sphere� Nitrogen 
and oxygen atoms are colored light gray and black, re-
spectively
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orientation opens the substrate-binding pocket, 
thus making room for the thiazole ring of the 
substrate� The F and G helices do not superim-

pose well, and the F/G loop adopts a substantially 
different conformation� There also are examples 
where a second substrate molecule is trapped in 
the access channel possibly because crystalliza-
tion favors a partially open active site, thus leav-
ing room for an additional molecule� Anecdotal 
observations not usually published show that E. 
coli “mystery” molecules will sometimes bind in 
the access channel or active site� This likely re-
flects the general hydrophobic nature of P450 ac-
tive sites and the open/close dynamics that might 
make it possible for even specific P450s to bind 
different molecules present in the growth media�

An unusual example of a P450–substrate in-
teraction is CYP107H1 (P450BioI)� P450s par-
ticipate in polyketide biosynthesis, and these 

Fig. 1.15  A comparison of the P450cam and P450epoK 
(PDB: 1PKF) active sites� The very different size and 
shape of the substrates illustrate how the active site sub-
stantially differs from one P450 to the next

 

Fig. 1.14  Substrates bound to the active site of various P450s
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pathways involve multiple enzymatic steps that 
process a growing fatty acid-like chain into the 
array of complex and well-known antibiotics and 
other natural products� In many of these systems, 
an acyl carrier protein (ACP) forms a covalent 
bond with the substrate and transfers the sub-
strate from one enzyme to the next� Where hy-
droxylation reactions are required, P450s often 
are involved, which means that in some of these 
systems the substrate is delivered to the P450 by 
the carrier protein� One well-characterized sys-
tem is from the biotin biosynthetic pathway in B. 
subtilis [96]� P450BioI catalyzes the formation of 
pimelic acid through the oxidative cleavage of a 
fatty acid carbon–carbon bond, which then pro-
ceeds on to biotin [97, 98]� There is now a crystal 
structure of such fatty acid acylated ACP protein 
complexed with the P450 (Fig� 1�16) [99]� Struc-
turally, P450BioI is a typical P450, yet here the 
substrate entry pocket has been adapted to bind 
ACP� Note that the substrate enters the active site 
near the connection between the F and G helices 
that is the main entry point for substrates in many 
P450s�

There is one final example of P450 substrate 
adaptability, but in this case there may be two dif-
ferent active sites and two enzyme activities� CY-
P170A1 from Streptomyces coelicolor catalyzes 
the oxidation of epi-isozizaene to an epimeric mix 
of 5-albaflavenol (Fig� 1�17)� The structure shows 
that there are two substrate molecules bound, one 
in the expected location just above the heme and 
a second in the substrate access channel [100]� 
What was most unexpected is the finding that 
the conversion of farnesyl diphosphate to epi-
isozizaene is catalyzed by CYP170A1� Sequence 
comparisons between known sesquiterpene syn-
thase enzymes pointed toward a particular region 
of CYP170A1 that might be involved (arrow in 
Fig� 1�17)� Subsequent mutagenesis in this region 
eliminated the synthase activity but not the P450 

activity [100]� Given that we are accustomed to 
viewing enzymes as requiring a relatively large 
size to properly form the active site, it might at 
first seem odd that such a small region of a P450, 
or any enzyme, could serve a catalytic function� 
However, sesquiterpene synthase enzymes ap-
pear not to operate by typical acid–base catalysis 
requiring suitably positioned active site groups to 
move protons [101]� Instead, it appears that metal 
ions and the substrate diphosphate are the keys to 
catalysis and that the enzyme may serve a more 
passive role, providing a template for substrate 
and metal ion binding�

Fig. 1.16  The crystal structure of P450BioI (PDB: 3EJB) 
[99]. ACP ( darker molecule) binds such that the fatty 
acid substrate attached to ACP extends into the active site 
of the P450� The opening near the F/G loop region that 
enables substrate entry is the same as observed in many 
other P450s� ACP acyl carrier protein
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1.7  Active Site Diversity of 
Mammalian P450s

As with prokaryotic P450s, active site diversity 
underlies the unique roles of P450s in mamma-
lian physiology� Structures now are available 
for several of the enzymes that hydroxylate the 
aliphatic side chains of cholesterol and vitamin 
D3� P450 11A1 catalyzes three successive oxy-

genation reactions to produce sequentially 22R-
hydroxycholesterol, 22R,20R-dihydroxycholes-
terol, and an unstable product that undergoes 
carbon–carbon bond scission to produce the 
21-carbon steroid, pregnenolone, and isocapro-
aldehyde� It is thought that the peroxyanion in-
termediate that precedes formation of the oxene 
is the reactive intermediate for the third reaction 
[102]� The crystal structure of human mitochon-

Fig. 1.17  The CYP170A1 (PDB: 3DBG) crystal struc-
ture [100] and reaction� Substrate 1 binds near the heme 

as expected, while substrate molecule 2 binds in the open 
access channel� The site thought to be responsible for the 
sesquiterpene cyclase activity is indicated by the arrow
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drial CYP11A1 with cholesterol bound [70] indi-
cates that the tetracyclic sterol moiety is bound 
in the entrance channel to the substrate-binding 
cavity under the helix F–F′ region and above 

β-sheet 1 with C22 of the aliphatic side chain po-
sitioned closest to the heme iron, Fig� 1�18a� Ad-
ditional structures of P450 11A1 [69, 70] with the 
first and second products of the reaction, 22R-

Fig. 1.18  Substrate and inhibitor binding to human P450s 
that catalyze key steps in steroid metabolism� The sub-
strates, inhibitor, and heme are shown as stick figures with 
the heme iron depicted as a sphere� Nitrogen and oxygen 
atoms are colored light gray and black, respectively� The 
dotted lines represent the distance from the heme iron for 

sites of metabolism labeled with the identity of the site 
of metabolism and the distance� The CYP17A1 inhibitor 
abiraterone binds directly to the heme iron� For reference, 
a portion of helix I and the helix B–C loop are shown� 
The topology and length of the helix B–C loops exhibit 
significant variation between proteins
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hydroxycholesterol and 22R,20R-dihydroxycho-
lesterol, indicate that the tetracyclic sterol moiety 
is positioned similarly to that of cholesterol in 
each case, with changes in the dihedral angles of 
the side chain positioning the appropriate site of 
metabolism close to the heme iron� The structure 
of CYP46A1 [103] indicates that cholesterol sul-
fate binds similarly, but the aliphatic side chain 
is positioned with C24 closest to the heme iron, 
Fig� 1�18b� In contrast, an X-ray crystal structure 
of P450 2R1 [104] reveals that the sterol moiety 
of vitamin D3 is located under helix G near he-
lices I and B′ with the site of metabolism, C25, 
positioned closest to the heme iron, Fig� 1�18c�

Other steroid biosynthetic enzymes catalyze 
reactions that modify the rigid tetracyclic steroid 
ring system� Three enzymes, P450s 7A1, 7B1, 
and 39A1, insert an oxygen atom into the 7α C–H 
bond to produce 7α-hydroxylated intermediates 
in the formation of bile acids� A structure of P450 
7A1 with the cholesterol analog, cholest-4-en-
3-one (PDB code 3SN5), indicates that the 7α 
C–H bond is positioned closest to the heme iron 
and that the plane of the sterol ring is parallel to 
the plane of the heme, Fig� 1�18d� The aliphatic 
side–chain passes out of the substrate-binding 
cavity between helix I and the helix B′–C loop. 
Structures of P450s 19A1 [105] and 11B1 [71] 
also place the tetracyclic steroid ring system of 
androst-4-ene-3,20-dione and 21-hydroxypro-
gesterone in a similar location, but with the C19 
methyl group, Fig� 1�18e, and the 11β C–H bond, 
respectively, oriented toward the heme iron� P450 
19A1 catalyzes three successive oxidations of the 
19-methyl group with the product rearranging to 
produce formic acid and the unsaturated A ring of 
the estrogen, estrone�

Other reactions catalyzed by steroid biosyn-
thetic enzymes target the ends of the steroid 
ring system� The structure of the adrenal 21-hy-
droxylase [106] with 17α-hydroxyprogesterone 
bound reveals that the tetracyclic steroid is ori-
ented almost perpendicular to the plane of the 
heme with the 17β-side chain positioned near 
the heme iron� P450 17A1, which catalyzes the 
17α-hydroxylation of progesterone and cleav-
age of the 17β-side chain of the pregnenolone to 
form androstenedione, has been crystallized with 
abiraterone [107] in the active site, Fig� 1�18f� 

Abiraterone is used clinically for the treatment 
of prostate cancer via inhibition of androgen 
formation catalyzed by P450 17A1� The ste-
roid moiety of abiraterone is oriented similarly 
to 17α-hydroxyprogesterone in the P450 21A2 
structure, with abiraterone coordinated to the 
heme iron through a heterocyclic nitrogen group� 
Structures of human CYP51A1 with inhibitors 
bound in the active site are also available to aid 
in the development of CYP51A1 inhibitors that 
will target these enzymes in pathogens without 
inhibiting the human enzyme [108, 109]�

As is evident in Fig� 1�18, P450’s have evolved 
to catalyze these reactions by positioning the 
substrates for site-selective metabolism, and, in 
doing so, different portions of the P450 structure 
are utilized for substrate binding� This, in turn, 
reflects differences in the sizes and properties of 
the amino acids that occupy the active site cav-
ity as well as changes in protein conformation� 
Examples of these conformational differences 
are readily apparent when comparing the helix 
B–C loop regions depicted in the six panels of 
Fig� 1�18�

In contrast, P450s in families 1A, 2A, 2B, 2C, 
2D, 2E, 2J, and 3A frequently contribute to the 
metabolic clearance of drugs and other xenobiot-
ics� In the absence of evolutionary selection to 
optimize the binding of these compounds, many 
xenobiotic substrates are likely to exhibit rela-
tively poor fits in P450 active sites and several 
isoenergetic binding poses may be possible, as 
suggested by the formation of multiple metabo-
lites� Reaction rates are likely to reflect probabili-
ties for binding to specific enzymes, relative re-
activity of potential sites of reaction, and proba-
bilities for placement of the sites of reaction near 
the oxene intermediate, leading to uncoupling, 
multiple metabolites and poor catalytic efficien-
cies� Fortunately, the enzymes that catalyze these 
reactions exhibit significant active site diversity 
that provides protection from a wide range of 
structurally diverse xenobiotics�

Family 1 and 3 enzymes exhibit very different 
active-site cavities� The enzymes in family 1 typ-
ically metabolize polynuclear aromatic hydro-
carbons, and the structures of human CYP1A1 
[110], 1A2 [64], and 1B1 [111] exhibit narrow 
active-site cavities that complement the size and 
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planarity of polynuclear aromatic hydrocarbons, 
as illustrated for CYP1A2 in Fig� 1�19a� These 
narrow active-site cavities are reinforced by a 
kink in helix F, which directs a portion of helix 
F and helix F′ between the active site and the 
N-terminal domain� This is likely to add rigid-
ity to the narrow active site cavity� In contrast, 
CYP3A4 exhibits a large and open active site 
cavity (Fig� 1�19b) with a much larger exposure 
of the heme surface to substrates than seen in 
other xenobiotic metabolizing enzymes [62, 112]� 
This difference underlies the capacity of 3A4 to 
catalyze oxygenation of the steroids at carbons 6 
or 7 in the center of the ring system as seen for 
steroidogenic CYP7A1 in Fig� 1�18� CYP3A4 is 

also unusual because helix F is short and does not 
cross above the active site� As a result, the active 
site can expand and contract by the flexible mo-
tion of the long connector between helix F and F′ 
and changes in the positions of helices F′ and G′ 
[113]� The active-site cavities of human family 
2 P450s range from small for P450s 2E1 [114, 
115], 2A6 [116] Fig� 1�19c, 2A13 [117], and 2B6 
[89, 90] to large for 2C8 [63], Fig� 1�2C9 [118, 
119], 2C19 [120], and 2D6 [75, 121], and they 
can vary due to conformational changes associat-
ed with ligand access and binding [45]� As such, 
these enzymes contribute diverse capacities for 
xenobiotic metabolism�

Fig. 1.19  Portions of the structures of the complex of 
CYP1A2 with α-naphthoflavone (PDB:2HI4), CYP3A4 
with ritonavir (PDB:3NXU), CYP2A6 with coumarin 
(PDB:1Z10), and CYP2C8 with montelukast (PDB:2NNI) 
are shown as cartoons displaying secondary structures� 

The heme and ligands are depicted as stick figures with 
the heme iron shown as a sphere� The surfaces of the 
active-site cavities were calculated using VOIDOO [157] 
and rendered as a transparent surface� Nitrogen and oxy-
gen atoms are colored light gray and black, respectively
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1.8  Electron Transfer Complexes

P450s do not operate alone but must form a com-
plex with a redox partner for electron transfer� 
Protein redox complexes, including those involv-
ing P450s, are designed not to be very tight or 
long-lived� A complex that is too tight will have 
a slow dissociation rate, which precludes rapid 
turnover� Nature thus must strike a balance be-
tween specificity, affinity, and high turnover� 
Such complexes have proven quite difficult to 
crystallize, which is why there are very few pro-
tein–protein redox complexes in the PDB and, to 
date, there are only three crystal structures of a 
P450 complexed with a redox partner�

The first structure of a redox complex to be 
solved was that between the heme and FMN 
domains of P450BM3� Although P450BM3 is a 
bacterial enzyme, P450BM3 is more closely re-
lated in sequence, structure, activity, and redox 
partner to microsomal P450s than to other bac-
terial P450s� The unique feature of P450BM3 
is that the diflavin P450 reductase is linked to 
the C-terminal end of the heme domain, thus 
giving a catalytically self-sufficient enzyme� 
Crystals were obtained by removing the FAD 
domain [122]� The structure (Fig� 1�20) shows 

that the FMN domain docks on the proximal 
surface of the P450, which was expected, based 
on complementary electrostatic surfaces and 
mutagenesis studies� The linker connecting the 
heme and FMN domains had been proteolyzed 
during crystallization, thus raising the possibil-
ity that the structure is an artifact of crystalliza-
tion� Further experiments were carried out to test 
the functional validity of the model� Residues 
found at the interface were probed by mutagen-
esis [123]� Replacing Leu104 of P450BM3 with 
a Cys (Fig� 1�20) at the interface should not alter 
binding or electron transfer because replacing 
Leu with a smaller side chain should not cause 
any steric problems in forming the proper com-
plex� However, covalent modification of the mu-
tant Cys104 side chain with a large fluorophore 
should interfere with electron transfer� For these 
studies, laser flash photolysis was used wherein a 
laser flash photoreduced a potent reductant, deaz-
ariboflavin, which in turn reduces the FMN in the 
complex� The reduced FMN semiquinone then 
reduces the P450 heme� As predicted, mutation 
of Leu104 to Cys had no effect, while chemical 
modification of Cys104 dramatically decreased 
the FMN-to-heme electron transfer rate, thus 

Fig. 1.20  Crystal structure of the P450BM3 electron-transfer complex (PDB: 1BVY) [122]� The closest contact at the 
interface is between Gln387 in the heme domain and the FMN
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implicating Leu104 as an important residue in 
forming the proper electron transfer complex�

A second prediction from the P450BM3 elec-
tron-transfer complex structure that can be tested 
is the electron transfer path� The heme–FMN do-
main interface is shown in Fig� 1�20� The closest 
point of contact between the two domains plac-
es the FMN about 4 Å from the peptide back-
bone of Gln387� The peptide chain from Gln387 
to the heme ligand, Cys400, could constitute 
an electron transfer path� To test this hypoth-
esis, Gln387 was converted to Cys and modi-
fied with (4-bromomethyl-4′-methylbipyridine)
[bis(bipyridine)]ruthenium(II) [124]� The cova-
lently attached Ru(II) is photoreduced, and the 
rate of reduction of the heme Fe(III) to Fe(II) 
by the photo-generated Ru(I) was followed� The 
same experiment was carried out with Ru(II) at-
tached to Cys62� Both Cys62 and Cys387 are 
about the same distance from the heme, but 
electron transfer from Cys60-Ru(II) must make 
“through-space” jumps, while there is a continu-
ous covalent connection between Cys386-Ru(II) 
and the heme ligand, Cys400� In the case of 
Cys387-Ru(II), the heme iron was reduced at a 
rate of 4�6 × 105 s− 1, while Cys60-Ru(II) did not 

reduce the heme iron� These results indicate that 
if the crystal structure of P450BM3 electron-
transfer complex is functionally relevant, then 
the electron-transfer reaction can readily proceed 
along the direct point of contact between the 
FMN and heme domain�

The structure of the complex formed between 
adrenodoxin (Adx) and P45011A1, which con-
verts cholesterol to pregnenolone, also has been 
solved� The crystal structure of the complex was 
solved by fusing adrenodoxin to the N-terminal 
end of CYP11A1 [70]� Although a good part of 
the Adx was disordered and not visible in elec-
tron-density maps, the interface with CYP11A1 
was well defined (Fig� 1�21)� The interface is 
dominated by electrostatic interactions and those 
residues involved are consistent with mutagen-
esis and chemical modifications studies [125–
127]� A comparison between the free enzyme 
[69] and the enzyme complexed with Adx are es-
sentially identical, so Adx binding does not result 
in any significant structural change�

The most recent structure to be determined 
is the P450cam–Pdx complex crystal [128, 129] 
and NMR structures [128]� The P450cam–Pdx 
complex has received considerable attention es-

Fig. 1.21  Crystal structure of the complex formed be-
tween CYP11A1 and adrenodoxin (Adx; PDB: 3N9Y) 
[70]� Only part of the Adx is visible in electron-density 

maps� The interface is dominated by ionic interactions� 
Adx binding does not result in any major structural 
change in CYP11A1
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pecially since it was established some time ago 
that P450cam is not only very selective for Pdx 
but Pdx also plays an effector role by inducing 
structural changes required for electron transfer 
and O2 activation [130–132]� Prior to the re-
cent crystal structure of the P450cam–Pdx com-
plex, Pochapsky et al� developed a model of the 
P450cam–Pdx complex using NMR and molec-
ular modeling [133] that is supported by muta-
genesis data [134–138]� A wealth of spectral data 
shows that when Pdx binds on the proximal side 
of the heme, spectral changes ensue that are asso-
ciated with the opposite distal substrate-binding 
pocket� These changes include resonance Raman 
[139], infrared [138, 140], and NMR [141–143]� 
NMR studies [144–146] showed that Pdx bind-
ing results in changes in the B′, C, F, and G heli-
ces that are well removed from where Pdx binds 
(Fig� 1�22). The B′ helix provides key contacts 
with the substrate, while large movements of 
the F and G helices are the main features of the 
open/close transition [82]� Pdx binding to oxy-
P450cam decreases the stability of the oxy com-
plex 150-fold [147], while oxidized Pdx shifts 
oxidized P450cam to the low-spin state [148]� All 
these observations point to significant structural 
changes in P450cam when Pdx binds�

The crystal structure of the P450–Pdx com-
plex [128, 129] shows that P450cam adopts the 
open conformation, which is consistent with pre-
vious spectroscopic studies� The structure of the 
reduced form of the complex has four P450–Pdx 
molecules in the asymmetric unit and in three of 
these, the product, hydroxycamphor, is bound 
[129]� This means that the open form in the com-
plex is active in O2 activation and hydroxylation� 
Interactions at the interface are consistent with 
earlier NMR studies [145] and mutagenesis data 
[43, 137, 138, 149–153]� PdxAsp38 interacts with 
P450camArg112 (Fig� 1�22), which requires little 
movement in either protein in the vicinity of the 
ion pair� However, interactions involving Pdx-
Trp106, which has been known for some time to be 
a critical residue [131], require movement of the 
C helix (Fig� 1�22)� In effect, the C helix moves 
“up” about 2–3 Å in order to form nonpolar and 
H-bonding interactions with PdxTrp106� This mo-
tion of the C helix is coupled to movements in the 
B′, I, F, and G helices, all of which are involved 
with substrate access or direct contacts with both 
substrates, camphor and O2� This motion results 
in a large movement of the F and G helices and 
the F/G loop, which effectively opens the active 
site to bulk solvent� This open conformation is 

Fig. 1.22  Structure of the P450cam–Pdx complex (PDB: 
4JX1) [129]� A key interaction is between PdxTrp106 and 
the C helix in P450cam� The C helix moves “up” in order 

to optimize interactions with PdxTrp106� This motion is 
coupled to an opening of the active site access channel on 
the opposite side of the protein (F/G helical region)
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the same as observed by Lee et al� [82] The main 
difference is that in the structure solved by Lee 
et al� [82] the B′ helix is disordered, while in a 
complex with Pdx the entire P450cam is highly 
ordered and the key interactions between cam-
phor and the local environment remain, by and 
large, unchanged from the closed conformation� 
The main driving force for the conformational 
change appears to be PdxTrp106, which could not 
form tight interactions with P450cam without the 
structural switch�

The central question is why such Pdx-induced 
changes are important for activity� A possibly im-
portant part of the Pdx-induced structural change 
centers on the I helix near the O2-binding site� 
The switch in the I helix in going from the closed 
to open state results in opening of the I helix simi-
lar to what happens when O2 binds (Fig� 1�5)� The 
closed to oxy-complex opening of the I helix is 
about midway between the extremes of the closed 
to fully open switch� This opening of the I helix 
is required to enable the catalytic waters to move 
into place for proton transfer to dioxygen [31, 
33]� Thus, Pdx binding helps to stabilize the more 
oxy-like conformation of the I helix� However, 
the oxy-P450cam structure probably does not 
represent the final active state since Pdx binding 
perturbs the oxy-P450cam spectrum and results 

in a 150-fold destabilization of the oxy complex 
[147]� It has been argued that Pdx “pushes” the 
oxy complex more toward the active form that is 
probably the more open conformation� Pdx also 
alters the electronic properties of the thiolate li-
gand [147, 148], which could be due to a shorten-
ing of the peptide NH-thiolate H-bond observed 
in the P450cam–Pdx crystal structure�

Another large change that occurs when Pdx 
binds involves Asp251� Asp251 is part of the I 
helix and is usually Asp or Glu in many other 
P450s� Asp251 is essential for activity in P450cam 
[154], P450cin [155], and CYP101D1 [88]� The 
Asp251Asn mutant in P450cam exhibits a two-
orders-of-magnitude decrease in activity, yet re-
mains tightly coupled [154]� That is, nearly all 
the electrons funneled into the P450cam mutant 
are utilized for substrate hydroxylation and not 
the wasteful production of water or peroxide� 
This mutant also exhibits a kinetic solvent iso-
tope effect of 10 compared to 1�8 for wild-type 
P450cam [32]� This strongly implicates Asp251 
as being intimately involved with the proper de-
livery of protons to dioxygen required for het-
erolytic cleavage of the O–O bond� The problem 
with this view, however, is that Asp251 is tied 
up with Arg187 and Lys178 in two strong ion 
pairs (Fig� 1�23)� However, in the Pdx complex, 

Fig. 1.23  The region around Asp251 in P450cam with 
and without Pdx bound� In the Pdx-free closed state, 
Asp251 is tied up in strong ion pairs with Arg186 and 
Lys178� When Pdx binds these ionic interactions are bro-

ken, thereby releasing Asp251 for its role in shuttling sol-
vent protons to the iron-linked O2 molecule required for 
O–O bond cleavage and thus, O2 activation
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these ion pairs are broken, which frees Asp251 to 
serve its proposed role in shuttling protons from 
bulk solvent into the active site� It thus appears 
that an important part of Pdx binding may be to 
“arm” the proton delivery machinery required for 
proton-coupled electron transfer�

The next obvious question is whether or not 
this sort of redox partner-mediated conforma-
tional change required for activity is a general 
property of all P450s or is limited to P450cam� 
The weight of the evidence so far indicates that 
P450cam may be an outlier� A number of P450s 
are known to be supported by nonphysiological 
redox partners and some redox partners, such as 
P450 reductase, service a large number of P450s� 
The only structural comparisons that can be made 
to address this question are the P450cam–Pdx 
and CYP11A1–Adx complexes [69]� CYP11A1 
does not change to the open form in the complex 
but remains closed [69, 70]� However, Asp290 
(corresponds to Asp251 in P450cam) is not tied 
up in ion pairs and is exposed to bulk solvent� 
Hence, no structural changes are required to free 
Asp290 for catalysis, although it has yet to be es-
tablished if Asp290 is essential for CYP11A1 ca-
talysis� Given that Nature has so many P450s, it 
is doubtful that P450cam is the only P450 where 
selective redox partner binding coupled with 
conformational selection is required for activity� 
It should only be a matter of time before similar 
P450s are uncovered and analyzed in depth� Just 
as interesting a question is the biological basis for 
such control� What is the evolutionary advantage, 
if any, of P450cam exhibiting such specificity, 
while very closely related P450s do not?

1.9  Conclusion

The large increase in P450 crystal structures over 
the past few years is due in large part to tech-
nological advances in protein expression and 
purification� Just as important are the increasing 
genome databases which now makes it relatively 
easy to “discover” new P450s� The sophistication 
of user-friendly crystallization robots, software, 
and synchrotron data collection has opened up 
crystallography to the nonexpert which also has 

been a major contributor to the ever-expanding 
number of structures deposited in the protein da-
tabase� In fact, the field is now at the stage where 
expression, purification, characterization, and 
crystal structure determination can outpace func-
tional and biological studies� Many structures 
now are being solved before one knows much 
about function� We thus must start using structur-
al information to guide functional and biological 
studies� This could be particularly important with 
orphan P450s that will continue to increase in 
number as more and more P450s are discovered 
in new and interesting places� Such advances 
coupled with powerful computational resources 
that can be used for molecular modeling and in 
silico screening of potential substrates can sig-
nificantly contribute to a better understanding 
of function� Recent advances in defining vari-
ous conformational states also is quite important 
since which conformational state one uses for 
virtual screening of substrate/inhibitors is obvi-
ously quite important� Now, however, we have a 
better idea on the various conformational states 
available to P450s which will further sharpen 
predictive computational tools� We thus antici-
pate that P450 structural biology will continue to 
move quickly but that much less time and energy 
will be devoted to the actual structure determina-
tion and instead, will be focused on function�
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Abbreviations

POR NADPH-cytochrome P450 oxi-
doreductase

POR POR gene
P450 Cytochrome P450
cyt c Cytochrome c
cyt b5 Cytochrome b5
NOS Nitric oxide synthase
FNR Ferredoxin-NADP+ reductase
Fld Flavodoxin
FMN domain FMN-containing flavodoxin-like 

domain
FAD domain FAD-containing FNR-like domain 

plus the connecting domain
P450BM3 Bacillus megaterium flavocyto-

chrome P450BM3
MS Methionine synthase
MSR Methionine synthase reductase
ER Endoplasmic reticulum
HO Heme oxygenase

2.1  Introduction

Cytochrome P450 (P450) electron transport is 
mediated by a multicomponent monooxygen-
ase system, in which reducing equivalents from 
NADPH (Nicotinamide Adenine Dinucleotide 
Phosphate) are transferred to molecular oxygen 
via one of many cytochrome P450 isozymes [1, 
2]� Depending on the cellular location and their 
redox partners, P450s are generally divided into 
two major classes, class I and class II� Class l 
includes mitochondrial and bacterial P450s that 
use two separate redox partners consisting of an 
iron–sulfur protein (ferredoxin/adrenodoxin) and 
a flavin-containing reductase (ferredoxin/adreno-
doxin reductase)� The class II P450s are micro-
somal monooxygenases that receive electrons 
from NADPH-cytochrome P450 oxidoreductase 
(POR), the founding member of the diflavin re-
ductase family� Both the reductase and the mo-
nooxygenases are integral membrane proteins� In 
addition, there are many minor classes of P450s 
reviewed in Hannemann, et al�[3], including 
P450 proteins that are fused to their own difla-
vin reductase partner in one polypeptide chain, 
e�g�, P450BM3 from Bacillus megaterium (see 
Fig� 2�1)� Most mammalian P450s are located in 
the endoplasmic reticulum (ER)� In humans, 50 
of 57 P450s are microsomal and the remaining 
seven are located in mitochondria� The micro-
somal P450s use a single POR for electron deliv-
ery from NADPH� In addition, some microsomal 
P450s also use cytochrome b5 (cyt b5)�

P� R� Ortiz de Montellano et al� (eds�), Cytochrome P450, DOI 10�1007/978-3-319-12108-6_2  
© Springer International Publishing Switzerland 2015
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POR is a membrane-bound ~ 78-kDa protein� 
POR is the prototypic member of the diflavin 
oxidoreductase family of enzymes that contain 
one molecule each of flavin adenine dinucleo-
tide (FAD) and flavin mononucleotide (FMN) 
in a single polypeptide� These enzymes perform 
a step-down function, i�e�, transferring electrons 
from the two-electron donor NADPH to one-
electron acceptors (e�g�, heme), with the FAD 
functioning as a dehydrogenase flavin and FMN 
as an electron carrier� In other words, NADPH 
transfers a hydride ion to the FAD, which trans-
fers these two electrons one at a time to the FMN� 
It is the FMN hydroquinone that is the ultimate 
electron donor, again one by one, to P450 and 
other electron transfer partners� Other prominent 
members of this family are the reductase domains 
of the nitric oxide synthase (NOS) isozymes (re-
viewed in [4–7] and flavocytochrome P450BM3 
(P450BM3) from Bacillus megaterium [8], and 
the flavoprotein subunits of bacterial sulfite re-
ductase[9], all of which transfer electrons to 
heme, as well as methionine synthase reductase 
(MSR), which reduces Cob(II)alamin of methio-
nine synthase [10–12], human cancer-related 
novel reductase 1 (NR1) [13], pyruvate: NADP+ 
oxidoreductase from Euglena gracilis [14, 15], 
and reductase Tah18 protein from yeast [16]� The 
domain structures of these proteins are all similar 
to that of POR, containing the flavodoxin (Fld)-

like and ferredoxin-NADP+ reductase (FNR)-like 
folds, having similar functions and mechanisms 
of action (Figs� 2�1 and 2�2)�

POR functions to transfer electrons from 
NADPH to a number of microsomal electron ac-
ceptors, including not only P450s but also heme 
oxygenase (HO) [17], cyt b5 [18], squalene mono-
oxygenase [19], and possibly indole dioxygenase 
[20]� In addition, a number of nonphysiological 
electron acceptors, including cytochrome c (cyt 
c), ferricyanide, menadione, and dichloroindo-
phenol, have been used for biochemical charac-
terization of the enzyme� On the other hand, other 
members of the diflavin oxidoreductase family, 
including MSR, NOS, and P450BM3, transfer 
electrons to a single physiological acceptor� For 
NOS and P450BM3, both the donor and acceptor 
are located on the same polypeptide (Fig� 2�1)� 
However, both NOS and P450BM3 are dimeric 
molecules and the reductase domain of monomer 
1 reduces the heme domain of monomer 2 and 
vice versa� The electron acceptors for POR, in-
cluding the multiplicity of P450s, as well as other 
protein acceptors listed above, are located in the 
ER, and the levels of POR are substantially lower 
than those of its acceptors, with the ratio of POR 
to P450 in liver ER estimated at 1:5 ~ 20 [21–23]� 
Although the large and diverse family of P450s 
exhibits a common fold in the vicinity of the 
heme ligand, each P450 also possesses unique 
structural features, substrate specificity, and rate-
limiting catalytic steps [24, 25]� Thus, electron 
transfer to all these proteins must proceed in a 
finely controlled fashion� The question arises as 
to how POR recognizes and mediates electron 
transfer to this multiplicity of electron acceptors�

This chapter discusses the mechanism of in-
teraction between P450s and their redox partners, 
primarily the diflavin oxidoreductase, POR, and 
cyt b5� The domain organization and the high 
degree of conformational changes in POR nec-
essary for the precise orchestration of electron 
transfer to its > 50 different electron acceptors 
will be highlighted� The complex and contro-
versial role of cyt b5 as a redox partner for P450 
will also be discussed� Details of the reaction of a 
Class I P450 with an iron sulfur protein are pro-
vided in the chapter by Poulos and Johnson�

Fig. 2.1  Domain organization of NADPH-cytochrome 
P450 oxidoreductase ( POR) and other members of the 
diflavin oxidoreductase family� Fld flavodoxin, FNR 
ferredoxin-NADP+ oxidoreductase, MBD transmembrane 
domain, H hinge, CD connecting domain, NR1 novel re-
ductase 1, MSR methionine synthase reductase, which 
contains an ~ 80 residue extended hinge region (extH) 
between the FMN domain and CD, BM3 Bacillus mega-
terium flavocytochrome P450, NOS nitric oxide synthase, 
which has a calmodulin-binding region (CaM)� Note that 
the CD consists of two noncontiguous parts of the linear 
sequence interspersed with the FNR-like domain
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2.2  NADPH-Cytochrome P450 
Oxidoreductase

2.2.1  Properties of POR Flavins

The ability of flavins to engage in both 1-elec-
tron and 2-electron redox chemistry is key to 
their functions in electron transfer� In POR, they 
are an essential intermediate between NADPH, a 
two-electron donor, and the heme of P450, a one-
electron acceptor� Furthermore, utilization of two 
flavins, located in separate domains, provides a 
mechanism for control of the kinetics of electron 
transfer by regulating the distance between, and 
the relative orientation of, the two flavins� The 
flavin cofactors can exist as the oxidized (ox), 
one-electron reduced semiquinone (sq), and two-
electron, fully reduced (red) forms (Fig� 2�3)� 

Both the semiquinone and the fully reduced 
forms can exist free in solution as either neu-
tral or anionic forms with pKa values of 8�5 and 
6�5, respectively� Both semiquinones of POR are 
found as the blue, neutral form in the pH range 
6�5–8�5� In this review, the fully reduced forms 
are referred to as FMNH2 and FADH2� However, 
the protonation states of the fully reduced forms 
in POR are unknown� Those of the homologous 
proteins, FNR and flavodoxin, are anionic and 
it should be kept in mind that the fully reduced 
flavins in POR may also be in the anionic forms, 
FADH– and FMNH–�

The oxidation and protonation states of the 
flavins can be distinguished by their distinct 
visible absorption spectra, which have been in-
valuable in characterizing the oxidation states of 
flavoproteins during catalysis [7, 26, 27]� Oxi-

Fig. 2.2  Evolutionary origins of the structures of 
NADPH-cytochrome P450 oxidoreductase ( POR) and the 
neuronal NOS ( nNOS) reductase domain ( cyan), shown 
by overlays of the ribbon structures of Desulfovibrio vul-
garis flavodoxin ( Fld) and spinach ferredoxin-NADP-
oxidoreductase ( FNR)� a Structures of Fld and FNR� b 
POR with flavin mononucleotide ( FMN) and flavin ad-
enine dinucleotide ( FAD) highlighted with red sticks� The 

FMN domain, FNR-like domain, connecting domain, and 
the flexible hinge are marked� c Overlay of the structures 
of Fld, FNR, and POR� The connecting domain and hinge 
are unique to POR� d Overlay of POR and nNOS-red� The 
nNOS reductase domain [40] contains various regula-
tory elements, including the autoregulatory insert ( AR), 
β-finger ( BF), and the C-terminal extension ( CT)� They 
are shown in red
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dized flavins have broad absorption maxima at 
approximately 450 and 380 nm� The neutral blue 
semiquinones are characterized by a broad absor-
bance between 500 and 700 nm, with maxima in 
the region between 585 and 600 nm� In POR, the 
FMN, but not the FAD, semiquinone has a shoul-
der at 630 nm, which enables discrimination of 
the FADH• and FMNH• semiquinones and anal-
ysis of one-electron transfer reactions between 
FAD and FMN [27]. The FMNH• semiquinone 
is air stable, while the FADH• semiquinone is un-
stable and rapidly oxidizes in air� The stability of 
the neutral FMNH• semiquinone is likely due to 
a hydrogen bond between N5 of the FMN and the 
main chain carbonyl group of a highly conserved 
glycine residue in a nearby loop (Gly141 in rat 
POR)�

The reduction potentials of the POR fla-
vins have been determined for the rab-
bit [28], rat [29], and human [30, 31] en-
zymes. For FMN, ΔEox/sq = − 110 ~ − 66 mV 
and ΔEsq/red = − 246 ~ − 290 mV; for FAD, 
ΔEox/sq = − 290 ~ − 328 mV and ΔEsq/
red = − 372 ~ − 382 mV. Although there are some 
variations in reduction potentials between species, 
the FAD semiquinone/reduced couple always ex-
hibits a low reduction potential (~ − 380 mV), at 
or near that of NADPH (− 320 mV). Thus, FAD 
is the low-potential flavin and electron transfer 
proceeds from NADPH to FAD to FMN to P450 

[32]� It should be noted that these reduction po-
tentials have been determined for the solubilized 
protein in aqueous solution and, that membrane 
lipids and their compositions may influence the 
flavin reduction potentials [29]�

2.2.2  Redox Cycling of POR Flavins

Figure 2�4 illustrates the overall reaction mecha-
nism by which two-electrons from NADPH are 
transferred to the one-electron acceptor, ferric 
P450� Two electrons from NADPH must enter 
the enzyme as a hydride ion to the FAD, followed 
by intramolecular electron transfer to FMN� The 
FMN semiquinone is extremely stable, indicat-
ing that it is the hydroquinone FMN that trans-
fers electrons to electron acceptors and that the 
fully oxidized enzyme form does not accumu-
late� The POR flavins cycle in a 1-3-2-1 electron 
cycle (upper half circle in Fig� 2�4a)� The air-
stable form, FMN•/FAD can be formed from the 
fully oxidized form during the priming reaction 
(Fig� 2�4b)� At high concentrations of NADPH, 
the intermediate FMNH2/FAD is reduced to a 
four-electron reduced form [33, 34]� Since the 
air-stable semiquinone form is found predomi-
nantly in liver microsomes [26], the 1-3-2-1 
cycle is likely the major mechanism in vivo� Al-
though the low reduction potential of FAD, near 

Fig. 2.3  Various redox states of the isoalloxazine ring of flavin mononucleotide ( FMN) and flavin adenine dinucleo-
tide ( FAD)� The background color for each redox state represents its visible spectrum
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or below that of NADPH (− 320 mV), suggests 
that formation of the fully reduced (four-electron 
reduced) form of the enzyme is thermodynami-
cally unfavorable, the 2-4-3-2 cycle is also possi-
ble depending on the NADPH/NADP+ ratio [27]�

2.2.3  Domain Structure and Function

As predicted, based on DNA sequence homology 
[35], POR likely arose from the fusion of two an-
cestral genes related to the flavodoxin (Fld) and 
ferredoxin NADP+ reductase (FNR) proteins� 
This hypothesis has subsequently been con-
firmed both by site-directed mutagenesis studies 
and X-ray crystallography [36], confirming the 
structural and catalytic functions of conserved 
residues� The domain organization of POR is ap-
parent from the crystal structure of POR, exhib-
iting domains structurally related to flavodoxin 

and FNR (Fig� 2�2)� Conservation of cofactor 
binding and catalytic residues is also observed� 
Furthermore, the fact that boundaries of the do-
mains correspond to exon junctions in the gene 
encoding the enzyme is additional evidence that 
POR has arisen from a gene fusion event� The 
three-dimensional protein structures of spinach 
FNR, Fld from Desulfovibrio vulgaris, and rat 
POR also strongly support a common ancestor 
based on the very high structural similarity be-
tween the individual domains despite their very 
different origin [36, 37] (Fig� 2�2)� The ability 
to express the different domains of POR as indi-
vidual, functionally active proteins, and to suc-
cessfully reconstitute these domains in vitro to 
form a functional protein complex of NADPH-
cytochrome P450 oxidoreductase activity is addi-
tional evidence that POR has evolved as a result 
of gene fusion event [38, 39]�

POR is anchored in the microsomal mem-
brane by a ~ 56-amino acid N-terminal mem-
brane binding domain (MBD), with the catalytic 
functions of POR residing in the soluble portion, 
residues 66–678 (residue numbering is based on 
rat POR, unless otherwise noted)� As shown in 
Fig� 2�2, the structure of the soluble portion of 
POR is composed of an FMN-binding domain, 
which is structurally similar to Fld, and an FAD- 
binding domain� The FAD domain consists of an 
FNR-like domain with binding sites for FAD and 
NADPH and a connecting domain (CD), which is 
unique to POR and to all members of the diflavin 
reductase family, including nitric oxide synthases 
[40]. The CD is composed mainly of α helices 
that connect (join) the FMN and FNR-like do-
mains� The FMN and FAD domains are linked by 
a flexible hinge/linker (residues 232–243), con-
sisting mostly of hydrophilic residues�

The presence of a connecting domain and 
hinge is unique to all members of the diflavin 
oxidoreductases (Fig� 2�1)� Although the amino 
acid sequences of the connecting domains (CDs) 
exhibit low (< 30 %) sequence homology, there is 
significant structural similarity among connect-
ing domains of different members of the difla-
vin family (see comparison of POR and nNOS 
in Fig� 2�2)� Both the length and sequence of the 
hinge are unique for each member of this family� 

Fig. 2.4  a Catalytic cycling of NADPH-cytochrome 
P450 oxidoreductase ( POR) flavins� Redox cycling and 
electron transfer via 1-3-2-1 ( upper half circle) and 2-4-
3-2 ( lower half circle) electron reaction cycles are shown� 
The middle line is common to both cycles� The air-stable 
1e- reduced form ( FAD/FMNH●) is obtained through the 
priming reaction� b Scheme for the priming reaction, gen-
erating the air-stable 1e- reduced form ( FAD/FMNH●) by 
reduction of fully oxidized enzyme
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The hinge plays a crucial role in POR’s interac-
tion with its electron transfer partners� It is be-
lieved that the hinge and connecting domain are 
largely responsible for the domain movements 
that control cofactor binding, interflavin electron 
transfer, and recognition and electron transfer to 
the partners (see below)�

2.2.3.1  Membrane Binding Domain
POR is anchored to the lipid bilayer of the ER 
and nuclear membrane by an approximately 
60 amino acid MBD� The MBD contains a 23-
amino acid stretch of hydrophobic amino acids 
that presumably spans the lipid bilayer, followed 
by a stop-transfer sequence, 45RKKKEE50, and a 
flexible segment susceptible to proteolytic cleav-
age [41, 42]� Cleavage by trypsin at the Lys56-
Ile57 bond releases the POR from the micro-
somal membrane� The trypsin-cleaved protein is 
no longer able to transfer electrons to P450, but 
retains activity towards other electron acceptors 
such as cyt c� Similarly, cyt b5 is attached to the 
membrane via a C-terminal MBD that is neces-
sary for electron transfer to P450� Both passive 
and active roles in P450-mediated catalysis have 
been proposed for the MBD� Since fusion pro-
teins, such as P450BM3 and the NOS isozymes, 
do not require the MBD for catalytic activity, the 
MBD likely serves to localize and possibly re-
strict movement of POR in the membrane rather 
than to provide a specific binding site [43–45]� In 
this case, the precise sequence of the membrane 
domain would be less important than its ability 
to insert into the membrane� Substitution of the 
POR MBD with that of cyt b5, which has only 
about 20 % sequence identity, but a similar hy-
drophobicity profile [46], produced a chimeric 
POR that was able to support CYP17A-mediated 
P450 activity, but not CYP3A4-mediated testos-
terone 6β-hydroxylation. Taken together with the 
observation that the MBD of yeast POR is not 
required for electron transfer to P450 51 [47], it 
appears that the MBD may contribute to P450 
recognition and binding, but is likely that only 
one of many POR-P450 interactions may vary 
depending on the specific P450�

Recently, an interesting function for the MBD 
has been proposed by Das and Sligar [29], show-
ing that the flavin redox potentials are influenced 
by the composition of the lipid bilayer� The sig-
nificance of these altered redox potentials relative 
to catalysis has not been demonstrated� However, 
lipid composition, including charge, has been re-
ported to influence rates of P450 metabolism in 
reconstituted systems [48]�

2.2.3.2  FMN Domain
The FMN domain, consisting of residues from 67 
to 231 of rat POR, is structurally very similar to 
the bacterial flavodoxins and consists of a five-
stranded parallel β-sheet flanked by five α-helices 
(Fig� 2�2), with the FMN located at the tip of the 
C-terminal side of the β-sheet. In addition to the 
binding site for the FMN prosthetic group, this 
domain contains residues mediating binding of 
and electron transfer to acceptors such as cyt c 
and P450. FMN is relatively loosely bound ( Kd 
~ 10−8 M) and can be reversibly removed from the 
enzyme by high salt treatment [27, 49]� In the ab-
sence of FMN, electron transfer to all acceptors, 
with the exception of ferricyanide, is abolished�

As observed in Fld, the isoalloxazine ring 
of FMN is sandwiched between two aromatic 
groups with Tyr178 coplanar with the si- face of 
the flavin, and Tyr140 located on the re-face at a 
~ 60° angle to the isoalloxazine ring [36]� Muta-
tion of Tyr178 to Asp decreases FMN binding to 
undetectable levels, with an approximately 300-
fold decrease in FMN binding affinity, and also 
disrupts FAD binding [50]� A similar decrease in 
FMN binding affinity is seen when the homolo-
gous residue of human POR, Tyr181, is mutated 
to Asp [51, 52]; however, FAD binding is not dis-
rupted in the case of the human mutation� Resto-
ration of catalytic activity by FMN demonstrates 
that the inability to incorporate FMN is the likely 
basis for the NADPH-cytochrome P450 oxidore-
ductase deficiency (PORD) phenotype associat-
ed with this human mutation� The rate of electron 
transfer to ferricyanide activity is identical to that 
seen in the wild-type enzyme, indicating that the 
hydride transfer is not impaired�
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2.2.3.3  Role of the FMN Domain and 
Connecting Domain in the 
Cytochrome P450 Interaction

The negatively charged surface of the FMN do-
main can interact with the basic concave proximal 
face of P450 in the vicinity of the buried heme li-
gand [53–56]� This region of P450 contains over-
lapping binding sites for POR and cyt b5 [54]� A 
model of a putative complex of P450 2B4 and 
POR shows the total contact area between the 
two molecules to be ~ 1500 Å2, of which 870 Å2 

is located between the FMN domain and P450 
[53]� A number of charge pairing and van der 
Waal’s interactions have been implicated in bind-
ing of P450 to POR, indicating that both electro-
static and hydrophobic interactions are necessary 
for the complex formation (Fig� 2�5)�

The FMN domain has conserved patches of 
acidic residues involved in the electrostatic in-
teractions with its electron transfer partners, 
and these interactions are specific for each elec-
tron transfer partner� Cross-linking experiments 

Fig. 2.5  Top panel: a Model of a complex between P450 
and NADPH-cytochrome P450 oxidoreductase ( POR)� A 
complex of P450 ( red) and Mol A of the hinge-deletion 
mutant of POR(∆TGEE), denoted as PORTGEE [53]); the 
flavin mononucleotide ( FMN) domain ( blue) and flavin 
adenine dinucleotide ( FAD) domain ( yellow)] and an en-
larged view showing the relative orientation of the FMN 
and heme� b and c Open-book representation of molecular 
surface at the interface of P450 (b) and the FMN domain 
of POR (c)� Five salt-bridge pairs are shown with same let-

ters, e�g�, Glu142(d) makes salt bridges with both Arg422 
(d) and Arg443 (d)� Bottom: d Crystal structure of the 
complex between POR(∆TGEE) and heme oxygenase-1 
(HO-1)� e and f An open book representation, showing 
the interface between the two partners� Two salt-bridge 
pairs are shown. The surface of ∆TGEE that interacts with 
HO-1 ( Panel F) is almost the same interface found in the 
model structure of POR-2B4 ( compare Panels C and F)� 
The structure of the POR(∆TGEE)-HO-1 complex sup-
ports the validity of the model structure of POR-P450 2B4�
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suggest that acidic residues in the FMN domain 
(207Asp-Asp-Asp209 and 213Glu-Glu-Asp215) con-
tribute to binding of cyt c; however, cross-linking 
of these residues to P450 could not be demon-
strated [57, 58]� Mutagenesis studies have dem-
onstrated the importance of Glu213 and Glu214 
in electrostatic interactions with oxidized and re-
duced cyt c� The 213Glu-Glu-Asp215 cluster does 
not affect P450 binding or activity, highlighting 
the distinct binding modes for these two partners 
[59]� Chemical modification and antibody label-
ing experiments have also suggested that the loop 
containing residues 110–119 in POR, located on 
the opposite face of the protein, can also con-
tribute to P450 binding and catalysis (reviewed 
in [60])� Site-directed mutagenesis of Asp113, 
Glu115, and Glu116 improves catalytic efficiency 
of cyt c reduction, but destabilizes the POR-CY-
P2B1 complex [61]� A variety of chemical modi-
fication and mutagenesis studies, reviewed by 
Hlavica et al� [62] and Im and Waskell [55], have 
provided evidence implicating basic residues in 
the C-helix of P450 in electrostatic interactions 
with POR and cyt b5� Site-directed mutagenesis 
studies have identified seven basic and hydro-
phobic amino acids (Arg122, Arg126, Arg133, 
Phe135, Met137, Lys139, and Lys433), all ex-
cept Lys433 located in the mobile C-helix and 
C–D loop, as important for both cyt b5 and POR 
binding [54]� Mutations to proline of residues in 
the linker between the two flavin domains also 
increased the cyt c reduction activity, presumably 
by favoring the open conformation of POR [63]� 
The hydrophobic amino acid residues Val267 
and Leu270 on the proximal site of CYP2B4 also 
contribute to POR recognition, perhaps indirectly 
through a conformational change [64]� Although 
the electron transfer is presumed to occur within 
a 1:1 POR:P450 complex [65], the presence of 
higher-order complexes contributing to catalysis 
has been suggested [23, 66, 67]� The contribution 
of these higher-order complexes to catalysis in 
microsomes is not clear� However, it is likely that 
multiple P450s may associate to POR during the 
selection process in the course of catalysis as an 
encounter complex (see Sect� 2�3�2)�

2.2.3.4  The FAD Domain
The FAD domain of POR is composed of the con-
necting domain (CD) and the FNR-like subdo-
main, which binds FAD and NADPH (Figs� 2�1 
and 2�2)� The FNR-like subdomain sequence 
consists of residues 267–325 and 450–678, in-
terspersed with the CD (residues 244–266 and 
326–450)� Conserved residues necessary for 
FAD and NADPH binding, as well as for hydride 
transfer, are localized in this FNR-like subdo-
main� Unlike FMN, FAD is tightly bound to the 
reductase with a Kd less than 1 nM� Removal of 
FAD requires treatment with a high concentra-
tion of chaotropic agent that leads to substantial 
polypeptide unfolding, providing further evi-
dence for the independence of the two domains 
[68–70]� Residues comprising the FAD binding 
site include 455YYSIASS461, 471ICAVAVEY478, 
and 488GVAT491� Although Trp677 is stacked 
against the re-face of the FAD, removal of this 
residue does not have a significant effect on 
FAD content; the role of this residue in catalysis 
is discussed below� Major determinants of FAD 
binding are Arg454, which stabilizes the negative 
charge of the FAD pyrophosphate, and Tyr456, 
which is positioned at a 60° angle to the si-face 
of the isoalloxazine ring and whose phenolic 
hydroxyl group forms a hydrogen bond with 
the ribityl 4ʹ-hydroxyl [36, 71]� An unexpected 
finding for residues that influence FAD-binding 
was revealed in a human pathogenic mutant, Val-
492Glu (rat enzyme numbering, V489), which 
has less than 1 % of wild-type FAD content (see 
Sect� 2�6)�

2.2.4  Mechanism of Catalytic Action

2.2.4.1  Hydride Transfer

POR transfers the pro-R hydrogen from NADPH 
to FAD as a hydride ion� Residues essential for 
this hydride transfer include Ser457, Asp675, and 
Cys630, all of which are located in close prox-
imity to the redox-active N5 of FAD and form a 
hydrogen bonding network that is disrupted upon 
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binding of the nicotinamide moiety of NADP(H) 
[72–74]� Replacement of these side chains with 
aliphatic groups decreases catalytic activities 
by up to three orders of magnitude� Ser457 and 
Asp675 interact with the nicotinamide group of 
NADP(H) and orient the C4 atom of the nico-
tinamide ring in a position for optimum hydride 
transfer� Cys630 is also within van der Waals 
distance from the nicotinamide C4 and can sta-
bilize the carbocation formed during hydride 
transfer [74]� In addition, the hydroxyl side chain 
of Ser457 is located ~ 4 Å away from the flavin 
N5 and on the same plane as the flavin ring, in 
a position to stabilize the semiquinone form of 
FAD, and replacement of Ser457 with alanine 
decreases the FAD/FADH• redox potential [72]�

The penultimate Trp677 residue plays a piv-
otal role in catalysis by controlling NADP(H) 
binding and release [74 ]� In the structure of the 
wild-type reductase in complex with NADP+, 
the indole ring of Trp677 is situated at the re-
face of the FAD, where the nicotinamide ring of 
NADPH would bind to transfer its pro-R-hydro-
gen as a hydride ion� Furthermore, in the struc-
ture of the wild-type enzyme, the binding site 
for the AMP-pyrophosphate half of the NADP+ 
is clearly shown, while the ribose-nicotinamide 
moiety is disordered� However, crystal structures 
of a POR mutant lacking the indole ring by dele-
tion of the two last C-terminal residues (Trp677 
and Ser678), or mutation of Trp677 to glycine 
(Trp677Gly), reveal that the nicotinamide ring is 
situated at the re-face of the FAD, replacing the 
indole ring of Trp677, with a tilt of ~ 30° between 
the planes of the two rings, poised to transfer the 
hydride ion [74]� Thus, in the wild-type protein, 
the indole ring of Trp677 presumably moves 
away from the isoalloxazine ring of FAD, allow-
ing the nicotinamide ring to interact with the fla-
vin for hydride transfer to occur� In pea FNR, the 
homologous residue, Tyr308, is also displaced by 
the nicotinamide ring [75, 76]�

Mutagenesis and crystallographic studies 
have revealed the bipartite nature of NADP(H) 
binding and provide an explanation of the 
marked preference of POR and FNR for the 
cofactor NADPH� The primary determinant for 
discrimination between NADH and NADPH 
is the 2ʹ-phosphate group present on NADPH, 

but not NADH� Kinetic studies show that this 
2ʹ-phosphate of NADPH, binding as the dian-
ion, contributes 5 kcal of binding energy through 
interactions with enzyme groups, with a major 
contribution with Arg597 accounting for ~ 3 kcal 
of binding energy� Lys602 and Ser596 also con-
tribute to binding [77]� This tight binding of the 
2ʹ-phosphate is essential to compensate for the 
repulsive interactions between the nicotinamide 
and the indole ring of Trp677� When Trp677 is 
present, binding of the 2ʹ-phosphate stabilizes 
cofactor binding sufficiently to allow the nico-
tinamide to displace Trp677� In the absence 
of Trp677, the nicotinamide can bind readily 
without any contribution from the 2ʹ-phosphate 
and the enzyme is able to utilize NADH as the 
hydride donor� Furthermore, in the absence of 
Trp677, the enzyme is unable to displace oxi-
dized nicotinamide after hydride transfer and cat-
alytic efficiency with either NADH or NADPH 
is decreased due to rate-limiting product release 
[74, 78, 79], indicating that movement of Trp677 
is required for both cofactor binding and release�

These studies indicate a requirement for struc-
tural changes, in addition to Trp677 movement, 
for regulation of NADP(H) binding and release� 
While movement of Trp677 back into the nico-
tinamide binding site ( re-face of the FAD isoal-
loxazine ring) displaces the nicotinamide ring, 
additional movements are necessary to disrupt 
the strong binding of the 2ʹ-phosphate. Local 
movements of the 631GDAR634 loop (Asp632 
loop), located near the FAD, may be coupled with 
Trp677 movement to allow NADPH binding and 
NADP+ release [80]� Comparison of the structure 
of the NADP+ -bound wild-type enzyme with 
that of a mutant POR with an engineered disul-
fide bond between the two flavin domains and 
lacking bound NADP+, shows a movement of 
this Asp632 loop� Thus, Xia et al� have proposed 
that Asp632 loop movement, in concert with 
Trp677, controls at least in part NADPH bind-
ing and NADP+ release [80], and the details are 
discussed below in Sect� 2�5�

2.2.4.2  Interflavin Electron Transfer
POR intramolecular electron transfer oc-
curs directly from FAD to FMN� In rat and 
human POR [36, 81], the distance between the 
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dimethylbenzene edge of the isoalloxazine rings 
of FAD and FMN is ~ 4 Å, and the planes of the 
FAD and FMN rings are inclined relative to each 
other at an angle of ~ 150°, an orientation that 
favors orbital overlap between the extended π–π 
systems of the flavin isoalloxazine rings [74]� 
This arrangement of the two flavins is expected 
to result in very fast and efficient interflavin elec-
tron transfer, up to 1010 s− 1 using Dutton’s ruler 
[82]� However, the experimentally observed elec-
tron transfer rate has been measured to be only 
~ 50 s− 1 [83, 84], suggesting that electron transfer 
is gated by some other process� The nature of the 
conformational movements controlling the rates 
of interflavin as well as flavin to heme electron 
transfer is discussed below�

2.2.4.3  Electron Transfer from FMN  
to Heme

The FMN domain functions both to accept elec-
trons from the reduced FAD and to transfer those 
electrons to P450� Thus, precise and specific in-
teractions between the FMN and FAD domains 
within POR, and between the FMN domain and 
P450 are required� This means that the FMN do-
main must be able to recognize both the FAD 
domain and P450� Separation of the two flavin 
domains is essential for this sequential electron 
transfer process� The FMN domain has a strong 

molecular dipole formed by anionic residues 
surrounding the flavin isoalloxazine ring [85]� 
This convex anionic surface is involved in the 
specific docking with the heme protein� Little 
is known about the mechanism through which 
POR selects one of many electron transfer part-
ners and it is likely that multiple protein con-
formations and binding sites are probed in the 
selection process� Figure 2�6 presents a scheme 
incorporating current hypotheses regarding 
formation of a productive POR-P450 electron 
transfer complex� Beginning from a pool of 
P450s in the ER membrane, in which multiple 
P450s exist, a selection process must occur by 
which one P450 binds in a more favorable con-
formation� A proposed sequence of events is as 
follows: (1) NADPH binds to the open form of 
POR, resulting in a closed conformation of POR� 
(2) In this closed conformation, hydride transfer 
and interflavin electron transfer occur, followed 
by NADP+ release, resulting in an open confor-
mation of POR� (3) This open form of POR is 
now capable of forming an eventual productive 
complex� It should also be noted that POR will 
favor substrate-bound ferric P450s compared 
to substrate-free P450s� Substrate binding in-
creases the redox potential of the P450, makes 
the electron transfer reaction thermodynami-
cally feasible, and prevents inappropriate reduc-

Fig. 2.6  A cartoon representation of a model for POR-
P450 complex formation in the endoplasmic reticulum 
(ER) membrane� Flavin mononucleotide (FMN) domain, 
flavin adenine dinucleotide (FAD) domain, and P450s 
are shown in blue, yellow, and red balls, respectively� (1) 
Multiple P450s exist in the ER membrane� Nucleotide 
binding favors formation of the closed form, similar to the 
one found in the crystal structure [36]� (2) Upon binding 
to pyridine nucleotide (NADPH), the enzyme adopts the 
closed form� In the closed form, hydride transfer, inter-

flavin electron transfer, and release of NADP+ occur, 
resulting in formation of the open form of the enzyme� 
(A scheme for detailed conformational changes occurring 
during this process is shown in Fig� 2�7�) (3) The open 
form of POR associates with P450 in an encounter com-
plex� (4) Further conformational adjustments occur to 
align the flavin and heme groups in an optimal conforma-
tion for electron transfer, and the cycle repeats� (Figure 
adopted and modified from [86])
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tion of P450� Substrate binding may also induce 
conformational changes on the proximal surface 
that favors POR binding� (4) A loosely bound 
encounter complex is formed [87]� (5) Further 
conformational changes at the interface are nec-
essary to produce the electron transfer complex, 
in which the flavin and heme are appropriately 
positioned for electron transfer [87]� For a more 
detailed discussion on general protein–protein 
interactions, see the latter part of this chapter� 
The requirements for cyt c binding are most 
likely less stringent than those for P450, and ki-
netic studies suggest the presence of more than 
one binding site for cyt c [88]� In contrast, the 
mechanism of electron transfer to small mol-
ecule acceptors such as dichloroindophenol or 
ferricyanide presumably involves random colli-
sions followed by electron transfer�

A model for a docked POR-P450 complex 
(POR-P450 2B4) based on mutagenesis data with 
the open conformation of the POR hinge mutant 
(four amino acid deletion in the hinge between 
two flavin domains) by Hamdane et al� [53] in-
dicates that the FMN domain interacts with the 
concave basic proximal face of P450� The planes 
of the heme and FMN are almost perpendicular 
to each other, and the shortest distance between 
the heme and flavin cofactors is about 12 Å 
(Fig� 2�5)� However, two residues of P450 2B4, 
Phe429, and Glu439, lie in between the two co-
factors, suggesting that these might serve to fa-
cilitate electron transfer between the FMN and 
heme� In the structure of the complex between 
the heme and FMN-binding domains of bacterial 
cytochrome P450BM3, the relative orientation 
of the two cofactors is similar to that found in 
the model structure, but the distance between the 
FMN and heme is slightly longer (~ 18 Å) [89], 
indicating the validity of the model structure� Re-
cently, the crystal structure of the complex be-
tween the four-residue hinge deletion mutant of 
POR (∆TGEE) and rat heme oxygenase 1 (HO-1) 
has been determined [90]� The complex structure 
reveals that the distance between FMN and the 
heme is ~ 6 Å. However, the surface of ∆TGEE 
that interact with HO-1 is almost identical to 
that found in the model structure of POR-2B4, 
although the interface area is smaller, since HO-1 

is a smaller molecule than P450 (Fig� 2�5)� This 
finding is consistent with the argument that the 
model structure of the POR-P450 2B4 complex 
is an appropriate initial model for further experi-
mental design�

2.2.5  Domain Movement and Electron 
Transfer in POR

As stated above, the relatively slow rate of in-
terflavin electron transfer suggests a gating 
mechanism� Crystal structures of various POR 
proteins, including the rat [36], human [81], and 
yeast PORs [91], and their various mutant pro-
teins [74], clearly demonstrate that the enzyme 
molecule consists of two flavin-binding domains, 
and that the two cofactors are juxtaposed to each 
other with their dimethyl benzene rings fac-
ing one another, with the closest distance being 
~ 4 Å� Although this arrangement of the two fla-
vin domains (“closed” conformation) is optimal 
for electron transfer between the two flavins, 
i�e�, from FAD to FMN, it is incompatible with 
interaction of the FMN domain with P450, the 
physiological electron acceptor� In the closed 
conformation, the acidic residues located in the 
FMN domain and shown to affect electron trans-
fer to P450 by mutagenesis studies [59] are not 
exposed to solvent, and therefore cannot interact 
with P450� In addition, the crystal structure of a 
complex between the heme and FMN-binding 
domains of P450BM3 provides structural insight 
into how these two domains interact with each 
other [89]� In this structure, the FMN dimethyl-
benzene ring is oriented toward the proximal face 
of the heme of P450 BM3, suggesting that POR 
must interact with P450 in a different conforma-
tion than the closed conformation observed in the 
wild-type POR crystal structure�

There are several lines of evidence from 
crystallographic studies, demonstrating that the 
two flavin domains are mobile� Superposition 
of the structures of wild-type and various point 
mutant structures of rat POR has shown that the 
relative orientation of, and distance between, the 
two flavin domains are variable, with the clos-
est flavin–flavin distance ranging from 3�9 to 
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5�8 Å, suggesting small, but significant domain 
movements in solution [74]� Moreover, in the 
crystal structure of the flavoprotein subunit of 
E. coli sulfite reductase, electron density for the 
entire FMN domain is completely disordered, 
again suggesting movement of the FMN domain 
relative to the rest of the polypeptide [92]� The 
most direct demonstration of a large-scale do-
main movement and a transition from a closed 
to an open conformation comes from the crystal 
structures of mutant POR proteins� A POR vari-
ant with a four amino acid deletion in the hinge 
region that links the two flavin domains has been 
crystallized in three different extended confor-
mations (open state), in which the distance be-
tween FAD and FMN cofactors ranges from 30 
to 60 Å [53]� The mutant is defective in its ability 
to transfer electrons from FAD to FMN� How-
ever, when FMN is reduced chemically, the mu-
tant POR is capable of reducing P450 2B4� The 
authors infer that a similar domain movement 
controlled by the hinge occurs in the wild-type 
enzyme during its catalytic cycle, enabling the 
FMN domain to adopt an open conformation ca-
pable of interacting with its physiological partner, 
cytochrome P450� Aigrain et al� have also seen an 
open conformation in the crystal structure of a 
yeast-human chimeric POR [93]� A different, but 
complementary approach has been used by Xia 
et al� [80], in which an engineered disulfide link-
age between the two flavin domains locks POR 
in a closed conformation unable to interact with 
P450� Indeed, the mutant exhibits substantially 
decreased inter flavin electron transfer and is es-
sentially unable to catalyze the P450-dependent 
monooxygenase activity� Reduction of the di-
sulfide linkage restores the ability of the mutant 
to support both interflavin electron transfer and 
reduction of its redox partners, consistent with 
domain movements being required for the FMN 
domain of POR to interact with both the FAD do-
main and P450, i�e�, shuttling between the two 
redox-active partners�

In addition, several solution studies provide 
evidence for large domain movements of POR in 
catalysis� Hay et al�, demonstrate, using electron-
electron double resonance methods, that POR 
exists in multiple conformations in a continuum 

of a conformational landscape that is changed by 
nucleotide binding [94]� Using a combination of 
nuclear magnetic resonance (NMR) and small-
angle X-ray scattering (SAXS) methods, Ellis 
et al� [95] have shown that the oxidized human 
POR exists in solution as a mixture of approxi-
mately equal amounts of two conformations, 
one consistent with the crystal structure (closed 
form) and one a more extended structure, which 
presumably is required for interaction with its 
electron transfer partners (open form)� In addi-
tion, the relative contributions of each conforma-
tion at equilibrium are affected by the binding 
of NADP(H), with the nucleotide bound form 
favoring the closed form� On the other hand, 
Vincent et al� [96] have recently employed high 
resolution NMR measurements with residue-
specific 15N relaxation and 1H− 15N residual di-
polar coupling data to show that oxidized POR 
in solution in the absence of bound nucleotide 
exists in a unique and predominant conformation 
resembling the closed conformation observed in 
the crystal structure� However, at present more 
data are accumulating for the predominance of 
the closed form when the nucleotide is bound� 
Pudney et al� [97] have demonstrated, using a 
combination of fluorescence resonance energy 
transfer and stopped flow methods, that open 
and closed states of POR are correlated with key 
steps in the catalytic cycle, i�e�, NADPH binding 
induces closing of POR and reduction of flavins 
and/or NADP+ release induces opening of POR� 
Recently, Huang et al� have shown, using small 
angle X-ray scattering and small angle neutron 
scattering together with site-directed mutagen-
esis, that POR in solution exists in equilibrium 
between a compact (closed) conformation and 
an extended (open) conformation and that this 
equilibrium is linked to nucleotide binding and 
redox state [63]� Currently, it is generally agreed 
that the closed conformation is favored when the 
NADP(H) is bound and the FAD is oxidized; and 
that the enzyme adopts an open conformation 
ready to transfer electrons to P450, i�e�, when the 
enzyme is reduced and NADP+ has been released 
(see Fig� 2�6)�

In summary, there is mounting evidence that 
POR must undergo several different types of 
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conformational changes during catalysis� Hub-
bard et al� have shown that, upon binding of 
NADPH, the C-terminus of POR including the 
aromatic residue Trp677 undergo significant 
conformational changes [74]� In addition, com-
parison of the structure of POR with and without 
bound NADP+ suggests that the movement of the 
loop containing Asp632 is necessary for binding 
of the nicotinamide moiety of NADPH to the re-
face of the FAD isoalloxazine ring� Given these 
results, suggesting that Trp677 and the Asp632 
loop movements occur together, Xia et al� [80] 
have proposed a scenario for coordinated con-

formational changes that occur during NADPH 
binding, hydride transfer and NADP+ release 
(Fig� 2�7)� Since NADPH-binding and Trp677 
movement precede hydride transfer, these steps 
and the subsequent interflavin electron transfer 
step must occur with the enzyme in the closed 
conformation� This is followed by a large-scale 
domain movement to the open conformation that 
is necessary for interaction with P450� This large 
movement must be tightly coordinated with elec-
tron transfer to prevent reactions with oxygen and 
production of superoxide� It is most likely that 
a similar sequence of conformational changes 

Fig. 2.7  Schematic illustration of conformational chang-
es occurring in the flavin adenine dinucleotide ( FAD) 
domain upon NADPH binding to and NADP+ release 
from NADPH-cytochrome P450 oxidoreductase ( POR)� 
Stage 1: NADPH enters oxidized POR (modeled after 
the structure of the disulfide cross-linked mutant, which 
lacks bound NADP(H)) [80]� The open-closed state of 
POR at this stage is not known, but is most likely in an 
open form� Stages 2–5 are most likely in the closed form� 
Therefore, for clarity, the flavin mononucleotide ( FMN) 
domain is not shown� Stage 2: NADPH initially binds 
to the enzyme via its AMP-PPi moiety with the interac-
tion between the negative charges of pyrophosphate and 
2ʹ-phosphate with the positive charges of several arginine 
residues in the binding pocket (see text)� As the AMP-PPi 
half of NADPH binds, and the Asp632 loop moves, allow-
ing the ribose–nicotinamide moiety to extend to search for 
the proper binding site for hydride transfer, while keeping 

the AMP-PPi anchored� At this stage, the indole ring of 
Trp677 also rotates to be ready to move away from the 
flavin ring� Stage 3: The indole ring moves away to make 
room for the nicotinamide ring to bind, as the nicotin-
amide ring moves in at the re-side of the isoalloxazine 
ring� Stage 4: Hydride transfer occurs, FAD is reduced, 
and NADPH becomes NADP+� It is most likely that inter-
flavin electron transfer occurs at this stage� Stage 5: Once 
the FAD is reduced and nicotinamide is oxidized, the oxi-
dized nicotinamide ring moves out, with the concomitant 
return of the indole ring to the re-face of the FAD ring� At 
this stage, the Asp632 loop moves back closer to where 
the AMP-PPi of NADP+ lies, causing steric hindrance as 
well as electrostatic repulsion, resulting in dissociation of 
the cofactor from the enzyme� POR now returns to stage 1 
and the cycle repeats� (Figure adopted and modified from 
[80])
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would also take place in other members of the 
diflavin oxidoreductase family� However, details 
of the mechanism by which the large-scale do-
main movements are coordinated to movements 
of loops and individual amino acids remain to 
be established� Furthermore, at this time it is un-
known whether stochastic domain movements 
play a role in the mechanism of action of POR or 
whether they are strictly controlled�

2.2.6  Human POR Deficiency

Several lines of evidence exist in different bio-
logical systems demonstrating the essential cel-
lular functions of POR-dependent P450 activity� 
The entire POR gene deletion is lethal in yeast 
and Caenorhabditis elegans due to impaired 
P450-dependent biosynthesis of ergosterol and 
an as-yet unidentified lipid, respectively [98–
100]� Global deletion of murine microsomal POR 
produces multiple developmental defects and 
embryonic lethality� Neural tube, cardiac, eye, 
limb, and vascular defects are seen in homozy-
gous null embryos, as well as a failure of devel-
opment, which have been ascribed to defects in 
cholesterol and retinoid metabolism [101, 102]�

The ability to delete POR in a tissue-specific 
manner has provided further insights into the di-
verse physiological functions of POR, both in 
metabolism of endogenous substrates and xe-
nobiotic metabolism� Liver-specific ablation of 
POR gave rise to massive lipid accumulation 
and hepatomegaly, in the presence of decreased 
serum cholesterol and triglyceride levels, sug-
gestive of defects in regulation of hepatic lipid 
metabolism� Consistent with the central role of 
hepatic POR in drug metabolism, liver-specific 
ablation of POR decreased metabolism and/or 
clearance of xenobiotics [103–106]� Current de-
velopments of various mouse models were pre-
sented at a symposium in Experimental Biology 
2012 (Symposium Report published [107])�

Since the first report of four individuals with 
POR deficiency [108], numerous reports world-
wide have been published, describing the varying 
phenotypes associated with this syndrome� A total 
of over 2000 single nucleotide polymorphisms 

have been described in the human POR gene 
(www�ncbi�nlm�nih�gov/snp), encompassing 
over 150 missense mutations (including prema-
ture terminations), over 10 frame shift/deletion/
duplication mutations, and 9 splice site variants� 
Mutations affecting transcription have also been 
identified and interpreted in terms of the POR 
promoter structure [109, 110]� Detailed informa-
tion on POR deficiency with a clinical focus can 
be found in several excellent reviews [111–113]�

Mutations in human POR that significantly 
disrupt cholesterol biosynthesis and/or steroido-
genesis have been shown to result in POR de-
ficiency, characterized by Antley–Bixler syn-
drome and disordered steroidogenesis [108, 
114]� Clinical findings vary greatly in POR 
deficiency, ranging from severe skeletal mal-
formations associated with the Antley–Bixler 
syndrome and congenital adrenal hyperplasia to 
relatively mild hormonal dysregulation� In gen-
eral, the most severe phenotypes are associated 
with largest disruptions in ability of POR to sup-
port P450-dependent activity [112]� CYP17A1 
is known to be particularly sensitive to perturba-
tions in electron transfer, with 17,20 lyase activ-
ity favored over 17α hydroxylase activity in the 
presence of cyt b5 [116]� Therefore, disordered 
steroidogenesis is a prominent feature of POR 
deficiency, which distinguishes it from the Ant-
ley–Bixler syndrome with normal steroidogen-
esis associated with mutations in the fibroblast 
growth factor receptor 2 (FGFR2) gene� POR 
deficiency is also associated with congenital 
adrenal hyperplasia without Antley–Bixler ab-
normalities� However, recent studies show that 
conditional deletion of the POR gene in osteo-
progenitor cells affects long bone and skull de-
velopment in mice, recapitulating Antley–Bixler 
syndrome [117]� These results also suggest an 
apparent link between the POR and FGFR sig-
naling pathways�

Sequence homology and mapping of missense 
mutations onto the POR crystal structure have 
allowed identification of the functions of sev-
eral missense mutations� Tyr181Asp, Arg457His, 
Tyr459His and Val492Glu mutations result in 
low cyt c and CYP17A1 activities; Tyr181Asp 
causes decreased affinity for FMN-binding [51, 
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118], and Arg457His and Val492Glu cause de-
creased FAD-binding affinity [108, 119]� The 
results of Tyr181Asp and Tyr459His mutations 
are entirely consistent with the hypothesis that 
the aromatic residues are required for binding 
of FAD and FMN [81, 119]� Furthermore, the 
crystal structures of human wild-type and two 
variants (Val492Glu and Arg457His) have been 
determined [81]� The overall 3D structures of 
Arg457His and Val492Glu variants are similar 
to wild-type; however, there are subtle, but sig-
nificant differences, including local disruption 
of hydrogen bonding and salt bridging involving 
the FAD pyrophosphate moiety, leading to weak-
er FAD binding, an unstable protein, and loss of 
catalytic activity, all of which can be rescued by 
cofactor addition� Thus, riboflavin therapy may 
prevent or rescue from POR dysfunction patients 
with these mutations [81, 119]�

Although mutations that dramatically decrease 
POR activity are rare, other polymorphisms, such 
as Ala503Val, are quite common and there is in-
terest in the effects of these variations on inter-
individual variability in drug metabolism [120–
122]� The complexity of this effort may be illus-
trated by studies on the Ala503Val mutant, which 
has an allele frequency of ~ 27 % [120–122]� In 
view of the high frequency of this allele, several 
studies have attempted to assess the contribution 
of this mutation to inter-individual variation in 
drug metabolism� Variable results are reported, 
depending on the P450, the substrate, and the 
assay systems employed [123–126]� It is increas-
ingly apparent that the effects of POR variants 
on P450-mediated metabolism require examina-
tion of each P450-POR pair and possibly each 
substrate separately, with further complications 
introduced by the membrane environment�

2.3  Interaction Between Cytochrome 
b5 and Cytochrome P450

2.3.1  Properties of Cytochrome b5

Cytochrome b5 (cyt b5) is a 134 amino acid mem-
brane-bound electron transfer heme protein that 
is anchored to the ER membrane by its COOH 

terminus� The soluble heme domain and mem-
brane anchor are connected by a ~ 14 amino acid 
random coil linker [54, 127–129] (Fig� 2�8)� It 
also exists as a soluble protein in red blood cells, 
where it transfers electrons from cyt b5 reduc-
tase to hemoglobin� Its membrane-bound form 
provides electrons for the biosynthesis of lipids 
including plasmalogens, cholesterol, and long-
chain fatty acid desaturation [127, 129]� In these 
reactions, cyt b5 reductase provides the electrons 
to cyt b5� A cyt b5 domain also exists as a fusion 
protein in mitochondrial sulfite oxidase, Δ5- and 
− Δ6 fatty acid desaturases in animals, yeast ino-
sitol phosphorylceramide oxidase, plant nitrate 
reductase, Δ9-fatty acid desaturases in baker’s 
yeast, NADH cyt b5 oxidoreductase in animals, 
and flavocytochrome b2 in yeast mitochondria 
[127, 130]� A closely related mitochondrial cyt b5 
has also been described� The human mitochondri-
al cyt b5 has been shown to provide electrons to 
an amidoxime-reducing electron transfer chain� 
It reduces a molybdenum containing enzyme, 

Fig. 2.8  Structure of the heme domain and flexible linker 
of cyt b5 and a model of the transmembrane domain in a 
bilayer
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which, in turn, directly reduces the N-hydroxylat-
ed substrate [131]�

The interaction of cyt b5 and P450 has been 
well established� However, it remains a complex 
and controversial topic that has been reviewed 
previously [54, 127, 132]� In vitro in reconstituted 
systems, as well as in vivo in the mouse knockout 
and the mouse with a conditional hepatic deletion 
of cyt b5, the effects of cyt b5 on P450 are contra-
dictory and incompletely understood [132–136]� 
In purified reconstituted systems, cyt b5 has 
been observed to stimulate the activity of some 
P450s (CYP2B4, CYP2E1, CYP2B1, CYP4A7, 
CYP2A6, CYP2C19, CPY3A4, CYP17A)� In 
contrast, cyt b5 has no significant effects on the 
activity of P4501A2 and 2D6 [137]� Reports 
have also appeared of inhibition of P450 activ-
ity by cyt b5 [132, 138, 139]� In vivo disposi-
tion of drugs in the total body cyt b5 knockout 
mouse and in the conditional hepatic cyt b5 dele-
tion mouse were also complex� The metabolism 
of some drugs was decreased, while degradation 
of other drugs was not affected [136, 140]� This 
chapter will primarily emphasize advances in our 
understanding of the P450-cyt b5 interaction that 
have occurred over the past decade� More than 
four decades ago, it was shown that cyt b5 had the 
ability to decrease the concentration of oxy Fe+2 
P450 in hepatic microsomes upon addition of 
NADH to an NADPH-containing reaction mix-
ture, which was consistent with the ability of cyt 
b5 to transfer electrons to P450� The molecular 
basis of this interaction between cyt b5 and P450 
has intrigued investigators ever since [141]�

2.3.2  General Characteristics of 
Interprotein Interactions

Before proceeding with the specifics of the P450-
cyt b5 interaction, the properties of interprotein 
interactions in general will be presented to pro-
vide the framework for the discussion of the 
P450-cyt b5 interaction and to help appreciate the 
P450-POR interaction discussed in the previous 
section of this chapter� In order for electron trans-
fer to occur between proteins, they must come 
into contact [142]� Complexes formed between 

electron transfer proteins typically are weak, on 
the order of millimolar to micromolar affinities 
[143]� This weak affinity allows specific but not 
too perfect binding, so that redox partners can 
bind, but then readily dissociate and proceed to 
recycle� If proteins were free in solution, a col-
lision would require a 3D search for the electron 
transfer site� However, in redox proteins and 
many other protein complexes, the docking sites 
have been designed to increase the efficiency of 
the interaction by employing electrostatic steer-
ing and structural complementarity� Electrostatic 
forces are inversely proportional to the square of 
the distance between the charged surfaces and 
are effective over distances up to 25 Å� Structural 
complementarity is also a major driving force 
for protein binding� In the case of P450 and its 
redox partners, cyt b5 and P450 reductase, the 
binding of the proteins to the membrane is also 
hypothesized to decrease the search for the dock-
ing site from three to two dimensions� Although 
electrostatic forces enhance the association rate 
of proteins, they are considered to result in an 
“encounter complex,” which may not be the op-
timal electron transfer complex� Following for-
mation of the “encounter complex,” short-range 
diffusion occurs at the interface with sidechains 
and backbone atoms of residues at the interface 
undergoing rapid motions to identify a suitable 
electron transfer complex [87]� Electron trans-
fer occurs rapidly over distances of 14 Å or less, 
thereby assuring that electron transfer is faster 
than the usual millisecond bond-breaking at the 
catalytic site [142]� The 14 Å distance is between 
the edges of the entities, such as heme and the 
isoalloxazine ring, exchanging electrons� Quan-
tum chemical calculations suggest that the wave 
function of a free electron localized at a redox 
center, for example heme, extends beyond the co-
factor in all directions, while decaying exponen-
tially into the electrically insulating amino acid 
medium [144]� To maintain charge neutrality, 
proton transfer often occurs essentially simulta-
neously with electron transfer�

Clackson and Wells have shown that an av-
erage of 10–30 residues from each protein are 
in contact in crystal and NMR structures at an 
interprotein interface, but that only three to four 



492 Electron Transfer Partners of Cytochrome P450

amino acid pairs contribute the majority of bind-
ing energy to the complex [145]� Site-directed 
mutagenesis is the major tool employed to inves-
tigate which amino acids are most critical� Often, 
the key residues are found near the center of the 
interface while the more peripheral residues con-
tribute less binding energy to complex formation, 
but most likely serve to occlude bulk solvent 
from the hot spot� Hydrophobic and ionic interac-
tions, as well as hydrogen bonds, are all typically 
found in a protein interface, although one type of 
interaction may dominate [146]� It has also been 
noted that redox proteins that are reactive toward 
multiple partners, such as cyt b5 and P450 reduc-
tase, employ binding sites that are able to accom-
modate a variety of molecular surfaces [147]�

2.3.3  Interactions Between 
Cytochrome b5 and Cytochrome 
P450

Bearing in mind the preceding brief background 
about the nature of typical interprotein interac-
tions, the specifics of the P450-cyt b5 interaction 
will be discussed� Figure 2�9 is a schematic of 
the reaction cycle of P450 with cyt b5 and P450 
reductase� As a result of the demonstration in he-
patic microsomes: (1) that cyt b5, which has been 
reduced by NADH, was partially oxidized upon 
addition of NADPH when substrate and oxy-
gen were present and (2) that it coincided with 
product formation, it was hypothesized that cyt 
b5 donated an electron to oxyferrous P450� This 
suggestion was consistent with two observations� 
One was that, under steady-state conditions in 
microsomes, the absorbance of oxyferrous P450 
at 440 nm decreased in the presence of NADH 
[141]� A second observation was that NADH 
enhanced NADPH-supported catalysis in micro-
somes� Both experiments contributed support to 
the notion that cyt b5 was able to provide the sec-
ond electron required for P450 catalysis [148]�

These reports have prompted the performance 
of a large number of experiments over the ensu-
ing decades by a number of investigators in an 
attempt to understand how cyt b5 enhanced ca-
talysis in hepatic microsomes and why POR was 

necessary for the effect of cyt b5� Redox poten-
tials of ferric cytochromes P450 are ~ − 300 mV 
in the absence of substrate and are increased to 
~ − 245 mV in the presence of substrate, while 
the potential of cyt b5 is ~ + 25 mV (Fig� 2�9) 
[129, 149–152]� From a thermodynamic perspec-
tive, cyt b5 will be unable to reduce ferric P450, 
but would be able to reduce oxyferrous-bound 
P450, which is estimated to have a potential of 
~ + 50 mV [153]� The FMN hydroquinone of 
POR has an appropriate potential, ~ − 270 mV, to 
reduce the substrate-bound ferric and oxyferrous 
P450� This enables catalysis to proceed in the ab-
sence of cyt b5 [33, 149]� However, the require-
ment for the reductase to reduce the ferric pro-
tein, thereby initiating catalysis, accounts for the 
observations that cyt b5 acts after the reductase 
in the catalytic cycle, decreases oxyferrous P450 
in hepatic microsomes, and coincides with prod-
uct formation [141], implying that cyt b5 reduces 

Fig. 2.9  A scheme of the P450 reaction cycle, including 
interactions with its redox partners, NADPH-cytochrome 
P450 oxidoreductase (POR) and cyt b5� In the first step, 
ferric P450 binds substrate, RH� The P450-substrate com-
plex is then reduced by POR, followed by binding of oxy-
gen� The “second electron” is donated to the oxyferrous 
P450 by either POR or cyt b5� The oxygen bond is hetero-
lytically cleaved, resulting in the formation of compound 
I, the active oxidizing species� An oxygen atom is next 
inserted into the C–H bond of the substrate� The more 
hydrophilic product (ROH) dissociates from the active 
site� The ellipses represent the porphyrin ring while the 
different colors of the ring indicate spectral differences 
between the intermediates� POR●+ represents a porphyrin 
π cation radical
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oxyferrous P450� Employing the conditional he-
patic deletion of both cyt b5 and P450 reductase, 
Wolf and colleagues were able to demonstrate 
that cyt b5 reductase and cyt b5 were able to sup-
port low levels of P450 activity [140]�

When purified proteins became available, it 
could be demonstrated that cyt b5 could stimu-
late, inhibit, or have no effect on catalysis by 
a purified reconstituted P450 and POR [132]� 
Moreover, these effects were shown to depend 
on both the particular isozyme of microsomal 
P450 and the substrate� The sequence of addition 
of reactants to the assay mixture also influenced 
the results [154]� To add to the conundrum about 
the role of cyt b5 in P450 catalysis, it has also 
been suggested that apo-cyt b5, lacking the heme, 
could stimulate catalysis by selected isozymes of 
P450 [133, 155, 156]�

To gain a better understanding of the function 
of cyt b5 in P450 catalysis, its overall effect on 
the utilization of NADPH for product formation, 
rather than side product formation (superoxide 
and hydrogen peroxide), was investigated by sev-
eral laboratories [127, 157, 158]� It was conclud-
ed that cyt b5 enhanced coupling of NADPH uti-
lization for product formation, i�e�, the efficiency 
of catalysis, by decreasing the formation of the 
side products, hydrogen peroxide and superoxide�

With P450 2B4, cyt b5 improved the effi-
ciency of NADPH utilization for product for-
mation for both poor and good substrates by ap-
proximately ~ 15 % by generating less of the side 
product superoxide, which rapidly dismutates to 
hydrogen peroxide� These results suggest an ex-
planation for the substrate dependent effects of 
cyt b5� A 15 % increase in efficiency of a poor 
substrate will significantly increase the absolute 
amount of product formation by a given amount 
of NADPH� In contrast, a substrate that is al-
ready metabolized with a 50 % efficiency will 
not undergo a marked increase in the absolute 
amount of product formation when the reaction 
efficiency is simply increased by 15 % [157]� Cyt 
b5 lacking the C-terminus membrane-binding do-
main has been found by many investigators NOT 
to enhance P450 activity [127, 159, 160]�

2.3.4  The Binding Site on P450 for Cyt 
b5 and P450 Reductase

Having achieved a better understanding of the 
overall effect of cyt b5 on P450 catalysis, inves-
tigators conducted experiments with the goal of 
elucidating the molecular mechanism by which 
cyt b5 exerted its influence�

As the heme is buried and not directly ac-
cessible on the surface of type I and II P450s, 
it cannot accept electrons from other protein 
donors via direct contact between the prosthetic 
groups� An incoming electron must initially en-
counter amino acids of the P450 polypeptide [53, 
161–163]� The heme is closest to the surface near 
the axial cysteine, which, by convention, has 
been designated as the proximal surface of P450� 
The surface closest to the heme and the cyste-
ine has a positive potential especially in micro-
somal P450s (P450cin 869 Debye; P450cam 697 
D; P450BM3 640 D; P450 2D6 1197 D; (http://
dipole.weizmann.ac.il/) P450 17α-hydroxylase/
lyase 1197 D� It is concave with the cysteine at 
the approximate center and bottom of the concav-
ity� A considerable amount of evidence has ac-
cumulated from mutagenesis experiments, ionic 
strength manipulations, chemical cross-linking 
studies, crystal structures, and NMR investiga-
tions that the anionic, convex surfaces of the 
redox partners (cyt b5, P450 reductase, and fer-
redoxins such as putidaredoxin and adrenodoxin) 
dock with the basic concave proximal surface of 
P450 [53, 128, 161, 164–168]�

To recap, the interprotein interfaces are com-
plementary with respect to the geometry and 
electrostatics of their interfaces, which is typical 
of redox protein interactions [142]� Cyt b5 and 
POR are promiscuous redox proteins, capable of 
reducing many different proteins in both physi-
ological and nonphysiological reactions� Thus, 
it is logical that the specificity of physiological 
reactions will be dictated by the acceptor protein� 
A noncognate redox partner might bind and com-
pete with the physiological cognate donor, but if 
it does mediate catalysis, it usually does so at a 
markedly slower rate than the cognate reductase 
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[168–170]� Although the microsomal redox part-
ners will bind to the proximal surface of P450, 
each complex interface will be unique due to the 
nonidentity of each P450, but nonetheless share 
many characteristics�

Figure 2�10 illustrates residues on the proxi-
mal surface of P450 2B4 (1SUO) that have been 
demonstrated to participate in redox partner 
binding, either directly or indirectly, by a con-
formational change [53]� Residues demonstrated 
to participate in both cyt b5 and P450 reductase 
binding are shown in dark pink, while the two 
residues whose mutation decreases only the af-
finity for P450 reductase are in green� Both basic 
and nonpolar residues (F135, M137) are impor-
tant for the interaction� Another key conclusion 
from the observation of unique but overlapping 
binding sites for cyt b5 and reductase is that both 
cannot be bound to P450 simultaneously� As a re-
sult, they will compete for binding to P450� The 
competition will depend on the relative abun-

dance of each partner and its relative affinity for 
P450� Even though there is no evidence at this 
time for a protein corresponding to cyt b5 in ei-
ther P. putida, the source of P450cam or B. mega-
terium, the source of P450BM3, the soluble form 
of cyt b5 does interact with these P450s on the 
proximal surface of the respective P450, albeit 
with significantly (2–3 orders of magnitude) de-
creased affinity compared to the cognate reduc-
tase [170, 171]� As predicted, anionic cyt b5 com-
petes with the acidic putidaredoxin for binding to 
P450cam [170, 172]� However, cyt b5 does not 
support rapid catalysis by P450cam� In addition 
to binding, a specific interaction with a redox 
partner is required for efficient catalysis [168]� A 
similar situation exists with P450BM3 which is a 
dimeric fusion protein between a heme and difla-
vin P450 reductase domain [171]� Soluble house-
fly cyt b5 can bind to both the separate P450BM3 
heme domain and the intact protein but lacks the 
ability to enhance the activity of the intact pro-

Fig. 2.10  The binding site for P450 reductase and cyt b5 
on the proximal surface of P450 2B4� Residues in dark 
pink are involved either directly or indirectly through a 
conformational effect in binding both the reductase and 

cyt b5. These residues are in the C helix and the β-bulge. 
Residues in green are involved only in binding the reduc-
tase� They are located in the L helix and between the me-
ander and the β-bulge
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tein� Interestingly, intact E. coli flavodoxin sup-
ports a low level of enzymatic activity of P450 
17A1 during expression [173]� 

In view of the similarity of the proximal sur-
faces of P450s, residues that have been implicat-
ed in the binding of either cyt b5 or reductase by 
studies, either in humans or in vitro, have been 
mapped onto the proximal surface of P450 2B4 
(pdb code 1SUO (Fig� 2�11) [174]� These resi-
dues are located in the B, C, J, K, H, and L he-
lices, the β-bulge, and the residues between the 
meander and β-bulge. Data from the following 
P450s have been included in Fig� 2�11: CYP101, 
CYP102, CYP1A1, CYP1A2, CYP2A5, 
CYP2B1, CYP2B4, CYP2C8, CYP2C9, 
CYP2E1, CYP3A4, CYP6AB3, CYP17A1, 
CYP19� [65, 87, 134, 164, 166, 167, 169, 172, 
175–185]� Figure 2�11 demonstrates that the 
P450s, for which there is structural information 
about the docking surface, all interact with their 
redox partners on the proximal surface as pro-
posed [161]� Although basic residues predomi-
nate, hydrophobic residues and hydrogen bonds 

also contribute to the docking interface between 
the partners [87]�

Selected proteins (CYP101, CYP1A2, 
CYP3A4, CYP6AB3, CYP19) appear to dock 
with the reductase in the B–B′ helix (residues 
R85, V89, D90, Q91) which is close to the sub-
strate binding site and the I helix� Reductase 
binding at this site might induce conformational 
changes in the active site� Many of the P450 resi-
dues in the C helix, β-bulge, and N-terminus of 
the L helix have been demonstrated to be essen-
tial to the interprotein complex for both reductase 
and cyt b5� In view of the proximity of the C helix 
and β-bulge to the heme, many of the residues 
in these secondary structures contact the heme� 
It is not unexpected that their residues would be 
important for redox partner interactions� Struc-
tural evidence (from the > 100 P450 structures in 
the pdb) is also accumulating that redox partner 
binding transmits conformational and dynamic 
changes to the active site and that conformational 
changes from the active site can be transmitted 
to the proximal surface� Substrate binding to 

Fig. 2.11  Composite of interaction sites from 
different P450s with cyt b5 and NADPH-cyto-
chrome P450 oxidoreductase ( POR). Left: Resi-
dues from various cyts b5 that react with differ-
ent P450s are mapped onto the surface of cyt b5� 

Right: Residues from different P450s that react 
with POR are mapped onto the proximal surface 
of P450 2B4 (pdb 1SUO)� The basic residue la-
bels are blue; acidic residue labels are red; neu-
tral residue labels are green
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P450s typically decreases the flexibility of resi-
dues involved in substrate binding and modifies 
the architecture of the active site� Substrate and 
inhibitor binding may also modify the conforma-
tion of the redox partner-binding site� P450s are 
extraordinarily flexible molecules, well suited 
to perform their numerous functions [168, 186, 
187]�

Examination of Fig� 2�11 demonstrates that 
there is a ring of basic residues (R443, R133, 
R126, R125, R122, K433, R85, R422, K421, 
H354, R343) around the rim of the depression on 
the proximal surface, which is also present with 
some variation on the proximal surface of other 
P450s� The long, flexible basic residues which 
are components of this rim are in an excellent po-
sition to “electrostatically steer” and dock with 
the negatively charged surface of the redox part-
ner to form an encounter complex (Fig� 2�6)� In 
view of current knowledge, it appears that each 
P450 employs slightly different residues to react 
with its promiscuous redox partners� In humans, 
there is a single reductase that provides electrons 
to approximately fifty microsomal P450s and 
heme oxygenases, while cyt b5 also reacts with 
several very different redox partners (desaturases 
and enzymes involved in the synthesis and bio-
degradation of lipids [127]� It is, therefore, neces-
sary for the P450 to provide the specificity of the 
reaction� For example, three residues (Arg347, 
Arg358, Arg449) on the proximal surface of 
P450 17α-hydroxylase form a positively charged 
patch critical for cyt b5 binding [160, 165]� Mu-
tation of these residues preferentially diminished 
the binding and lyase activity of cyt b5 compared 
to the binding and 17α-hydroxylase activity of 
the reductase, consistent with the notion that the 
P450 controls the specificity of the interaction 
with the redox partners [188]�

2.3.5  Binding Site on Cyt b5 for P450

The sequence of the soluble, negatively charged, 
heme-binding domain of microsomal cyts b5 is 
highly conserved in eukaryotes with about 80 % 
identity and very conservative substitutions� 
The two most conserved motifs are the HPGG, 

which includes one of the axial histidines, and 
the GXDATD/E� In mammals, the glutamate 
and aspartic residues are completely conserved, 
while Asp58 is the most highly conserved acidic 
residue among all the different cyts b5 [189]� The 
plant heme-binding cyt b5 domains are ~ 50 % 
similar [166, 190]� Mutagenesis, cross-linking, 
and modeling studies indicate that anionic resi-
dues surrounding the solvent exposed cyt b5 
heme are important for binding to P450, as is a 
heme propionate� Most of the residues implicat-
ed in participating in binding to P450s are on or 
near the loops that host the two axial histidines 
(H44, H68), i�e�, the “40s” and “60s” loops be-
tween α-helices 2 and 3 and α-helices 4 and 5, 
respectively [128, 134, 165, 166, 191–194]� An 
exception is the highly conserved Asp58 located 
~ 14 Å away from the 60s loop [190]� Since it is 
located in a loop between β-strand 5 and the start 
of helix α-4, it may have a structural role and, as 
a result, may be altering the 60s loop conforma-
tion� A heme propionate has also been implicated 
in binding P450 (Figs� 2�12 and 2�13) [127, 128, 
134]� Figure 2�11 illustrates the anionic surface 
of cyt b5 with the location and identification of 
amino acids whose mutation has resulted in de-
creased interaction with a number of different 
P450s, respectively [127, 128, 134, 165, 166, 
191–194]� Note the paucity of cyt b5 residues 
deemed important for binding to P450s and that 
it was sometimes necessary to construct a double 
mutant to observe a significant decrease in func-
tion� This observation is consistent with the con-
clusion of Dutton and coworkers, namely that in 
nature interprotein electron transfer has generally 
been engineered to be robust and resistant to mu-
tational changes and minor perturbations by po-
sitioning the electron donor and acceptor within 
14 Å [142]� In one study, 13 residues surrounding 
the heme were mutated to alanine [128]� Eleven 
of the residues had no or only a very modest effect 
on the interaction with P450 2B4� Of the eleven 
amino acids shown not to contribute significant 
energy to the binding of P450 2B4, four of them 
(G49, V50, E53, Q54) were in contact with P450 
2B4 in models of a major and minor complex be-
tween cyt b5 and P450 2B4 (Figs� 2�12 and 2�13)� 
Interestingly, one of the two residues observed 
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to contribute most to the binding energy of the 
complex was hydrophobic Val66, the other was 
Asp65 [128]�

2.3.6  Model of the P450 2B4 and Cyt 
b5 Complex

On the basis of mutagenesis data from seven 
P450 2B4 mutants and 13 cyt b5 mutants, a 
double mutant cycle analysis, and NMR-gener-
ated constraints, a model of the P450 2B4-cyt b5 
complex has been constructed using the dock-
ing algorithm HADDOCK [128]� HADDOCK 
first docks the two proteins as rigid bodies to 
minimize intermolecular energy� Next, it allows 

residues at the interface to move to optimize 
side chain and backbone orientations� Finally, 
the structures are refined in explicit solvent lay-
ers� Major and minor complexes were observed, 
indicating the dynamic nature of the complexes 
(Figs� 2�12 and 2�13)� In the major complex, 
residues in the “60s loop,” which flanks axial 
His68, are in contact with P450, whereas in the 
minor complex, the cyt b5 is slightly tilted so that 
residues in both the “40s” and “60s” loops are 
in contact with P450 2B4� Altogether seventeen 
cyt b5 residues were in contact with P450 2B4� 
Models of the cyt b5-P450 3A4 and cyt b5-P450 
2E1 complexes, together with mutagenesis data, 
also indicate that the “60s loop” is likely the pri-
mary area of contact with these P450s [134, 166]� 

Fig. 2.12  Overview of the structure of a major and minor 
cyt b5-P450 2B4 complex� Mutagenesis and NMR con-
straints were employed to determine the complex struc-
tures� P450 2B4 is in green; cyt b5 is in blue; heme is 
in red; P450 Arg125 is in magenta� a The most abundant 
complex as determined by nuclear magnetic resonance 
( NMR)� b The less abundant complex [128]� Note how 

little movement is necessary for both the 40s and 60s 
loops to come in contact with P450� c Rotation of the 
major complex to show the location of the terminus of the 
flexible linker� d Electron transfer predicted by HARLEM 
to occur between the cyt b5 and P450 heme D propionates 
via P450 Arg125 [128]
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Mutagenesis experiments suggest that the “40s 
loop” is involved in binding to P450 17A1, while 
P450 2C19 interacts with the residues in the “60s 
loop” [192]�

The most notable feature of the complex is 
the salt bridge formed by the highly conserved 
Arg125 of P450 between the heme D propionates 
of both cyt b5 and P450 2B4� Arg125 of P450 

2B4 is homologous to P450cam Arg112, which 
has been shown to be essential for interprotein 
electron transfer [182]� HARLEM, an electron 
transfer pathways prediction program, proposed 
that electron transfer may occur between the 
heme propionates [128]� The heme edges are 
9 Å apart, while the heme irons are separated 
by 20�9 Å, well within the generally accepted 

Fig. 2.13  Interface of the major and minor cyt b5-P450 
2B4 complexes� a The residues in contact on the interface 
of the most abundant, major complex� Residues on P450 
that are in contact with residues on cyt b5 are denoted with 
matching letters in parenthesis� For example, Arg133 (l, o) 
on P450 ( dark blue) is in contact with Ser69 (l) and heme 
(o) on cyt b5� Cyt b5 is on the left and P450 on the right 
(pdb codes 2M33 and 1SUO respectively)� Most of the 

cyt b5 residues in contact with P450 are located in or near 
the 60s loop� Residues on cyt b5 that are in contact with 
residues on P450 are denoted with matching letters in 
parentheses� b Interface of the less abundant cyt b5-P450 
complex� Note that many of the residues are the same� The 
most noticeable difference is that both the 40s and 60s 
loop of cyt b5 are in contact with P450 [128]
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electron tunneling distance of 14 Å [142]. The 
surface area of the complex interface is ~ 1150 
Å2. It is formed by salt bridges, hydrogen bonds, 
and hydrophobic residues, as proposed for elec-
tron transfer proteins [87]. Results of a double 
mutant cycle analysis revealed that P450 2B4 
Lys433, located three residues upstream of axial 
Cys436 in the β-bulge, was in contact with the 
acidic amino acid Asp65 and the hydrophobic 
Val66 of cyt b5. Arg122 in the P450 C helix in-
teracts with Asp65 [128]. Lysines, in CYP2E1, 
CYP1A2, and CYP2C9 that are homologous 
to Lys433 have been implicated in binding its 
redox partners. Due to its proximity to the heme, 
Lys433 and homologous lysines are well situated 
to transmit structural information from the redox 
partner to P450 and perhaps electrons.

For comparison, Fig. 2.14 shows the residues 
in contact in the model of the complex between 
P450 2B4 and the FMN domain of P450 reduc-
tase. Figure 2.5 provides an overview of the 

complex [53]. Interprotein contacts include salt 
bridges, hydrogen bonds, and van der Waals in-
teractions. The area of the interface of the FMN 
domain-P450 complex is 870 Å2, slightly smaller 
than the cyt b5-P450 interface. It can be seen that 
P450 residues implicated in binding P450 reduc-
tase also participate in binding cyt b5. While the 
different P450s all appear to utilize their proxi-
mal surface for docking, each proximal surface 
is unique. The interprotein complexes will be 
similar, but not identical, and will be formed 
based on the general principles of interprotein 
complex formation. Homologous residues may 
make quantitatively different contributions to the 
binding energy of their respective complexes. 
Utilization of overlapping but nonidentical sites 
for P450 reductase and cyt b5 binding predicts the 
redox partners will compete for binding to P450 
and their binding will be mutually exclusive. Ex-
periments with P450 2B4, P450 17A1, and P450 
3A4 demonstrate that cyt b5 and P450 reductase 

Fig. 2.14  Interface of the NADPH-cytochrome P450 
oxidoreductase ( POR)–flavin mononucleotide ( FMN) 
domain—P450 2B4 complex. The model was generated 
as previously described, using mutagenesis constraints 

[52]. The coordinates of the FMN domain were from pdb 
code 3ES9 and from pdb code 1SUO for P450 2B4. Resi-
dues on the FMN domain that are in contact with P450 are 
denoted with matching letters in parenthesis
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do, indeed, compete for docking with P450 [128, 
134, 165]. In a particular situation, the relative af-
finity of the redox partners for P450 and the rela-
tive concentration of cyt b5 and the reductase will 
determine which partner actually binds to the 
P450. How the binding of microsomal P450s to 
their partners is orchestrated in vivo is unknown. 
Since there are alleged to be ~ 5–20 molecules 
of P450 for every reductase molecule in micro-
somes, the in vivo regulation of the interprotein 
reaction is presumed to be highly regulated by 
a currently unknown mechanism. [22, 23, 195].

2.3.7  Mechanism of Action of Cyt b5 
with P450

The possible mechanisms of action of cyt b5 with 
P450 have been reviewed [127]. The proposed 
mechanisms of action will be summarized and 
then discussed in light of recent experiments that 
have begun to provide some clarity (see Fig. 2.9 
for the P450 reaction cycle). (1) One possibil-
ity is that cyt b5 provides the second electron to 
oxyferrous P450 faster than POR. (2) The second 
possibility is that cyt b5 enhances the utilization 
of NADPH for product formation, possibly be-
cause it provides the second electron faster than 
P450 reductase. (3) The third possibility is that 
P450, POR, and cyt b5 form a ternary complex. 
Reductase delivers two electrons to the diheme 
complex via P450. Reductase then dissociates 
from the ferrous diheme complex. After oxygen 
binds to P450, the ferrous cyt b5 immediately 
reduces oxyferrous P450. It was proposed that 
reduction of oxyferrous P450 by bound cyt b5 
would occur faster than reductase dissociation to 
retrieve a second electron. (4) The fourth possi-
bility is that cyt b5 acts as an effector in the reac-
tion with P450.
1. When the rates of reduction of an oxyferrous 

microsomal P450 by cyt b5 and P450 reduc-
tase were directly measured and compared, it 
was observed that cyt b5 and reductase both 
reduced oxyferrous P450 2B4 at the same rate 
[149]. Unexpectedly, the P450 reacted dif-
ferently following reduction, depending on 
whether it had accepted an electron from cyt 

b5 or POR. Presumably this occurs because 
each redox partner elicited a different confor-
mational change in the active site on the dis-
tal side of the heme. In the presence of cyt b5, 
product was formed rapidly with the substrate 
benzphetamine and with ~ 52 % coupling, 
whereas product formation was significantly 
slower (~ 10–100-fold) and less coupled 
(~ 32 %) with the reductase. Coupling refers to 
utilization of electron equivalents for product 
formation. How much slower depends on the 
substrate [196]. How generalizable a phenom-
enon and observation this is awaits the results 
with different P450 isozymes.

2. Numerous investigators have indeed shown 
that cyt b5 may enhance the coupling of 
NADPH utilization for product formation at 
the expense of side product (hydrogen perox-
ide and superoxide) formation [157, 158, 197]. 
While this is a reproducible observation, it is 
not a molecular explanation for the actions of 
cyt b5. Increased efficiency of NADPH utili-
zation could be explained by the more rapid 
rate of product formation, which allows less 
time for production of the side products hy-
drogen peroxide and superoxide.

3. While it was established as early as the 1980s 
that ferrous P450 could reduce ferric cyt b5, 
the role of such a reaction in altering the activ-
ity in a reconstituted system is uncertain [158, 
198, 199]. Moreover, the alleged formation of 
a ternary complex between P450, cyt b5, and 
P450 reductase has been challenged [57, 200]. 
A functional ternary complex is also incom-
patible with the large amount of mutagenesis 
data that reveals cyt b5 and the reductase have 
overlapping binding sites on the proximal 
surface of P450s and with observations from 
several laboratories on purified reconstituted 
systems that the redox partners compete with 
one another for a binding site on P450 [134, 
139, 165].

4. There is a significant amount of evidence from 
a number of laboratories that cyt b5 can act 
as an effector for some P450s. P450 2D6 and 
P450 1A1 are known exceptions [201]. One 
of the earliest and most convincing examples 
is the partial conversion of the hexacoordinate 
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low-spin to the pentacoordinate high-spin 
heme iron, which occurs when cyt b5 binds 
to a P450 (2B4, 3A4, 17A1, 4A7)� Displace-
ment of the sixth axial ligand, water, from the 
heme of P450 by cyt b5 in many instances is 
greater when substrate is present in the active 
site� One of the simplest explanations for the 
displacement of the water from the P450 heme 
iron is a conformational change induced by the 
binding of cyt b5 that is subsequently transmit-
ted to the active site, resulting in the displace-
ment of water from the iron� In view of the 
tremendous flexibility of P450s exhibited by 
the P450 atomic resolution crystal structures, 
there are several plausible pathways through 
which conformational changes could be prop-
agated from the proximal surface to the distal 
substrate-binding pocket� One is that dock-
ing with residues on the C helix can transmit 
changes via the substrate-binding B-B′ loop 
and helices to the I helix near the conserved 
active site threonine and acidic residue�

Of the four previously proposed mechanisms of 
action of cyt b5, it appears that there is insuffi-
cient evidence for ternary complex formation 
and a more rapid reduction of oxyferrous P450 
by cyt b5 compared to POR� Both reduce P450 
at the same rate� It is proposed that cyt b5 simul-
taneously has two effects on the P450 isozymes 
it stimulates� Its interaction with P450 results in 
both electron donation to the oxyferrous protein 
and a substrate- and isozyme-dependent confor-
mational change in the active site that allows 
catalysis to occur more rapidly� One possibility 
is that the active site conformational change in-
duced by cyt b5 leads to the more rapid formation 
of the active oxygenating species, compound I, 
compared to the reductase [158, 196]� The more 
rapid turnover in the presence of cyt b5 results 
in less time for side product formation, which in 
turn increases the coupling of NADPH consump-
tion to product formation�

2.3.8  Apo Cytochrome b5

Currently, there is no consensus about whether 
apo cyt b5 (cyt b5 devoid of heme) is able to act 

only allosterically to stimulate catalysis by P450 
or whether apo cyt b5 must first bind heme to 
form holo cyt b5, which is both capable of elec-
tron transfer and an allosteric effect� One of the 
difficulties in analyzing the literature about apo 
cyt b5 is that dissimilar conditions have been em-
ployed to investigate not only different isozymes 
but also identical proteins, precluding a satisfy-
ing conclusion about the effects of apo cyt b5 on 
P450 catalysis� NMR studies have shown that 
the structure of apo cyt b5 and cyt b5 are similar, 
with only minimal differences in their secondary 
structure [202]� As a result, they are expected to 
have a similar interaction with P450s� Models of 
a complex between P450 3A4 and apo cyt b5 and 
holo cyt b5 have been constructed� They indicate 
that both complexes form very similar docking 
sites on the proximal surface of P450 3A4 in a 
location that overlaps with the POR binding site 
[134]�

Apo cyt b5 has been found to stimulate some 
P450s (P450 3A4, the 17,20-lyase reaction of 
P450 17A1, and P450s 2A6, 2C8, 2C9, 2C19, 
3A5, 4A4, 4A7 and 6A1) [133, 134, 155, 156, 
158, 197, 201], but not others (P450 2B4, 2E1, 
and 2D6) [132, 133, 137, 203]� Apo cyt b5 can 
only stimulate a P450 activity if the holo cyt b5 
can enhance the activity� Apo cyt b5 has also been 
reported to induce a spin-state change in some 
P450s, which indicates that apo cyt b5 binds to 
P450� This is not surprising in view of their simi-
lar structures [134]�

Recently, the allosteric stimulatory effector 
role of apo cyt b5 was challenged [204, 205]� It 
was proposed that the stimulatory effect of apo 
cyt b5 was due to the transfer of heme from P450 
3A4 and P450 17A1 to apo cyt b5, thereby cre-
ating holo cyt b5, which is known to possess 
stimulatory properties� A more compelling argu-
ment about the lack of the stimulatory ability of 
apo cyt b5 was their demonstration that neither a 
redox inactive Zn-substituted protoporphyrin IX 
derivative of cyt b5 nor an axial His67Ala mutant 
that is unable to bind heme was able to stimulate 
the activity of either P450 3A4 or P450 17A1� 
Moreover, the addition of a heme scavenger, apo 
myoglobin, to the reaction mixture eliminated the 
stimulatory effects of the apo cyt b5�
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These studies prompted a reexamination of 
the stimulatory effects of apo cyt b5 in a recon-
stituted system with P450 3A4 and 17A1 [133]� 
The reexamination concluded that far less heme 
transfer occurred than could be accounted for 
by the stimulatory effects of apo cyt b5� Further-
more, apo myoglobin did not inhibit the stimula-
tory effects of apo cyt b5� The reexamination did 
not include investigation of the effects of redox 
inactive cyt b5 which had been reconstituted with 
a Zn-substituted protoporphyrin IX� Nor did it in-
vestigate whether cyt b5 mutants that were unable 
to bind heme were still stimulatory�

Several laboratories have reported that cyt b5 
reconstituted with Mn protoporphyrin IX, which 
is redox inactive in the reconstituted system, was 
unable to stimulate the activity of P450 [132, 
139, 200, 206, 207]� In fact, as the concentration 
of Mn cyt b5 was increased relative to a constant 
amount of P450 and P450 reductase, NADPH 
consumption and activity decreased and the 
rate of reduction of ferric P450 was diminished� 
These effects of Mn cyt b5 are consistent with the 
ability of Mn cyt b5 to decrease the rate of re-
duction of ferric P450 by competing with P450 
reductase for binding to P450 [139]� In addition, 
it has been reported that siblings with a homozy-
gous axial histidine variant of cyt b5, His44Leu, 
exhibited a phenotype with abnormal genitalia 
and low androgens, indicative of an apparently 
isolated deficiency of the cyt b5 requiring 17,20-
lyase activity of P450 17A1� An elevated methe-
moglobin (Fe+3 Hb) was also noted� This human 
phenotype is supportive of a nonfunctional apo 
cyt b5 in vivo [208]. Drug metabolism was not 
investigated in these individuals�

In conclusion, in spite of the different iso-
zymes and experimental conditions involved, 
apo cyt b5 does appear to affect the activity of 
selected P450s� Its mechanism of action contin-
ues to be vigorously debated� Nevertheless, the 
weight of the evidence is pointing to the likeli-
hood that only P450s that are able to transfer 
their heme to apo cyt b5 to form holo cyt b5 and 
also have activities that are increased by holo cyt 
b5 are stimulated� For example, P450 3A4 and 
17A1 have been observed to transfer heme to apo 
cyt b5 under experimental conditions, whereas 

P450 2B4 does not significantly transfer heme to 
apo cyt b5� Due to the similarity of apo- and holo 
cyt b5 structures, apo cyt b5 may also compete 
with reductase for a docking site on P450, which, 
depending on the molar ratios of the redox part-
ners to P450 and their relative affinities for P450, 
could decrease the activity of the isozyme even in 
the absence of holo cyt b5 formation�

2.3.9  Summary of Mechanism of 
Action of Cyt b5 on P450

Although our understanding of how cyt b5 can 
increase, decrease, or have no effect on cataly-
sis by P450, and why its actions are dependent 
on the isozyme and substrate, is still incomplete, 
significant progress has been made in the past 
four decades in elucidating its mechanism of ac-
tion� The fact that both cyt b5 and reductase re-
duce oxyferrous P450 at the same rate indicates 
that the mechanism of action of cyt b5 occurs 
after reduction of oxyferrous P450 in the reaction 
cycle� Its stimulatory effects are consistent with 
an ability to generate the active oxidizing oxyfer-
ryl species, compound I, more rapidly than P450 
reductase� It is likely that this occurs by inducing 
a conformational change in the proton delivery 
network in the P450 active site� More rapid for-
mation of compound I would allow less time for 
side product formation and result in increased ef-
ficiency of catalysis�

Evidence is also accumulating that is support-
ive of the notion that cyt b5 and reductase compete 
for a binding site on the basic proximal surface of 
P450s� The ability of a redox partner to bind a 
P450 will depend on the relative concentrations 
and relative affinities of the redox partners for 
the specific P450 isozyme� At higher molar ra-
tios compared to a constant P450:POR 1:1 ratio, 
cyt b5 will abort the reaction cycle by preventing 
P450 reductase from reducing ferric P450, while 
at lower molar ratios cyt b5 is stimulatory [196]� 
No effect is observed when the opposite effects 
cancel� The actions of cyt b5 on different iso-
zymes of P450 is inferred to depend on its ability 
to induce the conformational changes in the ac-
tive site necessary for more rapid catalysis and on 
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its affinity for the particular P450 in comparison 
to the POR�

A final dilemma is: why does the effect of cyt 
b5 vary with the substrate even when it is being 
metabolized by the same P450? This is the least 
understood, most enigmatic of the effects of cyt 
b5� It has been observed that under similar con-
ditions, the same P450 utilizes qualitatively the 
same amount of NADPH regardless of the sub-
strate, while cyt b5 increases the efficiency of 
catalysis by roughly 15 % regardless of the sub-
strate [157]� These results lead to the speculation 
that a poor substrate whose metabolism is 2 % 
coupled will have the absolute amount of its me-
tabolism increased by ~ seven times� In contrast, 
a good substrate whose metabolism is approxi-
mately 50 % coupled will have the absolute value 
of its metabolism enhanced by merely 30 %, 
which may be within experimental error [157]� 
How generalizable this speculation is awaits de-
tailed studies of other P450s and substrates� Both 
reactions should be subject to inhibition by high 
concentrations of cyt b5� If cyt b5 really does in-
crease the efficiency of catalysis by approximate-
ly the same amount irrespective of the substrate, 
it implies that its putative allosteric effect is prob-
ably not always dependent on the substrate� The 
highly flexible nature of P450s has been noted 
and likely contributes to the variety of results�
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3.1  A Brief History of “Oxygen 
Activation”

The cytochrome P450s have been the focus of at-
tention for legions of investigators� For the basic 
scientists, the unique spectral properties of this 
heme protein provided fascinating challenges for 
the bioinorganic chemist� The difficult chemistry 
of adding an oxygen atom to an unactivated al-
kane intrigued the bioorganic chemist, and the 
need for electron transfer with proton involve-
ment brought the physical biochemists to the 
table� With the known processes of the archetypi-
cal heme proteins myoglobin and hemoglobin, 
as well as the reductive chemistry operating in 
the cytochrome oxidases, it was no surprise that 
investigators from these fields were amongst the 
first to focus their attention on cytochrome P450 
and its redox partners� The concept of “oxygen 
activation” thus comes from two directions� First, 
although atmospheric dioxygen can be reactive at 
room temperature, e�g�, in the formation of rust, 
typical hydrocarbons are stable until combustion 
at elevated temperatures� Thus, facile hydrocar-
bon hydroxylation or epoxidation near 37 °C re-

quires enzymatic “activation�” From the protein 
standpoint, the reversible binding and release of 
atmospheric dioxygen by hemoglobin led to doc-
umentation of an intermediate state—the ferrous 
heme—O2 complex� Nature evolved the proto-
porphyrin IX prosthetic group within the globins 
to protect this oxy-ferrous complex, resulting in a 
relatively stable species, although after long time 
intervals this intermediate would “auto-oxidize” 
releasing superoxide and converting the heme 
iron to the ferric state� Since it was realized early 
on [1] that the cytochrome P450s also contained 
protoporphyrin IX heme as a prosthetic group, 
and hence could bind atmospheric dioxygen, the 
protein must be doing something to “activate” 
the bound dioxygen for catalysis�

The canonical overall reaction of cytochrome 
P450 involves the reductive scission of the O–O 
bond of atmospheric dioxygen to release a single 
molecule of water with the transfer of a single 
oxygen atom to the substrate:

Cytochrome P450s are thus “oxygenases” as 
one or more oxygen atoms from O2 are incor-
porated into a substrate molecule, following the 
discovery of this class of enzymes by Hayaishi 
and Mason in 1955 [2, 3]� Very soon thereafter 
the first experimental proof of steroid hydrox-
ylation by a mammalian oxygenase was identi-
fied by using 18O2 for the reaction [4], although 
the enzyme responsible for this, CYP11B1, was 
not identified until 1965 [5]� A beautiful review 

S O H H O S Oe+ + + + → + −−2 22 2 �
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of the early P450 history was provided by Esta-
brook [6]� Since a single oxygen atom is inserted 
into a substrate, the P450s are “monoxygenases” 
and require additional redox transfer partners to 
provide the two electrons (and potentially the 
two protons) necessary to reduce the other ox-
ygen atom from O2 to water� Historically, this 
led to the cytochrome P450s also being called 
“mixed function oxidases” as they operated like 
a half-way point of the cytochrome oxidase stoi-
chiometry in which four electrons and protons 
are used to fully convert O2 to two molecules of 
water� As we now know, the cytochromes P450 
can carry out a variety of additional organic 
transformations, including carbon–carbon bond 
scission and formation, dealkylation, heteroatom 
oxygenation, and halogenation/dehalogenation� 
We will discuss these other reactivities of the cy-
tochromes P450 later in the chapter in the context 
of what they teach us about the various states of 
“oxygen activation�” Since this chapter is devot-
ed to the mechanisms of oxygen activation, it is 
useful to briefly mention early ideas of how the 
relatively inert O2 molecule could be “activated�” 
Again we can organize the discussion along two 
lines of focus: the enzymology of the P450 he-
moprotein and the dioxygen molecule itself�

Debates as to the mechanisms of oxygen ac-
tivation heated up in the early 1970s� From the 
standpoint of O2, this was also the era of intense 
arguments as to the chemical reactivity of super-
oxide, a one electron reduced O2� Early discus-
sion by Fridovich and others [7] suggested O2− 
itself could attack unactivated carbon centers, 
while others, led by Fee et al� [8], argued that su-
peroxide was at best a mild reductant and could 
not by itself institute carbon oxidation� At the 
same time in history, enzymologists documented 
the existence of the ferrous dioxygen complex of 
P450 isolated from Pseudomonas putida (P450 
CYP101A1)� Since this protein could be obtained 
in large quantities, it could be investigated by a 
plethora of spectroscopies� Using Mössbauer 
spectroscopy it was shown that in the ferrous-
dioxygen intermediate of CYP101A1, stabilized 
at cryogenic temperatures, the iron was in the fer-
ric state, analogous to the Weiss model proposed 
for hemoglobin and myoglobin� If the iron looks 

ferric and there is an extra electron in the Fe–O2 
system, then the electron density must favor the 
superoxide resonance form� Hence the thought: 
Was the active form of O2 in P450 catalysis the 
superoxide anion? Reality set in, however, when 
it was noted that the Fe–O2 complex of heme 
proteins could not carry out even simple oxygen-
ation reactions—a second electron was required 
for “activation�”

The early 1970s was also the time when in-
teresting chemistries of the second-row nonmet-
als carbon and nitrogen were revealed when they 
were missing two electrons from their valence 
shell� These so-called carbene and nitrene species 
were shown to be able to directly insert into C–C, 
C–H and other organic bonds� What about oxy-
gen? Could a six-electron oxygen atom provide 
the observed reactivity of the P450 enzymes? 
The term “oxene transferase” was proposed by 
Ullrich and coworkers to describe this form of 
activated oxygen [9]� Simple electron counting 
from a ferrous–dioxygen complex after a second 
electron input and the release of water indicated 
the presence of a six-electron oxygen atom some-
how bound to a ferric heme� On the other hand, 
it was difficult to see how such an electron-defi-
cient species could dissociate from the heme and 
react with a nearby substrate�

The solution to the identification of the “ac-
tive oxygen species” in P450 catalysis came in 
1976 through the efforts of Groves in collabora-
tion with the Coon laboratory [10, 11]� Under-
standing the nature of an “oxene” bound to ferric 
heme, Groves realized that there would be two 
open orbitals on the oxygen that could initiate 
radical chemistry� He proposed an “oxygen re-
bound” mechanism wherein this species, formal-
ly at the redox state of compound I as observed in 
the peroxidase class of enzymes, could abstract a 
hydrogen from a substrate C–H bond, formally 
generating a hydroxyl radical bound to heme that 
could then undergo radical recombination with 
the substrate carbon radical to generate the hy-
droxylated product� Showing the transient exis-
tence of a substrate carbon radical intermediate 
was strong evidence for this being the intermedi-
ate in oxygen activation [11, 12]�
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3.2  The Plethora of Chemical 
Reactivities of Cytochrome P450

The initial focus on the ability of P450 to catalyze 
the oxidation of an unactivated carbon center was 
a driver for the chemical community, while paral-
lel interests that focused on metabolic transfor-
mations in humans expanded the spectrum of ac-
tivities associated with P450 metabolism� In addi-
tion to hydroxylation of unactivated alkanes, this 
includes epoxidation of olefinic substrates, the 
addition of oxygen to heteroatoms such as sulfur, 
the dealkylation of amines, and the formation and 
breakage of carbon–carbon bonds� These include 
reactions involved in human health and disease, 
such as the epoxidation of aromatics as part of 
carcinogen activation (e�g�, benzo(a)pyrene) and 
facile heteroatom dealkylation as exemplified by 
the O-demethylation that converts codeine into 
morphine� These human relevancies brought the 
large body of pharmacologists and toxicologists 
into the community studying the cytochromes 
P450� With the growing involvement of P450 in 
multiple biotransformations, a natural question 
emerged as to the number of isozymes that might 
be present� Initially, several variants were found 
in animal liver, a key site for first pass metabo-
lism� They were first isolated as pure proteins 
though enormous efforts by the Coon laboratory 
and others, with the isozymes labeled LM1, LM2, 
LM3, LM4, etc�, for liver microsomal fraction 1, 
etc� The general feeling at the time was that there 
could be a dozen or even 20 different isozymes of 
P450 in animals and perhaps a few more in bac-
teria and plants� As is beautifully described else-
where in this volume, there are now over 20,000 
P450 genes identified [13]! The functions of all 
these P450s can be artificially separated into two 
classes: Those involved in the synthesis of inter-
mediary metabolites, such as prostaglandins and 
hormones in humans, and those involved in cata-
bolic reactions often associated with xenobiotic 
breakdown—most prevalent in the human liver, 
kidney, and epithelial tissues� This classification 
also applies to plants, insects, etc�, as described 
by Schuler et al� in this volume (Chap� 7)�

3.3  The Three-Dimensional Structure 
of Cytochrome P450

By the mid-1970s enzymologists were comforted 
by the availability of a three-dimensional struc-
ture of their enzyme, although the technology 
was primitive by today’s standards� One require-
ment to obtain an X-ray structure in this era was 
for a substantial amount of highly purified pro-
tein� The only P450 available in the needed quan-
tity and quality was P450cam or CYP101A1� 
The crystallization and solution of the structure 
is told by Poulos and Johnson in this volume to-
gether with those of several other soluble P450s� 
The vast majority of the P450s in nature, how-
ever, are anchored to a membrane and the solu-
tion of membrane protein structure remains a 
significant hurdle today� Indeed, one entire ses-
sion of an international P450 meeting was de-
voted to the debate as to how good a structural 
model CYP101A1 would be for the membrane-
bound P450s [14]� Johnson and Poulos (Chap� 1 
in this volume) summarize the amazing progress 
in solving the structure of the membrane-bound 
P450s� We now recognize that all members of 
this large super family of P450s possess basi-
cally the same fold, with subtle differences being 
present that reflect specificity for substrates and 
redox partners� Additionally, the past four de-
cades of work have unambiguously shown that 
all P450s operate by basically the same reaction 
cycle (Fig� 3�1), including the stoichiometry of 
oxygen and reducing equivalents� However, the 
degree of coupling, or efficiency of converting 
atmospheric O2 and electrons to substrate-de-
rived products can vary widely�

Most P450s operate with a single substrate-
binding site, often with the high degree of speci-
ficity needed, for example, in hormone biosyn-
thesis� However, some P450s can bind more than 
one substrate molecule, either in an enlarged ac-
tive site or in a distant effector or allosteric site� 
This can lead to a profound effect on metabolic 
throughput as will be discussed in detail subse-
quently�

The remainder of this chapter, as well as con-
tributions from other authors, will address the 
spectroscopic characterization of the intermedi-
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ate states that lead to the ultimate oxygenating 
species operating in the cytochromes P450� We 
will also address the aspects of the protein struc-
ture that allow control of electron and proton 
input into the catalytic cycle to control the stabil-
ity and reactivity of these intermediate states� Ap-
propriate results that define the side uncoupling 
pathways, as well as other forms of the reduced 
oxygen-bound P450 heme that have the poten-
tial for substrate metabolism, will conclude this 
review and also provide the critical link to other 
forms of “active oxygen�”

3.4  Substrate Binding, Spin Shift, 
and Redox Potentials

Substrate binding to cytochrome P450 is an im-
portant step in the overall mechanism of P450 
catalysis, not only because it is necessary to posi-
tion the substrate in the proper orientation in the 
immediate vicinity of the heme bound catalyti-
cally competent “active oxygen�” Equally impor-
tant, it serves as the trigger activating the electron 

transfer from the redox partner to the heme iron 
resulting in reduction of the iron from the fer-
ric Fe3 + to the ferrous Fe2 + state� This, in turn, 
is necessary for binding of oxygen to the ferrous 
cytochrome P450 and formation of the oxygen-
ated intermediate� In general, the regulatory role 
of substrate binding as the trigger initiating the 
reduction is used in the cytochromes P450 [16, 
17], as well as in some nonheme enzymes [18], to 
minimize production of reactive oxygen species 
and unproductive waste of nicotinamide adenine 
dinucleotide (NADH) and nicotinamide adenine 
dinucleotide phosphate (NADPH)�

Usually much tighter substrate binding is 
observed for P450s involved in specific biosyn-
thesis of hormones and other regulatory com-
pounds� Examples include the high affinity of 
cytochromes P450 involved in steroid hormone 
biosynthesis towards their natural substrates and 
other synthetic steroid compounds [19–21]� Inter-
estingly, many P450s that formally belong to this 
class can also bind and metabolize compounds 
not related to their native substrates, albeit with 
lower affinity and efficiency� Such examples 

Fig. 3.1  Reaction cycle of cyto-
chrome P450, reproduced with 
permission from American Chem-
ical Society from [15]
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are described for CYP101A1 [22–24], CYP102 
[25–27], and CYP46 [28]� For xenobiotic metab-
olizing cytochromes P450, which can bind and 
catalyze oxidative transformations of various or-
ganic molecules with a very broad distribution of 
chemical structures and molecular masses, lower 
substrate affinities with dissociation constants in 
the range of 10− 5 to 10− 3 M are more typical� Ap-
parently, weaker substrate binding is the price for 
their broad substrate specificity, a requirement 
for the first line of chemical defense of the organ-
ism against myriads of alien, potentially toxic, 
and dangerous compounds� Multiple examples 
are described in comprehensive reviews [29–31]�

The binding of hydrophobic substrates usually 
leads to displacement of water from the substrate-
binding pocket, including the water molecule 
coordinated to the heme iron as the sixth (axial) 
ligand, as shown in Fig� 3�2 for CYP101A1� The 
transition of the ferric iron atom Fe3 + from the 

hexacoordinated to the pentacoordinated state 
results in a spin-state transition from low spin 
(S = 1/2) to high spin (S = 5/2). This change in the 
coordination state of the heme iron gives rise to 
an upshift of redox potential, which is essential 
for efficient reduction of the enzyme from the 
ferric to the ferrous state�

The difference in redox potentials between 
pentacoordinated and hexacoordinated porphy-
rins can be illustrated using the thermodynamic 
cycle shown in Fig� 3�3:

Here the ligand L can bind to the heme iron 
with binding constants K1 and K3, which are dif-
ferent for the ferric and ferrous states, while K2 
and K4 define the redox equilibria for the five-
coordinated high-spin and six-coordinated low-
spin heme iron respectively [16]� The overall 
redox equilibrium between Fe3 + and Fe2 +, i�e�, 
the midpoint potential, can be shifted towards the 
strong binder, if the ligand is present [34]� In the 
aqueous solution, water or a hydroxide always 
favors the ferric state as compared to ferrous, so 
that K1 > 1 and K3 < 1, and Fe3 + is typically six-
coordinated in cytochromes P450 in the absence 
of a substrate, while Fe2 + is five-coordinated� As 
a result, the thermodynamic (redox) equilibrium 
between the ferric and ferrous states of the heme 
iron is shifted to the former in the absence of 
substrates, while substrate binding displaces the 
water molecule from the sixth coordination posi-
tion, thus destabilizing the ferric state and lifting 
the midpoint potential� Experimentally measured 
shifts of the redox potentials in cytochromes P450 
caused by substrate binding are in the range 80–

Fig. 3.3  Coupling of the ligand L binding equilibria to 
the ferric and ferrous heme protein with binding constants 
K1 and K3 and of redox equilibria in the substrate free 
or substrate bound protein with equilibrium constants K2 
and K4

 

Fig. 3.2  X-ray structures of CYP101A1 without sub-
strate (1PHC�pdb [32], top) and with the substrate cam-
phor (2CPP�pdb [33], bottom)� Shown are also the water 
molecules ( red spheres) occupying the substrate-binding 
pocket, one of them coordinating to the heme iron as the 
sixth ligand

 



74 I. G. Denisov and S. G. Sligar

170 mV [16, 35–37]� In most cases, cytochromes 
P450 saturated with substrates are reduced much 
faster [37–41]� Acceleration of the first electron 
transfer to cytochromes P450 in the presence of a 
bound substrate represents an important thermo-
dynamic regulatory mechanism, preventing futile 
consumption of redox equivalents and formation 
of toxic superoxide and peroxide, as will be dis-
cussed in a subsequent section of this chapter� In 
addition, Marcus theory analysis suggests a faster 
electron transfer in the presence of substrate due 
to a lower reorganization energy [42]� The spin-
state equilibrium in cytochromes P450 is temper-
ature dependent and can be probed by tempera-
ture jump studies� Direct kinetic measurements 
show that the typical rates of spin-state relaxation 
after temperature jump are in the range of 400–
2000 s− 1 for CYP101A1 [43] and 800–2500 s− 1 
for CYP102A1 [44]� The same thermodynamic 
coupling is responsible for the higher affinity of 
cytochromes P450 with respect to hydrophobic 
substrates at higher temperatures that is observed 
experimentally [44]�

Substrate binding is usually fast for the solu-
ble P450s, with apparent rates of 102 to 103 s− 1 
[45] and second-order rates ~ 106 to 107 M− 1s− 1 
[45, 46]� This fast binding and simple 1:1 stoichi-
ometry is usually observed for the efficient bacte-
rial P450s with their natural substrates, i�e�, CY-
P101A1 with camphor [46, 47]� Comparison of 
camphor binding and dissociation kinetics with 
mutants generated to perturb the equilibrium-
binding constant demonstrated fast binding in 
all cases, with the affinity exclusively dependent 
on the dissociation rate [24]� For instance, the 
T101M mutant had the same camphor-binding 
rate as the wild-type enzyme, kon = 3×107 M− 1s− 1, 
but an almost tenfold higher dissociation rate 
koff = 192 s− 1� Fast substrate binding was also re-
ported for many other cytochromes P450, such 
as CYP102A1 [48] and other soluble bacterial 
enzymes� In many cases purified and solubilized 
eukaryotic cytochromes also show fast substrate 
binding [49]� However, in some cases, very slow 
substrate-binding kinetics have been observed, 
such as those reported for cholesterol derivatives 
binding to P450scc in lipid vesicles, where type 
I spectral changes were monitored on the scale 

of 15 min and apparent first-order rates obtained 
in the range of (4–9) 10– 4 s− 1 [50]� Such results 
are probably due to the extremely low solubility 
of cholesterol and its derivatives and slow redis-
tribution between the aqueous phase and lipid bi-
layers [19]� The kinetics of NAD(P)H-dependent 
reduction of cytochromes P450 in the presence 
of their redox partners almost always strongly 
depends on the presence of their substrates� Ex-
ceptions from this general rule are reported for 
several cytochromes P450 that are predominantly 
in the high-spin ferric state even before addition 
of a substrate, such as CYP1A2 [51–53]� These 
observations are in line with the redox thermo-
dynamics modulated by substrate binding de-
scribed above (Fig� 3�3)� Typically, reduction of 
substrate-free P450 enzymes is very slow with 
apparent rates in the range of 10− 4–10− 2 s− 1 
[54], and is much faster (sometimes by several 
orders of magnitude) in the substrate-bound state 
[17]� Sometimes the first electron-transfer step 
is identified as the rate-limiting step, as shown 
for CYP7A1 [55]� The significant acceleration of 
P450 reduction in the presence of substrates is 
easily seen in the steady-state kinetics of NAD(P)
H consumption, as reported for both bacterial and 
eukaryotic cytochromes [56]� The acceleration of 
NAD(P)H oxidation can be used as an empiri-
cal test for the screening of new compounds as 
potential substrates for a given cytochrome P450 
[57, 58] or as a rough measure of P450 activity 
[59]�

Interactions with redox partners are not only 
necessary to bring the electron donor close to the 
heme for efficient electron transfer� Recent struc-
tural studies of the complex of CYP101A1 with 
its natural redox partner, the iron–sulfur protein 
putidaredoxin (Pdx) [60, 61], confirmed the im-
portant allosteric regulatory role of these interac-
tions that was first suggested in 1974 [62]� Per-
turbations of the CYP101A1 heme environment 
when complexed with its redox partner Pdx have 
been detected using various spectroscopic meth-
ods [63–67]� Early work by Davies and Sligar 
demonstrated the redox-dependent affinities of 
Pdx and P450 and the critical residues involved 
[68]� What was missing, however, was a linkage 
between structure and the functional implications 
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caused by Pdx binding� It was the X-ray structure 
of the complex [60, 61] that clearly demonstrated 
that Pdx binding results in opening of the cleft 
in the I-helix that is necessary for directed pro-
ton delivery to the coordinated dioxygen� Thus, 
interactions with oxidized Pdx favor the open 
conformational state of CYP101A1 [60, 61]� 
However, Goodin et al� demonstrated an opposite 
effect of reduced Pdx binding on the conforma-
tional state of CYP101A1 [69]� Taken together, 
these results reveal a sophisticated pattern of 
allosteric regulatory effects of Pdx on the struc-
ture, dynamics, and functional properties of CY-
P101A1� In the first step, binding of reduced Pdx 
stabilizes the substrate-bound closed state of fer-
ric CYP101A1 and provides optimal conditions 
for the first electron transfer� After reduction of 
the heme, oxidized Pdx dissociates and oxygen 
binds to the heme iron atom� Binding of reduced 
Pdx to the oxy-complex stabilizes the latter 
against autoxidation, preventing the heme from 
autoxidation and resulting in transfer of the sec-
ond electron and formation of the peroxo-ferric 
intermediate� Finally, bound oxidized Pdx favors 
the open conformational state of CYP101A1, 
with the functionally important rearrangement of 
residues Asp251 and Thr252 in the I-helix that 
are necessary for efficient proton delivery to the 
dioxygen moiety of the peroxo-intermediate and 
formation of compound I (see Chap� 1 by Poulos 
and Johnson)� Allosteric effects of interactions 
with redox partners have also been suggested in 
other systems� Fusion with different redox part-
ners changed the regiospecificity of catalysis 
and also the range of chemical transformations 
catalyzed by the multipurpose cytochrome P450 
MycG [70]�

3.5  Oxygen Binding and the 
Structure of the Ferrous 
Dioxygen Complex

The binding of dioxygen to ferrous cytochrome 
P450 leads to formation of the oxy-complex, 
which is the last relatively stable intermediate 
in the catalytic cycle� This complex has dioxy-
gen coordinated end-on to the heme iron with 

partial transfer of electron density from the iron 
to the dioxygen moiety� Based on spectroscopic 
and structural data [71–75], the latter can be de-
scribed as partially superoxide� In general, most 
properties of the oxy-complexes in cytochromes 
P450 are similar to those of other heme proteins, 
including the myoglobins, hemoglobins, and 
heme oxygenases� An overview of the structural 
studies of oxy-complexes in various heme en-
zymes was published in 2007 [76]� Oxygen bind-
ing to cytochromes P450 is usually fast and not 
rate limiting for P450 catalysis at ambient condi-
tions� Kinetic studies show second-order binding 
rates for CYP101A1 in the range of (0�8–1�7) 
106 M− 1 s− 1 at 4–25 °C in the presence of cam-
phor [77, 78]� These rates correspond to apparent 
first-order binding rates 200–300 s− 1 in aerated 
solutions� Similar rates have been reported for 
CYP1A2 [45], CYP2A6 [79], and CYP158A1 
[80]� The presence of substrates can significantly 
impede the access of O2 and other diatomic li-
gands to the heme iron, and the scale of this effect 
can vary to a great extent with various substrates� 
For instance, different oxygen binding rates have 
been reported for CYP158A1 saturated with flav-
iolin (120 s− 1) or 2-hydroxy-1,4-naphthoquinone 
(15 s− 1) [80]� The effect of substrates on oxygen 
binding and autoxidation have been systematical-
ly studied for monomeric CYP3A4 incorporated 
into 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
phocholine (POPC) Nanodiscs [81, 82]� The ex-
perimentally observed rate of O2 binding in the 
presence of testosterone TST and bromocryptine 
(BC) varies by more than an order of magnitude 
(350–400 s− 1 with TST and 24 s− 1 with BC at 
279 K)� The effect of TST is even more dra-
matic with respect to the binding of cyanide to 
CYP3A4, which is 60 times slower in the pres-
ence of substrate than in its absence [82], as is 
also observed for the association of small ligands 
like cyanide and imidazole to the ferric enzyme 
[83, 84] and of carbon monoxide to ferrous P450� 
[85]� The rate of CO binding to CYP101A1 in 
the absence of camphor (5×106 M− 1 s− 1) is two 
orders of magnitude faster than in its presence 
(4 · 104 M− 1 s− 1) [86]� A similar slowing of CO 
binding by substrate was observed for CYP108, 
but not for CYP102 [87]� This reduction in the 
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binding rates of diatomic ligands in the presence 
of substrates is commonly observed with other 
heme enzymes, including indoleamine 2,3-di-
oxygenase (IDO) [88] and nitric oxide synthase 
(NOS) [89]�

An interesting aspect of the kinetics of CO 
binding to CYP102A1 has been described by 
Munro et al� [90] using laser photooxidation of 
NAD(P)H to reduce the heme iron in the micro-
second timescale ( kobs = 14,000 s− 1), a much fast-
er rate than the typical dead time in stopped-flow 
studies (~ 1 ms)� The surprisingly fast CO bind-
ing observed in this work, with apparent rates of 
1700–3000 s− 1, was attributed to the presence of 
CO molecules inside the protein in the immediate 
vicinity of the heme iron� In this case, there is no 
need for penetration of the diatomic ligand from 
the solution into the substrate-binding pocket and 
diffusion towards the heme iron� It is reasonable 
to expect that the same may be true for other di-
atomic neutral gases, such as O2, and as a result 
the oxygen-binding step may happen in aerobic 
solution with apparent rates significantly higher 
than those measured in stopped-flow experi-
ments, where the reduced protein is equilibrated 
with deoxygenated buffer before mixing with 
oxygenated solvent and oxygen must access the 
heme from outside� The same effects have also 

been described for CYP121 and CYP51B1 from 
Mycobacterium tuberculosis [91]�

The first X-ray structure of the ferrous dioxy-
gen (or ferrous-oxy complex) of a cytochrome 
P450 was solved by Schlichting and coworkers 
in 2000 using the bacterial CYP101A1 [92]� The 
oxygen molecule was found to fit tightly between 
the substrate camphor and the small cleft in the 
I-helix as suggested by the structure of the fer-
ric protein [33]� Importantly, the binding of di-
oxygen resulted in a change in the active site 
hydrogen-bonding structure through the addition 
of two new water molecules not observed in the 
ferric structures� These are illustrated in Fig� 3�4� 
The appearance of these water molecules in the 
oxygenated form of CYP101A1 strongly sug-
gested a likely path for the delivery of protons 
to the distal oxygen atom of the heme bound O2� 
This provided the first structure-based suggestion 
of a mechanism of oxygen activation in the cyto-
chromes P450 [74] through site-specific proton 
delivery to the distal atom of the dioxygen ligand 
[93–95]� A first proton transfer would lead to the 
hydroperoxide intermediate and a second proton 
delivery would then lead to cleavage of the O–O 
bond, releasing a molecule of water and generat-
ing the higher valent compound I oxidizing spe-
cies� Oxy-complex structures of wild type and 

Fig. 3.4  a X-ray structure of the oxy-complex of CY-
P101A1 (1DZ8�pdb [92]) with two new water molecules 
appearing in the cleft opening in the I-helix next to the 

coordinated dioxygen molecule� b A tentative proton de-
livery pathway with two new water molecules is shown 
in yellow
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mutant CYP101A1 [74] and P450eryF [73] were 
subsequently solved by Poulos and coworkers�

Because the resolution of the structures of ox-
ygenated cytochromes P450 is not high enough 
for precise evaluation of the geometric parame-
ters of the heme ligands, information about bond 
lengths and angles can be best obtained from the 
structures of closely related model complexes� 
A comprehensive review published in 1994 [96] 
provides an extensive description of the physical 
inorganic chemistry of heme oxygen complexes� 
For many years, the classical reference for the 
geometric parameters of the iron–porphyrin oxy-
complex was the X-ray crystallographic study by 
the Collman group [97] of two picket-fence iron 
porphyrins with imidazole and dioxygen as axial 
ligands� These structures provided a clear picture 
of the end-on coordinated dioxygen molecule 
with a Fe–O–O angle of 135°–137° and O–O 
bond lengths of 1�23 and 1�26 Å� These structures 
also revealed significant mobility and multiple 
orientations of the coordinated dioxygen, both 
in plane and out of plane together with the axial 
histidine ligand [97, 98]� Recently, a new high-
resolution structure of the oxy-complex of an 
iron picket fence porphyrin has been determined 
and the oxidation state of the iron atom was char-
acterized by temperature dependent Mössbauer 
spectroscopy [99] and provided the geometric 
parameters of a heme iron end-on coordinated di-
oxygen with the highest precision� The values de-
termined are Fe−O = 1.811 Å, Fe−O−O = 118.2°, 
and O−O = 1.281 Å, and an off-axis tilt of 6.2° in 
the complex with 2-methyl imidazole as the axial 
ligand� This O–O distance is in good agreement 
with the range expected from the Fourier trans-
form infrared spectroscopy (FTIR) experimental 
frequencies of the O–O stretch mode observed 
for such model complexes (1150–1163 cm− 1) 
[100] and with the general dioxygen—super-
oxide—peroxide formal assignment [96, 101]� 
Similar bond lengths for Fe–O (1�81–1�83) Å 
and O–O (1�24–1�25) Å are reported in two high-
resolution X-ray structures of the oxy-complex 
of sperm whale myoglobin [102, 103]� For ref-
erence, in various models the O–O bond length 
increases from 1�21 Å in dioxygen to 1�33 Å in 
the superoxide anion [104], and to 1�49 Å in the 

peroxide anion [96], concomitant with reduction 
of the O–O bond order from 2 to 1�5 to 1�

Another recent and important study of the 
oxy-complex of the picket-fence iron-porphyrin 
model combined the L edge extended X-ray 
absorption fine structure (EXAFS) and density 
functional theory calculations with a goal of 
characterizing the electronic structure of iron in 
this complex [105]� Comparison of X-ray ab-
sorption spectra (XAS) results obtained for the 
oxy-complex of several other hexa-coordinated 
ferrous and ferric low-spin complexes revealed 
strong σ-donation and strong π-interaction of the 
dioxygen moiety with iron, indicating a highly 
covalent Fe–O bond� This fact restricts the for-
mal application of the oxidation state formal-
ism and explains the absence of the hole in the 
dπ orbital of the iron, which is characteristic of 
all low-spin ferric complexes� XAS spectra of 
the oxy-complex are similar to the spectra of 
the bis-imidazole ferrous porphyrin, (Fig� 12 in 
Ref� [105]) and do not look like the spectra of 
ferric complexes [105]� However, the electronic 
configuration in the oxy-complexes strongly de-
pends on the presence or absence of hydrogen 
bonds to the coordinated oxygen [103]� In the 
model porphyrin complexes there is no hydrogen 
bonding [105], while in most heme proteins there 
are proton-donating amino acid side chains or 
water molecules that can form one or two hydro-
gen bonds and shift the electron density towards 
the ferric-superoxide configuration [103]�

Local interactions in the immediate vicinity of 
the heme and axial ligands can strongly affect the 
electronic structure of the oxy-complex� These 
can be detected by comparison of the ultraviolet–
visible (UV–vis) spectra of various oxygenated 
cytochromes P450, nitric oxide synthase (NOS), 
and chloroperoxidase (CPO), which all have 
identical iron coordination spheres and the same 
heme prosthetic group� While all display a split 
Soret band [106, 107], the position of the main 
band changes from 418 nm in CYP101A1 [77] 
to 430 nm in CPO [108]� Even for the same cyto-
chrome P450 the position of the main Soret band 
may vary significantly in the presence of vari-
ous substrates, as documented for CYP102A1 
(422–425 nm) [36, 109] and for CYP3A4 (420–
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425 nm) [81, 110]� In CYP2B4 the UV–vis and 
magnetic circular dichroism (MCD) spectra of 
the oxy-complex with and without substrate are 
very similar, with the Soret maximum at 423 nm 
[111]� However, a red shift of the Soret band to 
426–427 nm is observed in the CYP2B4 E301Q 
and T302A mutants, respectively, indicating 
slightly different configurations of the hydrogen-
bonding network caused by these mutations� This 
is in contrast to the same mutations (D251N and 
T252A) in CYP101A1, where no changes in the 
UV–vis and MCD spectra were observed relative 
to the wild-type protein [112]�

The most detailed and site-specific informa-
tion on the bond strength and hydrogen-bonding 
environment of the coordinated dioxygen, as well 
as on the main heme vibrational modes, can be 
obtained using resonance Raman (rR) spectros-
copy [113]� Because of the limited stability of the 
oxy-complex at ambient conditions, most Raman 
measurements are performed under cryogenic 
conditions using frozen solutions� The first suc-
cessful rR characterization of the oxy-complex 
of CYP101A1 in the presence of camphor was 
published in 1986 [71]� A strong O–O mode at 
1140 cm− 1 was identified based on isotopic 
shift of this band using 16O2 and 18O2 of 1121–
1131 cm− 1, near that reported for isolated super-
oxide ions in solid matrices [104]� Note that the 
O–O stretching mode is usually not active in rR 
spectra of heme proteins that have histidine as a 
proximal iron ligand, although it was identified 
in infrared (IR) spectra of the oxy-complexes of 
hemoglobin and myoglobin at 1135 cm− 1 [114]� 
However, in some cases the O–O stretch mode 
was experimentally observed, i�e�, in oxyhemo-
globins from Chlamydomonas (1136 cm− 1) and 
from Sinechocystis (1133 cm− 1) [115], and also 
in indoleamine dioxygenase (IDO) (1138 cm− 1) 
[116]� Subsequent rR spectra of oxy-complexes 
in CYP101A1 provided new information on per-
turbation of the Fe–OO moiety by various sub-
strates [72] and by Pdx [117]�

The rR spectra of the oxy-complexes of sev-
eral human cytochromes P450 have also been 
measured recently for recombinant purified 
CYP11A1 [118] and for purified CYP17A1 
[119] and CYP19A1 incorporated in Nanodisc 
bilayers [120]� In general, all features of these 

spectra are similar to those previously reported 
for CYP101A1� The position of the O–O mode 
varies from 1147 to 1124 cm− 1 and the range of 
the Fe–OO mode frequencies is between 540 and 
529 cm− 1, with the expected linear correlation 
observed [118, 121–123]� The positions of these 
modes are not significantly different in the thi-
olate-ligated cytochromes P450 and nitric oxide 
synthases, but can be substantially perturbed by 
hydrogen bonding to the dioxygen ligand [120, 
124–126] and by steric effects caused by size and 
positioning of substrates [72]� In addition, de-
tailed analysis of the spectra of oxy-complexes 
in the presence of various substrates revealed 
a striking difference in the configuration of the 
hydrogen-bonding network that includes the hy-
droxyl group of the substrate, the coordinated 
dioxygen moiety, and possibly other amino acid 
side chains and active site waters� For example, 
based on the different pattern of perturbations of 
the O–O and Fe–OO modes by 17-hydroxypreg-
nenolone and 17-hydroxyprogesterone, hydro-
gen bonding to the proximal oxygen atom for the 
former and the distal oxygen atom for the latter, 
has been observed in CYP17A1 [119]� This dif-
ference correlates with the efficiency of the lyase 
reaction catalyzed by CYP17A1 and speaks di-
rectly to the intermediate states involved in the 
catalytic cycle and the identity of the “active 
oxygen” involved� More information about the 
Fe–O vibrational modes, as well as detection of 
new modes not seen in rR spectra, was provided 
by nuclear resonance vibrational spectroscopy 
(NRVS) [127, 128]� Using this method, Sage and 
collaborators demonstrated the strongly mixed 
character of two Fe–O modes observed in Raman 
spectra and claimed that the unambiguous as-
signment of these modes to either bending or 
stretching vibrations is not always valid�

The ferrous dioxygen complexes of heme pro-
teins are not stable species, with the overall life-
time of this state in the cytochromes P450 ranging 
from milliseconds to minutes (Table 3�1)� Autox-
idation of the Fe–O2 complex proceeds through 
spontaneous dissociation of superoxide, which in 
turn quickly dismutates into hydrogen peroxide 
and dioxygen in aqueous solution� The heme is 
returned to the resting ferric state� The rates of 
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autoxidation strongly depend on the presence of 
substrate, which sometimes can extend the half-
life of the oxy-complex by a factor of 100 [81]� 
Another common property of the oxy-complexes 
in cytochromes P450 is a strong temperature de-
pendence of autoxidation, with high activation 
energies implying substantial conformational 
changes involved in the release of superoxide 
[50, 129–132]� For this reason the oxy-complex-
es of substrate-free cytochromes P450 are pre-
pared at low temperatures, often with the help of 
cryosolvents to suppress the freezing point and 

extend the temperature range for solutions down 
to 250–240 K [109, 111, 133–138]� The observed 
stabilization of the oxy-complexes in the pres-
ence of substrate is a general property of cyto-
chromes P450 and is usually attributed to steric 
restrictions for superoxide escape from the active 
site� The concept of conformational gating is also 
supported by a similar slowing of the dissocia-
tion rates of CO, CN− and other diatomic ligands 
in the presence of a substrate� The same mecha-
nism can be observed even when the substrate is 
present far from the catalytic site, as evidenced 

Table 3.1  Experimentally observed autoxidation rates for cytochromes P450
P450 Substrate Conditions ( K) Rate (s –1) Source
CYP101A1 −sub 275–299 0�002–0�03 [136]

+cam 278–293 0�0003–0�0043 [87]
T252A, V +cam 293 0�005–0�01 [313]
G248A +cam 283 0�003–0�005 [272]

+cam 298 0�004 [189]
CYP102A1 +sub 277–293 0�025–0�22 [87]

−sub 288 0�09 [37]
+sub 288 0�06 [37]

F393H −sub 288 0�018 [37]
+sub 288 0�0013 [37]

T268A −sub 288 0�27 [37]
+sub 288 0�26 [37]

CYP108 +sub 277–293 0�0007–0�017 [87]
CYP119 −sub 278 0�08 [314]
CYP158 +sub 296 0�042–0�09 [80]
P450a, b,ca −sub 277 1�6–5 [315]
CYP1A2 −sub 277 0�41 [304]
E318D −sub 0�80 [304]
E318A −sub 0�07 [304]
T319A −sub 0�37 [304]
CYP2A6 +sub 296 0�3 [79]
CYP2B4 +sub 288 0�09 [316]
CYP3A4 −sub 278–302 20–140 [81]

Testosterone 279–310 0�37–20 [81]
Bromocriptine 279–310 0�12–2�5 [81]

CYP11A1 +cholesterol
+dihydrocholesterol

275 0�0063 [130]
0�0004 [130]

CYP19A1 +androstenedione 298–310 0�21–0�7 [317]
CPO −subs 298 1�7 [318]
iNOS, H2B −subs 283 0�3 [319]
W188H, H2B −subs 283 0�0044 [319]
nNOS, -pterin −subs 283 0�14 [320]
cam 1R-camphor, CPO chloroperoxidase, H2B dihydro-biopterin, iNOS inducible nitric oxide synthase, nNOS neuro-
nal nitric oxide synthase
a Fractions of cytochromes P450 purified from Rhizobium japonicum
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in human CYP3A4 when steroids bind at a pe-
ripheral allosteric site [82]� For CYP3A4, which 
can bind up to three TST molecules, the substrate 
dependence of the autoxidation rate is not trivial, 
with the major stabilization of the oxy-complex 
caused by the first binding event� Although the 
first TST molecule is likely bound at the same pe-
ripheral binding site as progesterone in the crystal 
structure described by Williams et al. [139], with 
no spin shift and no product formed at this stage 
[140], both autoxidation and geminate rebinding 
of CO undergo substantial changes and almost 
reach saturation with no changes caused by the 
second and third substrate binding [82]� Together 
with the high activation energies observed for au-
toxidation (15–18 kcal/mol in CYP3A4 with and 
without substrates) [81], these results suggest the 
existence of “conformational gating” in the bind-
ing and dissociation of diatomic ligands in vari-
ous cytochromes P450� The presence of open and 
closed forms in equilibrium is now considered as 
a common property of the cytochrome P450 fold 
[95, 141] (see also Chap� 1 by Johnson and Pou-
los) and substrate binding is known to strongly 
affect the position of this equilibrium [142–145] 
as well as the likely rates of transitions between 
these states� Apparently, substrate binding to the 
peripheral binding site in CYP3A4 can play an 
effector role by stabilizing the closed form and 
thereby significantly decreasing the dissociation 
rate of diatomic ligands, as well as possibly other 
substrate or product molecules, from the active 
site� Manifestations of such effects of substrate or 
effector binding at the peripheral sites were ob-
served as substrate or product inhibition at high 
substrate concentrations in other P450s such as 
CYP3A4 [146] and CYP2E1 [147]�

Autoxidation together with direct peroxide 
dissociation from cytochromes P450 is respon-
sible for the formation of reactive oxygen spe-
cies and their formation is suggested to be an 
important source of toxic and potentially carci-
nogenic compounds [148, 149]� In some cases 
autoxidation is the main uncoupling pathway, 
as in CYP3A4 with poorly coupled substrates, 
for which autoxidation is faster than the second 
electron transfer� This is suggested based on the 

very fast autoxidation rates, for example 20 s− 1 
with TST bound at 37 °C, as compared with the 
relatively slow overall steady-state NADPH con-
sumption rate (about 4 s−1 under the same con-
ditions) [81, 82]� Substrate binding significantly 
stabilizes the oxy-complex by both kinetic and 
thermodynamic mechanisms� Kinetic stabiliza-
tion due to steric restriction of the escape path-
way for superoxide in the presence of substrate 
was mentioned in the previous section� The ther-
modynamic stabilization is due to the changes in 
redox potential of the heme iron as described [36, 
132]� The oxy-complex can decompose via disso-
ciation of dioxygen from the ferrous heme, or by 
dissociation of superoxide anion from the ferric 
heme, as shown in Fig� 3�5� The overall process 
can be represented by two steps, fast equilibra-
tion in the immediate vicinity of the heme inside 
the active site, and slower escape of diatomic li-
gand into the solvent�

Here the first reversible steps, breakage of 
the coordination bond, and geminate rebinding 
of the neutral dioxygen (top pathway) or super-
oxide (bottom pathway), are equilibrated on the 
~ 10 ns timescale [150, 151]� The relative prob-
ability of superoxide dissociation is determined 
by the partitioning constant Kpart, which can be 
calculated by combining the two redox equilibria 
in Fig� 3�6:

Fig. 3.6  Redox equilibria between ferrous and ferric 
states in the heme iron and between dioxygen and super-
oxide

 

Fig. 3.5  Decomposition pathways of the Fe–O2 complex 
via reversible dissociation of dioxygen from the ferrous 
heme ( top) or quasi-irreversible dissociation of superox-
ide from the ferric heme
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The fraction of dioxygen dissociating from the 
protein via the bottom pathway as superoxide can 
be calculated as shown in the equation below:

Here the midpoint potential of the dioxygen–
superoxide pair is − 0.33 V for unprotonated su-
peroxide [101], so the first term is constant, and 
partitioning between the autoxidation pathway 
and reversible dissociation of dioxygen depends 
exponentially on the midpoint redox potential of 
the heme iron� As a result, the observed apparent 
autoxidation rate kautox also increases exponen-
tially when the redox potential of the heme iron 
decreases:

This exponential dependence of the apparent au-
toxidation rates on the midpoint redox potential 
of the heme iron in cytochromes P450 explains 
the higher stability of the oxy-ferrous intermedi-
ates in the presence of substrates [36, 37, 132]� 
In addition, the presence of substrate at the ac-
tive site of the cytochrome P450 creates steric 
restrictions on the mobility of diatomic ligands 
and furthermore increases the lifetime of oxy-
complexes and thus improves the efficiency of 
the overall catalytic cycle by reducing unproduc-
tive dissociation of superoxide� [81, 82]� Overall, 
this regulatory role of substrate on the efficiency 
of oxygen activation is a critical factor in the 
mechanism of cytochrome P450�

3.6  Second Electron Transfer and 
the Peroxo- and Hydroperoxo-
Intermediates

The rate of the second electron transfer, [4]  [5] 
in Fig� 3�1 is difficult to measure� The marginal 
stability of the oxy-complex in many cases is a 
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serious obstacle, made more difficult by the rate-
limiting formation of a productive complex with 
the protein redox partner, either an iron–sulfur 
ferredoxin (e�g�, Pdx), or the flavoprotein cyto-
chrome P450 reductase� In several experimental 
studies the reduction rates of oxy-complexes in 
cytochromes P450 were measured using stopped-
flow absorption spectroscopy by monitoring the 
decay of the oxy-complex after rapid mixing 
with the reduced redox partner [152–156]� The 
measured rates varied greatly, from > 100 s− 1 for 
the fast CYP101A1 reduction by Pdx, to 8�4 and 
0�37 s− 1 for the slower and multiphasic reduc-
tion of CYP2B4 by cytochrome P450 reductase 
(CPR)� Steady-state kinetic studies, conducted 
over many years, did not reveal any detectable 
spectral intermediate following the second elec-
tron transfer to the oxy-complex before the ap-
pearance of the ferric resting state� From the first 
investigations using the soluble CYP101A1, it 
was apparent that this second electron transfer 
is at least partially rate limiting, as the ferrous-
oxy complex accumulates to some degree during 
turnover� The same observations were made by 
monitoring the steady-state turnover of micro-
somal cytochromes P450 [157] and in stopped-
flow spectroscopic studies of oxygen binding to 
purified microsomal cytochromes P450 [158]� 
Thus, despite numerous attempts, no success has 
been achieved in cleanly observing a peroxo- 
or hydroperoxo-ferric intermediate in wild-
type P450 at room temperature with the normal 
redox partners and atmospheric dioxygen� Early 
stopped-flow studies did claim the observation of 
such an intermediate state [159, 160], and with 
the D251N mutant of CYP101A1, where pro-
tonation is impaired, some level of a peroxo- or 
hydroperoxo-ferric species could be observed 
[161]� As will be discussed, the spectral and 
structural characterization of these intermediates 
in the cytochromes P450, as well as in other oxy-
gen reactive heme proteins, requires the use of 
cryoradiolytic reduction� A shunt pathway exists, 
however, wherein two oxygen atoms and two re-
ducing equivalents can be brought to the ferric 
heme together in the form of a peroxide or per-
oxy acid� With this approach, a transient species 
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with red-shifted Soret band has been observed in 
horseradish peroxidase [162, 163]�

Since the early 1970s, it was understood 
that one-electron reduction of the ferrous-oxy 
complex would generate a state with two redox 
equivalents and dioxygen—a ferric–“peroxo” 
state, with the electron going somewhere in the 
liganded prosthetic group� As the oxygenated in-
termediate has a dominant “ferric-superoxo” res-
onance form, as evidenced by Mossbauer mea-
surements [75], addition of the second electron 
was thought to form a ferric iron with the oxy-
gen reduced to the level of peroxide in resonance 
with a ferrous-superoxo configuration� However, 
neither the peroxo- [5a] nor hydroperoxo-ferric 
[5b] complexes has ever been cleanly observed at 
ambient temperatures� This intermediate, termed 
“compound 0” by analogy to similar states in the 
peroxidases, undergoes further transformation 
and disappears faster than it is formed� A pioneer-
ing breakthrough was realized though the work of 
Davydov, wherein the oxygen intermediate was 
trapped in a frozen matrix and the second elec-
tron was added by radiolysis� Although low-tem-
perature matrix-isolation techniques were well 
established in the 1950s and 1960s [164–168], 
the first applications of this method to heme pro-
tein solutions were those of Davydov [169–174] 
and Symons [175–179]� Cryoradiolysis uses ion-
izing radiation to produce hydrated electrons, 
which can either interact directly with the protein 
molecule or the solvent matrix� For dilute protein 
solutions, the volume fraction of the mixed sol-
vent is much larger and hence the predominant 
effect is to produce hydrated electrons that are 
highly mobile even at cryogenic temperatures� 
The radiation chemistry of aqueous solutions has 
been well studied, with reviews focused on fro-
zen aqueous solutions of proteins also appearing 
in the literature [134, 174, 180, 181]� It is worth 
noting that the solvent itself also plays a crucial 
role as a selective quencher of undesired radi-
olysis products� For example, glycerol or ethyl-
ene glycol efficiently trap and quench hydroxyl 
radicals in the cryogenic radiolytic reduction of 
metalloproteins, with the result that a higher net 

yield of solvated electrons is available to reduce 
the proteins of interest [182]�

A pioneering publication in the P450 literature 
was that of Davydov, Huttermann, and Peterson, 
who demonstrated that radiolytic reduction of 
the ferrous dioxygen complex of CYP101A1 at 
liquid nitrogen temperature yielded an electron 
paramagnetic resonance (EPR) signal identified 
as a peroxo intermediate [183]� Although refer-
enced in several reviews of the P450 mechanism, 
it was not until Davydov moved to the Hoffman 
laboratory that electron nuclear double resonance 
(ENDOR), and additional magnetic resonance in-
vestigations at variable frequencies, spectroscop-
ically defined the peroxoanion and hydroperoxo 
forms of ligated heme� Since that time cryoradio-
lytic reduction of oxy-complexes has been the 
method of choice for stabilization of the fleeting 
intermediates in the P450 catalytic cycle with 
the goal of obtaining the detailed structural and 
spectroscopic information necessary for evalua-
tion of the mechanism of oxygen activation and 
metalloenzyme catalysis� Several reviews on 
experimental applications of these methods and 
the results obtained using the cryoradiolytic ap-
proach have been published recently [134, 135, 
180, 184]� For CYP101A1, radiolysis at 77 K 
trapped the hydroperoxo intermediate [185]� In 
the D251N mutant of CYP101A1, which altered 
the occupancy of active site waters as observed in 
the crystal structure of the ferrous dioxygen com-
plex [92, 186], the species observed upon 77 K 
radiolysis was the peroxoanion� Thermal anneal-
ing of this trapped state, with monitoring by EPR 
and ENDOR spectroscopy [185], allowed direct 
observation of the protonation event and quanti-
tative conversion of the peroxoanion to the hy-
droperoxo and product�

These first detailed characterizations of the 
peroxo- and hydroperoxo-ferric intermediates 
in CYP101A1 [185, 187] provided several im-
portant results and enabled further experimen-
tal studies with other heme proteins� Clear EPR 
signatures for the unprotonated peroxo-ferric 
( g1 < 2�27) and protonated hydroperoxo-ferric 
( g1 > 2�27) intermediates in cytochromes P450 
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were thus defined� These parameters are very 
similar to those observed in other heme proteins, 
such as myoglobin, hemoglobin, and horseradish 
peroxidase (see Table 3�2)� Thus, the first im-
mediate product of cryoradiolytic reduction of 
the oxy-complex is the peroxo anion, as proton 
transfer events are prevented at low temperature� 
In some cases, such as with wild-type CYP10A1, 
protonation can occur even at 77 K and one needs 
to do the cryoreduction at helium temperatures 
to trap the peroxo anion� This temperature de-

pendence of the proton transfer events provides 
a recipe for stepwise annealing of the trapped 
peroxo anion to follow the transformation of 
metastable intermediates along the reaction co-
ordinate through to product formation� The cata-
lytic competence of the cryoradiolytic reduction 
of CYP101A1 can be directly demonstrated by 
analysis of product formation, with the overall 
yield proportional to the irradiation dose [185]�

Subsequent work with CYP101A1 demon-
strated that various substrates significantly modu-

Table 3.2  EPR parameters of (hydro)peroxo-ferric complexes in heme proteins
Heme protein g values Assignment Reference
Myoglobin 2�218, 2�118, 1�966 Fe3 +–OO2 − [321]

2�21, 2�11, 1�97 Fe3 +–OO2 − [322]
2�30, 2�16, 1�94 Fe3 +–OOH− [322]

Hemoglobin
α-subunit 2�213, 2�121, 1�968 Fe3 +–OO2 − [321]
β-subunit 2�22, 2�13, 1�97 Fe3 +–OO2 − [321]

2�25, 2�15, 1�966 Fe3 +–OO2 − [321]
β-chain 2�31, 2�19, 1�948 Fe3 +–OOH− [321]
Indoleamine dioxygenase 2�32, 2�17, 1�947 Fe3 +–OOH− [323]
Indoleamine dioxygenase +subs 2�27, 2�17, 1�946 Fe3 +–OO2 − [323]
Tryptophan dioxygenase +subs 2�27, 2�17, 1�95 Fe3 +–OO2 − [323]
Peroxidase 2�08, ? Fe2 +–OO− [322]

2�31, 2�16, 1�95 Fe3 +–OOH− [322]
2�27, 2�18, 1�90 Fe3 +–OO2 − [200]
2�32, 2�18, 1�90 Fe3 +–OOH− [200]

Dehaloperoxidase 2�25, 2�15, 1�963 Fe3 +–OO2 − [324]
2�32, 2�18, 1�945 Fe3 +–OOH− [324]

Heme oxygenase 2�37, 2�19, 1�93 Fe3 +–OOH− [325]
Nitric oxide synthase
eNOS  +Arg 2�26, 2�16, nd Fe3 +–OO2 − [191]
gsNOS +Arg 2�27, 2�18, nd Fe3 +–OO2 − [326]

2�31, 2�16, nd Fe3 +–OOH− [326]

Cytochrome P450
CYP101A1 −subs 2�355, 2�212, 1�935 Fe3 +–OOH− [188]
CYP101A1 +cam 2�30, 2�16, 1�96 Fe3 +–OOH− [185, 187]
CYP101A1, T252A +cam 2�306, 2�173, 1�956 Fe3 +–OOH− [188]
CYP101A1, D251N +cam 2�25, 2�16, 1�96 Fe3 +–OO2 − [185, 187]
CYP101A1 +adamantanone 2�257,2�16, nd Fe3 +–OO2 − [188]

2�30, 2�162, ~ 1�96 Fe3 +–OOH− [188]
CYP101A1 + 5-methylenyl camphor 2�296, 2�157, 1�957 Fe3 +–OOH− [188]
CYP101A1, G248T, G248V +cam 2�24, 2�16, 1�94 Fe3 +–OOH− [189]
CYP2B4 +BHT 2�32, 2�18, 1�94 Fe3 +–OO2 − [133]
CYP11A1 +cholesterol 2�214, 2�14, nd

2�34, 2�182, 1�949
Fe3 +–OOH− [195]

CYP19A1 +AD 2�254, 2�163, nd Fe3 +–OO2 − [194]
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late proton delivery to the coordinated dioxygen, 
as monitored by EPR and ENDOR of the cryore-
duced oxy-complexes in the presence of different 
substrates [188]� Controlled annealing at elevated 
temperatures (170–180 K) demonstrated that the 
presence of any substrate dramatically increases 
the stability of the hydroperoxo-ferric complex, 
with lifetimes at least 20 times longer than in the 
absence of a substrate� With all substrates, alter-
nate and multiple conformational substates have 
been detected in the heme-iron center by changes 
in 14N,1H hyperfine couplings in the ENDOR 
spectra� Unusual EPR and ENDOR spectra and 
reactivity have been observed with CYP101A1 
bound with (1R)-methylenyl camphor� One well-
defined conformational substate of the heme was 
observed, but the decay rates of the hydroperoxo-
ferric complexes of wild-type CYP101A1 and its 
T252A mutant at 180 K were much lower than 
with all other substrates� Although the T252A 
mutant does not yield a product with normal sub-
strates, in this case the epoxide of (1R)-methyle-
nyl camphor was generated� Dawson, Hoffman, 
and colleagues thus suggested that there may 
be a direct involvement of compound 0 in the 
epoxidation reaction, rather than a reaction in-
volving proton transfer, O–O bond scission and 
compound I formation� The results of this work 
suggest a potential for the involvement of sub-
strates in modulating the chemical properties of 
peroxo- and hydroperoxo-ferric intermediates 
and selection of the appropriate “active oxygen” 
for catalysis� Such a role may help explain the 
numerous proposals for the involvement of mul-
tiple oxidants and catalytic mechanisms in P450 
function [56]�

In addition to the critical acid–alcohol pair 
that is directly involved in the protonation of 
peroxo-ferric complexes in cytochromes P450, 
other amino acids in the immediate vicinity also 
can perturb the proton delivery and significantly 
change the functional properties of the enzyme� 
The CYP101A1 single G248 mutants [189], 
which retain the native acid–alcohol pair of D251 
and T252, show significant perturbation of the 
proton delivery, although both mutant proteins 
still catalyze camphor hydroxylation in a recon-
stituted system� Functional studies suggest that 

the second protonation of the hydroperoxo-anion 
is inhibited by mutations at the 248 position� EPR 
of the cryoreduced oxy-complex shows that the 
first protonation is also impeded, since the imme-
diate product of the cryoreduction at 77 K is al-
most completely the unprotonated peroxo-anion, 
in contrast to the wild-type and the T252A mu-
tant, for which cryoreduction at 77 K produces 
the hydroperoxo state [185, 187, 190]�

With the low-temperature oxygenation pro-
tocols developed for the preparation of unstable 
oxy-complexes in cytochromes P450 and NOS 
[108, 109, 135, 180, 191–193], cryoradiolytic 
reduction and characterization of the peroxo- 
and hydroperoxo-ferric intermediates have been 
realized for the mammalian CYP2B4 [133] and 
the steroid metabolizing P450s CYP17A1, CY-
P19A1 [194], and CYP11A1 [195]� In addition 
to the substrate free protein, samples of CYP2B4 
have been prepared in the presence of two sub-
strates, benzphetamine (BP) and 3-hydroxy-tert-
butyl toluene (BHT)� Because no high-spin sig-
nal was detected by EPR in the frozen solution 
of CYP2B4 with BP, dissociation of the substrate 
at low temperature in the cryosolvent (60 % glyc-
erol with Tris buffer, pH 8�0) was suggested, in 
contrast to CYP2B4 bound with BHT, which 
revealed a mostly high-spin EPR signal� Oxy-
genation of the reduced protein was realized at 
− 40 °C in order to minimize autoxidation [109, 
111]� The yield of hydroperoxo-ferric complex 
was been estimated at ~ 40 % by comparison 
of the EPR signal with the calibrated standard 
[133]� As with CYP101A1 and heme oxygenase 
[196], the immediate product of cryoradiolytic 
reduction in CYP2B4 with or without substrate 
was the already protonated hydroperoxo-ferric 
complex characterized by g1 > 2�27�

The peroxo- and hydroperoxo-ferric interme-
diates in the mammalian cholesterol side-chain 
cleaving cytochrome P450 (CYP11A1) has been 
recently documented [195]� The oxy-complex 
of CYP11A1 with cholesterol bound was radio-
lytically reduced at 77 K in 33 % glycerol/phos-
phate buffer at pH 7�5� After irradiation the main 
cryoreduced intermediate had an EPR signal 
with g1 = 2.34 characteristic of a protonated hy-
droperoxo-ferric complex� However, two minor 
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signals with g1 = 2.214 and g1 = 2.28 indicated 
the presence of some unprotonated peroxo-ferric 
intermediates� These latter intermediates both 
converted to the hydroperoxo-ferric intermediate 
after annealing at 145 K, with a considerable pro-
tium/deuterium (H/D) solvent isotope effect for 
the conversion of the 2�214 signal, but no isotope 
effect for the reaction of the 2�28 intermediate� 
Taken together, these observations indicate the 
presence of multiple conformers of coordinated 
dioxygen and one or more water molecules in the 
immediate vicinity that may serve as proton do-
nors to the peroxo-anion in CYP11A1� Annealing 
at 185 K and further to 220 K, resulted in decay 
of the hydroperoxo-ferric intermediate and for-
mation of the 22R-hydroxycholesterol product� 
This step also featured a substantial solvent H/D 
isotope effect consistent with the expected par-
tially rate-limiting second proton-transfer step, 
which is necessary for formation of the catalyti-
cally active compound I� This suggests that the 
C–C bond scission of a vicinal diol, as is the case 
in the generation of pregnenolone from choles-
terol by CYP11A1, uses compound I as the “ac-
tive oxygen” for catalysis�

Generation and decay of peroxo-states can 
also be monitored by optical absorption spectros-
copy [137, 180, 197, 198], although with UV–vis 
methods it is not possible to differentiate between 
the peroxo and hydroperoxo intermediates [198]� 
The main spectral feature of these intermediates 
in cytochromes P450 and in other thiolate-ligated 
proteins is a significant red-shift of the Soret band 
from 420–430 to 440–450 nm, and the appear-
ance of a second minor band at ~ 375 nm� These 
properties are consistent with the split Soret band 
characteristic of the optical spectra of the ferrous 
O2 and CO complexes and the ferric-cyanide ad-
duct of cytochrome P450 [106, 107, 199]� Inter-
estingly, only a minor red-shift of the Soret band 
(3–8 nm) is observed for the peroxo-complexes 
in heme proteins with histidine as the proximal 
iron ligand [134, 192, 200, 201]�

As noted in the previous discussion of the ear-
lier intermediates in the P450 reaction cycle, rR 
spectroscopy is a powerful tool to reveal critical 
information regarding P450 structure and func-
tion, including mechanistic details of P450 cata-

lytic oxygen activation and substrate metabolism 
and their linkage to the delivery of protons to the 
reduced heme-dioxygen complex� rR spectrosco-
py probes the vibrational modes associated with 
the active site, is operational in all states of the 
reaction wheel, and hence is uniquely positioned 
to provide key information on the mechanism of 
“oxygen activation” in cytochromes P450�

Low-temperature rR investigations have been 
extensively conducted by the Kincaid labora-
tory on radiolytically reduced oxy-ferrous cy-
tochromes P450 [183, 185, 187, 188, 197, 198, 
201–205]� Using the D251N mutant of CY-
P101A1 and experiments analogous to the EPR 
investigations already discussed, the peroxoan-
ion intermediate and the formation of the pro-
tonated hydroperoxo state following thermal 
annealing was characterized� These studies dem-
onstrated that the hydroperoxo-anion retains the 
end-on structure of the oxy-ferrous precursor and 
forms a relatively strong bond with the heme iron 
that is characterized by ν(Fe–O) ~ 617 cm− 1 in 
the hydroperoxo-ferric complex in myoglobin 
[201] and 564 cm− 1 in CYP101A1 [198, 205], 
while the unprotonated ferric-peroxo complex 
[5a] in the D251N mutant of CYP101A1 dis-
plays a slightly weaker Fe–O bond with ν(Fe–O) 
553 cm− 1 [198]� These complexes reflected the 
typical features of low-spin heme-thiolate com-
plexes with a narrow span of g values in the EPR 
spectra and a red-shifted split Soret band with 
maxima at 436–440 and 370–375 nm [185, 197, 
204]�

Spectroscopic and theoretical studies reveal 
that the length and strength of the O–O bond in 
the peroxo states (termed Compound 0 by anal-
ogy to the peroxidase literature) are similar to 
those observed in the low-spin oxygen activating 
nonheme (hydro)peroxo-ferric complexes� Par-
ticularly interesting is the direct observation of 
the downshift of ν(O–O) from 792 cm− 1 in the 
peroxo anion state ([5a] in Fig� 3�1) to 774 cm− 1 
in the hydroperoxo [5b], indicating a weakening 
of the O–O bond as a result of protonation of the 
peroxo-anion coordinated to iron [198]� Notably, 
the ν(O–O) in the P450 peroxo-ferric intermedi-
ates is significantly lower than in myoglobin with 
cobalt-substituted heme, where this mode was 



86 I. G. Denisov and S. G. Sligar

observed at 851 cm− 1 [206]� This difference is at-
tributed to the strong electron donating capabili-
ties of the thiolate proximal ligand in cytochrome 
P450 as compared to the imidazole nitrogen of 
the proximal histidine in myoglobin� The thiolate 
trans-effect weakens the O–O bond and promotes 
its heterolytic cleavage, with concomitant forma-
tion of the high-valent catalytically active ferryl-
oxo intermediate ([6] in Fig� 3�1)� However, the 
presence of the distinct hydroperoxo-ferric heme 
intermediate in the frozen solutions and in crys-
tals of cytochromes P450 and other heme proteins 
suggests that there is no spontaneous breakage of 
the O–O bond, but rather the enzyme/substrate 
provides a catalytically important function� Thus, 
efficient formation of the main active intermedi-
ate Compound I requires catalytic delivery of the 
second proton to the distal oxygen atom (Fig� 3�1 
[5b]  [6]). The application of cryoreduction 
and annealing of native and mutant proteins, 
with concerted spectroscopic characterization by 
EPR/ENDOR and Raman spectroscopy, offers a 
means for revealing these critical steps in oxygen 
activation by the cytochromes P450�

Additional information on the structure and 
reactivity of peroxo-ferric heme intermediates 
can be obtained from the recent porphyrin mod-
els developed by Naruta and coworkers [207–
209]� High-quality rR spectra of oxy-complexes 
and both low-spin end-on and high-spin side-on 
peroxo-ferric complexes have been measured in 
acetonitrile and in methanol at low temperatures 
(208 K) or in frozen solutions at 77 K� However, 
the proximal ligand to the iron in these model 
complexes is imidazole, and hence they can be 
considered as appropriate models for the oxygen 
activation intermediates in peroxidases, rather 
than the P450 enzymes� Interestingly, both Fe–
OO and O–O modes have been observed in these 
complexes, contrary to the peroxo- and hydro-
peroxo-ferric complexes in myoglobin, where 
the O–O stretch mode was not detected in rR 
spectra [201, 210]�

While early X-ray crystallographic investiga-
tions did not fully appreciate the in citu reduction 
of the prosthetic groups of metalloproteins, it is 
now clear that the X-ray beam, particularly from 
intense synchrotron sources, can efficiently add 

electrons to the system� An important advance in 
protein X-ray crystallography was achieved when 
cryoradiolytic reduction of the oxy-complex in 
CYP101A1 was intentionally used [92]� The un-
avoidable reduction of the heme complexes dur-
ing data collection at cryogenic temperatures was 
carefully monitored and controlled by combining 
data obtained on multiple crystals [181, 211]� 
Following this approach, the first well-charac-
terized structures of the unstable Compound 0 in 
horseradish peroxidase [211] and in CPO [212] 
were realized, and a high-resolution structure of 
the Compound 0 (peroxo-intermediate) in myo-
globin was obtained [213]� The latter structures 
provide good experimental data on the O–O and 
Fe–O bond lengths in the protein hydroperoxo-
ferric complexes�

3.7  Reactivities of the Peroxo States: 
O–O Bond Scission Versus 
Peroxide Dissociation

A second protonation of Compound 0 at the distal 
oxygen atom reduces the O–O bond order to zero 
and results in immediate scission and departure 
of a water molecule [214]� In cryoradiolytic ex-
periments, Compound 0 is stable below the glass 
transition temperature, typically 180–190 K� This 
suggests that the second proton delivery requires 
sufficient mobility and diffusion of solvent mol-
ecules, with the potential relaxation of the protein 
matrix to a new conformation� Experiments with 
native CYP101A1 and the D251N mutant proved 
that at higher temperatures, Compound 0 disap-
pears with formation of Compound I [6] (Fig� 3�1) 
and concomitant product formation [185]� For 
the CYP101A1 T252A mutant, where the native 
proton transfer mechanism is perturbed, the dis-
sociation of peroxide with no product formation 
is the dominant path of Compound 0 decomposi-
tion� The latter reaction is considered as the main 
source of reactive oxygen species in the poorly 
coupled P450 systems� In general, the coupling 
efficiency measured by the ratio of the product 
molecules formed per NADPH molecule con-
sumed can be very different for the same cyto-
chrome P450 with different substrates� Efficient 



873 Activation of Molecular Oxygen in Cytochromes P450

proton delivery requires specific positioning and 
stabilization of water molecules in the vicinity of 
the dioxygen moiety, which can be significantly 
perturbed by variations in the structure of the 
substrate�

The chemical mechanisms describing the hy-
droxylation of unactivated substrates most as-
suredly involves the Compound I intermediate 
state generated after O–O heterolysis following 
second proton transfer as described above� This 
is not necessarily the case for reactions involv-
ing carbon–carbon bond scission� For instance, in 
the case of CYP19 (aromatase)-catalyzed andro-
stenedione (AD) metabolism, it has been a long-
standing question as to whether the conversion of 
19-oxo-AD to estrone by CYP19A1 occurs via 
the classic higher valence Compound I interme-
diate that operates in the normal hydroxylation 
cycle, or via the precursor peroxo-anion (Com-
pound 0) intermediate� This is shown schemati-
cally in Fig� 3�7�

Evidence supporting both hypotheses is pres-
ent in the literature [215–218], as the availability 

of a nearby proton for abstraction makes both a 
radical and nucleophilic mechanism plausible� In 
the first experiments with human CYP19A1 self-
assembled into Nanodiscs, we discovered that 
when the ferrous-oxy complex was radiolytically 
reduced in the presence of AD, the peroxo state 
formed and stabilized at 77 K was the anionic 
form rather than the protonated hydroperoxo that 
had been seen in all previous P450s investigated 
[194]� This suggested that there was perhaps a 
different hydrogen-bonding configuration pro-
vided by active site water molecules in this P450� 
However, experiments monitoring the conver-
sion of AD to 19-hydroxy-AD in an EPR-anneal-
ing experiment revealed a kinetic solvent isotope 
effect of greater than 3�5, suggesting one or more 
protons were involved in product formation from 
AD [219]� More recent EPR results demonstrated 
that when the substrate is 19-oxo AD, the imme-
diate precursor to the carbon–carbon lyase reac-
tion, the species stabilized at 77 K after radioly-
sis, and before product formation by CYP19A1, 
is the protonated (hydroperoxo) intermediate, 

Fig. 3.7  Two alternative mechanisms of C–C bond scission in CYP19A1
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as one would expect for a normal Compound I-
mediated reaction� There are thus subtle differ-
ences in the active site structure that dictate a key 
variability in distal pocket hydrogen bonding and 
proton transfer, but it appears that Compound I is 
the “active oxygen” leading to C–C bond cleav-
age and aromatization of the A-ring� Exactly the 
opposite is true in the case of CYP17A1, where 
a nucleophilic reactivity of Compound 0 appears 
to be operating� This will be discussed further in 
the following section�

A carbon–carbon bond cleavage required for 
conversion of the pro-drug nabumetone to the ac-
tive form is also catalyzed by the peroxo-ferric 
intermediate of human CYP1A2, as reported 
based on a thorough study comparing the activi-
ties of several human cytochromes P450 [220]� 
Only CYP1A2 and CYP3A4 (CYP2B6 with sig-
nificantly lower efficiency) supported the C–C 
cleavage reaction with nabumetone and 3-hy-
droxy-nabumetone as substrates� In addition, 
C–C cleavage did not proceed when the perox-
ide shunt pathway with cumene hydroperoxide 
was used instead of NADPH supported catalysis� 
However, the NADPH-supported hydroxylation 
of nabumetone in reconstituted systems and in 
commercial Supersome® preparations was ob-
served with almost all the isozymes, the most ef-
ficient being CYP2C19, CYP2B6, and CYP3A4� 
These observations suggest that the unprotonated 
peroxo-ferric intermediate is the main catalytic 
species for C–C bond cleavage in this system�

3.8  Compound I as the 
“Active Oxygen” in Alkane 
Hydroxylations

Despite the great variety of chemical transfor-
mations catalyzed by cytochromes P450, the 
vast majority of them are undoubtedly driven by 
Compound I� This ferryl-oxo intermediate with a 
π-cation radical delocalized on the porphyrin is 
a very reactive species� All attempts to observe 
this species in a P450 system using atmospheric 
dioxygen have so far failed� However, important 
spectroscopic characterization and reactivity 
measurements have been obtained by using the 

peroxide shunt pathway [3] [6] in Fig� 3�1� In 
this approach, which bypasses the dioxygen re-
duction process, rapid mixing of the ferric heme 
enzyme with peroxides or peroxy acids such 
as meta-chloroperoxybenzoic ( m-CPBA) can 
generate the Compound I intermediate directly 
[221–223]� Unlike the usual P450 pathway of 
oxygen activation, where two electrons and two 
protons have to be channeled to the dioxygen 
via coordination to the heme iron and proton de-
livery pathways, the peroxide pathway benefits 
from the fact that peroxides or peroxyacids al-
ready have the two electrons and protons on the 
dioxygen moiety� The role of the enzyme in this 
case is the efficient rearrangement of the proton 
from the proximal oxygen atom, which forms the 
transient coordination bond with the heme iron, 
to the distal oxygen to facilitate heterolytic scis-
sion of the O–O bond and thus create the same 
Compound I, as happens in the normal catalytic 
pathway of horseradish peroxidase [224–226]� 
However, in general, the cytochromes P450 are 
inefficient peroxidases or peroxygenases, and the 
yield of Compound I by this pathway is low� Thus 
the first experiments devoted to revealing this in-
termediate via stopped flow realized a yield of 
~ 10 % or less [221–223]� This low level of pro-
tein made it all but impossible to obtain detailed 
structural and spectroscopic characterization of 
the Compound I in cytochromes P450� Until re-
cently, the only way to address experimentally 
the physico-chemical and functional properties 
of this intermediate was via model porphyrin sys-
tems [10, 227–230] or by analogy to other close-
ly related thiolate-ligated heme enzymes such as 
CPO [231–233] and peroxygenases [234, 235], 
for which Comopund I is much more stable�

This situation changed with the work of Rittle 
and Green who achieved a breakthrough on the 
peroxide pathway by radically improving the 
purification protocol for thermostable CYP119 
from the extremophile archae Sulfolobus acido-
caldarius [236–238]� Careful multistep removal 
of endogenous substrate analogs from the puri-
fied, heterologously expressed protein, which 
hampered earlier studies [222], allowed them to 
dramatically increase the yield of Compound I 
in a stopped-flow reaction with m-CPBA, reach-
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ing a conversion of greater than 75 % [236]� 
This made possible high-precision UV–vis spec-
tra to quantitate the reaction kinetics, which in 
turn provided the necessary information for the 
preparation of highly concentrated samples for 
EPR and Mössbauer spectroscopy� The UV–vis 
spectra of Compound I confirmed the main fea-
tures of the ferryl-oxo π-cation radical known 
from the earlier experiments: a broad Soret band 
at 367 nm and a pronounced charge-transfer band 
at 690 nm� The EPR spectrum of CYP119 Com-
pound I [236] had a different shape as compared 
to that previously reported for CPO, another 
thiolate-ligated heme protein [239]� Fitting of 
both spectra to the S = 1 Fe(IV)-oxo unit coupled 
with S = 1/2 porphyrin radical resulted in a higher 
ratio of the exchange coupling ( J) to zero-field 
splitting ( D) for CYP119 ( J/D = 1.3) than in CPO 
( J/D = 1.02) [236]� The higher J value in CYP119 
was tentatively attributed to either a higher spin 
density on the thiolate sulfur atom or a shortened 
Fe–S bond� The Mössbauer parameters measured 
for the CYP119 Compound I were more simi-
lar to those of CPO [239], with the isomer shift 
δ = 0.11 mm/s (0.13 mm/s for CPO) and quadru-
pole splitting ΔEQ = 0.96 mm/s (0.90 mm/s for 
CPO)� These parameters also correspond to the 
ferryl-oxo S = 1 unit exchange coupled to the por-
phyrin radical (S = 1/2).

The functional competence of this Compound 
I intermediate was confirmed in fatty acid hydrox-
ylation assays using a double-mixing stopped-
flow technique� After premixing CYP119 with 
m-CPBA and incubating for 100 ms, the reaction 
mixture containing 35–40 % of Compound I was 
rapidly mixed with solutions of the substrates at 
various concentrations at 4 °C� The kinetics of the 
reactions were monitored spectroscopically and 
the product yield was verified by gas chroma-
tography ([236] and supporting online material)� 
The observed apparent rates were very high, up 
to 220 s− 1 for lauric acid, with the rate constants 
varying from 4�4×104 to 1�1×107 M− 1s− 1 for hex-
anoic and dodecanoic (lauric) acids, respectively� 
In addition, the kinetic isotope effects (KIE) for 
these reactions measured experimentally with 
protonated and perdeuterated substrates strongly 
depended on the chain lengths of the fatty acids, 

varying from 12�5 for hexanoic acid to 1�0 for 
lauric acid� This disappearance of the KIE for 
the fast-reacting substrate is explained by strong 
masking of the isotope effect by tight substrate 
binding and rate-limiting unproductive substrate 
dissociation for lauric acid� The true isotope ef-
fect value can be measured only when substrate 
binding is at rapid equilibrium, as demonstrat-
ed in [236] and supporting material� Thus, the 
high-unmasked KIE strongly confirms the cata-
lytic competence of the Compound I obtained in 
CYP119 by rapid mixing with m-CPBA and the 
kinetic parameters expected for the hydrocarbon 
hydroxylation via a hydrogen-abstraction mecha-
nism [11, 227]�

Recently, the same improved multistep purifi-
cation approach proved to be critically important 
for the generation of high populations of Com-
pound I in another cytochrome P450, P450ST 
[238]� Following similar experimental protocols, 
Green and his group were able to trap Compound 
I in a high concentration and to measure its EPR 
and Mössbauer spectra� The results were simi-
lar to those measured for CYP119 [236]� Möss-
bauer spectra could be fitted well with an isomer 
shift δ = 0.12 mm/s and a quadrupole splitting 
ΔEQ = 0.85 mm/s, and J/D = 1.3 obtained from 
EPR spectra that were the same as for CYP119 
[238]�

The oxygen-rebound mechanism of hydro-
carbon hydroxylation catalyzed by Compound 
I presumes formation of the transient heme in-
termediate equivalent to Compound II follow-
ing hydrogen abstraction from the substrate� In 
this case, the iron-oxo unit is protonated, and the 
electron fills the π-cation radical of the porphy-
rin [236, 240]� The critical importance of thio-
late ligation in P450 catalysis was evaluated by 
recent work from the Green group [241]� By di-
rect measurements of pKa of the Compound II of 
CYP158, they estimated and compared the rela-
tive contributions of redox potential and proton 
affinity to the thermodynamics of hydrogen atom 
abstraction by Compound I in cytochrome P450, 
CPO, and nitric oxide synthase� The key differ-
ence between histidine-ligated peroxidases and 
thiolate-ligated P450 enzymes is the large shift 
of the pKa of Compound II from ~ 3�5 in the for-
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mer to ~ 12 in the latter, due to the much stron-
ger electron-donating abilities of a thiolate than a 
histidine� At the same time, the large contribution 
from the strong proton affinity term makes the 
redox potential term low enough to prevent fast 
inactivation of this catalytically active intermedi-
ate by intra-protein electron transfer and reduc-
tion to Compound II [242, 243]� The same effect 
of the thiolate proximal ligand was observed by 
Hoffrichter and Groves in a thiolate-ligated per-
oxygenase [235]� Thus we have for the first time 
a clear mechanistic rationale as to why the cyto-
chromes P450 utilize cysteine as the axial ligand 
to the iron [235, 242, 243]�

3.9  Bleed Points of Inefficiency: 
Uncoupling Pathways in the 
Cytochromes P450

The key characteristics of enzymatic catalysis are 
the maximum rate of product formation given by 
Vmax or kcat, and the substrate-binding constant, 
or Michaelis constant Km� For comparison of dif-
ferent enzymes and/or substrates, the efficiency 
of the enzyme is characterized by the ratio of 
these two parameters� For cytochromes P450, 
these parameters also can be used as the essential 
quantitative measures of their ability to metabo-
lize xenobiotic compounds or to synthesize their 
specific products� The case of P450 catalysis, 
however, is complicated by the consumption of 
redox equivalents and the nature of atmospheric 
dioxygen as a reactant� The ideal stoichiometry 
of P450 catalysis requires one NAD(P)H and one 
O2 molecule to make one molecule of product� 
This rarely happens in reality� In addition to prod-
uct formation, a fraction of oxygen is released in 
the form of superoxide after one redox transfer 
event, as peroxide after two-electron reduction, 
or as water after four-electron reduction, as 
shown in Fig� 3�1� Superoxide and hydrogen per-
oxide belong to a class of compounds termed “re-
active oxygen species” or ROS� A comprehensive 
review on ROS production by P450 summarizes 
the main mechanisms as well as the implications 
of the release of these potentially toxic products 
[149]� Other side reactions, such as formation of 

protein radicals, covalent coupling of the heme 
to the protein or to active radical products, heme 
loss, or accumulation of the inactive P420 form, 
can also be considered as the consequences of 
uncoupling and have been reviewed elsewhere 
[244]�

Oxygen activation in cytochromes P450 is a 
multistep process with several branching points� 
As seen from Fig� 3�1, there are at least three steps 
where the reaction flow can partition between pro-
ductive and unproductive pathways� The first one 
is the oxy-complex, which can decompose with 
dissociation of superoxide if the second electron 
transfer is not efficient or simply not fast enough� 
The second branching point is dissociation of the 
hydroperoxo-anion, if the second protonation is 
not accomplished� The third one is unproductive 
reduction of compound I with consumption of a 
second molecule of NAD(P)H, which can occur 
if a productive catalytic reaction with the sub-
strate does not happen� All these branching points 
are essentially kinetic, and the result at each step 
is determined by the corresponding rate con-
stants� Under steady-state conditions, the overall 
degree of uncoupling is determined by the ratio 
of the reaction flux along the productive path-
way [3][4][5][6] [7] in Fig� 3�1 and the 
sum of fluxes along the unproductive pathways 
[4][2], [5][2], and [6][2]. Partitioning at 
each branch point is proportional to the absolute 
microscopic rate constants leading out of the in-
termediate� For progress from the oxy-complex, 
the fraction of the overall reaction flux that fol-
lows the uncoupling pathway is proportional to 
the autoxidation rate k42, while the fraction of 
oxy-complex reduced to the peroxo-ferric state is 
proportional to k45� Thus, the fraction of the reac-
tion flux following the productive pathway, or the 
coupling ratio at the level of the oxy-complex, is 
k45/( k45 + k42)� The second branch point lies with 
the peroxo states, where it is possible to release 
a twice-reduced dioxygen to regenerate the fer-
ric prosthetic group� Similarly, a coupling ratio 
taking together the peroxo- and hydroperoxo in-
termediates as [5] is determined by the ratio of 
protonation rates and the rate of peroxide disso-
ciation, k56/( k56 + k52)� The third uncoupling point 
in the P450 reaction cycle centers on the Com-
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pound I intermediate [6], which can be reduced 
by two additional electrons to form water� Since 
the overall stoichiometry is then four electrons 
and four protons added to one dioxygen yielding 
two water molecules, this has been termed the 
oxidase pathway� From the scheme in Fig� 3�1, 
the overall partition coefficient for the oxidase 
branch point is given by k67/( k67 + k62)� Overall, 
the experimentally observed uncoupling is pro-
portional to the product of these three fractions, 
while the absolute rates of substrate conversion 
to product and of NAD(P)H and O2 consumption, 
in most cases, depends on the rates of the first 
and second electron transfers, protonation of the 
dioxygen moiety, and the catalytic step, although 
in some cases substrate binding and product re-
lease may also be rate limiting�

In reality, many of these individual rate con-
stants are not known and difficult to measure� In 
most cases, there is no single and well-defined 
rate-limiting step in the overall catalytic cycle of 
the cytochromes P450 and thus several interme-
diates are present at any one time� Early attempts 
to monitor the steady state of P450 catalysis 
usually focused on the oxy-ferrous intermedi-
ate, which was observed experimentally during 
turnover using optical absorption spectroscopy 
[157, 158, 245]� The rate of autoxidation k42 
can be measured separately with high precision, 
as described earlier in this review and in previ-
ous publications and review articles [36, 82, 87, 
246–248]� The rate of the second electron trans-
fer to the oxy-complex, k45, which competes with 
autoxidation, is more difficult to probe at ambi-
ent conditions due to autoxidation and possible 
rate-limiting interactions with redox partners� 
Successful examples are represented by stopped-
flow studies with various concentrations of Pdx 
and CYP101A1 [154, 155]� Measurements of 
the peroxide dissociation rate, k52, and oxidase 
uncoupling rate, k62, are even more difficult be-
cause the steady-state concentrations of the key 
intermediates [5] and [6] are exceedingly small� 
To our knowledge, no independent reports of 
these rate constants at ambient conditions are 
available� However, the steady-state rates of per-
oxide production and water production via the 
oxidase uncoupling channel are known for many 

cytochromes P450 in reconstituted systems, so 
the fractional partition coefficients at the perox-
ide [5] and Compound I [6] branching points can 
be estimated�

Partitioning at these three uncoupling branch 
points and the corresponding rates determine 
the overall efficiency of substrate turnover� This 
depends on various factors, which include the 
substrate structure and its positioning inside the 
substrate-binding pocket, the efficiency of proton 
delivery to the coordinated dioxygen via the hy-
drogen-bonded network of several protein groups 
together with strategically placed and conserved 
water molecules, and the efficiency of electron 
transfer from the protein redox partner� Clearly, 
changes of each of these factors may significantly 
affect the result of oxygen activation and change 
the partitioning between productive and unpro-
ductive pathways� These two pathways may be 
described as oxygen activation for either the oxi-
dative transformation of organic substrates or the 
production of peroxide and water� For the most 
efficient cytochromes P450, such as CYP101A1 
and CYP102A1, where catalysis via the produc-
tive pathway with optimal substrates is realized 
with almost 100 % efficiency, even small varia-
tions in the substrate structure or single-point 
mutations at the active center result in significant 
uncoupling and redistribution of the reaction 
flow towards peroxide production� For those cy-
tochromes P450 that are significantly uncoupled 
(either in vitro or in vivo), the same mutations 
and/or substrate variations may be favorable for 
the increase or the productive consumption of 
NAD(P)H and O2� The same is true for ineffi-
cient metabolism of nonnative substrates by the 
wild-type enzymes, where mutations may sig-
nificantly improve the rate of oxygen activation 
and coupling to the productive pathways� Multi-
ple mutations at the substrate-binding pocket not 
only can drastically change the regio- and stereo-
specificity of substrate binding but also can be 
engineered to alter uncoupling and extend the 
range of chemical transformations of nonnative 
substrates catalyzed by cytochrome P450� These 
results have been extensively reviewed for the 
self-sufficient CYP102A1, which is considered 
as the most promising cytochrome P450 for bio-
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engineering and synthetic biology purposes [27, 
249, 250]�

Uncoupling at the oxidase branch point has 
been observed in microsomes by comparing 
the rates of NADPH and O2 consumption with 
a natural substrate with those of a non-metabo-
lized analog, as in the case for CYP21 in bovine 
adrenocortical microsomes [38]� Here, the 2:1 
NADPH/O2 stoichiometry was correctly assigned 
to the oxidase uncoupling pathway� Similar ob-
servations were reported by Ullrich [39, 251] 
using perfluorinated substrate analogs to prevent 
productive reactions of Compound I� They also 
observed a 2:1 NADPH/O2 consumption stoichi-
ometry� Later Coon and coworkers documented 
both productive and unproductive pathways, in-
cluding peroxide and oxidase uncoupling, using 
purified liver microsomal cytochrome P450 and 
demonstrated that the results strongly depend on 
the substrate [252]� A review of the overall stoi-
chiometry of coupled and uncoupled P450 reac-
tions has been provided by Zhukov and Archa-
kov [253, 254]�

The availability of X-ray structures for CY-
P101A1 [32, 33, 255–259] made possible a de-
tailed analysis of uncoupling in P450 catalysis� 
The hydroxylation of the natural substrate 1R-
camphor by wild-type CYP101A1 is very fast 
( kcat up to 35 s− 1) and almost 100 % coupled, 
with an NADH/product ratio of ~ 1�02–1�03� 
This provides an excellent reference system for 
systematic study of the relative importance of es-
sential features of the enzyme active site as well 
as substrate structural variations for overall ca-
talysis� A series of CYP101A1 mutants has been 
generated based on the available X-ray structures 
with the goal of deciphering the structural deter-
minants of efficient substrate hydroxylation [23, 
24, 260–268]� Various substrate analogs were 
also employed to explore the regio- and stereo-
specificity of chemical transformations cata-
lyzed by CYP101A1 together with the rate and 
efficiency of steady-state turnover [23, 261–263, 
265]� Taken together, these works revealed a 
great variability of both rates and coupling effi-
ciencies that depend on both on single mutations 
and variations of the substrate structure�

The discovery of the critically important acid–
alcohol pair D251-T252 in CYP101A1 was very 
important from a mechanistic point of view� The 
dramatic effect of a D251N mutation, which re-
sulted in a 50–100-fold slowing of the product-
formation rate, without loss of the efficiency of 
NADH consumption, and the same ~ 95 % cou-
pling as in the wild-type enzyme [267], clearly 
indicated the gate-keeping role of this residue in 
proton delivery� Its role was later confirmed by 
kinetic solvent isotope effect (KSIE) and proton 
inventory measurements [269]� Impaired proton 
delivery in the D251N mutant as the main cause 
for slow turnover was also confirmed by directly 
measuring the rate of the first electron transfer 
from Pdx, which was even faster than in the wild-
type enzyme [270]� In addition, significant accel-
eration (5–10 times) of NADH consumption and 
camphor hydroxylation observed at moderately 
acidic pH (5�5–5�0) also supported protonation as 
the strongly rate-limiting step in the CYP101A1 
D251N mutant [267]� The effect of the salt link 
between D251 and K178 was tested separately by 
mutating this residue to glutamine, K178Q [267]� 
This mutant was highly coupled and only moder-
ately slower than the wild-type enzyme, implying 
that the position of the side-chain of D251 is not 
the main factor determining the overall turnover 
efficiency of CYP101A1� In contrast, the T252A 
mutation of the neighboring residue uncoupled 
hydroxylation catalysis by ~ 95 % with no inhibi-
tion in NADH consumption, efficiently channel-
ing redox equivalents into peroxide production 
[271, 272]� The essential role played by the alco-
hol side-chain of T252 in oxygen activation was 
confirmed by the high activity and 81 % coupling 
of the T252S mutant [272]� The importance of 
these two residues in the CYP101A1 mechanism 
has been analyzed in great detail using X-ray 
structures of the oxy-complexes of these mutants 
[74, 92]� The structures of oxy-complexes reveal 
important conformational rearrangements of the 
I-helix, with reorientation of the T252 side-chain 
opening the cleft between T252 and G248, and 
appearance of two new well-resolved water mol-
ecules that most likely represent the main proton 
delivery channel [74, 92, 93, 95]� The same open-
ing in the I-helix and same water molecules were 



933 Activation of Molecular Oxygen in Cytochromes P450

also observed in the structure of the cyanide com-
plex of CYP101A1 [273] and the highly similar 
CYP101D1 [274], possibly due to very similar 
geometries of the Fe–O2 and Fe–CN− complexes 
with an angle of ~ 125° between the ligand axis 
and heme plane, and similar H-bonding proper-
ties�

The recent discovery and crystallization of 
other members of the CYP101 family, CYP101D1 
[274, 275] and CYP101D2 [276], opened addi-
tional means to probe the finely tuned and highly 
efficient mechanism of oxygen activation� Both 
CYP101D1 and CYP101D2 bind camphor in 
the same orientation as CYP101A1 and catalyze 
the same hydroxylation with similar high rates 
(1000–2000 min− 1) and almost 100 % efficiency 
[274, 277]� Despite the same activity towards 
the same substrate, there are structural and func-
tional differences between these three isozymes 
that provide a better understanding of the es-
sential (and not essential) features for optimal 
P450 catalysis� Mutations of the acid–alcohol 
pair residues D259N and T260A in CYP101D1, 
analogous to D251N and T252A in CYP101A1, 
had the same effect: Little or no activity in the 
Asp/Asn mutant and highly uncoupled NADH 
consumption in the Thr/Ala mutant in both pro-
teins [274]� Critical variations in CYP101D1, as 
compared to CYP101A1 (where G180 replaces 
the homologous K178, D182 is used instead of 
N184 and A366 in CYP101D1 replaces L358 in 
CYP101A1) may have changed the functional 
properties with respect to interactions with the 
redox partner Pdx and/or protonation/substrate 
binding� When these mutants were introduced 
into CYP101A1 to check for the functional im-
plications of these residues using the native redox 
partner Pdx [275], the single mutants L358A and 
K178G had little effect on the activity or struc-
ture of CYP101A1� However, the double mu-
tant L358A/K178G had a tenfold slower rate of 
NADPH consumption than the wild type due to 
the mostly low-spin state even in the presence of 
camphor� The addition of 400 mM K+ converted 
the double mutant protein to the high-spin form 
and diminished the difference in steady-state 
NADPH turnover� The crystal structure of the cy-
anide complex of the mutant CYP101A1 shows 

the same structural changes as in the wild type, 
including the key water molecules in the I-helix 
cleft, indicating that the proton delivery pathway 
is not perturbed by these mutations [275]�

Homology analysis revealed that the acid–al-
cohol pair in the I-helix is a common feature in 
the great majority of cytochromes P450, although 
some deviations are evident� In the CYP51 class 
the semi-conserved acid side-chain (D251 in CY-
P101A1) is replaced by a histidine [278]� In the rat 
CYP51 enzyme, the mutation H314D resulted in 
a sevenfold lower 14-demethylase activity [279]� 
In some cytochromes P450 the alcohol side-chain 
from threonine or serine is replaced by alanine, 
as in P450eryF (CYP107A1) and CYP158A2� 
Based on the X-ray structural studies of these two 
enzymes, the concept of substrate-assisted catal-
ysis was proposed as an alternative to the missing 
side-chain of Thr/Ser [80, 280]� The functionally 
important water molecules forming the proton 
delivery pathway are stabilized at the proper po-
sition close to the coordinated dioxygen by hy-
drogen bonding to the substrate hydroxyl group 
instead of the alcohol side-chain [73, 80, 280]� In 
CYP107A1 the mutants A245S and A245T have 
lower activity and higher uncoupling to produce 
peroxide, which was attributed to perturbations 
in positioning of the functionally important wa-
ters [73, 280–282]� However, the A245T mutant 
gained the ability to catalyze the hydroxylation 
of alternative substrates such as TST [283] and 
7-benzyloxyquinoline [284], providing further 
evidence in support of the general importance 
of this alcohol side-chain for the P450 catalytic 
cycle� Other examples of naturally occurring 
variations in the acid–alcohol pair include the 
replacement of threonine by asparagine N242 in 
CYP176A1 [285] and N240 in P450 OxyB [286], 
glutamine Q230 in CYP165D3 [287], and proline 
P237 in CYP134A1 [288]� Still, these enzymes 
perform the usual P450 chemistry with oxygen 
activation� In contrast, in P450 peroxygenases, 
which do not follow the regular P450 oxygen ac-
tivation cycle, but rather react via the peroxide 
shunt mechanism, both acid and alcohol residues 
are replaced by other amino acids, such as V245-
A246 in CYP152A1 [289] and I248-A249 in 
CYP152L1 [290]�
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Both the semi-conserved acid and alcohol res-
idues were mutated in other cytochromes P450 
in order to understand the importance of these 
features for P450 catalysis� In CYP102A1 the 
T268A mutation similar to T252A in CYP101A1 
resulted in a decrease in both NADPH consump-
tion and product turnover rates with several sub-
strates [291, 292], but not with pentadecanoic 
acid, for which coupling was maintained at the 
same level as in the wild-type enzyme [293]� The 
high coupling with some substrates and strong 
dependence on the chain length of the fatty acid 
(34 vs� 10 % for C12, 88 vs� 74 % for C14, 88 vs� 
89 % for C15, and 93 vs� 21 % for C16, in the wild 
type vs� T268A mutant correspondingly) clearly 
demonstrates variations due to the packing of 
the substrate in the overall efficiency of P450 
turnover, as well as the difference caused by the 
Thr268 mutation� These results again stress the 
critical role of the substrate in the modulating 
water access to the active site and thus the over-
all catalytic efficiency defined as the ratio be-
tween productive and non-productive pathways� 
At the same time, the absolute rates of NADPH 
consumption also strongly depend on the T268A 
mutation in CYP102A1 [292]� The general con-
clusion based on the comparison of the wild-type 
CYP102A1 and T268A mutant is that the pres-
ence of this threonine is not absolutely essential 
for hydroxylation, but it is certainly important in 
providing an efficient proton delivery pathway 
with most substrates [293]�

CYP176A1 (P450cin) is a close analog of 
CYP101A1, with its natural substrate cineol also 
being similar to camphor� However, in wild-type 
CYP176A1 the conserved threonine residue is 
replaced by asparagine N242 [294]� The fact 
that this enzyme is nevertheless catalytically 
competent in cineole hydroxylation with almost 
the same efficiency as CYP101A1 in camphor 
hydroxylation (rate of NADH consumption 
950 min− 1 and coupling ~ 80 %) [295] attracted 
the attention of several research groups and in-
spired a detailed analysis of its structure and 
mechanistic issues [285, 295–300]� Mutation of 
the unusual N242 to a threonine (N242T) [295] 
or alanine (N242A) [298] resulted in a moderate 
decrease in coupling, 54 and 72 % respectively, 

as compared to 80 % in the wild-type enzyme� 
At the same time significant (sixfold and four-
fold) decreases in the absolute rates of NADH 
consumption were observed with these mutants� 
Both results are very different from the very 
strong uncoupling with fast NADH consumption 
in the CYP101A1 T252A mutant� Attempts to 
test in CYP176A1 the substrate-assisted mecha-
nism of oxygen activation found for CYP107A1 
(P450eryF), where the hydroxyl group of the 
substrate replaces the threonine side-chain in 
stabilizing the proton delivery pathway, proved 
inconclusive [298]� Unlike in CYP107A1, where 
replacement of the key hydroxyl group of the 
substrate by a ketone inhibited hydroxylation by 
more than 100-fold [301], similar modifications 
of the native substrate cineol produced only a 
moderate decrease in activity and coupling [298]� 
Therefore, no clear understanding of the predom-
inant structural features affecting proton delivery 
and efficiency of oxygen activation came out of 
these mutation studies� Alternatively, a compari-
son of CYP176A1 and CYP101A1 suggests the 
presence of multiple pathways for protonation of 
the dioxygen moiety, which compensate to a cer-
tain extent for the loss of an important functional 
group in the active site�

The same conclusion may be made based 
on the effect caused by the T252N mutation in 
CYP101A1, which mimics the N242 residue in 
CYP176A1� This was done to test the ability of 
asparagine to replace the key T252 [302]� As in 
CYP176A1, the Asn252 mutant in CYP101A1 
demonstrated efficient camphor hydroxylation 
with an overall 42 % coupling determined as the 
ratio between the rates of product formation and 
NADH consumption� The main difference be-
tween the wild-type and mutant protein was an 
almost 20-fold lower affinity for camphor bind-
ing in the T252N mutant� This work provides one 
more example of the great flexibility and robust 
design of active centers in cytochromes P450, 
which remain functional despite various muta-
tions�

Both the acid and alcohol residues, Glu318 
and Thr319, have been mutated in CYP1A2 in 
order to evaluate the mechanism of oxygen acti-
vation in this cytochrome P450 [303, 304]� Sur-
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prisingly, in some cases the mutations improved 
the overall coupling of methanol oxidation from 
9 % in the wild-type protein to 16 % in the E318A 
mutant, and even to 40 % in the T319A mutant 
[303], despite the slower product-formation 
rates, 25 % and 39 % of the rate of 4�4 min− 1 ob-
served in the wild-type enzyme� In addition, no 
H2O2 was detected with the E318A and T319A 
mutants, with most of the uncoupling attributed 
to the oxidase (water) channel� In contrast, the 
same E318A mutant was almost inactive when 
7-ethoxycoumarin was used as a substrate by the 
same authors, whereas the T319A mutant was 
even more active than wild-type [304]� These 
observations led the authors to suggest that the 
role of the conserved threonine in oxygen activa-
tion may be different, or at least not as critical, 
in CYP1A2� However, later studies demonstrated 
that even changes in the buffer composition, pH, 
and temperature could significantly change un-
coupling by a factor of three [305]�

In CYP2B4 the T302A mutation also signifi-
cantly inhibits N-demethylation of benzphet-
amine and hydroxylation of cyclohexane with the 
rates decreasing 20-fold [56]� The steady-state 
NADPH consumption rates are also significantly 
slower when the T302A mutant is used, but H2O2 
production is sometimes even higher� This fact 
can be interpreted as a slower proton delivery in 
the mutant enzyme and a longer lifetime of the 
peroxo- and hydroperoxo-ferric intermediates, 
with a predominantly dissociative unproductive 
pathway favored over productive protonation and 
Compound I formation� This hypothesis is also 
consistent with the tenfold increase in the rate of 
cyclohexane carboxaldehyde deformylation, ap-
parently catalyzed by the peroxo-ferric interme-
diate, and not by Compound I [56]� The peroxo-
anion reaction with aldehydes to give a peroxy-
hemiacetal intermediate, followed by homolytic 
scission of the O–O bond, was also invoked to 
explain the mechanism of substrate-assisted 
heme destruction and the faster rate of heme loss 
in the T302A mutant than in the wild-type pro-
tein [306]� The activation of the conversion of a 
p-hydroxybenzene derivative to a hydroquinone 
caused by the T303A mutation in CYP2E1 was 
attributed to a more efficient catalysis of the ipso-

substitution reaction by the hydroperoxo-ferric 
intermediate in the mutant enzyme due to per-
turbed protonation and loss of the Compound I 
pathway [307]� Interestingly, the effects observed 
in these works strongly depended on the sub-
strates, with the kcat increase caused by T303A in 
CYP2E1 varying from 1�1 with 4-fluoro phenol 
to 31 with 4-bromo phenol [307], indicating the 
importance of the electron-withdrawing halogen 
substituents� At the same time, the authors noted 
that this variation may indicate a difference in 
the predominant mechanism in the wild-type and 
CYP2E1 T303A mutant, consistent with the con-
cept of multiple “active oxygen” intermediates in 
P450 catalysis as recently reviewed [308, 309]�

Substrate dependent uncoupling is clearly 
manifested in CYP3A4, which can bind up to 
three substrate molecules such as TST [82, 140, 
310]� Using global analysis of multiple experi-
mental data sets measured under identical con-
ditions, it was possible to resolve the fractional 
contributions of intermediates with one, two, or 
three TST molecules bound to CYP3A4 in the 
overall NADPH consumption and product for-
mation rates� The first binding of steroid sub-
strate to the remote binding site did not result in 
formation of product, but increased the NADPH 
consumption rate by a factor of four, likely due 
to stabilization of the oxy-complex [82] and 
more efficient second electron transfer� Binding 
of the second substrate molecule caused almost 
complete shift to the high-spin state and resulted 
in product formation at almost the maximal rate� 
At the same time, the NADPH consumption rate 
also increased, so that the coupling in this case 
was only 5 %� Binding of the third substrate did 
not change the rate of product formation, but 
improved coupling to ~ 13 % [140]� This non-
trivial dependence of the rate and efficiency of 
CYP3A4 catalysis on the substrate concentration 
demonstrates the complexity of the mechanism 
of oxygen activation with many parameters de-
termining the overall outcome�

The substrate dependence of the oxidase un-
coupling channel in CYP3A4 provided more in-
formation about productive and non-productive 
pathways and the role of the lipid bilayer in the 
overall efficiency of TST hydroxylation [310]� 
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Even in the absence of substrate the oxidase un-
coupling channel accounted for almost 20 % of 
the total oxygen consumption, indicating pos-
sible formation of Compound I in substrate-free 
CYP3A4� At saturating TST concentrations, 
the absolute rate of water production increased 
from 8 to 52 min− 1, or ~ 25 % of the total oxy-
gen consumption, with total peroxide production 
decreasing from 80 to 65 %, and the product-for-
mation rate to 25 min− 1� These results provide a 
rough estimate of the partitioning between pro-
ductive (TST hydroxylation, [6] - > [7] Fig� 3�1) 
and unproductive (water production, [6] - > [2] 
Fig� 3�1) pathways at the Compound I level� In 
this scheme, the ratio k67/k62 = 0.5 gives an esti-
mate of the relative probability of a successful 
catalytic event as Compared to the unproductive 
decay of Compound I with TST as a substrate� 
The same rate of oxidase uncoupling was ob-
served with bromocriptine as a substrate [310], 
although the product formation rate was slower� 
The presence of 30 % anionic lipid 1-palmitoyl-
2-oleoyl-phosphatidylserine improved overall 
coupling and facilitated product formation for 
TST and bromocriptine by a factor of 1�5–2�

Important results on the specific mechanisms 
of uncoupling in CYP101A1 have been obtained 
by Makris et al� [189] by comparison of the 
G248T and G248V mutants with the wild-type 
protein� The second proton delivery was sig-
nificantly inhibited in both mutants, so that the 
overall NADH consumption rate decreased by 
factors of 4 and 13, respectively� In addition, the 
coupling efficiency (ratio of the product forma-
tion rate to the NADH consumption rate) fell 
from 98 % to 74 % and 28 %� Additional infor-
mation has been provided by comparison of the 
steady-state kinetic parameters measured in H2O 
and D2O� Increased uncoupling in D2O was ob-
served in all cases, but to a different extent, with 
the ratio of the product formation rate constants 
ranging from 1�1 in the wild-type protein to 1�75 
in the G248V mutant� This variation indicates 
that the second proton transfer is at least in part 
rate limiting in the CYP101A1 catalytic cycle; 
otherwise, there would be no apparent difference 
in the steady-state kinetic parameters in H2O and 
D2O� In both the G248T and G248V mutants, 

the steady-state rate of NADH consumption was 
slightly higher in D2O, despite the slower rate of 
product formation in deuterated solvent� This is 
the result of impaired protonation of the peroxo- 
or hydroperoxo-ferric intermediate in D2O and 
redistribution of the reaction flux towards H2O2 
production�

Because the productive pathway of substrate 
metabolism includes protonation steps, it de-
pends on the solvent H/D composition and is 
slower in D2O than in H2O� In contrast, the au-
toxidation and peroxide dissociation rates are 
not as strongly proton-dependent and hence are 
less affected by solvent composition� Therefore, 
P450 catalysis in D2O is usually slower and less 
efficient (more uncoupled) than in H2O� The ob-
servation of an inverse isotope effect is usually 
interpreted as an indication of some mechanistic 
change or different catalytic pathway� This is the 
case in the C–C cleavage reaction catalyzed by 
CYP17A1 [311]� The hydroxylation of pregnen-
olone at C17 proceeds through the common P450 
pathway with Compound I as the catalytic inter-
mediate and thus is proton dependent� In agree-
ment with this mechanism, the KSIE measured 
for this step is small (~ 1�3), as is seen in other 
cytochromes P450� However, a large inverse iso-
tope effect with kH/kD = 0.39 for the second lyase 
step with the 17-hydroxypregnenolone as a sub-
strate, cannot be rationalized using the same cat-
alytic pathway� Analysis of the protonation-de-
pendent and protonation-independent pathways 
(Fig� 3�1) supports the alternative mechanism of 
lyase catalysis via the unprotonated peroxo-fer-
ric intermediate, first proposed by Akhtar [216] 
and still debated in the literature [312]� Unlike 
the regular P450 pathway via Compound I, this 
reaction goes directly from [5] to product and 
does not require proton delivery� A productive 
pathway in such mechanism is not expected to 
show any KSIE� Alternatively, the peroxo-ferric 
intermediate can be protonated and form a hydro-
peroxo-ferric intermediate, which can then dis-
sociate without product formation and contribute 
to proton-dependent uncoupling� Unlike normal 
P450 catalysis via proton-dependent formation 
of Compound I, for the peroxo-driven pathway 
product formation is not proton-dependent, while 
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uncoupling involves protonation of peroxide and 
dissociation of H2O2� As a result, for peroxo-
ferric driven catalysis of the lyase reaction in 
CYP17A1 an inverse KSIE is expected, exactly 
as observed experimentally [311]�

3.10  Summary

The complex multistep mechanism of oxygen 
activation in P450 represents a finely orches-
trated process in which contributions from mul-
tiple players have to be delivered timely and in 
a proper order� Oxygen activation is necessary 
for accelerating reactions in which dioxygen as 
a free molecule in gas or solution would never 
engage because of very high activation barri-
ers� Considering dioxygen as a reagent, the P450 
cycle (Fig� 3�1) can be viewed as an oxygen acti-
vation process with multiple possible outcomes� 
The most important for living organisms are 
the two pathways that result in oxidative trans-
formations of organic molecules catalyzed by 
heme-oxygen intermediates, Compound I or in 
some cases peroxo-ferric complexes� In an ideal 
system (as in CYP101A1 with camphor) there 
is almost no peroxide production in this path-
way, and all dioxygen consumed in the process 
of P450 catalysis is evenly distributed between 
organic products and water� However, other path-
ways, which do not involve product formation, 
also can be termed “oxygen activation,” because 
ROS are released as a result of formation of su-
peroxide and hydrogen peroxide using electrons 
from NAD(P)H� Taken together, all these path-
ways result in oxygen consumption and represent 
the process of dioxygen activation catalyzed by 
P450� Product and peroxide are produced with 
1:1 stoichiometric consumption of NAD(P)H and 
O2, while the oxidase unproductive pathway has 
2:1 stoichiometry of NAD(P)H/O2�

In order to start the activation of atmospheric 
dioxygen, the heme iron must be reduced to the 
Fe2 + state, to enable oxygen binding and forma-
tion of the oxy-complex of P450� Reduction is 
performed by electron transfer from a protein 
redox partner� The rate of reduction [2]  [3] 
(Fig� 3�1) in most cases strongly depends on the 

presence of a substrate and on the ability of this 
substrate to shift the spin state of ferric cyto-
chrome P450 from low-spin (S = 1/2) to high-spin 
(S = 5/2). Therefore, substrates and their analogs 
significantly facilitate the NAD(P)H consump-
tion and concomitantly the first step of oxygen 
consumption [3]  [4]� In case of fast autoxida-
tion [4]  [2] the efficiency of the productive 
pathway is not high, so the overall effect of the 
presence of substrate may be predominantly ac-
celeration of superoxide production� This is “the 
bad side” of the same coin, which is suggested 
to be especially important for functioning of xe-
nobiotic metabolizing cytochromes P450 in liver, 
because it may cause oxidative damage by ROS 
production in the presence of “poor” substrates 
or substrate analogs that are metabolized with 
high uncoupling� The effect of ROS production is 
more pronounced if both the absolute rates of the 
first electron transfer and autoxidation are high, 
and the efficiency of the productive pathway is 
determined by the ratio of the rates of the second 
electron transfer and uncoupling�

The same logic holds for the second uncou-
pling branching point between protonation of 
Compound 0 and O–O bond heterolysis to give 
Compound I [5]  [6], versus dissociation of per-
oxide [5]  [2]� Again, the higher these rates are, 
the faster the overall O2 consumption and perox-
ide production if the enzyme does not provide 
timely delivery of protons to the distal oxygen 
of the peroxo-ferric complex� Protonation path-
ways are formed by side-chains of functionally 
important residues in the active site, which also 
help to stabilize several water molecules strate-
gically positioned to form the hydrogen-bonded 
network essential for proton transfer towards the 
(hydro)peroxo-anion coordinated to the heme 
iron� The configuration and continuity of this 
proton-delivery network, and hence the rate and 
efficiency of protonation, strongly depend on the 
structure of substrate and it’s positioning and dy-
namics in the vicinity of the heme� Even minor 
variations in the substrate structure can signifi-
cantly perturb the optimal protonation network 
and result in highly uncoupled oxygen consump-
tion with high absolute rates� The same is true for 
mutations of critically important residues, such 
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as T252A in CYP101A1� On the other hand, the 
D251N mutant in CYP101A1 highlights the role 
of the absolute rate of the first proton delivery in 
determining the overall absolute rate of catalysis 
with no loss of coupling�

This update, in defining the state of our un-
derstanding of P450 “oxygen activation,” has en-
compassed many aspects of the catalytic wheel� 
On the nature of the species responsible for the 
critical transformative event of substrate into 
product, it is clear that there can be more than one 
oxidant operating� For functionalization of unac-
tivated carbon centers, the mechanism most cer-
tainly involves radical chemistry initiated by the 
iron-oxo, Compound I, intermediate� This state is 
generated from the dioxygen bound ferrous heme 
by the input of a second electron and two protons 
that result in the cleavage of the O–O bond of 
atmospheric dioxygen� However, the precursor 
peroxo state can also be reactive in some special 
cases� The transformation of the initial reactants, 
O2, and substrate with redox input is dependent 
on all the steps in the reaction cycle—from sub-
strate binding through product release� The over-
all efficiency of catalysis is dependent on the 
protein's ability to control the critical electron 
and proton input and the position of the substrate 
near the heme active site� With > 104 isozymes 
of P450 present throughout living organisms, this 
enzyme superfamily has clearly learned how to 
control the utilization of atmospheric oxygen and 
the “hot” oxidants generated upon its reduction�
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4.1  Introduction

In most enzymes, the catalytic machinery is en-
gaged throughout the process of transforming 
a substrate into its product, but in cytochrome 
P450 enzymes the catalytic machinery largely fo-
cuses on the conversion of molecular oxygen into 
a highly reactive oxidizing species� The subse-
quent oxidation of the substrate by this oxidizing 
species requires little or no additional catalytic 
assistance by the protein and is largely deter-
mined by the inherent reactivity of the oxidizing 
species, constraints imposed on the oxidation by 
steric effects, the binding orientations and mobil-
ity of the substrate within the active site, and the 
extent to which the various orientations of the 
substrate are populated� This chapter summarizes 
the outcome of the reactions of the oxygenating 
species with the different classes of functional-
ities and substructures in substrates�

The traditional catalytic cycle of cytochrome 
P450 is initiated by the binding of a substrate to 
the ferric enzyme, a step that is usually, but not 
always, accompanied by displacement of a distal 
water ligand from the heme iron atom (Fig� 4�1a-> 
c)� Electron transfer to the iron by an electron 
donor partner (Chap� 2) reduces the iron to the 
ferrous state (Fig� 4�1d), enabling the binding 

of molecular oxygen to give a ferrous dioxygen 
complex (Fig� 4�1e)� A second electron transfer 
reduces this intermediate to the equivalent of 
a complex of the ferric iron with the hydrogen 
peroxide dianion (Fig� 4�1f)� Protonation of the 
terminal oxygen in this complex produces a fer-
ric hydroperoxy complex (Fig� 4�1g) that rapidly 
undergoes proton-assisted heterolytic oxygen–
oxygen bond scission, generating a ferryl cou-
pled with a porphyrin radical cation (Fig� 4�1h)� 
In the final step, substrate oxidation by this reac-
tive species gives the oxidized product (Fig� 4�1i) 
and, after product dissociation, regenerates the 
ferric state of the enzyme (Fig� 4�1b)�

It is widely accepted that the oxidizing spe-
cies responsible for most P450-catalyzed oxida-
tions is the ferryl/porphyrin radical cation com-
plex (Fig� 4�1h)� However, the ferric hydroperoxy 
anion (Fig� 4�1f) can react as a nucleophile with a 
few electrophilic moieties, particularly carbonyl 
groups, usually resulting in products in which a 
carbon–carbon bond has been broken� A third po-
tential oxidizing species extensively investigated 
in the past decade is the ferric hydroperoxide 
(Fig� 4�1g) that results from protonation of the 
ferric hydroperoxy anion� However, the current 
evidence suggests that this electrophilic agent is 
not the oxidizing species in most P450 reactions, 
but possibly has a limited role in the oxidation 
of heteroatoms and double bonds� The properties 
of the ferryl/porphyrin radical cation, a species 
analogous to that of compound I of the peroxi-
dases, thus determine the outcome of most cyto-
chrome P450-catalyzed oxidations�
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The proximal ligand to the iron, which in cy-
tochrome P450 enzymes is invariably a cysteine 
thiolate anion, plays a major role in determin-
ing the intrinsic reactivity of the ferryl/porphy-
rin radical cation� Its importance is emphasized 
by the fact that site-specific replacement of the 
cysteine ligand by a histidine [1–4], serine [5, 
6], or methionine [7] yields catalytically inac-
tive proteins� The single exception is substitution 
of the cysteine by selenocysteine, an amino acid 
that replaces the thiolate ligand by an even more 
electron-donating selenolate anion [8, 9]� Recent 
work has shown that the iron-bound oxygen in 
compound II of cytochrome P450 enzymes that 
corresponds to the state after one-electron reduc-
tion of compound I is basic, with a pKa of ~ 12 for 

the FeIV–OH [10]� A comparison of the energy 
required to reduce compound I by intramolecular 
electron transfer from a nearby tyrosine with the 
energy required for hydrogen abstraction from 
a C–H bond in a substrate hydroxylation reac-
tion indicates that the high basicity of the com-
pound II FeIV–OH plays a critical role in making 
hydrogen abstraction competitive� The basicity 
of the FeIV–OH intermediate is due to electron 
donation from the thiolate iron ligand [11], as 
imidazole-ligated compound II species such as 
those found in peroxidases have pKa values of 
~ 3–6 [12]� The interaction of the thiolate with 
the iron can be modulated by factors such as the 
extent to which the thiolate is hydrogen-bonded 
to adjacent hydrogen bond donors [13–16]� Con-
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Fig. 4.1  Schematic representation of the cytochrome 
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of the enzyme and RH a substrate molecule� The brackets 
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es occurring at the heme iron and porphyrin framework 
during the catalytic cycle are indicated. The electrons ( e−) 
required for the catalytic cycle are provided by electron 

donor proteins such as cytochrome P450 reductase� Three 
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O2

−, H2O2, or H2O� In this chapter, the compound I oxidiz-
ing species ( H) is also often represented as [P+ Fe(IV) = O], 
where P stands for the porphyrin framework of the heme 
prosthetic group� The one-electron reduced species equiv-
alent to compound II is then represented as [PFe(IV)–OH]
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formational differences in the heme, differences 
in the electrostatic properties of the heme site, 
and other subtle factors may further modulate 
ferryl reactivity, but the available evidence sug-
gests that the ferryl properties are similar across 
the cytochrome P450 family of enzymes [17, 18]�

The cytochrome P450 oxidation stoichiometry 
(Fig� 4�1) requires two electrons from NAD(P)H 
and one molecule of oxygen to insert one oxygen 
atom into a substrate� To the extent that the ratio 
of NAD(P)H (or oxygen) consumed to product 
formed is greater than one, the enzyme is said 
to be uncoupled� Uncoupling can occur by dis-
sociation of superoxide from the ferrous dioxy 
complex (Fig� 4�1e), dissociation of H2O2 from 
the ferric hydroperoxide complex (Fig� 4�1g), or 
two-electron reduction of the compound I ferryl/
porphyrin radical cation to a molecule of water 
before it can react with the substrate (Fig� 4�1h)� 
Factors that favor uncoupling include uncon-
trolled access of water to the active site, popu-
lation of states that place the site of reaction at 
unproductive distances or orientations relative 
to the ferryl oxygen, the absence of sufficiently 
reactive sites on the substrate, the efficiency of 
electron delivery to the heme center, and pro-
tein–protein interactions [19–24]� Uncoupling 
decreases the efficiency of oxidation reactions 
catalyzed by P450 enzymes and may contribute 
to the generation of deleterious reactive oxygen 
species (ROS)� The variability of uncoupling is 
illustrated by the nearly quantitative coupling ob-
served in oxidation of the natural substrate cam-
phor by P450cam (CYP101) and the 95 % uncou-
pling that is observed in the oxidation of styrene 
by the same enzyme [25]�

4.2  Hydrocarbon Hydroxylation

The mechanism of cytochrome P450-catalyzed 
hydrocarbon hydroxylation, first proposed in 
1978 [26], postulates abstraction of a hydrogen 
with its electron from a C–H bond by the com-
pound I ferryl species, producing a substrate car-
bon radical and a compound II-like one-electron 
reduced [FeIV–OH] P450 intermediate, which can 
also be formally written as a complex of ferric 
iron with a hydroxyl radical� In the second step of 
this mechanism, the hydroxyl radical combines 
with the substrate carbon radical to produce a hy-
droxylated product, concomitantly regenerating 
the ferric enzyme (Fig� 4�2)� The observation of 
high intrinsic isotope effects in hydrocarbon oxi-
dations, which implies a linear rather than bent 
O–H–C geometry in the transition state, provides 
support for this mechanism� For example, the in-
trinsic kinetic deuterium isotope effect for rabbit 
CYP2B4-catalyzed 2-hydroxylation of norbor-
nane is kH/kD = 11.5 [26] and that for the CY-
P3A4-catalyzed 6β-hydroxylation of testosterone 
is kH/kD = 15 [27]� Most intrinsic isotope effects 
have been determined by intramolecular compe-
tition between equivalent deuterated and undeu-
terated sites on the same molecule, or by more 
complex methods because, except for occasional 
instances, e�g�, [28], C–H bond breaking is not 
the rate-determining step in the overall hydrox-
ylation sequence� However, even isotope effects 
determined by intramolecular competition be-
tween equivalent sites are subject to masking due 
to low rates of equilibration of substrate orienta-
tions within the active site� The recent develop-
ment of methods to generate high concentrations 
of the cytochrome P450 compound I species and 
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to directly measure its reaction with substrates 
by stopped-flow methods directly confirms the 
generally large values obtained in earlier stud-
ies� Thus, the hydroxylation of deuterated and 
undeuterated hexanoic acids by CYP119 com-
pound I reveals an isotope effect of kH/kD   ≥  12.5, 
although this value is masked and decreases dras-
tically as the fatty acid chain length is increased 
[29]� Kinetic isotope effect studies of the oxida-
tion of fatty acids by the heme–thiolate peroxy-
genase from Agrocybe aegerita, a P450-like pro-
tein for which formation of the compound I ferryl 
species has also been established [30], gives an 
observed intramolecular isotope effect of 16 for 
the formation of 2-hexanol and 9 for the forma-
tion of 3-hexanol from 1,1,1,2,2,3,3-D7 hexane 
[31]� In a different approach, the noncompetitive 
oxidation of lauric acid versus perdeuterated lau-
ric acid by CYP105D5 gave rise to isotope ef-
fects in the range of 7–12 after correction for sec-
ondary isotope effects [32]� Density functional 

theoretical (DFT) calculations provide theoreti-
cal support for the interpretation of high isotope 
effects as evidence for a hydrogen abstraction 
mechanism [33, 34]�

As already noted, intramolecular isotope ef-
fects can be masked if substrate mobility is so 
limited that repositioning of the competing oxi-
dation sites cannot be achieved at rates sufficient-
ly faster than the rate of the hydrogen abstraction 
step� This is illustrated by the P450 oxidation of 
a deuterated versus undeuterated methyl in o-, 
m-, and p-xylenes and 4,4’-dimethylbiphenyl 
(Fig� 4�3, Table 4�1) [35–37]� A much smaller 
intramolecular isotope effect is observed for 
4,4-dimethylbiphenyl, in which the two methyl 
groups are separated by 11�08 Å, than for the 
ortho-, meta-, and para-xylenes, in which the 
methyls are separated by 2�48, 5�0, and 6�62 Å, 
respectively� A similar trend is seen in the isotope 
effects for the ortho-, meta-, and para-xylenes 
with CYP2E1, CYP2A6, and CYP101, the iso-

Table 4.1  Intramolecular isotope effects in the hydroxylation of o-, m-, and p-xylenes and 4,4’-dimethylbiphenyl in 
which one of the two methyl groups is trideuterated by four cytochrome P450 enzymes

Xylene 4,4’-dimethylbiphenyl Reference
Ortho
kH/kD

Meta
kH/kD

Para
kH/kD kH/kD

CYP2B1 6�66 nd 7�73 2�09 [35]
CYP2E1 9�03 6�65 6�04 2�28 [36]
CYP2A6 11�46 7�21 5�53 1�07 [36]
CYP101 10�6 nd 7�4 2�7 [37]
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Fig. 4.3  Restricted mobility within the P450 active site 
can result in masking of intrinsic isotope effects, as illus-
trated by the finding that the isotope effect reflected by the 

ratio of CH3 to CD3 hydroxylation in the above molecules 
depends on the distance between the two methyl groups
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tope effect decreasing as the distance between 
the methyl groups increases� Only in the case of 
CYP2B1 are the isotope effects for the ortho- 
and para-xylenes approximately similar, sug-
gesting that in this enzyme these two substrates 
have comparable mobility and their isotope ef-
fects are not significantly masked, although it 
was not possible to exclude the possibility that 
two substrate molecules were bound simultane-
ously in the active site� Indeed, detailed studies 
of the oxidation of these molecules by CYP2A6 
has provided evidence for allosteric effects due 
to simultaneous binding of two molecules [38]� 
A molecular dynamics study indicated that the 
mobility of the compounds in the CYP101 active 
site decreased in the order ortho-xylene > para-
xylene > 4,4’-dimethylbiphenyl, in accord with 
the interpretation that isotope effects were in-
creasingly masked as repositioning of the meth-
yls close to the ferryl oxidizing species became 
increasingly difficult�

Independent evidence for a hydrogen abstrac-
tion-rebound mechanism of hydroxylation is 
provided by the observation of stereochemical 
scrambling in selected cytochrome P450-cata-
lyzed hydroxylations� The original postulate of 
the radical rebound mechanism was based on the 
finding that the hydroxylation of exo,exo,exo,exo-
2,3,5,6-tetradeuterated norbornane yielded exo- 
and endo-2-norborneol in which 25 % of the 
exo-2-norborneol retained four, rather than three, 
deuterium atoms and 9 % of the endo-2-norbor-
neol retained three, rather than four, deuteriums 
[26]� The CYP101-catalyzed 5-exo-hydroxyl-
ation of 5-exo- and 5-endo-deuterated camphor 
by CYP101 proceeds by removal of either the 
5-exo- or 5-endo-hydrogen, but with exclusive 
delivery of the hydroxyl to the 5-exo position 
[39]� In a related system, the P450 oxidation of 
a derivative of camphor by the fungus Beauveria 
sulfurescens similarly resulted in loss of a hy-
drogen from either the 5-exo or 5-endo position, 
but exclusively yielded the 5-exo-hydroxylated 
metabolite [40]� The hydroxylation of phenyl-
ethane, a very different substrate than norbor-
neol or camphor, with a stereospecifically placed 
deuterium at the benzylic carbon resulted in the 
formation of 1-phenylethanol in which 23–40 % 

of the alcohol had deuterium in the opposite con-
figuration to that which it had in the substrate 
[41]� These results require the intervention of a 
discrete, presumably radical, intermediate that 
allows inversion of the carbon stereochemistry 
before the hydroxyl is attached to the carbon� 
Despite the intervention of a radical intermedi-
ate, most P450-catalyzed hydroxylations proceed 
without loss of stereochemistry, as first illustrat-
ed by the retention of stereochemistry reported 
for the 7α-hydroxylation of cholesterol [42] and 
11α-hydroxylation of pregnane-3,20-dione [43], 
and subsequently by the stereospecific hydroxyl-
ation of a variety of substrates, including geraniol 
[44], octane [45], and testosterone [46] (Fig� 4�4)�

In addition to the observation of loss of stereo-
chemistry, hydroxylations adjacent to a double 
bond sometimes proceed by hydrogen abstrac-
tion from the adjacent carbon, but hydroxyl at-
tachment to the carbon at the opposite end of the 
resulting allylic radical� These allylic rearrange-
ments were first observed with 3,3,6,6-tetradeu-
terated cyclohexene [47], methylenecyclohexane 
[47], β-pinene [47], 3,4,5,6-tetrachlorocyclohex-
ene [48], and linoleic acid (Fig� 4�5) [49]� Analo-
gous rearrangements have been reported in the 
hydroxylation of more complicated molecules, 
including the taxol precursor taxa-4(5),11(12)-
diene [50], the drug exemestane [51], and a pre-
cursor of lovastatin [52] (Fig� 4�6)� An even more 
complicated reaction involving double-bond re-
arrangement with simultaneous topomerization 
has been described for the oxidation of pulegone 
[53]�

Radical clock probes have been used to ex-
amine the mechanism of cytochrome P450-cat-
alyzed hydroxylations� Radical clocks refer to 
substrates that, if converted to free radical inter-
mediates, undergo a free-radical rearrangement 
at a rate ( kr) that can be independently measured 
(Fig� 4�7)� If the rearranged and unrearranged 
radicals give different products, the rate at which 
the radical is trapped ( kt) can be estimated from 
the ratio of the two products and the known radi-
cal rearrangement rate� This assumes, of course, 
that the rearrangement rate is not altered when 
it occurs within the P450 active site� The most 
common radical clocks are based on attachment 
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of a strained cyclopropyl ring to the carbon at 
which the radical is generated� The radical rear-
rangement of this substructure yields a homoal-
lylic radical� Substituents can be added to the 
core cyclopropylmethylene element to modulate 
the intrinsic rate of the radical rearrangement� 
The cytochrome P450 studies have shown that 
the radical rearrangement must occur at a rate 
kr > 108 s−1 to compete detectably with recombi-
nation with the ferryl oxygen and thus to be use-
ful in investigating cytochrome P450 reactions, 
e�g�, [54, 55]� Subsequent to the introduction of 
radical clock probes into cytochrome P450 re-
search, a range of radical clocks of increasing so-
phistication [56–63], many of which are shown 

in Fig� 4�7, were used to probe for the existence 
of radical intermediates in cytochrome P450 hy-
drocarbon hydroxylations� The recombination 
rates kr obtained with the various P450 enzymes 
and radical clock probes range from approxi-
mately 2 × 1010 to 1 × 1013 s−1, with most values 
in the 1010–1011 s−1 range [62]� Recombination 
rates in the order of 1010–1011 s−1 were also found 
with α- and β-thujone probes in which two sepa-
rate radical “clocks,” opening of the cyclopropyl 
group and inversion of the methyl group, oper-
ate simultaneously (Fig� 4�8) [63, 64]� The re-
combination rates kt for the thujones are derived 
from the ratio of the ring-opened to intact-ring 
cyclopropylmethylene radical metabolites� Inde-

H3C

CH3

CH3

H

CH3

CH3

H
CH2

CH3

CH3

H

CH3

CH3

H
OH

CH2

O

O

CH2OH

O

O

H

CH3

CH3

OH

CO2H

H

HO

H

CH3

CH3

OH

CO2H
HO

OH

a

b

c

Fig. 4.6  An allylic shift of the double bond occurs in the hydroxylations of taxa-4(5),11(12)-diene (a), exemestane (b), 
and lovastatin (c)

 



118 P. R. Ortiz de Montellano

pendent, but not timed, evidence for the radical 
intermediate is provided by the concomitantly 
observed loss of methyl stereochemistry� The 
collective results provide strong support for a 

radical mechanism, although the determination 
with some radical clock substrates of kt values in 
the range of 1012 s−1 and higher, which approach 
the rates of a bond vibration, raised the question 
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Fig. 4.8  α- and β-Thujone (β-thujone shown) function as dual radical clocks in which cyclopropyl ring opening serves 
as one clock and inversion of the methyl group stereochemistry as a second clock
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of whether radicals existed as discrete intermedi-
ates in at least those reactions [65–67]�

A theoretical rationale for the impossibly 
rapid radical recombination rates calculated in 
some instances from the ratio of rearranged to 
unrearranged products was provided by Shaik 
and coworkers [68, 69]� This rationale rests on 
the computational prediction that the P450 com-
pound I ferryl intermediate exists in two distinct 
electronic configurations, i�e�, in two different 
states due to the differential combination of two 
electrons with unpaired spins in the d-orbitals 
of the iron and a third unpaired electron in the 
A2u orbital of the porphyrin� One of these is a 
doublet-spin state and the other a quartet-spin 
state, and these two states behave differently 
in the hydroxylation of a C–H bond (Fig� 4�9)� 
Hydrogen abstraction produces a state in which 
the carbon radical is weakly coordinated to the 
iron-bound hydroxyl group� These complexes are 
close in energy and can again be in a doublet- 
or quartet-spin state, depending on whether they 
derive from the original compound I doublet or 
quartet state� A simplistic view of the resulting al-
ternatives is provided in Fig� 4�10� If the unpaired 
electron on the carbon atom has a spin opposite 
to that of the electron in the iron–hydroxyl or-
bital, recombination can occur via an essentially 
barrierless pathway (Fig� 4�9) that is tantamount 
to a concerted reaction� On the other hand, the 
reaction via the quartet state yields a carbon in 
which the electron is in the same spin state as that 
in the iron–hydroxyl orbital, requiring a spin in-
version of one of the electrons before recombina-
tion can occur� This spin inversion barrier makes 
the carbon radical sufficiently long-lived that it 
can undergo radical rearrangements before being 
quenched by radical recombination with the iron-
bound hydroxyl� To the extent that the reaction 
proceeds via the doublet (virtually concerted) 
state to give the unrearranged product, it will 
distort the ratio of rearranged to unrearranged 
products and will result in erroneous calculation 
of a faster recombination rate due to the discrete 
radical species produced by the quartet pathway� 
Although the simplistic view in Fig� 4�10 is not 
precise in physical and computational terms, it 
provides an intuitive understanding of the com-

putational results that are more precisely stated 
in Fig� 4�9 [68, 69]�

The ferric hydroperoxide (FeIII–OOH) inter-
mediate that is the precursor of the ferryl species 
(Fig� 4�1g) has been proposed to be an alterna-
tive, or even primary, oxidizing species [70–72]� 
A number of observations led to this postu-
late� Thus, mutation of Thr302 in CYP2B4 and 
Thr203 in CYP2E1, the conserved threonines 
that are thought to facilitate O–O bond cleav-
age in oxygen activation, differentially affected 
the rates of oxidation of several olefins [70]� The 
Thr302Ala mutation in CYP2B4 decreased sty-
rene epoxidation, cyclohexene epoxidation and 
hydroxylation, and cis- or trans-2-butene ep-
oxidation and hydroxylation, but the Thr303Ala 
mutation of CYP2E1 increased epoxidation of all 
the olefins while decreasing the hydroxylation re-
actions� This was interpreted as evidence for the 
involvement of different oxidizing species in ole-
fin epoxidation and hydroxylation, although the 
opposite results for the two enzymes complicate 
this interpretation� The ferric hydroperoxide was 
similarly invoked as the oxidizing agent in the 
CYP2B1-catalyzed oxidation of trans-1-methyl-
2-(4-trifluoromethyl)phenyl-cyclopropane to 
ring-opened products [73, 74]� Analysis of the 
oxidation by CYP2B4 and its Thr302Ala mutant 
of both this substrate and the analogue with a hy-
drogen replacing the trifluoromethyl substituent 
resulted in a greater extent of phenyl than methyl 
oxidation in the mutant, again suggesting the in-
tervention of a second oxidizing species, possibly 
related to the ferric hydroperoxide, that favored 
phenyl oxidation [75]� Furthermore, the oxida-
tion of the trifluoromethyl compound with zero 
to three deuterium atoms on the methyl group by 
compound I of CYP119 and CYP2B4 gave pri-
mary isotope effects of 9�8 and 8�9 for the two 
enzymes, respectively [76]� Large intermolecular 
isotope effects kH/kD of 11�2 and 9�8, respective-
ly, were found for the two compound I species, 
which compares with small intermolecular iso-
tope effects found for the normal P450-catalyzed 
reactions� The authors interpreted this as further 
evidence for the existence of a second, presum-
ably iron-complexed peroxide, in normal P450 
turnover reactions�
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Fig. 4.9  The two-state reaction manifold as formulated 
by Shaik and coworkers [68, 69]� The ferryl radical cation 
of compound I ( I) has two unpaired electrons in iron dπ 
orbitals and one in the a2u porphyrin orbital� This electron 
configuration can give rise to either a quartet state (4A2u) 
if all spins are unpaired or a doublet if the spin of the 
electron in the a2u orbital is inverted� A hydrogen atom is 
abstracted from the substrate in the first step of the reac-
tion and an electron is transferred to either the iron, pro-
ducing the ferrous state (as shown), or to the porphyrin, 
neutralizing the radical cation� A quartet or doublet state is 

possible for either of these potential “intermediates” ( II), 
depending on the pairing of the electron of the carbon 
radical R� with the iron porphyrin electrons� The transition 
of low-spin configuration II to low-spin product ( III) oc-
curs via a virtually barrierless path, whereas high-spin II 
must traverse a significant energy barrier (4TSReb) to reach 
high-spin III� Therefore, only high-spin II behaves as a 
true radical intermediate with a finite lifetime� The energy 
diagram that corresponds to the indicated transformations 
is shown above the electron spin-pairing diagrams� L is 
the proximal iron ligand
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To explore the possible role of a species other 
than the ferryl intermediate in substrate oxida-
tions, Newcomb et al� generated an intermediate 
with an ultraviolet–visible (UV–vis) spectrum 
comparable to that of compound II by reaction 
of peroxynitrite with CYP119 [77]� Irradiation of 
this intermediate at 355 nm with a laser gave a 
low yield (~ 5 %) of a new species with a broad 
Soret absorption at 400–410 nm that was attrib-
uted to compound I� However, the lifetime of this 
species, ~ 200 ms, was the same in the presence 
or absence of the substrate lauric acid, leading to 
the suggestion that the real hydroxylating species 
might be something else� Subsequently, New-
comb and his group obtained a better-defined 
“compound I” intermediate by the same method 

and used it to determine the intrinsic rates of 
oxidation of several substrates [78]� The slowest 
substrate studied was lauric acid, which was oxi-
dized at a rate of 7�2 × 102 M−1 s−1, and the fast-
est benzyl alcohol, which was oxidized at a rate 
of 2�7 × 104 M−1 s−1� The peroxynitrite-photolysis 
approach was also used to generate the equiva-
lent species in CYP2B4, which oxidized benz-
phetamine, a normal substrate of the enzyme, at 
approximately the same rate as CYP119 [79]�

Identification of the species produced by re-
action of a P450 enzyme with peroxynitrite fol-
lowed by irradiation as a normal compound I is 
uncertain because the reaction of ferric CYP102 
(P450BM3) with peroxynitrite was found to yield 
the Fe(III)–NO complex rather than compound 
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ranged to rearranged products� However, as the low-spin 
state is virtually concerted and only gives unrearranged 

product, its contribution to the reaction will give rise to 
a deceptively high proportion of unrearranged product, 
some of which did not arise via the “free radical” inter-
mediate of the high-spin state� L is the proximal thiolate 
ligand

 



122 P. R. Ortiz de Montellano

II [80]� However, further investigation with 
CYP119 indicated that the reaction gives both 
a short-lived compound II species with a half-
life of ~ 10 s at 23 °C and an Fe(III)–NO com-
plex that was stable for hours [81]� Iron K-edge 
X-ray absorption spectroscopy at cryogenic tem-
peratures indicated that the positive charge on 
the iron increased in going from ferric CYP119 
to the Fe(III)–NO complex and finally to the 
compound II species, which had an iron–oxygen 
bond length of 1�82 Å consistent with a proton-
ated Fe(IV)–OH structure [82–84]� In subsequent 
work, the Green group generated the CYP119 
compound I in ~ 75 % yield by reaction with m-
chloroperbenzoic acid and found that its spec-
trum did not coincide with that reported for the 
species obtained by irradiation of peroxynitrite-
generated compound II [82,83]� This intermedi-
ate was characterized by UV/vis, Mössbauer, and 
electron paramagnetic resonance (EPR) spectro-
scopic methods� Furthermore, compound I was 
shown to hydroxylate lauric acid with an appar-
ent rate constant of 1�1 × 107 M−1 s−1 at 4 °C� Al-
though a similar compound I had been previously 
detected [84], these experiments, which yielded 
the first biophysical characterization of com-
pound I, also provided convincing support for the 
role of compound I in P450 substrate oxidations� 
Generation of the CYP119 compound II inter-
mediate in a form that could be studied allowed 
the Green lab to show that the pKa (Fe(IV)–OH 
⇆ Fe(IV)–O− + H+) of the iron-bound oxygen in 
CYP158 is 11�9, a value to be compared with pKa 
~ 3–4 for hemoproteins with proximal imidazole 
rather than thiolate iron ligands [85]� This change 
in pKa was shown thermodynamically to greatly 
lower the energy for hydrogen abstraction, allow-
ing hydrogen abstraction to compete successfully 
with quenching of the compound I species by 
electron transfer from tyrosines and other oxidiz-
able protein residues�

The role of compound I rather than its Fe(III)–
OOH precursor (Fig� 4�1g) in oxidation of C–H 
bonds is consistent with cryogenic electron-nu-
clear double resonance (ENDOR) studies of the 
hydroxylation of camphor by CYP101 (P450cam) 
[86]� Hoffman and colleagues prepared the 
P450cam ferric hydroperoxide complex at 77 K by 

radiolytic reduction of the camphor-bound ferrous 
dioxygen complex� The Fe(III)–OOH complex 
was shown by EPR and ENDOR experiments to 
be quantitatively converted at ~ 200 K to a com-
plex of P450cam with the 5-exo-hydroxycamphor 
metabolite in which the 5-exo-hydroxyl group 
introduced by the enzyme was coordinated to the 
iron atom� Furthermore, ENDOR spectroscopy 
of the complex identified the C5–OHexo and C5–
Hendo protons, both of which disappeared when 
the experiment was carried out with 5,5-dideu-
terated camphor [87]� These results are expected 
from insertion of the ferryl oxygen into the C–H 
bond� In contrast, oxidation by the ferric hydro-
peroxide would have left one of the oxygens of 
the peroxide bound to the iron, with the other one 
inserted into the camphor� In order for the 5-exo-
hydroxyl to coordinate to the iron, it would have 
to displace the iron-bound water molecule, an un-
likely exchange reaction at 200 K�

Carbon oxidation reactions usually result in 
the formation of alcohol products, but in some 
instances they produce desaturated metabolites� 
Early examples are provided by the P450-cata-
lyzed oxidative Δ4-desaturation of valproic acid 
[88, 89], Δ6-desaturation of testosterone [90], and 
Δ22-desaturation of sterols [91, 92] (Fig� 4�11)� 
Additional examples are provided by the de-
saturation of lovastatin [93], ezlopitant [94], and 
capsaicin [95] (Fig� 4�12)� In all these examples, 
hydroxylation to give the normally expected al-
cohol product also is observed, which suggests 
that in these substrates desaturation diverges at 
some point from the normal substrate hydroxyl-
ation reaction�

Two basic mechanisms have been considered 
for diversion of the hydroxylation reaction to 
form desaturated products� In one of these, the 
ferryl hydrogen abstraction produces a carbon 
radical that is not adequately positioned for the 
rebound trajectory that leads to the alcohol� This 
imperfect alignment of the compound II iron-
bound hydroxyl and the carbon radical allows 
transfer of an electron from the carbon radical 
to the iron to compete with hydroxyl transfer to 
the carbon radical, resulting in the formation of 
a carbocation� Loss of the proton adjacent to this 
carbocation, through either abstraction by the 
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compound II Fe(III)–OH species or an alterna-
tive proton acceptor in the active site, introduces 
the double bond� In the second mechanism, the 
compound II Fe(IV)–OH intermediate, instead of 
recombining with the carbon radical, abstracts a 
hydrogen atom from the carbon adjacent to the 
carbon radical, directly generating the double 
bond� This is illustrated in Fig� 4�13 for the de-
saturation of valproic acid, the best character-
ized of the desaturation reactions� Dissection 
of this reaction has shown that (a) cytochrome 
P450 oxidizes valproic acid to the 4- and 5-hy-
droxylated derivatives, but these alcohols are not 
converted to the desaturated product [88,96]; (b) 
4-hydroxylation by phenobarbital-induced rabbit 
liver microsomes is subject to an isotope effect 
kH/kD = 5.05 when the two C4 hydrogens are re-
placed by deuteriums, a value comparable to kH/
kD = 5.58 for desaturation of the same compound 
[97]; and (c) much smaller intramolecular iso-
tope effects of kH/kD = 1.62 and 1.09 are observed 
for desaturation and 4-hydroxylation, respec-
tively, when the three terminal methyl hydrogen 
atoms are replaced by deuteriums [97]� Further 
studies with CYP2B1 and CYP4B1 showed that 
the ratios of hydroxylation to desaturation were 

37:1 and 2:1 for these two proteins, respectively, 
and the corresponding kH/kD values for desatu-
ration of 4-dideuterated valproic acid were 3�6 
and 7�6 [98]� Much smaller isotope effects were 
found for desaturation of 5-trideuterated valproic 
acid� These results show that removal of the C4 
hydrogen is subject to a large isotope effect, but 
loss of the hydrogen at C5 is not� It is striking, 
given that CYP4B1 primarily (but not exclu-
sively) catalyzes valproic acid 5-hydroxylation, 
that desaturation appears to arise even with this 
enzyme largely or exclusively via abstraction of 
the C4 hydrogen�

The formation of hydrocarbon cations sug-
gested by the formation of desaturation products 
during P450 hydrocarbon hydroxylation reac-
tions finds support in other experiments� New-
comb et al� synthesized the first probe that func-
tioned competitively as both a radical clock and 
a cation sensor [99]� The probe (Fig� 4�14) can 
undergo normal hydroxylation (path a), opening 
of the cyclopropylmethylene radical intermediate 
to give the resonance-stabilized benzylic radical 
(path b), or, after oxidation to the cation, ring 
opening to place the positive charge adjacent to 
the stabilizing methoxy oxygen (path c)� In ef-
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Fig. 4.11  The Δ4-desaturation of valproic acid (a), Δ6-desaturation of testosterone (b), and Δ22-desaturation of 24-meth-
yl-cholesterol (c) catalyzed by cytochrome P450 enzymes
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fect, the cation-derived products were obtained 
in 2–15 % yield in the oxidations of this probe 
by CYP2B1, CYP2B4, and CYP2E1 [99]� Other 
probes that undergo different radical versus cat-
ion rearrangements include α- and β-thujone [64] 
and an exo-methyl cubane derivative (Fig� 4�14) 
[99], all of which showed that carbocation for-
mation occurred as a minor pathway� In contrast, 
fatty acids with mid-chain cyclopropyl groups 

gave radical but not cation rearrangement prod-
ucts [100]�

Shaik’s two-state model for hydrocarbon hy-
droxylation readily rationalizes the available 
mechanistic evidence� As already noted, the 
initial hydrogen abstraction can be mediated by 
both the low-spin (LS) and high-spin (HS) elec-
tromers of the ferryl species� However, after hy-
drogen abstraction, the LS species decays by a 
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barrierless, essentially concerted, pathway to the 
unrearranged alcohol, whereas the equivalent HS 
species must traverse a significant energy barrier 
before recombination can occur, resulting in the 
formation of a true radical intermediate� Carbo-
cations may be formed with some substrates, 
usually as minor intermediates, by a mechanism 
that presumably involves electron transfer from 
the radical to the compound II ferryl species�

Three factors determine the specificity of 
cytochrome P450-catalyzed carbon hydroxyl-
ation reactions� One is the binding affinity of the 
substrate for the enzyme, as defined by the dis-
sociation constant Kd and the Michaelis turnover 
constant Km� This affinity is controlled by the fit 
of the substrate within the enzyme active site, its 
lipophilicity, and whatever hydrogen bonding or 
other specific interactions may exist between the 
substrate and active residues� The second factor 
is the intrinsic reactivity of the individual C–H 
bonds in the molecule, which is directly related 
to their bond strength� Finally, the relative ease 
of oxidation at various positions in a substrate de-
pends on the degree of mobility of the substrate 
in the active site and the extent to which individ-
ual C–H bonds can be placed in a proper position 
and orientation for hydrogen atom abstraction by 
the ferryl oxygen�

A major factor in determining the binding af-
finity of a compound for a P450 active site is its 
lipophilicity, the general observation being that 
the more lipophilic the compound is, the more 
tightly it is bound� This assumes, of course, that 
the compound is accepted into the active site of 
the P450 enzyme� This relationship between li-
pophilicity and binding affinity reflects the fact 
that P450 active sites are more lipophilic than the 
surrounding aqueous medium, so that increasing 
lipophilicity favors partitioning into the protein 
active site� The relationship between lipophilicity 
and affinity has been formalized by many stud-
ies showing that the Kd (often measured spectro-
scopically and therefore given as Ks) or Km of a 
compound decreases, reflecting enhanced bind-
ing, as its lipophilicity increases, e�g�, [101–103]� 
For example, hydroxylation of the methyl group 
of 4-substituted toluenes by CYP2B4 adheres to 
the Hansch equation:

 (4�1)

where ClogP is a calculated lipophilicity param-
eter and σ is the usual Hansch electronic param-
eter� A second example is the good correlation 
that exists between the −log Km and the octa-
nol–water log P values of 16 diverse substrates 
in their catalytic turnover by CYP2B6, as given 
by the equation [105]:

 (4�2)

In terms of the intrinsic reactivity of C–H bonds, 
the rate-limiting step in their cytochrome P450-
catalyzed hydroxylation is abstraction of the hy-
drogen by the compound I ferryl species, a reac-
tion that can be written as shown in Eq� 4�3:

 (4�3)

where P+� stands for a porphyrin radical cation� 
As the changes at the porphyrin and the iron are 
the same for all carbon hydroxylations, the intrin-
sic reactivity of a C–H bond is closely related to 
its bond strength, which is defined as the energy 
required for the reaction � �C H C H− → + � Fur-
thermore, as the energy of H.  is the same for all 
the reactions, the critical factor is the stability of 
the carbon radical that is formed; the more stable 
the radical, the less energy is required to break the 
C–H bond and the higher its “intrinsic” reactiv-
ity in P450 hydroxylation reactions� Thus, from 
bond strength considerations alone (Table 4�2), 
one would predict that the order of hydrocarbon 
C–H bond oxidation would be benzyl ~ allyl > 
tertiary > secondary > primary� Indeed, early ex-
periments with microsomal P450 preparations 
showed that the intrinsic reactivity of hydrocar-
bon C–H bonds increased in going from a primary 
to a secondary to a tertiary C–H bond (Fig� 4�15) 
[108]� In all the compounds shown, oxidation of 
a tertiary C–H bond is highly favored if one is 
present, and secondary C–H bonds are oxidized 
more readily than the primary C–H bonds of 
methyl groups� It is to be noted, however, that 
steric effects are superimposed on the intrinsic 
C–H bond reactivity, so that the central carbon 

catlog 0�53 log 0�77 0�67,k C P σ= − −

mlog 0�881 log 1�676�K P− = +

] [� �[P Fe(IV) O C H PFe(IV) OH] C ,+ = + − → − +
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in heptane is oxidized to a lower extent than the 
methylenes adjacent to the terminal·carbons, and 
the methylene groups flanking the carbon with 
the methyl group in methylcyclohexane are oxi-
dized less efficiently than the other methylenes� 
Studies by Korzekwa and colleagues calculated 
the reactivity of different C–H bonds by semiem-
pirical quantum chemical calculations using a 
model in which the hydrogen abstraction was 
mediated by a p-nitrosophenoxy radical [109]� 
Subsequent calculations using a variety of com-
putational methods agree with the earlier conclu-
sion that the bond strength of the C–H bond is 
the critical factor in determining its intrinsic reac-
tivity, although steric effects within the substrate 
molecule and preferences imposed by the binding 
and mobility of the substrate within the specific 
cytochrome P450 active site can alter inherent 
reactivity differences [110–112]� For example, 
the CYP4A P450 family preferentially oxidizes 
the terminal methyl of fatty acid chains, whereas 
most P450 enzymes hydroxylate the methylene 
adjacent to the terminal methyl� In a chain, the 
terminal methyl is known as the ω-position, after 
the last letter of the Greek alphabet, and positions 
down the chain from it are known as ω-1, ω-2, 

etc. The ω-hydroxylation specificity of CYP4A 
enzymes requires specific structural constraints 
that override the inherent preference for oxida-
tion of the sterically less accessible but weaker 
ω-1 C–H bond. A second example is provided by 
the CYP3A4-catalyzed hydroxylation of terfena-
dine that leads eventually to fexofenadine in pref-
erence to benzylic hydroxylation or oxidation of 
the relatively weak C–H bonds adjacent to the 
nitrogen (Fig� 4�16)�

The compound I species of the Agrocybe ae-
gerita peroxygenase, a P450-like enzyme that 
utilizes peroxides rather than NAD(P)H and mo-
lecular oxygen to generate its compound I inter-
mediate, has been formed with meta-chloroper-
benzoic acid� Its decomposition rate was slow 
enough that its rate of hydroxylation of various 
hydrocarbons could be directly measured [113]� 
The rates of reaction of compound I were found 
to be linearly correlated with the bond dissocia-
tion energies (BDE) of the C–H bonds, but they 
became insensitive to the BDE at values below 
90 kcal mol−1� A linear correlation of hydroxyl-
ation rates with the BDE was also reported for 
compound I of CYP119 generated by photolysis 
of compound II [114]�

Table 4.2  Molecular bond dissociation energies for selected C–H bonds
Bond Kcal mol−1 Reference
C6H5–H 112�9 [106]
CH3–H 105�0 [106]
CH3CH2–H 101�1 [106]
(CH3)2CH–H  98�6 [106]
(CH3)3C–H  96�5 [106]
C6H5CH2–H  89�8 [106]
CH2 = CHCH2–H  88�8 [106]
HOCH2–H  96�1 [106]
HSCH2–H  94 [106]
H2NCH2–H  92�2 [107]
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4.3  Hydroxylation Adjacent to a 
Heteroatom

The cytochrome P450-catalyzed transformations 
commonly known as O-, N-, and S-dealkylations, 
as well as oxidative deamination and dehalogena-

tion, involve the introduction of a hydroxyl group 
on a carbon adjacent to the heteroatom, followed 
by intramolecular elimination of the heteroatom 
with concomitant generation of a carbonyl moi-
ety (Fig� 4�17)� The carbon hydroxylation in O-
dealkylation and oxidative dehalogenation occurs 
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by the same mechanism as hydrocarbon hydrox-
ylation, with the compound I ferryl abstracting a 
hydrogen to generate a carbon radical that col-
lapses with the iron-bound hydroxyl “radical” to 
produce the alcohol� However, hydroxylation of 
an oxygen-substituted carbon is facilitated by the 
fact that the BDE is lower for a C–H adjacent to 
an oxygen than adjacent to a carbon (Table 4�2)� 
In accord with this mechanism, the intramolecu-
lar isotope effects for O-dealkylation are high, 
with kH/kD ~ 13 for O-deethylation of deuterated 
7-ethoxycoumarin [115] and ~ 10 for O-demeth-
ylation of trideuteromethyl 4-nitroanisole [116]� 
These reactions differ from simple hydrocarbon 
hydroxylations in that the newly introduced hy-
droxyl group rapidly extrudes the ether oxygen 
(or halogen atom), as illustrated in Fig� 4�17 for 
phenacetin [117] and chloramphenicol [118], 
classic examples of O-dealkylation and oxidative 
dehalogenation�

Hydroxylation adjacent to a nitrogen is more 
complicated because the relatively low electro-
negativity of nitrogen enables two distinct lim-
iting mechanisms� As in O-dealkylation, one of 
these mechanisms involves generation of a car-
bon radical by hydrogen abstraction followed by 
recombination with the iron-bound hydroxyl, re-
sulting in hydroxylation of the carbon to which 
the nitrogen is attached� The second mechanism 
yields the same hydroxylated metabolite, but via 
a different reaction sequence� This alternative 
route is initiated by one-electron transfer from 
the nitrogen to compound I, producing a nitrogen 
radical cation� Loss of a proton from a carbon at-
tached to the nitrogen then gives, after electron 
redistribution, a carbon radical that collapses 
with the iron-bound oxygen to form the hydrox-
ylated product (Fig� 4�18)� The first sequence is 
an example of a hydrogen atom transfer (HAT) 
mechanism and the second of a single electron 
transfer (SET) mechanism� By whichever mecha-
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heteroatom makes this mechanism energetically inacces-
sible for reactions where it is an oxygen or halogen� Fur-
thermore, the lower electronegativity of nitrogen enables 
it to competitively extrude the hydroxyl group to give an 
iminium metabolite, although this product is usually un-
stable relative to water addition to regenerate the alcohol 
metabolite
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nism, a common hydroxylated product is formed 
that usually fragments by an acid-catalyzed reac-
tion to give the dealkylated amine and a carbonyl 
moiety�

The relative roles of the SET and HAT mecha-
nisms in the N-dealkylation of xenobiotics con-
tinue to be a matter of debate� In those instances 
in which the nitrogen electron pair is strongly tied 
up in a conjugated system, as in N-alkylamides, 
the reaction appears to proceed largely by a HAT 
mechanism� Support for this is provided by the 
observation that amide N-dealkylations are sub-
ject to large intramolecular isotope effects, in 
contrast to N-dealkylation reactions in which the 
nitrogen electron pair is less tied up by conjuga-
tion� Thus, the minimum intramolecular kinetic 
isotope effect for demethylation of N-trideuteri-
omethyl-N-methylbenzamide was independently 
determined to be 6�55 and 6�0 [119, 120]� This 
isotope effect was largely masked in intermo-
lecular experiments, for which the Vmax isotope 
effects of 0�9 and 1�23, and Vmax/Km isotope ef-
fects of 1�4 and 1�75, were measured [119, 120]� 
In contrast, the intramolecular isotope effect for 
electrochemical N-demethylation of the same 
substrate, a reaction that clearly proceeds via the 
radical cation, was 2�78 [121]�

The situation is less clear for the N-dealkyl-
ation of substituted N-alkylanilines and com-
pounds with unconjugated nitrogen atoms� The 
isotope effects for these N-dealkylation reactions 
are low and comparable to those for electro-
chemical N-dealkylations� For example, the in-
tramolecular isotope effect for N-demethylation 
by CYP1B1 of six para-substituted N-meth-
yl-N-trideuteromethylanilines ranged from kH/
kD = 1.56 to 2.27, with the para-nitro compound 
having a higher value of 3�56 [122]� Compara-
bly low isotope effects ( kH/kD = 2.3–3.3) resulted 
when para-substituted N-methyl-N-trideuter-
omethylanilines were dealkylated by a model 
system consisting of an iron porphyrin and io-
dosobenzene [123]� Not surprisingly, given the 
electron-deficient nature of the compound I 
ferryl species, the rates for the oxidation of 12 
p-substituted N, N-dimethylanilines by rat liver 
microsomes were well described by the equa-
tion logVmax = 0.41π − 1.02σ − 0.023MR + 1.72 

( r = 0.953), where π is the log of the partition 
coefficient, σ the Hammett electronic factor, 
and MR the molecular refractivity, a measure of 
steric bulk [124]� In similar experiments using 
a purified cytochrome P450 in which log Vmax 
was plotted versus the substituent Hammett elec-
tronic factor σ, the slope was found to be − 0.61 
for the normal enzymatic reaction and − 0.74 for 
the reaction supported by iodosobenzene [125]� 
The negative coefficients for σ in these relation-
ships indicate that the reaction is accelerated by 
electron-donating substituents, in agreement with 
the formation of a nitrogen radical cation by an 
SET mechanism, but also consistent with a HAT 
mechanism, as it, too, would be facilitated by 
electron donation�

Direct evidence exists for the formation of ni-
trogen radical cations in the oxidation of amines 
by peroxidases, but the evidence for their forma-
tion in cytochrome P450-catalyzed amine oxida-
tions is indirect� Nitrogen radical cations have 
not been directly observed by EPR or other spec-
troscopic means in the normal catalytic turnover 
of amines by P450 enzymes, although colored 
aminium radicals were observed in the oxidation 
of some amines by CYP2B1 supported by iodo-
sobenzene [116]� Indirect evidence for a nitrogen 
radical cation is provided by the observation that 
the 4-alkyl group of 3,5-( bis)carbethoxy-2,6-
dimethyl-4-alkyl-1,4-dihydropyridines is elimi-
nated upon P450 oxidation as a radical that al-
kylates the P450 prosthetic heme group [126]� A 
spin-trapped ethyl radical has also been detected 
in incubations of 4-alkyl-1,4-dihydropyridines 
with liver microsomes, but the extent to which 
the spin-trapped radical arises from P450 cataly-
sis as opposed to oxidation of the substrate by 
trace metals is unclear [127, 128]�

As discussed earlier, radical clocks in which 
a cyclopropyl ring is attached to a carbon radical 
generated by P450-catalyzed hydrogen abstrac-
tion have been used to examine the lifetime of the 
radical� A similar approach can theoretically be 
used to probe for the formation of nitrogen radi-
cal cations in amine oxidations, as a cyclopropyl 
ring attached to a nitrogen radical cation also un-
dergoes a ring-opening reaction� P450-catalyzed 
formation of a radical cation from cyclopropyl 
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amines, followed by ring opening to give an 
iminium carbon radical that alkylates the heme 
group, was postulated to explain the inactivation 
of P450 enzymes by such substrates [129, 130]� 
Correlation of the rates of P450 inactivation by 
a series of heteroatom-substituted cyclopropanes 
with their one-electron oxidation potentials pro-
vided some support for a radical cation mecha-
nism [131]� However, measurements of the rate 
of ring opening of N-cyclopropylaniline radical 
cations generated electrochemically or by pho-
toionization indicate that the cyclopropyl ring 
opens at a rate of 4�1 × 104 s−1 [132]� This very 
slow rate is to be compared to the ring-opening 
rates of > 108 s−1 that are required for hydrocar-
bon radical clocks to effectively compete with 
the normal recombination step in hydrocarbon 
hydroxylation [62]� N-Cyclopropylanilines are 
therefore unlikely to be useful as reporters for the 
intervention of nitrogen radical cations in P450-
catalyzed nitrogen oxidations�

Horseradish peroxidase (HRP), which de-
methylates N,N-dialkylanilines in the presence 
of H2O2 and O2 [133], oxidizes N-cyclopropyl, 
N-methylaniline to N-methylaniline and a prod-
uct that arises via radical ring opening of the 
cyclopropyl group (Fig� 4�19)� In contrast, the 

only product identified in the microsomal P450-
catalyzed oxidation of N-methyl, N-cyclopropyl-
aniline was the hydrated form of cyclopropanone 
[134]� Oxidation of N-methyl, N-(1-methylcyclo-
propyl)aniline, in which the cyclopropyl carbon 
has no hydrogen, resulted in N-demethylation 
and para-hydroxylation, but no cyclopropyl 
ring-opened products� Likewise, the CYP101-
catalyzed oxidation of N-methyl, N-cyclopro-
pylaniline supported by 2,3,4,5,6-pentafluoro-N, 
N-dimethylaniline N-oxide, a surrogate activated 
oxygen donor, yielded N-dealkylated products 
without detectable opening of the cyclopropyl 
ring [135]� These results are consistent with a 
HAT mechanism in which hydroxylation occurs 
at the cyclopropyl carbon and provide no sup-
port for a nitrogen radical cation mechanism, al-
though the significance of this finding is compro-
mised by the slow rate of opening of a cyclopro-
pyl ring attached to a nitrogen radical cation� In 
related work, the oxidation of N-(alkyl)cyclopro-
pyl-N-cyclopropyl-p-chloroaniline by HRP and 
CYP2B1 was examined [136]� Oxidation of the 
dicyclopropyl probes by CYP2B1 and rat liver 
microsomes gave the metabolites in which one or 
the other of the cyclopropyl groups was removed, 
and for the isomer with the methyl and nitrogen 
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cis to each other, also a major amount of methyl 
hydroxylation (Fig� 4�19)� This contrasts with the 
HRP-catalyzed oxidation of the same substrates, 
which exclusively yields products from opening 
of the methyl-substituted cyclopropyl ring, as ex-
pected for a reaction proceeding via the nitrogen 
radical cation [136]� These results led to the con-
clusion that N-dealkylations proceed via a HAT 
rather than SET mechanism� A comparison of 
the electrochemical oxidations of N-methyl- and 
several N-cyclopropyl-4-phenyl-1,2,3,6-tetrahy-
dropyridines, which indicated that opening of 
the cyclopropyl ring was highly favored, with the 
products observed for these compounds in P450-
catalyzed oxidations suggested that nitrogen rad-
ical cations are not obligatory intermediates in N-
dealkylation reactions [137]� Indeed, the authors 
proposed that these reactions also proceed via a 
HAT pathway�

Further information relevant to P450-cata-
lyzed N-dealkylations is provided by comparison 
with the analogous reactions catalyzed by HRP� A 
correlation exists between the rates of reduction 
of HRP compound I and the oxidation potentials 
of para-substituted N,N-dimethylanilines and 
N,N-di(trideuteriomethyl)anilines [138]� Further-
more, only low isotope effects were observed in 
these reactions, as well as reactions catalyzed by 
hemoglobin and prostaglandin synthase [139, 
140]� This contradicted earlier studies in which 
product formation rather than compound I reduc-
tion was measured, studies that suggested that 
N-demethylation of N,N-dimethylaniline by HRP 
was subject to a large isotope effect [116, 141]� 
As reported, product formation is a misleading 
index of reactivity in these reactions, as product 
formation involves a disproportionation reaction 
of the initially formed nitrogen radical cation that 
is subject to a large isotope effect [139]� Based on 
these findings, the HRP reaction was attributed to 
an SET mechanism rather than the earlier postu-
lated HAT mechanism�

Computationally, Shaik and coworkers have 
predicted that the two electromer spin states of 
compound I react differentially in the N-dealkyl-
ation of N,N-dimethylaniline [142]� The calculat-
ed energies indicate that the barriers for C–H hy-
droxylation are low, in accord with the relatively 

weak C–H bond energies of the N–CH3 hydrogen 
atoms� There is a calculated energy difference be-
tween the low- and high-spin states of the ferryl 
system of 3�7 kcal mol−1, which suggests that N-
dealkylation will largely be catalyzed by the low-
spin pathway� The calculations did not favor an 
SET pathway, as it proceeded via a higher energy 
species� However, calculations always reflect 
assumptions built into the mechanisms that are 
analyzed—in this case, independent single elec-
tron transfer versus hydrogen abstraction from 
the carbon� Kinetic isotope effects were calcu-
lated for aniline bearing two CD2H groups and 
the predicted isotope effects for oxidation by the 
compound I low-spin state matched reasonably 
well the experimentally observed low isotope ef-
fects� In a subsequent, but related study, 15N-iso-
tope effects were calculated for the oxidation of 
N-alkylamines by the compound I low- and high-
spin states [143], which also favored a hydrogen 
abstraction mechanism� The low-spin state pre-
dicted normal secondary isotope effects, and the 
high-spin state inverse isotope effects, although 
these were not experimentally determined�

Contradictory evidence thus exists for SET 
and HAT pathways in the cytochrome P450-cat-
alyzed N-dealkylation of amines, which suggests 
that both pathways may differentially contribute 
to N-dealkylation of specific substrates� It can be 
argued, however, that the two pathways are not 
actually independent of each other� As reported, 
the pKa of cytochrome P450 compound II is ~ 12, 
whereas that of compound II of hemoproteins 
with an imidazole rather than thiolate iron ligand 
is in the range of 3–6 [85]� This very large differ-
ence in pKa means that reduction of cytochrome 
P450 compound I to compound II is greatly facil-
itated in thermodynamic terms by protonation of 
the ferryl oxygen to give the Fe(IV)–OH species, 
whereas the corresponding intermediate in HRP, 
with its much lower pKa value, is best written as 
Fe(IV) = O. The pKa values of protons adjacent 
to the nitrogen radical cations of trimethylamine 
and dimethylaniline have been estimated to be 
~ 15 and 9 [140, 144], well within the range of a 
ferryl oxygen with a pKa of ~ 12 [85]� Green and 
colleagues have cogently argued that accelera-
tion of hydrogen abstraction (the HAT reaction) 



1334 Substrate Oxidation by Cytochrome P450 Enzymes

in carbon hydroxylation by concurrent proton-
ation of the compound II ferryl oxygen allows 
this reaction to compete with electron transfer 
from oxidizable residues in the protein, making 
possible normal P450 hydroxylation reactions 
[85]� Extrapolation of these arguments to N-deal-
kylation suggests either that a HAT pathway will 
be favored or, more likely, that electron transfer 
from the nitrogen to compound I is coordinated 
with abstraction of the hydrogen from the ad-
jacent carbon� Such a proton-coupled electron 
transfer mechanism allows for different degrees 
of synchronicity of the two processes, giving 
rise to different isotope effects and electronic re-
quirements� In contrast, an SET electron transfer 
mechanism is favored in the corresponding reac-
tion catalyzed by HRP because (a) the thermody-
namic gain due to protonation of the compound 
II ferryl oxygen is lost due to its much lower pKa, 
and (b) sequestration of the ferryl oxygen in the 
active site hinders its direct interaction with sub-
strate atoms [145, 146]� Finally, the oxidation of 
an N-alkylamide, in which electron transfer is 
much more difficult due to extensive delocaliza-
tion of the nitrogen electron pair, approaches a 
limiting HAT mechanism� Schematically, the 
general mechanism can be envisioned to proceed 
via a transition state such as that in Fig� 4�20, 
with varying degrees of hydrogen abstraction ac-
companying the electron transfer step�

Stabilization of the carbon radical formed by 
removal of a hydrogen from an alkylamine is op-
timal when the C–H bond that is broken is aligned 
with the orbital that has the unpaired nitrogen 
electron pair or the positive charge in the nitrogen 

radical cation (Fig� 4�21)� Structural or enzymat-
ic constraints that influence this alignment will 
therefore play a role on the reaction specificity� 
Early studies demonstrated that chemically me-
diated N-dealkylation of alkylamines proceeding 
via the nitrogen radical cation favored the loss of 
an N-methyl over larger N-alkyl groups, such as 
an N-ethyl or N-isopropyl, because steric effects 
made it easier to properly align the C–H bond of 
the methyl with the nitrogen radical cation orbital 
[147]� Model studies of the oxidation of deuter-
ated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dines by tert-butoxyl radicals indicated that the 
reaction often resulted in removal of a hydrogen 
that had a considerably higher BDE despite the 
presence of a hydrogen with a weaker C–H bond 
strength� An analysis of this effect led to the 
conclusion that entropy factors associated with 

H

R R

H

R R.+
a b

R R
a b

..

..

.

ba

Fig. 4.21  Optimal alignment for hydrogen abstraction by 
the P450 ferryl species occurs when the hydrogen to be 
abstracted is aligned with the orbital holding the electron 
pair in the neutral nitrogen or the unpaired electron in the 
nitrogen radical cation

 

FeIV

O
+.

C

H

FeIV

O

R

R' N
..

C

R

R' N
+.

H

FeIV

OH

R

R' N
..

C
b

a
b

a
b

a

.

FeIII

R

R' N
..

C
b

a

OH

Fig. 4.20  A mechanism that exploits the high pKa of 
cytochrome P450 compound II in the N-dealkylation of 
alkylamines� In this proposed mechanism, electron trans-

fer from the nitrogen to compound I occurs concomitantly 
with transfer of a hydrogen from the adjacent carbon to 
the ferryl oxygen

 

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128



134 P. R. Ortiz de Montellano

proper alignment of the C–H bond, the nitrogen 
electron pair, and the tert-butoxyl radical were 
of primary importance in determining the speci-
ficity and were responsible for the discrepancy 
between C–H bond strengths and reaction rates 
[148]� These effects may be responsible for the 
finding that the Vmax for N-demethylation is often 
faster than that for N-deethylation� This applies 
particularly to amines that have both an N-methyl 
and N-ethyl substituent [149–151], or compara-
tive Vmax values in which Km differences are sup-
pressed [152], although at subsaturating substrate 
concentrations the preference for N-deethylation 
versus N-demethylation will be sensitive to both 
Vmax and Km differences�

4.4  Heteroatom Oxidation

As described in the preceding section, some 
N-dealkylation reactions may arise, at least in 
part, from an SET process in which an electron 
is initially removed from the nitrogen atom and 
therefore can be formally viewed as heteroatom 

oxidations� However, less cryptic examples of 
nitrogen oxidations in which the ferryl oxygen 
is added to the nitrogen instead of a vicinal car-
bon in the metabolic product are catalyzed by 
cytochrome P450 enzymes� These reactions are 
either hydroxylations in which, akin to hydro-
carbon hydroxylations, an oxygen is inserted 
into an N–H bond, or heteroatom oxidations in 
which the immediate product is an N-oxide� The 
hydroxylation of para-substituted acetanilides is 
a good example of an N-hydroxylation that in-
volves direct insertion of the ferryl oxygen into 
an N–H bond (Fig� 4�22a) [117, 153]� Nitrogen 
hydroxylations such as these are feasible because 
the nitrogen bears a hydrogen atom, its electron 
pair is highly delocalized into the amide carbonyl 
group and is therefore unavailable for oxidation, 
and there is no adjacent C–H bond�

On the basis of computational studies of the 
oxidation of aromatic amines that are carcino-
genic, an alternative pathway for nitrogen hy-
droxylation has been postulated in which the 
ferric peroxy anion (Fig� 4�1f) deprotonates the 
nitrogen and the resulting nitrogen anion then 
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nucleophilically attacks the ferric hydroperox-
ide intermediate to generate the hydroxylamine� 
The primary support for this mechanism stems 
from the report that the peroxy anion mechanism 
(Fig� 4�22b) is computationally a better predictor 
of which aromatic amines will be carcinogenic 
[154, 155]� However, in contradiction, a related 
comparison of the mechanisms concluded that 
only the hydrogen radical abstraction mechanism 
(Fig� 4�22a) is viable [156]�

Neutral nitrogen atoms in which the electron 
pair is not highly delocalized, or which do not 
have a hydrogen attached to them, can be oxi-
dized by cytochrome P450 to the corresponding 
N-oxides� However, a comparison of the yields of 
N-dealkylation products versus N-oxides in the 
cytochrome P450-catalyzed oxidation of p-sub-
stituted N,N-dialkylanilines showed that, where 
both processes were unhindered, the primary 
reaction was N-dealkylation� Thus, the ratios 
of N-dealkylation to N-oxide formation in the 
CYP2B1-catalyzed oxidations of N,N-dimeth-
ylaniline and N,N-diethylaniline were 940 and 
1020, respectively [149]� N-oxide formation can 
be viewed as involving electron abstraction from 
the nitrogen to give a radical cation, which then 
collapses with the iron-bound oxygen to give the 
N-oxide� In principle, this process should com-
pete with N–dealkylation if it proceeds via an 
SET mechanism, as it involves the same interme-
diate� However, N-oxide formation does not ap-
pear to compete effectively with N-dealkylation 
in P450-catalyzed oxidations of nitrogen com-
pounds unless (a) there are no hydrogen atoms 
on the carbons attached to the nitrogen, (b) a hy-
drogen atom is present on the carbon but is not 
properly oriented for abstraction, or is part of a 
strained ring system that limits conjugative in-
teraction with the nitrogen atom, (c) the nitrogen 
bears at least one hydrogen and can be converted 
to a hydroxylamine, or (d) the nitrogen is in an 
environment that substantially lowers the energy 
for electron abstraction from the nitrogen� These 
limitations are consistent with the view that hy-
drogen abstraction occurs because the energy 
that is required for this process is lowered by 
some degree of concurrent proton transfer to the 
developing, highly basic compound II ferryl oxy-

gen (Fig� 4�20)� In agreement with this, N-oxides 
are significant metabolites in the oxidation of 
aromatic nitrogen heterocyles such as sorafenib 
[157], strained ring systems such as strychnine, 
which gives a stable α-hydroxylamine in addi-
tion to an N-oxide [158], and monoalkylamines 
such as mexiletine [159] (Fig� 4�23)� However, 
it should be noted that the N-oxidation of simple 
alkylamines to N-oxides is readily catalyzed by 
flavin monooxygenases and is therefore not un-
common�

The oxidation of alkylthioethers by cyto-
chrome P450 enzymes can produce both S-deal-
kylated and sulfoxide metabolites� As discussed 
for the oxidation of alkylamines, these transfor-
mations could result from a single two-electron 
reaction of the ferryl oxygen with the sulfur atom, 
a one-electron SET process that generates a sul-
fur radical cation as an intermediate, or, in the 
case of S-dealkylation, hydroxylation adjacent to 
the sulfur via a HAT mechanism� Analysis of sub-
stituent effects has shown that electron-donating 
groups increase the rate of oxidation of a thio-
ether to a sulfoxide (Hammett σ+  = − 0.16) and 
of a sulfoxide to a sulfone (Hammett σ+  = − 0.2) 
[160,161]� Internal competition between the 
diarylthioether and symmetrically related dia-
rylsulfone in thianthrene-5-oxide confirms the 
higher reactivity of the electron-rich thioether 
sulfur [162]� However, this result is expected 
and does not differentiate the possible mecha-
nisms of sulfur oxidation� Efforts to determine if 
a sulfur radical cation is involved have generally 
been ambiguous� For example, the oxidation of 
phenyl cyclopropyl sulfide to its sulfoxide by a 
P450 enzyme from Mortierella isabellina occurs 
without detectable opening of the cyclopropyl 
ring (Fig� 4�24), but this may simply reflect a 
slower rate of ring opening than recombination 
to produce the sulfoxide [163]� Computational 
results indicate that sulfoxidation is mediated by 
the high-spin state of compound I, in contrast to 
N-dealkylation, for which oxidation by the low-
spin state is preferred [142, 164]� Computational 
results also suggest that sulfoxidation is mediated 
by the compound I ferryl species rather than the 
ferric hydroperoxide that precedes it in the cata-
lytic cycle [165]� However, comparison of the 
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stereochemistry of CYP102-catalyzed fatty acid 
hydroxylation with that of sulfoxidation when a 
sulfur is substituted for the normally hydroxyl-
ated carbon in the fatty acid chain revealed that 
the absolute stereochemistry of sulfur oxidation 
was opposite to that of hydroxylation [166]� Fur-
thermore, mutation of the conserved catalytic 
threonine (Thr238) to an alanine slowed hydrox-
ylation, but had no effect on sulfoxidation� To 
explain this result, the authors postulated that the 

sulfur was oxidized by the ferric hydroperoxide 
intermediate, whereas carbon hydroxylation was 
mediated by the compound I ferryl species� If the 
interpretation is correct, these results suggest that 
the ferric hydroperoxide intermediate may occa-
sionally contribute to sulfur oxidation�

Halide oxidation is generally not observed, 
as the halogen atoms are too electronegative to 
readily undergo P450-catalyzed oxidation� How-
ever, halogen oxidation has been implicated in 
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Fig. 4.24  Oxidation of a cyclopropyl-substituted thio-
ether occurs without opening of the cyclopropyl ring, be-
cause either a sulfur radical cation is not formed or the 

cyclopropyl ring-opening reaction is too slow to compete 
with oxygen transfer to the sulfur
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situations where alternative oxidation sites are 
sterically or chemically excluded� The clearest 
example of this is the oxidation of 12-chloro- and 
12-bromododecanoic acids by both CYP4A1 and 
CYP52A21 (Fig� 4�25)� These enzymes normally 
have a high preference for oxidation of fatty acids 
such as dodecanoic acid at the terminal carbon 
atom, a reaction specificity that requires protein 
structural constraints to suppress the energeti-
cally more favored oxidation of the secondary 
carbon at the adjacent (ω-1) position. When the 
terminal carbon is replaced by a chloride or bro-
mide, there is some shift to oxidation of the ω-1 
position to give the aldehyde� However, a large 
part of the reaction results in oxidation of the hal-
ogen (R–X) to the halonium (R–X+–O−) species 
that undergoes hydrolysis to replace the halogen 
by a hydroxyl group� As shown by studies with 
18O-labeled water, the hydroxyl group derives 
from the medium [167, 168]� In an earlier study, 
rat liver microsomes were shown to oxidize an 
iodoaryl compound to a product that is consistent 

with initial oxidation of the iodide to the iodoso 
(RI+–O−) state (Fig� 4�26) [169]� These examples 
indicate that halide oxidation is not beyond the 
oxidative capabilities of P450 enzymes, but is en-
ergetically difficult and exceedingly rare�

4.5  Olefin and Acetylene Oxidation

The cytochrome P450-catalyzed oxidation of 
nonaromatic carbon–carbon double bonds usu-
ally, but not always, results in formation of the 
corresponding epoxide� Epoxidation, as dem-
onstrated by early experiments on the oxidation 
of olefins such as cis-stilbene [170], oleic acid 
[171], and trans-[1–2H]-1-octene [172], invari-
ably proceeds with retention of the olefin ste-
reochemistry� To date, no example is known of a 
P450-catalyzed epoxidation that does not proceed 
with retention of stereochemistry� This retention 
of stereochemistry argues for a mechanism in 
which the transition state involves interactions of 
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the ferryl oxygen with both carbons of the ole-
fin, i�e�, a “concerted” mechanism, although it 
does not require that both carbon–oxygen bonds 
be formed in a synchronous manner� Indeed, in 
early work, Hanzlik and Shearer reported dif-
ferential effects of deuterium substitution on the 
two carbons of the olefinic double bond of p-
methyl- and p-phenylstyrene, an inverse isotope 
effect ( kH/kD = 0.93) being observed with deute-
rium on the internal carbon, but none when deu-
terium was on the terminal carbon [173]� If the 
two bonds had been formed simultaneously, one 
would have expected comparable inverse isotope 
effects with deuterium substitution on either car-
bon of the double bond�

Although most olefin oxidations appear to 
proceed via a synchronous mechanism to give 
the epoxides, strong experimental evidence for 
the oxidation of at least some olefinic bonds via 
a nonconcerted mechanism is provided by the 
occasional direct formation of carbonyl rather 
than epoxide products� Early work showed that 
trichloroethylene is oxidized to both trichloro-
ethylene oxide and trichloroacetaldehyde [174, 
175]� The demonstration that trichloroacetalde-
hyde did not derive from trichloroethylene oxide 
under the experimental conditions required that 
the two products be formed by distinct mecha-

nisms (Fig� 4�27)� Similarly, the oxidation of 
1,1-dichloroethylene to monochloro- and dichlo-
roacetic acids [176], of trans-1-phenylbutene to 
give 1-phenyl-1-butanone and 1-phenyl-2-buta-
none as minor products [176], and of styrene to 
2-phenylacetaldehyde [177] does not appear to 
involve the epoxide as an intermediate� More re-
cently, it has been shown that the 7,8-double bond 
of 7-dehydrocholesterol is oxidized by CYP7A1 
directly to a 7-keto function without formation of 
the epoxide [178]� Deuterium substitution dem-
onstrated that the C7 hydrogen migrates to the C8 
position in this reaction (Fig� 4�28), in the same 
way that the oxidation of the chlorinated olefins 
involved shift of a hydrogen or a chloride to the 
adjacent carbon� These hydrogen and halide mi-
grations implicate a cationic intermediate in the 
reaction, as shown in Fig� 4�27� This could result 
from a two-electron reaction with the oxygen that 
directly yields the cation, or could be envisioned 
as proceeding via an initial radical intermedi-
ate from which an electron is transferred to the 
ferryl species before the radical collapses with 
the ferryl oxygen to give the epoxide� There is 
no experimental evidence to differentiate these 
alternatives, although efforts to detect a radical 
intermediate, for example by searching for cy-
clopropyl ring-opened products in the oxidation 
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of trans-1-phenyl-2-vinylcyclopropane, were not 
successful [179]�

Independent evidence that olefin oxidation 
can proceed via a nonconcerted mechanism is 
provided by the fact that terminal olefins are not 
only oxidized to epoxides but, in many cases, si-
multaneously alkylate the P450 prosthetic heme 
group by covalently binding to one of its pyrrole 
nitrogen atoms (Fig� 4�29) [180]� It should be 
noted, however, that this heme alkylation process 
is relatively infrequent, with ratios of epoxidation 
to heme alkylation usually greater than 200� De-
spite the structures of the heme adducts, which 
nominally could arise by nucleophilic attack of 
the pyrrole nitrogen on the epoxide, epoxides are 
not involved in heme alkylation� This was defi-
nitely established by the fact that the synthetic 
epoxides do not react with the heme [181], and 

the observation that the stereochemistry of the 
heme adducts is not consistent with the backside 
attack of a nitrogen on the epoxide [182]� These 
results plus the fact that enzyme catalytic turn-
over is required and an atom from molecular oxy-
gen is incorporated into the adduct indicate that 
heme alkylation is mediated by a transient inter-
mediate formed during oxidation of the double 
bond by the enzyme [182–184]�

DFT calculations suggest that the doublet- 
and quartet-spin states of the P450 compound I 
ferryl porphyrin radical cation are energetically 
close� According to these calculations, both the 
doublet and quartet species oxidize ethylene by 
addition of the ferryl oxygen to one carbon, leav-
ing an unpaired electron on the second carbon of 
the double bond (Fig� 4�30) [185]� This interme-
diate radical also exists in doublet and quartet 
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states, although two equilibrating electromers 
exist for each of the two states, in one of which 
the electron from the original π-bond neutralizes 
the porphyrin radical cation and in the other in 
which it reduces the iron to the ferric state� In 
terms of product formation, the important dif-
ference between the doublet and quartet states is 
that closure of the doublet state to the epoxide is 
a barrierless process, resulting in an essentially 
concerted process even though computation does 

not predict a concerted mechanism with concur-
rent formation of both carbon–oxygen bonds 
[186]� This is not true for closure of the quartet 
state to the epoxide, for which a barrier from 2�3 
to 7�2 kcal mol−1 is predicted [185]� Further DFT 
studies suggest that the activation energy, and 
thus the rate of substrate epoxidation, correlate 
with the ionization potential of the olefin, elec-
tronic properties of the oxidizing agent such as its 
polarizability volume, the electron affinity of the 
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oxidizing species, and the strength of the newly 
formed C–O bond [187, 188]� The energy barrier 
in the epoxidation pathway for the quartet state 
makes alternative reactions, such as direct car-
bonyl formation or heme alkylation, competitive 
processes [189, 190]� According to this scenario, 
the ratio of epoxidation to alternative reactions is 
largely governed by the ratio of the doublet and 
quartet transition states� It also implies the exis-
tence of a radical state in the catalytic trajectory 
for the oxidation of olefins�

Acetylenes, which have shorter and stronger 
π-bonds than olefins, can also be oxidized by 
cytochrome P450 enzymes� The oxidation of 
terminal acetylenes gives ketenes in which the 
terminal hydrogen has quantitatively migrated to 
the internal carbon of the triple bond (Fig� 4�31) 
[191, 192]� The ketene is then hydrolyzed to 
yield the carboxylic acid as the observed me-
tabolite� By analogy to the oxidation of olefins, 
the immediate product should be the unsaturated 
epoxide (oxirene), but oxirenes are extremely un-

stable structures that are difficult to detect even at 
cryogenic temperatures in chemical experiments� 
It is therefore almost certain that oxirenes are not 
actual intermediates in the oxidation, and thus 
that migration of the terminal hydrogen occurs 
during the oxidation step to directly yield the ke-
tenes� Support for this inference is provided by 
the fact that major kinetic isotope effects have 
been observed in the oxidation of deuterium-
substituted aryl acetylenes to arylacetic acids 
[192, 193]� The oxidation of disubstituted triple 
bonds is much less common than that of termi-
nal acetylenic groups, but is not unknown� Thus, 
the CYP1A1- and CYP1A2-catalyzed formation 
of 1-biphenylpropionic acid as a minor product 
from 4-(1-propynyl)biphenyl involves oxidation 
of the triple bond with concurrent migration of an 
alkyl group rather than a hydrogen [194]� Migra-
tion of a chloride atom in the in vivo oxidation of 
dichloroacetylene to give dichloroacetic acid as a 
minor product has also been reported [195]�
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The oxidation of terminal acetylenes, like that 
of monosubstituted olefins, often results in inacti-
vation of the P450 enzyme involved in the oxida-
tion� In some instances, this inactivation involves 
reaction of the ketene metabolite with nucleophil-
ic residues on the protein [196, 197], but in other 
instances it involves alkylation of the prosthetic 
heme group (Fig� 4�31)� Again, as found for heme 
alkylation in the oxidation of olefins, the terminal 
carbon of the acetylene binds to a pyrrole nitrogen 
of the heme and a hydroxyl is attached to the in-
ternal carbon of the triple bond� Of course, as one 
of the two π-bonds of the acetylene remains in 
the adduct, keto–enol equilibration yields a final 
adduct structure with a carbonyl on the original 
internal carbon of the triple bond [182, 198]� It 
is to be noted that the oxidation of terminal triple 
bonds that produces ketene metabolites requires 
addition of the ferryl oxygen to the unsubstituted, 
terminal carbon, whereas the oxidation that re-
sults in heme alkylation requires its addition to 
the internal carbon� As a rule, the ratios of me-
tabolite formation to heme alkylation are much 
smaller for terminal acetylenes than for olefins�

4.6  Aromatic Ring Oxidation

The cytochrome P450-catalyzed introduction of 
a hydroxyl group into an aromatic ring is gen-
erally known as an aromatic hydroxylation, but 
mechanistically involves reaction of the ferryl 
species with the aromatic π-system rather than 
with the C–H bond� The C–H BDE of benzene, 
is 112 kcal mol−1 [199], much higher than the 
BDE of ~ 89–100 kcal mol−1 of alkyl C–H bonds 
(Table 4�2)� This high-energy barrier makes di-
rect oxygen insertion into an aromatic C–H bond 
energetically difficult� Aromatic hydroxylation is 
therefore mechanistically related to P450 olefin 
oxidation rather than carbon hydroxylation�

In its original formulation, aromatic ring oxi-
dation yields an unstable epoxide that readily 
rearranges by heterolytic cleavage of one of the 
epoxide carbon–oxygen bonds, presumably as-
sisted by hydrogen-bonding interactions, to give 
a resonance-stabilized cation (Fig� 4�32)� The cat-
ion is then neutralized by migration of a hydro-
gen anion from the carbon that bears the newly 
introduced oxygen� Enolization of the resulting 
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ketone, which is thermodynamically favored be-
cause it regenerates the aromatic ring, produces 
the final phenolic structure� In the enolization 
step, either the original hydrogen or the one that 
migrated to the carbon (labeled H*) is lost, which 
explains why the migrating hydrogen is only par-
tially retained in the product� This sequence was 
formulated by investigators at the National Insti-
tutes of Health and is therefore termed the “NIH-
shift” [200]� In most cases, epoxidation of aro-
matic rings occurs at an unsubstituted π-bond, so 
the migrating atom is a hydrogen, but the oxida-
tion of sites in which one of the two carbons bears 
a halide or alkyl group, resulting in migration of 
the halide or alkyl moiety, is known [200, 201]�

The deuterium-sensitive keto–enol tautom-
erization occurs after the rate-limiting step in 
which the ferryl oxygen adds to the aromatic 
ring, so the rate of aromatic hydroxylation is not 
subject to primary isotope effects on deuterium 
substitution� However, small inverse second-
ary deuterium isotope effects (0�83–0�94) have 
been observed in the aromatic hydroxylation of 
ortho- and para-xylene, a finding in agreement 
with rate-limiting addition of the ferryl oxygen 
to a π-bond, as this requires partial rehybridiza-
tion from the sp2 to the sp3 state of at least one 
of the two carbons of the π-bond [202]� These 
inverse isotope effects are inconsistent with an 
alternative mechanism in which the aromatic 
ring transfers an electron to the ferryl species in 
the rate-determining step to produce a π-radical 
cation intermediate, as this would entail minimal 
rehybridization of the carbons�

The formation of epoxides in the P450-cat-
alyzed oxidation of aromatic rings has been di-
rectly demonstrated, for example in the oxidation 
of benzene [203], or can be inferred from isola-
tion of subsequently formed trans-dihydrodiol or 
glutathione conjugates, of which there are many 
examples, e�g�, phenanthrene [204]� However, 
epoxide metabolites are not mandatory interme-
diates in the oxidation of aromatic rings� One 
example is provided by hydroxylations, often 
meta to a halide substituent, in which the hydro-
gen on the hydroxylated carbon is quantitatively 

lost, showing no NIH shift has occurred, and for 
which a small primary deuterium isotope effect 
is observed [205, 206]� Further studies with deu-
terated substituted benzenes revealed a small, 
normal isotope effect ( kH/kD = 1.1–1.3) for meta-
hydroxylation of chlorobenzene with a deuterium 
at the hydroxylated meta-position, in contrast to a 
small, inverse isotope effect of kH/kD = ~ 0.95 for 
ortho- and para-hydroxylation when the deute-
rium was at those positions [207, 208]� These re-
sults suggest that meta-hydroxylation occurs by a 
different mechanism than ortho- or para-hydrox-
ylation, for which the isotope effects are consis-
tent with epoxide formation in the rate-limiting 
step� The mechanism that is proposed for these 
hydroxylations, ipso-substitution, postulates the 
formation of a carbon–oxygen bond with the fer-
ryl oxygen, but one that, instead of closing to 
the epoxide, undergoes proton loss to directly 
give the hydroxylated aromatic ring (Fig� 4�33)� 
However, it is likely that ipso-substitution and 
epoxide formation are simply two outcomes of 
a common reaction manifold in which the inter-
mediate formed by addition of the ferryl oxygen 
to one of the carbons of the aromatic system can 
either close to an epoxide or undergo some form 
of ipso-substitution without epoxide formation 
(Fig� 4�33)� Aromatic oxidation thus parallels the 
scenario for olefin epoxidation in which a radi-
cal intermediate is formed that can either close 
to the epoxide or undergo alternative reactions, 
such as a hydrogen shift or addition to a heme 
nitrogen atom� Indeed, density functional calcu-
lations suggest that aromatic oxidation proceeds 
via addition to the ring to give a tetrahedral in-
termediate with radical and cation character, al-
though cationic character may predominate in the 
enzymatic reaction� Subsequent rearrangement to 
give epoxide, ketone, and phenol products occurs 
by reactions with relatively low-energy barriers 
[209]�

Direct oxidation of polyhalogenated aromatic 
compounds to phenols or quinones, or para-
substituted phenols to quinones, is thought to 
occur by a variant of ipso-substitution� Pentaf-
luorochlorobenzene is thus oxidized to tetraflu-
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orochlorophenol by addition of the P450 ferryl 
oxygen to the fluoro-substituted carbon para- to 
the chloride atom, with electron donation from 
the chloride leading to elimination of the fluo-
ride (Fig� 4�34)� The resulting chloronium cation 
then undergoes hydrolysis to generate tetrafluo-
roquinone, or reduction to produce tetrafluoro-
phenol [210]� The regiochemistry of the oxida-
tion of 1-fluorobenzene, 1,2-difluorobenzene, 
1,3-difluorobenzene, 1,2,3-trifluorobenzene, and 
1,2,4-trifluorobenzene, supported by molecular 
orbital calculations, indicates that the reaction 
proceeds by ferryl oxygen addition to the aromat-
ic π-system rather than initial electron abstraction 
from the aromatic ring to generate a radical cat-
ion [211]� Furthermore, local density approxima-
tion calculations argue that in the oxidation of 
fluorobenzene to 4-fluorophenol, the NIH shift 
occurs from the initial tetrahedral intermediate 
without actual formation of the epoxide [212]� In 

a variant of these mechanisms, one computation-
al study of the oxidation of rings such as hexa-
chlorobenzene suggests that the tetrahedral inter-
mediate collapses with migration of a chloride to 
the adjacent carbon to give an α,α-dichloroketone 
intermediate [213]�

The P450-catalyzed oxidation of 4-substituted 
phenols to the hydroquinone occurs with loss of 
the para-substituent in a reaction that incorpo-
rates one atom of labeled molecular oxygen into 
the product (Fig� 4�35) [214, 215]� Based on the 
finding that converting the phenol to a methyl 
ether suppressed the reaction, it was proposed 
that one-electron oxidation of the phenol to the 
phenoxy radical was followed by combination 
with the compound II ferryl oxygen to give a 
tetrahedral intermediate that directly eliminates 
the substituent to form a second carbonyl group� 
Computational analysis of the aromatic ring hy-
droxylation of dopamine by CYP2D6 supports a 
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mechanism in which the formation of a phenoxy 
radical is followed by collapse of the radical with 
the ferryl oxygen [216]� 4-Iodoanisole, with a 
methoxy rather than phenol group, is report-
edly oxidized to several metabolites, including 
4-methoxyphenol, without the incorporation of 
an oxygen from water [217]� Aromatic oxidation 
by the ipso-mechanism can therefore also occur 
in the absence of a phenol group� Interestingly, 
the oxidation of 4-methylphenol, in which the 
methyl is not a leaving group, yielded 4-hydroxy-
4-methyl-2,5-cyclohexadiene-1-one (Fig� 4�35) 
[214]� This result, however, does not distinguish 

between ipso addition and epoxidation, as both 
could produce the dienone product�

Independent evidence for the cytochrome 
P450-catalyzed oxidation of phenols to phenoxy 
radicals is provided by the growing number of 
plant and fungal P450 enzymes shown to cata-
lyze the dimerization of phenols in the biosyn-
thesis of natural products� Examples are the 
conversion of ( R)-reticuline to salutaridine by 
CYP719B1 in morphine biosynthesis [218, 219], 
( S)-salutaridine to ( S)-corytuberine by CYP80G2 
in magnoflorine biosynthesis [220] and autum-
naline to isoandrocymbine in colchicine biosyn-
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thesis (Fig� 4�36) [221]� A beautiful and complex 
example is provided by the sequence of three 
phenol–phenol coupling reactions, catalyzed by 
different P450 enzymes, that produce vancomy-
cin from an acyclic precursor (Fig� 4�37) [222, 
223]� A cytochrome P450 enzyme, GstF, cata-
lyzes a cyclization reaction in the biosynthesis 
of griseofulvin that produces a spiro-fused ring 
system (Fig� 4�38) [224]� An alternative mecha-
nism was proposed involving initial epoxidation 
of the aromatic ring, but this mechanism is less 
attractive as it entails questionable reaction steps� 
A cytochrome P450 enzyme, JulI, from Strepto-
myces catalyzes the dimerization of nonaketide 
monomeric phenol units to produce the dimeric 
julichrome, setomimycin, and spectinomycin 
products [225]� It has also been reported that 
CYP3A4 and other mammalian enzymes can 

catalyze phenol-coupling reactions, including the 
oxidation of ( R)-reticuline to salutaridine [226, 
227], dimerization of the phenolic drug raloxi-
fene [228], and dimerization of 17β-estradiol and 
estrone (Fig� 4�39) [229]� It is important in evalu-
ating these dimerization reactions to rule out in-
cidental peroxidative phenol coupling supported 
by H2O2 generated by the cytochrome P450–cy-
tochrome P450 reductase system� This was done, 
for example, in the case of raloxifene dimeriza-
tion, but not in that of estradiol dimerization�

In a related but different vein, the cytochrome 
P450 enzyme StaP (CYP245A1) catalyzes a pu-
tative diradical coupling reaction involving one-
electron oxidation of each of two indole rings to 
form the indolocarbazole alkaloid skeleton of 
staurosporine and rebeccamycin (Fig� 4�40) [230, 
231]� The crystal structure of the protein–sub-
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strate complex placed the substrate at too great a 
distance for direct interaction with the ferryl oxy-
gen, but computational analysis suggested that 
water molecules in the active site could facilitate 
the electron and proton transfers required for the 
coupling reaction [232]� The biosynthesis of the 
diketopiperazine alkaloid tryptophenaline by the 
P450 enzyme DtpC from Aspergillus flavus has 
been postulated to involve hydrogen abstraction 
from an amide nitrogen to give the nitrogen radi-

cal, cyclization of the radical with the attached 
indole ring, and finally carbon–carbon bond for-
mation from two of the resulting radicals to give 
the dimeric product (Fig� 4�41) [233]� This figure 
requires that two molecules of the substrate be 
bound in the active site, both of which undergo 
oxidation to the initial nitrogen radical�

In summary, aromatic hydroxylation occurs 
via reaction of the aromatic π-electrons with the 
compound I ferryl oxygen to give transient tetra-
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These reactions presumably proceed via one-electron oxi-
dation of each of the phenol groups followed by diradical 
coupling
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hedral radical or cationic intermediates, which in 
turn collapse to the epoxide or undergo an ipso-
substitution mechanism to give products that do 
not derive from the epoxide� In the presence of 
electron-donating groups on the aromatic ring, 
such as hydroxyl or amino functions, participa-
tion of these groups in determining the outcome 
of the aromatic oxidation is observed�

4.7  Carbon–Carbon Bond Cleavage

The cytochrome P450-catalyzed cleavage of a 
carbon–carbon (C–C) bond has long been of in-
terest because of the key role this transformation 
plays in the biosynthesis of cholesterol and all the 
sterol hormones derived from it� These reactions 
include the 14α-demethylation of lanosterol by 
CYP51, truncation of the cholesterol side chain 
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at C21–C22 to give pregnenolone by CYP11, 
replacement by CYP17 of the remaining side-
chain fragment by an oxygen, and aromatization 
of androstenedione to estrogen by CYP19� All 
these cytochrome P450 enzymes undergo mul-
tiple sequential hydroxylations that first generate 
the required functionality and then promote the 
C–C bond cleavage� The sterol biosynthetic C–C 
bond cleavage reactions fall into three groups: 
(a) cleavage of a C–C bond between a carbonyl 
group and an adjacent carbon, (b) cleavage of 
a C–C bond between a hydroxyl and a ketone, 
and (c) cleavage of a C–C bond between two hy-
droxyl groups� However, the range of enzymes, 
substrates, and reactions that result in C–C bond 
cleavage continues to expand and diversify�

4.7.1  Cleavage Alpha to a Carbonyl 
Group

4.7.1.1  CYP51 (Sterol 14α-Demethylase)
CYP51, the first cytochrome P450 enzyme in 
the sterol biosynthetic pathway, removes the 

14α-methyl group from sterols such as lanos-
terol and ergosterol by a process that introduces 
a C14–C15 double bond� This transformation in-
volves three sequential catalytic events: The first 
is hydroxylation of the methyl group, the second 
oxidation of the resulting alcohol to an aldehyde, 
and finally, in the climatic third event, elimina-
tion of the oxidized methyl group as formic acid 
(Fig� 4�42) [234, 235]� The first two hydroxyl-
ations are conventional hydroxylations and re-
quire no discussion [236–238]� The more unusual 
step in which the carbon–carbon bond is cleaved 
is thought to occur by nucleophilic addition of the 
ferric hydroperoxy anion (Fig� 4�1f) to the alde-
hyde group, followed by a Baeyer–Villiger-like 
fragmentation of the resulting peroxyhemiacetal� 
Finally, the formyl intermediate thus obtained is 
eliminated as formic acid with introduction of the 
double bond (Fig� 4�43, path a)� This mechanism 
is supported by labeling studies showing that the 
formic acid incorporates an oxygen atom from 
molecular oxygen in addition to the oxygen of 
the original aldehyde [239]� Furthermore, the 
proposed 14α-formyl intermediate has been iso-
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lated and spectroscopically characterized [240]� 
The formyl elimination step, which proceeds 
with stereospecific loss of the 15α-hydrogen that 
is located on the same face of the sterol frame-
work, introduces the C14–C15 double bond 
[241, 242]� Several crystal structures of CYP51, 
including one of the full-length Saccharomyces 
cerevisiae enzyme with lanosterol bound to the 
protein [243], have been determined, but they do 
not shed much additional light on the catalytic 
mechanism�

It is not possible with the available evidence 
to exclude an alternative mechanism for the de-
formylation reaction that involves one-electron 
fragmentation of the peroxyhemiacetal interme-
diate, producing a free radical at C14� Transfer 

of one electron to the compound II ferryl species 
would then generate a cation that either under-
goes immediate proton loss to give the C14–C15 
double bond or, to a small extent, is trapped by 
the formate molecule (Fig� 4�43, path b)� This 
mechanism offers a simple route to proton loss 
and double bond formation and is, perhaps, more 
consistent with the homolytic mechanisms that 
have been proposed for other sterol C–C bond 
cleavage reactions (see below)�

4.7.1.2  CYP19 (Aromatase)
A demethylation concomitant with aromatiza-
tion of the sterol A-ring occurs in the CYP19-
catalyzed conversions of androstenedione and 
testosterone to estrone and estradiol, respectively 
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Fig. 4.39  The reported cytochrome P450-catalyzed dimerizations of estradiol and raloxifene
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[244, 245]� As with CYP51, the first two steps 
of the catalytic sequence are conventional hy-
droxylations that produce the 19-hydroxymethyl 
derivative and then, via a second stereospecific 
hydroxylation [246, 247], a 19-gem-diol that de-
cays to the aldehyde (Fig� 4�44)� In the final C–C 
bond-cleaving step of the catalytic sequence, 
the 1β and 2β hydrogens of the A-ring are lost 
and the C19 carbon is extruded as formic acid in 
which both oxygens derive from molecular oxy-

gen [248, 249]� Kinetic analysis of the reaction 
and its intermediates is consistent with this se-
quence of events [250]� Over the years, a variety 
of mechanisms have been advanced to rationalize 
this C–C bond cleavage reaction, including the 
intervention of a 4,5-epoxide [251], 1β-hydroxyl 
[252], 2β-hydroxyl [253, 254], or C19 peroxide 
[248, 255]� In the currently most cited mecha-
nism [256, 257], the ferric hydroperoxy catalytic 
intermediate (Fig� 4�1f) adds as a nucleophile to 
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units in the biosynthesis of indolocarbazole alkaloids� 
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chrome P450-catalyzed generation of a radical on each of 
the two indole rings, as shown

 



152 P. R. Ortiz de Montellano

N
H

HN

N

O

O Ph

N
H

.
N

N

O

O Ph

N
H

N

N

O

O Ph

.

N
H

N

N

O

O Ph

H
NN

N

O

OPh

dimerization

Fig. 4.41  Proposed mechanism formation of the alkaloid ditryptophenaline involving radical formation, cyclization, 
and subsequent dimerization of two substrate molecules catalyzed by cytochrome P450 DtpC

 

HO

1514

CH3

HO

CH2OH

HO

CHO

HO
HCOOH

Fig. 4.42  The three oxidative steps in the CYP51-catalyzed conversion of lanosterol to the 14-demethylated sterol

 



1534 Substrate Oxidation by Cytochrome P450 Enzymes

the 19-aldehyde group to give a peroxyhemiac-
etal (Fig� 4�45)� Homolytic fragmentation of this 
peroxyhemiacetal generates an alkoxy radical 
that decays with loss of formic acid to a C10 radi-
cal� Compound II that is concomitantly formed in 
the reaction then abstracts the 1β-hydrogen to in-
troduce a double bond� Ketone enolization finally 
converts the A-ring to the aromatic phenol found 

in estradiol, although enolization may occur prior 
to C–C bond cleavage� However, the CYP19A1-
catalyzed oxidation of dihydrotestosterone, an 
analogue without the 4,5-double bond, produces 
19-demethylated products with a 1,10-, 5,10-, or 
9,10-double bond [258]� This result clearly indi-
cates that enolization of the 3-keto function is not 
a prerequisite for the C–C bond-cleaving function 
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of CYP19A1� The crystal structure of full-length 
human placental CYP19A1 demonstrates a tight 
binding site for the substrates and provides infor-
mation on putative catalytic residues [259–261]�

A DFT analysis of the C–C bond cleavage 
step catalyzed by CYP19 suggests that the above 
mechanism is not favored [262]� Specifically, 
the 1β-hydrogen abstraction in this sequence is 
calculated to have a high-energy barrier� The au-
thors therefore proposed a mechanism in which 
the 3-enolized form of the 19-gem-diol undergoes 
1β-hydrogen abstraction by a compound I fer-
ryl species, producing first a C1 radical and then 
C1 cation, resulting in extrusion of formic acid 
and aromatization (Fig� 4�46)� Subsequently, the 
authors revised their mechanism and returned to 
one initiated by addition of the ferric hydroperoxy 
anion to the 19-aldehyde, but with some subtle-
ties in the subsequent steps [263]� These compu-
tational results remain hypothetical, but they em-
phasize that the details of the CYP19A1-catalyzed 
C–C fragmentation reaction are open to further 
definition� Some support for the computationally 
suggested mechanism is provided by resonance 
Raman studies of the hydrogen-bonding patterns 
for the CYP19A1 ferrous dioxygen intermediate 
complexed with either androstenedione or its 19-
oxo derivative [264]� The studies indicate that in 
CYP19A1 there is a hydrogen bond to the termi-

nal oxygen of the ferrous dioxygen intermediate 
with both substrates, a finding that suggests the 
same compound I intermediate will be generated 
in the C–C bond cleavage reaction as in the first 
hydroxylation step� The authors cite unpublished 
solvent isotope effect data that they claim are con-
sistent with involvement of a compound I ferryl 
species in the C–C bond cleavage reaction�

4.7.1.3  Decarbonylations
CYP51 and CYP19 are examples of enzymes 
that break a C–C bond between a carbonyl group 
and an adjacent carbon, in each case with loss of 
the carbonyl function as formic acid, but other 
P450-catalyzed C–C bond-breaking reactions of 
carbonyl groups are known� One example is pro-
vided by housefly CYP4G, which oxidizes long-
chain aldehydes to hydrocarbons with release of 
the aldehyde function as CO2 rather than formal-
dehyde [265]:

This reaction is closely related to the reaction cat-
alyzed by another housefly enzyme, CYP6A1, for 
which it has been shown by deuterium labeling 
that the hydrogens at C2 and C3 are retained in the 
hydrocarbon when the aldehyde group (C1) is lost 
[266]� Most surprisingly, the labeling studies indi-
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of testosterone to 17β-estradiol by CYP19A1. An analo-
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first converted to the enol
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cated that the aldehyde hydrogen is transferred to 
the terminal carbon of the hydrocarbon product� A 
possible mechanism for this transformation postu-
lates the addition of the ferric hydroperoxy anion 
to the aldehyde, followed by homolytic fragmen-
tation to give formic acid and a carbon radical� 
The carbon radical then abstracts the hydrogen 
from the formate before it escapes from the active 

site, producing the hydrocarbon with retention of 
the original aldehyde hydrogen (Fig� 4�47)� How-
ever, the authors reported that replacing NADPH 
and O2 with H2O2, cumene hydroperoxide, or io-
dosobenzene supported enzymatic product forma-
tion for short periods� The mechanism in the fig-
ure is not consistent with these results, which led 
to the proposal of an unprecedented mechanism 

Fig. 4.46  An alternative mechanism suggested by computational studies for the C–C bond cleavage step in the oxida-
tion of testosterone by CYP19A1
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triggered by abstraction of an electron from the 
aldehyde carbonyl group [266]� Further work is 
clearly required to clarify the mechanism of this 
decarbonylation process, including confirmation 
of the anaerobic activity of the highly purified en-
zyme with surrogate oxidizing agents�

A variant of this transformation is catalyzed 
by CYP152L1 from the bacterium Jeotgalicoccus 
sp� 8546 [267] (Fig� 4�48)� This H2O2-dependent 
P450 enzyme catalyzes the decarboxylation of 
fatty acids to give terminal olefins and carbon di-
oxide� Two fundamentally different mechanisms 
can be postulated for this transformation� Pathway 
a involves hydrogen abstraction from the carbon 
beta to the carboxyl group, oxidation of the result-
ing carbon radical to the cation by electron trans-
fer to the compound II oxidizing species, and fi-
nally a chemically favored decarboxylation� This 
mechanism has precedent in the growing number 
of reactions in which a catalytically generated 
cation plays a role� Furthermore, the structure of 
the enzyme is quite similar to that of a homologue 
that catalyzes hydroxylation of the β-carbon. The 
alternative pathway b invokes one-electron oxida-
tion of the carboxyl group, homolytic decarboxyl-
ation, and either a hydrogen abstraction from the 

β-carbon by the compound II species or oxidation 
of the primary radical to a cation followed by pro-
ton loss� These two alternatives are similar to those 
in the desaturation of hydrocarbons (Fig� 4�13)� A 
limited precedent for P450-catalyzed carboxyl 
group oxidation is provided by the probable role 
of such an oxidation in the autocatalytic covalent 
attachment of the prosthetic heme group to the 
protein in some P450 enzymes [268]�

4.7.2  Cleavage Between a Carbonyl 
and Hydroxyl Group

4.7.2.1  CYP17A1
CYP17A catalyzes both the 17α-hydroxylation 
of progesterone and subsequent cleavage of 
the C17–C20 bond to give androstenedione 
(Fig� 4�49)� A similar transformation sequence 
accounts for the conversion of pregnenolone to 
dehydroepiandrosterone� The favored mecha-
nism for this reaction involves formation of the 
hydroperoxy hemiacetal with the ferric hydroper-
oxy anion of the enzyme, followed by O–O bond 
homolysis, C–C bond homolysis, and finally re-
combination of the compound II equivalent with 
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Fig. 4.48  Two mechanisms for the decarboxylation of 
fatty acids to terminal olefins catalyzed by CYP152L1, 
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group oxidation� In mechanism b, the compound II in-
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the C17 radical to give a gem-diol� Dehydration 
of this diol then produces the final product [253]� 
The same enzyme also catalyzes the formation of 
alternative minor products in a cytochrome b5-
dependent manner� The mechanism of this reac-
tion is addressed in some detail in Chaps� 3 and 
12 and is therefore not discussed further here�

4.7.2.2  Nabumetone
A nonsteroidal example of a C–C bond cleavage 
similar to that catalyzed by CYP17A1 is provid-
ed by the oxidation of nabumetone by CYP1A2� 
Nabumetone is an anti-inflammatory prodrug 
that is oxidatively converted to 6-methoxy-
2-naphthylacetic acid (6-MNA), the physiologi-
cally active agent� Despite decades of clinical 
use, the mechanism of nabumetone bioactivation 
remained obscure until the recent demonstration 
that nabumetone is first hydroxylated to give 
3-hydroxynabumetone� The CYP1A2-catalyzed 
C–C lysis of this hydroxyketone intermediate 
then yields an aldehyde, which in the third cata-
lytic turnover of the enzyme is oxidized to the 
acid function found in 6-MNA (Fig� 4�50) [269, 
270]� With the help of synthetic compounds, it 
has been established that the C–C bond cleav-
age step occurs from the 3-hydroxyketone and 
not from the parent ketone or the 2,3-diol, which 
can be formed biologically by reduction of the 

ketone [269]� Furthermore, although nabumetone 
3-hydroxylation was supported when cumene hy-
droperoxide was employed instead of NADPH 
and cytochrome P450 reductase, neither nabum-
etone nor 3-hydroxynabumetone was converted 
to 6-MNA under these conditions� As the enzyme 
retained the ability to catalyze 3-hydroxylation 
with cumene hydroperoxide, but not C–C bond 
cleavage, it appears that the C–C bond cleavage 
involves addition of the ferric hydroperoxy anion 
to the carbonyl group of nabumetone�

4.7.2.3  CYP24A1 (Vitamin D3 Oxidation)
Vitamin D3 and its 25-hydroxy derivative undergo 
a side-chain cleavage reaction catalyzed by CY-
P24A1 [271]� In this side-chain cleavage process, 
CYP24A1 catalyzes 24-hydroxylation of the side 
chain and then a second hydroxylation to generate 
the 24-ketone� A third hydroxylation produces the 
23-hydroxy-24-ketone that actually undergoes the 
C–C bond cleavage reaction� There is some un-
certainty in the literature on the nature of the prod-
uct formed by CYP24A1 in the C–C bond cleav-
age step [272–275]� The current literature tends 
to favor formation of the truncated 23-alcohol, 
which is then sequentially oxidized to the 23-alde-
hyde and 23-acid by the same enzyme (Fig� 4�51) 
[271]� However, a mechanism for direct conver-
sion of the 23-hydroxy-24-keto structure to the 
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The figure emphasizes the probable role of the 23-alcohol 
as a side product rather than as an obligatory intermediate 
in the side-chain cleavage sequence
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truncated 23-alcohol is difficult to reconcile with 
any P450 mechanism for which there is credible 
precedent� Mechanistic analysis suggests that the 
initial product should be the 23-aldehyde� As the 
23-aldehyde is known to be unstable towards dis-
proportionation that produces the 23-alcohol and 
23-acid, it is most likely that the experimentally 
documented formation of the 23-alcohol is the 
result of a side reaction� It has been shown that 
the 23-alcohol can be oxidized by CYP24A1 to 
the aldehyde and acid, but this does not require 
that the 23-alcohol occur as an intermediate in the 
sequence that normally leads to the 23-acid� If the 
aldehyde is the immediate product, the mecha-
nism would be similar to that postulated for the 
oxidation of nabumetone (Fig� 4�50)�

4.7.3  Cleavage Between Two Hydroxyl 
Groups

4.7.3.1  CYP11A1 (Sterol Side-Chain 
Cleavage)

The first step in the synthesis of sterol hormones 
from cholesterol is removal of the cholesterol 

side chain by CYP11A1 to give pregnenolone 
and 4-methylpentanal (Fig� 4�52)� The two ini-
tial steps are conventional hydroxylations by 
the compound I ferryl species [276], first to give 
the 22( R)-hydroxylated sterol and then 20( R), 
22( R)-dihydroxycholesterol� Subsequent cleav-
age of the C–C bond between the hydroxylated 
side-chain carbons produces pregnenolone with 
concomitant elimination of the rest of the side 
chain as 4-methylpentanal [277, 278]� In view of 
all the other sterol C–C bond-breaking reactions 
that involve a carbonyl group, it is important to 
note that the 22( S)-hydrogen of the side chain is 
retained in the 4-methylpentanal, precluding oxi-
dation of the 22-alcohol to a ketone prior to bond 
scission [277]� The C–C bond cleavage must 
therefore occur from the diol� One possibility is 
that the compound I ferryl oxygen abstracts a hy-
drogen atom from one of the hydroxyl groups, 
producing an alkoxy radical that fragments into 
4-methylpentanal and a sterol with a C20 radical� 
Electron transfer from the radical to the enzyme 
then would produce the ketone, as would recom-
bination to deliver a hydroxyl to the carbon fol-
lowed by a dehydration reaction (Fig� 4�53, path 
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Fig. 4.52  The three-step side-chain cleavage of cholesterol to give pregnenolone catalyzed by CYP11A1
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a)� However, a second possible mechanism pos-
tulates that the C22-hydroxyl adds to the com-
pound I ferryl oxygen, forming a hydroperoxy 
structure that subsequently fragments to the ob-
served products (Fig� 4�53, path b)� Determina-
tion of the crystal structure of CYP11A1 com-
plexed with reaction intermediates by two labo-
ratories [279, 280] led one of them to suggest 
that the more dynamic nature of the C22- than 
C20-hydroxyl supports the mechanism invoking 
addition of the C22-hydroxyl to the compound I 
ferryl species [279]� However, although chloride 
ion adds to the compound I ferryl oxygen in en-
zymes like chloroperoxidase to form an Fe–O–Cl 
complex, there is little independent evidence that 
a hydroxyl group can similarly add to generate a 
ferric hydroperoxo intermediate�

4.7.3.2  CYP107H1
P450BioI, formally classified as CYP107H1, cata-
lyzes the cleavage of a diol in the middle of a 
fatty acid chain to give two aldehyde fragments, 
although it actually utilizes as a substrate a fatty 
acid covalently attached to an acyl carrier pro-
tein (ACP) [281, 282]� The crystal structure of 
the complex of the protein with the ACP–fatty 
acid substrate shows that it binds in a U-shaped 
conformation that places the C7 and C8 carbons 
of the fatty acid chain directly above the heme 
iron atom, explaining the regiospecificity of the 
reaction� Earlier studies with free fatty acids, 
which are oxidized in low yield, showed that the 

best substrates had a threo-7,8-diol substitution, 
whereas the 7-oxo, 8-oxo-, 8-hydroxy-, or eryth-
ro-7,8-diol were not acceptable as substrates 
[283]� The enzyme thus catalyzes two conven-
tional hydroxylation reactions on the same face 
of the fatty acid chain before cleaving the C–C 
bond at the 7,8-diol stage (Fig� 4�54)� The mech-
anism of this C–C bond cleavage has not been 
more precisely defined, but it is reminiscent of 
the side-chain cleavage reaction catalyzed by 
CYP11A1 in the conversion of cholesterol to 
pregnenolone (Fig� 4�52)�

4.7.4  Other C–C Bond-Cleaving 
Reactions

4.7.4.1  Fumagillin Biosynthesis
A highly unusual transformation occurs in the 
biosynthesis of fumagillin by Aspergillus fumig-
atus [284]� As shown in Fig� 4�55, the bicyclic 
terpene skeleton of β-trans-bergamotene is first 
hydroxylated by a cytochrome P450 enzyme, 
termed Fma-P450, at a bridgehead position to 
give the corresponding tertiary alcohol� In a sec-
ond step, the same P450 enzyme catalyzes car-
bon–carbon cleavage with the concomitant for-
mation of epoxide and ketone functions� In the 
final step of the sequence, the same P450 enzyme 
promotes epoxidation of the exocyclic double 
bond� The first and third steps in this sequence 
are conventional cytochrome P450 reactions, but 
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the intervening carbon–carbon bond-cleaving re-
action is unexpectedly complex� To explain this 
transformation, the authors have proposed that 
hydrogen abstraction from the side chain to give 
a carbon radical followed by electron transfer to 
compound II generates a cation (Fig� 4�55b, path 
a)� This cation is then trapped by the ferric peroxy 
anion produced by a further catalytic turnover of 
the enzyme, with the resulting alkylperoxyiron 
intermediate undergoing fragmentation to direct-
ly form the keto-epoxide product� A shortcom-
ing of this otherwise-clever mechanism is that 
the cation that is formed in one catalytic cycle 
must remain intact while the enzyme undergoes 
a second activation of molecular oxygen� An al-
ternative would be for the enzyme to perform a 
conventional hydroxylation (Fig� 4�55b, path b), 
with the resulting stable alcohol then reacting in 
a second catalytic cycle with compound I of the 
enzyme to produce the same alkylperoxo species 
as in path a� Alternative mechanisms are pos-
sible, however, including C–C bond cleavage by 
the radical that precedes the cation in path a, in-

troducing a double bond into the side chain, and 
placing the radical on the carbon adjacent to the 
hydroxyl group of the cyclohexyl ring� Electron 
transfer to compound II would then generate the 
ketone and a subsequent catalytic turnover would 
epoxidize the side-chain double bond to give the 
final product�

4.7.4.2  CYP82G1 (Terpene Hydrocarbon 
Synthesis)

The damage caused by herbivore attack on Ara-
bidopsis results in the emission of two terpene 
defense molecules, ( E,E)-4,8,12-trimethyltri-
deca-1,3,7,11-tetraene (TMTT) and ( E)-4,8-di-
methyl-1,3,7-nonatriene (DMNT)� These mole-
cules are generated by a single cytochrome P450 
enzyme, CYP2G1, from tertiary alcohol terpene 
precursors, with nerolidol as the precursor for the 
second product (Fig� 4�56) [285]� CYP2G1 has 
a very narrow specificity for these substrates� 
Although the mechanism was not further inves-
tigated, the most plausible mechanism would ap-
pear to involve allylic hydrogen abstraction by 

OH

OH.
OH

+

[P+.Fe(IV)=O]

[PFe(IV)-OH]

O

nerolidol

Fig. 4.56  C–C bond cleavage reaction in the CYP82G1-catalyzed formation of terpene hydrocarbons from precursor 
alcohols
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compound II followed by electron transfer to the 
enzyme to generate the allylic cation� Hydroxyl-
driven fragmentation then produces DMNT from 
nerolidol together with 3-buten-2-one� The con-
jugated ketone product was not detected, but this 
might be due to the fact that it is a highly reactive 
Michael acceptor and is likely to be trapped by 
nucleophiles in the incubations�

4.7.4.3  Furanocoumarin Biosynthesis
The conversion of marmesin to psoralen and ac-
etone is catalyzed by CYP71AJ1 from the plant 
Ammi majus (Fig� 4�57a) [286, 287]� Deuterium 
labeling studies established an elimination ste-
reochemistry in which the β-hydrogen was lost. 
Three orthologues of this enzyme, CYP71AJ2 
from Apium graveolens and CYP71AJ3 and CY-

P71AJ4 from Pastinaca sativa, have been identi-
fied and expressed in yeast cells� Two of these 
enzymes, CYP71AJ2 and CTO71AJ3, have 
psoralen synthase activity, but CYP71AJ4 only 
catalyzes the conversion of columbianetin to 
angelicin (Fig� 4�57b) [288]� A free radical frag-
mentation mechanism was proposed for the for-
mation of psoralen, but a more attractive mecha-
nism is shown in Fig� 4�57a� In this mechanism, 
the fragmentation does not occur at the stage of 
the carbon radical, but rather after the radical is 
oxidized to a cation by electron transfer to the 
enzyme� This mechanism closely resembles that 
proposed for CYP82G1 above� Furthermore, a 
very similar mechanism can be written for the 
conversion of columbianetin to angelicin� Sup-
port for this mechanism is provided by the obser-

OO O

HO

OO O

+

[P+.Fe(IV)=O]
Hβ

OO O

HO
•

O [PFe(IV)-OH]

OO O

HO

psoralen

marmesin

O OO

OH

O OO

columbianetin angelicin

a

b

Fig. 4.57  C–C bond cleavage reactions in the formation of psoralen from marmesin (a), and angelicin from columbi-
anetin (b)
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vation that stereospecific syn-deuterium substitu-
tion at the 3′-carbon that is oxidized in columbi-
anetin causes a metabolic switch that produces 
3ʹ-hydroxylated columbianetin rather than lead-
ing to elimination of the side chain� This result 
specifically excludes reaction mechanisms that 
are initiated by oxidation of the hydroxyl group 
in the side chain�

4.7.4.4  CYP88A (Gibberellin 
Biosynthesis)

A key transformation in the biosynthesis of gib-
berellin is the conversion of ent-kaurenoic acid 
to GA12, and the critical step in this transforma-
tion is the six- to five-membered ring contraction 
that generates an aldehyde that is subsequently 
oxidized to the acid function of GA12 (Fig� 4�58)� 
The sequence of hydroxylation, ring contrac-
tion, and oxidation of the aldehyde to the acid is 
catalyzed by CYP88A from Arabidopsis thali-
ana [289], barley [289], and Gibberella fujikuroi 
[290]� In the case of the Gibberella studies, the 
6,7-diol was isolated but was not converted to 
GA12 by the enzyme, suggesting that the diol was 
a side product rather than a precursor of GA12� 
The detailed mechanism of the ring contraction 
reaction remains undefined, but it is likely to 

involve hydrogen abstraction to give the carbon 
radical adjacent to the hydroxyl group, electron 
transfer to the enzyme to produce the cation, and 
finally ring contraction with concomitant forma-
tion of the aldehyde, as illustrated in Fig� 4�58�

4.7.4.5  Pentalenolactone Biosynthesis
Cytochrome P450 enzymes in Streptomyces 
exfoliates and Streptomyces arenae, labeled as 
PenN and PenM, catalyzed a methyl migration 
on a saturated ring (Fig� 4�59) [291]� As shown in 
the figure, this rearrangement involves stereospe-
cific removal of the hydrogen trans to the migrat-
ing methyl to give the carbon radical, oxidation 
of the radical to the cation by electron transfer to 
the enzyme, migration of the methyl to the cat-
ionic site, and deprotonation to product the final 
double bond�

4.8  Perspectives

Direct observation and characterization of the cy-
tochrome P450 compound I ferryl species over 
the past few years has affirmed its role as the key 
oxidizing species in cytochrome P450-catalyzed 
hydroxylations� If the ferric hydroperoxide pre-

COOH
CHOCOOH

OH
COOH

ent-kaurenoic acid

6
7

8

COOH
OH

.
COOH

OH

CO2H

GA12[P+.Fe(IV)=O]

[PFe(IV)-OH]

Fig. 4.58  Mechanism that rationalizes the ring contrac-
tion reaction in the conversion of ent-kaurenoic acid to a 
precursor of GA12 in the gibberellin biosynthetic pathway� 

The circle highlights the oxidation of the aldehyde to the 
acid that is required in the final step of GA12 synthesis
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cursor of compound I (Fig� 4�1g) participates in 
substrate oxidations, its role is minor and is con-
fined to easily oxidizable centers, such as nitro-
gen and sulfur atoms� In contrast, the evidence 
for involvement of the ferric hydroperoxy anion 
(Fig� 4�1f) as a nucleophilic oxidant, particularly 
one involved in carbonyl C–C bond-cleaving re-
actions, is now well established� However, its role 
in some reactions, such as the aromatization cata-
lyzed by CYP19, is being challenged as increas-
ingly refined spectroscopic and biochemical tools 
are used to probe the mechanism� It is to be ex-
pected that in the next few years the mechanisms 
of P450 reactions will be defined at a much higher 
“resolution” than previously, and that some mech-
anisms thought to be settled will require revision�

The growth in the studies of nonmammalian 
cytochrome P450 systems, particularly those of 
plants and microbes, has unearthed a rich and 
unforeseen complexity of cytochrome P450-
catalyzed transformations� The breadth of cy-
tochrome P450 catalysis will surely continue to 
grow as these still relatively unexplored biologi-
cal domains reveal the diversity of aims to which 

cytochrome P450 enzymes have been adapted by 
evolution� Recent work in this area suggests that 
the role of cations in cytochrome P450-catalyzed 
transformations may be greater than previously 
envisioned, particularly in reactions that result 
in cleavage or rearrangement of C–C bonds� 
Although radical mechanisms can be written 
for some of these reactions, in many instances 
the products are more reasonably explained by 
sequential oxidation of a C–H bond to a carbon 
radical and then a cation�

We can look forward in the near future to a 
deeper molecular understanding of the mecha-
nisms of cytochrome P450 enzymes, of the in-
teractions of substrates with P450 proteins that 
influence the catalytic outcome, and of the range 
of transformations that are possible with the ver-
satile catalytic machinery of these enzymes�
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5.1  Introduction

Inhibition of cytochrome P450 (P450, CYP) func-
tion (see Chaps� 3 and 4) may be brought about 
directly or indirectly� The steps in the P450 cata-
lytic cycle particularly vulnerable to direct chemi-
cal inhibition include substrate binding to the 
ferric-P450 protein, molecular oxygen binding to 
the ferrous-P450, and subsequent insertion of the 
oxygen atom into the substrate� Direct functional 
inhibition, in principle, can also occur following 
posttranslational modifications of the P450 pro-
tein surface by oxidants, alkylating, nitrosating, 
or acylating agents that disrupt critical interac-
tions with its redox partners, cytochrome P450 
oxidoreductase (CPR), and/or cytochrome b5 ( b5) 
[1, 2]� Selective antibodies targeted against P450 
epitopes in these functionally relevant surface re-
gions similarly disrupt P450 function and are valu-
able diagnostic probes [3–6]� On the other hand, 
indirect acting inhibitors may target other steps in 
the P450 catalytic cycle, such as the sine qua non 
CPR electron donation step, either through diver-
sion of its electron supply away from the P450 
hemoprotein [7–9] or by inactivating the CPR fla-

voprotein itself, i�e�, with diphenyleneiodonium 
[10, 11]� Consistent with its unique role in the 
P450 catalytic cycle, conditional deletion of the 
CPR gene in vivo also results in P450 functional 
inhibition [12, 13]� Furthermore, P450 functional 
inhibition can also be elicited by agents that either 
impair protein or heme synthesis or accelerate 
protein or heme degradation (i�e�, metals such as 
Co+ 2), and thus effectively reduce P450 hemopro-
tein content [14]� Thus, although various modes 
of P450 inhibition exist and can be effectively 
exploited experimentally, physiologically, and/or 
therapeutically, only direct acting P450 chemical 
inhibitors will be discussed in this chapter�

Such direct acting P450 inhibitors can be clas-
sified into three mechanistically distinct groups: 
Agents that form (a) reversible complexes, (b) 
quasi-irreversible complexes with the heme-iron 
atom, and (c) “dead-end” complexes through ir-
reversible interaction with the P450 protein or 
the heme moiety, or accelerated degradation  and/
or oxidative fragmentation of the prosthetic heme 
[15–33]� Reversible competitive or noncompeti-
tive inhibitors are generally thought to interfere 
in the P450 catalytic cycle prior to the actual 
oxidative event� On the other hand, agents that 
act during or subsequent to the oxygen transfer 
step are generally considered to be irreversible 
or quasi-irreversible inhibitors� Indeed, because 
the manifestation of their intrinsic irreversible 
or quasi-irreversible inhibitory potential re-
quires P450 catalytic turnover, such agents are 
often aptly classified as mechanism-based (or 
suicide) inactivators [21–30]� Extensive lists of 
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P450 inhibitors are available elsewhere [34–36], 
and Chap� 9 also covers inhibitors of individual 
P450 enzymes� This chapter focuses largely on 
the mechanisms of reversible P450 inhibition 
as well as the mechanisms of P450 inactivation 
and agents that function as mechanism-based in-
activators� Despite their irrefutable practical rel-
evance to clinical therapeutics, the mechanisms 
of reversible competitive and noncompetitive 
inhibitors, being relatively straightforward, are 
discussed more concisely�

5.2  Reversible Inhibitors

Agents that compete with substrates for the oc-
cupancy of the P450 active site through: (a) bind-
ing to hydrophobic regions of the active site, (b) 
coordination to the prosthetic heme-iron atom, 
or (c) specific hydrogen bonding or ionic inter-
actions with active site residues are considered 
reversible inhibitors [18–25]� In the first case, the 
inhibitor simply competes for binding to the li-
pophilic domains of the active site, resulting in 
the type of inhibition often observed when two 
substrates compete for oxidation by a single 
P450 isoform� The mutual in vitro and in vivo 
inhibition of benzene and toluene metabolism is 

the simplest example of such a direct competi-
tive interaction [37]� Such inhibition is optimally 
manifested upon prolonged residence of the in-
hibitory agent within the P450 active site due to 
its tight binding coupled with its poor catalytic 
recognition as a substrate� This is illustrated by 
the inhibition of CYP1A2-dependent caffeine or 
theophylline N-demethylation or of CYP19 -me-
diated estrogen synthesis by α-naphthoflavone 
( KI 0.01 μM) [36]� Although usually not quite 
as effective as reversible inhibitors that interact 
with the P450 heme iron or irreversible P450 in-
activators, nonetheless such interactions are re-
sponsible for eliciting not only relevant metabol-
ic alterations but also many clinically significant 
drug–drug interactions (DDIs) [18, 19]�

5.2.1  Coordination to the P450 Ferric 
Heme Iron

Amino-side chains or nitrogenous heterocyclic 
moieties in some substrates [20, 24, 25] can either 
directly bind tightly to the sixth coordination site 
of the pentacoordinated prosthetic P450 heme-
iron atom or displace an existing weaker ligand 
such as water from a P450 hexacoordinated state 
(Fig� 5�1a, b) [23–25]� The ensuing P450 heme-
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Fig. 5.1  P450 ferric-heme interactions at the sixth axial 
coordination site with various ligands� a Resting state 
with an active site water molecule bound; b Triazole ni-
trogen coordination associated with the spectroscopic 
type II signature; c “Pseudo” or type II-like binding via 

the axially coordinated water, associated with a spectral 
signature that resembles “reverse type I-binding”; d Co-
ordination with the oxygen atom in alcohols, associated 
with a spectroscopic “reverse type I-binding”
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iron-liganded complexes exhibit a shift of the iron 
from the high- to the low-spin state, with a charac-
teristic spectroscopic signature: A “type II”binding 
spectrum with a Soret maximum at 425–435 nm 
and a trough at 390–405 nm [38–41]� This spin 
state change also alters the intrinsic P450 redox 
potential so as to impair its reduction by CPR 
(see Chap� 2) [41, 42]� This impaired reduction 
potential, just as much as the physical occupation 
of the sixth coordination site, accounts for the 
inhibition associated with the binding of strong 
heme-iron ligands� However, it is to be noted 
that not all substrates that exhibit “type II-like 
spectra” are necessarily P450 inhibitors and may 
actually be quite productive substrates depend-
ing on whether they are hydrogen-bonded to its 
hexacoordinated water ligand rather than directly 
hexacoordinated to the P450 prosthetic heme 
iron (Fig� 5�1c)� On the other hand, model stud-
ies of synthetic iron porphyrin binding to vari-
ous dialkylnitrosamines, reveal through electron 
paramagnetic resonance (EPR) spectroscopy the 
formation of isolable hexacoordinated low-spin 
and pentacoordinated high-spin ferric-porphyrin 
complexes� Single crystal X-ray crystallography 
of these complexes indicates that all these nitro-
samines bind to the ferric iron atom via an n1-O 
binding mode [43], thereby suggesting that simi-
lar complexes with the ferric P450 species are in 
principle also plausible� Furthermore, although 
per se not metabolically reactive, such complexes 
may acquire reactivity on reduction to the ferrous 
species�

The preferential, albeit weak binding of cya-
nide and other ionic ligands to the ferric P450 
species [44, 45] has been discussed in detail 
previously [24]� It is to be underscored that the 
negatively charged cyanide ion favors the neu-
tral ferric P450 species over the more negatively 
charged ferrous species� This preference may also 
account for its stronger binding of ferric myoglo-
bin over the ferric P450 species, as the thiolate 
ligation of the latter enriches the electron density 
around the iron atom, making it considerably 
more negatively charged than does the imidazole 
ligand of ferric myoglobin [46]� The lipophilic 

nature of the P450 active site is an additional de-
terrent to its interactions with ionic ligands [47]�

Nitric oxide (●NO), an intracellular signaling 
molecule/autacoid involved in diverse physi-
ological and pathological processes, is known 
to interact with various cellular targets such as 
DNA, thiols, and iron–sulfur proteins, as well 
as hemoproteins that are either imidazole- or 
thiolate-coordinated such as the P450s and ●NO 
synthases (NOSs) [48–51]� The P450 thiolate-li-
gation apparently stabilizes its ferric heme state, 
greatly favoring ●NO-binding [52]� ●NO interacts 
with both the ferric and ferrous forms of P450 
enzymes with relatively high affinity, leading to 
their inhibition [52–59]� By far, the fastest inter-
actions are apparently with P450s exhibiting the 
highest resting content of high-spin species [52]� 
This inhibition is short-lived, and initially entails 
reversible coordination of the NO–nitrogen to the 
ferric P450 heme iron, but with time, the enzyme 
is irreversibly inactivated, most likely due to S-
nitrosylation of P450 cysteine residues [52–59]� 
These latter adducts are rather long-lived and 
do not readily dissociate� However, inclusion 
of dithiothreitol (DTT) earlier on in the incuba-
tion can reverse most of this “irreversible” P450 
inhibition, whereas inclusion of a thiol source 
(albumin, but not of a P450 substrate) can partly 
protect from this inhibition [54, 57]� This bipha-
sic NO-P450 interaction can be monitored via 
ultraviolet–visible (UV–Vis) and/or EPR spec-
troscopy� In its initial phase, the ferric-nitrosyl 
complex with a six-coordinated EPR signature 
( g = 2.26) is readily reduced enzymatically or 
chemically and decreases with the concomitant 
rise of the five-coordinated ferrous-nitrosyl spe-
cies ( g = 2.00), stemming from the lability of the 
Fe-S bond, and with features similar to that of 
P420 [53, 54, 57]� In the second phase, the proxi-
mal Cys ligand released from the prosthetic heme 
iron, is then S-nitrosylated by another ●NO mole-
cule, resulting in the observed prolonged irrevers-
ible P450 inactivation [52, 57, 58]� Very similar 
●NO-P450 heme interactions have been verified 
by UV–Vis/stopped-flow and Resonance-Raman 
spectroscopies with the P450s from Mycobacte-
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rium tuberculosis CYP130 and CYP51 [52]� It is 
noteworthy, however, that in the presence of O2

−, 
●NO can be easily converted at diffusion-limited 
rates to the potent oxidant and nitrating agent 
peroxynitrite (PON) that functionally inactivates 
P450s such as CYP3A4, CYP2E1, CYP2B6, and 
CYP2B1 via nitration of Tyr residues [50, 60–66] 
and consequent disruption of their CPR-mediated 
reduction [2]� In the case of the P450-like endo-
thelial NOS (eNOS), such PON-mediated irre-
versible inactivation of the enzyme is associated 
with destruction and loss of the prosthetic heme 
[59, 63–65]�

Various biosynthetic P450 enzymes responsi-
ble for the metabolism of endogenous substrates 
are also targets of inhibition by NO at concen-
trations physiologically encountered, often with 
significant pathophysiological consequences 
[66–74]� Some of these NO-targeted P450 path-
ways include prostacyclin synthase [66], the renal 
CYP4A ω-hydroxylase that converts arachidonic 
acid to vasoactive hydroxyeicosatetraenoic acids 
(HETEs) [67–69], CYP11A1 (P450scc)-depen-
dent steroidogenic conversion of cholesterol to 
pregnenolone in Leydig cells [70, 71], 25-hy-
droxycholesterol and progesterone-stimulated 
CYP11B1-dependent aldosterone synthesis in 
bovine adrenal zona glomerulata cells [72, 73], 
and CYP19A1 (aromatase) function in ovarian 
steroidogenesis, with consequent impairment of 
estradiol secretion from human ovarian granulo-
sa cells into the circulation [74]� Thus, by target-
ing specific P450 biosynthetic pathways, NO can 
serve as an autocrine regulator�

Ferric P450 species have long been known to 
also bind sulfur ligands such as thiols (mercap-
toethanol, 1-propanethiol, p-chlorothiophenol) 
and sulfides (octyl methyl, pentamethylene, 
butylmethyl, dibutyl, and methyl phenyl) at its 
sixth heme-iron coordination site, yielding a 
unique UV–Vis “hyperporphyrin split Soret” 
spectral signature, wherein the Soret band exhib-
its two peaks with maxima around 370–380 and 
455–470 nm, respectively [75–78]� Parallel EPR 
analyses indicated shifts in the existing g-values 
of the P450 complexes, thereby verifying ligand 
perturbations of the ferric or ferrous heme-iron 

field on sharing the lone electron pair of the sul-
fur ligand to form a coordinate bond [78]� Sulfur 
ligands with bulky hydrophobic side chains can 
additionally interact at the lipophilic P450 active 
site, thereby substantially enhancing their P450 
binding affinities [78]� In their oxidized ferric 
states, the sulfide–P450 complexes exhibit red-
shifted Soret bands in the 420–470 nm region� 
Reduction of the heme iron in these P450 com-
plexes with sodium dithionite, reverts the spec-
tra to the characteristic Soret (449 nm maximum 
absorption with α- and β-bands observed with 
ligands such as carbon monoxide (CO)) [78]� 
Furthermore, depending on their relative affini-
ties, such ligands can compete quite effectively 
with normal substrates and inhibitors such as 
metyrapone [78]� Hemin-coordinated complexes 
with mercaptides, phosphines, and thioethers 
have been examined both by UV–Vis and EPR 
spectroscopy as models for ferric P450, and con-
firm these features [76, 79]� A remarkable differ-
ence between these chemical model complexes 
and corresponding P450 complexes is that the 
former, being thermolabile, survive only at tem-
peratures below − 55 °C and thus are much more 
transient, whereas the latter are relatively stable 
at room temperature [76]� The reason for this 
thermolability is apparently the avid proclivity of 
the low-spin ferric-heme-mercaptide complexes 
to be reduced at temperatures> − 40 °C. It has also 
been suggested that in solution the mercaptide 
radicals can easily dimerize to form the disulfide 
and thus dissociate from the complexes [76]�

Similar thiol-binding to ferric CYP3A4 com-
plexes accounts for its functionally relevant in-
teractions with glutathione (GSH) [80], an im-
portant intracellular γ-glutamylcysteine-glycine 
tripeptide that serves as the cofactor for various 
detoxifying enzymes (peroxidases, GSH-trans-
ferases), as well as a nucleophilic antioxidant 
that traps and thus detoxifies reactive O2 species 
(ROS), including free radicals and peroxides, and 
reactive electrophilic metabolites� Because of this 
very property, and the assumption that GSH was 
not only far too large, but also too hydrophilic a 
molecule to enter the lipophilic P450 active sites, 
it has been often used in the past as a diagnos-
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tic probe to trap reactive metabolites that escape 
the P450 active site, and thus as an indicator of 
chemical reactivity external to the P450 active 
site� However, it appears that some quite large 
and promiscuous P450 active sites such as that 
of CYP3A4 (and possibly that of CYP2C8), can 
accommodate GSH, as determined by the telltale 
split Soret  UV–Vis difference spectrum charac-
teristic of thiol interactions with the sixth ligand 
of the P450 heme iron [80; K� K� Korsmeyer & 
M� A� Correia, unpublished observations, 1995]� 
Furthermore, this GSH-CYP3A4 binding exhib-
its positive homotropic cooperativity (Hill equa-
tion exhibiting an S50 of 8�6 mM and a Hill coef-
ficient of 2�2), thereby revealing an additional al-
losteric effector site for GSH-binding within the 
CYP3A4 active site [80]� At physiologically rel-
evant GSH concentrations, such GSH-CYP3A4 
binding disrupts the substrate homotropic cooper-
ativity assayed via the CYP3A4-dependent O-de-
benzylation of 7-benzyloxy-4-(trifluoromethyl)-
coumarin (7-BFC) and 7-benzyloxyquinoline, 
as well as that monitored through spectrally 
detectable substrate binding [80]� However, not 
all substrate-effector interactions were similarly 
affected� For instance, GSH increased CYP3A4 
binding of 1-pyrenebutanol (1-PB) monitored as 
its high-spin spectral (type I) complex, but had 
little effect on the CYP3A4 binding of either 
α-naphthoflavone or testosterone [80]�Given that 
GSH is routinely included in CYP3A4 reconstitu-
tion assays at relatively high concentrations [81], 
it is to be underscored, that the CYP3A4-heme-
iron–GSH interactions detected at 1–10 mM con-
centrations, while decreasing 1-PB and 7-BFC 
homotropic cooperativity, failed to competitively 
inhibit these substrates, and if at all increased 
their binding affinity (1-PB) and/or their activity 
(7-BFC) [80]� Such failure of GSH (unlike that 
of the organic lipophilic thiols and sulfide agents 
discussed above) to effectively compete out other 
substrates in functionally reconstituted CYP3A4 
systems, may be due to its relatively lower lipo-
philicity and consequently lower affinity for the 
lipophilic CYP3A4 active site, coupled with the 
expected dissociation that ensues from the P450 

heme iron upon CPR-mediated reduction and 
subsequent competition with O2 binding�

5.2.2  Coordination to P450 Ferrous 
Heme

The binding of molecular O2 to the ferrous P450 
heme iron is the sine qua non critical step in the 
P450 catalytic cycle� Thus, ligands that can ef-
ficiently compete out the O2 can very effectively 
block the P450 catalytic cycle and are highly 
competent inhibitors� Fortunately, among the 
very first such ligands to be tested during the pio-
neering days of P450 discovery was CO [82], a 
neutral ligand already known to bind the heme 
moieties of hemoglobin and myoglobin with very 
high affinity, and thus to effectively block their O2 
transport� As in the case of those hemoproteins, 
CO exclusively binds to the ferrous (reduced) 
form of P450 through coordination to the heme 
iron, giving rise to a spectrally detectable ferrous 
P450–CO complex with an absorption maxima 
at approximately 450 nm [82], the spectroscopic 
signature of all cytochrome P450 enzymes (P450, 
pigment absorbing maximally at 450 nm in the 
reduced-CO-bound state) [82]� More recently, 
when it became amply clear that far from being a 
single entity, multiple P450 families and subfam-
ilies exist, the suffix CYP (for cytochrome P450; 
CYP450 is factually incorrect!) was coined for 
each of these numbered P450 isoforms [83]� CO 
binding involves the donation of electrons from 
the carbon to the iron through a σ-bond as well 
as back-donation of electrons from the occupied 
ferrous iron d-orbitals to the empty antibonding 
π-orbitals of the ligand [84]� Early studies with 
model ferroporphyrins indicated that only those 
with a thiolate ligand trans to the CO yielded the 
450-nm absorption, thereby providing key evi-
dence for the presence of a thiolate fifth ligand 
in P450 [85]� The 450 nm absorption maximum 
of the ferrous P450–CO complex is proposed by 
some to reflect the red-shifted hyperporphyrin 
split Soret peak of the P450 heme iron–CO com-
plex [76]�
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CO inhibition is a diagnostic test of P450-
catalyzed processes, although the sensitivities of 
different P450 isoforms to CO differ [86] and a 
few P450-catalyzed reactions are resistant to its 
inhibition [87–89]� Moreover, the CO sensitivity 
to inhibition of P450 enzymes such as aromatase 
(CYP19) [90, 91] and P450scc (CYP11A1) [92] 
with multistep catalytic cascades, is drastically 
reduced as they traverse the conformational and 
ligand states inherent in each of those catalytic 
processes� The susceptibility of different fami-
lies to CO inhibition also varies, appearing to 
decrease in the order CYP2D>CYP2C>CYP3A 
among the major drug-metabolizing subfamilies 
of human liver P450 isoforms [86]�

5.2.3  Heme Coordination and 
Lipophilic Binding

Some of the most powerful reversible P450 in-
hibitors are agents that can simultaneously bind 
to the lipophilic regions of the active site as well 

as coordinate tightly to its prosthetic heme-iron 
atom (Fig� 5�2a)� Such dual tethering of the P450 
active site confers much greater inhibitory capac-
ity than that observed with agents that exploit 
only one of these binding modalities� Thus, the 
potency and effectiveness of such P450 inhibitors 
is dictated not only by their hydrophobic charac-
ter but also by the strength of the bond between 
their heteroatomic lone pair and the heme iron� 
Accordingly, organic alcohols, ethers, ketones, 
lactones, and other structures in which an oxygen 
atom of the ligand coordinates to the heme iron 
(Fig� 5�1d), or that stabilize the coordination of 
the distal water ligand, exhibit a Soret maximum 
at ≈ 415 nm [38–40] indicative of poor binding 
and thus are generally weak P450 inhibitors [38–
40, 92–97]� By contrast, agents that incorporate 
both lipophilic moieties that interact strongly 
with the P450 protein as well as nitrogen-con-
taining aliphatic or aromatic functions that bind 
the heme iron tightly (Fig� 5�2), displaying a typi-
cal “type II ” difference spectrum with a Soret 
maximum at 430 nm [38–40, 98, 99], are often 

Fig. 5.2  Dual tethering of nitrogenous P450 inhibitors� 
a Ketoconazole (KTZ) bound to the active site of a P450 
with a small active site cavity that allows hydrophobic 
interactions with cavity roof residues as well as coordina-
tion to the P450 heme iron, resulting in a potent and high-
ly effective inhibition of the enzyme function; b Structur-
al depiction of the much larger CYP3A4 active site with 
two molecules of KTZ stacked together in an antiparallel 
orientation, kindly provided by Dr� T� Sjogren [106]� The 
imidazole nitrogen of the first molecule coordinates with 
the heme iron (magenta), while its terminal keto group 
lies in a hydrophilic pocket lined by the Glu374, Arg106, 
and Arg372 side chains [106]� This interaction is further 
strengthened through π-stacking hydrophobic interactions 

with Phe304� The keto group of the second KTZ molecule 
is H-bonded to the Ser119-side chain, while its chloro-
benzyl and imidazole moieties extend towards the protein 
surface� This snug fit within the capacious CYP3A4 ac-
tive site makes KTZ a potent FDA-acceptable [36], in 
vitro CYP3A4 diagnostic probe; cStructural depiction of 
the CYP2E1 active site with a molecule of 4-methylpyr-
azole (4-MP) coordinated to its heme iron via its pyrazole 
nitrogen, kindly provided by Dr� E� Scott� 4-MP is shown 
in blue, heme in green and its iron atom in red� Note the 
exquisitely snug fit of 4-MP within the relatively smaller 
CYP2E1 active site cavity lined with its I-helix residues 
Ala299 and Thr303 [109]
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highly effective reversible inhibitors due to these 
remarkably synergistic features [15–25]� Thus, 
phenylimidazole, which inhibits P450 much 
more powerfully than either benzene or imidaz-
ole, its individual constituents, provides the sim-
plest example of such synergy [100]� For these 
reasons, pyridine, imidazole, and triazole moi-
eties have been widely exploited as nitrogenous 
heterocyclic scaffolds in the therapeutic develop-
ment of novel P450 inhibitors (Table 5�1) [15–
25]� Among the very first of these is metyrapone, 
an inhibitor of 11β-hydroxylase (CYP11B1), the 
enzyme that catalyzes the final step in cortisol 
biosynthesis [101]�This feature led to its use as 
a probe in the diagnosis and treatment of hyper-
cortisolism (Cushing’s syndrome) and other hor-
monal disorders [102]�

The inhibitory potency of most reversible P450 
inhibitors such as metyrapone and other nitroge-
nous heterocycles is determined by key structural 
features such as: (a) the intrinsic affinity of their 
nitrogen electron pair for the heme iron, (b) the 
degree to which this intrinsic affinity for the iron 
is modulated by steric interactions with substitu-
ents on the inhibitor [100, 103], (c) the lipophilic-
ity of the nonligating portion of the inhibitor [47, 
104], and, obviously, (d) the congruence between 
the geometry of the inhibitor and the volume of 
the active site cavity�These structural consider-
ations guided the development of ketoconazole, 
introduced in 1978 as a “potent, broad-spectrum 
antifungal agent” (Fig� 5�2a) [105]� However, the 
recognition that ketoconazole inhibited not just 
yeast P450 14α-demethylase (CYP51), but also 
the bifunctional 17-α-hydroxylase/17,20-lyase, 
CYP17, a key enzyme in androgen-synthesis 
in the host, led to its therapeutic exploitation in 
prostate cancer chemotherapy [106]� However, as 
we now know, ketoconazole also potently inhib-
its CYP3A4, the major human liver drug metabo-
lizing enzyme, and is in fact the preferred in vitro 
CYP3A4 diagnostic probe ( KI 0.0037–0.18 μM) 
recommended by the Food and Drug administra-
tion (FDA) [36]� X-ray crystal structural analyses 
reveal that up to two molecules of ketoconazole 
can occupy the capacious lipophilic CYP3A4 ac-
tive site in an antiparallel fashion, with the azole 
-nitrogen of one of the molecules coordinating 

the CYP3A4 heme iron tightly [107] (Fig� 5�2b)� 
Not surprisingly then, this CYP3A4 interaction 
particularly at the higher doses required for can-
cer chemotherapy, has led to numerous serious 
DDIs� Indeed, this issue coupled with ketocon-
azole’s potential for severe liver injury and ad-
renal gland perturbations led the FDA to issue a 
warning against its therapeutic use in 2013 [108]� 
Nevertheless, ketoconazole embodies many of 
the ideal structural features of an effective revers-
ible P450 inhibitor listed above (Fig� 5�2a), and 
thus has served as an instructive template in the 
development and structural refinement of other 
nitrogenous heterocyclic inhibitors that are more 
selectively tailored to target each specific P450 
isoform [20–25]� The quest to further improve 
on the selectivity and pharmacokinetic properties 
of ketoconazole has fueled the design and use in 
antifungal therapy of more potent, selective, and 
longer lasting CYP51 sterol 14α-demethylase 
inhibitors such as fluconazole, itraconazole, and 
terconazole (Table 5�1) [16, 21, 24]�

Some of the desirable structural features in 
an effective reversible P450 inhibitor, such as 
the individual geometries of the inhibitor and 
the P450 active site that contribute towards its 
inhibitory potency, also account for its relative 
inhibitory selectivity for individual P450 iso-
forms� They reveal why small molecular weight 
azole inhibitors such as 4-methylpyrazole (4-MP; 
Fig� 5�2c) and indazole (INZ) [109] are relatively 
potent, albeit reversible inhibitors of CYP2E1, 
a P450 with a relatively small active site cavity 
(≈ 190 Å3) [109, 110], but not of the much more 
voluminous CYP3A4 (950–1650 Å3) [107, 111, 
112]� Both 4-MP and INZ have been shown to 
coordinate the CYP2E1-heme iron through one 
azole nitrogen and to hydrogen bond through the 
adjacent nitrogen with the side-chain hydroxyl 
of the conserved Thr303 (the only polar group in 
an otherwise globular and highly nonpolar active 
site cavity), with the 4-MP methyl (Fig� 5�2c) and 
the INZ aryl resting snuggly against the lipophil-
ic active site roof [109]�

The exploitation of azoles and other nitrog-
enous heterocycles as scaffolds is by no means re-
stricted to the intentional development of selective 
P450 inhibitors as therapeutic agents (Table 5�1)� 
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Their widespread incorporation into a variety of 
other therapeutic agents is also the inadvertent 
cause of many unwarranted and undesirable DDIs 
[20, 33, 113–117]� Accordingly, cimetidine, once 
a popular over the counter H2-antagonist used in 
gastric ulcer therapy, was found responsible for 
many DDIs stemming from its imidazole-mediat-
ed inhibition of the metabolism of co-administered 
drugs [118]� This inadvertent side effect prompted 
the search for, and successful development of, 
non-imidazole containing H2-antagonists such as 
ranitidine that are devoid of this undesirable side 
effect [118, 119], as well as proton pump inhibi-
tors such as omeprazole, with considerably lower 
incidence of similar DDIs [120]�

More recently, inhibitors of specific kinases 
in the cellular signaling cascades that contain 
nitrogenous heterocyclic moieties (i�e�, quinazo-
line, quinolone, aminopyridine, aminothiazole, 
indizole, etc�) have been developed and clini-
cally tested as chemotherapeutic adjuvants in the 
treatment of various cancerous malignancies [33, 
113–117]� Many of these have been shown to in-
teract with P450s such as CYP3A4 and CYP2C8 
through type II and “type II-like” spectral interac-
tions, as well as time-dependent P450 inhibition 
[33, 113–117]� Initial clinical trials of pazopanib 
(Votrient, an oral antiangiogenic drug, known to 
inhibit tyrosine kinases of vascular endothelial 
growth factor (VEGF)-receptor, platelet-derived 
growth factor receptor, and c-KIT) indicated that 
the hepatic CYP2C8- and CYP3A4-dependent 
clearance of chemotherapeutic drugs such as pa-
clitaxel was significantly inhibited [114]� This 
suggests that in addition to their intrinsic phar-
macological utility, cancer chemotherapeutic 
adjuvants such as pazopanib may provide addi-
tional benefits by permitting dosage reduction of 
coadministered chemotherapeutic drugs with a 
narrow therapeutic index such as paclitaxel�

It must be underscored that until the advent 
of more potent and specific mechanism-based 
inactivators for targeting various P450s of patho-
logic relevance (i�e�, CYP19 /aromatase in breast 
cancer; CYP17/17, 20-lyase in prostate cancer), 
the structural exploitation of nitrogenous scaf-
folds (metyrapone, aminoglutethimide, imid-
azoles, and triazoles) with the objective of im-

proving their potency as well as P450 isoform 
selectivity was an enterprise of considerable 
therapeutic interest� This exercise led to the 
development and clinical testing of pyridyl-
aminoglutethimide, Fadrozole [CGS 16949A 
{4-(5,6,7,8-tetrahydroimidazo-[1,5-α]pyridin-
5-yl) benzonitrile}], Letrozole [CGS 20267, 
[4,4ʹ-(1H-1,2,4-triazol-1-yl-methylene)-bis-
benzonitrile)], CGS 18320B bis-( p-cyanophe-
nyl)imidazo-1-yl-methane hemisuccinate, and 
R-76713 [6-(4-chlorophenyl)1H 1,2,4 triazol-
1-yl)-methyl]-1-methyl-1H-benzotriazole as 
nonsteroidal aromatase inhibitors [16, 121–123] 
(Table 5�1)� Indeed, Letrozole once represented 
a highly promising imidazole as a second line of 
hormone ablative therapy in patients with hor-
mone-dependent breast cancer [123]�

5.2.4  Type II  Versus Pseudo Type II  
Spectral Interactions

It has long been assumed that nitrogenous het-
erocycles that interact with the P450 heme iron 
yielding a type II difference spectrum, also con-
fer greater metabolic stability to the complex 
than type I ligands, and thus may be viewed es-
sentially as P450 inhibitors (Fig� 5�1b)� This, as 
discussed earlier, is because the low-spin char-
acter of the P450 heme iron in such type II com-
plexes raises its redox potential, thereby imped-
ing CPR-mediated reduction [41, 42]� However, 
more recent evidence in the literature indicates 
that this notion must be revised� Studies of a 
synthetic chemical library based on a quinoline 
carboxamide (QCA) structural scaffold with ben-
zene, toluene, anisole, or N,N-dimethylaniline 
at the amide position and benzene, pyridine, py-
rimidine, or pyrazine at the two-position of the 
quinoline ring indicated that while some of these 
substituted QCA analogs yielded type I spectral 
interactions with CYP3A4, others yielded essen-
tially type II or type II-like spectral interactions 
with the enzyme [124–126]� Yet, far from being 
metabolically stable “dead-end” complexes, the 
latter not only exhibited respectable reduction 
rates but also in vitro intrinsic metabolic clear-
ances (V/K) that were up to 12-fold higher than 
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those of the corresponding structural QCA ana-
logs yielding type I spectra� Thus, in spite of ex-
hibiting type II spectral interactions, QCAs were 
quite efficiently metabolized by hepatic P450s at 
subsaturating concentrations [124–127]�

Instructive insight into this conundrum was 
provided through scrutiny of individual CYP3A4-
heme iron interactions with 17-ethinylestradiol 
(EE), a well-recognized suicide substrate, and its 
1,2,3-triazole (1,2,3-TRZ) derivative (1,2,3-TRZ 
incorporated at the EE-D-ring via “click” chem-
istry), through differential UV–Vis spectroscopy, 
continuous-wave electron paramagnetic reso-
nance (EPR) and hyperfine sublevel correlation 
spectroscopy (HYSCORE) EPR spectroscopy 
[128]� Upon EPR analyses, CYP3A4-heme iron–
EE complexes were indeed found to be high-spin, 
consistent with their type I spectral interaction, 
and this was further verified by HYSCORE EPR 
analyses that revealed the inherent displacement 
of water from the prosthetic heme-iron sixth axial 
ligand� Corresponding analyses of CYP3A4-
heme iron–1,2,3-TRZ-EE complexes revealed a 
type II -like spectral interaction, but surprisingly 
no alteration of the spin state or water displace-
ment from the basal water-ligated CYP3A4-
heme-iron complexes (Fig� 5�1c) [128]� This was 
in complete contrast to the binding of authen-
tic type II ligands such as imidazole or triazole 
(Fig� 5�1b) or 1,2,3-TRZ to CYP3A4 [128]� Thus, 
CYP3A4-heme iron–1,2,3-TRZ-EE complexes 
were found as water-bridged low-spin complexes 
that were metabolically competent, as verified by 
their ability to generate D-ring hydroxylated EE-
derivatives [128]� A similar water-bridged com-
plex was also observed in the crystal structure 
of M. tuberculosis CYP121 with fluconazole, an 
antifungal 1,2,4-TRZ-derivative [129]� Close in-
spection of the difference spectral data, however, 
revealed a remarkable feature of the CYP3A4–
1,2,3-TRZ-EE complexes relative to correspond-
ing CYP3A4 complexes with either imidazole or 
1,2,3-TRZ that exhibit a Soret maximum at 424 
or 422 nm, respectively, and thus are red shifted 
from the absolute CYP3A4 spectrum (416 nm 
Soret maximum) by 6 and 8 nm, respectively 
[128]� The Soret red shift of the CYP3A4–1,2,3-
TRZ-EE complex on the other hand was of the 

order of only 2 nm� Furthermore, the diminution 
of the CYP3A4 high-spin fraction (Δabs390 nm) 
in this complex was 0�34 relative to 1�0 in the 
CYP3A4–1,2,3-TRZ complex, with an even 
greater reduction in the peak minus trough inten-
sity of the calculated difference spectrum rela-
tive to that of the CYP3A4–1,2,3-TRZ complex 
[128]� Thus, unlike the authentic type II spectral 
signatures of CYP3A4-1,2,3-TRZ and imidaz-
ole, that of the CYP3A4–1,2,3-TRZ-EE com-
plex was more “type II-like” [128]� Inspection of 
the spectral interaction data of the metabolically 
competent QCA analogs indeed reveals that this 
“pseudo” type II spectral signature with dimin-
ished amplitude of spectral intensity and minimal 
Soret red shift is also their common feature� This 
was also true of all the other type II-like com-
plexes of the P450 isoforms other than CYP3A4 
examined [127, 128]� It is striking that this par-
ticular spectral signature resembles essentially 
that of the “modified type II” or “reverse type I” 
binding of the P450 heme-iron sixth ligand by 
organic alcohols and ketones [39, 130, 131]� Im-
portantly, the identification of this “pseudo” type 
II spectral signature is a valuable diagnostic tool 
in the preclinical assessment of potential novel 
drug candidates bearing nitrogenous heterocyclic 
pendants as either P450 substrates or inhibitors �

5.3  Catalysis-Dependent Inhibition

A significant number of different classes of com-
pounds are known to contain functional groups 
that have been shown to predispose the molecule 
to metabolism by particular cytochrome P450 
isozymes to form reactive intermediates that can 
either quasi-irreversibly or irreversibly inactivate 
the enzyme responsible for their formation� This 
irreversible inactivation by the reactive species 
generated catalytically is routinely superimposed 
on reversible inhibition of the P450 due to com-
petitive binding of the parent compound to the 
P450 active site� Compounds that inactivate en-
zymes in this fashion either irreversibly or qua-
si-irreversibly are considered to be mechanism-
based (catalysis-dependent, suicide, or time-
dependent) inactivators [132, 133]� Key to this 
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concept of mechanism-based inactivation (MBI) 
is the requirement that the inactivation involves 
formation of a covalent adduct with the protein 
or the heme prosthetic group without the release 
of the reactive intermediate from the protein into 
the medium� As a consequence, this definition 
rules out affinity labels, transition state analogs, 
and slow, tight binding inhibitors� As pointed out 
previously by Correia and Ortiz de Montellano 
[24], and underscored above, mechanism-based 
inactivators are much more enzyme specific than 
reversible inhibitors� The reasons for this are as 
follows: (a) the initial binding of the mechanism-
based inhibitor by the enzyme must satisfy all of 
the constraints imposed on reversible inhibitors; 
(b) the mechanism-based inactivator must also be 
able to function as a substrate since it must under-
go catalytic activation to form a reactive species; 
and (c) the resulting reactive intermediate formed 
as a consequence of the catalytic reaction must 
then find an appropriate target within the enzyme 
active site or in an access or egress channel to 
the active site and react with it, leading to irre-
versible modification of the protein or the heme, 
which then permanently removes that molecule 
from the pool of active enzymes� The four gen-
eral classes of mechanism-based inactivators of 
P450s include: (a) compounds that bind quasi-
irreversibly to the iron atom of the prosthetic 
heme; (b) agents that covalently modify the por-
phyrin framework of the heme; (c) compounds 
that lead to the destruction of the prosthetic heme 
group with consequent irreversible modifica-
tion of the P450 active site by the ensuing heme 
fragments; and (d) compounds that form cova-
lent adducts to amino acid residues in the apo-
protein� It should be noted that mechanism-based 
inactivators may concurrently inactivate by more 
than one mechanism, and the mechanism that 
predominates for any given inactivator may be 
determined by a number of factors, including the 
identity of the enzyme responsible for the forma-
tion of the reactive intermediate and the presence 
of other proteins such as b5 that may affect the 
catalytic trajectory and the three-dimensional 
structure/conformation of the active enzyme� 
So far, the factors that determine how a specific 

mechanism-based inactivator modifies a particu-
lar P450 enzyme are not well understood�

5.3.1  Quasi-irreversible Coordination 
to the Prosthetic Heme

Certain P450 substrates containing either a meth-
ylenedioxyphenyl (MDP) functionality that is 
biotransformed to an electrophilic carbene moi-
ety, or organic amines that are oxidized in situ 
to nitroso products, coordinate so tightly to the 
ferrous P450 heme-iron atom so as to become 
virtually irreversible, except under very spe-
cial experimental conditions [134–139]� Such 
substrate-derived “metabolic-intermediate (MI) 
complexes” requiring initial P450 catalytic turn-
over for their generation are both functionally 
incompetent and long-lived, effectively aborting 
further P450 catalytic recycling, and resulting 
in potent, highly efficient and long lasting P450 
inhibition, and consequent clinical DDIs� How-
ever, such an effective “freezing” of the P450 
heme iron also aborts its oxidative turnover, the 
root of the normal “wear and tear” of the P450 
protein, and thus a key determinant of its cellular 
disposal and physiological half-life� As a result, 
P450s engaged in these long-lived MI complex 
es accumulate over time and are “induced via sta-
bilization” [140–142]� However, because neither 
the P450 heme nor the protein moiety is irrevers-
ibly damaged in these MI complexes, and they 
are actually quasi-, rather than fully irreversible, 
it is plausible that under certain physiological 
circumstances such elevated levels of hepatic 
P450s, on release from their MI complex-bond-
age, could become functionally active and thus 
contribute to clinically relevant DDIs�

5.3.1.1  Methylenedioxyphenyl 
Compounds

Aryl and alkyl MDP compounds, many pres-
ent naturally in oils, spices, and medicinal herb 
supplements [143–146], and/or used either as 
therapeutic drugs or insecticide synergists [134–
139], are oxidatively transformed by P450 en-
zymes to reactive intermediates that coordinate 
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tightly to their heme iron atom [136] yielding 
MI complexes (Fig� 5�3)�Such MI complex for-
mation not only is time-, e NADPH, O2-, and 
concentration-dependent but can also be initiated 
with cumene hydroperoxide, instead of NADPH 
and O2, thereby verifying the vital role of P450 
catalytic turnover in this process [134, 147, 148]� 
The resulting ferrous complex typically exhibits 
a difference absorption spectrum with maxima 
at 427 and 455 nm, whereas the corresponding 
ferric complex exhibits a single absorption maxi-
mum at 437 nm [134, 137]� The peaks at 427 and 
455 nm apparently are due to structurally distinct 
ferrous complexes, although their interrelation-
ship remains obscure [136]� The ferrous com-
plex is relatively stable and can be isolated intact 
from animals treated with isosafrole, whereas the 
ferric complex is less stable and can be easily 
disrupted upon incubation with lipophilic com-
pounds, thereby regenerating the catalytically ac-
tive enzyme [149, 150]� By contrast, the ferrous 
complex is resistant to incubation with lipophilic 
compounds, but can be disrupted by irradiation at 
400–500 nm [151, 152]� As in the case of revers-
ible inhibitors such as ketoconazole (Sect� 5�2�3), 
concurrent binding interactions of the ligand 
with the lipophilic active site stabilize the fer-
rous P450 complex [153]� Accordingly, structure 

activity studies of 4-alkoxy-1,2-methylenedioxy-
benzene reveal that the size and lipophilicity of 
the alkoxy group is an important determinant of 
the corresponding MI complex stability: Alkyl 
chains of 1–3 carbons yield unstable MI com-
plexes whereas those with longer alkyl groups 
are relatively more stable [153, 154]� Transition 
from the ferrous to the ferric state weakens the 
complex, indicating the preference of the reactive 
MDP-derived species for strong coordination to 
the ferrous iron, much like CO�

The above findings, together with the charac-
terization of model synthetic carbene complexes 
[155, 156], provide a compelling argument for 
the catalysis-dependent generation of a carbene–
iron complex (Fig� 5�3)� The striking structural 
resemblance of a carbene to CO readily accounts 
for the unusual 455-nm absorption maximum of 
the MDP-derived MI complex, and its designa-
tion as a bona fide carbene complex� The nature 
of the MDP-derived complex with a spectral ab-
sorption maximum at 427 nm is presently less 
clear, but may reflect a MDP-derived carbene 
complex devoid of its thiolate ligation as in P420, 
or another as yet unidentified trans ligand [157]�
The observed incorporation of O2 from the me-
dium into the CO metabolite derived from the 
MDP bridge carbon (see below), and the observa-
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tion that CO formation is enhanced by electron-
withdrawing substituents, further rationalize the 
intrinsic carbene nature of the MDP–MI complex 
[158]� The structural intermediacy of the carbene 
in the MDP–MI complex is also further strength-
ened by the observation that addition of water to 
the iron-coordinated carbene produces an iron-
coordinated anion that, as expected, decomposes 
into the observed catechol and CO metabolites� 
The observed incorporation of an atom of molec-
ular O2 into a fraction of the MDP-derived CO, 
on the other hand, is less transparent and awaits a 
mechanistic explanation [158]�

The currently solid link between the MDP 
moiety and P450 inhibition, the requirement for 
P450-mediated metabolic activation of the MDP 
inhibitor, and the fact that the MDP bridge car-
bon is indeed the target of this oxidation, leave 
little doubt of its critical role in this inhibition� 
Although free radical [159], carbocation [160] 
and carbanion [151] intermediates have been 
implicated, it is evident that the formation of 
the carbene from the bridge-hydroxylated MDP 
metabolite, or from its radical precursor, is most 
consistent with all the available experimental 
evidence (Fig� 5�3)� The key role of the MDP 
group is further strengthened by the fact that 
substituents other than an alkoxy group on the 
MDP moiety suppress complex formation [135, 
136, 161]� The accessory role of an alkoxy sub-
stituent is mechanistically sound, given that its 
O-dealkylation would provide an independent 
route to the bridge-hydroxylated precursor of the 
carbene [152]� Furthermore, additional evidence 
for a protagonistic role of MDP bridge hydroxyl-
ation in P450 inhibition may be derived from the 
findings that aryldioxymethylenes are oxidized 
to catechols, carbon monoxide, carbon dioxide, 
and formic acid [135, 158, 162–164], and from 
the observation that deuterium substitution on the 
MDP-bridge carbon decreases the rate of CO for-
mation (kH/kD = 1.7–2.0). A similar isotope effect 
encountered in the in vivo insecticide synergiz-
ing activity of these compounds firmly confirms 
the mechanistic association between the forma-
tion of CO and the MI complex, with consequent 
P450 inhibition [165]�

Three mechanistic pathways are plausible for 
oxidation of the MDP–dioxymethylene bridge 
to the iron-coordinated carbene: In the first, hy-
droxylation of the dioxymethylene bridge fol-
lowed by elimination of a water molecule results 
in an acidic oxonium ion that upon deprotonation 
gives the carbene (Fig� 5�3, path a)�In the second, 
formation of the oxonium species could precede 
generation of the bridge-hydroxylated metabolite, 
if the ferryl species were to oxidize the radical 
formed in the hydroxylation reaction before the 
oxygen rebound occurs (Fig� 5�3, path b)� In the 
third, the same radical intermediate could bind to 
the iron of the [Fe-OH]3 +catalytic intermediate 
[155]� Subsequent deprotonation and intramo-
lecular transfer of the oxygen from the iron to the 
carbon would yield the bridge-hydroxylated me-
tabolite that could then decompose to the carbene 
complex as in path a� Regardless of the precise 
chemical mechanism of MI complex formation, 
the elucidation of potent and long-lasting P450 
inhibition via MDP-mediated MBI has provided 
mechanistic rationales for the beneficial exploi-
tation of piperonyl butoxide and other similar 
MDPs as insecticide synergists [134, 135, 162, 
163], as well as for the potential of adverse clini-
cal DDIs upon therapeutic MDP-containing drug 
coingestion�

Several clinically prescribed drugs and once 
prospective drug candidates contain the MDP 
scaffold (Fig� 5�4)� One example is paroxetine  
(Fig� 5�4), a selective serotonin reuptake inhibi-
tor (SSRI) [166–173]� In vitro studies with puri-
fied CYP2D6 indeed reveal the formation of MI 
complex es with the characteristic spectroscopic 
signature at 456 nm [172]� The intermediacy of a 
carbene is further supported by the fact that par-
oxetine is metabolized by CYP2D6 via demeth-
ylenation of the MDP group to a catechol and 
formic acid [169, 173]� The KI and kinact values of 
6.6 ± 2.7 μM and 0.25 ± 0.09 min− 1, respectively, 
calculated for the paroxetine-mediated inhibition 
of human liver microsomal CYP2D6-dependent 
dextromethorphan O-demethylation [172], are 
fully consistent with clinical reports of its potent 
CYP2D6 inhibition [166–173]� Another notewor-
thy example of an MDP-bearing drug is noscap-



1895 Inhibition of Cytochrome P450 Enzymes

O

O O

N
H

F

Paroxetine

O

O

N
Me

OMe
O

H

O
OMe

MeO

Noscapine

H

O

O
Me

H
N

Me

MDMA "Ecstasy"

O

O

N

Me

N

O

H2N

N

N N
N

Me

PH302
OO

N N

O

Me

O
HN

Tadalafil

Fig.5.4  Therapeutic, designer, and would-be drugs as 
examples of MDP compounds documented to be quasi-
irreversible inactivators of certain P450 isoforms via MI 

complexation� MDP methylenedioxyphenyl, MI meta-
bolic intermediate

 

ine (Fig� 5�4), a nonaddictive, phthalideisoquino-
line alkaloid derived from the opium poppy latex, 
and widely recognized as a safe and promising 
cough suppressant as well as a potential cancer 
chemotherapeutic agent when administered at 
much higher doses [174–177]� At antitussive 
doses, significant clinical DDIs of noscapine 
were reported with the anticoagulant warfarin, 
a drug with a relatively low therapeutic index 
[177–179]� Indeed, in vitro studies with human 
liver microsomes (HLMs) and purified recombi-
nant wild-type CYP2C9 (CYP2C9�1 variant) re-
vealed time-dependent inactivation of CYP2C9-
mediated S-warfarin 7-hydroxylation with con-
comitant 458-nm MI-complex formation [174]� 
Intriguingly, CYP2C9�2 and CYP2C9�3 allelic 
variants were even more efficiently inactivated by 
noscapine, with a > twofold increase in kinact/KI, 
thereby revealing the additional potential for fur-
ther aggravated CYP2C9-genotype-dependent 
DDIs, particularly upon ingestion of the much 

higher noscapine doses required for cancer che-
motherapy [174]� Yet another example of a thera-
peutic MDP drug is the phosphodiesterase-5 in-
hibitor, tadalafil (Cialis; Fig� 5�4), currently used 
for the treatment of erectile dysfunction [180]� 
Although in vitro assays by the manufacturer 
revealed that tadalafil indeed caused time- and 
concentration-dependent MBI of CYP3A4-de-
pendent midazolam 1ʹ-hydroxylation with a kinact 
of 0�21 ± 0�004 min− 1 and a KI of12 ± 0.4 μM, the 
drug was thought to be of sufficiently low po-
tency to be of any signficant concern in clinical 
DDIs [180]� Furthermore, studies in healthy vol-
unteers by the same team indicated no significant 
DDIs between midazolam and lovastatin, two 
CYP3A4 substrates, after ingestion of a single 
oral dose of tadalafil [180]� Although tadalafil in-
gested at the recommended dosage was thus ex-
onerated from any potentially meaningful DDIs, 
the concern remains that given its relatively long 
half-life of 17�5 h, it may not be quite as innocu-
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ous if ingested in an accidental overdose and/or 
in combination with other CYP3A4 inhibitory 
drugs such as macrolide antibiotic s, azole anti-
fungals, or HIV protease inhibitors [181]�

Yet another noteworthy example is the widely 
abused MDP-containing amphetamine-based 
designer drug MDMA ( N-methyl-3,4-methyl-
enedioxyamphetamine, “Ecstasy” or “Adam”; 
Fig� 5�4)� Due to the initially limited experimen-
tal focus on just CYP2B enzymes, its potential 
for MBI was long overlooked and it was thought, 
in fact, to not engage in any P450–MI complex 
ation [182]� It was only more recently that the 
principal role of CYP2D6 in its metabolism 
and consequent MBI was identified [183–190]� 
Indeed, MDMA inactivated recombinant yeast 
microsomal CYP2D6-dependent dextrometho-
rphan O-demethylation in a time- and concen-
tration-dependent process with a kinact and KI 
of 0�29 ± 0�03 min− 1 and 12.9 ± 3.6 μM, respec-
tively� Three HLM preparations, genotyped 
as extensive CYP2D6 metabolizers, similarly 
yielded kinact values ranging from 0�12 ± 0�05 to 
0�26 ± 0�02 min− 1, and corresponding KI values 
ranging from 14.4 ± 2.5 to 45.3 ± 32.1 μM [184]� 
Difference spectral analyses with recombinant 
yeast microsomal CYP2D6 also yielded the tell-
tale spectral signature of a 456-nm MI complex� 
In vivo, MDMA-elicited MBI apparently occurs 
promptly within 2 h of a recreational dose, and 
recovery to basal levels requires at the least 10 
days [188, 189]� While DDIs with the MDP-par-
oxetine have been documented, life-threatening 
DDIs also occur with other CYP2D6 inhibi-
tors such as the HIV-protease inhibitor ritonavir 
(RTV) and monoamine oxidase (MAO) inhibi-
tors [190, 191]� Much less is known about any 
similar MBI potential of the other illicit designer 
drugs such as MDE ( N-ethyl-3, 4-methylene-
dioxyamphetamine, or “Eve”), MDA (3, 4-meth-
ylenedioxyamphetamine) and the pure cocaine-
like MDP-psychostimulant methylenedioxypy-
rovalerone (MDPV)�

The highly active and widely used cancer 
chemotherapeutic epipodophyllotoxins etopo-
side and teniposide are also MDP-containing 
glycosides metabolized primarily by CYP3A4, 
and to a lesser extent by CYP2E1 and CYP1A2 

[192, 193], but their potential for MI complex-
ation was not addressed and similarly remains to 
be defined. Dimethyl-4,4ʹ-dimethoxy-5,6,5ʹ,6ʹ-
dimethylenedioxybiphenyl-2,2ʹ-dicarboxylate 
(DDB), an intermediate in the natural synthesis 
of Schizandrin C in Fructus Schizandrae chinen-
sis, is a hepatoprotective agent against a variety 
of liver injuries, including alcohol-induced ste-
atosis, that is widely used in Asia [194]� Of all the 
human liver P450 isoforms evaluated with diag-
nostic probes, it was found to potently inactivate 
CYP3A4-dependent testosterone 6β-hydroxylase 
with an IC50 value of 0.38 μM [194]� When incu-
bated in vitro with liver microsomes from preg-
nenenolone 16α-carbonitrile (PCN)-pretreated 
rats, it yielded a spectral maximum at ≈ 458 nm, 
characteristic of an MI complex [194]�

The MDP-pyrimidineimidazole compound 
PH302 (Fig� 5�4) is a potent and selective inhibi-
tor of the inducible ●NO synthase (iNOS), act-
ing via coordination to the iNOS-monomeric 
heme moiety so as to prevent dimerization of the 
protein [195]� Upon preclinical absorption, dis-
tribution, metabolism, and excretion (ADME) 
screening, it was eliminated as a drug candidate 
when it was found to also inhibit CYP3A4 rather 
potently [196]� Interestingly, PH302 serves as 
a highly illustrative example of a P450 inhibi-
tor with dual spectrally detectable mechanistic 
features: It forms a type II complex with recom-
binant CYP3A4 and competitively inhibits CY-
P3A4-dependent midazolam and testosterone hy-
droxylations with a KI of ≈ 2 μM [196]� However, 
at maximal PH302 concentrations, the maximal 
type II shift is only 72 % of that observed with 
imidazole at saturating concentrations [196]� By 
virtue of its MDP moiety, it also is a CYP3A4 
mechanism-based inactivator, exhibiting unusu-
al biphasic characteristics: An initial fast phase 
(0–1�5 min) with a kinact of 0�08 min− 1and KI of 
1.2 μM, and a second phase lasting 1.5–10 min, 
with a kinact of 0�06 min− 1 and KI of 23.8 μM. 
Interestingly, the difference spectrum resulting 
from these interactions exhibited both type II as 
well as MI complex spectral features, thereby 
revealing the simultaneous occurrence of dual 
P450 binding modes [196]� Its inherent MDP ac-
tivation to a carbene complex is consistent with 
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the concurrent detection of a catechol metabolite 
[196]�

Reports of adverse herb-drug interactions 
upon intentional or accidental coingestion of 
high enough doses of MDPs naturally present in 
dietary supplements, ritual beverages, and tradi-
tional phytotherapeutic medicines (Fig� 5�5) are 
also clinically abundant [143–146]� Safrole and 
isosafrole present (Fig� 5�5) in oil of Sassafras, 
once used as a root-beer flavoring agent, but 

now banned because of its carcinogenic poten-
tial, rank among the first discovered MDPs as 
P450 inhibitors [197–200]� Isosafrole, a precur-
sor in the chemical manufacture of the fragrance 
heliotropin (piperonal) and the recreational psy-
chostimulant MDMA, is a mechanism-based 
substrate/inactivator of CYP1A2 that in rats was 
found to produce a stable, isolable CYP1A2–MI 
complex and thus to “induce” CYP1A2 via stabi-
lization [141]�
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Sesame oil also contains several MDPs such 
as the antioxidant sesamol, and lignans such 
as the dietary fat-reducing supplement sesa-
min (Fig� 5�5) and sesamolin [2001]� Although 
CYP2C9 and CYP1A2 metabolized sesamin to 
its monocatechol metabolite, only CYP2C9 un-
derwent MBI, most likely via an MI complex with 
apparent KI and kinact values for diclofenac-4ʹ-
hydroxylation of 22 μM and 0.13 min− 1, respec-
tively [201, 202]� Sesamin was also reported to 
potently inhibit CYP3A -dependent metabolism 
of α- and γ-tocopherols to their corresponding 3ʹ- 
and 5ʹ-δ-carboxychroman metabolites in HepG2 
cells [203], although it is unclear whether such 
inhibition involves an MDP-associated MBI� 
The MDP-lignans [(−)clusin, (−)dihydroclusin, 
(−)yatein, (−)hinokinin, and (−)dihydrocubebin] 
isolated from Piper cubeba were all found to 
cause a potent and selective CYP3A4 MBI that 
was time-, concentration-, and NADPH-depen-
dent [204]� (-)Clusin and (-)dihydroclusin ranked 
as the most potent of these with KI values of 
0.082and 0.054 μM and kinact values of 0�253 and 
0�310 min− 1, respectively [204]� All these MDP-
compounds yielded the telltale spectrallydetect-
able, NADPH-dependent 455-nm MI complex 
[204]� Time-, concentration-, and NADPH-
dependent CYP3A4 MBI was also documented 
with the MDP-lignans (savinin, helioxanthin; 
Fig� 5�5) and 3-(3ʺ,4ʺ-dimethoxybenzyl)-2-
(3ʹ,4ʹ-methylenedioxybenzyl)butyrolactone from 
Acantho-panenax chiisanensis (stems and bark 
used as a tonic and sedative as well as antirheu-
matoid arthritis remedies), with KI values of 2�4, 
1.6, and 2.2 μM and kinact values of 0�030, 0�043, 
and 0�047 min− 1, respectively [205]�

The kavalactones in the anxiolytic extracts 
of kava kava Piper methysticum include me-
thysticin (M) and dihydromethysticin (DHM; 
Fig� 5�5) that in vitro exhibit the characteristic 
455-nm MDP–MI complex spectral signature 
with P450s present in HLMs [206]� Functional 
assays with relatively selective P450 diagnostic 
probes revealed that M inhibited CYP2C9 by 
58 %, CYP2D6 by 44 %, and CYP3A4 by 27 %, 
whereas DHM was found to inhibit CYP2C19 by 
76 %, CYP2C9 by 69 %, and 3A4 by 54 % [206]� 
Kava coingestion with other drugs, including 

sedative-hypnotics, barbiturates, and benzodi-
azepines (alprazolam; [207]), is associated with 
significant DDIs [206, 208–210], and studies in 
healthy volunteers also identified CYP2E1 as 
another target [211]� Similarly, the goldenseal 
( Hydrastis canadensis) MDP alkaloids berberine 
and hydrastine (Fig� 5�5) present at comparable 
levels in extracts popularly used as a medici-
nal immunostimulant against common cold and 
upper respiratory tract infections, were shown 
to inhibit CYP2C9-dependent diclofenac-4ʹ-
hydroxylation, CYP2D6-dependent bufuralol-1ʹ-
hydroxylation, and CYP3A4-dependent testos-
terone 6β-hydroxylation [212]� Of the two MDP 
alkaloids, berberine was the most potent against 
CYP2D6, exhibiting an IC50 value of≈ 45 μM, 
whereas it was the least inhibitory of CYP3A4 
(with an IC50 value of≈ 400 μM). On the other 
hand, the (+) and (−) hydrastine isomers were 
only weakly inhibitory towards CYP2D6 (with 
an IC50 value of≈ 350 μM for each isomer), but 
inhibited CYP3A4 with KI values of 25 and 
30 μM, respectively [212]� An apparent KI value 
of ≈ 110 μM and a kinact value of 0�23 min− 1 was 
determined for the NADPH-dependent CYP3A4 
MBI by (−) hydrastine [212]� Both hydrastine iso-
mers formed spectrallydetectable MI complexes 
with CYP3A4, CYP2D6, and CYP2C9, and the 
rate of these CYP3A4 and CYP2C9 MI complex-
es was significantly increased in the presence of 
b5 [212]� The clinical relevance of these in vitro 
findings is underscored by studies in healthy vol-
unteers that showed that oral goldenseal inges-
tion in the form of hard gelatin capsules (64�8 mg 
hydrastine, 77�4 mg berberine; 142�2 mg total 
MDP alkaloid /day) indeed strongly inhibited the 
metabolism of CYP3A4 and CYP2D6 diagnostic 
probes in vivo [211]�

Other natural MDP compounds of note include 
the sedative-antitussive gomicin C (isolated from 
the Schisandra fruit extracts; Fig� 5�5) and shown 
to cause a potent time- and concentration-depen-
dent MBI of CYP3A4 ( KI value of ≈ 0.399 μM 
and a kinact value of 0�092 min− 1) that is associat-
ed with spectrally detectable MI complexes [143, 
213]� The KI value of gomicin C as a competitive 
inhibitor of CYP3A4 (0.045 μM) is lower than 
that of ketoconazole (0.070 μM), the commonly 
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employed CYP3A inhibitory probe, reflecting 
its relatively tighter binding and greater inhibi-
tory potency [143, 213]� Piperine (Fig� 5�5), an 
alkaloid present in black pepper ( Piper nigrum) 
and traditionally exploited as an antidiarrheal 
remedy, is a mixed-type competitive inhibitor of 
CYP3A4 in in vitro studies with both HLMs and 
recombinant enzyme [145, 214–216]� Piperine 
and other MDP alkaloids from black pepper were 
also found to elicit a potent MPI of CYP2D6 in 
vitro [217, 218]� Indeed, piperine also inhibited 
the metabolism of CYP2D6-diagnostic probes 
(propranolol [219] and spartein [220]) in human 
volunteers in vivo, thereby underscoring its po-
tential for clinically relevant DDIs� Piperonylic 
acid, another MDP-containing natural product 
extracted from the bark of the Paracoto tree is 
also found to selectively and potently inactivate 
CYP73A1-dependent trans-cinnamic acid 4-hy-
droxylase via MI-complex formation in vitro 
with a KI = 17 μM, and a kinact = 0.068 min− 1 
[221]� Such quasi-irreversible inactivation of the 
core phenylpropanoid  pathway was also shown 
to occur in vivo in tobacco leaves and cell cul-
tures [221]�

Additional MDP compounds have been syn-
thesized and their human isoform selectivity as 
mechanism-based inactivators evaluated [222]� 
Their inactivating potential depends on the side-
chain structure, with bulky side chains such as 
1,4-benzothiazine inactivating some P450 en-
zymes but not others [222]� P450 heme iron–car-
bene complexes are also involved in the anaero-
bic reductive coordination of halocarbons to the 
heme-iron atom, but this reaction, as discussed 
previously (24), is linked to destruction of the 
prosthetic heme�

5.3.1.2  Alkyl/Aryl Amines
A second large class of agents known to form 
mechanism-based quasi-irreversible P450–MI 
complex es [15, 24, 25, 138, 139, 223–228] in-
cludes alkyl and aromatic amines, such as the 
monoamine oxidase inhibitor clorgyline [223], 
the SSRI sertraline [228], and many clinically 
useful macrolide antibiotics such as troleando-
mycin (TAO), clarithromycin, and erythromycin 
(Fig� 5�6; [229–235])� These amines are oxidized 

AQ1

to intermediates that coordinate tightly to the 
P450 ferrous heme, giving rise to a spectrum 
with an absorbance maximum at 445–455 nm 
[139]� Such MI-complex formation often, but not 
always, requires a primary amine moiety, but sec-
ondary and tertiary amines, as in the case of ser-
traline, amiodarone, TAO, and erythromycin, can 
also yield P450-MI complexes if they are first N-
dealkylated to the primary or secondary amines 
by P450s or flavin -monooxygenases (FMOs; see 
below) [31, 228, 236]�

Furthermore, unlike the competitive inhibition 
normally associated with type II coordination of 
amines to the P450 heme iron that occurs in the 
absence of any P450 catalytic turnover, the for-
mation of these tight, quasi-irreversible MI com-
plexes requires catalytic oxidation of the amine 
inhibitors (Fig� 5�7; [223, 226, 227])� Theprimary 
or secondary amines are apparently first hydrox-
ylated, given that the corresponding hydroxyl-
amines also generate similar complexes [138, 
228, 236]� However, their coordination to the 
P450 heme iron requires a further oxidative step 
beyond the hydroxylamine [138, 226]� Indeed, 
the entity coordinating the heme iron is most 
likely the nitroso function obtained by a further 
two-electron oxidation of the hydroxylamine 
(Fig� 5�7; [138, 227, 237])� The ultimate oxidative 
step may not always require active P450 catalytic 
participation given the rather facile hydroxyl-
amine autooxidation [238]� The coordination of 
a nitroso function is consistent with the finding 
that apparently identical complexes are obtained 
by reduction of nitro compounds [239]� The crys-
tal structure of the MIcomplex of a model iron 
porphyrin with a nitroso compound indicates that 
the nitrogen rather than the oxygen of the nitroso 
group is the atom chelated to the iron [155]�

Unlike the MDP-elicited MI complex dis-
cussed above, the alkyl/aryl amine -mediated 
P450 MI-complex can be easily disrupted upon 
oxidation of the P450-ferrous heme to the ferric 
state with potassium ferricyanide, with conse-
quent reversion of the P450 enzyme to its native 
resting state� This oxidation-dependent reversal 
serves as a reliable diagnostic test of both alkyl- 
and aryl-nitroso MI complex es [231, 240]� On the 
other hand, in sharp contrast to the alkyl-nitroso 
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Fig. 5.6  Macrolide antibiotics and other therapeutic 
amine drugs documented to inactivate certain P450 iso-
forms via MIcomplexation� Following cointake of these 
therapeutic amines with other therapeutic drugs, in vivo 

P450 mechanism-based inactivations formed via either 
pathway illustrated in Fig� 5�7 result in clinically relevant 
DDIs� MI metabolic intermediate, DDI drug–drug interac-
tions
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MI-complexes, the aryl-nitroso MIcomplexes are 
only transiently formed with NADPH- or dithi-
onite-reduced microsomes [226]� They are un-
stable in the presence of excess dithionite, which 
reduces the nitrosomoiety back to the hydroxyl-
amine [226]� The type II binding of this hydrox-
ylamine to the ferrous P450 heme is apparently 
responsible for the observed spectral shift from 
455 nm of the MI complex to the 423 nm peak of 
the type II complex on addition of excess dithion-
ite [226]� Notably, this relative chemical instabil-
ity of aryl-nitroso MI-complexes to either oxida-
tion or reduction could most likely account for 
the observed underrepresentation of aryl amine 
drugs on the one hand, and the corresponding 
remarkable preponderance of alkyl amine drugs 
on the other, as MI complexed associated with a 
significant incidence of clinically relevant DDIs 
[31, 235, 236]�

It is now increasingly evident that not all sec-
ondary amines require the initial N-dealkylation 
to the primary amine to form an MI complex 
(Fig� 5�7)�The hydroxylamine metabolites of 
some secondary amines such as N-methylamphet-
amine [241], N-benzylamphetamine [242], desip-

ramine, S-fluoxetine, N-desmethyldiltiazem, and 
sertraline are even more efficient MI complexes 
than the corresponding primary amines (Fig� 5�6; 
[228, 236, 243])� In the case of desipramine, S-
fluoxetine, and N-desmethyldiltiazem, the rela-
tive rates of MI-complex formation have been 
shown to follow the order secondary hydrox-
ylamine > secondary amine >> primary amine 
[236]� Furthermore, the ensuing primary amine 
metabolites were actually shown to competitively 
inhibit the P450 MI complexation by their cor-
responding precursor secondary amines, thereby 
indicating that N-hydroxylation rather than N-
dealkylation of these secondary amines is the 
major pathway to their MI complexation [236]� 
This may also explain why in spite of higher cir-
culating plasma levels of the primary alkyl amine 
metabolites relative to the parent drug, little cor-
relation often exists between the N-dealkylation 
of some secondary alkyl amines by a given P450 
enzyme and its MI complexation [31]�

Moreover, while a secondary amine such 
as the SSRI sertraline is capable of being N-
demethylated by multiple hepatic P450 iso-
forms (such as CYP2B6, CYP2C9, CYP2C19, 
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Fig. 5.7  Mechanistic pathways to the quasi-irreversible 
mechanism-based inactivation via P450-catalyzed MI-
complex generation from amines� Pathway “a” entails 
P450-mediated sequential N-dealkylation of secondary 
and tertiary amines to the primary amine that is then oxi-
dized to the hydroxylamine� The latter requires a further 
P450-mediated or autocatalytic oxidation to the nitroso 

function, whose nitrogen atom chelates the heme iron� 
Recent studies [228, 240] provide persuasive evidence 
that secondary and tertiary amines need not be first N-
dealkylated to the primary amine, as secondary amine 
hydroxylamines are much more proficient in MI com-
plexation than the corresponding primary amine derived 
hydroxylamines, thus favoring mechanistic pathway b
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CYP2D6, and CYP3A4), only CYP3A4 incurs 
MBI, with KI and kinact values of 70.5 ± 14.4 μM 
and 0�131 ± 0�008 min− 1, respectively, yielding 
the characteristic 455-nm MI spectral signature 
upon incubation of HLMs with sertraline but not 
N-desmethylsertraline, its major N-demethylated 
metabolite [228]� These studies thus provide 
compelling additional support to the growing 
evidence that direct N-hydroxylation of the sec-
ondary amine rather than its N-demethylation to 
the primary amine is the critical pathway leading 
to its MI complex mediated MBI [228, 236]�

They also underscore another relevant feature: 
Although multiple hepatic P450 enzymes metab-
olized the secondary amine sertraline to its pri-
mary amine (Fig� 5�7), they were not all suscep-
tible to MBI by this drug [228]� This is also true 
of the N-demethylation of the SSRI fluoxetine to 
norfluoxetine by various human hepatic P450s 
including CYP2D6 and CYP2C19 [244]� In spite 
of its substantially higher affinity (Km = 2.1 μM) 
and Clint = 2.9 μM− 1 min− 1 in this N-demethyl-
ation, CYP2D6 is not inactivated by the drug, 
whereas, CYP2C19 with an 82-fold lower af-
finity (Km 172 μM) and Clint = 0.23 μM− 1 min− 1 
incurs rapid MBI via MI-complex formation [31, 
245, 246]� This differential susceptibility to MI 
complexation reveals that such differences may 
be dictated by the specific active site structural 
architecture of each P450 isoform� Thus, relative 
to various human P450 isoforms, the remarkably 
higher incidence of CYP3A4 MI complexation is 
attributed, at the least partly, to its spacious and 
highly promiscuous active site [31]�

Accordingly, many clinically relevant alkyl 
amine drugs are known to inactivate CYP3A4 via 
MI complexation� For instance, in addition to in-
activating CYP2C19, fluoxetine also inactivates 
CYP3A4 in a time- and concentration-dependent 
manner [246, 247], with a spectrally detectable 
(≈ 455 nm) MI complex most likely engendered 
via its hydroxylamine, with KI and kinact values 
of 5.26 ± 1.28 μM and 0.017 ± 0.002 min− 1, re-
spectively, using CYP3A4-dependent midazolam 
1ʹ-hydroxylation as a functional probe [246, 247]� 
Similarly, the calcium channel blocker, verapamil 
(a tertiary alkyl amine; Fig� 5�6) and its major me-
tabolites N-desalkylverapamil and norverapamil 
are all found to inactivate CYP3A4, yielding the 

spectral MI-complex signatures with KI and kinact 
values of 6.46 ± 2.19 μM and 0.39 ± 0.06 min− 1 
for R-verapamil, 2.97 ± 0.30 μM and 
0�64 ± 0�04 min− 1 for S-verapamil, 5.89 ± 0.83 μM 
and 1�12 ± 0�08 min− 1 for (±) norverapamil, and 
7.93 ± 0.45 μM and 0.07 ± 0.00 min− 1 for N-de-
salkylverapamil with the functionally reconsti-
tuted recombinant CYP3A4 enzyme [248–250]� 
The CYP3A4 inactivation potency of the vera-
pamil enantiomers and their metabolites based on 
their individual kinact/KI ratios could be ranked in 
the order: S-norverapamil > S-verapamil > R-nor-
verapamil > R-verapamil > N-desalkylverapamil 
[249, 250]� Interestingly, these studies also re-
vealed that, although the secondary alkylamine 
N-desalkylverapamil was found at plasma levels 
comparable to those of the parent drug and its N-
demethylated metabolite norverapamil (another 
secondary alkylamine), it was not quite as effi-
cient as either of the latter two in CYP3A4 MBI� 
This could partly be due to its higher KI value 
[249, 250], possibly reflecting less tighter bind-
ing to the CYP3A4 active site upon loss of the 
lipophilic 2-(3,4-dimethoxyphenyl)-ethyl moiety 
through N-dealkylation�

Administration of the antiarrhythmic tertiary 
amine amiodarone (Fig� 5�6) to rodents (rats, 
mice, and hamsters) is also known to result in MI 
complexes, most likely derived from a nitroso 
metabolite [251]� Although in vivo amiodarone 
is known to interact with substrates of human 
CYP1A2, CYP2C9, CYP2D6, and CYP3A4, 
its MBI potential in vitro towards each of these 
P450s is somewhat ambiguous� Thus, both amio-
darone and its major metabolite N-desethylamio-
darone are capable of inactivating P450s, but in 
some cases are found to do so differentially� In 
one study [252] with recombinantly expressed 
P450s and diagnostic functional probes, amioda-
rone but not N-desethylamiodarone, inactivated 
CYP3A4 with KI and kinact values of 13.4 μM and 
0�06 min− 1� N-desethylamiodarone, in the other 
study [253], inactivated various other P450s 
with respective KI and kinact values of 1.0 μM 
and 0�03 min− 1 for CYP1A1, 11.6 μM and 
0�03 min− 1 for CYP1A2, 0.6 μM and 0.02 min− 1 
for CYP2B6, and 1.3 μM and 0.12 min− 1 for 
CYP2D6� In yet another study [254], using the 
cocktail substrate mixture approach, both the 
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parent drug and its major metabolite inactivated 
CYP3A4 in a time- and concentration-dependent 
manner with KI and kinact values of 42.4 μM and 
0�02 min− 1 for amiodarone, and 25.8 μM and 
0�03 min− 1 for N-desethylamiodarone, the latter 
exhibiting a greater inactivation potency ( kinact/KI 
ratio of 1�24:0�52 for the parent drug)� This study 
found that both amiodarone and N-desethylami-
odarone also inactivated CYP2C9, but that only 
N-desethylamiodarone inactivated CYP2D6 ( KI 
and kinact values of 29.8 μM and 0.05 min− 1), 
rather potently ( kinact/KI ratio of 1�61) [254]�

The consistent finding that only N-desethy-
lamiodarone, but not amiodarone, inactivates 
CYP2D6 raises another issue: Given that sev-
eral P450 isoforms metabolize amiodarone to 
N-desethylamiodarone, the possibility exists that 
in vivo, the reactive metabolite generated by one 
P450, on escape from its active site may actu-
ally inactivate another susceptible neighboring 
P450, even though the latter is not itself directly 
responsible for the initial N-dealkylation in the 
inactivation cascade� In the case of secondary 
and tertiary amines, the principal instigator of 
the MBI may even be a non-P450 enzyme such 
as a flavin-containing monooxygenase (FMO)� 
Accordingly, it was shown that N-cyclopropyl-
benzylamine forms MI complexes with P450s 
in liver microsomes, but not in liver microsomes 
gently preheated so as to inactivate FMOs, or in 
functionally reconstituted systems that excluded 
FMOs [255]� By contrast, N-hydroxy-N-cyclo-
propylbenzylamine and N-benzylhydroxylamine 
were much more efficient at generating MI com-
plexes in liver microsomes gently preheated so 
as to inactivate FMOs or functionally reconsti-
tuted systems [255]� The corresponding nitrone 
(PhCH = N(O)cPr) species is even more efficient 
than the parent compound, and such inactivation 
is considerably much faster than the hydrolysis 
of N-hydroxy-N-cyclopropylbenzylamine to a 
primary hydroxylamine� Based on these find-
ings, the proposed reaction trajectory to the MI 
complex entails an initial oxidation of N-cyclo-
propylbenzylamine by a microsomal FMO to 
N-hydroxy-N-cyclopropylbenzylamine,  which 
is further oxidized either by a P450 (CYP2C11) 
or a FMO to a different nitrone (C2H4C=N(O)
CH2Ph) which hydrolyzes to N-benzylhydrox-

ylamine and is further oxidized to yield the ni-
troso –MI complex or the oxime product [255]� 
These findings underscore the strong possibility 
that the potential for in vivo MI-complex forma-
tion and consequent clinically relevant DDIs of 
a drug candidate may be seriously overlooked, 
if its MBI potential were to be assessed in vitro 
with just one P450 or one functional probe� Ap-
parently, multiple other P450s and/or FMOs may 
participate in generating suitable metabolic inter-
mediates that serve as reactive precursors for MI 
complexation of certain P450s�

The tertiary amine macrolide antibiotic 
s erythromycin and troleandomycin (TAO; 
Fig� 5�6) have long been known to form typical 
455-nm MI complex es, particularly with CYP3A 
enzymes in humans as well as rodents [140, 142, 
224, 225, 229, 230, 256, 257]� The MI complexes 
can be isolated intact and purified, and at a time 
when recombinant P450 technology was not yet 
available, such MI complexation afforded a con-
venient approach to purify the relatively intrac-
table CYP3A enzymes from liver microsomes 
[140, 258, 259]� Such in vivo MI complexation 
of TAO or erythromycin to the heme of CYP3A 
enzymes not only inhibits their functional activ-
ity but also stabilizes them and prolongs their 
half-lives in hepatocytes [142]� Functional disso-
ciation of these MI complexes with ferricyanide 
is found to fully restore their activity� A major 
consequence of such in vivo MI complexation, 
particularly on repeated administration, is that 
the cellular CYP3A protein is increased, due to 
“induction” via protein stabilization [142, 257–
259]� This CYP3A protein stabilization could 
stem from substrate-induced conformational sta-
bilization and/or suppression of its futile oxida-
tive turnover in vivo by MI complexation� This 
latter possibility is the most plausible, given that 
inhibition of CPR [10, 11] or conditional deletion 
of CPR [12, 13] that suppresses catalytic turn-
over, also similarly results in P450 induction via 
stabilization�

The broad-spectrum macrolide antibiotic clar-
ithromycin (Fig� 5�6) has been shown to form he-
patic CYP3A –MI complexes when administered 
to control or dexamethasone (DEX)-pretreated 
rats [229, 260]� In vitro studies with DEX-pre-
treated rat liver microsomes (enriched in CYP3A 
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content) revealed that MI complexation was most 
efficient with clarithromycin N-oxide and N-des-
methylclarithromycin relative to the parent com-
pound both in their time of onset as well as extent� 
Repeated intraperitoneal administration of these 
compounds to rats also revealed that these two 
metabolites were more efficient than the parent 
compound in “inducing” hepatic P450 content, 
albeit not quite as potently as TAO [260]� Biop-
sy sampling of the duodenal mucosa of human 
volunteers repeatedly administered clarithro-
mycin (500 mg twice daily/7 d) revealed that it 
also reduced their duodenal CYP3A-dependent 
1ʹ-hydroxymidazolam and 4-hydroxymidazolam 
hydroxylation by 74and 63 %, respectively, ver-
sus the corresponding baseline values [261]� This 
clarithromycin-elicited lowering of the intestinal 
CYP3A content was associated with a doubling 
of the dose-normalized midazolam plasma con-
centration after intravenous administration and 
a corresponding decrease in the ratio of serum 
1ʹ-hydroxymidazolam/midazolam relative to 
baseline values, consistent with the observed 
doubling of the gut wall bioavailability of oral 
midazolam [247]� Immunoblotting analyses re-
vealed a small, albeit not statistically significant 
increase in intestinal CYP3A4/5 content normal-
ized to villin content, consistent with possible 
CYP3A stabilization upon clarithromycin-elic-
ited MI complexation [261]� Furthermore, indi-
viduals exhibiting overall higher CYP3A activity 
due to expression of both CYP3A4 and function-
ally active CYP3A5 were proposed to be at a 
greater risk for clarithromycin-elicited DDIs than 
individuals lacking functional CYP3A5 expres-
sion [261]� The macrolide antibiotic tiamulin, a 
semisynthetic derivative of the antibiotic pleuro-
mutilin, is used in meat producing domestic ani-
mals in Europe and Mediterranean countries for 
the treatment of enteric and respiratory diseases, 
and such use in veterinary medicine is associated 
with toxic DDIs, when coadministered with other 
P450 competitive drug substrates or inhibitors� 
Indeed, tiamulin was also found to generate MI 
complexes with CYP3A enriched rifampin-pre-
treated rabbit liver microsomes [262]. At 125-μM 
concentration, the extent of CYP3A MI complex-
ation was in the order of tiamulin>erythromycin>

TAO>roxithromycin>tylosin, but non-detectable 
with spiramycin and tylmicosin [262]�

Finally, HIV-protease inhibitors such as am-
prenavir, indinavir, nelfinavir, lopinavir, sa-
quinavir, and RTV have long been known as 
potent P450 inhibitors [263–270]� When their 
MBI potential was tested using pooled HLMs, 
recombinant rCYP3A4 (+b5), and rCYP3A5 
(+b5), with CYP3A -dependent testosterone 
6β-hydroxylation as the functional probe [31, 
271], all these agents exhibited time- and concen-
trationdependent MBI, with RTV (See Fig� 5�15) 
being not only the most potent ( KI = 0.10 and 
0.17 μM, respectively), but also the most effi-
cient ( kinact = 0.32 and 0.42 min− 1, respectively) 
against rCYP3A4 (+b5) and HLMs [271]� On 
other hand, nelfinavir was the most efficient inac-
tivator of CYP3A5 ( kinact = 0.47 min− 1) and RTV, 
the most potent (KI = 0.12 μM). Most impor-
tantly, all of these HIV-protease inhibitors with 
the exception of lopinavir and saquinavir were 
also found to exhibit spectrally detectable MI 
complexation of rCYP3A4 (+b5) [271]� This is 
particularly intriguing for RTV, whose potential 
for MI complexation is not entirely obvious from 
either its chemical structure or its major site of 
oxidation (See Fig� 5�15)� While the role of RTV 
as a potent CYP3A inhibitor is incontrovertible 
and supported by ample in vivo data, the mode 
of this inhibition remains highly controversial� 
To date, the mechanisms of its CYP3A inhibition 
include: Irreversible type II binding with conse-
quent lowering of the P450-heme redox potential 
to effectively block CPR-electron transfer [272], 
MBI via MI complexation [271], and MBI via 
heme-adduction to the CYP3A protein[265, 273; 
see below]� Although supportive experimental 
evidence exists for each of these mechanisms, 
it is puzzling how the virtual catalytic blockade 
invoked in the first mechanism could ever be 
reconciled with the other two inactivation modes 
that require P450 catalytic turnover and thus 
CPR-reduction�

5.3.1.3  1,1-Disubstituted and Acyl 
Hydrazines

A similar mechanism is also involved in P450 in-
hibition by 1,1-disubstituted hydrazines and acyl 
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hydrazines� In this process, 1,1-disubstituted, but 
not monosubstituted, hydrazines are oxidized by 
P450 enzymes to products that coordinate tightly 
to the heme-iron atom (24)� These complexes are 
also formed in a time-, NADPH-, and oxygen-
dependent manner [274], and are characterized 
by a ferric absorption maximum at ~ 438 nm 
and a ferrous absorption maximum at 449 nm 
[274]� Liver microsomal P450s oxidize isoniazid 
and other acyl hydrazines, yielding a transient 
complex with a similar absorption maximum 
at 449 nm [275, 276]� However, the isoniazid 
complex is only stable in the ferrous state, dis-
sociating upon the addition of ferricyanide [277]� 
Model studies with synthetic iron-porphyrins in-
dicate that 1,1-dialkylhydrazines are oxidized to 
disubstituted nitrenes that form end-on complex-
es with the iron� The nitrene complexes formed 
in the reactions of 1-amino-2,2,6,6-tetramethyl-
piperidine and several iron tetraarylporphyrins, 
characterized by nuclear magnetic resonance 
(NMR), Mössbauer, and X-ray analyses [278, 
279], strongly support the likelihood that the 
P450 complexes generated during the oxidation 
of 1,1-disubstituted hydrazines, and possibly acyl 
hydrazines, are aminonitrene-iron complexes 
(Fig� 5�8)� This oxidative conversion of the di-
alkylhydrazines to aminonitrenes could occur ei-
ther via initial hydroxylation of the hydrazine or 
via stepwise electron removal from the hydrazine 
(Fig� 5�8)�

5.3.2  Covalent Binding to the 
Prosthetic Heme and 
Modification of the P450 Protein 
by Heme Fragments

P450s may often be irreversibly inactivated via 
reaction of the reactive intermediate formed from 
the mechanism-based inactivator by covalent 
modification of the heme group [24]� In numer-
ous instances, heme alkylation has been demon-
strated by the isolation and structural character-
ization of modified hemes [24]� Structural char-
acterization of the modified hemes is essential 
since loss of enzyme content that is comparable 
to loss of heme does not always establish unam-
biguously that heme modification is responsible 
for enzyme inactivation� It is also possible that 
a heme adduct is formed that is either reversible 
or too unstable to be isolated� The quantitative 
correlation of enzyme inactivation with the for-
mation of a heme adduct(s) is technically quite 
difficult� In the absence of such data, it is difficult 
to rule out the possibility that the enzyme is in-
activated in part by mechanisms such as protein 
modification even when it has been conclusively 
demonstrated that there is heme alkylation�

In the third edition of Cytochrome P450: 
Structure, Mechanism, and Biochemistry 
(Chap� 7), the processes of the covalent binding 
of mechanism-based inactivators to the prosthetic 
heme, the modification of the P450 apoprotein by 

N

N N

N
Fe+2

R

N NH

OHR

-H2O

R

N N:

R

..

R

N NH

R

.
R

N NH2

R

[Fe=O]+3 [Fe=OH]+3

[Fe=OH]+3

N:

N
RR

..

Fig. 5.8  Mechanistic pathway for P450 heme iron coordination by the nitrene species derived from the metabolic 
activation of 1,1-dialkylhydrazines

 



200 M. A. Correia and P. F. Hollenberg

heme fragments, as well as other modes of P450 
heme degradation brought about by mechanism-
based inactivators are discussed in detail [24]� 
The reader is referred to that very comprehensive 
review for more details� It is noteworthy, how-
ever, that these processes can have significant 
cellular and pharmacological consequences� Ac-
cordingly, the heme-modified P450 proteins are 
sensed as “aberrant/damaged” and targeted for 
cellular disposal by the ubiquitindependent 26S 
proteasomal degradation [280]� Furthermore, 
as discussed elsewhere [14], the heme-denuded 
P450 proteins may also be subject to increased 
proteolytic disposal, if the supply of fresh cellu-
lar heme required for heme recycling upon de-
struction of the existing prosthetic heme moiety 
is inadequate�

5.3.3  Covalent Binding to the P450 
Protein

A variety of functional groups that either occur 
naturally or have been specifically engineered 
into drugs to increase their stability, solubility, 
or bioavailability have been shown to predis-
pose these drugs to metabolism by a particular 
P450 isozyme or isozymes in such a way as to 
generate reactive intermediates that can lead 
to MBI by one or more of the previously men-
tioned routes� These molecules can be grouped 
according to their structural aspects and they fall 
into a number of major categories including: (a) 
various sulfur-containing compounds (e�g�, car-
bon disulfide [281–283], diethyldithiocarbamate 
[284], isothiocyanates [285], mercaptosteroids 
[286–293], parathion [294,295], thioureas [296], 
thiophenes [297], and tienilic acid [298]; (b) 
various halogen containing compounds such as 
chloramphenicol [299–302], N-monosubstitut-
ed dichloroacetamides [303], and N(2-p-nitro-
phenethyl) dichloroacetamide [304]; (c) acety-
lenes and alkyl and aryl olefins [305–311] such as 
10-undecynoic acid [305,310], 1-ethynylpyrene 
[308,310], 17β-ethynylprogesterone [312,313], 
17α-ethynylestradiol [313–318], 1- and 2-ethy-
nylnaphthalene [306,307,309,319], 7-ethynyl-
coumarin (7-EC) [320], gestodene [321], mife-

pristone [322,323], and secobarbital [324]; (d) 
furanocoumarins such as bergamottin and 6ʹ,7ʹ-
dihydroxybergamottin (6ʹ,7ʹ-DHB) [325–327], 
8-methoxypsoralen (8-MOP, methoxsalen) [328–
336], and the furanopyridine, L-754,394 [337–
339] and (e) compounds such as carbamazepine 
(CBZ) and tamoxifen that are hydroxylated to 
form catechol metabolites [340–343]� Although 
the details of the mechanisms by which some of 
these compounds inactivate the P450s remain un-
clear, we now have significant information about 
the mechanisms by which many of these inhibi-
tors are activated to form reactive intermediates 
and, in some cases, information is known about 
the sites on the P450s where they bind covalently 
leading to the inactivation�

5.3.3.1  Organosulfur and Halogenated 
Compounds

The incubation of liver microsomes with [35S]-
parathion leads to radiolabeling of the apoprotein; 
however, there is no radiolabeling of the protein 
when the parathion ethyl groups are 14C-labeled 
[294,295]� Immunoprecipitation of the labeled 
P450 using anti-P450 antibodies leads to recov-
ery of 90 % of the 35S-label covalently bound to 
microsomal proteins� During the incubation, ap-
proximately 75 % of the P450 prosthetic heme is 
degraded to unknown products, but ~ 4 nmol of 
radiolabeled sulfur are covalently bound to the 
apoprotein for each nmol of heme chromophore 
that is lost� Most (50–75 %) of the radiolabeled 
sulfur can be removed from the protein by treat-
ment with dithiothreitol (DTT) or cyanide, sug-
gesting that the bulk of the sulfur label is present 
in the form of hydrodisulfides (RSSH)� How-
ever, the enzyme cannot be reactivated by these 
treatments� The binding of multiple equivalents 
of radiolabeled sulfur to the apoprotein in these 
studies suggests that catalytic activation of the 
sulfur of parathion continues despite covalent at-
tachment of the sulfur to the protein until the resi-
due on the protein that is critically involved in ca-
talysis is modified or the heme itself is damaged 
or is released from the protein as a consequence 
of multiple reactions damaging the apoprotein 
[294]� A suggested mechanism for the inactiva-
tion is shown in Fig� 5�9� This mechanism is sup-



2015 Inhibition of Cytochrome P450 Enzymes

ported by the following observations: (a) cova-
lent binding of the radiolabeled sulfur to the apo-
protein; (b) the ability of P450s to oxidize sulfur 
compounds to S-oxides; and (c) the formation of 
metabolites where oxygen has replaced the sul-
fur� Studies by Murray and coworkers have dem-
onstrated that at low concentrations parathion 
competitively inhibits some rat liver P450s (i�e�, 
CYPs 2B1 and 2C6), whereas at higher concen-
trations it inactivates several P450s, including 
CYPs 2A1, 2A2, 2C11, 3A2, and 3A4, but does 
not inhibit CYP2B1 or CYP2D6 [344–347]� The 
inactivations are observed in vitro but not in vivo 
[345–348]� Studies with human liver microsomes 
in vitro demonstrated that CYP3A4 is the prin-
cipal isoform inactivated in human liver micro-
somes, whereas CYPs 2C9 and 1A2 are minor 
forms that are also inactivated, whereas there is 
no inactivation of CYP2E1 [344–347]� Although 
incubation of parathion with NADPH-supple-
mented rat and human liver microsomes or puri-
fied recombinant P450 s leads to destruction of 
the prosthetic heme, the relevance of these find-

ings in vivo has not yet been established [348]� 
The concentrations of parathion required for MBI 
of the P450s in vitro are considerably higher than 
the concentrations causing death through their in-
hibition of acetylcholinesterase [348, 349]�

Recent studies using rat liver microsomes 
have demonstrated MBI of the P450s involved 
in the desulfuration of methyl parathion� Incuba-
tion of the microsomes with methyl parathion 
resulted in a 58 % decrease in the spectrally ob-
served P450 content [350]� This loss of activity 
was not associated with a comparable increase 
in the absorbance at 420 nm in the difference 
spectrum, suggesting that the heme had been 
displaced from the apoprotein� Since the rates 
for the metabolism of testosterone to form the 
2β- and 6β-hydroxy products were reduced to 8 
and 2 %, respectively, the authors concluded that 
CYP3A4 and CYP211 were the P450s inactivat-
ed during the oxidative desulfuration of methyl 
parathion [350]� The modified P450s from the 
liver microsomes of male rats following incuba-
tion with methyl parathion were resolved by so-

Fig. 5.9  The activation of parathion to form a reactive 
intermediate that causes mechanism-based inactivation� 
This is thought to involve formation of the putative reac-

tive phosphooxythiran intermediate that is then responsi-
ble for the protein modification� The circled area indicates 
the site of metabolism
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dium dodecyl sulfate (SDS)-polyacrylamide gel 
electrophoresis (PAGE) and then digested with 
trypsin and the peptides were analyzed by nano-
spray tandem mass spectrometry� Several pep-
tides were identified exhibiting increased masses 
of 96 amu due to the formation of sulfur adducts� 
These peptides were sequenced and the adducts 
were shown to be on cysteines 64 and 378 of 
CYP3A1� A CYP3A1 homology model based on 
the human CYP3A4 crystal structure suggested 
that these two cysteines are not located in the en-
zyme catalytic site, but appear to be located near 
the surface of the protein along a channel through 
which the substrate gains access to the active site� 
Therefore, it was suggested that these modifica-
tions might hinder substrate entry into the active 
site binding pocket or coordination with that site 
[350]�

A number of different substituted thiophenes 
have been shown to be mechanism-based in-
activators of P450s� Tienilic acid (Fig� 5�10), a 
substituted thiophene diuretic was withdrawn 
from the market because of its liver and kidney 
toxicity� Tienilic acid is metabolized by human 
liver CYP2C9 to yield 5-hydroxy tienilic acid� 

During the metabolism of tienilic acid, a highly 
reactive electrophile is generated that covalently 
binds to the CYP2C protein leading to the inac-
tivation of the enzyme [297, 349, 351]� Although 
covalent labeling of the protein is partially pre-
vented by glutathione (GSH), GSH does not 
protect the enzyme from inactivation or protein 
modification� In the presence of GSH, the ratio 
of label to protein is approximately 0�9 following 
inactivation� These results have been explained 
by the formation of a sulfoxide of the thiophene 
that then can react with water to give the 5-hy-
droxy tienilic acid, with a protein nucleophile to 
inactivate the enzyme, or with GSH after leaving 
the P450 active site� The identity of the amino 
acid residue modified by tienilic acid has not yet 
been determined, but high-performance liquid 
chromatography (HPLC)/electrospray ioniza-
tion mass spectrometric analysis (ESI-MS) of 
the modified and native proteins reveals the pres-
ence of CYP2C9 modified proteins with molecu-
lar masses of 55,923 ± 1�1 and 56,273 ± 4�4 Da, 
which correspond to mass shifts of 344�4 ± 1�1 
and 694 ± 4�2 Da, respectively, suggesting that 
the proteins have been modified by both the for-

Fig. 5.10  Tienilic acid is thought to be activated on the 
thiophene ring to an epoxide intermediate that can then 
react either with a P450 nucleophilic residue, resulting in 
mechanism-based inactivation, or be hydrolyzed to give 

the thiophene ring hydroxyl product� The circled area 
indicates the site of metabolism leading to the reactive 
epoxide
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mation of a single and two simultaneous adducts� 
The inclusion of GSH (10 mM) in the incuba-
tion mixture abolishes the formation of the ad-
ducted protein, suggesting that the second ad-
duct may result from modification of a residue 
that is outside of the active site� The mass shift 
of 344�4 ± 1�1 is consistent with the binding of 
one molecule of monohydroxylated tienilic acid 
which may be formed either by ring oxidation of 
the thiophene or by formation of a sulfoxide that 
does not undergo dehydration [349]�

3-[(Quinolin-4-ylmethyl)-amino]-N-[(4-tri-
fluoromethox)phenyl]thiophene-2-carboxamide 
(OSI-930), an investigational anticancer agent 
containing a thiophene moiety (Fig� 5�11), in-
activated CYP3A4 in a mechanism-based man-
ner [352]� Spectral analysis indicated that the 
decrease in the reduced CO-spectrum at 450 nm 
was equal to the amount of inactivation suggest-
ing that the inactivation was primarily due to the 
modification of the heme� Since OSI-930 has no 
effect on CYP3A5 activity, it suggests that this 

may be an excellent compound for distinguishing 
between the relative clearance roles of these two 
structurally similar enzymes, and may be of great 
value in exploring the unique aspects of their 
very tolerant and overlapping substrate-binding 
active site s [352]�

Spironolactone (Fig� 5�12) is an antagonist of 
aldosterone which is used as a diuretic and an-
tihypertensive [353]� Spironolactone inactivates 
P450s in both hepatic and steroidogenic tissues 
[286–293], including members of the hepatic 
CYP2C and CYP3A subfamilies [289, 290], as 
well as adrenal CYP17A1 [286, 287, 292, 293]� 
The spironolactone-mediated inactivation of 
CYP2C and CYP3A requires hydrolysis of the 
thioester group to give the free thiol that is then 
oxidized to give a reactive intermediate that can 
form adducts with either the protein and/or the 
heme [288, 289]� The inactivation of CYP17A1 
appears to result from the thiosteroid binding 
covalently to an amino acid residue(s) on the 
protein� Enzyme inactivation as a consequence 

Fig. 5.11  The structures of three other thiophene-con-
taining drugs� Ticlopidine, clopidogrel, and OSI-930 may 
be activated by epoxide formation on the thiophene ring 

as shown in Fig� 5�10� The circled areas indicate the pos-
tulated sites of epoxidation
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of oxidation of the thiol group is suggested by 
the observation that in rat hepatic microsomes in 
which CYPs 3A have been induced, these P450s 
are thought to oxidize the thiol group (SH) to 
the sulfinic (-SO2H) and sulfonic (-SO3H) acids 
[289], ultimately giving rise to a disulfide adduct 
with GSH [293]� Formation of this GSH disulfide 
adduct appears to be catalyzed, at least in part, 
by a flavin monooxygenase [293]� Oxidation of 
the thiol group may lead to the formation of ei-
ther a sulfhydryl radical (-S°) or the sulfenic acid 
(-SOH), either one of which, or both, may be in-
volved in the P450 inactivation� The reaction of 
the sulfhydryl radical may lead to fragmentation 
of the heme with consequent protein modifica-
tion, whereas the reaction of the sulfenic acid 
with an amino acid side chain may lead to protein 
modification (Fig� 5�12)�

Derivatives of thiazolidinedione (TZD) such 
as MK-0767 or troglitazone (TGZ, rezulin; 
Fig� 5�13) have been shown to undergo metab-
olism by P450s via activation of the TZD ring 
followed by ring scission to generate several 
reactive intermediates [353, 354]� TGZ was the 
first oral glitazone used successfully for the treat-
ment of type II diabetes [354]� In 2000, it was 
voluntarily withdrawn from the market due to its 
association with severe hepatotoxicity that led 
to approximately 90 cases of hepatic failure re-

quiring liver transplantation as well as 26 deaths 
[353]� TGZ is metabolized primarily by CYP3A4 
and is also a potent inducer of that P450� Primary 
human metabolism involves sulfation to form the 
TGZ-sulfate (TGZS), oxidative opening of the 
chroman ring to give a TGZ-quinone (TGZQ), 
and glucuronidation to yield the TGZG product� 
Covalent binding of [14C]TGZ to macromol-
ecules was primarily seen in rat liver microsomal 
preparations from DEX-induced rats, suggest-
ing a role for CYPs 3A� Covalent binding was 
NADPH-dependent and was completely inhib-
ited by the addition of ketoconazole, suggesting 
a requirement for a functionally active P450� Al-
though TGZ hepatotoxicity is currently thought 
to arise through a variety of mechanisms, reac-
tive intermediates of TGZ such as the epoxide or 
the quinone may play important roles in many of 
its pathological consequences�

Raloxifene (Fig� 5�13) is a selective estrogen 
receptor modulating drug (SERM) that has been 
used for the treatment of postmenopausal osteo-
porosis [355]� MBI of human liver microsomal 
CYP3A4 is observed during the metabolism of 
raloxifene �CYP3A4 activated raloxifene primar-
ily by metabolism at the seven-position and to 
a lesser extent at the five-position of the benzo-
thiophene ring, as well as at the three-position of 
the phenol ring� It was suggested that the mecha-

Fig. 5.12  Spironolactone bioactivation� The sequence 
of steps for the activation of spironolactone to a reactive 
intermediate that can inactivate CYP17A1 by covalent 
modification of the protein and can also inactivate hepatic 
CYPs 3A by destruction of the heme group to reactive 
fragments that irreversibly modify the protein� The first 
step involves thioesterase-catalyzed hydrolysis of the 

thiol ester to yield a thiol group, which then can be oxi-
dized by the P450 to a reactive intermediate that serves as 
the ultimate mechanism-based inactivator� As described 
in the text, the sulphydryl group is oxidized to a species 
that then can react with either the protein or the heme� 
The circled areas indicate the sites of metabolism leading 
to the ultimate reactive intermediate causing inactivation
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Fig. 5.13  Structures of three sulfur-containing com-
pounds known to serve as mechanism-based inactivators 
of several P450s by mechanisms that have not yet been 
elucidated, but in all probability involve oxidation of the 

sulfur atom� The circled areas indicate the sites of the 
sulfur oxidation that may be involved in the inactivation 
reaction

 

nism involved initial epoxidation of the phenol to 
form a reactive arene oxide intermediate [355]� 
However, the possibility of a quinone intermedi-
ate could not be ruled out� Liquid chromatograpy 
(LC)–mass spectrometry (MS) studies demon-
strated that a single equivalent of raloxifene was 
bound to the intact apoprotein� Mass analysis of 
peptides following proteinase K digestion of the 
inactivated protein revealed that raloxifene was 
adducted to the Cys239 residue� LC–MS analy-
sis of the intact protein revealed a mass shift 
of 471 Da for the inactivated protein relative to 
controls, indicating that the inactivation occurred 
through the formation of a raloxifene diquinone 
methide that underwent nucleophilic attack by 
the Cys239 sulfhydryl� Based on the forma-

tion of GSH adducts, it has been demonstrated 
that raloxifene is also bioactivated by a number 
of other P450s, including CYP1A2, CYP2C8, 
CYP2C9, CYP2C19, CYP2D6, and CYP3A5 
[356]� Although all of these P450s catalyzed the 
bioactivation, only CYP2C8 and CYP3A4 exhib-
ited raloxifene-mediated MBI [356]� The inacti-
vation kinetics were relatively comparable with 
Ki and kinact values of 0�26 µM and 0�10 min− 1 
and 0�81 µM and 0�20 min− 1 for CYP2C8 and 
CYP3A4, respectively� Tryptic digestion fol-
lowed by LC–MS analysis of the tryptic peptides 
revealed the formation of adducts to Cys239 and 
Cys225 of CYP3A4 and CYP2C8, respectively� 
For each of the P450 isozymes that catalyzed 
the bioactivation of raloxifene, possible access/



206 M. A. Correia and P. F. Hollenberg

egress channels for the substrate/metabolites 
were mapped and only CYP3A4 and CYP2C8 
were shown to possess accessible cysteine resi-
dues near the active site cavities� This result is 
consistent with the observation that these two 
forms of P450 were the only ones inactivated by 
raloxifene� These results suggest that bioactiva-
tion of a given substrate to a reactive intermedi-
ate is necessary for MBI of that P450, but that it 
is not sufficient, and that the extent of bioactiva-
tion does not necessarily correlate with the extent 
of MBI of the P450 that bioactivates it� Thus, it is 
clear that multiple factors contribute to the abil-
ity of reactive metabolites to form adducts with 
P450s leading to MBI� Except for CYP2E1, each 
of the P450s investigated formed the diquinone 
methide of raloxifene, which then reacts with 
GSH to form a GSH adduct� In CYP3A4 and 
CYP2C8, the presence of a cysteine residue in 
the active site that could be alkylated following 
the formation of the diquinone methide was es-
sential for inactivation of the enzyme� The lack of 
inactivation of CYP1A2, CYP2D6, and CYP3A5 
is consistent with crystal structure data that show 
there are no cysteines present in the vicinity of 
their active sites [356]� These results suggest 
that there is no correlation between the extent of 
reactive metabolite formation by a P450 and its 
inactivation� Thus multiple additional factors in-
cluding the architecture of the active site, the lack 
or presence of appropriate nucleophilic residues 
in the exit channel, and the reactivity and struc-
ture of the reactive metabolite may all contribute 
to the ability of a P450 to be inactivated during 
metabolism of a compound that forms reactive 
intermediates and that could lead to the forma-
tion of a protein adduct�

Ritonavir (RTV; Fig� 5�13) has been shown to 
be a potent reversible inhibitor as well as a mech-
anism-based inactivator of CYP3A4/CYP3A5 
[263]� RTV is currently used at low doses in 
combination with other protease inhibitors such 
as saquinavir, amprenavir, and lopinavir in order 
to “pharmacologically boost” the bioavailability 
of the other protease inhibitors by inactivating 
or inhibiting CYP3A4 [265]� Its inhibitory po-
tency for CYP3A4 is dependent on the presence 
of both the 2-(1-methylethyl)thiazolyl group as 

well as the 5-thiazolyl group� It is believed to be 
oxidized to a chemically reactive intermediate 
containing the 2-(1-methylethyl)thiazolyl group 
that is responsible for P450 inactivation [265]� 
RTV has also been shown to be a mechanism-
based inactivator of human CYP2B6 in a func-
tionally reconstituted system [273]� CYP2B6 in-
activation by RTV is time-, concentration-, and 
NADPH-dependent with a KI of 0�9 µM, a kinact 
of 0�05 min− 1, and a partition ratio of approxi-
mately 3� Liquid chromatography-tandem mass 
spectrometry (LC–MS/MS) revealed two major 
metabolites, an oxidation product and a deacyl-
ated product [273]� MBI of CYP2B6 resulted in a 
loss of native heme comparable to the loss of its 
activity with no modification of the apoprotein 
observed by LC–MS� RTV was also found to be a 
potent mechanism-based inactivator of CYP3A4 
and the molecular mechanism involves heme de-
struction with the formation of a heme-protein 
adduct [273]� Similar to CYP2B6, no significant 
modification of the apoprotein was observed� 
LC–MS/MS analysis of the incubation mixture 
resulted in the identification of an RTV–glutathi-
one conjugate having an MH +at M/Z 858, sug-
gesting that the formation of an isocyanate inter-
mediate was responsible for the formation of the 
conjugate [273]�

The isothiocyanates (ITCs) are found as gluco-
sinolate complexes and are in great abundance in 
various cruciferous vegetables such as cabbage, 
broccoli, and watercress [357]� The effectiveness 
of the ITCs as mechanism-based inactivators is 
based on the reactivity of the electrophilic car-
bon center with sulfur, nitrogen-, or oxygen-con-
taining nucleophilic residues in the P450� Many 
naturally occurring and synthetic ITCs inhibit the 
activities of a variety of different P450 isozymes 
including CYP2A6/13, CYP2B1/6, and CYP2E1 
in vivo and in vitro [358, 359]� The inactivation is 
thought to occur either by a direct interaction of 
the ITC with one or more nucleophilic residues 
on the apoprotein or by a metabolic activation 
of the ITC to a reactive intermediate that then 
forms a covalent adduct, thereby inactivating the 
P450 (Fig� 5�14)� Benzyl isothiocyanate (BITC) 
and phenethyl isothiocyanate (PEITC), two nat-
urally occurring isothiocyanates, were shown 
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not only to be potent inhibitors of CYP2A6 and 
CYP2A13, but to also be mechanismbased inac-
tivators through the formation of adducts with 
the apoprotein [360]� For both CYP2A6 and 
CYP2A13 the inactivations showed NADPH-, 
time-, and concentration-dependence, suggest-
ing that the inactivations were mechanism-based� 
Since CYP2A6 and CYP2A13 are thought to 
play an important role in the activation of some 
tobacco specific chemical carcinogens such as 
4-(methylnitrosamino)-1-(3-pyridyl)-1-buta-

none, it was suggested that the isocyanates might 
be developed as chemopreventive agents to pro-
tect those smokers who are unwilling or unable to 
quit smoking against lung cancer�

BITC also was a potent mechanism-based in-
activator of P450s 2B1 from rat and 2E1, from 
rabbit in the reconstituted systems [361–363]� 
The losses in activity were time-, concentra-
tion-, and NADPH-dependent� Kinetic con-
stants describing the inactivation of CYP2B1 by 
BITC were KI, 5�8 µM, kinact, 0�66 min− 1 and for 

Fig. 5.14  CYP2B1-inactivation by BITC� The pathway proposed for the metabolism of BITC by CYP2B1 leads to the 
formation of a protein adduct� The circled area indicates the site of metabolism
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CYP2E1 they were KI, 13 µM, kinact, 0�09 min− 1�
The inactivation was due to the binding of a re-
active intermediate of BITC to the CYP2B1 and 
CYP2E1 apoproteins� Although a loss in the 
P450 CO-spectrum was observed, there was no 
loss in the absolute spectrum from 350 to 600 nm 
following inactivation of CYP2B1� For CYP2E1, 
although a loss in the reduced CO-spectrum was 
observed, there was essentially no loss in the 
absolute spectrum of the modified protein or in 
the heme peak detected by HPLC analysis at 
405 nm� Nucleophilic scavengers such as GSH, 
DTT, or potassium cyanide (KCN) were included 
in the inactivation mixture in attempts to deter-
mine if reactive intermediates were escaping the 
CYP2B1 active site and binding elsewhere on the 
P450 apoprotein, or possibly to the CPR, result-
ing in a loss of activity due to the binding of a 
reactive intermediate at sites other than the active 
site [361]� The addition of GSH (10 mM) during 
the inactivation reaction completely abolished the 
ability of BITC to inactivate CYP2B1� However, 
this appeared to be due to the rapid formation of 
a thiocarbamate between the BITC and GSH� 
This product could be spectrally detected by its 
UV absorbance at 270 nm [361]� The possibility 
that the reactive intermediate of BITC inactivates 
the CPR rather than the P450 could be ruled out, 
since inclusion of additional CPR in the inacti-
vated system after the removal of residual BITC 
by dialysis did not restore any enzymatic activity� 
HPLC analysis of samples incubated with [3H]
BITC demonstrated that labeling of the protein 
in the presence of NADPH increased only in 
the P450 containing fraction� For CYP2B1 the 
stoichiometry of BITC binding to P450 was ap-
proximately 0�9:1 [361]� Identification of the me-
tabolites of BITC generated by CYP2B1 showed 
that benzylamine accounted for approximately 
50 % of the total metabolites formed, with lesser 
amounts of benzoic acid, benzaldehyde, N, Nʹ-
dibenzylurea, and N, Nʹ-di-benzylthiourea [364]� 
Therefore, the reactive moiety responsible for the 
inactivation of CYP2B1 appears to be the benzyl 
isocyanate intermediate (Fig� 5�14)� The BITC-
inactivated CYP2E1 exhibited a mass increase of 
155 Da, suggesting that the reactive intermediate 
of BITC responsible for forming an adduct with 

the apoprotein and inactivating the P450 was ei-
ther the entire BITC molecule, possibly linked 
by a disulfide bridge to the apoprotein, or a hy-
droxylated form of BIC� Incubations of the inac-
tivated CYP2E1 with β-mercaptoethanol did not 
decrease the amount of radiolabeled BITC bound 
to CYP2E1, indicating that the protein adduct 
was not a disulfide-linked BITC molecule [363]�

Although the amino acid residue modified by 
the BITC reactive intermediate has not yet been 
identified, interesting results were obtained when 
a CYP2E1 mutant wherein the conserved Thr303 
residue was replaced by Ala, was incubated 
with BITC, PEITC, and tert-butylisothiocyanate 
(tBITC) [363]� Whereas wild-type CYP2E1 
was inactivated by all three isothiocyanates, the 
Thr303 mutant was only inactivated by PEITC 
and tBITC [363]� This observation was of great 
interest since the only difference between PEITC 
and BITC is an additional methylene group in 
PEITC� Surprisingly, LC–MS analysis suggested 
the covalent binding of a reactive intermediate 
of BITC to the CYP2E1 mutant with the mass 
of 165 Da as compared to a mass of 154 Da for 
the wild-type enzyme adduct� This mass differ-
ence could be due to the addition of a BIC ad-
duct (134 Da) together with a sulfur (32 Da) ad-
duct� Alternatively, the addition of 166 Da to the 
CYP2E1 apoprotein could result from an adduct 
consisting of the entire hydroxylated BITC mol-
ecule (363)�

Thr303 has been shown to be highly conserved 
in P450s and is generally thought to play a role in 
catalysis, possibly by serving as a proton donor, 
and also in substrate interactions� Replacing the 
Thr303 residue of CYP2E1 did not abolish the 
7-ethoxycoumarin (7-EFC) or p-nitrophenol ac-
tivity of the enzyme� Possibly there is enough 
flexibility in the active site to allow Thr304 to act 
as a substitute for Thr303� Alternatively, replac-
ing the Thr by Ala may lead to an alteration in the 
preferred orientation of BITC in the active site, so 
that the inactivating BIC product is not formed� 
Since Ala lacks the hydroxyl group of the Thr, 
it would prohibit the covalent binding of a reac-
tive intermediate to the Ala303 site� On the other 
hand, when the Thr303 is present, formation of 
an adduct with the reactive intermediate of BITC 
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may interfere with the postulated function of that 
threonine in the proton relay or with other critical 
architectural arrangements at the active site, such 
as the formation of hydrogen bond networks� 
Comparison of the structures of BITC, BEITC, 
and tBITC reveals that when the bulky positions 
of the molecules are aligned, the isothiocyanate 
moiety is aligned very differently in PEITC and 
tBITC when compared to BITC [363]�

tBITC was a more specific mechanism-based 
inactivator of CYP2E1 than of CYPs 1A1, 1A2, 
3A2 or members of the CYP2B family [364, 
365]� For CYP2E1 in the purified, reconsti-
tuted system, the KI was 7�6 µM, the kinact was 
0�7 min− 1, and the t½ was 2�6 min [365]� The 
Thr303Ala mutant exhibited similar values� The 
inclusion of b5 in the reconstituted system caused 
an alteration in the kinetic constants so that 
they approximated those seen with microsomes 
(with b5: KI = 14 µM,kinact = 0.38 min− 1, and the 
t1/2 = 1.9 min; in microsomes: KI = 11 µM,kinact = 
0�72 min− 1, t1/2 = 1.0 min). Although GSH addi-
tion to the BITC-inactivation mixture prevented 
CYP2E1 inactivation, the addition of GSH to 
the tBITC-inactivation mixture only slowed the 
rate of reaction suggesting that the reactivity of 
the two compounds differs in the direct forma-
tion of a thiocarbamate with GSH� In addition, 
the inactivation of CYP2E1 by tBITC showed a 
direct correlation between the percent loss in the 
ability of the tBITC inactivated CYP2E1 to form 
a reduced CO complex and the loss in percent 
activity� However, no loss was observed in the 
absolute spectrum, the amount of heme recov-
ered by HPLC analysis at 405 nm, or in the pyri-
dine hemochrome content� Similar results have 
been observed for the inactivation of CYP2E1 by 
3-amino-1,2,4-triazole [366]� The loss in the abil-
ity of the tBITC-inactivated CYP2E1 to form the 
CO complex could be reversed by incubation of 
the inactivated protein with dithionite for up to 
1 h [367]� In addition to restoring a significant 
amount of the ability to form the reduced CO 
complex, the inactivated enzyme also regained 
catalytic activity to the same extent after treat-
ment with dithionite� It has previously been re-
ported [368] that prolonged incubation of dithi-
onite with P450s leads to heme destruction due 

to the generation of hydrogen peroxide as well as 
other radicals� Therefore, it appeared that tBITC 
may block a site on the enzyme responsible for 
this process, thereby protecting the inactivated 
CYP2E1 from heme destruction� The removal of 
the tBITC blocking moiety with the restoration of 
the ability to form the reduced CO complex once 
again made the P450 susceptible to dithionite 
bleaching of the heme [367]� Mechanistically, the 
inactivation of CYP2E1 by tBITC was not due to 
the inability of the enzyme to be reduced initially 
or because either of the two CPR-dependent steps 
were impaired [367]� However, the inactivation 
did result in a decreased ability of the CYP2E1 
to bind the substrate/inhibitor 4-methylpyrazole� 
Spectral analysis of the inactivated sample by 
EPR demonstrated that it consisted of at least two 
populations [367]� Approximately 24 % of the in-
activated CYP2E1 was EPR silent indicating that 
this population of the enzyme was in the Fe2 + 
state, suggesting it had been trapped in this state, 
thereby preventing it from completing the normal 
catalytic cycle� Forty-four percent of the remain-
ing fraction gave an unusual low spin EPR signal 
which is believed to be due to displacement of a 
water molecule from the sixth ligand of the heme 
by an adduct formed with the reactive intermedi-
ate of the tBITC� Analysis of the tBITC-inacti-
vated CYP2E1 using LC/MS showed an increase 
in mass of 118 Da from 53,804 ± 2 Da for the na-
tive enzyme to 53,922 ± 2 Da for the inactivated 
CYP2E1� This mass increase is consistent with 
the formation of an adduct between the entire 
tBITC molecule and the CYP2E1 apoprotein via 
a disulfide linkage with one of the four cysteines 
in CYP2E1� Presumably, this disulfide-linked 
tBITC molecule is removed by prolonged incu-
bation with dithionite� Involvement of Cys378, 
which forms the fifth ligand to the heme iron, 
and Cys488 at the C-terminus can most likely 
be ruled out, leaving Cys174 and Cys261 as the 
remaining possible candidates for protein modi-
fication by tBITC� These data suggest that tBITC 
binds to a critical amino acid residue in the active 
site and this amino acid residue is presumably in 
the vicinity of the sixth axial ligand binding site 
to the heme and thereby interferes with oxygen 
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binding, substrate binding, and the binding of CO 
to the reduced protein [367]�

PEITC, a naturally occurring isothiocyanate 
which has been shown to be a potent cancer che-
mopreventative agent, is a mechanism-based in-
activator of human CYP2E1 [369]� The inactiva-
tion was shown to be concentration-, NADPH-, 
and time-dependent� The KI, kinact, and t1/2 values 
for the inactivation of the 7-EFC catalytic activity 
were determined to be 11 µM, 0�23 min− 1, and 
3�0 min, respectively� Cytochrome b5 had no ef-
fect on the KI or kinact for the reaction� The partition 
ratio was 12, the inactivation was not inhibited in 
the presence of GSH, and there was no reversal 
of inactivation by dialysis� CYP2E1 inactivation 
by PEITC is due to both destruction of the heme 
prosthetic group and protein modification, with 
the latter being the primary pathway for the in-
activation� GSH-adducts of phenethylisocyanate 
(PIC) and phenethylamine were observed dur-
ing the metabolism by CYP2E1, indicating that 
PIC is formed as a reactive intermediate follow-
ing the P450-catalyzed desulfurization of PEITC� 
Incubation of CYP2E1 with PIC in the absence 
of NADPH showed covalent binding  resulting in 
the formation of protein adducts, but there was no 
inactivation of the P450� Electrospray ionization–
liquid chromatographic mass spectrometric (ESI–
LC–MS) analysis of the inactivated CYP2E1 
suggested that the inactivation of CYP2E1 is due 
to reaction with a reactive sulfur atom generated 
during PEITC desulfurization� The mass increase 
of the apoprotein of 147 Da after incubation with 
PIC is the result of the formation of a covalent 
adduct in the absence of metabolism� Following 
incubation of CYP2E1 with PEITC in the recon-
stituted mixture, the PEITC-inactivated CYP2E1 
showed a mass increase of 175 ± 6 mass units, 
which is larger than that for the PIC-derived apo-
protein adduct with a mass difference of 147 Da, 
and is consistent with the mass of a PIC-derived 
protein adduct plus one sulfur atom (147 + 32 Da)� 
Alternatively, this mass difference could also be 
accounted for by reaction with an intermediate 
that resulted from the formation of a covalent ad-
duct with the oxidized PEITC (PEITC, 163 Da 
plus one oxygen atom, 16 Da)� Trypsin digestion 
of the inactivated CYP2E1 followed by LC–MS/
MS resulted in the identification of a peptide with 

the sequence DLTDCLLVEMEK, corresponding 
to residues 264–275 of human CYP2E1 and resi-
due Cys268 was shown to be the residue modi-
fied by PIC [369]�

Alkyl xanthates are derivatives of dithicar-
bonic acid (ROCSS−K+)� A number of xanthates 
have been shown to be specific mechanism-based 
inactivators of P450 enzymes both in microsomal 
systems and in reconstituted systems [370–372]� 
Studies on the effects of a number of xanthates on 
the enzymatic activities of CYPs 1A1, 2B, 2C9, 
2D6, 2E1, 3A2, and 3A4 have been examined� 
Several of the xanthates were shown to be par-
ticularly effective mechanism-based inactivators 
of CYPs 2B1 and 2B6� The inactivation kinetics 
showed a dependence on the length of the alkyl 
chain link (C2–C20)� With the exception of iso-
propyl xanthate, the general trend was that with 
increasing chain length, the inactivation rates 
slowed down� CYP2E1 was also inactivated by 
xanthates but at concentrations that in general 
were 2–3 fold higher than those required for in-
activation of the members of the CYP2B family� 
N-octylxanthate (C8) appeared to be the most 
potent inactivator of both CYPs 2B1 and 2B6� 
n-Propylxanthate (nPX) inactivated the 7-EFC 
activity of CYP2B1 or CYP2B6 in a mechanism-
based manner� The inactivations were concentra-
tion-, NADPH-, and time-dependent� The KI for 
CYP2B1 was 44 µM and the kinact was 0�2 min− 1� 
For CYP2B6, the KI was 12 µM and the kinact was 
0�6 min− 1� Incubation of CYP2B1 with nPX and 
NADPH for 20 min resulted in a 75 % inactiva-
tion of the enzyme with a concurrent 25 % loss 
in the ability to form the reduced CO complex, 
even though there was very little loss in the ab-
solute spectrum of the inactivated CYP2B1� With 
CYP2B6, there was an 83 % loss in enzymatic 
activity with only a 12 % loss in the CO-reduced 
spectrum� The partition ratio for nPX inactiva-
tion of CYP2B1 was 32� The stoichiometry for 
labeling of the CYP2B1 by radiolabeled nPX 
was 1�2:1� Significant enzyme activity could be 
restored to the nPX-inactivated CYP2B1 when 
iodosobenzene was used as the alternative oxi-
dant in place of NADPH and O2� These results 
suggest that the adduct formed by the nPX reac-
tive intermediate was with an amino acid residue 
critical for a CPR-dependent step� Alternatively, 
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Fig. 5.15  The pathway proposed for the metabolism of N-
propylxanthate by CYP2B1 leading to the formation of a 
reactive intermediate, which then forms a protein adduct� 
The circled area indicates the initial site of metabolism

 

it is possible that the modification of the amino 
acid residue by nPX may have disrupted a proton 
transfer step required to generate the oxy-ferryl 
intermediate� A third possibility is that the modi-
fication may have altered either the binding or 
the dissociation of the substrate and in some way 
favored oxidation supported by iodosobenzene� 
Although the reactive intermediate of nPX re-
sponsible for the inactivation of CYPs 2B1 and 
2B6 has not yet been identified, it has been sug-
gested that the initial oxidation by CYP2B1 is 
on the α-carbon of nPX and that the inactivating 
species could be a hydroxylated propyl radical or 
propylketene (Fig� 5�15) [370]�

Fifteen xanthates with carbon chains of vari-
ous lengths or having different substitutions were 
assessed for their ability to inactivate CYPs 2B1 
and 2B6� All 15 of the xanthates were found to 
be mechanism-based inactivators of CYPs 2B1 
and 2B6 [371]� All of them inactivated CYP2B1 
in a time- and concentration-dependent manner 
and the rates of inactivation ranged from 0�02 to 
0�22 min− 1� The concentrations required for half-
maximal rates of inactivation ranged from 2�4 to 
69 µM� The general trend in the inactivation re-
actions suggested that longer carbon chains led 
to slower rates of inactivation with longer half 
times of inactivation and higher partition ratios� 
For CYP2B1 the most effective inactivators were 

those with intermediate length substitutions� The 
best inactivator of CYP2B1 was the C8 xanthate 
having a KI of 2�4 µM, a kinact of 0�07 min− 1, and 
a partition ratio of 4 [371]� Four of the xanthates 
were examined further for their ability to serve 
as mechanism-based inactivators of CYP2B6 
[371]� Once again, the C8 xanthate was the most 
effective inactivator with a KI of 1 µM� Although 
the KI values were generally lower than those for 
CYP2B1, the kinact values were generally three- 
to fivefold slower� CYP2E1 was inactivated by 
the xanthates at concentrations that were 15- to 
100-fold higher than those required for CYPs 
2B� None of the xanthates tested were able to act 
as mechanism-based inactivators of CYP1A1, 
CYP2C9, CYP2D6, CYP3A2, or CYP3A4�

The mechanism by which alkyl xanthates in-
activate CYP2B1 was investigated by examining 
the effects of C8 on the individual steps of the 
CYP2B1 catalytic cycle [372]� Dramatic losses 
in the 7-EFC activity of CYP2B1 were observed 
when it was incubated with five different xan-
thates in the presence of NADPH� With the ex-
ception of the C14 xanthate, there was virtually 
no loss in the heme absorbance at 418 nm or in 
the absorbance of the reduced-CO complex at 
450 nm� The long-chain xanthates reduced the 
rate of the transfer of the first electron in the P450 
catalytic cycle by stabilizing the heme in its low 
spin state� C8 led to very little formation of the 
oxy-ferryl intermediate complex� The rates of re-
duction of the native, C8-exposed, and C8-inac-
tivated CYP2B1 by CPR were measured [372]� 
The rate of reduction of the C8-inactivated P450 
was approximately 62 % slower when compared 
to that of the native enzyme either in the absence 
or presence of benzphetamine� The formation of 
products from benzphetamine by the three en-
zyme preparations was determined [372]� The 
C8-inactivated CYP2B1 exhibited a much lower 
rate of NADPH consumption and formation of 
the formaldehyde product� In addition, the ratio 
of H2O2 to formaldehyde increased from 1:1 for 
the unmodified enzyme to 2�8:1 for the inacti-
vated CYP2B1 [372]� Thus, these observations 
suggest that the reactive intermediate formed 
from the C8-xanthate causes covalent modifica-
tion of the CYP2B1 apoprotein, which reduces 
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the rate of the first electron transfer by CPR and 
also leads to the uncoupling of product formation 
from electron transfer by diverting a greater pro-
portion of the electrons to the formation of H2O2 
rather than product formation [372]�

Disulfiram (Antabuse) has been used thera-
peutically for the treatment of alcoholism for 
more than 60 years because of its ability to in-
hibit aldehyde dehydrogenase� Another enzyme 
that is inhibited by disulfiram is human CYP2E1 
[373]� The inhibition of CYP2E1 by disulfiram 
has previously been reported to be due to MBI 
by a reactive intermediate formed by CYP2E1 
which reacts with the enzyme protein� Recently, 
it has been demonstrated that disulfiram by it-
self does not inactivate CYP2E1 in an in vitro 
reaction; however, a metabolite of disulfiram, 
diethyldithiocarbamate (DDC) is converted to 
a reactive intermediate by CYP2E1 and that in-
termediate subsequently inactivates the protein 
leading to MBI [373]� LC–MS of the inactivated 
CYP2E1 demonstrates that the inactivation re-
sults from the formation of an adduct of the reac-
tive metabolite of DDC with the apoprotein� MS 
studies of the GSH-adduct formed by the reactive 
intermediate indicate that the reactive intermedi-
ate has a mass of 116 Da� HPLC analysis of the 
inactivated protein mixture showed no change in 
the amount of unmodified heme or the presence 
of any modified heme [373]� These results sug-
gest that binding of the reactive intermediate to 
the apoprotein involves formation of a disulfide 
bond with one of the eight cysteines in CYP2E1� 
Incubation of the modified protein in the pres-
ence of DTT resulted in the loss of the DDC 
adduct and reversal of the mass of the CYP2E1 
to that of the unmodified protein� However, no 
regain of activity following loss of the DDC ad-
duct could be observed� These results support 
the hypothesis that adduct formation leads to a 
disulfide bond� In addition to investigating the in-
activation of wild-type CYP2E1, the inactivation 
of two of its polymorphic mutants, CYP2E1�2 
and CYP2E1�4 was also investigated� For the 
wild-type enzyme, the KI was 12�2 µM and the 
kinact was 0�02 min− 1� The KI values for the two 
polymorphic mutants were 227�6 and 12�4 µM 
for CYP2E1�2 and CYP2E1�4 and the kinact val-

ues were 0�0061 and 0�0187 min− 1, respectively� 
These results demonstrate that DDC is much less 
efficient as an inactivator of CYP2E1�2 than it is 
of either the wild-type or the CYP2E1�4 variant 
[373]�

Ticlopidine (Fig� 5�11) is a substituted thio-
phene that has been used clinically as an anti-
platelet aggregation agent and has been identified 
as a mechanism-based inactivator of CYP2C19 
[374]� The inactivation is thought to occur as a 
consequence of S-oxidation of the thiophene moi-
ety� The inactivation exhibits the following kinet-
ic parameters: KI = 97 µM, kinact = 3.2 × 10−3 s−1, 
and the partition ratio is 126� Studies with re-
combinant human P450s in SupersomesTM indi-
cate that CYP2B6 is even more effectively inac-
tivated than CYP2C19, not only by ticlopidine, 
but also by clopidogrel, a related thienopyridine 
antiplatelet aggregating agent [374]� The inacti-
vation of CYP2B6 was time-, concentration-, and 
NADPH-dependent and it was irreversible upon 
dialysis [374]� For clopidogrel the KI and kinact 
for CYP2B6 were 1�1 µM and 1�5 min− 1, and for 
ticlopidine the KI was 4�8 µM and the kinact was 
0�8 min− 1 [374]� The inactivations were inhib-
ited by the presence of alternative substrates but 
not by scavengers of reactive oxygen or trapping 
agents for reactive electrophiles�

The antiplatelet activity of clopidogrel re-
quires metabolic biotransformation to a pharma-
cologically active metabolite by P450s [375]� The 
active metabolite contains a reactive thiol group 
that covalently modifies the Cys97 and Cys175 
residues of the human P2Y12 ADP receptor via 
the formation of disulfide bonds to prevent the 
adenosine diphosphate (ADP)-induced platelet 
aggregation [376]� The bioactivation of clopido-
grel to the active metabolite is believed to occur 
in two sequential oxidative steps� The first oxi-
dative step involves insertion of a single oxygen 
atom into clopidogrel to give 2-oxo-clopidogrel, 
a thiolactone metabolite� The second oxidative 
step involves further bioactivation of the thiolac-
tone metabolite to produce the active metabolite 
(Fig� 5�16)�

Clopidogrel and its thiolactone metabo-
lite, 2-oxo-clopidogrel, both inactivate human 
CYP2B6 in a time- and concentration-dependent 
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Fig. 5.16  The pathway for the bioactivation of clopido-
grel by P450s: Clo, clopidogrel; 2 oxo, 2-oxo-clopidogrel� 
The numbers shown in the structure of the active metabo-
lite (AM) indicate the numbering of the two chiral centers 

(C4 and C7) and the exocyclic double bond (C3 and C16)� 
The circled areas indicate the sites of metabolism by the 
P450s

 

manner [377]� The KI and kinact values for clopi-
dogrel were 2�4 µM and 0�17 min− 1, respectively, 
whereas for 2-oxo-clopidogrel, the KI and kinact 
values were 6�3 µM and 0�092 min− 1, respective-
ly� LC–MS analysis of the CYP2B6 protein inac-
tivated with either clopidogrel or 2-oxo-clopido-
grel showed a mass increase of ~ 350 Da corre-
sponding to the addition of the active metabolite 
of clopidogrel to the protein [377]� This adduct 
could be cleaved from the protein by incubation 
with DTT, confirming that the active metabolite 
is covalently bound to a cysteine residue via a 
disulfide bond� Tryptic digestion of the inacti-
vated CYP2B6 followed by ESI–LC–MS/MS of 
peptides derived from tryptic digestion identified 
Cys475 as the site of covalent modification by 
the active metabolite [377]� This was confirmed 
by studies in which Cys475 was mutated to a 
serine residue, which eliminated the MBI of the 
mutant by 2-oxo-clopidogrel and also prevented 
formation of the protein adduct� However, this 
mutation did not prevent the mutant from being 
inactivated by clopidogrel� Interestingly, the in-
activation of both the wild-type CYP2B6 and the 

mutant by clopidogrel, but not by the 2-oxo-clop-
idogrel, led to the loss of heme, which accounts 
for most of the loss of the catalytic activity� 
Therefore, it was suggested that clopidogrel inac-
tivates CYP2B6 primarily through destruction of 
the heme whereas 2-oxo-clopidogrel inactivates 
through covalent modification of Cys475 [377]�

Studies on the metabolism of clopidogrel by 
human liver microsomes in the presence of four 
reductants: GSH, L-cysteine, N-acetyl-L-cysteine 
(NAC), and ascorbic acid demonstrated that for-
mation of the active metabolite was greatly af-
fected by the reductant used [378]� In the case of 
GSH, the formation of the active metabolite and 
the glutathionyl conjugate was dependent on the 
GSH concentration, which indicates that forma-
tion of the thiol conjugates constitutes an integral 
part of the bioactivation processes for clopido-
grel� The active metabolite was slowly converted 
to the thiol conjugate with a half-life of ~ 10 h� 
Addition of DTT to the reaction mixture reversed 
the conversion, resulting in a decrease in the ac-
tive metabolite-thiol conjugate levels and a con-
comitant increase in the levels of the active me-
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tabolite� These results confirm that the active me-
tabolite was formed through oxidative opening of 
the thiol lactone ring and suggest the existence of 
an equilibrium between the active metabolite, the 
thiol conjugates, and the reductants [378]�

One of the first chlorinated mechanism-based 
inactivators demonstrated to act by irrevers-
ibly modifying the protein was chlorampheni-
col [299–302]� Binding of the [14C]-labeled 
chloramphenicol to the apoprotein correlated 
with the loss of the CYP2B1-dependent 7-EFC 
activity, and proteolytic digestion of the inacti-
vated CYP2B1 yielded a single [14C]-modified 
amino acid residue [299–302]� Hydrolysis of the 
modified amino acid residue yielded lysine and 
a fragment of the chloramphenicol indicating 
that chloramphenicol was converted to an ox-
amyl chloride intermediate that then could either 
modify a critical lysine residue on the protein or 
be hydrolyzed to give the oxamic acid� Acylation 
of the lysine residue is suggested to inhibit the 
transfer of electrons from CPR to CYP2B1, since 
the inactivated enzyme was still catalytically ac-
tive in the presence of either iodosobenzene or 
cumene hydroperoxide [302]� The observation 
that the 7-EFC activity is not inhibited at all by 
the presence of chloramphenicol when activated 
oxygen donors are used suggests that the chlor-
amphenicol is not covalently bound in the sub-
strate-binding site�

The selectivity of chloramphenicol and several 
of its analogs in the inactivation of various P450 
isozymes has been reported [379]� Chlorampheni-
col was found to inactivate rat liver microsomal 
CYP2B1 > CYP3A  > CYP2C11  > CYP2A1 as 
assayed with androstenedione hydroxylation as 
the functional probe� The selectivity of the chlor-
amphenicol analogs for MBI of P450 was deter-
mined by at least three structural features: (a) sub-
stitutions on the ethyl side chain; (b) the presence 
of a para-nitro group on the phenol ring; and (c) 
the number of halogen atoms� Thus, while N-(2-p-
nitrophenethyl)- and N-(1,2-diphenethyl)-dichlo-
roacetamide both inactivated CYP3A4 readily, 
the analog N-(2-phenethyl) dichloroacetamide 
did not inactivate CYP3A even though it was a 
reversible inhibitor [379]� The addition of a sec-
ond phenol at the 1- or 2-position of the phenethyl 

side chain or of a para-nitro or -bromo substitu-
ent on the phenol ring gave compounds that were 
selective inactivators of CYP2B1 over CYP2C11, 
CYP2C6, or CYP2A1 [304]� Therefore, N-(2-p-
nitrophenethyl)-dichloroacetamide and N-(2-p-
bromophenethyl)-dichloroacetamide were the 
two most effective and selective inactivators of 
CYP2B1 both in vitro and in vivo [304]�

21-Chloropregnenolone, 21,21-dichloropreg-
nenolone, and 21,21-dichloroprogesterone have 
all been shown to be mechanism-based inactiva-
tors of various P450s [380, 381]� The 21,21-di-
chloropregnenolone and the 21,21-dichloro-
progesterone showed very similar kinact values 
of approximately 0�1 min− 1 for the inactivation 
of rat liver microsomal CYP3A enzymes when 
measured with both progesterone or androstene-
dione as the probe substrates� The 21,21-dichlo-
roprogesterone was even more efficient at in-
activating CYP2C6 with a kinact of ~ 0�2 min− 1� 
The 21,21-dichloropregnenolone was also a 
good mechanism-based inactivator of rabbit liver 
CYP2C5, but not of rabbit adrenal CYP21 [381]� 
However, CYP21 was rapidly inactivated by 
21,21-dichloroprogesterone, indicating that the 
replacement of a methyl group that may normally 
be oxidized by a P450 by a dichloromethyl func-
tional group may prove to be of value in design-
ing specific inhibitors for specific P450s�

5.3.3.2  Olefins and Acetylenes
A variety of compounds containing an olefinic 
bond, such as ethylene, allylisopropylacetamide 
(AIA), and secobarbital, can form covalent ad-
ducts on the nitrogen of the porphyrin group 
of the prosthetic heme leading to inactivation 
[382–385]� Secobarbital has been shown to com-
pletely inactivate CYP2B1 with only partial loss 
of the heme chromophore [384, 386, 387]� Iso-
lation of the modified CYP2B1 protein and the 
N-alkylated porphyrins indicates that the reactive 
compound partitions between protein modifica-
tion, N-alkylation of the heme, and formation of 
an epoxide metabolite in the ratio of 0�2:0�8:59, 
respectively [387] (Fig� 5�17)� The formation of 
a heme adduct in the active site of CYP2B1 was 
confirmed spectrally based on its typical absorp-
tion maximum at ~ 445 nm, a characteristic fea-
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Fig. 5.17  Pathways for the oxidation of secobarbital by 
CYP2B1 leading to alkylation of the protein on the pep-
tide spanning residues Gly299 to Ser304 and N-alkylation 

of the heme group, as well as the generation of an epox-
ide� The circled area indicates the initial site of metabo-
lism by CYP2B1

 

ture of iron complexed N-modified porphyrins 
[388]� The modified CYP2B1 peptide has been 
isolated and shown to span residues 277–323� 
By sequence analogy, these residues correspond 
to the distal I helix in P450cam [386, 389–392]� 
Further digestion of the modified peptide has re-
sulted in identification of the site for modifica-
tion by secobarbital to a residue in the peptide 
G299-S304 [387]� Although the identity of the 
adducted residue has not yet been determined, 
these results are consistent with modification of 
the CYP2B1 in the active site� Specific mutations 
of CYP2B1 in the putative substrate-recognition 
site (SRS) 2,4,5, and 6, but not in SRS-1, cause a 
decrease in the inactivation by secobarbital� Mu-
tation of residue 367 from V to A in SRS-5 had a 
marked inhibitory effect on protein modification 
[387]� Isolation of the N-modified porphyrins as 

the parent adducts as well as the corresponding 
dimethylesters and analysis by LC–MS demon-
strated the formation of adducts of hydroxyseco-
barbital with protoporphyrin IX (Fig� 5�17) [386]�

Like terminal olefins, terminal acetylenes 
can alkylate the P450 prosthetic heme� How-
ever, compounds such as 10-undecynoic acid, 
1-ethynylpyrene, 2-ethynylnaphthalene, 9-ethy-
nylnaphthalene, 17β-ethynylprogesterone, and 
17α-ethynylestradiol (EE) inactivate P450s 
primarily by covalently binding to the apopro-
tein with little or no effect on the heme group 
(Fig� 5�18) [305, 310, 317, 318]� Almost stoi-
chiometric binding of 10-undecynoic acid to rat 
liver CYP4A1 (the ω-hydroxylase) as well as of 
2-ethynylnaphthalene and 1-ethynylpyrene to 
CYP1A1 and -1A2, and of EE to CYP3A4 has 
been observed [305–310, 314–318]� Isolation of 
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acidic metabolites from incubations of 10-un-
decynoic acid (Fig� 5�18) and 1-ethynylpyrene 
provides strong support for the formation of a 
reactive intermediate following oxygen trans-
fer from the P450 heme to the terminal carbon 
of the triple bond, which then triggers migration 
of the terminal hydrogen to the adjacent carbon 
(Fig� 5�18)� Migration of this hydrogen results in 
the generation of a reactive ketene which can ei-
ther acylate the protein or be hydrolyzed to give 
the carboxylic acid metabolite [310]� The inter-
mediacy of ketenes in the MBI of various P450s 
has also been suggested for the acylation of bo-
vine adrenal CYP21 by 17β-ethynylprogesterone 
[312, 313] and of CYPs 1A2, 2B1, and 2B4 by 
2-ethynylnaphthalene (Fig� 5�18) [307, 309, 
319]� 2-Ethynylnaphthalene inactivates CYP2B1 
with a KI of ~ 0�08 µM, kinact of 0�83 min− 1 and 
a partition ratio of ~ 4–5 mol of acid formed per 
inactivation of the CYP2B1 [309]�

Addition of the activated oxygen to the in-
ternal carbon of the triple bond rather than the 
terminal carbon of phenylacetylene results in 
heme N-alkylation of CYP2B1 rather than pro-

tein acylation [310, 393]� The observation that 
the phenylacetylene inactivates CYP2B1 primar-
ily via heme alkylation [393] whereas 2-ethynyl-
naphthalene inactivates primarily by acylation of 
the protein [307, 309, 319] suggests that the fit 
of the inhibitor within the active site may be a 
significant determinant of the particular inacti-
vation mechanism� Although both of these aryl 
acetylenes yield ketene metabolites, only that 
formed from the 2-ethynylnaphthalene is able to 
form a covalent adduct with the CYP2B1 protein 
[309, 319]� Acylation of this protein by 2-ethy-
nylnaphthalene demonstrates that the inability of 
phenylacetylene to acylate the apoprotein is not 
due to the lack of appropriate nucleophilic resi-
dues in the active site� Furthermore, confirmation 
that a ketene is formed as an intermediate dur-
ing the reaction comes from the observation that 
phenylacetic acid is formed as a product of the 
phenylacetylene [309, 319]� The inactivation of 
CYP2B1 by modification of the protein by the 
2-ethynylnaphthalene and heme modification by 
the phenylacetylene suggest that: (a) the bind-
ing of the 2-ethynylnaphthalene in the P450 ac-

Fig. 5.18  Metabolic inactivation by 2-ethynylnaphtha-
lene and 10-undecynoic acid� a Structures of both com-
pounds, which are known to inactivate P450 enzymes, 
presumably through the formation of a ketene intermedi-
ate as shown in b� b The oxidation of terminal acetylenes 
is thought to lead to the formation of ketene intermedi-

ates, which then can react with active-site nucleophilic 
residues, inactivating the P450 involved� They can also 
react with water to give carboxylic acids, as shown� The 
circled areas indicate the sites of metabolism leading to 
the ketenes
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tive site is in such an orientation that it prevents 
delivery of the activated oxygen to the internal 
carbon and (b) alkylation of the heme by the 
phenylacetylene is sufficiently efficient relative 
to the acylation of the apoprotein by the phenyl 
ketene metabolite that the enzyme is unable to 
carry out further metabolism before the acylation 
of the protein becomes significant� These differ-
ences presumably are due to the fact that the two 
agents bind in differential orientations within the 
CYP2B1 active site or they may have very differ-
ent binding affinities�

Incubation of radiolabeled 2-ethynylnaphtha-
lene with rat and rabbit CYPs 1A2 followed by 
tryptic digestion, peptide mapping, and amino 
acid sequence analysis of the labeled peptides 
indicated that the inactivation was due to adduct 
formation on a peptide spanning residues 67–78 
in the rat protein and 175–184 in the rabbit pro-
tein [307]� However, identification of the actual 
residue that was modified in each case and the 
nature of the covalent linkage to the inhibitor 
could not be determined due to the instability 
of the P450 peptide adducts [307]� The fact that 
2-ethynylnaphthalene modified two very differ-
ent peptides in the P450s having very similar 
primary sequences and that it did not inactivate 
the highly related human CYP1A2 is of interest� 
Based on alignments of the labeled peptides with 
the sequence of P450cam (CYP101) the labeled 
peptide regions 67–78 and 175–184 were sug-
gested to correspond to the A and D helixes, re-
spectively (See Chap� 1)� Therefore, the labeled 
peptide from rat CYP1A2 may include residues 
from the substrate-binding regions [389–392]�

2-Ethynylnaphthalene has also been shown to 
be a mechanism-based inactivator of CYP2B1 
and CYP2B4 [309, 319]� HPLC analysis re-
vealed that the radiolabeled 2-ethynylnaphtha-
lene was covalently bound to the apoprotein 
with a stoichiometry of approximately 1�3 mol 
of 2-ethynylnaphthalene per mol of CYP2B1 
inactivated� Amino acid sequencing of the radio-
labeled CYP2B1 peptides following cleavage of 
the protein by cyanogen bromide (CNBr) led to 
the identification of a radiolabeled peptide that 
includes residues 290–314 of the protein� An 
analogous peptide spanning residues 273–314 

was obtained with CYP2B4� Both of the modi-
fied peptides correspond in sequence to the high-
ly conserved I helix of P450cam (CYP101) that 
appears to play an important role in forming the 
active site and contacts both the substrate and the 
heme group [389–392]� These peptides also con-
tain the highly conserved Thr302� The functional 
role of Thr302 in the inactivation of CYP2B4 
by 2-ethynylnaphthalene was confirmed when 
it was shown that the Thr302A variant exhib-
ited a significantly slower rate of inactivation 
(0�05 ± 0�01 min− 1) as compared with the rate of 
inactivation of the wild-type (0�20 ± 0�05 min− 1), 
suggesting that the Thr302 is the acylated residue 
in CYP2B4� If the hydroxyl group of the threo-
nine is the protein nucleophile that is modified, 
the resulting adduct would be an ester [394]�

9-Ethynylphenanthrene (9EP) has also been 
shown to be an effective mechanism-based inacti-
vator of CYP2B1 [395]� CYP2B1 inactivation by 
9EP was time-, NADPH-, and concentration-de-
pendent� The activity loss followed pseudo-first-
order kinetics, with a KI of 138 nM and a kinact of 
0�5 min− 1� HPLC and SDS-PAGE analysis dem-
onstrated that radiolabeled 9EP was irreversibly 
bound to the protein moiety with a stoichiometry 
of ~ 0�8 nmol of 9EP bound per nmol of CYP2B1� 
CNBr cleavage of the radiolabeled CYP2B1 fol-
lowed by Tricine SDS-PAGE analysis of the pep-
tides resulted in identification of a radiolabeled 
peptide having a mass of ~ 3 kDa� Analysis of the 
radiolabeled peptide using matrix-assisted laser 
desorotion/ionization (MALDI)-MS showed two 
peaks at m/z 2720�9 and 2939�9� The lower mass 
peak is the molecular ion (MH+) for the Ile 290-
Met 314 peptide (theoretical 2722�2), while the 
higher mass peak corresponds to the MH+of the 
modified peptide (theoretical 2940�5)� The mass 
difference between the labeled and unlabeled 
peptide of ~ 219 Da would correspond to the ad-
dition of a phenanthrylacetyl group to the pep-
tide� Further digestion with pepsin of the fraction 
containing the modified and unmodified peptides 
and reanalysis by MALDI-MS showed that the 
site of attachment could be assigned to one of 
the amino acid residues in the peptide Phe297 
to Leu307 [395]� It was hypothesized that the at-
tachment was probably an ester linkage to one of 



218 M. A. Correia and P. F. Hollenberg

the six Thr or Ser residues in that region� Based 
on sequence alignments with bacterial CYP101, 
this region is part of the SRS 4�The possibility 
of an anhydride formation through Glu was ruled 
out since it would not be expected to survive the 
slightly acidic conditions used to purify the pep-
tide by HPLC [395]�

Subsequent studies were performed to inves-
tigate the mechanism by which covalent binding 
of the phenanthryl acetyl group to the protein 
moiety inactivated the protein in order to eluci-
date the possible role(s) of this region in catalysis 
[396]� For these studies, the abilities of 9-EP-
modified and native CYP2B1 to catalyze some 
of the individual steps of the P450 catalytic cycle 
were determined� Although inactivation by 9EP 
results in a 90–95 % loss in the NADPH-support-
ed deethylation of 7-EFC, it has no effect on the 
metabolism of 7-EFC supported by iodosoben-
zene or cumene hydroperoxide� No decrease was 
observed in the ability of the modified CYP2B1 
to form the steady-state level of the reduced CO 
complex either enzymatically with NADPH and 
CPR or chemically with sodium dithionite� How-
ever, the rate of reduction by CPR under anaero-
bic conditions was only 50 % of that of the na-
tive protein in the absence of substrate and 35 % 
of that of the native protein in the presence of 
substrate� The 9EP-modified protein exhibited a 
slower rate of NADPH oxidation, H2O2 forma-
tion, and the formation of formaldehyde during 
metabolism of benzphetamine when compared to 
the native enzyme� The ratio of H2O2 to HCHO 
was 1�0:1�0 for native enzyme and 1�6:1�0 for 
the modified protein� The ability of the modified 
protein to form the steady-state level of the iron-
oxygen complex in the presence of cyclohexane 
was decreased� These results are consistent with 
the idea that the inactivation via adduct forma-
tion between 9EP and one of the residues in the 
Phe297 to Leu307 peptide impairs the reduction 
of the CYP2B1 by CPR and also results in the 
uncoupling of NADPH utilization and oxygen 
consumption from product formation [396]�

9EP has also been shown to be a mechanism-
based inactivator of CYP2B4 [397]� The kinact 
and the partition ratio were 0�25 min− 1and 0�2, 
respectively [397]� Interestingly, the inactiva-

tion exhibited sigmoidal kinetics with an S50 of 
4�5 µM and a Hill coefficient of 2�5, indicative of 
homotropic cooperativity� ESI–LC–MS showed 
that the inactivated apoprotein exhibited an in-
creased mass of 218 Da� This increase is equiva-
lent to the mass of one molecule of 9EP (202 Da) 
plus one oxygen atom� The mass of the unmodi-
fied apoprotein was not observed in the inactivat-
ed sample, indicating that the CYP2B4 was com-
pletely labeled by 9EP under the conditions used� 
Although the 9EP-modified CYP2B4 showed a 
loss of approximately 50 % of the CO-detectable 
heme, no loss of the native heme was observed 
when the inactivated protein was analyzed by 
HPLC� The modified CYP2B4 was purified to 
homogeneity and its structure was determined by 
X-ray crystallography [397]� The crystal struc-
ture showed the 9EP is covalently attached to the 
Oγ of Thr302 via an ester bond, consistent with 
the increase in mass of the protein of 218 Da� The 
bulky phenanthrenyl ring of the 9EP produced in-
ward rotations of Phe206 and Phe297, resulting 
in the formation of a compact active site� Thus, 
the binding of a second molecule of 9EP at the 
active site was prohibited� However, studies on 
the fluorescence quenching of 9EP by the un-
modified or 9EP-modified CYP2B4 showed that 
there were at least two 9EP binding sites having 
distinctly different affinities� The lower affinity 
site was the catalytic site and the higher affinity 
site was located on the periphery of the protein� 
Studies using computer-aided docking and mo-
lecular dynamics simulations with one or two li-
gands bound to the protein showed that the higher 
affinity site (allosteric) is situated at the entrance 
of a substrate access channel which is surrounded 
by the Fʹ helix, the β1–β2 loop, and the β4 loop 
[397]� The presence of this ligand at the allosteric 
site enhances the efficiency of the activation of 
the 9EP- acetylenic group at the active site and its 
subsequent covalent binding to the Thr302 [397]�

7-Ethynylcoumarin (7-EC; Fig� 5�19) was 
synthesized as a potential mechanism-based in-
hibitor of CYP2A6, a preferential coumarin7-hy-
droxylase [398]� Although it showed a minimum 
ability to serve as a mechanism-based inactiva-
tor of CYP2A6, it was an effective inactivator 
of CYP2B1 [398]� CYP2B1 inactivation dem-
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Fig. 5.19  7-Ethynylcoumarin, deprenyl, 17α-ethynyl-
estradiol, and mifepristone� These agents have all been 
shown to inactivate P450s� It is thought that in all these 

cases the reactive intermediate arises following oxidation 
of the triple bond that is circled in the compounds

 

onstrated pseudo-first-order kinetics and was 
NADPH- and inhibitor-dependent� The KI and 
kinact were 25 µM and 0�39 min− 1, respectively, 
with a partition ratio of 25�Activity loss was not 
associated with a significant loss in the reduced-
CO spectrum, suggesting that the inactivation 
was primarily due to the modification of the P450 
protein rather than the heme� ESI–MS analysis of 
the inactivated protein demonstrated the attach-
ment of one molecule of the inactivator along 
with one atom of oxygen in a 1:1 ratio to the apo-
protein, which gave a mass difference of 185 Da 
between the modified and native apo-P450� This 
is the mass difference that would be expected 
following the generation of a ketene which then 
reacts to form an adduct with a nucleophile in the 
protein� ESI–LC–MS was also used to verify the 
absence of modified heme as well as the lack of 
modification of the CPR [398]�

Two structurally related compounds contain-
ing a tert-butyl moiety to increase the specific-

ity for CYP2E1 as well as an ethynyl functional 
group for metabolic activation by the P450 to 
a reactive intermediate that could serve as a 
mechanism-based inactivator, were shown to be 
mechanism-based inactivators of the CYP2E1 
T303A mutant [399]� tert-Butyl acetylene (tBA) 
and tert-butyl 1-methyl-2-propynyl ether (tBMP; 
Fig� 5�20) inactivated the P450s via three differ-
ent mechanisms: (a) alkylation of the heme pros-
thetic moiety (inactivation of P450s by tBA and 
tBMP); (b) a combination of protein and heme 
alkylation (inactivation of CYP2E1 by tBA); (c) 
reversible alkylation of the P450 heme which 
had not previously been described (inactivation 
of the T303A mutant by tBA)�The inactivations 
were time-, concentration-, and NADPH-de-
pendent [399]� The KI values for the inactiva-
tion of CYP2E1 and the mutant by tBA were 1�0 
and 2�0 nM, and the kinact values were 0�20 and 
0�38 min− 1, respectively� The KI values for the 
tBMP-inactivated P450s were 0�1 and 1�0 nM, 
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and the kinact values were 0�12 and 0�07 min− 1, 
respectively� Losses in enzyme activity occurred 
with concurrent losses in the reduced CO-spec-
trum and P450 heme and these were accompa-
nied by the appearance of two different tBA- or 
tBMP-modified heme products� LC–MS analysis 
of the adducted hemes showed masses of 661 
or 705 Da, consistent with the mass of an iron-
depleted heme plus the masses of a tBA or tBMP 
reactive intermediate and one oxygen atom, re-
spectively� However, only the tBA-inactivated 
wild-type 2E1 exhibited a modified apoprotein 
having an increase in mass of 99 Da, correspond-
ing to the mass of an adduct of tBA plus one oxy-
gen atom� Surprisingly, the inactivation, loss of 
the reduced CO-spectrum and P450 heme, and 
the heme adduct formation of the tBA-inactivat-
ed T303A mutant could be completely reversed 
by dialysis [399]� The characterization of this 
reversible inactivation mechanism demonstrat-
ed that the losses in the native heme and in the 
catalytic activity of the tBA-inactivated T303A 
mutant could be restored either by spin column 
gel filtration or dialysis [400]� The acetylene 
heme adducts having m/z values of 661 Da were 
reversible with time� Interestingly, the retention 
of stable heme adducts in the tBA-inactivated 
T303A mutant required a source of exogenous 
protons, whereas the wild-type CYP2E1 formed 
stable tBA adducts under the same conditions 
regardless of prior preacidification [400]� These 
results suggest an important role for the highly 
conserved Thr303 residue in donating protons 
through the CYP2E1 active site and suggest that 
it may be a possible participant in a proton relay 
network to the active site and that it plays a role 

in the stabilization of a reactive intermediate dur-
ing substrate metabolism by P450s�

Studies with the alternate oxidants tert-butyl 
hydroperoxide (tBHP) and cumene hydroperox-
ide (CHP) demonstrating that they were capable 
of supporting enzyme inactivation in the absence 
of NADPH and CPR, suggested the formation 
and utilization of a hydroperoxo-iron species 
responsible for substrate oxygenation by the 
T303A mutant and an iron-oxo species for use by 
the wild-type enzyme [401]� These results also 
confirmed the disruption of proton delivery to 
the active site in the T303A mutant [401]� One 
possible mechanism suggested for the reversible 
inactivation of CYP2E1 T303A by tBA is shown 
in Fig� 5�21� This scheme postulates that the in-
activating intermediate is formed by insertion of 
an oxygen into the acetylene by a hydroperoxo-
iron species� This oxygenated intermediate is re-
sponsible for the reversible loss of the enzymatic 
activity of the CYP2E1 mutant� This reactive in-
termediate can proceed by two different routes: 
(a) it can form an intermediate which is revers-
ible over time and decomposes to yield the active 
enzyme with intact heme and with the release of 
an acetylene-derived carboxylic acid; or (b) the 
inactivating intermediate is stabilized in the pres-
ence of exogenous protons and then can result in 
the irreversible N-alkylation of the P450 heme� 
This second pathway is identical to the sequence 
of steps involved in the irreversible inactivation 
of the wild-type CYP2E1 by tBA� Another pos-
sible mechanism involves the addition of the 
oxygen to the distal carbon of the acetylene lead-
ing to formation of a complex in which the heme 
iron and the nitrogen are complexed as follows: 

Fig. 5.20  Structures of tert-butyl acetylene and tert-butyl 
1-methyl-2-propynyl ether� These two structurally simi-
lar acetylenic compounds contain the tert-butyl moiety 

to provide specificity for CYP2B1, as well as an ethynyl 
functional group for metabolism to give a reactive inter-
mediate that can covalently modify the protein
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Fig. 5.21  Sequence of reactions for the reversible inacti-
vation of CYP2E1T303A by low molecular weight acety-
lenes� In the initial step, the hydroperoxy-iron species in 
the T303A mutant inserts an activated oxygen into the 
acetylenic compound to form an inactivating intermedi-
ate (in brackets) that can readily be observed spectrally 
at 485 nm� This intermediate is responsible for the losses 

in enzymatic activity of the CYP2E1 mutant and its for-
mation can either be reversed over time to regenerate the 
native heme and one or more reversal products or the in-
termediate can then N-alkylate the P450 heme in the pres-
ence of exogenous protons and irreversibly modify the 
enzyme as seen with the wild-type 2E1 enzyme [401]

 

Fe–O–CR = CH–N. The disruption of the com-
plex would be promoted by acid� The primary 
difference between the mechanism depicted in 

Fig� 5�21 and the second mechanism is that the 
distal carbon of the acetylene is connected to the 
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iron by the ferryl oxygen rather than by a two-
oxygen peroxide bridge�

Since Thr303 is very highly conserved in the 
P450 enzymes and it is thought to be involved in 
proton delivery to the P450 active sites, the role 
of this conserved residue and the protein relay 
networks in the reversibility of the MBI by acet-
ylenes was examined in CYP2B4 and its T302A 
mutant, which corresponds to the T303A mutant 
in CYP2E1 [402, 403]� These studies showed 
that the same acetylenic inactivators (tBA and 
tBMP) could inactivate these two P450s in a 
mechanism-based manner and formed acetylene 
adducts with the heme [402, 403]� The inactiva-
tions of CYP2B4 and its T302A mutant were 
only partially reversible (20–30 %) by dialysis 
or spin column gel filtration� The formation of 
the stable tBA or tBMP heme adducts in both 
the wild-type and mutant CYP2B4s required 
protons, a significant deviation from what was 
observed with CYP2E1 and its mutant� Mod-
els of the active site of CYP2B4 and the mutant 
based on the CYP2B4 crystal structure showed 
that its T302A mutation has no significant effect 
on the architecture of the enzyme active site or 
on the proton delivery networks, as seen with 
CYP2E1� There were two possible networks for 
proton delivery in the CYP2B4 P450s� However, 
the glutamate (E301) and threonine (T302) net-
work is intact in the T302A mutant of CYP2B4� 
This suggests that delivery of the protons in the 
mutant is still efficient� Based on mass spectral 
data and computational modeling, it appears that 
the conserved Thr residue in CYP2B4 is not in-
volved in proton delivery to the acetylene reac-
tive intermediate in the heme or in the partial re-
versibility that is observed with the CYP2B4 en-
zymes� Therefore, these studies suggest that the 
active site architecture and proton relay system 
may play an important role in determining the 
reversibility of these two P450s� Models of the 
CYP2B4 T302A mutant reveal the presence of a 
compensatory ordered hydrogen bond network 
even in the absence of the Thr302� These results 
indicate that although Thr302 may play a role in 
proton delivery in the formation of the oxenoid-
iron complex and also in the stabilization of the 
acetylene heme adducts in CYP2B4, it is not es-

sential for proton delivery given the presence of 
Glu301 in the substrate binding site and that the 
conserved Glu301 may be operational in the hy-
drogen bond network even when the conserved 
Thr302 residue is absent [402, 403]�

Studies on the MBI of CYP2B1 wild-type 
(WT; Fig� 5�22) and its T205A mutant by tBPA 
and tert-butyl 1-methyl-2-propynyl ether ( tBMP), 
two structurally related tert-butyl acetylenic com-
pounds showed that they inactivated CYP2B1 by 
two very distinct mechanisms and that the effi-
ciencies varied by > 70-fold [404]� tBPA inacti-
vated CYP2B1 (WT) with a KI 0�7 µM and a kinact 
of 1�64 min− 1 and the T205A mutant with KI = 16 
and kinact of 0�36� The partition ratios for the WT 
and mutant were 1 and 9, respectively� BMP in-
activated the WT with a KI of 17 µM and kinact of 
0�56 min− 1 and the mutant with a KI of 16 µM 
and kinact of 0�14 min− 1� The partition ratios for 
the WT and mutant were 10 and 35, respectively� 
LC–MS/MS of the WT demonstrated that its in-
activation by tBPA resulted in the formation of a 
protein adduct having a mass increase equivalent 
to the mass of the tBPA plus one oxygen atom 
and that the inactivation by BMP led to the for-
mation of multiple heme adducts without protein 
adduction and that all of the heme adducts had 
mass increases equivalent to BMP plus one oxy-
gen atom� Trapping of the reactive intermediates 
with GSH followed by LC–MS/MS analysis re-
vealed the formation of conjugates resulting from 
the reaction of the ethynyl moiety of the BMP or 
tBPA with the oxygen being added to the internal 
carbon of BMP and the terminal carbon of BPA� 
Inactivation of the T205A mutant by BMP led to 
the formation of only one major heme adduct� 
These results demonstrate that Thr205 in the F-
helix plays an important role in the efficiency of 
the MBI of CYP2B1 by BPA and BMP� Substrate 
docking and homology modeling studies helped 
in identifying the potential role of Thr205 in hy-
drogen bonding interactions affecting the three-
dimensional structure of the active site [404]�

tBPA was also shown to be a potent mecha-
nism-based inactivator of CYP2B4 [405]� Inacti-
vation occurred in an NADPH- and time-depen-
dent manner with a KI of 0�44 µM and a kinact of 
0�12 min− 1� Interestingly, the partition ratio was 
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Fig. 5.22  Pathways proposed for the mechanism-based 
inactivation of CYP2B1 by a reactive intermediate de-
rived from 4-tert-butyl phenylacetylene ( tBPA)� The ke-
tene intermediate can react with the apoprotein leading 

to mechanism-based inactivation� It has also been trapped 
with GSH, leading to the positive identification of its 
structure

 

~ 0, suggesting that the inactivation occurs with-
out any of the reactive intermediate leaving the 
active site� LC–MS analysis of the modified pro-
tein showed that tBPA binds to the protein with a 
1:1 stoichiometry� Peptide mapping of the tBPA-
inactivated CYP2B6 showed that adduct forma-
tion occurred on Thr302, consistent with molec-
ular modeling studies showing that the terminal 
carbon of the acetylenic group is within 3�65 Å 
of Thr302� In order to investigate the effect of 
the formation of a covalent bond between tBPA 
and the CYP2B4 apoprotein at the active site, 
the protein was purified to homogeneity and the 
modified protein was characterized [405]� A red 
shift in the Soret peak maximum of 5–422 nm 

was observed with the tBPA-inactivated protein 
compared with the unmodified protein� Binding 
of benzphetamine to the inactivated CYP2B4 did 
not cause a spin shift, indicating that either the 
binding of the substrate and/or the heme environ-
ment had been altered by covalent binding and in-
activation by tBPA� Although CPR reduced both 
the unmodified and modified P450s at the same 
rate, the addition of the substrate benzphetamine 
stimulated reduction of the unmodified CYP2B4 
by ~ 20-fold but only marginally stimulated the 
rate of reduction of the tBPA-modified protein 
[405]� These results suggest that the impairment 
of the CYP2B4 catalytic activity is due to the 
inhibition of substrate binding to the inactivat-



224 M. A. Correia and P. F. Hollenberg

ed protein� Subsequent studies using resonance 
Raman spectroscopy of the unmodified and the 
modified CYP2B4 in the absence and presence 
of the benzphetamine substrate demonstrated that 
although the modification of the protein by tBPA 
does not substantially alter the resting-state heme 
structure, it does block the entrance of the sub-
strate to the distal pocket of the protein [406]� The 
results of resonance Raman spectroscopy also 
demonstrated that even small structural chang-
es associated with MBI could potentially lead 
to significant differences in the P450 reduction 
potential or the affinity for its axial ligands, and 
also impact the stability of key hydroperoxo- or 
peroxo-intermediates� The fully tBPA-modified 
CYP2B4 was still able to catalyze the oxidation 
of 7-EFC, benzphetamine, and testosterone at 
30, 21, and 9�6 % of the rates for the unmodified 
CYP2B4, respectively� Thus, covalent modifica-
tion by tBPA impairs the catalytic activity, but the 
extent of this impairment varies with the nature 
of the substrate probes� Therefore, even though 
substrate binding to the active site appears to be 
adversely affected by the tBPA adduct, residual 
activity may still arise due to the conformational 
flexibility of the P450 active site structure that 
would allow transient access of the substrates to 
the active site� This possibility appears reason-
able because it has been previously documented 
that the secondary structure of CYP2B4 is very 
flexible [407, 408]�

In order to identify the adducted residue fol-
lowing tBPA inactivation of CYP2B1, the modi-
fied protein was digested with trypsin and the 
peptides from the digest were analyzed by LC–
MS/MS [409]� Based on the identification of a 
tBPA-GSH conjugate with an increase in mass of 
174 Da and the 174 Da increase in the mass of 
the BPA-adducted apoprotein, a shift of 174 Da 
was used for a SEQUEST database search of the 
tryptic peptides from the CYP2B1� The tandem 
mass spectrometric fragmentation of the modi-
fied peptide led to identification of the modi-
fied residue� A mass increase of 174 Da for the 
peptide sequence 296FFAGTSSTTLR308 in the I-
helix was observed and the site of adduct forma-
tion was found to be Thr302 (Fig� 5�21)� Ligand 
docking and homology modeling studies showed 

that tBPA was bound in close proximity to both 
Thr302 and the heme iron in CYP2B1 with the 
distances being 3�42 and 2�96 Å, respectively� 
These results support the previous hypothesis 
that this highly conserved Thr residue may play 
a crucial role in the active site of the P450s� The 
proposed pathways for the formation of the re-
active intermediate of tBPA and the reaction to 
form a protein-bound adduct during tBPA MBI of 
CYP2B1 are shown in Fig� 5�21� It is suggested 
that the ketene intermediate formed by the CY-
P2B1-catalyzed oxidation of the acetylenic group 
may be oriented in the active site to facilitate nu-
cleophilic attack by the threonine hydroxyl group 
leading to the formation of an ester linkage to the 
protein [409]�

Insights into how the tBPA-modified CYP2B4 
retains partial activity were obtained from a com-
bined structural and computational analysis of 
the modified protein [410]� How the conjugation 
of the tBPA to the highly conserved Thr302 in 
the active site still allowed for residual activity 
was not clear� In order to gain a better under-
standing of how this occurs, the tBPA-modified 
CYP2B4 was crystallized and the crystal struc-
ture showed that an oxygenated metabolite of 
tBPA was, in fact, conjugated to the Thr302 of 
helix I, consistent with previous studies using 
LC–MS/MS� Interestingly, the modified protein 
crystallized in two different structural conforma-
tions� In each structure, the core of the CYP2B4 
was unchanged, but the arrangement of the “plas-
tic” regions differed� One of the structures was a 
compact structure in a closed conformation that 
was in agreement with in silico experiments that 
had been performed previously [410]� However, 
the other structure, referred to as the open struc-
ture, was formed by dimerization of CYP2B4 
due to movement of the B/C loop and helixes F 
through G� This alters the position of tBPA so that 
it is almost parallel to the heme plane� Docking 
experiments using this open form demonstrated 
that the tBPA is able to rotate upward to give sub-
strates such as 7-EFC and testosterone access to 
the heme, which could explain the partial reten-
tion of the catalytic activity that was observed 
previously�
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The ability of tBPA to cause MBI of CYP2B6 
was also investigated [411]� tBPA was shown to 
be a time-, concentration-, and NADPH-depen-
dent inactivator of the P450� It exhibited a KI 
of 2�8 µM, a kinact of 0�7 min− 1 and a partition 
ratio of ~ 5� The mass increases for a conjugate 
trapped with GSH and for the adducted protein 
were 174 Da, the same as with CYP2B1, which 
is equivalent to the mass of one molecule of 
tBPA plus one oxygen atom� The identity of the 
adducted residue was determined by digesting 
the BPA-inactivated CYP2B6 with trypsin and 
then analyzing the digest by LC–MS/MS� A mass 
shift of 174 Da was used in the SEQUEST data-
base search and the modified residue was iden-
tified by MS/MS fragmentation of the modified 
peptide� Two residues, Thr302 and Lys274 were 
identified as the tBPA-modified residues� Subse-
quent mutagenesis studies demonstrated that the 
Thr302 was the residue that was modified lead-
ing to the inactivation, not Lys274 [411]� In order 
to test the experimental results, the tBPA was 
docked into the active site of the crystal structure 
of a CYP2B6 genetic variant� The active site resi-
dues within 4 Å of the reversibly bound tBPA, as 
well as the distance between the heme iron and 
the two residues suggested to be adducted by 
SEQUEST search were examined� The results of 
these docking studies agreed with the mutagen-
esis results, which revealed that Thr302 and not 
Lys274 was the critical residue modified by the 
tBPA reactive metabolite, this modification being 
responsible for the MBI [411]�

Further insights into the structural and func-
tional relationships of the P450s can be gained 
from molecular modeling studies� The potent 
inactivation by tBPA of the CYP2Bs appears to 
be due to its unique binding mode in the CYP2B 
active site s� The close proximity of the terminal 
carbon of the acetylenic group of tBPA to both 
the Oγ atom of Thr302 and the heme Fe greatly 
facilitates the formation of the reactive ketene 
intermediate and its subsequent reaction to form 
a covalent linkage with the hydroxyl group of 
Thr302� The extremely small partition ratio sug-
gests that the ketene intermediate has a very low 
probability of escaping from the active site when 
its formation occurs in such a close proximity to 

the Thr302 Oγ and therefore it is a very efficient 
inactivator that minimizes the “collateral” dam-
age to other cellular proteins [411]�

17α-Ethynylestradiol (EE; Fig. 5�19) has been 
known for a long time be a mechanism-based 
inactivator of P450s [314–316]� The inactiva-
tions were shown to be due to activation of the 
acetylenic moiety to a reactive intermediate that 
then alkylated a pyrrole nitrogen on the heme� 
Studies using purified CYP3A4 in the reconsti-
tuted system demonstrated that EE was a potent 
mechanism-based inactivator which modified 
both the heme and the protein [412]� The inac-
tivation of CYP3A4 followed pseudo-first-order 
kinetics and was dependent on NADPH, time, 
and concentration� The values for the KI and kinact 
were 18 µM and 0�04 min− 1, respectively� The 
partition ratio was ~ 50� The binding stoichiom-
etry was ~ 1�3 nmol of EE per nmol of inactivated 
P450� SDS–PAGE demonstrated that the radiola-
beled EE was irreversibly bound to the apopro-
tein� HPLC analysis demonstrated that the inac-
tivation led to the destruction of approximately 
half the heme with the concomitant generation of 
modified heme and EE-labeled heme fragments, 
and also produced radiolabeled CYP3A4 apopro-
tein [412]�

17EE (Fig� 5�19) was also shown to inactivate 
purified rat CYP2B1 and human CYP2B6 in a 
mechanism-based manner [413]� For CYP2B1 
the KI was 11 µM and the kinact was 0�2 min− 1, 
and for CYP2B6 the KI was 0�8 µM and the 
kinact was 0�03 min− 1� Inactivation of CYP2B1 
by 17EE led to approximately 75 % loss in en-
zyme activity with a concurrent 20–25 % loss in 
the ability to form a reduced CO complex after 
20 min of incubation� With CYP2B6, a 20-min 
incubation led to 83 % loss of enzymatic activity 
with only a 5–10 % loss in the CO-reduced spec-
trum� The partition ratios for the inactivation of 
CYPs 2B1 and 2B6 were 21 and 13, respectively� 
The stoichiometry of binding of the radiolabeled 
17EE to both P450s was ~ 1�3:1� Analysis of the 
metabolites of 17EE formed by all four CYP2B 
enzymes under investigation showed that the 
CYPs 2B2 and 2B4, which were not inactivated 
by 17EE, differed primarily in their ability to 
generate two metabolites, which presumably may 
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be products formed from the reactive intermedi-
ate responsible for the MBI [413]� It is of interest 
that although CYP2B2 and CYP2B4 share> 70 % 
sequence identity with CYP2B1, they were only 
minimally affected by 17EE-incubation in the 
presence of NADPH�

Although heme destruction was the primary 
cause for the inactivation of CYP3A4, there was 
minimal loss or modification of the heme moi-
ety when CYP2B1 or CYP2B6 were inactivated 
by 17EE� Therefore, it appeared that the reactive 
intermediate formed from 17EE was modifying 
the apoprotein� Mass spectral analysis of 17EE-
inactivated CYP2B1 showed an increase in the 
mass of the apoprotein of ~ 313 Da, consistent 
with the mass of 17EE plus one oxygen atom 
[414]� CNBr digestion of the radiolabeled P450s 
led to the identification of one major labeled 
peptide for each enzyme� N-terminal sequencing 
of these peptides yielded amino acid sequences 
that corresponded to the amino acids P347-M376 
and P347-M365 in CYP2B1 and CYP2B6, respec-
tively� ESI–LC–MS and MALDI-MS analysis of 
the CYP2B1-derived peptide resulted in a mass 
of 3654 Da, which is consistent with the mass 
of the P347-M376 peptide (3385 Da) plus a 268-
Da adduct from 17EE� GSH added to the reac-
tion mixture was used to trap chemically reac-
tive intermediates of 17EE generated during the 
MBI of the P450s� ESI–LC–MS/MS analysis of 
the trapped GSH conjugates from the incuba-
tion mixtures revealed that the two P450s gener-
ated different reactive intermediates of 17EE that 
were responsible for the formation of the adducts 
with the proteins, the P450 inactivation, and the 
formation of the GSH conjugates [414]�

17EE was also shown to inactivate CYP3A5 
[415]� This inactivation was dependent on b5�
The values for the KI and kinact were 26 µM and 
0�06 min− 1, respectively� The partition ratio was 
~ 25� The stoichiometry for binding of EE was 
~ 0�3 mol/mol of P450 inactivated� SDS–PAGE 
demonstrated that radiolabeled EE was irrevers-
ibly bound to the apoprotein� LC–MS/MS re-
vealed the formation of two GSH-conjugates with 
m/z values of 620 that were formed only in the 
presence of b5�The two conjugates were formed 
by reaction of GSH with the ethynyl group of the 

EE with the oxygen being inserted into either 
the terminal or the internal carbon� A heme ad-
duct having m/z 927 and two dipyrrole adducts 
having m/z values of 579 were also detected by 
LC–MS/MS analysis� These results suggested 
that CYP3A5 activates 17EE to a 17α-oxirene-
related reactive species that can partition the ox-
ygen between the terminal and internal carbons 
of the ethynyl group leading to the formation of 
both heme and apoprotein adducts that inactivate 
CYP3A5 [415]�

Sequence alignment of CYPs 2B1, 2B2, 2B4, 
and 2B6 between the P347 and the amino acid res-
idue at position 376 exhibited significant conser-
vation across the four enzymes [416]� However, 
the single nucleophilic residue that is identical in 
CYPs 2B1 and 2B6, but different in CYPs 2B2 
and 2B4, is S360� This residue in CYP2B4 is lo-
cated at the C-terminal end of the K helix and 
is thought to be in SRS 5� Thus, it is conceiv-
able that the residue at position 360, particularly 
when present as a serine, may have an important 
role in the metabolism of larger molecules such 
as steroids� Interestingly, S360 is the only residue 
identical in both CYP2B1 and 2B6 (the isozymes 
inactivated by 17EE) and could form an ester 
linkage with a reactive intermediate of 17EE 
[415]� The amino acid at position 360 of CYPs 
2B2 and 2B4 (the enzymes that were not inac-
tivated by 17EE) is a glycine or alanine, respec-
tively� These residues would not be able to form 
an adduct with the reactive intermediate of 17EE 
and thus would not be expected to be targets lead-
ing to the inactivation�

CYPs 2B1 and 2B6 were inactivated with 
17EE and digested with trypsin [416]� Adducted 
peptides having mass increases of 312 Da, con-
sistent with the addition of the mass of 17EE 
reactive intermediate were identified for each of 
the isozymes� ESI–MS/MS analysis of the modi-
fied peptides and precursor ion scanning led to 
the identification of Ser360 in both enzymes as 
the amino acid residue that had been modified 
by a reactive metabolite of 17EE� A CYP2B1 
mutant in which Ser360 was replaced with ala-
nine was constructed, expressed, and purified 
[417]� Interestingly, this mutation did not pre-
vent inactivation by 17EE� However, it did cause 
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a significant change in the inactivation kinetics 
by 17EE, as well as altered the product profile 
formed from testosterone� Spectral binding stud-
ies of the 17EE-inactivated CYPs 2B1 and 2B6 
indicated that this modification resulted in an 
enzyme that no longer exhibited a binding spec-
trum� These results suggest that the 17EE inacti-
vation of CYPs 2B1 and 2B6 may be due to the 
modification of an amino acid residue either in 
the substrate access channel or near the point of 
entry into the active site that is not critical for the 
catalytic function of the P450s, but is in the vicin-
ity of the substrate binding and its modification 
can play a significant role in altering the binding 
orientation of large substrates such as steroids 
[416]� The residues at positions 363 and 367 in 
CYP2B4 have been shown to be within 5 Å of 
the ligand bound in the active site, and residue 
363 plays a functional role in steroid metabolism� 
Examination of the crystal structure of CYP2B4 
shows that the S360 residue is not located within 
5 Å of the heme, but may occupy a position in the 
access channel to the heme� Therefore, the loss 
in function of the P450s by covalent modifica-
tion of S360 is probably not a consequence of the 
catalytic role of this residue, but is more likely to 
be due to steric hindrance by blocking substrate 
access to the active site [416]�

Deprenyl (Fig� 5�19) is a propargylamine hav-
ing a terminal acetylenic group and it has been 
shown previously to be a mechanism-based in-
activator of the MAO via covalent modification 
of the MAO flavin moiety [417]� Deprenyl has 
also been shown to inactivate CYP2B1 with a KI 
of 1�05 µM, a kinact of 0�23 min− 1, and a partition 
ratio of ~ 2 [418]� Although a loss in the spectral-
ly detectable P450 chromophore was observed, 
there was no significant change observed in the 
heme absorbance at 405 nm� These results were 
interpreted as suggesting that protein modifica-
tion rather than heme modification was involved� 
Selegiline, the R-enantiomer of deprenyl which 
is used in the treatment of Parkinson’s disease, 
was also shown to be a mechanism-based inacti-
vator of human CYP2B6 [419]� It was a mecha-
nism-based inactivator of 7-EFC activity and the 
oxidative metabolism of bupropion� The inacti-
vations were time-, concentration-, and NADPH-

dependent [419]� The KI values were 0�14 and 
0�6 µM, the kinact values were 0�022 and 0�029, 
respectively� Although there was a significant 
decrease in the reduced CO-difference spectrum, 
there was no loss in the heme content of the pro-
teins� GSH trapping of the reactive intermediate 
resulted in the identification of a GSH-selegiline 
conjugate with am/z 528 that could be explained 
by the hydroxylation of selegiline followed by 
the addition of GSH to the propargyl moiety after 
oxygenation leading to the formation of the ke-
tene intermediate� LC–MS/MS analysis of the 
peptides following digestion of the labeled pro-
tein with trypsin revealed the peptide 64DVFT-
VHLGPR73 as the peptide that had been modified 
by the reactive metabolite of selegiline and the 
site of adduct formation as Asp64 [419]�

5.3.3.3  Other Inactivators That Modify 
the P450 Proteins

Phencylidine (PCP; Fig� 5�23) has been shown to 
be a mechanism-based inactivator of CYPs 2B1 
and 2B6 [420, 421]� The inactivations of both 
P450s were time-, concentration-, and NADPH-
dependent and exhibited pseudo first-order ki-
netics� Since there was no loss in spectrally de-
tectable heme, it was concluded that the inacti-
vation involved covalent binding of a reactive 
intermediate of the PCP to the apoprotein� The 
mass difference between the unmodified and the 
PCP-inactivated P450s was 244 Da, which cor-
responds to the binding of one mol of PCP per 
mol of P450 inactivated� Five major metabolites 
of PCP were identified, including a product de-
rived from hydroxylation on the piperidine ring 
as shown in B of Fig 5�23� The hydroxylation 
of the piperidine ring appears to be the primary 
reaction responsible for the formation of the re-
active intermediate leading to the inactivation 
reaction� P450s 2B1 and 2B4 formed a novel 
metabolite having an m/z of 240 which corre-
sponds to the expected mass for the 2,3-diihydro-
pyridinium species of PCP� GSH- and N-acetyl-
cysteine (NAC)-trapping studies also resulted in 
the formation of conjugates that were consistent 
with the mass of a 2,3-dihydropyridinium ion� 
These data suggest that the reactive intermedi-
ate is the enamine formed following oxidation 
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of the α-carbon of the piperidine ring to gener-
ate the iminium ion� The iminium ion has pre-
viously been proposed as the reactive intermedi-
ate� However, this finding together with the fact 
that NADPH was required for the inactivation of 
P450s by the iminium ion ruled out the iminium 
ion as the inactivating species [420, 421]� Human 
CYP2B6 formed a completely different reactive 
intermediate that corresponded to a dioxygenated 
species that could be trapped as a GSH- or NAC-
conjugate� This reactive intermediate may have 
been generated by CYP2B6 from the enamine 
intermediate by oxidation of the piperidine at the 
4-position followed by a second hydroxylation at 
the three-position or possibly by the formation of 
a 3,4-epoxide as shown in Fig 5�23b�

Cannabidiol (CBD; Fig� 5�23) has been shown 
to modify the P450 protein� CBD is a major con-
stituent of marijuana and its ability to inactivate 
P450s may play an important role in its activity� 
The inactivation of mouse P450 isozymes 2C 

and 3A by CBD occurs via stoichiometric cova-
lent binding of the inhibitor to the proteins [422, 
423]� GSH-trapping of the reactive intermediate 
formed from CBD identified a CBD-hydroxyqui-
none as the inactivating species [423]� LC–MS/
MS analysis of the proteolytic digest of the CBD-
inactivated CYP3A11 led to the identification of 
two labeled peptides spanning residues A344-
K379 and G426-K454� These regions correspond 
to SRS-5 in the K-region of the CYP3A11 active 
site and the heme-binding Cys443-region of the 
helix L domain [389–391]� Both peptides contain 
Cys residues that might possibly react with the 
CBD-hydroxyquinone�

The furanocoumarins are another class of 
compounds that have been shown to inactivate 
rat and human liver P450s via modification of 
the apoprotein [424–426]� Furanocoumarins 
such as bergamottin (BG), 8-methoxypsoralen 
(8-MOP) and 8-geranyloxypsoralen (Fig� 5�24) 
are found as components in many foods and have 

Fig. 5.23  a Structure of phencyclidine (PCP)� The cir-
cled area indicates the site of metabolism leading to the 
formation of the reactive intermediate; b Pathway for for-

mation of the proposed reactive intermediates of PCP: c 
Structure of cannabadiol
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been shown to inhibit xenobiotic metabolism� 
BG, one of the components responsible for the 
“grapefruit juice effect” has been shown to be a 
mechanism-based inactivator of CYPs 2B1, 2B4, 
2B6, 3A4, and 3A5 [425, 426]� The inactivations 
of CYPs 2B6 and 3A5 were time-, concentra-
tion-, and NADPH-dependent� The kinetic con-
stants for the inactivation of CYP2B6 were: KI 
of 5 µM and a kinact of 0�09 min− 1� For CYP3A5 
they were: KI of 20 µM and kinact of 0�45 min− 1� 
The partition ratios for CYPs 2B6 and 3A5 were 
~ 2 and ~ 20, respectively� SDS-PAGE analysis 
demonstrated that radiolabeled BG was irre-
versibly bound to the apoprotein of the BG in-
activated enzymes� The stoichiometry of bind-
ing was ~ 0�5 mol of BG metabolite/mol of each 
P450 inactivated� HPLC analysis of the reaction 
mixtures indicated that CYP2B6 generated two 
major metabolites of BG, whereas CYP3A5 gen-
erated those two and an additional three� Two of 
the metabolites were identified as bergaptol and 
6ʹ,7ʹ-dihydroxybergamottin [425]� ESI–LC–MS 

analysis of CYPs 2B1, 2B4, 2B6, and 3A5 in-
activated by BG in all cases resulted in an in-
crease in the mass of the apoprotein by 388 Da� 
This suggests that BG may first be metabolized 
to give the 6,7ʹ-dihydroxy BG followed by the 
addition of one oxygen to the furanocoumarin 
moiety to form a reactive epoxide intermediate� 
This intermediate could then react with a nucleo-
philic residue in the P450� The metabolic path-
way resulting in the production of a reactive in-
termediate of BG that could inactivate the P450s 
was investigated [426]� BG was metabolized 
primarily by CYP2B6 to give two major me-
tabolites, 5ʹ-OH-BG and a mixture of the 6ʹ- and 
7ʹ-OH-BG, with bergaptol formed as a relatively 
minor metabolite� BG metabolism by CYP3A5 
resulted in three major metabolites: 2ʹ-OH-BG 
and 5ʹ-OH-BG, bergaptol, and two minor me-
tabolites, 6ʹ,7ʹdihydroxy-BG and the mixture of 
6ʹ- and 7ʹ-OH-BG.GSH-trapping of the reactive 
intermediates formed from BG by CYPs 2B6 and 
3A5 followed by LC–MS analysis indicated that 

Fig. 5.24  Furanocoumarin-mediated P450 inactivation� 
Structures of the furanocoumarins bergamottin (BG), 
8-geranyloxypsoralen, 8-methoxypsoralen (8-MOP), and 

the reactive furan epoxide intermediate formed from each 
of these compounds� The circled area indicates the site of 
metabolism leading to the reactive epoxide
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the conjugates exhibited m/z values of 662 Da� 
MS/MS analysis of these conjugates indicated 
that the oxidation that led to the formation of the 
reactive intermediate occurred on the furan moi-
ety, presumably through initial addition across 
the furan double bond to give an epoxide� In order 
to identify the residue on the apoprotein modified 
by the reactive metabolite of BG, the inactivated 
CYP3A4 was digested with trypsin and the di-
gests were analyzed by LC–MS/MS� A search of 
the SEQUEST database was performed using a 
mass shift of 388 Da� A modified peptide having 
a mass increase of 388 Da was identified having 
the sequence 272LQLMIDSQNSK282� MS/MS 
analysis of this peptide demonstrated that Gln273 
was the residue modified� Mutagenesis studies in 
which the Gln273 was mutated to a Val showed 
that the mutant protein was resistant to inactiva-
tion by both BG and the DHBG [427]� Under 
the same conditions, LC–MS/MS analysis of 
BG-inactivated CYP3A5 demonstrated covalent 
modification of Gln273 during BG inactivation� 
Analysis of the CYP3A4 crystal structure shows 
that Gln273 is actually far away from the heme 
iron (~ 20 Å) and is not in the active site� How-
ever, the hydrogen bonding distance between the 
Gln273 amine group and the Asp277 carboxylate 
side chain is 2�4 Å� Thus, it was proposed that 
covalent formation of an amide bond between the 
NH2 group of Gln273 and the furanoepoxide of 
DHBG would disrupt this hydrogen bond inter-
action, thereby compromising the formation of 
the preferred secondary and tertiary structures of 
CYP3A4, resulting in impaired catalysis [427]�

8-MOP (Fig� 5�24) has been shown to be a 
potent mechanism-based inactivator of CYPs 
2A6, 2A13, 2B1, 2B2, 2C11, and 3A [428–431]� 
8-MOP contains the same furanocoumarin core 
structure as BG� Of all of the furanocoumarins 
that have been tested on CYP2B1, 8-MOP was 
the most potent with a KI of 2�9 µM, a kinact of 
0�34 min− 1, and a partition ratio of 1�3 [428]� 
HPLC or SDS–PAGE analysis of incubations of 
the purified CYP2B1 with radiolabeled 8-MOP 
showed that the radiolabel was bound to the pro-
tein rather than the heme and the binding stoi-
chiometry was 0�7:1� LC–ESI–MS analysis of 
the modified CYP2B1 revealed a mass shift of 
237�9 ± 9�6 Da for the modified enzyme� Similar 

studies for the psoralen- and 5-MOP-modified 
CYP2B1 gave mass shifts of 204 ± 11�8 Da and 
240 ± 6�2 Da, respectively [428]� These results 
indicate that a single molecule of psoralen is co-
valently bound to the protein� The steps in gener-
ating the reactive intermediate that bound to the 
protein require an initial epoxidation reaction fol-
lowed either by hydrolysis or attack by a nucleo-
phile to form the dihydrofuranocoumarin prod-
ucts� As with BG, the furanepoxide is considered 
to be the key reactive intermediate responsible 
for the P450 modification and inactivation [428]�

L-754,394, N-[2(  R)-hydroxy-1(  S)-in-
danyl]-5-[2( S)-(( 1,1-dimethylethyl)amino)
carbonyl]-4-[(furo [2,3-b]pyridin-5-yl)methylpi-
perazin-1-yl]-4( S)-hydroxy-2( R)(phenylmethyl)-
pentenamide, a furanopyridine, is also a potent 
mechanism-based inactivator of human CYP3A4 
as well as human CYP2D6 [432–435]� For the 
inactivation of CYP3A4 the KI was 7�5 µM, the 
kinact was 1�62 min− 1, and the partition ratio was 
1�35 [433]� Identification of the metabolites gen-
erated during metabolism of the L-754,394 indi-
cated that the mechanism of inactivation probably 
involves oxidation of the furan ring to the corre-
sponding epoxide and/or γ-ketoenal that binds to 
the CYP3A4 protein at its active site� Attempts to 
isolate the adducted peptide using proteolytic or 
CNBr digestion were unsuccessful, demonstrat-
ing the labile nature of the peptide adduct and 
precluding direct identification of the covalently 
modified amino acid or the peptide to which it 
was attached� However, Tricine SDS-PAGE was 
used in combination with MALDI-TOF-MS and 
homology modeling to tentatively identify the 
peptide spanning residues I257-M317 as the ac-
tive site peptide� Based on the knowledge of the 
stability of N-, O-, and S-linked conjugates of ac-
tivated furans, the authors suggested that Glu307 
was the active site amino acid that was labeled 
leading to the inactivation [434]�

5.4  Therapeutic Exploitation of P450 
Inhibitors

The various inhibitory structural features dis-
cussed in the text have been very aptly exploited 
in the therapeutic development of chemical in-
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Table 5.1 Some notable inhibitors of therapeutically relevant pathophysiologic or parasitic P450s

hibitors targeted against human and parasitic 
P450s of pathological relevance� A concise list of 
such prototypic chemical inhibitors of some bio-
synthetic P450s and/or pathophysiologically rel-
evant P450s that are clinically established drugs, 
drugs currently in clinical trials, or prospective 
drug candidates, or even agents that may be used 
experimentally as diagnostic probes of a given 
P450, is provided (Table 5�1)� A more compre-

hensive literature coverage of P450 enzyme in-
hibitors follows in Chap� 9 by F� P� Guengerich�
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6.1  Introduction

6.1.1  General Properties of Microbial 
P450s

The cytochromes P450 (P450s or CYPs) were 
discovered in mammalian tissues 50 years ago, 
and crucial studies from Omura and Sato, and 
from the Klingenberg and Estabrook groups 
identified their hemoprotein nature� Further stud-
ies confirmed their link to drug/xenobiotic me-
tabolism, and the fact that these enzymes have 
a distinctive coordination of their heme iron� 
This unusual heme ligation was later shown to 
originate from a cysteine thiolate bond to the 
iron, conserved throughout P450 oxygenase en-
zymes [1–5]� Numerous studies on the catalytic 
and structural properties of human and other 
mammalian P450s have been highly informa-
tive on the roles of the different P450s in func-
tions such as steroid and eicosanoid synthesis 
and metabolism, and in phase I metabolism of 
countless pharmaceuticals [6, 7]� The P450s are 
usually present in considerably larger numbers 

6Microbial Cytochromes P450
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in mammals and higher eukaryotes compared to 
the prokaryotes� For example, there are 57 CYP 
genes in humans and 272 in Arabidopsis thaliana 
(including 26 pseudogenes) compared to only 
one in Campylobacter jejuni and 20 in Mycobac-
terium tuberculosis [8–11]� However, the P450 
field has benefited enormously from fundamen-
tal research progress made on prokaryotic P450s, 
including key information on the structural com-
position of the P450s, and on the mechanism by 
which P450s activate dioxygen and oxidize their 
substrates [12, 13]� In lower eukaryotes there are 
large numbers of CYP genes (e�g�, 10 in Candida 
albicans and 111 in Aspergillus nidulans), with 
crucial roles including sterol biosynthesis and 
the production of oxylipins (psi, or precocious 
sexual inducer, factors) that regulate the sexual/
asexual life cycles of A. nidulans [14–17]� The 
numbers of individual CYP genes encoded in dif-
ferent microbial genomes, along with key roles 
for the P450s in these organisms, are presented 
in Table 6�1� This chapter describes the diversity 
of microbial P450s and their physiological, bio-
medical, and biotechnological importance� The 
important role that structural, biophysical, and 
protein engineering studies of microbial P450s 
has played in our current understanding of P450 
function is also emphasized�

P� R� Ortiz de Montellano et al� (eds�), Cytochrome P450, DOI 10�1007/978-3-319-12108-6_6  
© Springer International Publishing Switzerland 2015



262 K. J. McLean et al.

O
rg

an
is

m
P4

50
s

C
Y

P 
fa

m
ili

es
Fu

nc
tio

n(
s)

PD
B

 ID
(s

)
Am

yc
ol

at
op

si
s o

ri
en

ta
lis

 
(b

ac
te

ria
)

15
C

Y
P1

05
, C

Y
P1

46
, C

Y
P1

64
–1

65
β-

ty
ro

si
ne

 h
yd

ro
xy

la
se

 (C
Y

P1
46

A
1,

 O
xy

D
), 

ox
id

at
iv

e 
ph

en
ol

 c
ou

-
pl

in
g 

of
 C

D
-(

C
Y

P1
65

B
3 

O
xy

B
) a

nd
 D

E-
(C

Y
P1

65
A

3 
O

xy
A

) r
in

gs
, 

an
d 

bi
ar

yl
 c

yc
liz

at
io

n 
of

 A
B

-r
in

gs
 (C

Y
P1

65
C

4 
O

xy
C

) i
n 

va
nc

o-
m

yc
in

 b
io

sy
nt

he
si

s [
23

7,
 2

38
, 2

48
, 3

20
]; 

ep
ot

hi
lo

ne
 B

 h
yd

ro
xy

la
se

 
(C

Y
P1

05
 E

pb
H

) [
29

9]

1L
FK

, 1
LG

F,
 1

LG
9 

(O
xy

B
), 

1U
ED

 (O
xy

C
)

As
pe

rg
ill

us
 n

id
ul

an
s 

(f
un

gi
)

12
0

89
 fa

m
ili

es
 in

cl
ud

in
g 

C
Y

P5
1F

1,
 

C
Y

P5
1F

2,
 C

Y
P5

6,
 C

Y
P5

8–
62

, 
C

Y
P6

5,
 C

Y
P6

8,
 C

Y
P5

03
–5

05
, 

C
Y

P6
46

–6
87

St
er

ol
 1

4α
-d

em
et

hy
la

se
 (C

Y
P5

1)
 [7

40
]; 

st
er

ig
m

at
oc

ys
tin

 sy
nt

ha
se

 
(C

Y
P5

9A
1,

 C
Y

P6
0A

1,
 C

Y
P6

2A
1)

 [7
41

]; 
ph

en
yl

ac
et

at
e 

2-
hy

dr
ox

-
yl

as
e 

(C
Y

P5
04

A
1)

 [5
18

]; 
fa

tty
 a

ci
d 

is
om

er
as

e 
in

 d
ua

l f
un

ct
io

n 
P4

50
/p

er
ox

id
as

e 
fu

si
on

 (P
po

A
, C

Y
P6

00
1A

1)
 [4

81
]

Ba
ci

llu
s m

eg
at

er
iu

m
 

(b
ac

te
ria

)
6

C
Y

P1
02

A
1 

(B
M

3)
, C

Y
P1

06
A

1,
 

C
Y

P1
06

B
1,

 C
Y

P1
09

A
2,

 
C

Y
P1

09
E1

Fa
tty

 a
ci

d 
hy

dr
ox

yl
as

e 
(C

Y
P1

02
A

1)
 [2

8,
 2

71
, 7

42
]; 

st
er

oi
d 

15
β-

hy
dr

ox
yl

as
e 

(C
Y

P1
06

) [
63

]
E�

g�
, 2

H
PD

, 1
FA

G
, 4

K
FO

 
(B

M
3)

Ba
ci

llu
s s

ub
til

is
 (b

ac
te

ria
)

8
C

Y
P1

02
A

2,
 C

Y
P1

02
A

3,
 

C
Y

P1
07

H
1 

(B
io

I)
, C

Y
P1

07
J1

, 
C

Y
P1

07
K

1,
 C

Y
P1

09
B

1,
 

C
Y

P1
34

A
1,

 C
Y

P1
52

A
1 

(B
S β

)

Fa
tty

 a
ci

d 
hy

dr
ox

yl
as

es
 (C

Y
P1

02
A

) [
68

9]
, (

C
Y

P1
52

A
1)

 [5
77

, 
74

3]
; p

ul
ch

er
rim

in
ic

 a
ci

d 
sy

nt
ha

se
 (C

Y
P1

34
A

1)
 [3

93
]; 

ox
id

at
iv

e 
cl

ea
va

ge
 o

f A
C

P-
lin

ke
d 

fa
tty

 a
ci

ds
 in

vo
lv

ed
 in

 p
im

el
ic

 a
ci

d 
sy

nt
he

-
si

s (
B

io
I)

 [6
4,

 1
31

]

3E
JB

, 3
EJ

D
, 3

EJ
E 

(B
io

I)
, 

3N
C

3 
(C

Y
P1

34
A

1)
, 1

IZ
O

 
(B

S β
)

C
am

py
lo

ba
ct

er
 je

ju
ni

 
(b

ac
te

ria
)

1
C

Y
P1

72
A

1 
(C

j1
41

1c
)

R
ol

e 
in

 m
od

ify
in

g 
ba

ct
er

ia
l s

ur
fa

ce
 [1

0]

C
itr

ob
ac

te
r b

ra
ak

ii 
(b

ac
te

ria
)

1
C

Y
P1

76
A

1 
(P

45
0c

in
)

1,
8-

ci
ne

ol
e 

2-
en

do
-m

on
oo

xy
ge

na
se

 [3
8,

 1
21

]
E�

g�
, 4

FB
2,

 4
FM

X
 

(P
45

0c
in

)
C

an
di

da
 a

lb
ic

an
s (

fu
ng

i)
10

C
Y

P5
1,

 C
Y

P5
2,

 C
Y

P5
6 

C
Y

P6
1,

 
C

Y
P5

01
, C

Y
P5

21
7A

1
St

er
ol

 1
4α

-d
em

et
hy

la
se

 (C
Y

P5
1)

 [7
44

, 7
45

]; 
fa

tty
 a

ci
d 

hy
dr

ox
yl

as
e 

(C
Y

P5
2A

21
) [

74
6]

; d
i-t

yr
os

in
e 

ge
ne

ra
tio

n 
(C

Y
P5

6)
 [4

57
]; 

st
er

ol
 

Δ2
2-

(C
Y

P6
1A

2)
 [5

08
]; 

an
d 

Δ5
,6

-(
Er

g3
) [

74
7]

 d
es

at
ur

as
e

D
ic

ty
os

te
liu

m
 d

is
co

id
eu

m
 

(s
lim

e 
m

ol
d,

 m
yc

et
oz

oa
)

55
C

Y
P5

1,
 C

Y
P5

08
, C

Y
P5

13
–5

24
, 

C
Y

P5
54

–5
56

St
er

ol
 1

4α
-d

em
et

hy
la

se
 (C

Y
P5

1)
; h

yd
ro

xy
la

tio
n 

of
 c

hl
or

in
at

ed
 

al
ky

l p
he

no
ne

: d
iff

er
en

tia
tio

n-
in

du
ci

ng
 fa

ct
or

-I
 (D

IF
-1

) [
74

8]
E.

 c
ol

i (
ba

ct
er

ia
)

0
Fu

sa
ri

um
 o

xy
sp

or
um

 
(f

un
gi

)
16

4
82

 fa
m

ili
es

 in
cl

ud
in

g 
C

Y
P5

1F
, 

C
Y

P5
3–

54
, C

Y
P5

5A
1 

(P
45

0n
or

), 
C

Y
P5

05
, C

Y
P6

20
–6

24

N
itr

ic
 o

xi
de

 re
du

ct
as

e 
w

ith
 d

en
itr

ifi
ca

tio
n 

ro
le

 (C
Y

P5
5A

1)
 [3

27
, 

74
9]

; f
at

ty
 a

ci
d 

hy
dr

ox
yl

as
e 

(C
Y

P5
05

A
1)

 [6
93

]; 
fa

tty
 a

ci
d 

is
om

er
i-

za
tio

n 
in

 d
ua

l f
un

ct
io

n 
P4

50
/p

er
ox

id
as

e 
fu

si
on

 (C
Y

P6
00

3A
1)

 [7
21

]

E�
g�

, 1
R

O
M

, 1
G

ED
, 

1X
Q

D
 (C

Y
P5

5A
1)

Ta
bl

e 
6.

1  
N

um
be

rs
 o

f c
yt

oc
hr

om
e 

(C
Y

P)
 g

en
es

 a
nd

 c
ha

ra
ct

er
iz

ed
 fu

nc
tio

ns
 o

f e
nc

od
ed

 P
45

0 
en

zy
m

es
 in

 s
el

ec
te

d 
m

ic
ro

bi
al

 g
en

om
es

� O
rg

an
is

m
s 

ar
e 

pr
es

en
te

d 
in

 a
lp

ha
be

ti-
ca

l o
rd

er
 w

ith
 c

ol
or

 c
od

in
g:

 a
rc

ha
ea

—
lig

ht
 g

ra
y,

 b
ac

te
ria

—
cl

ea
r, 

fu
ng

i—
m

id
-g

ra
y 

an
d 

pr
ot

is
ts

—
da

rk
 g

ra
y�

 C
om

m
on

 b
ac

te
ria

l g
en

om
es

 w
ith

 n
o 

ap
pa

re
nt

 C
YP

 g
en

es
 in

cl
ud

e:
 

C
lo

st
ri

di
um

 d
iff

ic
ile

, E
sc

he
ri

ch
ia

 c
ol

i, 
H

el
ic

ob
ac

te
r 

py
lo

ri
, L

eg
io

ne
lla

 p
ne

um
op

hi
la

, L
is

te
ri

a 
m

on
oc

yt
og

en
es

, S
al

m
on

el
la

 ty
ph

im
ur

iu
m

 L
T2

, S
ph

in
go

m
on

as
 p

au
ci

m
ob

ili
s, 

an
d 

St
re

pt
oc

oc
cu

s a
ga

la
ct

ia
e 

N
EM

31
6



2636 Microbial Cytochromes P450

O
rg

an
is

m
P4

50
s

C
Y

P 
fa

m
ili

es
Fu

nc
tio

n(
s)

PD
B

 ID
(s

)
M

yc
ob

ac
te

ri
um

 tu
be

rc
ul

o-
si

s (
ba

ct
er

ia
)

20
C

Y
P5

1B
1,

 C
Y

P1
21

, C
Y

P1
23

–1
26

, 
C

Y
P1

28
, C

Y
P1

30
, C

Y
P1

32
, 

C
Y

P1
35

A
1 

C
Y

P1
35

B
1,

 C
Y

P1
36

, 
C

Y
P1

37
–1

44

St
er

ol
 1

4α
-d

em
et

hy
la

se
 (C

Y
P5

1B
1)

 [4
08

, 4
30

]; 
C

–C
 b

on
d 

fo
rm

a-
tio

n 
of

 c
Y

Y
 (C

Y
P1

21
A

1)
 [6

5]
; c

ho
le

st
er

ol
 a

nd
 4

-c
ho

le
st

en
-3

-o
ne

 
ox

id
as

es
 (C

Y
P1

25
A

1,
 C

Y
P1

42
A

1 
[a

nd
 C

Y
P1

24
A

1]
) [

36
0,

 3
63

, 
36

4]
; b

ra
nc

he
d 

ch
ai

n 
fa

tty
 a

ci
d 

hy
dr

ox
yl

as
e 

(C
Y

P1
24

A
1)

 [3
95

]; 
pu

ta
tiv

e 
m

en
aq

ui
no

ne
 o

xi
da

se
 (C

Y
P1

28
A

1)
 [3

53
]

E�
g�

, 1
EA

1 
(C

Y
P5

1B
1)

, 
1N

40
 (C

Y
P1

21
A

1)
, 

2W
M

5 
(C

Y
P1

24
A

1)
, 

3I
V

Y
 (C

Y
P1

25
A

1)
, 

2U
U

Q
 (C

Y
P1

30
A

1)
, 

2X
K

R
 (C

Y
P1

42
A

1)
M

yc
ob

ac
te

ri
um

 sm
eg

m
at

is
 

m
c(

2)
15

5 
(b

ac
te

ria
)

39
C

Y
P5

1,
 C

Y
P1

05
, C

Y
P1

07
–1

09
, 

C
Y

P1
23

–1
26

, C
Y

P1
36

, C
Y

P1
38

, 
C

Y
P1

40
, C

Y
P1

44
, C

Y
P1

50
–1

51
, 

C
Y

P1
64

, C
Y

P1
85

–1
91

, C
Y

P2
68

C
ho

le
st

er
ol

 o
xi

da
se

s (
C

Y
P1

25
A

3 
an

d 
C

Y
P1

42
A

2)
 [3

67
]; 

fa
tty

 a
ci

d 
hy

dr
ox

yl
as

e 
(C

Y
P1

64
A

2)
 [4

12
]

4A
PY

 (C
Y

P1
25

A
3)

, 
3Z

B
Y

 (C
Y

P1
42

A
2)

, 
3R

9B
 (C

Y
P1

64
A

2)

M
yc

ob
ac

te
ri

um
 u

lc
er

an
s 

A
gy

99
 (b

ac
te

ria
)

21
C

Y
P5

1,
 C

Y
P1

05
Q

4,
 C

Y
P1

08
B

4,
 

C
Y

P1
23

–1
26

, C
Y

P1
36

, C
Y

P1
42

–
14

4,
 C

Y
P1

87
–8

9,
 C

Y
P1

91

M
yc

ol
ac

to
ne

 sy
nt

ha
se

/h
yd

ro
xy

la
se

 (C
Y

P1
40

A
7)

 [3
98

, 4
02

]

N
eu

ro
sp

or
a 

cr
as

sa
 (f

un
gi

)
43

39
 fa

m
ili

es
 in

cl
ud

in
g 

C
Y

P5
1F

1,
 

C
Y

P5
3–

55
, C

Y
P6

1,
 C

Y
P6

5,
 

C
Y

P6
8,

 C
Y

P5
05

, C
Y

P5
07

, 
C

Y
P5

27
–5

60

Pr
ob

ab
le

 st
er

ol
 1

4α
-d

em
et

hy
la

se
 (C

Y
P5

1F
1)

 a
nd

 st
er

ol
 2

2-
de

sa
tu

-
ra

se
 (C

Y
P6

1)
 [1

5]

N
ov

os
ph

in
go

bi
um

 a
ro

-
m

at
ic

iv
or

an
s (

ba
ct

er
ia

)
16

C
Y

P1
01

, C
Y

P1
08

, C
Y

P1
11

, 
C

Y
P1

53
, C

Y
P1

96
, C

Y
P2

03
–2

04
, 

C
Y

P2
19

, C
Y

P2
23

–2
25

Io
no

ne
 d

er
iv

at
iv

e 
hy

dr
ox

yl
at

io
n 

(C
Y

P1
01

C
1)

 [7
50

]; 
te

rp
en

oi
d 

(c
am

ph
or

) h
yd

ro
xy

la
se

 (C
Y

P1
01

D
1)

 [1
18

]; 
ca

m
ph

or
 5

-e
xo

 h
yd

ro
x-

yl
as

e 
(C

Y
P1

01
D

2)
 [1

19
]; 

ar
om

at
ic

 h
yd

ro
ca

rb
on

 h
yd

ro
xy

la
se

 
(C

Y
P1

08
D

1)
 [1

18
, 7

51
]; 

al
ka

ne
 h

yd
ro

xy
la

se
 (C

Y
P1

53
C

1)
 [1

26
]

3O
EU

 (C
Y

P1
01

C
1)

, 
3L

X
I (

C
Y

P1
01

D
1)

, 3
N

V
5 

(C
Y

P1
01

D
2)

, 3
K

TK
 

(C
Y

P1
08

D
1)

Ph
an

er
oc

ha
et

e 
ch

ry
so

sp
o-

ri
um

 (f
un

gi
)

14
9

33
 fa

m
ili

es
 to

 d
at

e 
in

cl
ud

in
g 

C
Y

P5
1,

 C
Y

P5
3,

 C
Y

P6
1,

 C
Y

P6
3,

 
C

Y
P5

13
6–

51
58

H
yd

ro
xy

la
tio

n 
of

 p
ol

yc
yc

lic
 a

ro
m

at
ic

 h
yd

ro
ca

rb
on

s (
va

rio
us

 C
Y

Ps
, 

e�
g�

, [
74

–7
7]

)

Pi
cr

op
hi

lu
s t

or
ri

du
s 

(a
rc

ha
ea

)
2

C
Y

P2
31

A
1,

 C
Y

P2
31

A
2

O
rp

ha
n 

P4
50

s [
10

3]
2R

FB
, 2

R
FC

 
(C

Y
P2

31
A

2)
Ps

eu
do

m
on

as
 fl

uo
re

sc
en

s 
Pf

O
-1

 (b
ac

te
ria

)
3

C
Y

P2
21

A
1,

 C
Y

P2
29

A
1,

 
C

Y
P2

30
A

1
A

cy
l C

oA
 d

eh
yd

ro
ge

na
se

/P
45

0 
fu

si
on

 (C
Y

P2
21

A
1)

; P
ut

at
iv

e 
ro

le
 

in
 M

up
iro

ci
n 

bi
os

yn
th

es
is

 (C
Y

P2
03

A
1)

 [7
52

]
Ps

eu
do

m
on

as
 p

ut
id

a 
(b

ac
te

ria
)

2
C

Y
P1

01
A

1,
 C

Y
P1

11
C

am
ph

or
 5

-h
yd

ro
xy

la
se

 (P
45

0c
am

) [
12

, 7
53

]; 
lin

al
oo

l 8
-m

on
oo

xy
-

ge
na

se
 (P

45
0l

in
) [

75
4,

 7
55

]
E�

g�
, 2

C
PP

, 1
A

K
D

, 4
JW

U
 

(P
45

0c
am

)
Sa

cc
ha

ro
m

yc
es

 c
er

ev
is

ia
e 

(f
un

gi
)

3
C

Y
P5

1A
1,

 C
Y

P5
7,

 C
Y

P6
1

St
er

ol
 1

4α
-d

em
et

hy
la

se
 (C

Y
P5

1A
1)

 [4
67

]; 
di

-ty
ro

si
ne

 g
en

er
a-

tio
n 

fo
r s

po
re

 w
al

l f
or

m
at

io
n 

(C
Y

P5
7)

 [4
56

]; 
st

er
ol

 2
2-

de
sa

tu
ra

se
 

(C
Y

P6
1)

 [4
53

]

4K
O

F,
 4

LX
J (

C
Y

P5
1A

1 
w

ith
 m

em
br

an
e-

sp
an

ni
ng

 
he

lix
)

Sa
cc

ha
ro

po
ly

sp
or

a 
er

yt
hr

ae
a 

N
R

R
L2

33
38

 
(b

ac
te

ria
)

36
In

cl
ud

in
g 

C
Y

P1
02

G
2,

 C
Y

P1
05

, 
C

Y
P1

07
, C

Y
P1

16
, C

Y
P1

55
, 

C
Y

P2
04

, C
Y

P2
93

–2
98

6-
D

eo
xy

er
yt

hr
on

ol
id

e 
B

 h
yd

ro
xy

la
se

 (C
Y

P1
07

A
1 

Er
yF

) [
35

, 7
56

]; 
er

yt
hr

om
yc

in
 C

-1
2 

hy
dr

ox
yl

as
e 

(C
Y

P1
13

A
1 

Er
yK

) [
75

7,
 7

58
]

E�
g�

, 1
JI

O
, 1

Z8
O

 (E
ry

F)
, 

2J
JN

, 3
ZK

P 
(E

ry
K

)

Ta
bl

e 
6.

1 
(c

on
tin

ue
d)



264 K. J. McLean et al.

O
rg

an
is

m
P4

50
s

C
Y

P 
fa

m
ili

es
Fu

nc
tio

n(
s)

PD
B

 ID
(s

)
So

ra
ng

iu
m

 c
el

lu
lo

su
m

 
So

ce
56

 (b
ac

te
ria

)
21

C
Y

P1
09

, C
Y

P1
10

, C
Y

P1
17

B
1,

 
C

Y
P1

67
A

1,
 C

Y
P2

10
A

1,
 

C
Y

P2
59

–2
67

Fa
tty

 a
ci

d 
hy

dr
ox

yl
as

e(
s)

 (C
Y

P1
09

) [
75

9,
 7

60
]; 

ep
ox

id
at

io
n 

of
 

ep
ot

hi
lo

ne
s C

 a
nd

 D
 (C

Y
P1

67
A

1 
Ep

oK
) [

15
2,

 5
72

, 7
61

]; 
no

ris
o-

pr
en

oi
d 

an
d 

se
sq

ui
te

rp
en

e 
hy

dr
ox

yl
as

e 
(C

Y
P2

64
B

1)
 [7

62
, 7

63
]

1Q
5D

, 1
Q

5E
 (E

po
K

)

Sp
hi

ng
om

on
as

 p
au

ci
m

ob
i-

lis
 (b

ac
te

ria
)

1
C

Y
P1

52
B

1 
(P

45
0S

P α
)

Fa
tty

 a
ci

d 
α-

hy
dr

ox
yl

as
e 

[5
78

, 7
64

]
3A

W
M

, 3
V

M
4 

(P
45

0S
P α

)

St
re

pt
om

yc
es

 a
ve

rm
iti

lis
 

(b
ac

te
ria

)
33

C
Y

P1
02

, C
Y

P1
05

, C
Y

P1
07

, 
C

Y
P1

25
, C

Y
P1

47
, C

Y
P1

54
, 

C
Y

P1
57

–1
58

, C
Y

P1
70

–1
71

, 
C

Y
P1

78
–1

84

Fa
tty

 a
ci

d 
hy

dr
ox

yl
as

e 
(C

Y
P1

02
D

1)
 [6

92
])

; C
1-

(C
Y

P1
05

D
6)

 [1
67

] 
an

d 
C

26
-(

C
Y

P1
05

P1
) [

16
7,

 1
68

] f
ili

pi
n 

hy
dr

ox
yl

as
es

; 1
-d

eo
xy

-
pe

nt
al

en
ic

 a
ci

d 
hy

dr
ox

yl
as

e 
(C

Y
P1

05
D

7)
 [7

65
]; 

2-
st

ep
 a

lly
lic

 
ox

id
at

io
n 

of
 e

pi
-is

oz
iz

ae
ne

 to
 a

lb
af

la
ve

no
ne

 (C
Y

P1
70

A
2)

 [2
05

]; 
pe

nt
al

en
en

e 
hy

dr
ox

yl
as

e 
(C

Y
P1

83
A

) [
55

0]

3A
B

B
 (C

Y
P1

05
D

6)
, 3

E5
J 

(C
Y

P1
05

P1
)

St
re

pt
om

yc
es

 c
oe

lic
ol

or
 

A
3(

2)
 (b

ac
te

ria
)

18
C

Y
P1

02
B

1,
 C

Y
P1

05
, C

Y
P1

07
, 

C
Y

P1
54

–1
59

, C
Y

P1
70

A
1

Fa
tty

 a
ci

d 
hy

dr
ox

yl
as

e 
(C

Y
P1

02
B

1)
 [7

66
])

; o
xi

da
se

 in
 c

oe
lib

ac
tin

 
si

de
ro

ph
or

e 
bi

os
yn

th
es

is
 (C

Y
P1

05
N

1)
 [1

69
]; 

pu
ta

tiv
e 

st
er

oi
d 

ox
i-

da
se

 w
ith

 ro
le

 in
 sp

or
ul

at
io

n 
an

d 
an

tib
io

tic
 sy

nt
he

si
s (

C
Y

P1
07

U
1)

 
[1

45
]; 

di
pe

nt
ae

no
ne

 c
yc

liz
at

io
n 

(C
Y

P1
54

A
1)

 [1
11

]; 
C

–C
 c

ou
pl

in
g 

in
 fl

av
io

lin
 p

ol
ym

er
iz

at
io

n 
(C

Y
P1

58
A

1 
an

d 
C

Y
P1

58
A

2)
 [1

95
, 

19
9]

; 2
-s

te
p 

al
ly

lic
 o

xi
da

tio
n 

of
 e

pi
-is

oz
iz

ae
ne

 to
 a

lb
af

la
ve

no
ne

 
(C

Y
P1

70
A

1)
 [2

03
]

4F
X

B
 (C

Y
P1

05
N

1)
, 

1O
D

O
 (C

Y
P1

54
A

1)
, 

1G
W

I (
C

Y
P1

54
C

1)
 

2D
K

K
 (C

Y
P1

58
A

1)
, 

1S
1F

, (
C

Y
P1

58
A

2)
, 

3D
B

G
 (C

Y
P1

70
A

1)

St
re

pt
om

yc
es

 sc
ab

ie
i 

(b
ac

te
ria

)
26

C
Y

P1
02

, C
Y

P1
05

, C
Y

P1
07

, 
C

Y
P1

25
, C

Y
P1

45
, C

Y
P1

52
, 

C
Y

P1
54

, C
Y

P1
56

–1
57

, C
Y

P1
79

–
18

0,
 C

Y
P1

82
, C

Y
P2

46
 (T

xt
C

), 
C

Y
P2

82
–2

83
, C

Y
P1

04
8A

1 
(T

xt
E)

D
ire

ct
 n

itr
at

io
n 

of
 L

-tr
yp

to
ph

an
 w

ith
 N

O
, O

2, 
re

do
x 

pa
rtn

er
s, 

an
d 

N
A

D
PH

 (C
Y

P1
04

8A
1 

Tx
tE

) [
27

8,
 2

79
]; 

th
ax

to
m

in
 p

he
ny

l-
al

an
yl

 d
i-h

yd
ro

xy
la

se
 (C

Y
P2

46
A

1 
Tx

tC
, [

27
5]

) i
n 

th
ax

to
m

in
 A

 
bi

os
yn

th
es

is

4L
36

 (T
xt

E)

Su
lfo

lo
bu

s a
ci

do
ca

ld
ar

iu
s 

(a
rc

ha
ea

)
1

C
Y

P1
19

A
1

Fa
tty

 a
ci

d 
hy

dr
ox

yl
as

e 
an

d 
st

yr
en

e 
ep

ox
id

as
e 

[9
1,

 9
2,

 9
8–

10
0]

E�
g�

, 1
F4

U
, 1

IO
8,

 1
IO

9 
(C

Y
P1

19
A

1)
Su

lfo
lo

bu
s t

ok
od

ai
i 7

 
(a

rc
ha

ea
)

1
C

Y
P1

19
A

2 
(P

45
0s

t)
Fa

tty
 a

ci
d 

hy
dr

ox
yl

as
e 

an
d 

st
yr

en
e 

ep
ox

id
as

e 
[9

5,
 9

7,
 1

00
]

1E
U

8,
 3

B
4X

 (C
Y

P1
19

A
2)

Th
er

m
us

 th
er

m
op

hi
lu

s 
(b

ac
te

ria
)

1
C

Y
P1

75
A

1
β-

C
ar

ot
en

e 
[7

67
], 

ze
ax

an
th

in
 [7

68
] a

nd
 m

on
oe

no
ic

 fa
tty

 a
ci

d 
[1

02
] 

hy
dr

ox
yl

as
e

1N
97

, 1
W

IY
 (C

Y
P1

75
A

1)

PD
B 

Pr
ot

ei
n 

D
at

a 
B

an
k

Ta
bl

e 
6.

1 
(c

on
tin

ue
d)

 



2656 Microbial Cytochromes P450

6.1.2  Microbial P450 Classification 
and Sequence Conservation

The current system for managing and annotating 
P450 enzymes in the P450 enzyme superfam-
ily (developed by David Nelson) [18–20] places 
the P450s in the same family if they share 40 % 
or more identity at the amino acid level� P450s 
with lower identity are classified into different 
families (CYP1, CYP2, etc�), while those shar-
ing 55 % or more amino acid sequence identity 
define subfamilies within a P450 family, denot-
ed by a capital letter (CYP1A, etc)� Individual 
members of a subfamily then receive consecu-
tive numbers (CYP1A1, 1A2, etc�)� The prokary-
otic (bacterial and archaeal) P450s are currently 
classified within families CYP101–CYP299 
and CYP1001–CYP1050, while the yeast/fun-
gal P450s are placed in families from CYP52 
to CYP69, and also in various families from 
CYP501 upwards [18]� The CYP51 family con-
tains sterol 14α demethylase P450s from almost 
all eukaryotes and from a small number of bacte-
ria—including CYP51B1 from the human patho-
gen Mycobacterium tuberculosis [21, 22]� Thus, 
the CYP51s are the only P450 family found from 
prokaryotes through to man, leading to the sug-
gestion that CYP51 is a progenitor P450 in the 
enzyme superfamily [23]� However, as discussed 
further below, the absence of the CYP51 gene 
from some eukaryotes and the complexity of the 
CYP51 reaction suggests that it itself may have 
evolved from another primordial P450 function�

Microbial P450s have diverse catalytic func-
tions (with numerous isoforms remaining un-
characterized) and divergent sequences, but 
adopt the same general structural fold as their 
eukaryotic counterparts (despite the absence of 
an N-terminal transmembrane segment in the 
bacterial/archaeal forms compared to eukaryotic 
P450s; Fig� 6�1)� However, the advent of genome 
sequencing and the ever-increasing numbers of 
P450 sequences emerging from such analyses 
have thrown up several exceptions to the ‘tradi-
tional’ model of a P450 with a number of implic-
itly conserved amino acids residues and retained 
motifs (e�g�, the characteristic ‘heme binding’ 
motif FXXGXXXCXG (where X is any amino 

acid) around the cysteine axial ligand to the heme 
iron, the protonating threonine (or serine) of the 
I-helix that interacts with the iron-bound dioxy-
gen, and the K-helix EXXR motif (with roles in 
protein folding and heme insertion) [24]� The 
amino acid sequences of members of the P450 
superfamily have evolved on such a scale that 
there is no longer any completely conserved 
amino acid residue or invariant region common 
to all P450 members [25, 26]� The profound in-
fluence of mutations on P450 properties is evi-
dent from the fact that even a single amino acid 
change can alter substrate specificity or have 
other dramatic effects on catalysis [27–29]� The 
I-helix threonine/serine (Thr252 in the well-char-
acterized P450cam) has roles in protonation of 
the ferric-superoxo and ferric-hydroperoxo P450 
catalytic cycle intermediates, leading to efficient 
O–O bond scission during molecular oxygen ac-
tivation [24, 30–32]� This residue was thought to 
be implicitly conserved in all P450s, with mu-
tagenesis studies showing a loss of activity and 
catalytic uncoupling upon substitution of the 
threonine residue in key P450 enzymes [31, 33]� 
The Saccharopolyspora erythraea CYP107A1 

Fig. 6.1  Overview of the general P450-fold� The left 
panel shows a cartoon representation of a typical P450 
structure (P450cam; PDB 2CPP), with helices labeled ac-
cording to existing conventions [12, 24]� The heme co-
factor is shown in atom colored spheres� Key structural 
elements involved in substrate binding are shown in color: 
the BC loop (in certain cases containing the B′ helix) in 
green, the FG helices in blue, the central I-helix in yellow, 
and the C-terminal region in red� The right panel shows a 
cartoon representation of a general model for P450 sub-
strate binding: the key structural elements defined in the 
left panel act as the fingers of the hand (which can grab 
an object, in this case the substrate), with the I-helix and 
heme resembling the palm� PDB Protein Data Bank
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(EryF), a 6-deoxyerythronolide B (6-DEB) hy-
droxylase (Fig� 6�2) involved in erythromycin 
biosynthesis, was the first example of a P450 
where the ‘conserved’ threonine was found to be 
absent, with an alanine replacement at the rele-
vant position in the P450 scaffold (Ala245)� The 

alanine lacks a functional group able to protonate 
iron-bound dioxygen� Instead, the CYP107A1 
6-DEB substrate provides a hydroxyl group in 
the C5 position that plays a role similar to the 
threonine in so-called substrate assisted catalysis, 
and thus confers specificity to the 6-DEB sub-

Fig. 6.2  A detailed comparison of three model microbial 
P450 enzymes� The left column depicts P450 EryF (PDB 
1OXA) [34], the middle column the P450 BM3 heme do-
main (PDB 1JPZ) [771], and the right column P450cam 
(PDB 2CPP) [12]� The first row shows the general fold 
of each P450, color-coded as in Fig� 6�1� The second row 
shows a detailed view of the active site region, with the 
bound substrate shown in sticks� The third row shows the 

key residues involved in substrate binding, represented in 
sticks and colored according to structural elements as de-
fined in Fig� 6�1� The substrate is shown with cyan carbon 
atoms� Where available, the structure of the ferrous–oxy 
complex is shown, with the heme and bound dioxygen in 
space filling sphere representation� The last row shows 
the structures of the respective substrates, with an asterisk 
defining the (main) position of oxidation of the substrate
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strate [34–36]� Mutagenic substitution of the CY-
P107A1 alanine residue to a threonine (A245T) 
restores the conventional dioxygen protonating 
role of the threonine, enabling CYP107A1 to oxi-
dize a variety of substrates related to 6-DEB, but 
lacking the hydroxyl moiety, and thus highlight-
ing the importance of this threonine/serine resi-
due for efficient oxygen activation in most P450s 
[37]� There are now multiple examples of P450s 
that lack the I-helix threonine� For example, 
CYP176A1 (P450cin) from Citrobacter braakii 
involved in the hydroxylation of 1,8-cineole to 
produce 6-β-hydroxycineole, which has an aspar-
agine (Asn242) residue instead of the threonine 
[38]� This residue was found to be involved in 
the regio- and stereo-selective oxidation of cin-
eole, forming a hydrogen bond with the substrate 
oxygen, and not directly replacing the role of the 
conserved threonine in oxygen activation itself� 
Thus, the source of a proton donor for dioxy-
gen activation is still unresolved in CYP176A1 
[39, 40]� The EXXR motif in the P450 K-helix, 
thought to be crucial for P450 tertiary structure 
and for heme binding by forming a set of salt 
bridge and hydrogen-bonding interactions, was 
also considered to be invariant, with substitutions 
of the glutamic acid or arginine residue(s) having 
severely detrimental effects on P450 structural 
integrity and enzyme activity (e�g�, [41])� How-
ever, CYP156B1 and the CYP157 family P450s 
appear to be exceptions to the rule, with this motif 
absent in Streptomyces coelicolor CYP157C1-4 
[42, 43] and also from other emerging members 
of the CYP157 family, mainly in Streptomyces 
spp� [19, 44]�

The ancestral ‘progenitor’ of the cytochrome 
P450 superfamily is still unclear, with several 
hypotheses put forward� These include a possible 
anaerobic reductase role for the original P450, 
similar to that described for fungal nitric oxide 
reductases (CYP55A family) [45, 46], or a per-
oxygenase-type role, as described for plant allene 
oxide synthases (AOS, CYP74A family) and hy-
droperoxide lyases (CYP74B family) [47] prior 
to P450 acquisition of oxygen-binding/activation 
capabilities� It has also been postulated that P450 
oxygen-binding capacity may have evolved to 
enable the detoxification of molecular oxygen, 

and to enable survival of organisms as oxygen 
levels began to rise in the environment as a result 
of cyanobacterial photosynthesis [25, 48]� Lipids 
and sterols, found in geological samples, have 
been around since the Precambrian period and 
were suggested to be involved in the early meta-
bolic roles of P450s [49, 50]� Oxygenated lipids 
and sterols, the products of early detoxification 
events, could hold important roles in the evolu-
tion of vesicles, membranes and cellular life, and 
thus act as signaling molecules, possibly pointing 
to the probable early roles of ancient P450s� It 
thus appears that the evolution of P450s may be 
related to both atmospheric and geological events 
dating back 2 billion years [25, 46, 51]� It was 
originally speculated that CYP51 might be the an-
cestral P450, due to the availability of ancient ste-
rols and its ability to produce 14α-demethylated 
sterols (although rarely seen in bacteria), and as 
a result of its presence in all of the different do-
mains of life� It was further considered that all 
eukaryotic P450s may have derived from a single 
CYP51 [49, 52, 53]� However, this hypothesis is 
now considered unlikely, due in part to the fact 
that the sterol 14α-demethylation (the specific 
sterol substrates showing some variation depend-
ing on the source of the particular CYP51 en-
zyme) requires three successive oxidative events, 
culminating in a carbon–carbon bond scission 
and the release of formic acid� This relatively 
complex CYP51 reaction mechanism is likely 
derived from a ‘simpler’ P450-mediated oxida-
tion process and is sufficiently specialized that it 
is not likely to be the ancestral P450 trait [25, 54, 
55]� Furthermore, there are also arguments for 
lateral gene transfer of plant CYP51s to bacteria 
[56]� The absence of CYP51 genes in the archaea 
and in the majority of bacteria, as well as in some 
eukaryotes (e�g�, certain insects and nematodes), 
suggests that although CYP51 is likely an early 
P450, it is not the progenitor in the P450 gene 
superfamily� However, the presence of P450s in 
archaea, bacteria, and eukaryotes suggest that the 
most primitive P450 may have emerged early in 
the evolution of life forms�

The following sections illustrate the diver-
sity of P450 systems in the microbial world, 
with key examples of crucial chemical reactions 



268 K. J. McLean et al.

performed, illustrations of the structures and 
mechanisms of important microbial P450s, and 
examination of novel redox and nonredox partner 
protein interactions in microbial P450 enzymes�

6.2  Microbial Diversity of P450s

6.2.1  The Extent of P450s in Microbial 
Genomes

The numbers of P450 ( CYP) genes in microbial 
organisms differ extensively (Table 6�1), even 
between species of the same genus� Genome se-
quencing projects continue to reveal genes for 
new P450s and for novel classes of these en-
zymes from the Bacteria and Archaea domains, 
and for the fungal kingdom of the Eukarya do-
main� However, archaea and bacteria generally 
contain relatively few P450s (in comparison to 
most eukaryotes) with certain organisms having 
no CYP genes present (e�g�, Escherichia coli [57] 
and Helicobacter pylori [58, 59])� Moderate P450 
numbers (2–8 P450s/genome) and extents of ge-
netic diversity are observed in Bacillus species 
genomes across a limited number of CYP gene 
families ( CYP102, CYP106, CYP107, CYP109, 
CYP134, CYP152, and CYP197, with 51 genes 
identified at time of preparation of this chap-
ter) [19, 59–61]� Several of the Bacillus P450s 
have undefined or uncertain physiological roles, 
although numerous studies have been done on 
certain Bacillus spp� P450s, including intensive 
characterization of the CYP102A1 (P450 BM3) 
P450-cytochrome P450 reductase (CPR) fusion 
enzyme (see the section ‘Microbial P450-(redox) 
partner fusion enzymes’)� P450 BM3 is a highly 
efficient fatty acid monooxygenase found in a 
number of Bacillus spp� as well as in other bacte-
ria, but one for which a definitive physiological 
function remains elusive to date [28]� Other char-
acterized Bacillus P450s include isoforms that 
possess fatty acid or steroid hydroxylating activi-
ties [60, 62–64]� In contrast to Bacillus and many 
other bacteria, actinobacteria often contain large 
numbers of P450 genes, e�g�, in mycobacterial 
spp� For example, there are 17, 20, 21, 39, and 47 
CYP genes in Mycobacterium bovis AF2122/97, 

M. tuberculosis H37Rv, M. ulcerans Agy99, M. 
smegmatis MC2155, and M. marinum, respec-
tively [59]� As is the case for many other mi-
crobes (and also for several higher eukaryotes), 
P450 protein expression and functional charac-
terization has not kept pace with data emanating 
from genome sequencing projects, and thus most 
mycobacterial P450s have unknown roles� How-
ever, for mycobacterial P450s where biochemical 
data are available, a variety of unusual catalytic 
functions have been identified including roles in 
bacterial virulence and novel secondary metabo-
lite production [65, 66] (see the section ‘Myco-
bacterial P450s’)� Other actinobacteria, such as 
Streptomyces spp�, are often also rich in P450s, 
with roles commonly in antibiotic biosynthesis or 
in the production or other natural products� For 
instance, there are 33 CYP genes in Streptomy-
ces avermitilis MA-4680, 65 in S. clavuligerus, 
18 in S. coelicolor A3 (2) and S. lividans, 21 in S. 
venezuelae, and 27 in S. griseus [59, 67, 68]� The 
majority of the actinobacterial P450s are unique 
to their own genus, although there are also a pro-
portion (particularly from soil dwelling organ-
isms) that encompass the CYP105 and CYP107 
families, and which are also found in other bac-
teria [19]� Not all actinobacteria contain a large 
P450 complement, important examples being 
the leprosy causing M. leprae [69] and the gas-
trointestinal, micro-aerotolerant Bifidobacterium 
longum, which is considered to have probiotic 
properties through its production of lactic acid 
[70]� These bacteria have one P450 each, further 
illustrating the large differences in numbers of 
P450s in different microbial organisms� The glid-
ing myxobacteria have complex life cycles and 
are of pharmaceutical and physiological interest, 
producing a wide array of secondary metabolites 
with useful activities including anticancer thera-
peutics (e�g�, epothilones), as well as antibacte-
rial and antiviral agents [71]� Myxobacteria also 
typically contain a large pool of P450s, with good 
examples being Sorangium cellulosum Soce56 
with 21 P450s identified, Stigmatella aurantiaca 
DW4/3–1 (18 P450s), Haliangium ochraceum 
DSM 14365 (17 P450s), and Myxococcus xan-
thus DK1622 (7 P450s)� Among the myxobac-
terial P450 genes identified, there are members 



2696 Microbial Cytochromes P450

of the CYP109, CYP110, CYP117, and CYP124 
families, as well as new myxobacteria-specific 
P450 families [72]�

Moving into the eukaryotic microbes, the fila-
mentous fungus Aspergillus nidulans has a larger 
P450 complement than all other lower organisms 
known to date, with 111 P450 genes identified 
across 89 families [15]� Some of the largest mi-
crobial P450 numbers occur in white and brown 
rot fungi, where the P450s have important roles 
in the breakdown of plant material� The model 
white rot fungus Phanerochaete chrysosporium 
is involved in the biodegradation of lignin and 
the metabolism of polycyclic hydrocarbons and 
other xenobiotics [73]� The P. chrysosporium ge-
nome sequence revealed the presence of 149 CYP 
genes, with some having direct roles in lignin 
breakdown, and displaying variable gene expres-
sion levels under a variety of environmental con-
ditions� These P450 enzymes (and other redox 
enzymes, including peroxidases) are of obvious 
biotechnological interest with potential roles in 
biodegradation of plant biomass and generation 
of chemicals and biofuels [74–77]� The P450 
repertoire appears to be just as large in other 
white rot species, e�g�, Bjerkandera adusta with 
199 CYP genes, and Ganoderma sp� and Phlebia 
brevispora each with 209 P450s, although char-
acterization of the vast majority of these enzymes 
remains to be done [78–82]� The genome of the 
brown rot fungus Postia placenta identified an 
even greater P450 complement with 250 genes 
across 41 P450 families present, with 184 of 
these shown to have activity with stilbene and a 
number of other compounds [77, 83]� However, 
the molecular mechanisms of biodegradation 
by brown rot fungi are not nearly as intensively 
studied or as well understood as those for their 
white rot fungal counterparts�

6.2.2  P450s in the Archaea

Evidence of P450s in the archaea suggests an 
early evolution for these proteins� Archaeons 
are among the earliest forms of life� It is now 
generally believed that the archaea and bacteria 
developed separately from a common ancestor 

nearly 4 billion years ago [84]� Millions of years 
later, the ancestors of today’s eukaryotes split 
off from the archaea, suggesting closer relations 
between eukaryotes and archaea than between 
archaea and the prokaryotes/bacteria� In contrast 
to eukaryotes (where P450s are almost invariably 
present), archaea, like most eubacteria, do not 
contain large numbers of P450s� However, re-
cent genome sequencing projects have revealed 
a limited number of P450s in many archaeons 
[19, 85]� There are three main phyla of archaea: 
(i) the Crenarchaeota, which are characterized by 
their ability to tolerate extremes in temperature 
and acidity; (ii) the Euryarchaeota, which include 
methanogens and halobacteria; and (iii) the Ko-
rarchaeota (or xenarcheota), which are found in 
high-temperature hydrothermal systems [84, 86, 
87]� Among these, three main types of archaea 
are some subtypes, which include methanogens 
(producing methane as a metabolic by-product), 
halophiles (requiring high NaCl concentrations 
for survival), thermophiles, and psychrophiles 
(which grow at unusually high and low tempera-
tures, respectively)�

The first P450 identified in an archaeon was 
discovered fortuitously by Wright et al� during 
studies to clone thymidylate synthase from the 
acidothermophilic archaeon Sulfolobus acido-
caldarius (previously named Sulfolobus solfatari-
cus), who identified a P450-like gene sequence 
containing a consensus P450 heme-binding motif 
[88]� This enzyme was classified as CYP119, and 
subsequently as CYP119A1 [89, 90]� To date, 
there are four crystal structures of thermophilic 
P450s published� Two of these are for CYP119 
family enzymes: CYP119A1 from Sulfolobus 
acidocaldarius (e�g�, PDB 1F4T) [91, 92] and 
CYP119A2 from Sulfolobus tokodaii strain 7 
(P450st, PDB 1UE8) [93] (Fig� 6�3)� In efforts to 
provide a redox partner system for CYP119A1, 
the P450cam redox partners putidaredoxin reduc-
tase/putidaredoxin (PDR/PD) and spinach ferre-
doxin reductase/ferredoxin (FDR/FD) proved to 
be inefficient electron donors [94]� However, it 
was subsequently demonstrated that CYP119A1 
can obtain electrons from a S. tokodaii 2-oxo-
acid: ferredoxin oxidoreductase and FD system, 
with a 2-oxoacid such as pyruvate as the electron 
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donor [95]� Cloning and expression/purification 
of a homologous thermostable 2Fe–2S FD and 
pyruvate-dependent ferredoxin oxidoreductase 
led to the reconstitution of lauric acid hydroxy-
lase activity with CYP119A1, and thus to the de-
scription of the first example of a non-NAD(P)
H-dependent reductase partner system for a P450 
enzyme [96]� More recently, CYP119A2 was 
shown to be reduced directly by nicotinamide 
adenine dinucleotide phosphate (NAD(P)H) and 
to catalyze epoxidation of styrene, suggesting a 
novel route to oxidation chemistry in this P450 
that bypasses redox partner proteins [97] (see 
the section ‘P450s from thermophilic microbes 
and novel redox systems for Sulfolobus P450s’ 
in Redox partner systems and their diversity in 
microbes)� The endogenous substrates of the 
archaeal CYP119A enzymes are still unknown, 
although they do possess fatty acid monooxygen-
ase activity, showing hydroxylation of lauric acid 
and the binding of saturated C12–C18 fatty acids 
[98, 99]� CYP119A1 also catalyzes the H2O2-
dependent epoxidation of styrene and of cis- and 
trans-β-methylstyrenes, albeit with lower affini-
ties and catalytic rates than observed with fatty 
acids [94]� The structures of CYP119A1 and 

CYP119A2 show a high degree of similarity and 
contain two large aromatic clusters that are not 
present in mesophilic P450s [91–93] (Fig� 6�3)� 
These clusters are likely to contribute to their 
thermostability, along with potential stabilization 
from a higher density of salt bridges, and from 
a lower density of alanine residues coupled to a 
higher density of isoleucine residues, which is 
thought to contribute to better side-chain packing 
[92, 100]�

CYP175A1 from the Gram-negative thermo-
philic eubacterium Thermus thermophilus has 
also been crystallized and structurally character-
ized (PDB code 1N97) [101], and was reported 
to be a β-carotene hydroxylase in production of 
the carotenoid zeaxanthin [101] and to possess 
monoenoic fatty acid oxygenase activity [102]� 
In contrast to the CYP119 P450s, CYP175A1 
does not possess large aromatic amino acid clus-
ters and its thermostability is instead proposed 
to be related to salt-bridge networks whereby 
charged residues are assembled to form multiple 
salt linkages rather than individual electrostatic 
interactions [100, 101]� CYP231A2 comes from 
the thermoacidophilic euryarchaeon Picrophilus 
torridus PTO1399 (PDB code 2RFB), the most 
acidophilic organism known that thrives opti-
mally at 60 °C and pH 0�7, but can grow even at 
pH 0 [103]� CYP231A2 has no known function 
as yet, but is the smallest structurally character-
ized P450 (39�56 kDa and 352 residues), and its 
small size, together with factors such as low sur-
face-to-volume ratio due to short loops and dis-
pensing with excess secondary structure, may be 
major factors in its thermostability [103]� How-
ever, its Tm is only 65 °C compared to 95 °C for 
CYP119A1� A further P450 is found in Picrophi-
lus torridus PTO0085 (CYP232A2; 44�36 kDa), 
and progesterone hydroxylase activity in the 
thermophilic Gram-positive Geobacillus ther-
moglucosidasius strain 12060 and Geobacillus 
stearothermophilus (both formerly classified in 
the genus Bacillus) has also been reported [104, 
105]� While the study of the structure and func-
tion of P450 enzymes from thermophilic archae-
ons (and from thermotolerant bacteria) is in its 
infancy, the relative ease with which proteins 
from these organisms can be crystallized for 

Fig. 6.3  The structural basis of thermostability in 
CYP119� An unusually large network of aromatic residues 
(here shown in space filling spheres, colored by structural 
element) has been suggested to contribute to thermostabil-
ity of S. solfataricus CYP119A1 (PDB 1F4U) [92]
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structural determination is one obvious reason 
for their continued study, which should provide 
novel information on mechanisms of P450 pro-
tein thermostability� The ability to interrogate 
the catalytic processes of P450s and (in particu-
lar) the nature of transient iron–oxo species in 
the catalytic cycle is another attractive advan-
tage for studying thermostable P450 enzymes 
at ambient (or lower) temperatures� Indeed, the 
major breakthrough made by Rittle and Green in 
trapping and definitively characterizing the reac-
tive compound I (ferryl–oxo porphyrin radical 
cation) species (Fig� 6�4) in P450 was achieved 
using the S. acidocaldarius CYP119A1 (see 
the section ‘P450s from thermophilic microbes 
and novel redox systems for Sulfolobus P450s’ 
in Redox partner systems and their diversity in 
microbes) [13]�

Thus, the majority of the biodiverse and rap-
idly numerically increasing microbial P450s 
have only been identified and characterized at 
the gene/amino acid sequence level� On the basis 
of recent studies that have revealed several un-
expected functions for microbial P450s (e�g�, cy-
clodipeptide oxidation, microbial toxin, and dini-
trogen oxide (N2O) synthesis [65, 106, 107]), the 
expectation is that the characterization of many 
of these ‘orphan’ microbial P450s will reveal an 
even greater range of functional capabilities in 
the P450 superfamily� At present, P450 protein 
sequence analysis alone is usually inadequate for 
identification of substrate specificity (unless the 
sequence is highly related to another P450 of es-
tablished substrate selectivity)� With even small 
changes in amino acid sequence in key regions 
being sufficient to cause major alterations to sub-
strate recognition and/or position of substrate ox-
idation, the assignment of catalytic functions to 
the growing number of orphan microbial P450s 
(including representatives from unique families) 
is challenging� Much work lies ahead in order to 
gain knowledge of physiological roles and the 
chemical mechanisms of numerous such P450 
enzymes� Such work will undoubtedly require 
novel approaches, and embrace technologies 
such as gene knockout/knockdown coupled to 
analysis of the metabolome, and activity screen-
ing using diverse compound libraries [108–111]�

6.2.3  P450s in Bacteria

There are more than 1300 bacterial P450 sequenc-
es within 350 distinct families which encompass 
the family numbers from CYP101 to CYP299 
and from CYP1001 to CYP1050, along with bac-
terial members of the CYP51 clan [19]� Bacte-
rial P450s were originally considered as mainly 
being involved in the catabolism of exogenous 
compounds to allow their utilization as a source 
of nutrition� Compared to various eukaryotic 
(particularly mammalian hepatic) counterparts, it 
is the case that several bacterial P450s are more 
‘specialist’, with rather restricted substrate speci-
ficity ranges� Indeed, in many cases, the natural 
substrates of bacterial P450s are unknown, with 
numerous ‘orphan’ bacterial CYP genes identi-
fied from ongoing genome sequencing projects� 
For most of the membrane-bound P450s, struc-
tural changes including movement of the smaller 
beta domain towards the proximal side of the 
heme plane may be important for increasing 
active site size and enabling substrate/product 
entry/exit from the membrane� However, struc-
tures of bacterial P450s, in general, do not show 
the same plasticity and flexibility as observed for 
various eukaryotic P450s [112] (Fig� 6�2)� The 
prokaryotic enzymes lack the N-terminal mem-
brane anchor regions found in eukaryotic P450s, 
and are thus soluble, cytoplasmic enzymes 
(rather than being associated with microsomal 
or adrenal mitochondrial membranes)� This has 
helped facilitate the studies of their structural and 
biochemical properties, particularly with respect 
to being able to express and purify sufficient 
amounts of soluble P450 to enable studies using 
protein crystallography and spectroscopic meth-
ods [12]� The P450 representatives in the PDB at 
present are mainly prokaryotic P450 structures, 
due to their superior stability and relative ease in 
handling compared to the membrane-bound P450 
enzymes (Table 6�2)� In contrast to microsomal 
P450s, which use CPR or CPR/cytochrome b5 
as electron donating redox partners for catalysis, 
bacterial P450s can use a more diverse mixture 
of redox partner enzymes� Indeed, the list of pro-
karyotic redox partners has increased steadily 
in recent years (see the section ‘Redox partners 
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and their diversity in microbes’) [113–116]� In 
addition, several microbial P450s have evolved 
to form natural fusions with other accessory en-
zymes (including both redox and nonredox part-
ners), with many of these novel P450 fusion pro-
teins still to be isolated and characterized (see the 
section ‘Microbial P450- (redox) partner fusion 
enzymes’)�

P450cam (CYP101A1) from Pseudomonas 
putida is probably the best-studied example of a 
bacterial P450, functioning in the hydroxylation 
of camphor as part of a pathway for degradation 
of the molecule as a carbon and energy source 
[117]� Similar roles are found in the related 
5-exo camphor hydroxylases CYP101D1 and 
CYP101D2 from Novosphingobium aromaticiv-
orans DSM 12444 [118, 119], as well as in the 
CYP108A1 α-terpineol hydroxylase (P450terp) 
from a Pseudomonas sp� [120] and in the cineole 
oxidizing CYP176A1 (P450cin) [38, 121, 122]� 
The crystal structures (Fig� 6�2), catalytic proper-
ties, and redox partner interactions of P450cam 
and related enzymes are discussed later in this 
chapter (e�g�, see the section ‘Diverse FD part-
ners’ in Redox partner systems and their diver-
sity in microbes)� In addition to terpenes, various 
microorganisms can utilize aliphatic alkanes as 
their sole carbon and energy source, with hydrox-
ylation reactions often being important steps in 
their catabolism [123, 124]� Examples of alkane 
hydroxylating P450s are often members of the 
CYP153 family, including CYP153A6 from My-
cobacterium sp� HXN-1500 which preferentially 
hydroxylates medium chain length (C6–C11) 
alkanes [125]; CYP153C1 from N. aromaticiv-
orans [126]; and CYP153 enzymes from Alca-
nivorax hongdengensis A-11-3T [127] and Aci-
netobacter sp� EB104 [128]� A number of Bacil-
lus P450s catalyze the oxidation of fatty acids� 
These P450s are discussed individually in more 
detail later in the chapter and include the well-
characterized Bacillus megaterium P450 BM3 
(CYP102A1), a model fatty acid-oxidizing fla-
vocytochrome P450 (see the section ‘Microbial 
P450-(redox) partner fusion enzymes’) for which 
engineered variants have potential biotechnolog-
ical applications [28, 129] (see the section ‘Con-
clusions and future prospects’; Fig� 6�2)� The per-

oxygenase P450 BSβ (CYP152A1) from B. sub-
tilis catalyzes the β-hydroxylation of fatty acids 
using hydrogen peroxide in the ‘peroxide shunt’ 
pathway (see Fig� 6�4), as do other CYP152 
peroxygenase family members from other mi-
crobes [130] (see the section ‘P450 systems that 
bypass redox partner systems in the Redox part-
ner systems and their diversity in microbes’)� 
In addition, a further B. subtilis P450 (BioI or 
CYP107H1) catalyzes the oxidative cleavage of 
fatty acids linked to an acyl carrier protein (ACP) 
in the biosynthesis of pimelic acid, a biotin pre-
cursor [131] (see the section ‘Nonredox partner 
proteins for microbial P450s in the Redox part-
ner systems and their diversity in microbes’)� 
Steroid hydroxylase activity is also recognized 
in B. subtilis, with CYP106A2 characterized as a 
steroid 15β-hydroxylase that oxidizes progester-
one and 11-deoxycortisol, and for which activity 
can be supported by the eukaryotic adrenodoxin 
reductase (ADR) and adrenodoxin proteins [63]� 
In recent work, CYP106A2 was also shown to 
convert dehydroepiandrosterone (DHEA) into 
7β-OH-DHEA, a human metabolite with pro-
posed neuroprotective and anti-inflammatory 
properties [132]� The highly related CYP106A1 
from Bacillus megaterium also catalyzes hydrox-
ylation of the pentacyclic triterpene 11-keto-β-
boswellic acid, with activity supported by fla-
vodoxin and FD redox partners from the same 
bacterium [133]�

Microbial P450s also have roles in the deg-
radation of toxic compounds, a function more 
commonly associated with the xenobiotic me-
tabolizing eukaryotic P450 enzymes, such as 
those in the human liver� CYP177A1 (XplA) is 
an unusual flavocytochrome P450 from Rhodo-
coccus rhodochrous 11Y that is a natural fusion 
with a flavodoxin redox partner and which has 
an interesting role with biotechnological applica-
tions� CYP177A1 initiates the breakdown of the 
military explosive and recalcitrant environmental 
pollutant hexahydro-1,3,5-trinitro-1,3,5-triazene 
(RDX, Royal Demolition Explosive) and its ni-
troso derivatives by reductive denitration, with 
XplA orthologs restricted to a number of Rho-
dococcus spp� [134–137] (see the section ‘P450 
fusions to flavodoxin and FD proteins’ under 
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Microbial P450-(redox) partner fusion enzymes)� 
The CYP116s are another family of bacterial 
P450 enzymes that are involved in the degrada-
tion of toxic compounds� CYP116A1 from Rho-
dococcus erythropolis NI86/21 (along with its 
genetically adjacent redox partners) was shown 
to N-dealkylate the thiocarbamate herbicides 
EPTC ( S-ethyl dipropylthiocarbamate) and ver-
nolate ( S-propyl dipropylthiocarbamate), and the 
triazine herbicide atrazine (1-chloro-3-ethylami-
no-5-isopropylamino-2,4,6-triazine), conferring 
protection on crop plants against the application 
of these herbicides [138–140]� The orthologous 
CYP116B1 from Cupriavidus metallidurans 
[141] and CYP116B2 (P450-Rhf) from Rhodo-
coccus sp� NCIMB 978 [142, 143] constitute 
a distinct class of P450 fusion enzymes with a 
P450 domain linked to a phthalate dioxygenase 
reductase (PDOR; see Microbial P450-(redox) 
partner fusion enzymes)� CYP116B1 was shown 
to catalyze propyl chain hydroxylation of the 
herbicides EPTC and vernolate, with subsequent 
N-dealkylation in the case of vernolate [141]� 
CYP116B2 was shown to catalyze hydroxylation 
and O-dealkylation of several alkyl aryl ethers, 
with a preference for shorter-chain alkyl groups 
in these substrates [143]� Although the exact 
physiological functions of these enzymes remain 
to be determined, it appears likely that these fu-
sion P450s may play a similar role to that seen 
for CYP116A1 in one or more detoxification re-
actions, including the oxidative degradation of 
herbicides such as EPTC� The CYP116B family 
may exemplify divergent evolution in microbial 
P450s, with the relevant ancestral CYP gene be-
coming fused with a novel PDOR redox module 
gene to provide better catalytic efficiency and 
(possibly) stability in the new fusion enzyme, 
thus enhancing competitiveness of the host mi-
crobe in a challenging environment�

It is increasingly clear that, in addition to the 
utilization of unusual carbon sources, many bac-
terial P450s are crucial for other physiological 
roles [144, 145]� Among the most obvious ex-
amples of these are Streptomyces and other ac-
tinomycete species, where various P450s have 
defined roles in the production of antibiotics 
and other natural products that have benefits to 

human and animal health, and uses in agriculture 
(Table 6�3)� The metabolomes of Streptomyces 
spp� are a rich source of secondary metabolites 
that account for more than two thirds of the mi-
crobially derived antibiotics, and Streptomyces 
also produce enzymes that can transform xenobi-
otics of industrial and environmental importance 
(e�g�, steroids in the soil) [146, 147]�

6.2.3.1  Streptomyces P450s
The Streptomyces P450s are frequently inte-
grated into biosynthetic operons for secondary 
metabolite pathways, with these operons con-
taining the majority of the enzymes required for 
production and export of the antibiotic or other 
secondary metabolite product� Creation of new 
antibiotics, as well as improvements in the pro-
duction of naturally occurring agents, can be ef-
fected by manipulating the genes in these path-
ways, and such methods were shown to be suc-
cessful in the generation of new and improved 
Streptomyces compounds [148, 149]� Examples 
of the diversity of Streptomyces-derived natural 
products whose synthesis requires activity of 
P450 enzymes include pharmaceuticals such as: 
anticancer agents (e�g�, quinomycin [150] and 
daunorubicin [151]); antitumor agents (e�g�, ep-
othilone [152], fostriecin [153] and staurosporine 
[154]); immunosuppressives (e�g�, tautomycetin 
[155], FK506 [156] and rapamycin [157]); anti-
parasitic agents (e�g�, avermectin [158]); insecti-
cides (e�g�, nikkomycin [159]); antifungals (e�g�, 
pimaricin [160] and amphotericin [161]); and 
antibacterial agents (e�g�, clavulanic acid [162], 
oleandomycin [163], and pikromycin [164]; 
Table 6�3)� The Streptomyces often have CYP 
gene families unique within a particular species, 
but selected CYP family members are also com-
mon to various Streptomyces spp�, particularly 
for the CYP105 and CYP107 family P450s which 
have multiple members detailed in the databases 
[19, 165]� The CYP105 and CYP107 families are 
generally associated with xenobiotic and sec-
ondary metabolism, and the characterization of 
growing numbers of these P450s illustrates their 
broad substrate specificities and diverse catalytic 
functions� These include vitamin D hydroxyl-
ation (CYP105A1) [166], steps in the synthesis 
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of the antibiotic filipin (CYPs 105D1 and P6) 
[167, 168], coelibactin siderophore biosynthe-
sis (CYP105N1) [169], oleandomycin modifi-
cation (CYP105F2) [170], biotin biosynthesis 
(CYP107H1) [64, 131], erythromycin biosynthe-
sis (CYP107A1) [35], pikromycin biosynthesis 
(CYP107L1) [171], and himastatin biosynthesis 
(HmtT and HmtN (CYP107B)) [172] (Table 6�3)� 
A number of CYPs are common in several 
Streptomyces spp�, including those encoded by 
CYP102, CYP154, CYP157, and CYP170 genes� 
Studies of some of these enzymes have revealed 
various interesting structural and catalytic fea-
tures, as discussed below� However, thorough 
analysis of individual P450s in each Streptomy-
ces species will be required to reveal all their true 
functions� The Streptomyces P450s characterized 
to date have diverse biochemical roles, and have 
evolved specialized functions to enable their host 
bacteria to exploit different environmental niches 
[67, 173]�

At the time of preparation of this chapter, 
there were P450 crystal structures from 17 differ-
ent Streptomyces species in the PDB (Table 6�2)� 
These include a number of CYP105 family mem-
bers with varied hydroxylase activities� Examples 
include CYP105A1 (P450 SU-1) from Strepto-
myces grisoleus (PDB 3CV9), which is a vita-
min D3 hydroxylase involved in the conversion 
of vitamin D3 to its active form 1α,25-hydroxy 
vitamin D3 (Fig� 6�5a) [174–176]� CYP105D6 
and CYP105P1 (PDB 3ABB and 3ABA) from 
S. avermitilis perform filipin hydroxylations in 
the C1 and C26 positions, respectively, during 
biosynthesis of this polyene macrolide antibiotic 
[167, 168, 177] (Fig� 6�5B)� CYP105N1 from 
S. coelicolor is a monooxygenase predicted to 
be involved in the biosynthesis of coelibactin, a 
siderophore with implications in zinc-dependent 
antibiotic regulation by S. coelicolor [169, 178, 
179] (Fig� 6�5c)� Interesting properties are also 
observed for S. coelicolor CYP154A1 [111, 180]� 
CYP154A1 performs an unusual cyclization re-
action, coupling the C5 carbonyl and the C11–
C12 double bond of a dipentaenone substrate 
(Fig� 6�5d) to form a product with an oxetane ring 
(Fig� 6�5e), doing so in the absence of NAD(P)
H and redox partners and without the need for 

any net oxidation/reduction [111]� There are only 
a few examples of P450s that have the ability 
to catalyze molecular rearrangement reactions 
without external reducing equivalents� These in-
clude the CYP5A and CYP8A families involved 
in the production of thromboxane A2 and pros-
tacyclin, respectively, through isomerization of 
prostaglandin endoperoxide (prostaglandin H2) 
in higher animals [181, 182]� In addition, the 
fatty acid hydroperoxide metabolizing CYP74 
AOS are involved in the dehydration of linole-
nic acid 13-hydroperoxide (18:3ω3) during the 
early steps of jasmonic acid production in plants 
[181, 183–185]� In contrast to CYP154A1, where 
the exact reaction mechanism is unknown, these 
P450s are able to utilize their peroxide substrates 
directly in the generation of reactive species for 
both the enzyme and substrates during catalysis 
[181, 186]� The physiological role of CYP154A1 
is not clear, although it may function in spore sta-
bilization during the S. coelicolor growth cycle� 
In addition, the substrate pentaenone ring bears 
a resemblance to the S. coelicolor antibiotic 
methylenomycin C scaffold, although the pres-
ence of a biosynthetic pathway involving the 
pentaenone is yet to be established [111]� The 
4-phenylimidazole-bound crystal structure of 
CYP154A1 reveals a closed conformation with 
some disorder in the central region of the I-helix, 
and with various amino acid residues observed in 
distinct positions [180]� The CYP154A1 heme is 
found in two orientations (related by a 180° flip) 
as also described for the Mycobacterium tuber-
culosis CYP121 [187], although whether there 
is any physiological/mechanistic relevance here, 
or influence on catalysis, remains unclear [180]� 
Interestingly, CYP154A1 is located directly up-
stream of the uncharacterized CYP157C1 gene 
(which encodes a P450 with no EXXR motif in 
a ‘conservon’ five-gene cluster repeated through-
out the S. coelicolor genome) [42, 147]� Despite 
the retention of these conservons, there is no real 
clue as to their physiological relevance, and the 
substrate and product of CYP154A1 were deter-
mined through elegant metabolomic approaches 
rather than by identification of the function of a 
biosynthetic operon [111]� The second structur-
ally characterized S. coelicolor CYP154 fam-
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ily enzyme is CYP154C1 with 42 % identity 
to CYP154A1� In contrast to CYP154A1, the 
CYP154C1 structure is in an open conforma-
tion in the ligand-free state (PDB 1GWI) [188]� 
A swinging movement of the FG helices and a 
reorganization of the BC loop are observed in 
comparison to CYP154A1, which results in the 
open conformation with a direct access pathway 
to the heme observed from the protein surface� 
CYP154C1 is also located adjacent to another 
uncharacterized P450 (CYP157A1, again lack-
ing the EXXR motif) in an operon that does not 
contain nearby polyketide synthases or nonribo-
somal peptide synthetase (NRPS) gene sequenc-
es and which gives no obvious clue to the P450 
function [42]� However, CYP154C1 was shown 
to possess the same activity as CYP107L1 (PikC) 
from S. venezuelae, which performs successive 
hydroxylations on the 12- and 14-membered 
ring macrocyclic lactones YC-17 and narbomy-
cin [164] (discussed further below), although the 
true role of CYP154C1 in S. coelicolor is still 
to be determined [180, 188]� Additional mem-
bers of the CYP154 family have been identified 
only in actinomycetes and were found to have a 
broad spectrum of substrate selectivity towards 
molecules of diverse size and chemical charac-
teristics, and to have distinctive catalytic roles� 
CYP154A8 from Nocardia farcinica IFM10152 
catalyzes hydroxylation of 7-ethoxycoumarin 
and the O-demethylation and subsequent ortho-
hydroxylation of the medium-sized isoflavonoid 
formononetin via a daidzein intermediate [189]� 
Furthermore, compound screening studies have 
revealed a wide range of hydroxylation activi-
ties, mainly for long rod-shaped compounds as 
well as the stereo- and regio-selective hydroxyl-
ation of n-alkanes [190, 191]� CYP154C5, also 
from N. farcinica IFM 10152, was shown to 
possess 16-α hydroxylase activity with the ste-
roids androstenedione, dehydroepiandrosterone, 
nandrolone, pregnenolone, progesterone, and 
testosterone [192, 193]� The crystal structures of 
CYP154C5 in complex with androstenedione, 
pregnenolone, progesterone and testosterone 
have been deposited recently in the PDB (PDB 
codes 4JBT, 4J6B, 4JSC, and 4JSD, respectively) 
with no citation available at the time of comple-

tion of this chapter� CYP154E1 from Thermobi-
fida fusca YX displayed a broad substrate range 
following screening with diverse molecules 
ranging from heptanoic acid, 2,4,6-trimethyloc-
tanoic acid, benzyl methyl sulfide, and nootka-
tone through to the largest substrate compound 
pergolide mesylate [190]� CYP154H1, also from 
T. fusca YX, catalyzes side-chain hydroxylation 
of small aromatic and arylaliphatic molecules 
such as ethylstyrene, ethylbenzene, styrene, and 
indole, as well as the S-oxidation of aromatic 
thioethers to their corresponding sulfoxides and 
sulfones [194]�

The CYP158 family is so far restricted to the 
actinomycetes, with CYP158A enzymes found 
only in Streptomyces species� CYP158B genes 
have also been identified in the actinomycetes 
Saccharopolyspora erythraea NRRL23338 and 
Saccharopolyspora spinosa� However, the ma-
jority of genes in the CYP158 family remain un-
characterized [19, 165]� The related S. coelicolor 
enzymes CYP158A1 and CYP158A2 catalyze 
aryl ring coupling reactions resulting in fla-
violin dimerization/multimerization, producing 
differing products [195]� The polymerization of 
flaviolin(s) produces red-brown pigment mol-
ecules thought to provide the bacteria with pro-
tection from UV light [196, 197]� CYP158A2 is 
one of the few S. coelicolor P450s found within 
a clearly defined three-gene operon that produces 
the P450 substrate molecule flaviolin (Fig� 6�6a) 
in a process also involving a type III polyketide 
synthase and a naphthalene monooxygenase� 
CYP158A2 was shown to produce three isomers 
of biflaviolin and one triflaviolin from the mo-
no-substituted flaviolin substrate [173, 195]� In 
contrast, CYP158A1 (which has 61 % amino acid 
identity to CYP158A2) is not found in an appar-
ent operon, but can produce 3,3′-biflaviolin and 
3,8′-biflaviolin as its only flaviolin products and 
ultimately may have a different physiological role 
to CYP158A2 [195]� The structure of CYP158A2 
revealed two flaviolin molecules bound in the 
active site (Fig� 6�6b), stacking with the heme 
cofactor and creating a kink in the I-helix and a 
repositioning of the FG helices to close the ac-
tive site (PDB 1T93; Fig� 6�6c)� The CYP158A2 
heme cofactor is bound with the A-propionate 
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moiety on the proximal side of the heme and it 
is suggested that this orientation allows a greater 
amount of space on the distal side of the heme, 
subsequently creating a larger active site cavity to 
allow binding of the bulky flaviolin substrate(s) 
[112]� CYP158A2 does not possess the con-
served threonine (as described for P450cam, see 
above), with an alanine (Ala245) in this position, 
and its reaction is postulated to involve substrate 

Fig. 6.6  CYP158A2 and its substrate flaviolin� The sub-
strate flaviolin (a) is polymerized to form a red-brown 
pigment via P450-mediated aryl ring coupling� b The sub-
strate-bound P450 structure contains two flaviolin mol-
ecules in the active site cavity and dioxygen bound to the 
heme iron (PDB 1T93)� Structural rearrangements associ-
ated with substrate binding occur in P450 enzymes [198]� 
Panels c and d: An overlay of substrate-bound and sub-
strate-free structures, respectively, for two distinct P450s: 
S. coelicolor CYP158A2 (c) (PDB 1T93 and 1S1F) [198] 
and the P450 BM3 heme domain (d) (PDB 1FAG and 

2HPD) [271, 701]� In both cases, the FG helices reori-
ent to wrap around the substrate, closing the active site 
(indicated by blue arrows)� In addition, a portion of the 
CYP158A2 I-helix is seen in a distinct position upon sub-
strate binding forming a kink resulting in the positioning 
of an ordered water molecule (WAT50; not shown) that 
hydrogen bonds with the 5-OH moiety of the proximal 
flaviolin� It has been postulated that WAT50 may also pro-
vide a hydrogen bond to the distal oxygen atom during 
catalysis [195]

 

assisted phenolic coupling with the flaviolin sub-
strate (as described above for EryF above)� The 
flaviolin C5 and C7 hydroxyl groups (Fig� 6�6a) 
are positioned to act as H-bond donors, stabiliz-
ing the proton pathway to the heme iron during 
catalysis [35, 195, 198, 199]� The CYP158 fam-
ily P450s contain a highly conserved active site 
residue (Ile87 in CYP158A2) located on the BC 
loop� In CYP158A2, Ile87 points inwards within 
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the active site cavity interior and interacts with 
the second flaviolin molecule� Mutagenesis of 
this residue and crystallographic studies (PDB 
3TZO 3TNK) show large differences in the over-
all BC loop topology, and reveal differing cata-
lytic activities and dimerization products of the 
mutant enzymes, highlighting the importance of 
this active site residue in controlling the regio-
selectivity in formation of the flaviolin products 
[199]� The structure of CYP158A1 with two 
flaviolins bound revealed a distinctive mode of 
binding for the second substrate, which is found 
in the entrance to the substrate access channel 
and positioned too far away to allow dimeriza-
tion to occur, despite evidence that this occurs 
in vitro (PDB 3NZ5) [195, 197, 198]� Struc-
tural comparisons with CYP158A2 show that 
CYP158A1 has a shorter I-helix with two fewer 
helical turns and no I-helix kink� These changes 
are accompanied by a longer loop between the 
H- and I-helices in CYP158A1� CYP158A1 pos-
sesses a unique lysine residue (Lys90) in place 
of the conserved CYP158 family isoleucine 
(Ile87 in CYP158A2)� The bulkier side chain 
of Lys90 in CYP158A1 results in its orientation 
towards the surface, pointing away from the BC 
loop� In contrast to CYP158A2, mutagenesis of 
the CYP158A1 Lys90 has no apparent effect on 
catalytic activity or selectivity [199]� It is pre-
dicted that there will be movement of the second 
flaviolin substrate along with the FG helices and 
BC loop to accommodate substrate dimerization 
in CYP158A1 [195, 199]� Structural differences 
in active site topology and chemical composi-
tion likely account for the altered product pro-
files observed in CYP158A1 and CYP158A2, 
and for their potentially quite different biological 
roles� Recent studies used CYP158A2 to produce 
large amounts of a heme stable iron(IV) hydrox-
ide species (compound II) and to highlight the 
importance of the cysteine thiolate axial ligand 
in the P450s’ ability to oxidize C–H bonds� The 
CYP158A2 compound II was determined to have 
a basic pKa (11�9), and it was suggested that thio-
late coordination is important in increasing the 
compound II pKa, consequently lowering the 
redox potential for the one electron reduction of 
compound I� Theoretical studies indicated that 

the elevated pKa substantially decreases the rate 
of oxidation of surrounding amino acids to favor 
specific oxidation of the substrate� During C–H 
activation catalysis, it also appears likely that a 
solvent exposed CYP158A2 tyrosine residue 
(Tyr352) adjacent to the cysteine thiolate ligand 
(Cys353) provides a reducing equivalent that ini-
tiates the conversion from compound I (Cys–S–
Fe(IV) = O) to compound II (Cys–S–Fe(IV)–OH) 
that favors C–H bond oxidation [200]�

An intriguing S. coelicolor enzyme is the bi-
functional CYP170A1, which was initially clas-
sified as a CYP51, but renamed once shown to be 
devoid of demethylase activity and to have low 
similarity to other CYP51 enzymes [67]� CY-
P170A1 is in a two-gene operon adjacent to a ses-
quiterpene cyclase that is involved in the ioniza-
tion and successive isomerization of farnesyl di-
phosphate to the novel compound epi-isozizaene 
[201]� CYP170A1 converts epi-isozizaene via 
albaflavenol intermediate(s) to the sesquiter-
pene single ketone antibiotic albaflavenone by 
two successive allylic oxidations (Fig� 6�7a) 
[202]� Surprisingly, CYP170A1 was also discov-
ered by gas chromatography/mass spectrometry 
(GC/MS) analysis to produce farnesene isomers 
(Fig� 6�7b) and was subsequently found to pos-
sess an additional terpenoid synthase activity in 
presence of Mg2+ alone (i�e�, in a reaction not in-
volving redox partners or reducing equivalents), 
generating a mixture of farnesene isomers from 
farnesyl diphosphate [203]� The terpenoid syn-
thase activity is optimal at acidic pH (5�5–6�5), 
whereas the P450 oxygenase activity in the pro-
duction of albaflavenone is most efficient at a 
neutral to basic pH (7�0–8�2), perhaps conferring 
an environmental control over the distinct ac-
tivities� The crystal structure of CYP170A1 was 
determined in the ligand-free and epi-isozizaene-
bound forms (PBD 3DBG and 3EL3, respective-
ly) and confirmed the unusual bipartite function 
with a terpene synthase-like active site contained 
within the conventional P450 structure� This 
terpene synthase site is situated in the α-helical 
domain and forms a discrete, but slightly disor-
dered, four-helical bundle located within the C-, 
H-, I-, and L-helices, and is internally lined with 
various hydrophobic amino acids in its cavity 
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(Fig� 6�7c) [203]� Terpene synthases usually pos-
sess a six-helical barrel [204]� However, an over-
lay of the structures of CYP170A1 and terpene 
synthase enzymes displays a high level of simi-
larly in the structural shape and the amino acids 
lining the cavities of the synthase units [203]� 
Comparisons of the CYP170A1 ligand-free and 
epi-isozizaene-bound structures with that of 
P450cam (CYP101A1) confirm structural fea-
tures consistent with typical P450 topology [24, 
112]� It is thought that CYP170A1 may undergo 
structural rearrangements to promote terpene 
synthase activity over P450 monooxygenase 
function, and to further order the helical farne-

syl diphosphate active site� This conformational 
change may allow CYP170A1 to utilize one dis-
tinct activity over another, consistent with selec-
tivity over different pH ranges [203]� CYP170A1 
is one of the more diverse classes of Streptomy-
ces P450, with rather low amino acid similarity 
to other characterized P450s� The CYP170 class 
has been investigated in other Streptomyces spe-
cies [205, 206]� S. avermitilis possesses a similar 
CYP170A2 which is located adjacent to a ses-
quiterpene cyclase and was shown in vitro to 
produce albaflavenone from epi-isozizaene, as 
described for CYP170A1� Moreover, a novel ox-
idized epi-isozizaene metabolite was identified 

Fig. 6.7  A case of moonlighting� The S. coelicolor 
CYP170A1 converts epi-isozizaene via albaflavenol 
intermediate(s) to the sesquiterpene single ketone anti-
biotic albaflavenone by two successive allylic oxidations 
(a) [202]� A secondary terpenoid synthase role was also 
discovered to produce farnesene (b) [849]� The structure 

of CYP170A1 is shown in (c) (PDB 3DBG), with the dif-
ferent activities indicated by blue arrows� The non-P450 
terpene synthase activity is believed to reside at the N-ter-
minal region of the I-helix (depicted in purple), centered 
around the Mg2+-binding loop containing the DDNGD 
motif (disordered in the crystal structure) [203]
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and believed to be derived from the CYP170A2 
intermediate (4S)-albaflavenol to produce the 
oxidized metabolite 4β,5β-epoxy-2-epi-zizaene-
6β-ol. This reaction is most likely catalyzed by 
CYP170A2-dependent epoxidation, although the 
action of an additional unidentified P450 or epox-
idase in the S. avermitilis genome cannot be ruled 
out [205]� Genome mining has also revealed the 
presence of the sesquiterpene cyclase/CYP170-
like gene pairings in nine further Streptomyces 
bacteria ( S. albus J1074, S. lividans TK24, S. 
ghanaensis ATCC14672, S. griseoflavus Tu4000, 
S. sviceus ATCC29083, S. viridochromogenes 
DSM40736, and Streptomyces spp� E14, SPB74 
and SPB78), with a high degree of genomic con-
servation and synteny in the surrounding genes� 
The production of epi-isozizaene was detected 
in vivo in S. ghanaensis, S. lividans and S. albus 
following GC/MS studies of mycelia of each or-
ganism� Albaflavenone was detected in S. virido-
chromogenes, S. griseoflavus, S. ghanaensis, and 
S. albus, and the intermediate albaflavenols were 
detected in the latter organism [205, 206]� Fur-
thermore, CYP170B1 from S. albus was found 
to produce albaflavenone from epi-isozizaene 
in vitro, but was unable to produce farnesene 
from farnesyl diphosphate, unlike the terpenoid 
synthase role identified in the S. coelicolor CY-
P170A1 ortholog� Structural analysis revealed 
the absence of key Mg2+-binding amino acids, 
essential for the farnesene synthase activity, and 
thus explained the loss of the bifunctional en-
zymatic properties of CYP170B1� The CYP170 
enzymes in Streptomyces sp� SPB74 and SPB78 
also lack the farnesene synthase amino acids and 
are postulated to be members of the monofunc-
tional epi-isozizaene hydroxylating CYP170B 
family [206]�

CYP107L1 (PikC) from S. venezuelae is 
involved in the macrolide antibiotic pikromy-
cin biosynthetic pathway and is probably the 
best-studied biosynthetic P450 [149, 164, 207]� 
PikC has specificity for both 12- and 14-carbon-
membered rings of macrolactones, and has regio- 
and stereospecific oxygenase activities to en-
able production of different macrolide products 
[208]� PikC catalyzes the C12 hydroxylation of 
the 14-membered ring narbomycin to produce 

the ketolide pikromycin [154, 164] (Fig� 6�8a), 
and can perform a C14 hydroxylation to produce 
neopikromycin, as well as the dihydroxylation to 
produce novapikromycin, albeit to a very small 
extent [171]� PikC also catalyzes the monohy-
droxylation of the 12-membered ring YC-17 
at either the C10 or C12 positions to produce 
methymycin and neomethymycin, respectively 
(Fig� 6�8b) [164]� The dihydroxylation of YC-17 
produces novamethymycin via the methymycin 
precursor, which is also detected at very low lev-
els [209]� The structures of PikC in the ligand-
free and substrate-bound forms (PDB 2BVJ, 
2C7X, 2CD) display conformational changes 
between open and closed conformations and 
highlight movements of the F and G helices as 
well as flexibility in the FG and BC loops that 
presumably allow entry and exit of the substrates 
and products� Interestingly, the ligand-free struc-
ture encompasses both open and closed confor-
mations within two molecules in an asymmetric 
unit� The FG region adopts slightly differing 
positions depending on the ligand bound in the 
active site of PikC [208, 210]� An interesting 
feature observed in the PikC crystal structures 
is that the substrates are anchored in the upper 
part of the active site by the desosamine sugar 
moiety of narbomycin and YC-17 at different 
positions, forming a substrate-specific-binding 
pocket (Fig� 6�8c)� A substrate-specific salt 
bridge is also formed between the C3′ dimethyl-
amino group of the deoxysugar substituent and 
PikC glutamate residues (Glu85 for narbomycin 
binding and Glu94 for YC-17), with hydrogen-
bonding networks formed with other amino acids 
on the BC loop, as confirmed by mutagenesis 
studies� These desosamine N,N-dimethylamino 
salt linkages and binding pockets, as well as un-
specific hydrophobic interactions between active 
site amino acids and the macrolide portion of the 
substrate, play important roles in regio- and ste-
reo-selectivity of substrate oxidation [208, 210, 
211]� Substrate anchoring and engineering strat-
egies have been employed to enable PikC-cata-
lyzed hydroxylation(s) on nonnatural substrates 
fused with a desosamine sugar moiety using an 
engineered PikC (the D50N mutant enzyme), 
with the ultimate aim of harnessing PikC for the 
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Fig. 6.8  Reactions catalyzed by PikC (CYP107L1)� The 
scheme shows the PikC-catalyzed C12 hydroxylation of 
narbomycin to the ketolide pikromycin (a) and the C10 
or C12 monohydroxylation of YC-17 to produce methy-
mycin and neomethymycin, respectively (b)� Positions of 

hydroxylation are shown by arrows [164]� c An overlay of 
P450 PikC bound to YC-17 (shown with orange carbons) 
and narbomycin (shown with cyan carbons; PDB 2CD8 
and 2C7X) [208]
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production of novel antibiotics, albeit likely with 
some limitations in ability to synthesize novel 
substrates and regulate enzyme regio-selectivity 
[211]� Improvements in PikC regio- and stereo-
selectivity were recently achieved with a simi-
lar substrate engineering approach, whereby the 
substrate desosamine was replaced with varied 
synthetic N, N-dimethylamino anchoring groups� 
It was demonstrated that the structure of the an-
choring group can control regio-selectivity of the 
PikC C–H bond oxygenation [212]� Although 
pikromycin itself is not clinically used as an an-
tibiotic, it has the potential to serve as a scaffold 
for the production of new macrolide therapeutic 
compounds [213]� These studies highlight the po-
tential of PikC and other microbial biosynthetic 
P450s as biocatalysts for the development and 
production of new improved antibiotics and other 
secondary metabolites�

Three S. himastatinicus ATCC 53653 P450s 
(HmtT, HmtN, and HmtS) are involved in the 

synthesis of the antibiotic himastatin, a novel 
cyclohexadepsipeptide dimer that inhibits growth 
of Gram-positive bacteria, including methicillin-
resistant Staphylococcus aureus (MRSA) [214]� 
Himastatin has several tailoring groups, such as 
hydroxypiperazic acid and hexahydropyrroloin-
dole moieties, attached to a depsipeptide ring 
with an unusual symmetry consisting of peptide 
residues in alternate D- or L-conformations [215]� 
The gene cluster for himastatin biosynthesis con-
tains several NRPSs that are involved in peptide 
formation, as well as the P450s HmtT, HmtN, and 
HmtS� The three P450s share a 51–55 % level of 
identity and are likely members of the CYP107B 
family, but have distinct and novel roles in the 
oxidative tailoring of himastatin (Fig� 6�9) [214]� 
HmtT catalyzes the regio- and stereospecific ep-
oxidation of the C2/C3 double bond of the indole 
ring derived from L-tryptophan, and subsequent 
cyclization reactions to form the tricyclic moi-
ety hexahydropyrroloindole� HmtN catalyzes 

Fig. 6.9  P450-dependent reactions in the synthesis of 
the antibiotic himastatin� Himastatin biosynthetic reac-
tions catalyzed by the P450s HmtT, HmtN, and HmtS 
are shown (with arrows highlighting the positions of 
the P450 reactions) [172, 214]� The scheme shows the 
HmtT-catalyzed regio- and stereospecific epoxidation of 
the C2/C3 double bond of the indole ring derived from 

L-tryptophan, and the subsequent cyclization to form the 
hexahydropyrroloindole moiety; the γ-hydroxylation of 
the piperazic acid (Pip) motif catalyzed by HmtN; and 
the biaryl aromatic coupling between cyclic depsipeptide 
monomers catalyzed by HmtS to create the active dimer 
form of himastatin
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the regio- and stereo-selective γ-hydroxylation 
of an unusual piperazic acid (Pip) motif� HmtS 
is involved in the biaryl aromatic coupling be-
tween cyclic depsipeptide monomers, catalyz-
ing regio-selective C–C bond formation� This 
reaction is essential for himastatin activity as the 
depsipeptide monomer is inactive [172, 214]� 
The structures of HmtT and HmtN have been 
solved in ligand-free forms (PDB 4GGV and 
4E2P, respectively)� The HmtT structure reveals 
a remarkably long FG loop situated perpendicu-
lar to the heme plane and entering the active site 
cavity� The extra residues in this FG region are 
evident from amino acid alignments with other 
P450 enzymes and show notable differences 
within the himastatin P450s� The HmtT F and G 
helices are kinked as a result of the extra amino 
acid residues in this region� This unusual FG loop 
conformation is stabilized via hydrogen-bonding 
networks between Arg179/Asp66 and Phe165/
Gln76� It was postulated that the long FG loop 
may form a significant part of the binding site 
in order to accommodate the large substrate size 
and to stabilize substrate orientation during the 
successive catalytic steps� Unlike HmtT, the 
structure of HmtN reveals relatively straight FG 
helices, similar to a number of other P450s in the 
PDB, and in a different orientation to the FG he-
lices in HmtT [24]� In comparison to HmtT, the 
HmtN helices have moved laterally, resulting in 
an enlarged substrate access chamber to the ac-
tive site� Despite HmtT and HmtN having a very 
similar substrate, this molecule would have to be 
oriented in opposing conformations to facilitate 
the P450-mediated reactions at different regions 
of the cyclohexadepsipeptide backbone� The 
variation in FG regions in the HmtT and HmtN 
structures presumably allows for these differing 
substrate configurations� HmtN does not pos-
sess the conserved threonine involved in oxygen 
activation, instead having a leucine (Leu244) in 
this position� The active site of HmtN has several 
ordered water molecules that form a hydrogen-
bonding network, and it is possible that this net-
work may assist proton delivery during catalysis 
[172]� CYP161A2 (PimD) from S. natalensis 
ATCC27448 is an epoxidase P450 involved in 

the biosynthesis of the antibiotic pimaricin (also 
called natamycin) [216]� Pimaricin is a 26-mem-
bered polyene macrolide that is commonly used 
to treat fungal keratitis (corneal infections) as 
well as being utilized as a food preservative to 
prevent mold contamination of cured meats and 
cheeses [217]� The large pimaricin biosynthetic 
gene cluster identified the PimD P450 as the 
final biosynthetic enzyme that catalyzes the ep-
oxidation between the C4 and C5 double bond 
of 4,5-desepoxypimaricin to produce pimaricin 
(Fig� 6�10a) [160, 217]� The CYP161 family is 
restricted to the Streptomyces, with orthologous 
genes found only in species closely related to S. 
natalensis [19]� The structures of PimD in the 
ligand-free and substrate-bound forms (PDB 
2X9P and 2XBK, respectively) reveal structural 
changes upon 4,5-desepoxypimaricin binding 
and give insights into the catalytic mechanism 
of PimD [216]� Comparisons of these PimD 
structures show the FG loop moves toward the 
active site on binding of 4,5-desepoxypimaricin, 
allowing interactions with the substrate� This is 
accompanied by an inward reorientation of the 
BC loop that is subsequently accommodated by 
an outward movement of the C-helix to allow 
the substrate-induced structural changes� The 
β-sheet 3 becomes more ordered in the substrate-
bound form and closes over the active site, al-
lowing an interaction with the pyranosidic ring 
of the mycosamine moiety of 4,5-desepoxypi-
maricin� PimD also lacks the conserved catalytic 
threonine, although does possess a serine residue 
(Ser238) in this position� However, the Ser238 
side chain is rotated towards the interior of the 
I-helix, forming a hydrogen-bonding interaction 
with Ala234, and is thus unable to assist in proton 
delivery in this conformation [216]� PimD is thus 
a likely example of substrate-assisted epoxida-
tion, whereby the 4,5-desepoxypimaricin C7–OH 
group is positioned to act as the proton donor for 
the epoxidation reaction, similar to that described 
above for EryF [34, 36, 216]� The PimD epoxida-
tion reaction is thought to proceed via compound 
0 (as opposed to compound I) with peroxo and 
hydroperoxo intermediates, the latter proposed to 
act as an oxidant for the insertion of the hydro-
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Fig. 6.10  P450 reactions in the synthesis of pimaricin, 
aureothin and neoaureothin� a The PimD-catalyzed ep-
oxidation between the C4 and C5 double bond ( arrow) 
of 4,5-desepoxypimaricin to produce pimaricin [216]� b 
Production of aureothin catalyzed by AurH (CYP151A), 
showing the successive P450-dependent oxidations ( ar-
rows) involving the C7 hydroxylation of deoxyaureothin 

to produce a (7R)-7-hydroxydeoxyaureothin intermediate, 
and oxidation at C9a that mediates O-heterocyclization 
to form aureothin [225, 226]� c The structure of the re-
lated antibiotic neoaureothin, where the corresponding 
reactions are catalyzed by the AurH orthologs NorH and 
SpnH in S. orinoci HKI-260 and S. spectabilis, respec-
tively [227]�
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peroxo oxygen atom into the C4/C5 double bond 
on 4,5-desepoxypimaricin [149, 216]�

The CYP151 family is actinomycete spe-
cific with a small number of orthologous genes 
identified in nonpathogenic Mycobacterium and 
Streptomyces species [19]� CYP151A (AurH) 
from S. thioluteus is involved in the production 
of the metabolite aureothin (Fig� 6�10b), a rare 
nitro-substituted polyketide with antifungal, in-
secticidal and antitumor activities [218–220]� 
The biosynthesis of aureothin involves a gene 
cluster with an unusual p-nitrobenzoate (PNBA) 
moiety that is derived from chorismate via a 
PNBA synthase and an N-oxidation reaction� An 
unusual nonlinear type I polyketide synthase ex-
tends PNBA with five successive (methyl)-mal-
onyl-CoA moieties to form the polyketide back-
bone� Two successive tailoring reactions are then 
performed by an O-methyltransferase that cata-
lyzes pyrene ring methylation (AurI) and a P450 
(AurH) [221]� CYP151A (AurH) is an interest-
ing multifunctional enzyme that is involved in 
the formation of a five-membered exomethylene 
tetrahydrofuran ring [222, 223]� This homochiral 
ring is responsible for the rigidity of the carbon 
backbone that is an essential component for the 
activity of aureothin [222, 224]� AurH performs 
two successive oxidations, initially catalyzing 
the asymmetric C7 hydroxylation of deoxyaureo-
thin to produce a (7R)-7-hydroxydeoxyaureothin 
intermediate, immediately followed by a second 
oxygenation at C9a that mediates O-heterocycli-
zation to form aureothin (Fig� 6�10b) [225, 226]� 
Orthologous P450s NorH and SpnH were iden-
tified in S. orinoci HKI-260 and S. spectabilis, 
respectively� These genes mediate a similar tet-
rahydrofuran ring formation of the anti-HIV and 
anti-malarial compound neoaureothin (spectina-
bilin; Fig� 6�10c), which differs only in the diene 
moieties, affecting the length of the polyketide 
backbone compared to the shorter aureothin� In-
terestingly, the otherwise near-identical neoau-
reothin biosynthetic pathways containing NorH 
and SpnH are transcriptionally regulated by acti-
vator proteins from different families (ArsR and 
AfsR, respectively)� The S. spectabilis (SpnH-
containing) neoaureothin biosynthetic gene clus-
ter is more closely related to that for S. thioluteus 

aureothin synthesis than is the S. orinoci (NorH-
containing) cluster, and phylogenetic analy-
sis indicated that the aureothin pathway likely 
evolved from deletion of genes in the SpnH clus-
ter [227, 228]� Basic Local Alignment Search 
Tool (BLAST) searches identify another P450 
with high homology to AurH from S. scabrispo-
rus, but it remains to be determined whether this 
organism can also make a nitroaryl-substituted 
polyketide involving the P450� The structure 
of AurH was determined in the ligand-free and 
inhibitor (ancymidol)-bound forms (PDB 3P3L 
and 3P3Z), as well as in forms with two N-ter-
minal extensions derived from protein purifica-
tion constructs that interact differently with the 
protein structures (PDB 3P3O and 3P3X) [226]� 
Ligand-free AurH displays a relatively open con-
formation, with some changes observed at the 
N-terminal and FG loops compared to its clos-
est structural relatives in the CYP107 family, and 
with an interaction between the β2 loop and I-
helix� An interesting difference is seen with some 
additional AurH residues located in the B region, 
forming an unusual, rigid two-helix bundle (he-
lices B2 and B2′) that closes over the active site 
cavity [226]� This new helical bundle is situated 
in the place of the conventional loop/random coil 
region that contains a solvent-filled substrate ac-
cess channel seen in the majority of P450 struc-
tures in the PDB (Fig� 6�11a) [24, 229]� A simi-
lar bundle has also been observed solely in the 
Micromonospora echinospora P450 CalO2 (see 
below; Fig� 6�11b) [230] and, by comparison, the 
AurH helical moiety is kinked toward the N-ter-
minus and enlarges the closed active site cavity, 
presumably a reflection of the different substrate 
specificities for the CalO2 and AurH P450s� The 
structure of the ancymidol inhibitor-bound form 
reveals a transition from the open to a closed con-
firmation accompanied by changes in the orga-
nization of the FG loop and with the two-helix 
bundle moving closer into the active site cavity, 
and the β2 loop reorientating away from the I-he-
lix and approaching towards the FG loop� Model-
ing studies revealed potential active site residues 
involved in substrate binding, and mutagenesis 
studies in AurH confirmed important roles for 
Phe89, Gln91, and Thr239 in substrate binding 
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and catalytic efficiency [226]� It will be inter-
esting to see how the structure of AurH adapts 
to substrate binding and how this enables it to 
perform successive oxidations to produce the 
unusual tetrahydrofuran ring in future structural 
studies� Aureothin derivatives have been pro-
duced via manipulation of genes in the biosyn-
thetic pathway, and AurH subsequently tailors 
these derivatives� These include a pyran analog 
aureopyran derived from AurH-dependent oxida-
tion of the nonnatural substrate deoxyisoaureo-
thin, and other aureothin derivatives produced by 
a mixture of synthetic and enzymatic steps [224, 
231, 232]� The in vivo activities of these analogs 
have yet to be tested, but their synthesis high-
lights the capabilities of AurH as a biosynthetic 
enzyme and its potential to expand the rare au-
reothin class of nitro-polyketide drugs�

CYP163B3 (P450sky) from Streptomyces sp� 
Acta 2897 is involved in the biosynthesis of the 
cyclic depsipeptides skyllamycin A and B, with 
antibacterial, immunosuppressive, cytostatic, 
and antiparasitic properties [233]� Skyllamycin 
A has been isolated from different Streptomyces 
strains and is a potent inhibitor of the platelet-
derived growth factor (PDGF) signaling pathway 
that is involved in important processes such as 
cellular proliferation and migration [234, 235]� 
The structure of skyllamycin has an unusual 
α-hydroxylated glycine residue, an N-terminal 
cinnamoyl side chain, and three β-hydroxylated 
amino acids (( 2S,3S)-β-hydroxyphenylalanine, 

(2S,3S)-β-hydroxy-O-methoxytyrosine and 
( 2S,3S)-β-hydroxyleucine) (Fig. 6�12)� Interest-
ingly, P450sky is responsible for the catalysis of 
all three β-hydroxylation reactions, found within 
domains 5, 7, and 11 on the skyllamycin peptide 
backbone, respectively [233, 236]� P450sky was 
shown to have unusual properties in catalyzing 
stereospecific β-hydroxylation reactions of three 
different L-amino acid substrates bound to pep-
tidyl carrier protein (PCP) domains of the skyl-
lamycin NRPS, with discrete selectivity for the 
prescribed PCP domain [236]� Direct interac-
tions between P450s and NRPSs have also been 
described for the Amycolatopsis spp� CYP165 
enzymes involved in the biosynthesis of the gly-
copeptide antibiotics vancomycin, balhimycin 
(using CYP164A3 (OxyA), CYP165B3 (OxyB), 
CYP165C4 (OxyC), and CYP146A1 (OxyD), 
and teicoplanin (additionally using CYP165D3 
(OxyE))� However, in contrast to the triple hy-
droxylase role of P450sky, these P450s were 
shown to catalyze reactions with single PCP-
bound substrates, and are discussed in more 
detail below [237–240]� The CYP165 family 
members are found only in certain Streptomy-
ces spp�, Amycolatopsis spp�, and Actinoplanes 
spp� [19, 165]� The P450sky-containing CYP163 
family is more diverse in the actinomycetes with 
many members in different Streptomyces spp� 
and in the unusual aminocoumarin-producing 
actinobacterium Catenulispora acidiphila [19, 
165, 241, 242]� A CYP163 gene orthologous 

Fig. 6.11  Structures of the antibiotic pathway P450s 
AurH and CalO2� A structural comparison is shown be-
tween the ancymidol inhibitor-bound P450 AurH ( left; 
PDB 3P3Z) [226] and the ligand-free P450 CalO2 in-

volved in orsellinic acid oxidation ( right; PDB 3BUJ) 
[230]� The additional B region two-helix bundle is shown 
in green (indicated by an arrow) and is postulated to be 
involved in carrier protein partner binding
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to P450sky was also identified in the biosyn-
thetic pathway of the aminocoumarin novo-
biocin in S. spheroides, containing the tyrosine 
β-hydroxylase NovI (CYP163A1) that generates 
(2S,3R)-β-OH-tyrosine from PCP-loaded tyro-
sine (Fig� 6�13a) [243]� Further, CYP163 mem-
bers have been identified in the biosynthetic 
pathways of the aminocoumarins chlorobiocin 
(CloI, CYP163A2) (Fig� 6�13b) [244], coumer-
mycin (CumC, CYP163A) [245] (Fig� 6�13c) and 
simocyclinone (SimI, CYP163A3; Fig� 6�13d) 
[246, 247]� It is predicted that these CYP163 
enzymes will also utilize PCP-bound substrates 
as scaffolds for their single hydroxylation reac-
tions in a similar way to that described for the 
triple β-hydroxylase P450sky. The structure of 
P450sky has been determined in the substrate-
free form (PDB 4LOF) with an open structure re-
vealing a large solvent exposed active site cavity, 

similar to those of other ligand-free P450 struc-
tures that were shown to bind substrate-loaded 
PCPs, e�g�, OxyB, OxyC, and BioI [131, 248–
250]� P450sky contains an unusual additional 
M-helix at the C terminus, on the proximal face 
of the structure and lying perpendicular to the L-
helix [251]� It was postulated that this extra helix 
may be involved in redox partner or NRPS ma-
chinery interaction(s) [236]� Recently, the struc-
ture of P450sky was determined in complex with 
a PCP protein linked to an azole inhibitor com-
pound ( S-[2-({N-[(2R)-2-hydroxy-3, 3-dimethyl-
4-(phosphonooxy)butanoyl]-beta-alanyl}amino)
ethyl] 1H-imidazole-4-carbothioate) that trapped 
the otherwise transient interaction between the 
two proteins, enabling the determination of their 
structures (PDB 4PWV and 4PXH) [252]� Inter-
estingly, the P450sky–PCP complex occupies a 
distinct orientation with the carrier protein-bound 

Fig. 6.12  The structure of the cyclic depsipeptide skyl-
lamycin� Skyllamycin is a potent platelet-derived growth 
factor (PDGF) signaling pathway inhibitor� The core 

amino acid domains of skyllamycin are numbered� The 
three P450sky-mediated hydroxylations in domains 5, 7, 
and 11 are highlighted by arrows [233]
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Fig. 6.13  Structure of antibiotics that are generated 
using the β-hydroxylase CYP162 and CYP163 P450 en-
zymes� a The aminocoumarin novobiocin, the synthesis 
of which involves the P450 NovI (CYP163A1)� NovI is 
a β-hydroxylase from S. spheroides that was shown to 
generate (2S,3R)-β-OH-tyrosine from amino acyl-bound 
tyrosine during novobiocin biosynthesis [243]� b The 

related chlorobiocin, requiring CloI (CYP163A2) [244]� 
c Coumermycin, requiring CumC (CYP163A) [245]� d 
Simoclinone—with the rings of its steroid-like moiety 
labeled, requiring SimI (CYP163A3) [246, 247]� e Nik-
komycin—involving NikQ (CYP162A1), a histidine 
β-hydroxylase from S. tendae Tu901, in a similar biosyn-
thetic pathway to NovI [336, 799]
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azole ligand situated in different entry channel in 
comparison to the BioI–ACP complex, the other 
P450 that has been structurally characterized in 
complex with a fatty acid substrate-bound ACP� 
Despite the similarities between the two carrier 
protein domains, they interact with different re-
gions on their respective P450s� The PCP domain 
sits above the P450sky G-helix and the PCP α2 
and α3 helices form a cleft to accommodate the 
P450sky G-helix� The P450sky–PCP interface 
consists of clusters of amino acid residues that 
form hydrophobic interactions between second-
ary structural elements from both protein do-
mains� The P450sky M-helix is situated on the 
other side of the protein structure and is not in-
volved in interactions with the PCP complex� 
The PCP-linked azole inhibitor is oriented in 
the substrate access channel in the FG region� In 
contrast to the P450sky–PCP conformation, the 
Biol–ACP complex shows the ACP to be located 
between the BioI B2 helix and FG helices with in-
teractions with the β1 sheet and the loop between 
the B and B2 helices [252]� The ACP-bound fatty 
acid is situated in a channel between the α-helical 
and β-sheet domains with the substrate projecting 
up towards the F-helix to orient the ligand for the 
BioI-derived oxidative C–C bond cleavage [131] 
(see the section ‘Nonredox partner proteins for 
microbial P450s in the Redox partner systems and 
their diversity in microbes’)� These structural dif-
ferences likely reflect the differing P450sky and 
BioI molecular selectivities and divergent roles 
in carrier protein-assisted natural product biosyn-
thesis� The unusual multi-hydroxylation reactiv-
ity of P450sky with different PCP-linked amino 
acid substrates during skyllamycin biosynthesis 
is possibly a result of a carrier protein-derived 
specificity� It may be the case that the separate 
amino acid loaded PCP proteins can facilitate dif-
ferent binding conformations on interacting with 
P450sky, so enabling the three different hydrox-
ylation reactions to enable the progression of the 
production of skyllamycin�

CYP245A1 (StaP) from Streptomyces sp� TR-
A0274 catalyzes the aryl–aryl coupling of chro-
mopyrrolic acid in staurosporine biosynthesis 
[154, 253, 254]� Staurosporine and the structur-
ally related compounds rebeccamycin (Fig� 6�14) 

[255] and AT2433 [256] (from Lechevalieria 
aerocolonigenes and Actinomadura melliaura, 
respectively) are indolocarbazole alkaloid antitu-
mor agents (possessing neuroprotective proper-
ties) with their activities due to the inhibition of 
protein kinase or DNA topoisomerase enzymes 
[257–259]� The CYP245 family is found only 
in soil and marine dwelling actinobacteria that 
produce staurosporine-related alkaloid indolo-
carbazole derivatives [260, 261], with BLAST 
searches revealing closely related orthologs in S. 
longisporoflavus and S. purpureus, along with a 
large number of relatives in Salinispora spp�, par-
ticularly the subspecies Salinispora arenicola� 
Staurosporine and other indolocarbazole deriva-
tives have an indole (2,3a) carbazole structural 
core that is linked to a sugar moiety via a C–N 
bond, with a double deoxysugar linkage specific 
to staurosporine [262–265]� The StaP substrate, 
chromopyrrolic acid, is generated via the conden-
sation of two molecules of an indole-3-pyruvic 
acid imine derived from L-tryptophan, and is 
subsequently converted to staurosporine via a se-
ries of enzymatic processes [254, 266, 267]� StaP 
catalyzes the C5 aryl–aryl coupling of the indole 
rings of chromopyrrolic acid (Fig� 6�14) [154], 
likely through a mechanism utilizing compound 
II as described above for CYP158A2, with a sim-
ilar StaP tyrosine residue (Tyr351) adjacent to the 
cysteine thiolate ligand and predicted to provide 
the reducing equivalent to generate compound II 
[200]� StaP was originally thought to perform a 
second oxidative decarboxylation of the biaryl-
coupled product to make aglycone derivatives 
with oxidation(s) on the pyrrole ring [154, 268, 
269]� However, it has been determined that these 
aglycone products are derived both nonenzymati-
cally from the StaP intermediate product [268], 
as well as being produced by the flavin mono-
oxygenase StaC [265, 267, 270]� The StaC en-
zyme is responsible primarily for conversion of 
the biaryl-coupled indolocarbazole to the correct 
staurosporine-specific aglycone, with a C2 car-
bonyl group as the sole substituent on the pyr-
role ring [265, 270], and prior to the subsequent 
glycosylation and methylation steps to produce 
staurosporine� The structure of StaP has been 
determined in both the ligand-free (PDB 2Z3T) 
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and substrate-bound (PDB 2Z3U) forms [154], 
with open/closed conformations similar to those 
described for other P450s (e�g�, BM3 and CY-
P119A1) [92, 271]� The substrate-bound struc-
ture reveals three molecules of chromopyrrolic 
acid, with one clearly in the active site cavity, 
a second located external to the active site be-
tween helix B′1 and sheet β-1 and the third be-
tween β-3,1 and helix B of another StaP molecule 
within the asymmetric unit of the crystal lattice� 
The significance of these secondary binding sites 
is not clear and they may be artifactual, although 
the region encompassing helix B′1 and sheet β-1 
is extremely flexible and has been proposed as a 
substrate entry site for several P450s, and thus 
may be the route of entry/exit for chromopyrrolic 
acid [154]� The active site-bound chromopyrrolic 
acid is well defined in an apparent ‘twisted but-
terfly’ conformation, with the indole rings held 
in place by π–π interactions and a number of hy-
drogen bond interactions between the rest of the 
substrate molecule and StaP amino acid residues� 
For the biaryl-coupled catalysis to occur result-
ing in ring closure, the chromopyrrolic acid sub-
strate would have to move within the active site 
cavity to be closer to the reactive heme iron–oxo 
(likely compound II) species� Molecular mod-
eling coupled with mutagenesis studies have 
predicted that, in the absence of a different sub-
strate-binding mode, the StaP mechanism likely 
involves proton-coupled electron transfer (poten-
tially involving active site histidine residue(s), 
e�g�, His250), assisted by an essential active site 
water dyad [272]� Further experimental evidence 
may be required to elucidate the full StaP reac-
tion mechanism, but many active site residues, 
including His250, are conserved in the related 
indolocarbazole rebeccamycin-producing RebP 
(CYP245A2) and AT2433-producing AtmP 
(CYP245A3) biosynthetic P450s [273]� In ad-
dition to StaP, a second putative P450 enzyme 
(StaN, CYP244A1) is believed to be involved in 
one of the latter steps of staurosporine biosyn-
thesis, prior to the final StaM methyltransferase 
reactions� StaN appears to catalyze the second 
C–N linkage between the aglycone and the de-
oxysugar moieties to form the intermediate O-
demethyl-N-demethyl-staurosporine (Fig� 6�14), 

as determined by gene disruption studies in vivo 
[266, 274]� There are no orthologous StaN P450s 
detected in L. aerocolonigenes and A. melliaura, 
where the second deoxysugar linkage is absent in 
the rebeccamycin and AT2433 derivatives [273]� 
StaN is thus a staurosporine-specific P450 and, 
although not yet fully characterized, StaN likely 
represents an unusual example of a C–N bond 
forming P450 enzyme�

TxtE (CYP1048A1) is an intriguing P450 en-
zyme with a novel catalytic role in the biosynthe-
sis of a cyclic dipeptide phytotoxin� It is found 
in S. scabiei 87�22 and in other plant-pathogenic 
Streptomyces species, e�g�, S. ipomoeae, S. tur-
gidiscabies, and S. acidiscabies [275–279]� In 
contrast to the primarily antibiotic biosynthetic 
Streptomyces P450s, TxtE is involved in the pro-
duction of the plant toxin thaxtomin, responsible 
for potato common scab [280, 281]� Thaxtomins 
have the core structure of cyclo-( L-4-nitrotryp-
tophyl-L-phenylalanyl) [282] with 11 different 
types of thaxtomins isolated and characterized 
that differ only in N-methyl and hydroxyl substit-
uent groups [283]� Thaxtomin A is the dominant 
form and is a key virulence factor in the Strepto-
myces spp� pathogenicity (Fig� 6�15) [275]� The 
biosynthetic pathway of thaxtomin A contains 
five genes that lie on a pathogenicity island [284] 
and is encoded by two NRPSs (TxtA and TxtB), 
a nitric oxide synthase (TxtD), and two P450s 
(TxtC and TxtE; Fig� 6�15) [107, 275, 284]� TxtE 
is the pivotal enzyme in thaxtomin A biosynthe-
sis catalyzing the direct regio-specific (C4) nitra-
tion of the indole ring of L-tryptophan, utilizing 
nitric oxide (NO) produced by the genetically 
adjacent nitric oxide synthase (TxtD) in the pres-
ence of O2, redox partners, and NADPH to pro-
duce L-4-nitrotryptophan (Fig� 6�15) [107]� The 
unusual nitration action of TxtE would require 
a nitrating species, thus deviating from the con-
ventional P450 catalytic cycle (e�g�, [279, 285]; 
Fig� 6�4)� It was proposed that TxtE forms a ferric 
superoxy complex that reduces NO to give rise to 
a ferric peroxynitrite species, which then yields 
NO2 and compound II via homolytic cleavage� L-
tryptophan nitration could then proceed by addi-
tion of NO2 and compound II-mediated hydrogen 
atom extraction (or vice versa), resulting in an 
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Fe(III)–OH species� Alternatively, nitration may 
occur by classical electrophilic aromatic substitu-
tion following protonation-triggered heterolytic 
cleavage of the ferric peroxynitrite species to pro-
duce NO2 and an Fe(III)–OH species� The resting 
state of the enzyme (Fe(III)–OH2) is regenerated 
by protonation of the Fe(III)–OH species, re-
gardless of the mechanism of nitration [107]� The 

characterization of TxtE therefore reveals an un-
precedented nitration in a biosynthetic pathway, 
and a new activity for a P450 enzyme (where a 
nitro group would typically be derived from oxi-
dation of an amine) [278, 279]� The thaxtomin 
A diketopiperazine core (cyclo-( L-4-nitrotryp-
tophyl-L-phenylalanyl)) is produced by the con-
densation of TxtE-derived L-4-nitrotryptophan 

Fig. 6.15  The role of TxtE in synthesis of the phytotoxin 
thaxtomin� The P450 TxtE (CYP1048A1) catalyzes the 
C4 nitration of L-tryptophan to produce 4-nitrotryptophan 
(indicated by an arrow)� The NO required is generated by 
a nitric oxide synthase (NOS) enzyme (TxtD) encoded 
adjacent to txtE on the S. turgidiscabies genome� 4-nitro-
tryptophan undergoes a condensation reaction with L-phe-

nylalanine catalyzed by the enzymes TxtA/B (not shown) 
to produce the N,N′-methyldiketopiperazine [107, 279]� 
The P450 TxtC (CYP246A1) then catalyzes two further 
hydroxylations on the diketopiperazine and the phenylala-
nine moieties (shown by arrows) to produce thaxtomin A 
[107, 275]
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and L-phenylalanine catalyzed by TxtAB to pro-
duce N, N′-dimethyldiketopiperazine [275, 286]� 
The thaxtomin core is tailored by the P450 TxtC 
that catalyzes the hydroxylation of both the dike-
topiperazine moiety and the phenyl group to pro-
duce thaxtomin A (Fig� 6�15) [107, 275]� Further 
characterization of TxtC, including structural 
analysis, should reveal the mechanism by which 
it achieves hydroxylation at two chemically dif-
ferent and spatially distinct sites� The structure 
of the nitrating P450 TxtE (PDB 4L36) revealed 
the presence of two imidazole molecules, with 
one coordinating directly to the heme iron and 
the second interacting simultaneously with two 
glutamate (Glu187) residues from two TxtE mol-
ecules within the asymmetric unit� The overall 
TxtE structure shows an additional loop situated 
between the two B′ helices (B′1 and B′2) and dis-
order in the FG loop, presumably reflecting the 
flexibility of this region [278]� A defined solvent-
filled channel, likely involved in substrate access, 
is seen between the B′1 and G helices, similar to 
other P450 enzymes [112, 229]� There is also a 
kink in the I-helix close to the conserved threo-
nine (Thr250) that reveals a putative proton path-
way, with a continuous network of water mol-
ecules leading from the active site to the outside 
of the protein� Substrate docking and subsequent 
mutagenesis experiments highlight active site 
amino acids that have roles in substrate recogni-
tion and binding [278]� Further studies to char-
acterize structures of substrate-bound complexes 
will assist in understanding the nitration mecha-
nism� Recent reports have revealed that synthetic 
stereoisomers of thaxtomin A exhibit a range of 
phytotoxic, fungicidal and antiviral activities 
[287]� TxtE is thus an interesting Streptomyces 
P450 in both reactivity and mechanism, and is a 
good candidate for future use in biotechnological 
applications, with diversification of its activity 
towards thaxtomin A analogs possibly giving rise 
to novel antibiotic products�

6.2.3.2  Other Biosynthetic Actinomycete 
P450s

Beyond the Streptomyces, there are a num-
ber of structurally characterized actinomycete 
P450s from distinct P450 families with diverse 

functions, many of which are involved in the gen-
eration of different natural products (Table 6�3)� 
CalE10 (CYP105W1) and CalO2 (CYP248A1) 
from Micromonospora echinospora are distinct 
P450s involved in the biosynthesis of calicheami-
cin (Fig� 6�16) [230, 288]� Calicheamicin is a 
ten-membered nonchromoprotein enediyne that, 
unlike the nine-membered enediyne counterparts, 
does not require a subsidiary protein (chromo-
protein) for stability [289]� Calicheamicin is an 
extremely potent cytotoxic agent with antimicro-
bial properties, which docks in the minor groove 
of target DNA/RNA, causing lethal oxidative 
strand scission [290–292]� The structure of ca-
licheamicin consists of an aryltetrasaccharide, 
composed of four monosaccharide units and one 
hexa-substituted benzene (orsellinic acid) moiety, 
and a core aglycone bicyclo[7�3�1]tridecadiynene 
with an allylic trisulfide side group [291, 293]� 
The aryltetrasaccharide hydroxylamino glyco-
sidic bond is responsible for locating and binding 
the enediyne drug in the minor groove of DNA, 
forming hydrophobic interactions with a small 
T/C-rich region within the DNA helix� The agly-
cone part of the enediyne acts as the ‘warhead’ 
and is activated via nucleation of the trisulfide, 
which undergoes cycloaromatization with the 
aglycone core and produces the highly reactive 
diradical 1,4-didehydrobenzene� This diradical 
subsequently abstracts hydrogen atoms from the 
deoxyribose backbone of DNA, ultimately lead-
ing to strand scission and destruction of tumor or 
cancer cells [290–295]� However, the extremely 
high reactivity/potency of calicheamicin is so 
great that issues with lack of specificity for tu-
mors present major toxicity issues� This problem 
was solved by the attachment of calicheamicin to 
tumor- and other desired target-specific monoclo-
nal antibodies with clinical success (e�g�, [296, 
297])� The biosynthesis of the enediyne core of 
calicheamicin and other similar compounds (both 
nine- and ten-membered) involve a common en-
ediyne polyketide synthase (named PKSE) [295, 
298]� The calicheamicin-specific orsellinic acid 
moiety and other substituent groups are produced 
via unique iterative type I polyketide synthases, 
with at least 20 genes in the calicheamicin bio-
synthetic gene cluster including those for the two 
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P450 enzymes� CalE10 is a regio-specific TDP-
alpha-D-4-amino-4,6-deoxyglucose N- oxygen-
ase involved in the formation of the calicheamicin 
hydroxylamino glycoside, an unusual naturally 
occurring N-oxidized amino sugar (Fig� 6�16) 
[288]� The genomic locations of CalE10 and 
CalO2 are distinct, with CalO2 clustered with 
other genes involved in orsellinic acid synthesis� 
The CalE10 gene instead lies adjacent to a gene 
implicated in sugar biosynthesis and to several 
other genes of uncertain function [230, 295]� 
CalE10 is similar to a number of uncharacter-
ized CYP105 enzymes from Salinospora spp�, 
Actinoplanes spp�, and Amycolatopsis spp� [19], 
including the A. orientalis epothilone B hydroxy-
lase that produces epothilone F [299]� CalO2 is 
a distinct P450 with only a handful of orthologs 
identified in Salinispora arenicola CNS-205� In 
contrast to CalE10, CalO2 is located within a bio-
synthetic subcluster for the aromatic moiety of the 

calicheamicin aryltetrasaccharide portion, con-
taining CalO1 (an AdoMet-dependent orsellinic 
acid O-methyltransferase) [300], CalO3 (a flavin-
dependent halogenase), CalO4 (a 3-oxoacyl-ACP 
synthase III), CalO5 (an orsellinic acid synthase 
and type I PKS), and CalO6 (an AdoMet-de-
pendent orsellinic acid C2 O-methyltransferase) 
[230]� CalO2 is involved in the hydroxylation of 
the aromatic ring of iodo-substituted orsellinic 
acid (Fig� 6�16) with a likely preference for ACP 
or coenzyme A (coA)-bound substrates, indicat-
ed by a higher affinity for substrates with an N-
acetylcysteamine group (a model carrier protein 
linker) than for free aromatic acids� The preferred 
presence of iodine also highlighted that the ha-
logenase CalO3 reaction likely precedes that of 
CalO2 in the biosynthetic pathway� The struc-
ture of CalO2 was solved in the ligand-free form 
(PDB 3BUJ), revealing an interesting additional 
two-helix bundle encompassing the B′ and Bʺ he-

Fig. 6.16  The calicheamicin biosynthetic pathway� The 
scheme shows the CalO2-catalyzed hydroxylation (shown 
by an arrow) of the iodinated orsellinic acid moiety, 
with R predicted to be an ACP or CoA thioester [230]� 
CalE10 is a regio-specific NDP-amino sugar N-oxidase 
involved in the production of the 4-hydroxyamino-

6-deoxy-α-D-glucose moiety ( arrow) prior to glycosyl 
transfer in calicheamicin biosynthesis [288]� The final 
structure of calicheamicin is shown at the bottom of the 
panel, with the position of the P450-derived oxidations 
indicated by the enzyme names
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lices [230], similar to that described for CYP151 
(AurH) from S. thioluteus [226] (Fig� 6�11)� This 
two-helix bundle closes over the active site and 
blocks solvent channels, but maintains a central, 
open cavity with the potential for substrate access� 
Docking studies involving CalO2 and the orsell-
inic acid synthase (CalO5) ACP domain suggest a 
well-fitted interaction between the CalO2 B′ helix 
and the ACP helix 2 and reveal a plausible bind-
ing mode for the ACP-bound substrate [230]� The 
pimelic acid synthase BioI (CYP107H1) from B. 
subtilis is the first example of a P450/ACP–fatty 
acid complex and provided the paradigm for a 
new P450 mechanism that utilizes the accessory 
carrier protein to regulate substrate specificity, 
whilst providing a scaffold for the oxidative reac-
tion [131]� BioI is described in more detail in the 
section ‘Nonredox partner proteins for microbial 
P450s’ of Redox partner systems and their diver-
sity in microbes�

The antibiotic mycinamicin II produced by 
Micromonospora griseorubida A11725 is a 
member of the 16-membered macrolide mycin-
amicins with potent activity against Gram-pos-
itive bacteria and mycoplasma, including some 
drug-resistant pathogenic bacteria such as Le-
gionella spp� [301–303]� The structure of myc-
inamicin is composed of a central macrolactone 
with O-linked dimethylated desosamine and my-
cosine 6-deoxyhexose sugar substituents at the 
C21 and C5 positions, respectively [302]� The 
mycinamicin biosynthetic gene cluster contains 
the two P450s MycCI (CYP105L2) and MycG 
(CYP107E1) that are located on either side of a 
central metal-dependent S-adenosyl-L-methio-
nine methyltransferase [304]� MycCI catalyzes 
the C21 methyl hydroxylation of mycinamicin 
VIII (Fig� 6�17), the earliest glycosylated form of 
the macrolide in the biosynthetic pathway� The 
activity of MycCI is dependent on the adjacent 
ferredoxin MycCII [305, 306]� The C21 hydrox-
ylation is the target for 6-deoxyallose addition by 
the glycosyltransferase MycD, forming mycin-
amicin VII [304]� MycCI is similar to a number 
of methyl hydroxylase antibiotic biosynthetic 
P450s that are members of the CYP105 family, 
including TylHI involved in tylosin production in 

S. fradiae (Fig� 6�18a) [307] and ChmHI involved 
in chalcomycin production in S. bikiniensis 
(Fig� 6�18b) [308] that are also adjacent to FDs� 
MycG is an interesting multifunctional P450 that 
catalyzes the C14 hydroxylation and successive 
C12–C13 epoxidation of the macrolactone ring 
of mycinamicin during the final tailoring stages 
to produce mycinamicin II (Fig� 6�17) [305]� Sur-
prisingly, the MycCI ferredoxin (MycCII) does 
not support the activity of MycG and further (as 
yet uncharacterized) redox partners are likely uti-
lized in reactions involving MycG [306]� Other 
dual function P450s that perform similar se-
quential reactions include the aureothin synthase 
AurH (CYP248A1) from S. thioluteus, discussed 
above (Figs� 6�10b and 6�11) [226], and the tiran-
damycin synthase TamI from Streptomyces sp� 
307–9 that catalyzes three successive hydroxyl-
ations and a single epoxidation reaction on the bi-
cyclic ketal component of the natural product ti-
randamycin C (Fig� 6�18c) [309]� The P450 GfsF 
from S. graminofaciens is involved in the biosyn-
thesis of the 16-membered macrolide antibiotic 
FD-891 with cytotoxic properties (Fig� 6�18d)� 
GfsF catalyzes the sequential epoxidation and 
hydroxylation reactions on adjacent carbons to 
produce FD-891, but performs these reactions in 
the reverse order compared to those for MycG 
[310]� The crystal structure of MycG has been 
solved in the ligand-free (PBD 2YGX) and sub-
strate-bound forms with the native substrates my-
cinamicin IV and V (e�g�, PDB 2Y46 and 2Y5N) 
[311]� The structures of MycG reveal a relatively 
open conformation with a large active site cav-
ity and a short FG loop� Few differences are 
observed between the substrate-free and -bound 
conformations, or between structures determined 
from different crystal space groups� The ligand-
bound structures have the mycinamicin IV and 
V substrates in very similar orientations—bound 
orthogonal to the heme plane� The dimethoxyl-
ated mycinose sugar moieties are bound within 
the active site cavity and form hydrophobic in-
teractions with the heme macrocycle and active 
site amino acids� The desosamine groups of the 
second sugar extend out of the active site towards 
the surface of the protein and interact with the 
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Fig. 6.17  The mycinamicin biosynthetic pathway� The 
P450 MycCI (CYP105L2) catalyzes the C21 hydroxyl-
ation of mycinamicin (MC) VIII, the earliest glycosylated 
(desosamine) form of mycinamicin derived from proto-
mycinolide IV� The MycCI C21 hydroxylation produces 
MCVII (position of hydroxylation indicated by an arrow) 
and the activity of MycCI is dependent on its chromosom-

ally adjacent ferredoxin (Fdx) MycCII� MCVII undergoes 
glycosylation and methylation reactions catalyzed by 
MycD–MycF to produce MCIV, the MycG substrate� The 
P450 MycG (CYP107E1) performs a C14 hydroxylation 
to produce MCV, and then a C12–C13 epoxidation reac-
tion ( arrows) to generate the final antibiotic mycinamicin 
II [305, 306, 311]
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FG loop� It is proposed that the methoxy groups 
of the mycinose mediate substrate recognition by 
MycG and play a role in discrimination between 
closely related substrates, thus ensuring that the 

correct catalytic function can occur at the dis-
tinct sites of mycinamicin IV and V� However, 
these substrate orientations observed in different 
MycG structures are unlikely to be in the correct 

Fig. 6.18  Antibiotic compounds involving P450-depen-
dent synthetic reactions related to those catalyzed by the 
mycinamicin biosynthetic P450s� Reactions shown in a 
and b involve similar hydroxylations to those done by 
MycCI� Reactions in c and d are successive oxidations 
similar to those done by MygG� P450-mediated oxida-
tions are highlighted with arrows in each case� a Tylo-
sin—TylHI (CYP105L1) from S. fradiae catalyzes the 
C23 methyl macrolide hydroxylation [804, 805]� b Chal-

comycin—ChmH1 from S. bikiniensis catalyzes the C20 
methyl macrolide hydroxylation [308]� c Tirandamycin 
B—TamI from Streptomyces sp. 307-9 catalyzes the C10 
oxidation of tirandamycin c–e, and then the C11–C12 ep-
oxidation and C18 hydroxylation to form tirandamycin 
B [309, 806]� d FD-891—GfsF from S. graminofaciens 
catalyzes the C8–C9 macrolide epoxidation and then the 
C10 hydroxylation (the opposite order to reactions done 
by MycG) to produce FD-891 [310, 797]



3076 Microbial Cytochromes P450

position for oxidative catalysis, with the heme 
iron distal water retained and a large distance 
(9–10 Å) between the C14 and C12–C13 posi-
tions of the macrolactone rings and the putative 
active species at the heme iron� NMR relaxation 
and modeling studies suggest that mycinamicin 
IV may penetrate further into the active site to 
allow a catalytically productive orientation and 
to enable C14 hydroxylation to yield mycinami-
cin V� However, it is unclear how the epoxida-
tion of mycinamicin V would occur across the 
C12–C13 double bond from these studies� It is 
thus predicted from the structural data that the 
mycinamicin substrates are bound to MycG in 
an orientation that precedes the catalytically rel-
evant mode, with the mycinose moieties confer-
ring substrate recognition and specificity prior to 
substrate reorientation and catalysis [311]�

An interesting group of biosynthetic P450s is 
the Oxy enzymes that mainly constitute the 
CYP165 family from various Amycolatopsis spp� 
These are involved in the biosynthesis of glyco-
peptide antibiotics, including vancomycin ( A. 
orientalis; Fig� 6�19a) [312], balhimycin ( A. bal-
himycina; Fig� 6�19a) [313], and teicoplanin ( A. 
teichomyceticus; Fig� 6�19b) [314]� The glyco-
peptide antibiotics are used in the treatment of 
Gram-positive bacterial infections that are resis-
tant to other classes of antibiotics, such as MRSA 
[315]� They are inhibitors of bacterial cell wall 
peptidoglycan synthesis and act by binding to the 
dipeptide terminus D-Ala–D-Ala of peptidogly-
can precursors, preventing the transpeptidation 
and transglycosylation reactions essential for 
peptidoglycan cross-linking [289, 316]� The 
CYP165 family has multiple members that are 
restricted to certain Streptomyces and Actino-
planes spp� in addition to Amycolatopsis spp� 
[165]� The Oxy P450s were shown to catalyze 
oxidative coupling reactions with single PCP-
bound substrates (e�g�, [237–240])� OxyA (CY-
P165A3), OxyB (CYP165B3), and OxyC (CY-
P165C4) in vancomycin/balhimycin synthesis, 
along with OxyE (CYP165C3) in teicoplanin 
synthesis, are responsible for catalyzing the 
cross-linking of PCP-loaded aromatic amino acid 
side chains in the glycopeptide antibiotic agly-

cone core [251, 317]� OxyB performs the first 
oxidative coupling between phenol rings C and 
D, forming an aryl–ether bridge between the side 
chains of residues four and six (Fig� 6�19) [248, 
318–320]� The second cross-link is performed by 
OxyA, which catalyzes a further aryl–ether 
bridge formation reaction between the D and E 
phenol rings of the side chains of residues two 
and four (Fig� 6�19) [321–323]� The OxyB- and 
OxyA-derived diarylethers are formed by cou-
pling of separate 3-chloro-β-hydroxytyrosine and 
4-hydroxyphenylglycine residues� In teicoplanin 
biosynthesis, the oxidative phenolic coupling of 
rings F and G between the side chains of residues 
one and three precedes the second Oxy A-cata-
lyzed step� This additional phenolic cross-link is 
unique to the teicoplanin-type antibiotics and is 
catalyzed by OxyE (Fig� 6�19b) [239, 240, 324]� 
The final biaryl cyclization of rings A and B is 
formed by 3,5-dihydroxyphenylglycine and 
4-hydroxyphenylglycine of residues five and 
seven and is catalyzed by OxyC (Fig� 6�19) [249, 
321]� The structures of OxyB (PDB 1LFK, 1LG9, 
1LGF) [248], OxyC (PDB 1UED) [249], and 
OxyE (PDB 3O1A and 3OO3) [239, 240] have 
been solved in the ligand-free forms� OxyB and 
OxyC display high levels of structural similarity 
and reveal open conformations, with the FG heli-
ces rotated out of the active site to leave a large 
open cavity that is likely to enable binding of the 
bulky PCP-bound substrates [248, 249, 317, 325, 
326]� They also possess a common additional N-
terminal β hairpin (β0) that appears to have a role 
in the stabilization of the active site cavity 
through the formation of hydrogen-bonding net-
works initiated by a β0 arginine residue [248, 
249]. OxyC has an additional β strand (β10) and 
Aʺ helix at the N-terminus, as well as a C-termi-
nal M-helix that are not present in OxyB or OxyE 
[239, 240, 248, 249]� OxyB, OxyC, and OxyE 
display structural similarities to the nitric oxide 
reductase P450nor (CYP55A1) [327] (see the 
section ‘P450 systems that bypass redox part-
ners’ in the Redox partner systems and their di-
versity in microbes), although differ primarily in 
the orientation of the FG and B′ helices, with the 
open OxyB/C and OxyE active site cavities re-
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flecting their larger substrates� The central por-
tions of the I-helix in all three Oxy structures 
display a small kink, common in P450 structures 
and predicted to be involved in oxygen binding 
and proton delivery [24]� In the structure of 
OxyB, the conserved threonine is replaced by an 
asparagine residue (Asn240) with its side chain 
pointing into the active site to form a hydrogen 
bond with the heme axial water, and to create a 
more pronounced kink than is observed for OxyC 
and OxyE in the I-helix that allows for an addi-
tional OxyB water molecule [248]� OxyC retains 
the conserved threonine (Thr249) and the preced-
ing acidic glutamate (Glu248) with Thr249 hy-
drogen bonding to the carbonyl oxygen atom of 
the active site glycine (Gly245) [249]� The struc-
ture of the teicoplanin cross-linking OxyE dis-
plays the highest similarity to ligand-free 
CYP105 family members, followed by OxyB, 
OxyC, and P450nor [248, 249, 327]� The struc-
ture of the teicoplanin cross-linking OxyE dis-
plays the highest similarity to ligand-free 
CYP105 family members [167, 168] followed by 
OxyB, OxyC [248, 249], and P450nor [327]� Se-
quence analysis and BLAST searches also reveal 
OxyA and OxyE to have the highest similarity 
(46 % identity) amongst the Oxy orthologs of 
teicoplanin-type glycopeptide-producing organ-
isms [239, 240]� Furthermore, OxyE shares a 
near-identical secondary structure in the putative 
substrate recognition and binding regions to that 
predicted for OxyA� This may reflect a similar 
substrate-binding orientation, as they both per-
form successive coupling steps during the pro-
duction of teicoplanin-type antibiotics� In con-
trast to OxyB/C, the OxyE FG helices are rotated 
towards the active site, resulting in a more closed 
conformation� However, the heme is still solvent 
exposed with the FG helices forming a cap over 
the I-helix, rather than a lid over the cavity itself 
[239, 240]� The active site of OxyE extends into 
an additional pocket located over the β1 sheet 
and is proposed to facilitate docking to the sec-
ond residue of the teicoplanin scaffold that is 
bound to the PCP [240]� A number of hydrogen-
bonding interactions are observed between the I-
helix and other secondary structural elements 
(including residues on the F and G helices, the 

B′C loop, and the CD loop), and these help to 
stabilize the active site cavity� This active site 
contains an acidic glutamate residue (Glu229) 
and has a glutamine (Gln230) in place of the con-
served threonine� Although the Gln230 side chain 
points into the active site cavity, it does not hy-
drogen bond to any active site water molecules� 
This suggests it may not participate in proton-
ation of iron–oxo species in the OxyE P450 cata-
lytic cycle� An active site methionine (Met226) 
occurs in OxyE instead of an alanine or glycine 
typically observed within an I-helix motif (A/
GGXXT) in P450s� This motif contains the con-
served threonine replaced by Gln230 in OxyE 
[24, 327, 328]� Met226 projects across the heme 
face and forms a hydrogen bond between its side-
chain sulfur atom and the heme axial water li-
gand� This bulky methionine residue is conserved 
in the OxyE ortholog StaG (CYP165D1) (87 % 
identity) from S. toyocaensis [324] and in other 
uncharacterized orthologs identified in BLAST 
searches, but not in the Dbv13 (CYP165D2, 73 % 
identity to OxyE) ortholog from Nonomuraea sp. 
39727 [329]� These orthologous enzymes are 
predicted to catalyze the analogous cross-linking 
of aromatic side chains of residue one and three 
in the production of the teicoplanin-type glyco-
peptide antibiotics A47934 and A40926 produced 
in S. toyocaensis and Nonomuraea sp. 39727, re-
spectively (Fig� 6�19b)� It is unclear whether the 
OxyE Met226 residue plays an important role in 
substrate orientation and/or catalysis, or would 
have to move out of the heme plane to facilitate 
oxygen binding [239, 240]� An interesting feature 
of the CYP165 enzymes (particularly OxyB, 
OxyC, and OxyE) is the apparent substrate speci-
ficity derived from elements of both the PCP-
bound substrate and, in the latter P450-mediated 
reactions, whether different substrate molecules 
have undergone phenol-coupling reactions� For 
instance, OxyE possesses the ability to select 
preferentially for substrates that only have the 
PCP-bound C–O–D phenolic cross-link cata-
lyzed by OxyB [240]� This ensures that the ac-
tions of the Oxy enzymes are incorporated cor-
rectly during the production of the glycopeptide 
antibiotics [317, 324, 330, 331]� Furthermore, 
OxyB and OxyC display the least constraints for 
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PCP-bound substrate specificity and are perhaps 
the most likely candidates for engineering modi-
fied variants of the aglycone core that may facili-
tate the production of novel glycopeptide antibi-
otics [317, 320, 330, 331]�

OxyD (CYP146A1) is an important amino acid 
hydroxylase that catalyzes the formation of L-β-
R-hydroxytyrosine, an essential precursor of the 
vancomycin-type and teicoplanin-type aglycone 
core (Fig� 6�19c) [237, 238, 332]� The CYP146 
family is unique to the glycopeptide antibiotic-
producing strains of Amycolatopsis spp� [165] 
and BLAST searches reveal further uncultured 
organisms that likely have similar roles in antibi-
otic production� OxyD is part of a three-gene op-
eron and is cotranscribed with an NRPS (BpsD)-
containing single adenylation and PCP domains 
[333], and a thioesterase (Bhp) [334]� The OxyD 
substrate tyrosine is loaded onto the PCP domain 
of the NRPS that defines P450 substrate specific-
ity and serves as a scaffold for the OxyD hydrox-
ylation reaction, β-R-hydroxytyrosine is subse-
quently cleaved from the NRPS by the thioes-
terase [237]� Similar reactions and gene operons 
have been described for the unrelated P450s 
NikQ (CYP162A1) and NovI (CYP163A1) that 
catalyze the β-hydroxylations of histidine and ty-
rosine in the biosynthetic pathways of novobio-
cin [243] and nikkomycin [335, 336] (Fig� 6�13a 
and e), respectively� The structure of OxyD 
has been determined in the substrate-free form 
(PDB 3MGX) with an open conformation [237]� 
A number of hydrogen bonds between active 
site residues and secondary structural elements 
form the open active site cavity� These primar-
ily involve interactions between the FG helices 
and the I-helix, mediated by hydrogen bonding 
of the F-helix Asn169 and G-helix His188 with 
the I-helix Arg241 and Asp230 residues, respec-
tively� The loop portion between the FG helices 
also interacts with a β strand in the β1 sheet of 
another OxyD structure in the asymmetric unit, 
pulling it away from the active site [237]� These 
interactions thus orient the FG helices to form a 
cap above the I-helix and impose the open con-
formation, rather than extending over the heme 
and forming a lid over the active site cavity, as 
observed in many P450 structures [24, 112, 229]� 

It is possible that other structural rearrangements 
occur upon substrate binding� However, com-
parisons with other amino acyl-PCP substrate-
binding P450s, in both structural and amino acid 
alignments, reveal regions of similarity in the ac-
tive site and suggest a common motif involved 
in the interactions with the PCP domain� Further-
more, the degree of interactions involved in the 
retention of the open conformation is sugges-
tive that OxyD is primed for interaction with the 
large PCP-bound tyrosine substrate and requires 
a more open orientation for its catalytic function 
[237]� Interestingly, the substrate specificity con-
ferred by the adjacent NRPS, which is thought 
to be involved in controlling the amino acid flux 
into secondary metabolism [237], may be useful 
for OxyD’s biotechnological exploitation� OxyD 
and other similar amino acyl-PCP-oxidizing 
P450s do not display significant specificities for 
the free substrate, but instead require the pres-
ence of a PCP to deliver the bound substrate� Pre-
sumably, engineering these relatively nonspecific 
P450s to oxidize molecules presented on PCP 
scaffolds may provide a novel route to produce 
desired metabolites and hydroxylated cores of 
novel antibiotics [251]�

The final example of the diverse biosynthet-
ic P450s discussed here is the R. erythropolis 
JCM 6824 P450 RauA (CYP1050A1) involved 
in the production of aurachin RE (Fig� 6�20a), a 
relatively new quinolone antibiotic [337]� Aura-
chin RE has broad antibiotic activity against a 
range of Gram-positive bacteria [338] and was 
recently revealed to be an inhibitor the M. tu-
berculosis 1,4-dihydroxy-2-naphthoate prenyl-
transferase (MenA), an essential menaquinone 
biosynthetic enzyme [339–342]� Menaquinone 
is an important/essential component of electron 
transport and respiration in a number of bacte-
ria [341]� Aurachin RE is a rare alkaloid antibi-
otic with the structure incorporating a quinolone 
ring and farnesyl chain and bears similarity to 
menaquinone structures (Fig� 6�20)� RauA cata-
lyzes the N-hydroxylation of the quinolone ring 
of a biosynthetic intermediate to produce the ac-
tive alkaloid antibiotic aurachin RE (Fig� 6�20a) 
[337]� RauA is a unique P450 with a single or-
tholog (CYP1050B1) identified in Streptomyces 
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Fig. 6.20  Aurachin RE a tuberculosis (TB) drug, and 
oxidative modification of menaquinone by M. tubercu-
losis CYP128A1� a Aurachin RE an alkaloid antibiotic 
with anti-TB activity through its inhibition of menaqui-
none biosynthesis (enzyme MenA) [339]� R. erythropolis 
RauA (CYP1050A1) catalyzes the N-hydroxylation of 
an aurachin intermediate to produce the active aurachin 
RE compound [337]� b Dihydromenaquinone MK9, the 
major quinol electron carrier in Mtb respiration, is likely 

to be ω-hydroxylated by CYP128A1 (product of gene 
Rv2268c) prior to its sulfation by the sulfotransferase (stf-
3, product of Rv2269c) encoded by the adjacent gene� The 
stf-3 reaction occurs at the hydroxyl group introduced by 
the P450, to produce the sulfated form of dihydromena-
quinone MK9 (S881) [353]� S881 was shown to be as-
sociated with the outer cell membrane of Mtb, and to have 
a role as a negative modulator of virulence in a mouse 
model of infection [354]
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sulphureus L180 with 46 % identity [19]� BLAST 
searches also identify a CYP1050B1 ortholog 
from Streptomyces roseochromogenes subsp� 
oscitans DS 12�976 with 45 % identity to RauA� 
Interestingly, the myxobacteria Stigmatella spp� 
are the only other species aside from Rhodococ-
cus known to produce aurachin alkaloid antibiot-
ics [343, 344]� However, the genome sequence of 
Stigmatella aurantiaca Sg-a15 does not contain a 
RauA-like P450 within the aurachin biosynthetic 
genes and has been shown to utilize a Rieske 
(2Fe–2S) oxygenase to perform the equivalent 
N-hydroxylation reaction [345]� RauA is thus 
exclusive and essential for production of aura-
chin RE in R. erythropolis [337]� The structure 
of RauA has been determined with its substrate, 
an Aurachin RE intermediate (3-[(2E,6E,9R)-
9-hydroxy-3,7,11-trimethyldodeca-2,6,10-
trien-1-yl]-2-methylquinolin-4(1H)-one) (PDB 
3WEC) [346]� The active site cavity of RauA 
is hydrophobic with interactions between the 
substrate and the hydrophobic amino acid side 
chains, e�g�, Leu77, Phe68, Phe74, Phe88, Leu89, 
Ile188, Phe190, and Ile399� The substrate farne-
syl chain moiety extends upwards in the active 
site cavity and orients into a U-shaped confor-
mation� Hydrophobic interaction between the 
middle of the farnesyl chain and the FG and BC 
loop close the active site cavity� The quinolone 
ring of the aurachin RE intermediate lies paral-
lel to the heme place with the nitrogen situated 
immediately above the heme iron (4�3 Å), con-
sistent with the RauA N-hydroxylation activ-
ity (Fig� 6�20a) [346]� The distal water ligand is 
retained, and correlates with spectroscopic data 
that do not show full conversion to the high-spin 
spectral species upon substrate binding� This ac-
tive site water (WAT601) serves as a bridging 
molecule between the heme iron and the quino-
lone nitrogen but it is unclear whether it remains 
during oxygen binding and catalysis [346]� The 
structural characterization of a new biosynthetic 
P450 RauA and its N-hydroxylating role in the 
production of the active Aurachin RE drug may 
lead to the synthesis of novel alkaloid antibiotics� 
This is of particular interest with the antibacterial 
and anti-tuberculosis (TB) activities of this new 
class of aurachin compound�

In recent years, the study of P450s from di-
verse Streptomyces and other actinomycetes has 
unveiled several biosynthetic P450s with roles in 
the synthesis of compounds of interest in health, 
agriculture, and biotechnology� The character-
izations of these P450s have not only given an 
understanding of the complex mechanisms in-
volved in the biosynthesis of natural products 
but also provided strategies by which researchers 
might manipulate these enzymes and their asso-
ciated pathways to produce new therapeutics and 
other desired compounds� Furthermore, as more 
genome sequencing data become available, there 
will undoubtedly be new P450-dependent path-
ways revealed, including novel P450s enzymes 
that perform unexpected chemistry� The volume 
and catalytic diversity of P450s in the actino-
mycetes should thus provide numerous further 
P450s for biomedical and biotechnological ap-
plications�

6.2.3.3  Mycobacterial P450s
In contrast to the metabolic gene organization 
observed in the Streptomyces and other actino-
mycetes, the mycobacterial CYP genes are often 
dispersed widely across their genomes and, with 
only a few exceptions, their genomic localiza-
tions give little or no clue towards their catalytic 
functions� Many of the mycobacterial P450s are 
located close (or adjacent) to ‘conserved hypo-
thetical protein’ genes that are generally specific 
to the mycobacteria, but have no established 
function to date [59]� Those mycobacterial P450s 
that have been characterized are predominantly 
from the pathogenic bacterium Mycobacterium 
tuberculosis (Mtb) and have been shown to have 
a diverse range of substrates and functions [144, 
347], as summarized in Table 6�4� Three Mtb 
P450s (CYP128, CYP125, and CYP121) were 
experimentally demonstrated to play essential 
roles in Mtb by different methods (including 
gene deletion studies)� The CYP125 gene is not 
essential for growth in vitro, but is required for 
survival of Mtb in the host, pointing to the im-
portance of investigating a wide variety of condi-
tions in order to discover genes that are important 
or essential during the adaptive phases of Mtb 
infection, persistence, and virulence [348–350]� 
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P450/gene Microarray/genetic analysis Key facts
CYP121A1 (Rv2276) Essential gene [350]� Possible virulence role 

with ΔAraC/XylS gene regulator mutant 
(ΔRv1931c). Induced in isoniazid and thiolac-
tomycin-treated Mtb [807]� Clinical CYP121 
deletion strains (RD182, 182a) isolated [391], 
but CYP121 consistently expressed among 10 
Mtb clinical isolates [392]

Nanomolar azole drug affinity [350]� 
Operon with adjacent cylclopeptide syn-
thase (Rv2275)� Makes mycocyclosin 
from C–C coupling of cYY [65]� Struc-
turally characterized (e�g�, [65, 350])

CYP123A1 (Rv0766c) Nonessential gene for Mtb H37Rv growth in 
vitro [374]� Upregulated at high temperatures 
[808] and mRNA levels higher than ΔPhoP vir-
ulence regulator [809]� Expressed in dormancy 
model [810] and protein detected in membrane 
fraction [811]

Possible operon with sterol demethyl-
ase CYP51B1 (Rv0764c) and adjacent 
3Fe–4S ferredoxin (Rv0763c) [21]� 
Orphan P450 in terms of unknown 
enzyme function

CYP124A1 (Rv2266) Nonessential gene for Mtb H37Rv growth in 
vitro [374]� Low expression in 10 Mtb clinical 
isolates [392]� Expressed in dormancy model 
[810]� Expression repressed in infected mouse 
[812] and upregulated in lupelone-treated Mtb 
[352]� Detected in Mtb whole cell lysates [813]

Possible operon with menaquinone MK9 
sulfotransferase (Stf3, Rv2267c) [353, 
354] and CYP128A1� Omega hydroxyl-
ates methyl-branched fatty acids and 
cholesterol/cholest-4-en-3-one� Structur-
ally characterized [395]

CYP125A1 (Rv3545c) Essential for infection in mice [376] and 
induced in macrophages [377]� In KstR reglon 
[406] and igr operon, essential gene for growth 
and virulence in macrophages and mice [380]� 
Expressed in dormancy model [810] and 
upregulated during infection of dendritic cells 
[378]

Part of igr operon with fadE28, fadE29, 
IgrD-E, and ltp2 (Rv3544c-3540c) [356, 
380]� Cholesterol/cholest-4-en-3-one 
26-oxidase� Structurally characterized 
(e�g�, [360, 363])

CYP126A1 (Rv0778) Nonessential gene for Mtb H37Rv growth in 
vitro [348]

Possible operon with essential purine 
biosynthesis genes, e�g�, PurB adeny-
losuccinate lyase (Rv0777) and PurC 
phosphoribosylaminoimidazole-succino-
carboxamide synthase (Rv0780)� Orphan 
P450

CYP128A1 (Rv2268c) Essential gene for Mtb growth [348]� Upregu-
lated after starvation [351] and following 
lupelone treatment of Mtb [352]

Operon with adjacent menaquinone 
MK9 sulfotransferase (Stf3,Rv2267c) 
and possibly CYP124A1� Likely MK9 
hydroxylase prior to Stf3 sulfation [353, 
354]

CYP130A1 (Rv1256c) Nonessential gene [348]� Absent from M� bovis 
and M� bovis BCG (RD13 (10)) [421] ([422])� 
Expressed in Mtb dormancy model [810]

Structures determined for ligand-free 
monomer and econazole-bound dimer 
[409]� Orphan P450

CYP132A1 (Rv1394c) Nonessential gene [348]� Transcription con-
trolled by adjacent AraC (Rv1395c) transcrip-
tional regulator with virulence-related role 
[814]� Induced following diamide oxidative 
stress [815] and upregulated during infection 
of dendritic cells [378]� Expressed in dormancy 
model [810]

Similarities in protein sequence to fatty 
acid metabolizing P450s and CYP4 fam-
ily� Orphan P450

CYP135A1 (Rv0327c) Nonessential gene [431]� Induced following 
diamide stress [815]

Orphan P450

CYP135B1 (Rv0568) Nonessential gene [348]� Detected in Mtb 
cytosol [811]� Low expression in 10 Mtb clini-
cal isolates [392]� Expressed in Mtb dormancy 
model [810]

Orphan P450

Table 6.4  Properties of the Mtb P450s� Key facts are included that highlight experimental data from a number of 
genetic (transcriptomics, transposon mutagenesis, and microarray studies) and biochemical studies� Mtb P450s that 
have been structurally characterized are highlighted in light gray
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These three CYP genes are also among the few 
Mtb P450s to give a clue to their roles from their 
genetic context�

CYP128A1 was the only P450 identified as 
essential for optimal growth of the pathogenic 
Mtb H37Rv strain under normal laboratory con-
ditions in a genome-wide transposon hybridiza-
tion study (TraSH) [348]� Microarray analysis 
also identified the expression of the CYP128A1 
( Rv2268c) gene as upregulated after nutrient 
starvation [351], as well as following exposure 

to the potential anti-TB drug lupulone [352]� 
CYP128A1 is located chromosomally adjacent 
to a sulfotransferase (stf-3, Rv2269c) that has a 
unique role in the modification of dihydromena-
quinone MK9, the major quinol electron carrier in 
Mtb respiration, with sulfation at the ω-position 
of its polyisoprenoid chain [353]� CYP128A1 
was predicted to catalyze an ω-hydroxylation of 
dihydromenaquinone MK9 that subsequently al-
lows the stf-3-catalyzed menaquinone sulfation 
reaction to occur (Fig� 6�20b)� The sulfated form 

P450/gene Microarray/genetic analysis Key facts
CYP136A1 (Rv3059) Nonessential gene [348]� Expressed in Mtb 

dormancy model [810]
Weakly related to sterol demethylase 
CYP51 family� Close to TetR transcrip-
tional regulators and acyl-coA dehydro-
genase fadE22 (Rv3061c)� Orphan P450

CYP137A1 (Rv3685c) Nonessential gene [348]� Detected in Mtb mem-
brane fraction [811]� Downregulated following 
lupelone treatment of Mtb [352]

Orphan P450

CYP138A1 (Rv0136) Nonessential gene [348]� Upregulated at 
high temperatures [808], in presence of lung 
surfactant [816], during iron limitation [817] 
and following lupelone treatment of Mtb [352]� 
Low expression observed in 10 Mtb clinical 
isolates [392]

Adjacent to putative transcriptional 
regulator (Rv0135c)� Orphan P450

CYP139A1 (Rv1666c) Nonessential gene [348] Adjacent to polyketide synthase genes 
(pks 10,7,8,17,9,11) (Rv1660–1665) and 
to macrolide transport genes (Rv1667c-
1668c)� Orphan P450

CYP140A1 (Rv1880c) Nonessential gene [348]� Expressed in Mtb 
dormancy model [810], Upregulated following 
lupelone treatment of Mtb [352]

Closest Mtb relative to sole M� leprae 
P450 (CYP164A1)� Orphan P450

CYP141A1 (Rv3121) Absent from M� bovis and M� bovis BCG 
strains (RD12 (5)) [421, 422]� Upregulated in 
presence of lung surfactant [816]

Surrounding genes involved in molybde-
num cofactor biosynthesis� Orphan P450

CYP142 (Rv3518c) Nonessential gene [348]� Expressed in Mtb 
dormancy model [810] Located in KstR reglon 
[406]� Detected in cell wall fraction [811]� 
Pseudogene in M� bovis and M� bovis BCG due 
to a 2-bp deletion

Cholesterol/cholest-4-en-3-one 26-oxi-
dase [362, 364]� Structurally character-
ized P450 enzyme [362]

CYP143 (Rv1785c) Nonessential gene [348]� Low expression in 
10 Mtb clinical isolates [392]� Deleted in M� 
smegmatis (region 5)

Adjacent to 3Fe–4S ferredoxin (Rv1786) 
[818]

CYP144A1 (Rv1777) Nonessential gene [348]� Expressed in Mtb 
dormancy model [810]� Upregulated during 
infection of dendritic cells [378]

Tight azole drug binding [819]

CYP51B1 (Rv0764c) Nonessential gene [348]� Possible role in host 
sterol/steroid metabolism� Expressed in dor-
mancy model [810]

Tight azole drug binding� Adjacent to 
3Fe–4S ferredoxin (Rv0763c)� Sterol 
14α-demethylase activity [430]� Possible 
role in host sterol/steroid metabolism

mRNA messenger RNA

Table 6.4 (continued)
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of the dihydromenaquinone MK9 (named S881) 
was shown to be associated with the outer cell 
membrane of Mtb, with a potential role as a neg-
ative modulator of virulence in a mouse model 
of infection [354]� Sulfated lipids in Mtb were 
shown to have important functions in virulence 
and also to mediate specific host–pathogen inter-
actions during infection� Furthermore, S881 may 
potentially be involved in the regulation of the 
Mtb internal menaquinone pool, and thus have 
an important role in regulating Mtb respiration 
[353–355]� Attempts to purify and character-
ize the CYP128 P450 have proven unsuccessful 
to date due to its insolubility� However, the hy-
drophobic nature of the putative dihydromena-
quinone MK9 substrate suggests that it may be 
membrane associated [144]� The CYP128 family 
is uniquely restricted to the pathogenic Mtb fam-
ily that includes other Mtb strains and the closely 
related M. bovis�

The second essential Mtb P450 is CYP125A1, 
a cholesterol oxidase with interesting catalytic 
properties� The catabolism of cholesterol was 
shown to be important for survival of pathogenic 
mycobacteria in the host [356–358]� CYP125A1 
along with CYP142A1 (which can compensate for 
defects in CYP125A1) are located in a large regu-
lon with multiple other genes that encode different 
enzyme components of the cholesterol degrada-
tion pathway� The identification of the role of this 
operon came following the functional description 
of a related gene cluster for cholesterol catabolism 
in the soil bacterium Rhodococcus jostii RHA1 
[359]� The Mtb CYP125A1 and CYP142A1 en-
zymes both catalyze C26 ω-hydroxylation(s) of 
the side chain of cholesterol, and of its ketone 
derivative cholest-4-en-3-one, in a primary step 
towards the breakdown of the cholesterol side 
chain and the catabolism of cholesterol [360–364] 
(Fig� 6�21a)� Intriguingly, CYP125A1 was also 
discovered to simultaneously produce five addi-
tional products, resulting from deformylation of 
the aliphatic cholesterol side-chain aldehyde inter-
mediate (Fig� 6�21b) [365]� One of the products of 
this unusual rearrangement and C–C bond cleav-
age reaction is an atypical formyl ester (27-nor-
25-oxyformyl-cholest-4-en-3-one/cholesterol) 
(Fig� 6�21b (M2)), highlighting an uncommon 

diversity of CYP125A1 products, produced by 
consecutive catalytic turnovers with a single sub-
strate [186, 365]� The functional relevance of these 
molecules is currently unknown; however, cho-
lesteryl esters are known to accumulate in Mtb-
infected human macrophages [366]� Successive 
cholesterol oxidations resulting in the convention-
al hydroxy-, aldehyde-, and acid- cholesterol/one 
derivatives has also been observed for CYP125 
enzymes from other nonpathogenic mycobacteria 
and Rhodococcus sp. [367, 368]� Following iden-
tification of the cholesterol regulon in Rhodococ-
cus jostii RHA1, similar gene clusters have been 
identified in a growing number of Rhodococcus, 
Gordonia, and Tsukamurella spp� [359, 369–371]� 
However, cholesterol is not synthesized de novo 
in these organisms and is generally recruited from 
the cholesterol-rich host immune system in the 
response following TB infection [372, 373], or 
else is taken up from the environment (e�g�, soil) 
by nonpathogenic organisms, where cholesterol 
catabolism can detoxify environmental steroids 
or provide energy to aid cellular growth [370]� 
Cholesterol was also shown to be one of the 
major bacterial carbon sources during infection 
by pathogenic Mtb and there is a growing body 
of evidence in the literature relating to the impor-
tance of cholesterol metabolism in Mtb virulence 
and pathogenesis throughout the course of clinical 
infection and disease [356–358, 374, 375]� The 
CYP125A1 gene was shown to be the only CYP 
gene that is both essential in vivo for Mtb infec-
tion in mice and induced in Mtb-infected human 
macrophages [349, 376, 377]� CYP125A1 is also 
upregulated in Mtb-infected human dendritic 
cells: the antigen-presenting cells that play a key 
role in host cell immunity as well as Mtb patho-
genicity [378, 379]� Furthermore, CYP125A1 is 
a member of the intracellular growth (igr) region 
that is essential for growth and virulence in mac-
rophages and in mice, and necessary for degrada-
tion of the cholesterol 2′-propanoate side chain. 
The igr consists of CYP125A1 ( Rv3545c, igrA), 
the acyl coA dehydrogenases fadE28 and fadE29 
( Rv3544c and Rv3543c, igrBC), a conserved hy-
pothetical protein ( Rv3542c, igrD), a likely enoyl 
coA hydratase ( Rv3541c, igrE) and a lipid carrier 
protein ltp2 ( Rv3540c, igrF) [356, 380, 381]� It 
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is now generally considered that CYP125A1 is 
the major cholesterol oxidase P450 and has an 
important adaptive role in the utilization of host 
cholesterol for catabolism, the detoxification of 
cellular cholest-4-en-3-one, and potentially also 
for the cholesterol-derived synthesis of the im-
portant cell wall lipid phthiocerol dimycoserate 
(PDIM) [363, 364, 382, 383]� Recently, one of the 
CYP125/CYP142 products 3-oxo-4-cholestenoic 
acid, produced by three successive oxidations of 
cholest-4-en-3-one, was shown to be an inducer 
of one of the two TetR-type transcriptional re-
pressors (KstR) that regulates part of the choles-
terol catabolic gene cluster in M. smegmatis [384, 
385]� Although it cannot be ruled out that other 
oxidized products from the cholesterol pathway 
may also act as inducers, these studies highlight 
a further important role of the cholesterol oxidase 
P450s [384]� The CYP125 family extends from 
pathogenic and nonpathogenic Mycobacterium 
spp� to other more diverse actinomycetes, such as 
certain Streptomyces, Rhodococcus, and Salinos-
pora spp�, and a CYP125 ortholog is also identi-
fied in the myxobacterium Sorangium cellulosum 
Soce56 (CYP125E1)� The second cholesterol 
oxidase in Mtb (CYP142A1) has similar genetic 
diversity to CYP125A1� However, in some clini-
cal Mtb and M. bovis strains, as well as in the vac-
cine strain M. bovis BCG, CYP142A1 exists as a 
pseudogene, rendering the loss of CYP125 lethal 
to intracellular bacteria without the compensatory 
CYP142A1 enzyme present� These data high-
light the important role of CYP142 in certain Mtb 
strains, possibly as an evolutionary adaptation to 
ensure cholesterol catabolism can occur during 
pathogenesis� In this scenario, CYP142A1 may 
act as a secondary catalyst for energy genera-
tion from cholesterol/cholestenone, and cooper-
ate with CYP125A1 rather than playing a direct 
role in Mtb virulence [361–364]� Despite having 
a similar substrate-oxidizing role to CYP125A1, 
the protein sequences of the CYP142 cholesterol 
oxidases display low levels of identity (~ 28 %) 
with CYP125A1� The structures of these genes 
from Mtb and the nonpathogenic M. smegmatis 
are discussed below in more detail�

CYP121A1 ( Rv2276) is another example of 
the diverse functions of the Mtb P450s and is the 

third essential gene in Mtb H37Rv� CYP121A1 
is located adjacent on the genome to a cyclic di-
peptide (CDP) synthase ( Rv2275) that produces 
the CYP121 substrate cyclo-L-tyrosine-L-tyro-
sine (cYY) using two molecules of the amino 
acyl tRNA derivatives of L-tyrosine� CYP121A1 
then catalyzes C–C bond formation by oxidative 
coupling of the cYY aryl side chains to make a 
metabolite named mycocyclosin (Fig� 6�22a) 
[65, 386]� The physiological role of mycocyclo-
sin is yet to be determined, but members of this 
diketopiperazine class of compounds have been 
found to play important roles in, e�g�, immuno-
suppression and blockage of cation channels, 
and possibly as toxins [387–390]� CYP121A1 
was shown to be essential for viability in Mtb 
through genetic studies involving construction 
of a chromosomal CYP121A1 gene insertional 
knockout mutant through a two-step homologous 
recombination process� It proved possible to de-
lete CYP121A1 only when a second version of 
the gene was integrated elsewhere on the chro-
mosome, confirming its essentiality for Mtb vi-
ability [350]� However, Mtb clinical isolates have 
been described that have full or partial deletions 
of CYP121A1 and its neighboring genes� The 
physiological effects on these deletion strains are 
unknown, but it has been speculated that loss of 
CYP121 is likely deleterious to Mtb� Potentially, 
these types of deletions may confer a short-term 
evolutionary advantage, such as curtailing laten-
cy, evading the host immune system or providing 
antibiotic resistance, which may be advantageous 
to the pathogen at certain stages in infection 
[391]� Other studies have identified CYP121A1 
as the only P450 among the 16 % of genes in Mtb 
that are consistently expressed across a panel of 
clinical strains, thus highlighting the importance 
of CYP121A1 and these other genes in the viabil-
ity of the Mtb isolates [392]� Like CYP128, the 
CYP121 gene family is also exclusively found in 
the pathogenic Mtb spp� Interestingly, a similar 
genomic orientation of a CDP synthase ( YvmC) 
and a P450 ( CYP134A1) was identified in B. 
subtilis [393]� These enzymes were shown to be 
involved in successive steps producing the CDP 
cyclo-L-leucine-L-leucine (cLL), followed by a 
three-step CYP134A1-mediated oxidation of the 
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CDP to produce pulcherriminic acid, a precursor 
of the extracellular iron-chelating pigment pul-
cherrimin that is thought to play a role in ultra-
violet (UV) protection [393, 394] (Fig� 6�22b)� 
However, CYP134A1 is not highly related to 
CYP121A1 and performs a different noncou-
pling reaction, reflecting the distinct physiologi-
cal functions of these two pathways�

CYP124A1 ( Rv2266) is apparently a non-
essential P450 gene that directly precedes the 
CYP128A1 operon that contains the menaqui-
none MK9 ω-sulfotransferase (Sft3, Rv2267c) 
with a likely role in bacterial virulence [353, 
354]� CYP124A1 preferentially catalyzes the 
ω-hydroxylation of methyl-branched lipids such 
as phytanic acid (Fig� 6�22c) and it is postulated 
that it may have an as yet uncharacterized role 
in the oxidation of lipids similar to menaquinone 
MK9, and possible functions in the generation of 
sulfolipid derivatives [395]� Furthermore, similar 
to what was observed for CYP128A1, the expres-
sion of CYP124A1 is also upregulated following 
exposure to the potential anti-TB drug lupulone 
[352]� The CYP124 gene family extends across 
the actinomycetes, with many members in the 
Streptomyces� Interestingly, the CYP124A1 
protein does have considerable similarity to 
CYP125A1 (40�1 % identity), indicating evolu-
tionary relationships, and can also catalyze C26 
omega-hydroxylation of cholesterol and cholest-
4-en-3-one (see below)�

CYP139A1 is a further P450 enzyme unique 
to the pathogenic Mtb bacteria, although it ap-
pears to be nonessential for Mtb viability under 
standard laboratory conditions [348, 374]� How-
ever, the genomic localization of CYP139A1 pro-
vides clues to its physiological role� CYP139A1 
is located at the end of a large gene cluster of 
polyketide synthase (PKS) genes (PKS 10, 7, 8, 
17, 9, 11), with PKS 7 and 8 being identified as 
essential genes in Mtb [348, 374]� CYP139A1 is 
also located immediately upstream of two puta-
tive macrolide transporters, and a number of ar-
ginine biosynthetic genes also precede the PKS 
gene cluster [396]� It is thus tempting to specu-
late that CYP139A1 may be involved in a bio-
synthetic operon involved in the production of an 
Mtb macrolide compound� Thus, there is a poten-

tial role for CYP139A1 in the oxidative tailoring 
of a macrolide, as is observed with many Strep-
tomyces P450s� CYP139A1 has yet to be char-
acterized, but it will be interesting to establish if 
this P450 plays a novel role in oxidation of a Mtb 
secondary metabolite�

The Mtb-related pathogen M. ulcerans 
Agy99 is the causative agent of Buruli ulcer, a 
debilitating, necrotizing ulcerative disease com-
mon in equatorial Africa, but also identified in 
Asia, Australia, and South America [397–400]� 
CYP140A7 (encoded by the mup053 gene) is one 
of the 21 M. ulcerans P450s, and further high-
lights the functional diversity of mycobacterial 
P450s� CYP140A7 is implicated in the synthe-
sis and structural diversification of mycolactone 
A/B (Table 6�1; Fig� 6�23)� Mycolactone A/B is 
the major member of a diverse group of macro-
lide toxins responsible for the clinical charac-
teristics and virulence of M. ulcerans [398, 399, 
401, 402]� The mycolactones differ mainly in the 
heterogeneity of the fatty acid side chains around 
the lactone core and were shown to have distinc-
tive cytotoxic, apoptotic, and immunosuppres-
sive properties [397, 403]� Their mode of action 
is through the downregulation of specific proteins 
implicated in important cellular processes such as 
immune response and cell adhesion, and through 
the disruption of protein translocation into the 
endoplasmic reticulum [400]� CYP140A7 is ex-
clusive to pathogenic mycobacteria (including 
Mtb), with closely related orthologs in M. xenopi 
and M. avium spp�, and in other organisms that 
cause disease in, e�g�, humans, fish, and frogs 
[66, 400, 404]� CYP140A7 is present on a mega-
plasmid that contains three extremely large type 
I PKSs (MLSA1, MLSA2, and MLSB) that each 
contain several modules and the enzymatic ac-
tivities required to produce the C1–C20 lactone 
core (MLSA) and the C1′–C16′ side chain that 
are subsequently esterified to form Mycolactone 
C, likely catalyzed by a ketosynthase ( mup045)� 
CYP140A7 performs the final synthetic step, 
catalyzing the C12′ hydroxylation to produce 
mycolactone A/B [398, 399, 404]� Mycolactone 
A/B exists in a dynamic equilibrium between two 
geometric Z and E isomers at the C4′–C5′ posi-
tion on the polyketide chain, with the Z isomer 
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(mycolactone A) predominant over the corre-
sponding E isomer (mycolactone B) [399, 404]� 
Further, structural characterization of CYP140A7 
will be of interest to reveal details of the substrate 
and product interactions with the P450, and to 
give insights into the mechanism of diversifica-
tion of the different mycolactone forms�

A high proportion of the mycobacterial P450s 
are orphan enzymes with no known function, and 
in most such cases genomic localization does not 
give any clear indication as to what their physio-
logical or infection-related roles might be� In the 
case of the pathogen Mtb, a number of in vivo 
and in vitro transcriptomic and microarray exper-
iments have revealed genes that display changes 
in their expression levels upon exposure to con-
ditions associated with bacterial growth, dorman-
cy, or infection� Similar studies have been done 
to probe effects of various antibiotics and other 
drugs known to influence Mtb growth or viability 
(e�g�, [351, 378, 405, 406])� Whilst these studies 
may not directly identify physiological roles for 

the P450s and other Mtb genes, they can identify 
conditions that may be relevant to the action of a 
particular enzyme (e�g�, whether it is active dur-
ing a certain phase of infection) and potentially 
highlight which enzymes have important roles in 
Mtb (Table 6�4)� A number of the mycobacterial 
P450s have proven difficult to express and pu-
rify from a heterologous expression host (e�g�, E. 
coli)� This can be due to aspects such as the differ-
ent nature of their natural cellular environments, 
their native association with the mycobacterial 
membrane and the high GC content of the my-
cobacterial genome compared to that of the host 
for recombinant expression (e�g�, [144, 407])� 
This has hampered the structural and biochemi-
cal characterization of some of the mycobacterial 
P450s� However, careful control of recombinant 
cell growth and gene expression conditions along 
with efficient protein purification has allowed 
the purification and structural determination of 
a growing number of P450s from mycobacteria 
(e�g�, [187, 408, 409])�

Fig. 6.23  The structure of mycolactone A/B� Mycolac-
tone is an immunosuppressant toxin produced by selected 
pathogenic mycobacterial strains and is responsible for 
the formation of Buruli ulcers� A crucial role exists for a 
P450 in synthesis of the toxin� Mycolactone A/B is formed 
through the M. ulcerans CYP140A7-mediated C12′-

hydroxylation shown highlighted with an arrow� Myco-
lactone A/B exists in a dynamic equilibrium between two 
geometric Z and E isomers at the C4′–C5′ position on the 
polyketide chain, with the Z isomer (mycolactone A) pre-
dominant over the corresponding E isomer (mycolactone 
B) [399, 404]
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The cholesterol oxidase P450s are the largest 
group of structurally characterized mycobacte-
rial enzymes� The structure of the major enzyme 
CYP125A1 was solved in the ligand-free (PDB 
3IVY, 3IWO, and 2XN8) and the cholest-4-en-
3-one substrate-bound (PDB 2X5W) forms [360, 
363, 410]� In addition, there are also CYP125A1 
structures with the inhibitors econazole and the 
nonazole inhibitor LP10-bound (PDB 3IW2 and 
2XC3, respectively), as well as an androstene-
dione-bound structure (PDB 3IWI) [360, 410]� 
The ligand-free structures of CYP125A1 reveal a 
letterbox-like active site cavity between the cen-
tral portion of the I-helix, the C-terminal loop, 
and the B′ and F helices along with the preceding 
loop region� The B and F helices define a nar-
rowing cavity that funnels down from the pro-
tein surface to the heme and which is lined by 
hydrophobic residues� The catalytic site around 
the CYP125A1 heme iron and distal water con-
sists of Leu117, Ala268, Val313, Phe316, and the 
methyl group of the conserved threonine Thr272 
[360, 410]� The distal water is not present in all 
of the ligand-free structures, and this observation 
is consistent with the propensity of CYP125A1 
to be purified in a predominantly high-spin 
form [360, 410]� The cholest-4-en-3-one-bound 
structure (Fig� 6�24a) reveals conformational 
changes in the H-helix and the N-terminal region 
of the I-helix that enclose the active site cavity 
and permit hydrophobic contacts between the 
I-helix and the substrate molecule [363]� The 
tetracyclic steroid ring system of cholest-4-en-
3-one sits in the mouth of the active site access 
channel and makes van der Waals contacts with 
Val267 and Trp414 that prevent the steroid por-
tion of the molecule further access toward the 
heme� The aliphatic side chain of cholest-4-en-
3-one reaches towards the heme plane and is en-
closed in the narrow active site, although in an 
orientation that would apparently disfavor C26 
hydroxylation� It is thus postulated that a minor 
structural rearrangement would allow a catalyti-
cally productive substrate orientation [363]� This 
restriction and the narrowing of the active site 
access channel is also highlighted in the andro-
stenedione- and econazole-bound CYP125A1 
structures, which occupy a similar position to 

that seen for the steroid ring portion of cholest-
4-en-3-one [360]� The binding of the inhibitor 
LP10 (α-[(4-methylcyclohexyl)carbonyl amino]-
N-4-pyridinyl-1H-indole-3-propanamide), a type 
II inhibitor of Trypanosoma cruzi CYP51E, is 
also restricted by the funnelling of the active site 
access channel, and the majority of the molecule 
occupies the same region as that for the base of 
the cholest-4-en-3-one steroid ring� However, the 
pyridinyl ring of LP10 points into the heme pock-
et and hydrogen bonds with an active site water 
molecule adjacent to the axial water ligand to the 
heme iron [410]� The structure of the second Mtb 
cholesterol oxidase CYP142A1 was solved in 
the ligand-free form (PDB 2XKR) and displays 
the same type of letterbox-shaped access channel 
as described for CYP125A1, which is formed in 
CYP142A1 by the BC and FG loop, and the N-
terminal region of the I-helix� However, there are 
significant differences in the FG helices and the 
loop region connecting the B and C helices, with 
the absence of an extended loop connecting the 
β1 and β2 strands compared to the CYP125 struc-
ture [362]� Interestingly, the structures of CY-
P125A1 and CYP142A1 display high degrees of 
similarity to that of CYP124A1, again providing 
insights that suggest a common evolutionary ori-
gin� The structure of CYP124A1 was determined 
in the ligand-free (PDB 2WM4) and phytanic 
acid substrate-bound (PDB 2WM5) forms [395]� 
Similar to CYP142A1, in CYP124A1 there is 
also the absence of the extended loop that is seen 
to connect the β1 and β2 regions in CYP125A1 
[362]� Substrate binding to CYP124A1 induces 
a structural rearrangement of the FG helices and 
movement of the FG loop towards the phytanic 
acid ligand, closing over the access channel to the 
substrate cavity, as also observed in other P450 
structures (e�g�, [24, 112])� This is accompanied 
by reorientation of the EF loop, G loop, H-helix, 
and HI loop� The BC loop and the D and C heli-
ces also move toward the G-helix to accommo-
date closure of the active site� The phytanic acid 
molecule is bound in a conformation optimal for 
ω-hydroxylation, with hydrophobic and polar in-
teractions observed between different secondary 
structural elements and the substrate methyl-
branched lipid chain and carboxylic acid groups, 
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respectively (Fig� 6�24b)� Additional solvent-
filled pockets observed in the active site cavity 
of phytanic acid-bound CYP124A1 suggest that 
these regions are not occupied by phytanic acid, 
but may instead accommodate parts of as yet un-
known physiological substrates of CYP124A1 
[395]� CYP124A1 can also hydroxylate choles-
terol and cholest-4-en-3-one at the C26 position� 
However, the fact that CYP124A1 does not com-
pensate for loss of CYP125A1 function in Mtb 
(whereas CYP142A1 does) probably means that 
these steroids are unlikely to be true physiologi-
cal substrates of CYP124A1 [364, 395]� Instead, 
CYP124A1 is more likely to have a role in fatty 
acid metabolism given its preference for methyl-
branched chain lipid substrates, and potentially 
might oxidize a menaquinone-type derivative or 
precursor, given its colocation with CYP128A1 
on the Mtb chromosome�

Regardless of their physiological functions, 
there is an intriguing structural relationship be-
tween these three enzymes that possess choles-
terol oxidase activity� Indeed, the structure of 
CYP124A1 was solved by molecular replace-
ment using the atomic coordinates of CYP125A1 
as a search model [360], with an amino acid se-
quence identity of 40�1 % between these P450s� 
Similarly, CYP142A1 was solved using the 
structure of CYP124A1 [362], with amino acid 
sequence identity of 36�1 % between this pair of 
P450s� The lower identity between CYP125A1 
and CYP142A1 (27�7 %) means that the cho-
lesterol oxidases CYP142A1 and CYP125A1 
are both more similar to CYP124A1 than they 
are to each other� A structural comparison of the 
substrate-bound forms of CYP125A1 and CY-
P124A1 with the ligand-free CYP142A1 [362, 
363, 395] revealed that CYP142A1 and CY-
P124A1 possess near-identical active site pock-
ets immediately surrounding the heme, with con-
servation of the majority of the active site amino 
acid side chains in both identity and position� 
CYP142A1 and CYP125A1 do not bind produc-
tively to the methyl-branched lipids identified as 
ligands or substrates for CYP124A1 [362, 395]� 
CYP125A1 shows diversity in the structural 
composition of its equivalent distal heme pocket 
(compared to CYP142A1 and CYP124A1), de-

spite it possessing similar cholesterol hydrox-
ylation activities (Figs� 6�24a and b) [362]� In 
contrast, when structural comparisons are made 
between these P450s in regions slightly removed 
from the heme distal pocket, a much greater de-
gree of structural similarity is revealed between 
the substrate access channels of CYP125A1 and 
CYP142A1� In this region, CYP124A1 exhib-
its a distinct type of channel, with its shape and 
positioning dissimilar to those of the other two 
P450s [362]� These comparative similarities and 
differences clearly point to evolutionary relation-
ships, suggesting that CYP125A1/CYP142A1 
and CYP124A1 may have evolved from a com-
mon progenitor to perform different roles and to 
enhance the ability of Mtb to adapt to availability 
of different lipid substrates, thus contributing to 
its success as a human pathogen� CYP125A1 and 
CYP142A1 have evolved to perform cholesterol/
one oxidations, and difference in active site heme 
distal pockets between this pair of P450s poten-
tially explains the additional capabilities of CY-
P125A1 to oxidize cholesterol and cholest-4-en-
3-one for other purposes in Mtb infection, e�g�, 
by synthesizing the recently identified additional 
CYP125A1 deformylation products from the 
aldehyde intermediate [365]� CYP124A1 likely 
has a different role in Mtb to the other two P450s, 
but the high level of structural conservation be-
tween CYP124A1 and CYP142A1 in their heme 
distal pockets likely explains the retention of 
cholesterol hydroxylase activity in CYP124A1� 
Thus, CYP124A1’s main function may now re-
late to oxidation of branched chain or other lipids 
(rather than steroids), but its true physiological 
role is still to be established [364]�

The CYP125 and CYP142 cholesterol oxidase 
orthologs from the fast-growing nonpathogenic 
M. smegmatis have also been characterized and 
are located on a similar cholesterol regulon that 
also contains the igr operon [411], as described 
for CYP125A1 in Mtb [356, 380]� The M. smeg-
matis CYP125A3 and CYP142A2 enzymes 
have similar biochemical properties to their Mtb 
counterparts and also catalyze C26 hydroxyl-
ations of cholesterol and cholest-4-en-3-one 
[367]� However, the M. smegmatis P450s have 
approximately twofold lower steroid substrate 
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affinity than the Mtb enzymes� Similar to Mtb, 
CYP142A2 can also compensate for CYP125A3� 
However, neither CYP125A3 nor CYP142A2 
is essential in M. smegmatis� This was demon-
strated through construction of a ΔCYP125A3, 
ΔCYP142A2 double knockout mutant that main-
tains its ability to grow on cholesterol, with no 
build-up of cholest-4-en-3-one (that is toxic to 
Mtb)� This indicates there is an additional level 
of redundancy in M. smegmatis that may involve 
another P450 enzyme, or even an alternative 
cholesterol catabolic process [367]� M. smeg-
matis possesses 39 P450 enzymes (in contrast to 
20 in Mtb), and there are three putative CYP125 
enzymes, with CYP125A4 and CYP125A5 iden-
tified in addition to CYP125A3� CYP125A5 is 
C-terminally truncated in comparison to the other 
CYP125 enzymes, but still retains the cysteine li-
gand and the heme-binding and EXXR motifs, 
and so it is unclear whether M. smegmatis CY-
P125A5 is a pseudogene or encodes a functional 
enzyme [19]� Furthermore, CYP189A1 is induced 
at low levels in M. smegmatis strains grown on 
cholesterol, hinting at a role for this P450 in cho-
lesterol catabolism [367]� The CYP125A5 and 
CYP189A1 enzymes are as yet uncharacterized, 
but it is likely that they account for the M. smeg-
matis ΔCYP125A3, ΔCYP142A2 double mutant’s 
ability to grow on cholesterol� The structures of 
CYP125A3 and CYP142A2 have been deter-
mined and are similar to their Mtb orthologs, 
with some deviations in a portion of the substrate-
binding region [360, 362, 363, 410]� The struc-
ture of CYP125A3 was determined in the ligand-
free form (PDB 4APY) and is highly similar to 
the Mtb CYP125A1 structure [367]� These P450s 
share 77 % amino acid sequence identity and the 
major differences between the two structures are 
seen with the presence of bulky residues Trp83, 
Met87, and Leu94 situated in the lower portion 
of the M. smegmatis CYP125A3 substrate ac-
cess channel, compared with Phe100, Ile104, and 
Val111 in Mtb CYP125A1� The structure of CY-
P142A2 was determined in the ligand-free and 
cholest-4-en-3-one substrate-bound forms (PDB 
3ZBY and 2YOO, respectively) [367]� Com-
parisons of the M. smegmatis and Mtb CYP142 
structures reveal more diversity between the or-

thologs from these organisms than is observed 
for the CYP125 structures� The CYP142A1 and 
CYP142A2 enzymes have a similar level (78 %) 
of amino acid sequence identity as was seen for 
the CYP125 orthologs� The CYP142A3 ligand-
free structure was found to contain cyclodextrin, 
the carrier molecule used to solubilize choles-
terol substrates� However, cholest-4-en-3-one 
substrate was not present in this structure� The 
cholest-4-en-3-one/CYP142A3 structure shows 
the G-helix interacting with the substrate and 
closing the active site cavity� The cholest-4-en-
3-one substrate is also bound in a conformation 
that disfavors C26 hydroxylation, as it is steri-
cally constrained by amino acid side chains in 
the substrate access channel, and oriented away 
from active site catalytic residues� Similar to CY-
P125A3, CYP142A3 also contains bulkier amino 
acids that interact with the base of the tetracy-
clic steroid ring and the top of the aliphatic side 
chain of cholest-4-en-3-one� These M. smegmatis 
CYP142A2 residues Met75, Phe77, and Phe255 
replace Leu72, Met74, Met222 in the Mtb CY-
P142A1 structure� It remains unclear whether 
these substitutions influence functions of these 
enzymes or their ability to bind different ste-
roids� M. smegmatis is a soil bacterium that may 
encounter a range of environmental sterols, such 
as plant phytosterols� In contrast, Mtb derives its 
cholesterol substrate from the human host im-
mune cells� It is thus possible that these enzymes 
have evolved divergently to facilitate oxidation 
of the specific types of steroid substrates encoun-
tered during host infection (Mtb) or growth in 
soil ( M. smegmatis) [367]�

CYP164A2 is a further P450 from M. smeg-
matis that has been structurally characterized 
[412]� The CYP164 family members are found 
in a small group of actinomycetes, including a 
few nonpathogenic and pathogenic mycobac-
teria, and in S. peucetis [19]� Interestingly, the 
CYP164 family also contains the sole P450 from 
M. leprae (CYP164A1), the etiological agent 
of leprosy� M. leprae is a curious mycobacterial 
pathogen that operates on a minimal gene set 
and possesses only approximately 40 % of the 
genome of Mtb [69, 413]� CYP164A1 and CY-
P164A2 share 60 % amino acid sequence iden-
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tity� CYP164A2 binds fatty acids with a prefer-
ence for the unsaturated (C18:2) linoleic acid, 
although the physiological substrate(s) in M. 
smegmatis are unknown� The structure of CY-
P164A2 was determined in the ligand-free (PDB 
3R9B) and substrate-bound (3R9C) forms [412]� 
CYP164A2 has a large active site channel that 
can accommodate two molecules of econazole in 
the inhibitor-bound complex structure, with ec-
onazole binding accompanied by structural reor-
dering and rearrangement of the BC loop to close 
the active site cavity� One econazole molecule is 
observed to coordinate directly to the heme iron, 
whilst the second molecule binds in a pocket 
formed by the amino acid side chains of the C-
helix [412]� Further characterization of this en-
zyme will be required to provide insights into the 
properties of CYP164A2 and of the M. leprae or-
tholog CYP164A1� It is important to understand 
the function of the only remaining P450 in M. 
leprae, and analysis of CYP164A1 should reveal 
a crucial role in the bacterium to explain why the 
pathogen has retained only this particular P450 
enzyme during the massive decay of its genome 
that has occurred during its evolution [69]�

CYP121A1 is an essential Mtb P450 that pro-
duces the metabolite mycocyclosin, via the oxi-
dative biaryl coupling of its cyclo-L-tyrosine-L-
tyrosine (cYY) substrate (Fig� 6�22a)� The cYY is 
in turn produced by the genetically adjacent CDP 
synthase that binds and cyclizes two molecules 
of L-Tyr bound to the enzyme as amino acyl 
transfer RNAs (tRNAs ) [65]� The CYP121A1 
crystal structure has been solved at very high 
resolution (1�06 Å), enabling novel insights into 
elements of general P450 structure� The structure 
of CYP121A1 was determined in the ligand-free 
(PDB 1N40) [187], fluconazole inhibitor-bound 
(PDB 2IJ7) [414], and cYY substrate-bound 
forms (PDB 3G5H) [65] (Fig� 6�24c)� Structures 
of CYP121A1 active site mutants (e�g�, PDB 
3CXZ and 3CY0) have also been determined 
[350], as have complexes of CYP121 with cYY 
analogs bound (PDB 4ICT and 4IPW) [415]� 
The high-resolution CYP121 structure revealed 
interesting P450 structural features, such as the 
presence of the heme in two distinct orientations, 
related by a 180° ‘flip’ of the cofactor� Further-

more, the heme was observed to be kinked at one 
of the pyrrole rings rather than adopting a planar 
structure� The large active site of CYP121A1 is 
constrained by a hydrogen-bonding network of 
amino acid side chains and water molecules, and 
amino acids Arg386 and Ser237 were implicated 
as likely participants in a proton delivery path-
way for catalysis [187, 350]� An extended net-
work of hydrogen bonds were identified that led 
from the protein surface to the active site, identi-
fying a clear route that would allow proton trans-
fer to iron–oxo intermediates in the CYP121A1 
catalytic cycle, as well as the replenishment of 
the protons from bulk solvent [187]� The fluco-
nazole-bound CYP121 structure also revealed a 
novel mode of inhibitor binding, showing that 
coordination of the heme iron occurs directly via 
a fluconazole triazole nitrogen (~ 30 % of the li-
gated molecules in the crystal), but also indirectly 
in a mode by which the triazole nitrogen bridges 
to the heme iron via the interstitial sixth water 
ligand that remains on the heme iron (~ 70 %)� 
These findings were consistent with data collect-
ed for fluconazole binding using UV-visible and 
electron paramagnetic resonance (EPR) spectro-
scopic methods [414]� CYP121 binds azole drugs 
extremely tightly (some azoles have nanomolar 
dissociation constants), particularly in the case of 
the imidazole derivatives (e�g�, econazole) rather 
than some of the newer, more water-soluble tri-
azole drugs (e�g�, fluconazole)� The CYP121 Kd 
values for a number of azole compounds mirror 
their minimal inhibitory concentration (MIC) 
potency profiles against Mtb, suggesting that 
CYP121A1 is a likely target for these drugs 
[416]� Moreover, the imidazole-derived azoles 
clotrimazole and econazole were shown to be 
effective against both persistent and multidrug-
resistant strains of Mtb [417, 418]� Econazole 
and clotrimazole were also shown to exhibit syn-
ergistic antimycobacterial activity when applied 
in combination with either of the commonly used 
front line anti-TB drugs rifampicin and isoniazid 
[419], and econazole was able to dramatically 
reduce the Mtb burden in the lungs and spleen 
of infected mice [417]� The use of azole drugs 
as agents to target CYP121A1 (and other Mtb 
P450s) is a tempting prospect� However, it may 
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be challenging to engineer these azole drugs to 
be more effectively tolerated orally, whilst still 
retaining their potency against Mtb� The CY-
P121A1 substrate-bound structure revealed cYY 
in the active site with one of the tyrosyl moieties 
pointing into the heme plane and hydrogen bond-
ing with key active site residues [65] (Fig� 6�24c)� 
This cYY-bound structure allowed the proposal 
of a model for the mechanism of C–C coupling to 
form mycocyclosin [65]� Substrate analogs have 
been utilized to explore the substrate specificity 
of CYP121A1 and to confirm its preference for 
cYY over other cyclic dipeptides, leading to the 
design of potential inhibitors specific for CY-
P121A1 [415]� In addition, the high-resolution 
crystal structures determinable for CYP121A1 
and its complexes have facilitated the application 
of fragment-based screening and drug design 
studies, and these approaches have been success-
ful in producing a CYP121A1 inhibitory scaffold 
that shows reasonable enzyme inhibition pro-
files at this preliminary stage of its development 
[420]� Further development and testing of such 
inhibitor molecules will be required in order to 
reveal their antibacterial potency and their poten-
tial in the development of CYP121A1 as a viable 
anti-TB drug target�

CYP130A1 is an orphan Mtb P450 with no 
known substrate or catalytic role to date [409]� It 
is one of the two P450s (including CYP141A1) 
whose genes are absent from the Mtb vaccine 
strain M. bovis BCG. CYP130A1 and CYP141A1 
are among the genes found in the various M. 
bovis BCG genomic ‘regions of deletion’ (RDs)� 
These RDs are considered to contain key genes 
responsible for virulence and have been mapped 
onto the Mtb genome� CYP130A1 is located in 
the RD13 (RD10 in Behr’s nomenclature) with 
CYP141A1 in RD12 (RD05) [421, 422]� In ad-
dition, the RD regions containing CYP130A1 
and CYP141A1 are also absent from the virulent 
M. bovis strain [421], and it is postulated that 
while these regions are not essential for bacterial 
growth per se, they may play a role in the infec-
tivity of Mtb towards the human host [423, 424]� 
The CYP130 family is present in mycobacteria 
and in certain Rhodococcus spp� CYP130A1 
( Rv1256c) is chromosomally adjacent to a TetR-

like transcription factor ( Rv1255c) and a putative 
flavin adenine dinucleotide (FAD)-containing 
lactate dehydrogenase ( Rv1257c)� Despite its 
genetic localization giving little clue to the func-
tion of the CYP130A1 enzyme, this genomic 
organization is retained in the CYP130 ortholog 
chromosomes� CYP130A1 has been structurally 
characterized in the ligand-free (PDB 2UUQ) 
and econazole-bound (PDDB 2UVN) forms� The 
ligand-free P450 crystallizes as a monomer in an 
open conformation� In contrast, the econazole-
bound CYP130A1 crystallizes as a dimer in a 
closed conformation, with an extensive dimer-
ization interface� The transition between the open 
and closed structures reveals a repositioning of 
the BC loop and FG helices, and econazole coor-
dinates directly to the heme iron via its imidazole 
nitrogen, making additional hydrophobic interac-
tions within the active site cavity� Solution-state-
binding studies reveal that econazole displays 
apparent cooperative binding to CYP130A1� 
This may arise from effects of econazole on the 
interactions between CYP130A1 monomers, po-
tentially promoting CYP130 dimerization in the 
ligand-bound state [409]� High-throughput com-
pound screening studies identified a number of 
type II ligands, predominantly heterocyclic ar-
ylamines, and crystal structures reveal ligation 
of the molecules to the heme iron via nitrogen 
atoms [108]� In the absence of a substrate or cata-
lytic role, it is presently difficult to ascertain what 
role CYP130A1 plays in Mtb� Routes to defin-
ing functions for such an ‘orphan’ P450 might 
include metabolic profiling studies, involving 
analysis of the differences in the metabolomes 
of wild-type (WT) and ΔCYP130A1 Mtb strains� 
This could allow the identification of novel me-
tabolites or compounds ‘missing’ in the gene 
deletion strain, or might pinpoint other changes 
in the metabolome that could provide clues as to 
how the P450 gene deletion impacts on known 
metabolic pathways�

The final Mtb P450 to be discussed is CY-
P51B1, the first Mtb P450 to be characterized� 
The discovery of a prokaryotic CYP51 [11, 425] 
was an exciting discovery in the P450 field and 
changed the perspective that CYP51 genes were 
confined to eukaryotes� It is now clear that the 
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sterol demethylase CYP51 enzymes are con-
served across all phyla [426]� Bacterial CYP51B 
family members have been found in other my-
cobacteria and actinomycetes, such as Strepto-
myces spp� and Rhodococcus spp. [19]� CYP51 
enzymes catalyze the 14α-demethylation of ste-
rol substrates (e�g�, lanosterol, dihydrolanosterol, 
and obtusifoliol) to produce demethylated sterols 
that are key components of membrane integrity 
[427] (Fig� 6�25)� Fungal CYP51 enzymes (par-
ticularly in Candida albicans and various Asper-
gillus spp.) are the targets of azole drugs, with 
inhibition of the sterol demethylases leading to 
disruption of membrane structure� A range of 
different azole scaffolds have been developed 
and many of these have seen successful appli-
cations in human and veterinary medicines, as 
well as in agriculture [428]� The identification of 
CYP51B1 in Mtb posed the obvious question as 
to whether the azole drugs would have activity 
against CYP51B1 and be effective against Mtb, 
particularly at a time when drug resistance in Mtb 
has become a major problem [429]� CYP51B1 
was shown to be a bona fide sterol demethyl-
ase that can catalyze oxidative demethylation 
of lanosterol, dihydrolanosterol, and (most ef-
fectively) the plant sterol obtusifoliol [22, 430] 
(Fig� 6�25)� However, in contrast to its eukary-
otic counterparts, CYP51B1 is nonessential to 
Mtb [348, 431]� Its role in Mtb thus remains ob-
scure and sterols are apparently not found in Mtb 
membranes� As discussed above, the azole drugs 
are effective in inhibiting Mtb growth, and may 
target a number of different Mtb P450 enzymes� 
CYP121A1 is one of the likely candidates, in 
view of its gene essentiality and its high affinity 
for a number of the azoles that are most effective 
against Mtb [416]� Various azoles also bind avid-
ly to CYP51B1 (though not as tightly as they do 
to CYP121A1), but in view of lack of evidence 
for CYP51B1 gene essentiality in vitro or in vivo 
it appears unlikely that CYP51B1 is a major tar-
get for azole drugs� However, it is possible that 
CYP51B1 has the ability to utilize host sterols 
as substrates and to modify (likely demethylate) 
them for other purposes within Mtb, as described 
for the cholesterol oxidase P450s above� How-
ever, at present the true physiological role of Mtb 

CYP51B1 remains unknown� The eukaryotic 
CYP51’s are membrane bound and the identifi-
cation of CYP51B1 as a soluble bacterial P450 
was thus of great interest� The soluble nature of 
CYP51B1 facilitated its crystallization and the 
structural characterization of the first CYP51 
P450 enzyme from Mtb, and thus led CYP51B1 
to become a model enzyme for its eukaryotic 
counterparts [408, 432, 433]� Detailed structural 
and mechanistic studies have since been done 
on CYP51B1 (e�g�, [434, 435])� The structure 
of CYP51B1 was solved in the ligand-free form 
(PDB 2BZ9) [436], and in forms bound to the in-
hibitor fluconazole (PDB 1EA1) [408] and to the 
substrate analog estriol (PDB 1X8V) [437]� The 
overall structures of CYP51B1 revealed a devia-
tion in the I-helix that results in a large kink [408] 
compared to various other P450 structures [24, 
112]� This I-helix kink is structurally perturbed 
upon ligand binding, enabling conformational 
changes that allow CYP51B1 to adapt to differ-
ent sized ligands [408, 438]� Structural analysis 
of CYP51B1 also defined two distinct channels 
that suggest discrete sites of substrate/product 
entry and exit through movement of the BC (par-
ticularly between the B′ and C helical sections of 
the P450) and FG regions [408, 437]� The first 
channel is similar to the conventional FG loop 
substrate entry regions that are perpendicular 
to the plane of the heme, as described for other 
P450s such as BM3 (e�g�, [24, 271])� The second 
channel is roughly parallel to the heme plane 
and is formed by the BC loop region, creating a 
chamber at the junction of the B′ and I helices, β 
strands β1–4 and β4–1,2, and the loop connecting 
the K-helix and β strand β1–4 [408]� CYP51B1 
( Rv0764c) is adjacent on the Mtb chromosome to 
a ferredoxin gene ( Rv0763c) that was shown to 
encode a 3Fe–4S ferredoxin (Fdx) that can sup-
ply electrons to the P450 (when partnered with a 
heterologous NAD(P)H-dependent flavoprotein 
reductase, or the Mtb FprA reductase), and that is 
a likely endogenous redox partner for CYP51B1 
[21, 430]� CYP51B1 undergoes rapid conversion 
from P450 to P420 in its ferrous–CO complex 
[425]� Anaerobic UV-visible spectral analysis 
of the reduction of CYP51B1 indicated that 
protonation of the cysteine thiolate occurred even 
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in the absence of the gaseous ligand, indicating 
instability of the thiolate ligand to heme iron re-
duction� The rate constant for cysteine thiolate 
protonation decreased on reduction of the estriol 
complex of CYP51B1, pointing to an important 
role for a physiological substrate in stabilizing 
the active form of CYP51B1 [21]� Compound 
screening studies identified both type I and type 
II ligands with affinity for CYP51B1 [436]� The 
leading type I ligand DHBP (4,4′-dihydroxy-
benzophenone) was crystallized in its complex 
with CYP51B1, and provided the most complete 
CYP51B1 structure to date� In preceding crystal 
structures, various parts of the CYP51B1 struc-
ture were seen to be flexible/disordered� A struc-
tural ‘ordering’ was observed in the CYP51B1–
DHBP complex, particularly in the BC loop re-
gion, and the structural arrangement of the CY-
P51B1–DHBP complex mimicked the substrate-
bound conformation of the P450 [438], similar 
to the estriol substrate analog-bound CYP51B1 
crystal structure [437]� The type II ligands EPBA 
(α-ethyl-N-4-pyridinyl-benzeneacetamide) and 
the related BSPPA ((2-(benzo[d]-2,1,3-thiadia-
zole-4-sulfonyl)-2-amino-2-phenyl-N-(pyridi-
nyl-4)-acetamide) also produced a degree of 
structural reordering, and crystal structures with 
these compounds demonstrated direct coordina-
tion of the ligand pyridine group to the heme 
iron [436]� Interestingly, EPBA was also shown 
to be inhibitory to the growth of Mtb [436]� A 
common N-(4-pyridyl)-formamide moiety was 
used to develop second-generation molecules for 
CYP51B1 structural characterization [439]� Fur-
ther elaboration of these scaffolds may lead to 
CYP51B1-specific inhibitors� In addition, these 
compounds could provide useful tools to study 
the effects of CYP51B1 inhibition on Mtb (e�g�, 
using transcriptomics or metabolomics) in ef-
forts to elucidate the P450’s physiological role� 
A number of the second-generation compounds 
were also shown to possess a greater affinity for 
the CYP51E sterol demethylase from Trypano-
soma cruzi than for CYP51B1 [439]� T. cruzi is a 
parasitic protozoan pathogen that is the causative 
agent of Chagas disease [440]� A CYP51B1-
derived molecule (α-[[(4-methylcyclohexyl)
carbonyl]amino]-N-4-pyridinyl-1H-indole-

3-propanamide) displayed selective and potent 
activity against T. cruzi in an infected mouse 
macrophage model [439]�

The Mtb P450s thus constitute an interesting 
group of enzymes with considerable diversity in 
substrate specificity and catalytic roles, span-
ning functions including secondary metabolism, 
respiratory regulation and the catabolism of 
steroids� Many of these P450 remain uncharac-
terized and the determination of their proper-
ties will presumably reveal further unexpected 
oxidative functions in this remarkable bacterial 
pathogen� The Mtb P450 cohort encompasses 
many exclusive P450 families, as well as con-
taining an evolutionarily widely conserved P450 
in the case of CYP51B1� It seems likely that 
Mtb has selectively assimilated and retained the 
CYP51B1 gene during its evolution as a human 
pathogen, but any key role in host–pathogen in-
teractions remains obscure� It may be the case 
that possessing an enzyme with a human-like 
ability to demethylate or otherwise modify host 
sterols is an important part of Mtb’s strategy for 
infection and survival in the human host� How-
ever, much research still remains to be done to 
define the main catalytic roles of CYP51B1 and 
several other Mtb P450s� Comparisons of all the 
Mtb P450 structures, depicted as an overlay of 
their carbon backbones (Fig� 6�26), help to dem-
onstrate the diversity of their secondary structur-
al elements, while also illustrating the retention 
of the overall tertiary structural fold that defines 
the P450 enzyme class� The observed structural 
differences depict diverse protein conformations 
which, although often appearing as subtle move-
ments of the P450 secondary structural elements, 
can lead to extensive variability of P450 struc-
ture and substrate selectivity (in terms of size, 
shape, and chemical character)� These dynamic 
conformational changes in P450 structures are 
required to allow the conserved P450-specific 
fold to adapt to a wide variety of substrates, to 
catalyze a range of oxidative reactions and to 
bind productively to substrate delivery systems 
(e�g�, PCP and ACP accessory proteins) and to 
diverse redox partners�
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6.2.4  P450s in Fungi

Fungi are a large and varied group encompass-
ing lower eukaryotic microorganisms such as 
yeasts, molds, and basidiomycetes, with more 
than a million species known� They play impor-
tant roles including the cycling of elements in the 
biosphere and the degradation of toxic environ-
mental pollutants [441]� Several databases have 
been established to support the systematic clas-
sification of fungal P450s arising from the large 
number of genomes already sequenced, and to 
accommodate data from ongoing and future fun-
gal genome sequencing projects [19, 165, 442, 
443]� Analyses of the genomes of fungal organ-
isms have revealed large numbers of P450 genes� 
Although most of these organisms have fewer 
P450s than found in plants and insects [19], fun-
gal P450s still show an enormous diversity of 
form and function, and serve numerous important 
physiological and ecological roles, being particu-
larly important in recycling of nutrients through 
breaking down a wide range of organic materi-
als [77]� At the time of preparation of this manu-
script, there are 8731 P450 genes across 113 
different families identified in the genomes of 
fungal and oomycete species that are present in 

the Fungal Cytochrome P450 Database (FCPD) 
[443]� Of these fungal genes, 6418 have been 
classified and annotated by David Nelson [19]�

Fungi can inhabit diverse ecological nich-
es and some of the fungal P450 enzymes were 
shown to contribute to fungal survival in such 
niches� The fungal P450s also possess a wide va-
riety of functions across diverse enzyme families 
[77]� Across the entire fungal kingdom, only the 
CYP51 and CYP61 family P450s are consistent-
ly conserved, with these enzymes having essen-
tial functions in the synthesis of the membrane 
sterol ergosterol [77, 444–447] (Fig� 6�25)� Fungi 
can have quite different numbers of P450s� As-
pergillus oryzae has 155 CYP genes (the number 
including 13 pseudogenes), while the pathogen 
A. fumigatus has only 74 [15, 448, 449]� The 
larger number of CYP genes in A. oryzae reflects 
gene duplication and lateral gene transfer events 
during the evolution of this organism [450]� 
However, not all fungal organisms contain large 
numbers of CYP genes� For example, the fission 
yeasts from Schizosaccharomyces spp�, including 
S. japonicus, S. pombe, and S. octosporus, con-
tain only the two CYP51 and CYP61 housekeep-
ing genes [19, 451]� Fungal P450s possess cata-
lytic activities that are essential to many primary 

Fig. 6.26  Multiple overlay of bacterial cytochrome P450 
structures� An overlay of bacterial P450 structures re-
veals large variability� A stereo-view is presented for the 
structural alignments of all the P450 enzyme structures 
from Mycobacterium tuberculosis present in the database, 
together with those of the three model microbial P450s 
shown in Fig� 6�2 (P450s EryF, BM3, and Cam)� Color 

coding of the structural elements is the same as in Fig� 6�1� 
Among the few regions that remain largely invariant 
across all the P450s is that containing the cysteine proxi-
mal ligand to the heme iron, along with the central I-helix 
region ( yellow) flanking the heme� The largest variations 
are observed in the main substrate-binding elements (i�e�, 
the BC loop in green and FG helices in blue)
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and secondary metabolite synthetic pathways, 
in addition to their roles in production of ergos-
terol [446, 452–454] (summarized in Table 6�5)� 
These include diverse roles in the generation of 
cell wall components [455–457]; in signaling 
factor biosynthesis [458, 459]; in the production 
of mycotoxins/phytotoxins (e�g�, aflatoxins, fu-
monisins, and trichothecenes); and in synthesis 
of gibberellin in endophytic fungi [460–464]� 
Further, important roles of fungal P450s involve 
the degradation of environmental pollutants, in-
cluding P450-mediated oxidation of endocrine 
disrupting agents (alkylphenols) and of recalci-
trant polycyclic aromatic hydrocarbons (PAHs) 
[76, 465, 466]�

6.2.4.1  The First Membrane-Bound P450 
Structure

A major breakthrough in the P450 field was 
the recent publication by Monk et al� that de-
scribes the structure of the sterol demethylase 
CYP51F1 from Saccharomyces cerevisiae [467]� 
CYP51F1 is a membrane-bound lanosterol 
14α-demethylase that catalyzes the first step in 
ergosterol biosynthesis [468, 469] (Fig� 6�25)� 
This enzyme is a major drug target and is inhib-
ited by several azole drugs that bind tightly to the 
enzyme and use their imidazole/triazole groups 
to coordinate to its heme iron [426, 470]� The 
CYP51F1 structure is the first full-length P450 
crystal structure that includes the N-terminal 
membrane-spanning region� This region is absent 
in the soluble prokaryotic and archaeal P450s, 
and is usually truncated to ease the handling of 
membranous P450 proteins during in vitro stud-
ies, and to help facilitate their crystallization 
[471]� Many P450 substrates, particularly in the 
eukaryotic enzymes, are hydrophobic molecules 
such as sterols, fatty acids, and lipophilic drugs� 
These are likely delivered to the relevant P450 
enzyme via the lipid bilayer [472]� The struc-
ture of CYP51F1 (Fig� 6�27) displays a clearly 
defined and well-ordered transmembrane heli-
cal domain that links CYP51F1 to an N-terminal 
amphipathic helix that forms extensive contacts 
with other CYP51F1 molecules within the crys-
tal asymmetric unit� The amphipathic N-terminal 
helix, the transmembrane region, and the core 

CYP51F1 structure sit as three distinct domains� 
The structural organization of the N-terminal 
helix and its distribution of hydrophobic/hydro-
philic residues suggest that the hydrophobic face 
of this helix may lie naturally along the inner side 
of the endoplasmic reticulum membrane� At the 
other side of the membrane, polar interactions 
help to constrain the orientation of the catalytic 
(P450) domain and to position it such that por-
tions of the loop region between the F–F′ and G 
helices become buried in the membrane� These 
data are consistent with preceding experiments 
that indicate that this part of the P450 structure is 
important for membrane association [472–474]� 
It is proposed that a cluster of charged residues at 
the N-terminal of the G-helix interact with phos-
phate head groups in the lipid bilayer, placing the 
substrate-binding channel of the P450 at the cyto-
plasmic surface of the bilayer to enable access to 
the membrane-associated sterol substrate [467]� 
The lanosterol-bound CYP51F1 structure shows 
electron density that locates the position of the 
lanosterol in the active site cavity (although it is 
not completely defined), with the P450 heme iron 
likely in the ferrous–oxy form, presumably as a 
result of X-ray-mediated heme iron reduction� 
In addition, there is electron density observed 
that is consistent with a second lanosterol-sized 
molecule located in a secondary binding site, and 
this may identify a substrate-sampling mode or 
a product exit channel� Mapping of drug resis-
tance-associated amino acid substitutions from 
azole-resistant clinical isolates of Candida spp., 
Aspergillus spp., Cryptococcus neoformans, and 
Ajellomyces capsulatus reveals the locations of 
these mutations in the fungal CYP51F1 structure� 
For instance, the commonly occurring azole re-
sistance mutation, Y132F/H in C. albicans (Y140 
in CYP51F1) [475, 476], may exert its effect (at 
least in part) due to the loss of a heme-binding 
hydrogen bond that could modify the heme ori-
entation and diminish susceptibility towards 
azole binding [467]� The CYP51F1 structure rep-
resents an exciting development in the structural 
biology of P450s and is a major step forward in 
our understanding of membrane interactions and 
their effects on P450 structures� The data provide 
new insights into CYP51 structure/function and 
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could provide important information relevant to 
new antifungal drug development against a prov-
en target P450 enzyme� Detailed descriptions of 
the role of fungal CYP51s, their inhibition by 
azole drugs and mutations that confer drug re-
sistance are given in previous reviews [426, 447, 
477]�

6.2.4.2  The Ppo Enzymes
An intriguing and important family of fungal 
P450s are the Ppo proteins that are involved in 
the production of oxylipins� The Ppo’s partici-
pate in the regulation of the sexual and asexual 
fungal developmental life cycles, particularly in 
sporulation, and via their production of fungal 
oxylipins� These are oxygenated metabolites of 
linoleic and oleic acids [478], and are termed pre-
cocious sexual inducers (psi factors) [459, 479]� 
The psi factors are also involved in formation of 
mycotoxins that are virulence factors for the fun-
gal hosts [480]� Oxylipins are generally derived 
as products of lipid peroxidation reactions [481], 

and are ubiquitous hormone-like compounds 
shown to have pivotal roles as signaling mol-
ecules [482–485]� In plants and mammals, pro-
duction of oxylipins is a multistep process that 
involves separate oxidation reactions, followed 
by isomerization of hydroperoxy intermediates 
by distinct proteins� The Ppo’s are a unique en-
zyme class that has evolved to form a natural 
fusion of an N-terminal heme peroxygenase/di-
oxygenase, and a C-terminal isomerase P450 in 
a single polypeptide [479, 480, 486]� Three oxi-
dase/isomerase Ppo enzymes (PpoA, PpoB, and 
PpoC) have been identified in Aspergillus spp� 
[480, 481, 487], and were shown to oxidize their 
unsaturated fatty acid substrates to 8R- and 10R-
hydroperoxy intermediates, with the former un-
dergoing a P450-mediated rearrangement to the 
5,8-dihydroxy derivative [488, 489]� These reac-
tions, catalyzed by a single fungal enzyme, re-
semble those in the typical oxylipin biosynthetic 
pathways described in plants and mammals [490, 
491]� PpoA (CYP6001A1) from A. nidulans 
was the first enzyme of this class to be charac-
terized, and was shown to catalyze oxidation of 
linoleic acid (18:2n − 6) (by the dioxygenase do-
main) to (8R)-hydroperoxyoctadecadienoic acid 
((8R)-HPODE), with subsequent isomerization 
to (5S,8R)-dihydroxy-9Z,12Z-octadecadienoic 
acid ((5S,8R)-DiHODE) catalyzed by the P450 
domain [488]� The P450 domain catalyzes a 
molecular rearrangement reaction that needs no 
external reducing equivalents, similar to those 
performed by the plant CYP74A (AOS) and the 
mammalian CYP5A (thromboxane synthase) and 
CYP8A (prostacyclin synthase) P450s� These 
P450s use fatty acid peroxides to supply both 
the substrate and the oxygen activator in order 
to bypass the canonical P450 catalytic cycle and 
to form compound II [113, 181, 182, 492, 493] 
(Fig� 6�4)� A similar reaction also occurs in the 
related 7,8-linoleate diol synthase from Gaeu-
mannomyces graminis that generates 7,8-dihy-
droxy linoleic acids [494]� The second A. nidu-
lans Ppo enzyme, PpoC (CYP6001C1), has 45 % 
amino acid sequence identity to PpoA and was 
found to be a linoleate 10R-dioxygenase, cata-
lyzing oxidation of linoleic acid to the (10R)-hy-
droperoxyoctadecadienoic acid ((10R)-HPODE) 

Fig. 6.27  The structure of a membrane-bound microbial 
P450. The crystal structure of the intact yeast ( S. cere-
visiae) CYP51F1–lanosterol complex is shown, with 
the transmembrane spanning N-terminal region in dark 
orange and the amphipathic N-terminal helix in light or-
ange� The P450 is oriented such that the substrate-binding 
region faces the membrane (indicated by a blue box), so 
that the hydrophobic substrate can be accessed directly 
from the lipid bilayer [467]
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[17, 489]� Despite the presence of an apparent 
P450 domain, no isomerization activity could be 
shown� Amino acid sequence analysis and align-
ments revealed that the PpoC P450 domain does 
not retain the conserved P450 cysteine residue 
(with a glycine substituted at this position), and 
thus is not a functional P450 oxidase [17, 489]� 
The role of the third recognized Ppo enzyme 
(PpoB, CYP6001B1) is still unclear [489]� It was 
originally proposed that it may be involved in the 
metabolism of 8,11-DiHODE ((8R,11S)-dihy-
droxy-(9Z,12Z)-octadecadienoic acid), a product 
that was detected in the Ppo-containing Aspergil-
lus sp� during linoleic acid oxygenation studies 
[487, 495]� However, gene disruption studies 
have shown that this metabolite is still produced 
in the absence of PpoB� It therefore appears that 
the 8,11-DiHODE synthase in this organism 
is distinct from PpoB [496]� The production of 
8,11-DiHODE is repressed by common P450-in-
hibiting azole drugs, which may indicate that an-
other unidentified P450 is involved in formation 
of this metabolite� It appears unlikely that PpoA 
is the P450 that also produces 8,11-DiHODE� 
However, in studies of individual ppoA, ppoB 
and ppoC insertion mutant strains of A. fumiga-
tus strain AF293, it was found that while radial 
growth rates of the mutant and WT strains were 
similar, the ppoC mutant strain was affected in 
conidial development, germination, and oxida-
tive stress tolerance, and also showed increased 
uptake and destruction by alveolar macrophages 
[497]� As is the case for PpoC, PpoB also has a 
nonfunctional P450 domain in which a serine 
residue replaces the conserved cysteine� The ab-
sence of the cysteine residue is also seen in PpoB 
proteins from other Aspergillus spp� and it may 
be that a nonfunctional Ppo P450 domain has 
been retained through evolution in Ppo’s B and 
C for reasons other than catalytic activity, per-
haps to preserve a structural fold crucial for the 
activity or specificity of the dioxygenase domain� 
Genes encoding Ppo orthologs have been found 
in a variety of Aspergillus spp� [480, 487, 488, 
495, 498] and in other sequenced fungal genomes 
[443], and BLAST searches reveal the conserva-
tion of orthologous genes throughout the asco-
mycetes� The preservation of the Ppo enzymes 

and their orthologs suggests that the psi factors, 
and likely Ppo-derived metabolites, play pivotal 
roles in fungal signaling, growth, and develop-
ment� They also influence the fungal virulence 
and ability to infect mammalian and plant hosts� 
Some further aspects of the biochemistry of the 
Ppo enzymes are described in the section ‘Micro-
bial P450-(redox) partner fusion enzymes’�

6.2.4.3  P450s in the White Rot Fungus 
Phanerochaete Chrysosporium

There is extensive interest in organisms able to 
degrade polymers such as cellulose and lignin in 
order to exploit these natural resources for pro-
duction of useful chemicals� The white rot basid-
iomycete fungi are able to degrade all of the com-
ponents of plant cell walls, and are thus much 
studied for their biotechnological potential in this 
area [499]� The white rot fungi are so named due 
to their ability to degrade lignin, leaving color-
less cellulose� Key enzyme catalysts involved are 
extracellular laccases along with lignin and man-
ganese peroxidases [499]� In contrast, the brown 
rot basidiomycetes break down hemicellulose 
and cellulose components of plant cell walls, 
but do not degrade the lignin polymer (although 
modifications such as demethylation and pheno-
lic hydroxylations are observed) [499–501]� In 
comparison to the white rot fungi, relatively little 
is known about the cellular biology of brown rot 
basidiomycetes� However, they are considered to 
have evolved from the white rot basidiomycetes, 
and probably to have more sophisticated second-
ary metabolism in comparison to white rot fungi, 
likely requiring a larger cohort of P450 enzymes 
in most cases [79, 81, 499, 502]� The white rot 
basidiomycete Phanerochaete chrysosporium 
has become a model organism in this area, and 
was shown to have an extensive number of P450 
enzymes (151 CYP genes, compared to ~ 250 in 
the brown rot fungus Postia placenta) [79, 80, 
502, 503]� A single CPR gene as well as genes 
encoding cytochrome b5 and b5 reductase are also 
present in P. chrysosporium [503]�

The P450s in P. chrysosporium have been clas-
sified into 16 distinct gene clusters, and have been 
grouped into 31 different gene families [77, 503]� 
These include a single CYP51 sterol demethylase 
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family member, but also large numbers of CYP 
genes classified into the CYP512 (15), CYP5035 
(13), and CYP5144 (35) families [77]� There are 
also seven members of the CYP505 family, whose 
most prominent fungal member is P450foxy, a 
fatty acid hydroxylase P450–CPR fusion enzyme 
[504]� In efforts to define catalytic activities of 
the P. chrysosporium P450s, several CYP genes 
were co-expressed in S. cerevisiae with the host 
CPR and screened for activities against a wide 
range of organic compounds [74, 502]� Oxidative 
activities were identified towards PAHs such as 
fluorene (CYPs 5136A1, 5136A3, and 5150A2), 
dibenzothiophene (e�g�, CYPs 502B1, 512G2, 
5144A13, and 5147A3), biphenyl (e�g�, 5136A1, 
5138A1, 5144A10, and 5145A3), and naphtha-
lene (e�g�, CYPs 5036A3, 5136A1, 5141C1, and 
5150A2) [74, 502] (Fig� 6�28)� Findings here are 
consistent with the potential of P. chrysosporium 
P450s to degrade PAH environmental pollutants, 
and with the theory that the basidiomycete fungi 
have evolved a survival strategy that involves 
an array of oxidative enzymes that enable them 
to degrade and utilize several xenobiotic com-
pounds in addition to plant-derived compounds 
that include lignin and its breakdown products 
(including phenolics) [77]� Among other use-
ful activities in the P. chrysosporium P450s are 
oxidation of steroids� CYP512 family members 
from both P. chrysosporium and P. placenta were 
found to oxidize progesterone and testosterone� 
Moreover, the P. chrysosporium P450s CYP512N 
and CYP512P oxidize both testosterone and the 
dehydroabietic acid, which likely relates to the 
structural relationships between the steroid and 
abietane diterpenoids from plants [74, 502]� Vari-
ous other P. chrysosporium P450s were shown to 
oxidize compounds such as 7-ethoxycoumarin, 
diclofenac, compactin, and naproxen [499]� CY-
P5150A2 was also expressed and purified from 
E. coli, and shown to bind 4-pentylbenzoic acid 
tightly� For this P450, activity was also demon-
strated with cytochrome b5 and b5 reductase part-
ners in the absence of CPR [499, 505, 506]�

While relatively little remains known on the 
structure and physiological function of the P. 
chrysosporium P450s, it is clear that they offer an 
array of oxidative activities that enable the oxida-

tive degradation of a vast number of compounds 
emanating both from breakdown of lignin, and 
otherwise occurring naturally in the soil� There is 
clearly great potential in identifying their scope 
of catalytic activities in order to better understand 
how lignin-degrading fungi process the plant me-
tabolites, and with respect to future application of 
these P450 enzymes for biotechnologically use-
ful catalytic transformations�

6.2.4.4  Other Fungal P450 Reactions 
of Physiological and 
Biotechnological Importance

There are numerous examples of yeast and fun-
gal P450s with activities crucial to survival of the 
organisms, or with potential for exploitation in 
biotransformations� For greater detail, the reader 
is directed towards recent reviews in the area that 
cover in depth the functional, structural, and evo-
lutionary properties of these P450s (e�g�, [446, 
451, 454]� In addition to the key role of CYP51 
enzymes in sterol demethylation (detailed else-
where in this chapter), the CYP61 P450 was char-
acterized in S. cerevisiae and Candida glabrata 
as a Δ22-desaturase that introduces a side-chain 
double bond in the process of ergosterol biosyn-
thesis� CYP61 was also implicated in oxidative 
detoxification of benzo[a]pyrene through pro-
duction of 3-hydroxy benzo[a]pyrene [445, 453, 
507, 508]� The CYP52 family of P450s is found 
in Candida spp� (e�g�, C. tropicalis and C. lipo-
lytica) that assimilate alkanes, and these P450s 
catalyze a rate-limiting step in hydroxylation of 
n-alkanes and fatty acids—which are then further 
metabolized via the β-oxidation pathway (e.g., 
[509–511]� Other key functions include the in-
volvement of CYP58 family P450s in the syn-
thesis of aflatoxins (e�g�, [512] Wen 2005 [513]), 
and of the P450s from the CYP58, 65, 68, and 
526 families in synthesis of sesquiterpene tricho-
thecene mycotoxins in organisms such as Fusar-
ium graminearum and F. sporotrichoides [446, 
514]� Targeting P450s involved in making such 
toxins is clearly an attractive route to prevent the 
formation of such toxins, and in this respect the 
multiple early oxidation steps catalyzed by the 
CYP58 enzyme in trichothecene biosynthesis 
make this P450 an obvious target [515]�
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Among other important roles for fungal P450s 
are the functions of CYP55 enzymes in denitri-
fication through generation of dinitrogen oxide 
(N2O) from two nitric oxide molecules in a re-
action using only NAD(P)H and no exogenous 
redox partners (e�g�, in F. oxysporum and C. 
tonkinense; see the section ‘Fungal nitric oxide 
reductases’) [516, 517], and the contributions of 
CYP504A1 and B1 in degradation of xenobiotic 
aromatic compounds—as shown in A. nidulans 
grown on phenylacetate and hydroxylated deriva-
tives� CYP504A1 converts phenylacetate to 2-hy-
droxyphenylacetate, while CYP504B1 converts 
3-hydroxyphenylacetate and 3,4-dihydroxyphen-
ylacetate to homogentisate and 2,3,5-trihydroxy-
phenylacetate, respectively, leading to cellular 
metabolism of these molecules [518, 519]�

It is clear that the repertoire of oxidative cata-
lytic activities and number of P450s in yeasts and 
fungi is vast, and that there are obvious applica-
tions for several of these enzymes� To some ex-
tent, the membrane-bound nature of these P450s 
and their CPR partner has made their detailed 
structural and mechanistic analysis more chal-
lenging� However, recent breakthroughs includ-
ing the development of nanodisk technology and 
the successful crystallization and structural eluci-
dation of the S. cerevisiae CYP51 membrane pro-
tein point to future breakthroughs in our under-
standing of the structural organization of other 
yeast/fungal P450s [467, 520]�

6.3  Redox Partner Systems and Their 
Diversity in Microbes

For many years, the type of redox protein systems 
that serve to pass NAD(P)H-derived electrons to 
cytochrome P450 enzymes were thought to be 
few—and limited mainly to two classes—essen-
tially being ‘bacterial’ (class I) and ‘eukaryotic’ 
(class II) [521, 522]� The bacterial system com-
prises an FAD- and NAD(P)H-binding FDR and 
an FD, with both components being cytoplasmic, 
and as typified by the well-studied PDR and the 
2Fe–2S cluster-binding PD in the Pseudomonas 
putida P450cam system [523]� This type of sys-
tem also appears in the eukaryotic mitochondrion 

(notably in the mammalian adrenal gland, and 
consistent with the endosymbiont theory of the 
evolution of this organelle), and is associated 
with driving catalysis of various P450s involved 
in steroid hormone biogenesis and degradation 
[524, 525]� Here, the P450s are anchored in the 
mitochondrial membrane, as is the NADH-de-
pendent ADR, with the FD component being the 
cytoplasmic 3Fe–4S cluster-binding adrenodoxin 
[526]� The eukaryotic class II system exploits the 
NADPH-dependent, FAD- and flavin mononu-
cleotide (FMN)-binding CPR, which is anchored 
in the endoplasmic reticulum by an N-terminal 
transmembrane domain [527]� The colocation 
with P450s enzymes again facilitates productive 
interactions� However, from the 1980s onwards 
the greater complexity and variability of micro-
bial P450 redox systems was increasingly recog-
nized, first through studies by Armand Fulco’s 
group on the Bacillus megaterium P450 BM3 
(CYP102A1) fatty acid hydroxylase (see the 
section ‘Microbial P450-(redox) partner fusion 
enzymes’ for more details on the catalytic mech-
anism of P450 BM3)� The BM3 system results 
from fusion of a cytoplasmic P450 (N-terminus) 
to a soluble CPR (again devoid of an N-terminal 
membrane anchoring region) via a flexible pep-
tide linker region, the length of which appears to 
be more important than its specific amino acid 
composition [528, 529]� It is thus an evolution-
ary adaptation of the eukaryotic class II system, 
and has a much higher catalytic rate than the 
eukaryotic class II enzymes [530]� As described 
in the following section, BM3 is predominantly 
dimeric in solution [531, 532], suggesting that 
the inter-domain linker length is optimized to 
facilitate efficient communication of the CPR 
FMN domain with both its electron donor (the 
CPR FAD cofactor) and its acceptor (the P450 
domain heme iron)� BM3 and related enzymes 
catalyze rapid oxidation of fatty acids near the 
ω-methyl group (typically hydroxylation at ω-1 
to ω-3 positions), but despite being extensively 
studied to understand its molecular properties, 
BM3’s physiological function remains obscure, 
although suggestions have been made—e�g�, in-
volvement in metabolism of toxic unsaturated 
fatty acids derived from plants [533]�
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The ‘floodgate’ of complexity of microbial 
P450 redox systems has steadily opened since the 
discovery of BM3 as the first example that violat-
ed the class I/class II paradigm� In recent years, 
the numbers of novel systems formed as genetic 
fusions of partial or complete redox partner sys-
tems with their cognate P450s has expanded 
considerably� A major factor underlying this ex-
pansion of novel fusion systems is the advent of 
high-throughput microbial genome sequencing, 
enabling the rapid identification of such gene fu-
sions using bioinformatics tools, e�g�, the CDART 
(Conserved Domain Architecture Retrieval Tool) 
program which searches for conserved domain 
organization when provided with the sequence 
of, e�g�, a particular type of P450-redox partner 
fusion enzyme [534]� However, a consequence 
here is that many such recently annotated P450-
partner fusion enzymes remain uncharacterized 
(see the section ‘Microbial P450-(redox) partner 
fusion enzymes’)� In contrast, identification of 
new types of P450 redox systems where novel 
types of nonfused electron carrier proteins are 
used has been achieved mainly through direct 
experimentation� Key examples are discussed 
below, with Fig� 6�29 illustrating key pathways 
of electron transfer to cytochromes P450�

6.3.1  Diverse FD Partners

The model system P450cam has its well-charac-
terized PDR and PD partners encoded together 
on the CAM plasmid, along with other genes 
that enable the Pseudomonas putida host to grow 
on camphor as a sole carbon source [535]� The 
2Fe–2S cluster in PD has a midpoint reduction 
potential ( Em) of − 240 mV (vs. the normal hy-
drogen electrode, NHE) for the [2Fe–2S]2+ to 
[2Fe–2S]1+ redox couple� This value is nice-
ly poised such that NADH-derived electrons 
( Em = − 320 mV) can be transferred from the 
PDR flavoprotein ( Em = − 230 mV for the FAD/
FADH2 couple in NAD+ -bound PDR) to reduce 
PD [536]� Thereafter, the reduction of P450cam 
itself is regulated by substrate binding, with the 
Em for the P450 heme Fe3+/Fe2+ couple being ap-
proximately − 300 mV in the absence of substrate, 

and increasing to approximately − 170 mV in the 
camphor-bound form [537]� Crystallographic 
studies and molecular modeling revealed that the 
PD/P450cam partner-binding interface occurs at 
the proximal face of the heme cofactor, and oc-
curs across a relatively small interaction interface 
in which there is strong shape complementarity 
between the partners (Fig� 6�30a)� A similar type 
of recognition process likely governs productive, 
transient interactions between other FDs and their 
microbial P450 partners; for instance, in the case 
of the Pseudomonas sp� 2Fe–2S ferredoxin ter-
predoxin, which is the electron donor to P450terp 
(CYP108A1) that functions in the oxidation of 
α-terpineol to facilitate its hydroxylation for en-
ergy extraction by the bacterium [120]� A 2Fe–2S 
ferredoxin (FdbisD) from Sphingomonas sp� strain 
AO1 was also shown to support the activity of the 
P450bisD in a pathway for oxidative degradation 
of bisphenol A, whereas a heterologous spinach 
FDR/FD system supported only very weak ac-
tivity [538]� However, various studies have also 
reported that microbial P450 activity can be driv-
en by the heterologous spinach FDR and 2Fe–
2S FD, including work by Makino et al�, who 
showed that the Streptomyces griseus CYP154C3 
catalyzes monooxygenation of a range of steroids 
using this system [539]� However, other types of 
FD were also reported to support the activities 
of bacterial and archaeal P450 enzymes� For in-
stance, 3Fe–4S FD are located chromosomally 
adjacent to two P450 enzymes (CYP51B1 and 
CYP143) in M. tuberculosis [540]� The Fer1 pro-
tein (product of gene Rv0763c, adjacent to CY-
P51B1) protein was expressed and purified from 
E. coli, and shown to support electron transfer to 
CYP51B1, and the P450-dependent oxidation of 
dihydrolanosterol [21]� In unpublished work, the 
Rv1786 gene product (Fer2) was also expressed 
and shown to bind a 3Fe–4S cluster by EPR stud-
ies (McLean KJ et al�, unpublished work), and 
should thus be the preferred partner of the un-
characterized M. tuberculosis CYP143 P450� In 
addition, Guengerich’s group characterized redox 
partner specificity for the S. griseus CYP105D5 
in fatty acid hydroxylation, investigating interac-
tions with each of the six 3Fe–4S FD from the 
bacterium, and establishing that best activity was 
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achieved with the FDR1 FDR and the ferredoxin 
Fdx4 [541]� These data suggest that, in microbes 
with multiple FD genes, there is likely to be se-
lectivity for preferred P450 partners, and that 
interactions between FDR and FD proteins may 
also vary in efficiency� In the P450 Biol enzyme 
(CYP107H1) from Bacillus subtilis, early stud-
ies demonstrated that fatty acid hydroxylation by 
the P450 can be driven by an exogenous ( E. coli) 
or host FDR together with a 4Fe–4S FD from 
the host bacterium (Fer)� However, other types 
of redox partners are also able to support fatty 

acid hydroxylation by BioI [542, 543], while in-
teractions with other another (nonredox) protein 
results in a different catalytic outcome involving 
lipid C–C bond cleavage (see below for further 
information)� Thus, each of the ‘common’ forms 
of FD was shown to support catalytic functions 
of P450s from the same organisms, although sur-
rogate FDR/FD partners can also support bacte-
rial P450s, often with comparable (or higher) ef-
ficiency in vitro, for instance, in the oxidation of 
4-cholesten-3-one by the Mycobacterium smeg-
matis CYP125A3 and CYP142A2 P450s [367]�

Fig. 6.29  Diagram of P450 electron transfer pathways 
and cofactors� The schematic shows the extent of cur-
rent knowledge on major pathways of heme reduction in 
P450 enzymes� The main pathways are indicated by thick 
blue arrows� Going clockwise from the top: (i) The class 
II redox system with electrons donated by NADPH and 
passed through FAD and then FMN cofactors in CPR to 
the P450� Alternatively, electron transfer through an FAD-
binding flavodoxin reductase and a flavodoxin, as seen 
for P450cin with cindoxin [559]� (ii) Direct reduction of 
P450 heme iron by NAD(P)H, as seen in the CYP55A1 
nitric oxide reductase from Fusarium oxysporum [610]� 
(iii) Heme iron reduction from a 2Fe–2S ferredoxin, either 
using a separate NAD(P)H-dependent ferredoxin reduc-
tase (the class I P450 redox system) or from NAD(P)H 
via an FMN cofactor contained within the same phthalate 
dioxygenase reductase-like (PDOR) protein as the fer-
redoxin in the CYP116B family P450-PDOR fusion pro-
teins [141]� (iv) Direct conversion of the ferric heme iron 

to the compound 0 (ferric–hydroperoxo) form, as seen 
naturally in P450 peroxygenases such as the fatty acid 
decarboxylase OleT [575]� (v) Class I-type system using 
a 3Fe–4S ferredoxin, as seen in the case of the M. tubercu-
losis CYP51B1 and its ferredoxin partner (Rv0764c, Fer) 
[21]� (vi) P450 reduction by cytochrome b5 in eukaryotic 
P450 systems� Due to its positive potential, it is likely 
that b5 delivers the second electron required for oxida-
tive catalysis, with electrons derived from NADH via an 
FAD-binding b5 reductase [505]� (vii) class I-type system 
using a 4Fe–4S ferredoxin, as is observed for fatty acid 
hydroxylation by B. subtilis P450 BioI when driven by an 
NAD(P)H-dependent FAD-binding reductase [543]� (viii) 
non-NAD(P)H-dependent archaeal redox partner system 
using a pyruvic acid and CoA-dependent reductase sys-
tem and a 7Fe (4Fe–4S and 3Fe–4S cluster containing) 
ferredoxin [95]� NADPH nicotinamide adenine dinucleo-
tide phosphate, FAD flavin adenine dinucleotide, FMN 
flavin mononucleotide
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Recently, an unusual type of 3Fe–4S clus-
ter was identified in an FD (HaPuxC) from the 
Gram-negative purple nonsulfur bacterium Rho-
dopseudomonas palustris HAa2� HaPuxC has 
a histidine residue in a position in its iron–sul-
fur cluster-binding motif that is normally occu-
pied by the fourth iron-coordinating cysteine in 
4Fe–4S iron–sulfur clusters, or by an alanine or 
a glycine in typical 3Fe–4S ferredoxins [544]� A 
similar histidine-containing motif was observed 
in other 3Fe–4S ferredoxins, including ones from 
mycobacterial strains [21, 545]� HaPuxC binds a 
3Fe–4S cluster and the protein has a fold typical 
of 3Fe–4S and 4Fe–4S ferredoxins, but its crystal 
structure reveals some differences (e�g�, length of 
beta sheet elements) compared to other FD� The 
histidine is positioned close to where a fourth iron 
atom would be found in a 4Fe–4S cluster, but its 
side chain is oriented away for the cluster and the 
imidazole group nitrogen atoms make hydrogen-
bonding interactions with glutamate carboxyl-
ate oxygens on an adjacent loop, and with S2 of 

the iron–sulfur cluster� Interestingly, this type of 
FD is encoded adjacent to CYP194A subfamily 
P450 genes in another R. palustris strain and in 
Bradyrhizobium japonicum USDA110, indicat-
ing specificity of this type of FD for these CY-
P194A P450s [544]� An even more unusual type 
of FD (a Zn- and 7Fe-containing FD) was also 
reported to be part of a non-NAD(P)H-dependent 
redox system driving the Sulfolobus solfataricus 
CYP119A2 enzyme, as discussed further in the 
section ‘P450s from thermophilic microbes and 
novel redox systems for Sulfolobus P450s’ [95]�

6.3.2  Flavodoxins as Bacterial P450 
Redox Partners

Given that the general structure of the FMN-
binding domain of eukaryotic CPR enzymes 
is highly related to that of microbial flavodox-
ins, it is perhaps not surprising that bacterial 
flavodoxins have been shown to act as redox 

Fig. 6.30  P450 protein/partner complexes� A cartoon 
view is shown for two crystal structures documenting 
distinct P450 protein/partner protein interactions� Panel 
A depicts the P450cam (CYP101A1)–putidaredoxin (PD) 
complex with the redox partner depicted in orange (PDB 
4JWS)� The 2Fe–2S cluster is in close vicinity of the 
heme, with the PD docking on the proximal face of the 
P450 near to the fifth ligand cysteinate–iron bond region 
[770]� In contrast, panel B shows the interaction observed 

between P450 BioI (CYP107H1) and its acyl carrier 
protein (ACP) partner linked to the lipid substrate (PDB 
3EJB, 3EJD, and 3EJE) [131]� In this case, the partner 
protein binds at the opposite side of the P450, near the 
BC loop and FG helices� This suggests that, in the case of 
BioI, a ternary complex between BioI–ACP and the elec-
tron transfer partner remains possible, and is likely essen-
tial to facilitate the oxidative cleavage of the ACP-bound 
lipid substrate
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partners for P450s from both homologous and 
heterologous organisms [115, 546]� Jenkins 
and Waterman reported that the bovine steroid 
17α-hydroxylase/17,20-lyase P450 enzyme 
(P450c17, CYP17A1) heterologously expressed 
in E. coli was functional in this bacterium, and 
went on to identify the enzyme system responsi-
ble as the NADPH-dependent flavodoxin (ferre-
doxin) reductase (FLDR) and flavodoxin (FLD)� 
Further evidence for the binding of flavodoxin to 
P450c17 came from a type I spectral shift (low 
spin towards high spin) in the P450 ferric heme 
iron induced upon titration with the E. coli FLD 
( Kd ~ 0.2 μM) [547]� The productive interaction 
of the FLD was shown to be more sensitive to 
elevations in ionic strength of the medium com-
pared to that of the rat CPR enzyme, and based on 
the accumulation of the blue semiquinone (SQ) 
form of the E. coli FLD in in vitro assays with 
P450c17, it was concluded that the FLD SQ was 
the relevant electron donor to the P450 [548]� 
However, based on thermodynamic grounds, re-
duction of the P450 heme iron by the E. coli FLD 
hydroquinone (HQ) ( Em = − 433 mV for the SQ/
HQ couple, compared to − 254 mV for the OX/SQ 
couple) may be more likely, at least for the first 
electron transfer to the heme iron [549]� E. coli 
FLDR/FLD were also shown to support succes-
sive oxidations of pentalenene to pentalen-13-al 
via pentalen-13-ol in an NADPH-dependent 
manner, catalyzed by the Streptomyces avermitil-
is CYP183A1 in the bacterial pathway to biosyn-
thesis of the sesquiterpene lactone antibiotic pen-
talenolactone [550]� Other P450 systems shown 
to be supported by E. coli FLDR/FLD include 
CYP152A1 from Clostridium acetobutylicum 
(which catalyzes α-hydroxylation of fatty acids), 
although this P450 can be driven more effective-
ly by the P450 BM3 reductase domain, as well as 
by hydrogen peroxide [551]� E. coli FLDR/FLD 
also support the catalysis of S. coelicolor A3 (2) 
CYP170A1 in successive oxidations of the tricy-
clic hydrocarbon epi-isozizaene, producing first 
an epimeric mixture of albaflavenols, and then 
the sesquiterpene antibiotic albaflavenone [202]�

The B. subtilis BioI P450 protein (CY-
P107H1) was identified as a novel gene in the 
bacterium’s biotin gene cluster, and implicated in 

the synthesis of an intermediate at or before the 
formation of the C7 dicarboxylic acid pimelate 
[552]� BioI was first reported as a fatty acid bind-
ing and hydroxylating P450 involved in biotin 
production in this bacterium, and a heterologous 
redox partner system was shown to support BioI-
mediated hydroxylation of long-chain fatty acids 
[553, 554]� However, the relationship of these 
reaction products to a biotin synthesis pathway 
was unclear� Instead, De Voss and coworkers 
presented a model in which E. coli ACP that co-
purifies with BioI presents the P450 with a fatty 
acid substrate that is covalently linked to the ACP 
(Fig� 6�30b)� Provision of a heterologous redox 
partner system enables consecutive oxidations of 
adjacent mid-chain (C7 and C8) C–H bonds in 
the substrate, leading to C–C bond cleavage and 
the production of pimelic acid to be used as a pre-
cursor in biotin synthesis [64, 555] (Fig� 6�31)� 
Structural data for lipid-loaded ACP–P450 com-
plexes (using three different lipid chain lengths) 
revealed binding modes for the substrates that 
were consistent with this observed bond cleavage 
activity [131]� While this research points clearly 
to the mechanism by which BioI should par-
ticipate in biotin synthesis, the preferred redox 
partners for the oxidative cleavage reaction are 
uncertain, with both FD (the B. subtilis Fer pro-
tein) and flavodoxins being the potential ultimate 
electron donors to the BioI P450� B. subtilis en-
codes two short-chain flavodoxins (YkuN and 
YkuP) and UV-visible and fluorimetric titrations 
with the BioI protein indicated that both FLDs 
bind to BioI, while stopped-flow absorption re-
actions between reduced YkuN/YkuP and BioI 
revealed heme iron reduction rate constants of 
~ 2�5 s−1, considerably faster than that achieved 
using E. coli FLD� Reconstitution of BioI with 
NADPH/E. coli FLDR and either of the YkuN/
YkuP FLDs resulted in fatty acid hydroxylation� 
These data reinforce the fact that the BioI P450 is 
functional in lipid hydroxylation with both FLD 
and FD partners, but requires the fatty acid-load-
ed ACP partner to achieve in-chain lipid bond 
cleavage reactions required to produce the biotin 
pathway intermediate [556]� The role of bacterial 
flavodoxins in BioI-dependent fatty acid hydrox-
ylation thus remains uncertain here, although 
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the high affinity of BioI for fatty acids (e�g�, Kd 
values of 0.4 and 5.2 μM for palmitoleic acid 
and pentadecanoic acid, respectively) suggests 
that a proportion of the enzyme would be fatty 
acid bound in the cell, and thus prone to under-
going fatty acid oxidation reactions through an 
FDR and FD/FLD-driven electron transfer pro-
cess [557]� B. subtilis FDR protein(s) and YkuN/
YkuP/Fer are also clearly candidates for electron 
transfer to the ACP–BioI complex to facilitate 
the consecutive P450 oxidation reactions needed 
for cleavage of the ACP-bound lipid substrate in 
the bacterium�

The first definitive proof of the involvement 
of a flavodoxin as an electron donor to a micro-
bial P450 came from studies of the cineole-ox-
idizing P450cin (CYP176A1) from Citrobacter 
braakii, a P450 catalyzing the monooxygenation 
of the terpene 1,8-cineole [121]� Here, the C. 
braakii flavodoxin cindoxin (Cdx) and E. coli 
FLDR (surrogating for the native cindoxin re-
ductase) were shown to be an effective redox 
partner system for P450cin, with a reported kcat 
of ~ 300 min−1 for cineole-dependent NADPH 
oxidation [558]� The standard redox potentials 
for the oxidized/SQ ( E1) and SQ/HQ ( E2) redox 
couples of the Cdx FMN were established by 
spectroelectrochemical methods as E1 = − 93 mV 
and E2 = − 226 mV, consistent with the Cdx HQ 

being the relevant electron donor to the ferric, 
cineole-bound P450cin ( Em = − 202 mV) [559]� 
Crystal structure determination of P450cin and 
Cdx enabled modeling that predicted Arg346 (in 
P450cin) to form a salt bridge with Asp94 (in 
Cdx), which in turn makes an electrostatic/polar 
interaction with the Cdx FMN ribityl hydroxyl 
group� Tyr96 (adjacent to the FMN isoalloxa-
zine shielding/stacking aromatic residue Tyr97) 
is also predicted to protrude into a hydrophobic 
cavity in P450cin, and to interact with P450cin 
Arg102� The P450cin R102A and R346A muta-
tions resulted in an approximately tenfold de-
crease in the rate constant for cineole-dependent 
NADPH oxidation in an FLDR/Cdx/P450cin 
system, while a Cdx Y96L mutant had a similar 
effect, and also resulted in approximately three-
fold decreases in the rate constants for Cdx-de-
pendent P450cin reduction and FLDR-dependent 
Cdx reduction [558]� Thus, diminished catalytic 
efficiency in these mutants is consistent with 
their potential involvement in the docking inter-
face between P450cin/Cdx, and possibly in the 
electron transfer mechanism� Other examples of 
microbial P450s in which catalytic activity can be 
supported by an FLD protein include CYP106A1 
from Bacillus megaterium DSM319, where both 
the host FLD protein and three of four host FD 
(containing either 3Fe–4S or 4Fe–4S clusters) 

Fig. 6.31  The C–C bond cleavage reaction catalyzed 
by P450 BioI� The reaction schemes show the three-step 
oxidative reaction that leads to bond cleavage between the 
C7 and C8 carbon atoms of acyl carrier protein (ACP)-

linked fatty acids by BioI (CYP107H1) from B. subtilis 
in the formation of pimelic acid, an intermediate in the 
bacterial biotin synthesis pathway [131]
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supported CYP106A1-mediated oxidation of the 
anti-inflammatory pentacyclic triterpene 11-keto-
β-boswellic acid (KBA) to 7β-hydroxy-KBA and 
other side products in the presence of NADPH 
and the Schizosaccharomyces pombe Arh1 fla-
voprotein reductase enzyme [133]� The Clostrid-
ium acetobutylicum fatty acid hydroxylase CY-
P152A2 (known as a peroxygenase P450—see 
the section ‘P450 systems that bypass redox part-
ners’) was also catalytically active when recon-
stituted with one of the two FLDs from the host 
organism (CacFld1), E. coli FLDR and NADPH, 
with the second FLD (CaFld2) not reduced effec-
tively by FLDR/NADPH. Both α- and β-hydroxy 
myristic acid products were formed [560]�

While FD are ‘pure’ one-electron carriers in 
their P450-reducing role, the situation is clearly 
more complex with the flavodoxins� The FLD 
FMN cofactor can occupy the SQ (one-electron 
reduced form) as well as the HQ (two-electron 
reduced form), with either form being a potential 
electron donor� In reality, the vast majority of mi-
crobial flavodoxins are found to have widely dif-
fering Em values for their first electron (OX/SQ) 
and second electron (SQ/HQ) reduction couples� 
The OX/SQ couple is generally quite positive 
(e.g., − 254 and − 149 mV vs. NHE for the E. coli 
and Desulfovibrio vulgaris FLDs, respectively), 
while the SQ/HQ couple is much more negative 
(e.g., − 433 and − 438 mV vs. NHE, respectively) 
[549, 561]� This typically results in the intracel-
lular state of bacterial FLDs being predominantly 
SQ, and meaning that the relevant redox couple 
for P450 reduction is the SQ/HQ transition, which 
is also the case for eukaryotic P450 reduction by 
CPR� An interesting outlier to this generalization 
is the P450 BM3 enzyme, where electron transfer 
to the P450 heme comes from the FMN anionic 
SQ [562, 563] (see the section ‘Microbial P450-
(redox) partner fusion enzymes’)�

6.3.3  P450s from Thermophilic 
Microbes and Novel Redox 
Systems for Sulfolobus P450s

The first report of the isolation of a thermostable 
P450 was for a progesterone 6β-hydroxylase from 

the moderately thermophilic bacterium Bacillus 
thermoglucosidasius strain 12060� The enzyme 
was purified to near homogeneity from the host 
organism and was shown to form characteristic 
Fe2+–CO complex at 449 nm, with ~ 60 % activity 
retained at 70 °C� However, a host redox partner 
system was not identified [104, 105]� The X-ray 
crystal structure for CYP231A2 from the ther-
moacidophile Picrophilus torridus was solved, 
indicating that compact structural organization of 
this small P450, along with short loop structures, 
were important determinants of its thermostabil-
ity (rather than clustering of amino acid residues 
or salt-bridge networks seen in other thermo-
stable P450s)� However, a redox partner system 
was not identified for CYP231A2 [103]� CY-
P154H1 from the moderately thermophilic acti-
nobacterium Thermobifida fusca was expressed 
and purified in E. coli, and was shown to have 
a melting temperature (Tm) of ~ 67 °C� Catalyt-
ic activity was reconstituted using the P. putida 
PDR and PD class I redox system, demonstrating 
that a range of small aromatic molecules could 
be oxidized (e�g�, epoxidation and hydroxylation 
of styrene, and transformation of a series of ary-
laliphatic sulfides to their corresponding sulfox-
ides), with a rate constant determined for product 
formation of 0�31 min−1 with styrene as substrate, 
considerably slower than the P450cam enzyme 
[194]� However, a host redox partner system 
was identified for the thermostable CYP175A1 
from the Gram-negative eubacterium Thermus 
thermophilus� CYP175A1 was expressed and 
purified from E. coli and shown to have a Tm of 
88 °C� Crystal structure data indicated that net-
works of salt bridges, in addition to shortening 
of loops and interconnecting regions (by com-
parison with mesophilic P450s), were among the 
major determinants of CYP175A1 thermosta-
bility [101]� A redox partner system supporting 
CYP175A1 catalytic activity was isolated from 
T. thermophilus cell extract by fractionation of 
proteins able to support β-carotene hydroxylation 
to β-cryptoxanthin. This approach identified two 
partially purified CYP175A1 redox partner pro-
teins with UV-visible spectral features indicative 
of the presence of flavin and iron–sulfur cofac-
tors, respectively� The proteins were then puri-
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fied to homogeneity and identified in the genome 
sequence as a 7Fe ferredoxin (i�e�, a FD binding 
both 3Fe–4S and 4Fe–4S iron–sulfur clusters) 
using N-terminal amino acid sequencing, and as 
a ferredoxin NAD(P)+ reductase (mis-annotated 
in the T. thermophilus genome as a thioredoxin 
reductase (TR)) using matrix-assisted laser de-
sorption ionization-time of flight (MALDI-TOF) 
mass spectrometry� This FDR protein was shown 
to bind FAD noncovalently and to show marked 
preference for NADPH over NADH ( Km values 
of 4.1 μM and 2.4 mM, respectively, in ferricya-
nide reduction assays) [564]� The T. thermophilus 
FDR and 7Fe FD have Tm values of > 110 and 
99 °C, respectively, based on retention of activ-
ity in ferricyanide reduction assays subsequent to 
30-min incubations at temperatures between 40 
and 110 °C� In addition, the T. thermophilus FDR 
partner was proposed to be a novel type of FDR 
enzyme, due to its high sequence similarity with 
TR enzymes, but the lack of TR activity through 
the absence of a redox active site (CXXC) motif� 
The T. thermophilus FDR is closely related to 
FDR proteins from B. subtilis (YumC) and Chlo-
robium tepidum, with phylogenetic analysis sug-
gesting that these types of enzymes may be a new 
subclass of FDRs within the glutathione reduc-
tase class of FDR enzymes [564–566]� Catalyti-
cally active fusion enzymes were also produced 
by linking CYP175A1 to the T. thermophilus 
FDR and FD genes (with short peptide linkers 
between the individual components) to make 
constructs expressing H2N–CYP175A1–FDR–
FD–COOH (175RF) and H2N–CYP175A1–FD–
FDR–COOH (175FR) proteins� The Vmax value 
for the 175RF protein (17�9 min−1) was much 
higher than that of 175FR (0�7 min−1) or of an 
equimolar mixture of the individual proteins 
(1�9 min−1) in β-carotene hydroxylation assays, 
demonstrating the production of a thermostable, 
catalytically self-sufficient fusion enzyme [567]�

The P450 systems characterized from species 
of the acidophilic and thermophilic Sulfolobus 
genus have provided important members of the 
P450 superfamily from which crucial data on the 
nature of compound I have been obtained, as well 
as interesting insights into novel systems driving 
P450 catalysis� Studies on the P450s CYP119A1 

and CYP119A2 from the archaeons Sulfolobus 
acidocaldarius (previously assigned as Sulfolo-
bus solfataricus) and S. tokodaii strain 7 (also 
known as P450st) also provided important in-
sights into the mechanisms by which these P450s 
gain thermostability [568]� An extended network 
of aromatic amino acids around CYP119A1 was 
observed in the crystal structure of the enzyme, 
and proposed to be the major determinant of ther-
mostability in this P450, which has a Tm = 91 °C 
[91, 92] (Fig� 6�3)� This hypothesis was supported 
by mutational analysis which demonstrated that 
substituting various aromatic amino acids in the 
cluster for alanines resulted in decreases in Tm of 
up to 15 °C, while mutations designed to disrupt 
a salt bridge between residues in the F/G loop 
(Arg154) and the I-helix (Glu212) affected ac-
tivity, but not P450 thermostability [569]� In the 
case of CYP119A1, this P450 was shown to bind 
lauric acid with a typical type I (low- to high-
spin ferric) heme iron shift, and with a Kd value 
of 1.1 μM. Moreover, CYP119A1 catalyzed the 
regio-selective (ω-1) hydroxylation of lauric acid 
(with a small proportion of ω-hydroxylauric acid 
product) with a kcat of 10�8 min−1, with electrons 
from NADH provided by the P. putida PDR and 
PD redox partner system [99]� However, the in-
troduction of the mutations T214V (to improve 
lauric acid binding and substrate-induced heme 
iron spin-state change) and D77R (to enhance 
binding of PD) enabled a 15-fold increase in 
fatty acid hydroxylase activity relative to WT 
CYP119A1 with PDR/PD partners [98]�

However, a more unusual CYP119A1 redox 
partner system was identified by Ortiz de Mon-
tellano’s group, following studies by Fukuda 
et al� to identify an archaeal 2-oxoacid:ferredoxin 
oxidoreductase (OFOR) enzyme system that 
catalyzes the coA-dependent decarboxylation of 
2-oxoacids (pyruvate and 2-oxoglutarate) using a 
Zn–7Fe ferredoxin as an electron acceptor [570]� 
Puchkaev et al� reported the activation of S. ac-
idocaldarius CYP119A1 in lauric acid hydroxyl-
ation using the α/β subunit-containing OFOR and 
the FD from the closely related S. tokodaii strain 
7, when reconstituted with coA and pyruvic acid� 
Acetyl CoA and CO2 are the other products of 
the reaction, and the fatty acid hydroxylase ac-



346 K. J. McLean et al.

tivity of the system increased consistently as the 
reaction temperature was elevated from 20° up to 
70 °C� While catalytic rates were not particularly 
high (~ 0�25 min−1 at 70 °C), these results pro-
vided the first evidence supporting the ability of 
non-NAD(P)H-dependent redox proteins to drive 
P450 catalysis [95, 96]�

Studies on the CYP119A2 enzyme showed 
that this P450 could catalyze styrene epoxidation 
in absence of redox partner enzymes, and with 
only the addition of either NADH or NADPH 
to the P450� Structural studies showed that the 
heme-binding pocket of CYP119A2 is large 
enough to accommodate NAD(P)H [93, 97]� 
Studies were done using both the WT CYP119A2 
and a mutant in which the F/G loop region was 
deleted (ΔLeu151-Glu156). WT CYP119A2-
catalyzed NADH-dependent styrene epoxidation 
slightly better than with NADPH, but only ~ 6 % 
of the NADH oxidized was coupled to styrene 
epoxidation, with an NADH Km of 13 mM� The 
catalytic rate was similar for the CYP119A2 de-
letion mutant, but the NADH Km was improved 
somewhat to 7 mM� The apparent affinity for 
NADH was much weaker than that for styrene 
(0�29 and 0�59 mM for WT CYP119A2 and the 
deletion mutant, respectively)� The open nature 
of the CYP119A2 heme-binding cavity was con-
sidered comparable to that found in the NAD(P)
H-dependent nitric oxide reductase P450nor 
(CYP55A1) (see the section ‘P450 systems that 
bypass redox partners’)� Binding of NAD(P)H 
close to the heme in CYP119A2 was proposed to 
be stabilized by arginine residues near the entry 
to the active site, and a distinct channel identified 
was proposed to be involved in water and/or pro-
ton relay to the active site� The improved Km for 
NADH in the deletion mutant is likely explained 
by improved cofactor access to the active site on 
removal of the F/G loop region [97]� CYP119A2 
can also be driven by the peroxide shunt method 
using H2O2, with a kcat value of 9�5 min−1 for eth-
ylbenzene hydroxylation at pH 10, albeit with a 
high Km value of 26�2 mM for H2O2 [571]� CY-
P119A1 was also shown to catalyze H2O2-depen-
dent styrene epoxidation with a kcat of 78�3 min−1 
and a Km of 9�2 mM for H2O2 [568]� However, 
the most important use of the peroxide shunt 

in the characterization of a thermostable P450 
was undoubtedly achieved by Rittle and Green 
through reacting meta-chloroperbenzoic acid (m-
CPBA) with CYP119A1 to enable formation of 
the reactive compound I intermediate and its de-
finitive identification and characterization [13]�

Potentially, Sulfolobus spp� and other ther-
mostable P450s have important industrial/bio-
technological applications in view of their high 
stability� However, this goal will likely only be 
achieved through identification of thermophile 
P450s with relevant activities, or by protein engi-
neering to introduce desired functions, or possi-
bly by learning lessons from thermophilic P450s 
to engineer thermostability into mesophilic P450 
that already possess useful activities� These ap-
proaches will likely be challenging in view of the 
potential effects on protein stability in the former 
case, and through introduction of greater rigidity 
in the latter case—which could be deleterious to 
conformational dynamics required for P450–sub-
strate interactions and catalysis�

6.3.4  P450 Systems That Bypass Redox 
Partners

In microbes, there are excellent examples of 
P450 systems that have evolved activities that are 
independent of electron input from protein part-
ners� The ability to drive P450 oxidations using 
hydrogen peroxide (H2O2) or organic peroxides 
(such as m-CPBA and iodosylbenzene) is well 
known [102, 572]� This is rationalized through 
the ability of such molecules to interact with the 
P450 ferric heme iron and convert it directly to 
compound 0 (ferric–hydroperoxo), which there-
after undergoes a further protonation and a dehy-
dration to generate the reactive compound I [573] 
(Fig� 6�4)� However, the nonspecific reactivity of 
H2O2 with both the protein and the heme cofactor 
generally means that this is not a highly effective 
means of driving P450 catalysis, since enzyme 
inactivation competes with a productive catalytic 
process� Nevertheless, nature has clearly adopted 
this mechanism and has produced ‘peroxygen-
ase’ P450s that have evolved to perform this re-
action efficiently� The properties of the best-char-
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acterized examples of such P450s are discussed 
below�

6.3.4.1  The Alkene-Producing OleT P450
In the marine alkaliphilic bacterium Jeotgalicoc-
cus sp� ATCC 8456, the OleT P450 (CYP152L1) 
catalyzes H2O2-dependent decarboxylation of 
long-chain fatty acids to produce terminal al-
kenes, and is viewed as an enzyme with potential 
in fine chemical/biofuel production [574, 575]� 
Rude et al� detected linear and branched terminal 
alkenes (C18–C21) in a number of Jeotgalicoc-
cus strains, indicating that ability to decarboxyl-
ate fatty acids to produce terminal alkenes was 
common to bacteria of this genus� Fractionation 
of the decarboxylase activity from bacterial cell 
extracts enabled its identification as a P450 and 
for the subsequent cloning and expression of the 
CYP152L1 gene in E. coli� The expression cells 
were shown to produce 1-pentadecene, reflecting 
the abundance of hexadecanoic acid (palmitic 
acid) substrate in the bacterium� The diunsatu-
rated 1,10-heptadecadiene was also detected, as 
was 1-heptadecene following addition of exoge-
nous octadecanoic acid (stearic acid) to the OleT 
expression strain [557, 574, 576]� In vitro stud-
ies demonstrated that the fatty acid decarboxyl-
ation by OleT was driven effectively by H2O2, 
and thus did not require a redox partner system, 
a result consistent with the structural relationship 
of this P450 with other enzymes of the CYP152 
family that were shown previously to catalyze 
H2O2-dependent fatty acid hydroxylation—most 
notably the well-studied B. subtilis CYP152A1 
(P450 BSβ) and Sphingomonas paucimobilis 
CYP152B1 (P450 SPα) P450s [577, 578]� The 
CYP152A1/B1 enzymes are discussed in more 
detail below, and collectively these H2O2-depen-
dent types of P450s are termed peroxygenases 
[579]� Interestingly, addition of dithiothreitol 
(DTT) was shown to facilitate production of n-1 
alkenes from tetradecanoic (myristic), palmitic 
and the C20 eicosanoic (arachidic) acid, possi-
bly through production of H2O2 by reaction of 
DTT with oxygen in the presence of the heme 
iron [574, 580]� However, DTT was also show 
to be a reasonably effective inhibitor of OleT 
( Kd = 159 μM), binding to the heme iron and in-

ducing a hyperporphyrin (split Soret) spectrum 
indicative of coordination in the distal position 
by DTT in both its thiol and thiolate forms [575]� 
Comparative studies of the products of P450s 
SPα and BSβ from turnover of palmitic acid with 
H2O2 indicated that while BSβ generated 1-pen-
tadecene as a minor product compared to α- and 
β-hydroxy palmitic acid, only the α-hydroxy pal-
mitic acid was formed by SPα, with no alkene 
detected� OleT produced small amounts of the 
α- and β-hydroxy acids, but functions mainly as a 
decarboxylase with an ~ 17�5-fold greater ratio of 
1-alkene to (combined) hydroxylated fatty acids 
formed in comparison to BSβ [574]�

The OleT P450 was found to aggregate in 
low-salt buffer conditions, likely consistent with 
the halophilic nature of its host bacterium� Un-
usually for a P450, resolubilization of the OleT 
pellet in high-salt buffer resulted in a fully ac-
tive, heme-bound P450� The purified, low-spin 
OleT has a Soret maximum at 418 nm, and forms 
a CO-bound complex with Amax at 449 nm, con-
sistent with retention of a cysteine thiolate li-
gand on reduction and CO binding [575]� The 
binding of several fatty acids produced low- to 
high-spin shifts in the OleT heme iron spin-state 
equilibrium, consistent with their binding in the 
environment of the heme and causing displace-
ment of a water ligand in the sixth position on the 
heme iron� Tight binding of various long-chain 
fatty acids was established, with a Kd of 0.29 μM 
determined for arachidic acid� The reduction 
potential for the ferric/ferrous transition of the 
OleT heme iron was determined by spectroelec-
trochemical methods in both substrate-free and 
arachidic acid-bound forms, but indicated negli-
gible change in Em, despite the extensive devel-
opment of high-spin heme iron in the fatty acid-
bound form ( Em values vs. NHE of − 103 ± 6 mV 
for substrate-free and − 105 ± 6 mV for arachidic 
acid-bound OleT)� The potentials are quite posi-
tive compared to those for other microbial P450s 
(e.g., − 368 mV for substrate-free P450 BM3 
heme domain, compared to − 239 mV for the ara-
chidonic acid-bound form) [575, 581]� The data 
for OleT indicate that perturbation to heme redox 
potential by substrate is not crucial for enzyme 
activation in this enzyme, and that the proximity 
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of the negatively charged fatty acid carboxylate 
group may offset any positive shift in heme iron 
potential induced by displacement of the sixth 
water ligand and accompany development of 
high-spin heme iron� Transient kinetic studies on 
OleT were done using stopped-flow absorption 
spectroscopy, and by mixing H2O2 (at various 
final concentrations) with arachidic acid-bound 
OleT� The kinetics of conversion of the substrate-
bound (high-spin) OleT heme iron to the low-
spin form were monitored at 417 nm, in this way 
following the process of H2O2-induced activation 
of the heme and decarboxylation of the fatty acid 
substrate� A second-order dependence of reac-
tion rate on peroxide concentration was observed 
(0�80 ± 0�02 s−1 μM−1 H2O2), with a turnover 
rate constant of 167 s−1 measured at the highest 
H2O2 concentration used (200 μM). An OleT Kd 
value for H2O2 of 10.4 μM was also estimated 
from these transient kinetic data [575]� The struc-
ture of OleT was determined by protein crys-
tallography (using molecular replacement with 
the closely related BSβ P450), both in the sub-
strate-free and the arachidic acid (C20:0)-bound 
forms (Fig� 6�32a) [575]� The two structures are 
highly similar to one another, and to P450 BSβ 
(Fig� 6�32b)� Notable features in the OleT ac-
tive site include a conserved arginine (Arg245), 
which makes the only direct, polar contact with 
the fatty acid carboxylate, near perpendicular to 
the distal face of the heme (Fig� 6�32c)� Arg245 
and the adjacent Pro246 are conserved in the I-
helix of OleT, BSβ and SPα, and replace the ‘acid/
alcohol’ pair found in most class I and class II 
P450 enzymes (e�g�, Asp251/Thr252 in P450cam 
and Glu267/Thr268 in P450 BM3) and which is 
associated with oxygen binding and activation 
[30, 33]� The evolutionary adaptation to enable 
a key protein-to-fatty acid carboxylate interac-
tion in OleT and its relatives thus comes at the 
expense of disruption of the oxygen protonation 
machinery found in the vast majority of P450 
oxygenases, but is again consistent with their di-
vergence into a H2O2-dependent catalytic mecha-
nism [575]� A histidine (His85) is located close to 
the substrate carboxylate, with a water molecu-
lar located between the two moieties� The His85 
imidazole is directed towards the heme iron (at 

a distance of 5�8 Å) and sandwiched between 
Phe79 and the heme edge� The interstitial water 

Fig. 6.32  Structures of P450 peroxygenases� A compari-
son between the fatty acid complexes of P450 OleT (panel 
a) (PDB 4L40) and the related BSβ (panel b) (PDB 1IZO)� 
Both enzymes bind the substrate in similar manner, and 
key interactions occur between a conserved active site 
arginine residue (Arg245) and the fatty acid carboxylate 
moiety, as shown for OleT in panel C� P450 BSβ catalyzes 
predominantly fatty acid β-hydroxylation, while the OleT 
enzyme catalyzes oxidative decarboxylation of its long-
chain fatty acid substrates to produce the n − 1 terminal 
alkenes [574, 575, 577]
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does not interact with the heme iron as a sixth 
ligand (5�8 Å distant), and the iron is clearly pen-
tacoordinate in the substrate-bound form� How-
ever, in the substrate-free OleT structure there 
are several poorly defined water molecules seen 
above the heme plane, an observation consistent 
with the more complex EPR spectrum derived 
for the substrate-fee OleT [575]� The OleT His85 
is replaced by a glutamine in both the BSβ and 
SPα P450s, suggesting a key role in regulating 
partition between hydroxylase and decarbox-
ylase activities, possibly as a proton donating 
residue to a reactive iron–oxo intermediate in 
OleT [575]� The Q85H mutant of P450 BSβ was 
shown to result in a ~ 50 % increase in catalytic 
rate of palmitic acid decarboxylation to 1-pen-
tadecene� However, the major effects observed 
were a considerable increase in rate of palmitate 
β-hydroxylation together with a substantial drop 
in α-hydroxylase activity [574]� Recent studies 
showed that OleT could also catalyze NADPH-
dependent fatty acid conversion to terminal al-
kenes in vitro when the P450 was fused to the 
PDOR domain of CYP116B2, or when provided 
with exogenous E. coli FLDR and FLD proteins� 
Unusually, the fatty acid preference was shifted 
to shorter chain lengths in the fusion protein 
compared to the H2O2-supported decarboxylase 
activity, possibly indicating an influence of the 
PDOR domain on active site structure� Produc-
tion of terminal alkenes in E. coli strains express-
ing OleT was also shown [582]� This finding 
raises interesting questions as to the source of 
protons for catalysis if OleT can operate in vivo 
using a bacterial class I (or other) type of redox 
partner system� The absence of the acid/alcohol 
residue pair in OleT means that an uncharacter-
ized proton relay system must support iron–oxo 
protonation reactions in such a case�

6.3.4.2  P450 BSβ, P450 SPα and other 
bacterial peroxygenases

The B. subtilis BSβ (CYP152A1) and S. pauci-
mobilis SPα (CYP152B1) P450s were the first 
two microbial P450s characterized as peroxy-
genases, and both have been structurally charac-
terized (Fig� 6�32b) [577, 578]� As noted above, 
these enzymes generate predominantly hydrox-

ylated fatty acids, with SPα giving exclusively 
the α-hydroxylated fatty acids in reactions with 
a range of fatty acids of C10 and above, with my-
ristic acid (C14), pentadecanoic acid and arachi-
donic acid among the best substrates in terms of 
binding affinity and hydroxylation rate� Alkanes, 
fatty alcohols and aldehydes were not useful sub-
strates, and the S-enantiomer products of fatty 
acids were obtained at > 98 % [583]� In contrast, 
BSβ produces α- and β-hydroxylated fatty acids 
from a similar range of fatty acids in an approxi-
mately 40:60 ratio, with both enzymes having 
a steady-state turnover number of ~ 1000 min−1 
with their best substrates [577, 583–585]� Rude 
et al� confirmed that the SPα P450 exclusively 
formed an α-hydroxylated fatty acid product 
from palmitic acid, but showed that BSβ formed 
a proportion of decarboxylated 1-pentadecene 
product (in addition to α- and β-hydroxylated 
palmitic acid)� Aside from OleT (CYP152L1), 
1-pentadecene was also detected using in vitro 
assays and in E. coli cell extracts from transfor-
mants expressing CYP152-related P450 enzymes 
from the actinobacteria Kocuria rhizophila and 
Corynebacterium efficiens, and from the meth-
ane utilizing Methylobacterium populi [574]� 
CYP152B1 and a CYP152-related P450 from 
Bacillus clausii have in common the ability to 
produce only α-hydroxylated palmitic acid (and 
no 1-pentadecene), as well as having a glutamine 
residue at the position corresponding to His85 
in OleT� However, BSβ also has a glutamine at 
this position (Q85) and is able to generate α- and 
β-hydroxylated palmitic acid, as well as pen-
tadecene [574]� Thus, much work still remains to 
define structural criteria by which these different 
peroxygenases can partition activities between 
fatty acid (α- and β-) hydroxylation and oxida-
tive decarboxylation (Fig� 6�32)�

Both P450s BSβ and SPα have negatively 
charged residues on the proximal surface of the 
protein, whereas many other P450s have a posi-
tively charged surface that aids recognition of 
redox partners (that possess a negatively charged 
interaction region) [577, 578]� A logical conclu-
sion is that this is a further evolutionary adaptation 
consistent with conversion to a H2O2-dependent 
mechanism in such enzymes� However, Liu et al� 
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demonstrated that OleT fused (at its C-terminal) 
to the CYP116B2 reductase (PDOR) module was 
functional in the NADPH-dependent oxidative 
decarboxylation of various fatty acids, albeit less 
effectively than the isolated OleT enzyme oper-
ating in peroxygenase mode with H2O2� The E. 
coli FLDR/FLD proteins also supported myris-
tic acid decarboxylation to 1-tridecene when 
reconstituted with OleT and NADPH� Catalase 
had negligible effect on the proportion of 1-tri-
decene formed by OleT using the NADPH/redox 
partner-dependent in vitro systems, but did abol-
ish peroxygenase activity, consistent with redox 
partners driving OleT catalysis via a ‘classi-
cal’ P450 catalytic cycle [582]� Earlier findings 
from Girhard et al� had also identified the P450 
CYP152A2 (P450CLA) from Clostridium ace-
tobutylicum as a peroxygenase P450 that binds 
to fatty acids across a range of chain lengths 
(C8–C18), as well as to methyl esters of C14, 
C16 and C18 saturated fatty acids, and as an en-
zyme which shares a similar substrate specificity 
profile to P450 BSβ� Activities of both P450CLA 
and BSβ were driven by NADPH with either E. 
coli FLDR/FLD or the P450 BM3 (CYP102A1) 
reductase domain [551]� Using either H2O2 or 
NADPH and the heterologous redox partners, the 
catalytic outcomes were similar, with BSβ pro-
ducing mainly β-hydroxylated fatty acids from 
C12–C16 saturated fatty acids, while P450CLA 
generated an excess of α-hydroxylated fatty acids 
over the β-hydroxylated forms. Using the BM3 
reductase as a partner, an approximately fivefold 
to sevenfold excess of α-hydroxylated fatty acids 
were produced [551]�

In studies using both P450s BSβ and SPα, 
additional catalytic versatility for the peroxy-
genase P450s was shown using so-called decoy 
molecules� It is recognized (for all of the bacte-
rial P450 fatty acid peroxygenases) that the fatty 
acid plays a role as both a substrate and an ac-
tivator of the reaction itself, through binding of 
its carboxylate to the conserved arginine side 
chain [579]� However, short-chain fatty acids are 
not effective substrates for these enzymes, but 
short-chain fatty acid (C4–C10) decoy molecules 
were used effectively to induce formation of a 
reactive iron–oxo species in P450s BSβ, for ex-

ample, to enable the epoxidation of styrene and 
hydroxylation of ethylbenzene in the presence 
of a heptanoic acid decoy molecule [586]� The 
stereo-selective epoxidation of styrene using R-
ibuprofen (producing 63 % enantiomeric excess 
of the S-styrene oxide) or S-ibuprofen (producing 
4 % enantiomeric excess of the R-styrene oxide) 
as decoys was also demonstrated with P450 SPα 
[587]� A similar phenomenon was demonstrated 
for P450 BM3 with decoy perfluorinated fatty 
acids (inert to oxidation by the enzyme); here, 
using NADPH to drive oxidation of the gaseous 
alkanes propane and butane to their 2-alcohols, 
with the efficiency of the coupling of NADPH 
oxidation to alcohol production increased under 
high pressure [588]� A similar approach was 
taken with BM3 to enable oxidation of benzene 
to phenol [589]� Thus, this type of approach may 
be applicable for diversifying the range of mole-
cules oxidized by peroxygenase and other (redox 
partner-dependent) P450 enzymes�

6.3.4.3  Fungal Peroxygenases
While not formally part of the cytochrome P450 
superfamily, the cysteine thiolate-coordinated 
fungal peroxygenases are worthy of mention in 
context of their high catalytic activity, stability, 
and versatility [590]� The best known of these 
enzymes is the chloroperoxidase (CPO) from 
Caldariomyces fumago (an organism also known 
as Leptoxyphium fumago), which has a range of 
catalytic activities typical of heme-containing 
peroxidases, catalases, and P450s [591]� CPO 
is able to catalyze oxidation of halides (such as 
chloride and bromide) to their hypohalous acids, 
which then can halogenate organic substrates in 
a nonspecific manner [590]� CPO was character-
ized for its involvement in synthesis of the chlo-
rinated fungal metabolite caldariomycin [592, 
593]� CPO does have some activity in transfer-
ring an oxygen atom from H2O2 into activated 
organic substrates such as p-xylene and indole 
[594, 595]� This type of CPO activity does not 
extend to nonactivated carbon centers [590]� 
However, this type of activity is characteristic 
of the unspecific peroxidases (UPOs), first de-
scribed in the basidiomycete fungus Agrocybe 
aegerita (AeaUPO), with similar enzymes later 
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identified in the Coprinellus radians (CraUPO) 
and the Marasmius rotula (MroUPO) mush-
rooms [596–598]�

The extracellular UPOs catalyze diverse 
H2O2-dependent oxygenation reactions, often 
with high efficiency� The hemes are proximal-
ly coordinated by an exposed cysteine residue 
in a conserved Pro–Cys–Pro motif, and form 
a ferrous–CO complex with absorption maxi-
mum in the 445–450-nm range, consistent with 
their P450-like cysteine thiolate coordination 
[590, 599]� The UPOs are heavily glycosyl-
ated, and the AeaUPO crystal structure reveals 
a magnesium ion close to a heme propionate 
(its binding involving a Glu–Gly–Asp motif) 
and a disulfide bridge in the C-terminal region 
of the enzyme� Charged residues (Arg189 and 
Glu 186 in AeaUPO) are implicated in peroxide 
cleavage, and a pentad of phenylalanine resi-
dues in the active site is involved in substrate 
selectivity and binding [600, 601]� The AeaUPO 
oxidizes a range of aromatic compounds, in-
cluding toluene and nitrotoluene in successive 
reactions through their alcohols and aldehydes 
to the final benzoic acid products [602]� Other 
substrates for monooxygenation by the AeaUPO 
and CraUPO enzymes include human drugs 
such as ibuprofen, naproxen and phenacetin, 
with reaction outcomes including those typical 
of P450s (e�g�, hydroxylation of aliphatic side 
chains and aromatic rings, as well as O- and N-
dealkylations)� Reactions with labeled (H2

18O2) 
peroxide also clearly demonstrated the transfer 
of 18O atoms into tolbutamide, carbamazepine, 
and acetanilide substrates, confirming the per-
oxygenase mechanism and pointing to further 
biotechnological applications for the UPO en-
zymes [603, 604]� Other reactions demonstrated 
for the AeaUPO include oxidation of pyridine, 
naphthalene, and alkanes, and transient kinetic 
studies using the peroxide donor m-CPBA dem-
onstrated the formation of a highly reactive 
heme-thiolate compound I, consistent with a 
P450-like peroxygenase mechanism [605, 606]� 
The fungal UPOs thus have important similari-
ties to the P450s, and likely distinct advantages 
for performing selected reactions, such as al-
kane hydroxylations [607]�

6.3.4.4  Fungal Nitric Oxide Reductases
P450nor (CYP55A1) from Fusarium oxysporum 
(the same organism that produces the BM3-like 
fatty acid hydroxylase P450foxy) does not cata-
lyze substrate oxidation, but instead performs a 
reductive reaction leading to the formation of di-
nitrogen oxide (N2O or nitrous oxide) from two 
molecules of nitrogen monoxide (NO or nitric 
oxide) bound in the P450 active site, according 
to the reaction scheme: 2NO + NADH + H+→N2
O + NAD+ + H2O� There is no requirement for an 
external redox partner, and instead NADH drives 
catalysis directly [608]� This is the final stage of 
a respiratory process in which the nitrate/nitrite 
inducible P450nor catalyzes the last step in the 
transformation of nitrate/nitrite into dinitrogen 
oxide [609]� P450nor is a soluble eukaryotic en-
zyme, and is more closely related to a number 
of bacterial P450s (e�g�, CYP105 family Strep-
tomyces P450s) than to non-CYP55A subfamily 
eukaryotic P450s [610]� Homologs of P450nor 
were also cloned/purified from the fungi Cylin-
drocarpon tonkinense and Trichosporum cuta-
neum� In the case of C. tonkinense, two distinct 
P450nor isoforms: P450nor1 (CYP55A2) and 
nor2 (CYP55A3) were isolated and found to 
differ in their N-terminal sequence, isoelectric 
point (5�2 and 4�4, respectively) and preference 
for NADH versus NADPH, but exhibited indis-
tinguishable UV-visible spectra, with a ferrous–
CO complex absorption maximum at 447 nm� 
P450nor1 only used NADH as electron donor 
( Km = 320 μM in steady-state reactions), whereas 
P450nor2 used both cofactors, with Km values of 
320 μM (NADPH) and 710 μM (NADH) [611]� 
A key difference between the two C. tonkinense 
genes is that CYP55A2 has a mitochondrial tar-
geting signal sequence, which is lacking from 
CYP55A3� The F. oxysporum CYP55A1 also 
has different isoforms (P450norA and B), but in 
this case they are generated from a single CY-
P55A1 gene which is either translated from the 
first available initiation codon (that then incor-
porates a mitochondrial targeting sequence for 
P450norA), or from the second initiation codon 
that is located after the targeting sequence, and 
thus produces the cytoplasmic P450norB version 
[612]� The T. cutaneum P450nor (CYP55A4) has 
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its ferrous–CO complex maximum at 448 nm, 
with similar activity levels with either NADH 
(12,700 mol NO produced min−1) or NADPH 
(10,540 min−1) [613]� These spectral properties 
are comparable with those for the F. oxysporum 
P450nor [45]�

The production of N2O by the F. oxysporum 
P450nor is strongly inhibited by carbon mon-
oxide, oxygen and cyanide, and the noninhib-
ited enzyme catalyzes N2O production at up to 
31,500 min−1 [45]� Interrogation of the reaction 
mechanism indicated that the first molecule of 
NO binds tightly to the ferric heme iron, form-
ing a ferric–NO complex (with Soret Amax at 
~ 431 nm) that is then reduced by NADH to form 
a specific reaction intermediate with Amax at 
444 nm, and postulated to be a ferric–hydroxyl-
amine radical complex [610, 614]� This transient 
intermediate then reacts with the second molecule 
of NO to yield the N2O product, with this reaction 
mechanism supported by computational analysis 
[615]� The F. oxysporum P450nor was also shown 
to catalyze an unusual co-denitrification reaction, 
whereby N2O and N2 are formed from NO and 
azide (or ammonia) substrates in a reaction that 
does not require NAD(P)H as a reductant [616]� 
For the ‘typical’ P450nor reaction producing 
N2O from two molecules of NO, the preference 
for NADH over NADPH in CYP55A1 can be 
explained on the basis of steric hindrance from 
the side chains of two serine residues in the P450 
B′ helix (Ser73 and Ser75), which exclude the 
2′-phosphate group of NADPH. The CYP555A1 
S75G and S73G/S75G mutants considerably im-
proved the reactivity of the CYP55A1 variants 
with NADPH [617]� The relatively weak bind-
ing of NADH and its various analogs to WT CY-
P55A1 prevented the crystallization of a complex 
with the native cofactor that might help identify 
its binding site and enable further exploration 
of its mechanism of electron transfer� However, 
the S73G/S75G mutant was found to improve 
cofactor binding considerably, enabling the de-
termination of the crystal structure of CYP55A1 
in complex with the NADH analog NAAD 
(nicotinic acid pyridine dinucleotide)� The struc-
ture revealed conformational adaptations to the 
binding of NAAD, including the motion of the 
side chains of two arginine residues (Arg64 and 

Arg174) to facilitate stabilizing interactions with 
the NAAD pyrophosphate group� The C4 atom of 
the nicotinic acid ring moiety of NAAD is located 
above the heme plane at a distance of only 4�2 Å 
from the heme iron, and (by comparison with the 
crystal structure of the NO complex of the WT 
CYP55A1) immediately adjacent to the nitric 
oxide (Fig� 6�33) [328, 618]� Thus, structural data 
indicate that there should be direct reduction of 
the iron-bound NO molecule by hydride transfer 
(from the pro-R side of NADH in the natural reac-
tion) to form the reactive (likely ferric–hydroxyl-
amine radical) species that then goes on to react 
with a second molecule of NO to generate the 
N2O product (and release water and NAD+)�

6.3.5  P450 Interactions with 
Cytochrome b5

The eukaryotic membrane-associated cyto-
chromes b5 ( b5’s) are small (typically ca 134 

Fig. 6.33  Crystal structure of fungal P450nor (CY-
P55A1) in complex with NAAD� P450nor catalyzes 
NADH-dependent reduction of nitric oxide (NO)-bound 
heme to generate dinitrogen oxide (N2O)� This is an un-
usual example of a P450 where NADH can access the 
P450 active site to reduce the substrate-bound heme 
directly [328]� The image shows the binding mode of 
the NADH analog nicotinic acid adenine dinucleotide 
(NAAD) in P450nor, which is consistent with the ability 
of the enzyme to catalyze stereo-selective hydride transfer 
from NADH to NO-bound heme (PDB 1XQD) [328]
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amino acids), quite cylindrically shaped proteins 
that bind bis-His coordinated heme and can act 
as single-electron donors (shuttling their hexaco-
ordinated heme iron between ferrous and ferric 
states) with electron transfer to/from the heme 
edge exposed from the protein [116]� The eukary-
otic b5’s are integral membrane proteins located 
on the cytosolic side of the endoplasmic reticu-
lum (attached by a C-terminal hydrophobic do-
main), and function (along with the FAD-bound 
partner protein, NADH-cytochrome b5 reductase) 
in roles such as electron transfer to desaturase 
enzymes involved in synthesis of plasmalogens, 
sterols and unsaturated fatty acids [114]� The 
b5’s are also known for their influence on cataly-
sis for a number of human and other eukaryotic 
P450s—altering both enzymatic efficiency and 
(in some cases) the reaction outcome in terms of 
products formed� The influence of b5 in P450-
mediated oxidations became evident from pio-
neering work in the early 1970s, where NADH 
was found to stimulate NADPH-supported drug 
metabolism, consistent with the involvement of 
electron transfer processes involving b5 reduc-
tase and b5 [114, 619, 620]� Notable examples of 
the influence of b5 on P450-dependent oxidation 
reactions include stimulation of human CYP3A4 
metabolism of the anti-cancer drug ellipticine to 
its therapeutically active 12- and 13-hydroxyel-
lipticine derivatives, which go on to form ellipti-
cine-12-ylium and ellipticine-13-ylium ions that 
covalently modify DNA [621], and (from stud-
ies of human CYP3A4 and b5 co-expressed in E. 
coli) the enhanced oxidation of both testosterone 
and nifedipine, in addition to an apparent sta-
bilization of CYP3A4 by the b5 [622]� A recent 
report suggests that b5-dependent stabilization of 
CYP3A4 expressed in E. coli may result primar-
ily from an increase in CYP3A4 messenger RNA 
(mRNA) half-life mediated by b5 [623]� In the 
context of steroid metabolism, the role of b5 in the 
reaction chemistry of CYP17A1 is also crucial, 
with this P450 catalyzing the 17α-hydroxylation 
of progesterone to 17-hydroxyprogesterone, and 
of pregnenolone to 17-hydroxypregnenolone� 
However, 17-hydroxypregnenolone is also fur-
ther oxidized by CYP17A1 to DHEA in an acyl 
bond cleavage (17,20-lyase) reaction needed to 
produce androgens (with the corresponding lyase 

reaction on 17-hydroxyprogesterone to form an-
drostenedione catalyzed much less efficiently by 
human CYP17A1) [624]� The lyase reaction is 
substantially stimulated by cytochrome b5 pro-
teins that retain a membrane interacting region 
[625]� While the mechanism by which this pro-
cess occurs remains controversial, there are com-
pelling data to suggest that the major influence 
may be conformational (rather than involving 
electron transfer from b5 to CYP17A1), with the 
binding of b5 inducing a reorientation of a reac-
tive P450 iron–oxo species towards the substrate 
C20 (to facilitate a lyase reaction path) and away 
from the C17 position [626, 627]�

From a thermodynamic perspective, the mid-
point reduction potential ( Em) for the b5 heme 
iron Fe3+/Fe2+ couple is typically quite positive 
(e�g�, +3 mV vs� NHE for the bovine liver micro-
somal b5 and − 26 mV vs. NHE for the housefly 
b5) [628, 629]� This suggests that any redox role 
in P450 catalysis could really involve only the 
second electron delivery, since the heme iron po-
tential for reduction of the ferric substrate-bound 
forms of the majority of P450s has a considerably 
more negative reduction potential� For instance, 
the Em for the P450 Fe3+/Fe2+ couple was deter-
mined as − 220 mV versus NHE for substrate-
free CYP3A4 and − 140 mV for the testosterone-
bound form in nanodisks [630], and these data 
are consistent with the requirement of CPR to 
provide at least the first electron to the P450 heme 
iron in productive reactions that also involve b5 
[630]� However, the CPR gene was successfully 
disrupted in Saccharomyces cerevisiae to gener-
ate a strain that still accumulated the sterol ergos-
terol to ~ 25 % of the amount found in the parent 
strain, suggesting that the relevant sterol bio-
synthesis enzymes (the sterol 14α-demethylase 
CYP51 and the sterol Δ22-desaturase CYP61) 
could source electrons for catalysis from an-
other enzyme system in this organism [631]� 
In further studies using the Candida albicans 
CYP51 P450 with a yeast NADH-cytochrome b5 
reductase (CBR) and b5 redox system, catalytic 
activity of the CYP51 was demonstrated in the 
conversion of 24-methylene-24,25-dihydrola-
nosterol to its oxidatively demethylated product 
4,4-dimethylcholesta-8,14,24(25)-trienol [632]� 
Subsequently, analysis of the Phanaerochaete 
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chrysosporium CYP5150A2 enzyme revealed 
that is was able to catalyze hydroxylation of 
4-propylybenzoic acid supported by NADPH 
and CPR from P. Chrysosporium, but that the 
reaction was more efficiently driven by P. chrys-
osporium CBR and b5 with NADH as electron 
donor [505]� The P. chrysosporium CYP63A2 
P450 was also shown to catalyze benzo-a-pyrene 
monooxygenation with comparable efficiency 
using either the homologous CPR or CBR/b5 en-
zyme systems [633] (Fig� 6�28)� Using a mouse 
genetic approach, Henderson et al� also provided 
compelling evidence that the CBR/b5 system can 
support P450 function, and in this study pointed 
out the key issue relating to thermodynamics and 
the unlikely scenario that the b5 can provide the 
first electron in the P450 catalytic cycle against a 
barrier of 200–300 mV� However, they also high-
light how a CBR/b5-driven P450 reaction could 
occur if this first electron is derived from the 
CBR (with a redox potential of ~ − 265 mV vs. 
NHE), with the second electron being transferred 
from the b5 (at ~ 0 mV) to the oxyferrous form of 
P450 (with a potential of + 20 mV) [634]� Future 
transient kinetic studies, investigating electron 
transfer reactions between CBR and b5 proteins, 
and their cognate yeast and fungal P450s, should 
resolve the mechanism of P450 catalysis in these 
systems�

The cytochromes b5 are present in lower (e�g�, 
yeasts and fungi) as well as higher eukaryotes, 
but true b5-type proteins are rare in prokaryotes� 
A b5-like protein ( Ectothiorhodospira vacu-
olata cytochrome b558) was identified in this 
purple phototrophic bacterium, and the protein 
expressed, purified, and crystallized, leading to 
the determination of a 1�65 Å structure� This re-
vealed a typical b5-type fold, with the key differ-
ence being the inclusion of a four-residue inser-
tion prior to the histidine sixth ligand to the heme 
iron, and a disulfide bridge in the protein [635]� 
A bioinformatics approach also suggested that 
a distinct b5 module might be located at the N-
terminus of a predicted fatty acid desaturase from 
the human pathogen Mycobacterium tuberculo-
sis strain H37Rv. However, this gene ( Rv3171) 
remains uncharacterized [635]� Despite limited 
evidence for true b5-like proteins in prokaryotes, 

there is clear evidence for the interaction of eu-
karyotic b5 proteins with bacterial P450 enzymes� 
For instance, the house fly b5 binds avidly to the 
P450 BM3 heme domain ( Kd = 440 nM), induc-
ing a substrate-like shift in its heme iron spin-
state equilibrium towards high spin, suggestive 
of the induction of a conformational change in 
the P450� Under anaerobic conditions, the ad-
dition of ferrous cytochrome b5 to ferric BM3 
heme domain did not result in P450 reduction 
(consistent with the large thermodynamic bar-
rier), while the reduced BM3 heme domain and 
b5 proteins both remained stable in their ferrous 
states under anaerobic conditions� However, the 
introduction of oxygen to this mixture resulted in 
fast oxidation of both hemoproteins, likely as a 
consequence of the thermodynamically favorable 
b5-dependent reduction of the rapidly formed 
P450 ferrous–oxy species [636]� In addition, a 
fluorescently labeled b5 protein was shown to 
bind P450cam, with the natural redox partner 
PD able to displace the b5 protein—demonstrat-
ing an overlapping P450-binding site for these 
proteins [637]� NMR studies also indicated that 
b5 binding to a reduced P450cam–CO complex 
perturbed many of the same resonances affected 
by binding of PD, some involving parts of the 
P450cam structure involved in substrate access 
and binding orientation� The authors concluded 
that the primary role of the effector molecule (ei-
ther PD or b5 in this case) is to induce formation 
of/stabilize an ‘active’ conformation of P450cam 
that minimizes uncoupling of electron transfer 
from substrate oxidation during catalysis [638]� 
Thus, while there is little current evidence for 
physiological roles of b5 proteins in bacterial 
P450 catalysis, there is clearly commonality in 
the binding mode of b5 with that of the natural 
partner proteins for bacterial P450s� Finally, it 
is interesting to note that the genome sequence 
of the virus OtV-2 (which infects the unicellular 
marine green alga Ostreococcus tauri) contains a 
gene predicted to encode a b5 protein� The gene 
was expressed in E. coli, and the b5 hemoprotein 
purified and shown to support lanosterol demeth-
ylation by C. albicans CYP51 when provided 
with NADH and the S. cerevisiae b5 reductase 
enzyme [639]�



3556 Microbial Cytochromes P450

6.3.6  P450 Electrochemistry

The majority of the P450s have evolved to use 
NAD(P)H-dependent redox partner systems that 
deliver two electrons in single-electron steps at 
different stages of the classical P450 catalytic 
cycle (Fig� 6�4)� However, NADPH (in particu-
lar) is an expensive chemical and presents sig-
nificant cost issues for in vitro P450 turnover 
studies to produce useful amounts of valuable 
oxidized products� To make such reactions more 
cost-effective, an NAD(P)H-regenerating system 
can be included (e�g�, glucose-6-phosphate [G-6-
P] and G-6-P dehydrogenase), or reactions can be 
done in vivo, e�g�, using microbial cell cultures 
[640, 641]� However, there is also continued in-
terest in driving P450 reactions electrocatalyti-
cally—either directly at an electrode surface or 
with the P450s in solution/suspension� Electro-
chemistry has been used extensively to determine 
reduction potentials of heme iron in various P450 
enzymes, commonly using spectroelectrochem-
istry, or by cyclic voltammetry or protein film 
voltammetry methods [581, 642, 643]� However, 
there have also been several reports of the use 
of ‘direct’ electrochemical approaches to drive 
P450 catalysis—i�e�, by providing a source of 
electrons through an electrode to the P450 (with 
the protein either in solution or immobilized on 
an electrode surface), and the outcomes of some 
of these approaches with microbial and other 
P450s are detailed below�

In early work in this area, Estabrook and co-
workers successfully used electrocatalysis to 
drive lauric acid hydroxylation through a fusion 
protein of the rat CYP4A1 with rat CPR (termed 
rFP4504A1) in aerobic solution� To achieve this, 
they used a submerged platinum gauze and an ap-
plied voltage of − 450 mV (vs. NHE), and added 
the chemical mediator cobalt sepulchrate to carry 
electrons to the rFP4504A1, cycling through 
Co3+/Co2+ states during its redox reactions with 
the electrode and the enzyme� The production 
of 12-hydroxydodecanoic acid was achieved by 
this system using both the rFP4504A1 fusion 
enzyme and a mixture of separate rat CYP4A1 
and CPR proteins� However, no lauric acid hy-
droxylation was observed with the CYP4A1 in 

isolation, pointing to the importance of the re-
ductase interactions with the P450 to achieve 
effective electron transfer [644]� The applica-
tion of this methodology was extended to en-
able electrocatalytically driven hydroxylation of 
progesterone and pregnenolone using a bovine 
CYP17A1-CPR fusion protein, 6β-hydroxylation 
of testosterone and N-demethylation of erythro-
mycin and benzphetamine by a human CYP3A4 
fusion and N-demethylation of caffeine and 
imipramine by a human CYP1A2 fusion� The 
catalytic rates obtained compared favorably with 
those achieved using an NADPH-driven system 
(from ~ 26 % up to 100 % as efficient), but were 
much slower than the rates achieved by either 
electrocatalysis (110 min−1) or NADPH-driven 
catalysis (900 min−1) of the natural P450-CPR 
fusion enzyme flavocytochrome P450 BM3 in 
its hydroxylation of lauric acid [645]� In stud-
ies of drug metabolism using the human P450s 
CYP2D6 and 2C9, Panicco et al� immobilized 
these proteins to a gold electrode surface for elec-
trocatalysis, using a chemical ‘spacer’ method to 
facilitate covalent attachment of the proteins to a 
monolayer coating on the electrode, and avoid-
ing direct immobilization on an electrode surface 
that was shown to denature human P450s [646, 
647]� It was found that an immobilized fusion 
of CYP2C9 to the Desulfovibrio vulgaris flavo-
doxin (FLD) gave an improved electrochemical 
response over the native CYP2C9, and cyclic 
voltammetry was used to evaluate the catalytic 
activity of these P450 systems on the electrode 
surface in reactions with substrates bufuralol 
(CYP2D6) and warfarin (CYP2C9-FLD)� This 
type of system has potential applications in high-
throughput analyses of drug metabolic reactions 
that are dependent on individual polymorphisms 
in these and other human P450s [647]�

The issues addressed by Panicco et al� in avoid-
ing P450 denaturation on the electrode surface are 
important, and there are a number of examples in 
which the properties of P450 enzymes are mark-
edly different in solution by comparison to those 
on an electrode surface� For example, determina-
tion of the heme iron Fe3+/Fe2+ midpoint reduc-
tion potential ( Em) in the 1,8-cineole oxidizing 
P450cin (CYP176A1 from Citrobacter braakii) 
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using cyclic voltammetry indicated that (in the 
pH range 7–8) the Em for both cineole-bound and 
substrate-free forms was ~ − 50 mV versus NHE 
and thus not affected by a substrate which induces 
a considerable shift in the ferric heme iron spin-
state equilibrium towards the high-spin state� 
Solution-state spectroelectrochemistry indicated 
a rather more negative potential for both forms 
of the P450 ( Em ~ 170–180 mV vs� NHE) [648]� 
However, subsequent spectroelectrochemical 
studies indicated that there was a substantial dif-
ference in the heme iron Em for the substrate-free 
(− 330 mV vs. NHE) and cineole-bound forms 
of P450cin (− 202 mV vs. NHE), with the extent 
of increase in the heme iron potential on cineole 
binding consistent both with the extensive de-
velopment of high-spin heme iron observed, and 
with previous such measurements of the relative 
heme potentials for substrate-free and substrate-
bound forms of the well-characterized P450cam 
and P450 BM3 enzymes [537, 559, 581]� Con-
siderable differences in the Em for the heme iron 
Fe3+/Fe2+ couple were also observed for the sub-
strate-free P450 BM3 heme domain in solution 
(− 368 mV vs. NHE by spectroelectrochemical 
titration) and by cyclic voltammetry (~ 0 mV vs� 
NHE), with the difference explained through the 
immobilization of the P450 in a surfactant film 
in the cyclic voltammetry experiment [581, 649]� 
In this case, the BM3 heme domain was immobi-
lized in a didodecyldimethylammonium bromide 
(DDAB) film cast on an edge-plane graphite 
electrode, and the substantial perturbation to the 
heme potential was likely caused by partial heme 
dehydration within the hydrophobic DDAB film 
on the electrode surface [649, 650]� Similarly, in 
studies of the M. tuberculosis sterol demethylase 
CYP51B1 immobilized on a graphite surface 
modified with gold nanoparticles and DDAB, an 
Em for the substrate-free P450 Fe3+/Fe2+ couple 
was measured as approximately − 43 mV ver-
sus NHE, again considerably more positive than 
that determined by solution-state spectroelectro-
chemistry at − 375 mV versus NHE [21, 651]�

Notwithstanding issues with perturbation of 
heme properties on or near to the surface of an 
electrode (and associated issues such as P420 
formation and poor coupling of electron transfer 

to substrate oxidation), it remains clear that cata-
lytically competent P450 redox systems can be 
reconstituted with careful treatment of the P450s 
and control of the electrode surface environment� 
Examples of such systems with biotechnological 
applications include the development of biosen-
sors for the sensitive detection of cocaine, and 
in which CYP2B4 is immobilized on a carbon 
electrode [652], and the use of immobilized 
rat CYP1A1 as an amperometric biosensor for 
benzo[a]pyrene [653]� P450cam immobilized in 
a DDAB vesicular system and cross-linked to 
a glassy carbon electrode has also been applied 
to electrochemical detection of compounds such 
as its natural substrate camphor, adamantanone 
and fenchone [654]� In addition, CYP106A2 
from Bacillus megaterium (encased in either a 
cellulose film or in a clay film cast onto the sur-
face of a carbon electrode) was also analyzed by 
cyclic voltammetry to determine its heme iron 
midpoint potential (− 128 mV vs. NHE) and to 
analyze influence of prospective substrates, with 
4-cholesten-3-one producing a 30-mV positive 
shift in heme potential (to − 98 mV vs. NHE), 
consistent with its ability to shift the CYP106A1 
ferric heme spin-state equilibrium towards high 
spin [655]� Thus, electrochemistry of microbial 
(and nonmicrobial) P450s continues to play an 
important role in the development of the P450 
field, both through enabling analysis of the redox 
properties of P450s, and by providing new routes 
to P450 catalysis and biotechnological applica-
tions for these enzymes�

6.3.7  Nonredox Partner Proteins for 
Microbial P450s

The Bacillus BioI reaction described above (in 
the section ‘Flavodoxins as bacterial redox part-
ners’) is not the only example of a P450 that has 
evolved to interact with a carrier protein that acts 
as the substrate delivery module� In such cases, 
the carrier protein appears essential for the de-
sired reaction, but does not participate directly 
in any electron transfer reactions required for 
production of high-valent iron–oxo species on 
the heme iron� To date, there are rather few ex-
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amples of such nonredox partner proteins recog-
nized for microbial (or other) P450s� In the cases 
where such proteins have been identified, this has 
usually been achieved by biochemical analysis, 
or by analogy with related P450 systems known 
to use a similar nonredox partner� However, ge-
nome sequencing has revealed a number of P450 
enzymes fused to potential nonredox partners, as 
discussed in the section ‘Microbial P450-(redox) 
partner fusion enzymes’� The major examples of 
involvement of nonredox partner proteins with 
microbial P450s relate to interactions with sub-
strate delivery modules in the form of carrier 
proteins, as discussed below and also in the pre-
ceding section ‘Other biosynthetic actinomycete 
P450s’ under Microbial diversity of P450s�

In the case of Bacillus subtilis P450 BioI (CY-
P107H1), the cloning and sequencing of a region 
of the B. subtilis genome containing genes in-
volved in biotin synthesis revealed the presence 
of the bioI CYP gene located at the end of the 
biotin gene cluster [552]� The BioI protein was 
purified and shown to be a P450 through spec-
troscopic analysis, and demonstrated to catalyze 
fatty acid hydroxylation at mainly the ω-1 to ω-3 
positions for myristic (tetradecanoic) acid, and 
at the ω-1 to ω-5 positions for palmitic (hexa-
decanoic) acid, with a small amount of the C7 
dicarboxylic acid pimelic acid also seen [542, 
554]� However, BioI was also shown to be puri-
fied from an E. coli expression system both as 
the free protein and in complex with an ACP that 
was acylated with fatty acids in the size range 
from C14–C18 [64]� In this BioI–ACP complex, 
the formation of pimelic acid was demonstrated, 
likely occurring through three consecutive BioI-
dependent oxidations at the C7 and C8 positions 
on the alkyl chain� This would result in formation 
of an alcohol, then a vicinal diol and finally C–C 
bond cleavage using a mechanism analogous to 
that of the P40scc enzyme involved in the cleav-
age of the cholesterol side chain in formation of 
pregnenolone as the primary step in steroidogen-
esis [555, 656, 657] (Fig� 6�31)� Pimeloyl-CoA 
or pimeloyl-ACP (along with L-alanine) is the 
substrate for the 7-keto-8-amino-pelargonic acid 
(KAPA) synthase enzyme (BioF) in a central step 
in the biotin synthesis pathway [656]� The crys-

tal structures of BioI in complex with the small, 
acidic E. coli ACP acylated with three different 
chain length fatty acids resolved how interaction 
of the carrier protein influenced the P450-binding 
mode of the lipids and enabled oxidation at posi-
tions distinct from those observed for the non-
ACP-bound BioI [131] (Fig� 6�30)� The loaded 
ACP protein interacts with BioI in the active site 
access area in regions around the β-1 sheet, the 
loop region between B and B2 helices and be-
tween the F and G helices� A structural compari-
son between BioI and the P450 BM3 heme do-
main structure suggests that the B–B2 and (lon-
ger) F–G loop regions in BM3 would clash with 
ACP and its phospopantetheine linker if bound 
in a similar mode, and so preclude ACP binding 
and entry of the substrate [131, 271]� This BioI 
docking mode enables the ACP to ‘feed’ the lipid 
substrate into the active site, which extends be-
yond the heme to enable the methyl end of the 
molecule to bend upwards and present the C7–
C8 site directly above the heme for oxidative 
cleavage to occur (Fig� 6�31)� The lipid-binding 
mode is stabilized by several interactions made 
by the substituent groups of the phosphopan-
totheine linker, including the phosphate [131]� 
Thus, clear structural evidence was provided for 
how specific interactions between BioI and its 
lipid substrate required for pimelic acid/pimeloyl 
CoA biosynthesis are provided through substrate 
delivery by a nonredox partner ACP protein� The 
processive oxidative reactions required for cleav-
age of the ACP-bound substrate rely on electron 
delivery from redox partners, as described in the 
sections ‘Diverse FD partners and flavodoxins as 
bacterial P450 redox partners’�

BioI is evidently not the only microbial P450 
that exploits substrate delivery from a carrier 
protein as an essential step in its mechanism� 
There are a number of other P450s now recog-
nized to exploit ACP or PCP modules for the 
delivery of specific substrates [251]� The CalO2 
(CYP248A1) P450 from the actinomycete Micro-
monospora echinospora is involved in the pro-
duction of the cytotoxic compound calicheamicin 
(Fig� 6�16), a ten-membered enediyne molecule 
that binds in the minor groove of DNA and in-
duces radical-mediated DNA strand scission 
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[230]� CalO2 was postulated to catalyze hydrox-
ylation of the aromatic ring of orsellinic acid as a 
step in this process, but the failure to reconstitute 
this activity in vitro along with identification of 
CalO2 similarity to BioI (33 % identity) led to 
the theory that the protein required substrate de-
livery from a carrier protein� The determination 
of the crystal structure of CalO2 identified that 
the region between amino acids 54–81 (the B′ 
and Bʺ helices) formed a two-helix bundle, and 
in molecular docking studies the authors found 
that this structural motif (close to the active site 
entry region) could provide a docking site for the 
ACP domain of the CalO5 orsellinic acid syn-
thase protein [230] (Fig� 6�11b)� Thus, data col-
lated suggest strongly the involvement of an ACP 
module in substrate delivery to CalO2, but fur-
ther work is required to confirm the hypothesis� 
Other examples of carrier protein-mediated P450 
catalysis come with the CYP165 (Oxy) family 
P450s involved in phenolic coupling (OxyA, B, 
and E) and aryl carbon coupling (OxyC) reac-
tions in biosynthesis of glycopeptide antibiotics 
such as vancomycin and teicoplanin [239, 240, 
248, 249], and with the β-amino acid hydroxy-
lase OxyD (CYP146A1) that catalyzes produc-
tion of L-b-R-hydroxytyrosine [237] for synthe-
sis of the aglycone core of such glycopeptides 
antibiotics [251] (Fig� 6�19)� In each case, these 
enzymes are considered to oxidize PCP-bound 
substrates, delivered from PCP modules of an as-
sociated nonribosomal peptide synthase (NRPS) 
enzyme system. A β-amino acid hydroxylase role 
is also performed by P450 enzymes involved 
in the synthesis of other antibiotics, including 
novobiocin (NovI) (Fig� 6�13a) and nikkomy-
cin (NikQ) (Fig� 6�13e), where it has already 
been shown that carrier protein substrates are 
competent for oxidation by the relevant P450s 
[336, 658, 659]� CYP163B3 from Streptomyces 
sp. Acta 2897 also catalyzes β-hydroxylation of 
three different amino acids in the synthesis of 
skyllamycin A (an inhibitor of PDGF signaling 
pathways), forming β-hydroxyphenylalanine, 
β-hydroxy-OMe-tyrosine and β-hydroxyleucine 
to be incorporated at different steps in the bio-
synthetic pathway� Inactivation of the CYP163B3 
gene resulted in formation of a product devoid 
of β-hydroxylation on any of the amino acids, 

confirming that P450sky was involved in oxida-
tion of the three different amino acid substrates 
in separate reactions (Fig� 6�12)� It was further 
shown that the different amino acid substrates 
were delivered by distinct PCP domains of the 
skyllamycin NRPS [236]� The Oxy enzymes 
and P450sky are discussed in more detail in the 
section ‘Other biosynthetic actinomycete P450s 
under Microbial diversity of P450s’�

A final protein worthy of a short mention as a 
potential nonredox P450 partner is the Saccharo-
myces cerevisiae Dap1p, part of a larger family 
of membrane-associated progesterone receptors 
(MAPRs)� The Dap1p’s have a cytochrome b5-
type heme-binding motif, but lack the histidine 
residues that provide the axial ligand in b5� How-
ever, yeast Dap1p still binds ferric heme avidly 
( Kd = 400 pM), although has a lower affinity for 
ferrous heme ( Kd = 2 μM) [660]� A tyrosine resi-
due (Tyr138) was suggested as a heme ligand, but 
characterization of a Y138F mutant indicated that 
the mutant Dap1p still bound ferric heme in a 1:1 
ratio with a weakened Kd = 200 nM, suggesting 
that the hydrophobic cavity of Dap1p along with 
one or more other water or amino acid ligands 
can stabilize the heme binding [660, 661]� Yeast 
Dap1p was suggested to have a role in stabiliz-
ing the sterol demethylase CYP51 as a result of 
studies of a yeast dap1 gene deletion strain that 
indicated enhanced sensitivity to the DNA-dam-
aging chemical methyl methanesulfonate (MMS) 
and to fluconazole and itraconazole—antifungal 
drugs and potent inhibitors of CYP51 [662]� In-
clusion of hemin in the growth medium rescued 
the MMS-sensitive phenotype [663]� However, 
data remain inconclusive for any specific func-
tion in stabilizing CYP51 at the gene or protein 
level, although Dap1p was also proposed as a 
potential receptor for P450 enzymes to facilitate 
their localization to and/or retention in the endo-
plasmic reticulum [664]�

6.4  Microbial P450-(Redox) Partner 
Fusion Enzymes

As indicated in the previous section, the simplis-
tic view of class I and class II P450 redox systems 
is now clearly outdated, and a complex collection 
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of different redox partner systems is now recog-
nized, particularly in lower eukaryotes and bac-
teria [113, 522]� A number of redox partners are 
also known to be covalently fused to their cog-
nate P450s—i�e�, arise from a gene fusion event 
that has likely provided a selective advantage to 
the host organism� These include the intensively 
studied P450 BM3 (CYP102A1) enzyme from 
Bacillus megaterium, but also a growing number 
of P450s fused to partners that have no apparent 
electron delivery role to the P450� The current 
state of knowledge is discussed below�

6.4.1  Flavocytochrome P450 BM3

P450 BM3 (CYP102A1, BM3), the best known 
of the P450-redox partner fusion enzymes, is also 
the enzyme widely considered to be the most cat-
alytically efficient of the known P450 oxidase en-
zymes—with a catalytic rate constant of ~ 285 s−1 
reported for the oxidation of arachidonic acid 
[665]� It is important here to make the distinction 
between a ‘classical’ P450 oxidase that catalyzes 
reduction of iron-bound dioxygen (O2) to facili-
tate monooxygenation through a ferryl–oxo (or 
compound I) intermediate, and other members of 
the P450 superfamily that require only the bind-
ing of a substrate to initiate catalysis� Such P450s 
do not activate dioxygen, or use redox partners� 
Notable examples in this category include mam-
malian P450s such as thromboxane synthase 
(CYP5A1) and prostacyclin synthase (CYP8A1) 
that catalyze molecular rearrangements of their 
substrates—in the case of the common substrate 
prostaglandin H2 forming thromboxane A2 and 
prostacyclin (also known as prostaglandin I2), re-
spectively, and using their heme iron to facilitate 
homolytic cleavage of the substrate endoperoxide 
to form the respective products [181, 182, 492]� 
Another example is the nitrate-/nitrite-inducible 
Fusarium oxysporum P450nor (CYP55A1) 
which binds NAD(P)H in its active site and uses 
this to reduce two molecules of nitric oxide (NO) 
for production of dinitrogen monoxide (N2O) in 
an energy-generating pathway� CYP55A1 has a 
reported rate constant of 1200 s−1at 10°C [614]� 
Returning to P450 BM3, aspects of its structural 
and catalytic properties are discussed in the sec-

tion ‘Microbial diversity of P450s’, but here we 
focus on the redox partner apparatus and the elec-
tron transfer properties that facilitate its catalytic 
efficiency�

P450 BM3’s structural organization has a 
typical P450 (heme) domain at the N-terminus 
(Fig� 6�2b), joined by a peptide linker region to 
a diflavin (FAD- and FMN-binding) reductase� 
The reductase is clearly evolutionarily related to 
the eukaryotic CPR enzymes, but lacks the N-ter-
minal membrane-binding region that tethers the 
eukaryotic CPRs to the microsomal membrane 
[666]� Early studies identified BM3 as a Bacil-
lus megaterium fatty acid hydroxylase catalyzing 
hydroxylation of a series of long-chain fatty acids 
at the ω-1, ω-2, and ω-3 positions (predominantly 
at ω-2), as well as performing epoxidation reac-
tions on unsaturated fatty acids (Fig� 6�34) [667, 
668]� In addition, CYP102A1 expression was in-
duced in the host organism on addition of barbi-
turate drugs (including pentobarbital and pheno-
barbital), enabling the purification of substantial 
amounts of the flavocytochrome enzyme, and the 
estimation of a similar Vmax value of ~ 4600 min−1 
for saturated fatty acids from C12–C15 [668, 
669]� BM3’s high catalytic activity in addition 
to its convenient single component construction 
are major factors that have led to its exploita-
tion in various studies aimed at producing novel 
oxidized molecules through engineering of the 
P450 active site� Examples include production 
of oxidized derivatives of steroids, alkanes, and 
human drugs (Fig� 6�34) [640, 670, 671]� The key 
to BM3’s catalytic proficiency lies mainly in the 
high rate constants for NADPH-dependent re-
duction of the FAD cofactor in the CPR domain, 
and for the internal electron transfer steps from 
FAD-to-FMN in the CPR and the FMN-to-heme 
electron transfer� A series of stopped-flow kinetic 
assays at 25 °C indicated that (at near-saturating 
NADPH concentrations) the reaction transients 
for NADPH-dependent flavin reduction in both 
intact BM3 and its CPR domain were bipha-
sic with rate constants of ~ 750 s−1 ( kobs 1) and 
130 s−1 ( kobs 2)� The kobs 1 likely reflects the two-
electron reduction of the FAD (by hydride ion 
transfer), while the slower kobs 2 (with a smaller 
associated absorbance change compared to kobs 
1) may be related to an event such as NADP+ dis-
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Fig. 6.34  Chemical reactions of wild-type (WT) and en-
gineered forms of flavocytochrome P450 BM3� Examples 
are shown of substrates and products formed in reactions 
of the WT and mutant forms of P450 BM3 (BM3)� The 
BM3 enzyme has been extensively engineered using ra-
tional, direct evolution and other approaches, and the out-
comes highlight the ability of BM3 and its variants to cat-
alyze oxidation of a wide range of chemically diverse sub-
strates� a Hydroxylation of the supposed natural substrates 
for WT BM3, saturated linear chain fatty acids (~ C12–

C18), at the ω-1, ω-2, and ω-3 positions (indicated) [854]� 
b C2 and C16 hydroxylation of progesterone, and (c) C2 
and C15 hydroxylation of testosterone, with products ob-
served for both the mono-hydroxy and di-hydroxy forms 
of testosterone (using BM3 mutants generated by directed 
evolution) [670]� d C2 hydroxylation of ibuprofen, e C4′ 
hydroxylation of diclofenac, and (f) C4 hydroxylation of 
tolbutamide (using BM3 mutants generated by error-prone 
PCR) [730]� g Conversion of alpha-pinene to verbenol by 
hydroxylation reaction (using a BM3 mutant derived by 

 



3616 Microbial Cytochromes P450

sociation or inter-domain conformational reorga-
nization in the CPR� The rate constant for the de-
velopment of blue flavosemiquinone on the FAD 
is in excess of 450 s−1 under the same conditions, 
suggesting that the FAD-to-FMN electron trans-
fer is rapid (as might be expected from the close 
proximity of the FAD and FMN isoalloxazine 
rings seen in the crystal structure of the rat CPR) 
and approximately threefold faster than the kobs 2 
value [115, 530]� Consistent with this conclusion, 
the limiting rate constant ( klim) for cytochrome 
c reduction (which occurs exclusively from the 
FMN cofactor in BM3 and other CPR enzymes) 
under pseudo-first-order conditions using the 
same temperature/buffer conditions as above was 
determined as 187 s−1 in stopped-flow studies� 
In addition, the kobs for electron transfer from 
NADPH to the heme iron in intact BM3 was de-
termined as 223 s−1 in CO-saturated buffer and in 
the presence of near-saturating levels of NADPH 
and substrate (myristic acid)� This experiment in-
volved the ‘trapping’ of the ferrous, CO-bound 
complex of the BM3 heme iron (that absorbs 
maximally close to 450 nm), and thus provides 
an estimate of how fast the first electron can pass 
from NADPH through FAD and FMN cofactors 
in the CPR domain and onto the heme in BM3 
[530]� This compares well with the kcat value for 
arachidonic acid-dependent NADPH oxidation 
under steady-state conditions, and (given that ar-
achidonic acid is a better substrate than myristic 
acid for P450 BM3) suggests that the first elec-
tron transfer from FMN-to-heme may be a major 
rate-limiting step in the catalytic process of this 
enzyme [665]� The electron transfer kinetics of 
BM3’s CPR component are superior to those of 

their eukaryotic, membrane-associated relatives 
(e�g�, human liver CPR) [672] and BM3 also 
achieves much faster catalysis that eukaryotic 
P450 oxidases as a consequence of the covalent 
linkage of the P450 to the CPR, which promotes 
productive collisions between the respective do-
mains, as well as by its soluble nature (i�e�, not 
requiring interactions mediated through diffusion 
and collision of eukaryotic P450s and CPR in mi-
crosomal membranes)�

The mechanism of electron transfer also dif-
fers in BM3 from that of the eukaryotic CPRs—
with P450 BM3 going through a 0-2-1-0 elec-
tron occupancy in its reductase during catalysis, 
whereas eukaryotic CPRs use a 1-3-2-1 system� 
In more detail, many eukaryotic CPRs are iso-
lated in a one-electron reduced, neutral (blue) 
SQ state—with the SQ stabilized on the FMN 
cofactor [673]� This is consistent with the struc-
tural relationship between this CPR domain and 
flavodoxins found in microbes, and with the fact 
that the flavodoxins are well known to stabilize 
an SQ on their FMN, with the reduction poten-
tial for the SQ/HQ couple ( E2) being consider-
ably more negative than that for the oxidized 
(OX)/SQ couple ( E1)� For example, the E1/E2 
values (relative to the NHE) are − 105/− 382 mV 
and − 105/− 377 mV for the Bacillus subtilis 
YkuN and YkuP flavodoxins, respectively, and 
− 143/− 435 mV for the Desulfovibrio vulgaris 
flavodoxin [556, 674]� The relative stabilization 
of the SQ form arises from factors such as weak-
er interactions of an aromatic amino acid (typi-
cally tyrosine on the si-face of the FMN) with 
the HQ FMN compared to those with the OX 
and SQ FMN, and from a hydrogen bond from 

directed evolution) [855]� h C5 hydroxylation of omepra-
zole (using semi-rationally designed BM3 mutants) [640]� 
i Hydroxylation of alkanes, for example octane at the ω, 
ω-1, ω-2, and ω-3 positions (indicated in reaction scheme; 
mutants used obtained from a directed evolution screen) 
[856–858]� j Hydroxylation of an achiral cyclopentan-
ecarboxylic acid derivative (2-cyclopentylbenzoxazole) 
to the R, R-diastereomer (using various mutants of BM3) 
[859]� k Sulfoxidation of the gastric proton pump inhibi-
tor drug lansoprazole to lansoprazole sulfone (using semi-
rationally designed BM3 mutants) [860]� l Enantiospe-
cific epoxidation of terminal alkenes (e�g�, the oxidation 

of 1-hexene to 1,2-epoxyhexane; using variants from a 
saturation mutagenesis screen on an existing engineered 
mutant) [861]� m Stereo-selective epoxidation of styrene 
to styrene oxide (using BM3 mutants from a directed evo-
lution screen) [862]� n Carbene transfer from diazoesters 
(e�g�, ethyl diazoacetate) to olefins (e�g�, styrene), forming 
cyclopropane products (e�g�, ethyl 2-phenylcyclopropane-
1-carboxylate) (using an additional Cys-to-Ser mutation 
of the heme proximal ligand to improve performance of 
an existing engineered BM3 mutant) [729]� o Oxidative 
bond cleavage in benzoxylresorufin by WT BM3, leading 
to production of resorufin and benzaldehyde [863]



362 K. J. McLean et al.

an amino acid to the FMN in its SQ state (e�g�, 
a hydrogen bond from the protonated flavin N5 
position to the carbonyl group of Gly57 in Clos-
tridium beijerinckii flavodoxin) [546, 675, 676]� 
In eukaryotic CPR, electron donation to the P450 
is from the more negative potential FMN HQ, 
and thus the ‘resting’ form of the enzyme (in the 
FMN SQ state) is reduced by two electrons from 
NADPH to produce first an FAD HQ/FMN SQ 
form, which is converted to FAD SQ/FMN HQ 
after inter-flavin electron transfer� The first elec-
tron transfer to the ferric P450 heme iron then 
occurs from the FMN HQ, reducing the heme to 
the ferrous state and leaving an FAD SQ/FMN 
SQ form of the reductase� Inter-flavin electron 
transfer results in an FAD OX/FMN HQ form, 
which provides the second electron to the P450 
(converting the ferric–superoxo species to the 
ferric–peroxo state), and restores the resting FAD 
OX/FMN SQ form of the CPR [673, 677, 678]� 
However, the BM3 mechanism differs in that the 
heme-reducing species is an FMN anionic SQ, 
arising due to the unusual structure of the BM3 
flavodoxin domain in the FMN-binding region� 
Specifically, the presence of two basic residues 
(Lys572 and Lys580) in the vicinity of the pyrim-
idine ring and flavin N1 could help stabilize an 
anionic SQ on the FMN and make the FMN SQ/
HQ couple more positive, while a shorter, more 
rigid FMN-binding ‘loop’ region (by comparison 
with bacterial flavodoxins) likely prevents its 
reorientation to facilitate a hydrogen-bonding in-
teraction between protein and a neutral FMN SQ 
that would stabilize this species� In addition, an 
amide proton of Asn537 in BM3 hydrogen bonds 
to the oxidized FMN isoalloxazine N5� Asn547 
corresponds to the glycine found in many flavo-
doxins, but the rigidity of the BM3 FMN-binding 
loop region makes it unlikely that a reorientation 
could occur to enable a different hydrogen-bond-
ing interaction between the FMN N5 and the 
relevant carbonyl oxygen of Asn547 [679]� Mu-
rataliev et al� used a combination of transient ki-
netic analysis and EPR to identify the presence of 
both FAD (neutral, blue) and FMN (anionic, red) 
SQs in P450 BM3 on reduction with NADPH, 
and concluded that heme reduction in BM3 oc-
curred from a one-electron reduced form of the 

FMN� More extensive reduction of the enzyme 
by NAD(P)H produced a three-electron reduced 
form of the BM3 reductase [563]� This form of the 
enzyme likely corresponds to an ‘inactive’ form 
of BM3 identified by Narhi and Fulco through 
incubation of the enzyme with NADPH in the ab-
sence of substrate [668], and redox potentiometry 
and further investigations, including reduction of 
the individual FAD- and FMN-binding domains 
of BM3, suggested that this inactive species has 
an FMN HQ and a blue SQ FAD [581, 680, 681]� 
The characterization of the FMN anionic SQ was 
completed by Hanley and Daff, who established 
its formation (and disproportionation at ~ 0�14 s−1 
at pH 7) in the isolated FMN domain of BM3� 
The midpoint reduction potential for the FMN 
oxidized/anionic SQ couple was determined as 
− 240 mV versus NHE, essentially identical to 
that for the arachidonic acid substrate-bound 
form of the BM3 heme domain, and thus ther-
modynamically favorable for electron transfer to 
the P450 heme iron [562, 581]� In contrast, the 
redox potential of the SQ/HQ couple of the FMN 
domain is much more positive at − 160 mV (pH 
7), making electron transfer to the heme far less 
favorable and providing a firm thermodynamic 
basis for the unusual redox cycling process found 
in BM3�

There have been attempts to recreate efficient 
BM3-like P450-CPR fusion enzymes by linking 
the BM3 reductase to other P450s and related en-
zymes� While this has proved successful in some 
cases with respect to generating hybrid enzymes 
that can make useful amounts of products (e�g�, 
ω-hydroxydodecanoic acid in a Marinobacter 
aquaeloei CYP153A-BM3 CPR fusion enzyme) 
[682], many such chimeras fail to approach the 
catalytic efficiency of P450 BM3 itself [683, 
684]� A likely reason for these observations comes 
from recent studies that indicate that P450 BM3 
may operate mainly as a dimeric form� Black and 
Martin reported aggregation of intact P450 BM3 
from sedimentation velocity and HPLC-size ex-
clusion chromatography experiments, suggesting 
that BM3 may exist in different forms including 
monomer, dimer, trimer and higher aggregates 
[685]� Subsequently, Neeli et al� demonstrated 
that reconstitution of BM3 fatty acid hydroxylase 
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activity could be achieved by mixing inactive 
mutant forms of BM3—specifically a G570D 
mutant (FMN-deficient) and an A264H mutant 
(in which the heme is distally coordinated by the 
His264 imidazole)� The recovery of activity in 
the heterodimer was consistent with the electron 
transfer from A264H reductase FMN to G570D 
P450 heme iron—i�e�, inter-monomer electron 
transfer [531]� In later work, Kitazume et al� used 
cross-linking studies to support the conclusion 
that dimeric BM3 was the functional form, and 
from studies of enzyme reactivation in heterodi-
mers concluded that electron transfer from the 
FAD of one monomer to the FMN of the other 
(and then to the heme of either monomer) would 
be consistent with data available [532]� However, 
subsequent studies revealed that one of the mu-
tants used in the Kitazume et al� study (W1046A 
in the FAD/NADPH-binding domain of the BM3 
reductase) was functional as a fatty acid hy-
droxylase, and exhibited substantial activity with 
NADH (as well as NADPH) as the electron donor 
[686, 687]� This finding leads to reinterpretation 
of earlier data such that the most likely electron 
transfer pathway within the BM3 dimer is from 
NAD(P)H to the FAD of one monomer, and onto 
the FMN of the same monomer� Thereafter, the 
FMN may reduce the heme iron of the oppo-
site monomer, and possibly also the heme of the 
same monomer [686]� A model of inter-monomer 
(FMN-to-heme) electron transfer in P450 BM3 
would be consistent with that proposed for the 
related eukaryotic flavocytochrome nitric oxide 
synthase [688] (Fig� 6�35)� Thus, by attaching 
the BM3 reductase to a heterologous P450 en-
zyme, the catalytic efficiency associated with the 
structural arrangement of the CPR and P450 do-
mains in the BM3 dimer may be lost, leading to 
extensive uncoupling of electron transfer to the 
heterologous P450 and much diminished product 
formation�

While BM3 has become a paradigm in the 
P450 superfamily, it is by no means the only 
representative of this class of P450-CPR fusion 
enzymes� A large number of homologs are found 
in other Bacillus species, e�g�, two in Bacillus 
subtilis [689] as well as other family members 
in, e�g�, B. licheniformis (CYP102A7) and B. 

cereus (CYP102A5) [690, 691], and in Strepto-
myces avermitilis (CYP102D1) [692]� In the case 
of CYP102A7, the enzyme’s ability to catalyze 
oxidation of cyclic and acyclic terpenes points 
to activities distinct from fatty acid oxidation 
for CYP102 enzymes in nature� Homologs are 
also found in the genomes of many eukaryotes, 
including the model fungal organism Aspergillus 
nidulans and also in strains of Fusarium oxyspo-
rum, which include plant pathogens� Indeed, the 
best characterized of the eukaryotic relatives of 
BM3 is P450foxy (CYP505A1) from F. oxyspo-
rum MT-811, which is membrane-associated and 
(like BM3) catalyzes hydroxylation of fatty acids 
at ω-1 to ω-3 positions, although with activity ob-
served towards shorter chain saturated fatty acids 
than those preferred by BM3, and exhibiting 

Fig. 6.35  Electron transport in the P450 BM3 dimer� A 
model is shown for the proposed route of electron trans-
fer in the flavocytochrome P450 BM3 enzyme� Hydrody-
namic studies and analyses using engineered P450 BM3 
variants indicate that the dimeric form is likely to the cata-
lytically relevant state of the enzyme� In the model, the in-
dividual FAD/NADPH ( blue), FMN- ( yellow) and heme- 
( red) binding domains of the enzyme are shown aligned 
antiparallel with one another� Following hydride transfer 
from NADPH to the FAD, electron transfer is proposed 
to occur to the FMN in the same monomer, and then to 
the heme in the opposite monomer, with the FMN-binding 
domains moving between the FAD/NADPH and heme 
domains to transport electrons� At present, FMN-to-heme 
electron transfer within one monomer cannot be ruled out, 
although recovery of BM3 enzymatic activity in heterodi-
mers formed from inactive monomers that have either (i) 
FMN binding abolished or (ii) heme inactivated by coor-
dination from an endogenous amino acid side-chain point 
strongly to the inter-monomer electron transfer model 
shown [531, 532, 685, 686]� NADPH nicotinamide ad-
enine dinucleotide phosphate, FMN flavin mononucleo-
tide, FAD flavin adenine dinucleotide
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substrate inhibition of fatty acid hydroxylase ac-
tivity for fatty acids of carbon chain length C13 
and over [693, 694]�

6.4.2  The CYP116B Enzymes

While P450 BM3 is representative of a novel 
class of P450 enzymes (i�e�, a fusion of a soluble 
P450 to a soluble CPR), the redox partner type 
was already well known from studies of the mam-
malian and other eukaryotic CPRs (e�g�, [677])� 
However, the genome analysis studies of De 
Mot and Parret revealed a completely new type 
of P450 redox partner system fused to P450s in 
Burkholderia spp� and in the heavy metal tolerant 
Cupriavidus metallidurans, while Roberts et al� 
expressed in E. coli a further member of this class 
of enzyme from a Rhodococcus sp�, and showed 
that it had characteristics of a P450 (in forming 
a ferrous–CO complex with an Amax at ~ 450 nm 
in a difference spectrum) and that 7-ethoxycou-
marin (7-EC) dealkylation was catalyzed in the 
P450-containing extract [695, 696]� The organi-
zation of this new type of catalytically self-suffi-
cient P450 is with a soluble P450 at the N-termi-
nus and a reductase module resembling a PDOR 
at the C-terminal [695]� The PDOR module was 
predicted to contain binding sites for NAD(P)H, 
FMN, and a 2Fe–2S cluster, and (by analogy with 
microbial PDOR enzymes) to transport electrons 
from NAD(P)H to the P450 through electron 
transfer to the FMN and then through the 2Fe–2S 
cluster to the heme iron of the fused P450 [697]� 
In further studies of the Rhodococcus enzyme 
(P450 RhF—formally classified as CYP116B2), 
a strong preference for NADPH over NADH 
was established using stopped-flow methods 
( Kd values of 6.6 μM [NADPH] and 3.7 mM 
[NADH])� Rapid NADPH-dependent reduction 
of the electron acceptor potassium ferricyanide 
was catalyzed by CYP116B2 ( kcat = 39 s−1), al-
though P450-dependent oxidation of 7-EC was 
much slower ( kcat = 4.9 min−1), likely reflecting 
the nonphysiological nature of this substrate 
[698]� Further analysis of recombinantly ex-
pressed CYP116B2 revealed sub-stoichiometric 
incorporation of heme and iron–sulfur (2Fe–2S) 

clusters, which could be enhanced by supplemen-
tation of medium with the heme precursor delta-
aminolevulinic acid, and by anaerobic incubation 
of dithiothreitol-treated enzyme with ferrous iron 
and inorganic sulfide to improve loading of the 
2Fe–2S cluster�

The genetic dissection of CYP116B2 enabled 
the production of the individual heme (P450), 
PDOR (FMN-FeS), FMN-, and FeS ‘domains’ 
of the enzyme, as well as a P450-FMN domain 
construct [142], in a similar approach as that 
used for production of the component heme, 
CPR (FAD-FMN), heme-FMN, and FAD- and 
FMN-binding domains of P450 BM3 [581, 679, 
699, 700]� In both BM3 and the CYP116B family 
P450-PDOR fusion enzymes, these studies have 
facilitated the analysis of the thermodynamic and 
spectroscopic properties of component cofactors 
in isolation, as well as the kinetic properties of 
the isolated domains [142], and (in the case of 
BM3) their structural properties from crystal-
lographic studies [679, 701, 702]� EPR data for 
CYP116B2 confirmed the presence of a homo-
geneous 2Fe–2S cluster with g-values similar 
to those of PDOR, and was confirmatory of the 
successful chemical reconstitution of the cofac-
tor [142]. The midpoint reduction potential ( Em) 
of the substrate-free CYP116B2 heme cofactor in 
its isolated domain (− 423 mV vs. NHE for the 
Fe3+/Fe2+ redox couple) is considerably more 
negative than those of the redox couples of the 
FMN and 2Fe–2S cofactors, and points to the re-
quirement for binding of appropriate substrate(s) 
to form high-spin ferric heme iron and to increase 
the heme iron potential to a sufficient extent that 
electron transfer from the PDOR domain is fa-
vored [142]� In the BM3 and P450cam enzymes, 
the binding of substrates (arachidonic acid and 
camphor, respectively) leads to extensive conver-
sion of the P450 heme iron from low spin to high 
spin, concomitant with an increase in the heme 
iron Fe3+/Fe2+ redox couple by ~ 130–140 mV 
in both enzymes [537, 581]� In the case of CY-
P116B2, a similar influence of the physiologi-
cal substrate on the heme iron potential would 
be expected� More recent expression and isola-
tion of the CYP116B1 enzyme from C. Metal-
lidurans enabled spectroelectrochemical studies 
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that revealed a rather more positive heme iron 
Em of ~ − 300 mV versus NHE, with the 2Fe–
2S cluster and FMN being reduced in the same 
phase of the redox titration, and with an Em of 
~ − 160 mV, again pointing to necessity for sub-
strate binding to the P450 to perturb heme iron 
potential and facilitate inter-domain electron 
transfer� Transient kinetic studies again indicated 
that NADPH was the preferred cofactor in CY-
P116B1, with apparent limiting rate constants for 
reduction of the PDOR domain being 72 s−1 with 
NADPH, and 22 s−1 with NADH� Steady-state 
analysis also confirmed the much lower affinity 
for NADH, with KM values of 3 μM (NADPH) 
and 102 μM (NADH) in ferricyanide reduction 
experiments [141]� Preceding studies by Nagy 
et al� identified a stand-alone P450 enzyme 
(ThcB, or CYP116A1) involved in the oxidative 
(N-)dealkylation of the thiocarbamate herbicide 
EPTC (S-ethyl dipropylthiocarbamate) in Rho-
dococcus sp� strain NI86/21, with the CYP116A1 
gene chromosomally adjacent to its redox partner 
genes (a 2Fe–2S ferredoxin and a flavoprotein 
FDR) [139]� CYP116A1 has > 50 % amino acid 
sequence identity with the P450 domains of CY-
P116B1 and CYP116B2, hence their classifica-
tion in the same P450 gene family� In view of the 
level of similarity, EPTC and the related verno-
late thiocarbamates were also tested as substrates 
for CYP116B2� Both were found to be hydroxyl-
ated on N-propyl groups, with a proportion of N-
dealkylated product also observed in the case of 
vernolate [141]� Thus, commonality in substrate 
reactivity remains between the CYP116A1 and 
CYP116B2 enzymes, despite their differing evo-
lutionary paths�

The CYP116B3 enzyme from Rhodococcus 
ruber DSM 44319 was initially identified as a 
novel FMN-binding P450–redox partner fusion 
enzyme with domain organization similar to CY-
P116B2� CYP116B3 was purified and shown to 
catalyze NADPH-dependent oxidation of a range 
of molecules such as naphthalene and fluorene 
(forming ring hydroxylated products), as well 
as performing side-chain hydroxylation on com-
pounds such as toluene and ethyl benzene [703]� 
In subsequent work, a combination of rational 
mutagenesis and directed evolution was used to 

generate a library of CYP116B3 variants with in-
creased activities for oxidative demethylation of 
7-methoxycoumarin and demethylation of 7-eth-
oxycoumarin, helping to identify ‘hotspots’ for 
further engineering to improve activity and di-
versify substrate selectivity in CYP116B3 [704]�

As with BM3, attempts have been made to 
fuse the CYP116B-type PDOR reductase to other 
P450 enzymes in order to create more efficient 
P450 catalysts� Fusions of the CYP116B2 PDOR 
domain at the C-terminal of P450cam produced 
variants (with different inter-domain peptide 
linker lengths used) able to catalyze 5-exo-hy-
droxylation of D-camphor in biotransformations 
using E. coli transformant cells [705]� Analogous 
strategies have also been used to evaluate the cat-
alytic properties of P450cam active site mutant-
CYP116B2 PDOR domain fusions in oxidative 
transformation of molecules such as diphenyl-
methane [706]� Using a similar approach with 
E. coli biotransformations, Nodate et al� demon-
strated (in addition to generation of a functional 
P450cam chimera) that (i) a microbial benzoate 
oxidase P450 (CYP203A)-CYP116B2 PDOR fu-
sion could convert 4-hydroxybenzoate into pro-
tocatechuate (3,4-dihydroxybenzoate), and that 
a hypothetical alkane hydroxylase (P450balk 
from the alkane-degrading marine bacterium Al-
canivorax borkumensis SK2)-CYP116B2 PDOR 
fusion catalyzed hydroxylation of octane to 1-oc-
tanol [707]� This form of heterologous P450–
PDOR fusion was also exploited to drive cataly-
sis by the P450 PikC, involved in the pikromycin 
macrolide antibiotic pathway in Streptomyces 
venezuelae (Fig� 6�8)� The pikC–PDOR fusion 
catalyzed the hydroxylation of both the 12-mem-
bered ring macrolactone YC-17 (to methymy-
cin/neomethymycin) and the 12-membered ring 
macrolactone narbomycin to pikromycin in vitro, 
and with a higher catalytic efficiency than ob-
served using nonfused PikC supported by spin-
ach FD and FDR partners [708]� In more recent 
work, the same group demonstrates intriguing 
data for the multifunctional P450 MycG (CY-
P107E1) from Micromonospora griseorubida 
that catalyzes epoxidation and hydroxylation re-
actions on 16-membered ring mycinamicin mac-
rolide antibiotics (Fig� 6�17)� It was found that 
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the products formed from a MycG–CYP116B2 
PDOR fusion in vitro were the physiologically 
relevant ones, whereas considerable amounts of 
novel N-demethylated products were observed 
when the MycG was reconstituted with separated 
CYP116B2 PDOR, or a PDOR hybrid formed 
from the CYP116B2 FMN-binding domain with 
the native 2Fe–2S domain swapped for the spin-
ach FD sequence [709]� Thus, there have been 
some notable successes in the generation of 
novel P450 oxidase biocatalysts using fusions of 
heterologous microbial P450s to the CYP116B-
type reductase module� There are no structural 
data for these fusion enzymes, and negligible 
data published for the aggregation states of na-
tive or chimeric forms of these proteins� How-
ever, a potential reason for the relative success 
of this type of fusion (compared to heterologous 
P450 fusions with the BM3 CPR) may be that the 
system is monomeric and does not suffer from 
steric hindrance to catalysis that may occur in the 
BM3-type system due to dimerization (probably 
occurring through the CPR domain)�

6.4.3  P450 Fusions to Flavodoxin and 
FD Proteins

A small number of P450 fusion protein systems 
are known in which the P450 is fused to either 
a flavodoxin (FLD) or a ferredoxin (FD) pro-
tein� Such fusions decrease the complexity of a 
class I-type redox partner system to two compo-
nents—but still require an FDR-type component 
for delivery of electrons to the FD/FLD compo-
nent of the fusion enzyme� The best character-
ized of these enzymes is the XplA FLD-P450 
fusion enzyme (CYP177A1) from Rhodococ-
cus rhodochrous strain 11Y, which was identi-
fied as a P450 contributing to the breakdown 
of nitrated explosive molecules, and more spe-
cifically hexahydro-1,3,5-trinitro-1,3,5-triazine 
(known as RDX or Royal Demolition Explosive) 
[710]� R. rhodochrous strain 11Y could degrade 
RDX when provided with the explosive as a sole 
source of nitrogen� The CYP177A1 P450 (prod-
uct of gene xplA) was identified as an enzyme 
responsible, and to be formed from the fusion of 

a flavodoxin-like protein (at the N-terminal) to a 
P450� Immediately upstream on the chromosome 
is the xplB gene, encoding an ADR-like protein� 
Thus, a two-component P450 redox system was 
identified, involving NAD(P)H-dependent elec-
tron transfer to the FAD cofactor in XplB, and 
then reduction of the FLD in XplA and electron 
transfer from FMN to heme in XplA [710]� Ni-
trite was released as an early product of RDX 
degradation by XplA, suggesting that a denitra-
tion mechanism was involved that could lead to 
destabilization of the product and subsequent 
ring cleavage to facilitate the complete degrada-
tion of the molecule [710, 711]� The metabolite 
4-nitro-2,4-diazabutanal (NDAB) was shown to 
be produced during RDX degradation by Rhodo-
coccus sp� strain DN22, and studies with rabbit 
CYP2B4 also indicated that this P450 produced 
the same metabolite, as well as two molecules 
of nitrite per NADPH molecule oxidized when 
reconstituted with CPR, providing further evi-
dence for the involvement of cytochrome P450 
in bacterial RDX degradation [712]� XplA was 
shown to degrade RDX anaerobically when re-
constituted with NADPH and an exogenous 
FDR, with NADPH oxidation tightly coupled to 
RDX degradation� In addition, transgenic Ara-
bidopsis thaliana plants engineered to express 
xplA depleted RDX when grown in liquid media, 
and were also resistant to RDX-mediated phyto-
toxicity when grown in RDX-contaminated soil 
[134]� The phytoremediation study was extended 
to show that A. thaliana transformed with xplA, 
xplB and the 2,4,6-trinitrotoluene (TNT) degrad-
ing nfsl nitroreductase from Enterobacter cloa-
cae could remove RDX from soil contaminated 
with RDX and TNT at levels that were inhibitory 
to plants expressing xplA alone� Plants express-
ing both xplA and xplB were found to have lower 
concentrations of RDX in aerial tissues, and thus 
are potentially less toxic to herbivores [713]� The 
xplA/xplB gene pair was found to be distributed 
widely in Rhodococcus sp� strains able to deplete 
RDX from the medium during aerobic growth, 
and different RDX degradation pathways were 
hypothesized, resulting from ring cleavage 
by hydrolysis following either one (anaerobi-
cally) or two successive (aerobically) reductive 
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denitration steps� Under anaerobic conditions, 
methylenedinitramine (MEDINA) is formed, 
along with one molecule of nitrite and two of 
formaldehyde� Under aerobic conditions, NDAB 
(along with two molecules of nitrite and one of 
formaldehyde) is formed [714, 715]� Studies of 
products formed from RDX degradation by Rho-
dococcus sp� strain DN22 in presence of 18O2 or 
H2

18O2 indicated that the denitration step did not 
involve O2 or H2O, but that these molecules are 
involved in subsequent chemical and biochemi-
cal processes, although aspects of the degrada-
tion mechanism remain uncertain [136]�

The XplA P450 heme domain structure was 
determined, showing a typical P450-fold with 
imidazole (retained from purification using nick-
el affinity chromatography) as a sixth ligand to 
the heme iron� The nonheme ligated imidazole 
nitrogen is hydrogen bonded to a water molecule, 
that is in turn hydrogen bonded to the peptide NH 
of Ala395 and the peptide carbonyl of Val391, 
stabilizing its binding in the active site� The 
P450 acid/alcohol pair (typically Glu or Asp/Thr 
or Ser) is replaced by Met394/Ala395 in XplA, 
suggesting that the enzyme has evolved for a 
predominantly reductive function� An A395T 
mutation substantially diminished binding affin-
ity of RDX and decreased the catalytic efficiency 
( kcat/Km ratio) for RDX degradation by ~ 200-
fold) [135]� Light-scattering studies indicated 
that the XplA flavocytochrome is monomeric, 
and imidazole was shown to have an unusually 
high affinity for XplA ( Kd = 1.06 μM), consistent 
with the stabilized ligation mode observed in 
the imidazole-bound XplA heme domain crystal 
structure [135, 137]� Extensive dialysis was done 
to remove imidazole from XplA and to define its 
Soret maximum in the ferric, substrate-free state 
as being at 417 nm, blue-shifted (by ~ 4 nm) to 
values in previous reports in which residual imid-
azole remains bound [137]� FMN binding to the 
XplA N-terminal flavodoxin (FLD) domain was 
quantified by fluorimetric titration and revealed a 
weak Kd (~ 1.1 μM), almost two orders of mag-
nitude higher than that for many other microbial 
flavodoxins [137, 556, 716]� Reconstitution of 
the as-purified XplA with FMN produced a spec-
trum with much better-defined flavin features, 

confirming that XplA becomes flavin depleted 
during purification unless buffers contain addi-
tional FMN� RDX binding induces a near-com-
plete high-spin shift in the XplA heme iron, with 
a Kd of 7.5 μM [137]� Spectroelectrochemical 
titrations indicated an unusually positive redox 
potential for the XplA FMN SQ/HQ couple 
(− 172 mV vs. the NHE) compared to most other 
flavodoxins (e.g., − 433 mV vs. NHE for the E. 
coli FLD), likely reflecting an unusual binding 
mode of the FMN and perhaps consistent with 
its weak affinity for XplA [137, 549]� The sub-
strate-free XplA heme iron potential is − 268 mV 
versus NHE, but the reductive conversion of the 
RDX substrate means that it was not possible to 
obtain a redox potential for the substrate-bound 
form [137]� However, based on preceding stud-
ies of other P450 enzymes and the extensive 
high-spin conversion of the XplA heme iron on 
binding RDX, an increase in heme potential of 
~ 130–140 mV might be expected (i�e�, perhaps 
to ~ − 130 mV vs. NHE at near-saturating RDX). 
This would suggest that the FMN HQ is the rel-
evant electron donor to the RDX-bound XplA 
heme, which is also the case for the reduction of 
eukaryotic P450s by CPR [137, 581, 717]�

XplA is clearly a P450 with proven potential 
for biotechnological applications in bioremedia-
tion of explosive contaminated soil, and the xplA 
gene may have evolved over the past ~ 50 years 
during which RDX has become a major global 
pollutant in soil and groundwater� To date, xplA 
genes are restricted to bacteria of the order Ac-
tinomycetales, suborder Corynebacterineae (par-
ticularly in Rhodococci), and the unusual ther-
modynamic properties of this enzyme appear to 
indicate adaptation to favor a mainly reductive 
function [137, 713]�

The only characterized example of a P450-
ferredoxin fusion protein is found in the methane 
oxidizing proteobacterium Methylococcus cap-
sulatus� MCCYP51FX was identified through a 
screen of the genome of M. capsulatus for the 
presence of a sterol demethylase (CYP51 fam-
ily) P450� The screen revealed a single candidate, 
with a gene encoding a CYP51-like P450 fused 
to an FR at the C-terminus via an alanine-rich 
linker region [545]� The P450–FD fusion is 551 
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amino acids long and is the only P450 encoded 
by the bacterium� It shares 49 % identity with the 
M. tuberculosis CYP51B1, and its FD portion has 
42 % identity to the M. tuberculosis 3Fe–4S fer-
redoxin Fdx (product of gene Rv0763c) that lies 
immediately adjacent to CYP51B1 on the M. tu-
berculosis genome [21, 545]� EPR spectroscopy 
confirmed a MCCYP51FX thiolate-coordinated 
heme iron, consistent with the ferrous–CO com-
plex maximum at 448 nm� Binding of lanosterol 
produced a type II UV-visible difference spec-
trum, suggestive of inhibitor-like (rather than 
substrate-like) binding� However, reconstitution 
of MCCYP51FX with spinach FDR and NADPH 
produced a 14α-demethylated 4α-methyl-5-α-
ergosta-8,14,24(28)-trien-3β-ol product from 
lanosterol, consistent with a bona fide sterol de-
methylase, albeit with a rather low rate constant 
of 0�24 min−1 [545]� Further studies are required 
in this case (as for the M. tuberculosis CYP51B1) 
to establish the physiological function of MCCY-
P51FX and to determine whether M. capsulatus 
metabolizes sterols�

6.4.4  Other Characterized 
P450-Partner Fusion Enzymes

A relatively new field in P450 biochemistry re-
lates to the discovery and characterization of 
P450 enzymes fused naturally to proteins unlike-
ly to play a role in electron donation to the P450� 
The development of this area has understandably 
been fuelled by the advent of high-throughput 
genome sequencing—which has pointed to sev-
eral new examples of P450-redox partner and 
P450-nonredox partner fusions in the microbial 
kingdom�

6.4.4.1  P450-Peroxidase/Dioxygenase 
Fusion Enzymes

Probably the best examples of P450 enzymes 
covalently linked to a nonredox partner are the 
fungal Ppo enzyme(s), which are discussed in the 
section ‘Microbial diversity of P450s’ earlier in 
this chapter� The Ppo’s are natural fusions of an 
N-terminal peroxidase/dioxygenase domain to a 
C-terminal P450 domain, and were recognized 

through their involvement in Aspergillus nidu-
lans in the synthesis of oleic acid- and linoleic 
acid-derived oxylipins (psi factors) that regulate 
the fungal life cycle through controlling the bal-
ance between sexual and asexual spore develop-
ment [459], as well as in formation of mycotox-
ins [458, 478, 480]� PpoA was shown to oxidize 
linoleic acid to 8R-hydroperoxyoctadecadienoic 
acid (8R-HPODE) through a mechanism involv-
ing hydrogen atom abstraction from the fatty acid 
C8 to produce a carbon-centered radical that re-
acts with dioxygen [488]� The P450 then isomer-
izes the peroxidase product to 5,8-dihydroxyocta-
decadienoic acid in a molecular rearrangement 
reaction that has close mechanistic parallels with 
that catalyzed by, e�g�, mammalian CYP5A1 
(thromboxane synthase) and plant (e�g�, flax CY-
P74A1) AOS [183, 488, 718]� Gel filtration stud-
ies of PpoA indicated an approximately fourfold 
higher molecular weight of the protein compared 
to that predicted from its amino acid sequence 
(~ 440 kDa compared to 110 kDa), suggesting 
a tetrameric structure of the enzyme [488]� A 
combination of EPR and electron nuclear double 
resonance (ENDOR) spectroscopy was used to 
identify a low-spin thiolate-ligated heme in the 
PpoA P450 domain, and to characterize axial his-
tidine ligation of heme in the peroxidase domain 
[719]� The A. nidulans PpoA (CYP6000C1) was 
predicted to have a similar domain structure to 
PpoA, but lacks the phylogenetically conserved 
cysteine in the P450 domain (replaced by a gly-
cine)� The purified enzyme is thus heme defi-
cient, due in large part to the P450 domain being 
an apoprotein� A G1039C mutation reinstating a 
cysteine did not restore heme-binding/isomerase 
activity [17]� PpoC was shown to catalyze dioxy-
genation of linoleic acid to produce 10-HPODE, 
but this was not further isomerized� However, 10-
HPODE was converted into 10-keto-octadecadi-
enoic acid and 10-hydroxy-octadecadienoic acid, 
and also decomposed to 10-octadecynoic acid 
and to volatile C8 alcohols and other products 
(e�g�, 2-octen-1-ol, 1-octen-3-ol, 2-octenal, and 
3-otenone)� PpoA and PpoC could also catalyze 
conversion of 8-HPODE and 10-HPODE into 
their respective epoxy alcohols: 12,13-epoxy-
8-hydroxyoctadecenoic acid and 12,13-epoxy-
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10-hydroxyoctadecenoic acid, respectively� The 
P450 domain is not responsible for the formation 
of the epoxy alcohols [17]� To date, there is no 
report of the characterization of the PpoB protein�

The first fungal AOS was discovered in A. ter-
reus, with linoleic acid oxidized sequentially to 
HPODE, and then to the allene oxide 9R-(10)-
epoxy-11,(12Z)-octadecadienoic acid (9R(10)-
EODE)� The AOS activity was found to reside in 
the P450 domain of a Ppo-type peroxidase/diox-
ygenase-P450 fusion protein� However, the 9R-
dioxygenase activity was not assigned to a partic-
ular enzyme [720]� Subsequent studies identified 
the requisite activities for allene oxide synthesis 
in a single peroxidase/dioxygenase-P450 fusion 
protein from the plant pathogen Fusarium oxys-
porum [721]� Future work on these systems will 
likely be in the areas of protein crystallography 
and the analysis of a higher-order structure of 
the Ppo-type fusion enzymes� Such studies will 
be important in understanding enzymatic mecha-
nism and roles of active sites residues in both the 
peroxidase/dioxygenase and P450 domains, and 
in rationalizing how substrates and product are 
channelled between these domains�

6.4.4.2  A P450-Hydrolase Fusion in 
Mycophenolic Acid Synthesis

A gene cluster encoding the biosynthetic path-
way for mycophenolic acid (MPA) was identi-
fied in Penicillium brevicompactum [722]� MPA 
is an important immunosuppressant drug used to 
prevent organ rejection after transplantation, and 
also has potential antimicrobial, antiviral and an-
titumor applications [723]� An unusual P450 fu-
sion was identified through studies to characterize 
enzymes responsible for conversion of 5-methy-
lorsellinic acid (5-MOA) into 5,7-dihydroxy-
4-methylphthalide (DHMP), the first and second 
characterized pathway intermediates in MPA syn-
thesis [724, 725]� The mpaDE gene was shown to 
encode a fusion protein comprising a cytochrome 
P450 (MpaD or CYP631B5, N-terminal) and a 
Zn-dependent hydrolase (MpaE)� The mpaDE 
gene was expressed in Aspergillus nidulans strain 
NID211 and these cells were able to produce 
DHMP (an activity absent in the parent NID211 
strain)� The P450 (MpaD) component of MpaDE 

was predicted to catalyze a methyl hydroxylation 
reaction on 5-MOA to produce 5,7-dihydroxy-
4-methylphthalide, followed by a lactonization 
reaction on this intermediate by the MpaE hydro-
lase to form DHMP [722]� The mpaDE gene fu-
sion is unique to date, although several fungi have 
orthologs of mpaD and mpaE genes� In the cases 
of Talaromyces stipitatus and Phaeosphaeria 
nodorum, the mpaD (CYP631B4 and CYP631C2, 
respectively) and mpaE genes are located close to 
each other, and to polyketide synthase ( pks) genes 
that have strong similarity and conserved domain 
architecture to the P. brevicompactum mpaC gene 
that encodes MpaC involved in making 5-MOA 
[722]� There are no data available as yet for the 
biochemical or structural characterization of the 
purified MpaDE enzyme�

6.4.5  P450-Partner Fusion Enzymes 
from Database Analysis

While there is clearly potential for the misassign-
ment of P450-partner fusion enzymes (e�g�, if a 
stop codon is missed between adjacent genes), 
the fact that there are several instances of certain 
types of such fusion proteins in related microbial 
genomes (and sometimes in genomes of diverse 
microbes) gives confidence that these genes en-
code bona fide P450-fusion enzymes� Aside from 
the Ppo enzymes, there are currently only sparse 
data reporting the characterization of P450-non-
redox partner fusion enzymes� Nonetheless, bio-
informatics tools such as CDART , which inter-
rogates databases for conserved protein domain 
profiles rather than sequence similarity per se, 
identify several potential P450-fusion enzymes 
[726]� Selected examples of novel types of such 
P450 fusion proteins identified in several mi-
crobial and other genomes using bioinformatics 
approaches include (in protein domain order) 
(i) a P450 linked to a Dyp-type (heme-binding) 
peroxidase in an extended polypeptide in alp-
haproteobacteria, (ii) an isoprenoid biosynthetic 
protein linked to a P450, (iii) a GTB-type gly-
cosyltransferase linked to a P450, (iv) a Rieske 
iron–sulfur cluster-binding domain linked to a 
P450 in proteobacteria, (v) a metal-dependent 
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hydrolase linked to a P450 in filamentous fungi, 
and (vi) a methyl transferase linked to a P450 in 
filamentous fungi (see Fig� 6�36 for a diagram-
matic representation of domain organization 
in selected P450-partner fusion systems)� The 
growing number of such P450-partner fusion 
enzymes suggests that they play diverse and im-
portant roles in their host organisms, and (like 
BM3 and Ppo partner fusion P450s) represent 
evolutionary steps forward to improve catalytic 
efficiency through enhancement of electron 
transfer kinetics or (where the fused module is 

not a redox partner) to consolidate physiologi-
cally related activities in a single polypeptide to 
streamline catalysis through, e�g�, more efficient 
substrate transfer between enzymes�

6.5  Conclusions and Future 
Prospects

Recent years have seen enormous advances in 
our understanding of the structure and function of 
microbial P450 enzymes, as well as an increasing 

Fig. 6.36  P450 fusion proteins� The figure shows a 
schematic overview of a number of selected P450-fusion 
proteins either (i) characterized biochemically or (ii) 
predicted from analysis of genome sequences� Several 
such fusion proteins can be classified as redox partner fu-
sions, as typified by the flavocytochrome P450s such as 
P450 BM3� However, a smaller (but growing) category 
contains P450 domains fused to other enzyme modules, 
some containing heme cofactors (e�g�, peroxidases)� The 
functions of many such fusions are yet to be established, 
except in the case of the fungal Ppo proteins� A further cat-
egory has P450s fused to proteins that are unlikely to have 
any redox role, and for which the purpose of the fusion 
protein has yet to be established� From top to bottom, ex-
amples shown are (i) P450–CPR fusions of the BM3 type 
[28], (ii) CYP116B-type P450–phthalate dioxygenase 

reductase fusions [141], (iii) flavodoxin–P450 fusions of 
the XplA type [864], (iv) P450-HCP fusions, where HCP 
indicates a hybrid cluster protein family member� The 
HCPs contain two iron–sulfur clusters (one of which is a 
hybrid [4Fe-4S-2O] cluster), and thus are potential P450 
redox partners [865];,(v) animal heme peroxidase-type 
modules fused to P450s [488], (vi) P450s fused to Dyp-
type peroxidases [866], (vii) IPPS-type proteins fused to 
P450s, where IPPS indicates trans-isoprenyl diphosphate 
synthase family member [867], (viii) glycosyltransferases 
fused to P450s [868], and (ix) P450s fused to lipoxygen-
ases [869]� In examples (iv) to (ix), there is no reported 
characterization of any member of these P450 fusion 
classes to date� FMN flavin mononucleotide, FNR FAD 
and NAD(P)H-binding reductase module, Fdx ferredoxin, 
Dyp dye decolorizing peroxidase
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appreciation of their diversity of catalytic func-
tions and potential as tools for biotechnological 
applications� There has been a continuous stream 
of structural data produced for bacterial P450s, 
aided by the fact that these soluble, cytoplasmic 
enzymes can often be expressed at high levels in 
heterologous systems (particularly E. coli) and 
purified efficiently in high yield using affinity 
tags (particularly His-tags)� The development 
of liquid handling robotics for setting up protein 
crystallization trials has made the process more 
efficient and reproducible, and much smaller 
quantities of protein are now typically required in 
order to produce crystals of the quality required 
for structural elucidation� In the past decade, 
large numbers of new microbial P450 structures 
have been determined, including several from 
the human pathogen Mycobacterium tuberculo-
sis (including the first sterol demethylase struc-
ture for CYP51B1 and high-resolution structures 
of the cyclodipeptide oxidase CYP121), and the 
first true structure of an intact P450 membrane 
protein for the Saccharomyces cerevisiae CYP51 
[65, 187, 408, 467]� In addition, the crystal struc-
ture of the BioI P450 in complex with its ACP 
partner (which delivers the lipid substrate) is the 
first true structural representation of a P450 en-
zyme bound to a partner protein� The structural 
data in this case demonstrate clearly how the 
BioI:ACP complex leads to a substrate-binding 
mode distinct from that which occurs for the in-
teraction of BioI with free fatty acids, and which 
enables oxidative scission near the center of the 
substrate to produce a C7 diacid (pimelic acid) 
for the biotin synthesis pathway [131]�

Other major advances in the area of microbial 
P450 biochemistry have come through the appli-
cation of high-throughput mutagenesis screening 
procedures as routes to isolating P450s with novel 
functions� This is particularly true in the case of 
directed evolution approaches, where phenotypic 
screens are used to identify P450 mutants with al-
tered functions, using protein evolution strategies 
that employ random mutagenesis (sometimes fo-
cused on substrate-binding regions of the P450) 
and/or DNA shuffling/recombination methods� 
Mutants identified with desired activities are then 
subjected to further rounds of evolution to fur-

ther improve their properties [129]� This type of 
approach has been used particularly successfully 
in the case of P450 BM3, where several variants 
with novel substrate selectivity have been gen-
erated� These include BM3 mutants with ability 
to oxidize short-chain alkanes, to perform cyclo-
propanation reactions (e�g�, catalyzing carbene 
transfer from diazoesters to olefins in E. coli 
cells) and to catalyze regio- and stereo-selective 
hydroxylation of steroids [670, 727–729]� How-
ever, almost certainly the most important recent 
breakthrough in cytochrome P450 biochemistry 
is the definitive characterization of P450 com-
pound I—the highly reactive ferryl–oxo heme 
porphyrin radical species that is ultimately re-
sponsible for hydrogen abstraction from the sub-
strate and C–H bond activation� Rittle and Green 
used CYP119A1 from the thermophilic archaeon 
Sulfolobus acidocaldarius and produced com-
pound I in ~ 75 % yield by reacting the ferric, sub-
strate-free enzyme with m-chloroperbenzoic acid 
( m-CPBA) at 4 °C� UV-vis, EPR and Mössbauer 
spectroscopy confirmed compound I formation 
[13]� In subsequent work by Green’s group, P450 
compound II (that forms after hydrogen transfer 
to compound I) was also spectroscopically char-
acterized in the S. coelicolor CYP158A2—again 
using m-CPBA to convert the ferric P450 directly 
to a reactive iron–oxo species (compound 0, the 
ferric–hydroperoxo form) immediately preced-
ing compound I and compound II in the P450 
catalytic cycle (Fig� 6�4) [200]�

The above recent highlights in microbial P450 
biochemistry beg questions as to where the next 
tranche of advances in our understanding of mi-
crobial P450 biochemistry will occur, and what 
the major industrial and biotechnological appli-
cations of these enzymes will be� While major 
breakthroughs are difficult to predict, there are 
several potential avenues for exploitation of the 
P450 enzymes� As discussed above, the diver-
sification of the substrate selectivity of P450s 
through directed evolution has produced mu-
tants with useful chemical reactivities, including 
alkane and steroid oxidation (e�g�, [670, 727])� 
However, parallel work done with the highly 
active, catalytically self-sufficient flavocyto-
chrome P450 BM3 enzyme has also produced 



372 K. J. McLean et al.

novel variants with capacity to oxidize human 
drugs to products the same as those produced 
by the human P450s in vivo, and this has im-
portant applications in view of requirements for 
safety testing of these metabolites (as well as the 
parent drugs) from the US Food and Drug Ad-
ministration (FDA) and other regulatory bodies 
(e�g�, [730, 731])� Lessons learned from crystal 
structures of P450 BM3 and from the growing 
database of mutants and their effects on catalysis 
and structural/conformational properties of the 
enzyme have also helped in the rational or semi-
rational generation of BM3 mutants with use-
ful properties—e�g�, for variants that efficiently 
transform the human drug omeprazole to a hy-
droxylated product the same as that generated by 
the major human metabolizer CYP2C19 [640]� A 
further area of applications for P450s was also 
highlighted in studies by Arnold’s group through 
the use of the BM3 heme (P450) domain as a sen-
sor protein� Paramagnetic metalloproteins (such 
as the ferric forms of P450) can be used as sen-
sors in magnetic resonance imaging (MRI), and 
structure-guided directed evolution was done to 
produce BM3 heme domain mutants that bind 
avidly to dopamine and serotonin, and which 
could be used for in vitro studies of neurotrans-
mitter release [732]�

The possibility of exploiting P450s for bio-
remediation is attractive, and there have been 
numerous studies that have highlighted the abili-
ties of WT and mutant forms of P450s to oxidize 
PAHs and other environmental pollutants (e�g�, 
[466, 733])� Advances are expected in this area 
in the near future, with work on the explosive-de-
grading P450 enzyme XplA from a Rhodococcus 
strain pointing the way for future applications� 
XplA catalyzes primarily the reductive denitra-
tion of the explosive RDX (hexahydro-1,3,5-
trinitro-1,3,5-triazine), and is an unusual example 
of a flavodoxin-P450 fusion enzyme [134, 137, 
715]� Contamination of soil and groundwater in 
areas where the explosive has been used presents 
major threats to plants, wildlife, and also to hu-
mans� Transgenic Arabidopsis thaliana plants 
expressing the xplA gene were shown to degrade 
RDX when grown in liquid media, and also 

proved resistant to the toxic effects of RDX when 
grown in explosive-contaminated soil [134, 715]�

In the biofuels area, P450 enzymes may also 
become important players, particularly in view of 
depleting oil reserves and the limited number of 
enzymes to date shown capable of generating hy-
drocarbons that could be useful as biofuels� The 
OleT P450 from a Jeotgalicoccus sp� was shown 
to catalyze oxidative decarboxylation of a range 
of fatty acids to generate their n − 1 alkenes [574, 
575]� OleT is an efficient peroxygenase P450 
that uses H2O2 directly to generate the reactive 
compound 0 on the OleT heme iron, which then 
progresses to compound I for catalysis� OleT’s 
current specificity range is for long-chain fatty 
acids ( ca C12–C20 and beyond), and thus pro-
tein engineering studies will be needed to pro-
duce variants that can oxidize slightly shorter 
fatty acids (e�g�, producing 1-octene from nona-
noic acid) in order to produce ‘drop-in’ biofu-
els that are most compatible with most current 
automobile engines� There is also interest in the 
insect CYP4G enzymes, which play important 
roles in the waterproofing of the insect cuticle 
using hydrocarbons� RNA interference (RNAi) 
was used to knockdown either Drosophila me-
lanogaster CYP4G1 or CPR, leading to insects 
deficient in cuticular hydrocarbons� D. melano-
gaster CYP4G1 and house fly CYP4G2 enzymes 
were also shown to catalyze oxidative decarbon-
ylation of long-chain fatty aldehydes to form the 
n − 1 alkanes in yeast cells co-expressing CPR 
[734]� The selectivity of the CYP4G enzymes is 
for fatty aldehydes of chain lengths ~ C22 and 
above, and thus protein engineering will again 
be required to generate variants that can produce 
more volatile alkanes� However, there is a clear 
need for new routes to biofuel production, and 
the OleT and CYP4G enzymes offer potential so-
lutions for fuel production from fatty acids and 
aldehydes�

Most P450 enzymes require electron delivery 
from NAD(P)H via one or more redox partner 
enzymes, and there are issues with application 
of P450s for production of oxidized (and other) 
chemical products in light of factors such as the 
expense of NAD(P)H, slow rates of electron 
transfer and catalysis and uncoupling of elec-
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tron transfer from substrate oxidation� There is 
long-standing interest in the application of elec-
trochemistry to drive P450 reactions, and such 
methods are attractive in terms of potential cost 
efficiency� Other applications involve using an 
electrochemical response from a P450 for mo-
lecular recognition—i�e�, its use as a biosensor� 
Key challenges to be addressed include avoiding 
denaturation of the P450 at the electrode surface, 
with approaches to stabilizing P450s in the litera-
ture including protein encapsulation in polymers 
at the electrode surface, or covalent attachment 
of the P450s to a self-assembled monolayer on 
a gold electrode surface [735]� There have been 
notable successes, including driving lauric acid 
hydroxylation by P450 BM3 at ~ 110 turnovers/
min, and also in the development of electro-
chemical sensors for cocaine (using immobilized 
CYP2B4) and for human drugs (using CYP3A4) 
[652, 736]� In the latter case, the P450-bound 
electrode was used in a microfluidic cell format, 
with the electrochemical response used to iden-
tify and quantify the binding of CYP3A4 sub-
strates such as nifedipine and alosetron [736]� 
Thus, the ongoing development of electrochem-
istry technologies with P450s has potential to 
provide new forms of P450 catalytic devices, as 
well as sensors that can be used for biomedical 
and chemical detection applications�

A final technological advance of note in 
the P450 field is the development and use of 
nanodisks for the encapsulation and solubiliza-
tion of eukaryotic P450s and other membrane-
bound enzymes� Nanodisks are lipid bilayers 
contained within an amphipathic helical belt (the 
membrane scaffold protein, or MSP; Fig� 6�37)� 
The membranous P450s are typically mixed with 
a nanodisk reconstitution mixture of MSP, palmi-
toyl-oleoyl-phosphatidylcholine (POPC) and so-
dium cholate, and the mixture immobilized on an 
Amberlite resin, which initiates the self-assem-
bly process in which the P450 becomes incor-
porated into a POPC bilayer (typically ~ 10 nm 
in diameter) that is stabilized and solubilized by 
the encircling MSP belt [520, 737]� The nanodisk 
technology has not only provided an excellent 
method for generating water-soluble forms of eu-
karyotic P450s but also enabled the application 

of several biophysical methods to interrogate 
their properties� For instance, the analysis of the 
resonance Raman spectrum of nanodisk encapsu-
lated human CYP3A4 and its response to bind-
ing a range of substrates, and studies of the ori-
entation, depth of binding and lipid interactions 
made by CYP3A4 using combined experimental 
and molecular simulation approaches [738, 739]� 
Nanodisk technology will undoubtedly become a 
more widely used and powerful tool in the study 
of fungal, mammalian, and other membrane-
bound P450s and redox partners—offering op-
portunities for, e�g�, single protein molecule 
analysis, analysis of P450–lipid interactions and 
heme redox potential determination� The ability 
to analyze P450 membrane proteins in a pseudo-
soluble form offers opportunities for innovative 

Fig. 6.37  Biotechnological applications of microbial 
P450s� The image shows current and future biotechnolog-
ical applications for microbial and other P450 enzymes� 
Clockwise from the top: (i) exploitation of P450s for bio-
remediation, including in transformed plants, (ii) electro-
catalysis using P450s in important reactions without the 
need for NAD(P)H cofactors and cofactor regeneration, 
(iii) use of P450s for synthesis of compounds such as anti-
biotics and drug metabolites, (iv) exploitation of nanodisk 
technology for detailed biophysical and mechanistic 
characterization of membrane-bound P450s and partner 
proteins, (v) use of engineered P450s for challenging 
oxidative chemical reactions, (vi) development of P450 
systems for generation of alkane and alkene biofuels, and 
(vii) exploitation of P450s as sensor proteins for drugs 
and other bioactive molecules
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new approaches to studying structural and bio-
chemical properties of these systems�

In conclusion, the past decade of P450 re-
search has seen major advances in our under-
standing of the structure and mechanism of the 
microbial (and other) P450s� Genome sequenc-
ing projects and high-throughput mutagenesis 
approaches have provided researchers with a 
wealth of information on new P450 catalysts, 
and with the tools for generating P450s able to 
perform novel chemical transformations� The 
coming years should see further applications for 
engineered P450s in areas such as fine chemical 
synthesis, bioremediation, and molecular sens-
ing� Innovative approaches in these and other 
areas will help maintain a vibrant field for the 
exploitation of nature’s most versatile catalysts�
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7.1  Introduction

Cytochrome P450 monooxygenases (P450s) 
are integral components in pathways producing 
metabolites important for normal growth and 
development as well as for adaptive strategies 
that define biotic interactions, including trophic 
interactions between plants, insects, mammals, 
fish, and their respective pathogens� Biosyn-
thetic P450s in these pathways can be considered 
organism-general (fatty acids, sterols) versus 
organism-specific with examples of the latter in-
cluding structural components (plant cell walls, 
insect cuticle, fungal spore walls), signaling net-
works (plant oxylipins and gibberellins, insect 
ecdysteroids, fungal gibberellins), and defense 
compounds (plant terpenoids, alkaloids, fura-
nocoumarins, glucosinolates, insect cyanogenic 
glycosides, and pyrrolizidine alkaloids, fungal 
aflatoxins and trichothecenes)� Detoxicative 
P450s are generally organism-specific and fre-
quently evolved from those with catabolic func-
tions� In the interactions between plants and in-
sect herbivores, the activities of synthetic and 
detoxicative P450s determine how effectively 
plants can synthesize toxins impeding the growth 
of insects and how effectively these herbivores 
can detoxify toxins present in their food sources 

and hosts� This chapter attempts to highlight bio-
chemical and structural features of the numerous 
P450s existing in plants, insects and their fungal 
pathogens� Because it is impossible to do justice 
to over 18,000 P450 sequences already annotated 
in these three species groups, readers are guided 
to several excellent reviews included in each of 
the following chapter sections�

7.2  Plant P450s

7.2.1  Gene Counts

With the range of compounds that plant species 
manufacture estimated at over 200,000 [1], indi-
vidual plant genomes contain varying but always 
high numbers of P450 genes� Among some of the 
vascular plant genomes sequenced to date, there 
are final counts of 142 P450 genes in Carica pa-
paya (papaya), 172 in Nelumbo nucifera (sacred 
lotus), 174 in Morus notabilis (mulberry), 225 in 
Bracypodium distachyon (model wild grass), 245 
full-length genes in Arabidopsis thaliana (mouse 
ear’s cress), 270 in Lycopersicon esculentum 
(tomato), 310 in Populus trichocarpa (poplar), 
316 in Vitis vinifera (grape), 334 in Oryza sativa 
(rice), 337 in Glycine max (soybean), and 399 in 
Solanum tubersum (potato) as well as prelimi-
nary counts of 318 in Zea mays (maize), 368 in 
Sorghum bicolor (sorghum), and 412 in Jatropha 
curcas (barbados nut) [2–10]� Because many of 
their genomes have not yet been sequenced, ge-
nome-wide P450 counts for the medicinal plants 
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described later in this chapter section are not yet 
available�

7.2.2  Prominent Synthetic Pathways

Among the larger classes of specialized metabo-
lites synthesized in plant species, terpenoids rep-
resent a hyperdiverse class (more than 40,000 
structures) that includes many toxic and repellent 
molecules (monoterpenes (limonene, myrcene, 
and pinene), diterpenes (taxadiene and abieta-
diene), triterpenes (amyrin and avenacin), and 
sesquiterpene lactones (artemisinin and its modi-
fied derivatives)) [11, 12]� Alkaloids represent 
another large and extremely diverse class (more 
than 12,000 structures) that includes the phar-
maceutically relevant isoquinoline and benzyl-
isoquinoline alkaloids (berbamunine, morphine, 
codeine), monoterpene indole alkaloids (vinblas-
tine, quinine, strychnine), tropane and nicotine 
alkaloids (nicotine, scopolamine, atropine), pu-
rine alkaloids (caffeine), and alkaloid esters (ho-
moharringtonine) [11, 13, 14]� Phenylpropanoids 
represent a third very large class (more than 8000 
structures) that includes flavonols (quercetin), 
flavonoids (flavone) that are simple hydroxylated 
flavanones, anthocyanins (pelargonidin) that are 
complex hydroxylated, methoxylated, and gluco-
sylated flavanones, isoflavonoids (daidzein, ge-
nistein) that are rearranged flavonones [11, 15, 
16], methylenedioxyphenyl (MDP) compounds 
(myristicin, sesamin, safrole) that are monomers 
and dimers of cinnamyl alcohols and/or cinnamic 
acids [17], and stilbenes (resveratrol, piceatan-
nol, viniferin) that are multimeric derivatives of 
cinnamoyl CoA and malonyl CoA [11, 15]� Many 
subclasses of metabolites exist within the large 
terpenoid, alkaloid, and phenylpropanoid classes 
and some “mixed origin” metabolites contain 
components from several classes�

In addition to these larger classes of plant de-
fense compounds, there are smaller classes pro-
duced in just a few plant species� Examples of 
these include: furanocoumarins (a subclass of 
phenolics with more than 200 structures) that 
are derived by the attachment of a furan ring to 
hydroxycoumarin in either a linear orientation 

(xanthotoxin, psoralen) or an angular orientation 
(angelicin, sphondin) [18, 19]; glucosinolates 
(more than 120 structures) that are thioglucosides 
derived from Met (aliphatic glucosinolates), Trp 
(indole glucosinolates), and Phe (benzylgluco-
sinolates) [20, 21]; benzoxazinoids that are hy-
droxamic acids derived from indole [22]; momi-
lactones that are diterpenoids derived from pima-
radiene and stemodene [23]; cyanogenic gluco-
sides that are derived from hydoxynitriles and a 
variety of protein amino acids (Val, Ile, Leu, Phe, 
Tyr) and, in C. papaya, an unusual nonprotein 
amino acid (cyclopentenyl glycine) [24]�

Beyond these various defense compounds, 
plants synthesize a wide variety of signaling 
molecules (oxylipins, brassinosteroids, gibberel-
lins, cytokinins, strictolactones) [25], pigments 
(chlorophylls, carotenoids) [26], and fatty acids 
and sterols [27]� In the perspective of this chap-
ter, it is worth noting that the production of many 
of these plant compounds depends on both chlo-
roplast enzymes, which include a small number 
of soluble P450s, and endoplasmic reticulum 
enzymes, which include the bulk of membrane-
bound P450s�

7.2.3  Gene Conservations and 
Divergences

Comparisons among the P450 sequences an-
notated in completed plant genomes, which are 
available in a number of recent reviews [5, 8, 28, 
29], have indicated that relatively few P450 fami-
lies and subfamilies exist in all plants� Most of 
those conserved in vascular plant species occur 
in single-family clans (CYP51, CYP74, CYP97, 
CYP701) that have been maintained with small 
numbers of genes or in particular families/sub-
families within multiple-family clans (CYP71, 
CYP72, CYP85, CYP86) that have expanded 
numbers of genes� The expansions of the CYP71 
clan, which contains 60 % of all sequenced plant 
P450s, and the CYP85, CYP72, and CYP86 
clans, which contain 13, 10, and 9 % of all plant 
P450s, are especially notable [8]� Maintained 
with some evolutionary constraints due to their 
important roles in plant physiology, individual 
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conserved families and subfamilies within these 
clans are typically associated with sterol synthesis 
(CYP51G mediating sterol 14α-demethylation, 
CYP710A mediating sterol C22-desaturation), 
carotenoid synthesis (CYP97 mediating ca-
rotenoid hydroxylations), oxylipin synthesis 
(CYP74A mediating jasmonic acid formation), 
gibberellin (GA) synthesis (CYP701A and CY-
P88A mediating sequential conversions in GA 
formation), fatty acid synthesis (CYP86, CYP94, 
CYP77A, CYP703A, CYP704B, and CYP709C 
mediating fatty acid hydroxylations and carbox-
ylations), phenylpropanoid synthesis (CYP73A, 
CYP75B, CYP84A, and CYP98A mediating cin-
namic acid, flavonoid, ferulate, and shikimate 
hydroxylations, respectively), brassinosteroid 
synthesis (CYP85A, CYP90), and strigolactone 
synthesis (CYP711A likely converting carlactone 
to 5-deoxy-strigol)� In addition, some conserved 
families and subfamilies are associated with ca-
tabolism of plant signaling molecules such as ox-
ylipins (CYP74B), brassinosteroids (CYP734A), 
abscisic acid (ABA; CYP707A), and cytokinins 
(CYP735A)�

Many of the remaining P450 families and 
subfamilies within the expanded multiple-family 
clans provide evidence of the many duplication 
and divergence events that have allowed for the 
evolution of chemical defense pathways in par-
ticular plants or groups of plants� Examples of 
the chemical diversities resulting from neofunc-
tionalizations within multiple-family clans in-
clude the following:

7.2.3.1  CYP71
Within the CYP71 clan that is associated with 
metabolism of a wide array of compounds, du-
plicated and closely related CYP79F1 and CY-
P79F2 genes in A. thaliana code for functions in 
the conversion of short- and long-chain methio-
nine derivatives to oximes [30–32], CYP79B2 
and CYP79B3 genes code for functions in the 
conversion of tryptophan derivatives to another 
class of oximes [33, 34], and the CYP79A2 gene 
codes for functions in the conversion of phenyl-
alanine derivatives to yet another class of oximes 
[35]� Subsequent modifications of these three 
classes by duplicated and diverged members of 

the CYP83 family (CYP83A1, CYP83B1) and 
branchings in their pathways eventually lead to 
the production of indole glucosinolates, ben-
zylglucosinolates, and aliphatic glucosinolates 
[36, 37]� Orthologues of CYP79A2 identified 
in a number of cyanogenic dicots and monocots 
[38–42] lead to the production of other types of 
defense molecules� Examples here include: CY-
P79A1 in S. bicolor that mediates the synthesis 
of the cyanogenic glucoside dhurrin and the CY-
P79D subfamily in Manihot esculenta (cassava) 
and Lotus japonicus (model legume) that medi-
ates the synthesis of linamarin and lotaustralin� 
Subsequent to these CYP79-mediated steps, the 
synthetic pathways in each of these species di-
verge with the product of S. bicolor CYP79A2 
converted to a cyanohydrin derivative by CY-
P71E1 [43] and the products of cassava and lotus 
CYP79D proteins converted to other end prod-
ucts by different and as-yet-uncharacterized mo-
nooxygenases�

Other examples within the CYP71 clan include 
divergent members of the CYP80 and CYP719 
families in Coptis japonica (japanese gold-
thread), Papaver somniferum (opium poppy), 
and Eschscholzia californica (california poppy) 
species involved in the synthesis of benzyliso-
quinoline alkaloids [13, 14, 44] CYP71A13 and 
CYP71B15 in A. thaliana involved sequentially 
in camalexin synthesis [45, 46], CYP71AV1 in 
Artimesia annua (sweet wormwood) involved in 
artemisinin synthesis [47], four CYP71C subfam-
ily members in Z. mays involved sequentially in 
the synthesis of benzoxazinoids [22], CYP99A2 
and CYP99A3 in O. sativa involved in the syn-
thesis of momilactones [48], and the CYP76M 
subfamily in O. sativa involved in oryzalide and 
phytocassane syntheses [49–51]� In the process 
of neofunctionalization within the CYP71 clan, 
some such as CYP76B6 in Catharanthus roseus 
(madagascar rosy periwinkle) have acquired the 
ability to mediate sequential conversions in a 
pathway (e�g�, geraniol to 10-oxogeraniol) while 
their close relatives such as CYP76C4 in A. thali-
ana have maintained the ability to mediate only 
a single hydroxylation (e�g�, geraniol to 10-hy-
droxygeraniol) [52]�
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7.2.3.2  CYP72
Within the very large CYP72 clan that tends to 
be associated with metabolism of hydrophobic 
compounds, the CYP714 family has evolved a 
number of subfamilies with species-specific ac-
tivities� Examples here include: CYP714B1 and 
CYP714B2 in O. sativa that are 13-oxidases 
involved in the synthesis of bioactive gibberel-
lins (GAs) [53], CYP714D1 in O. sativa that is a 
16,17-epoxidase inactivating non-13-hydroxylat-
ed GAs [54], and CYP714A1 in A. thaliana that 
is a 16-carboxylase inactivating 16,17-dihydro 
GA12 [55]� In contrast with these involved in the 
modulation of GA levels, CYP714A2 in A. thali-
ana and CYP716D1 in Stevia rebaudiana have 
evolved the ability to 13-hydroxylate ent-kaure-
noic acid and yield steviol, a natural sweetner 
[55] rather than a modified gibberellin�

7.2.3.3  CYP85
Within the CYP85 clan that is associated with 
the synthesis and catabolism of signaling mol-
ecules in vascular plants (CYP85, CYP90, and 
CYP734A for brassinosteroids, CYP88A and 
CYP701A for GAs, CYP707A for ABA, CY-
P735A for cytokinins) and with the conservation 
of many gene families and subfamilies, there are 
several species-specific neofunctionalizations 
involved in the synthesis of isoprenoids� These 
include the apparently conifer-specific CYP720B 
subfamily that mediates oxygenations on mono-
terpenes (myrcene, pinenes), sesquiterpenes 
(farnesene) and diterpenes (abietadienol, abietic 
acid) and lead to the production of diterpene ole-
fins, alcohols, aldehydes, and resin acids [12, 56, 
57] as well as the Taxus (yew)-specific CYP725A 
subfamily that mediates sequential steps in taxa-
diene and paclitaxel syntheses [58]�

7.2.3.4  CYP86
Within the CYP86 clan that contains multiple 
conserved families and subfamilies associated 
with various fatty acid oxygenations [27, 59], 
there are fewer examples of species-specific 
activities neofunctionalized to create new com-
pounds� Even so, some such as CYP94A5 in Ni-
cotiana tabacum (tobacco) and CYP94C1 in A. 
thaliana, have evolved the ability to sequentially 

oxygenate fatty acids to alcohols, aldehydes, and 
diacids [60, 61], unlike others in their subfami-
lies�

7.2.3.5  Others
Even within the most highly conserved single-
family clans, neofunctionalizations occur� Ex-
amples here include: CYP51H in Avena sativa 
(oat) that has diverged from the CYP51G sub-
family members in sterol synthesis to produce 
a multifunctional β-amyrin hydroxylase and ep-
oxidase in avenacin synthesis [62, 63] as well 
as CYP701A8 in O. sativa that has diverged 
from the CYP701A subfamily members in GA 
synthesis to produce an ent-cassadiene- and ent-
sandaracopimaradiene-hydroxylase in oryzalexin 
synthesis [64]�

7.2.4  Functional Characterizations of 
P450s in Model Plants

Prominent among the model plants whose P450 
activities are being characterized are A. thaliana 
(representative dicot) and O. sativa (representa-
tive monocot)� Biochemical analyses of their 
monooxygenases using bacterial ( Escherichia 
coli), yeast ( Saccharomyces cerevisiae, Pichia 
pastoris), and insect ( Spodoptera frugiperda) 
expression systems [65] have helped define con-
served and divergent activities in these species as 
well as substrate overlaps for related subfamily 
members� The coupling of this information with 
phenomics analyses of natural (missense) and 
synthetic (knockouts, knockdowns, overexpres-
sors) mutants has provided important informa-
tion on the physiological functions of individual 
P450s and on the genetic redundancies for their 
multimember P450 subfamilies� Building on the 
compilations in several recent reviews [4, 7, 29], 
the current lists of activities for 73 (of 245) Ara-
bidopsis P450s and 35 (of 332) Oryza P450s are 
presented in Tables 7�1 and 7�2 with their associ-
ated references�

Beyond simple phylogenetic comparisons, 
structural predictions of Arabidopsis and Oryza 
P450s in conserved subfamilies have indicated 
that they have varying levels of catalytic site di-
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P450 Activity Pathway References
51G1 Obtusifoliol 14α-demethylase Sterols [132]

[133]
71A13 Conversion of indole-3-acetaldoxime to 

indole-3-acetonitrile
Camalexin [45]

71A16 Marneral oxidase Triterpenes [112]
71B31 Linalool hydroxylase and epoxidase Monoterpenes [134]
71B15 Conversion of cysteine indole-3-acetonitrile and 

dihydrocamalexic acid to camalexin
Camalexin [135]

[136]
[46]

72C1 Degradation of brassinosteroids Brassinosteroid inactivation [137]
[138]

73A5 Cinnamic acid 4-hydroxylase ( t-CAH) Phenylpropanoids [91]
[139]

74A1 Allene oxide synthase (AOS) Oxylipins [140]
74B2 Hydroperoxide lyase (HPL) Oxylipins [141]
75B1 3ʹ-hydroxylase for narigenin, dihydrokaempferol 

(F3ʹH)
Phenylpropanoids [142]

76B3 Linalool hydroxylase Monoterpenes [134]
76C4 Geraniol 8- or 9-hydroxylase Terpene indole alkaloids [52]
77A4 Epoxidase and ω-hydroxylase on C18 fatty acids Fatty acids [143]
77A6 In-chain hydroxylase on 16-hydroxypalmitate Fatty acids [144]
79A2 Conversion of phenylalanine to oxime Benzylglucosinolates [35]
79B2 Conversion of tryptophan and analogs to oximes Indole glucosinolates [33]

[34]
79B3 Conversion of tryptophan to oxime Indole glucosinolates [33]
79F1 Mono to hexahomomethionine in synthesis of short- 

and long-chain aliphatic glucosinolates
Aliphatic glucosinolates [30]

[31]
[32]

79F2 Long-chain penta and hexahomomethionine in syn-
thesis of long-chain aliphatic glucosinolates

Aliphatic glucosinolates [31]
[32]

81F1 Conversion of indol-3-ylmethylglucosinolate to 
4-hydroxy-I3M and 1-hydroxy-I3M

Glucosinolates [145]

81F2 Conversion of indol-3-ylmethylglucosinolate to 
4-hydroxy-I3M and 1-hydroxy-I3M

Glucosinolates [146]
[147]

81F3 Conversion of indol-3-ylmethylglucosinolate to 
4-hydroxy-I3M and 1-hydroxy-I3M

Glucosinolates [145]

81F4 Conversion of indol-3-ylmethylglucosinolate to 
1-hydroxy-I3M

Glucosinolates [145]

82C2 Hydroxylase for 8-methoxypsoralen [148]
82C4 Hydroxylase for 8-methoxypsoralen [148]
82G1 Oxidative degradation of C20 geranyllinalool and 

C15 nerolidol
Homoterpene volatiles [149]

83A1 Oxidation of methionine-derived oximes Aliphatic glucosinolates [150]
[36]
[151]

83B1 Oxidation of indole-3-acetaldoxime Indole glucosinolates [37]
[36]
[151]

Table 7.1  Functionally defined Arabidopsis thaliana P450s 
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P450 Activity Pathway References
84A1 5-hydroxylase for coniferaldehyde, coniferyl alcohol 

and ferulic acid (F5H)
Phenylpropanoids [152]

[153]
[154]

85A1 C6-oxidase for 6-deoxycastasterone and other 
steroids

Brassinosteroids [155]
[156]

85A2 C6-oxidase for 6-deoxycastasterone and other 
steroids

Brassinosteroids [156]
[157]
[158]

86A1 ω-hydroxylase for satur. and unsatur. C12 to C18 
fatty acids

Fatty acids [159]
[160]
[161]

86A2 ω-hydroxylase for satur. and unsatur. C12 to C18 
fatty acids

Fatty acids [162]
[160]

86A4 ω-hydroxylase for satur. and unsatur. C12 to C18 
fatty acids

Fatty acids [162]
[160]
[144]

86A7 ω-hydroxylase for lauric acid Fatty acids [162]
[160]

86A8 ω-hydroxylase for satur. and unsatur. C12 to C18 
fatty acids

Fatty acids [163]
[160]

86B1 ω-hydroxylase for C22-C24 fatty acids Fatty acids [164]
88A3 Multifunctional ent-kaurenoic acid oxidase Gibberellins [71]
88A4 Multifunctional ent-kaurenoic acid oxidase Gibberellins [71]
89A9 Deformylase on fluorescent chlorophyll catabolites Chlorophyll breakdown [165]
90A1 23α-hydroxylase for 6-oxo-cathasterone and 

cathasterone
Brassinosteroids [166]

90B1 22α-hydroxylase for campesterol, campestanol and 
6-oxo-campestanol

Brassinosteroids [167]
[168]

90C1 23α-hydroxylase for multiple brassinosteroids Brassinosteroids [169]
[170]

90D1 23α-hydroxylase for multiple brassinosteroids Brassinosteroids [169]
[170]

94B1 ω-hydroxylase for satur. and oxygenated fatty acids Fatty acids [171]
94B3 ω-hydroxylase for satur. and oxygenated fatty acids; 

conversion of JA-Ile to 12COOH JA-Ile hydroxylase 
for JA-Val and JA-Phe

Fatty acids 

JA inactivation

[171]
[172]
[173]
[174]

94C1 ω-hydroxylase and in-chain hydroxylase for satur. 
C12 and unsatur� C18 fatty acids and 9,10 epoxyste-
aric acid; conversion of JA-Ile to 12COOH-JA-Ile

Fatty acids 

JA inactivation

[171]
[61]
[173]

96A4 ω-hydroxylase for satur. C12, C14 fatty acids and 
oleic acid

Fatty acids [171]

96A15 mid-chain hydroxylase for alkanes and secondary 
alcohols

Epidermal waxes [175]

97A3 β-ring carotene hydroxylase Carotenoids [176]
[177]

97B3 β-ring carotene hydroxylase Carotenoids [178]
97C1 ε-ring carotene hydroxylase Carotenoids [176]

[177]
98A3 3ʹ-hydroxylase for p-coumaryl shikimic/quinic acids 

(C3ʹH)
Phenylpropanoids [179]

Table 7.1 (continued)
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vergence [29]� Some in the most highly conserved 
subfamilies common to all plants (e�g�, CYP84A 
and CYP98A mediating ferulate and shikimate 
hydroxylations in lignan synthesis; CYP86A 
and CYP86B mediating ω-hydroxylations on 
medium-chain fatty acids; CYP85A, CYP90B 
and CY90D mediating C6-oxidations, 22α- and 
23α-hydroxylations in brassinosteroid synthe-
sis) retain extremely conserved catalytic sites 
with few changes in substrate contact residues� 
Others in less conserved subfamilies particular 
to dicots or monocots have divergent catalytic 
sites that handle different substrates in species-
specific ways (e�g�, Oryza CYP81A6 in herbicide 
metabolism vs� Arabidopsis CYP81F in gluco-
sinolate synthesis)� And, yet others in different 

families have convergent catalytic sites that me-
diate the same hydroxylations despite different 
predicted binding modes (e�g�, Arabidopsis CY-
P90B, Oryza CYP90B, and Oryza CYP724B me-
diating 22α-hydroxylations on brassinosteroids).

7.2.5  Functional Characterizations of 
P450s in Medicinal Plants

Many of the specialized plant defense com-
pounds effective in interactions of plants with 
bacteria, fungi, insects, and mammals have 
proven useful as pharmaceuticals and nutraceu-
ticals in the treatment of human diseases� As a 
result, their biochemical pathways, which in-

P450 Activity Pathway References
98A8 Hydroxylase on triferuloylspermidine Phenolamides [180]
98A9 Hydroxylase on triferuloylspermidine Phenolamides [180]
701A3 Multifunctional ent-kaurene oxidase Gibberellins [69]

[70]
[71]

703A2 In-chain hydroxylase for C10-C14 fatty acids Fatty acids [127]
704B1 In-chain hydroxylase for C16-C18 fatty acids Fatty acids [181]
705A5 Thalian-diol desaturase Triterpenes [85]
705A12 Marneral desaturase Triperpenes [112]
708A2 Thalianol hydroxylase Triterpenes [85]
707A1 8ʹ-hydroxylase for ABA ABA inactivation [182]

[183]
707A2 8ʹ-hydroxylase for ABA ABA inactivation [182]

[183]
707A3 8ʹ-hydroxylase for ABA ABA inactivation [182]

[183]
707A4 8ʹ-hydroxylase for ABA ABA inactivation [182]

[183]
710A1 C-22 desaturase for β-sitosterol Sterols [84]

[184]
710A2 C-22 desaturase on 24-epicampesterol and 

β-sitosterol
Sterols [84]

710A4 C-22 desaturase for β-sitosterol Sterols [184]
714A1 Conversion of GA12 to 16-carboxylated GA12 Gibberellin inactivation [55]
714A2 GA12 12-hydroxylase Gibberellin inactivation [55]
734A1 26-hydroxylase for brassinolide and castasterone Brassinolide inactivation [185]

[186]
735A1 Trans-hydroxylase for isopentenyladenine 

phosphates
Cytokinins [187]

735A2 Trans-hydroxylase for isopentenyladenine 
phosphates

Cytokinins [187]

ABA abscisic acid

Table 7.1 (continued)
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clude large numbers of P450s, O-methyltrans-
ferases (OMTs), N-methyltransferases (NMTs), 
flavin adenine dinucleotide (FAD)-linked oxi-
doreductases, nicotinamide adenine dinucleotide 
phosphate hydrogen (NADPH)-dependent re-
ductases, and the like have been explored with 
ever-increasing genomic resources� Prominent 

among the medicinal plants being studied are 
Coptis, Papaver, and Eschscholzia species that 
synthesize the benzylisoquinoline alkaloids ber-
berine, morphine, codeine, thebane, noscapine, 
papaverine, and sanguinarine, Berberis stolon-
ifera (barberry) that synthesizes the bisbenzyl-
isoquinoline alkaloid berbamunine, C. roseus 

CYP Activity/induction Pathway References
71P1 Tryptamine 5-hydroxylase Serotonin [188]

[189]
71Z6 Ent-isokaurene C2-hydroxylase Oryzalides [190]
71Z7 Ent-cassadiene C2-hydroxylase Phytocassanes [190]
72A31 Bispyribac sodium metabolism Herbicide detoxification [191]
72A18 Peralogonic acid (ω-1)hydroxylase Herbicide detoxification [192]
74A5 Allene oxide synthase Jasmonic acid [193]
74E1 9-/13-hydroperoxide lyase Oxylipins [194]
74E2 9-/13-hydroperoxide lyase
75B3 Flavonoid 3ʹ-hydroxylase Flavonoids [195]
76M5 Ent-sandaracopimaradiene C7β-hydroxylase Oryzalexins [50]
76M6 Ent-sandaracopimaradiene C9β-hydroxylase Oryzalexins [51]
76M7 Ent-cassadiene C11α-hydroxylase Phytocassanes [49]
76M8 Ent-sandaracopimaradiene C7β-hydroxylase Oryzalexins [51]
81A6 Bentazon and sulfonylurea metabolism Herbicide detoxification [196]
85A1 C6-oxidase for 6-deoxocastasterone and steroids Brassinosteroids [197]
88A5 Ent-kaurenoic acid oxidase Gibberellins [198]
90B2 22α-hydroxylase for campesterol Brassinosteroids [199]
90D2 C23 hydroxylase on 22-hydroxylated brassinosteroids Brassinosteroids [200]
90D3 C23 hydroxylase on 22-hydroxylated brassinosteroids Brassinosteroids [200]
93G2 Flavanone 2-hydroxylase Flavones [201]
97A4 β-ring carotene hydroxylase Carotenoids [202]
97C2 ε-ring carotene hydroxylase Carotenoids [202]
99A3 Syn-pimaradiene oxidase Momilactones [48]

[23]
701A6 Ent-kaurene oxidase Gibberellins [203]
701A8 C3α hydroxylase on ent-sandaracopimaradiene, cas-

sadiene and kaurene
Oryzalexins [64]

704B2 ω-hydroxylase on C16-C18 fatty acids Fatty acids [204]
707A5 ABA 8ʹ-hydroxylase ABA inactivation [205]
707A6 ABA 8ʹ-hydroxylase [206]
714B1 GA 13-oxidase Gibberellin inactivation [53]
714B2 GA 13-oxidase Gibberellin inactivation [53]
714D1 Epoxidase on non-13-hydroxylated Gas Gibberellin inactivation [54]
724B1 22α-hydroxylase for brassinosteroid precursors Brassinosteroids [199]
734A2 Conversion of 6-deoxo3DT to 6-deoxo3DT-COOH Brassinosteroid inactivation [74]
734A4 Conversion of 6-deoxo3DT to 6-deoxo3DT-COOH Brassinosteroid inactivation [74]
734A6 Conversion of 6-deoxo3DT to 6-deoxo3DT-OH and 

6-deoxo3DT-CHO
Brassinosteroid inactivation [74]

Satur saturated, Unsatur unsaturated

Table 7.2  Functionally defined Oryza sativa P450s
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that synthesizes the monoterpene indole alkaloid 
vinblastine, Hyoscyamus niger (henbane), and 
N. tabacum that synthesize tropane and nicotine 
alkaloids atropine, scopolamine, and nicotine, 
Glycyrrhiza uralensis (licorice) that synthesizes 
the triterpenoid saponin glycyrrhizin, Panax gin-
seng that synthesizes multiple triterpene ginsen-
osides, Taxus baccata that synthesizes the diter-
penoid paclitaxel, and A. annua that synthesizes 
the sesquiterpene lactone artemisinin [11, 13, 14, 
66, 67]� Figure 7�1 depicts structural subgroups 
of 1-benzylisoquinoloine alkaloid, Fig� 7�2 in-
dicates P450-mediated modifications in benzyl-
isoquinoline synthesis and Fig� 7�3 depicts P450-
mediated modifications in paclitaxel synthesis� 
Building on compilations in several recent re-
views [14, 44, 68], the current list of activities for 
medicinal plant P450s characterized using one of 
the heterologous expression systems mentioned 
above or newer gene-silencing technologies is 
presented in Table 7�3�

7.2.6  Unusual Features

7.2.6.1  Reactivities

As previously summarized in Mizutani and Sato 
[44], many of the aforementioned plant P450s 
have unusual reactivities� Some are capable of 
intermolecular C-O phenol coupling ( B. stolon-
ifera CYP80A1), intramolecular C-C phenol 
coupling ( C. japonica CYP80G2, P. somniferum 
CYP719B1), C-C bond cleavage ( C. roseus 
CYP72A1, Ammi majus (bishop’s weed) CY-
P71AJ1, Pastinaca sativa (parsnip) CYP71AJ4), 
rearrangement of carbon skeletons ( H. niger 
CYP80F1), ring rearrangements ( G. echinata 
CYP93C2, various CYP88A proteins), methyl-
enedioxy-bridge formation (various CYP719A 
proteins, Sesamum indicum (sesame) CYP81Q1), 
N-oxidations (various CYP79 proteins), sterol 
desaturations (various CYP710A proteins, A. 
thaliana CYP705A5), as well as dehydrations 
and cyclizations in camalexin synthesis ( A. thali-
ana CYP71A13, CYP71B15)�

Others are capable of mediating sequential 
modifications in synthetic or detoxicative path-

ways� Examples here include: many CYP88A 
and CYP701A subfamily members in GA syn-
thesis [69–72], CYP79 family members in aldox-
ime synthesis [24], Pinus taeda (loblolly pine) 
and Picea sitchensis (sitka spruce) CYP720B 
proteins in abietic acid and other resin acid syn-
theses [56, 57, 73], O. sativa CYP734A in brassi-
nosteroid inactivation [74], A. sativa CYP51H 
in avenacin synthesis [63], C. roseus CYP76B6 
in strictosidine synthesis [52], G. uralensis CY-
P88D6 and CYP72A154 in glycyrrhizin synthe-
sis [75, 76], P. ginseng CYP716A52 in oleanolic 
acid synthesis [77], A. annua CYP71AV1 in arte-
misinin synthesis [47], L. japonicus CYP71D353 
in hydroxybetulinic acid synthesis [78], and the 
previously mentioned N. tabacum CYP94A5 and 
A. thaliana CYP94C1 in fatty acid syntheses [60, 
61]�

7.2.6.2  Residues
Given the radical nature of catalysis in some of 
the atypical reactions mentioned above and the 
use of substrate oxygens in others [44], it is not 
surprising that substitutions occur in the I-helix 
residues of some plant P450s� Changes within 
the conserved (A/G)GX(D/E)TT motif contain-
ing the oxygen-activating Thr (underlined) [79] 
occur in CYP719A proteins catalyzing meth-
ylenedioxy-bridge formations and CYP719B1 
catalyzing phenol coupling reactions with Leu 
in place of A/G and Ser in place of T [80, 81], 
CYP93C2 catalyzing aryl migration on flava-
none with Ser in place of T [82], CYP88A3 and 
CYP88A4 catalyzing aryl migrations on kaure-
noic acid with Ser in place of T [71], CYP71A13 
and CYP71B15 catalyzing dehydrations and 
cyclizations of indole 3-aldoxime with Ser in 
place of T [45, 46], CYP79 proteins catalyzing 
aldoxime synthesis with Ser in place of T [24], 
CYP81Q1 catalyzing methylenedioxy-bridge 
formation with Ala in place of T [83], CYP710A 
proteins catalyzing sterol C22 desaturation with 
Ala in place of T [84], CYP705A5 catalyzing 
thalianol-diol desaturation with Ala in place of 
T [85], CYP734A proteins catalyzing sequential 
brassinosteroid oxygenations with Gln in place 
of D/E [74], CYP51H catalyzing hydroxylations 
and epoxidations on β-amyrin with His in place 
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of D/E [63], CYP80A1 and CYP80G2 catalyz-
ing phenol coupling reactions on methylcloclau-
rine and reticuline with Pro in place of A/G [86, 
87], and CYP82E4 catalyzing demethylation of 
nicotine with Asp in place of A/G and Ala in 
place of G [88]�

7.2.6.3  Electron Transfer Partners
Contrasting with the single P450 reductase and 
cytochrome b5 sequences present in the verte-
brates, higher plant genomes contain multiple 
P450 reductase (CPR) and cytochrome b5 (cyt 
b5) proteins� Phylogenetic analyses of multiple 

Fig. 7.1  Benzylisoquinoline alkaloid structural sub-
groups derived from the basic benzylisoquinoline sub-
unit� Blue designates the part of each molecule originating 
from the tetrahydroisoquinoline moiety; red designates 
the part of each molecule originating from the benzylic 

moiety; yellow highlights C–C or C–O bonds formed in 
the benzylisoquinoline subunit that defines each structural 
subgroup. Stereochemistry is not indicated since both ( R)- 
and ( S)-configurations exist in many cases� (Excerpted 
from ref� [14])
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Fig. 7.3  Taxol/paclitaxel biosynthetic pathway. ( Top) 
Overview of biosynthetic pathway. ( Bottom) Bifuca-
tion of the taxol biosynthetic pathway following the 
5α-hydroxylation step showing four taxoid hydroxyl-

ations mediated by members of the CYP725A subfamily� 
The broken arrows indicate subsequent undefined meta-
bolic steps� (Excerpted from ref� [58])
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Species CYP Activity Pathway References
Artemisia 
annua

71AV1 Conversion of amorphadiene to 
artemisinic acid

Sesquiterpene lactones [47]
Artemisinin

Berberis 
stolonifera

80A1 Berbamunine synthase Bisbenzylisoquinoline alkaloids [86]
Berbamunine

Catharan-
thus roseus

71D12 Taberosine 16-hydroxylase Terpene indole alkaloids [207]
Vindoline

71D351 Taberosine 16-hydroxylase Terpene indole alkaloids [208]
Vindoline

71BJ1 Taberosine 19-hydroxylase Terpene indole alkaloids [209]
Hörhammericine

72A1 Secologanin synthase Terpene indole alkaloids [210]
72A224 7-deoxyloganic acid 7-hydroxylase Terpene indole alkaloids [211]
76B6 Conversion of geraniol to 10-oxo 

geraniol
Terpene indole alkaloids [212]

[52]
Coptis 
japonica

80B2 N-methylcoclaurine 3ʹ-hydroxylase Benzylisoquinoline alkaloids [80]
Berberine

80G2 Corytuberine synthase Aporphine alkaloids magnoflorine [87]
719A1 Canadine synthase Protoberberine and phthalideisoquin-

oline alkaloids
[80]

Berberine
Eschscholzia 
californica

80B1 N-methylcoclaurine 3ʹ-hydroxylase Benzophenanthridine alkaloids [213]
Reticuline

82N2 Protopine 6-hydroxylase Benzophenanthridine alkaloids [214]
Allocryptopine 6-hydroxylase Sanguinarine

719A2 Stylopine synthase Protoberberine and benzophenanthri-
dine alkaloids

[215]

Sanguinarine
719A3 Stylopine synthase Protoberberine and benzophenanthri-

dine alkaloids
[215]

Sanguinarine
719A5 Cheilanthifoline synthase Benzophenanthridine alkaloids [81]

Sanguinarine
719A9 Formation of methylenedioxy bridge 

in reticuline
Pavine alkaloids [81]
Californidine

Glycyrrhiza 
uralensis

72A154 β-amyrin 30-oxidase Triterpenoid saponons [76]
Glycyrrhizin

81E1 Isoflavone 2ʹ-hydroxylase Hydroxyisoflavones [216]
88D6 β-amyrin 11-oxidase Triterpenoid saponons [75]

Glycyrrhizin
93B1 Flavanone 2-hydroxylase Hydroxyflavanones [217]
93E3 β-amyrin 24-hydroxylase Triterpenoid saponons [75]

Glycyrrhizin
Nicotiana 
tabacum

71D20 5-epiaristolochene 1,3-dihydroxylase Sesquiterpene [218]
Phytoalexins [121]
Capsidiol

82E4 Nicotine N-demethylase Nicotine alkaloids [88]
82E5 Nicotine N-demethylase Nicotine alkaloids [219]
82E10 Nicotine N-demethylase Nicotine alkaloids [220]

Table 7.3  Functionally defined P450s in medicinal plants
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P450 reductases, including two in A. thaliana, 
three each in O. sativa, P. tricocarpa and others, 
have indicated that CPR proteins fall into distinct 
clusters with the CPR1 cluster restricted to dicots 
and the CPR2 cluster present in dicots and mono-
cots [3, 89]� Within the same species, conserva-
tions among the CPR sequences are moderate 
with 63 % identity between the two in Arabidop-
sis and 72 % identity between the three in Oryza� 
Even more divergence exists among the cyt b5 
sequences with 35–67 % identity between the five 
in Arabidopsis and substantially more among the 
many in Oryza� While the physiological roles of 
these many CPR and cyt b5 proteins are unclear, 
it has been repeatedly suggested that they inter-
act with different subsets of ER-localized P450s� 
Evidence in support of this exists only in a recent 

study showing that the Oryza CPR2 enhances cin-
namic acid 4-hydroxylase activity significantly 
better than either Oryza CPR1 or CPR3 [90]� Evi-
dence in refutation of this exists in an older study 
showing that both Arabidopsis CPR proteins sup-
port cinnamic acid 4-hydroxylase activity [91]�

7.2.7  Genomic Resources

In contrast to the large quantity of genome and 
transcriptome information available for model 
plants on a variety of websites ( A. thaliana 
(http://arabidopsis�org), O. sativa (http://rice�
plantbiology�msu�edu;  http://rapdb�dna�affrc�
go�jp)  and others), genome information is not 
yet available for most medicinal plants� Conse-

Species CYP Activity Pathway References
Panax 
ginseng

716A47 Dammarenediol 12-hydroxylase Dammarane-type triterpenes [221]
716A52 β-amyrin 28-oxidase Oleanane-type triterpenes [77]

Oleanolic acid
716A53 Protopanaxadiol 6-hydroxylase Dammarane-type triterpenes [222]

Papaver 
somniferum

80B3 N-methylcoclaurine 3ʹ-hydroxylase Benzoisoquinoline alkaloids [223]
Reticuline

82N4 N-methylstylopine 14-hydroxylase Protoberberine and benzoisoquinoline 
alkaloids

[224]

N-methylcanadine 14-hydroxylase Sanguinarine
82Y1 N-methylcanadine 1-hydroxylase Phthalideisoquinoline alkaloids [225]

N-methylstylopine 1-hydroxylase Noscapine
719A21 Canadine synthase Phthalideisoquinoline alkaloids [226]

Noscapine
719B1 Salutaridine synthase Morphinan alkaloidsMorphine [227]

Sesame 
indicum

81Q1 Dimerization of pinoresinol Furofuran lignan [83]
Sesamin

Taxus 
brevifolia

725A1 Taxane 10β-hydroxylase Diterpenoids [228]
Paclitaxel

725A2 Taxane 13α-hydroxylase Diterpenoids [229]
Paclitaxel

725A3 Taxane 14β-hydroxylase Diterpenoids [230]
Paclitaxel

725A-like Taxadiene 5a-hydroxylase Diterpenoids [231]
Paclitaxel

725A-like Paclitaxel 2a-hydroxylase Diterpenoids [232]
Paclitaxel

725A-like Taxadiene 7β-hydroxylase Diterpenoids [233]
Paclitaxel

Table 7.3 (continued)

http://rapdb.dna.affrc.go.jp
http://rapdb.dna.affrc.go.jp
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quently, transcriptome sequencing efforts have 
been mounted in the recent years via large-scale 
efforts on multiple species (Phytometasyn, http://
www�phytometasyn�com, [92]; Medicinal Plant 
Genomics Consortium, http://medicinalplantgen-
omics�msu�edu, [93]) as well as smaller-scale ef-
forts on individual species ( C. roseus [94, 95]; G. 
uralensis [96]; P. somniferum [97–99]; P. ginseng 
[100]; T. cuspidata [101, 102]; T. mairei [103])� 
Large-scale genome and transcriptome sequenc-
ing efforts are underway for many conifer species 
subject to insect and fungal infestations, includ-
ing sitka spruce ( Picea sitchensis [104]); white 
spruce ( Picea glauca [105], http://www�smart-
forests.ca), Norway spruce ( Picea abies [106], 
http://congenie.org); loblolly pine ( Pinus taeda 
[107], http://www�pinegenome�org/pinerefseq), 
lodgepole pine ( Pinus contorta) and jack pine 
( Pinus banksiana [108])�

Coupled with metabolite analyses of natural 
plant mutants and/or ecotypes deficient in partic-
ular compounds as well as engineered plant lines 
silenced for particular P450s, these genomic and 
transcriptomic resources are providing details 
on the exceptionally large number of P450 tran-
scripts expressed in different plant species, those 
co-regulated in branch pathways and metabolic 
interactions between primary and specialized 
compounds in individual species�

7.2.8  Gene Clusters

With the increasing amount of genomic informa-
tion available, it is becoming evident that some 
previously mentioned plant P450s are physi-
cally clustered and co-regulated with other genes 
(OMT, NMT, oxidoreductase, etc�) in their bio-
chemical pathways� First evident in the Z. mays 
CYP71C cluster for hydroxamic acid synthesis 
[109], P450 clusters for specialized products 
have now been annotated for avenacin synthesis 
in Avena spp. [110], momilactone and phytocas-
sane syntheses in O. sativa [23, 48, 49, 111], 
thalianol and marneral syntheses in A. thaliana 
[85, 112], noscapine synthesis in P. somniferum 
[113], and cyanogenic glucoside and triterpene 
syntheses in L. japonicus [78, 114]� Although the 

evolutionary origins of these gene clusters are not 
clear, it is worth noting that the pathway clusters 
already identified contain between one and six 
P450 genes with multiple P450s frequently, but 
not always, within the same subfamily� As sum-
marized in Field and Osbourn [85] and Chu et al� 
[115], there are obvious advantages to maintain-
ing P450 genes in close proximity to non-P450 
genes in synthetic pathways, including the prob-
ability that they will be co-inherited and co-reg-
ulated despite being in independent transcription 
units�

7.2.9  Critical Structural Regions

7.2.9.1  Classical Monooxygenases

Coupled with structural predictions, natural and 
engineered variations in several of these plant 
P450s have identified critical residues in SRS 
and non-SRS regions that are reviewed in Ru-
pasinghe and Schuler [116], Hlavica and Leh-
nerer [117] and Schuler and Rupasinghe [29]� 
Examples of natural side-chain SRS variations 
affecting P450 regiospecificity include the C6- 
versus C3-limonene hydroxylases of Mentha 
spicata (spearmint) CYP71D18 and M. piperita 
(peppermint) CYP71D15 sequences that have a 
single Phe363Ile switch in SRS5 dictating their 
respective activities [118]� Examples of synthetic 
site-directed SRS variations affecting substrate 
positionings and activities include the Helian-
thus tuberosus (jerusalem artichoke) CYP73A1 
(4-cinnamic acid hydroxylase) that has Asn302, 
Ala306, and Ala307 in SRS4 (I-helix), Ile371 
and Pro372 in SRS5 (loop between the K-helix 
and β1–4 strand), and Lys484 in SRS6 (β-turn 
at the end of β-sheet 4) dictating its reactivities 
[119, 120], N. tabacum CYP71D20 (5-epiaris-
tolochene 1,3-dihydroxylase) that has Ser368 
in SRS5 and Ile486 in SRS6 controlling its 
overall activity [121], H. muticus CYP71D55 
(premnaspirodiene oxygenase) that has Val366 
in SRS5 and Val480, Val482 and Ala484 in 
SRS6 (aligning with Ser482, Ile484 and Ile486 
in CYP71D20) affecting catalytic site geometry 
[122], Vicia sativa (vetch) CYP94A2 (fatty acid 
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ω-hydroxylase) that has Phe494 in SRS6 affect-
ing hydroxylation positions on short-chain fatty 
acids [123], G. echinata (licorice) CYP93C2 
(2-hydroxyisoflavonone synthase) that has 
Ser310 in SRS4 (in place of the oxygen-activat-
ing Thr) and Leu371 and Lys375 in SRS5 con-
trolling aryl migrations occurring in its substrate 
[82], Gerbera hybrida (gerber daisy) CYP75B15 
(flavonoid 3ʹ-hydroxylase) that has Thr487 in 
SRS6 controlling substrate positioning [124] and 
A. annua CYP71AV1 that has Ser479 in SRS6 
controlling the second oxidation on amorpha 
4,11-diene [125]� Evidence that these and other 
small changes in catalytic site residues can alter 
metabolic activities exist in several of these pre-
viously mentioned studies as well as in a recent 
study detailing adaptive changes in the CYP79F 
subfamily of Boechera stricta (close relative 
of A. thaliana) where a Gly134Leu changes in 
SRS1 and a Pro536Lys change five amino acids 
from the C-terminus allow for the synthesis of 
new glucosinolates [126]�

Likely due to the restricted targeting of site-
directed mutations to SRS regions in plant P450s, 
there are few examples of non-SRS variations 
affecting catalytic activities� Some that do exist 
are Triticum aestivum (wheat) CYP98A sub-
family members that have an additional Cys52 
at the N-terminus of their A-helices orienting 
ρ-coumaroyltyramine for its meta-hydroxylation 
[127]�

7.2.9.2  Non-classical Monooxygenases
Compared to the classical endoplasmic reticu-
lum-localized P450s that utilize molecular oxy-
gen, the nonclassical A. thaliana and Parthenium 
argentatum (guayule) CYP74A proteins (allene 
oxide synthases) are chloroplast-localized, solu-
ble and extremely unusual in using hydroperox-
ides as oxygen donors without the need for an 
electron transfer partner [128]� Contributing to 
these atypical properties, these P450s have an 
atypical insertion of nine residues upstream from 
their heme Cys ligand� Structure determinations 
on the A. thaliana and P. argentatum CYP74A 
proteins [129, 130] have indicated that this inser-
tion reorganizes external surfaces potentially in-
teracting with electron transfer partners and, in A. 

thaliana CYP74A1, repositions the I-helix kink 
so that Asn321 is over the heme and Ile328 re-
places the catalytically important Thr� Even with 
these structural differences, other SRS residues 
remain important for allene oxide formation and 
their replacements convert one CYP74 subfamily 
protein into another� Site-directed replacement of 
Phe137 in SRS1 of A. thaliana CYP74A1 with 
Leu allows for 13-hydroperoxide cleavage (an 
activity characteristic of the CYP74B subfam-
ily) rather than cyclization (an activity character-
istic of the CYP74A subfamily) [129]� In other 
examples, replacement of Glu292 (in SRS4) and 
Val379 of N. tabacum CYP74D3 with Gly and 
Phe converts it from a divinyl ether synthase (an 
activity of the CYP74D subfamily) to a cyclizing 
allene oxide synthase [131]�

In short summary, plant P450s are evolving at 
varying rates depending on their catalytic func-
tions� With the new metabolic pathways evolv-
ing as ecological pressures dictate, the P450 gene 
counts in individual plant species have increased 
in manners allowing for the acquisition of new 
functions while maintaining critical catalytic 
functions� With activities defined for just a small 
fraction of all sequenced plant P450s, there is 
much to be learned about plant metabolic path-
ways from the biochemical and molecular analy-
ses of individual monooxygenases�

7.3  Insect P450s

7.3.1  Gene Counts

Sequencings of a relatively small number of in-
sect genomes (of more than 950,000 insect spe-
cies) have identified substantially fewer P450 
genes than in most plant species� Specifically, 
there are 87 in Bombyx mori (silkworm), 76–91 in 
Drosophila spp� (“fruit flies”), 105–180 in Anoph-
eles gambiae, Aedes aegypti, and Culex pipiens 
(mosquitoes), 46 in Apis mellifera (honey bee), 
106 in Nasonia vitripennis (jewel wasp), 134 in 
Tribolium casteneum (red flour beetle), 64 in Ac-
rythosiphon pisum (pea aphid), 36 in Pediculus 
humanus (body louse), and 85 in Dendroctonus 
ponderosae (mountain pine beetle) [6, 234–240]�
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7.3.2  Gene Conservations and 
Divergences

Comparisons among the P450 sequences anno-
tated in completed insect genomes, which are 
available in a number of recent reviews [241, 
242], identify four clans including the CYP2, 
CYP3, CYP4, and mitochondrial groupings� Of 
these, the CYP2 clan contains 10 families, the 
CYP3 clan contains 30 families, the CYP4 clan 
contains 16 families, and the mitochondrial clan 
contains 11 families� Most of those conserved in 
insect species occur in the CYP2 and mitochon-
drial clans and include the CYP302A, CYP306A, 
CYP307A, CYP314A, CYP315A subfamilies in 
ecdysteroid synthesis [243], the CYP18A sub-
family in ecdysteroid inactivation [244], and the 
CYP15 family in juvenile hormone synthesis 
[245]� Less conserved in insect species are those 
in the expanded CYP4 clan that contains many 
uncharacterized P450 families and the substan-
tially more expanded CYP3 clan that contains 
numerous CYP6 and CYP9 family members as-
sociated with xenobiotic metabolism�

Within these last two clans whose gene num-
bers vary most among insects, repeated duplica-
tions within some subfamilies have given rise to 
“blooms” of P450s that often are species-specific 
and likely associated with host plant usage [246]� 
Examples here include: the expansion of the 
19-member CYP4AB subfamily in N. vitripennis 
[238], 15-member CYP6AS subfamily in A. mel-
lifera [235], 13-member CYP6BQ subfamily in T. 
casteneum [236], 12-member CYP6A subfamily 
in D. melanogaster, 9-member CYP9A subfamily 
in Spodoptera frugiperda (fall armyworm) [247], 
and the CYP6AB and CYP6AE subfamilies in 
Amyelois transitella (navel orangeworm) [248]� 
As in many of the plant genomes, many of these 
reiterated P450 subfamilies remain clustered 
within insect genomes [242]�

7.3.3  P450s in Model and Nonmodel 
Insects

The current list of activities for insect P450s 
characterized via one of the heterologous expres-

sion systems mentioned above is presented in 
Table 7�4� As detailed, four of the five conserved 
subfamilies in 20-hydroxyecdysone (20-HE) 
synthesis (CYP302A, CYP306A, CYP314A, 
CYP315A) have been characterized from D. 
melanogaster, B. mori, and/or A. gambiae [243]� 
The remaining CYP307A1 subfamily, which has 
not yet been heterologously expressed, is none-
theless heavily implicated in ecdysteroid synthe-
sis [243, 249]� Balancing these 20-HE synthetic 
activities, the conserved CYP18A subfamily has 
been shown to mediate 20-HE inactivation via 
its 26-hydroxylation [244]� Less conserved than 
members of these six ecdysteroid-metabolizing 
subfamilies, multiple CYP15 family members 
have been shown to code for epoxidations in 
juvenile hormone (JH) synthesis [245]� Catego-
rized in different subfamilies, these vary in their 
substrate preferences depending on whether they 
have been obtained from lepidopteran species 
(e�g�, CYP15C1 in B. mori) that first epoxidize 
and then methylate farnesoic acid or from other 
species (e�g�, CYP15A1 in Diploptera punctata 
(pacific beetle cockroach)) that do these reac-
tions in the reverse order [245]� Balancing these 
JH synthetic activities, other P450s inactivate 
JH via its 12-hydroxylation� Expected to be con-
served among insects, it is surprising that only 
two P450s in different families ( D. melanogas-
ter CYP6A1, D. punctata CYP4C7) have been 
shown to mediate JH catabolism [250, 251]� 
Other activities expected to be conserved among 
insect species include those mediating fatty acid 
hydroxylations; here again, it is surprising that 
only one ( D. melanogaster CYP6A8) has been 
shown to have any ability to oxygenate fatty 
acids [252]�

Other biosynthetic P450s in insects have 
been sporadically identified as researchers have 
sought to delineate species-specific conversions 
involved in the production of insect defense tox-
ins and pheromones� Recently characterized in 
Zygaena filipendulae (burnet moth) larvae, CY-
P332A3 and CYP405A2 are responsible for the 
synthesis of the cyanogenic glycosides linamarin 
and lotaustralin from valine and isoleucine, re-
spectively [253]� Mediating multiple steps con-
verting amino acids to cyanogenic glycosides, 
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P450 Species Substrates References
Insects
4C7 Diploptera punctata Farnesol, farnesal, farnesoic acid, methyl farneso-

ate, JHIII
[251]

6A1 Musca domestica Farnesal, methyl farnesoate, JHI, JHIII, steroid 
hormones, cyclodienes, organophosphates, aldrin, 
heptachlor, diazinon, chlorfenapyr, pisatin

[272]
[250]
[273]
[329]
[316]

6A2 Drosophila 
melanogaster

DDT, aldrin, heptachlor, diazinon, aflatoxin B1, 
DMBA, Trp-P-2

[330]
[315]
[276]

6A8 Drosophila 
melanogaster

Lauric acid, aldrin [252]

6B1,6B3 Papilio polyxenes Furanocoumarins, furanochromones, flavone [308]
[259]
[262]
[263]

6B4,6B17,6B21 Papilio glaucus Furanocoumarins [259]
[260]

6B33 Papilio multicaudatus Furanocoumarins [266]
[267]

6B8 Helicoverpa zea Xanthotoxin, flavone, α-naphthoflavone, chlo-
rogenic acid, indole-3-carbinol, quercetin, rutin, 
cypermethrin, diazinon, aldrin

[261]
[269]

6D1 Musca domestica Pyrethroids, polycyclic aromatic hydrocarbons, 
methoxyresorufin

[331]
[332]
[280]

6G1 Drosophila 
melanogaster

DDT, imidacloprid, methoxychlor, p-nitroanisole [277]
[278]
[279]
[333]

6M2 Anopheles gambiae Permethrin, deltamethrin, DDT [299]
[300]

6P3 Anopheles gambiae Permethrin, deltamethrin [334]
6P7 Anopheles minimus Pyrethroids [304]
6Z1 Anopheles gambiae Furanocoumarins, furanochromones, methylene-

dioxy-phenyls, cypermethrin, DDT, carbaryl
[297]
[302]

6Z2 Anopheles gambiae α-naphthoflavone, resveratrol, piceatannol, 
xanthotoxin, carbaryl, 3-phenoxybenzoic alcohol, 
3-phenoxybenzaldehyde

[297]
[298]
[301]

6Z8 Aedes aegypti 3-phenoxybenzoic alcohol, 3-phenoxybenzal-
dehyde, benzyloxyresorufin, ethoxyresorufin, 
α-naphthoflavone, resveratrol, diethylstilbesterol, 
pyriproxifen

[301]

6AA3 Anopheles minimus Deltamethrin [303]
[304]

6AB3 Depressaria 
pastinacella

Imperatorin, myristicin [264]
[265]
[268]

6AB11 Amyelois transitella Imperatorin [271]
6AS1,6AS3,6AS4,6AS10 Apis mellifera Quercetin [306]

Table 7.4  Functionally defined P450s in insects
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P450 Species Substrates References
6AY1 Nilaparvata lugens Imidacloprid [335]
6BQ9 Tribolium casteneum Deltamethrin, benzyloxyresorufin [281]
6BQ23 Meligethes aeneus Deltamethrin, tau-fluvalinate, 7-benzy-

loxymethoxy-4-trifluoromethyl coumarin, 
7-benzyloxy-4-trifluoromethyl coumarin, 
7-benzyloxymethoxyresorufin

[336]

6CM1 Bemisia tabaci Imidacloprid, clothianidin, thiacloprid, pymetro-
zine, ethoxycoumarin, ethoxyresorufin, methoxy-
resorufin, benzyoxyresorufin

[282]
[283]
[284]

6CY3 Myzus persicae Nicotine, imidacloprid, clothianidin [274]
9A12,9A14 Helicoverpa armigera p-nitroanisole, methoxyresorufin, esfenvalerate [285]
9J24,9J26,9J28,9J32 Aedes aegypti Permethrin, deltamethrin [337]
9Q1,9Q2,9Q3 Apis mellifera Quercitin, tau-fluvalinate, coumaphos, bifenthrin [275]
9T1 Ips confusus Myrcene [255]
9T2
9T3

Ips pini Myrcene, pinene, carene, limonene [254]
[255]
[256]

12A1 Musca domestica Aldrin, diazinon, heptachlor, azinphosmethyl, ami-
traz, steroids, 7-alkoxycoumarins

[338]

15A1 Diploptera punctata Methyl farnesoate [339]
15C1 Bombyx mori Farnesoic acid [340]
18A1 Drosophila 

melanogaster
20-hydroxyecdysone [244]

302A1 Drosophila 
melanogaster

2,22-dideoxyecdysone [341]

[342]
[343]

Bombyx mori
Anopheles gambiae

306A1 Drosophila 
melanogaster

2,22,25-trideoxyecdysone [344]
[345]

Bombyx mori
314A1 Drosophila 

melanogaster
Ecdysone [346]

Anopheles gambiae [347]
[343]

315A1 Drosophila 
melanogaster

2-deoxyecdysone [341]

Anopheles gambiae 2,22-dideoxyecdysone [343]
321A1 Helicoverpa zea Furanocoumarins, α-naphthoflavone, cypermethrin, 

diazinon, aldrin, aflatoxin B1
[312]
[269]
[270]

332A3 Zygaena filipendulae Valine- and isoleucine-derived oximes [253]
345E2 Dendroctonus 

ponderosae
Monoterpenes [289]

405A2 Zygaena filipendulae Valine, isoleucine [253]
Mites
392A16 Tetranychus urticae Abamectin, luciferin, 7-ethoxy-4-trifluoromethyl 

coumarin, 7-ethoxycoumarin
[287]

392E10 Tetranychus urticae Spirodiclofen, spiromesifen [286]
DDT dichlorodiphenyltrichloroethane, DMBA 7,12-dimethylbenz(a)anthracene

Table 7.4 (continued)
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these P450s have convergently evolved the same 
sorts of sequential conversions used in the syn-
thesis of dhurrin, linamarin, and lotaustralin in 
cyanogenic plants (sorghum, cassava, lotus) 
[253]� Characterized in Ips paraconfusus (cali-
fornia fivespined ips) and Ips pini (pine engraver 
beetles), the CYP9T subfamily mediates both 
biosynthetic and detoxicative reactions in using 
the monoterpene myrcene present in conifer bark 
as the substrate for the production of aggregation 
pheromone [254–256], a mixture of ipsdienol, 
ipsenol, and other volatiles that recruit other bee-
tles to damaged trees [257]� And, because they 
cannot rely solely on the presence of plant-de-
rived myrcene, male bark beetles are also capable 
of synthesizing myrcene de novo and converting 
it into ipsdienol and ipsenol [257]� Biochemical 
characterizations of the species-specific differ-
ences between members of the CYP9T subfam-
ily have shown that I. paraconfusus CYP9T1 
utilizes myrcene to produce ipsdienol and ip-
senol [255] and I. pini CYP9T2 and CYP9T3 
(isolated from geographically distinct regions) 
utilize myrcene, pinene, carene, and limonene to 
produce ipsdienol and an array of other volatiles 
[254–256]� Another enzyme implicated in phero-
mone production is the Dendroctonus pondero-
sae (mountain pine beetle) CYP6CR1, which has 
been suggested to mediate the male-specific fatty 
acid epoxidation leading to production of the 
pheromone exo-brevicomin and another uniden-
tified P450 has been suggested to mediate the fe-
male-specific hydroxylation of ingested α-pinene 
to the pheromone verbenol [258]�

While the CYP15A and CYP15C subfamily 
members in 20-HE synthesis provide evidence 
that catalytic site differences can impact reac-
tion orders in synthetic pathways, there are many 
more examples providing evidence that catalytic 
site divergences impact substrate preferences in 
detoxicative pathways� Originating in studies to 
understand the ecological bases for host plant 
ranges and shifts in nonmodel insects, catalytic 
site restrictions decreasing substrate range have 
been noted in the evolution of the CYP6B sub-
family of Papilio spp� (swallowtails), Helicover-
pa zea (corn earworm), and Amyelois transitella 
(navel orangeworm) and the CYP6AB subfamily 

of Depressaria pastinacella (parsnip webworm) 
and A. transitella, where duplications and di-
vergences of subfamily members have allowed 
some specialist species to feed on a limited num-
ber of toxin-containing plant species and other 
generalist species to feed on a diverse array of 
toxin-containing plant species [259–271]� Con-
trasting with these, catalytic site accommoda-
tions enhancing substrate range have been noted 
in CYP6B8 and CYP321A1 of Helicoverpa zea 
(cotton bollworm) [269], CYP6A1 of Musca do-
mestica (house fly) [250, 272, 273], CYP6CY3 
of Myzus persicae (green peach aphid) [274], the 
CYP9Q subfamily of A. mellifera [275], and var-
ious subfamilies of mosquito vectors (discussed 
below), where divergences of individual P450s 
have allowed them to mediate the detoxification 
of plant compounds as well as insecticides� With 
no information available on their natural sub-
strates, activities capable of catabolizing insecti-
cides have been noted for CYP6A2 and CYP6G1 
in D. melanogaster [276–279], CYP6D1 in M. 
domestica [280], CYP6BQ9 in T. casteneum 
[281], CYP6CM1 in Bemisi tabaci (white fly) 
[282–284], the CYP9A subfamily in Helicoverpa 
armigera (cotton bollworm) [285], Nilaparvata 
lugens (brown planthopper) and the CYP392 
family in Tetranychus urticae (two-spotted spi-
der mite) [286, 287]� In addition to these reac-
tions detoxifying insecticides, several P450s 
have been shown to activate proinsecticides into 
toxic derivatives (e�g�, chlorferuron via N-deal-
kylation, chlorfenapyrdiafenthiuron via S-oxi-
dation) [288]� Characterized for its ability to ca-
tabolize natural compounds and not insecticides, 
CYP345E2 in D. ponderosae has been shown to 
mediate the clearance of monoterpene odorants 
[289]� Other insect oxygenations attributed to as-
yet-uncharacterized P450s are reviewed in Fey-
ereisen [242]�

7.3.4  P450s in Vector Insects

Much of the research in insects vectoring human 
disease has centered on mosquito species, includ-
ing Anopheles spp� (malaria vectors), Ae. aegypti 
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(dengue and yellow fever vectors), and Culex 
spp.(west nile vector), that are becoming increas-
ingly resistant to insecticides� Microarray and 
transcriptome analyses in each of these species 
have identified varying sets of P450 transcripts 
in the CYP4, CYP6, CYP9, CYP12, CYP305, 
CYP307, CYP314, and CYP325 families con-
stitutively overexpressed in different insecticide-
resistant populations (compared to insecticide-
susceptible populations) [242, 290, 291] and 
induced by fluoranthene, permethrin, glyphosate, 
and benzopyrene in Ae. aegypti or by perme-
thrin in C. quinquefasciatus [292–296]� Narrow-
ing the range of P450 candidates mediating the 
metabolism of different insecticide classes, sub-
sequent expressions in insect cell systems have 
identified a range of insecticides catabolized by 
CYP6M2, CYP6P3, CYP6Z1, and CYP6Z2 in A. 
gambiae [297–302], CYP6P7 and CYP6AA3 in 
A. minimus [303, 304], CYP6Z8 and the CYP9J 
subfamily in Ae. aegypti [301]� Summarized in 
Table 7�4, these heterologous expressions have 
identified some, such as CYP6Z1, metaboliz-
ing many classes of insecticides (carbamates, 
type I and type II pyrethroids, DDT analogues), 
plant defense toxins (furanocoumarins, furano-
chromones), and natural and synthetic methy-
lenedioxyphenyl (MDP) compounds (safrole, 
isosafole, myristicin, piperonyl butoxide) [297, 
302], others, such as CYP6Z2 and CYP6Z8, 
metabolizing pyrethroid derivatives produced 
by carboxyesterases (3-phenoxybenzoic acid, 
3-phenoxybezaldehyde) [301], and yet others, 
such as CYP6M2, mediating multiple modifica-
tions on deltamethrin [299]� Coupled with tran-
scriptome data showing variable sets of P450s 
overexpressed in different insecticide-resistant 
strains and populations, it is becoming clear that 
the long-term outcome of exposure to insecti-
cides is determined by the expression levels of 
multiple P450s and by the overlaps in their sub-
strate profiles�

7.3.5  Critical Structural Regions

While these examples highlight the breadth of 
compounds metabolized by insect P450s, com-

parisons of the predicted catalytic sites have pro-
vided more significant information on the amino 
acid variations between nonselective and selec-
tive P450s� Recent reviews [291, 305] provide 
numerous examples of the variations affecting 
particular P450 activities with most examples 
drawn from comparisons of closely related sub-
family members and not from natural variations 
in individual insect P450s� Not surprisingly, 
therefore, most of the highlighted variations map 
to residues in catalytic sites, substrate access 
channels, and proximal surfaces� Highlighting a 
few of the important differences between closely 
related subfamily members, instances of catalyt-
ic site differences include A. gambiae CYP6Z2, 
where protrusions of Arg210 (SRS2), Ile298 and 
Glu302 (both in SRS4) are predicted to restrict its 
substrate range compared to CYP6Z1 [297], A. 
mellifera CYP9Q2, where protrusion of Arg246 
(SRS3) into its catalytic site is predicted to pre-
vent quercetin metabolism compared to CYP9Q1 
[275] and the A. mellifera CYP6AS subfamily, 
where side chains on residues 107 (SRS1) and 
217 (SRS2) and the carbonyl backbone between 
residues 302 and 303 (SRS4) moderate querce-
tin metabolism [306]� Many other examples of 
catalytic site variations affecting activity exist 
in the Papilio and Helicoverpa CYP6B subfam-
ily, where furanocoumarin metabolism rates are 
defined by the presence or absence of aromatic 
side chains in SRS1, SRS5, and SRS6 and other 
types of side chains in all six SRS regions [291]� 
Instances of substrate access channel differences 
affecting activity include A. minimus CYP6P8, 
where Arg114 (SRS1) and Arg216 (SRS2) are 
predicted to extend into the CYP6P8 substrate 
access channel and prevent pyrethroid access 
compared to the closely related CYP6P7 that me-
tabolizes this insecticide quite efficiently [307]�

Characteristic of the small number of natu-
ral and site-directed variants actually analyzed, 
some natural P. polyxenes CYP6B3 variants 
[263] and site-directed P. polyxenes CYP6B1 
mutants [308–310] have identified particular 
SRS residues important in P450 folding, sub-
strate turnover, and/or product exit� Adding to 
this collection of important residues, natural D. 
pastinacella CYP6AB3 variants have identified 
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proximal surface residues affecting catalytic ef-
ficiency with a single Val92Ala (B-helix on the 
proximal surface) switch substantially enhancing 
electron transfer from P450 reductase [265]� And, 
several site-directed P. multicaudatus CYP6B33 
mutants have identified residue 32 (in the linker 
preceding the proline-rich hinge) as important 
for folding of this P450 in insect cell expression 
systems [267]� Not yet tested in site-directed 
mutants, other examples of potentially impor-
tant residues likely exist in CYP6CM1 variants, 
where two changes in imidacloprid-resistant B. 
tabaci (His341Asn, Asn367Thr (numbered as 
in resistant compared to susceptible biotypes)) 
map to the proximal surface [282], CYP6A2 
variants, where two changes in DDT-resistant 
D. melanogaster (Arg335Ser, Leu336Val) map 
to the proximal surface [276], CYP6B7 variants, 
where three changes in fenvalerate-resistant H. 
armigera (Val144Met, Glu256Lys, Cys319Tyr) 
map to D-helix, I-helix and G-H loop segments 
on the proximal surface [311] and CYP6Z1 vari-
ants where one change in permethrin- and DDT-
resistant A. gambiae (Thr346Asn) maps to the 
proximal surface [297]� Summaries of these and 
other variations contributing to metabolism [305] 
show just how few amino acid differences in in-
sect P450s have been evaluated in site-directed 
mutants�

7.3.6  Unusual Features

7.3.6.1  Reactivities and Residues

With characterized insect monooxygenases me-
diating more typical oxidations than those found 
in plants, there are fewer examples of insect 
P450s with unusual substrate reactivities and/or 
sequences in conserved regions� To date, only 
CYP6M2 of A. gambiae has been shown to me-
diate multiple modifications on deltamethrin that 
include hydroxylation and cleavage of its ether 
bond [299]� Likewise, only a handful of insect 
P450s contain significant changes in conserved 
motifs� Notable among these are the A. gambiae 
and D. melanogaster CYP307 proteins that con-
tain an extremely unusual GGHSA(I/V) in place 

of (A/G)GX(D/E)TT (oxygen-activating Thr 
underlined) [79] as well as H. zea CYP321A1, 
ptera litura (oriental leafworm) CYP321B1, and 
A. transitella CYP321C1 and CYP321C3 [312, 
313] (http://drnelson�uthsc�edu/cytochromeP450�
html) that contain Pro in place of T and D. mela-
nogaster CYP6G2 that contains Ser in place of T 
(http://p450�sophia�inra�fr/)� Quite unusually, the 
CYP307 family proteins also have WXXXQ in 
place of the conserved WXXXR in the C-helix�

7.3.6.2  Inhibitor and Substrate 
Interactions

Unlike most other P450s, some insect P450s are 
not inhibited by natural MDP compounds, such 
as myristicin, or synthetic MDP compounds, such 
as piperonyl butoxide (PBO)� Examples here in-
clude: D. pastinacella CYP6AB3 that metaboliz-
es myristicin rather than allowing it to complex 
with heme [268] and A. gambiae CYP6Z1 that 
metabolizes PBO [302]� The atypical turnover of 
these compounds, which are generally presumed 
to inhibit P450 activities, have on occasion 
masked the role of P450s in particular metabolic 
processes�

Like CYP3A4 and other human P450s [314], 
some insect P450s (e�g�, CYP6M2 in A. gambiae) 
and a mite P450 (e�g�, CYP392E10 in Tetrany-
chus urticae (two-spotted spider mite)) coopera-
tively bind their insecticide substrates [286, 300]�

7.3.6.3  Electron Transfer Partners
Most sequenced insect genomes contain a single 
P450 reductase that shares 54–75 % identity with 
those in other insects [242]� Triple-transfections 
of insect cells with recombinant baculoviruses 
expressing P450, CPR and cyt b5 sequences 
have demonstrated that overexpression of these 
electron transfer partners can substantially en-
hance the low P450 activities typically obtained 
in insect cells transfected with recombinant virus 
expressing only P450 [262]� Single-transfections 
of insect cells with recombinant baculovirus ex-
pressing only P450 have shown that P450-con-
taining cell lysates can be supplemented with 
purified CPR and cyt b5 proteins to enhance their 
P450 activities [315]� Apart from these appar-
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ent translational limitations in heterologous ex-
pression systems, expressions of M. domestica 
CYP6A1 in E. coli cells and reconstitutions with 
purified electron transfer proteins have shown 
that the stability and activity of this monooxy-
genase are significantly enhanced by the pres-
ence of apo-cyt b5 [316]� Expressions and puri-
fications of A. minimus CPR from E. coli cells 
under standard conditions have shown that this 
particular reductase is unstable and subject to 
significant flavin mononucleotide (FMN) loss 
because of atypical leucines in its FMN domain 
[317]� Conversion of these to the phenylalanines 
(Leu86Phe/Leu219Phe), which are found in other 
insect and vertebrate CPR proteins, and/or sup-
plementation with FMN stabilize the A. minimus 
CPR and increase its activity with A. minimus 
CYP6AA3 [317, 318]; an additional Cys427Arg 
replacement in its predicted FAD-binding do-
main also increases activity [319]� Mechanistic 
studies have indicated that both the wildtype and 
Leu86Phe/Leu219Phe mutant forms of A. mini-
mus CPR have a nonclassical two-site ping-pong 
mechanism for binding NADPH and cyt c [317, 
318]� Expressions and purifications of A. gam-
biae CPR from E. coli cells have shown that this 
reductase is also subject to FMN and FAD loss 
and is inefficient in binding 2ʹ, 5ʹ -ADP, which 
are all characteristics affecting its interaction and 
coupling efficiency with its associated P450s 
[320]� It is not yet clear what residues within the 
2ʹ,  5ʹ  -ADP-binding site contribute to its poor 
performance and whether other insect CPR pro-
teins have similar deficiencies�

7.3.7  Genomic Resources

Genome information is now accessible for mul-
tiple species of Drosophila ( D. melanogaster and 
20 others, http://flybase�org/), human and animal 
disease vectors (mosquitoes, sandflies, black-
flies, tsetse fly, ticks, etc�, https://www�vector-
base�org/), agronomic pests (hessian fly, house 
fly, red flour beetles, two-spotted spider mite, 
http://agripestbase�org/, http://www�spidermite�
org/gapm/), arthropods (https://www�hgsc�bcm�

edu/arthropod-sequencing, http://arthropodge-
nomes�org/wiki/Species_summary), Hymenop-
tera (bees, wasps, ants, http://hymenopterage-
nome�org/) and individual species such as B. mori 
(http://silkbase�ab�a�u-tokyo�ac�jp/cgi-bin/index�
cgi))� For some of these species, P450-specific 
genomic information is available at http://p450�
sophia�inra�fr/ and http://drnelson�uthsc�edu/cy-
tochromeP450�html� With limited numbers of 
insect P450 activities characterized to date, many 
transcriptome sequencing projects are underway 
to provide comprehensive information on the 
range of P450s, GSTs, and UGTs constitutively 
or inducibly expressed in insecticide-resistant 
species� Recent transcriptome projects high-
lighting P450s include Ae. aegypti induced with 
atrazine (herbicide), fluoranthrene (polycyclic 
aryl hydrocarbon), propoxur, permethrin, and 
imidaclprid (insecticides) [295], A. funestus life 
stages [321], A. gambiae chemosensory append-
ages [322], D. ponderosae life stages, tissues and 
sexes [323–325], Ips typographus (spruce bark 
beetle) antennae [324], as well as comparative 
analyses in insecticide-susceptible, -resistant, 
and -selected strains ( Cimex lectularis (bed bug), 
[326]; A. gambiae, [327, 328])�

In summary, these analyses have indicated 
that insects modulate expression of different 
subsets of P450s in their attempts to counter ex-
posure to plant defense compounds and environ-
mental xenobiotics� Current information suggests 
that, even within a single insect species, the array 
of P450s constitutively or inducibly expressed 
in response to selection pressure is not constant, 
with multiple subsets mediating the acquisition 
of toxin resistance in different populations and 
laboratory strains�

7.4  Fungal Pathogens

7.4.1  Gene Counts

Like plants and insects, fungi that interact with 
these species contain numerous P450s with roles 
in the production of primary and specialized 
metabolites as well as the detoxification and ca-

http://www.spidermite.org/gapm/
http://www.spidermite.org/gapm/
http://p450.sophia.inra.fr
http://p450.sophia.inra.fr
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tabolism of natural compounds [348]� Genome 
sequencings have shown the fungal P450s to be 
extremely diverse and, sometimes, even more 
numerous than in some plants [349]� Charac-
terizations of genomes and transcriptomes in 
multiple phytopathic fungi have identified 167 
P450 genes in A. flavus (pathogen on corn, nuts), 
131–136 in Botrytis cinerea (pathogen on grape) 
strains, 155 in Aspergillus oryzae (nonpathogen 
associated with soy fermentation) strains [349–
351] (http://drnelson�uthsc�edu/, http://p450�rice-
blast�snu�ac�kr/), and at least 54 in Grosmannia 
clavigera (pathogen on lodgepole pines and other 
conifers) [352]� Genomes of basidiomycetes that 
infest other plants and degrade plant materi-
als have exceptionally large collections of P450 
genes with 149 in Phanerochaete chrysospo-
rium (white-rot fungus), 353 in Postia placenta 
(brown-rot fungus), and 307 in Moniliophthora 
perniciosa (cocoa tree pathogen) [349, 353–355]� 
The presence of tandem arrays of P450 genes in 
these basidiomycetes suggest that they have been 
recently duplicated to allow for adaptation to the 
various functions associated with degradation 
of wood� Expansions of 11 P450 families in the 
basidiomycetes have yielded large families that 
are quite versatile and capable of accepting broad 
groups of substrates [355]�

Substantially fewer characterizations exist 
for the genomes and transcriptomes of entomo-
pathogenic fungi� Those completed to date have 
identified 83 and 123 P450 genes in Beauveria 
bassiana and Metarhizium robertsii (broad-range 
insect pathogens) that degrade cuticular layers in 
many insect species [356, 357] and 11 expressed 
P450 transcripts in Ascosphaera apis that exclu-
sively infects honey bee larvae and causes chalk-
brood disease [358]�

7.4.2  Gene Conservations and 
Divergences

Found in most fungi, the CYP51 and CYP61 
families, which have extremely small numbers 
of genes, mediate sterol 14α-demethylations and 
Δ22-desaturations, respectively, and the CYP52 

family, which contains more genes, mediates hy-
droxylations of n-alkanes and fatty acids [348, 
349]� Present in more limited fungal groups, the 
CYP53 family distributed in ascomycetes and ba-
sidiomycetes catalyzes hydroxylations of benzo-
ic acid and its derivatives, which are plant phen-
ylpropanoids, and the CYP505 family distributed 
in filamentous fungi catalyzes fatty acid hydrox-
ylations� In significantly more limited groups of 
fungi, specialized pathways for the synthesis of 
aflatoxins in A. flavus and A. parasiticus are me-
diated by a cluster of CYP58, CYP59, CYP60, 
CYP62, and CYP64 genes [359], trichotecenes in 
Fusarum spp� are mediated by CYP58, CYP65, 
CYP68, CYP526 genes [360], fumonisins in F. 
verticillioides (maize pathogen) are mediated by 
CYP505 genes [361], and GAsin F. fujikuroi (rice 
pathogen) are mediated by CYP68, CYP69, and 
CYP503 genes [362]� Several of the P450 clus-
ters involved in synthesis of these toxic metabo-
lites also contain adjacent pathway genes needed 
for construction of the chemical backbone (e�g�, 
polyketide synthase), export of the toxic me-
tabolites (e�g�, transporters), and transcriptional 
regulators� As a consequence, characterization 
of these pathways has been easier than in some 
of the plant species previously mentioned� Addi-
tionally, a P450 gene cluster in Botrytis cinerea 
has been shown to mediate the synthesis of ABA 
[363, 364]�

In addition to these synthetic functions, sever-
al fungal P450s also have detoxicative functions 
toward plant compounds� Those characterized to 
date include the CYP57A subfamily members 
in Fusarium, Nectria, and Neocosmospora spp� 
that inactivate the isoflavonoid derivative pisatin 
and allow for infestation of pea plants [365], CY-
P57B3 in A. oryzae that hydroxylates genistein 
[366], CYP53D2 in P. placenta that O-demethyl-
ates methoxystilbene derivatives [353], and sev-
eral CYP512 and CYP5150 family members that 
metabolize dehydroabietic acid [353]� Crossing 
the boundary between synthetic and detoxifica-
tive functions, CYP58 in P. chrysosporium has 
been predicted to participate both in synthesis of 
trichothecene (a fungal mycotoxin) and inactiva-
tion of benzoic acid (a plant phenylpropanoid) 
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[367]� Other detoxicative functions, such as 
CYP52X1 in the entomopathogenic fungus B. 
bassiana, are known to facilitate pathogenesis by 
oxidizing the long-chain fatty acids present in the 
protective layers of insect cuticles [368]�

Residues important in some of these func-
tionally characterized fungal P450s have been 
recently reviewed in Hlavica [369] (2013)� With 
few studies detailing the P450s in plant and in-
sect pathogens, most examples highlighted as 
important for catalytic activities are those in the 
common CYP51 and CYP61 families proteins 
present in many fungi, including S. cerevisiae, 
Candida albicans (pathogen in humans), and My-
cosphaerella graminicola (pathogen on wheat)�

7.4.3  Genomic Resources

Fungal P450 gene databases including more than 
213 species exist at http://drnelson�uthsc�edu/ [6] 
(Nelson 2009) and http://p450�riceblast�snu�ac�kr/ 
[349, 370]� Limited information on the inducibil-
ities of these is available from P450-specific oli-
goarrays in P. chrysosporium [354], the white-rot 
fungus that completely breaks down lignin, cellu-
lose and hemicellulose, and from whole-genome 
microarrays in P. chrysosporium and P. placenta 
[371], the brown-rot fungus that does not com-
pletely break down lignin� These studies have 
shown that in lignin-degrading P. chrysosporium, 
CYP505D, CYP5037A, and CYP5141D subfam-
ily members are highly induced by ligninolytic 
conditions and that multiple CYP63 family mem-
bers are induced by alkanes [354]� Contrasting 
with these, only two P450s (CYP53 (benzoate 
hydroxylase), and CYP503 (undefined function)) 
are induced in lignin-nondegrading P. placenta 
by cellulose� Transcriptomic studies have also 
identified multiple P450 subfamilies induced and 
repressed by plant terpenes and triglycerides in 
G. clavigera, the conifer-invading fungus that is 
highly adapted to plant terpenoids [352]; notable 
among these is CYP65BJ1 in a biosynthetic clus-
ter that produces aromatic polyketides� Clearly, 
much remains to be done in characterizing fungal 
P450s associated with pathogenesis in plants and 
insects�

7.5  Future Prospects

Clearly, plant and insect P450s abound� Our cur-
rent understanding of their biochemistries has 
progressed as individual monooxygenases have 
been expressed in one or more of the available 
heterologous protein production systems and as 
natural variants and site-directed mutants have 
been characterized� Coupled with the growing 
body of P450 transcriptomic information avail-
able for a diverse array of plant species, there is 
much potential for the modification of metabolite 
profiles in transgenic plants and for the produc-
tion of plant medicinals in microbial systems� 
Coupled with the transcriptomic information 
available for a sparser set of insect species, there 
is much potential for the identification of mo-
nooxygenases involved in the detoxification of 
insecticides and plant compounds and for their 
inhibition� Future studies in many of the species 
currently being explored will undoubtedly ex-
pand on the P450 examples cited in this chapter 
and begin to describe synthetic and detoxicative 
functions not yet characterized� Building on the 
sets of molecular, genetic, biochemical, and com-
putational tools now available for manipulation 
of P450s in several model species, much remains 
to be done to fully understand the roles of in-
dividual P450s in normal growth and develop-
ment as well as adaptation to new environments 
(plants) and new hosts (insects)�
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8.1  Introduction

8.1.1  P450 Biotechnology: Application 
Potential

Oxyfunctionalization of nonactivated C–H 
bonds is one of the major challenges in chem-
istry� Nevertheless, this reaction type is crucial 
for the initial activation of simple starting mol-
ecules� Oxidation processes based on expensive 
and complex chemical catalysts, which have to 
be synthesized first—often via multistep pro-
cesses—require harsh reaction conditions and are 
often not very effective� Although recent prog-
ress towards selective chemical hydroxylation of 
nonactivated C–H bonds has been made [1–3], 
a major disadvantage of most existing chemical 
catalysts still is their lack in selectivity [4]� In 
contrast, oxygenations of relatively cheap pre-
cursor molecules catalyzed by cytochrome P450 
monooxygenases (P450 or CYP) in one step are 
often highly regioselective and stereoselective 
leading to high-value compounds that are dif-

ficult or even impossible to synthesize via tra-
ditional chemical routes [5]� In addition, P450s 
operate under mild reaction conditions utilizing 
molecular oxygen, which is abundant, environ-
mentally friendly, and inexpensive� These char-
acteristics make P450s potential biocatalysts for 
synthetic applications�

The history of P450s dates back to more than 
50 years, when Klingenberg and Garfinkel inde-
pendently discovered a carbon monoxide-bind-
ing pigment with a unique absorption maximum 
at 450 nm in rat and pig liver microsomes [6, 
7]� Since their discovery, P450s have drawn the 
attention of chemists, biochemists and biotech-
nologists� During the last 20 years, P450s have 
gained interest not only from the viewpoint of 
advancing fundamental understanding but also 
from an industrial perspective� Their applications 
in the synthesis of oxyfunctionalized building 
blocks closely linked with the retrieval of new 
important compounds in demand (such as spe-
cialty chemicals and pharmaceutical synthons) 
are of immense importance� Moreover, P450s 
have a great potential for the development of bio-
sensors, as well as in bioremediation�

Selective biocatalytic oxyfunctionalization 
of nonactivated hydrocarbons is considered as 
“potentially the most useful of all biotransfor-
mations” [8]� Cytochrome P450 enzymes con-
tain heme b as prosthetic group that enables not 
only the activation of molecular oxygen (which 
is also possible by using flavin-containing en-
zymes) but also the oxidation of kinetically inert 
nonactivated C–H bonds� For instance, bond dis-
sociation energies for n-alkanes lie within the 
range of 95–105 kcal mol−1� Although no native 

P� R� Ortiz de Montellano et al� (eds�), Cytochrome P450, DOI 10�1007/978-3-319-12108-6_8  
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(wildtype) P450s with activity towards the most 
inert short chain length gaseous n-alkanes, such 
as methane, propane, or butane, have been identi-
fied so far, a number of P450s were discovered in 
nature with native activity towards pentane and 
longer alkanes�

Most P450s catalyze the reduction of molecu-
lar oxygen; one atom of molecular oxygen is in-
troduced into the substrate molecule, whereas the 
second one is protonated to water (Eq� 8�1):

 (8�1)

The most typical reaction observed for P450s is 
hydrocarbon hydroxylation� In addition, P450s 
catalyze epoxidation of C = C double bonds and 
aromatic hydroxylation� After initial hydroxyl-
ation, subsequent reactions like alcohol oxida-
tion; N-, O-, S-dealkylation; C–C bond cleavage; 
and others can occur, leading to a broad variabil-
ity of potential reaction pathways [9]� Moreover, 
P450s do not only oxidize C atoms but also N and 
S atoms [10–12]� Some P450s are able to catalyze 
oxidative phenol coupling, a reaction that is usu-
ally carried out by peroxidases or laccases� For 
instance, three independent P450s with oxidative 
phenol coupling activities are involved in the syn-
thesis of vancomycin-type antibiotics in the bac-
terium Amycolatopsis balhimycina [13]� Dimer-
ization of thiophene S-oxide via a Diels–Alder 
reaction is catalyzed by CYP2C19 and CYP2D6 
[14]� Baeyer–Villiger-type oxidations can also be 
catalyzed by some P450s [15]� The repertoire of 
P450 enzymes includes many other “unusual” re-
actions, such as oxidative deamination, oxidative 
dehalogenation, desaturation, isomerization, de-
hydrogenation, dehydration, reductive dehaloge-
nation, epoxide reduction, and rearrangement 
reactions, such as ring formation and oxidative 
aryl migration [16–18]� The number of reported 
P450-catalyzed reactions is permanently increas-
ing and numerous comprehensive reviews on 
this topic are currently available [17, 19–21]� A 
summary of the most common P450 reactions is 
given in the review by Sono et al� [22], where 21 
different reaction types have been summarized, 
whereas an update of unusual reactions was re-

2
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cently provided by Guengerich and Munro [23]� 
Among the recently described unusual reactions 
catalyzed by P450s are nitration of tryptophan 
[24], cyclopropanation via carbene transfer [25], 
and intramolecular C–H amination [26]�

P450s accept an extremely broad spectrum 
of organic substrate molecules, including fatty 
acids; alkanes; alkenes; mono-, di-, sesqui- and 
triterpenes (e�g�, steroids); polyaromatic hydro-
carbons; macrolides; heteroaromatic compounds; 
amino acids; and many others� Of course, there 
is no single P450 capable of accepting all these 
substrates� It is, however, relatively common for 
a certain P450 to metabolize multiple substrates 
[27]� Moreover, some P450s are reported to 
mediate multiple sequential modifications on a 
single substrate, which is particularly attractive 
when complex multistep biotechnological pro-
cesses should be established�

The vast majority of P450 substrates are hy-
drophobic compounds with low solubility in 
water� The substrates are stabilized in the P450 
binding pocket mainly via hydrophobic forces 
and van der Waals’ forces and partially by elec-
trostatic or π–π interactions. From the broad 
substrate spectrum on the one hand and a gen-
eral preference for hydrophobic compounds on 
the other hand, it might be expected that P450 
enzymes catalyze reactions with low stereose-
lectivity [28]� Contrary to this expectation, many 
P450s exhibit a high enantioselectivity towards 
racemic substrates or catalyze stereoselective in-
troductions of oxygen into prochiral molecules�

In summary, cytochrome P450 monooxygen-
ases have a number of advantages for biocataly-
sis:
1� P450s operate—like other enzymes—under 

ambient conditions�
2� P450s have been studied in enormous detail 

due to their involvement in a plethora of cru-
cial cellular processes�

3� P450s are able to catalyze numerous different 
reaction types and can oxidize a wide range 
of molecules� Many of these compounds 
occur in nature and can be important precur-
sors� Thereby, P450s often exhibit high regio-, 
chemo-, and/or stereoselectivity� In addition, 
enzyme engineering can be applied to further 
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improve the capabilities of P450s for biotech-
nological purposes�

4� P450s can be produced by fed-batch fermen-
tation for production at large scale� Consider-
able progress has been made during the last 
decade concerning the recombinant expres-
sion of P450s in the well-established hosts 
Escherichia coli, Pseudomonas putida, and 
the yeasts Saccharomyces cerevisiae and Pi-
chia pastoris, which facilitates the use of 
P450s as industrial catalysts [29–33]�

5� The number of identified P450s is enormous 
and constantly increasing due to microbial 
screenings and available information on se-
quenced genomes� The collection of P450s in 
(recombinant) libraries allows high-through-
put screenings, as well as functional charac-
terization of new members of the P450 family 
and offers a route to diverse building blocks�

8.1.2  P450 for Biotechnological 
Applications: Limitations

Despite their high potential, the application of 
P450 reactions at industrial scale has been ham-

pered by several widely recognized bottlenecks 
(Table 8�1) [34]�
1� In comparison with other enzyme classes 

(e�g�, hydrolases), monooxygenases generally 
display low turnover numbers� This observa-
tion can be explained by their natural physi-
ological roles and by the complexity of P450 
catalysis, as well as by the high bond disso-
ciation energies of P450 substrates� Such low 
activities might be sufficient for establish-
ing P450-based biosensors, but mostly ham-
per applications in biocatalytic processes in 
industry�

2� For their activity, P450s require the consecu-
tive delivery of two electrons to the heme� 
Nearly all P450s rely on the expensive pyri-
dine nucleotide cofactors nicotinamide ad-
enine dinucleotide phosphate (NADPH) or 
nicotinamide adenine dinucleotide (NADH), 
which makes large-scale applications of P450s 
not feasible if the cofactor has to be added in 
stoichiometric amounts�

3� Most P450 systems require complex multi-
protein electron transfer chains� The search 
for suitable redox proteins that can efficiently 
deliver the electrons to the heme or even con-

Table 8.1  Challenges and limitations for biotechnological application of P450s
Challenge Explanation or cause Possible solution(s)
Low activity Natural role of P450s Protein engineering

Complexity of catalysis Fusions between monooxygenase and electron 
transfer proteins

Uncoupling Poor fit of substrate to active site Protein engineering
Mismatch between redox partners Redox chain optimization

Overoxidation Product is also a substrate In situ product removal
Cofactor depletion Capacity of cell metabolism becomes 

limiting at higher oxygenase expression 
levels and/or activities

Coexpression of suitable enzymes for cofactor 
regeneration

Limited substrate 
uptake

Hydrophobic compounds disrupt cell 
membranes

Reduction of aqueous phase concentrations (e�g�, by 
adsorption of substrates to a solid-phase or in situ 
product removal)

Substrate or product 
toxicity

General toxicity of polar compounds Alternative hosts with altered uptake profiles

Product degradation Coexpression of recombinant uptake systems
Limited oxygen 
transfer rates

Competition with endogenous respiration Addition of oxygen
Low kLa of standard bioreactors Increased oxygen pressure

Low substrate 
solubility

Substrates are often hydrophobic and/or 
poorly soluble in water

Application of two-liquid phase systems (e�g�, dis-
solving substrate in an inert organic solvent)
Addition of cyclodextrins
Addition of cosolvents (e�g�, ethanol or 
dimethylsulfoxide)
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struct man-made functional redox modules 
still remains a challenge� This is especially 
relevant for bacterial P450s since often many 
different candidates for electron transfer are 
present in a microbial cell [35]� The contribu-
tion of redox partners to the overall activity of 
P450s is often underestimated [36, 37]� Pro-
tein–protein interactions and efficient electron 
transfer between the redox partner proteins are 
essential reaction steps that have to be inves-
tigated on a case-by-case basis and adapted 
to allow for efficient oxygen activation and 
product formation�

4� Uncoupling between NAD(P)H oxidation and 
product formation may occur during the P450 
reaction cycle, or, between the redox part-
ners, which in turn leads to the formation of 
reactive oxygen species [38]� Moreover, upon 
consumption of two electrons, water can be 
produced without concomitant substrate hy-
droxylation [39–41]� In those cases, the cofac-
tor NAD(P)H is consumed, but the formation 
of hydroxylated products is low� In addition, 
the reactive oxygen species may lead to insta-
bility and degradation of the heme cofactor 
and apoprotein� Uncoupling therefore repre-
sents another limitation in P450 biocatalysis�

5� Industrial applications of P450s have so far 
been restricted to whole-cell systems, which 
mostly solve the problem of cofactor delivery 
and regeneration� In such instances, however, 
physiological effects such as limited substrate 
uptake and reduced efflux of products out of 
cells, substrate or product toxicity, product 
degradation, as well as elaborate downstream 
processing are additional limiting factors that 
must be taken into account and often require 
optimization [34]�

8.1.3  Outline

This book chapter focuses on recent advances in 
the application of cytochrome P450 monooxy-
genases in biotechnology� First, we will describe 
the exploitation of the natural pool of P450s for 
selective oxidation activities (Sect� 8�2)� The en-
gineering of P450s for higher activity, altered se-

lectivity, and increased protein stability, as well 
as improved electron transfer between P450s and 
redox partners will be discussed in Sect� 8�3� A 
much-applied approach to optimize the electron 
flow is the design of fusion proteins, which is 
described in Sect� 8�4� Considerable progress has 
been made to overcome the need for stoichiomet-
ric amounts of NAD(P)H, either by developing 
effective cofactor regeneration systems or by 
designing new strategies for simplified transfer 
of reducing power; in Sect� 8�5, some of these 
strategies will be discussed� In Sect� 8�6, several 
examples of successful whole-cell biocatalysis 
exploiting P450s will be discussed, with special 
focus on microbial de novo synthesis of plant 
secondary metabolites and the generation of 
transgenic plants (Sect� 8�7)�

Clearly, it is a daunting task to discuss all as-
pects of the rapidly developing field of P450 bio-
technology and to review all recent publications� 
One should keep in mind that in 2013 alone, more 
than 2400 manuscripts (original papers, reviews, 
monographs in books) were published on P450s 
according to a literature search in the “Web of 
Science” database (apps�webofknowledge�com; 
2014/03/27)� Therefore, we will focus from a 
more academic point of view on several basic as-
pects and recent advances in P450 biotechnology�

8.2  New P450 Activities Found  
by Genome Mining  
and Microbial Screening

8.2.1  Natural P450 Pool  
for Selective Oxidations

P450s are ubiquitous in nature [42]� It is there-
fore obvious that genome mining represents an 
important tool that has already proved highly 
rewarding for the discovery of novel oxidation 
activities [43]�

In “earlier day”, the identification of new 
P450s was limited to classical in vivo screen-
ing of microbial strains, e�g�, maintained in cul-
ture collections or identified by enrichment of 
cultures from natural sources� Even today, such 
traditional methods are still eligible and get con-
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stantly improved [44]� However, often, consider-
able efforts are required for the setup and main-
tenance of such culture collections� Moreover, 
a major hurdle is that only a small percentage 
(0�01–1 %) of cells visible under the microscope 
will form colonies on a petri dish under labora-
tory conditions, leaving the remaining majority 
“uncultured” [45]�

Advancing technologies have opened up new 
perspectives leading to the development of alterna-
tive screening strategies that aim to overcome the 
hurdles of traditional microbial screenings� One 
example is the screening of metagenome libraries 
of nonculturable microorganisms [46]� Probably 
one of the most promising strategies is the in silico 
screening of annotated P450 sequences from vari-
ous sources that are available in online databases� 
The number of these sequences is rapidly increas-
ing due to a vast number of genome sequencing 
projects� While during the first 40 years of P450 
research between 1958 (when the first P450s were 
discovered [6, 7]) and 1998 less than 1000 P450 
sequences were identified [47], their number ap-
proached 4000 in 2004 [48], 18,000 in 2011 [49], 
and crossed 21,000 in 2013 [42]�

Several online databases allow genome min-
ing via in silico screening for novel P450 en-
zymes� The “official” P450 database (also known 
as “the cytochrome P450 homepage”) is main-
tained by David Nelson (http://drnelson�uthsc�
edu/CytochromeP450�html; University of Ten-
nessee; 2014/03/20) [50]� This database provides 
a classification of 21,000 P450 genes, inter alia 
including bacteria with 1254 genes, fungi with 
5729 genes, plants with 7446 genes, insects with 
3452 genes, and mammals with 1056 genes (sta-
tus as of August 2013)�

Another well-organized and structured da-
tabase is represented by the “Cytochrome P450 
Engineering Database” (CYPED; http://www�
cyped�uni-stuttgart�de; Universität Stuttgart; 
2014/03/20) [51, 52]� CYPED includes more than 
16,000 sequences of P450s� In addition, informa-
tion on 741 structures of P450s is integrated into 
this database to facilitate protein engineering�

Some more specialized databases for individ-
ual groups of P450 enzymes also exist� Examples 

are the “Fungal Cytochrome P450 Database” 
hosted in Korea and listing more than 8700 fungal 
P450 sequences from 113 species (http://P450�
riceblast�snu�ac�kr; Seoul National University: 
2014/03/20) [53], or the “SuperCYP” database 
that contains 1170 drugs, 2785 cytochrome P450-
drug interactions, and 1200 P450 alleles (http://
bioinformatics.charite.de/supercyp; Charité-Uni-
versity Medicine Berlin; 2014/03/20) [54]�

The speed at which new P450 sequences are 
identified makes it increasingly difficult to keep 
up with the characterization of their (biochemi-
cal) properties� So far, only a limited number of 
annotated P450 sequences have been cloned and 
only few P450 enzymes have been functionally 
expressed and characterized� Nevertheless, re-
ports on the biotechnological exploitation of nat-
urally occurring and highly selective oxidations 
by P450 enzymes are accumulating and have 
recently been reviewed by our group [55]� Sev-
eral examples of such reactions will be presented 
within this section�

8.2.2  Selective Oxidations of Alkanes 
and Fatty Acids

Alkanes and fatty acids represent interesting tar-
gets for biotechnological application of P450s� 
Hydroxylated alkanes are important synthons 
and precursor compounds for the synthesis of 
pharmaceuticals, agrochemicals, and liquid crys-
tals [56]� Hydroxy fatty acids are widely used in 
the food and cosmetic industries� They serve as 
starting materials for the synthesis of polymers 
and as additives for the manufacture of lubri-
cants, emulsifiers, and stabilizers� Furthermore, 
they have antibiotic, anti-inflammatory, and an-
ticancer activities and therefore can be applied 
for medicinal uses [57]� It is therefore not sur-
prising that P450-catalyzed hydroxylations of 
alkanes and fatty acids have been intensively 
studied� However, although these substrates are 
accepted by numerous P450s, the regioselectivi-
ties of the catalyzed hydroxylations are often in-
sufficient, resulting in mixtures of hydroxylated  
products�

http://www.cyped.uni-stuttgart.de
http://www.cyped.uni-stuttgart.de
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Only a few examples of naturally occurring 
highly regioselective P450s have been reported, 
mostly belonging to the bacterial CYP153 fam-
ily, which has been described in detail in several 
reviews [58, 59]� A number of new CYP153A 
genes were isolated from different sources 
and applied in the form of recombinant E. coli 
whole-cell biocatalysts for biotransformations of 
n-alkanes and cylohexane� Up to 500 µg mL−1 
of 1-hexanol or 1-octanol and 450 µg mL−1 of 
cyclohexanol could be produced with high re-
gioselectivity [60]� Another study investigated 
several members of the CYP153A and CYP153D 
subfamilies catalyzing the oxidation of n-hex-
ane, n-octane, and n-decane� Herein, > 95 % re-
gioselectivity for terminal hydroxylation was 
observed with in vitro turnover rates reaching 
up to 58 min−1 for CYP153A6 with n-octane as 
substrate [61]� Utilization of CYP153A6 for the 
production of 1-octanol with recombinant E. coli 
allowed the production of 8�7 g L−1 1-octanol 
within 24 h [62]�

Other enzymes of the CYP153A subfamily 
show even higher regioselectivities: CYP153A16 
from Mycobacterium marinum and CYP153A P. sp� 
from Polaromonas sp� exhibited 100 % regioselectiv-
ity for terminal oxidation of n-pentane and n-hexane 
yielding the respective primary alcohols� In addition, 
CYP153A16 displayed 96 % ω-regioselectivity 
for production of 1,8-octanediol from 1-oc-
tanol [63]� The potential of CYP153A16 and 
CYP153A M. aq. from Marinobacter aquaeolei 
for ω-hydroxylation of several saturated fatty 
acids was also investigated [64]� Both enzymes 
displayed 100 % ω-regioselectivity with decanoic 
acid� Moreover, CYP153A M. aq. combined high 
ω-regioselectivity towards 9-monounsaturated 
fatty acids (90–100 % depending on substrate) 
with moderate-to-high conversions (34–93 %) 
[64]�

Our group has recently identified CYP154A8 
from Nocardia farcinica that catalyzes the ste-
reo- and regioselective hydroxylation of C7–C9 
n-alkanes� In a biphasic reaction system, the re-
gioselectivity for the C2-position was more than 
90 % with total turnover numbers of up to 4400� 
The enzyme showed strict S-selectivity for all 

tested substrates, with enantiomeric excess ( ee) 
of up to 91 % [65]�

P450 enzymes that are described in the con-
text of regioselective fatty acid oxidation origi-
nate from the yeast CYP52 family� Well-studied 
members of the CYP52 family are the enzymes 
of the alkane and fatty acid-metabolizing yeasts 
Candida maltosa, C. tropicalis, and Yarrowia li-
polytica [66–68]� In all these strains, a number 
of CYP52 genes were identified and investigated 
several years ago� One more recent example is 
CYP52A21 from Candida albicans demonstrat-
ing high regioselectivity for ω-hydroxylation of 
dodecanoic acid [69]� CYP52 family members 
CYP52E3, CYP52M1, and CYP52N1 from Can-
dida bombicola have been suggested to catalyze 
terminal hydroxylations of fatty acids as well [70]� 
After heterologous expression of these enzymes 
in Saccharomyces cerevisiae, the functions of the 
recombinant proteins were analyzed with a vari-
ety of alkane and fatty acid substrates using either 
microsomal fractions or whole-cell systems [71]� 
While CYP52M1 was found to hydroxylate C16–
C20 saturated and unsaturated fatty acids at their 
ω- and ω-1 positions, CYP52N1 oxidized C14–
C20 saturated and unsaturated fatty acids exclu-
sively at the ω-position. Minor ω-hydroxylation 
activities were also shown for CYP52E3 [71]�

In addition to CYP52 enzymes, P450s be-
longing to the CYP4 family are also linked to 
ω-hydroxylation of fatty acids� In mammals, six 
CYP4 subfamilies have been identified� Three 
subfamilies show a preference in the metabolism 
of short (C7–C10; CYP4B subfamily), medium 
(C10–C16; CYP4A family), or long (C16–C26; 
CYP4F subfamily) saturated, unsaturated, and 
branched chain fatty acids [72]� While most re-
ports on CYP4 enzymes have a medical back-
ground and focus on their involvement in genetic 
disorders and diseases [73, 74], the biotechno-
logical potential of this family has not been ex-
plored so far� This is probably due to the fact that 
the handling of eukaryotic P450s is generally 
more difficult� Only a few enzymes have been 
heterologously expressed and characterized� Ex-
amples include human CYP4V2 [75] and rabbit 
CYP4B1 [76]�
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8.2.3  Selective Oxidations of Terpenes

P450-catalyzed regio- and enantioselective oxy-
functionalization of terpenes has evolved into an 
important research field [77, 78]� The importance 
of P450 oxidations is illustrated by the fact that 
more than 95 % of the 60,000 known terpenoids 
are oxygenated� Oxygenated terpenoids are often 
high-priced and sought-after compounds for the 
food, fragrance, and pharmaceutical industries� 
Within this field, a driving force for novel bio-
technological solutions is the fact that consumers 
show a strong preference for “natural” products� 
While according to the US and European food 
legislations, flavors that occur in nature but are 
produced by chemical synthesis must be called 
“nature-identical”; flavor substances originating 
from physical processes (extraction from natural 
sources), or from enzymatic or microbial pro-
cesses that involve precursors isolated from na-
ture are allowed to be labeled as “natural” [79]�

Two examples, where the full potential of 
naturally occurring regioselective P450s is ex-
ploited, are the biotechnological production of 
artemisinic acid (a precursor of the antimalarial 
drug artemisinin) by CYP71AV1 from Artemisia 
annua [80] as well as production of 8-hydroxy-
cadinene (a precursor for synthesis of the dimeric 
sesquiterpenoid gossypol) by CYP706B1 from 

Gossypium arboretum [81]� These (and other) 
examples will be described in detail in Sect� 8�7�

While it is less surprising that plant P450s are 
involved in oxidations of secondary plant metab-
olites, it seems rather unusual that also bacterial 
P450s are reported that are capable of regioselec-
tive oxidations of typical plant terpenes� Two ter-
penes of commercial interest are the regioisomer-
ic α- and β-ionones, whose hydroxylated prod-
ucts are utilized as scents and building blocks 
for the synthesis of carotenoids and abscisic acid 
[82, 83]� Most P450s for which regioselective io-
none oxidations have been described are of bac-
terial origin� Examples include CYP102A7 from 
Bacillus licheniformis [84] and CYP109B1 from 
Bacillus subtilis [85], as well as CYP109D1 [86] 
and CYP264B1 [87]—both from Sorangium cel-
lulosum So ce56� The position of the carbon atom 
that is hydroxylated depends on the enzyme–sub-
strate combination (Fig� 8�1): While α-ionone is 
not accepted by CYP102A7, β-ionone is exclu-
sively oxidized to 4-hydroxy-β-ionone by this 
enzyme [84]� In contrast, CYP264B1 accepts 
both α- and β-ionone as substrates, but hydrox-
ylation occurs exclusively at the C3 position 
[87]. CYP109B1 and CYP109D1 oxidize α- and 
β-ionone with 100 % regioselectivity at the allylic 
carbon atom leading to the products 3-hydroxy-
α-ionone and 4-hydroxy-β-ionone [85, 86]�

Fig. 8.1  Regioselective hydroxylations of α- and β-ionone by P450s
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Another bacterial enzyme is CYP106A2 
from Bacillus megaterium: Although the physi-
ological role of this bacterial P450 is not known, 
CYP106A2 has been reported to convert a vari-
ety of “unnatural” substrates, especially di- and 
triterpenes, usually with high regio- and stere-
oselectivities� By screening of a library contain-
ing 16,671 synthetic organic compounds, Rita 
Bernhardt and coworkers identified several com-
pounds of high commercial interest that are oxi-
dized by CYP106A2 (Fig� 8�2)�

Reactions include the regioselective allylic 
C12-hydroxylation of the plant diterpene abietic 
acid leading to 12-α- and 12-β-hydroxy-abietic 
acid [88], C15-hydroxylation of the pentacyclic 
triterpene 11-keto-β-boswellic acid [89], as well 
as C7- and C11-hydroxylation of the triterpenoid 
dipterocarpol leading to 7-β,11-α-dihydroxy-
dipterocarpol [90]� All hydroxylated products 
could be produced by recombinant expression of 
CYP106A2 in Bacillus megaterium strains� Uti-
lizing the recombinant whole-cell biocatalysts, 
final yields of 64 mg 12-hydroxy-abietic acid 
and 33 mg of 7-β,11-α-dihydroxy-dipterocarpol 

(within 48 h) as well as 561 mg L−1 day−1 
15-α-hydroxy-11-keto-β-boswellic acid were 
achieved�

Another enzyme that has recently been de-
scribed to catalyze highly selective oxidations of 
diterpenoids is the well-characterized CYP105A1 
from Streptomyces griseolus [91]� By screen-
ing of a small compound library consisting of 
the eight most abundant diterpene resin acids of 
the abietane and pimarane type, all compounds 
were found to be oxidized by CYP105A1� Oxi-
dations of three substrates, namely abietic acid, 
dehydroabietic acid, and isopimaric acid, were 
highly specific, yielding exclusively one prod-
uct� In the case of abietic and dehydroabietic 
acid, they were identified as 15-hydroxy-abietic 
acid and 15-hydroxy-dehydroabietic acid, re-
spectively� The pimarane-type isopimaric acid, 
which lacks the isopropyl function in favor of 
a methyl and vinyl group at C13, was convert-
ed to 15,16-epoxyisopimaric acid (Fig� 8�3)� 
The hydroxylation of abietic acid at C15 is ex-
tremely interesting, because the easy aromatiza-
tion of ring carbon atoms is a major hurdle in 

Fig. 8.3  Regioselective hydroxylations of resin acids catalyzed by CYP105A1

 

Fig. 8.2  Regioselective hydroxylations of di- and triterpenes catalyzed by CYP106A2
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chemical synthesis of hydroxylated abietic acid  
derivatives [91]�

The same research group designed an E. coli 
whole-cell biocatalyst expressing CYP105A1� 
Additionally, an enzyme-coupled cofactor regen-
eration system was integrated by coexpression 
of an alcohol dehydrogenase from Lactobacil-
lus brevis� After optimizing the expression and 
conversion conditions, the cells were able to 
completely convert 200 μM of abietic acid into 
15-hydroxy-abietic acid within 2 h [92]�

8.2.4  Selective Oxidations  
of Macrolide Antibiotics

Macrolides belong to the class of polyketides� 
Their core structure is synthesized by polyketide 
synthases based on general precursor molecules 
and then further diversified among other P450-
catalyzed hydroxylations and epoxidations [93]�

Thirty five percent of all marketed antibiotic 
formulations contain an active ingredient derived 
from an actinomycete; since most antibiotics are 
semisynthetic derivatives of a few natural prod-
ucts, actinomycetes produce an impressive 76 % 
of all original natural product scaffolds used as 
anti-infective agents [94]� Therefore, the “deor-
phanization” of actinomycetes P450s is consid-
ered quite important for pharmacology, with ram-
ifications for the use of clinical therapeutics [95, 
96]� Heterologous gene expression is one of the 
main strategies used to access the full biosynthet-
ic potential of Streptomyces, as well as to study 
the metabolic pathways of natural product bio-
synthesis and to create unnatural pathways [94]�

A well-characterized P450 involved in ring 
decoration of macrolide antibiotics is PikC from 
Streptomyces venezuelae catalyzing regioselec-
tive C12-hydroxylation of narbomycin—the 
final step in pikromycin biosynthesis (Fig� 8�4) 
[97]� PikC is also involved in the production of 

Fig. 8.4  Macrolide antibiotics originating from erythromycin A and their hydroxylated derivatives produced by P450 
PikC
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neopikromycin (arising from C14-hydroxylation 
of narbomycin) and novapikromycin (arising 
from C14-hydroxylation of pikromycin) [98]� 
Furthermore, PikC was demonstrated to perform 
regio- and stereoselective C4-hydroxylation of 
oleandomycin [99], as well as regioselective 
C12-hydroxylation of 5-O-desosaminyl erythro-
nolide B yielding 5-O-desosaminyl erythronolide 
A (Fig� 8�4) [100]�

MycCI and MycG were found in the mycin-
amicin biosynthetic gene cluster of Micromono-
spora griseorubida� MycCI catalyzes the C21-
hydroxylation of mycinamicin VIII yielding my-
cinamicin VII� In the biosynthetic pathway, the 
substrate mycinamicin IV undergoes consecutive 
hydroxylation and epoxidation by the dual-func-
tional P450 MycG, yielding the final product my-
cinamicin II [101]�

Several reports on the identification and char-
acterization of other macrolide-modifying P450s 
exist—for example, CYP154C1, 105D6, 105D7, 
105F2, 105P1, or 170A1—and have been re-
viewed [96, 102, 103]�

8.3  Protein Engineering of P450s

8.3.1  General Strategies

Protein engineering, the process of develop-
ing useful proteins for a certain target, has been 
widely applied to generate P450s with altered 
substrate specificities, substantially increased ac-
tivities, and/or enhanced process stabilities� The 
large number of studies on P450 engineering not 
only provides new biotechnologically relevant 
catalysts but also leads to fundamental insights 
on how changing certain features of the active 
site of an enzyme might influence its properties� 
Several comprehensive reviews on P450 engi-
neering have been published recently [4, 104–
108]� Outstanding in this regard is the review by 
Whitehouse et al� [109] summarizing almost all 
reports on CYP102A1 (also referred to as P450 
BM3) from Bacillus megaterium with the aim of 
creating a resource that can be used as a gateway 
to the field�

There are two general strategies for protein 
engineering (Fig� 8�5) [110]:
1� “Rational protein design” based on structural 

knowledge of the protein of interest and com-
putational modeling; and

2� “Directed evolution”, which resembles the 
process of natural evolution and in principle 
can be applied without knowledge of the pro-
tein structure or even the DNA sequence�

Directed evolution experiments use random 
(point) mutagenesis of a whole gene or domain, 
insertions and deletions, as well as other, more 
hypothesis-driven mutagenesis schemes [111]� 
Another important natural mutation mechanism 
is recombination of homologous genes, which 
is highly conservative as compared to random 
mutation (Fig� 8�5)� Thus, a protein can acquire 
numerous mutations by recombination and still 
retain its function, whereas similar levels of 
random mutation may lead to loss of function 
[111]� The major limitation of directed evolu-
tion is, however, that it requires the screening of 
large variant libraries with thousands of clones� 
In most cases, the hit rates for new activities are 
rather low�

In recent years, many P450 proteins (either 
with or without substrates) were crystallized 
and their structures were solved, which greatly 
aided the rational design of these enzymes� For 
example, a search for the term “P450” in the Pro-
tein Data Bank database (PDB; http://www�rcsb�
org/pdb/home/home�do; 2014/03/27) resulted in 
712 structure hits of 47 individual P450 enzymes� 
Particularly interesting are protein structures of 
P450 enzymes in their “productive” conforma-
tion, e�g�, with a C–H bond of the substrate close 
to the heme iron, as they help to explain (at least 
to some extent) P450 catalysis and their ability 
to accept a large variety of substrates� There are, 
however, still only few such structures available�

A disadvantage of rational design is that even 
if a crystal structure of a P450 is available, the 
number of potential substrate-interacting resi-
dues is often quite high and therefore an exhaus-
tive analysis of possible cooperative effects is 
required�

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
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Fig. 8.5  General strategies applied for protein engineering� While “rational design” is based on structural knowledge 
of the protein and computational modeling, “directed evolution” can be applied without such knowledge
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Taken together, directed evolution and ratio-
nal design are not mutually exclusive, and novel 
techniques for P450 engineering often combine 
both strategies� Facilitated by accumulating 
knowledge of P450 structures and function, as 
well as advances in (automated) high-throughput 
technology, the capabilities of P450 engineering 
are greatly expanding�

8.3.2  Selected Examples of P450 
Engineering

A vast number of reports on P450 engineering is 
currently available� In this section, several select-
ed examples of P450 engineering are discussed 
in detail, with special attention to altering the 
P450 substrate spectrum and selectivity�

8.3.2.1  Altering the Substrate Spectrum 
of P450s

Xenobiotic-metabolizing hepatic P450s accept 
a broad range of substrates but display low ac-
tivities and are difficult to express in recombinant 
hosts� In contrast, many bacterial P450s usually 
demonstrate narrower physiological substrate 
profiles but they are easier to handle� Therefore, 
altering the substrate scope of bacterial P450s to 
accept nonphysiological substrates is an obvious 
target of protein engineering� P450 engineer-
ing via evolutionary approaches has provided a 
major route towards this goal [4]�

P450 BM3 represents an obvious target for 
engineering, largely because of its high catalytic 
activity, solubility, and high expression level in E. 
coli, as well as the early availability of structural 
information of the monooxygenase domain� The 
wildtype enzyme catalyzes the hydroxylation of 
linear and branched fatty acids with a chain length 
of C12–C20 at subterminal (ω-1, ω-2, ω-3) posi-
tions with high turnover rates (1000–3500 min−1, 
or even 17,100 min−1, for arachidonic acid [112]) 
and high coupling efficiencies of 88–98 % [113, 
114]�

P450 BM3 has been engineered for oxidation 
of alkanes, terpenes, heteroaromatics, alkaloids, 
steroids, and other classes of chemical substanc-
es, catalyzing hydroxylations, epoxidations, and 

demethylations [109]� In some cases, turnover 
rates and coupling efficiencies of the P450 BM3 
variants were comparable to those measured for 
the wildtype enzyme with fatty acids� For exam-
ple, a laboratory-evolved P450 propane mono-
oxygenase (P450PMOR2) with 20 heme domain 
substitutions oxidized propane with turnover 
rates of 370 min−1 and a coupling efficiency be-
tween NADPH and substrate oxidation of more 
than 98 %� More importantly, a total turnover 
number of 45,800 could be achieved with this 
variant [115]�

The P450 BM3 variant A74G/F87V/L188Q 
designed by saturation mutagenesis was shown 
to oxidize indole, n-octane, highly branched 
fatty acids and fatty alcohols, polychlorinated 
dibenzo-p-dioxins, polyaromatic hydrocarbons, 
styrene, and many other chemical compounds 
[116–120]� The monoterpene geranylacetone was 
converted by P450 BM3 R47L/Y51F/F87V with 
high activity (> 2000 min−1) and stereoselectivity 
(97 % ee) to the single product 9,10-epoxygeran-
ylacetone [121]�

Although wildtype P450 BM3 has not been 
able to metabolize any drug-like compound test-
ed so far, it has been turned by rational protein 
design and directed evolution into an enzyme that 
oxidizes human drugs, such as testosterone, amo-
diaquine, dextromethorphan, and 3,4-methylene-
dioxymethyl-amphetamine [122], as well as pro-
pranolol [123] and buspirone [124]� Other P450 
BM3 variants with applicability as biocatalysts 
in the production of reactive metabolites from 
the drugs clozapine, diclofenac, and acetamino-
phen [125], as well as variants metabolizing tri-
methoprim—an antibacterial agent [126]—have 
also been reported� Several examples hereof are 
discussed in Sect� 8�6�

Another major target for protein engineering 
is CYP101A1 (also referred to as P450cam) from 
Pseudomonas putida� The wildtype enzyme cata-
lyzes the regioselective and stereoselective oxi-
dation of (+)-camphor to 5-exo-hydroxycamphor 
with a turnover rate of > 2000 min−1 and a cou-
pling efficiency of > 95 % under optimal condi-
tions, i�e�, in the presence of saturating concen-
trations of its physiological redox partners pu-
tidaredoxin reductase (PdR) and putidaredoxin 
(Pdx) [127]�
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P450cam has been engineered, primarily via 
structure-based rational design, to accept a vari-
ety of nonnative substrates such as other terpenes 
(e.g., (+)-α-pinene), alkanes, diphenylmethane, 
styrene, polychlorinated benzenes, and other 
aromatic compounds (reviewed in [4])� These 
studies revealed four “hot spots” that determine 
the substrate specificity of P450cam, namely the 
residues Y96, F87, L244, and V247�

How far protein engineering can be driven is 
demonstrated by the structure-based engineering 
of P450cam variants that are able to convert pro-
pane to propanol with a turnover rate of 176 min−1 
and a coupling efficiency of 66 % (F87W/Y96F/
T101L/L1244M/V247L; named EB-variant) 
[128], or ethane to ethanol with a turnover rate 
of 78 min−1, albeit with only 10 % coupling ef-
ficiency (EB-variant + L294M/T185M/L1358P/
G248A) [129]�

Another strategy to alter the substrate spectra 
of P450s is the creation of chimeras, which has 
been applied to bacterial and mammalian P450s� 
Common approaches for the generation of chi-
meras are “DNA-shuffling” (e�g�, as applied for 
the CYP2C subfamily [130, 131] or CYP11A1 
[132]), computationally guided recombination 
(e�g�, SCHEMA, as described below), or the 
exchange of substrate recognition sites (SRS) 
across unrelated P450s (e�g�, chimeras of P450 
BM3 and CYP4C7 [133, 134])�

An approach called SCHEMA, which is based 
on structure-guided DNA recombination, was de-
veloped and applied by Frances Arnold and col-
leagues to obtain chimeras containing the heme-
binding domains of P450 BM3 and its homo-
logues CYP102A2 and CYP102A3, sharing only 
~ 60 % amino acid identity [135]� A survey of 
the activities of the new P450 chimeras revealed 
completely novel functions that were absent in 
the wildtype enzymes� These functions included 
the ability to accept and oxidize drugs like vera-
pamil and astemizole [136]�

Highly active chimeric fusion proteins were 
constructed by swapping reductase domains of 
several P450 BM3 mutants� Subsequently, ran-
dom mutagenesis at the heme domain of the chi-
meras was applied to generate chimeric variants 
that were more active than the parental chime-

ras� Some of the chimeric variants showed high 
activity towards typical human P450 substrates 
including drugs [137]�

8.3.2.2  Altering the Selectivity of P450s
A challenging problem for P450 engineering is 
the fine-tuning of regio- and/or stereoselectivi-
ties� Generally, mutations that are intended to 
expand the substrate spectrum of a P450 towards 
nonphysiological compounds will typically en-
large the active site where substrate docking 
occurs� This often allows the substrate of inter-
est to bind in multiple orientations resulting in 
poor regio- and/or stereoselectivities� In addi-
tion, high-throughput screenings are usually not 
feasible for determination of regio- and stere-
oselectivity, but instead must be established on 
a case-by-case basis, e�g�, through (chiral) gas 
chromatography (GC)- or liquid chromatogra-
phy (LC)-analysis [4]� Nevertheless, successful 
alterations of the regio- and/or stereoselectivity 
of P450s have been reported�

For example, the regioselectivity of 
CYP106A2 could be altered considerably by site-
saturation mutagenesis� CYP106A2 is a bacterial 
steroid hydroxylase that hydroxylates inter alia 
progesterone to 15-β-hydroxy-progesterone, as 
well as 11-α-hydroxy-progesterone, 9-α-hydroxy-
progesterone, and 6-β-hydroxy-progesterone as 
minor products� Based on homology modeling 
and substrate docking experiments, the residues 
A395 and G397 in the active site were identified 
as possible candidates contributing to enzyme 
regioselectivity [138]� Saturation mutagenesis 
combined with subsequent library screening has 
revealed the variants A395I and A395W/G397K 
with high 11-α-hydroxylase activity [139]�

The systematic comparison of 29 P450 crystal 
structures and more than 6300 P450 sequences 
has revealed conserved structural elements in 
close proximity to the active heme oxygen that 
are important for the interaction with any given 
substrate [140]� Based on this study, a minimal 
P450 BM3 variant library of only 24 variants 
was constructed by exchanging the amino acids 
in positions 87 and 328, located in the identified 
region, for one of the five hydrophobic amino 
acids (A, V, F, L, or I)� The library was screened 
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with four terpene substrates: geranylacetone, 
nerylacetone, (4R)-limonene, and (+)-valencene� 
As compared to the wildtype enzyme, most vari-
ants demonstrated either a strongly shifted or 
improved regio- or chemoselectivity for the oxi-
dation of at least one substrate [141]� Members 
of this library also exhibited an up to 100-fold 
higher hydroxylation activity towards cyclooc-
tane and cyclodecane� Furthermore, several vari-
ants were identified that hydroxylated cyclodo-
decane, a reaction that cannot be catalyzed by the 
wildtype enzyme [142]� The main advantage of 
this iterative approach compared to site-directed 
mutagenesis is that, through the specific choice 
of two amino acids located close to each other, 
unpredictable synergistic effects can be achieved�

Another iterative approach called “combi-
natorial active-site saturation test (CAST)” was 
successfully applied to engineer P450 BM3 
variants with high regio- and stereoselectiv-
ity for testosterone and progesterone oxidation 
[143]� Twenty active-site positions, identified 
using the three-dimensional structure of P450 
BM3 and based on earlier studies, were divided 
into nine groups in order to maximize the prob-
ability of cooperative effects within a single site 
and between different sites� While the parent 
P450 BM3 F87A variant produces a mixture of 
2-β- and 15-β-hydroxytestosterone, simulta-
neous substitutions at the positions R47/T49/
Y51 provided a variant, yielding up to 94 % of 
2-β-hydroxytestosterone. In contrast, combined 
mutations in the sites V78 and A82 favored the 
15-β position for hydroxylation. Further muta-
genesis including these two positions increased 
the regio- and stereoselectivity of the final vari-
ant R47Y/T49F/V78L/A82M/F87A up to 96 % 
towards 15-β-hydroxylation [143]�

8.3.2.3  Miscellaneous
A unique approach to expand substrate spec-
tra of P450s to nonnatural compounds without 
mutagenesis or substrate engineering has been 
described [144]� Substrate-like “decoy mol-
ecules” were employed to extend the substrate 
spectrum of the natural fatty acid peroxygenase 
CYP152A1 (P450Bsβ) from Bacillus subtilis� The 
decoy molecule (a short chain fatty acid) is able 

to bind in the binding pocket but is not converted 
by the enzyme [144]� It was suggested that the 
carboxylate group of the decoy molecule serves 
as the general acid–base catalyst, which is indis-
pensable for the efficient generation of the active 
P450-species using H2O2 [145]� By using this ap-
proach, guaiacol, styrene, and ethylbenzene were 
successfully oxidized by CYP152A1 [144]�

The same strategy was later applied to P450 
BM3 for the hydroxylation of gaseous alkanes 
[146]� Herein, perfluorocarboxylic acids with 
chain length between C8 and C14 that bind in the 
binding pocket with increasing affinity, served as 
the decoy molecules� Propane, butane, and cy-
clohexane were subsequently used as substrates� 
As products 2-propanol, 2-butanol, and cyclo-
hexanol, respectively, were formed� Interestingly, 
only the enzyme activity but not its regioselectiv-
ity upon octane oxidation changed in the pres-
ence of perfluorononanoic acid [147]�

8.3.3  Molecular Tools for the 
Construction of P450 
Fusionproteins

From a biotechnological point of view, the main 
focus of P450 engineering was initially on the 
heme-containing P450 domain to enhance activi-
ty or selectivity as described above� It was quickly 
noted, however, that the dependence of P450s on 
accessory redox partners and the requirement for 
NAD(P)H limits their biotechnological exploita-
tion (discussed in detail in [148])� To circumvent 
these limitations, different approaches for effi-
cient delivery of electrons to the heme of P450s 
have been developed� These include among oth-
ers, enzymatic cofactor regeneration, chemical 
or electrochemical reduction of P450s, and pho-
tochemical (light-driven) regeneration of P450s� 
These approaches will be described in Sect� 8�5�

An alternative engineering strategy is repre-
sented by the generation of man-made fusions of 
redox partners with P450 enzymes (described in 
detail in Sect� 8�4)� To date, a variety of molecu-
lar tools have been developed to optimize redox 
chains and to facilitate the construction of artifi-
cial P450–redox partner fusion enzymes:
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1� “Molecular Lego”: An approach for the design 
of molecular assemblies of P450 enzymes and 
redox partners for nanobiotechnology [149, 
150]�

2� “LICRED”: A versatile drop-in vector for 
rapid generation of redox-self-sufficient cyto-
chrome P450s [151, 152]�

3� “PUPPET”: A protein scaffold-based ap-
proach ( PCNA-utilized protein complex of 
P450 and its two electron transfer-related pro-
teins) [153, 154]�

8.3.3.1  Molecular Lego
The “molecular Lego” approach for the construc-
tion of artificial P450 fusion enzymes was devel-
oped with the aim to generate P450 enzymes with 
novel catalytic functions (Fig� 8�6) [149]� In anal-
ogy to the children’s toy “Lego”, monooxygen-
ase domains and reductase domains of different 
P450 systems were used as building blocks for 
the construction of catalytically self-sufficient  
enzymes�

Fig. 8.6  The molecular Lego approach applied to the 
scaffold of P450 BM3; a to generate a P450 catalytic do-
main electrochemically accessible through the fusion with 
the electron transfer protein flavodoxin; b to solubilize the 
human membrane-bound P450 2E1 by fusion with select-

ed parts of the scaffold of the catalytically self-sufficient 
P450 BM3; c to generate libraries of P450 BM3 enzymes 
with different catalytic domains to be used for pharma-
cological and biosensing applications� (Reproduced from 
[149] with permission of Elsevier Limited, Oxford, UK)
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This approach proved to be a powerful mo-
lecular tool, especially in combination with  
error-prone polymerase chain reaction (PCR) to 
generate a library of random variants of P450s 
and subsequent screening for P450 activity by an 
in-house developed alkali-based method [149]� 
Gianfranco Gilardi and coworkers constructed 
a fusion protein comprised of an N-terminal 
human CYP2E1 module (residues 22–439) and 
a C-terminal reductase module containing the 
reductase domain of P450 BM3 (residues 473–
1049) [155]� The CYP2E1 module lacked the hy-
drophobic N-terminus, which permitted expres-
sion of the CYP2E1–BMR fusion enzymes in 
soluble form [155]� CYP2E1–BMR was shown 
to be catalytically self-sufficient and to exhibit 
many of the hallmarks of CYP2E1, including 
catalytic activity towards the typical substrates p-
nitrophenol and chlorzoxazone� CYP2E1–BMR 
catalyzed the hydroxylation of p-nitrophenol 
with a kcat of ~ 3 nmolproduct min−1 nmolP450

−1, 
whereas with chlorzoxazone, a kcat of ~ 1 nmol-
product min−1 nmolP450

−1 was measured� Impor-
tantly, CYP2E1–BMR achieved wildtype-like 
activities without the addition of detergents and 
lipids [155]�

8.3.3.2  LICRED
The ever-growing number of discovered P450s 
calls for high-throughput tools to facilitate their 
isolation and characterization� For this purpose, 
the ligation-independent cloning (LIC) vec-
tor termed “LICRED” (Fig� 8�7) was designed 
to facilitate the high-throughput construction of 
libraries of catalytically self-sufficient P450 fu-
sion enzymes by connecting a variety of mono-
oxygenase domains to the reductase domain of 
P450RhF (RhFRed) of the self-sufficient P450RhF  
(CYP116B2) from Rhodococcus sp� Target P450s 
are amplified with specifically designed PCR 
primers containing LIC-compatible overhangs that 
allow for cloning into the LICRED vector [151, 
152]�

In such manner, fusion enzymes comprised 
of RhFRed and the monooxygenase domains of 
either P450cam or CYP177A1 were successfully 
produced [152]� These artificial P450 systems 
were shown to be expressed in a soluble form 
and to be catalytically active� Importantly, elec-
trons from NADPH were shown to be transferred 
primarily intramolecularly to the P450 heme do-
main� The robustness and universal applicability 
of LICRED was demonstrated by generating a 

Fig. 8.7  LICRED� a Schematic representation of the ar-
chitecture of P450RhF (CYP116B2) spanning from the 
N-terminal heme domain to the C-terminal reductase do-
main� b Schematic representation of the general strategy 

used to clone P450 heme domains in the LICRED plat-
form to generate libraries of self-sufficient P450s� (Re-
produced from [152] with permission of WILEY-VCH, 
Weinheim, Germany)
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library of RhFRed fusion constructs with 22 dif-
ferent P450s taken from the genome of Nocardia 
farcinica� Subsequent screening of this library 
against a variety of substrates identified fusion 
enzymes that were capable of the hydroxylation 
of testosterone and methyltestosterone, as well as 
dealkylation of 7-ethoxycoumarin [152]�

8.3.3.3  PUPPET
Besides constructing “linear” P450–redox part-
ner fusion enzymes, alternative approaches have 
been followed to bring the redox partners and 
P450 monooxygenase in close proximity to each 
other for efficient electron transfer� Inspired by 
the high stability and high catalytic activity of 
multienzyme complexes occurring in nature, Ter-
uyuki Nagamune and coworkers created a plat-
form that employs three distinct proliferating cell 
nuclear antigens (PCNAs) from Sulfolobus sol-

fataricus that assemble into a heterotrimer [153, 
154]� A heterotrimeric complex called “PUP-
PET” was created that consisted of PCNA1-PdR, 
PCNA2-Pdx, and PCNA3-P450cam (Fig� 8�8) 
[153]�

PUPPET exhibited a much higher monooxy-
genase activity than control reaction mixtures 
containing equimolar amounts of PdR, Pdx, 
and P450cam [153]� The authors suggested that 
the close proximity of P450cam to its dedicated 
redox partners fused to the PCNA scaffold al-
lowed more efficient electron transfer from PdR 
to P450cam via Pdx [153]� Moreover, this sys-
tem was recently further optimized by replacing 
the GGGGSLVPRGSGGGS linker connecting 
PCNA2 and Pdx, by the more rigid, proline-rich 
linker GGGGS(PPPPP)4GGGGS, which im-
proved the monooxygenase activity of the system 
by almost twofold [154]� Likely, the rigid stretch 

Fig. 8.8  PCNA-utilized protein complex of P450 and its 
two-electron-transfer-related proteins (PUPPET)� a Sche-
matic representation of the link design of individual PCNA 
fusion proteins� b Model depicting the self-assembly of 

PCNA1-PdR, PCNA2-PdX, and PCNA3-P450cam� (Re-
produced from [153] with permission of WILEY-VCH, 
Weinheim, Germany)
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of 20 consecutive proline residues contributes to 
positioning Pdx close to the Pdx-binding site of 
P450cam, thereby facilitating electron transfer 
[154]�

8.4  Optimization of Redox Chains

8.4.1  Redox Partners of Cytochrome 
P450 Monooxygenases

As mentioned above, cytochrome P450 mono-
oxygenase activity relies on the consecutive de-
livery of two electrons to enable the reduction of 
the P450 heme iron and the final formation of the 
highly reactive ferryl-oxo species [156]� These 
electrons are usually donated by the cellular co-
factors NADH or NADPH and are delivered to 
the P450 monooxygenase by dedicated redox 
proteins or redox domains� Whereas it is gener-

ally believed that the various P450s have evolved 
from a common ancestor, differences exist in the 
nature of the electron carriers that deliver the 
electrons to the P450s [157]� Initially, two main 
systems for delivery of electrons to P450s were 
described, namely electron transfer by the coop-
erative action of ferredoxin reductase (FdR) and 
ferredoxin (Fdx) for class I P450s, or electron de-
livery by the flavin adenine dinucleotide (FAD)- 
and flavin mononucleotide (FMN)-binding cyto-
chrome P450 diflavin reductase (CPR), as is the 
case for class II P450s [158]�

To date, various other routes of electron de-
livery to P450s have been recognized, leading 
to diverse classifications, e�g�, those suggested 
by Hannemann et al� (Table 8�2) [35]� The diver-
sity of the P450 systems is striking, ranging from 
complex systems composed of three individual 
proteins (classes I, III, and IV) to the more simple 
catalytic self-sufficient systems that harbor the 

Table 8.2  Classification of P450 systems based on their dedicated redox chains according to Hannemann et al� [35]� 
(Reproduced with permission of Elsevier limited, Oxford, UK)
P450 class and 
origin

Electron transfer chain Typical P450 representatives

Class I
Bacteria, 
mitochondria

NAD(P)H → FdR → 
Fdx → P450

Pseudomonas putida
CYP101 (P450cam) [162, 163]
Mammalian
CYP11A1 (P450ssc) [164]

Class II
Bacteria, microsome, 
plants, fungi

NAD(P)H → CPR→ 
P450

Streptomyces carbophilus CYP105A3 (P450sca) [165]
Microsomal P450s [166]

Class III
Bacteria

NAD(P)H → FdR → 
Fld → P450

Cytrobacter braakii
CYP176A1 (P450cin) [167, 168]

Class IV
Bacteria

Pyruvate, CoA → 
OFOR → Fdx → P450

Sulfolobus solfataricus
CYP119 [169]

Class V
Bacteria

NADH → FdR → 
[Fdx-P450]

Methylococcus capsulatus
CYP51 [170]

Class VI
Bacteria

NAD(P)H → FdR → 
[Fld-P450]

Rhodococcus rhodochrous
CYP177A1 (P450 XplA)[171]

Class VII
bacteria

NADH → 
[PFOR-P450]

Rhodococcus sp� CYP116B2 (P450RhF) [172, 173]

Class VIII
Bacteria, fungi

NAD(P)H → 
[CPR-P450]

Bacillus subtilis CYP102A1(P450 BM3) [174–177]Fusarium oxys-
porum CYP505A1
(P450foxy) [178, 179]

Class IX
Fungi

NADH → [P450] Fusarium oxysporum
CYP55 (P450nor) [180]

Class X
Plants, mammals

[P450] Plant divinyl ether synthase
(DES) (CYP74D) [160]
Mammalian thromboxane synthase (TXAS) [159]

FdR ferredoxin/flavodoxin reductase, Fdx Ferredoxin, CPR cytochrome P450 diflavin reductase, Fld flavodoxin, 
OFOR 2-oxoacid-ferredoxin oxidoreductase, PFOR phthalate-family dioxygenase reductase
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necessary redox modules and the P450 mono-
oxygenase enzyme in a single polypeptide chain 
(classes VII and VIII)� P450 fusion enzymes 
which combine a P450 moiety with either Fdx 
or a flavodoxin (Fld) moiety were assigned to 
classes V and VI, respectively� Moreover, P450s 
have been identified that can function indepen-
dent of redox proteins and NAD(P)H (class X) 
[159–161]�

To drive monooxygenase activity, human 
P450s receive the necessary electrons from in-
dividual redox partner proteins, which include a 
CPR or an adrenodoxin reductase–adrenodoxin 
(AdR–Adx) couple� On the other hand, in bac-
teria and lower eukaryotes, a number of natu-
ral fusions of P450s with their dedicated redox 
partners have been identified (Fig� 8�9)� By com-
parison, such P450 fusion enzymes usually ex-
hibit much higher turnover rates than the human 
P450s, which has been attributed, in part, to su-
perior electron transfer within these P450 fusion 
enzymes [112]�

P450 BM3 represents the first natural fusion 
enzyme that was discovered to harbor both a 
P450 moiety and a redox partner module with-
in a single polypeptide chain [176, 177]� P450 
BM3 is a soluble enzyme that consists of an 
N-terminal P450 domain exhibiting fatty acid 
hydroxylase activity, which is fused via a short 
peptide linker to a C-terminal diflavin-containing 
CPR-like domain (Fig� 8�9)� Thus, P450 BM3 is a 
self-sufficient P450 system that requires only its 
substrates, NADPH, fatty acids, and dioxygen for 
catalytic activity [176, 177]�

P450 BM3 has attracted great attention as a 
model system for biotechnological exploitation 
due to its unprecedented high enzymatic activ-
ity in conjunction with highly efficient electron 
transfer [109, 181, 182]� In the last decade, an 
increasing number of P450–redox partner fu-
sion proteins has been identified [170, 172, 183]� 
Even though a wealth of novel P450 systems 
have been discovered and constructed since, the 
highest reported oxygenase activity of a P450 to 
this day  remains that of P450 BM3, with a kcat of 
17,100 min−1 in the presence of arachidonic acid 
as a substrate [112]�

8.4.2  Linker Design in Protein 
Engineering

Recent advances in the field of protein engineer-
ing have come from constructing multifunctional 
recombinant fusion proteins [184, 185]� It has 
been recognized that the proper design of linker 
peptides is vital to the desired function of the fu-
sion protein�

A systematic study of inter-domain linkers 
occurring in natural fusion proteins revealed 
the existence of two main types of linkers: he-
lical and nonhelical [184]� Helical linkers are 
thought to act as rigid spacers separating two 
domains� Nonhelical linkers were found to con-
tain a high number of proline residues, which 
also provides structural rigidity and contributes 
to isolation of the linker from the connected do-
mains [184]� Based on structural data of more 
than 600 multidomain proteins, approximately 
1300 linker peptides were identified, which 
were demonstrated to have an average length 
of 10�0 ± 5�8 amino acids and to exhibit a gen-
eral preference for the amino acids Pro, Arg, 
Phe, Leu, Glu, and Gln (in respective order of 
decreasing preference) [184]� Whereas Pro, Thr, 
and Phe were dominant in nonhelical linkers, 
helical linkers were enriched in Leu, Arg, Glu, 
Met, and Gln [184]� The high preference for Pro 
in nonhelical linkers was explained by the fact 
that this residue has no amide hydrogen to donate 
in hydrogen bonding and therefore reduces the 
interaction between the linker and the adjacent 
protein domains [184]� Moreover, it was noted 
that long linkers (21�0 ± 7�6 residues) exhibited a 
decreased preference for the hydrophobic amino 
acid Met, whereas an increased propensity for 
Cys, Asn, and Gln was observed [184]� In con-
trast, short linkers (4�5 ± 0�7 residues) showed 
an increased preference for hydrophobic amino 
acids and a concomitant decrease in the content 
of polar and acidic amino acids [184]� It is rea-
sonable to assume that with increasing linker 
length also the degree of exposure of the linker to 
solvent is increased, and therefore, longer link-
ers are more likely to contain hydrophilic amino  
acids�
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In many cases, the aforementioned inher-
ent properties of natural linkers of multidomain 
proteins have served as a basic guide to linker 
design for the construction of man-made fusion 
enzymes� For the engineering of recombinant 
fusion proteins, three main types of linkers are 
often employed; these include flexible linkers, 
rigid linkers, and linkers that can be cleaved, ei-
ther proteolytically or chemically [185]�

8.4.2.1  Flexible Linkers
Flexible linkers are often employed in cases 
where the joined domains or proteins require a 
certain degree of movement or interaction� Such 
linkers frequently contain small, nonpolar amino 
acids such as Gly and/or polar residues such as 
Ser or Thr [185, 186]� The small size of these 
amino acids confers flexibility to the linker, 
which in turn facilitates the movement of the at-
tached domains� In addition, the Ser and/or Thr 
residues contribute to the stability of the linker 
in aqueous milieus by forming H-bonds with the 
water molecules [185]� In such manner also un-
favorable interactions between the linker and the 
attached protein domains are prevented [185]� A 
typical example of a flexible linker that has been 
widely used for engineering recombinant fusion 
proteins is the oligopeptide (Gly–Gly–Gly–Gly–
Ser)n [187–190]� Herein, the linker length can be 
tailored by inserting several copies of this oligo-
peptide in tandem to achieve the optimal distance 
between the attached domains [185]�

8.4.3  Rigid Linkers

Rigid linkers have also been successfully em-
ployed in generating fusion proteins, often to 
maintain a fixed distance between the connect-
ed protein domains [185]� Arai et al� designed a 
rigid linker consisting of A(EAAAK)nA ( n = 2–5) 
with the aim of separating the domains of a bi-
functional fusion protein [191]� This linker was 
based on an earlier study by Marqusee and Bald-
win, who demonstrated that the small peptide 
A(EAAAK)3A adopts an α-helical conformation, 
which was stabilized by the Glu−Lys+ salt bridges 
within each segment [192]� Arai et al� demon-

strated that by inserting the linker A(EAAAK)nA 
between enhanced blue fluorescent protein 
(EBFP) and enhanced green fluorescent protein 
(EGFP), the efficiency of fluorescence reso-
nance energy transfer (FRET) between the two 
proteins could be regulated [191]� An increase in 
the number of EAAAK linker segments reduced 
the FRET efficiency� In contrast, flexible linkers 
composed of GGGGS segments of similar length 
were substantially less effective in reducing the 
FRET efficiency [191]� Thus, the helical seg-
ments controlled the distance between EBFP and 
EGFP more effectively�

A different type of rigid linkers that have been 
described consists of proline-rich amino acid 
sequences, such as (XP)n [184, 185]� Herein, X 
represents any amino acid, with preference for 
Ala, Lys, or Glu [184]� For instance, artificial fu-
sion proteins comprised of interferon-γ(IFN-γ) 
and gp120 of the human immunodeficiency virus 
were constructed, using (Ala–Pro)n linkers of dif-
ferent lengths [193]� All fusion proteins actively 
formed dimers, but full biological activity of 
IFN-γ was achieved only with the longest linker 
consisting of 34 amino acids [193]�

Taken together, α-helical linkers and proline-
rich linkers form rigid structures that are often 
deployed in cases where the spatial separation of 
the individual domains is crucial to maintain the 
stability and/or biological activity of the entire 
fusion protein�

8.4.3.1  Cleavable Linkers
Cleavable linkers represent a third large category 
of linkers used to generate recombinant fusion 
proteins [185]� Such linkers are often designed 
with the aim to liberate the separate fusion do-
mains for the desired biological activity� Ex-
amples of cleavable linkers include linkers that 
harbor disulfide bridges or recognition sequences 
for proteases such as Factor Xa, Cathepsin B, 
or HCV protease [194, 195]� Whereas the cova-
lent linkage of protein domains may have many 
advantages, including for instance an increased 
plasma half-life (e�g�, albumin- or Fc-fusions), 
a potential major drawback includes functional 
interference between the separate domains lead-
ing to reduced biological activity of the fusion 
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protein [185]� Such drawback might be circum-
vented by chemical or enzymatic cleavage of the 
linker, thereby separating the functional domains 
[185]�

Whereas cleavable linkers seem less relevant 
with respect to engineering functional interac-
tions between P450 and redox partner(s), flex-
ible and rigid linkers have been used frequently 
to construct a variety of artificial fusion proteins 
with the aim to increase the efficiency of electron 
transfer and improve the catalytic efficiency of 
the P450 system�

8.4.4  Construction of Artificial P450 
Fusion Proteins

Nearly all of the naturally occurring P450 redox 
partner fusion systems are soluble enzymes, 
which notably, can be more easily purified than 
their membrane-associated multicomponent rela-
tives� In addition, these natural P450 fusion sys-
tems appear to have a superior catalytic activity 
and stability, with P450 BM3 as the best example 
[181]� Therefore, a much-applied approach to 
circumvent laborious efforts to reconstitute P450 
redox chains from individual proteins involves 
the creation of artificial P450 fusion enzymes by 
linking the usually separate redox partners to se-
lected P450 enzymes [148, 162, 196]�

The artificial linkage of redox and P450 
monooxygenase modules has been frequently ac-
complished by introducing linker peptides con-
necting the C-terminus to the N-terminus of the 
individual components [196]� Linker peptides 
can be derived from naturally fused P450 sys-
tems (e�g�, P450 BM3) or are of man-made origin 
[148]� Alternatively, the linkage of redox mod-
ules can be brought about by introducing disul-
fide-bridges at sites important for redox partner 
interaction [148, 196]�

Taken together, covalent fusions of redox 
modules and P450s are thought to have several 
advantages over the parental multicomponent 
P450 systems; the fused proteins constitute a 
simplified redox system, both with respect to 
protein expression and isolation� In addition, it 
is a widely accepted view that the covalent link-

age of redox partners may govern a more effi-
cient electron transport, which, in turn, may im-
prove the catalytic efficiency of the target P450 
enzyme� The number of reports concerning the 
structure and function of man-made P450 fu-
sion enzymes is increasing rapidly and excellent 
reviews on this topic are available [112, 148, 
181, 196]� A variety of fusion proteins contain-
ing selected heme domains of mammalian, plant, 
fungal or bacterial P450s, and redox partner pro-
teins, either from bacterial sources (class II and 
VIII) or from microsomal origin (class II), were 
shown to exhibit catalytic activity [148, 196]� 
Here, for simplicity, only a small selection of de-
veloped artificial P450 fusion systems relevant to 
biotechnological exploitation will be discussed in 
some detail, with special attention to the differ-
ent strategies that were employed to generate the 
various fusion enzymes�

8.4.5  Artificial P450—Redox Partner 
Fusion Enzymes

8.4.5.1  Eukaryotic Fusions Comprised of 
P450 and CPR

The first self-sufficient fusion comprising a eu-
karyotic P450 and a CPR was already reported in 
1987 by Murakami et al�, who fused rat CYP1A1 
to rat CPR� Herein, the P450 moiety was fused 
with its C-terminus to the CPR lacking its N-ter-
minal membrane anchor [197]� Spectral proper-
ties of the fused enzyme confirmed the presence 
of heme, FAD, and FMN as prosthetic groups� 
Moreover, the fusion enzyme exhibited monoox-
ygenase activity towards 7-ethoxycoumarin fol-
lowing first-order kinetics [197]� This pioneering 
study initiated the construction of a large number 
of microsomal catalytic self-sufficient P450–
CPR fusion enzymes that exhibited altered and 
often improved enzymatic properties�

Following a similar strategy, the same re-
search group constructed a set of seven different 
fusions between bovine CYP17A1 (P450c17) 
and yeast CPR, which differed in the length and 
amino acid composition of the linker region be-
tween the P450 and CPR domain, due to differ-
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ences in truncation of the N-terminus of CPR 
[198, 199]� Most of these fusions showed im-
proved 17-α-hydroxylase activity as compared 
to CYP17A1 control reactions� Moreover, these 
studies demonstrated that both the length and 
amino acid composition of the linker region con-
tributed to efficient intramolecular electron trans-
port [198, 199]�

Such type of P450 fusion system was further 
diversified with the biotechnological aim to pro-
duce steroidogenic specialty drugs [196]� Heme 
domains of bovine, guinea pig, or porcine micro-
somal CYP17A1 have been consequently fused 
to either rat or yeast CPR [196]� For example, a 
fusion protein of bovine CYP17A and modified 
rat CPR, linked via the dipeptide Ser-Thr, yield-
ed a fusion enzyme capable of catalyzing the 
17-α-hydroxylation of progesterone and preg-
nenolone [196, 200]� Similarly, several different 
fusions of bovine CYP21 and yeast CPR have 
been produced that were active in the 21-hydrox-
ylation of 17-α-hydroxyprogesterone [199]� The 
various fusion enzymes differed with respect to 
the order of the functional domains (i�e�, CYP21–
CPR vs� CPR–CYP21), as well as the linker re-
gion in between [199]� The CYP21–CPR fusion 
with a Ser–Thr linker showed the highest cata-
lytic activity with a Vmax of 222 nmolproduct min−1 
nmolP450

−1 that was about twofold higher when 
compared to control reactions where CYP21 and 
CPR were expressed as separate proteins� It was 
concluded that the higher catalytic activity was 
governed by efficient electron transfer via intra-
molecular interaction of the P450 and CPR do-
mains within the fusion enzyme [199]�

8.4.5.2  Plant P450 Fusion Enzymes
The kingdom of plants represents a valuable 
apothecary, as it is the origin of many important 
therapeutic agents� Thus, the expression of plant 
P450 fusion enzymes in bacteria may permit 
the high-level production of medically relevant 
compounds that plants produce naturally at low 
levels� In Catharanthus roseus, the synthesis of 
vinblastine and vincristine, two important al-
kaloids that find application in the treatment of 
leukemia, starts with tabersonine hydroxylation 
[201]� Schröder et al� generated a fusion enzyme 

of C. roseus CYP71D12 linked on the N-termi-
nal to its cognate CPR� The fusion enzyme was 
successfully expressed in E. coli and was dem-
onstrated to catalyze 16-hydroxylase activity of 
tabersonine [201]�

Plant P450 systems may also find biotechno-
logical application in the field of herbicide resis-
tance� For example, CYP71B1 from Thlaspi ar-
vense covalently attached to CPR from C. roseus 
was shown to metabolize the polycyclic aromatic 
hydrocarbon benzo(a)pyrene [202]� For expres-
sion purposes, the N-terminus of CYP71B1 was 
modified to code for the initial eight amino acids 
of CYP17A [202]� In a subsequent study, it was 
demonstrated that this fusion protein has poten-
tial in bioremediation [203]� The aforementioned 
fusion protein could be immobilized using an 
oil-in-water macro-emulsion called polyaphron 
and was shown to be active in metabolizing the 
antibiotic erythromycin, as well as the herbicide 
chlortoluron, with activities superior to those of 
the free P450 [203]� Similarly, Didierjean et al� 
generated fusion enzymes of CYP76B1 from He-
lianthus tuberosus with truncated forms of CPR 
from the same organism, which were able to rap-
idly catalyze the oxidative dealkylation of vari-
ous recalcitrant herbicides, including isoproturon 
and chlortoluron [204]�

Further examples of plant P450-CPR fusions 
are described in Sect� 8�7�

8.4.5.3  Bacterial P450 Fusion Enzymes
Among microbial P450s, P450cam has been a 
major target for the construction of artificial fu-
sions [148, 196]� As such, P450cam was fused 
to its natural redox partners (PdR and Pdx) to 
generate a tripartite catalytic self-sufficient P450 
system [205]� In this study, different orders of the 
individual components, as well as different linker 
sequences, were tested� The highest camphor 
turnover ( kcat ~ 30 min−1) was observed with the 
PdR–Pdx–P450cam fusion enzyme, with peptide 
sequences TDGASSS and PLEL as linker be-
tween the respective components [205]� The au-
thors noted that for their fusion system the order 
of the components rather than the linker length 
was critical for catalytic activity� It is of note that 
reconstitution of the P450cam system from its in-
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dividual components at a 1:1:1 ratio still outper-
formed the aforementioned fusion enzyme [205]� 
Nevertheless, these results demonstrated the fea-
sibility of constructing P450 fusion enzymes for 
bacterial bioreactors for metabolizing xenobiot-
ics or synthesis of fine chemicals�

Nodate et al� demonstrated that fusions of 
P450cam and RhFRed from Rhodococcus sp� 
could be functionally expressed in E. coli [206]� 
To enhance the efficiency of this type of fusion 
enzyme, Robin et al� generated in a follow-up 
study a set of seven P450cam–RhFRed fusion 
constructs using peptide linkers of different 
lengths [207]� The introduction of a nine-amino-
acid linker (HMRLASTHM) between the com-
ponents accomplished a higher in vivo conver-
sion of (+)-camphor to 5-exo-hydroxycamphor, 
improving the yield 20-fold� By further optimiz-
ing the reaction conditions, 80 % conversion was 
obtained at a substrate concentration of 30 mM, 
which makes this P450 fusion system amenable 
to industrial biocatalysis [207]�

8.4.5.4  Mixed P450 Fusion Enzymes
Whereas the heme domain of P450 BM3 has 
been subject to extensive engineering, its reduc-
tase domain (BMR), in addition, has been fre-
quently employed as a redox partner in artificial 
P450 fusion constructs [112]� Fusion constructs 
between N-terminally modified forms of human 
CYP2C9, 2C19, and 3A4 and BMR, connected 
via a Pro–Ser–Arg linker, were all demonstrated 
to be catalytically self-sufficient and to exhibit 
turnover rates that were comparable to those 
obtained for the native human P450s when re-
constituted with their natural CPRs [112, 208]� 
For example, the CYP2C9–BMR fusion enzyme 
catalyzed the 4-hydroxylation of diclofenac with 
a kcat of 40 min−1 [208]�

In a different approach, hybrids of P540 BM3 
and neuronal nitric oxide synthase (nNOS) were 
generated in which the heme and reductase do-
mains of the respective enzymes were swapped, 
while maintaining the natural domain order 
[112, 209]� Such hybrids could successfully be 
expressed in E. coli and were shown to be cata-
lytically active [162, 209]� With such hybrids, 

BMR was able to support high-level nitric oxide 
production by the fused nNOS heme domain, 
suggesting efficient electron transfer between 
the domains [209]� However, the protein stabil-
ity of this hybrid enzyme was reduced and the 
rate of nitric oxide production was approximately 
eightfold lower than measured for native nNOS 
[209]� In contrast, with the converse hybrid, the 
nNOS reductase domain was rather unproductive 
at supporting reduction of the P450 BM3 heme 
domain, likely due to an inappropriate large dis-
tance between the flavin and heme redox centers 
[209]� Active fusions between RhFRed and a 
plant P450 has been recently described [210]�

8.5  Substitution or Regeneration of 
NAD(P)H

The limited use of P450-catalyzed reactions in 
industry stems (at least to some extent) from the 
high cost of NAD(P)H cofactors� Consequently, 
several approaches have been developed and 
successfully applied to avoid the use of natural 
nicotine amide cofactors including chemical, 
electrochemical, and photochemical reduction 
of the heme Fe3+� Another approach aiming to 
minimize the amount of NAD(P)H required com-
prises enzymatic cofactor regeneration� More-
over, several methods were described to directly 
convert P450s from their resting state into their 
active ferric hydroperoxy complex form, which 
enables substrate conversion without the need for 
cofactors or redox partners�

8.5.1  Chemical and Electrochemical 
Cofactor Substitution

8.5.1.1  Chemical Cofactor Substitution

At first sight, chemical reduction of ferrous 
iron appears to be a very simple and straight-
forward strategy to circumvent the use of cost-
ly NAD(P)H� Already in 1992, Peterson et al� 
demonstrated the effective reduction of ferrous 
iron by the strong and inexpensive reducing 



4758 P450 Biotechnology

agent sodium dithionite [211]� Later, the reduc-
tive capacity of sodium dithionite was shown to 
support P450 BM3-catalyzed hydroxylation of 
palmitic acid [212]� The hydroxylation reaction 
was carried out in two separate steps: anaero-
bic reduction and subsequent oxidation of P450 
BM3 by oxygen bubbling� However, in both 
cases, the reduction rate of the heme iron was 
approximately 8000-fold slower than observed 
with NADPH [212]� Generally, strong reducing 
agents destabilize the porphyrin, which in turn 
results in low enzyme stability� This is probably 
one of the reasons why this approach has not 
been pursued�

Peroxides that directly convert the heme iron 
of P450s to a ferric hydroperoxy complex by 
the “peroxide shunt” (e�g�, hydrogen peroxide, 
cumene peroxide, tert-butyl peroxide) might be 
useful for oxidation of various substrates� Some 
P450s are quite effective as peroxygenases, 
whereas others have to be engineered to become 
more efficient [213]� For example, CYP107A1 
from Streptomyces peucetius was demonstrat-
ed to catalyze the H2O2-mediated dealkylation 
of 7-ethoxycoumarin [214]� CYP167A1 from 
Sorangium cellulosum was able to catalyze the 
oxidation of 7-ethoxy-4-trifluoromethylcouma-
rin when H2O2 was employed as the oxidizing 
agent [215]� Further, the group of Frances Arnold 
developed self-sufficient, peroxide-driven P450 
BM3 catalysts [216, 217]�

The essential problem in utilizing the “perox-
ide shunt” for P450 biocatalysis seems to lie in 
the time-dependent degradation of the heme and 
in oxidation of the protein [218, 219]� Therefore, 
methods of directed evolution, such as random 
and site-specific mutagenesis have been applied 
to evolve P450s to enhance the efficiency of the 
“peroxide shunt” pathway [216]�

Natural P450 peroxygenases from the 
CYP152 family, such as CYP152B1 (P450Spα) 
from Sphingomonas paucimobilis [220], CY-
P152A1 (P450Bsβ) from B. subtilis [221], or CY-
P152A2 (P450Cla) from the anaerobe Clostridium 
acetobutylicum [222], are attractive candidates 
for NAD(P)H-independent biocatalysis� How-
ever, the substrate spectrum of these P450s is re-
stricted to fatty acids, which limits their practical 

applicability� It has been demonstrated, however, 
that the substrate spectrum of CYP152A1 can 
be extended by tricking its substrate recognition 
mechanism by the application of decoy mol-
ecules [144] (described in Sect� 8�3�2�3)�

8.5.1.2  Electrochemical Cofactor 
Substitution

Electrochemical reduction of P450s seems to be 
a convenient way to supply electrons� Generally, 
such studies are typically performed to determine 
fundamental parameters of redox enzymes� Elec-
trochemical reduction of P450s has been studied 
in detail for almost 20 years now and is sought-
after for its potential use in biosensors or biocata-
lytic processes� The main idea behind these trials 
is to develop monooxygenases that could work in 
a “reactor plugged to a wall socket”�

Electrochemistry of P450s has been investi-
gated on graphite, glassy carbon, pyrolytic graph-
ite, gold, platinum, or on metal oxide electrodes 
or nanostructured electrodes [223–225]�

In brief, the main strategies of P450 electro-
chemistry are:
1� Indirect or mediated electron transfer utilizing 

redox compounds (so-called mediators) that 
are used to shuttle electrons between a P450 
and an electrode; and

2� Direct electron transfer between an electrode 
and a P450�

The advantages and disadvantages of these strat-
egies, as well as related examples, are discussed 
in detail in several reviews to which the interest-
ed reader is referred to [223–227]�

For the indirect electrochemical regeneration 
of P450s, biological mediators (e�g�, flavins) 
or electron carrier proteins (e�g�, ferredoxins) 
are often applied� For example, electrochemi-
cal regeneration of P450cam was accomplished 
via cathodic reduction of Pdx [228–230]� Pdx 
was chosen as a natural redox mediator on ac-
count of the difficulty of transferring electrons 
directly from electrode to the interior heme of 
the large P450cam protein and in part because 
of the important role Pdx plays in maintain-
ing the viability of the natural catalytic cycle 
(e�g�, turnover rate, minimization of peroxide  
formation)�
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Another way to achieve indirect chemical re-
duction in solution is represented by the use of 
organometallic complexes (e�g�, cobalt(III) sepul-
chrate trichloride)� Often also redox partners and 
sometimes NAD(P)H are included in the reaction 
mixtures along with mediators [231, 232]� For 
example, application of a platinum wire working 
electrode supported the hydroxylation of lauric 
acid by recombinant CYP4A1 in the presence of 
rat CPR and cobalt(III) sepulchrate trichloride 
in solution� The product formation rate obtained 
was comparable to that obtained with NADPH 
[233]� In a similar system, P450 BM3 catalyzed 
the hydroxylation of lauric acid with a rate of 
110 min−1 in the presence of cobalt(III) sepulch-
rate trichloride, whereas with NADPH, a hydrox-
ylation rate of 900 min−1 was obtained [231]�

One of the disadvantages of cobalt(III) sepul-
chrate trichloride is its aggregation� In addition, 
cobalt(III) sepulchrate trichloride can induce 
the production of reactive oxygen species in the 
system. The use of 1,1ʹ-dicarboxycobaltocene 
as alternative mediator allowed to overcome the 
problem of mediator aggregation� In experiments 
with P450 BM3, 1,1ʹ-dicarboxycobaltocene was 
observed to reduce the FAD and FMN in the re-
ductase domain� The mediator was able to sup-
port lauric acid hydroxylation by the holoenzyme 
at a rate of 16�5 min−1� Moreover, the heme iron 
in the separate monooxygenase domain could be 
reduced via 1,1ʹ-dicarboxycobaltocene as well. 
The turnover rate in this case was 1�8 min−1 
[234]� Nevertheless, the recognized limitations 
of this approach are low system efficiency and 
low sensitivity of mediators to molecular oxygen 
leading to high uncoupling� A possible strategy to 
minimize the uncoupling is the covalent attach-
ment of the mediator to the enzyme resulting in a 
decreased distance between them�

For example, microsomal CYP2B4, CYP1A2, 
or mitochondrial CYP11A containing covalently 
bound riboflavin were immobilized on screen-
printed rhodium–graphite electrodes and could 
be reduced [235]� Furthermore, the elegant con-
cept of “molecular Lego” [150] (described in 
Sect� 8�3�3�1) to create artificial flavocytochromes 
has also been exploited for the generation of 
P450-based biosensors� Functional multidomain 

proteins with designed properties were generated 
beyond the restrictions imposed by the naturally 
occurring protein domains� For instance, the N-
terminally modified human CYP3A4 was fused 
either to the reductase domain of P450 BM3 
(BMR) or to the Fld from D. vulgaris and im-
mobilized on modified glassy carbon or gold 
electrodes� The product formation and coupling 
efficiency of such systems were found to vary 
as a function of the electron transfer rate ks’; the 
slowest ks’ measured for CYP3A4–Fld fusion re-
sulted in highest product formation and coupling� 
The authors explained the better performance 
for the slower ks’ values through a longer-lived 
ferric–peroxy intermediate that leads to a better 
controlled catalysis [236]�

The first direct electrochemistry for a P450 
was reported in 1996 employing recombinant 
P450cam on an edge-plane graphite electrode 
[237]� Direct electrochemistry of P450s immobi-
lized on a cathode is often complicated by a weak 
protein-mediated coupling between the heme and 
electrodes, because of the deeply buried pros-
thetic group or by unfavorable orientation of the 
protein on the electrode [238]� Moreover, the 
instability of enzymes upon interaction with the 
electrode surface represents a significant disad-
vantage of this method� Improvements include 
modifications of the electrode surface, e�g�, by 
detergents [239] as well as entrapment of P450s 
in conductive polymers [240, 241], hydrophilic 
gels [242, 243], or biomembrane-like films [244–
248]�

The immobilization of P450 BM3 within di-
dodecyldimethylammonium bromide (DDAB) 
films provided a very favorable environment for 
transferring electrons from the electrode to the 
heme iron� This transfer was measured directly 
and occurred at a fast rate ( ks’ = 221 s−1), similar 
to the natural biological rate measured with pal-
mitic acid as substrate� Furthermore, the electron 
transfer very much depended on the nature of the 
substrate and showed a lower ks’ value of 130 s−1 
when the less favored substrate lauric acid was 
used [223]�

However, it has been demonstrated that high 
ks’ values do not necessarily lead to catalyti-
cally active P450s [236]� Nevertheless, several 
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examples demonstrate the applicability of this 
approach for P450 biocatalysis� In situ entrap-
ment of a P450 BM3 mutant in polypyrrole im-
mobilized on platinum and glassy carbon elec-
trodes resulted in a stable catalyst, which could 
be repeatedly applied in enzymatic reactions 
[249]� Thermostable CYP119 immobilized in a 
dimethyldidodecylammonium poly ( p-styrene 
sulfonate) (DDAPSS) film has good retention of 
electrochemical activity up to 80 °C� Upon elec-
trochemical reduction the CYP119–DDAPSS 
films demonstrated catalytic dehalogenation ac-
tivities towards CCl4, CHCl3, and CH2Cl2 [250]� 
CYP1A2 or P450cam–polyion films grown 
layer-by-layer were employed on electrodes for 
catalytic oxidation of styrene derivatives to ep-
oxides [246–248]� Further, the immobilization 
of microsomes on a polycation-coated electrode 
resulted in electrocatalytic oxidation of styrene 
[251]�

One important finding from many studies on 
direct electrochemical heme reduction is that the 
heme redox couple is very sensitive to the pres-
ence of molecular oxygen (O2), because oxygen 
is likely to be a strong competitor for electrons, 
thereby forming reactive oxygen species� For cat-
alytic reactions involving P450s, the formation 
of reactive oxygen species, such as H2O2, is not 
desired because it dramatically reduces the effi-
ciency of the catalytic process� Once generated, 
the ferrous heme rapidly binds dioxygen, but the 
catalytic reduction of O2 to H2O2 usually follows 
quickly (Eqs� 8�2 and 8�3)�

 (8�2)

 (8�3)

The real challenge then, in any development of 
electrode-based biotransformations aimed at uti-
lizing the P450 activities, is the use of the sec-
ond electron for ferric peroxy complex formation 
rather than for H2O2 formation�

Generally, it seems that electrochemical ap-
proaches (at least at present) are not applicable 
for P450 biotransformations, but might be useful 
for the pharmaceutical industry for the investi-

  + ++ → −2 2
2 2Fe O Fe O

 + + +− + + → +2 2
2 2 2Fe O 2H 2e Fe H O

gation of drug-drug interactions, as well as for 
substrate screening in a biosensor arrangement 
[252–259]�

8.5.2  Enzymatic Cofactor 
Regeneration

One of the most common approaches to over-
come the stoichiometric need for NAD(P)H for 
P450 biotransformations involves application of 
an accessory enzyme for cofactor regeneration� 
Ideally, such enzymes need a sacrificial substrate 
that is cheap and innocuous� Moreover, both sub-
strate and product of the cofactor-regenerating 
enzyme should be inert� Enzymatic cofactor re-
generation is meanwhile a well-established ap-
proach applied for, e�g�, alcohol dehydrogenases 
also at an industrial scale [260]�

Common strategies for the enzymatic regen-
eration of NAD(P)H are based on d/l-isocitrate 
dehydrogenase (IDH), glycerol dehydrogenase 
(GlyDH), formate dehydrogenase (FDH), alco-
hol dehydrogenase (ADH), glucose dehydroge-
nase (GDH), or glucose-6-phosphate dehydroge-
nase (G-6P-DH) (Fig� 8�10)�

P450 BM3 and its variant F87V were ex-
ploited for the preparation of (+)-leukotoxin B 
[(+)-12( S),13( R)-vernolic acid] from linoleic 
acid as well as 14( S),15( R)-epoxyeicosatrienoic 
acid from arachidonic acid, with application of 
G-6P-DH as the cofactor-regenerating enzyme 
(Fig� 8�11) [261]�

Several cofactor regeneration systems were 
based on FDH� The substrate formate is an in-
expensive, stable, and innocuous compound, 
while CO2, which is produced by FDH, can be 
easily removed from the reaction by evaporation� 
A general drawback of FDH is, however, its low 
specific activity [262]� More stable FDH variants 
have been engineered and successfully applied 
[263]� Engineered FDH from Pseudomonas sp� 
101, accepting not only NAD+  but also NADP+, 
has also been applied for NADPH regeneration 
[264]� For example, the maximal hydroxylation 
activity of P450 BM3 in solution towards the 
model substrate 10-para-nitrophenoxydecanoic 
acid was achieved by adding the engineered FDH 
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from Pseudomonas sp. 101� A tenfold excess of 
a P450 substrate over NADP+ resulted in quan-
titative oxidation [265]� The same FDH variant 
supported P450 BM3-catalyzed reactions in bi-
phasic systems with organic solvents [266, 267]� 
In such systems, the NADP+-dependent formate 
dehydrogenase variant demonstrated a high op-

erational stability under almost all tested reaction 
conditions�

A P450cam system with integrated enzy-
matic NADH regeneration by bacterial GlyDH 
was investigated in stable water-in-oil emulsions 
formed by the nonionic surfactant tetraethylene 
glycol dodecyl ether [268]� As a result, the cam-

Fig. 8.10  Enzymes applied for regeneration of NAD(P)
H in P450 biocatalysis� IDH D/L-isocitrate dehydroge-
nase, FDH formate dehydrogenase, GlyDH glycerol de-

hydrogenase, ADH alcohol dehydrogenase, GDH glucose 
dehydrogenase, G-6P-DH glucose-6-phosphate dehydro-
genase
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phor hydroxylation rate was successfully im-
proved approximately fivefold when GlyDH was 
employed [268]�

A biocatalytic system containing P450 BM3 
variants for the selective epoxidation of terminal 
alkenes and the commercially available alcohol 
dehydrogenase from Thermoanaerobium brockii 
for in vitro NADPH regeneration has been estab-
lished [269]� In this case, the ADH was applied 
not only for cofactor regeneration but also be-
cause the alcoholic cosubstrate served as a cosol-
vent for the hydrophobic P450 BM3 substrates� 
A disadvantage of such systems, however, is that 
the substrate and product of a coupled ADH-cat-
alyzed reaction are organic solvents (e�g�, isopro-
panol and acetone), which might destabilize the 
P450 leading to lower productivities�

Some more complex systems have been tested 
for cofactor regeneration as well: P450 BM3 ca-
talysis was linked to a two-step cofactor regen-
eration system composed of an NAD+-depen-
dent GlyDH and transhydrogenase from E. coli� 
Herein, P450 BM3 catalyzed the hydroxylation 
of a model substrate upon concomitant oxida-
tion of NADPH to NADP+, while simultaneously 
NADH was produced by GlyDH� Hydrides were 
subsequently transferred from NADH to NADP+ 
by the transhydrogenase to form NADPH [270]�

Recently, phosphite dehydrogenase (PTDH) 
from Pseudomonas stutzeri was applied to sup-
port cofactor regeneration for P450 BM3-cata-
lyzed selective epoxidation of fatty acids, which 
was combined with a chemical metathesis [271]� 
PTDH and phosphite constitute a very promising 
system due to the great thermodynamic driving 
force for catalysis (∆G0 = − 15 kcal mol−1 com-
pared to ∆G0 = − 5 kcal mol−1 for FDH) and the 
low costs of the substrate phosphite [272]� Dur-
ing NADH regeneration with PTDH, a phosphite 
buffer was essentially converted to a phosphate 
buffer at a turnover rate of ~ 15,000 h−1 [273]� In 
addition, a PTDH variant has been generated that 
demonstrated high affinities to both NAD+ and 
NADP+ and thus can be used for the regeneration 
of both cofactors [274]�

8.5.3  Photochemical (Light-Driven) 
Cofactor Regeneration

A number of photochemical approaches for co-
factor substitution or regeneration to achieve fer-
rous heme reduction and support P450 catalysis 
have been reported� The main principle behind is 
the use of artificial photosensitive compounds, 
which mimic the function of photosynthetic or-

Fig. 8.11  Stereoselective synthesis of 14( S),15( R)-epoxyeicosatrienoic acid utilizing P450 BM3 F87V and glucose-
6-phosphate dehydrogenase (G-6P-DH) for cofactor regeneration� Chemical steps yielded the corresponding antipode
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ganisms to convert light energy to chemical po-
tential in the form of long-living charge-separat-
ed states� These processes are generally based on 
the photochemical reduction of flavins or other 
compounds mediating photo-induced electron 
transfer� In addition, the use of light-active cell 
components such as chloroplasts has been re-
ported�

One report demonstrated the use of a non-
covalently bound riboflavin for photo-induced 
intermolecular electron transfer from the isoal-
loxazine moiety of the flavin to the heme group 
of CYP2B4 [275]� Although an effect of different 
substrates on the electron transfer rate in this arti-
ficial system was observed, no product formation 
was reported�

We recently reported the use of a light-driv-
en approach based on photo-excited flavins and 
the electron donor ethylenediaminetetraacetate 
(EDTA) as the electron source for in situ genera-
tion of H2O2 to support the CYP152 peroxygen-
ases P450Bsβ and P450Cla [276]� The peroxygen-
ase activities determined for these systems were 
generally lower than those observed after direct 
addition of H2O2 (since they strongly depend on 
the ratio of H2O2 to P450)� However, the in situ 
generation of H2O2 proved to be advantageous, 
since these systems generally displayed a better 
operational stability and therefore allowed higher 
overall substrate conversions�

An unconventional application of the ruthe-
nium tris(2,2ʹ-bipyridine)-linked heme group of 
myoglobin has been reported by two research 
groups [277, 278]� Herein, oxidation of fer-
ric heme iron was performed by photo-activat-
ed Ru(bpy)3 resulting in compound I species 
(FeIV = O). This strategy was successfully extend-
ed to P450 BM3 [279]: Covalent linkage of a RuII 
-diimine photosensitizer to a cysteine near the 
heme group promoted electron transfer from the 
heme FeIII to photogenerated RuIII� Flash-quench 
oxidation of the ferric-aquo heme yielded the 
FeIV-hydroxide species (compound II)� Finally, 
several hybrid P450 BM3 heme domains contain-
ing a covalently attached RuII photosensitizer at 
different cysteines near the heme groups, as well 
as substitution of two other cysteines, have been 
constructed and studied with respect to stability, 

labeling properties, and catalytic activity towards 
lauric acid� The best hybrid RuII–L407C–FeIII 
demonstrated the highest stability and catalyzed 
the light-driven hydroxylation of lauric acid with 
total turnover numbers of 935 and an initial re-
action rate of 125 nmolproduct min−1 nmolP450

−1 
[280]�

A promising resourceful approach represents 
the rerouting of natural photosynthetic electron 
transfer into the biosynthetic production of high-
value products by P450s� Upon irradiation, the 
natural photosystem II in chloroplasts splits a 
water molecule, thereby generating molecular 
oxygen, whereas photosystem I transfers elec-
trons to NADP+, yielding NADPH� This NADPH 
can be then applied for P450-catalyzed reactions 
in artificial systems� Already in earlier studies, at-
tempts have been made to use plant chloroplasts 
for the development of light-driven P450 sys-
tems� A light-driven P450 catalysis has been per-
formed by mixing isolated spinach chloroplasts 
and yeast microsomes containing a genetically 
engineered fusion of rat CYP1A1 and yeast CPR 
[281]� Upon irradiation, this mixture supported 
conversion of 7-ethoxycoumarin to 7-hydroxy-
coumarin� The same system was immobilized by 
different methods to prove its applicability for 
biocatalytic processes [282]� Herein, entrapment 
in agarose resulted in the highest conversion� A 
two-phase column-type reactor with separately 
immobilized microsomes and chloroplasts per-
formed best and exhibited a higher conversion as 
compared to a reactor with coimmobilized com-
ponents, with turnover rates of 6�3 and 2�5 nmol-
product min−1 nmolP450

−1 after 40 and 180 min, re-
spectively�

Recently, in a similar study, the isolated pho-
tosystem I from barley ( Hordeum vulgare) was 
combined with spinach Fdx and the membrane-
bound CYP79A1 from Sorghum ( Sorghum bicol-
or) [283]� Upon irradiation, CYP79A1 catalyzed 
hydroxylation of l-tyrosine to oxime� In addition 
to spinach Fdx, also Fld from a photosynthetic 
cyanobacterium Synechococcus sp� was able to 
support transfer of electrons from NADPH to 
CYP79A1, thereby enabling catalysis, but at a 
much lower rate [283]� Recent trials to replace 
NADPH production via regeneration systems by 
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light and electron transfer via the photosynthetic 
system from barley have been also reported for 
bacterial soluble CYP124 from Mycobacterium 
tuberculosis [284]� The first results of light-driv-
en P450 biocatalysis seem to be very promising, 
but further studies are necessary to compare the 
efficiency and sustainability of such systems with 
those using recombinant microorganisms [285]�

8.6  Whole-Cell Processes with P450 
Enzymes

Due to the cofactor dependency and the multi-
component nature of P450 systems, as well as 
the need for membrane integration in the case 
of eukaryotic P450s, their industrial applications 
have so far been restricted to whole-cell systems, 
which take advantage of the host’s endogenous 
cofactor regeneration systems (and sometimes 
also its redox partners)� In such instances, how-
ever, physiological effects like limited substrate 
uptake and product efflux by the microbial cell, 
toxicity of substrate or product, product degrada-
tion, and elaborate downstream processing have 
to be taken into account (see Sect� 8�1�2) [34, 
286]� Moreover, when titers of a recombinant 
P450 biocatalyst within the cell reach a certain 
threshold, the cofactor concentration may again 
become a bottleneck for the overall process�

8.6.1  Production of Drug Metabolites

With respect to their biotechnological potential, 
P450s play a vital role in the field of drug trans-
formation� They are important enzymes in phase 
I drug metabolism reactions in humans and are 
responsible for the initial oxidation of xenobiot-
ics� Out of the 57 P450 isoenzymes that are ex-
pressed in human, focus is given to CYP1A2, 
2C9, 2C19, 2D6, and 3A4 since they mediate 
about 75–80 % of the drug metabolism [287, 
288]� Detailed investigation of the properties 
of drug metabolites is an essential prerequisite 
for the assessment of drug-induced side effects, 
drug–drug interaction, and drug toxicity� Since 
drug metabolite standards are in most cases not 

commercially available or difficult to synthesize 
by chemical means, P450s are the most important 
enzymes for the biotransformation of drugs and 
the preparation of metabolites�

While bacterial P450s are mainly soluble en-
zymes that can be expressed in high amounts in 
bacterial expression systems, eukaryotic P450s 
are membrane-bound enzymes, which render 
their expression much more difficult� There-
fore, it is not surprising that many attempts have 
been focused on engineering eukaryotic P450s 
for successful expression in recombinant hosts 
[104, 289]� In most cases, E. coli was selected as 
the appropriate host system because of its easy 
handling, inexpensive culture medium, and rapid 
growth� It is widely recognized that membrane-
bound regions of eukaryotic P450s can severely 
reduce the yield of heterologous protein expres-
sion in prokaryotic hosts [290, 291]� Therefore, 
most of the work aimed at tailoring membrane-
bound P450 enzymes for soluble expression in E. 
coli concerned modifications of the hydrophobic 
N-terminal amino acid sequence� The main strat-
egies include mutagenesis of this region [292, 
293], replacement by an optimized N-terminal 
sequence of bovine CYP17A1 [29], complete or 
partial removal of the N-terminal sequence [294–
298], or a combination of these approaches� Fur-
thermore, the introduction of the signal peptide 
from OmpA or PelB at the N-terminus of several 
microsomal P450 improved the integration into 
the bacterial inner membrane [299]� Also modi-
fications within the F–G loop [300] as well as 
protein engineering performed on the whole gene 
[289, 301, 302] led to significantly enhanced 
concentrations of the recombinantly expressed 
mammalian P450s� There is, however, no possi-
bility to predict the effect of such modifications 
on the expression level beforehand, and success-
ful expression is not guaranteed�

The application of recombinant human P450s 
for the production of drug metabolites is by now 
widely established [303]� Pharmaceutical com-
panies (e�g�, Novartis Pharma AG, Hoffmann-La 
Roche, or Codexis) have implemented collec-
tions of recombinant human CYP isoenzymes, 
which have a number of advantages over he-
patic microsomes or recombinant insect cells 
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[304, 305]� For example, Novartis Pharma AG 
has created E. coli strains in which 14 different 
recombinant human CYPs are functionally co-
expressed with human CPR [303]� Recombinant 
E. coli strains expressing various human P450s 
can be cultivated at scales of up to 100 L [303, 
306]� Importantly, up to 300 mg of different drug 
metabolites could be obtained by application of 
permeabilized resting E. coli whole-cells at a 
1–2-L-scale production [306]� The enzymes are 
used as biocatalysts for the biosynthesis of drug 
metabolites as well as for drug metabolism and 
pharmacokinetics (DMPK) applications, for ex-
ample, in P450 inhibition screenings [306]�

Recombinant human P450s have also been 
expressed in eukaryotic expression hosts, which 
further facilitated their use for the synthesis of 
drug metabolites� A recent overview describing 
various recombinant systems including bacteria, 
yeast, and mammalian cell cultures is provided in 
[307]� For example, several microsomal human 
P450 isoforms have been coexpressed in fission 
yeast Schizosaccharomyces pombe together with 
either human CPR or with its homologues from 
fission yeast (ccr1) or the bishop’s weed Ammi 
majus (AmCPR)� In total, 28 recombinant strains 
were constructed and compared regarding their 
synthetic efficiency towards several drugs� P450 
activities were shown to differ depending on the 
P450-CPR combination: While CYP3A4 was 
more active with human CPR, CYP2D6 dis-
played its highest activity when coexpressed with 
ccr1, whereas CYP2C9 showed highest activity 
with AmCPR [308]�

Besides recombinant human P450s, microbial 
wildtype strains that are natural producers of the 
compound of interest, as well as recombinant 
strains expressing bacterial P450s, have been 
shown to be eligible by research institutions and 
pharmaceutical companies for the larger-scale 
(100 mg to multi-g) synthesis of drug metabo-
lites� Microbial strains, as well as recombinant 
and engineered P450s, are of particular interest 
for the identification and production of nonhu-
man metabolites with new biological activities� 
Pharmaceutical companies possess collections 
of bacteria, yeasts, and fungi to systematically 
screen target drugs with the goal to identify ad-

ditional P450s with new substrate ranges� Inter-
esting candidates have been identified in among 
others in the genera Cunninghamella, Curvu-
laria, Aspergillus, Rhizopus, and Streptomyces 
[309]�

A number of studies have been dedicated to 
protein engineering of bacterial P450s for the 
production of drug metabolites [310]� A vast 
number of reports describe mutants of P450 
BM3� The first evidence that P450 BM3 can 
bind drug-like molecules was provided in 2005 
by Nico Vermeulen and coworkers [311]� One 
year later, the triple mutant R47L/F87V/L188Q 
was found to metabolize testosterone, amodia-
quine, dextromethorphan, acetaminophen, and 
3,4-methylenedioxymethylamphetamine [122]� 
Consequently, P450 BM3 has been extensively 
engineered to metabolize various drugs by using 
site-directed mutagenesis, site-saturation mu-
tagenesis, directed evolution, or a combination 
of these approaches [123, 143, 310, 312–315]� 
Frances Arnold and coworkers have created a 
library of CYP102A-chimeras demonstrating 
completely new activities including the ability to 
metabolize a number of drugs [136, 312]� Impor-
tantly, several products were formed with high 
regioselectivity�

It was shown that also other bacterial and fun-
gal P450s can be applied for the production of 
drug metabolites� For example, wild-type CY-
P105A1 was able to produce human drug metab-
olites from glimepiride and glibenclamide [316]� 
Also a fungal self-sufficient P450 from Aspergil-
lus fumigatus expressed in E. coli was success-
fully applied to produce the human metabolites 
4ʹ-hydroxy-diclofenac and 6-hydroxychlorzoxa-
zone [317]� Taken together, investigations of mi-
crobial recombinant P450s may provide a large 
reservoir of enzymes for the production of drug 
metabolites with very different structures�

8.6.2  Production of Building Blocks 
for Chemical Synthesis

P450s are widely used not only for the produc-
tion of drug metabolites but also in the synthesis 
of drug compounds or their precursors� Among 



4838 P450 Biotechnology

these are steroid-based compounds, which are 
widely used as “anti-agents,” exhibiting, for 
example, antitumor, anti-inflammatory, anti-
microbial, antiviral, antifungal, or antiallergic 
functions [318]� On a molecular level, steroid 
hormones are known to be involved in cell pro-
liferation and tissue differentiation, in regulation 
of signal transduction and in other vital pro-
cesses [319–321]� Probably, the best-established 
commercial applications of natural strains are 
the 11α-hydroxylation of progesterone to yield 
cortisone by Rhizopus sp� (former Pharmacia 
& Upjohn, now Pfizer Inc�) [322, 323] and the 
11β-hydroxylation of 11-deoxycortisol to corti-
sol with Curvularia sp� established at an indus-
trial scale of approximately 100 t/year (former 
Schering AG, now Bayer HealthCare Pharma-
ceuticals) [324]� Both processes involve one or 
two oxidation steps catalyzed by fungi starting 
with complex precursor steroid molecules, such 
as diosgenin, which are isolated from plants and 
subsequently chemically derivatized [325, 326]� 
High productivities and low production costs of 
the oxidized steroid products have been reached 
by optimizing the production strains and estab-
lishing high cell density fermentations of stable 
biocatalysts� However, detailed information on 
the production conditions has not been released�

Also in the field of steroid transformations, a 
number of successful developments in genetic and 
metabolic engineering and whole-cell biocataly-
sis have been reported recently� The physiological 
activity of steroids depends on their structure as 
well as on the number and stereo- and regio-posi-
tion of the functional groups on the steroid core� 
It is obvious that steroid hydroxylases with differ-
ent stereo- and regioselectivities are needed� One 
interesting example is provided by the screening 
of a recombinant library containing 250 bacterial 
wildtype P450s expressed in E. coli for testoster-
one oxidation� This screening identified 24 bac-
terial P450s that monohydroxylate testosterone 
in a regio- and stereoselective manner at the 2α-, 
2β-, 6β-, 7β-, 11β-, 12β-, 15β-, 16α-, or 17-posi-
tions [327, 328]� Most of these hydroxylations are 
common for both prokaryotic and human P450s� 
Therefore, the identified bacterial candidates can 

be applied without further modifications for the 
production of human drug metabolites on a pre-
parative scale� The majority of these bacterial 
P450s originate from actinomycetes, which have 
been studied extensively in the last years with re-
spect to steroid degradation [329, 330]� Therefore, 
it is not surprising that two novel steroid hydroxy-
lases, which were recently characterized, originate 
from actinomycetes [331, 332]� Both, CYP154C5 
from Nocardia farcinica IFM10152 [331] and 
CYP154C3 from Streptomyces griseus [332] 
demonstrated high regio- and stereoselectivity for 
the 16α-position and produced 16α-hydroxylated 
derivatives of steroids like testosterone, pregnen-
olone, and progesterone�

The regioselectivity of steroid hydroxylases 
can successfully be improved or altered by the 
means of protein engineering as was demonstrat-
ed for the 15β-steroid-hydroxylase CYP106A2 
from B. megaterium, which was engineered to 
produce 11α-hydroxyprogesterone [138, 139]� 
In another study, human CYP2D6 was mutated 
at two active site positions with the aim of con-
structing a regioselective steroid hydroxylase 
[333]� Four hundred possible combinatorial mu-
tations at these two positions were generated and 
the corresponding mutant P450s were expressed 
individually in Pichia pastoris and tested for 
activity with testosterone as a model substrate� 
High-performance liquid chromatography-tan-
dem mass spectrometry (HPLC-MS) analysis re-
vealed several CYP2D6 mutants with improved 
activity and selectivity towards the 2β-position, 
which is not oxidized by the wildtype enzyme�

Apart from the usually low activity and some-
times insufficient selectivity of P450s towards 
steroids (which can be improved by means of 
protein engineering), the low solubility of steroid 
compounds in water (1–100 μM [334]) repre-
sents a challenging problem for the establishment 
of whole-cell biocatalysis� Consequently, several 
promising reaction-engineering techniques that 
were applied for biotransformations of other hy-
drophobic compounds have also been tested with 
steroid substrates� Among these are (1) biphasic 
reaction setups with an organic phase, which 
serves as substrate reservoir, (2) surfactant- 

AQ1
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facilitated emulsification of steroids, and (3) the 
use of solubilizing agents such as cyclodextrins 
[335, 336]� In addition, biphasic systems or the 
addition of resins can partially solve the problem 
of product degradation by in situ product recov-
ery [337]�

Low substrate uptake into the microbial cell 
might hinder effective whole-cell biotransforma-
tion as well� In these cases, exchange of the ex-
pression host can sometimes improve the biocat-
alyst performance significantly� Recently, a xy-
lose-inducible expression system based on Bacil-
lus megaterium MS941was constructed, in which 
CYP106A2 was coexpressed with the heterolo-
gous redox partners AdR and Adx� It was demon-
strated that the pentacyclic triterpene 11-keto-bo-
swellic acid can efficiently cross the membrane 
of the recombinant B. megaterium cells, while 
it did not occur when using recombinant E. coli 
cells, where no activity was observed [89]� The 
authors suggested that this is probably due to the 
inability of hydrophobic acids to cross the outer 
membrane of the E. coli cells� The optimized 
whole-cell B. megaterium biocatalyst achieved 
a space–time yield of 561 mg 15α-hydroxylated 
11-keto-β-boswellic acid L−1 day−1 with 80 % 
product selectivity [89]�

The alkane-assimilating yeast Yarrowia lipo-
lytica that possess an efficient uptake system for 
hydrophobic substances was used as expression 
host for human CYP2D6 and CYP3A4 along 
with human CPR� Recombinant Y. lipolytica was 
successfully used for the conversion of poorly 
soluble steroids like testosterone and progester-
one in a biphasic system with ethyl oleate [338]�

On the other hand, treatment of E. coli with 
the peptide antibioticpolymyxin B led to an ef-
fective permeabilization of E. coli supporting 
the entry of abietic acid, which led to an almost 
fivefold improved conversion of abietic acid into 
15-hydroxyabietic acid by CYP105A1 [92]�

The limited uptake of the precursor choles-
terol into the cells in general and the need for 
sustainable steroid production based on renew-
able resources fuelled the development of the 
industrially relevant de novo artificial biosynthe-
sis of hydrocortisone starting from endogenous 
ergosterol in recombinant Saccharomyces cerevi-
siae [339, 340]� The biosynthesis of ergosterol, 

which is the major yeast sterol, was rerouted by 
cloning and expression of a ∆7-reductase from 
Arabidopsis thaliana to produce precursors re-
sembling cholesterol, namely ergosta-5-ene-ol 
and ergosta-5,22-diene-ol, which in turn served 
as substrates for bovine CYP11A1� The genes 
encoding the redox partners for CYP11A1, i�e�, 
AdR and Adx, were coexpressed in the engi-
neered yeast as well� With such a system, a total 
pregnenolone concentration of 60 mg L−1 was 
obtained� By additional coexpression of human 
3β-hydroxysteroid dehydrogenase/isomerase, 
pregnenolone could further be converted to pro-
gesterone [339]� Subsequent conversion of pro-
gesterone to hydrocortisone via the intermediates 
17-hydroxy-progesterone and 11-deoxycortisol 
was catalyzed by the heterologously expressed 
CYP17A1, CYP21B1, and CYP11B1� Thus, an 
artificial biosynthetic pathway for the produc-
tion of hydrocortisone was established in a single 
yeast strain by expressing nine engineered re-
combinant mammalian and plant genes [340]�

Another well-documented industrial pro-
cess is the production of pravastatin via 
6β-hydroxylation of the precursor compactin 
(also referred to as mevastatin) by Streptomyces 
carbophilus (Daiichi Sankyo and Bristol-Myers 
Squibb) [341–343]� Statins inhibit 3-hydroxy-
3-methyl-glutarylcoenzyme A (HMG-CoA) 
reductase, which is involved in cholesterol bio-
synthesis [344]� The biotechnological production 
of pravastatin consists of two steps: compactin 
is first produced in Penicillium citrinum and 
then hydroxylated at position 6β to form the tar-
get product pravastatin by S. carbophilus [345]� 
While S. carbophilus has been successfully used 
for industrial production of pravastatin, further 
investigations on this system were undertaken for 
its improvement� S. carbophilus is sensitive to 
compactin, which inhibits cell growth and causes 
cell lysis, which in turn limits the production of 
pravastatin [345, 346]� Hence, a search for less 
sensitive and more effective biocatalysts via mi-
crobial screening has been and still remains one 
of the main foci of process optimization [347, 
348]� Moreover, significant advances were made 
with respect to the identification and mutagenesis 
of CYP105A3 in S. carbophilus (known as P450 
sca-2), which was demonstrated to be responsible 
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for the stereo- and regioselective hydroxylation 
of compactin [165, 342]� Recently, an artificial 
redox chain consisting of CYP105A3, together 
with PdR and Pdx from P. putida, was construct-
ed and optimized by means of protein engineer-
ing, resulting in mutants that exhibited a more 
than tenfold increased activity [349]� Another 
improvement in pravastatin production could be 
achieved by implementation of recombinant E. 
coli whole-cell systems expressing CYP105A3 
with disrupted AcrAB and TolC efflux pump sys-
tems resulting in a higher biocatalytic efficiency 
[350]� The strongest effect was achieved after the 
disruption of TolC, which led to a sevenfold in-
creased pravastatin level� The author suggested 
that the positive effect is due to the reduced com-
pactin efflux out of the cell [350]�

8.6.3  Optimization of Whole-Cell 
Biocatalysts

Low substrate solubility as well as strain-related 
physiological limitations, as discussed above, 
have been addressed in many independent studies 
that focused on whole-cell based P450 transfor-
mation of a variety of hydrophobic compounds� 
It has been demonstrated for medium- and long-
chain aliphatic compounds that low substrate 
transfer rates across the membrane into E. coli 
cells is one of the major limiting steps in whole-
cell biotransformations [351, 352]� To overcome 
inefficient uptake of pentadecanoic acid by intact 
E. coli cells harboring fatty acid hydroxylase 
P450 BM3, the alkL gene belonging to the al-
kane uptake system of P. putida GPo1 (formerly 
known as Pseudomonas oleovorans) was cloned 
and coexpressed, which led to an at least twofold 
increased hydroxylation rate [352]� In addition, 
improved substrate uptake in recombinant E. coli 
has recently been confirmed for dodecanoic acid 
methyl ester as substrate and attributed to the 
function of AlkL as outer membrane transporter 
[353]� This strategy was successful with other 
P450s� For instance, coexpression of AlkL result-
ed in a fivefold enhanced ( S)-limonene oxida-
tion catalyzed by recombinant E. coli expressing 
CYP153A6 [354] or led to improved production 
of ω-hydroxy dodecanoic acid (4 vs. 1.2 g L−1) in 

a biphasic system using recombinant E. coli cells 
expressing the artificial fusion CYP153A–BMR 
(reductase domain of P450 BM3) as biocatalyst 
[355]� Alternatively, in order to circumvent the 
sensitivity of E. coli to organic solvents, solvent-
resistant strains like P. putida S12 [356] or B. 
subtilis 3C5N can be used as alternative produc-
tion hosts [357]�

Substrate or product toxicity can seriously 
affect biotechnological application of P450s, as 
was demonstrated, e�g�, for S. cerevisiae produc-
ing the sesquiterpenoid fragrances β-nootkatol 
and nootkatone by heterologously expressed 
plant CYP71D51v2� Both products were toxic for 
yeast at concentrations exceeding 100 mg L−1, 
which hampered the application of this system 
for the industrial bioconversion of valencene 
[358]� A recombinant E. coli containing bacte-
rial CYP109B1 was shown to produce nootkatol 
and nootkatone at up to 120 mg L−1 in a biphasic 
system, without a significant effect on bacterial 
performance [359]�

As long as living cells are provided with the 
necessary nutrients, all endogenous cofactor-recy-
cling systems are functional and there is no need 
to supplement cells with external nicotine amide 
cofactors� However, when the activity of a recom-
binant P450 or its concentration in the cell reaches 
a certain threshold, or in cases where the uncou-
pling between NAD(P)H consumption and prod-
uct formation is high, the concentration of cellular 
NAD(P)H can become limiting for P450 catalysis 
[360]� In such cases, cofactor-regenerating en-
zymes coexpressed together with target P450s can 
help to improve the biocatalytic process�

When GlyDH was coexpressed together with 
P450cam and its physiological redox partners in 
E. coli, a tenfold higher camphor conversion was 
observed compared to a system without GlyDH 
(37 vs� 4 %, respectively)� Notably, conversion 
was performed without the addition of glycerol 
to the reaction mixture, which indicated that 
endogenous glycerol was efficiently utilized by 
GlyDH� In an aqueous system with ethanol as 
cosolvent, a camphor conversion of 100 % was 
achieved after the addition of 10 % (v/v) glycerol 
to the reaction mixture [361]�

Another approach in this field is the construc-
tion of an E. coli whole-cell biocatalyst with  
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improved intracellular cofactor regeneration 
driven by external glucose [362]� In this system, 
additional intracellular NADPH regeneration oc-
curs through coexpression of a glucose facilitator 
from Zymomonas mobilis for the uptake of non-
phosphorylated glucose and a NADP+-dependent 
glucose dehydrogenase from B. megaterium, 
which oxidizes glucose to gluconolactone� This 
strain was successfully utilized for the oxidation 
of the cyclic monoterpene α-pinene catalyzed by 
a mutant of P450 BM3 and showed a nine times 
higher initial α-pinene oxide formation rate and a 
sevenfold increased α-pinene oxide yield in the 
presence of glucose as compared to glucose-free 
conditions [363]�

In a different system, the heterologous pro-
teins Adx, AdR, and CYP106A2 were coex-
pressed in E. coli along with an alcohol dehy-
drogenase from Lactobacillus brevis [364]� This 
whole cell biocatalyst was then applied for the 
oxidation of progesterone and testosterone to 
the corresponding 15β-hydroxylated derivatives. 
2-Propanol was chosen as solvent for the steroids 
and as a substrate for the alcohol dehydrogenase� 
The highest activity was observed in the pres-
ence of 2 M 2-propanol (15�4 % v/v), which was 
suggested to be largely due to enhanced substrate 
solubilization rather than improved intracellular 
cofactor regeneration� In order to overcome the 
problem of impaired substrate transport across 
the cell membrane, lyophilized cell free extracts 
were applied for this system, which increased the 
productivity up to 18-fold as compared to the E. 
coli whole-cell catalyst without cofactor regen-
eration [364]�

8.7  Microbial de novo Synthesis  
of Plant Secondary Metabolites 
and Transgenic Plants

8.7.1  Microbial Synthesis of Plant 
Secondary Metabolites  
Using P450s

For long, plant secondary metabolites have been 
utilized by mankind; they are relevant to health 
and nutrition issues and are still a main source 

for new pharmaceuticals [365, 366]� However, 
usually only small amounts can be obtained 
from plants, due to slow plant growth and low 
concentrations of the secondary metabolites in 
plant material� Other drawbacks may arise from 
season-dependent variations in secondary metab-
olite yields and high phytochemical background 
in plants producing many similar substances 
[367–370]�

To satisfy the growing demand for scalable 
production of plant metabolite-based pharma-
ceutical drugs, alternative production strategies 
are necessary� Chemical de novo syntheses of 
these structural complex substances are not triv-
ial and normally include many waste-generating 
reactions and purification steps, causing high ex-
penses and resulting in low product yields [371]� 
Microbial production systems on the other hand 
represent a promising alternative� Such systems 
exhibit high growth rates and allow the use of re-
newable resources, which offers short production 
periods and limits waste accumulation�

While many efforts have been made to engi-
neer microbes for the production of secondary 
metabolite core structures, the implementation of 
the tailoring steps to diversify highly function-
alized molecules still remains a challenge� The 
high number of genes encoding P450s identified 
in the genomes of plants reflects the important 
role of these enzymes in (secondary) metabolic 
pathways [372]� However, the function of many 
of these P450s is still unknown, explaining why 
only early steps or partial plant secondary me-
tabolite pathways have been implemented in mi-
crobes so far�

Metabolites generated in microbes often serve 
as a starting point for chemical routes towards 
the target products, but are also necessary for the 
functional testing of candidate enzymes to fur-
ther elucidate metabolic pathways [373, 374]� 
Besides the biosynthetic routes starting from re-
newable feed stocks such as sugars or glycerol, 
also commercially available intermediates might 
be used in cases when information on early path-
way steps is lacking [375]�

For the implementation of the secondary me-
tabolite pathways involving P450s, a suitable 
microbial host is required� The selection criteria 
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for a suitable host usually involve product/sub-
strate tolerance, intrinsic availability of precur-
sors, genetic accessibility, and ability to grow to 
high cell densities [376]� The model organisms 
E. coli and S. cerevisiae have been successfully 
employed for secondary metabolite production� 
The overwhelming majority of plant P450s, as 
well as their dedicated redox partner CPRs, are 
localized in the endoplasmic reticulum (ER)� For 
the heterologous expression of plant P450s, S. 
cerevisiae with its ER membrane, native P450s, 
and CPR seems advantageous as compared to 
E. coli, which lacks an ER and does not possess 
any P450� Nevertheless, P450s and CPRs have 
also been successfully expressed in E. coli, main-
ly by engineering of the transmembrane regions 
of these enzymes [377]�

The next section aims to point out the poten-
tial and limitations of P450s as part of pathways 
for the production of plant secondary metabolites 
in E. coli and S. cerevisiae�

8.7.1.1  De novo Synthesis of Terpenoids
With more than 60,000 isolated substances (Dic-
tionary of Natural Products; http://dnp�chem-
netbase�com; 2014/03/27), terpenoids represent 
the structurally most diverse group of plant 
secondary metabolites� Often several P450s 
are involved in the biosynthesis of these highly 
oxidized compounds [71, 378]� Terpenoids are 
considered high potential pharmaceuticals and 
thus many attempts have been undertaken to en-
gineer microbes for terpenoid production� Such 
engineering approaches usually follow a similar 
scheme: Either the mevalonate (MVA) or the 
methylerythritol phosphate (MEP; also desig-
nated as Non-MVA or DXP) pathway is used to 
generate the universal isoprenoid precursors iso-
pentenyl pyrophosphate (IPP) and dimethylallyl 
pyrophosphate (DMAPP) [379–386]� These are 
further converted to the respective terpenes by 
prenyltransferases and terpene cyclases� As a last 
step, tailoring enzymes such as P450s are inte-
grated to produce the desired terpenoids� In some 
cases, only a single P450 is necessary to catalyze 
several steps, yielding the respective terpenoic 
acids�

8.7.1.1.1 Monoterpenoids
An early attempt for the de novo biosynthesis of 
a plant secondary metabolite, including a P450-
catalyzed step, was aimed at the production 
(−)-carvone [387]� Carvone is the main com-
ponent of spearmint ( Mentha spicata) essential 
oil� Interestingly, in addition to its use as a fra-
grance and flavor additive, carvone exhibits an-
timicrobial and cancer chemopreventive activity� 
To achieve (−)-carvone production, the native 
MEP pathway of E. coli was exploited and ge-
ranyl diphosphate synthase, limonene synthase, 
an artificial CYP71D18-CPR fusion, and carveol 
dehydrogenase were simultaneously expressed 
in E. coli (Fig� 8�12)� Although 5 mg/mL limo-
nene could be produced, significant accumula-
tion of (−)-carvone occurred only when external 
limonene was fed. The amounts of (−)-carvone, 
however, never exceeded 2 µM (ca� 0�3 mg/mL), 
which was attributed to the suboptimal expres-
sion of the P450–CPR fusion protein and low in-
tracellular concentration of limonene caused by 
the poor solubility and uptake as well as efficient 
excretion by the host�

Recently, the production of the antitumor 
agent perillyl alcohol was established in E. coli 
[388]� This secondary metabolite is usually pro-
duced by Perilla frutescens via limonene-7-hy-
droxylase (CYP71D174)-mediated hydroxyl-
ation of limonene with 50 % specificity [389]� By 
implementation of the nonnative MVA pathway, 
as well as the introduction of geranyl diphosphate 
synthase and limonene synthase, 400 mg L−1 lim-
onene could be produced in E. coli (Fig� 8�12)� 
Bacterial CYP153A6 and its redox partners were 
additionally introduced in E. coli for the further 
hydroxylation� Although CYP153A6 shows a 
high specificity as compared to CYP71D174 
and, in contrast to many plant P450s, was shown 
to be expressed at high levels in E. coli, only 
100 mg L−1 perillyl alcohol could be produced� 
It thus appears that the P450-catalyzed reaction 
is a bottleneck in the production of perillyl al-
cohol� An additional contributing factor likely 
is the extreme toxicity of monoterpenes towards 
microbial organisms� The latter phenomenon was 
partially overcome by the use of resins for in situ 
product removal [388]�
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8.7.1.1.2 Sesquiterpenoids
Several sesquiterpenoids have already been pro-
duced in microorganisms (Fig� 8�13)� The least 
complex example is the production of the grape-

fruit aroma compounds nootkatol and nootkatone 
in yeast, relying on farnesyl diphosphate (FPP) 
supplied via the endogenous MVA pathway in 
studies aimed at the identification of valencene 

Fig. 8.12  Heterologous and endogenous pathways used 
for the production of the monoterpenes (−)-carvone and 
(−)-perillyl alcohol in E. coli� AtoB acetyl-CoA acetyl-
transferase HMGS hydroxymethylglutaryl-CoA synthase, 
HMGR 3-hydroxy-3-methylglutaryl-coenzyme A reduc-

tase, MK mevalonate kinase, PMK phosphomevalonate 
kinase, PMD diphosphomevalonate kinase, IDI isopente-
nyl-diphosphate isomerase, tGPPS truncated geranyl di-
phosphate synthase, LS limonene synthase, ISPD (−)-iso-
piperitenol/(−)-carveol dehydrogenase
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oxidases [390, 391]� When coexpressed with va-
lencene synthase and reductase 1 (ATR1), CY-
P71AV8, and CYP706M1 enabled the production 
of nootkatol and nootkatone at low levels in yeast 
(40 and 144 µg L−1, respectively)� An interest-
ing observation made with CYP706M1 was that 

nootkatone was produced in vivo exclusively in 
the absence of a second n-dodecane phase�

A more complex example is the production of 
8-hydroxy-α-humulene. This is the direct precur-
sor of zerumbone, which is contained in Zingiber 
zerumbet (“shampoo ginger”). 8-Hydroxy-α-

Fig. 8.13  Pathways employed for the production of noot-
katone, 8-hydroxy-α-humulene, 8-hydroxycadinene, and 
artemisinic acid in microbial hosts� Further downstream 
metabolites like zerumbone, gossypol, and artemisinin 
are also shown� In studies using E. coli, an engineered 
mevalonate ( MVA) pathway as well as the endogenous 
methylerythritol phosphate ( MEP) pathway and farne-
syl diphosphate ( FPP) synthase support FPP production� 
When using S. cerevisiae as host, either the native (for 

nootkatone production) or an optimized homologous 
MVA pathway (for artemisinic acid production) was used� 
IDI isopentenyl-diphosphate isomerase, IspA/ERG20 FPP 
synthase, ValCS valencene synthase, ZSS1 α-humulene 
synthase, CDS cadinene synthase, ADS amorpha-4,11-
diene synthase, CYB5 cytochrome b5, ADH artemisinic 
alcohol dehydrogenase, ALDH artemisinic aldehyde de-
hydrogenase
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humulene was shown to be a promising chemo-
preventive agent for suppressing atherosclerosis, 
HIV, as well as tumors [392, 393]� Its production 
from mevalonate could be achieved in E. coli 
via a combination of an engineered lower MVA 
pathway, α-humulene synthase, CYP71BA1, and 
different CPRs� Maximum product accumulation 
of 0�4 mg L−1 occurred when ginger CPR1 was 
coexpressed with CYP71BA1� 37�7 mg L−1 of re-
maining α-humulene indicate that the subsequent 
hydroxylation step represents a limitation in this 
pathway�

Improved sesquiterpenoid production of ap-
proximately 100 mg L−1 8-hydroxycadinene, 
which is a precursor of the potential anticancer 
drug gossypol, was accomplished in E. coli� 
These metabolically engineered cells contained 
a heterologous MVA pathway and overexpressed 
FPP synthase along with cadinene synthase, 
CYP706B1 from Gossypium arboretum (Cot-
ton), and a surrogate CPR from Candida tropi-
calis [81]�

The most perfected example for the microbial 
production of a plant-based secondary metabolite 
is the “Artemisinin Success Story�” Artemisinin 
is part of the artemisinin-based combination ther-
apies (ACT) against malaria, which are recom-
mended by the World Health Organization [394]� 
The natural source is the sweet wormwood plant 
A. annua, which is grown mostly in China and 
Vietnam� However, the availability and market 
supply of this drug is hampered by varying har-
vests and long production periods (~ 14 months)� 
The production of the precursor artemisinic acid 
using engineered yeast was first described by 
Jay Keasling and coworkers in 2006 [80]� The 
endogenous MVA pathway and subsequent pre-
nylation steps in S. cerevisiae were optimized to 
increase the production of FPP, which was con-
verted to the sesquiterpene amorpha-4,11-diene 
by coexpression of amorphadiene synthase� This 
pathway was extended by the introduction of 
CYP71AV1 and its cognate CPR from A� annua 
for further amorpha-4,11-diene oxyfunctional-
ization yielding artemisinic acid via the interme-
diates artemisinic alcohol and artemisinic alde-
hyde� Using this engineered whole cell system, 
titers of up to 100 mg L−1 artemisinic acid could 

be produced� An analogously engineered E. coli 
strain produced up to 325 mg L−1 artemisinic 
acid� Addition of an n-dodecane phase resulted 
in the accumulation of the intermediates arte-
misinic alcohol and artemisinic aldehyde, while 
full oxidation of the sesquiterpene precursor was 
only observed in the absence of a second phase 
[81], similar to the case of nootkatone production 
discussed above� This effect was attributed to the 
ability of the organic overlay to extract both the 
product artemisinic acid and the intermediates ar-
temisinic alcohol and artemisinic aldehyde�

Recently, further improved yeast systems 
were reported [395]� These included, among oth-
ers, CYP71AV1 and an alcohol dehydrogenase 
and aldehyde dehydrogenase (Adh1 and AldH1) 
from A. annua for the respective conversion of 
artemisinic alcohol and aldehyde [396]� Titers of 
artemisinic acid of up to 25 g L−1 were achieved 
in fermentation experiments and could be further 
converted to artemisinin by means of classical 
chemistry or photochemistry [395]� This semi-
synthetic process is now used at Sanofi for the 
industrial production of artemisinin�

8.7.1.1.3 Diterpenoids
E. coli strains engineered to produce labdane-type 
diterpenes by a modular approach were the basis 
for the production of the corresponding diterpe-
noids [397]� For this, the E. coli MEP pathway 
was exploited in conjunction with coexpression 
of GGPP synthase from Abies grandis and a first 
diterpene cyclase to produce either syn- or ent-
copalyl pyrophosphate (CPP)� These compounds 
are further converted by a second terpene cy-
clase to the respective labdane-related diterpenes 
(Fig� 8�14)� For instance, based on such an ap-
proach, the precursor of the antifungal phytocas-
sanes A-E, namely 11-hydroxy-ent-cassadiene, 
was produced by coexpression of CYP76M7 in 
a strain capable of ent-cassadiene accumulation 
[398]� Multifunctional CYP99A3 coexpressed in 
syn-pimaradiene- and syn-stemodene-producing 
strains catalyzed oxidations at the C19 moiety 
to sequentially form the respective alcohols, al-
dehydes, and acids, which are precursors of the 
chemotherapeutic momilactone B [399]� Intro-
duction CYP71Z6 into an ent-isokaurene-pro-
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ducing strain led to the production of 2-hydroxy-
ent-isokaurene, which is a precursor of oryzalide 
A [400]�

The recombinant production of ferruginol, 
which is the precursor of the anticancer com-
pounds tanshinones, was achieved by using 
CYP76AH1 in a strain optimized for miltiradiene 
accumulation and reached titers of 10�5 mg L−1 
[401]� In addition, the strain contained an arti-
ficial fusion protein of GGPP synthase and FPP 
synthase as well as a truncated HMGR and a 
fused synthetic mitiradiene–CPP synthase mod-
ule (Fig� 8�14)�

The implementation of an engineered pathway 
for paclitaxel (referred to as taxol) precursor pro-
duction in E. coli including a P450 was reported 
by the group of Greg Stephanopoulos [402]� 
Taxol and its derivatives are mitotic inhibitors 
used as chemotherapeutic agents� Taxol was first 
isolated from the bark of the pacific yew tree, 
Taxus brevifolia, and later also found in other 
Taxus species� The demand for taxol is currently 
covered by semisynthetic routes starting with the 
intermediates 10-deacetylbaccatin III or baccatin 
III extracted from Taxus needles (Idena) or plant 
cell culture (Bristol-Myers-Squibb/Phyton Inc�)� 
However, both strategies are labor and time in-
tensive and the first might be subject to seasonal 
fluctuations with regard to product yield, so that 
microbial production might be a competitive 
alternative� In contrast to the successful appli-
cation of the MVA pathway for monoterpenoid 
and sesquiterpenoid production, taxadiene-5-α-
ol was produced by engineering the endogenous 
MEP pathway of E. coli� Furthermore, the uni-
versal isoprenoid precursors IPP and DMAPP 
were converted to geranylgeranyl pyrophosphate 
(GGPP) by coexpression of GGPP synthase� 
GGPP in turn serves as substrate for coexpressed 
taxadiene synthase forming the unfunctionalized 
taxol precursor taxa-4(5),11(12)-diene at titers of 
approximately 1 g L−1� The researchers further 
demonstrated the implementation of taxadiene-5-
α-hydroxylase (CYP725A4) catalyzing the first 
oxidation step in taxol biosynthesis (Fig� 8�14), 
yielding taxadien-5-α-ol at titers of 58 mg L−1� 
Interestingly, taxadiene-5-α-hydroxylase was 
employed as an artificial fusion protein consist-

ing of CYP725A4 and Taxus CPR� Although the 
results of this study represent a milestone in taxol 
production, the way towards taxol-producing 
microorganisms remains long; it presumably re-
quires 17 more enzymatic steps, of which several 
are catalyzed by P450s, and some of the involved 
enzymes are still unknown [374, 403]�

8.7.1.1.4 Triterpenoids
Triterpenoids have lately attracted great attention� 
The biosynthetic pathways for these compounds 
are encoded by clustered genes in plants� Besides 
their natural role as secondary metabolites for the 
optimization of plant–environment interactions, 
triterpenoids are also considered as pharmaceu-
ticals and pesticides [376, 404]� Consequently, 
an increasing number of attempts to produce 
triterpenoids in S. cerevisiae have been reported 
(Fig� 8�15)� On the basis of strains producing the 
triterpene core structures β-amyrin, α-amyrin, 
and lupeol, it was shown that Medicago truncat-
ula CYP716A12, Vitis vinifera CYP716A15, as 
well as CYP716A17 were all multifunctional en-
zymes� Together with the Lotus japonicus CPR, 
each of the enzymes was capable of catalyzing 
the three-step oxidations of β-amyrin to oleano-
lic acid, α-amyrin to ursolic acid, and lupeol to 
betulinic acid in yeast [405]� Further, transgenic 
yeast strains producing soyasapogenol B and 
gypsogenic acid were constructed by combinato-
rial biosynthesis, employing β-amyrin synthase, 
CPR, as well as CYP93E2 and CYP72A61v2 or 
CYP716A12 and CYP72A68v2 from M. trun-
catula [406]�

In a different study, the roles of CYP708A2, 
CYP705A1, and CYP71A16 from A. thaliana in 
triterpenoid metabolism were unraveled by intro-
ducing these enzymes in yeast strains producing 
thalianol, arabidiol, and marneral� Using the in-
ternal 2,3-oxidosqualene pool, these metaboli-
cally engineered yeast strains produced the cor-
responding oxygenated derivatives in the range 
of mg L−1 [407]� A recent study combines an in-
creased carbon flux through the native MVA path-
way resulting from the expression of a truncated 
HMG-CoA reductase, with the introduction of 
yeast squalene synthase and plant 2,3-oxidosqua-
lene cyclases to produce a β-amyrin and dam-
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Fig. 8.15  Engineered pathways for the production of 
triterpenoids in S. cerevisiae� Isopentenyl pyrophosphate 
( IPP) and dimethylallyl pyrophosphate ( DMAPP) were 
provided either by an optimized or native mevalonate 
(MVA) pathway� Although not indicated in this figure, 
in all cases, a cytochrome P450 diflavin reductase (CPR) 

of A. thaliana served as redox partner for the indicated 
P450s� ERG20 FPP synthase, ERG9 squalene synthase, 
SQE squalene epoxidase, bAS β-amyrin synthase, aAS 
α-amyrin synthase, LUS lupeol synthase, DDS dam-
marenediol II, AS arabidiol synthase, MS marneral syn-
thase
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marenediol II [408]� Furthermore, simultaneous 
employment of CYP716A12, CYP716A47, and 
CYP716A53v2 and a CPR led to the production 
of 21�4 mg L−1 oleanolic acid, 17�2 mg L−1 pro-
topanaxadiol, and 15�9 mg L−1 protopanaxatriol, 
respectively� This strain might serve in the future 
as basis for the production of a broad range of 
ginsenosides by coexpression of glycosyltrans-
ferases�

8.7.1.1.5 Carotenoids
Carotenoids are derived from tetraterpenes and 
are assumed to provide health benefits by de-
creasing the risk of disease, particularly in can-
cers and eye disease� For the production of hy-
droxylated carotenoids, along with functional 
identification of the involved enzymes, P450s 
from Oryza sativa were introduced in carot-
enoid-producing E. coli strains (Fig� 8�16) [409]� 
CYP97A4 catalyzed the conversion of β-carotene 
to β-cryptoxanthin and zeaxanthin. In contrast, 
CYP97C2 converted only the ε-ring substrates 
δ-carotene and ε-carotene.

8.7.1.2  De Novo Synthesis of Flavonoids
Flavonoids are a diverse family of plant polyphe-
nols and of special interest due to their potential 
in the treatment of various human diseases� The 
first attempts to produce flavonoid precursors 
were accomplished by cloning of the flavanone 
pathway consisting of cinnamate-4-hydroxylase 
(CYP73A5) from A. thaliana together with 
4-coumaroyl:CoA ligase (4CL), chalcone syn-
thase (CHS), and chalcone isomerase (CHI) in 
S. cerevisiae [410]� The generated strain was able 
to convert cinnamic acid to 200 µg L−1 naringenin 
(Fig� 8�17)� Naringenin could be further func-
tionalized to produce apigenin (57 µg L−1), when 
flavone synthase II (CYP93B) from Antirrhinum 
majus (snapdragon) and endogenous CPR were 
coexpressed in this yeast strain [411]� The same 
research group also used E. coli to produce hy-
droxylated flavonoids by introducing 4CL, CHS, 
CHI, flavanone 3β-hydroxylase (FHT), flavonol 
synthase (FLS), and flavonoid 3ʹ,5ʹ-hydroxylase 
(CYP75A) fused to its CPR redox partner 
(Fig� 8�17) [412]� The production of highly func-
tionalized flavonoids was strongly dependent on 

the choice of the growth medium and whether 
phenylpropanoid acids or flavanones were fed 
to the cells� Interestingly, reactions catalyzed by 
omitting the P450-catalyzed step, by using eri-
odictyol instead of naringenin as starting point of 
the reaction, proved to be more productive in fla-
vonol synthesis�

8.7.1.3  De Novo Synthesis of 
Glucosinolates

Glucosinolates are amino acid derived and 
sulfur-rich secondary metabolites, which are 
characteristic for cruciferous plants� Glucosino-
lates have been linked to a number of benefits 
to human health, such as prevention of cardio-
vascular diseases and reduction of the risk of 
developing cancer [413]� In a proof-of-concept 
study, tryptophan-derived indolylglucosino-
lates (IGs) were produced in recombinant yeast 
by stepwise integration of catalytic enzymes to 
yield a seven-step pathway for the production 
of indolmethyl-glucosinolate (Fig� 8�18) [414]� 
The first two steps of this pathway included 
CYP79B2 and CYP83B1 from A. thaliana, 
which catalyze the conversion of tryptophan to 
indolylacetaldoxime and further to indolylaceto-
nitrile oxide� Coexpression of ATR1, glutathione 
S-transferase (GSTF9), γ-glutamyl peptidase 
(GGP1), C-S lyase (SUR1), a glycosyltransfer-
ase (UGT74B1), and a sulfotranferase (ST5a; 
all from A. thaliana) showed that production 
of IG is possible, even though titers were low 
(1�07 mg L−1)�

8.7.1.4  De Novo Synthesis of Alkaloids
Work on the microbial production of plant alka-
loids has been mainly focused on benzylisoquin-
oline alkaloids (BIAs), which are a diverse class 
of metabolites with a broad range of pharmaceu-
tical activities� Hawkins and Smolke engineered 
yeast to express combinations of enzymes from 
plants and humans for the production of a wide 
array of BIAs (Fig� 8�19) [415]� As early steps 
of BIA biosynthesis were not identified at that 
time, the commercially available but unnatural 
substrate ( R,S)-norlaudanosoline was converted 
to the key intermediate ( R,S)-reticuline by three 
consecutive methyl transfer steps. ( S)-reticuline 
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Fig. 8.17  Schematic representation of pathways for the production of flavonoids� 4CL 4-coumaroyl:CoA ligase, CHS 
chalcone synthase, CHI chalcone isomerase, FHT flavanone 3β-hydroxylase, FLS flavonol synthase
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Fig. 8.19  Natural and nonnatural pathways for the pro-
duction of the BIA branch point metabolite reticuline as 
well as further downstream metabolites� The final prod-
ucts berberine, morphine, and sanguinarine are also indi-
cated� Unlabeled arrows indicate that the corresponding 
enzymes have not been identified so far� MAO mono-

amine oxidase, NCS norcoclaurine synthase, 6-OMT 
6-O-methyltransferase, CNMT coclaurine-N-methyltrans-
ferase, 4ʹ-OMT 3ʹ-hydroxy-N-methylcoclaurine-4ʹ-O-
methyltransferase, BBE berberine bridge enzyme, SMT 
( S)-scoulerine 9-O-methyltransferase, TNMT tetrahydro-
protoberberine cis-N-methyltransferase
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could be further converted by the joined action of 
berberine bridge enzyme (BBE), ( S)-scoulerine 
9-O-methyltransferase (SMT), and canadine syn-
thase (CYP719A1) to yield the berberine precur-
sor ( S)-tetrahydroberberine [415]� Interestingly, a 
lower gene dose of the surrogate reductase ATR1 
as a result of chromosomal integration turned out 
to be more favorable for ( S)-tetrahydroberber-
ine production� An estimated titer of 30 mg L−1 
from a substrate concentration of 4 mM (approx� 
1150 mg L−1) was achieved, while conversion 
was in the range of 1–2 %� The accumulation of 
several reaction intermediates indicated that flux 
limitations were still present� An alternative route 
converting the formed ( R)-reticuline to yield the 
morphine precursor salutaridine required the 
use of human CYP2D6 because the native plant 
enzyme catalyzing this step has not been identi-
fied so far� However, the relatively low activity 
of CYP2D6 on ( R)-reticuline led to titers of ap-
proximately 20 mg L−1 from 4 mM substrate�

In a recent study, a ten-gene pathway for the 
synthesis of the BIA dihydrosanguinarine was re-
constituted in S. cerevisiae (Fig� 8�19) [416]. ( S)-
reticuline was produced in the same way as in the 
aforementioned study and then further converted 
to dihydrosanguinarine by five additional steps, 
with a final product yield of 1�5 % from 10 µM 
substrate� Importantly, four of these reaction steps 
were catalyzed by P450s, which included cheilan-
thifoline synthase (CFS; CYP710A25), stylopine 
synthase (SPS; CYP719A20), ( S)-cis-N-methyl-
stylopine 14-hydroxylase (MSH; CYP82N4), and 
protopine 6-hydroxylase (P6H, CYP82N2v2)�

Another study features the use of E. coli and 
S. cerevisiae for BIA production [417]� While 
E. coli was employed for the production of ( S)-
reticuline from 5 mM dopamine, S. cerevisiae 
cells expressing CYP80G2 and coclaurine-N-
methyltransferase (CNMT)  (both enzymes dif-
ficult to express in E. coli) were added at a later 
stage to synthesize 7�2 mg L−1 magnoflorine with 
a yield of 2�2 %�

8.7.2  Transgenic Plants

8.7.2.1  Phytoremediation

Phytoremediation is the use of plants to clean up 
environmental pollution� To overcome limita-
tions like the slow rate of removal or incomplete 
metabolism, new enzymatic activities are intro-
duced in plants by genetic engineering� In several 
cases, P450s of bacterial or mammalian origin 
were expressed in plants in order to remediate 
polluted soil, groundwater, or air [418]�

Expression of the human CYP2E1 in hydro-
ponically grown tobacco enhanced the metabo-
lism of the volatile hydrocarbon trichloroethyl-
ene (TCE) up to 640-fold� The oxidation product 
2,2,2-trichloroacetaldehyde (chloral) which was 
generated by the P450 was further metabolized in 
the plant to the corresponding alcohol (Fig� 8�20) 
[419]� In a later study, transgenic poplar rather 
than tobacco was used due to its faster growth, 
larger size, and more extensive root system� The 
best performing transgenic lines expressing rab-
bit CYP2E1 showed more than 100-fold higher 
TCE-metabolism rates than the control� Due to 
the broad substrate spectrum of CYP2E1, im-
proved removal rates could also be observed for 
other environmental pollutants, such as chlo-
roform, carbon tetrachloride, and vinyl chlo-
ride� Interestingly, volatile TCE could also be 
removed from polluted air by whole transgenic 
plants [420]�

In addition, phytoremediation of herbicides 
can be enhanced by transgenic plants expressing 
P450s� Rice plants expressing human CYP1A1, 
either separately or in conjunction with CYP2B6 
and CYP2C19, showed a high resistance to a 
broad range of herbicides with different modes 
of action, including atracine, metolachlor, norflu-
razon and mixtures thereof [421–423]�

Phytoremediation has also been achieved 
for the military explosive hexahydro-1,3, 

Fig. 8.20  CYP2E1-mediated transformation of trichloroethylene ( TCE)
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5-trinitro-1,3,5-triazine (royal demolition explo-
sive, RDX)� This compound is toxic not only to 
mammalians but also to plants� Consequently, it 
cannot be degraded by classical phytoremedia-
tion� Nevertheless, the use of CYP177A1 (XplA) 
which was originally found in Rhodococcus sp� 
isolated from RDX-contaminated sites allowed 
the degradation of RDX� CYP177A1 displays an 
unusual structure with an N-terminal Fld domain 
fused to a C-terminal P450 domain (see Fig� 4�9, 
Sect� 4�1)� Although the complete mechanism has 
not been elucidated so far, it has been shown that 
CYP177A1 catalyzes the single or double deni-
tration of RDX under anaerobic and aerobic con-
ditions, respectively� Hydration probably leads 
to unstable intermediates, which decompose to 
nitrite and formaldehyde and either methylendi-
nitramine (MEDINA) or 4-nitro-2,4-diaza-bu-

tanal (NDAB; Fig� 8�21)� However, the reaction 
occurs more efficiently at hypoxic conditions� 
Axenic liquid cultures of A� thaliana expressing 
CYP177A1 detoxified media containing 180 µM 
RDX within 5 days� When grown on contami-
nated soil, the same plants exhibited no signs 
of RDX-toxicity or growth deficiency, whereas 
wild-type plants did [171]� Engineered plants co-
expressing the P450 along with its native reduc-
tase XplB operated 30 times faster in terms of 
RDX removal [424]�

8.7.2.2  Reduction of Toxic Secondary 
Metabolites

Besides the expression of P450s in plants, as 
shown in the case of phytoremediation, also 
gene silencing plays an important role, e�g�, to 
prevent the production of endogenous carcino-

Fig. 8.21  Proposed mechanism for the CYP177A1-mediated degradation of royal demolition explosive (RDX) under 
anaerobic and aerobic conditions
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genic or antinutritional secondary metabolites� 
A successful example is the suppression of 
nicotine conversion to nornicotine, a direct pre-
cursor in the synthesis of the potent carcinogen 
N′-nitrosonornicotine. Knockout of the nicotine 
N-demethylases (CYP82E4, CYP82E5v2 and 
CYP82E10) in tobacco resulted in significantly 
reduced nornicotine levels compared to those 
found in conventional tobacco cultivars [425, 
426]� Recently, the biosynthesis of antinutri-
tional steroidal glycoalkaloids (SGAs), such as 
α-solanine, α-chaconine, or α-tomatine in sola-
naceous crops was elucidated� SGAs cause gas-
trointestinal and neurological disorders and, at 
high concentrations, may be lethal to humans� By 
silencing the GAME4 gene encoding CYP88 the 
accumulation of SGAs was prevented in potato 
tubers and tomato fruit [427]�

8.7.2.3  Ornamental Plants
An actual industrial application promoted by 
Suntory Ltd� (Japan) and Florigene Pty Ltd� 
(Australia) is the exploitation of P450s involved 
in biosynthesis of delphinidin-type anthocyanins 
for the production of roses and carnations with 
nonnatural colors that cannot be achieved by 
classical breeding [428]� Expression of the flavo-
noid 3ʹ,5ʹ-hydroxylase (F3ʹ,5ʹ-H; CYP75A) and 
dihydroflavonol reductase (DFR) from Petunia 
in DFR-deficient variants led to an exclusive ac-
cumulation of delphinidin derivatives and a sig-
nificant color shift towards blue (Fig� 8�22) [429]�

The resulting flower FLORIGENE Moon-
dust was the first commercially available flori-
cultural crop in the world� Introduction of pansy 
F3ʹ,5ʹ-H instead of its Petunia homolog, either 
alone or in combination with CYP75A of Salvia 
sp�, increased delphinidin levels, yielding dark 
violet carnations (FLORIGENE Moonshadow 
and FLORIGENE Moonique) [430, 431]� Up to 
now, carnations with several shades have been 
developed from suitable varieties through the ex-
pression of different genes in diverse genetic ar-
rangements and the customized downregulation 
of DFR and flavonoid 3ʹ-hydroxylase (F3ʹ-H; 
CYP75B) genes [432]�

For the generation of roses with higher delph-
inidin content cultivars with higher petal vacu-

olar pH and flavonol amounts as well as lower 
F3ʹ-H activity were selected and transformed 
with F3ʹ,5ʹ-H from pansy [433]� Suntory blue 
rose Applause has been commercialized in Japan 
since 2009 (Fig� 8�23)� To achieve a more pansy-
like blue color, further modifications regarding 
the production of strong copigments and eleva-
tion of vacuolar pH are still needed�

8.8  Conclusions and Perspectives

Cytochrome P450 enzymes catalyze a vast va-
riety of chemical transformations and accept a 
broad spectrum of substrates� Their ability to 
perform highly selective oxidation reactions at 
unactivated C–H bonds at room temperature 
and under normal pressure demonstrates the 
sustainability of P450 biocatalysts� Therefore, 
P450s are considered as attractive candidates 
for the synthesis of valuable compounds� How-
ever, as generally recognized, the use of P450s 
in industrial processes is still limited because 
of their complexity, low activity, and the need 
for the reducing cofactors NAD(P)H and redox 
partner proteins, which generally result in low 
product yields� Over the last two decades, our 
fundamental understanding of P450 systems has 
greatly improved and tremendous progress has 
been made in making these systems more suit-
able for industrial application� Bioprocesses for 
industrial production of fine chemicals are con-
sidered to require space–time yields of at least 
0�1 g L−1 h−1 [434]� To date, most of the reported 
P450-based biocatalytic systems do not fulfill 
this requirement� However, for the production of 
pharmaceutical compounds, acceptable process 
productivities may be as low as 0�001 g L−1 h−1 
[435]� This value is already met by several re-
ported P450 biocatalysts�

The aspect of economic feasibility of biotech-
nological processes involving P450s has been 
studied by Andreas Schmid and colleagues [435]� 
An operational window for twelve reported P450-
based processes was analyzed and compared to 
the industrially relevant space–time yields� Inter-
esting in this context is the artificial multienzyme 
cascade process involving CYP71AV1 from A. 
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Fig. 8.22  Flavonoid biosynthetic pathways relevant for 
flower colors� Typical colors resulting from each of the 
anthocyanins are indicated by the colored boxes� Other 
factors affecting the color like copigments are not repre-

sented� Modified activities are highlighted in red� DFR di-
hydroflavonol 4-reductase, ANS anthocyanidin synthase, 
3GT anthocyanidin 3-O-glucosyltransferase, MT methyl-
transferase
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annua for the production of artemisinic acid in 
engineered S. cerevisiae, reported in 2006 [80]� 
This production system hardly fulfilled the mini-
mal requirements defined for pharmaceutical 
compounds at that time [435]� However, further 
improvements of this system led in 2013 to ar-
temisinic acid concentrations of up to 25 g L−1 
in fermentation experiments [395, 436]� A pro-
cess based on the engineered S. cerevisiae strain 
producing artemisinic acid is now used for the 
industrial production of artemisinin at Sanofi 
(http://www�rsc�org/chemistryworld/2013/04/
sanofi-launches-malaria-drug-production)� This 
example perfectly demonstrates that recombinant 
protein technology combined with the methods 
of synthetic biology, metabolic engineering, and 
downstream processing opens up completely 
new perspectives for P450-based processes� The 
ability of P450s to catalyze highly selective re-
actions on complex molecules, which can be 
combined with additional chemical reactions to 
create chemo-enzymatic processes for the pro-

duction of molecules of interest (as in the case 
of artemisinin), makes P450s interesting tools for 
the synthesis and modification of natural com-
pounds based on renewable feedstocks�

Artemisinin is a component of the artemis-
inin-based combination malaria therapies [394]� 
In 2010, more than 200 million cases of malaria, 
and at least 655,000 malaria-related deaths were 
reported [437]� Obviously, a constant and cheap 
source of artemisinin is required to support a 
cost-effective treatment [395]� In addition, new 
effective agents against cancer as well as new an-
tibiotics and new anti-inflammatory compounds 
are required� For instance, the annual production 
of steroid drugs has exceeded 1,000,000 t and the 
global market is around US$ 10 billion [318]� The 
demand for drug metabolites is also rising, while 
at the same time safety regulations are tightened� 
In 2008, the US Food and Drug Administration 
(FDA) issued a “Guidance for Industry: Safety 
Testing of Drug Metabolites,” which defines that 
drug metabolites present in circulation at a frac-
tion > 10 % (formerly > 25 %) of the parent drug 
must undergo safety testing [438, 439]� A similar 
“Guideline on the Investigation of Drug Interac-
tions” was issued in June 2012 by the Committee 
for Human Medicinal Products (CHMP) of the 
European Medicines Agency (EMA) [440]�

The demand for high-value oxyfunctionalized 
fine chemicals has also been increasing over the 
past years� In 2011, the estimated sales volume of 
the top ten flavor and fragrance industry leaders 
was US$ 22 billion (in comparison: US$ 16 bil-
lion in 2005) [441]� From an academic as well 
as commercial point of view, the increasing de-
mands of high-value compounds represent strong 
market incentives for further developments in the 
field of biotransformation and de novo biosyn-
thesis of oxygenated compounds� In cases where 
chemical synthesis or extraction from plants is 
not feasible, microbial systems could be a suit-
able alternative source for the production of such 
compounds� To achieve this goal, the use of P450 
seems inevitable� A variety of secondary metabo-
lites from different substance classes have al-
ready been produced by exploiting the synthetic 

Fig. 8.23  The blue rose Applause developed by Suntory� 
(Reproduced with permission of Suntory Flowers Lim-
ited, Tokyo, Japan)
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power of P450s� In addition to improved process 
engineering and control of the carbon flux by 
metabolic engineering, investigations of P450s 
and their dedicated redox partners have proven 
instrumental to metabolite production�

An important step towards improving the cat-
alytic activities of P450 enzymes involves the co-
valent fusion of redox partner protein(s) to these 
enzymes� Many different approaches have been 
followed to create a multitude of artificial P450–
redox partner fusion enzymes that catalyze a 
large variety of reactions� At first sight, it appears 
that no general rules for designing the optimal ar-
tificial P450 fusion construct can be deduced� On 
the other hand, it is evident that the proximity of 
the P450 domain to its redox partner(s) as well as 
a certain structural flexibility are important fac-
tors that contribute to efficient electron transfer�

Apart from activity improvement, enzyme 
engineering also allows the production of com-
pletely novel compounds that normally are not 
produced via natural routes [442]� To accelerate 
this process, the development and improvement 
of efficient microbial expression systems as well 
as high throughput screening methods are still 
crucial� The combination of such novel strategies 
enables exciting perspectives for future biocata-
lytic research and will certainly provide us with 
a completely new range of chemical compounds�

In this context, the modularity of P450 sys-
tems can be readily exploited� Strategies based 
on the easy exchange of modules (e�g�, redox 
partners, NAD(P)H regeneration), which already 
have been established for a number of P450s, 
could easily be applied to other P450 systems as 
well, thereby significantly accelerating the setup 
of biotechnological processes�

Taken together, the elaborate strategies to 
improve the activity of P450 enzymes and to 
overcome their limitations make them excellent 
examples of biotechnological engineering� The 
extraordinary versatility of P450 enzymes that 
are used already today, as well as novel P450 
enzymes or activities that will be discovered in 
the future, will undoubtedly be further developed 
and exploited for biotechnological application�
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9.1  History

The history of cytochrome P450 (P450) really 
began with studies on the metabolism of drugs, 
carcinogens, and steroids� The early research in 
these fields necessarily involved animal mod-
els, but the intent was always to understand the 
human systems in the context of the enzymes 
catalyzing the observed transformations�

A number of in vivo experiments in the realm 
of clinical pharmacology showed that drug me-
tabolism was inducible [1–3] and varied among 
individuals [4]� Such phenomena were attrib-
uted to P450 enzymes after the development of 
research with experimental animals, but the mo-
lecular basis was unknown�

Early in vitro studies with human tissues were 
done but were difficult because of the limited 
availability of samples� It was possible to docu-
ment the variability of human drug metabolism 
[5], although there were caveats about the quality 
of samples, etc�

The next phase of research was the purifica-
tion of human P450s from liver microsomes� 
Some early efforts in this area were in the labo-
ratories of Coon [6], Beaune [7], Kamataki [8], 
and Guengerich [9]� Highly purified P450s could 

be obtained, but analysis of catalytic specificity 
was generally limited to sets of a few typical sub-
strates used with rat and rabbit P450 enzymes� 
However, some studies with warfarin oxidation 
were to provide insight, in that distinct activities 
were noted [10]� Clearly, multiple P450 existed 
in humans, as already appreciated in rats and rab-
bits� However, there was no clear indication how 
many human P450s might exist or how many 
would be involved in xenobiotic metabolism�

The human studies of Smith and his associates 
[11], along with others [12, 13], were very use-
ful in that they first showed that the metabolism 
of an individual drug was genetically controlled� 
Monogenic control of the oxidation of a drug 
suggested that a single P450 would be dominant 
in its metabolism� This information led to a dif-
ferent plan to study human P450s: Purification 
was monitored with analysis of individual drug 
oxidation activities, rather than simply purify-
ing the colored hemoproteins and then trying 
to establish their activities� The approach was, 
however, technically challenging in that indi-
vidual fractions recovered from chromatogra-
phy needed to be depleted of detergent, recon-
stituted with nicotinamide adenine dinucleotide 
phosphate-cyrochrome P450 (NADPH-P450) 
reductase, and monitored for activity using gas or 
liquid chromatography (LC)� Nevertheless, with 
debrisoquine 4-hydroxylation and phenacetin O-
deethylation, the approach yielded what are today 
termed P450s 2D6 and 1A2 [14]� Further work in 
this laboratory led to the purification of what are 
known today as P450s 2C8, 2C9 [15], 3A4 [16], 
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2A6 [17], and 1A1 [18]� Work in other laborato-
ries also yielded these same P450s purified from 
human liver [19–21] and P450s 2C19 [22] and 
2E1 [23], plus P450 3A7 from fetal liver [24]�

The purified P450s and their antibodies could 
be utilized to define the roles of individual P450s 
in the metabolism of individual drugs, carcino-
gens, and steroids� Other approaches developed 
during the 1980s included correlation of indi-
vidual catalytic activities (in liver microsomes 
prepared from different individuals [25], or im-
munochemically determined levels of P450s [26, 
27]) and the development/application of selective 
chemical inhibitors [14, 28–31]�

Despite all of this progress in enzymology, 
there were still issues that could not be addressed 
easily� Some P450s were not expressed at levels 
high enough to be purified this way (and affin-
ity chromatography methods were not effective)� 
The need for large amounts of P450s in the future 
was a limitation� The development of recombi-
nant DNA technology in the 1980s was yield-
ing complementary DNAs (cDNAs) for P450s, 
but the only way to associate these with isolated 
P450 proteins was by N-terminal amino acid se-
quence analysis, using Edman degradation�

cDNA clones for many of the human P450s 
were rapidly isolated and used to determine nu-
cleotide (and predictably amino acid) sequences, 
following the elegant work of Fujii-Kuriyama 
and his associates with rat P450 2B1 [32]� Much 
of the cDNA work was done by Gonzalez and his 
laboratory [33]� The cDNA work led to insight 
into the basis of the debrisoquine polymorphism 
described by Smith [11, 34]�

After the success of cDNA cloning, practi-
cal heterologous expression of P450 enzymes 
was achieved in cells being CV-1 in origin and 
carrying the SV40 genetic material (COS) cells 
[35] and yeast [36] and then, very importantly, 
achieved in bacterial systems in the early 1990s 
[37–39]� The high-yield expression methods 
were important for the crystallization of human 
P450s, which was done primarily by Johnson 
and his associates following their success with 
a rabbit subfamily 2C P450 [40, 41]� Today, the 
three-dimensional structures of at least 21 human 
P450s have been determined (Table 9�1)�

Recombinant DNA technology allowed for 
insight into the regulation of human P450 genes 
and also for the analysis of single nucleotide 
variations (SNVs), which could sometimes be as-
sociated with altered drug or steroid metabolism 

Table 9.1  Classification of human P450s based on major substrate class
Sterols Xenobiotics Fatty acids Eicosanoids Vitamins Unknown
1B1a 1A1a 2J2 4F2 2R1a 2A7
7A1a 1A2a 2U1 4F3 24A1c 2S1
7B1 2A6a 4A11 4F8 26A1 2W1
8B1 2A13a 4B1 5A1 26B1 4A22
11A1a 2B6a 4F11 8A1a 26C1 4F22
11B1 2C8a 4F12 27B1 4X1
11B2* 2C9a 4V2 27C1 4Z1
17A1a 2C18 20A1
19A1a 2C19a

21A2b 2D6a

27A1 2E1a

39A1 2F1
46A1a 3A4a

51A1a 3A5
3A7
3A43

a X-ray crystal structure(s) reported (for human enzyme)
b Bovine X-ray crystal structure reported [42]
c Rat X-ray crystal structure reported [43]
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P450 Tissue sites Subcellular
localizationa

Typical reactionb

1A1 Lung, several extrahepatic sites ER Benzo[a]pyrene 3-hydroxylation
1A2 Liver ER Caffeine N3-demethylation
1B1 Several extrahepatic sites ERc 17β-Estradiol 4-hydroxylation
2A6 Liver, lung, and several extrahepatic 

sites
ER Coumarin 7-hydroxylation

2A7 ER
2A13 Nasal tissue ER Activation of 4-(methylnitrosamino)-

1-(3-pyridyl)-1-butanone (NNK)
2B6 Liver, lung ER ( S)-Mephenytoin N-demethylation
2C8 Liver ERc Taxol 6α-hydroxylation
2C9 Liver ER Tolbutamide methyl hydroxylation
2C18 Liver ER
2C19 Liver ER ( S)-Mephenytoin 4ʹ-hydroxylation
2D6 Liver ERc Debrisoquine 4-hydroxylation
2E1 Liver, lung, other tissues ERc Chlorzoxazone 6-hydroxylation
2F1 Lung ER 3-Methylindole activation
2J2 Lung ER Arachidonic acid oxidations
2R1 Liver ER Retinoic acid oxidation
2S1 Lung ER (several drug reductions)
2U1 Thymus, brain ER Arachidonic acid oxidation
2W1 Tumors ER
3A4 Liver, small intestine ERc Testosterone 6β-hydroxylation
3A5 Liver, lung ER Testosterone 6β-hydroxylation
3A7 Fetal liver ER Testosterone 6β-hydroxylation
3A43 Brain, liver ER
4A11 Liver, kidney ER Fatty acid ω-hydroxylation
4A22 Liver, kidney ER
4B1 Lung ER Lauric acid ω-hydroxylation
4F2 Liver ER Leukotriene B4 ω-hydroxylation
4F3 Neutrophils ER Leukotriene B4 ω-hydroxylation
4F8 Seminal vesicles ER Prostaglandin ω-2 hydroxylation
4F11 Liver ER Fatty acid ω-hydroxylation
4F12 Liver ER Arachidonic acid ω-,ω-1 hydroxylation
4F22 Liver ER Vitamin K ω-hydroxylation
4V2 Eye ER Fatty acid ω-hydroxylation
4X1 Liver, brain ER
4Z1 Breast cancer ER
5A1 Platelets ER Thromboxane A2 synthase reaction
7A1 Liver ER Cholesterol 7α-hydroxylation
7B1 Brain ER DHEA 7α-hydroxylation
8A1 Aorta, others ER Prostacyclin synthase reaction
8B1 Liver ER 7α-Hydroxycholesterol

12-hydroxylation
11A1 Adrenals, other steroidogenic tissues Mit Cholesterol side-chain cleavage
11B1 Adrenals Mit 11-Deoxycortisol 11-hydroxylation
11B2 Adrenals Mit Corticosterone 18-hydroxylation
17A1 Steroidogenic tissues ER Pregnenolone 17α-hydroxylation
19A1 Steroidogenic tissues, adipose ER Androgen aromatization
20A1 Liver, other tissues ER

Table 9.2  Human P450 locations and marker reactions
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(http://www�cypalleles�ki�se)� (The term “varia-
tions” will be used here, in that “polymorphism” 
is usually defined as an occurrence at a ≥ 1 % 
frequency [44], and many of the cases to be de-
scribed here are observed at lower frequencies�) 
Ultimately, the availability of the human genome 
nucleotide sequence led to the discovery of more 
P450 genes� Most of the P450s listed in the 
“unknown” substrate column in Table 9�1 were 
found in this way, on the basis of the signature 
sequence surrounding the Cys residue that serves 
as the axial heme ligand� Very importantly, the 
number of P450 genes was set at 57 (Tables 9�1 
and 9�2), thereby closing old debates on the sub-
ject [45, 46]�

As mentioned earlier, the history of P450 re-
search can be traced to early studies on the me-
tabolism of drugs, carcinogens, and steroids� 
Application in these areas was remarkable in 
the period 1985 to present, and each area will be 
treated separately� Overall, the P450 field can be 
considered a model for how basic research can 
lead to important developments for human medi-
cine� Defects in several of the P450s have been 
linked to serious human diseases (Table 9�3)�

9.2  Relevance of P450s in Drug 
Metabolism

P450s are the major enzymes involved in human 
drug metabolism (Fig� 9�1)� In looking at the 
fraction of the number of (small molecule) drugs 
processed by enzymes (Fig� 9�1a), P450s account 
for ~ 75 %� Constructing a figure of this type can 
be somewhat misleading in that the contribution 
of each P450 is more difficult to evaluate in vivo 
than in vitro (for an earlier tabulation, see [51])� 
The large contributions of P450s 3A(4) and 2C9 
are driven to a large extent by the high levels of 
expression of these two enzymes in human liver 
(and small intestine) and to their broad substrate 
specificity (Figs� 9�2 and 9�3)� The charts do not 
necessarily reflect all drugs currently in devel-
opment� A current tendency has been the devel-
opment of larger molecules as drug candidates, 
in order to achieve target specificity and affin-
ity, and a general axiom is that these are more 
readily accommodated by P450s 3A4 and 2C9� 
In recent years, pharmaceutical companies have 
tried to avoid developing drug candidates that are 
substrates (or inhibitors) for the highly variant 

Table 9.2 (continued) 
P450 Tissue sites Subcellular

localizationa
Typical reactionb

21A2 Steroidogenic tissues ER 17α-Hydroxyprogesterone 
21-hydroxylation

24A1 Kidney Mit 25-Hydroxyvitamin D3 24-hydroxylation
26A1 Several ER Retinoic acid 4-hydroxylation
26B1 Brain ER Retinoic acid 4-hydroxylation
26C1 ER Retinoic acid 4-,18-hydroxylation
27A1 Liver Mit Sterol 27-hydroxylation
27B1 Kidney Mit Vitamin D3 1-hydoxylation
27C1 Liver Mit
39A1 Liver, other tissues ER 24-Hydroxycholesterol 7-hydroxylation
46A1 Brain ER Cholesterol 24-hydroxylation
51A1 Liver, testes ER Lanosterol 14α-demethylation
DHEA dehydroepiandrosterone
a ER endoplasmic reticulum (microsomal), Mit mitochondria
b If known
c Mainly ER, some detected in mitochondria
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P450s 2D6 and 2C19� With all of these caveats 
in hand, the allocation of the P450s in the chart in 
Fig� 9�1b is probably a good estimate and will not 
change considerably in the near future� However, 
a point to be made here is that the metabolism of 
many drugs is a function not only of P450s but 
also other enzymes and, as recognized more in 
recent years, transporters that alter the concentra-
tions of drugs within cells� A discussion of drug 
transporters is outside the scope of this chapter, 
and the reader is referred elsewhere [57–59]�

The subjects of P450 regulation and variation 
have already been mentioned and will be treated 
again with individual P450s� At this point, some 
general practical considerations are discussed� If 
one considers the total concentration of P450 in 
liver samples from different healthy individuals 
(on a milligram protein basis), most individuals 
fall within a range of ~ threefold [28]� Howev-
er, when individual “drug-metabolizing” P450s 
(e�g�, families 1, 2, 3) are considered, the varia-
tion is considerable, with five- to tenfold being 
common and 40-fold not unusual, e�g�, P450 1A2 
[60]� With P450 1A2, a similar variability (40-

fold) is seen in in vivo caffeine pharmacokinetics 
[61]� With some enzymes, the variability in the 
same in vivo pharmacokinetic parameters can be 
104-fold (Fig� 9�4)�

Two examples of studies of the variability 
among individuals are presented in Fig� 9�5 (Cau-
casians) and Fig� 9�6 (Caucasians and Japanese)� 
Gender has not been shown to have a major influ-
ence on levels of expression of the major xeno-
biotic-metabolizing P450s [64] (with a German 
P450 3A4 study seemingly unusual [65]), and in-
ter-gender pharmacokinetic differences are proba-
bly due to other influences of bioavailability [66]� 
Racial differences exist due to allelic variations, 
which may influence either levels of expression 
or the inherent catalytic activity of the P450s (e�g�, 
P450 2D6 [67])� Some apparent racial differences 
are seen here (Fig� 9�6) and have also been report-
ed in in vivo studies (e�g�, P450 3A4 [68], P450 
2E1 [69])� Controlling diets is an issue in many 
in vivo studies of this type, and in vitro studies 
can also be affected� In general, the differences in 
activities of a given P450 between races are much 
less than within a race (e�g�, Fig� 9�6)� Finally, the 

Table 9.3  Some diseases associated with defects in CYP genes [47, 48]
Gene Disorder
CYP1B1 Primary congenital glaucoma (buphthalmos)
CYP2R1 Rickets
CYP4A Defects in salt metabolism, water balance leading to arterial hypertension
CYP4F22 Ichthyosis
CYP4V2 Bietti’s crystalline dystrophy
CYP5A1, 8A1 Defects leading to clotting and inflammatory disorders, coronary artery disease, and pulmo-

nary hypertension
CYP7A1 Hypercholesterolemia
CYP7B1 Severe hyperoxysterolemia and neonatal liver disease
CYP11A1 Lipoid adrenal hyperplasia; occasional congenital adrenal hyperplasia (CAH)
CYP11B1 Occasional CAH
CYP11B2 Corticosterone methyloxidase deficiency type I, or type II; occasional CAH
CYP11B1, 11B2 Chimeric enzymes causing glucocorticoid-remediable aldosteronism; occasional CAH
CYP17A1 Mineralocorticoid excess syndromes, glucocorticoid and sex hormone deficiencies; associa-

tion with increased risk of prostate cancer and benign prostatic hypertrophy; occasional CAH
CYP19A1 Loss of function: virilization of females, hypervirilization of males, occasional CAH; gain of 

function: gynecomastia in young males
CYP21A2 > 90 % of all CAH
CYP24A1a Hypervitaminosis D
CYP27A1 Cerebrotendinous xanthomatosis
CYP27B1
CYP46A1a

Vitamin D-dependent rickets type I
Learning disability

a Evidence of disease in animal models but not yet in clinical studies
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P450 (74%) 

UGT (15%) 

Esterase (9%) 
FMO (1%) 

NAT (1%) 

MAO (1%) 

1A1 (2%) 1A2 (7%) 
2B6 (2%) 

2C9 (16%) 

2C19 (13%) 

2D6 (12%) 

2E1 (3%) 

a

b

Fig. 9.1  The enzymes of drug metabolism� a Contribu-
tions of different enzymes to drug metabolism� b Con-
tributions of individual human P450 enzymes to (P450) 

drug metabolism [49] (see also [50])� UGT UDG glucuro-
nosyl transferase, FMO flavin-containing monoxygenase, 
NAT N-acetyltransferase, MAO monoamine oxidase
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point should be made that the levels of the P450s 
involved in steroid hormone metabolism (e�g�, 
first column of Table 9�1) vary considerably less 
than do the xenobiotic-metabolizing P450s (fami-
lies 1, 2, 3), probably due to their well-defined 
roles in regulation of physiological processes�

Many chemicals are capable of inducing 
P450s, as clearly demonstrated in animals and 
with cell culture systems [70]� In vivo induction 
experiments with humans are not as readily done 
as with animals, but ample evidence for P450 in-
duction is available, going back to the barbiturate 
observations of Remmer in the 1950s [2]� A short 
list of some established P450 inducers is present-
ed in Table 9�4� This list is rather conservative 
in that only information is included from stud-
ies in which in vivo evidence has been obtained� 
Much of the studies have involved pharmacoki-
netics, but some “moderately invasive” studies 
have involved direct measurement of proteins, 
messenger RNA (mRNA), or enzyme activi-
ties in peripheral blood cells or small intestinal 
biopsies; liver biopsy data are rare� Table 9�4 
could probably be expanded considerably if all 
information from in vitro studies were included, 
e�g�, P450s 1B1 and 2S1 are probably inducible 
by aryl hydrocarbon receptor (AhR) ligands [71, 

72]� The major problem in demonstrating human 
P450 induction in vivo is the lack of diagnostic 
pharmacokinetic parameters for many of P450s�

The clinical influence of differences in P450 
activity can be rationalized using the scheme of 
Fig� 9�7� A list of major drug substrates of each 
human P450, from the Indiana University website 
(http://medicine�iupui�edu/clinpharm/ddis/main-
table/), is presented in Tables 9�5, 9�6, and 9�7� 
This is intended to be useful but not comprehen-
sive, and of course more drugs will continue to be 
added� Drug doses are generally developed with 
the extensive metabolizers (EMs) as the general 
population of major interest, or at least this was 
the emphasis in the past� The plasma concentra-
tion rises to a peak ( Cp,max) following the first 
dose and then decreases to a lower level prior to 
the next dose� With subsequent doses, the plas-
ma concentration remains within this region and 
yields the desired pharmacological effect� With-
out prior knowledge about a problem with this 
drug, the poor metabolizer (PM; lower panel of 
Fig� 9�7) would be administered the same doses� 
Very limited metabolism would occur between 
doses, and the plasma concentration of the drug 
(and presumably the concentration of the drug in 
the target tissue) will rise to an unexpectedly high 

Fig. 9.3  Relative concentrations of individual P450s in human intestine (determined immunochemically) [56]� 3A 
indicates all subfamily 3A P450s
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level, with an attendant increase in the area under 
the curve (AUC)� The simplest effect would be 
an exaggerated (and probably undesirable) phar-
macological response� Sometimes there is a situ-
ation in which metabolism is more rapid than ex-
pected in the typical patient (Fig� 9�4), e�g�, due to 
gene amplification or enzyme induction� In this 
case, Cp,max and AUC would be smaller than in 

the case of the EM (Fig� 9�7, upper panel), and 
decreased drug efficacy would be expected�

Some practical situations follow and can be 
addressed in the context of our current general 
knowledge of substrates, inducers, and inhibitors 
(Fig� 9�8, Tables 9�5, 9�6, and 9�7)� With regard 
to polymorphisms and other variations, several 
are known that can render some drugs impracti-

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

log10 Metabolic Ratio

Fr
eq

ue
nc

y

UM

EM

PM

Fig. 9.4  Frequency distribution histogram of (in vivo) 
debrisoquine 4-hydroxylation in a Caucasian population 
[62]� The metabolic ratio is the ratio of debrisoquine/4-
hydroxydebrisoquine in the urine of individuals who were 
administered debrisoquine (10-mg free base) 8 h previ-
ously� The groups are designated PM (poor metabolizers, 

) and EM (extensive metabolizers, )� The group labeled 
UM (ultra-metabolizer) is from retrospective research 
[63] and probably represents gene duplication� (With kind 
permission from Springer Science + Business Media: 
[149], Fig� 10�5)
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cal due to toxicity (e�g�, perhexiline, leading to 
peripheral neuropathy due to lack of metabo-
lism by P450 2D6 [75]) or can alter the recom-
mended dose (e�g�, warfarin/P450 2C9 [76–78] 
and omeprazole/P450 2C19 [79, 80])� Perhaps 
surprisingly, no deaths have been documented 
to date due to PM phenotypes (to the author’s 
knowledge and in a discussion with Robert 
Smith), although it is possible that these have 
occurred but not recognized� However, a death 
of a nursing infant occurred because the mother 
was an ultrarapid metabolizer (Fig� 9�4) and the 
codeine she used resulted in an overdose of the 
P450 2D6 product morphine in her breast milk 
[81]�

Drug interactions are a serious problem, and 
pharmacokinetic interactions have several mo-
lecular bases� One is enzyme induction, which 
usually results in decreased bioavailability� The 
decreased bioavailability of a drug can be the 
result of induction by that same drug or by an-
other drug� A classic example is the decreased 

bioavailability of the oral contraceptive 17α-
ethinylestradiol following treatment of individu-
als with rifampicin, barbiturates, or St� John’s 
wort, leading to P450 3A4 induction [26, 82, 
83]� Another aspect of drug–drug interactions in-
volves P450 inhibition� The inhibition can be of a 
competitive nature, i�e�, two substrates competing 
for a limiting amount of a P450 or a bona fide in-
hibitor (no enzymatic transformation) competing 
with substrates� An example here is the antihista-
mine terfenadine, the metabolism of which is in-
hibited by the P450 3A4 inhibitors erythromycin 
and ketoconazole� Another major type of P450 
inhibition is “mechanism-based” (or “suicide”) 
inactivation, in which oxidation of a substrate 
destroys the P450 [84, 85]� An example here is 
the inactivation of P450 3A4 by bergamottin and 
other flavones found in grapefruit juice [86–89]�

In the above cases, the effects have been 
discussed only in terms of altered bioavail-
ability; i�e�, with increased clearance of 17α-
ethinylestradiol, unexpected menstrual bleeding 

Fig. 9.5  Variation in levels of five P450s in 18 human 
liver samples� Individual P450s and catalytic activities are 
indicated on each chart [2768]� Sample number refers to 

a code from this laboratory� (With kind permission from 
Springer Science + Business Media: [149], Fig� 10�1)
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and pregnancies have resulted [83, 90, 91]� Some 
of the drug interaction problems can be more 
complex, even when the analysis is restricted to 
pharmacokinetic aspects� For instance, in the ex-
ample mentioned above, terfenadine can be con-
sidered a prodrug [92]; in most individuals, the 
P450 oxidation (followed by further oxidation) 
yields fexofenadine, the circulating (and active) 
form of the drug� Low levels of P450 3A4 activ-
ity (due to inhibition or other reasons) [93, 94] 

cause the accumulation of the parent (prodrug) 
terfenadine to toxic levels that can cause arrhyth-
mias [92, 95]� Another possibility is that block-
ing a primary route of metabolism of a drug may 
favor secondary pathways that lead to toxicity, 
e�g�, blocking phenacetin O-deethylation (P450 
1A2) can lead to deacetylation, N-oxygenation, 
and methemoglobinemia [96]� Although a good 
example is not available, it is possible that block-
ing the oxidation of one drug by a P450 could 
cause it to accumulate and behave as an inhibitor 
towards another� A potential example would be 
decreasing the P450 3A4-catalyzed oxidation of 
quinidine and having the accumulated drug in-
hibit P450 2D6 [97]� P450 induction could result 
not only in decreased oral availability but also in 
the enhanced bioactivation of chemicals� This is 
a general concern with potential carcinogens, as 
discussed in the next section of this chapter, and 
one of the reasons why regulatory agencies have 
concern about P450 1A inducers�

In the process of drug development, there are 
several guiding principles to dealing with P450 
metabolism, aside from details of each specific 
case: (1) use of in vitro screening to eliminate 
compounds that will have poor bioavailability 
(i�e�, rapid in vitro oxidation); (2) use of in vitro 
screens to avoid obvious problems of toxicity, 
induction, and inhibition; (3) searching for drug 
candidates in which the metabolism is the result 
of several different enzymes and not dependent 
upon a single one, particularly a highly variable 
P450 (or other enzyme); and (4) use of in vivo 
human studies to address in vitro predictions as 
early as possible�

Table 9.4  Some major inducers of human P450 enzymes
Class of inducers Some sources Example Subfamily P450s induceda

AhR ligands Tobacco, broiled meat, accidental 
exposures to pollutants

Polychlorinated 
biphenyls

1A1, 1A2

Barbiturates and similar 
compounds

Drugs, some polyhalogenated biphe-
nyls, DDT

Diphenylhydantoin 2C, 3A

PXR ligands Some steroids and antibiotics, other 
drugs

Rifampicin 3A

P450 2E1 inducers Ethanol, isoniazid Ethanol 2E1
AhR aryl hydrocarbon receptor, DDT dichlorodiphenyltrichloroethane, PXR pregnane X receptor
a Based on in vivo responses

Poor Metabolizer
 (PM)

Extensive Metabolizer
 (EM, normal)

Time  (arrows  show repeated doses)

Plasma
level  of
drug

p,max
c

AUC

Fig. 9.7  Significance of low metabolism of a drug by 
P450s (or other enzymes)� A “typical” pattern is seen 
in the upper panel ( EM), where the plasma level of the 
drug is maintained in a certain range when a particular 
repetitive dose is prescribed� Unusually, slow metabolism 
(lower panel, PM) results in an elevated plasma level of 
the drug� Cp,max = maximum plasma concentration, AUC 
area under the curve� (Reproduced with kind permis-
sion from Springer Science + Business Media: [149], 
Fig� 10�8)
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Table 9.7  Human P450 inducers (http://medicine�iupui�edu/clinpharm/ddis/main-table/)
1A2 2B6 2C8 2C9 2C19 2D6 2E1 3A4,5,7
Smoking Phenobar-

bital
Rifampin Ethanol Carbamaze-

pine
Phenytoin Secobarbital Isoniazid Phenobar-

bital
Rifampin Phenytoin

Pioglitazone
Rifabutin
Rifampin
St� John’s 
Wort
Troglitazone

Fig. 9.8  A summary of major human P450s involved 
in drug metabolism, including major substrates, inhibi-
tors, and inducers (adapted from [73, 74]� The sizes of 
the circles indicate the approximate mean percentages of 
the total hepatic P450 attributed to each P450 (see also 

Fig� 9�2)� The overlap of the circles is to make the point 
that overlap of catalytic action is often observed, although 
the overlap does not necessarily refer to the indicated sub-
strates (or inhibitors)� (With kind permission from Spring-
er Science + Business Media: [149], Fig� 10�4)
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9.3  Relevance of P450s in Toxicology 
and Cancer Risk

Historically, much of the attention given to P450s 
has come from the interest in cancer, going back 
to some of the first demonstrations of oxidation 
and reduction reactions in the metabolism of 
chemical carcinogens [98] and the inducibility 
of P450s by carcinogens [1] (Figs� 9�9 and 9�10)� 

The interest in P450s was also extended to chem-
ical toxicities other than cancer with the dem-
onstration of bioactivation of compounds such 
as the drug acetaminophen [100] and the insec-
ticide parathion [101, 102]� Many studies have 
been done with P450 animal models, particularly 
using P450 inducers and inhibitors and geneti-
cally modified mice, either naturally occurring or 
transgenic� These studies provide strong evidence 
that alterations in the activities of P450s can 

Fig. 9.9  Carcinogen metabolism by human enzymes 
[99]� a Contributions of different (human) enzyme sys-
tems to carcinogen activation� b Contributions of differ-
ent (human) enzyme systems to carcinogen detoxication� 
FMO flavin-containing monoxygenase, NAT N-acetyl-

transferase, SULT sulfotransferase, AKR aldo-keto reduc-
tase, COX cyclooxygenase/prostaglandin synthase, UGT 
UDG glucuronosyl transferase , GST glutathione transfer-
ase, COMT catechol O-methyl transferase�

 

Fig. 9.10  Contributions of individual human P450s to the P450 sector of carcinogen activation [99]
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modify the sensitivity of mice to various chemi-
cals� For instance, the Ah locus (which controls 
P450s 1A1, 1A2, and 1B1 as well as some con-
jugating enzymes) can modify the sensitivity in 
AhR-deficient mice, depending upon the chemi-
cal and the organ site [103]� Effects of specific 
P450 knockouts have been reported in transgenic 
mice as well, e�g�, prevention of acetaminophen 
toxicity by deleting P450s 2E1 and 1A2 [104, 
105] and of 7,12-dimethylbenz[a]anthracene-
induced lymphomas by deleting P450 1B1 [106]�

When the enzymes involved in the activation 
of chemical carcinogens in humans are consid-
ered, two-thirds of the reactions are catalyzed 
by P450 enzymes (Fig� 9�9a) [99]� Of the human 
P450s, six account for 77 % of these reactions 
(Fig� 9�10)� The three family 1 P450s (1A1, 1A2, 
1B1) account for one half of the reactions [99]� 
Two other points should be made� One is that the 
reported distributions (Fig� 9�10) are a function of 
how many compounds in prominent classes have 
been considered� That is, P450s 1A2 and 1B1 
activate many arylamines, P450s 1A1 and 1B1 
activate many polycyclic hydrocarbons, P450 
2A6 and 2E1 activate many N-nitrosamines, etc� 
Therefore, the pattern may change in the future 
as other categories are studied more� The other 
point is that P450s are involved in detoxication 
reactions� About 14 % of the enzymatic detoxi-
cation reactions are done by P450s (Fig� 9�9b), 
including C-hydroxylations, reductions, and N-
oxidations [99]�

Despite the strong evidence for effects of vari-
ability of P450 on chemical toxicity and cancer 
risk in animals and the knowledge that human 
P450 levels vary considerably (Figs� 9�5, 9�6, 
9�7, and 9�11), demonstrating relationships with 
human disease has been difficult� In the 1960s, 
the demonstration of the inducibility of aryl hy-
drocarbon hydroxylase (P450 1A1 and possibly 
P450 1B1) by Nebert and Gelboin [107] led to 
more investigations with human samples, par-
ticularly peripheral blood cells� The work of 
Shaw and Kellerman [108, 109] suggested that 
the inducibility of aryl hydrocarbon hydroxylase 
(now recognized as P450 1A1 and 1B1 under 
these conditions) is correlated with susceptibil-

ity of smokers to lung cancer� In the early work, 
this apparently genetic variability was trimodal� 
Subsequently, this phenomenon has proven dif-
ficult to study, in part due to technical difficulties 
in the earlier phases of the work [110]� Many of 
the early problems have been circumvented with 
the ability to measure mRNA expression and the 
access to DNA sequences� While evidence for 
correlation of P450 1A1 mRNA expression with 
lung cancer incidence has been obtained [111], 
an unresolved issue is the nature of any genetic 
variability� In contrast to the situation seen in 
mouse models [112], the allelic variations in the 
human AhR (which has apparently considerably 
lower affinity for many of the ligands of interest 
than the mouse receptor [113]) do not appear to 
account for interindividual levels of inducibility 
of P450 1A1 [114, 115]� Epidemiological evi-
dence has been presented for association of lung 
cancer incidence with an MspI polymorphism of 
P450 1A1 [116]� However these results, obtained 
in studies done with Japanese, have not been re-
produced in Caucasians [117–119]� Further, the 
heterologously expressed human P450 1A1 al-
lelic variant (V462I) showed only a relatively 
small change in oxidation of the prototypic poly-
cyclic aromatic hydrocarbon (PAH) carcinogen 
benzo[a]pyrene [120, 121]� A possible explana-
tion to the quandary comes from the report that 
P450 1B1, not P450 1A1, is the major P450 re-
sponsible for the aryl hydrocarbon hydroxylation 
activity in lymphocytes and that it is P450 1B1 
expression that shows the classic trimodality, not 
P450 1A1 [122]�

Today the search for roles of a particular P450 
in human disease follows a route similar to that 
just discussed for P450 1A1, i�e�, the identifica-
tion of SNVs (see earlier note about difference 
between variations and polymorphisms, vide 
supra) is a basis for epidemiological associations 
with various maladies� This approach is com-
monly applied to the possible roles of P450s 
in cancers at various organ sites� The positive 
aspects of this strategy are that we have an ex-
tensive knowledge base of allelic variations of 
P450s (e�g�, http://www�imm�ki�se/cypalleles/), 
sophisticated and very sensitive biological tools, 
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and the potential to noninvasively analyze large 
populations, at least in the case of some diseases 
and P450s� On the negative side, the ability to 
rapidly screen for associations without serious 
consideration of present or past chemical expo-
sure levels has led to many studies with little or 
only marginal biological plausibility� Many as-
sociation studies have been difficult to repeat� 
An example in point is the reported association 
of attenuated lung cancer risk (of smokers) with 
the P450 2D6 PM phenotype� Although the ini-
tial reports were quite exciting [123], subsequent 
studies yielded variable results and meta-analysis 
has not supported an association [124]; no real 
experimental support for a biological association 
was ever found [125]� A review by Vineis [126] 
concludes that the risks of cancer due to genetics 
are considerably less than those associated with 
smoking or some other environmental factors�

What associations of P450 have been ad-
equately demonstrated? The list below is short 
and not intended to necessarily be totally in-
clusive but emphasizes some of the more posi-
tive associations found to date� (The absence of 
several of the steroid-oxidizing P450s is known 
to be debilitating, but these are not treated here 
(Table 9�3); see the sections on individual P450s 
and reference [47]�) The possible association 
between P450 1A1 and lung cancer has already 
been discussed above; a confounding factor may 
be expression of P450 1B1� Truncation of P450 
1B1 is associated with glaucoma, for unknown 
reasons [127]; this defect has also been seen in 
P450 1B1-knockout mice, but the molecular 
basis is not known [128]� Allelic variants in P450 
1B1 do not appear to have major effects in the 
oxidation of carcinogens [129]; some differences 
in cancer risk have been reported in the epide-
miology literature [130, 131]� P450 1A2 activ-
ity has been reported to be associated with colon 
cancer incidence, when the factors of N-acetyl-
transferase and well-done meat intake are consid-
ered [132]; an association has plausibility in the 
activation of heterocyclic amines by P450 1A2 
[31]� One of the stronger associations reported to 
date involves that of P450 2A6 with lung can-
cer; the association is driven by the data obtained 
with individuals with the gene deletion [133]� A 

relationship has plausibility in the demonstrated 
ability of P450 2A6 to activate N-nitrosamines 
(Table 9�8) and possibly in the decreased smoke 
intake of null-type individuals due to impaired 
metabolism of nicotine [134] (see Sect� 7�4�7, 
vide infra)� Although many epidemiological 
studies have been done with SNVs of P450 2E1, 
any putative changes in P450 2E1 phenotype 
have not been validated with in vivo assays and 
must be considered suspect [135]�

In the process of drug development, the induc-
tion of P450 family 1 and P450 2B enzymes (in 
animals or in human cell or reporter assays) has 
often been considered an issue for potential tox-
icity [136, 137]� The concern about induction is 
that the rodents may be likely to develop liver 
or other tumors in cancer bioassays with these 
compounds, and any association between these 
inductions and human cancer is not established; 
e�g�, epileptics with long-term exposure to bar-
biturates and hydantoins have not been found to 
have more cancer [138]� Likewise, the induction 
of subfamily 4A P450s is an indicator of peroxi-
somal proliferation, a phenomenon associated 
with rodent liver tumors but probably not human 
[139]� Thus, induction of rodent P450s has been 
shown to be a means of identifying types of po-
tential rodent toxicity [140], some of which may 
be relevant to humans, but should not be used 
as evidence for adverse roles of these agents in 
humans� Transgenic studies with “humanized” 
mouse models have provided some insight into 
more appropriate risk assessment [141, 142]�

9.4  Relevance of P450s in 
Endocrinology

Another area that has driven the P450 field is 
steroid metabolism (Fig� 9�12)� As the structures 
of the important steroids were elucidated in the 
first half of the twentieth century, it became ap-
parent that the metabolic pathways linking these 
were dominated by oxidation and reduction� Sub-
sequently, roles of P450s were discovered in the 
hydroxylations and even more complex oxida-
tions involving C–C bond scissions� One of the 
first P450 reactions demonstrated was the steroid 
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aromatase reaction (conversion of androgens to 
estrogens) [143]� Incidentally, one of the first 
(1952) prominent uses of (microbial) P450s was 
in the practical synthesis of cortisone by the Up-
john Company [144]�

The interest in P450 metabolism of steroids 
has been driven by several factors� One is that 
many steroids are used as drugs, and this section 
of the chapter is not independent of the one on 
drug metabolism� The other driving feature is 
inborn errors of metabolism involving steroids 
(Table 9�3)� The subject of P450s in steroidogen-
esis and clinical features is treated in more depth 
in another chapter in this book [145] and will not 
be reiterated here� However, the point is made 
that genetic deficiencies in the steroid-metaboliz-
ing P450s usually result in obvious clinical phe-
notypes, as opposed to the polymorphisms in the 
P450s that metabolize xenobiotics�

One example of a genetic problem is P450 
21A2, where about 1 in 15,000 births is affected 
[145]� More than 100 different gene variants have 
been identified in individuals presenting at the 
clinic� The consequences can range considerably� 
With P450 17A1, ~ 50 different genetic variants 
have been identified� P450 19A1 insufficiency, 
somewhat surprisingly, is fairly infrequent�

Some general points should be made here� Al-
though androgens and estrogens are often con-
sidered male and female steroids, respectively, 
this is not really true� Both genders have some 
of each, and imbalances cause problems in both 
genders� Another point is that steroids are not re-
stricted only to a few organs� Neurosteroids are 
produced by P450s in the brain and other nervous 
tissues� Placental steroid metabolism is important 
to both the mother and child [145]�

Finally, some of the steroid-metabolizing 
P450s are drug targets themselves, in that pro-
duction of androgens and estrogens is a driving 
factor in some tumors� Individual P450s will be 
discussed below, but suffice it to say for now that 
inhibition of estrogen production by P450 19A1 
is an important aspect of many chemotherapies 
for breast and endometrial cancers [146], and 
abiraterone, an inhibitor of P450 17A1, is used 
in treatment of androgen-stimulated prostate can-
cers [147]�

9.5  Approaches to Defining Catalytic 
Specificity of Human P450s

Knowledge of the roles of individual P450s in 
specific reactions (Fig� 9�8) is critical in the ap-
plication of P450 biochemistry to practical is-
sues in drug metabolism� Originally some of the 
P450s were purified on the basis of their catalytic 
activities towards certain specific drugs [14–16, 
21], but even with such a strategy there are the 
issues of the extent of contribution of that form 
and the involvement of that P450 in other reac-
tions, particularly with new substrates� Identi-
fication of the individual P450s contributing to 
the metabolism of a new drug candidate is rou-
tinely done in the pharmaceutical industry� This 
information is often requested by the US Food 
and Drug Administration at the time of an IND 
(“Investigational New Drug”) application� Iden-
tifying P450s involved in oxidations is important 
in predicting drug–drug interactions and the ex-
tent of variation in bioavailability� In general, it 
is desirable to develop drugs for which several 
P450s have a contribution to metabolism� Drug 
candidates that are metabolized exclusively by a 
highly variant P450 (e�g�, 2D6, 2C19) are often 
dropped from further development�

A combination of methods involving the use 
of human tissues and recombinant human P450s 
is usually used to identify P450s involved in a 
particular reaction, using an approach outlined 
earlier [30, 148, 149]� A combination of the fol-
lowing methods is usually done, not necessarily 
in a particular order� Lu has also reviewed these 
approaches [150]�

9.5.1  Inhibitors

The reaction is demonstrated in NADPH-forti-
fied human liver microsomes (if the reaction of 
interest is restricted to another tissue, then this 
tissue would be used instead)� The effects of se-
lective inhibitors on the reaction are examined� A 
list of some of the inhibitors that have been used 
was presented previously and a revised one is in-
cluded elsewhere in this monograph by Correia 
and Hollenberg [85, 151]�
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The choice of substrate concentration is im-
portant in this and some other approaches� Ide-
ally the effect of the substrate concentration on 
the rate of catalytic activity should be determined 
in the absence of inhibitor to determine Vmax and 
Km parameters� If this information is available, 
the inhibition experiments are best done with a 
concentration of substrate at or below the Km, 
in order to observe the effect of the inhibitor on 
the ratio Vmax/Km, which is the parameter usu-
ally most relevant to human drug metabolism� If 
the Vmax and Km information is not available, an 
alternative is to select a substrate concentration 
near that expected for the in vivo plasma concen-
tration ( Cp,max or less)� Modern mass spectrom-
etry methods have been very useful in pushing 
the sensitivity limits�

With regard to inhibitor concentration, ide-
ally a range of concentrations would be used� 
However, if a single concentration of the diag-
nostic inhibitor is used, it must be selected on 
the basis of previous literature because nonselec-
tive effects are often observed� For instance, α-
naphthoflavone ( α-NF) can inhibit P450s other 
than P450 1A2 at high concentrations [152], and 
azoles inhibit many P450s at higher concentra-
tions [85]� Use of a titration approach (concentra-
tion dependence) has merit [150]�

Another general issue is the selection of a pro-
tein concentration� Microsomal proteins can bind 
drugs in a nonselective manner and effectively 
lower the free concentration of substrate or in-
hibitor [153, 154], which can influence the inter-
pretation of results� Another point is that the con-
centration of the P450 of interest should be less 
than that of the drug and the inhibitor, in order 
for the basic assumptions about steady-state ki-
netics to apply (and for the reaction to remain 
linear during the incubation time, although some 
of the inhibitors are mechanism based and the 
loss of activity will be time dependent, requiring 
preincubation)� A corollary of these latter points, 
which also apply to the other approaches that fol-
low, is that having a very sensitive assay method 
is very desirable� Thus, methods such as high-
performance liquid chromatography–mass spec-
trometry (HPLC–MS) have gained popularity�

Finally, the choice of an organic solvent (to 
deliver the substrate) is an issue� Most P450 

substrates are hydrophobic� Ideally the substrate 
should be dissolved in H2O or very little organic 
solvent, but this may not be possible with many 
drugs� Several examinations of the effects of 
individual solvents on human P450s have been 
published [155, 156]� Some very hydrophobic 
substrates (e�g�, cholesterol) should be delivered 
in cyclodextrins [157]�

In principle, the extent of inhibition of a re-
action by a P450-selective inhibitor indicates the 
fraction of that reaction attributable to that P450� 
For instance, if a 1 µM concentration of quinidine 
(a P450 2D6 inhibitor) inhibits 50 % of a reac-
tion, then 50 % of that reaction may be attributed 
to P450 2D6� To obtain a more global view than 
possible with a single liver sample, a pooled set 
of microsomes (e.g., from ≥ 10 samples, balanced 
on the basis of liver weight or protein) is gener-
ally used for the inhibition assays� However, if 
one desires to examine the differences among in-
dividuals in terms of the contribution of a P450, 
then doing several experiments with individual 
liver samples is the approach to use�

9.5.2  Correlations

Another approach with a set of human tissue mi-
crosomal samples is to measure the new reaction 
of interest in each and attempt correlation with 
rates of marker activities (for individual P450s) 
[25]� Lists are also published in this monograph 
by Correia and Hollenberg [85] and elsewhere 
[158, 159]�

Correlation can be done by plotting the specif-
ic activity for the new reaction versus the marker 
reaction (Fig� 9�11)� In principle, the correlation 
coefficient r2 estimates the fraction of the vari-
ance attributable to the relationship between the 
two activities, i�e�, the fraction of the activity cat-
alyzed by the particular enzyme (assuming that 
all of the marker activity is catalyzed by this en-
zyme)� In some cases, excellent correlations have 
been reported [26, 60]� An alternative method of 
analysis is a Spearman rank plot, which has some 
deficiencies but avoids the overweighting of un-
usually high or low values [27]�

Although the approach works well when high 
correlation coefficients are generated, the method 
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is less useful when several P450s contribute to a 
reaction, i�e�, r2 < 0�4� The results should, in all 
cases, be considered in the context of results ob-
tained with other approaches�

9.5.3  Antibody Inhibition

The points raised in the above section, Inhibitors, 
apply to antibodies as well� Antibodies are used 
to inhibit activities in human liver (or other tis-
sue) microsomes and are of several general types: 
(1) polyclonal antibodies raised against purified 
animal P450s, (2) polyclonal antibodies raised 
against purified human P450s, (3) monoclonal 
antibodies raised against purified human P450s, 
(4) polyclonal antibodies raised against peptide 
fragments of P450s, and (5) antibody phage dis-
play library antibodies selected for recognition of 
individual P450s�

At this time, almost all antibodies raised 
against intact P450s have been generated using 
recombinant P450s (or against peptides), in con-
trast to early work in the field with P450s iso-
lated from liver and other tissues� Another point 
to make is that not all antibodies inhibit catalytic 
activity� Further, specificity in one immunochem-
ical assay (e�g�, electrophoretic/immunoblotting) 
does not necessarily implicate specificity in an-
other (immunoinhibition)�

Three points should be made in designing im-
munoinhibition experiments� (1) The concentra-
tion of antibody should be varied and increased 
to the point where the extent of inhibition is 
constant� (2) A nonimmune antibody should be 
used as a control, using the same concentrations 
as with the antibody raised against the P450� (3) 
The antibody should be shown not to inhibit reac-
tions known to be attributable to other P450s� Im-
munoglobulin G fractions are generally preferred 
in that they produce less nonspecific inhibition 
than crude preparations such as sera� Polyclonal 
antibodies can vary in their specificity and titer 
from one animal to another and from one bleed to 
another, so constant properties cannot necessarily 
be assumed� In principle, monoclonal antibodies 
and antibodies eluted from phage display librar-
ies should not vary (among individual prepara-

tions), although this has not always been the case 
with monoclonals�

In general, antibodies are often selective for 
individual P450 families/subfamilies, e�g�, 1 
versus 2A versus 2B versus 2C, etc�, but cross-
reaction among families can be detected, and in 
some cases the (P450) sites of cross-reactivity 
have been identified [160]� Achieving selectiv-
ity among individual P450 subfamily members 
(e�g�, P450 3A4 versus 3A5 versus 3A7) is more 
difficult� With polyclonal antibodies, this can be 
achieved by cross-absorption [161]; with mono-
clonals and phage display libraries, this can be 
done by selection� The point should be made that 
any selectivity demonstrated among classes of 
animal P450s (e�g�, rat P450 families) cannot be 
assumed to carry over to human P450s�

Anti-peptide antibodies have become popular 
in recent years and have two major advantages: 
(1) peptides can be synthesized and readily puri-
fied by HPLC, avoiding the need to express and 
rigorously purify P450 proteins (although dem-
onstration of purity by HPLC, capillary electro-
phoresis, and mass spectrometry is still in order), 
and (2) peptides can be selected for use as anti-
gens by sequence comparisons, favoring specific 
regions�

Phage display antibody libraries are relatively 
new and have been used in a few P450 appli-
cations to date [162]� These have a number of 
advantages, including potential selectivity due 
to the large number of potential antibodies in li-
braries, the ability to avoid animal protocols, the 
immediate availability of libraries (as opposed 
to waiting on animals to develop antibodies), 
the consistency of reproduction of the proteins 
propagated in bacterial systems, and the ability 
to include a second “epitope tag” for recovery�

9.5.4  Demonstration of Reaction with 
Recombinant P450

In early work in this field, this point would have 
been the demonstration of the reaction of inter-
est with an enzyme purified from tissue� Today 
P450 proteins are generally produced in recom-
binant systems and seldom purified from tissue 
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sources� In routine practice in the pharmaceuti-
cal industry, new reactions are examined with a 
battery of the major recombinant human (liver) 
P450s, many of which are available from com-
mercial sources� Systems used for expression 
include bacteria, yeast, baculovirus (-infected 
insect cells), and mammalian cells� The P450 
need not be purified for these comparisons but 
must have suitable provision for NADPH-P450 
reductase in a crude system (and cytochrome b5 
in certain cases)�

Usually activity results obtained with several 
of the major P450s are compared to each other 
and to those obtained with tissue microsomes, 
in order to put the work in context� Ideally as-
says are done at several substrate concentrations 
and the parameters kcat ( Vmax) and kcat/Km are ob-
tained� These values should be normalized on the 
basis of P450 concentration, in that any values 
based on mg protein for the expression system 
cannot be used for comparisons with tissue mi-
crosomes� In principle, the kcat (total P450 basis) 
should be at least as high for the recombinant 
reaction than the tissue microsomes� A more re-
alistic way to make a comparison is to immuno-
quantify the amount of the particular P450 in the 
tissue microsomes and then use this value in cor-
recting the microsomal kcat for comparison to the 
recombinant system� The matter of scaling these 
parameters to generate predicted microsomal (or 
in vivo) rates from in vitro experiments with re-
combinant enzymes is not trivial, but there has 
been considerable progress in this area and there 
is commercial software in wide use [163]�

9.6  Interindividual Variation

9.6.1  Genetic

Variability in patterns of drug metabolism has 
been recognized for some time, even before 
the discovery of P450s� For instance, the field 
of pharmacogenetics had been identified by the 
1950s [44, 164] and the early work of Remmer 
[2] showed the influence of barbiturates upon 
drug metabolism� Further, a number of congeni-
tal defects in steroid metabolism were known and 

some could be attributed to alterations in specific 
hydroxylations [165]� Much of the subsequent 
work on inducibility has been done in experimen-
tal animal models [1] and, later, in cell culture�

In the 1960s and 1970s, a number of accounts 
appeared describing variations in rates of metabo-
lism of drugs in human liver biopsy samples [28]� 
The first characterization of a monogenic vari-
ability in a human drug-metabolizing P450 was 
the work of Smith with debrisoquine [11], as well 
as Tucker and Lennard [12], which was paral-
leled by the work of Dengler and Eichelbaum on 
sparteine [13]� This polymorphism was first de-
scribed in the context of EMs and PMs (Fig� 9�4) 
[62, 63]� These polymorphisms were first studied 
at the level of the phenotype, i�e�, pharmacoki-
netics and in some cases unusual responses to 
drugs due to reduced metabolism [166]� The area 
of pharmacogenetics (now expanded to “pharma-
cogenomics”) was facilitated by the identifica-
tion of the P450 enzymes involved in the drug 
metabolism phenotypes and particularly by the 
development of molecular biology, which al-
lows the precise characterization of genetic dif-
ferences between individuals� The majority of 
the allelic differences are SNVs, or single base 
changes� As anticipated from previous knowl-
edge of pharmacoethnicity, many of these SNVs 
and polymorphisms show racial linkage� (Again, 
a polymorphism is generally defined as a ≥ 1 % 
frequency of an allelic variant in a population; 
below this frequency, the term “rare allele” is 
applied or, in the case of a very detrimental al-
lele, a mutant or “inborn error of metabolism�” 
Therefore, as mentioned earlier, the terms “vari-
ant” and “SNV” will be used to include both, not 
distinguishing for frequency�)

The debrisoquine polymorphism is now well 
understood in terms of P450 2D6 and has been 
a prototype for research in this area� The char-
acterization of the gene [34] yielded a basic un-
derstanding of the PM phenotype� The incidence 
of the PM phenotype is ~ 7 % in most northern 
European populations, with different phenotypic 
incidence (and SNVs) in other racial groups [62, 
67, 167, 168]� More than 160 allelic variants are 
now known, and 98 % of the PMs in northern Eu-
ropean populations can be accounted for by four 
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variant alleles [67, 169]� A nomenclature system 
has been set up for P450 alleles (using the suffix-
es *1 (where *1 is the “wild type,” or most com-
mon gene), *2, *3…) and is maintained at http://
www�cypalleles�ki�se� Reference to this database 
will be made with most of the individual P450s�

Several P450 2D6 allelic variants clearly lead 
to the PM phenotype, for a variety of reasons� A 
relatively rare case is a gene deletion (*5) [170]� 
The most common (Caucasian) PM phenotype 
is an SNV that leads to aberrant RNA splicing 
(i�e�, in splice site) and no mRNA or protein (*4)� 
Other alleles involve deletions (e�g�, *5), frame-
shifts (e�g�, *3A), and coding for proteins with 
either intrinsically low catalytic activity or insta-
bility (reduced half-life)� These general patterns 
have been seen in other P450s (and other genes)� 
In addition to the EM and PM phenotypes, there 
is also a “very extensive metabolizer” (or “ultra-
metabolizer,” UM) phenotype (Fig� 9�4), due to 
gene duplication (*2XN)� A Swedish family was 
identified with 13 gene copies, in principle lead-
ing to 13 times more enzyme [63]� The level of 
hepatic P450 2D6 and a parameter of in vivo 
debrisoquine metabolism (the urinary metabolic 
ratio = urinary debrisoquine/4-hydroxydebriso-
quine) vary ~ 104-fold among people (Fig� 9�4)� 
With P450 2D6 and several other P450s, the al-
leles describing the most commonly observed 
high and low levels of metabolism have been de-
scribed, but the kinetic parameters for many of 
the alleles have not been determined by heterolo-
gous expression and measurements� This is still 
the general case with most of the human P450s� 
P450 2D6 is regulated by a hepatic nuclear factor 
(HNF) element [171] but is not considered to be 
inducible by xenobiotics� With many other P450s, 
there is regulation and variability due to noncod-
ing region SNVs, levels of inducers consumed, 
and interactions between P450s and transporters 
such as P-glycoprotein [66, 172] may influence 
the phenotype�

Although the level of P450 2D6 may have a 
dramatic effect on the metabolism of certain drugs 
(Fig� 9�4), no other striking biological changes 
have been reported in PMs (but see some of the 
epidemiology under Sect� 7�12�7)� This appears to 
be the general case for many of the hepatic P450s 

primarily involved in the metabolism of xenobi-
otics, and few observable physiological effects 
have been reported in transgenic mice in which 
these genes have been deleted [128]� As pointed 
out earlier, however, deficiencies in some of the 
steroid-hydroxylating P450s can be very debili-
tating or lethal [145, 165]� In general, the varia-
tion in the levels of these “more critical” P450s 
is limited in most of the population, compared to 
the xenobiotic-metabolizing P450s in which an 
order of magnitude variation is not unusual [52]�

Another general point to make is that, in con-
trast to some animal models [173], human P450 
expression shows little if any gender differences 
[64]�

9.6.2  Environmental Variation

Interindividual variability of P450 activity can be 
due to genetics or to environmental factors, i�e�, 
anything that is not genetic� These factors also 
give rise to intraindividual variations, which can 
be equally important in predicting how an indi-
vidual will respond to a drug� These variations 
may be caused by drugs, food, tobacco, alcohol, 
and other influences� The three major issues here 
are enzyme induction, downregulation, and inhi-
bition� These topics are dealt with elsewhere in 
the book and will only be discussed briefly, in-
sofar as they relate to human P450s� One other 
topic, enzyme stimulation, is also discussed 
below�

When developmental differences are seen in 
humans, they tend to be relatively soon after birth 
(e�g�, P450 3A4, 3A7 [174, 175]), and changes 
in expression in the elderly have not been very 
dramatic [176–178]�

9.6.2.1  Induction
Induction is a process that is relatively common 
among the P450s involved in the oxidation of xe-
nobiotic chemicals (second column of Table 9�1)� 
The overall process can be seen as an adaptive 
one, at least in some cases, in which a person 
responds to a chemical in the environment by 
synthesizing an enzyme to metabolize that com-
pound or a set of similar ones�
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The general model is one of transcriptional 
regulation, based on a paradigm developed for 
the steroid nuclear receptor family (Fig� 9�13), 
which is considered in more detail in Chap� 10� 
A ligand is bound to a cytosolic receptor, which 
facilitates heterodimer formation with another 
protein� This complex then translocates to the 
nucleus and binds to a specific nucleotide se-
quence (5ʹ) upstream of the P450 structural gene. 
Coactivator proteins are often recruited to the 
complex� This process has the net effect of chro-
matin remodeling and opening the promoter site 
to allow RNA polymerases binding and initiation 
of transcription�

Several major systems are known to be in-
volved with (human) P450s� The AhR system 
involves the AhR and AhR nuclear transporter 
(ARNT) proteins, regulating P450s 1A1, 1A2, 
1B1, and 2S1� The constitutive androgen recep-

tor (CAR) dimerizes with the retinoid X receptor 
(RXR), which is loaded with retinoic acid� CAR 
can bind a strong ligand (e�g�, 1,4-bis[2-(3,5-
dichloropyridyloxy)]benzene (TCBOPOP)) but 
usually acts without a ligand� Recent evidence 
indicates that phenobarbital, the classic barbitu-
rate inducer, binds to the epidermal growth factor 
receptor (EGFR), leading to a cascade of extra-
cellular signal-regulated kinase (ERK) phos-
phorylation, and then dephosphorylation of CAR 
(at Thr-38) leads to transport of the CAR–RXRα 
complex to the nucleus and gene activation 
[179]� This process induces subfamily 2C and 
2B P450 genes, plus possibly some others� The 
pregnane X receptor (PXR) binds a number of 
steroids, drug, and other ligands and, like CAR, 
heterodimerizes with retinoid-activated RXRα, 
moves to the nucleus, and activates the transcrip-
tion of P450 subfamily 3A genes, particularly 

Fig. 9.13  Generalized model for regulation of P450 
genes by induction� L ligand, R receptor, R′ partner pro-
tein for heterodimer of R, Coactiv coactivator, RNA pol 

RNA polymerase� (With kind permission from Springer 
Science + Business Media: [149], Fig� 10�6)
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P450 3A4� The peroxisomal proliferator-activat-
ing receptor α (PPARα) binds fatty acids and a 
number of hydrophobic drugs, heterodimerizes 
with retinoid-activated RXRα, and induces P450 
4A11 and 4X1 [180]�

Some of the steroid-oxidizing P450s are regu-
lated by adrenocorticotropic hormone (ACTH) 
and cyclic adenosine monophosphate (AMP) 
pathways [181]�

Evidence has been presented that some P450s 
are regulated at post-transcriptional levels, in-
cluding stabilization of mRNA or protein [182]� 
The regulation of P450 2E1 is extremely com-
plex, at least in animal models [183, 184]� Sev-
eral reports of epigenetic regulation of P450s 
have appeared, including gene methylation (e�g�, 
P450s 2A13, 2E1, 2R1, 5A1, 8A1, 19A1, 24A1, 
27A1, 27B1, 2W1 [185, 186]), microRNAs (e�g�, 
P450s 1B1, 2E1, 3A4, 24A1) [187], and histone 
acetylation (e�g�, P450s 2A13, 2E1, 46A1 [188])�

9.6.2.2  Downregulation of P450s
It should be pointed out that several of the P450s 
can be downregulated by cytokines, and the re-
sult has practical significance in the impairment 
of drug metabolism in individuals with colds or 
flu or who have received vaccinations [189]�

Another phenomenon observed in rat models 
is the downregulation of some constitutive P450s 
by the same chemicals that induce others, e�g�, 
phenobarbital and 3-methylcholanthrene [190]� 
The mechanism of this response is at the tran-
scriptional level [191] but beyond this mecha-
nism remains unknown� Whether this phenom-
enon is operative in humans (in vivo) is also 
unknown�

9.6.2.3  Inhibition
The subject of P450 inhibition is also treated 
separately in this book (Chap� 5) [85], and this 
section is brief, focused on human P450s� A rela-
tively extensive set of P450 inhibitors is now 
available, and many of these can be used in a 
diagnostic way for “reaction phenotyping,” i�e�, 
identifying which P450s catalyze a newly discov-
ered reaction in tissue microsomes (see Sect� 5)�

Inhibition of human P450s is an important 
practical matter on drug discovery/development 

and in clinical practice (Table 9�6) (medicine�
iupui�edu/clipharm/ddis)� P450 inhibition has the 
same effect as a genetic deficiency (attenuation of 
drug metabolism, leading to enhanced pharmaco-
logical response), but can be even more problem-
atic because of temporal changes� For instance, 
some drugs can produce a delayed response for 
various reasons, and the pharmacokinetics of a 
drug (substrate) may vary with time� Another im-
portant point is that not all human P450 inhibitors 
are drugs� For instance, an inhibitor in grapefruit 
(bergamottin) explains the interaction with P450 
3A4 [88]� A number of herbal medicines contain 
P450 inhibitors that attenuate drug metabolism 
[192]�

9.6.2.3.1 Reversible Inhibitors
Competitive inhibitors are common� They act by 
binding in the active site, in competition with the 
substrate� For instance, two substrates of P450 
2D6 would be expected to compete for access to 
the area surrounding the iron atom� This behavior 
is described by the simple equation

Noncompetitive inhibition is the result of an en-
zyme interaction of a ligand at a site other than 
the substrate-binding site� The equation

indicates that the Km will not change but the Vmax 
( kcat) will�

In uncompetitive inhibition, the inhibitor com-
bines with only the ES form of the enzyme, and 
the inhibitor constant KI is based on the interac-
tion of the inhibitor with this complex,

so that
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and in a classic Lineweaver–Burk double recip-
rocal plot (1/v versus 1/[S]), two parallel lines are 
obtained, i�e�, both Vmax and KI change [193]�

In practice, the most common type of re-
versible inhibition relevant to human P450s 
and drug metabolism is the competitive mecha-
nism� Uncompetitive inhibition is very rare; one 
(non-P450) example is the inhibition of steroid 
5α-reductase by the drug finasteride [194]� An 
example of noncompetitive inhibition is that of 
cholesterol blocking the oxidation of nifedipine 
and quinidine by P450 3A4, even though choles-
terol is also a substrate for the enzyme [157]�

9. 6. 2. 3. 2 Irreversible Inhibition
For several reasons these mechanisms are com-
monly seen in P450 reactions� In a sense, they are 
more problematic than competitive inhibitors, in 
that the inhibition is more persistent, i�e�, the en-
zyme is generally inactivated and activity will 
not be restored until new synthesis is completed�

Metabolite Intermediates
Metabolite intermediate complexes are formed 
by the oxidation of amines to C-nitroso com-
pounds or from oxidation of methylene dioxy-
phenyl compounds to carbenes [195]� These bind 
extremely tightly to ferrous P450 iron� Both of 
the bound forms are characterized by their 455-
nm absorption bands, which can be produced in 
in vitro experiments� A classic example is seen 
with troleandomycin (TAO) and P450 3A4 [196]� 
These complexes can be disrupted by K3Fe(CN)6 
oxidation of the iron (in vitro)�

Covalent Binding
Covalent binding, where σ chemical bonds are 
formed, is the result of the generation of electro-
philic species in the course of P450 oxidation of 
compounds� The binding may occur to the heme, 
the apoprotein, or both (i�e�, cross-linking, a rare 
but documented event [197, 198])� A number of 
chemical moieties are notorious for such mech-
anism-based inactivation, including acetylenes, 
some terminal olefins, and cyclopropylamines 
[199]� The destruction of heme is probably due 
to very transient species that are generated dur-
ing catalysis and do (usually) not leave the en-

zyme� In many cases, the covalent binding to 
protein is restricted to the P450 that activates the 
compound, which is one of the marks of an en-
zyme intermediate� However, in some cases there 
may be reactions with the P450 and with other 
proteins� In this case, the reactive products are 
long-lived and there is concern not only about the 
(P450) enzyme inhibition but also potential tox-
icity due to modification of other proteins�

Along with a chapter on P450 inhibition 
(Chap� 5) [85], inhibitors of each human P450 
are discussed in the appropriate Sects� (7�X�6) of 
this chapter (X indicates each of the 57 P450s)�

9.6.2.4  Stimulation
Enzyme stimulation is an increase in enzyme 
activity resulting directly from the addition of a 
chemical� This is a somewhat unusual phenom-
enon in enzymology, usually relegated to classi-
cally allosteric systems [200]� The concept is that 
a chemical stimulates the catalytic activity of an 
enzyme� This cooperativity may be considered in 
two aspects� One is homotropic cooperativity, in 
which a chemical stimulates its own biotransfor-
mation� This is usually manifested in sigmoidal 
(S-shaped) plots of v versus S� Heterotropic co-
operativity is the stimulation of catalytic activity 
by direct addition of a different compound�

Both of these phenomena have been observed 
with P450s in vitro� Heterotropic stimulation was 
reported with animal-derived P450 systems [201, 
202] and then human systems [203]� Homotropic 
cooperativity was reported later, actually first 
with human systems [204, 205]� Homotropic co-
operativity can be shown in hepatocytes [206], 
but it may be unrealistic to observe this phenom-
enon in vivo� Evidence for in vivo cooperativity 
comes from a number of studies with experimen-
tal animals [202, 207]� Whether this phenomenon 
presents itself clinically is unknown� It would not 
generally be desirable in that the effects on phar-
macokinetics would be rather unpredictable�

At least four pieces of evidence suggest that 
such behavior is possible: (1) homotropic coop-
erativity has been reported in hepatocyte cultures 
[206]; (2) an early experiment with neonatal 
mice (individual P450s unknown) by Conney’s 
group indicated the immediate enhancement of 
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an activity by flavones [202]; (3) the work of 
Slattery and Nelson with rats shows interaction 
between caffeine and acetaminophen that imply 
such behavior [208]; and (4) quinidine enhanced 
the in vivo oxidation of diclofenac in monkeys, 
in a manner consistent with in vitro human work 
[207, 209]� The first example (hepatocytes) re-
lates to homotropic cooperativity, but this would 
be very hard to demonstrate in vivo, except per-
haps in the interpretation of unusual nonlinear 
pharmacokinetics, if induction can be ruled out� 
The other three (in vivo) are cases of heterotropic 
cooperativity� If stimulation does occur in vivo, 
it is a phenomenon that has been very difficult 
to predict (even in vitro), and in the case of P450 
3A4 substrates, the situation would probably be 
further complicated by issues involving P-glyco-
protein behavior (and P-glycoprotein also shows 
cooperativity of its own [210])�

The mechanistic basis of P450 stimulation has 
been studied extensively� Some aspects of P450 
stimulation will be treated under the topic of 
P450 3A4 (Sect� 7�20�4), with which much of the 
work has been done� An open question is whether 
such behavior occurs in humans� Many classic al-
losteric enzymes have distinct regulatory sites for 
binding chemicals, but to date there has been no 
clear evidence for this� One of the early proposals 
was that the second ligand fits into the canoni-
cal active site, near the substrate [205]� This view 
was advanced in a number of indirect studies that 
supported the concept [211, 212]� Although a 
number of different (human) P450s have exhib-
ited cooperative behavior, much of the emphasis 
has been on P450 3A4� This was the first human 
P450 to show heterotropic cooperativity [204, 
205]� In addition, its broad substrate specificity 
allows the examination of more chemicals, both 
substrates and effector molecules� Although there 
had been many postulates of multiple ligand oc-
cupancy in P450 3A4, this was first demonstrat-
ed with X-ray diffraction, i�e�, two ketoconazole 
molecules in P450 3A4 [213]�

The physical presence of two ligands in an ac-
tive site can be readily linked to sigmoidal kinet-
ics if activity towards the substrate is dependent 
upon the presence of two substrates [214]�

Two X-ray structures of P450 3A4 have re-
ported a single steroid molecule bound at a pe-
ripheral site [215, 216], although the relationship 
to function is unclear� Evidence from this labo-
ratory [217, 218] and others [219] has provided 
evidence that binding of at least some substrates 
to P450 3A4 involves rapid binding to a periph-
eral site followed by a slower movement to the 
heme area� Evidence for a similar course of sub-
strate movement has been observed with P450s 
1A2 and 19A1 [214, 220]�

Two-ligand occupancy of a P450 active site, 
with the ligands stacked together, has now been 
observed with bacterial P450s 107 [221] and 
158A2 [222] and human P450s 2C8 [223], 3A4 
[213], and 21A2 [42]� The case that coopera-
tivity is due to multiple-ligand occupancy now 
has physical support, but the question arises as 
to why cooperativity has not been seen in P450s 
that do have two ligands, e�g�, P450 2C8 [223]� 
(With P450 21A2, there was no evidence for co-
operativity but there was for two affinities [42]�)

9.7  Individual Human P450 Enzymes

Each of the 57 human P450 genes/gene products 
will be covered here� Clearly much more infor-
mation is available about some than others� Points 
to be covered with each, when possible, include 
sites of expression and relative abundance, regu-
lation, genetic variation, substrates and reactions, 
structure, inhibitors, and clinical issues� It must 
be emphasized that this chapter is not intended to 
be comprehensive, and the literature accumulates 
rapidly; the reader is encouraged to do further lit-
erature searches for each P450 of interest�

9.7.1  P450 1A1

9.7.1.1  Sites of Expression
The gene has seven exons, and the cDNA region 
is ~ 70 % identical to that of the closest relative, 
P450 1A2� P450 1A1 is expressed in fetal liver but 
not at appreciable levels in adult liver [224–226]� 
P450 1A1 can be induced in primary human he-
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patocyte cultures [227]� The dominance of he-
patic P450 1A2 over 1A1 in vivo may be due to 
preferential induction of P450 1A2 > 1A1 at low 
doses of inducers (a phenomenon established in 
rats [228]) or to the presence of factors in liver 
that are not preserved in hepatocyte cultures�

P450 1A1 is expressed in human lung and was 
partially purified [18]� One estimate of a median 
level of P450 in human lung [229] was 6�0 pmol 
P450 1A1 in nonsmokers’ lungs ( n = 7), 16 pmol/
mg in smokers ( n = 18), and 19 pmol lung pro-
tein in ex-smokers ( n = 7). The variation in levels 
of P450 1A1 is very high (> 100-fold) [18, 229], 
as suggested from earlier work in which only 
benzo[a]pyrene hydroxylation was used as an 
indicator [230]�

P450 1A1 is also expressed in placenta [231] 
and peripheral blood cells (lymphocytes, mono-
cytes) [232], and these tissues have been used in 
many studies� Expression (at least at the mRNA 
level) has been reported in a number of other ex-
trahepatic tissues, including pancreas, thymus, 
prostate, small intestine, colon, uterus, and mam-
mary gland [233]�

Another aspect of P450 1A1 expression in-
volves mitochondria� P450 1A1 has both endo-
plasmic reticulum and mitochondrial-targeting 
domains [234] and distributes into both organ-
elles, utilizing adrenodoxin for functional elec-
tron transfer in the mitochondria�

9.7.1.2  Regulation
The induction of P450 1A1 has been studied ex-
tensively and has been discussed elsewhere in this 
series [235]� Briefly, the AhR resides in the cyto-
sol and, when activated by binding of an appro-
priate agonist, loses the accessory protein Hsp90 
and dimerizes with the ARNT protein, moving to 
the nucleus and interacting with a xenobiotic-re-
sponsive element (XRE) to initiate transcription 
(Fig� 9�13, with R = Ah receptor, R1 = ARNT, and 
L = 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
or other inducer)� A number of details regarding 
this scheme remain to be elucidated, e�g�, roles 
of coactivators, whether an endogenous ligand 
exists, and if so what it is� The list of inducers re-
ported from in vitro studies includes TCDD and 
is quite long� The list of compounds for which in 

vivo evidence of induction is more limited but 
is generally accepted includes cigarette smoke, 
heterocyclic amines, polychlorinated biphenyls 
[236], and some drugs (e�g�, omeprazole [237])�

At least six human AhR genetic variants have 
been identified and found to vary in functional 
activity but surprisingly (based on mouse work) 
only ~ two-fold [238]�

In Michigan Cancer Foundation-7 (MCF-
7) breast cancer cells, regulation of P450 1A1 
(via AhR) is dependent on the Ca2 +/calmodulin/
CaMKIα pathway [239]� Epidermal growth fac-
tor (EGF) has been reported to downregulate 
AhR in human keratinocytes [240, 241]� There 
is also cross talk of AhR systems with the estro-
gen receptor (ER)α [240]� CAR transcriptionally 
activates both P450 1A1 and 1A2 genes through 
a common 5ʹ-flanking region regulatory element 
[242]� Liver X receptor α (LXRα) also regulates 
human P450 1A1 [243]� In (human) HepG2 cells, 
P450 1A1 gene regulation by ultraviolet (UV) 
light (UVB) involves cross talk between AhR 
and the nuclear factor NFκB [244], which also 
has relevance to an inflammatory response [245] 
and possibly humans�

An unusual mechanism of regulation involves 
inhibition of the clearance of an endogenous AhR 
agonist, 6-formylindolo[3,2-b]carbazole (FICZ; 
a tryptophan photodegradation product), as a 
mechanism for activating AhR [246]� Another 
unusual regulatory mechanism, demonstrated 
only in mice thus far, involves activation of 
AhR by modified low-density lipoprotein (LDL) 
[247]� Finally, 1-nitropyrene has been reported 
to stabilize mouse P450 1A1 mRNA via an Akt 
pathway [248]�

9.7.1.3  Genetic Variation
Currently at least 13 alleles are known, plus an-
other seven single nucleotide polymorphisms 
(SNPs) in which the haplotype has not been de-
termined (http://www�cypalleles�ki�se)�

As mentioned earlier, there is also informa-
tion available about genetic variation in the AhR, 
which controls P450 1A1 transcription [238]�

Polymorphism in the inducibility of benzo[a]-
pyrene hydroxylation activity has attracted con-
siderable interest following the early reports of 
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Shaw and Kellerman [108, 109] that the induc-
tion in lymphocytes of smokers can be associated 
with susceptibility to lung cancer� The link to lung 
cancer has been studied extensively, but few gen-
eral conclusions can be reached� Smoking clearly 
induces levels of lung P450 1A1 [111, 229, 249]� 
Some epidemiological investigations have linked 
the *2A ( MspI) and *2B (I462V) polymorphisms 
to lung cancer incidence in Japanese [116], but 
this association has not been reproduced in other 
studies with Caucasians [117, 118]� These two 
alleles are in linkage disequilibrium [119]� Two 
studies with recombinant human P450 1A1 have 
not shown a major difference in any catalytic 
activities due to the substitution at codon 462 
[120, 121]� Although there is a general consensus 
that phenotypic variation in the inducibility of 
P450 1A1 is observed, extensive searches have 
not associated the inducibility with any known 
polymorphisms in the P450 1A1, AhR, or ARNT 
genes [250, 251]�

9.7.1.4  Substrates and Reactions
This enzyme was first explored in the con-
text of an aryl hydrocarbon hydroxylase, using 
fluorescence assays that measure primarily the 
3-hydroxylation of benzo[a]pyrene [107]� (It 
should be noted that the fluorescence assay 
also picks up other fluorescent products, e�g�, 
9-hydroxybenzo[a]pyrene, and that other P450s 
also catalyze the 3-hydroxylation reaction, e�g�, 
P450 2C9 in human liver [252]�) Another clas-
sic model reaction used for P450 1A1 is 7-eth-
oxyresorufin O-deethylation [253, 254], but a 
number of other P450s also catalyze this reac-
tion� Human P450 1A1 oxidizes benzo[a]pyrene 
to a variety of products [255, 256]� Many other 
polycyclic hydrocarbons are substrates for P450 
1A1 and have been studied extensively [257, 
258] (Fig� 9�10)� Some heterocyclic and aro-
matic amines can also be activated by P450 1A1 
(Fig� 9�10) [259]� P450 1A1 does not appear to 
play a major (in vivo) role in the metabolism of 
many drugs, possibly because of its locations of 
expression�

Human P450 1A1 activates aminomethyl-
phenylnorharman, a fusion product of norharman 
[260], but not as well as P450 1A2� P450 1A1 

is involved in the detoxication of the important 
toxic natural product aristolochic acid [261]� 
The EGFR antagonist erlotinib is activated to a 
reactive electrophile by human P450 1A1 [262]� 
Some substituted benzothiazole compounds can 
be activated (quinones, N-hydroxylation) by 
human P450 1A1 [263]�

TCDD and other dioxins can be oxidized (al-
beit slowly) by P450 1A1 enzymes, but rat P450 
1A1 is more active than human P450 [264]� 1-Ni-
tropyrene is deactivated by P450 1A1, to a prod-
uct that does not induce the tumor suppressor p53 
[265]�

Cytochrome b5 has generally been considered 
not to stimulate P450 1A1 [266], but some ex-
amples have been published [267]�

9.7.1.5  Structure
Early work on pharmacophore models for rat 
P450 1A1 was done by Jerina’s group [268]� 
Some homology modeling was done by Lewis 
[269]� The lack of effect of interchanging Val and 
Leu at position 462 has already been mentioned 
[120, 121]�

An X-ray crystal structure of human P450 
1A1 has been published by Scott and her associ-
ates [270]� Because the structure contains α-NF, 
it can be compared directly with the structures 
of the related proteins P450 1A2 [271] and P450 
1B1 [272]� The planar region of α-NF is packed 
flat against the I-helix, with the 2-phenyl substit-
uent oriented towards the iron atom of the heme� 
π–π stacking with Phe-224 was observed [270]�

As in the case of P450 1A2 (Sect� 7�2�5, vide 
infra), α-NF has the site of oxidation (5,6-epoxi-
dation [256]) furthest away from the iron atom 
and the observed P450 1A1 α-NF structure is 
presumably not a catalytically productive com-
plex� Docking studies could place α-NF in a jux-
taposition to explain the oxidation [270] (which 
is known to be slow, but faster with P450 1A1 
than P450 1A2 [256])�

A combinatorial approach has been used to 
“mix” human P450 1A1 and 1A2 to define resi-
dues that contribute to the “identity” of each of 
these two P450s [273]�
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9.7.1.6  Inhibitors
Despite the long interest in this enzyme, the list 
of inhibitors is relatively short, and many in-
hibitors show overlap with P450s 1A2 and 1B1 
[274]� For instance, α-NF is often used as in-
hibitor but is more effective against P450 1A2 
[274, 275]� Another inhibitor is ellipticine [159]� 
1-(1ʹ-Propynyl)pyrene and 2-(1ʹ-propynyl)phen-
anthrene were found to be selective P450 1A1 
inhibitors when compared against human P450s 
1A2 and 1B1 [274]�

More efforts have been made to synthesize 
new inhibitors of P450 1A1 [276]� Several or-
ganoselenium compounds are inhibitors [277], as 
well as flavonoid derivatives [278]� The natural 
product rhapontigenin is a low KI inhibitor of 
P450 1A1 [279]� The furanocoumarin chalepen-
sin is a mechanism-based inactivator of P450 1A1 
[280]� Finally, the endogenous (tryptophan pho-
tolysis product) AhR ligand FICZ ( vide supra) 
is a high-affinity ligand/inhibitor of human P450 
1A1 [246]�

9.7.1.7  Clinical Issues
Because of a rather limited role of P450 1A1 in 
drug metabolism, there are no real pharmacoki-
netic issues� The issue with P450 1A1 is induc-
tion and a possible role in chemical carcinogen-
esis� Work with animal models shows that P450 
1A1 inducers can be cocarcinogens [70, 103]� 
Thus, regulatory agencies have tended to look 
unfavorably at induction of P450 1A1 by poten-
tial drugs in animal models� However, the point 
should be made that there is presently little ex-
perimental or epidemiological evidence to sup-
port this hypothesis, and Ah inducers can afford 
protection from cancer in some animal models 
[103] (Figs� 9�9 and 9�10)�

Very little evidence has been obtained that the 
common genetic variations in human P450 1A1 
have functional consequences with carcinogen 
metabolism, e�g�, Ile-462 versus Val-462 [120]� 
However, genetic variations have been exam-
ined for relationship to overall cancer [281] and 
to breast [282], colorectal [283], lung [284], oral 
[285], and endometrial [286] cancers� The over-
all evidence for relationship in any case is still 
very limited�

9.7.2  P450 1A2

9.7.2.1  Sites of Expression
As mentioned earlier, human P450s 1A1 and 
1A2 both have seven exons and 70 % sequence 
identity in their coding regions� These two genes 
both show similar patterns of regulation by the 
AhR system, but P450 1A2 is essentially only ex-
pressed in the liver [233], probably due to the in-
volvement of HNF in its regulation ( vide infra)� 
Several lines of evidence indicate that the level of 
expression is substantial (Fig� 9�2), ~ 6–13 % of 
the total P450 on the average, with levels varying 
~ 40-fold among individuals (Figs� 9�5 and 9�11)� 
A similar fold variation is seen in the in vivo me-
tabolism of the marker drug caffeine [61]�

One LC–MS proteomic analysis of human 
liver microsomes yielded a mean of 29 pmol 
P450 1A2/mg microsomal protein (range 2�9–
104) [55] while another yielded 11–18 pmol/mg 
microsomal protein [54]�

Occasional reports cite mRNA expression in 
some extrahepatic tissues, e�g�, colon [287]� Ex-
tensive searches have not found expression in 
human lung [233]�

9.7.2.2  Regulation
The variability and inducibility of P450 1A2 
have been recognized for some time, indirectly, 
going back to studies on phenacetin metabolism 
by Conney and his associates [288]� The char-
acterization of P450 1A2 (“P450PA”) as the low 
Km phenacetin O-deethylase [14] led to some in-
terpretation of the earlier results� P450 1A2 was 
shown to be the caffeine N3-demethylase [60], 
and the 40-fold variation in levels of liver P450 
1A2 is reflected in the 40-fold variation in some 
in vivo parameters of caffeine metabolism [61]� 
Some of Vesells’s earlier work on the metabolism 
of antipyrine in twins suggests a role for genetic 
polymorphism in P450 1A2 activity [4], and a 
more recent twin study confirms the strong ge-
netic component of caffeine demethylation [289]�

One complication with genetic polymor-
phism, as with P450 1A1 ( vide supra), is the in-
ducibility� Because of the availability of markers 
of hepatic P450 1A2 function (phenacetin is no 
longer used, due to its carcinogenicity in animal 
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tests, but caffeine and theophylline are), dem-
onstrating in vivo changes in P450 is relatively 
easy to do and the effects are consistently seen, 
at least quantitatively� The mechanism of induc-
tion appears to be similar to that of P450 1A1 
(Fig� 9�13), with expression restricted to the liver 
because of the need for HNFα [290]� An inter-
esting observation made recently in mice is that 
the inducer 3-methylcholanthrene causes a per-
sistent induction (of P450 1A1) in liver, lasting 
beyond the time suggested by pharmacokinetic 
expectations [291]� One interpretation is that a 
P450 1A2-generated metabolite is involved� Fur-
ther details and any relevance to humans remain 
to be established� With animal P450 1A2, one 
mechanism of induction involves protein stabili-
zation, e�g�, by isosafrole-derived products [292]� 
Whether or not this mechanism is relevant in 
humans is unknown� Reported inducers include 
cigarette smoking, charbroiled food (presum-
ably polycyclic hydrocarbons and heterocyclic 
amines), cruciferous vegetables, vigorous exer-
cise [293], and the drug omeprazole (actually a 
metabolite) [294]�

The nuclear receptor LXRα has been found 
to be involved in the regulation of both human 
P450 1A2 and 1A1 [295]� Dehydroepiandros-
terone (DHEA) has been reported to downregu-
late human P450 1A2 through an unusual mecha-
nism, destabilizing the mRNA [296]� P450 1A2 
phosphorylation has also been reported in vivo 
[297]

9.7.2.3  Genetic Variation
Although many early studies in this field dis-
counted a genetic contribution to the variability 
of P450 1A2 levels due to lack of sharp breaks 
in frequency distribution plots [132, 298], the 
gene has been shown to be rather polymorphic/
variable� At least 41 alleles are known [168], and 
five additional SNPs remain to be characterized 
for haplotype (http://www�cypalleles�ki�se)� Of 
these, several have changes in the coding se-
quences that cause amino acid changes� Recent 
work in this laboratory with the expressed coding 
region variants indicates that most do not differ 
more than twofold in their kinetic parameters for 
several assays (phenacetin O-deethylation and N-
hydroxylation of heterocyclic amines), although 
one of the variants (R431W) did not express 
holoprotein in Escherichia coli [299]� In cases 
where analysis has been done, the variations gen-
erally lead to lower activity (http://www�cypal-
leles�ki�se)� An exception is CYP1A2*1F (− 163 
C > A), which is associated with higher induc-
ibility� P450 1A2 is now considered to be more 
variable than previously thought, as evidenced by 
additional sites identified in an Ethiopian study 
[300]�

Genome-wide association studies (GWAS) 
have identified sites in the P450 1A2 and AhR 
genes as being determinants for coffee consump-
tion and induction of P450 1A2 by coffee [301–
303]�

9.7.2.4  Substrates and Reactions
The list of drug substrates is long [51], and only 
a few of the more well-known reactions are listed 
in Tables 9�5, 9�6, 9�7, and 9�9�

The only major endogenous substrates are 
17β-estradiol and estrone (2-hydroxylation, with 
some 4- and 16α-hydroxylation)� The physiolog-
ical relevance of this reaction is unknown, par-
ticularly because of the wide variation in levels 
of P450 1A2 (this reaction is also catalyzed by 
other P450s, e�g�, 3A4 [311])� Induction of P450 
1A2 and 2-hydroxylation has been proposed as a 
means of preventing oxidation of 17β-estradiol to 
the potentially more reactive 4-hydroxy product 
[312, 313]�

Table 9.9  Some drug substrates for human P450 1A2a

Druga Reference
Acetaminophen (3ʹ) [304]
Antipyrine (4,3-methyl) [305]
Bufuralol (1,4) [306]
Caffeine (3) [60]
Clozapine [67]
Olanzapine [67]
Ondansetron (7,8) [307]
Phenacetin [14]
Tacrine [308, 309]
Theophylline (1,3,8) [310]
a Site of oxidation indicated in some cases� See also Ren-
dic [51]
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P450 1A2 is prominent among the human 
P450s involved in carcinogen bioactivation [99]� 
Many carcinogens are substrates, particularly 
aromatic and heterocyclic amines (Table 9�8, 
Figs� 9�9 and 9�10)� Other carcinogens shown to 
be substrates include polycyclic hydrocarbons, 
nitropolycyclic hydrocarbons, and some N-ni-
trosamines [314]� One of the most relevant car-
cinogens is aristolochic acid, a causative agent in 
human nephropathy and urothelial cancer [315]�

Although P450 1A2 is not generally consid-
ered to be a P450 stimulated by cytochrome b5 
[266], it has been reported that cytochrome b5 
can shift the balance of ellipticine from detoxica-
tion to bioactivation [267]�

Chemical mechanisms of P450 1A2 reactions 
have been considered, particularly for N-oxy-
genation� A classical view involves the so-called 
compound I (FeO3 +) entity, acting via 1-electron 
oxidation followed by oxygen rebound [316, 
317]� A deficiency of this model is that electron-
withdrawing groups did not perturb N-oxygen-
ation of a series of N,N-dimethylanilines [317], 
in contrast to N-dealkylation (which showed 
a negative ρ value in Hammett analysis) [317–
319]� Other mechanisms have been proposed 
[320], including a recent “anionic” intermediate 
model based on theoretical studies [321]�

9.7.2.5  Structure
In 2007, Johnson and his associates [271] re-
ported an X-ray crystal structure of human P450 
1A2 complexed with α-NF� That structure may 
be compared with the subsequently published 
structures of P450 1A1 [270] and 1B1 [323], 
which also contain the same ligand� P450 1A2 
has a compact, closed active site that is appropri-
ate for relatively large plasma molecules� In the 
published structure, as with P450 1A1 [270], the 
site of the α-NF that is oxidized (to the 5,6-ep-
oxide is furthest away from the heme iron [214, 
256])� (However, the rate of oxidation is very 
slow and may reflect the tendency to bind in an 
unproductive conformation�) The issue of co-
operativity will be discussed later under P450 
3A4� Cooperativity has not been reported for the 
human P450, but behavior of the rabbit ortholog 
has been interpreted in the context of multiple, 

overlapping binding sites [214, 324]� Docking 
studies suggest that two molecules of pyrene (or 
other small ligands) can be accommodated in the 
P450 1A2 site [214, 325] (Fig� 9�14)�

9.7.2.6  Inhibitors
Several human P450 1A2 inhibitors are known 
from clinical work, including furafylline (mecha-
nism based) [326] and fluvoxamine� α-NF is a 
readily commercially available and strong inhibi-
tor of human P450 1A2 ( KI ~ 6 nM [274]) for in 
vitro work� A number of polycyclic acetylenes 
are potent inhibitors of P450 1A2 [274]� With 
rat P450 1A2, TCDD and some polyhalogenated 
biphenyls are strong inhibitors, but these stud-
ies have not been extended to human P450 1A2 
[327]�

The multikinase inhibitor axitinib is also a po-
tent inhibitor of human P450 1A2 (IC50 0�1 µM) 
[328]� Some 7-ethynylcoumarin inhibitors have 
been synthesized that are selective inhibitors of 
human P450 1A1 and 1A2 [329]� Other ethinyl 
derivatives and some natural products also selec-
tively inhibit the three human P450s in family 1 
[274, 278]

9.7.2.7  Clinical Issues
Some drug interactions have been reported� An 
older example is that of low activity towards 
phenacetin favoring a potentially toxic secondary 
pathway, deacetylation followed by quinonei-
mine formation and methemoglobinemia [96]� 
Furafylline was a drug candidate but was never 
developed because of its strong P450 1A2 inhi-
bition and interference with caffeine metabolism 
[330]� High levels of P450 1A2 activity have also 
been associated with ineffectiveness of theophyl-
line therapy (for asthma) [331, 332]�

The other concern about P450 1A2 is the same 
discussed earlier for P450 1A1, the cocarcino-
genic effect� In this regard, there is some epide-
miological evidence that high P450 1A2 activ-
ity (measured as in vivo caffeine metabolism) is 
associated with enhanced risk of colon cancer, 
although the effect was not seen in the absence 
of high N-acetyltransferase activity and high con-
sumption of charbroiled meat [132]�
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Some evidence has been reported that P450 
1A2 genetic variants can be correlated with lung 
cancer incidence [333]�

In addition to the caffeine metabolism method 
of noninvasive phenotyping [61], a [13C]-meth-
acetin breath test has been reported [334]�

9.7.3  P450 1B1

9.7.3.1  Sites of Expression
P450 1B1 was originally discovered in keratino-
cyte cultures in a search for new dioxin-inducible 
genes [71] and in work on adrenals in animal 
models [335]� In contrast to P450 1A1 and 1A2 
(seven exons), the P450 1B1 gene has only three 
exons and is located on chromosome 2 instead of 
15 [336]� Although most of the detailed studies of 
tissue-specific expression have been done at the 
mRNA level and not protein, strong responses 

are seen in fetal kidney, heart, and brain, in that 
order [259]� In adults (human), there is little de-
tectable expression in liver but expression in kid-
ney, spleen, thymus, prostate, lung, ovary, small 
intestine, colon, uterus, and mammary gland 
[259]� Many of these tissues are of particular in-
terest because of the tumors that develop there� 
Immunochemical staining of P450 1B1 has been 
reported in a variety of different malignant tu-
mors [337]�

The level of expression (of the protein) 
in human lung has been estimated to be at the 
level of ~ 1 pmol/mg microsomal protein in non-
smokers and 2–4 pmol/mg microsomal protein 
in smokers, levels an order of magnitude lower 
than for P450 1A1 [229]� These low values may 
explain the lack of immunostaining in (non-
tumor) tissues reported by Murray et al� [337]� 
Specific values for levels of expression in tissues 
other than lung have not been published� Traces 

Fig. 9.14  Docking of two pyrene molecules into the active site of human P450 1A2 [214]� Pyrene molecules are in 
green, and the heme is at the bottom of the figure
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of P450 1B1 mRNA were found in human liver 
using real-time polymerase chain reaction (PCR), 
but the protein was undetectable within the limits 
of sensitivity [338]�

The eye is an important site relevant to the 
glaucoma associated with loss of activity alleles 
(Sect� 7�3�7, vide infra)� In the eye (human), P450 
1B1 mRNA is present at a high level in the iris 
and ciliary body and at lower levels in the cor-
nea, retinal pigment epithelium, and retina [127, 
339]� P450 1B1 protein is absent in the trabecu-
lar network but present in nonpigmented ciliary 
epithelium, corneal epithelium and keratocytes, 
both layers of the iris pigmented epithelium, and 
retina [127, 339]�

P450 1B1 expression (at the protein level) 
has been detected in human lungs and is higher 
(1�8 pmol/mg microsomal protein) in smokers 
[229]� The level was even higher (4�4 pmol/mg 
microsomal protein) in ex-smokers�

It has recently been demonstrated that pro-
cessing of P450 1B1 by a cytosolic serine pro-
tease activates a mitochondrial-targeting signal 
of P450 1B1 and leads to mitochondrial localiza-
tion and activity, where functional activity results 
from coupling with the adrenodoxin electron de-
livery system [340]�

9.7.3.2  Regulation
In vitro experiments show the inducibility of 
P450 1B1 in patterns expected for an Ah-respon-
sive gene, which is one way in which the gene 
was found [71]� Unlike P450 1A1 and particular-
ly P450 1A2 ( vide supra), there is limited direct 
evidence for inducibility of human P450 1B1 in 
vivo because of the low, extrahepatic expression 
and the lack of a diagnostic probe drug� Although 
the expression of P450 1B1 is driven by the AhR 
system, additional factors must be involved be-
cause of the known tissue and cell line selectivity 
of expression� For instance, major differences are 
seen between HepG2, MCF-7, and ACHN cells 
(of liver, breast, and kidney tumor origin, re-
spectively) [336]� With the information available 
today, one would expect the gene to be induced 
(in extrahepatic tissue) by the compounds that in-
duce P450s 1A1 and 1A2�

In addition to the AhR regulation, the human 
P450 1B1 gene is also regulated by estrogens via 
the ER [341]� Human P450 1B1 is also regulated 
by microRNA [342]�

9.7.3.3  Genetic Variation
Levels of P450 1B1 in human lung vary by at 
least one order of magnitude [229]� An interest-
ing observation is that a termination variant of 
P450 1B1 is strongly associated with glaucoma 
[127, 343]� Other polymorphisms of (human) 
P450 1B1 are known and are predominantly in a 
set of haplotypes involving four variations, Arg/
Gly-48, Ala/Ser-119, Val/Leu-432, and Asn/Ser-
453� Assays involving the metabolism of 17β-
estradiol and polycyclic hydrocarbons by these 
recombinant P450 1B1 variants show some vari-
ations but have not been particularly dramatic 
(reviewed by Shimada et al� [129])�

At this time, the http://www�cypalleles�ki�se 
website shows 26 allelic variants of P450 1B1, 
plus six additional ones where the haplotype 
has not been determined� The number of allelic 
variants listed in http://www�cypalleles�ki�se is 
an underestimate, in that many more have been 
reported to be associated with glaucoma (at least 
82) [339]� The functional effects on some of the 
coding sequence variants have been determined 
[129, 344] but are not particularly strong ( vide 
supra)� There is considerable interest in genetic 
variations of P450 1B1 in the context of cancer 
and glaucoma (Sect� 7�3�7, vide infra)�

9.7.3.4  Substrates and Reactions
Human P450 1B1 has never been purified from 
tissue, and all of our information has come from 
the protein expressed in heterologous systems� 
7-Ethoxyresorufin O-deethylation can be used 
as a model reaction [345]� The catalytic activity 
of P450 1B1 is intermediate between P450s 1A1 
and 1A2 [274]� Some other model reactions can 
be used as well [345]�

Much of the interest in P450 1B1 has been be-
cause of its ability to activate a very broad spec-
trum of chemical carcinogens, including polycy-
clic hydrocarbons and their oxygenated deriva-
tives, heterocyclic amines, aromatic amines, and 
nitropolycyclic hydrocarbons [259] (Table 9�10, 
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Substrate Reference
Polycyclic aromatic hydrocarbons
Benzo[a]pyrene [274]
Benzo[a]pyrene-4,5-diol [259]
(+) Benzo[a]pyrene-7,8-diol [259]
(−) Benzo[a]pyrene-7,8-diol [259]
Dibenzo[a, l]pyrene [344]
Dibenzo[a, l]pyrene-11,12-diol [259]
Benz[a]anthracene [274]
Benz[a]anthracene-1,2-diol [259]
Benz[a]anthracene-cis-5,6-diol [259]
7,12-Dimethylbenz[a]anthracene [259]
7,12-Dimethylbenz[a]anthracene-3,4-diol [259]
Benzo[c]phenanthrene-3,4-diol [259]
Fluoranthene-2,3-diol [259]
Benzo[b]fluoranthene-9,10-diol [259]
Chrysene-1,2-diol [259]
5-Methylchrysene [344]
5-Methylchrysene-1,2-diol [259]
5,6-Dimethylchrysene-1,2-diol [259]
Benzo[g]chrysene-11,12-diol [259]
6-Aminochrysene-1,2-diol [259]
Heterocyclic amines
MeIQ [259]
MeIQx [259]
IQ [259]
Trp-P1 [259]
Trp-P2 [259]
PhIP [259]
Aromatic amines
2-Aminoanthracene [259]
2-Aminofluorene [259]
4-Aminobiphenyl [259]
3-Methoxy-4-aminoazobenzene [259]
o-Aminoazotoluene [259]
6-Aminochrysene [259]
Nitropolycyclic hydrocarbons
1-Nitropyrene [346]
2-Nitropyrene [259]
6-Nitrochrysene [259]
2-Nitrofluoranthene [346]
3-Nitrofluoranthene [346]
6-Nitrobenzo[a]pyrene [346]
1,8-Dinitropyrene [346]
1-Aminopyrene [346]
Estrogens
17β-Estradiol [347]
Estrone [348]

Table 9.10  Some carcinogens activated by human P450 1B1 
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Fig� 9�10)� This broad specificity of human P450 
1B1 in activating aryl and heterocyclic amines, 
polycyclic hydrocarbons, and other carcinogens 
has been reviewed elsewhere [99, 259, 349–351]�

Of particular interest is the observation that 
human P450 1B1 is at least as active as P450 
1A1 in the conversion of the classic carcinogen 
benzo[a]pyrene to the 7,8-dihydrodiol, the first 
step in the formation of the (7,8) diol (9,10) ep-
oxide [352]� In general, it would appear that the 
rodent P450 1B1 enzymes have similar catalytic 
specificity as human P450 towards carcinogens, 
from the available information [353]� If this is a 
valid view, then the observation that P450 1B1-
knockout mice do not form tumors when admin-
istered 7,12-dimethylbenz[a]anthracene is of 
particular importance [106]�

One of the interesting findings with human 
P450 1B1 is that this enzyme is an efficient cata-
lyst of 17β-estradiol hydroxylation and that the 
pattern is for 4- > 2-hydroxylation [311, 347, 
354]� This pattern is the opposite seen for P450s 
1A2 and 3A4 (2- > 4-hydroxylation) [311, 355] 
and is of significance because 4-hydroxyestra-
diol is chemically more reactive with oxygen and 
also more likely to oxidize (to an o-quinone) and 
bind DNA [356]� Thus, 4-hydroxyestrogens are 
considered to be candidates for causing estrogen-
dependent tumors [357]� However, mouse P450 
1B1 preferentially catalyzes estrogen 2-hydrox-
ylation compared to 4-hydroxylation, in sharp 
contrast to human P50 1B1 [353], providing a 
potentially important difference with the human 
enzyme� This apparent lack of conservation of se-
lectivity has relevance in use of mouse (and rat) 
models in some of the biology, e�g�, the human 
glaucoma mentioned earlier [127, 343]�

9.7.3.5  Structure
Johnson and his associates [272] reported an 
X-ray crystal structure of human P450 1B1 
bound to α-NF� The structure can be compared 
directly with that P450 1A2 [271] and with P450 
1A1 [270] with the same ligand bound� Both 
P450s 1A2 and 1B1 have narrow active site cavi-
ties, explaining the preference for flat aromatic 
substrates� A distortion of helix F places the resi-

due Phe-231 in position for π–π stacking with α-
NF [272]�

Nishida et al� [358] reported that mutagenesis 
of Val-395 of human P450 1B1 to Leu changed 
the regioselectivity of 17β-estradiol hydroxyl-
ation from the C4 position to C2, demonstrating 
the sensitive nature of the active site, at least with 
regard to some reactions� The effects of the al-
lelic variants are probably not strong enough to 
be of much use in understanding the effects of 
those residues [129]�

9.7.3.6  Inhibitors
α-NF is a strong inhibitor, as in the case of P450 
1A2 [274]� Some acetylenes developed by Al-
worth’s group have been found to selectively in-
hibit P450 1B1 (at least relative to P450s 1A1 
and 1A2), including 2-ethynylpyrene [274]� A 
potential drawback to these compounds is that 
they are rapidly oxidized by P450 1B1�

The polyphenol resveratrol is found in red 
grapes and has been of interest in the context of 
its potential to inhibit cancer [359]� Resveratrol 
is a noncompetitive inhibitor of P450 1B1, with a 
KI value of 23 µM in model systems [360] (with 
selectivity towards P450 1A1)� Potter et al� [361] 
reported that P450 1B1 oxidizes resveratrol to the 
known anticancer agent piceatannol, a tyrosine 
kinase inhibitor� A series of methoxy-substituted 
trans-stilbene compounds of the resveratrol/rha-
pontigenin family were prepared and tested; of 
these, 2,4,3ʹ,5ʹ-tetramethoxystilbene was found 
to be a strong and selective competitive inhibitor 
of P450 1B1 ( KI 3 nM) and resisted demethyl-
ation [279]�

Because of the roles of P450 1B1 in the ac-
tivation of carcinogens [99] (Fig� 9�10), there is 
strategic interest in developing inhibitors of P450 
1B1 [362, 363]� Another tetramethoxystilbene 
(2,2ʹ,4,6ʹ-) has been reported to be a strong inhib-
itor of human P450 1B1 [364], in addition to the 
2,4,3ʹ,5ʹ-substituted stilbene [279]� A number of 
other compounds have been considered regard-
ing their inhibition of P450 1B1, including de-
rivatives of flavonoids, stilbenes, pyrenes, naph-
thalenes, phenanthrenes, and biphenyls [365]�
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9.7.3.7  Clinical Issues
No issues regarding drug interactions have been 
raised� The two dominant clinical issues with 
P450 1B1 are its potential roles in cancer and 
glaucoma� As with the subfamily P450 1A en-
zymes, an issue is that induction of P450 1B1 
might increase the activation of procarcinogens 
(Fig� 9�10)� This issue may be real, although pres-
ently there is no strong epidemiological evidence 
to support such a relationship� Although the cod-
ing region polymorphisms have only indicated a 
limited potential for contribution to cancer ( vide 
supra), the evidence for its trimodal expression 
[122] is certainly of interest, particularly in light 
of the number of carcinogens that P450 1B1 ac-
tivates (Table 9�10)� The issue of oxidation of es-
trogens to reactive products is one worth consid-
ering, in light of the long-standing experimental 
evidence for tumorigenicity of estrogens [366]� 
Another matter that has only begun to be ad-
dressed is the possible metabolism of the various 
estrogens in postmenopausal hormone treatments 
(e�g�, Premarin® by P450 1B1 (e�g�, see [356, 
367] regarding DNA adducts formed by some of 
these estrogens)�

Because P450 1B1 has such a prominent role 
in carcinogen activation in vitro (Fig� 9�10) [99, 
259], there is considerable interest in molecu-
lar epidemiology on the subject, as reviewed by 
Roos and Bolt [368]� Kamataki and his associ-
ates [122] found that the trimodal distribution 
of inducibility of aryl hydrocarbon hydroxylase 
activity (benzo[a]pyrene hydroxylation) is due to 
the induction of P450 1B1, not P450 1A1� This 
information is relevant to the earlier findings of 
Shaw and Kellerman [108, 109] correlating the 
inducibility with lung cancer risk in smokers� 
However, apparently no major progress has been 
reported in this area following the report of Toide 
et al� [122]� P450 genetic variations have been 
considered in the epidemiology of breast [369], 
head and neck [370], endometrial [371], pan-
creatic [372], colorectal [373], hormonal [374], 
and prostate [375] cancers, although overall the 
evidence is not strong� In a mouse model, P450 
1B1 is associated with smoking-induced bone 
loss [376]�

The other major clinical issue is glaucoma, 
where P450 1B1 variants are clearly associated 
with the disease [127, 339]� The condition is re-
produced in a mouse CYP1B1 knockout, but the 
mechanism is still elusive [106, 339]� As men-
tioned previously, P450 1B1 has a broad catalytic 
specificity, and estrogens, arachidonic acid, reti-
noids, and melatonin have all been considered as 
possibly being involved [339]�

Finally, P450 1B1 has been considered to have 
a role in hypertension, possibly involving its role 
in arachidonic acid ω-hydroxylation [377, 378]�

9.7.4  P450 2A6

9.7.4.1  Sites of Expression
P450 2A6 (formerly termed IIA3 and 2A3 [379]) 
was purified from human liver microsomes [17] 
and a cDNA was first isolated from a human liver 
library [380]� The protein is expressed at medium 
levels in liver (Fig� 9�2)� In one study, the frac-
tion of total human liver P450 attributed to P450 
2A6 ranged from < 0�2 to 13 % among individual 
samples, with a mean of ~ 4 % [52]� P450 was not 
found in placenta (full term) [381]� In a recent 
LC–MS proteomic study, P450 2A6 was found 
at a mean level of 63 pmol/mg liver microsomal 
protein, almost as high as P450 3A4 (Fig� 9�2d) 
[55]� However, LC–MS-determined levels were 
not this high in other studies [54] (Fig� 9�2b, c)

P450 2A6 is also expressed in other tissues, 
particularly in the nasal–pharyngeal region� Ex-
pression has been detected in nasal mucosa, tra-
chea, lung [382], and esophageal mucosa [383]� 
These sites of expression are of interest regarding 
certain cancers� In liver cancers, overexpression 
of P450 2A6 protein was associated with chronic 
inflammation and cirrhosis [384]�

P450 2A6 was found to be overexpressed in 
colorectal tumors [385]� P450s 2A6 and 2A13 
are very similar proteins (94 % identity) but dif-
fer in structure (Sect� 7�4�5, vide infra) and some 
activities, as well as localization� Both P450 2A6 
and 2A13 are expressed in epithelial cells of tra-
chea and bronchi, and only P450 2A6 (no 2A13) 
was detected in bronchial epithelial cells of pe-
ripheral lungs [386]�
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9.7.4.2  Regulation
The regulation of P450 2A6 expression has been 
studied in primary cultures of human hepato-
cytes� Expression (mRNA and protein) is induc-
ible by rifampicin [387], phenobarbital [388], 
and (to a lesser extent) clofibrate, cobalt, griseo-
fulvin, and pyrazole [388]� The nuclear receptor 
HNF-4 is involved in expression in cultured he-
patocytes [389]�

P450 2A6 transcriptional regulation has been 
reviewed by Pitarque et al� [390]� Induction has 
been shown to involve the PXR, along with 
PPARα [391]� P450 2A6 is also induced by es-
trogen via the ER [392], which may be relevant 
to a reported influence of the menstrual cycle on 
P450 2A6 activity (and the cardiovascular effects 
of nicotine) [393]�

Other factors influencing P450 2A6 transcrip-
tion are NF-Y [394] and nuclear factor-erythroid 
2-related factor 2 [395]� In addition, heteroge-
neous nuclear ribonucleoprotein A1 has been re-
ported to be involved in post-transcriptional regu-
lation of P450 2A6 [396], and a polymorphism in 
the 3ʹ-untranslated region affects mRNA stability 
and enzyme expression [397]� Finally, P450 2A6 
phosphorylation has been detected in vivo [297], 
although the effect is not known�

9.7.4.3  Genetic Variation
At least 86 allelic variants are known, with eight 
haplotypes yet to be determined (http://www�
cypalleles�ki�se)� These include a splice variant 
(*12) in which CYP2A7 exons are included and 
the protein has lost catalytic activity [398, 399]� 
Some are deletions and the activities of some of 
the coding region variants are known to be de-
creased [400]� Another SNV (*2), recognized 
earlier, is the L160H change which yields very 
low catalytic activity [401]� At least one poly-
morphism is important for promoter activity 
[402]� Also of interest is a gene deletion (*4)� 
The incidence of these variants is racially linked 
[168]�

In part, because of the extensive genetic varia-
tion and the metabolism of carcinogens, genetic 
variations have been extensively considered re-
garding cancer (Sect� 7�4�7, vide infra)� P450 
2A6 is involved in nicotine oxidation, and Tyn-
dale and her group reported that individuals with 

low P450 2A6 activity smoke less and might have 
lower cancer risk [134]� This proposal seems 
reasonable, but the findings have been ques-
tioned� General agreement exists that defective 
P450 2A6 genes cause reduced nicotine metabo-
lism (the presumed basis for reduced smoking) 
[403–405]� Several reports conclude that having 
deficient P450 2A6 reduces smoking [406–409] 
and also lung cancer [133, 410, 411] in smokers� 
The latter hypothesis has biological plausibility 
because many carcinogens from tobacco are ac-
tivated by P450 2A6 (Table 9�8 and vide infra)� 
However, other studies have not revealed any 
relationship between P450 2A6 genotype and 
smoking; cancer is also somewhat controversial 
[412–415]� Some of the discrepancies may be ra-
cial [416], but even this is unclear [417]� Some 
problems are attributed to technical shortcomings 
in genotype analyses [418], and a definite rela-
tionship is still lacking [418] in Caucasians but is 
more likely in Asians [419], where the incidence 
of gene deletion is higher�

9.7.4.4  Substrates and Reactions
The most characteristic and specific reaction of 
P450 2A6 is coumarin 7-hydroxylation [17, 380]� 
Coumarin 7-hydroxylation has also been used as 
an in vivo diagnostic assay [420–422]�

Soucek [423] demonstrated that a 1:1 ratio of 
cytochrome b5 to P450 was required for optimal 
coumarin 7-hydroxylation catalyzed by the pu-
rified recombinant enzyme� The effect of cyto-
chrome b5 on catalytic selectivity has not been 
evaluated in all reports on P450 2A6�

Coumarin 7-hydroxylation can be used in 
vivo with humans as a phenotypic assay� An 
alternative procedure is to administer caffeine 
to individuals and determine the conversion of 
1,7-dimethylxanthine to 1,7-dimethyluric acid, a 
reaction catalyzed by P450 2A6 [424]�

Some industrial chemicals are substrates for 
oxidation by P450 2A6, including alkoxyethers 
(used as fuel additives, e�g�, tert-butyl methyl 
ether) [425] and the vinyl monomer 1,3-butadi-
ene, a cancer suspect [426]�

Some drugs are also substrates, including 
(+)cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-
4-one (SM-12502) [427, 428] and tegafur [429, 
430], which is converted to 5-fluorouracil� Halo-
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thane is reductively converted to a free radical by 
P450 2A6, which can yield at least two products 
and initiate lipid peroxidation [431]�

Some of the catalytic selectivity of P450 2A6 
overlaps with that of P450 2E1 ( vide infra)� One 
area in which the overlap has been noted is in the 
oxidation of nitrosamines� P450 2A6 preferen-
tially catalyzes the oxidation (and activation) of 
N-nitrosodiethylamine, in contrast to P450 2E1, 
which oxidizes N-nitrosodimethylamine [432, 
433]� P450 2A6 is also involved in the oxidation 
of many tobacco-specific nitrosamines, including 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(NNK) [433–436]� P450 2A6 appears to be the 
major human P450 involved in the activation of 
N-nitrosobenzylmethylamine [437], N-nitroso-
dipropylamine, N-nitrosobutylamine, N-nitroso-
phenylmethylamine, and N-nitrosonornicotine 
(NNN) [438]� Fujita and Kamataki [439] studied 
the bacterial mutagenicity of a number of tobac-
co-specific N-nitrosamines and concluded that 
P450 2A6 is the major human enzyme involved 
in activation of all�

P450 2A6 is also involved in the metabolism 
of nicotine ( vide supra)� P450 2A6 is the main 
catalyst in the oxidation of nicotine to cotinine 
[440–442]� P450 2A6 is also involved in the 
3ʹ-hydroxylation of cotinine [443]� In addition, 
P450 2A6 catalyzes 2ʹ-hydroxylation of nicotine, 
yielding a precursor of a lung carcinogen [444]�

P450 2A6 can also N-demethylate hexameth-
ylphosphoramide [445]�

Several forms of human P450 catalyze the 
3-hydroxylation of indole [446], and the product 
dimerizes to the dye indigo� P450 2A6 was the 
most active human P450 identified for this activi-
ty and could also catalyze several oxidations of in-
dole [446]� Mutants of P450 2A6 generated from 
a randomized library were shown to catalyze the 
oxidation of several substituted indoles to gener-
ate variously colored indigos and indirubins [447]�

Other substrates of interest include 1,7-di-
methylxanthine, a major caffeine metabolite 
[448] (this can be applied in phenotyping stud-
ies), pilocarpaine [449], bilirubin [450], and met-
ronidazole [451]�

More recently, Shimada et al� [351] have dem-
onstrated that P450 2A6 can catalyze the bioacti-
vation of a number of PAHs and arylamines�

Yun et al� [452] analyzed the kinetics of the 
catalytic cycle of P450 2A6 with coumarins and 
concluded that substrate binding, product release, 
electron transfer, and oxygen binding were all 
rapid steps and that C–H bond cleavage is prob-
ably mainly rate limiting�

9.7.4.5  Structure
In 2005, Johnson and his associates reported 
the X-ray crystal structure of P450 2A6 com-
plexed with coumarin and methoxysalen [453]� 
Subsequent structures with synthetic inhibitors 
[454] and mutants [455] added to the knowledge 
of this P450� It has one of the smallest active 
sites (~ 260 Å3 volume) and is relatively rigid, 
although some larger ligands can be accommo-
dated�

The structure of P450 2A6 has been compared 
with those of P450s 2A13 and 2E1 (with pilo-
carpine bound) [456] and inferences about im-
portant residues differing between these proteins 
have been made [457]�

Some mutations, developed in random muta-
genesis work [458], result in large change in the 
active site volume of P450 2A6 [459] (Fig� 9�15)�

Lewis published several homology models of 
P450 2A6 and also attempted to rationalize the 
pattern of nicotine oxidation using molecular or-
bital calculations [460]�

9.7.4.6  Inhibitors
Several selective inhibitors of P450 2A6 are 
known� Diethyldithiocarbamate appears to be a 
mechanism-based inactivator, although the inac-
tivation has not been extensively characterized 
[433]� Diethyldithiocarbamate and its oxidized 
form, disulfiram, also inhibit P450 2E1 [461]� In 
vivo single-dose treatment of people with disul-
firam inhibits P450 2E1 but not P450 2A6 [462]�

A number of chemicals have been tested as 
inhibitors of P450 2A6 in human liver micro-
somes [463]� Of these, the most selective and po-
tent inhibitors appear to be 8-methoxypsoralen, 
tranylcypromine, and tryptamine, with KI values 
~ 1 µM [463–465]� The inhibition by the natural 
product 8-methoxypsoralen (present in many 
foods) is mechanism based [466]� 8-Methoxy-
psoralen (methoxysalen) inhibits P450 2A6 in 
vivo [462] and has also been reported to decrease 
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Fig. 9.15  Active site of P450 2A6� a In the wild-type 
enzyme, Ile-300 and Asn-297 restrict the available space 
to the area shown with the purple mesh (359 Å3)� The 
extra space made available in the I300V mutant is shown 

with the orange mesh (total 440 Å3)� b Minimized energy 
docking of the substrate 5-benzoylindole to the P450 2A6 
N297Q/I300V mutant [459]
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nicotine metabolism in smokers [467]� Both the 
inhibitors 8- and 5-methoxypsoralen were cova-
lently bound to P450 2A6 during incubation with 
NADPH [468]� Menthofuran, another natural 
product, is also a mechanism-based inactivator of 
P450 2A6 [469]� Isoniazid has been reported to 
be a weak mechanism-based inactivator of P450 
2A6 [470]�

A number of heterocyclic inhibitors of P450 
2A6 have been synthesized [471], and the in-
teraction of some other new inhibitors has been 
visualized in P450 2A6 crystal structures [454]�

The selectivity of P450 2A6 “reaction pheno-
typing” inhibitors was reevaluated by Stephens 
et al� [472], who compared chemicals for inhibi-
tion of P450s 2A6 and 2A13 ( vide infra): tran-
ylcypromine and ( R)-(+)-menthofuran had > ten-
fold selectivity in favor of P450 2A6 > P450 2A13 
and 8-methoxypsoralen had a sixfold lower KI 
for P450 2A13� Khojasteh et al� [473] concluded 
that 3-(pyridine-3-yl)-1H-(pyrazol-5-yl)pyridine 
was more selective than tranylcypromine�

Another inhibitor of P450 2A6 is chalepensin 
(mechanism based) [474]� Heteroatom nicotine 
derivatives have been identified as inhibitors 
[475], and P450 2A6 is inactivated during the 
oxidation of nicotine itself [476]�

Finally, a variety of chemicals, including 
PAHs, chlorinated biphenyls, and flavonoids 
were demonstrated to interact with (spectral 
binding) and to inhibit P450 2A6 (as well as 
P450 2A13) [477]� This inhibition has relevance 
to potential use of some of these compounds as 
therapeutic inhibitors as well as to interactions in 
the activation of them by P450 2A6 (and 2A13) 
[351]�

Much of the enthusiasm about inhibitors of 
P450 2A6 stems from the hope of cancer preven-
tion, in that 8-methoxpsoralen (despite the ca-
veats about human P450 2A13 selectivity, vide 
supra) effectively deceased tumors in an NNK 
treatment mouse model [478]�

9.7.4.7  Clinical Issues
As indicated in Sect� 7�4�2, the major issue re-
garding P450 2A6 polymorphisms is the effects 
on lung and esophageal cancers and smoking 
habits, for which there is epidemiological evi-

dence in Asians [410], but reports remain contro-
versial in Caucasians [416, 418, 419, 479, 480]�

As pointed out above, some drugs are P450 
substrates, although the relative contribution of 
P450 2A6 is still so small (Fig� 9�1b) that P450 
2A6 reactions are generally not included in 
screens�

P450 2A6 expression has been reported to be 
induced during infection by (carcinogenic) liver 
flukes [481] and downregulated during infection 
by hepatitis A virus [482]�

Genetic variations in P450 2A6 have been ex-
tensively considered in regard to nicotine metab-
olism and smoking cessation therapy [483–486], 
and genetic variations have been considered in 
the direct context of smoking-related cancers 
[487–490]� P450 2A6 genetic variation has also 
been considered in the context of hepatoxicity of 
coumarin [491] and pancreatic cancer [492]�

9.7.5  P450 2A7

The situation involving the CYP2A7 gene is 
complex, and sometimes this has even been er-
roneously referred to as a pseudogene [168]� Two 
pseudogenes ( CYP2A7PTX and CYP2A7PCX) 
are known� The P450 2A7 mRNA transcript is 
produced in human liver, at roughly the same 
level as that for P450 2A6 [398, 493]� Gonzalez’s 
laboratory had isolated cDNA clones now recog-
nized as P450 2A6, the 2A6 variant L160H, and 
2A7 and expressed all three in HepG2 cells [380]� 
Of the three, only the “wild-type” P450 2A6 in-
corporated heme� Others have also attempted to 
express P450 2A7 in heterologous systems but 
not reported any evidence of a catalytically ac-
tive P450 2A7 holoprotein [398]� Whether or not 
a functional P450 2A7 is transcribed from the 
mRNA in human tissues is still unclear, and noth-
ing can be said about catalytic activity�

Gene conversion events between the CYP2A6 
and CYP2A7 genes have been reported, yield-
ing chimeric proteins in humans [398, 399, 494]� 
These proteins have some of the coumarin 7-hy-
droxylation conferred by the 2A6 component 
[399]�



568 F. P. Guengerich

It has been reported that there are at least four 
polymorphic P450 2A7 gene variants, and some 
of these can be confounding when genotyping for 
certain P450 2A6 alleles [495]�

9.7.6  P450 2A13

9.7.6.1  Sites of Expression
P450 2A13 cDNA was first cloned from a human 
nasal mucosa library [445]� mRNA was detected 
primarily in nasal mucosa, trachea, and lung, 
with the level in liver being only ~ 1 % of that 
in nasal mucosa [496]� This is in sharp contrast 
to P450 2A6, which is primarily a liver enzyme 
(see Sect� 7�5�1, vide supra)� At the protein level, 
immunochemical analysis has shown P450 2A13 
in the epithelial cells of human bronchus and tra-
chea [386, 497]� P450 2A13 has also been detect-
ed in human bladder [498], and there are reports 
of some expression in brain, mammary gland, 
prostate, testes, and uterus [496] and pancreatic 
α-islet cells [499]�

P450 2A13 mRNA was reported to be elevat-
ed in small-cell lung cancer tissue in one study 
[500] but was not detected or was downregulated 
in any lung cancers in two other studies [497, 
501]�

9.7.6.2  Regulation
P450 2A13 transcription involves CcATT/en-
hancer-binding protein (C/EBP) transcription 
factors [502]� This interaction is believed to be 
responsible for olfactory mucosa-specific ex-
pression in humans� In addition, there is evidence 
for epigenetic regulation of P450 2A13 expres-
sion, at both the levels of DNA methylation and 
histone acetylation [502, 503]�

9.7.6.3  Genetic Variation
At least 21 different CYP2A13 gene variants 
have been reported (http://www�cypalleles�ki�se)� 
There is evidence that some of those that produce 
amino acid changes can alter catalytic properties 
and that expression levels can change [504–508]� 
Genetic differences are racially linked [503, 509–
511]�

9.7.6.4  Substrates and Reactions
Although P450 2A13, 94 % identical to P450 
2A6, can oxidize some relatively common 
subfamily 2A P450 substrates such as couma-
rin [512], the interest in P450 2A13 has been 
driven by its ability to activate procarcinogens 
[496]� The catalytic efficiency in activating the 
so-called tobacco-specific nitrosamines (NNK, 
NNN) is considerably higher than P450 2A6� 
When coupled with the selective expression of 
P450 2A13 in the respiratory tract, there is poten-
tial for understanding aspects of tobacco-induced 
cancers of the lung and the rest of the respiratory 
tract [496, 513]�

The active site of P450 2A13 is larger than 
that of P450 2A6 ( vide infra), and a number of 
additional substrates of P450 2A13 have been 
identified, including nicotine and cotinine [514], 
the nicotinium Δ5 (1ʹ) iminium ion [515], afla-
toxin B1 [516, 517], phenacetin and theophylline 
[518], 4-aminobiphenyl [498], and 5-methoxyp-
soralen [519]� In addition, P450 2A13 was found 
to activate a large variety of PAHs (and their di-
hydrodiol derivatives), arylamines, and heterocy-
clic amines to genotoxic products [351]�

The relevance of the activation of all of these 
procarcinogens can be addressed in a P450 2A13-
humanized mouse model [520]�

9.7.6.5  Structure
Some early site-directed mutagenesis work im-
plicated roles of certain amino acids in the meta-
bolic activation of NNK [521]� A structure of 
P450 2A13 was reported by Scott’s laboratory 
in 2007 [522]� Although no substrate had been 
added, the finished structure revealed the pres-
ence of indole, which is known to be a substrate� 
Like P450 2A6, the active site cavity is relatively 
small and hydrophobic, with a cluster of Phe resi-
dues composing the roof� The size of the active 
site appears to be larger than that of P450 2A6� 
Residues at positions 117, 300, 301, and 208 help 
define differences with P450 2A6 [522]� Some 
computational work has also appeared [523]�

Another structure has been reported with pi-
locarpine (an imidazole) bound [456]� As might 
be expected from the imidazole ring and the type 
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II binding spectrum, the imidazole ring was clos-
est to the heme (the Fe–N distance was 2�3 Å)� 
The pilocarpine-bound structure was compared 
to that of P450 2A6 and 2E1 [456]�

9.7.6.6  Inhibitors
In light of the activation of procarcinogens by 
P450 2A13, there is interest in developing inhibi-
tors to prevent cancer, and some success has been 
achieved [471, 524–526]� One of the issues is se-
lective inhibition of P450 2A13 relative to P450 
2A6� Some compounds, e�g�, 8-methoxypsoralen, 
menthofuran, and β-tyramine, show an order of 
magnitude selectivity for P450 2A13 > P450 2A6 
[472, 527, 528]� Nicotine is a mechanism-based 
inactivator of P450 2A13 [476]� Shimada et al� 
[477] examined 66 chemicals as inhibitors of 
P450 2A13, including a variety of flavonoids and 
polycyclic hydrocarbons� Several selectively in-
hibited P450 2A13 (relative to P450 2A6), with 
low- or sub-µM IC50 values� One of the conclu-
sions, based upon spectral binding studies, was 
that the active site of P450 2A13 is more spa-
cious than that of P450 2A6, consistent with the 
X-ray crystal structure ( vide supra)�

9.7.6.7  Clinical Issues
P450 2A13 can oxidize some drugs [518], but 
there is no evidence that it makes a major con-
tribution to the clearance of any (Fig� 9�1b)� The 
major issue is possible contribution to cancers of 
the respiratory tract, particularly those caused by 
smoking [496]� Accordingly, a number of epide-
miological studies have been done, particularly 
with regard to alleles associated with lower meta-
bolic activity [503, 505, 507, 529–533], with at 
least some of the studies showing significant cor-
relations of lung cancer with risk in smokers as-
sociated with P450 2A13 genotypes [503, 505]�

9.7.7  P450 2B6

9.7.7.1  Sites of Expression
P450 2B6 is expressed primarily in liver, and the 
protein was partially purified [534]� The protein 
has also been detected in human lung [535]�

Much of the early work with P450s in experi-
mental animals was focused on the phenobarbi-
tal-inducible enzymes now recognized to be in 
the P450 2B subfamily [536, 537] and a general 
expectation was that similar P450s would be 
prominent in human liver (and further suggested 
by immunochemical studies [9] and early cloning 
work [538])� However, the major P450 in human 
liver (and small intestine) proved to be P450 3A4 
(Figs� 9�2 and 9�3)� The mean level of P450 2B6 
in human liver has been somewhat controversial�

One of the problems has been antibody speci-
ficity� Antibodies raised against rat P450 2B1 
have not been very specific [534]; unfortunately 
many papers in this area show only limited sec-
tions of gels (or actually show major cross-reac-
tive material present)� The results tend to fall into 
two groups� One set reports levels vary from low 
to 80 pmol P450 2B6 per mg protein [539–541]� 
Another set of reports ranges from near-zero lev-
els to 28 pmol P450 2B6/mg microsomal protein 
[534, 542–545]� However, the mean values dif-
fer considerably in the former and latter groups� 
While some of the discrepancy may be attribut-
able to the differences in liver samples, the main 
difference may be with the antibodies used and 
cross-reactivity with other proteins, as well as 
error inherent in other aspects of immunochemi-
cal methods� Our own work is in line with the 
lower set of estimates of expression levels (mean 
1–2 % of total P450, with values rarely exceeding 
5 % even in samples from individuals adminis-
tered inducers) [545]� This level is an order of 
magnitude less than for P450 3A4 (Fig� 9�2)�

Recently Achour et al� [55] used an LC–MS 
proteomic approach with human liver micro-
somes and reported a mean value of 39 pmol/
mg protein� This value was ~ one half of that 
found for P450 3A4 in the same set of samples 
(Fig� 9�2d)� The concentration was much less in 
the other samples (Fig� 9�2a, b, c), with another 
LC–MS study reporting only 0�5 and 7 pmol 
P450 2B6/mg protein [54]�

9.7.7.2  Regulation
Studies with HepG2 cells (derived from hepato-
cytes) have shown the role of CAR, a member 
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of the steroid receptor superfamily, and its in-
teraction with the phenobarbital-responsive en-
hancer module (PBREM) in the region between 
− 1733 and − 1683 bp in the 5ʹ-flanking region 
[546]� Other work with HepG2 cells implicated 
the liver-selective transcription factor C/EBPα 
[547]� Kliewer’s group [548] also demonstrated 
the involvement of another previously orphan re-
ceptor, PXR, in binding to PBREM in primary 
human hepatocytes to induce P450 2B6� PXR 
is active only when ligand activated, but CAR 
apparently acts without an added ligand; both 
CAR and PXR heterodimerize with (liganded) 
RXR [549] (Fig� 9�13)� “Cross talk” also exists 
at the PBREM site with the vitamin D receptor 
(VDR) as well as CAR and PXR [550, 551]� The 
levels of CAR and PXR mRNA in individual 
human livers correlate with the level of P450 
2B6 mRNA [552]� The regulation of P450 2B6 
has considerable similarity to those of the P450 
2C and 3A subfamilies ( vide infra), with some 
differences� CAR does have ligand-activated ef-
fects and 6-(4-chlorophenyl)imidazo[2,1-b;1,3]
thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)
oxime has been identified as an agonist [553]� 
A novel distal enhancer regulated by PXR and 
CAR was identified in the CYP2B6 gene [554]�

The roles of nuclear receptors in P450 2B6 in-
duction have been reviewed by Wang and Negi-
shi [555] and Wang and LeCluyse [556]� In pri-
mary human hepatocytes, P450 2B6 was induced 
by clotrimazole, phenobarbital, rifampicin, rito-
navir, carbamazepine, and phenytoin, with all but 
the latter two compounds apparently activating 
via PXR [557]�

Negishi’s group also reported a novel CAR-
mediated mechanism for synergistic activation of 
two distinct elements within the P450 2B6 gene 
[558]� Neurosteroids and nicotine were identified 
as PXR activators [559]� Negishi and his asso-
ciates were able to classify P450 2B6 inducers 
in terms of PXR versus CAR mechanisms [560]� 
They also showed that CAR was an early growth 
response factor in activating the P450 2B6 gene 
[561]� Oltipraz, generally considered in the con-
text of Nrf2, also activates CAR [562]� Metfor-
min represses P450 2D6 by modulating CAR 
signaling [563]�

P450 2B6 has been found to be phosphory-
lated in vivo, although the effect on activity is 
unknown [297]�

9.7.7.3  Genetic Variation
As mentioned in the previous edition of this 
chapter [149], P450 2B6 is highly polymorphic� 
At least 63 allelic variants have been identified, 
and at least six more variants are known in which 
the haplotypes have not been determined yet 
(http://www�cypalleles�ki�se)� A number of these 
are known to be associated with lower activity, 
and a number of clinical consequences have been 
reported (Sect� 7�7�7, vide infra)� A partial dele-
tion of the P450 2B6 gene has been attributed to 
crossover with the pseudogene CYP2B7 [564]�

9.7.7.4  Substrates and Reactions
The number of P450 2B6 substrates has grown 
with time but is still not as extensive as for P450 
3A4 (Sect� 7�20�4, vide infra)� However, with the 
availability of more knowledge about genetic 
variants ( vide supra) and diagnostic marker sub-
strates, it has been possible to show the relevance 
of P450 2B6 in vivo in several cases�

The substrate specificity of P450 2B6 has 
been reviewed [565–567]� “Marker” fluorescent 
substrates are available for some in vitro uses 
[568]�

One diagnostic substrate is efavirenz [569], 
which also has clinical issues (Sect� 7�7�7, vide 
infra)� Perhaps the most widely accepted refer-
ence substrate for P450 2B6 (in vitro) is bupro-
pion [570, 571]� Efavirenz has been utilized as a 
marker in vivo [572]�

An important substrate for P450 2B6 is the 
antimalarial drug artemisinin [573]� Another 
is methadone, used in treating heroin addiction 
[574]� P450 2B6 is also involved in the metabo-
lism of a number of environmental chemicals, 
including the pesticide chlorpyrifos [575]�

9.7.7.5  Structure
Relatively little site-directed mutagenesis has 
been done with P450 2B6� Halpert’s laboratory 
modified ten residues and measured some activi-
ties, although most of the changes were ≤ twofold 
[576]� Halpert and his associates have published 
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several X-ray crystal structures of P450 2B6, 
some with inhibitors [577–579] and one with a 
substrate, amlodipine [580] (this is also a sub-
strate for P450 3A4)� Several features are of note� 
The apparent size of the active site is large but not 
as large as that of P450 3A4 or P450 2C9� Two 
amlodipine molecules are bound in the enzyme 
structure� Finally, the protein is malleable and 
residues move to accommodate different ligands�

Several homology models of P450 2B6 have 
been published [581, 582], including one using 
molecular dynamics [583]�

Yamazaki and his associates have published a 
two-dimensional model for rationalizing and pre-
dicting substrates for P450 2B6 [584]� In silico 
approaches have been used for the prediction of 
P450 2B6 substrates [585]�

9.7.7.6  Inhibitors
A list of the reported inhibitors of P450 2B6 has 
been compiled by Rendic [51]� Orphenadrine 
had been utilized in some work with microsomes 
but does not appear to be particularly selective 
[586, 587]� 2-Isopropenyl-2-methyladamantane 
and 3-isopropenyl-3-methyldiamantane have 
been reported as selective inhibitors of P450 2B6 
[588]� Triethylenethiophosphoramide has also 
been reported to be a selective inhibitor of P450 
2B6 [589]�

Khojasteh et al� [473] reported that 2-phe-
nyl-2(1-piperidinyl)propane is the most selective 
in vitro inhibitor for use in reaction phenotyping� 
New inhibitors have been considered based on 
structure–activity relationships [590]� The effect 
of a K262R substitution on inhibition by several 
drugs has been noted by Hollenberg and his as-
sociates [591], and Thr-302 has been implicated 
(by the same group) in irreversible inactivation 
by tert-butylacetylene [592]�

The oral contraceptive 17α-ethinylestradiol 
is a mechanism-based inactivator of P450 2B6 
and modifies the (apo) protein [593, 601], but the 
in vivo relevance of the inhibition has not been 
established� Inhibition by duloxetine has been 
described as being both reversible and time de-
pendent [594]� Other P450 2B6 inhibitors include 
an acetylenic drug candidate [595], ticlopidine, 
clopidogrel [596, 597], phencyclidine [598], di-

aziridines [599], peroxynitrite [600], methadone 
[602], selegiline [603], sibutramine [604], and 
ritonavir [605]� Another clinically relevant inhi-
bition involves grapefruit juice [606]�

9.7.7.7  Clinical Issues
Some of the clinical issues have been reviewed 
recently by Zanger and Klein [607]� The major 
issues are interindividual variations due to induc-
tion and genetic variation as well as some inhibi-
tions� The effects of genetic variation have been 
reported for the drug efavirenz (used for HIV) 
[608–611]� Another drug in which genetic varia-
tions make an in vivo difference is bupropion, 
used in smoking cessation therapy [612, 613]� 
Efavirenz–bupropion interactions have also been 
reported [614]�

Genetic variations have not been found to 
effect nicotine metabolism (or plasma levels) 
[615, 616]� However, genetic variations in P450 
2B6 have been associated with the outcome of 
cyclophosphamide therapy [617–619] and the 
doses of methadone used in addiction therapy 
[620]� Other drugs for which genetic variations 
have been shown to be important are sibutramine 
[621] and imatinib [622]� Genetic variation has 
also been reported to contribute to the metabo-
lism of the insecticide chloropyrifos [623]�

The phenomenon of barbiturate-like enzyme 
induction is still an issue in drug development, 
however� The point is not only drug interactions 
but particularly the prospect of tumor promotion 
in rodent cancer bioassays, which is probably un-
related to the P450 induction [138]�

9.7.8  P450 2C8

The P450s in the 2C subfamily have been of in-
terest for some time� Some of the first human 
P450 preparations purified were probably P450 
2C9, in retrospect [9, 10]� A major impetus for re-
search in this field was the observed genetic poly-
morphism in ( S)-mephenytoin 4ʹ-hydroxylation 
[624, 625], which led to efforts at purification� 
Purified proteins had some catalytic activity to-
wards mephenytoin [15], but subsequent in vivo 
pharmacokinetic [626] and heterologous expres-
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sion experiments [627] demonstrated a distinc-
tion between tolbutamide and ( S)-mephenytoin 
hydroxylation� Genomic analysis indicated the 
complexity of the CYP2C gene subfamily [628]� 
Subsequently the subfamily was characterized in 
terms of four P450s: 2C8, 2C9, 2C18, and 2C19 
[629]� P450 2C19 is the polymorphic ( S)-me-
phenytoin 4ʹ-hydroxylase [22, 630]; P450 2C9 is 
involved in a considerable number of drug oxida-
tions (Fig� 9�3)� Two previous entries in the P450 
nomenclature, 2C10 and 2C17, are considered al-
lelic variants of other genes or other artifacts and 
have been deleted [631]�

9.7.8.1  Sites of Expression
P450 2C8 was first purified from human liver 
[15]; the enzyme is known to be expressed in 
liver and kidney [632]� The level of expression of 
P450 2C8 has been estimated at 11–29 pmol/mg 
in liver microsomes using LC–MS [54, 55] but 
may be one of the more substantial P450s in the 
kidney� Other sites of P450 2C8 (mRNA) include 
adrenal gland, brain, uterus, mammary gland, 
ovary, and duodenum [633]� Expression has also 
been detected in cardiovascular tissue [634]�

Proteomic analysis of human liver indicated 
P450 2C8 was detected in all samples analyzed 
[54, 55, 635]� A lack of effect of gender, age, or 
genotype on expression has also been reported 
[636]�

Kemper and his associates have presented evi-
dence that P450 2C8 exists as a dimer in membranes 
[637]� Avadhani and his associates have reported 
that a significant fraction of P450 2C8 is localized 
and functionally active in mitochondria [638]�

9.7.8.2  Regulation
The level of P450 2C8 expression in human liver 
varies at least 20-fold [54, 55, 639]� Rifampicin 
induces P450 2C8 in hepatocyte culture [387]� 
The enzyme appears to be inducible by barbitu-
rates [640]� Transcriptional regulation involves 
the nuclear receptors CAR, PXR, HNF-1α, and 
the glucocorticoid receptor [641]�

As mentioned earlier, P450 2C8 has reported 
to be phosphorylated in vivo [297], but the effect 
on catalytic activity is unknown� Post-transcrip-
tional control of P450 2C8 by microRNAs 103 
and 107 has been reported in human liver [642]�

An interesting approach with the inhibi-
tor gemfibrozil has been used to estimate the 
(human) in vivo half-life of P450 2C8 at 20 h 
[643]�

9.7.8.3  Genetic Variation
The http://www�cypalleles�ki�se website cur-
rently lists 16 allelic variants of P450 2C8� The 
functional effects of eight of these have been re-
viewed by Totah and Rettie [644]� For in vitro 
studies on the functional effects of P450 2C8 
variations, see [645, 646]� Two coding region 
polymorphisms involve the amino acid substitu-
tions I264M and K399R, with the latter appear-
ing in a haplotype with R139K [639]� The rate of 
oxidation of taxol (paclitaxel) is decreased with 
the *3 allele (K399R/R139K), but the extent of 
the decrease has been variable in different stud-
ies, ranging from 90 % [632] to 25 % [639, 647]� 
The *1C polymorphism appears to cause some 
attenuation of the mean level of expression [639]� 
In vivo clinical effects of P450 2C8 variants have 
been reviewed by Daily and Aquilante [648], and 
the results are not always consistent with in vitro 
studies�

P450 2C8 variants show racial linkage [644, 
649]�

Some of the drugs considered for response (in 
metabolism) in regard to genetic variation include 
rosiglitazone [650, 651], amiodarone [652, 653], 
and paclitaxel and 13-cis-retinoic acid [654]�

9.7.8.4  Substrates and Reactions
P450 2C8 does not appear to have the general 
significance of P450 2C9 or 2C19 in drug me-
tabolism (Fig� 9�1b)� An important substrate is 
taxol (paclitaxel)(6α-hydroxylation) [152, 655]� 
Another substrate for P450 2C8 is all-trans-reti-
noic acid [656]� P450 2C8 also contributes to the 
oxidation of troglitazone [657] and verapamil, 
rosiglitazone, cerivastatin, amiodarone, dapsone, 
and amodiaquine [51, 639]�

In general, P450 2C8 has relatively low cata-
lytic activity towards the known substrates of 
P450s 2C9 and 2C19� However, Mansuy and his 
associates have synthesized model substrates that 
all of the human subfamily 2C P450s have activ-
ity towards [658, 659]�
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The substrates of P450 2C8 have been re-
viewed by Totah and Rettie [644] and more re-
cently by Niwa and Yamazaki [660]� P450 2C8 is 
involved in the oxidation of pioglitazone [661], 
repaglinide [662], montelukast (now consid-
ered a “classic” P450 2C8 ligand) [663, 664], 
an endothelin ETA receptor antagonist (( H)-
(5S,6R,7R-2-isopropylamino-7-[4-methoxy-
2-[(2R)-3-methoxy-2-methylpropyl]]-5-(3,4-
methylenedioxyphenyl)cyclopenteno(1,2-b)pyri-
dine 6-carboxylic acid)) [665], imatinib [666], 
and 4-hydroxyretinoic acid [667]� P450 2C8 has 
been assigned major roles in the metabolism of 
amiodarone, amodiaquine, arachidonic acid, 
cerivastatin, chloroquine, paclitaxel (taxol), re-
paglinide, retinoic acid, tazarotenic acid, and tro-
glitazone [644]�

Molecular differences in genetic variants re-
garding several probe substrates have been con-
sidered in the context of binding affinity [668]�

9.7.8.5  Structures
An X-ray crystal structure of P450 2C8 was 
published by Johnson and his associates in 2004 
[669]� This structure is of interest in that two 
molecules of palmitic acid, derived from the bac-
teria (used for heterologous expression), were 
bound to the dimer interface� Another series of 
structures from the Johnson group [223] were 
solved with montelukast, troglitazone, felodip-
ine, and 9-cis-retinoic acid present� The size of 
the active site is large (~1400 Å3), similar to that 
of P450 3A4 ( vide infra), but more rigid, with 
an “L-shape�” In the case of 9-cis-retinoic acid, 
a second molecule was located above the proxi-
mal ligand and is postulated to “push” the first 
for more efficient oxygenation (although no evi-
dence for binding or catalytic cooperativity was 
found) [223]� There is flexibility in the active 
site, and the ability of Arg-241 and other residues 
to reorient was noted�

A gating mechanism has been proposed for 
P450 2C8 based on theoretical studies [670]�

9.7.8.6  Inhibitors
In contrast to P450 2C9, sulfaphenazole is not a 
strong inhibitor of P450 2C8� Mansuy’s group 
synthesized several sulfaphenazole-based selec-

tive inhibitors of individual P450 2C enzymes, 
including P450 2C8 [671, 672]� Early work on 
paclitaxel metabolism suggests that high con-
centrations of the natural flavonoids naringenin, 
quercetin, and kaempferol and the synthetic α-NF 
inhibit [152], but little in vivo inhibition would be 
expected� Walsky et al� [673] have screened 204 
drugs for P450 2C8 inhibition� P450 2C8 inhibi-
tors have also been reviewed by Totah and Rettie 
[644] and Niwa and Yamazaki [660]� One of the 
most useful diagnostic inhibitors is montelukast, 
a leukotriene receptor antagonist that has also 
been used in a crystal structure (Sect� 7�8�5, vide 
supra) [223] and has clinical significance [674]� 
Another selective inhibitor reported recently is 
the tyrosine kinase inhibitor nilotinib [675]�

Another selective inhibitor with clinical sig-
nificance is the fibrate gemfibrozil� The mecha-
nism is unusual in that the glucuronide conjugate 
is oxidized in the (large) active site of P450 2C8, 
leading to irreversible inactivation due to heme 
alkylation [676–678]�

9.7.8.7  Clinical Issues
Some of the current issues have been reviewed 
by Totah and Rettie [644] and Niwa and Yamaza-
ki [660]�

Induction and inhibition of P450 2C8 are not 
major issues at this point (Tables 9�6 and 9�7)� 
The epoxides formed from arachidonic acid (ep-
oxyeicosatrienoic acids or “EETs”) by P450 2C8 
(and 2C9) have been considered in cardiovascu-
lar protection and in cancer therapy [679]� How-
ever, no disease etiology with P450 2C8 has been 
implicated at this point� The most serious issue 
is probably any impact on the disposition of the 
cancer chemotherapeutic agent paclitaxel� Poly-
morphisms may have some effect on in vivo 6α-
hydroxylation [632, 639], although any influence 
may be modulated in part by the contribution of 
P450 3A4 to other reactions [152]�

One issue was the statin (3-hydroxy-3-meth-
yl-glutaryl-coenzyme A (HMG-CoA) reductase 
inhibitor) cerivastatin, which was withdrawn 
shortly after marketing due to rhabdomyolysis 
issues� This drug had several issues, but some 
are related to it being a P450 2C8 substrate� Two 
problems were the interaction with the fibrate 



574 F. P. Guengerich

gemfibrozil ( vide supra) [680] and the influence 
of genetic variations of P450 2C8 [681–683]�

Genetic variations in P450 2C8 have been 
related to amodiaquine efficacy in malaria treat-
ment [684], response to paclitaxel treatment for 
breast cancer [685], pioglitazone pharmacokinet-
ics [686], and celecoxib pharmacokinetics [687]�

9.7.9  P450 2C9

In retrospect, many of the observations regarding 
in vivo metabolism of barbiturates [2, 688] are 
some of the first reports on what is now known as 
P450 2C9� P450 2C9 is one of the major enzymes 
involved in drug metabolism (Fig� 9�1b)� Some 
of the first purified human liver P450s can now 
be recognized as P450 2C9 [9, 10]� A protein pu-
rified with some mephenytoin 4ʹ-hydroxylation 
activity (P450MP-1) was also P450 2C9 [15], and 
the cDNA corresponded to the N terminus de-
termined by Edman degradation [689]� Proteins 
now recognized as P450 2C9 were also purified 
from liver on the basis of their oxidation of tol-
butamide [626] and hexobarbital [690, 691]� The 
human P450 2C subfamily is complex [628], and 
characterization of individual members was not 
achieved without heterologous expression and 
careful analysis of catalytic activities [627, 692]� 
A transcript designated as P450 2C10 from this 
laboratory had only two coding region changes 
[628]� This is now recognized as an allelic variant 
of P450 2C9; the original assignment had been 
based on the unexplained distinct 3ʹ noncoding 
sequence [628]�

9.7.9.1  Sites of Expression
P450 2C9 is primarily a liver P450� The hepatic 
level of expression is probably the highest, on the 
average, except for P450 3A4 (Figs� 9�2 and 9�6) 
[52]�

All subfamily 2C P450 enzymes are expressed 
at only low levels in fetal liver, including P450 
2C9 [689], and levels rise quickly in the first 
month after birth [693]� Very low levels of P450 
2C9 (1–2 % of adult values) were detected dur-
ing the first trimester in fetal livers with values 
rising to ~ 30 % in the second and third trimes-

ters [694]� Pharmacokinetic experiments with ac-
cepted P450 2C9 substrates indicate that the level 
of hepatic P450 2C9 does not change with age, at 
least to 68 years [695]�

P450 2C9 is also expressed in the small intes-
tine (Fig� 9�3) [696]� P450 2C9 has also been de-
tected in aorta and coronary artery [634], which 
may have relevance to hypertension and other 
cardiovascular disease�

In human (adult) liver microsomes, P450 2C9 
is one of the most plentiful P450s, usually fol-
lowing only P450 3A4� One LC–MS proteomic 
analysis gave a mean of 40 pmol P450 2C9/mg 
microsomal protein (range 17–139) [55]� An-
other analysis [54] reported 80 pmol P450 2C9/
mg microsomal protein for a pooled sample and a 
mean of 28 pmol P450 2C9/mg microsomal pro-
tein (range 8–61) for another set (Fig� 9�2)�

9.7.9.2  Regulation
Early work with human hepatocytes showed in-
duction of P450 2C9 by barbiturates and rifam-
picin [697], consistent with earlier in vivo work 
on the induction of barbiturate metabolism [688]� 
Subsequent studies have shown that P450 2C9 
expression is induced by rifampicin, dexameth-
asone, and phenobarbital in hepatocytes [640, 
698]� The induction involves the glucocorticoid 
receptor, CAR, and PXR, with CAR and PXR ap-
parently competing at the same site [699]�

Recently evidence for action of CAR at an ad-
ditional site has been presented [700]� It should be 
emphasized that the action of CAR is somewhat 
different than that of other receptors from the ste-
roid superfamily, in that it enhances transcription 
in the absence of a bound ligand and some of the 
control is at the level of nuclear translocation re-
lated to dephosphorylation of Thr-38 [179, 701]� 
Other factors involved are HNF-4 [702] and C/
EBPα [547], accounting at least in part for he-
patic localization�

The P450 2C9 promoter contains several reg-
ulatory elements, including two HNF-4α sites, a 
PXR site, a CAR site, and a glucocorticoid re-
sponse element [703, 704]� In addition, GATA-4 
[705] and ER α [706] regulation have been re-
ported�
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9.7.9.3  Genetic Variation
The genetic polymorphism of P450 2C9 has 
been studied extensively and has major clini-
cal significance, although P450 2C9 has not 
been shown to have a critical function in normal 
physiology� Tolbutamide metabolism had been 
reported to display polymorphism [707], which 
was an impetus to purify the protein catalyzing 
the hydroxylation [626]� At least 65 alleles are 
known, plus eight SNPs that have not been clas-
sified as to haplotype (http://www�cypalleles�
ki�se)� Some of these are in the promoter region 
and have functional consequences for drug thera-
py, e�g�, phenytoin [708]� Two of the most studied 
polymorphisms are *2 (R144C, rs1799853) and 
*3 (I359 L, rs1057910)� Both have much lower 
frequencies in Asians and Africans [703]� A six-
base deletion in the coding region lowered cata-
lytic activity in a recombinant enzyme [709]� A 
number of P450 2C9 SNVs have been identified 
[710] and their racial linkage has been explored 
[711]� Of some interest, in addition to the *2 and 
*3 alleles with generally lower catalytic activity, 
is the *5 allele (of higher frequency in Africans) 
with lower catalytic activity [712]� Some of the 
SNPs occur in the 5ʹ-flanking region and attenu-
ate the expression of P450 2C9 [713]� Also of 
interest is an unusual phenomenon in which the 
CYP2C18 exon 1-like locus is fused with com-
binations of exons and introns from CYP2C9 to 
yield chimeric RNA transcripts [714]� Finally, 
linkage between CYP2C8 and CYP2C9 genetic 
polymorphisms has been reported [715]�

The functional difference of 36 (protein) vari-
ants was analyzed in vitro and showed a 100-
fold variation in the catalytic efficiency towards 
losartan ( kcat/Km) [716]� Another study analyzed 
the functional effects of 32 variants with warfarin 
and tolbutamide, also reporting a variation of at 
least two orders of magnitude [717]�

It has long been known that the functional ef-
fect of a genetic variant in (the coding region) 
of P450 2C9 is substrate dependent, which is not 
surprising in light of our current understanding of 
P450 function [718]�

Some unusual variants are those involving 
promoter variations [708], and a splice variant 
with a ten-residue section substituted for the nor-

mal 18 residues near the N terminus gave a typi-
cal Fe2 + ·CO versus Fe2 + difference spectrum but 
no catalytic activity [719]�

The reason for the lower activities of the com-
mon *2 and *3 variants has been considered� One 
report has attributed the effect to changes in un-
coupling [720]� Our own work, using arachidonic 
acid as a ligand, indicates that the difference can 
be explained simply by rates of reduction of P450 
2C9, the step which appears to be rate limiting 
[721]�

9.7.9.4  Substrates and Reactions
P450 2C9 is one of the major P450s involved in 
drug metabolism (Fig� 9�1b)� Some earlier aspects 
of substrate specificity were reviewed by Miners 
and Birkett [722] and by Rendic [51]� One of the 
early substrates examined was phenytoin, which 
undergoes 4-hydroxylation [15]� P450s 2C18 and 
2C19 can also catalyze this reaction, but P450 
2C9 is the major catalyst [723]�

Mansuy’s group used the P450 2C9 inhibitor 
sulfaphenazole to build a substrate common to all 
four subfamily 2C P450 enzymes [658]�

Some compounds normally in the body are 
oxidized by P450 2C9, including arachidonic 
and linoleic acids (epoxidation) [724] and vita-
min A (all-trans-retinoic acid, 4-hydroxylation) 
[725], although the physiological significance is 
unknown� P450 2C9 oxidizes arachidonic acid to 
several of the epoxides (EETs), which have im-
portant vascular and other properties [726–731]�

Several reactions have been used as in vivo 
probes, including tolbutamide, warfarin, flurbi-
profen, and losartan [732]�

One substrate of recent interest is celocoxib, 
a cyclooxygenase-2 inhibitor (Celebrex®)� P450 
2C9 is the major catalyst of oxidation, and vari-
ants affect the in vivo pharmacokinetic param-
eters [733, 734]�

Several aspects of P450 2C9 reactions are of 
concern regarding interpretation of results, at 
least in in vitro research� One issue is the effect 
of solvents on catalytic activity [735]� A concen-
tration of 1 % (v/v) CH3CN markedly inhibited 
the catalytic activity of P450 2C9 [735]� Another 
issue is the enhancement of most reactions by 
cytochrome b5 [266]� Further work also showed 
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that apo-cytochrome b5 (devoid of heme) was as 
effective as cytochrome b5 [736], arguing against 
a need for electron transfer� Other work showed 
that even other P450s could enhance the rates 
of some P450 2C9 reactions, even though those 
P450s did not catalyze the reactions themselves 
[266]� These results are reminiscent of some of 
the interactions of rabbit P450s 1A2 and 2B4 re-
ported by Backes [737]�

Other work with P450 2C9 has provided 
evidence for cooperativity in some reactions, 
although the area has not been as developed as 
for P450 3A4 ( vide infra)� Dapsone and some 
analogs enhance the binding and 4-hydroxylation 
of diclofenac [738, 739]� However, the activity 
of P450 2C9 towards dapsone is unaffected by 
diclofenac, in a situation similar to that of P450 
3A4, aflatoxin B1, and α-NF [740]� The inter-
pretation that P450 2C9 uses two binding sites 
in these interactions is probably valid [739], al-
though (as with P450 3A4) the mechanism re-
mains to be elucidated (including the exact na-
ture of the binding)�

The substrates for P450 2C9 have been re-
viewed by Niwa and Yamazaki [660] and com-
pared with the other three subfamily 2C P450s� 
Important drugs that are oxidized (mainly) by 
P450 2C9 include irbesartan, losartan, phenyt-
oin, cyclophosphamide, tamoxifen, fluvastatin, 
celocoxib, diclofenac, ibuprofen, lornoxicam, 
meloxicam, naproxen, glibenclamide, glipizide, 
tolbutamide, and warfarin [703]� A list of the 
drugs for which genetic variation in P450 2C9 
has been an issue in clinical practice has also 
been published (Table 9�5) [741]� For in vitro 
work, tolbutamide and diclofenac are considered 
the most validated substrates [742]� Tolbutamide, 
recognized early as a substrate [626], is also used 
for in vivo phenotyping [743]�

P450 2C9 contributes to the 2-hydroxylation 
of the oral contraceptive 17α-ethinylestradiol 
[744]� Another substrate is nabumetone [745]�

Some compounds are activated to potentially 
dangerous electrophilic products, including the 
natural product safrole [746] and two drug-relat-
ed thiophenes [747]�

9.7.9.5  Structure
Two important X-ray crystal structures have been 
published, one with bound warfarin [41] and one 
with flurbiprofen [748]� The active site is rela-
tively large, allowing many drug substrates, and 
Arg-108 is involved in binding to the carboxyl-
ates of some of the substrates [748]� The structure 
has been compared with those of P450 2C8 and 
2C9 [749]�

The importance of Arg-108 has been un-
derscored by site-directed mutagenesis stud-
ies [750], although the picture is more complex 
than simple substrate charge pairing� The roles of 
other residues have also been studied by site-di-
rected mutagenesis, including Phe-114, Phe-476, 
and Leu-208 [751]� Movement of the helix B–C 
loop and Arg-108 between the open and closed 
(substrate bound) forms has been proposed [749]�

Theoretical studies have been done on P450 
2C9 protein dynamics and substrate binding [752, 
753]� Structures and other information have been 
utilized to develop models for the prediction of 
substrate binding and reactivity [754–758]�

Changes in particular residues of P450 2C9 
yield markedly different effects depending on the 
substrate and reaction under consideration� For 
instance, the polymorphism *3 (I359 L), which 
appears to be very conservative, changed catalyt-
ic efficiencies of different reactions by factors of 
3- to 27-fold (in vitro) [759]� Although the *2 and 
*3 polymorphisms cause considerable changes 
with some substrates, diclofenac metabolism 
is not altered [760], consistent with the in vitro 
findings�

With the above caveats, the roles of a num-
ber of amino acids have been examined with 
several reactions, although extrapolation to more 
reactions requires caution� Changes in Arg-97 
and Arg-98 affected activity towards diclofenac 
[761]� Asp-293 has been shown to have a rela-
tively general structural role, possibly by bond-
ing to a partner amino acid or amide [762]� Stud-
ies with coumarins suggested two sites, one for 
π-stacking of aromatic rings and an ionic binding 
site for organic anions [763]; many P450 2C9 li-
gands have an anionic charge [764, 765]�



5779 Human Cytochrome P450 Enzymes

P450 2C9 was converted into an enzyme with 
( S)-mephenytoin 4ʹ-hydroxylation activity (i.e., 
P450 2C19-like) with a relatively small number 
of changes (I99H, S220P, P221T, S286N, V292A, 
F295 L)� Conversely, P450 2C19 could be trans-
formed to an enzyme with warfarin hydroxyl-
ation activity similar to that of P450 2C9 (and 
also sulfaphenazole binding) with the changes 
N286S, I289N, and E241K [766]� Mansuy’s lab-
oratory identified residues 476, 365, and 114 as 
being important in diclofenac and sulfaphenazole 
binding and in inactivation by tienilic acid [767]� 
Phe-114 is proposed to be involved in π-stacking 
[767], perhaps serving the role proposed in the 
coumarin studies mentioned earlier [763]�

9.7.9.6  Inhibitors
Sulfaphenazole has been recognized as a highly 
selective competitive inhibitor of P450 2C9 for 
some time [768] and has relatively poor affin-
ity for other subfamily 2C P450 enzymes [671]� 
Mansuy’s group examined some other similar 
compounds as ligands and inhibitors [764, 769]� 
Other inhibitors have been reported, although 
some have relatively poor affinity [770, 771], 
including several warfarin analogs [772]� For an 
early compilation of inhibitors, see Rendic [51]� 
Inhibitors of the subfamily 2C P450s have been 
reviewed more recently by Niwa and Yamazaki 
[660]� See also Table 9�6� Hanatani et al� [773] 
reported no differences in the effects of inhibitors 
on the *1 and *3 proteins (wild type and R144C), 
although it seems likely that some coding region 
variants may be found to differ�

Tienilic acid is a mechanism-based inactiva-
tor of P450 2C9 [774]� The mechanism involves 
S-oxygenation, and the unstable product reacts 
with P450 2C9 [775]� Subsequently, autoim-
mune antibodies develop in some patients who 
recognize unmodified P450 2C9 [774]� Exactly 
how (or if) this process is related to the hepatitis 
seen in some individuals who used tienilic acid 
is still unclear [776], but the phenomenon has 
raised concerns about whether such processes 
might be associated with other drugs that cova-
lently modify proteins and could lead to idiosyn-
cratic drug reaction in patients, one of the major 
concerns today for safety assessment in drug de-

velopment� Structure–activity relationships have 
been reported on thiophenes other than tienilic 
acid [765]�

A series of type II (spectra) π-binding ligands 
have been analyzed, in regard to their physical 
parameters [777]� Tienilic acid and (±) suprofen 
are mechanism-based inhibitors [778, 779]�

Finally, some hydroxylated products of warfa-
rin have been reported to be potent inhibitors of 
P450 2C9 [780], although not the ones derived 
from warfarin by P450 2C9�

9.7.9.7  Clinical Issues
One of the major current clinical issues regard-
ing P450 2C9 is warfarin therapy (blood thinning 
for strokes)� The safety margin is narrow, and too 
much warfarin can lead to internal hemorrhaging� 
There is a relationship between P450 2C9 geno-
type and warfarin dose [76, 781], and one issue is 
whether genotyping is useful in management of 
the drug [782]� Both negative [783] and affirma-
tive [784–786] opinions have been expressed�

Another interesting issue regarding P450 2C9 
involves the drug tienilic acid� The compound is 
a substrate and a mechanism-based inactivator 
of P450 2C9 [778]� A product of tienilic acid be-
comes selectively covalently bound to P450 2C9 
(Sect� 7�9�6, vide supra)� Some patients treated 
with tienilic acid develop liver injury (hepati-
tis)� Some patients treated with tienilic acid also 
present with so-called liver–kidney microsomal 
(LKM) antibodies in their blood� These antibod-
ies react with unmodified P450 2C9 [774]� Al-
though it could be proposed that the modified 
P450 2C9 produces these autoantibodies and that 
they are involved in the liver injury, a causal rela-
tionship has never been demonstrated�

Genetic variations in P450 2C9 can lead to el-
evated levels of meloxicam [787] and celocoxib 
[788]� Polymorphisms have also been related to 
the response to celocoxib in cancer prevention 
[789]�

The incidence of the *2 genotype has been 
related to bosentan-induced liver injury [790, 
791]� The *2 genotype has also been reported 
to increase the risk for hypoglycemia in diabetic 
patients treated with sulfonylureas (e�g�, tolbuta-
mide) [792]�



578 F. P. Guengerich

Finally, P450 2C9 genetic variation has been 
reported to contribute to the incidence of stroke 
[793] and to colorectal cancer [794]�

9.7.10  P450 2C18

9.7.10.1  Sites of Expression
Relatively little has changed regarding P450 
2C18 since the previous edition of this chapter 
was published [149]� Of the four human P450 
subfamily 2C members, the level of hepatic ex-
pression is lowest for 2C18, at both the mRNA 
[629, 795, 796] and protein levels [297, 796, 
797]� In intestine, P450 2C18 mRNA levels were 
high, but no protein was detected [796]� Expres-
sion in lung and skin has been reported to be sig-
nificant [382, 797–800]�

9.7.10.2  Regulation
Relatively limited information is available about 
regulation of P450 2C18� The levels of P450 
2C18 mRNA in human liver and intestine were 
both reported to vary 25-fold [796]� At the pro-
tein level, expression in liver is reported to be 
very low (< 2�5 pmol/mg protein) [55, 797]�

Rae et al� [387] reported that P450 2C18 was 
not inducible by rifampicin in human hepato-
cytes, in contrast to P450s 2C8, 2C9, and 2C19�

In a humanized transgenic mouse model, 
P450 2C18 was expressed in liver and kidney in 
a male-specific manner [801], but the relevance 
to humans is unknown�

9.7.10.3  Genetic Variation
Variations in the CYP2C18 gene have been re-
ported [802] but are not included on the website 
http://www�cypalleles�ki�se� Effects on expres-
sion and catalytic activities are not well charac-
terized� One variant has an exon 5 deletion [803]�

9.7.10.4  Substrates and Reactions
P450 2C18 has low catalytic activity in tolbu-
tamide methyl hydroxylation [803]� P450 2C18 
is active in phenytoin metabolism, having an 
enzyme efficiency ( kcat/Km) for 4-hydroxylation 
comparable to P450 2C9 and being more effi-
cient in bioactivation to a reactive product [800]� 
Catalytic activities have also been reported with 

the substrates bisphenol A, diclofenac, the diclof-
enac derivative 2-[2(2,6-dichlorophylamino)]
phenylethanol, and verapamil [660, 795]� Re-
cently, P450 2C18 has been reported to oxidize 
5-hydroxythalidomide to a reactive product (but 
does not catalyze the oxidation of thalidomide 
itself) [804]�

9.7.10.5  Structure
No crystal structures have been published� In-
formation about the active site of P450 2C18 
is relatively limited beyond comparisons of the 
substrates mentioned above [795], the interaction 
of other P450 2C proteins with general P450 sub-
family 2C substrates [659] and inhibitors [805], 
and inferences from the crystal structures of the 
other three P450 subfamily 2C crystal structures 
(i�e�, 2C8, 2C9, 2C19)� At least one homology 
model has been published [806]�

9.7.10.6  Inhibitors
P450 2C18 is appreciably inhibited by sulfa-
phenazole, a classical inhibitor of P450 2C9� 
Mansuy’s group has published on a set of sulfa-
phenazole derivatives that can be used in vitro 
[671, 672]�

9.7.10.7  Clinical Issues
The limited expression and repertoire of catalytic 
activity for P450 2C18 still precludes consider-
ation of any clinical issues at this time�

9.7.11  P450 2C19

Interest in P450 2C19 developed from the dis-
covery of the polymorphic metabolism of the 
S-isomer of mephenytoin, the first major poly-
morphism to be studied following P450 2D6 
[624, 625]� Initial work led to the purifica-
tion of an enzyme with some ( S)-mephenytoin 
4ʹ-hydroxylation activity [15]� Exactly how this 
and other gene products from the complex P450 
2C subfamily [628, 689] were involved was un-
clear [807, 808]� Although there were some in-
dications that the hexobarbital 3ʹ-hydroxylase 
(P450 2C9) was the enzyme involved in mephe-
nytoin hydroxylation [691, 809], expression of 
P450 2C9 cDNA [689] in yeast yielded a protein 
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with activity towards tolbutamide but not ( S)-
mephenytoin [627, 692]� P450 2C18 had also 
been suggested to be the enzyme [629]�

Wrighton [630] compared ( S)-mephenytoin 
4ʹ-hydroxylation activity in different liver sam-
ples with a protein gel band recognized by anti-
rat P450 2B1 and correlated this with P450 2C19, 
a sequence which had been reported earlier� Sub-
sequently, Goldstein et al� [22] expressed several 
subfamily 2C P450 cDNAs in yeast and identi-
fied P450 2C19 has having the highest activity 
with mephenytoin�

9.7.11.1  Sites of Expression
Apparently, significant expression only occurs in 
the liver� As with other human P450s examined 
to date, there appears to be no gender difference 
[810]� P450 2C19 has been detected in human 
liver microsomes using LC–MS proteomics 
methods [297]� P450 2C19 is a relatively minor 
P450 in its abundance, probably accounting 
for < 5 % of total P450 even in EM liver samples 
(Fig� 9�2) [54]�

Neither P450 2C19 nor ( S)-mephenytoin 
4ʹ-hydroxylation activity was detected in fetal 
liver samples [689]�

9.7.11.2  Regulation
In vivo work had shown that the enzyme was 
inducible by rifampicin [811]� Thus, this P450 
differed from P450 2D6 in that it was both poly-
morphic and inducible� Analysis of the regula-
tory system has not been extensive, but studies 
with human hepatocytes demonstrated induction 
of P450 2C19 mRNA by rifampicin, dexametha-
sone, and phenobarbital [698]�

The regulation of transcription of P450 2C19 
has been reviewed elsewhere [812]� P450 2C19 
expression is downregulated by ER α [706]� Reg-
ulatory variations (e�g�, *17) can increase rates 
of transcription (~ twofold) [813], and this vari-
ant has been associated with peptic ulcer disease 
[814]�

9.7.11.3  Genetic Variation
The variation and polymorphisms are now rela-
tively well understood� The incidence of the PM 
phenotype in Caucasians is generally 2–3 %, but 

the incidence in Asians (at least Japanese, Kore-
ans, Chinese) is ~ 20 % [167]� On some Pacific 
islands, the incidence has been reported to be as 
high as 75 % [815, 816]� In Thai, Burmese, and 
Karen populations, the incidence of PMs is “in-
termediate,” i�e�, 8–11 % [817]�

The major defect in Caucasians and Japanese 
was first identified in an exon 5 mutation that 
leads to an aberrant splice site and yields a trun-
cated protein [818]� Other variants are collected 
at the website http://www�ki�se/cypalleles/� These 
are rather diverse and include a mutation of the 
initiation codon [819] and altered enzymatic 
properties [815]� At the time of the update of this 
chapter, at least 48 allelic variants are known, 
with an additional 20 SNVs for which haplotypes 
have not been determined�

9.7.11.4  Substrates and Reactions
( S)-Mephenytoin 4ʹ-hydroxylation is the classic 
reaction attributed to P450 2C19 ( vide supra)� 
Early studies on the basis of the polymorphism 
of tolbutamide hydroxylation suggested that the 
same enzyme might be responsible for both ac-
tivities [626], but in vivo work [626] and heterol-
ogous expression studies [627] distinguished the 
two activities� Nevertheless, recombinant P450 
2C19 has now been shown to have some tolbuta-
mide hydroxylation activity [820]�

A list of P450 2C19 reactions has been pub-
lished by Rendic [51]� Another list of P450 2C19 
substrates has been compiled, and catalytic ef-
ficiencies are compared to the other subfam-
ily 2C P450s [660]� The scope of P450 2C19 in 
drug metabolism is rather significant (Fig� 9�1b, 
Tables 9�5, 9�6 and 9�7)� One drug of particular 
interest is the ulcer drug omeprazole (and re-
lated compounds), because individuals with low 
enzyme activity show a better response to treat-
ment for ulcers [79, 80]� Some of the early varia-
tions seen in warfarin metabolism [821] can be 
explained by the finding that P450 2C19 cata-
lyzes the 8-hydroxylation of ( R)-warfarin [822]� 
18-Methoxycoronaridine is O-demethylated by 
P450 2C19 [823]� P450 2C19 is responsible for 
the 5- and 5ʹ-hydroxylation of thalidomide, an 
older drug notorious for teratogenic effects that 
has been “rediscovered” [824]� Whether the ge-
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netic variation is related to the birth defects is 
unclear�

P450 2C19 can also catalyze steroid oxida-
tions, including progesterone 21-hydroxylation 
and testosterone 17-hydroxylations [825]� The 
organophosphate insecticide diazinon is activat-
ed in human liver by P450 2C19 [826]�

One of the more well-studied substrates is the 
drug clopidogrel (Plavix®), which is converted 
to its active form in two steps, both catalyzed (in 
large part) by P450 2C19 [827] (see Sect� 7�11�7 
regarding clinical issues)� P450 2C19 is involved 
in the N-oxidation of voriconazole [828], and 
genotype is a major factor contributing to the 
highly variable in vivo pharmacokinetics [829]� 
Another substrate is the drug clobazam [830], 
and genetic variation in P450 2C19 affects the 
efficacy of therapy [831]� Other drug substrates 
of interest are escitalopram [832], fenbendazole 
[833], and thalidomide [834, 835]�

As with other P450 2C subfamily enzymes, 
P450 2C19 activities are usually stimulated by 
cytochrome b5 [736]� In this case, stimulation 
is not dependent on the heme in the cytochrome 
b5 and thus electron transfer cannot be involved 
[736]�

9.7.11.5  Structures
Johnson and his associates [749] have reported 
an X-ray crystal structure of P450 2C19 con-
taining the inhibitor (2-methyl-1-benzofuran-
3-yl)-(4-(hydroxy-3,5-dimethylpentyl) metha-
none� A comparison has been made with the 
available structures of P450 2C8 and 2C9 ( vide 
supra)� The size of the active site is similar to 
that of P450 2C9 and much smaller than that of 
P450 2C8�

Goldstein and her associates did chimera 
analysis and then site-directed mutagenesis on 
P450 2C9 to convert it to a protein with P450 
2C19-characteristic omeprazole hydroxylation 
activity [836]� Only three changes were needed 
to achieve the activity of wild-type P450 2C19—
I99H, S200P, and P221T� However, at least 
three different mutations were needed to convert 
P450 2C9 to an enzyme with ( S)-mephenytoin 
4ʹ-hydroxylation activity, even to a catalytic ef-
ficiency one third of wild-type P450 2C19 (*1) 

[837]� In an opposite experiment, P450 2C19 
was converted to a P450 2C9-like warfarin hy-
droxylase with high sensitivity to sulfaphenazole 
[766]� Residues 286 and 289 appear to be im-
portant� However, these residues may exert an 
indirect influence by adjusting the active site or 
substrate access channels [837]�

9.7.11.6  Inhibitors
Niwa and Yamazaki [660] have compiled a list 
of inhibitors of subfamily 2C P450s� Two diag-
nostic inhibitors validated for P450 2C19 reac-
tion phenotyping (in liver microsomes) are (+)N-
3-benzylnirvanol [838] and (−)N-3-benzylpheno-
barbital [839]� The point has been made that the 
choice of “probe” substrates can influence in vitro 
inhibition profiles [840], which is not surpris-
ing in light of experience with P450 3A4 ( vide 
infra). As indicated in Sect. 7.11.5 ( vide supra), 
(2-methyl-1-benzofuran-3-yl)-(4-hydroxy-3,5-
dimethyl)methanone was the inhibitor used to 
obtain the P450 2C19 crystal structure [749]�

Two interesting inhibitors of practical interest 
are cannabidiol (marijuana constituent) [841] and 
grapefruit juice (extensively studied with P450 
3A4) [842]�

9.7.11.7  Clinical Issues
The issue is the genetic variation, particularly 
so for drugs marketed in Asian populations� At 
least eight alleles have been associated with the 
PM phenotype [816]� Desta et al� [816] reviewed 
some of the drugs for which the 2C19 phenotype 
is a problem (Tables 9�5, 9�6 and 9�7)� Most phar-
maceutical companies and regulatory agencies 
discourage development of a P450 2C19 substrate 
because of potential problems for PM individu-
als� Mephenytoin itself is seldom used and is not 
an issue� Several studies indicate that PM patients 
may have more effective therapy (for ulcers) 
with omeprazole and related compounds [816, 
843–846]� The popular proton pump inhibitors 
omeprazole, lansoprazole, pantoprazole, and ra-
beprazole are metabolized by P450 2C19 (but not 
esomeprazole), and genetic variation is an issue in 
use for acid-related intestinal disease [847]�

Another major drug of interest is clopido-
grel (Plavix®), which is a P450 2C19 substrate 
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(converting the drug to the active form in two 
steps) [827]� The question has been raised as to 
whether the use of genotyping is useful in pre-
scribing (correct doses of) this drug [848]� Both 
positive [849–852] and negative [853] opinions 
have been expressed� An Australian study con-
cluded that genotyping for the use of clopidogrel 
was economically justified but for ticagrelor was 
not [854]�

Other drug issues regarding P450 2C19 varia-
tion involve thalidomide therapy [835] and treat-
ment of small-cell lung cancer with tivantinib 
and erlotinib [855]�

As with many polymorphisms, epidemiology 
studies have been done to explore risks to dis-
eases in the absence of information about etiol-
ogy, substrates, etc� Some of the reports include 
suggestion of more hepatocellular cancer in PMs 
[856] and lack of association of leukemia with 
polymorphism [857]� Other possible relation-
ships have been explored, but evidence for any 
associations is limited at this time [816]� Genetic 
variation in P450 2C19 has also been considered 
in regard to cancers of the breast (decreased with 
*17) [858], biliary tract [859], and digestive sys-
tem [860]� Other diseases in which P450 2C19 
genetic variation has been considered include en-
dometriosis [861], essential tremor [862], peptic 
ulcers [814], and mortality following acute myo-
cardial infarction [863]�

9.7.12  P450 2D6

P450 2D6 is one of the main enzymes involved 
in drug metabolism (Fig� 9�1b)� It was the first 
“xenobiotic-metabolizing” P450 recognized to 
be under monogenic regulation [11]�

9.7.12.1  Sites of Expression
P450 2D6 is expressed mainly in liver and was 
first purified from liver microsomes [14, 19]� In 
the average person, P450 2D6 accounts for ~ 5 % 
of total P450 (with wide variation) [52]� Esti-
mates of the level of P450 2D6 vary in different 
studies� An older immunoblotting analysis of 60 
samples (one-half Caucasian, one-half Japanese) 
showed a mean of 5 pmol P450 2D6/mg micro-

somal protein [52]� Similar levels were reported 
in adolescents by Stevens et al� [864]� One LC–
MS analysis gave a mean of 30 pmol P450 2D6/
mg microsomal protein [865], but a more recent 
LC–MS analysis gave a mean value of 12 pmol 
P450 2D6/mg microsomal protein [55]� Another 
yields values of 4–12 pmol P450 2D6/mg mi-
crosomal protein [54]� However, this enzyme is 
involved in the oxidation of ~ 25 % of all drugs 
oxidized by P450s (Fig� 9�1b)�

Developmental studies showed little P450 
2D6 in early fetal liver and a rapid increase in 
protein shortly after birth, yielding a peak accu-
mulation in newborns and decline in adulthood 
[866]� In another study, P450 2D6 levels increase 
during development, being low in fetal liver, in-
creasing the third trimester and then somewhat 
high postnatally, increasing during childhood and 
adolescence [864]�

P450 2D6 is also expressed at low levels in 
lung (bronchial mucosa and lung parenchyma) 
[867]� Another site of P450 2D6 expression is 
brain, with localization in large principal neurons 
[868]� Higher levels of brain expression have 
been reported in alcoholics [869]�

In the central nervous system, there is evi-
dence of several endogenous substrates and for 
neurophysiological differences in different geno-
types ( vide infra)� Recently, a transgenic mouse 
line expressing human P450 2D6 has been devel-
oped and may provide insight [870]�

P450 2D6 is generally considered a microsom-
al protein, but Avadhani and his associates have 
shown that an N-terminal chimeric signal in the 
protein (residues 23–33) also mediates targeting to 
mitochondria [871]� Naturally occurring variants 
can affect the localization, and phosphorylation has 
a role [872]� In the mitochondria, P450 2D6 is ca-
pable of using electrons from adrenodoxin, and the 
mitochondrial localization may be an issue in the 
bioactivation of the neurotoxicant 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) [873]�

9.7.12.2  Regulation
All information available indicates that P450 
2D6 is not inducible� Some factors are known to 
be involved in constitutive expression, including 
C/EBPα [547] and HNF4α [171]�
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Phosphorylation of P450 2D6 (in vivo) has 
also been reported [297]�

9.7.12.3  Genetic Variation
The wide variability in the activity of P450 2D6 
is attributed to genetic variation (Fig� 9�4)� Re-
duced ability to metabolize the drug debriso-
quine was first noted (personally) by Smith in a 
drug trial� Subsequent work led to the report of 
polymorphic hydroxylation of debrisoquine [11], 
including a phenotypic hypotensive response 
[874]� Racial differences were first noted in Afri-
cans [62]� The phenomenon of polymorphic de-
brisoquine hydroxylation [875] was also reported 
for sparteine oxidation [13, 876]�

Today, P450 2D6 is considered to be a very 
polymorphic P450� At least 165 genetic variants 
are known (and 26 more not characterized for 
haplotype) (http://www�cypalleles�ki�se)� The ef-
fects of formation of some have been identified 
[877] but not all (particularly the coding region 
variants, where function may vary depending 
upon the substrate and inhibitor)� There is also 
variation of activity in vivo within each genotype 
[878], possibly due to differences in regulatory 
factors (or possibly the existence of endogenous 
or food-borne inhibitors)�

The most significant decreases in activity for 
P450 2D6 alleles, aside from mRNA splicing 
problems and gene deletion [170], are considered 
to result from less stable proteins [879], although 
low-activity P450 2D6 variant proteins have also 
been reported [880, 881]� Some of the allelic dif-
ferences are present as haplotypes [882]�

In addition to the “poor” and “intermediate” 
metabolizer phenotypes, a “very extensive” or 
“ultra-metabolizer” (UM) phenotype was iden-
tified in early work (Fig� 9�4)� Ingelman-Sund-
berg’s group identified the basis for this as a gene 
duplication, with up to 13 copies present in some 
individuals [63]� The main form of this phenom-
enon is a haplotype resulting from gene duplica-
tion [63, 883]� The amplification appears to result 
from unequal segregation and extrachromosomal 
replication of the acentric DNA [884]� As many 
as 7 % of Caucasians show some of this effect, 
and the incidence is even higher in some Middle 
Eastern populations [885]�

9.7.12.4  Substrates and Reactions
Since the original work with debrisoquine [11], 
many substrates and reactions have been re-
ported for P450 2D6� In some cases, the role of 
P450 2D6 is very dominant in vivo and the clini-
cal manifestations of genetic polymorphism are 
important and even deadly [874, 886]� Lists of 
P450 2D6 substrates have been published [51]; 
see Table 9�5�

P450 2D6 catalyzes many of the basic kinds 
of oxidative reactions of P450s, e�g�, aliphatic 
and aromatic hydroxylations, heteroatom deal-
kylations, etc� [887]� In early work in this labora-
tory [888], the observation was made that many 
of the substrates contained a basic nitrogen atom 
situated ~ 5 Å away from the site of oxidation, 
possibly due to a specific anionic charge in P450 
2D6� Subsequently more detailed pharmaco-
phore models have been developed [889–892]� 
All of these are based on the premise that a basic 
nitrogen atom in the molecule interacts (coulom-
bic bond) with an acidic amino acid in P450 2D6, 
usually Asp-301 in most studies� (More recent 
work shows a role for Glu-216, however, vide 
infra�)

The use of these models requires some cave-
ats� Although the pKa of the substrate has been 
proposed to have a dominant influence [893], 
work in this laboratory has shown that the in-
trinsic pKa of a substrate can be altered in the 
active site of P450 2D6 [894]� Another issue is 
that some compounds with a single amine ni-
trogen undergo N-dealkylation, e�g�, deprenyl 
[895], which cannot be easily rationalized with 
an amine-oxidation site interatomic distance of 
5–7 Å� Some substrates devoid of basic nitrogen 
(and any nitrogen) have been reported, including 
steroids [896, 897]� Spirosulfonamide and sever-
al analogs do not have a basic nitrogen but have 
been shown to be good substrates and ligands for 
P450 2D6 [898] (Fig� 9�16)�

A large fraction of the population is devoid of 
functional P450 2D6 but appears to function well� 
This information may be interpreted to mean that 
P450 2D6 has no “physiological” substrate� Nev-
ertheless, some reactions may be catalyzed by 
P450 2D6 and yield physiological responses that 
yield less than obvious changes� For instance, 
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overexpression of human P450 2D6 in trans-
genic mice produces a higher capability to adapt 
to anxiety [870]� Tryptamine has been proposed 
as a physiological substrate in one study [899] 
but discounted in another [900]� Proposed physi-
ological reactions catalyzed by P450 2D6 are 
the O-demethylation of 5-methoxytryptamine, 
5-methoxy-N,N-dimethyltryptamine, and pino-
line (6-methoxy-1,2,3,4-tetrahydro-β-carboline) 
[900, 901]� Whether significant catalysis is seen 
at the low concentrations seen in vivo and what 
the effect is remains to be established�

P450 2D6 catalyzes tamoxifen α-hydroxylation 
and formation of α,4-dihydroxy tamoxifen [902]� 
P450 2D6 has been reported to be the major en-
zyme involved in the O-demethylation of the de-
signer drug p-methoxymethamphetamine [903]� 
MPTP, a breakdown product of a designer drug, 
is oxidized by P450 2D6-catalyzed aromatic hy-
droxylation and N-demethylation [904]� P450 
2D6 can also convert MPTP to MPP+ (1-methyl-
4-phenylpyridine), as shown in mitochondria, 
and contributes to neurotoxicity in the substantia 
nigra [873]�

Fig. 9.16  Analogs of spirosulfonamide and other P450 2D6 ligands� Kd values were estimated by spectral titration 
[898]� (With kind permission from Springer Science + Business Media: [149], Fig� 10�10)
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Possible endogenous substrates have also 
been considered, including 5-methoxyindole-
thylamine [900]� Human P450 2D6 also cata-
lyzes some important steps in mammalian opioid 
biosynthesis, including conversion of ( R)-retic-
uline to salutaridine, thebaine to oripavine, and 
codeine to morphine (Fig� 9�17) [905, 906]�

Modi et al� [907] reported differences in prod-
uct profiles of P450 2D6 reactions supported 
with artificial oxygen surrogates and NADPH-
P450 reductase and interpreted these as evidence 
for an allosteric influence of the reductase� Sub-
sequent experiments in this laboratory did not 
support this conclusion and are in accord with 
some differences in the chemical mechanisms for 
the oxygen surrogates [908]�

Detailed experiments have been done on the 
O-demethylation of 3- and 4-methoxyphenethyl-
amine by P450 2D6 [909]� Analysis of kinetic 
deuterium isotope effects, kinetic simulation, and 
other experiments yields evidence that both late 
steps in O2 activation and C–H bond breaking 
contribute to kcat� The exact meaning of Km is still 
not defined with this and most P450 reactions� 
Some of the P450 2D6 allelic variants show no 
changes in kcat for certain reactions but do show 
Km differences [910]; these are probably more 
complex than simple “affinity” for the substrate�

9.7.12.5  Structure
The active site of P450 2D6 has been the subject 
of considerable interest, probably because of the 
relevance to issues in the pharmaceutical indus-
try� Some residues have been identified as being 
important, and early homology and pharmaco-
phore models have been published [889–892, 
911–917]�

The original clone reported by Gonzalez [34] 
had Met at position 374, but this now appears to 
be a gene variant or artifact; the correct residue is 
Val [918, 919]� This residue appears to be in the 
active site and affects activity�

Rowland et al� [920] published an X-ray crys-
tal structure of a slightly modified P450 2D6 
without a ligand� Johnson and his associates 
[323] subsequently published a structure of P450 
2D6 with the ligand prinomastat bound� The lat-
ter structure had the *1 Val-374 instead of Met-

374 and differed significantly from the earlier 
P450 2D6 structure devoid of a ligand� The dif-
ferences in the structure are attributed to the flex-
ibility of P450 2D6 and conformational changes 
seen with binding [323]� High-pressure experi-
ments indicate that P450 2D6 is a much more 
rigid molecule when a substrate is bound [921]�

The crystal structures indicated that both Asp-
301 and Glu-216 are in position to form ionic 
bonds to charged amines [323]� Although much 
of the earlier literature was focused on Asp-301, 
both Asp-301 and Glu-216 have anionic changes 
that are used in binding positively charged sub-
strates [922, 923]� Interestingly, site-directed mu-
tagenesis of a few residues of P450 2D6 allowed 
oxidation of quinidine [924], which is only an 
inhibitor of the wild-type enzyme [97]� Previous 
studies had shown that neutral molecules are li-
gands of P450 2D6 (Fig� 9�17) [898], in contrast 
to earlier views about the need for basic atoms in 
ligands� Even acidic (e�g�, pactimibe) molecules 
can be ligands and substrates [925]�

Newer predictive pharmacophore schemes 
have been developed, some based in part on the 
available crystal structure of P450 2D6 [926–
928]�

9.7.12.6  Inhibitors
Many inhibitors of P450 2D6 have been reported 
(Table 9�6) [51, 890]� Inhibition of P450 2D6 is 
an undesirable issue in drug development, and 
most pharmaceutical companies have screening 
programs in place� As with some other P450s 
(e�g�, P450 3A4, vide infra), inhibitor screening 
results have been reported to be dependent upon 
the test substrate used [929]� Structure–activity 
relationship studies have been done with quini-
dine analogs [930]�

The most established inhibitor of P450 2D6 
is quinidine [931]� The KI is ~ 50 nM and inhibi-
tion is competitive� Interestingly, quinidine is not 
a substrate for P450 2D6 [97, 909]�

Mechanism-based inactivation of P450 2D6 
is known, e�g�, 5-fluoro-2-[4-[(2-phenyl-1H-im-
idazoyl-5-yl)methyl]-1-piperazinyl]pyrimidine 
(SCH66712) [932]� In the case of this compound, 
covalent binding to protein was detected, but the 
position of attachment has not been identified�
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Two related mechanism-based inactivators, 
1-[2-ethyl-4-methyl-1H-imidazol-5-yl)methyl]-
4-[4-(trifluoromethyl)-2-pyrinyl]piperazine 
[933] and 5-fluoro-2-[4-[(2-phenyl-1H-imidzo-
5-yl)methyl]-1–1piperazinyl]pyrimidine [934], 
modify the apoprotein� Several other mechanism-
based inactivators of P450 2D6 have been report-
ed [935], including methylenedioxymethamphet-
amine [936] but not metoclopramide [937]�

Other reported P450 2D6 inhibitors include 
sanguinarine [938] and cannabidiol, a marijuana 
constituent [939]�

9.7.12.7  Clinical Issues
The clinical issues regarding P450 2D6 are con-
siderable due to the large variation in the genetics 
in the population (Figs� 9�1b, 9�5, and 9�6) and 
the contribution of P450 2D6 in the total scheme 
of drug metabolism (Fig� 9�1b)� Individuals seem 
to be rather tolerant of the wide variability in ex-
pression with many marketed drugs, probably 
because of generally wide therapeutic windows 
selected for in the basic process of drug develop-
ment� However, P450 2D6 PMs can be at consid-
erable risk when they encounter certain drugs, as 
first observed by Smith [11, 874]� The problem is 
seen with drugs having a relatively narrow thera-
peutic index, e�g�, debrisoquine [11], phenformin 
[940], captopril [941]� The effects of P450 2D6 
deficiency are seen not only in short-term treat-
ments but also in long-term therapy [942]� The 
issue of ineffectiveness of drugs that are very 
rapidly metabolized by “very extensive” (UM) 
metabolizers is an issue (Fig� 9�4)� Modeling of 
the variability is still an issue [943] and may be a 
function of particular drugs� The issue of whether 
genotyping/phenotyping is economical has been 
considered, particularly in the case of neuroac-
tive and antipsychotic drugs [944, 945]� The 
overlap between P450 2D6 substrates and neuro-
active drugs is also an issue in drug development, 
largely due to the overlap of these two groups of 
compounds [946]�

Zhang et al� [947] have commented on the role 
of genetic polymorphisms in withdrawal of drugs 
from the market� Another concern, in the context 
of drug–drug interaction, is “phenoconversion,” 
making an individual a “PM” due to inhibition 

(e�g�, prescribing quinidine to a P450 2D6 “EM”) 
[948]�

Although it seems very possible that individu-
als might die due to drug interactions related to 
genetic variations, there is actually only very lim-
ited evidence that this has happened� A study of 
individuals who died due to drug toxicity did not 
show any relationships to known genetic varia-
tions in P450s [949]� There is a report of near-
fatal tramadol cardiotoxicity in a P450 2D6 ultra-
rapid metabolizer [950]� In 2004, an infant died 
due to codeine intoxication when nursing from 
his mother, who was an ultrarapid (UM) P450 
2D6 metabolizer (and generated an overdose of 
morphine) [81]�

One of the substrates of P450 2D6 is tamoxi-
fen [902], an ER antagonist used extensively in 
breast cancer therapy� There has been contro-
versy regarding application of genotyping to im-
prove therapy� Recommendations in favor of ge-
notyping and against it [951] have appeared, and 
several meta-analyses conclude that more study 
is needed [952–954]�

Another issue with P450 2D6 is the relevance 
of the genetic variation to cancer risks� In 1984, 
Idle [123] reported an association of lower risk 
of lung cancer (in smokers) with the P450 2D6 
PM phenotype� These epidemiological results 
were repeated in some studies [955] but not oth-
ers [124]� Attempts were made to resolve the 
discrepancies on the basis of levels of smoking 
[956]� Although some expression of P450 2D6 is 
detectable in lung [867], no clear role for P450 
2D6 in carcinogen activation could be estab-
lished, even with crude tobacco smoke fractions 
[125]� The issue of whether lung cancer is associ-
ated with P450 2D6 was not resolved by chang-
ing analyses from phenotyping to genotyping� 
The generally accepted epidemiological conclu-
sion today is that P450 2D6 is not related to lung 
cancer [124, 957–960]�

Other epidemiology studies have suggested 
relationships of P450 2D6 with other cancers 
[961, 962], but these findings have not been scru-
tinized as rigorously as the lung cancer hypoth-
esis�

Another disease in which P450 2D6 has been 
proposed to play a role, on the basis of epidemiol-
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ogy, is Parkinson’s disease [963]� Contradictory 
findings have been reported [964, 965]� Although 
a hypothesis has been raised that induction of 
P450 2D6 by smoking might explain some dis-
crepancies [966], this proposal lacks biological 
plausibility in light of the known refractory re-
sponse of P450 2D6 to induction� Some positive 
evidence for risk of Parkinson’s disease with 
“PM” P450 2D6 status has been published [953]�

Autoantigens (LKM1) that recognize P450 
2D6 have been known for some time [967, 968]� 
These antibodies are associated with some cases 
of hepatitis� The exact mechanism of how they 
arise is still unclear, as is the relationship with 
hepatitis� The antibodies may arise by molecu-
lar mimicry [969] or they may result from P450 
2D6 translocation to the outer plasma membrane 
[970, 971]� These LKM1 antibodies may serve as 
diagnostic tools for particular types of hepatitis 
[972, 973], but causal relationships have never 
been demonstrated�

P450 2D6 genetic variation has been consid-
ered, with some evidence, in explaining depres-
sion [974], suicide in relation to serotonin use 
[975], and type A versus type B personality [976]�

9.7.13  P450 2E1

The microsomal mixed-function oxidation of 
ethanol was reported nearly 50 years ago [977]� 
The view that ethanol could be a P450 substrate 
was not readily accepted because of the hydro-
philic nature of the molecule, but Lieber’s group 
characterized the enzymatic reaction in rat liver 
[978, 979]� Collaborative work with Levin led 
to the isolation of a P450 (“j”), which was also 
found to be inducible by isoniazid [980]� Human 
P450 2E1 was purified by Wrighton et al� [23], 
and Gonzalez’s group characterized the human 
gene [981]�

9.7.13.1  Sites of Expression
The greatest concentration is in the liver, and P450 
2E1 is a moderately abundant P450 (Fig� 9�2)� 
Using LC–MS proteomics, Shrivas et al� [635] 
detected P450 2E1 in all human liver microsomal 
samples analyzed� Seibert et al� [982] used LC–

MS and reported values of 88–200 pmol (P450 
2E1)/mg microsomal protein in four samples, 
which seems unusually high compared to other 
P450s (Fig� 9�2) [55] and an average total of 
~ 500 pmol/mg protein [10]� The interindividual 
variation is an order of magnitude (Fig� 9�6) [52, 
983]� A racial difference exists, with Japanese 
samples having mean expression levels lower 
than Caucasians (Fig� 9�6) [69]�

P450 2E1 was reported not to be present in 
fetal liver but appears within a few hours after 
birth, regardless of the gestational age [984]� 
However, P450 2E1 has also been reported to be 
detectable as early as gestational day 93 in fetal 
liver [985]� The activity increases during the first 
year of childhood, and transcriptional regulation 
due to hypermethylation has been proposed�

P450 2E1 is expressed in many extrahepatic 
sites, including lung [535], esophagus, small 
intestine [382], brain [986, 987], nasal mucosa 
[988], and pancreas [989] (some of the evidence 
is extrapolated from rat work and not necessarily 
extendable to humans)�

P450 2E1 is found mainly in the endoplasmic 
reticulum� With heterologous expression in bac-
teria (rabbit), P450 2E1 was membrane bound 
and catalytically active even when amino acids 
3–29 are deleted [38, 990]� The same bacterial 
localization was seen with human P450 2E1 from 
which 21 N-terminal residues were deleted [991]� 
However, P450 2E1 can show some unusual lo-
calization in mammalian systems� Ingelmann-
Sundberg’s group deleted residues 2–29 of rat 
P450 2E1 and demonstrated the presence of a 
fragment in the mitochondria of a mouse hepa-
toma cell line [992]� Avadhani’s group found 
P450 2E1 intact in rat liver mitochondria and re-
ported that it could couple with adrenodoxin and 
adrenodoxin reductase with full catalytic activity 
[993]� Subsequent work demonstrated a cryptic 
mitochondrial-targeting signal at positions 21–31 
that was activated by cyclic AMP-dependent 
phosphorylation of Ser-129 [994]� Neve et al� 
[995] found that the charge of the N terminus of 
(rat) P450 2E1 was such that part is directed to 
either the lumen of the endoplasmic reticulum or 
the outside of the plasma membrane� Migration 
of human P450 2E1 into mitochondria and the 
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relevance to oxidative stress have been published 
[996, 997]�

9.7.13.2  Regulation
Early work in experimental animals was focused 
on the induction of P450 2E1 in rat liver [978]� 
Subsequently many other chemicals, includ-
ing isoniazid and some solvents, were shown to 
induce P450 2E1 [998]� It is also of interest to 
note that some of the common polycyclic hydro-
carbons and other inducers of P450 1 family en-
zymes attenuated the level of P450 2E1 in rats 
[998]� The regulation of P450 2E1 has come to 
be recognized to be relatively complex, involv-
ing transcriptional activation, mRNA stabiliza-
tion, increased mRNA translation efficiency, and 
decreased protein degradation [999]�

HNF-1 is believed to regulate CYP2E1 gene 
transcription [183]� Obesity and diabetes are 
known to modulate P450 2E1 in rat models� In rat 
hepatocyte cell culture, insulin attenuated mRNA 
levels and glucagon or dibutyryl cyclic AMP 
elevated mRNA, with the latter effect down-
regulated by a protein kinase A inhibitor [1000]� 
mRNA levels are also selectively attenuated in 
mice or cell culture (relative to other P450s) by 
interleukin-6 [1001], interleukin-4 [1002], or 
interleukin-1β or tumor necrosis factor (TNF)α 
[1003]� Multiple mechanisms have been invoked, 
including kinase pathways, control of HNF-1α 
function, and regulation of other transcription 
factors�

Evidence for control at the level of mRNA 
stability and enhanced translation efficiency 
has been presented by Novak [182, 1004]� The 
3ʹ-region of the gene appears to be important 
in stability� The relevance of this rat model to 
human P450 2E1 is still unknown�

Another mechanism, generally well accepted 
although not completely understood, involves 
protein stabilization by substrate� Rat studies (in 
vivo) showed that ~ half of P450 2E1 was lost in 
1 h, and a ubiquitin-linked pathway was invoked 
[1005]� Similar findings were also reported for 
human P450 2E1 in HepG2 cells [1006]� An at-
tempt has been made to estimate the half-life of 
P450 2E1 in humans in vivo using chlorzoxa-
zone pharmacokinetics and a P450 2E1 inhibitor 

[1007]� The half-life was estimated at 50 ± 19 h, 
but this approach may not be sensitive enough to 
detect a short-lived P450 2E1 pool�

Some aspects of P450 2E1 regulation have 
been reviewed by Gonzalez [184]� P450 2E1 is 
also regulated by miR-378 [1008]� Daly has re-
viewed genetic variation involving P450 2E1 
gene regulation [1009]�

P450 2E1 phosphorylation has been detected 
in vivo [297], although the relevance is not yet 
clear�

9.7.13.3  Genetic Variation
P450 2E1 is polymorphic� At least 14 allelic vari-
ants of P450 2E1 are known, with four additional 
variants for which the haplotype has not been de-
termined (http://www�cypalleles�ki�se)� In some 
cases, the functional effects of coding region 
substitutions have been defined [1010]� Because 
of the nature of many of the substrates, many ef-
forts have been made to determine the relevance 
of SNPs and other variations to disease and risk 
of injury. A polymorphism in the 5ʹ-flanking re-
gion was suggested to be related to the binding of 
a transcription factor and related to alcohol intake 
[168, 1011]� A number of other polymorphisms 
have been identified [168, 1012, 1013]� Howev-
er, the evidence to date indicates that these varia-
tions do not seem to have much significance in 
terms of their effects on in vitro or in vivo activ-
ity of P450 2E1 [69, 1012, 1014–1016]�

9.7.13.4  Substrates and Reactions
P450 2E1 was originally characterized as an etha-
nol-oxidizing enzyme� P450 2E1 can oxidize some 
compounds that are present in the body, including 
acetone and possibly other ketones involved in 
certain physiological syndromes (fasting, diabe-
tes) [1017]� Transgenic P450 2E1-knockout mice 
appear to be relatively normal, although the blood 
acetone levels become much higher (than in wild-
type mice) after fasting [1018]�

The role that P450 2E1 plays in ethanol 
metabolism has been debated for many years 
[1019]� What seems to be the general consensus 
is that alcohol dehydrogenase is the main en-
zyme involved in ethanol oxidation� The overall 
contribution of P450s to the oxidation of etha-
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nol is considered elsewhere, relative to alcohol 
dehydrogenase and catalase [1020]� The point is 
made that even if an overall role of an enzyme 
(P450) is low, there may be strong “local” ef-
fects� Somewhat surprisingly, the experimental 
survey of human P450 enzymes did not show a 
strong role for P450 2E1 relative to other P450s 
[1021]� P450 2E1 may contribute at very high 
ethanol concentrations or in individuals with low 
levels of alcohol dehydrogenase activity� P450 
2E1-knockout mice have blood ethanol levels not 
significantly different from wild-type animals 
after administration of ethanol [1022]� Acetal-
dehyde, the product of ethanol oxidation, is also 
oxidized to acetic acid by rat and human P450 
2E1 (Fig� 9�19) [1023–1025]�

The oxidation of 4-nitrophenol to 4-nitro-
catechol has been used as an in vitro marker of 
human P450 2E1 [1026]� Chlorzoxazone 6-hy-
droxylation was demonstrated to be a relatively 
specific reaction catalyzed by human P450 2E1; 
other enzymes (e�g�, P450 1A1) can catalyze the 
reaction but with poor catalytic efficiency [1027, 
1028]� Chlorzoxazone is a relatively innocuous 
muscle relaxant, and the assay can be used in 
vivo to estimate hepatic P450 2E1 function non-
invasively [69, 1016]�

One group of substrates of interest is N-
alkylnitrosamines, which are carcinogens at 
many sites and can be formed by chemical re-
actions within the body (e�g�, stomach acid) 
[1029]� Early research on the activation of N-ni-
trosodimethylamine ( N,N-dimethylnitrosamine) 
indicated biphasic kinetics of the activating 
N-demethylation reaction in liver microsomes 
and the possible contribution of multiple P450s 

and possibly other enzymes [1030, 1031]� The 
enzyme involved in the “low Km” reaction was 
shown to be P450 2E1 in rat and human liver 
[1032, 1033]� An in vivo role of P450 2E1 has 
been confirmed in rats [1034]� However, P450 
2A6 has a significant share of the role of activa-
tion of some more complex nitrosamines, even 
N-nitrosodiethylamine [432, 433]� The oxidation 
of N-nitrosodimethylamine is actually a two-step 
reaction leading to formic acid, which appears to 
be relatively processive (Fig� 9�18) [1035]�

P450 2E1 has been shown to be a major 
P450 involved in the oxidation of a number of 
low molecular weight procarcinogens, includ-
ing not only nitrosamines but also benzene, sty-
rene, CCl4, CHCl3, CH2Cl2, CH3Cl, CH3CCl3, 
1,2-dichloropropane, ethylene dichloride, eth-
ylene dibromide, vinyl chloride, vinyl bromide, 
acrylonitrile, vinyl carbamate, ethyl carbamate, 
and trichloroethylene [461]� The oxidations by 
P450 2E1 all have relevance to the activation 
and detoxication of these compounds and their 
risk assessment (Figs� 9�9 and 9�10) [461, 1036]� 
Another substrate is the gasoline additive methyl 
tert-butyl ether [1037]� A role of P450 2E1 has 
been shown in the activation of some of these 
chemicals in knockout mice [1038, 1039]�

Another substrate for human P450 2E1 is 
lauric acid, which undergoes 11-hydroxylation 
[1040, 1041]� The physiological relevance of this 
reaction is unknown� Indole is oxidized by P450 
2E1 (3-hydroxylation to indoxyl, generating in-
digo) as well as by other P450s, particularly P450 
2A6 and 2C19 [446, 1042]� The relevance of this 
reaction to the urinary excretion of indigoids 
[1043] is still unclear�

Fig. 9.18  Sequential oxidation of N,N-dimethylnitrosamine to formaldehyde and formic acid by P450 2E1 [1035]
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Relatively few drugs are oxidized by P450 
2E1 (Fig� 9�1b)� Chlorzoxazone is one [1027]� 
Halogenated anesthetics are often metabolized 
by P450 2E1, including halothane [1044] and 
isoflurane [1045]� For more substrates, see Ren-
dic [51]�

Another example of an N-oxygenation by 
P450 2E1 has been reported, that of nicotinamide 
[1046], to go with pyridine N-oxygenation�

A detailed kinetic analysis of the human P450 
2E1-catalyzed oxidation of ethanol showed that 
the product acetaldehyde was converted to acetic 
acid in a rather processive manner [1025, 1047]� 
Both reactions occur with burst kinetics, i�e�, a 
rate-limiting step occurs after product formation, 
and the actual rate of oxidation (formal C–H bond 
cleavage) is very fast [1047]� Similar phenomena 
were observed with P450 2E1 oxidation of N-
nitrosomethylamine ( N,N-dimethylnitrosamine), 
in terms of oxidation of the resulting formalde-
hyde to formic acid (and processive oxidation of 
N-nitrosodiethylamine to acetaldehyde to acetic 
acid) [1035]� This processivity is rather unique to 
P450 reactions, including steroid hydroxylations 
[220] but has also been observed with P450 2A6 
in nitrosamine oxidations [1048]� These phenom-
ena are related to the expression of kinetic deu-
terium isotope effects in the Km parameter [1025, 
1047]� The intermolecular isotope effect is ex-
pressed in the Km parameter, which includes the 
C–H bond-breaking step� kcat is governed largely 
by an enzyme physical step after oxidation of 
the substrate� In this system, the Km term con-
tains kcat as a variable [1025, 1047, 1049]� The 
reasons for the processivity in these reactions 
are not clear yet, in that there does not appear 
to be an intrinsic chemical affinity for the alde-
hyde products to P450 2E1 (or P450 2A6) [1025, 
1047, 1048, 1050]� One possibility, which can be 
rationalized in kinetic models, is that a confor-
mational change occurs after the initial substrate 
binding and that this stays “locked” after the al-
dehyde forms, leading to a favorable oxidation of 
the aldehyde [1048]�

One of the issues in P450 2E1 in vitro reac-
tions is the need for cytochrome b5, first demon-
strated with the rat enzyme [1032] and also the 
human enzyme [1033, 1047]; the involvement 

also exists in microsomes [1051]� Cytochrome 
b5 also augments P450 2E1 activity in bacterial 
expression systems [736, 1052]� In contrast to 
several of the P450s, apo-cytochrome b5 (minus 
heme) does not function, arguing for a “classic” 
role of electron donation in enhancement of ca-
talysis [736, 1053]�

Other unusual phenomena have been reported 
in P450 2E1 reactions, including negative coop-
erativity and inhibition at high substrate concen-
trations [1054]� These effects have been rational-
ized in terms of multiplicity of ligand binding, 
although there has been no structural support for 
this hypothesis yet (Sect� 7�13�5, vide infra)�

Mathematical models have also been devel-
oped for rates of oxidation by P450 2E1 [1055, 
1056]� In essence, these are based on chemi-
cal reactivity at individual substrate atom sites� 
In both of the cited examples [1055, 1056], the 
models were used for relatively small sets of re-
lated compounds and may have some utility� An 
inherent problem in more extended sets is the dif-
ficulty in interpretation of the parameters kcat and 
Km� Thus, the rate-limiting step may not be relat-
ed to hydrogen abstraction or a similar chemical 
step involving the substrate ( vide supra)�

9.7.13.5  Structure
In 2008, Scott and her associates reported X-ray 
crystal structures of human P450 2E1 with imid-
azole and the inhibitor 4-methylpyrazole bound 
[1057]� Her group has also published structures 
with imidazole-modified fatty acids [1058] and 
pilocarpine [456]� The structures reveal an extra 
pocket near the binding site of a small molecule, 
and with different ligands the size of the active 
space available to the substrate can vary from 
190 to 470 Å3 [456]� Thus, P450 2E1 is some-
what flexible, and this behavior can explain the 
range in the size of substrates from ethanol to 
long-chain fatty acids (Sect� 7�13�4, vide supra)�

A pharmacophore template for prediction of 
oxidations by P450 2E1 has been published by 
Yamazoe et al� [1059]�

The kinetics of CO binding to human P450 
2E1 following flash photolysis [1060] appeared 
to be monophasic and the rate was decreased in 
the presence of (400 mM) ethanol� One interpre-
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tation of the results is that binding of the substrate 
makes P450 2E1 more rigid [1060]�

9.7.13.6  Inhibitors
As mentioned earlier, many low molecular weight 
solvents are substrates for P450 2E1� These are 
also inhibitors of P450 2E1 [155, 156]� Such in-
hibition is a problem in that historically many 
insoluble P450 substrates are added to enzymes 
with solvent concentrations of 1 % (v/v), which 
is often ~ 100 mM, and thus care is needed in 
analyses� It is possible to dilute many of the P450 
2E1 low molecular weight substrates directly in 
water to add them to incubations, e�g�, methylene 
chloride (normally considered immiscible) has a 
solubility of ~ 100 mM in H2O [1061]�

Some of the alcohol and aldehyde dehydroge-
nase inhibitors are also inhibitors of P450 2E1, 
making interpretations of in vivo ethanol me-
tabolism studies difficult� 4-Methylpyrazole is 
an excellent inhibitor [314, 1062] and probably 
the best one for in vitro experiments at this time� 
3-Amino-1,2,4-triazole [1063] and diethyldithio-
carbamate [461] are mechanism-based inactiva-
tors� The latter is of interest in that the oxidized 
form, disulfiram (Antabuse®), is an aldehyde 
dehydrogenase inhibitor used with patients in 
alcohol aversion therapy� Many of the early ani-
mal and human studies on interactions of ethanol 
and disulfiram with various chemicals can now 
be rationalized in the context of P450 2E1 [1064, 
1065]�

A number of compounds of natural origin 
have also been examined as P450 2E1 inhibi-
tors, many of which are derived from vegetables 
such as onions, garlic, and cruciferous vegetables 
[1066, 1067]�

In addition, the characterization of mecha-
nism-based inhibition of P450 2E1 by diethyldi-
thiocarbamate [1068], 3-hydroxyacetanilide (the 
“meta” isomer of acetaminophen) [1069], and 
the chemopreventive agent phenethyl isothiocya-
nate [1070] have been reported� The inhibition 
by diethyldithiocarbamate has been proposed to 
involve modification of one of the thiol groups of 
P450 2E1 [1068]�

9.7.13.7  Clinical Issues
Gonzalez has reviewed some of the clinical and 
practical aspects of P450 2E1 [184], which in-
clude the role of P450 2E1 in the oxidation of 
certain drugs, alcoholism, oxidative stress, and 
risk from cancer�

As pointed out earlier, the most generally ac-
cepted noninvasive human assay involves 6-hy-
droxylation of the muscle relaxant chlorzoxazone 
[1016, 1027]� Studies with humans show little 
effect of diabetes [1016, 1071] but an effect of 
body weight/obesity [1071, 1072]� As mentioned 
before, genotype has shown little impact on the 
in vivo parameters to date [69, 1072]�

Another issue is drug metabolism and toxicity� 
Acetaminophen (paracetamol) overdose remains 
a major cause of liver failure in the USA and Eu-
rope� Several P450s are involved in the oxidation 
to the reactive iminoquinone [304]� Studies with 
P450 2E1-knockout mice indicate that P450 2E1 
is probably a major determinant of acetamino-
phen toxicity in humans, because the toxicity was 
considerably attenuated in P450 2E1-knockout 
animals [104]�

P450 2E1-null mice have the same blood 
ethanol levels as wild-type animals after ethanol 
dosing [1022], suggesting that P450 2E1 activ-
ity is not a major factor in ethanol metabolism, 
at least in mice� The situation regarding a role 
for P450 2E1 in alcohol-induced liver injury in 
other models is unclear, with some reports sug-
gesting a link [1073, 1074] and others not [1022, 
1075]� Autoantibodies against P450 2E1 have 
been reported in alcoholics [1076] and attributed 
to hydroxyethyl radicals [1077] (which may arise 
from lipid peroxidation processes rather than as 
intermediates in P450-catalyzed oxidation, vide 
supra)� P450 2E1 is also a major autoantigen as-
sociated with halothane hepatitis, a rather idio-
syncratic response [1078]� As with other autoim-
munities involving P450s (2C9, 2D6, 21A2, vide 
supra and vide infra), causal associations remain 
to be demonstrated�

Many studies have been reported on the rela-
tionship of CYP2E1 genetic variations to risk of 
diseases� Benzene poisoning in Chinese workers 
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showed some changes in risk with one genotype 
but only in smokers� With regard to cancers, the 
results appear to be very mixed� An early report 
suggested a link of lung cancer with a polymor-
phism, but since then the results have been mixed 
for cancers of the lung [1079–1084], oral cavity 
[1085, 1086], and stomach [1087]� In most of 
these cases, it should be emphasized that there 
is little information about exposure and the only 
relevant etiology is probably tobacco-derived 
nitrosamines� In a study of workers exposed to 
vinyl chloride (a P450 2E1 substrate [461]), some 
association was found between a P450 2E1 poly-
morphism and p53 mutations [1088]� However, 
it should be emphasized again that the relevance 
of CYP2E1 genetic variants to known P450 2E1 
reactions is unclear, particularly in vivo [1072], 
and it is difficult to define roles of these genetic 
polymorphisms in cancer risk; overall, P450 2E1 
expression due to environmental influences may 
have a role but is more difficult to establish�

Because of the role of P450 2E1 in the me-
tabolism of industrial chemicals, there is con-
siderable interest in the field of occupational 
medicine [1089]� Genetic variations of P450 2E1 
in human population have been linked to vinyl 
chloride-induced liver fibrosis [1090] and risk 
assessment of volatile organic chemicals [1091]� 
Physiologically based pharmacokinetic models 
have been developed to incorporate variation in 
human population, using trichloroethylene as an 
example [1092]� Efforts have been made to relate 
genetic variations in P450 2E1 to cancer of the 
lung [1093], head and neck [1094], gastric tract 
[1095, 1096], and colon/rectum [1097] and vari-
ous chemically induced cancers [1098]�

Autoantibodies to P450 2E1 have also been 
detected in cases of chronic hepatitis C infection 
[1099, 1100]�

There is an extensive literature relating P450 
2E1 to generation of reactive oxygen species and 
oxidative stress, e�g�, [1101–1104]� Ingelman-
Sundberg reported that P450 2E1 contributed 
~ 20 % of the NADPH-dependent lipid peroxida-
tion in rat liver microsomes (and 45 % in micro-
somes prepared from rats treated with acetone to 
induce P450 2E1) [1105]� Transfection of human 
P450 2E1 into a rat hepatic stellate cell culture 

system elevated the production of reactive spe-
cies [1106]� Cederbaum [1107] has reviewed 
studies on the relationship of oxidative stress to 
P450 in liver cell models� However, almost all of 
the studies on P450 oxidative stress are in vitro 
studies (including cell culture), and there have 
been few in vivo studies� Even in the in vivo work 
that has been done, the biomarkers for oxidative 
stress are not ideal [1108, 1109]� Results from 
this laboratory showed that F2 isoprostanes, con-
sidered the most reliable biomarkers of oxidative 
stress [1110], were not altered in rats treated with 
isoniazid to induce P450 2E1 [1111]� The same 
findings were observed (for liver, kidney, brain, 
and urinary isoprostanes) in mice [1112]� Further, 
no differences in the levels of the isoprostanes 
were seen between CYP2E1 + /+  and CYP2E1 −/− 
mice� Mice with an Nrf2 reporter transgene sys-
tem did not show increased activity when treated 
with isoniazid to induce P450 2E1 and did not 
show changes [1112], in marked contrast to in 
vitro studies on P450 2E1 in HepG2 cell culture 
[1102]� Although “global” oxidative stress does 
not appear to be associated with P450 2E1 in ro-
dent models, the production of local “pockets” of 
reactive oxygen species, e�g�, in mitochondria (as 
documented by isoprostane formation in in vitro 
systems [997])�

P450 2E1 may also be involved in nonalco-
holic fatty liver disease, although this area is also 
controversial and genetic variations have not 
been implicated [184, 1113]�

9.7.14  P450 2F1

9.7.14.1  Sites of Expression
P450 2F1 was originally cloned from a human 
lung library [1114]� It is expressed in bronchial 
epithelial cells� This is considered a lung-specific 
P450, although there have been some repeats of 
protein expression in liver [635] and of mRNA at 
some other sites, e�g�, nasal mucosa [1115] and 
placenta [381]�

9.7.14.2  Regulation
A lung-specific factor (LSF) protein has been re-
ported to bind in the -152 to -182 5ʹ-region of the 
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gene to yield the preferential expression in lung 
[1116]� The factors Sp1 and Sp3 have also been 
implicated in the expression of P450 2F1 [1117]�

Metabolites of the P450 2F1 substrate 3-me-
thylindole have been reported to induce P450 
2F1 by a non-AhR mechanism [1118]�

9.7.14.3  Genetic Variation
Polymorphisms have been reported in the 
CYP2F1 gene [1119, 1120]� The http://www�
cypalleles�ki�se website currently shows eight al-
leles, with two frameshift variants and five cod-
ing region variants� The most frequent (*2A) is a 
frameshift and does not lead to a functional P450 
2F1 [1119]�

9.7.14.4  Substrates and Reactions
Several model fluorescent substrates have been 
used with P450 2F1 [1121], but most of the inter-
est in P450 2F1 has been in regard to its ability to 
activate several potential toxicants and carcino-
gens, including 4-ipomeanol [1121], 3-methylin-
dole [1122, 1123], styrene [1124], and naphtha-
lene [1125]�

9.7.14.5  Structure
No crystal structures have been reported� At least 
one homology model has been published [1126]�

9.7.14.6  Inhibitors
The substrate 3-methylindole has been also re-
ported to be a mechanism-based inactivator of 
P450 2F1 [1127]�

9.7.14.7  Clinical Issues
Clinical issues have not been considered� Al-
though functional polymorphisms have been re-
ported [1120] and potential carcinogens can be 
activated by P450 2F1 ( vide supra), epidemio-
logical reports have not appeared�

9.7.15  P450 2J2

9.7.15.1  Sites of Expression
P450 2J2 is generally considered an extrahe-
patic P450� The highest level of expression is in 
the heart, but expression is also seen in skeletal 

muscle, placenta, small intestine, kidney, lung, 
pancreas, seminal vesicles, leukocytes, and brain 
[1128–1136]� The protein has been detected in 
human liver microsomes using LC–MS [635], 
although at a low level in one study [55]� High 
levels of P450 2J2 are expressed in adult human 
primary cardiomyocytes [1129]� Varying levels 
of P450 2J2 are expressed in human fetal tissues 
[1137]� P450 2J2 has also been reported to be ex-
pressed at higher levels in some tumors [833]�

9.7.15.2  Regulation
The general consensus in the literature is that 
P450 2J2 is not very inducible [833, 1129]� To-
tah’s laboratory reported a twofold induction 
of P450 2J2 mRNA by rosiglitazone in human 
primary cardiomyocytes [1129]� It has been re-
ported that some regulation of P450 2J2 occurs 
through an AP-1 site and with microRNA let-7B 
[833, 1138–1140]�

9.7.15.3  Genetic Variation
At least ten genetic variants of the CYP2J2 gene 
have been reported (http://www�cypalleles�ki�se)� 
Of the six alleles examined (other than wild 
type), five resulted in lower activity [1141]� Ra-
cial differences have been reported [1142]�

Associations have been considered for a num-
ber of disease states, including diabetes [1143], 
hypertension [1144, 1145], ischemia [1146], 
and myocardial infarction [1147]� Other disease 
states have been considered with P450 2J2 in ani-
mal models�

9.7.15.4  Substrates and Reactions
The major endogenous substrate known for P450 
2J2 is arachidonic acid, which is converted to 
all four epoxides (EETs) [1128]� These epoxides 
have a variety of biological activities and are a 
considerable source of interest (see also P450 
2C9, Sect� 7�9�4)�

P450 2J2 has also been found to be rather 
proficient in the oxidation of a number of drugs, 
including terfenadine [1129, 1148], ebastine 
[1149], astemizole [1150, 1151], hydroxyebas-
tine and carebastine [1152], eperisone [1153], 
vorapaxar [1154], amiodarone [1155], albenda-
zole and fenbendazole [833], thioridazine, me-
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soridazine, danazol [1148], apixaban [1156], and 
some model substrates [1157]� With these drugs, 
it is not clear how much the generally extrahe-
patic metabolism of these contributes to the over-
all clearance, but in some cases local metabolism 
may be important�

9.7.15.5  Structure
No crystal structures have been reported� Some 
homology models have been proposed [1157, 
1158]�

9.7.15.6  Inhibitors
Several inhibitors of P450 2J2 have been syn-
thesized, some with sub-µM KI values [1157, 
1159, 1160]� One of the goals is to inhibit P450 
2J2 in tumors [1159]� Of the available drugs, da-
nazol was the most selective and potent inhibitor 
( KI 20 nM for inhibiting artemizole oxidation) 
[1155]�

To date, there appear to be no reports of issues 
of drug–drug interactions due to inhibition�

9.7.15.7  Clinical Issues
As indicated earlier, there have not been any is-
sues of drug–drug interaction with P450 2J2, and 
exactly how much this P450 contributes to over-
all drug clearance is unknown�

The major issue with P450 2J2 is its role in 
endogenous metabolism (i�e�, arachidonic acid 
oxidation) and the etiology of several diseases, 
including hypoxia [1161], cardiotoxicity [1162, 
1163], coronary artery disease [1164–1167], 
myocardial infarction [1168–1170], atheroscle-
rosis [1171], hypertension [1172, 1173], asthma 
[1174], stroke [1169, 1175], hyperhomocyste-
inemia [1176], diabetes [1177], preeclampsia 
[1178], Crohn’s disease [1179], and others [1130, 
1180–1182]�

9.7.16  P450 2R1

9.7.16.1  Sites of Expression
In the last edition of this chapter [149], nothing 
was known about P450 2R1� Today, this P450 is 
recognized as a major contributor in vitamin D 
metabolism and a three-dimensional structure is 
available [1183–1185]�

Russell and his associates [1183] first cloned 
mouse P450 2R1 in a search for a liver micro-
somal vitamin D3 25-hydroxylase� The mRNA 
is abundant in liver and testis of mice and was 
also identified (mice) in kidney, brain, epididy-
mis, skin, heart, muscle, and spleen [1183]� In 
humans, a similar mRNA profile was reported 
[1186], with the highest levels in testis, followed 
by pancreas, and then the tissues reported by 
Cheng et al� [1183], including liver� Thus, P450 
2R1 mRNA is expressed in many tissues� Protein 
detection has not been reported�

9.7.16.2  Regulation
Almost all of the work on regulation comes from 
cell culture systems� DNA methylation levels 
have been reported to predict variations in re-
sponse to vitamin D [1187]� In a prostate can-
cer cell line (LNCaP cells) and skin fibroblasts, 
calcitriol suppressed P450 2R1 mRNA levels 
[1188]� The drug efavirenz suppressed P450 2R1 
in fibroblasts but not LNCaP cells�

9.7.16.3  Genetic Variation
With the finding that P450 2R1 is a major vitamin 
D 25-hydroxylase [1183], considerable effort has 
been put into establishing the relationships of 
genetic variations� Shortly after the report that 
P450 2R1 is a vitamin D 25-hydroxylase [1183], 
Russell’s group also reported that a patient with 
low circulating levels of 25-hydroxyvitamin D 
had an L99P change, which was associated with 
the defect [1189]� Surprisingly, no other poly-
morphisms have been entered in the http://www�
cypalleles�ki�se site as of this writing� A GWAS 
of circulating vitamin D levels also identified an 
SNV in CYP2R1 [1190]�

However, a number of studies (not all cited 
here) have been done, and not all associated 
diseases under investigation are linked with the 
variation (see Clinical Implications, vide infra)�

9.7.16.4  Substrates and Reactions
The only reaction attributed to P450 2R1 is the 
25-hydroxylation of both vitamin D2 and D3 
[1191]�

A number of animal and human P450s (at 
least six) have been reported to catalyze vita-
min D 25-hydroxylation, including P450s 2R1, 
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27A1, 3A4, 2J3, 2J2, 2D25, and 2C11 [1192]� 
In mice, a CYP2R1 knockout lowered the level 
of 25-hydroxyvitamin D in serum by 50 % and a 
CYP27A1 deletion had no further effect [1184]� 
At least in mice, there may be another as yet 
unknown vitamin D 25-hydroxylase [1184]� Of 
the human P450 enzymes examined, P450 2R1 
had > 20-fold higher catalytic efficiency than 
any other P450 in vitamin D3 25-hydroxylation 
[1191]�

9.7.16.5  Structure
A crystal structure of P450 2R1 with bound vita-
min D3 has been reported [1185]� Cyclodextrin 
(used to solubilize the ligand vitamin) was pres-
ent near the F–G loop� Vitamin D3 was bound at 
a channel between the G- and I-helices and the 
B1 helix/B–C loop, in an elongated conforma-
tion� The C-25 carbon distance to the heme iron 
was 6�5 Å, slightly longer than might be expect-
ed� However, this distance might change with the 
redox state or binding of P450 2R1 to accessory 
enzymes�

9.7.16.6  Inhibitors
Apparently, no inhibitors of P450 2R1 have been 
reported�

9.7.16.7  Clinical Issues
The major issue is vitamin D-dependent rickets, 
a rare autosomal recessive disease associated 
with low levels of activated vitamin D3� This is 
the disease associated with the L99P variant by 
Cheng et al� [1189]�

Since then a number of studies have been 
done to associate P450 2R1 with other diseases, 
including asthma [1193, 1194], diabetes [1195], 
multiple sclerosis [1196], and cancers [1197, 
1198]�

9.7.17  P450 2S1

9.7.17.1  Sites of Expression
P450 2S1 was discovered by Ingelman-Sun-
dberg’s group [1199] in searching databases� 
mRNA and protein blotting work indicate high-
est levels of expression in trachea, lung (and 

fetal lung), stomach, small intestine, and spleen� 
mRNA expression was also detected in colon, 
appendix, liver [1200], kidney, thymus, brain 
(substantia nigra), peripheral leukocytes, and 
placenta [1199, 1201]� Recently the protein was 
detected in human liver [635]�

9.7.17.2  Regulation
Rivera et al� [72] reported that both mouse and 
human P450 2S1 mRNA transcripts are inducible 
by TCDD in cell culture, in a mechanism involv-
ing the AhR� Interestingly, induction is not seen 
in rats [1202]� Downregulation by corticosteroids 
in cell culture has been reported [1203]�

9.7.17.3  Genetic Variation
Genetic variation appears to be extensive, with 
at least 13 alleles reported [1204, 1205] (http://
www�cypalleles�ki�se)� Most of these are outside 
of the coding region, and in no case have any re-
sulting phenotypic changes been identified�

9.7.17.4  Substrates and Reactions
The identification of substrates for human P450 
2S1 has been somewhat controversial� Reports of 
two oxidations—retinoic acid and naphthalene 
[1206, 1207]—have not been repeatable, at least 
with an E. coli recombinant enzyme [350, 1208]� 
Bui et al� [1209] reported that P450 2S1 could not 
be reduced by NADPH-P450 reductase, but this 
was disproven in a series of reduction reactions 
[263, 1208, 1210]�

Bui et al� [1209] reported “peroxygenase”-
type reaction of P450 2S1 with hydroperoxides� 
Such reactions have long been known in the P450 
field [1211, 1212], but their physiological rele-
vance has never been established� In these perox-
ygenase reactions, a number of polycyclic hydro-
carbons and aflatoxin B1 were substrates [1209]� 
However, one point that should not be dismissed 
is that these compounds were oxidized in cells in 
which P450 2S1 was transfected [1213], regard-
less of the mechanism� It is conceivable that the 
N-terminal modification used to express P450 
2S1 might alter its catalytic selectivity, but the 
expressed form is definitely capable of accepting 
electrons from NADPH-P450 reductase [1210]� 
Other substrates for P450 2S1 include some aryl-
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hydroxylamines, which are reduced to arylamines 
[263, 1214] (the corresponding arylamines were 
not substrates for oxidation)� Some N-oxides are 
also reduced by P450 2S1 [1208, 1210]�

Surprisingly, then, P450 2S1 is left without 
catalyzing any typical mixed-function oxida-
tions, only reductions and peroxygenations� It 
seems highly unlikely it would only catalyze 
reductions� A metabolomic search of lungs from 
CYP2S1(−/−) mice revealed the accumulation of 
two molecules, taurocholic acid and tauro-β-
muricholic acid, but only in female mice (Xiao, 
Y�, Ding, X�, and Guengerich, F�P�, unpublished)� 
Neither compound was found to be a substrate 
for human P450 2S1 nor were any of the precur-
sors, so that a number of other explanations must 
be considered� Nevertheless, the relevance to any 
particular catalytic selectivity is unknown�

(Human) P450 2S1 was found not to appre-
ciably activate any of a battery of procarcinogens 
tested [350]�

9.7.17.5  Structure
No structure has been reported� One homology 
model has been published [1209]�

9.7.17.6  Inhibitors
No inhibitors have been reported, in that defini-
tive oxidations have not been identified�

9.7.17.7  Clinical Issues
The only clinical issue involves searches for as-
sociation of cancer and respiratory diseases with 
genotype [1215, 1216]�

9.7.18  P450 2U1

9.7.18.1  Sites of Expression
Essentially all of the expression reports have 
been at the mRNA level� P450 2U1 mRNA ex-
pression has been reported in brain and thymus 
[1217, 1218]� Some expression was also detected 
in other tissues, including heart, kidney, liver, 
lung, testes, and leukocytes [1217]� In the brain, 
the highest level of mRNA was in the cerebel-
lum, as well as limbic structures and cortex, plus 
cerebellum, olfactory bulbs, and pons and medul-

la [1217]; see also [1219]� Another site of expres-
sion is white adipose tissue [1220]� P450 2U1 is 
also expressed in skin [1221]�

9.7.18.2  Regulation
Relatively little is known about regulation of 
P450 2U1, other than what might be inferred 
from aspects of tissue localization ( vide supra)� 
P450 2U1 mRNA was upregulated in leukocytes 
following trauma, for unknown reasons [1222]�

9.7.18.3  Genetic Variation
Genetic variation of P450 2U1 has been reported 
in a French population, with four variants report-
ed [1223]� All of these four variations are outside 
of the protein coding region�

9.7.18.4  Substrates and Reactions
Chuang et al� expressed P450 2U1 in a baculo-
virus-based system and reported the ω- and ω-1 
hydroxylation of arachidonic acid [1217]� Other 
long-chain fatty acids were oxidized (sites not 
identified) but short-chain fatty acids were not� 
Substrates included arachidonic, palmitic, palmi-
toleic, stearic, and vaccenic acids, plus eicosa-
pentaenoic and docosahexaenoic acids� No ki-
netic parameters were reported [1217]�

A metabolomics-based search for P450 2U1 
substrates revealed arachidonic acid and also N-
arachidonoylserotonin as substrates [1224]� The 
site of oxidation of N-arachidonoylserotonin was 
identified as the C-2 of the indole ring [1224]� N-
Arachidonoylserotonin, an inhibitor of fatty acid 
amide hydrolase [1225], was shown to be pres-
ent in human brain, and the oxidation at the C-2 
site attenuated its ability to inhibit the hydrolase 
[1224]�

9.7.18.5  Structure
No information is presently available�

9.7.18.6  Inhibitors
No information about inhibitors is presently 
available�

9.7.18.7  Clinical Issues
At the present time, there are no clinical issues 
regarding P450 2U1� The only clinical issues in-
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volve the potential of P450 2U1 as a tumor mark-
er [1226]� A variant has been associated with 
complicated forms of hereditary spastic parapa-
resis [1227]�

9.7.19  P450 2W1

9.7.19.1  Sites of Expression
mRNA searches showed little expression in most 
tissues [350, 1228] but expression in colorectal 
tumors [1228]� However, the protein has also 
been detected in human liver [635]�

9.7.19.2  Regulation
P450 2W1 has been shown to be regulated by 
gene methylation [185]� The protein has also 
been reported to be glycosylated in human em-
bryonic kidney (HEK)-293 cells and to have in-
verted endoplasmic reticulum topology [185]�

9.7.19.3  Genetic Variation
Several reports have appeared on the genetic 
variation of P450 2W1 [1229–1232]� The http://
www�cypalleles�ke�se website lists seven known 
alleles, five of which lead to coding changes (ef-
fects are unknown)� One of the issues is potential 
relationship to colon cancer prognosis�

9.7.19.4  Substrates and Reactions
Although P450 2W1 could probably still be con-
sidered an “orphan” P450 (Table 9�1), a number 
of catalytic activities have now been ascribed to 
it� P450 2W1 activates a number of procarcino-
gens, including PAHs, aflatoxins, and aryl- and 
heterocyclic amines [350, 1233]� A cancer che-
motherapeutic agent, AQ4N, is reduced by P450 
2W1 [1208]� P450 2W1 also activates several 
cancer chemotherapeutic agents by oxidation, 
including aryl benzothiazoles [1214, 1234] and 
duocarmycin analogs [1235]�

A metabolomic search for endogenous sub-
strates for P450 2W1 revealed lysolecithins 
[1236]� Hydroxylation and epoxidation at the in-
ternal carbons of the fatty acids were observed, 
and the reaction occurred with other monoacyl 
(but not diacyl) glycerophospholipids [1236]� 
Other reported substrates are indole, 3-methylin-

dole, and chlorzoxazone [1237]� Only very low 
catalytic activity towards arachidonic acid is ob-
served [350, 1228, 1237]�

9.7.19.5  Structure
A homology model of P450 2W1 has been pub-
lished [1238]�

9.7.19.6  Inhibitors
No inhibitors of P450 2SW1 have been reported�

9.7.19.7  Clinical Issues
The only clinical issues reported relevant to P450 
2W1 relate to the possibility of P450 2W1 ex-
pression as a cancer marker [1230, 1239, 1240]�

9.7.20  P450 3A4

P450 3A4 is the most abundant P450 in the 
human body (e�g�, Figs� 9�2 and 9�3) and has a 
dominant role in drug metabolism (Fig� 9�1b)� 
Some of the earliest preparations of human P450 
[9, 10] were retrospectively found to be P450 
3A4� Two approaches led to an extensive charac-
terization� Watkins et al� [1241] isolated a P450 
from human liver using immunochemical cross-
reactivity with what is now recognized as a rat 
subfamily 3A P450� This laboratory isolated an 
enzyme from human livers that catalyzed the oxi-
dation of the hypotensive dihydropyridine drug 
nifedipine [16]� cDNA cloning yielded sequences 
corresponding to CYP3A3 [1242] and CYP3A4 
[1243]� (The former differed from CYP3A4 at 
14 sites and could be considered a rare allele, al-
though it has not been reported again [1244–1246] 
and originally came from the same single-liver 
cDNA library as the CYP3A4 clone; CYP3A3 has 
accordingly been dropped from the nomenclature 
and earlier references to this should probably be 
considered to indicate P450 3A4�)

Subsequently studies with microsomes, an-
tibodies, and purified P450 3A4 quickly indi-
cated that nifedipine was not the only substrate; 
other substrates included other dihydropyridines 
[1247], steroids [16, 1248], quinidine [97], the 
oral contraceptive 17α-ethinylestradiol [26], and 
the carcinogen aflatoxin B1 [29]� With more stud-
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ies and the application of recombinant systems, 
the repertoire of substrates expanded rapidly 
[1249]�

9.7.20.1  Sites of Expression
P450 3A4 is the most abundant P450 in human 
liver and in the small intestine� The average frac-
tion of the total P450 in liver accounted for by 
P450 3A4 has been estimated to be 25–30 % [52] 
(Figs� 9�2 and 9�6); in small intestine, the fraction 
attributed to P450 3A4 is even higher (Fig� 9�3)� 
A study with the selective inhibitor gestodene, 
which destroys P450 3A4, indicated that P450 
3A4 can constitute 60 % of the total hepatic P450 
[1250]� Several estimates have been made of the 
absolute amount of P450 3A4 (Fig� 9�2b, c, and 
d)� One estimate with a pool of Japanese samples 
was 64 pmol P450 3A4/mg protein, but analysis 
of nine individual samples in the same laboratory 
yielded a mean of 9 (pmol P450 3A4/mg micro-
somal protein, range 1–28) [54]� Another labora-
tory reported a mean of 68 (pmol P450 3A4/mg 
microsomal protein, range 10–262) [55]�

P450 3A4 is also expressed in some extra-
hepatic tissues, including lung [382, 1251], 
stomach, colon [382], brain [1252], and adrenal 
(weak) [1253]� P450 3A4 has not been reported to 
be expressed in kidney, prostate, testis, or thymus 
but other subfamily 3A P450s are [1253]� P450 
3A4 expression has been reported in brain at both 
the mRNA and protein levels, particularly in the 
cortex, neurons, and blood–brain barrier endo-
thelial cells [1252, 1254, 1255]� This location is 
of relevance regarding not only drug metabolism 
of neurochemical drugs but also metabolism of 
endogenous chemicals there, e�g�, morphine 
(Sect� 7�20�4, vide infra; Fig� 9�17)� The literature 
is mixed on whether expression occurs in periph-
eral blood lymphocytes or not [1253, 1256]�

P450 3A4 is expressed in some tumors, al-
though the literature is very mixed as to reports 
of levels being lower or higher than the surround-
ing tissue [1257–1259]�

A significant gender difference in P450 3A4 
expression does not appear to occur [52, 64] (al-
though one report indicated a difference [65]), 
and some apparent pharmacokinetic gender dif-
ferences may be attributable to P-glycoprotein 

not P450 3A4 [66]� In fetal liver, P450 3A7 is 
the most abundant form and P450 3A4 expres-
sion is very low [174, 1260]� P450 3A4 expres-
sion increases rapidly after birth and reaches 
50 % of adult levels between 6 and 12 months of 
age [1260]� Although many general regulatory 
concerns have been expressed about additional 
safety margins for children with drugs and other 
chemicals, the evidence in this case indicates that 
P450 3A4 activity levels in infants are slightly 
higher than in adults [1260]� Other studies concur 
that there is a marked development of P450 3A4 
(switch from P450 3A7 expression fetal period) 
following birth and increase during the first year 
of life [1261], with relatively little change after 
childhood [64]�

9.7.20.2  Regulation
The CYP3A4 gene is at chromosome 7q22�1 
[1262]� Although 3A subfamily enzymes were 
long known to be inducible in animals [1263] 
and considerable literature existed on the in vivo 
induction of many activities by barbiturates and 
macrolide antibiotics (e�g�, rifampicin) [2], early 
demonstrations of inducibility were indirect but 
some progress was made [1241]� A general corre-
lation between enzymes and mRNA levels could 
be shown in human liver samples [1242, 1244]� 
Defining the mechanism of regulation was dif-
ficult [1264], to some extent because of the dif-
ficulty in finding appropriately responsive cells 
to utilize the CYP3A4 gene and vector constructs 
derived from it� Guzelian’s laboratory reported 
that the source of liver cells was a greater issue 
than the CYP3A regulatory region in comparing 
interspecies differences in CYP3A gene regula-
tion [1265], and this result can now be rational-
ized in the context of new knowledge about re-
ceptors ( vide infra)�

Although most CYP3A subfamily genes are 
inducible by dexamethasone, the classic gluco-
corticoid receptor was shown not to be involved 
in rat liver [1266]� In early 1998, Maurel and his 
associates reported that the macrolide antibiotic 
rifampicin acted as a nonsteroidal ligand and 
agonist of the human glucocorticoid receptor, 
providing a possible mechanism for regulation 
and a difference with the rodent systems [1267]� 
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The interpretation of these conclusions was ques-
tioned by Ray et al� [1268]�

Shortly thereafter, Kliewer’s group character-
ized the human homologue of mouse PXR, which 
bound steroids and interacted with CYP3A sub-
family genes in the manner expected for a major 
regulatory influence [1269, 1270] (some litera-
ture also refers to the human PXR as “SXR”)� 
This member of the steroid receptor family “or-
phan” group (PXR) interacted with barbiturates, 
steroids (including dexamethasone), statin drugs, 
macrolide antibiotics, and some organochlorine 
pesticides [1270, 1271]�

Knowledge of PXR and its cognate binding 
site has led to the development of PXR receptor 
and reporter assays to screen for P450 3A4 in-
duction with new drug candidates [1272–1274]� 
The discovery of PXR suggested that alleles of 
this receptor might be responsible for the vari-
able inducibility in different individuals� How-
ever, the PXR SNVs found to date have not been 
found to control P450 3A4 induction [1275]� The 
regulation of CYP3A4 expression is more com-
plicated than simple loading of activated PXR 
(e�g�, Fig� 9�13), as suggested by Kliewer’s early 
work showing the roles of coactivators [1269, 
1270]� However, the glucocorticoid-mediated in-
duction of P450 3A4 is mediated by elements in 
addition to the canonical PXR site [1276, 1277]� 
Some compounds (e�g�, ketoconazole) suppress 
CYP3A4 gene expression, apparently via binding 
to the PXR and interaction with “corepressors” 
(NCoR, SMRT) [1278]� CAR (see Sect� 6�7�2) 
appears to interact with the CYP3A4 gene at 
the PXR site to cause induction [1279]� Further, 
there is evidence that 1α,25-dihydroxyvitamin 
D3 (see Sect� 6�53) also controls the transcrip-
tion of P450 3A4 [1280]� This effect is mediated 
through the VDR [551], which has similarity to 
PXR and CAR in the steroid receptor superfami-
ly� Further, kinases have been shown to modulate 
the induction of P450 3A4 via VDR in Caco-2 
cells [1281]�

Other factors also contribute to P450 3A4 reg-
ulation� Among these are C/EPPα, DBP [1282], 
and HNF-4α [1283]� Interleukin-6 has been re-
ported to downregulate P450 3A4 through trans-
lational induction of the repressive C/EBPβ-LIP 

protein [1284]� Thus, the transcriptional regula-
tion of P450 3A4 expression centers on PXR but 
involves many other aspects� A systematic tran-
scriptomic analysis of the regulation of human 
P450s, including P450 3A4, has been published, 
based on pathway analysis in human liver sam-
ples [64, 1285]�

Regulation of P450 3A4 expression has been 
reviewed by Schuetz [1286]� The P450 3A4 
gene is somewhat unique in having an upstream 
proximal ER6 element, with xenobiotic response 
enhancer module (XREM) and constitutive liver 
enhancer module (CLEM) [1287]� The novel 
enhancer CLEM4 is important, and HNF-1α, 
HNF-4α, upstream stimulatory factor (USF) 1, 
and Ap-1 all interact with CLEM-4 [1288]� It 
is also polymorphic� HNF-4α determines PXR-
 and CAR-mediated induction of P450 3A4 
[1289]� Nuclear factors (e�g�, VDR) can compete 
with PXR for binding to its cognate site [1290]� 
PPARα has also been reported to regulate P450 
3A4 [1291]�

Based on results obtained with endometrial 
samples, it has been postulated that estrogens up-
regulate P450 3A4 [1292]� In addition, Wolbold 
et al� [1293] reported twofold higher levels of 
P450 3A4 in livers from women than men in a 
collection of 94 samples� However, this gender 
dimorphism has not been observed in other stud-
ies except for Schirmer et al� [65], which was 
only seen when testosterone 6b-hydroxylation 
activity was considered (but not when midazol-
am was the test substrate) and was not statisti-
cally significant [64]�

Another aspect of P450 3A4 regulation in-
volves degradation� TAO, erythromycin, and 
some related amine macrolide antibiotics 
form “metabolite complexes” (C-nitroso:iron 
(R–N = O:Fe)) and inactive protein accumulates 
[1294, 1295]� These studies have relevance to in 
vivo P450 3A4 inhibition by these drugs�

Degradation of P450 3A4 appears to be de-
graded by a ubiquitin-linked pathway [336]� Cor-
reia and her associates also reported that protein 
kinase C-modified P450 3A4 at Thr-264 and 
Ser-420; the relevance of these phosphorylations 
to ubiquitin-linked degradation is yet unknown 
[1296]�
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Phosphorylation of P450 3A4 has been re-
ported in liver samples [297]� The effect on 
catalytic activity is not known� Phosphorylation 
(Thr-264, Ser-420, Ser-478) is also important 
in ubiquitin-dependent proteasomal degrada-
tion [1297], which involves gp78 and CHIP E3 
ligases [1298]� Conformational phosphodegrous 
(negatively charged patches) have been consid-
ered for (ubiquitin) E2/E3 recognition [1299]� 
The NFκB pathway has also been considered to 
interact with proteasomal degradation in regulat-
ing the stability of the P450 3A4 protein [1300]�

Hughes et al� [1301] reported that progester-
one receptor membrane component 1 (PGTMC1, 
or Dop1) binds and regulates (human) P450 3A4, 
based on work with a yeast model� However, in 
studies in mammalian cell culture, downregula-
tion of PGTMC1 did not affect expression or lo-
calization of P450 3A4 [1302]� Transfection of 
PGRMC1 along with P450 3A4 resulted in the 
inhibition of P450 3A4, and this inhibition was 
relieved by increased expression of NADPH-
P450 reductase�

9.7.20.3  Genetic Variation
The issue of genetic variation is considered in 
the context of attempts to explain the population 
variability in P450 3A4 activity, which does not 
show truly modal distribution [1303]�

At least 43 alleles of P450 3A4 are known, 
and an additional four SNVs have yet to be char-
acterized with regard to haplotype (http://www�
cypalleles�ki�se)� The SNVs and other variants 
identified have not yet shown much relationship 
to catalytic activities [1304–1310]�

Some of the variants have impaired func-
tion [1311, 1312]� The *17 allele (coding for an 
F189S change) had < 1 % of the normal catalytic 
activity [1313]� Polymorphisms in transcription 
factors and other regulatory proteins can influ-
ence P450 3A4 expression [1314]�

Klein and Zangar [1315] have reviewed the 
contributions of various genetic components in 
the context of the overall variation in P450 3A4�

9.7.20.4  Substrates and Reactions
Analysis of the catalytic activity of P450 3A4 
and other subfamily 3A P450 enzymes is not 

always easy to assess because of nuances about 
the effects of the membranes and other proteins� 
Wrighton examined P450s 3A4, 3A5, and 3A7 
under identical conditions and concluded that 
P450 3A4 is generally more catalytically active 
than 3A4 or 3A7 towards all substrates examined 
[1316]�

9.7.20.4.1 Substrates
P450 3A4 contributes to the metabolism of 
~ 50 % of the drugs on the market or under de-
velopment (Fig� 9�1b)� For lists, see Table 9�5 
and Rendic [51]� Many of these are important 
drugs such as simvastatin (Zocor®) and some 
other statins [1317], the prostate hypertrophy in-
hibitor finasteride (Proscar®/Propecia®) [1318], 
the immune suppressant cyclosporin [20, 1319], 
protease inhibitors such as indinavir [1320], and 
sildenafil (Viagra®) [1321]�

In the course of these reactions, P450 3A4 
catalyzes some atypical reactions [887], includ-
ing desaturation [1317], oxidative carboxylic 
acid ester cleavage [1322], and oxidation of a ni-
trile to an amide [1323]� An unexpected reaction 
encountered in this laboratory was the oxidation 
of alkylphenyl ether nonionic detergents, which 
have been commonly used in enzyme purifica-
tion [537] and also have some medical and in-
dustrial applications [1324]� Methylene hydrox-
ylations yield hemiacetals, which break down to 
shorten the chains [1324]�

One of the classic (and fastest) reactions 
catalyzed by P450 3A4 is testosterone 6β-
hydroxylation [16]� However, the physiological 
significance of this and several other steroid hy-
droxylations [1248] is unclear� The significance 
of P450 3A4 in physiology may be questioned, 
given its variability (Fig� 9�5)� However, some 
contributions are possible and may be suggest-
ed from recent work� Cholesterol is oxidized by 
P450 3A4 to 4β-hydroxycholesterol, a major cir-
culating oxysterol [1325, 1326]� P450 3A4 also 
catalyzes the 25-hydroxylation of 5β-cholestane-
3α,7α,12α-triol [1327, 1328]� The product is a 
potent PXR agonist, and this system might func-
tion as an autoregulatory pathway (i�e�, excess 
triol activates PXR and P450 3A4, which reduces 
the level of triol [1329])�
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P450 3A4 also functions in the metabolism 
of cancer chemotherapeutic drugs� In addition, 
attention has been given to activations of drugs 
and chemical carcinogens� P450 3A4 activates 
the ER antagonist tamoxifen to produce DNA ad-
ducts (Fig� 9�10) [1330]� Another example of car-
cinogen activation involves aflatoxin B1, which 
undergoes both a detoxicating 3α-hydroxylation 
and formation of the highly mutagenic 8,9-exo-
epoxide [29, 1331, 1332]� Some other carcinogen 
substrates of P450 3A4 are listed in Table 9�8�

One of the issues with P450 3A4 is which 
reaction provides the most appropriate index 
of activity, both in vitro and in vivo� Histori-
cally nifedipine oxidation and testosterone 6β-
hydroxylation were among the first activities 
identified [16] and are still used in vitro [158]� 
Midazolam 1ʹ-hydroxylation has also been used 
extensively [158], in part because of its accep-
tance for in vivo assays�

Some higher-throughput fluorescence assays 
were also developed and gained commercial 
appeal [1333, 1334]� One issue regarding these 
and also several other P450 3A4 reactions is that 
they show variable effects of added chemicals, 
i�e�, one compound may inhibit a certain P450 
3A4 reaction but stimulate another� Chauret et al� 
[1335] reported a fluorescence reaction that be-
haves in a very similar way to testosterone 6β-
hydroxylation� Houston has examined the be-
havior of P450 3A4 probe substrates in vitro and 
grouped them into two categories� Although all of 
these reactions are catalyzed by P450 3A4, they 
have been categorized into two groups by their 
behavior in the presence of other compounds, 
as mentioned above [1336]� One group includes 
testosterone, cyclosporin, and erythromycin� 
The second includes midazolam, triazolam, dex-
tromethorphan, and diazepam� Terfenadine fits 
in either group, and nifedipine seemed to have 
properties unique from both groups [1336]�

The ambivalence about the variability of 
probe drugs is even greater for in vivo human 
experiments than in vitro, as one might expect� 
A number of reactions have been used, includ-
ing nifedipine oxidation [1337], erythromycin 
N-demethylation [1338], lidocaine oxidation 
[1339], dapsone N-hydroxylation [1340], mid-

azolam 1ʹ-hydroxylation [1341], and quinine 
3ʹ-hydroxylation [1342]� In most cases, the test 
drug is administered orally for convenience, 
except for some uses of erythromycin and mid-
azolam (i�v�)� The ratio of (endogenous) urinary 
6β-hydroxycortisol to cortisol has also been used 
to assess P450 3A4 function [1343]� Many of 
the assays reflect the activity of P450 3A4 in the 
small intestine, particularly with the drugs ad-
ministered orally� The erythromycin breath test 
(exhaled CO2 produced from the HCHO released 
in the reaction) is generally used to estimate he-
patic P450 3A4 and has been used as an aid in 
selecting cyclosporin doses for liver transplant 
patients [1344]� The lack of correlation of these 
indicators is a problem in the practical analysis 
of drug interactions [1345–1347]� Some of the 
discrepancies are probably inherent in the nature 
of P450 3A4 itself (i�e�, see in vitro assays, vide 
supra)� Other issues involve the lack of coordi-
nate regulation of hepatic and intestinal P450 
3A4 [1348] and the activity of P-glycoprotein 
[1349] which shows some overlap in regulation 
patterns with P450 3A4 [1350] and influences 
the availability of substrates to P450 3A4 in both 
small intestine and liver�

The substrates of most interest with P450 3A4 
are drugs, steroids, and carcinogens� It is very 
clear that P450 3A4 is a major factor in drug 
metabolism (Figs� 9�1b, 9�2, and 9�3)� P450 3A4 
catalyzes many steroid reactions, although the 
physiological significance of these remains to 
be established� P450 3A4 is also able to activate 
many procarcinogens (Fig� 9�10) [99], although 
the impact on human cancer remains to be estab-
lished�

P450 3A4 is involved in the oxidation of 
cholic acid to 3-dehydrocholic acid and of che-
nodeoxycholic acid (CDCA; 6α-hydroxylation) 
[1351]� P450 3A4 hydroxylates cholesterol at the 
4β-position, and this product accumulates and 
can be of use as a noninvasive marker of P450 
3A4 function [1352–1354]� Cholesterol is also 
hydroxylated at the 25 position by P450 3A4 
[1355, 1356]�

P450 3A4 has also been demonstrated to cata-
lyze testosterone 1β-hydroxylation [1357] and 
progesterone 21-hydroxylation [1358]� P450 
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3A4 has long been known to catalyze estradiol 
2- (and some 4-) hydroxylation [16]; more recent 
studies with transgenic mice suggest that P450 
3A4 may have an important physiological role in 
catalyzing this reaction in vivo [1359]�

In addition to the list of major drugs for which 
P450 3A4 has a major role (Tables 9�5, 9�6, 9�7, 
and Fig� 9�1b), the enzyme has more recently 
been shown to have roles in the oxidation of 
thalidomide [1360, 1361], and tamoxifen ( α-
hydroxylation) [1362]�

P450 has also been demonstrated to play im-
portant roles in the biosynthesis of endogenous 
morphine in mammals, catalyzing both (1) the 
cyclizations of ( R)-reticuline to salutaridine 
[905] and (2) the elusive O6-demethylation of 
thebaine involved in the latter stages of morphine 
synthesis [906] (Fig� 9�17)� With this, a minimal 
scheme can be proposed with P450 enzymes ca-
pable of all oxidative steps in the pathway�

9.7.20.4.2 Catalytic Mechanism
The mechanism of P450 3A4 has been studied 
extensively, and several aspects of it bear dis-
cussion (along with structure considerations, 
Sect� 7�20�5) before considering the issue of co-
operativity� The basic P450 catalytic scheme is 
actually a rather minimal scheme� Studies with 
substrates and inhibitors provided evidence that 
substrate binding is a multistep kinetic process 
[217, 218], as corroborated by others [219]� The 
evidence for multiple occupancy of P450 3A4 
(Sect� 7�20�5, vide infra), coupled with the mul-
tistep binding, makes the process difficult� Sligar 
and his associates have shown that the oxida-
tion–reduction potential of P450 3A4 is lowered 
by at least some substrates [1363], and the pres-

ence of substrate is known to facilitate rates of 
reduction of ferric P450 3A4 [1364, 1365]� The 
FeO2

2 + complex has been observed (stabilized in 
the presence of substrate) but is less stable than in 
several other P450s and degrades rapidly [1366, 
1367]� Some, but not all, P450 3A4 reactions 
are stimulated by the presence of cytochrome 
b5 [1365]� Two surfaces of cytochrome b5 have 
major and minor roles in interactions with P450 
3A4 [1368]� Electron transfer is not required for 
the stimulatory role of cytochrome b5 (with P450 
3A4), in that apo-cytochrome b5 (without heme, 
devoid of electron transfer capability) is also ef-
fective [1369, 1370]�

One point that can be made here (but that ap-
plies to many P450s) is that they exist, in part, 
in the ferrous state in the cell [1371]� Thus, the 
ferric state is not necessarily the starting point in 
the catalytic cycle�

Deuterated testosterone has been used to 
probe the catalytic mechanism of P450 3A4 
[1372] (Fig� 9�19)� Abstraction of the 6β hydro-
gen of testosterone is highly stereoselective, with 
the oxygen rebound also going only to the β po-
sition� The use of both 6-deuterated and 6-triti-
ated testosterone led to the conclusion that the 
6β-hydroxylation step has a high intrinsic kinetic 
deuterium isotope effect, which is considerably 
attenuated in the steady state [1372]� The conclu-
sion is that steps other than C–H bond breaking 
limit rates of the steady-state reaction�

More recently, P450 3A4 was also shown to 
oxidize 4,5-dihydrotestosterone, a more potent 
androgen that differs only from testosterone in 
the pucker of the A-ring (Fig� 9�20)� The sites of 
hydroxylation were the two axial methyls (C-18, 
C-19; Fig� 9�20), which is surprising on the basis 

Fig. 9.19  Stereoselective removal of 6β-hydrogen from testosterone by P450 3A4 [1372]
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of both chemical reactivity and modeling predic-
tions [1373]�

9. 7.20.4.3 Cooperativity
At the outset, cooperativity of P450s was re-
garded as a curiosity, but today there is interest in 
practical settings, as reviewed by Obach [1374]� 
Both heterotropic and homotropic cooperativ-
ity have been observed with several human (and 
other P450s), although it has been most reported 
with P450 3A4 over the past 20 years [1375]� 
For a review of the mechanistic issues with P450 
3A4, see Sevrioukova and Poulos [1376]�

Although there are older examples of in vivo 
heterotropic cooperativity [202], it is difficult to 
assign these to particular P450s� The results of 
Tang and Stearns with quinidine and warfarin in 
animals are probably attributable to subfamily 
3A P450s [207]� Evidence for heterotropic oxi-
dation of thalidomide in a transgenic P450 3A4 
mouse has been presented [1377]� Also, mid-
azolam oxidation could be stimulated by a drug 
candidate—5-(4-fluorobenzyl)-2-((3-fluorophe-
noxy)methyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]
pyrazine—that also had (in vivo) enhancing ef-
fects in rats [1378]�

Suggestions of multiple occupancy of the ac-
tive site of P450 3A4 were made in the 1990s 
[205, 211, 212]� However, dual occupancy was 
not definitively demonstrated until the X-ray 

crystallography work of Ekroos and Sjogren 
[213] appeared� A number of kinetic and spec-
troscopic measurements were analyzed and esti-
mates of the number of ligands included in the ac-
tive site of 2–4 were made using various models 
[1379–1384]� Cytochrome b5 has been reported to 
induce P450 3A4 substrate cooperativity [1385]�

To summarize the cited literature (and much 
more for which space was not available), the 
evidence is in favor of cooperativity involving 
multiple occupancy within the active site (of 
P450 3A4 in this case), and there is little if any 
evidence for a completely distinct allosteric site 
on the protein� Direct evidence (X-ray crystal-
lography) exists for multiple occupancy [213], 
and Auclair and her associates have shown that 
attaching a large molecule (theobromine) to sub-
strates not only allows catalysis but also changes 
the regioselectivity of oxidation [1386]� Mod-
els based on kinetic systems are very complex, 
particularly in light of limited information about 
what step(s) is rate limiting in most cases [1372] 
and the demonstrated complexity of ligand bind-
ing [217, 218, 1387]� Hill plot n values for coop-
erativity are low (< 1�5) in most cases (subject to 
error), and artifactual sigmoidicity can be intro-
duced simply by running low substrate concen-
tration reactions beyond linearity� The number of 
variables often greatly exceeds the experimental 
parameters used� Another obstacle is finding a 
satisfactory substrate and effector, in that the pat-
terns with different P450 3A4 ligands are rather 
unpredictable�

In many respects, equilibrium physical mea-
surements could be considered most valuable� 
Nuclear magnetic resonance (NMR) spectra (T1 
paramagnetic relaxation) were used to probe co-
operativity of midazolam with testosterone and 
α-NF [1388]� Atkins and his associates [1389] 
used a single-molecule fluorescent approach to 
show “allosteric” effects of one ligand on the dis-
sociation rate of another substrate, Nile red� Nile 
red is an allosteric fluorescent substrate and has 
utility for such studies [1390]; evidence could 
also be obtained for a second binding site [1391]�

Another aspect and possibly another solution 
to the issue comes from work by Friedman using 
flash photolysis kinetics (of CO rebinding after 

Fig. 9.20  Regioselectivity of oxidation of testosterone 
and dihydrotestosterone by P450 3A4 [1357, 1373]
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photodissociation from ferrous P450 3A4)� The 
kinetics were multiphasic and were selectively 
altered by the presence of different substrates 
[1392]� Heterotropic effects were observed with 
benzo[a]pyrene and α-NF [1393]� The interpreta-
tion of the results is that different substrates dif-
ferentially modulate these kinetics by (1) chang-
ing the P450 conformation to alter the rate, and/
or (2) steric effects (of ligands) that reduce rates 
[1394]� Both effects are possible, although the 
enhancement of rates in some cases [1392] argue 
against the generality of the latter explanation and 
in favor of multiple conformations for P450 3A4 
bound to various ligands� The concept advanced 
is that some ligands act as allosteric factors to 
“switch” P450 3A4 conformations [1395]� Some 
possibly relevant work has been done by Anzen-
bacherová [1396], who did pressure studies on 
P450 3A4 and found that the compressibility of 
P450 3A4 was less than that of bacterial P450 
102A1; the compressibility was modified by the 
ligand TAO� The concept of preexisting multiple 
conformers of P450 3A4 is an explanation for the 
flash photolysis work [1392–1395] and has sup-
port in newer nonclassical approaches to general 
protein chemistry [1397–1399]� This view dif-
fers from the more general static “lock-and-key” 
view of enzyme/substrate complexes and the in-
duced-fit theory in which enzymes are shaped by 
their substrates� The basic concept is that protein 
dynamics present an ensemble of structures of an 
enzyme in solution and different ligands bind to 
individual states depending upon their comple-
mentarity [1397–1399]� Another consideration in 
this discussion, somewhat related, is that there is 
good evidence that P450 conformations change 
during the course of the catalytic cycle [1400], 
and evidence has already been presented that dif-
ferent forms of P450 3A4 can differ in their bind-
ing of a ligand (e�g�, ferric and ferrous) [211]�

Where does all of the work to date leave us in 
this area? A recent review by Atkins et al� [1401] 
summarizes much of the work in more detail and 
presents a cogent analysis� Summarizing and 
expanding on this, there are several major pos-
sibilities to explain the observed cooperativity of 
P450 (and the other P450s showing this behav-
ior), which are not necessarily exclusive: (1) a 

“classic” allosteric model with binding of effec-
tors at a site that then regulates the conformation 
for substrate binding; (2) a relatively rigid P450 
with a large active site that can accommodate 
two to three ligands, with the results depending 
on the chemical interactions of the two ligands 
with each other and with P450 residues; and (3) a 
series of preexisting conformations of P450 3A4 
that selectively interact with individual ligands 
[1397–1399]� A general concept of induced fit is 
related to the third possibility, as in the phenom-
ena already mentioned that different protein con-
formations exist throughout the catalytic cycle, 
can differ in affinities and substrate orientation, 
and may not be in rapid equilibria� Many steady-
state kinetic schemes have been proposed but, 
in considering the possible origins [200, 1402], 
cannot be considered unique and do not provide 
mechanistic answers�

To return to the questions raised by Sevri-
oukova and Poulos [1376], there are still many 
unanswered questions about cooperativity, even 
20 years after the first reports with P450 3A4 
[204] and 45 years after the first general reports 
of the phenomenon with P450s [201, 203, 1403], 
explaining the mechanisms at a molecular level 
is not yet within our grasp� However, the bat-
tery of structural, spectroscopic, and other tools 
available is promising� There is evidence that the 
phenomenon may contribute to drug–drug in-
teractions and human variability in response to 
molecules�

9.7.20.5  Structure
A number of site-directed mutagenesis studies 
on the possible roles of individual residues have 
been published� Phe-304 [1404] and Ala-305 
[1405], in the putative I-helix, are proposed to 
control access to the catalytic center� Phe-304 
was also implicated in the partitioning of aflatox-
in B1 oxidation (between 3α-hydroxylation and 
8,9-exo-epoxidation) [1406]� A role for Asn-206 
was also proposed in the work with aflatoxin B1 
[1406]� Leu-211 is also postulated to control the 
size of the active site [1407]�

A number of X-ray crystal structures of P450 
3A4 are now available, including the protein 
without a ligand [1408] and with bound metyra-
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pone, progesterone [215], erythromycin, keto-
conazole [213], and ritonavir and several ritona-
vir analogs [1387, 1409, 1410]� The active site is 
large (~ 1285 Å3), and in the case of ketoconazole 
two molecules of the ligand are present, only one 
of which is in a position to be oxidized [213]� 
Another interesting aspect is the binding of pro-
gesterone at a peripheral site, 17 Å from the iron, 
in a position incompatible with catalysis [215]� 
Collectively these structures are very valuable 
in understanding how this enzyme handles so 
many reactions ( vide infra, Fig� 9�1b)� One gen-
eral conclusion from all of the structural work is 
that P450 3A4 can use multiple conformations to 
accommodate different ligands, i�e�, has “malle-
ability” [1410, 1411]� Support for this malleabil-
ity of P450 3A4 comes from molecular dynamics 
simulations, which show much more flexibility 
for P450 3A4 than for P450 2A6 or 2C9 [1412]�

Whether the site of progesterone binding in 
the structure of Williams et al� [215] is relevant 
is an interesting question� Subsequently evidence 
has been presented that P450 3A4 can have ini-
tial binding to P450 3A4 prior to moving near 
the heme iron [217], and the peripheral site might 
represent this� Davydov et al� [1413] also report-
ed a peripheral binding site for a dye (fluorol-
7GA) using fluorescence energy transfer�

Cross-linking studies and mass spectrometry 
have been used to characterize a site of interac-
tion of P450 3A4 with cytochrome b5/apo-cyto-
chrome b5 [1414]�

Numerous systems have been developed to 
predict sites of oxidation by P450 3A4, e�g�, 
[926]�

9.7.20.6  Inhibitors
Inhibition of P450 3A4 is a major issue in the 
pharmaceutical industry and the cause of a 
number of important drug–drug interactions 
(Table 9�6)� A compendium of P450 3A4 inhibi-
tors has also been compiled by Rendic [51]� Only 
a few other specific examples of P450 inhibi-
tors will be mentioned here� One example of a 
problem leading to recall of a drug is that of terf-
enadine [92–95]� Inhibition of P450 3A4 is a fre-
quent problem with drug candidates, particularly 
unsuspected mechanism-based inactivation, and 

strategies have been developed for minimizing it 
[1415] or making in vitro assessment as to the 
extent it may be an issue in vivo [1416]�

The inhibition of P450 3A4 has been shown 
to be altered by the presence of (coding region) 
variations [1417]�

Erythromycin and ketoconazole are two of the 
most established inhibitors of P450 3A4, based 
on clinical experience� Ketoconazole, used at 
~ 1 µM, is probably the best established P450 
3A4 inhibitor for in vitro use [85]� Another P450 
inhibitor is TAO [1418], which also has clinical 
implications� TAO has been used as a diagnostic 
in vitro inhibitor of P450 3A4, although its mode 
of action (activation to a nitroso derivative that 
complexes P450 iron) requires time for the inhi-
bition to occur�

One issue is the inhibition of P450 3A4 by 
grapefruit juice, first reported by Bailey [1419]� 
The effect was rather specific for grapefruit and 
a few other citrus fruits (not orange), and warn-
ing labels now include this contraindication for 
many drugs [1420]� Naringenin has some effect 
[1421], but the most active compounds appear 
to be the furanocoumarins bergamottin and 6ʹ,7ʹ-
dihydroxybergamottin, which behave as mech-
anism-based inactivators to destroy intestinal 
P450 3A4 [88, 89]� The magnitude of the effect 
of the interaction varies with drugs, with some 
of the statins, buspirone, terfenadine, astemizole, 
and amiodaraone reported to show the greatest 
interactions [1420]�

Many of the HIV protease inhibitors are also 
potent inhibitors of P450 3A4 as well as sub-
strates in some cases [1422]� Because of the vari-
ety of drugs that AIDS patients use, the potential 
for interactions is considerable�

The effects of some herbal medicines on P450 
3A4 have already been mentioned� In addition to 
P450 3A4 induction (e�g�, St� John’s wort), some 
of these materials also contain inhibitors� For in-
stance, kava kava extracts produce kavapyrones 
that inhibit P450 3A4 [1423]�

Oral contraceptives contain acetylenes and 
can be mechanistic inactivators of P450 3A4� 
Inactivation has been demonstrated for 17α-
ethinylestradiol, the major estrogenic component 
of oral contraceptives [26, 1424], and several of 
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the progestogenic components, particularly ges-
todene [1250]� Because of the very low doses of 
these contraceptives that are used today, the ef-
fects might be expected to be small [1425], al-
though some in vivo effects have been reported 
[1426, 1427]�

Some chemicals and also oxidants have been 
shown to cause the covalent cross-linking of 
heme to apo-P450 [197]� Correia’s group has 
characterized the products of the destruction of 
P450 3A4 with cumene hydroperoxide; the infor-
mation is consistent with a dipyrrolic fragment 
of heme bound to fragment of the protein [1428]�

Among diagnostic inhibitors used for reac-
tion phenotyping, ketoconazole (at 1–2 µM) re-
mains a popular choice, although it will not dis-
tinguish among individual subfamily 3A P450s 
[473]� Azamulin has some advantages [1429], 
and “CYP3cide” (PF-04981517; 1-methyl-3-
[1-methyl-5-(4-methylphenyl)-1H-pyrazol-4-
yl]-1H-pyrolo[3,4-d]pyrimidine) [1430] and 
ML-368 [1431] are P450 3A4-specific� Li et al� 
[1432] have described a P450 3A4-selective in-
hibitor (1-(4-imidazopyridinyl-7-phenyl)-3-(4ʹ-
cyanobiphenylurea (SR9186)) that can be uti-
lized for inhibiting only P450 3A4 and not 3A5�

Ritonavir is one of the most potent inhibitors 
of P450 3A4 [1416]� A number of analogs have 
been compared using spectral, kinetic, and struc-
tural (crystallography) approaches [1409, 1410, 
1433]�

P450 3A4 is involved in the bioactivation of a 
number of chemical carcinogens (Fig� 9�10) [99], 
and one strategy for chemoprevention is to in-
hibit P450 3A4� A number of flavonoid inhibitors 
have been characterized [365]� cis-Terpenones 
have been shown to block aflatoxin B1 cytotoxic-
ity in vitro [1434]�

Other inhibitors reported for P450 3A4 are 
4-ipomeanol [1435], raloxifene [1436], and ber-
gamottin, the active principle of grapefruit juice 
( vide supra) [1437]� In the latter two cases, the 
site of attachment (in the P450) has been identi-
fied�

9.7.20.7  Clinical Issues
The major clinical issues with P450 3A4 are rapid 
clearance (of drugs), variable bioavailability, and 

enzyme induction and inhibition [1438, 1439]� 
One of the concerns is intestinal first-pass me-
tabolism of drugs, which usually inactivates them 
[1440]� One strategy to improve predictability in 
drug development is the use of transgenic “hu-
manized” mice expressing P450 3A4, which 
have been developed using different approaches 
[1441, 1442]� High enzyme activity towards a 
drug will reduce bioavailability, and variations 
in levels of P450 3A4 can cause clinical prob-
lems when the therapeutic window is narrow� For 
instance, low cyclosporin levels will not prevent 
organ rejection during transplant, but high levels 
cause renal toxicity, so adjustment of the dose is 
critical [1443]� Terfenadine has a relatively wide 
window for use, but a few serious problems were 
encountered [95, 1444]� Renwick has considered 
population models of P450 3A4 variability and 
concluded that there is more interindividual vari-
ability from the oral route than i�v�, which is not 
surprising in light of the previous discussion of 
the intestinal contribution to drug metabolism� 
A “default factor” for adults of 3�2-fold is pre-
sented, but a factor of 12(-fold) was calculated to 
be needed to cover 99 % of the neonates as well 
[1445]�

The effect of disease on P450 3A4 has been 
considered� P450 3A4 expression appears to be 
decreased as a result of liver cirrhosis or cancer 
[983, 1257, 1446]� P450 3A4 levels were also 
decreased in celiac disease and reversed by a 
change in diet [1447]�

The interactions of herbal medicines with 
P450 3A4 have already been mentioned and 
are one of the worst problems with these mix-
tures [1448]� One of the most studied issues is 
St� John’s wort, which induces P450 3A4 as an 
agonist of the receptor PXR [1449, 1450]� The 
induction of P450 3A4 by St� John’s wort has 
been responsible for the loss of the effectiveness 
of oral contraceptives [83, 1451]� The resulting 
pregnancies are the result of more rapid elimi-
nation of 17α-ethinylestradiol, a phenomenon 
previously reported for P450 3A4 induction by 
rifampicin and barbiturates [26, 82, 90]�

P450 3A4 is also of interest regarding cancer, 
regarding exogenous carcinogens (Fig� 9�10), 
drugs used to treat cancer, and metabolism of ste-
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roids or other compounds that may affect cancer 
risk or response to chemotherapy� Some chemical 
carcinogens activated by P450 3A4 are shown 
in Table 9�8� The activation and detoxication of 
aflatoxin B1 have already been discussed in the 
context of 3α-hydroxylation (to aflatoxin Q1) and 
formation of the highly reactive exo-8,9-epoxide 
[29, 1331]� However, aflatoxin B1 is a hepatocar-
cinogen and must reach the liver to cause dam-
age� In a rat model, induction of rat P450 led to 
an increase in small intestinal DNA adducts, sug-
gesting that activation of aflatoxin B1 at this site 
constitutes a detoxication process, in that these 
cells are rapidly sloughed and do not progress to 
tumors [1452]�

P450 3A4 genotypes have been reported to 
be related to leukemias caused by prior treat-
ment with epipodophyllotoxin [1453]� P450 3A4 
expression, measured at the mRNA level, has 
shown an inverse correlation with response of 
breast cancer patients to docetaxel, presumably 
due to changes in bioavailability [1454]� Howev-
er, no relationships were found for any P450 3A4 
genotypes in therapy-related myeloid malignan-
cies [1455]� One of the more controversial issues 
involves whether P450 3A4 genotypes are linked 
with prostate cancer, with reports for and against 
an association [1456–1461]� The point should be 
made that strong evidence for a change in an ac-
cepted P450 3A4 phenotype has not been made 
in many of these cases�

9.7.21  P450 3A5

P450 3A5 has 85 % sequence identity with P450 
3A4 and, although generally accepted to have 
less importance than P450 3A4, is of interest be-
cause of its highly polymorphic and racial distri-
bution and possible relevance to clinical issues 
with P450 3A subfamily reactions�

9.7.21.1  Sites of Expression
P450 3A5 (“HLp3”) was first purified from 
human adult liver and found to be polymorphi-
cally expressed [1462]� Gonzalez used a liver 
sample apparently expressing only P450 3A5 and 
not 3A4 to clone a cDNA [1463]�

P450 3A5 expression has been reported in 
liver, small intestine, kidney, lung, prostate, ad-
renal gland, and pituitary [1253, 1464–1466]� 
In human brain, both P450 3A4 and 3A5 were 
detected (by form-specific antibodies) in the mi-
crosomal fractions of cortex, hippocampus, basal 
ganglia, amygdala, and cerebellum [1252]� Both 
(P450 3A4 and 3A5) were localized in the soma 
and axonal hillock of neurons and varied accord-
ing to cell type and cell layer� Some researchers 
have reported expression of P450 3A5 in periph-
eral blood cells (and not P450 3A4) [1467], but 
others have not [1253]�

P450 3A5 is expressed in fetal liver, in con-
trast to P450 3A4, but in a polymorphic man-
ner [1468]� The overall expression of P450 3A5 
(mRNA) as a part of all subfamily 3A P450 tran-
scripts has been estimated at 2 % [1253]� Howev-
er, only about 25 % of Caucasians express P450 
3A5, and when it is present, the level is usually 
less than that of P450 3A4� However, a few indi-
viduals have been identified in which P450 3A5 
is the predominant P450 3A subfamily enzyme� 
The variability in expression levels has been 
linked to a polymorphism ( vide infra)�

Recently Achour et al� [55] have used LC–MS 
to quantitate P450 3A5 in human liver micro-
somes, with a mean of 14 pmol/mg microsomal 
protein (and a 100-fold range)�

9.7.21.2  Regulation
The regulation of the CYP3A5 gene seems to be 
similar to that of CYP3A4, although P450 3A5 
does not seem as inducible� The fetal/adult selec-
tivity of P450 3A4/3A7 is not seen [1468]�

Maurel [1469] reported genomic clones and 
found a CATA box (not TATA) in the promoter� 
The responses to glucocorticoids are probably ex-
plained by the PXR system [1470]� The general 
conclusion has been reached that P450s 3A4 and 
3A5 are coregulated in the liver and intestine, in 
terms of transcriptional control [1471], although 
other factors may alter the expression [1348]�

9.7.21.3  Genetic Variation
At least 26 alleles have been identified, and six 
more SNVs have not been classified regarding 
haplotype yet (http://www�cypalleles�ki�se)�
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Most of the genetic variants are loss of func-
tion due to splicing, etc� However, one with a 
single coding change (*11, Y53C) results in a 
protein with only ~ 20 % of the wild-type cata-
lytic activity towards nifedipine [1472]� The *17 
allele is also very deficient in activity [1313]�

Individuals with the *1 allele express the func-
tional (wild-type) protein, but those with the *3 
allele express low to undetectable levels (of P450 
3A5)� The allele frequencies vary considerably 
with regard to race, with the frequency of the 
*1 allele being 10–30 % in Caucasians, 30–40 % 
in Asians, and 50–70 % in an African American 
population [1310, 1473, 1474]� In *1 homozy-
gotes, P450 3A5 levels as high on 50 % of the 
total subfamily 3A P450 pool have been reported 
[1310]� If there is a difference in catalytic activity 
between P450 3A4 and 3A5, the genotype may 
be important (see Sect� 7�21�7, vide infra)�

Other alleles are known, including changes in 
the 5ʹ-regulatory region where transcription fac-
tors bind [1475]�

The in vivo consequences of 3A5 polymor-
phism are not clear� For instance, Huang found 
no significant effect of the *3 polymorphism on 
midazolam pharmacokinetics [1476]�

9.7.21.4  Substrates and Reactions
Since the discovery of P450 3A5, the catalytic 
selectivity has been known to be similar to that 
of P450 3A5 [1462], and subsequent compari-
sons with P450 3A4 confirmed this view [1477]� 
However, a general problem with P450 subfam-
ily 3A P450 enzymes is that they are sensitive 
to the membrane environment� Many P450 3A4 
and 3A5 reactions—but not all reactions—are 
stimulated by the addition of cytochrome b5 [736, 
1478]� Lee and Goldstein [1479] reported similar 
patterns of dependence for P450s 3A4 and 3A5� 
In a few cases, the selectivity of P450 3A5 for dif-
ferent oxidation sites appears to differ from that 
of P450 3A4, e�g�, aflatoxin B1 3α-hydroxylation 
versus 8,9-epoxidation [1406, 1478]� Wrighton 
reported an extensive comparison of many re-
actions by recombinant P450s 3A4, 3A5, 3A7 
under identical reconstitution conditions and 
concluded that P450 3A5 had equal or reduced 

activity compared to P450 3A4 in all cases ex-
amined [1316]�

One of the most important issues is to what 
extent P450 3A5 participates in a reaction, rela-
tive to P450 3A4� If P450 3A5 plays a major role, 
then P450 3A5 genetic variations (Sect� 7�21�3) 
may become important in vivo� Niwa et al� [1375] 
have catalogued a number of reactions and found 
that the ratio of P450 3A4/3A5 activity varies� 
Amlodipine oxidation is catalyzed almost exclu-
sively by P450 3A4 [1480]�

Interesting recent results indicate that P450 
3A5 is more active than P450 3A4 in some reac-
tions� One is the activation of lapatinib [1481]� 
Another is the O6-demethylation of thebaine 
(Fig� 9�17), a critical step in the synthesis of en-
dogenous morphine [906], where P450 3A5 is 
> 10-fold more active than P450 3A4 [906]� The 
presence of P450 3A5 in brain (Sect� 7�21�1) may 
have implications in the relevance of the path-
way�

Another issue with P450 3A4 (and some other 
P450s) is cooperativity (Sect� 7�20�4, vide supra)� 
Niwa et al� [1375] have reviewed heterotropic 
cooperativity in P450s, including human subfam-
ily P450 3A P450s� Recently, P450 3A5 has been 
shown to exhibit homotropic cooperativity in the 
oxidation of thalidomide [1360, 1482]�

9.7.21.5  Structure
Because of the similarity of reactions of P450s 
3A4 and 3A5, homology models based on P450 
3A4 structures are probably reasonably valid 
for P450 3A5� Relatively little site-directed mu-
tagenesis of P450 3A5 has been done, but one 
study of note is the effort by Correia and Halp-
ert to utilize the differences in reactions with af-
latoxin B1 [1331, 1478] to probe the effects of 
changing residues in the active site [1406]�

9.7.21.6  Inhibitors
In general, the P450 3A4 inhibitors also inhibit 
P450 3A5� For instance, ketoconazole and fluco-
nazole inhibit both P450s 3A4 and 3A5 [1483]� 
The mechanism-based inactivator gestodene 
[1250] also inhibits P450 3A5 [1477]�
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In light of the importance of distinguish-
ing whether reactions are catalyzed by P450 
3A4 or 3A5 ( vide supra), Li et al� [1432] 
have described a P450 3A4-selective inhibi-
tor (1-(4-imidazopyridinyl-7-phenyl)-3-(4ʹ-
cyanobiphenylurea (SR9186))) that can be uti-
lized for this purpose� Another selective P450 
3A4 inhibitor (not affecting P450 3A5) is CY-
P3cide (PF-4981517; 1-methyl-3-[1-methyl-5-
(4-methylphenyl)-1H-pyrazol-4yl]-4-[13S]-3-pi-
peridin-1-yl-pyrrolidin-1-yl]-1H-pyrazolo[3,4-d]
pyrimidine) [1430], a mechanism-based inacti-
vator� Another is ML-368 [1431]�

Cannabidiol, a major substituent of marijuana, 
inhibits several human P450s and inhibited P450 
3A5 with an IC50 tenfold lower than P450 3A4 
[939]�

9.7.21.7  Clinical Issues
At this point, the significance of the wide vari-
ability in P450 3A5 is still difficult to assess� As 
mentioned previously, Huang [1476] found no 
significant effect of the *3 allele on midazolam 
pharmacokinetics in Chinese individuals� How-
ever, it is possible that the extrahepatic expres-
sion [1253] may influence the course of particu-
lar drugs and other chemicals�

More recent studies have reported a lack of a 
major contribution in the cases of oxidation of 
amlodipine [1480], midazolam [1484], and ator-
vastatin [1485]� There has been considerable in-
terest in whether P450 3A5 genetic testing is of 
use in dosing of tacrolimus (FK-506), an immu-
nosuppressant widely used in organ transplanta-
tion, long known to involve P450 3A4 oxidation 
[1486, 1487]� P450 3A5 genotyping (with tacro-
limus use) has been concluded by some to be 
beneficial [1488, 1489] but not by others [1490, 
1491]�

9.7.22  P450 3A7

Early work in the field of human P450 research 
by Kamataki and his associates with fetal sam-
ples led to the purification of a P450 termed 
HFLα, now known as P450 3A7 [8, 24]� Early 

research established that this is a major P450 in 
fetal liver (not in adult liver) and that the enzyme 
could catalyze several reactions [24]�

9.7.22.1  Sites of Expression
Early work established that P450 3A7 is the 
major P450 present in fetal liver [24] and is also 
present in other fetal tissues, including kidney, 
adrenal, and lung [1492]� Further work by Ka-
mataki’s group showed the existence of some im-
munochemically detectable P450 3A7 in gyne-
cologic tumors and in human placenta, but inter-
estingly not in cynemologous monkey placenta 
[1493]� Guzelian’s group also reported P450 3A7 
protein in human placenta and endometrium, 
with elevation in the latter site during pregnancy 
or during the secretory phase of the menstrual 
cycle [1494]� Subsequently Sarkar et al� [1495] 
reported tenfold greater expression of P450 3A7 
in endometrium in the proliferative rather than 
the secretory phase� Hakkola et al� [1496] re-
ported some expression of P450 3A7 mRNA in 
some first trimester placenta but not in full-term 
placenta [381]� Juchau’s group found expression 
of P450 3A7 in early fetal tissue (50–60 days) 
[1497]� Schuetz et al� [1498] found P450 3A7 
mRNA in all fetal liver samples analyzed and 
also reported its presence in one half of adult 
liver samples� However, the issue may be the 
level of expression, because Kamataki’s group 
[174] had reported the fetal > adult selectivity� de 
Wildt et al� [1260] also found fetal specificity and 
only very low levels of P450 3A7 in adults� P450 
3A7 expression was high during embryonic and 
fetal life and decreased rapidly during the first 
week of life� Similar findings were reported by 
Hakkola et al� [1468]� Also, the variability of 
P450 3A7 expression was fivefold in fetal tissue 
(and 77-fold in mRNA)� In another report [1499], 
P450 3A7 also disappeared rapidly after infancy�

More recently, Gonzalez and his associates 
[1500] have developed a mouse model in which 
P450 3A7 is expressed in the fetus and a decrease 
is seen after birth� In the model, the CYP3A7 is 
regulated by glucocorticoids through the gluco-
corticoid receptor�
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9.7.22.2  Regulation
The regulation of this gene is complex, as one 
might expect after considering the temporal pat-
terns of expression during development ( vide 
supra)� Kamataki’s group published the cDNA 
[1501] and genomic [1502] sequences, which 
are similar to those of P450 3A4� However, more 
identity (~90 %) is seen in the coding region than 
elsewhere [1469, 1502]� Recent work by Koch 
et al� [1253] reestablished that P450 3A7 only 
accounted for < 2 % of all P450 expression in 
adult human liver; a bimodality of P450 3A7 ex-
pression was seen, however� P450 3A4 and 3A7 
constructs were expressed in various cell lines by 
Ourlin et al� [1282], who showed differential re-
sponses to C/EBPα and DBP� As in the case with 
P450 3A4, P450 3A7 was inducible by rifampi-
cin in cell culture [1503]� P450 3A7 has a func-
tional PXR element [1504], as does P450 3A4 
( vide supra), explaining the rifampicin response� 
Thus, one would expect fetal P450 3A7 induction 
by the usual P450 3A4 inducers�

Bertilsson et al� [1505] reported a distal 
XREM in the CYP3A7 gene. An NFκB-like ele-
ment in CYP3A7 is inactive in CYP3A4 [1506], 
and this element has recently been shown to re-
spond to p53� CYP3A7 expression is regulated 
by Sp1, Sp3, HNF-3β, and USF1� Far upstream 
(~ 11 kb), there are HNF-1 and HNF-4 and USF1 
elements, which differ from the CYP3A4 gene� 
Exactly how this and other sequence differences 
are involved in the rapid onset of P450 3A4 and 
decrease in P450 3A7 shortly after birth [175] is 
unclear�

The exact basis of the postpartum shift from 
P450 3A7 to 3A4 expression is still not clear� 
Although P450 3A7 has a PXR element, Mat-
sunuga et al� [1507] reported that P450 3A7 was 
induced by dexamethasone but not rifampicin in 
fetal human hepatocyte culture� This finding is 
consistent with the report of Pang et al� [1500] 
with the transgenic P450 3A7 mouse model, in 
which induction with glucocorticoids suggests 
control by the glucocorticoid receptor, not PXR, 
is important [1473]�

The CYP3A7*1C alleles is expressed in adult 
liver because the G > 219T substitution creates a 
binding site for HNF-3 and the associated A233C 
change destroys an HNF-3 binding site, creating 

a putative octamer identical to that found up-
stream for P450 3A4 [1473, 1508]�

Phosphorylation of P450 3A7 has also been 
detected in vivo [297]�

9.7.22.3  Genetic Variation
At least seven alleles are known (http://www�
cypalleles�ki�se)� One (*1C) has been mentioned 
above regarding its expression in adults [1473, 
1509]� A null allele (frameshift) (*3) has been 
identified [1510]� The *1C allele was associat-
ed with a 50 % reduction in serum DHEA 16α-
sulfate (in adults) [1511]� The effect of this in 
fetal life is unknown� Some interesting variants 
of CYP3A7 genes have been reported� An mRNA 
species was found that contains exons 2 and 13 of 
a nearby CYP3A pseudogene spliced at the three 
end [1512]� The CYP3A7*1C allele is unusual 
in the sense that a part of the CYP3A4 promoter 
replaces the corresponding region of CYP3A7 
(ER6 motif) and thus confers high levels of ex-
pression to CYP3A7*1C [1513]�

The overall variability of P450 3A7 mRNA in 
fetal liver varied 630-fold [1514]� This observed 
variability could not be attributed to the *2 or 
other known polymorphisms�

9.7.22.4  Substrates and Reactions
Early studies with P450 3A7 purified from 
fetal liver established that testosterone 6β-
hydroxylation is catalyzed by this enzyme [1515]� 
Another early study indicated 16α-hydroxylation 
of DHEA 3-sulfate [1516]� These activities were 
later verified with the use of recombinant P450 
3A7 [1517]�

In general, P450 3A7 has catalytic activities 
rather similar to P450 3A4 and 3A5 [1518, 1519]� 
Activation of aflatoxin B1 [1520–1522] and het-
erocyclic amines [1520] has been observed in 
various recombinant and transgenic systems, 
including transgenic mice [1523]� Retinoic acid 
4-hydroxylation by P450 3A7 has also been re-
ported [1524]� Wrighton’s laboratory reported an 
extensive comparison of catalytic activities and 
concluded that rates for P450 3A7 are generally 
considerably lower for P450 3A7 than for P450 
3A4 or 3A5 under similar conditions [1316]�

The consensus about generally similar but 
quantitatively lower catalytic activities of P450 
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3A7 relative to P450s 3A4 and 3A5 still appears 
to hold [1473], although some new information 
is available� Lee et al� [1525] reported that P450 
3A7 uniquely had a similar level of estrone 16α-
hydroxylation activity compared to 2-hydroxyl-
ation, in contrast to P450 3A4� That was not the 
case for 17β-estradiol� The possibility exists that 
P450 3A7 may be important in the local or sys-
temic formation of 16α-hydroxyestrone (which is 
procarcinogenic in some animal models)�

Two of the substrates of P450 3A7 that may 
be most important are DHEA 3-sulfate (16α-
hydroxylation) and retinoic acid, in terms of 
protection of the fetus� However, the finding that 
fetal levels of P450 3A7 can vary 630-fold [1514] 
raises questions about how important such any 
regulation of these steroid and retinoid levels by 
P450 3A7 really is�

9.7.22.5  Structure
Much less has been done with P450 3A7 than 
with P450s 3A4 and 3A5� Because the catalytic 
selectivity of P450 3A7 is similar to P450s 3A4 
and 3A5, models are probably about as appli-
cable� One point of interest is the work of Ka-
mataki’s group showing that the substitution 
T485P improved holoprotein expression in E. 
coli [1526]�

9.7.22.6  Inhibitors
Inhibitors have not been studied extensively, but 
presumably most general inhibitors of P450 3A4 
are effective with P450 3A7, e�g�, ketoconazole, 
TAO, etc�

9.7.22.7  Clinical Issues
The general point has already been made that 
P450 3A7 is the major human fetal P450 and 
therefore makes a major contribution to drug 
metabolism in the fetus� Thus, many, if not most, 
of the considerations regarding drug interactions 
etc� with P450 3A4 should be considered with re-
spect to the fetus during pregnancy� At this time, 
there is still no clear consensus that the level or 
activity of P450 3A7 in the fetus will have a major 
physiological effect due to altered metabolism of 
endogenous compounds� The best candidates, 
if indeed these are candidates, are retinoids and 
DHEA 3-sulfate� What is probably of more con-

cern is the role of P450 3A7 in the (fetal) metabo-
lism of drugs� Even in pediatric medicine, there is 
limited information to guide dosing [1527, 1528] 
and the knowledge base regarding in vivo fetal 
drug metabolism is even more limited�

Another potentially important aspect is a re-
port that P450 3A7 expression increases in hepa-
tocellular carcinoma [1529], possibly as a part of 
dedifferentiation�

9.7.23  P450 3A43

9.7.23.1  Sites of Expression
In 2001, three groups reported the characteriza-
tion of a fourth subfamily 3A P450 member, P450 
3A43 [1530–1532]� The sequence identity with 
other P450 3A subfamily members is 71–76 %� 
Expression (mRNA) is seen in liver, kidney, 
pancreas, and prostate, and testis [1473]� More 
recently, high levels of expression have been re-
ported in brain, as high or higher than in liver 
[1254]� The results are discordant, in that previ-
ously the 3A43/3A4 mRNA expression ratio was 
1/103, but in the brain study the liver ratio was 
one fifth [1254]� Very low levels (< 1 pmol/mg 
protein) have been detected in human liver mi-
crosomes using LC–MS [54, 55]�

9.7.23.2  Regulation
As with other P450 3A subfamily members, ri-
fampicin induces P450 3A43 [1530], presumably 
via the PXR system�

9.7.23.3  Genetic Variation
Genetic polymorphism in the CYP3A43 gene has 
been reported [1533], and the http://www�cypal-
leles�ki�se website currently lists five alleles� Two 
are frameshifts and should not yield functional 
protein�

9.7.23.4  Substrates and Reactions
The initial studies with heterologously expressed 
P450 3A43 (in E. coli) showed only low testos-
terone 6β-hydroxylation activity (a marker for 
other 3A subfamily members) [1531]� Agarwal 
et al� [1254] reported different catalytic specific-
ity in alprazolam oxidation compared to P450 
3A4 and a relatively high level of activity, con-
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cluding that P450 3A43 was more important than 
P450 3A4 in brain metabolism of this drug�

9.7.23.5  Structure
No structures or homology models of P450 3A43 
have been reported�

9.7.23.6  Inhibitors
Specific P450 3A43 inhibitors have not been re-
ported, perhaps in part due to the low catalytic 
activities� Presumably, other P450 3A subfamily 
inhibitors such as ketoconazole would be effec-
tive�

9.7.23.7  Clinical Issues
A polymorphism in P450 3A43 has been used to 
explain a racial difference in olanzapine clear-
ance [1534]� The conclusion is surprising in that 
another study reported that P450s 1A2 and 2D6 
(and FMO) are more involved in olanzapine me-
tabolism [1535]�

9.7.24  P450 4A11

9.7.24.1  Sites of Expression
P450 4A11 was first cloned from a kidney cDNA 
library [1536] and later identified in human liver 
microsomes [1537]� The originally reported 
P450 4A11 sequence was subsequently found to 
be that of P450 4A22 [1538] and the correction 
has been made� P450 4A11 is expressed largely 
in the liver and kidney� A proteomic study found 
P450 4A11 peptides in all human livers sampled 
[635]� The level of expression of P450 4A11 is 
much higher than that of P450 4A22 [1539]�

9.7.24.2  Regulation
P450 4A11 is induced in HepG2 cells by both 
peroxisome proliferators (PPARα) and dexa-
methasone [1539]� Presumably a PPARα site(s) 
exists in the gene� Clofibrate is also an inducer 
[1540]�

9.7.24.3  Genetic Variation
In addition to wild-type P450 4A11, at least nine 
variants are known (http://www�cypalleles�ki�se) 
[1541]� As discussed later, there is considerable 

interest in the variants in relationship to hyper-
tension and other cardiovascular diseases [1542]�

9.7.24.4  Substrates and Reactions
P450 4A11 catalyzes the ω-hydroxylation of 
fatty acids, with a small amount of ω-1 product 
[1536, 1537, 1543–1545]� 20-Hydroxyeicosatet-
raenoic acid (20-HETE), a primary product, is a 
potent vasoactive and natriuretic eicosanoid in 
human kidney, and there is considerable inter-
est in the P450 4A11-catalyzed conversion of 
arachidonic acid to this product (Sect� 7�24�7, 
Clinical Issues, vide infra)� Some prostaglan-
dins (stable analogs) have also been reported 
to be ω-hydroxylated by P450 4A11, including 
9,11-diazo-15-deoxy-PGH2 (U51605), 9,11-ep-
oxymethano-PGH2 (U44069), and 11,9-epoxy-
methoPGH2 (U46619)� Thus, P450 4A11 may 
oxidize other long-chain alkyl molecules�

Some other points should be made about these 
reactions of P450 4A11� First, in P450 4A11 
much of the heme is covalently linked to the apo-
protein [1546]� However, this attachment is not 
critical to catalytic activity [1546]� Second, the 
reaction is stimulated ~ twofold by cytochrome b5 
[1547], and the stimulation does not occur with-
out the heme [1548], arguing for electron transfer� 
Kinetic analysis indicates that the “second” elec-
tron transfer (from cytochrome b5) and the C–H 
bond-breaking step are both rate limiting [1548]� 
An apparently high intrinsic kinetic deuterium 
isotope effect shows considerable attenuation� Fi-
nally, several of the sulfhydryls (cysteines) in the 
protein are readily oxidized (to a disulfide and to 
sulfenic acids), and the reactions are enhanced by 
reductants, e�g�, dithiothreitol, tris(2-carboxyeth-
yl)phosphine, glutathione� The latter phenomenon 
is observed in human liver microsomes, but its in 
vivo relevance is still under investigation [1549]�

9.7.24.5  Structure
No crystal structures of P450 4A11 have been 
reported� Some homology models have been 
published [1550, 1551]� As mentioned earlier, 
two phenomena observed with P450 4A11 are 
the dependence of catalytic activity on free thiols 
[1549] and the autocatalytic covalent attachment 
of heme [1546]�
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9.7.24.6  Inhibitors
HET0016 is a strong competitive inhibitor of 
P450 4A11 and can be used in vivo (in ani-
mals) [1552]� Another inhibitor is “20-SOLA” 
(2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hy-
droxyeicosa-6(Z),15(Z)-dienoate)�

9.7.24.7  Clinical Issues
P450 4A11 does not appear to be involved in the 
metabolism of any drugs, and the major issue is 
the role of P450 4A11 in cardiovascular diseases, 
particularly salt-sensitive hypertension [1542, 
1553–1571]�

The hypertension problem is complex� An as-
sociation between the rs1126742 C allele (cod-
ing for an F434S variant) and hypertension was 
reported in 2005 [1542] and has been rather re-
producible in other human studies, with some 
exceptions [1572]� The working hypothesis has 
been that the 20-hydroxylation ( ω) of arachidonic 
acid is involved, in that this is the only measured 
physiologically relevant catalytic activity� The 
F434S variant had a catalytic efficiency ~ 40 % 
lower than the WT (*1) enzyme [1542]� Deleting 
the Cyp4a10 or Cyp4a14 gene from mice renders 
them hypertensive, but neither of these enzymes is 
an effective arachidonic ω-hydroxylation catalyst 
[1573, 1574]� P450 4a12 is the major arachido-
nate ω-hydroxylase in mice [1575], but this gene 
has not been deleted yet� It is possible that the 20-
HETE produced by P450 4A11 induces P450 2C/c 
subfamily enzymes that make protective epoxides, 
and deletion of mouse Cyp2c44 also causes hy-
pertension [1576]� However, transgenic mice ex-
pressing human P450 4A11 have higher levels of 
plasma 20-HETE and have hypertension [1577]� 
Thus, it is not clear exactly what role P450 4A11 
has in hypertension� Unresolved issues are the 
importance of the site of P450 4A11 expression 
within the kidney, in that 20-HETE can act as a va-
soconstrictor or a vasodilator, and the effect of the 
rs1126742 genotype on the stability and level of 
expression of P450 4A11 in the kidney and liver�

9.7.25  P450 4A22

Relatively little is known about P450 4A22� The 
originally reported CYP4A11 gene [1578] was 

subsequently shown to be CYP4A22 [1538], but 
the cDNA and protein have not been reported� 
The similarity of the two genes is 96 %�

Johnson’s laboratory [1539] has reported that 
P450 4A22 is expressed at lower levels than 
P450 4A11 in human liver, as well as kidney 
[1538]� There was no correlation of expression 
levels of P450 4A11 and 4A22 in human liver 
[1539]� P450 4A22 expression could not be ob-
served in HepG2 cell or PPARα-overexpressing 
cells [1539]�

P450 4A22 protein has been detected in 
human liver using LC–MS [635]�

9.7.25.1  Regulation
Relatively little information is available� Savas 
et al� [1539] reported that P450 4A22 was only 
expressed at low levels in human hepatoma 
HepG2 cells and was refractory to treatment with 
the PPARα inducer Wyeth 14,643 or dexametha-
sone, in contrast to P450 4A11�

9.7.25.2  Genetic Variation
The CYP4A22 gene is highly polymorphic [1551, 
1579]� At least 22 variants have been identified 
(http://www�cypalleles�ki�se)�

9.7.25.3  Substrates and Reactions
Presumably the catalytic activity of the enzyme 
is fatty acid ω-hydroxylation� However, a litera-
ture search did not reveal an actual assay with 
P450 4A22, and it is not known if the protein has 
ever been expressed�

9.7.25.4  Structure
No structure is available, but at least two homol-
ogy models have been published [1551, 1580]�

9.7.25.5  Inhibitors
No inhibitors have been reported, although 
HET0016 might be expected to be an inhibitor in 
light of its activity against P450 4A11�

9.7.25.6  Clinical Issues
In contrast to P450 4A11, there are no clinical 
issues with P450 4A22 due to the evidence for 
lower levels of expression�
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9.7.26  P450 4B1

9.7.26.1  Sites of Expression
P450 4B1 was cloned by Nhamburo et al� [1581] 
from a human lung cDNA library� P450 4B1 ex-
pression has been reported (in addition to lung) 
in kidney, bladder [1582], breast [1583], and 
prostate [1584]� Expression has also been re-
ported in bladder and breast tumors [1582] and 
lung tumors [1585]� It should be emphasized that 
the tissue-selective expression of P450 4B1 var-
ies considerably among species, as discussed by 
Baer and Rettie [1586]�

9.7.26.2  Regulation
As with the tissue-specific expression ( vide 
supra), the regulation of P450 4B1 expression 
varies considerably among species [1586], and 
caution is advised in the extrapolation of results 
from any animal species to humans� Poch et al� 
[1587] utilized A549 lung carcinoma cells and 
HepG2 human hepatocarcinoma cells to identify 
a proximal positive regulatory element located 
between − 118 and − 73, a liver-selective nega-
tive regulatory element located between − 457 
and − 216, and a distal lung-selective positive el-
ement located between − 1052 and − 1008. Three 
possible binding sites were found for the Sp/
XKLF family of transcription factors� The Sp1 
and Sp3 transcription factors regulate P450 4B1 
through the proximal regulatory element, but the 
transcription factors involved in the distal lung-
selective positive element could not be identified�

9.7.26.3  Genetic Variation
Genetic variation in the CYP4B1 gene appears to 
be extensive, with several of the variants leading 
to loss of function [1588, 1589]� The interest in 
P450 4B1 variation has been linked to possible 
roles in cancers [1589]�

9.7.26.4  Substrates and Reactions
The literature contains a considerable amount 
of information concerning substrates and reac-
tions of P450 4B1 enzymes� However, most of 
this involves animal systems, and Baer and Rettie 
[1586] have pointed out the problems in extrapo-
lation to human P450 4B1� A number of technical 

problems have plagued heterologous expression 
studies with human P450 4B1 [1586], and ac-
cordingly the information is limited� A transgenic 
mouse model expressing human 4B1 in (mouse) 
liver was developed sometime ago [1590]� More 
recently, a CYP4B1 knockout mouse has also 
been developed [1591], and it should be possible 
to combine these systems�

Substrates and reactions have been summa-
rized by Baer and Rettie [1586]� Proven sub-
strates are lauric acid and 2-aminofluorene, al-
though both of these must only be considered 
models for related compounds of interest�

9.7.26.5  Structure
No structure is available� Heme is covalently 
linked to the apoprotein (Glu-310) through an 
ester linkage [1592]� Apparently no homology 
models have been published, and the issues about 
species extrapolation etc. ( vide supra) would 
suggest caution in such efforts�

9.7.26.6  Inhibitors
No specific inhibitors have been identified�

9.7.26.7  Clinical Issues
There are two clinical issues regarding P450 4B1� 
One is a possible epidemiological link to can-
cers [1582, 1589], largely driven by work with 
P450 4B1 from animal models� The other issue 
is the potential use of P450 4B1 (endogenous or 
instilled by gene therapy) in the bioactivation of 
cancer prodrugs [1593]�

9.7.27  P450 4F2

9.7.27.1  Sites of Expression
The Kusenose laboratory reported the cloning of 
a human liver cDNA corresponding to the leukot-
riene B4 ω-hydroxylase [1594]� The site of ex-
pression was distinct from P450 4F3, which is re-
stricted to polymorphonuclear leukocytes� P450 
4F2 is found not only in liver but also in several 
extrahepatic tissues [1595], including kidney (S2 
and S3 segments of proximal tubules, in cortex, 
and outer medulla)� The extent of variation of 
P450 4F2 in human liver was ~ fivefold [1596]�
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9.7.27.2  Regulation
Relatively limited information about regulation 
is available about P450 4F2� Expression is con-
trolled by sterol regulatory element-binding pro-
teins (SREBPs) [1597]� In human hepatocytes, 
lovastatin induced P450 4F2 and this effect was 
blocked by 25-hydroxycholesterol�

9.7.27.3  Genetic Variation
At least two genetic variants are known (http://
www�cypalleles�ki�se), coding for the W12G 
and V433M forms� The latter has been studied 
in detail with regard to its role in warfarin me-
tabolism, i�e�, association with increased warfarin 
dosing [1598, 1599]� The genotype controls the 
level of protein expression [1600]�

9.7.27.4  Substrates and Reactions
P450 4F2 catalyzes ω-hydroxylation of several 
lipids, including leukotriene B4 [1596, 1601], 
arachidonic and [1545], and 6-trans-leukotriene 
B4, lipoxin A4, 8-hydroxyeicosatetraenoic acid, 
12-hydroxyeicosatetraenoic acid, and 12-hy-
droxystearic acid [1602]� The physiological rel-
evance of some of these reactions is of interest, 
but the effects of variability of P450 4F2 have not 
been demonstrated� Part of the interest lies in the 
fact that leukotriene B4 is a potent proinflamma-
tory agent [1595, 1596]�

In addition, P450 4F2 can also catalyze ω-
hydroxylation of arachidonic acid [1598]�

Several drugs are also oxidized by P450 4F2, 
including DB289 (2,5-bis[4-amidinophenyl]
furan-bis-O-methylamidoxime) [1603] and fin-
golimod (FTY720) [1604]� A polymorphism 
(V433M) in P450 4F2 has been shown to affect 
the clinical warfarin dose [1599], but the enzyme 
does not oxidize warfarin� Rettie and his associ-
ates showed that the reason was that P450 4F2 
is a vitamin K oxidase, explaining the effect in 
terms of a physiological reaction [1605]� The 
reaction involves ω-oxidation and further oxida-
tion to the carboxylic acid [1600]� P450 4F2 is 
also an ω-oxidase for vitamin E [1606]�

9.7.27.5  Structure
No structural information is available yet for 
P450 4F2�

9.7.27.6  Inhibitors
No inhibitors have been reported� In that this is 
an ω-hydroxylase, HET0016 might be expected 
to inhibit�

9.7.27.7  Clinical Issues
The major clinical issue with P450 4F2 is the role 
in warfarin dose adjustment [1607–1610] due to 
its activity in vitamin K oxidation [1605]� The 
issue is not a change in the activity of the enzyme 
(V433M) but the protein stability [1600]�

9.7.28  P450 4F3

9.7.28.1  Sites of Expression
A P450 4F3 cDNA was first cloned from a 
human leukocyte library in 1993 [1611]� The 
CYP4F gene family is clustered in the p13 region 
of chromosome 19, and P450 4F3 expression re-
sults in the synthesis of two enzymes, P450 4F3A 
and P450 4F3B, resulting from alternate splicing 
of a single pre-mRNA precursor [1612]� As a re-
sult of tissue control, P450 4F3A contains exon 4 
(but not 3) and is expressed in neutrophils� P450 
4F3B contains exon 3 (but not 4) and is expressed 
in fetal and adult liver and kidney, trachea, and 
gastrointestinal tract [1613, 1614]�

9.7.28.2  Regulation
The tissue-specific expression of P450 4F3A/B 
has been mentioned ( vide supra)� Induction of 
transcription has been reported with prostaglan-
din A1 (4F3B) in a human hepatocyte-derived 
cell line [1615] and with benzene metabolites (in 
promyelocytic leukemia cell lines and in blood 
neutrophils [1616, 1617])� P450 4F3B expres-
sion is associated with differentiation of HepaRG 
human hepatocytes and unaffected by fatty acid 
overload [1618]� Statins have been reported to 
increase P450 4F3 in human liver cells through 
a PXR-dependent mechanism [1619]� All-trans-
retinoic acid has been reported to induce P450 
4F3A in HL-60 cells [1620]�

9.7.28.3  Genetic Variation
Although the CYP4F3 gene is subject to alternate 
splicing, few reports of genetic variation have yet 
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appeared� An SNV has been related to celiac and 
Crohn’s disease [1612, 1621]�

9.7.28.4  Substrates and Reactions
The two proteins generated by alternate splicing, 
P450 4F3A and 4F3B, have different catalytic 
specificities� P450 4F3 is an ω-hydroxylase, but 
the 4F3A form is more active with leukotriene B4 
and the 4F3B form is more efficient with arachi-
donic acid [1614]�

P450 4F3B has reported to have some ability 
to oxidize the drug fingolimod (FTY720) [1604]�

9.7.28.5  Structure
Little is known about the active site, including 
the features associated with the differential selec-
tivity of the P450 4F3A and 4F3B enzymes� A 
fraction of the heme was shown to be covalently 
attached to the protein [1622]�

9.7.28.6  Inhibitors
A search did not identify reports of inhibitors of 
P450 4F3A/B� It is possible that HET0016 might 
be one, on the basis of its inhibition of other ω-
hydroxylases�

9.7.28.7  Clinical Issues
As mentioned under Sect. 7.28.3 ( vide supra), 
there has been some association of SNVs with 
celiac and Crohn’s disease [1612, 1621]�

9.7.29  P450 4F8

9.7.29.1  Sites of Expression
Bylund et al� [1134] first isolated the cDNA from 
a human seminal vesicle library� Expression has 
also been reported in human epidermis, hair folli-
cles, sweat glands, corneal epithelium, proximal 
renal tubules, and epithelial linings of the gut and 
urinary tract [1623]�

9.7.29.2  Regulation
P450 4F8 expression is upregulated in psoriasis 
[1623, 1624]� The mechanism has not been elu-
cidated� A possible relationship with fenofibrate 
treatment has been reported [1625]�

9.7.29.3  Genetic Variation
No reports on genetic variation were identified 
in a search�

9.7.29.4  Substrates and Reactions
P450 4F8 was shown to catalyze hydroxylation 
of prostaglandin endoperoxides [1134, 1626]� 
The recombinant enzyme also catalyzed the 
ω-2 hydroxylation of arachidonic acid and three 
stable prostaglandin H2 analogs, but prosta-
glandins D2, E1, E2, and F2α and leukotriene B4 
were poor substrates [1626]� These findings are 
of relevance in that 19-hydroxyprostaglandins 
have several biological activities [1623]� (19R)-
Hydroxy prostaglandins E1 and E2 are the main 
prostaglandins of human seminal fluid� Bylund 
et al� [1626] have proposed that ω-1 hydroxyl-
ation of prostaglandins H1 and H2 by P450 4F8 
occurs in seminal vesicles and that isomerization 
to (19R)-hydroxyprostaglandin E is the result of 
the action of prostaglandin E synthase�

P450 4F8 has also been reported to form ω-3 
hydroxy products of arachidonyl epoxy alcohols 
with a 11,12-epoxy-10-hydroxy configuration 
[1627]� The 8,9- and 11,12-epoxides are also sub-
strates for ω-3 hydroxylation�

9.7.29.5  Structures
No information is available about the structure 
or active site�

9.7.29.6  Inhibitors
No inhibitors have been reported for P450 4F8�

9.7.29.7  Clinical Issues
As mentioned ( vide supra), P450 4F8 expression 
is associated with psoriasis [1623, 1624], but its 
role in the etiology of the disease is unclear� P450 
4F8 has also been identified as a potential target 
in prostate cancer [1628]�

9.7.30  P450 4F11

9.7.30.1  Sites of Expression
P450 4F11 has been reported to be expressed (at 
the mRNA level) mainly in liver, followed by 
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kidney, heart, skeletal muscle, and brain [1629]� 
Expression of P450 4F11 in liver has been con-
firmed at the protein level [297, 635, 1600]�

9.7.30.2  Regulation
The regulation of P450 4F11 has been studied 
in cell culture� In human keratinocyte (HaCaT) 
cells, the proinflammatory cytokines TNFα and 
interleukin-1β induce P450 4F11 transcription� 
The c-Jun N-terminal kinase (JNK) pathway is 
involved [1630]� An RXR agonist induced P450 
4F11 transcription and a retinoic acid receptor 
(RAR) agonist attenuated transcription [1630]�

In HepG2 cells (human liver carcinoma line), 
TNFα also stimulated P450 4F11 transcription 
through the JNK pathway, and NFκB attenuated 
transcription [1631]�

9.7.30.3  Genetic Variation
Only limited genetic variation has been reported 
in P450 4F11� The rs11553651 (15016G > T) vari-
ant was reported not to be associated with breast 
cancer in a study of Mexican women [1230]� A 
D466N substitution is also known but did not in-
fluence vitamin K ω-hydroxylation [1600]�

9.7.30.4  Substrates and Reactions
P450 4F11 catalyzes a number of reactions� In 
light of the fact that it has ~ 80 % sequence iden-
tity to other subfamily 4F P450s, known to be 
ω-hydroxylases, it is not surprising that these 
reactions occur with P450 4F11 [1632]� Studies 
with P450 4F11 expressed in yeast, insect cells, 
and bacteria have all shown ω-hydroxylation ac-
tivities towards several long-chain fatty acids, 
plus leukotriene B4, lipoxin A4, and 8-HETE (but 
not 5- or 12-HETE) [1632–1634]� Interestingly, 
much higher catalytic activity was seen with β-
hydroxy fatty acids [1633, 1634]� The activities 
towards fatty acids are probably relevant in that 
(1) antibodies blocked activity in liver micro-
somes [1633], and (2) screening of liver extracts 
with recombinant P450 4F11 in a metabolomics 
approach also yielded stearic, oleic, arachidonic, 
and docosahexaenoic acids as substrates [1634]� 
In all of these cases, only ω-hydroxylation was 
observed�

Recently P450 4F11 has also been shown 
to be a catalyst of ω-hydroxylation of MK4, a 
menaquinone form of vitamin K [1600]� Further 
research has also shown a role in vitamin E oxi-
dation [1635]�

Some drugs are oxidized (at rates of < 1 min−1) 
by P450 4F11, including amitriptyline, benzphet-
amine, chlorpromazine, erythromycin, ethylmor-
phine, fluoxetine, imipramine, pirenzepine, the-
ophylline, and verapamil [1632, 1634]�

9.7.30.5  Structure
No crystal structures are available� A homology 
model (based on P450s 2C5, 101A1, 102A1, 
108A1, and 107A1) has been published [1632]�

9.7.30.6  Inhibitors
No information on specific inhibitors of P450 
4F11 has been published�

9.7.30.7  Clinical Issues
The extent to which P450 4F11 contributes to 
the oxidation of drug substrates is unknown� The 
same applies to vitamin K (MK4), and P450 4F2 
is also a catalyst, with similar expression levels 
and catalytic efficiency [1600]�

9.7.31  P450 4F12

9.7.31.1  Sites of Expression
P450 4F12 was originally cloned from human 
liver [1636] and small intestine [1637] cDNA 
libraries� Expression has been reported in liver, 
kidney, colon, small intestine, and heart [1636, 
1638]� There are also reports of expression in 
gastrointestinal and urogenital epithelia [1639]�

9.7.31.2  Regulation
PXR has been reported to regulate P450 4F12 ex-
pression in hepatocytes [1640]�

9.7.31.3  Genetic Variation
At least seven variants in the CYP4F12 gene 
have been identified, some with loss of func-
tion [1533, 1641]� Some of the activity changes 
have been reported with coding region variations 
[1642]�
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9.7.31.4  Substrates and Reactions
Reactions identified include ω-, ω-2, and ω-3 
hydroxylation of arachidonic acid [1637] and the 
ω-hydroxylation of leukotriene B4 [1636, 1637] 
and some prostaglandin analogs [1636]� Hydrox-
ylation of the antihistamine ebastine has also 
been reported [1149]�

9.7.31.5  Structure
No structures have been reported� The effects of 
variations at Tyr-125 have been reported [1642]� 
This enzyme has covalently bound heme, at-
tached via Glu-328� Mutation at that site shifted 
the regioselectivity of oxidation of arachidonic 
acid [1642]�

9.7.31.6  Inhibitors
Inhibitors of P450 4F12 have not been reported�

9.7.31.7  Clinical Issues
No clinical issues have been reported�

9.7.32  P450 4F22

9.7.32.1  Sites of Expression
P450 4F22 is associated with a skin disease called 
ichthyosis and accordingly is expressed in skin 
[1643]� Specifically, it is expressed at the onset of 
keratinization during skin development [1644]� 
Interestingly, an extensive analysis of (any) other 
sites of localization has not been reported�

9.7.32.2  Regulation
Although P450 4F22 is expressed during skin ke-
ratinization, molecular mechanisms of regulation 
have not been reported�

9.7.32.3  Genetic Variation
The ichthyosis is an autosomal recessive congenital 
disease, and several CYP4F22 variants have been 
identified in individuals with the disease [1643, 
1645–1647]: F59I, R243H, R372W, H456Y, and 
H436D, plus a frameshift and a large deletion�

9.7.32.4  Substrates and Reactions
Epoxy alcohols (HEETs) and epoxides (EETs) of 
arachidonic acid appear to be important for the 

water permeability barrier of skin (i�e�, keeping it 
from drying out)� P450 4F22 oxygenated arachi-
donic acid at the ω-2 position but did not oxidize 
HEETs [1627]� However, it has been pointed out 
that the reported catalytic activity is one to two 
orders of magnitude lower than that of P450 4F8, 
so the significance is unclear [1643]�

The suggestion has been made that hepoxil-
ins are more relevant lipids regarding this disease 
[1648]� The hepoxilins (or trioxilins) might be 
oxidized and play a role in signaling, rather than 
acting directly as barrier lipids [1643]�

9.7.32.5  Structure
No structure is available but a homology model 
has been published [1649]�

9.7.32.6  Inhibitors
No inhibitors have been reported, which is not 
surprising in terms of the limited evidence of a 
relevant reaction�

9.7.32.7  Clinical Issues
The clinical issue is ichthyosis, a serious disease� 
Variants ( vide supra) in CYP4A22 and several 
other genes [1650] are clearly involved� More re-
mains to be learned about the molecular basis of 
the disease before intervention is possible�

9.7.33  P450 4V2

9.7.33.1  Sites of Expression
P450 4V2 is expressed at the mRNA level in a 
variety of tissues [1651]� The protein has been 
detected by LC–MS in (female) livers, although 
whether or not a gender difference really exists 
is unknown [635]� Antibodies have been used to 
detect P450 4V2 protein in the retina and cor-
neum (eye), which is the site of most relevance 
[1652]�

9.7.33.2  Regulation
The regulation of the P450 4V2 expression has 
not been studied, probably because of the em-
phasis on genetic variation as the major factor 
in P450 4V2 activity and disease relevance ( vide 
infra)�
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9.7.33.3  Genetic Variation
P450 4V2 first attracted attention because a ge-
netic defect was implicated in Bietti’s crystalline 
dystrophy, a recessive degenerative eye disease 
[1651]� The information is not included on the 
http://www�cypalleles�ki�se website, but > 80 % 
of the mutant alleles related to the disease are 
attributed to three variants—two splice site al-
terations and one missense mutation (992 C > A, 
yielding the protein variant H331P) [1652]� The 
H331P was not expressed in HepG2 transfected 
with the cDNA and is concluded to be unstable 
[1652]� An I111T mutation has also been report-
ed to cause the disease [1653]�

9.7.33.4  Substrates and Reactions
P450 4V2 has been characterized as a fatty acid 
ω-hydroxylase [1654]� Subsequent work sug-
gests ω-3 polyunsaturated as the substrates most 
relevant to Bietti’s crystalline dystrophy [1652]�

A search with a battery of carcinogens [350] 
indicated that none are substrates for bioactiva-
tion (Xiao, Y�, and Guengerich, F�P�, unpublished 
results)�

9.7.33.5  Knowledge About Active Site
No definite information is available, although 
at least one homology model has been reported 
[1655]�

9.7.33.6  Inhibitors
HET0016 (an inhibitor of ω-hydroxylation re-
actions of other subfamily 4A P450s) inhibited 
P450 4V2-catalyzed lauric acid ω-hydroxylation 
with an IC50 of 38 nM [1654]�

9.7.33.7  Clinical Issues
The only clinical issue relevant to P450 4V2 is 
Bietti’s crystalline dystrophy [1651]� This is a 
rare ocular disorder and a progressive disease that 
leads to atrophy of the retinal epithelium, con-
striction of the visual field, and night blindness� 
The role of P450 4V2 has been corroborated in a 
number of genetic studies [1651–1653]� At this 
time, the basis appears to be the accumulation of 

the fatty acids that are normally cleared by P450 
4V2 [1652]�

9.7.34  P450 4X1

9.7.34.1  Sites of Expression
P450 4X1 mRNA is found in a number of tissues, 
including liver, kidney, skeletal muscle, aorta, 
trachea, breast, ovary, and uterus [180]� Another 
site is brain, with P450 4X1 being found in the 
cerebellum, amygdala, and basal ganglia [1656]� 
Expression of the protein has also been detected 
in human liver [635]�

9.7.34.2  Regulation
The only major study on regulation is work by 
Johnson and his associates [180] in human hepa-
toma HepG2 cells� The gene is regulated by the 
PPARα receptor, which regulates some other 
subfamily 4A P450s�

9.7.34.3  Genetic Variation
Apparently no work has been published on P450 
4X1 polymorphism or other genetic variation�

9.7.34.4  Substrates and Reactions
The only reported substrate for P450 4X1 is anan-
damide ( N-arachidonylethanolamine) [1656], 
with the reaction yielding the 14,15-epoxide� Ar-
achidonic acid was also slowly converted to its 
8,9- and 14,15-epoxides� A study with a battery 
of carcinogens [350] yielded no positive results 
for the activation of any carcinogen [350] by bac-
ulovirus-expressed P450 4X1 (Y� Xiao, and F� P� 
Guengerich, unpublished results)�

9.7.34.5  Information About Active Site
Presently no information about the active site is 
available�

9.7.34.6  Inhibitors
No inhibitors of P450 4X1 have been reported�

9.7.34.7  Clinical Issues
At this point, no clinical issues have been identi-
fied�
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9.7.35  P450 4Z1

9.7.35.1  Sites of Expression
Most of the reports of P450 4Z1 are focused on 
the expression of P450 4Z1 in breast cancer cells 
[1657, 1658]� P450 4Z1 has also been considered 
as a marker for prostate cancer [1659] and ovar-
ian cancer [1660]� P450 4Z1 is also expressed in 
normal breast tissue [180]�

9.7.35.2  Regulation
Limited information is available� Savas et al� 
[180] utilized T47-D and MCF-7 human mam-
mary carcinoma cells and found considerable 
induction with dexamethasone or progester-
one� These results implicate the glucocorticoid 
and progesterone receptors, and mifepristone 
(RU486), an inhibitor of both, blocked induction�

9.7.35.3  Polymorphism and Genetic 
Variation

No reports have appeared regarding polymor-
phism or other genetic variation at this time�

9.7.35.4  Substrate and Reactions
The only reactions reported for P450 4Z1 are 
ω-2, ω-3, ω-4, and ω-5 hydroxylations of lauric 
and myristic acids [1661]� The significance of 
these reactions is unclear, in that these are not 
very physiologically relevant in mammals, and 
longer-chain fatty acids were not considered�

Because of the possible relevance of P450 
4Z1 to cancer, we expressed the enzyme (baculo-
virus system) in our own laboratory and screened 
a battery of carcinogens [350] for activation, but 
all were negative (Y� Xiao and F� P� Guengerich, 
unpublished results)�

9.7.35.5  Structure
At this point, no information is available�

9.7.35.6  Inhibitors
No inhibition studies have been reported�

9.7.35.7  Clinical Issues
P450 4Z1 is not an issue in terms of its metabolic 
capability� The clinical interest in P450 4Z1 in-

volves the use of mRNA expression as a tumor 
marker [180, 1226, 1657–1660]�

9.7.36  P450 5A1

P450 5A1 is the classification of thrombox-
ane synthase, which converts prostaglandin H2 
to thromboxane (Fig� 9�21)� Thromboxane, the 
product, causes vasoconstriction and platelet ag-
gregation, which are of considerable interest�

Search names include CYP5A1, P450 5A1, 
and TBXAS1 for this enzyme, with the latter 
dominating the literature�

9.7.36.1  Sites of Expression
P450 5A1 is expressed in platelets and also 
erythroleukemia cells [1663]� The enzyme is also 
found in human monocytes [1664], leukocytes 
[1665], and kidney interstitial dendritic reticu-
lum cells surrounding the tubules [1666]� Some 
expression is also seen in lung and liver [1664]�

9.7.36.2  Regulation
As one might expect from its physiological func-
tion, P450 5A1 is a highly regulated enzyme� 
Dexamethasone induces P450 5A1 in human 
monocytes [1664]� Phorbol esters also induce 
P450 5A1 (e�g�, 12-O-tetradecanoyl-phorbol-
13-acetate) in human erythroleukemia cells 
[1667]� Patients with systemic sclerosis showed 
sixfold enhanced levels of leukocyte P450 5A1 
[1665]�

Promoter analysis indicates a 39-bp core pro-
moter, containing TATA and initiator elements 
that control transcription� Binding of the tran-
scription factor NF-E2 is critical both for altera-
tion of the nucleosomal structure and for activa-
tion of the P450 5A1 promoter [1668]�

Further, Nrf2 has been reported to regulate 
P450 5A1 in human lung cells [1669]� Reduced 
methylation of the gene is correlated with in-
creased expression levels (of P450 5A1) and pre-
eclampsia [1670]�

9.7.36.3  Genetic Variation
Chevalier et al� [1671] identified 11 variants 
in the CYP5A1 gene, including eight missense 
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changes in the coding region� The effects of these 
changes have not been reported yet� The current 
http://www�cypalleles�ki�se website shows 12 al-
lelic variants reported to date, mostly those of 
Chevalier et al� [1672]� Racial differences have 

been reported between Caucasian and African 
American populations [1673]� Some in vitro 
functional characterization of variants has been 
reported [1674]� Polymorphisms have been asso-
ciated with cerebral infection [1675]�

Fig. 9.21  Rearrangement of prostaglandin H2 to prostacyclin (PGI2) by P450 8A1 and thromboxane (TXA2) by P450 
5A1 [1662]� (With kind permission from Springer Science + Business Media: [149], Fig� 10�12)
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9.7.36.4  Substrates and Reactions
The thromboxane synthase reaction has been 
known for many years but was shown to be a 
P450 by Ullrich and his associates, first in spectral 
studies [1676] and then by purification [1677]� 
With the purified enzyme or one expressed in a 
baculovirus system [1678], prostaglandin H2 was 
converted to thromboxane A2 and 12-hydroxy-
heptatrienoic acid (HHT) plus malondialdehyde, 
in equimolar amounts [1679] (Fig� 9�21)� Prosta-
glandin G2 was transformed to malondialdehyde 
and the corresponding 15- and 12-hydroperoxy 
products� Prostaglandin H1 was enzymatically 
transformed into 12( L)-hydroxy-8,10-hep-
tadecadienoic acid, and prostaglandin H3 yielded 
thromboxane B3 and 12( L)-hydroxy-5,8,10,14-
heptadecatetraenoic acid [1679] (Fig� 9�21)�

These are all rearrangement reactions, not 
involving input of O2 or electrons from pyri-
dine nucleotides� The reaction mechanism has 
been reviewed [1680]� The reaction of the “ox-
ygen-surrogate” iodosylbenzene with a P450 
5A1-containing preparation and the stable pros-
taglandin H2 analog 15( S)-hydroxy-11α,9α-
epoxymethano-5( Z),13( E)-prostadienoic acid 
(U46619) yielded three oxidation products (that 
could also be formed in a similar system using 
rat liver microsomes) [1681]� These and other 
studies led Hecker and Ullrich [1682] to propose 
a mechanism involving homolytic cleavage of 
the prostaglandin endoperoxide (with the FeIV 
bonded to one oxygen and the other oxygen bear-
ing a radical), transfer of the radical to a carbon, 
further electron transfer to generate FeIII plus a 
carbocation, and collapse of the bis-ionic struc-
ture to yield thromboxane A2 (Fig� 9�21) [1662, 
1680]� Fragmentation competes with the electron 
transfer step to also yield malondialdehyde and 
heptatrienoic acid [1662]�

9.7.36.5  Structure
Although a more soluble form of P450 5A1 has 
been engineered [1683], no reports of crystal 
structures have appeared� Several spectroscopic 
[1684, 1685] and modeling [1686] studies have 
been published� One conclusion has been that 
the active site is relatively large and hydrophobic 
[1685]� As indicated, the protein does not bind 
NADPH-P450 reductase� Presumably the active 

site is rather specific, although iodosylbenzene 
could be utilized as an oxygen surrogate [1681]�

9.7.36.6  Inhibitors
Thromboxane synthase inhibitors have been a 
matter of interest for many years because of their 
potential use in preventing plugs of platelets, and 
efforts at development preceded the characteriza-
tion of the enzyme as a P450 [1687–1689]� Many 
of these inhibitors have a basic nitrogen atom that 
binds to the P450 5A1 heme [1690]�

For a review of both P450 5A1 inhibitors and 
thromboxane receptors, which have been used 
together, see [1691]� Quantitative structure–ac-
tivity relationships of both have been reviewed 
[1692]� Among the uses for P450 5A1 inhibi-
tors are platelet function [1693], atherosclero-
sis [1694], inflammatory bowel disease [1695], 
lung cancer [1696], and production of hepatitis 
C virus (in a humanized mouse model) [1697]�

9.7.36.7  Clinical Issues
As indicated earlier, platelet aggregation due to 
thromboxanes is important, but overproduction 
can yield clots, so control of homeostasis is de-
sirable� Much of the clinical interest is in inhib-
iting this enzyme� Most of the issues are with 
cardiovascular diseases related to platelet func-
tion� Genetic variations have been considered in 
relation to aspirin tolerance in asthmatics [1698] 
and acute urticaria induced by nonsteroidal anti-
inflammatory drugs [1699]� P450 5A1 signaling 
relationships with cancer have also been consid-
ered [1700, 1701]�

9.7.37  P450 7A1

P450 7A1 catalyzes cholesterol 7α-hydroxylation, 
the rate-limiting step in bile acid synthesis� The 
enzyme was isolated from rabbit and rat liver 
[1702, 1703] and partially purified from human 
liver [1704]; the cDNA was cloned by several 
groups in 1990 [1705–1707]�

9.7.37.1  Sites of Expression
Apparently the only major site of P450 7A1 
expression is the liver� The CYP7A1 gene is on 
chromosome 8q11–q12 and contains recognition 
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sequences for a number of liver-specific tran-
scription factors ( vide infra) [1708–1710]�

The level of the enzyme in liver appears to be 
similar to some of the low-to-moderately abun-
dant xenobiotic-metabolizing enzymes in liver�

9.7.37.2  Regulation
The regulation of the CYP7A1 gene is very com-
plex, as might be expected from the important 
physiological role this enzyme plays�

P450 7A1 activity has long been known to be 
upregulated by dietary cholesterol in most animal 
models [1706], although there are some excep-
tions [1711]� Feeding rats the competitive in-
hibitor 7-oxocholesterol led to reduced bile acid 
synthesis (due to inhibition) and a compensatory 
increase in P450 7A1 synthesis [1712]� Chiang 
[1713] identified a bile acid-responsive element 
in the CYP7A1 promoter�

Studies with CYP7A1-knockout mice show 
that this reaction (cholesterol 7α-hydroxylation) 
is essential for proper absorption of dietary lipids 
and fat-soluble vitamins in newborn mice but not 
for maintenance of cholesterol and lipid levels 
[1714]� The mice exhibit a complex phenotype 
with abnormal lipid excretion, skin pathologies, 
and behavioral irregularities� The cholesterol lev-
els were not altered� Interestingly, vitamin D3 and 
E levels were low to undetectable�

A new era in the regulation of P450 7A1 
began with reports of the involvement of some 
of the orphan steroid receptors� The proximal 
promoter region interacts with LXRα� The oxy-
sterols 24( S)-hydroxycholesterol and 24( S)-
epoxycholesterol activate LXRα (and LXRβ) 
[1715]� Further, mice devoid of LXRα fail to 
induce CYP7A1 transcription [1716]� Two other 
proteins, farnesoid X receptor (FXR) and cleav-
age and polyadenylation factor (CPF), are also 
involved [1717–1719]� Chenodeoxycholate, a 
bile acid derived from cholesterol, interacts with 
FXR to suppress CYP7A1 transcription [1720]� 
However, the action of FXR has been reported 
to be indirect [1720]� PXR binds lithocholic acid 
and downregulates CYP7A1 [1721]� Thus, cho-
lesterol metabolites control their synthesis in the 
liver through feedback suppression of CYP7A1 
[1717]� Hylemon [1722] concluded that the dom-
inant factor is LXRα� CPF binds to the promoter 

(as a monomer) and leads to CYP7A1 transcrip-
tion [1719]�

Other studies have addressed the role of 
PPARα in P450 7A1 downregulation [1723]� 
However, differences between human and mice 
gene responses have been observed, with the 
mouse gene showing an enhanced response to 
ligands because of an additional binding site 
[1724] (further, humans have much less PPARα 
than rodents [1725])� Chiang [1726] analyzed the 
PPARα response and provided evidence that the 
downregulation by the PPARα-agonist complex 
is due to competition with HNF-4 for the DR-1 
sequence�

The regulation of P450 7A1 by other factors 
has been considered� Downregulation by TNFα 
has been interpreted in the context of MEKK1, 
an upstream nitrogen-activated protein kinase, 
affecting HNF-4 [1727]� The same mechanism 
may be involved in the repression by endotox-
in and interleukin-1 [1728]� A novel CYP7A1 
site appears to be involved in the repression of 
CYP7A1 by thyroid hormone (T3) [1729]� Stud-
ies with rats indicate differences in the regulation 
of P450 7A1 and P450 27A1, a sterol 27-hydrox-
ylase [1730]� Human CYP7A1 expression is also 
repressed by insulin and phorbol esters [1731]� 
Estrogen (100 µg/kg/week) increased hepatic 
cholesterol 7α-hydroxylation 2�7-fold in ovariec-
tomized baboons [1732]�

In addition to the mouse CYP7A1 knockouts, 
work has been done with overexpression in mice 
[1733, 1734]� The mice did not exhibit altered 
cholesterol levels [1734]� The lack of an LXR 
element in a region (− 56 to − 49) of the human 
promoter may dictate some of the differences 
seen in mouse and human models� With regard to 
humans, one study of biopsy samples from gall-
stone patients led to the conclusion that there was 
no correlation between levels of total bile acids 
and P450 7A1 activity [1735]� A correlation was 
seen with levels of CDCA�

A long-standing observation from rodent stud-
ies is the apparent circadian rhythm of P450 7A1 
[1736]� This phenomenon has been suggested to 
be indicative of a short half-life of the enzyme 
[1737, 1738]� The phenomenon has also been re-
ported in nonhuman primates [1739]� The circa-
dian rhythm can be demonstrated at the level of 
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actual P450 7A1 in rats [1740]� The molecular 
mechanism of the rhythm is still not clear� One 
aspect is the reported instability of P450 7A1 in 
microsomes (in vitro), with a t1/2 of ~ 1–2 h in hu-
mans and rats [1741]� Alternatively, the mRNA 
has a short t1/2 and the circadian rhythm can be 
seen at the mRNA level [1742]� Another unre-
solved aspect of P450 7A1 research is the issue 
of phosphorylation, postulated early in the field 
[1743]� In vitro experiments with microsomes 
show some effects of various treatments [1744–
1746], although the in vivo significance is yet 
unclear ( vide infra)�

Since the last edition of this chapter was pub-
lished [149], the complexity of P450 7A1 regu-
lation has increased� The hepatocyte growth fac-
tor signaling pathway has been shown to inhibit 
P450 7A1 expression [1747]� Fibrates inhibit 
P450 7A1 expression in culture via the LXRα 
and PPARα heterodimers [1748]� The LXR re-
pression of P450 7A1 expression in human he-
patocytes contrasts with the stimulation seen in 
rodent liver [1749]� The species selectivity of 
P450 7A1 gene regulation has also been noted by 
others [1750] ( vide supra)�

Glucose stimulates P450 7A1 gene tran-
scription in human hepatocytes [1751]� Insulin 
regulates P450 7A1 expression (in human he-
patocytes) via Forkhead box O1 and SREBP 1c 
[1752]� SREBP-1c is responsible for mediating 
the functional interaction of HNF-4 and PPARγ 
coactivator 1α [1753, 1754]�

The coactivator PGC-1α also activates P450 
7A1 expression [1755]� Under-expression of 
both PGC-1α and SRC1 impairs HNF-4α and 
promotes dedifferentiation in human hepatoma 
cells and downregulation of P450 7A1 [1756]�

Retinoic acid represses P450 7A1 expression 
in human hepatocytes and HepG2 cells via both 
FXR/RXR-dependent and independent mecha-
nisms [1757]� Glycosylation of fibroblast growth 
factor receptor 4 (GRF4) was shown to down-
regulate P450 7A1 [1758]� Ligand-dependent 
regulation of the orphan nuclear receptor small 
heterodimer partner (SHP) is involved in repres-
sion of P450 7A1 [1759]� Further, HNF-4α and 
liver receptor homolog-1 (LRH-1) cooperate in 
the regulation of P450 7A1 [1760]� Thyroid hor-

mone was reported to regulate human P450 7A1 
in humanized mice [1761]�

A possible role of microRNA in P450 7A1 
regulation was reported [1747]�

Another aspect of P450 7A1 regulation is 
phosphorylation� The topic has been reviewed 
by Stroup [1762, 1763]� Multiple sites of phos-
phorylation have been proposed [1762], although 
a proteomic search did not reveal any phosphory-
lated P450 7A1 peptides [297]�

9.7.37.3  Genetic Variation
Gentic variations in the coding and noncoding 
regions of the CYP7A1 gene are known [1764]� 
Some have been associated with clinical changes 
[1765] but others have not [1766]�

A promoter variant has been considered with 
plant sterols and shown to yield increased P450 
7A1 transcriptional activity in (transfected) 
HepG2 cells [1767]� Genetic variants have also 
been considered in regard to colorectal [1768] 
and gallbladder [1769, 1770] cancers�

9.7.37.4  Substrates and Reactions
The classic reaction of P450 7A1 is cholesterol 
7α-hydroxylation [37], and esterified choles-
terol is not a substrate [1771]� The enzyme also 
catalyzes the 7α-hydroxylation of 24-hydroxy-
cholesterol, with preference for the ( S)-isomer 
[1772]� 7α-Hydroxylation (with recombinant 
human P450 7A1) was observed with 20( S)-
hydroxycholesterol, 25-hydroxycholesterol, and 
27-hydroxycholesterol [1773]� The relevance of 
the activity towards 25( S)-hydroxycholesterol is 
unknown compared to P450 39A1 [1774]�

The P450 7A1-catalyzed 7α-hydroxylation of 
cholesterol appears to be among the fastest reac-
tions for a mammalian P450, with kcat ~ 190 min− 1 
and kcat/Km of ~ 2�4 × 106 M− 1/s [1775] (P450 
21A2 is also a very efficient enzyme, vide infra)� 
Pre-steady-state kinetic analysis and kinetic deu-
terium isotope effects were used to establish that 
the reduction of ferric iron is the rate-limiting 
step in the 7α-hydroxylation [1775]�

In addition to cholesterol, several other sterols 
bind to P450 7A1 and show some conversion to 
(uncharacterized) oxidation products, i�e�, epi-
cholesterols, 5-androstene-3β-ol [1776]�
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P450 7A1 has also been demonstrated to 
convert lathosterol to 7-ketolathosterol (the im-
mediate precursor of cholesterol in the normal 
pathway) to 7-ketocholesterol and a trace of 
the 7,8-epoxide [1777]. The reaction with Δ7-
dehydrocholesterol is proposed to be responsible 
for the high level of the oxysterol 7-ketocho-
lesterol in individuals with Smith–Lemli–Opitz 
syndrome [1777], and the ketone is formed in 
a “direct’ reaction (carbocationic intermediate, 
with hydride transfer) rather than via rearrange-
ment of the epoxide [1777]� The relevance of this 
reaction has been demonstrated in Smith–Lemli–
Optiz syndrome and cerebrotendinous xantho-
matosis patients [1778]�

9.7.37.5  Structure
The binding of several cholesterol analogs was 
used to propose a homology model [1776, 1779]� 
The region 214–227 has been postulated to inter-
act with the membrane and to serve as a substrate 
access channel [1780]� Mutations in the regions 
yielded some changes in kinetic parameters to-
wards cholesterol�

X-ray crystal structures of human P450 7A1 
are available, unliganded and with cholest-4-en-
3-one and 7-ketocholesterol (PDB 3DAX, 3SNS, 
3V8D, http://www�rscb�org, Strushkevich et al�, 
online but not published in periodicals)�

9.7.37.6  Inhibitors
Limited information about inhibitors is available� 
As indicated earlier, 7-ketocholesterol is a (com-
petitive) inhibitor [1712]�

9.7.37.7  Clinical Issues
P450 7A1 has been a topic of considerable inter-
est in the areas of hepatology and gastroenterol-
ogy� Efforts to use drugs to utilize P450 7A1 to 
lower cholesterol have been reviewed [1781]�

The hypersecretion of cholesterol in obe-
sity does not appear to be due to reduced 7α-
hydroxylation [1782]� Coffee terpenes (e�g�, caf-
estol) inhibit P450 7A1 and also raise cholesterol 
levels [1783], although it is not clear that the two 
phenomena are linked� The complex regulation 
of P450 7A1 makes interpretation of experi-
ments difficult� Overexpression of P450 7A1 in 

HepG2 cells increased bile acid synthesis but led 
to decreased HMG-CoA reductase activity (rate-
limiting step in cholesterol biosynthesis) [1784]�

Alterations in P450 7A1 were not seen in 
hypo- or hyperthyroidism [1785]�

A 10-week-old child with a stop codon muta-
tion and lacking P450 7A1 presented with severe 
cholestasis, cirrhosis, and liver synthetic failure 
[1765]� A frameshift leading to (homozygous) 
lack of P450 7A1 was associated with high LDL 
cholesterol but not total cholesterol [1786]� Het-
erozygotes were also hyperlipidemic� However, 
Beigneux et al� [1787] have discussed some of 
the caveats associated with interpretation of re-
sults of family and experimental studies with 
P450 7A1�

Several studies have been published on the 
effects of genetic variants on plasma lipid com-
position [1788–1790] and also on response to 
a high-fat diet [1791, 1792]� Genetic variations 
have also been linked to responses to fibrates 
[1793] and statins [1794–1796]�

Genetic variations in P450 7A1 have also 
been related to gallstone disease [1797], bile acid 
synthesis rates following ileal resection [1798], 
risk of neuromyelitus optica [1799], and hyper-
tension [1800]�

9.7.38  P450 7B1

P450 7B1, a microsomal P450, was discovered 
as an “alternative” 7α-hydroxylase that used oxy-
sterols as substrates [1801, 1802]� The enzyme 
is conserved in nature, even in a Japanese fire-
bellied newt and the fungus Aspergillus niger 
[1802]�

9.7.38.1  Sites of Expression
P450 7B1 mRNA is found not only in liver but 
also in the steroidogenic tissues testes, ovary, and 
prostate, in brain, and in colon, kidney, and small 
intestine [1803, 1804]� The tissue specificity of 
expression varies among species� Human mRNA 
levels are highest in kidney and brain, but ex-
pression is also seen in tissues involved in steroid 
biosynthesis (testes, ovary, prostate) and bile acid 
synthesis (liver) and reabsorption (colon, small 
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intestine) [1805]� As will be seen later, the clini-
cal issues are mainly associated with the lack of 
the enzyme in liver and brain [1802]� P450 7B1 
is overexpressed in prostate during progression 
of prostate adenocarcinoma [1806]� Evidence 
was presented for the existence of multiple sterol 
7α-hydroxylases [1801, 1807], and a novel rat 
brain gene was identified [1808, 1809]� Although 
much of the literature involves animal models, a 
considerable amount of interest has been gener-
ated regarding human P450 7B1 because of its 
role in multiple diseases [1802]�

9.7.38.2  Regulation
In mice, a gender variation has been reported, 
along with hormonal regulation, but whether any 
of this applies to humans is unknown� Expres-
sion is regulated by androgens and estrogens in 
prostate cancer LNCaP cells [1810] and HEK293 
cells [1810]� A possible role for estrogenic regu-
lation of P450 7B1 controlling DHEA levels in 
human tissues has been proposed [1810]� HNF-
1α and Sp1 regulation has been reported [1811–
1813]� In mice, the CYB7B1 gene is regulated 
by RORα and LXR [1814], but this has not been 
confirmed in a human-based system� P450 7B1 
expression was upregulated in (human) prostate 
during prostatic adenocarcinoma [1806]� Human 
CYP7B1 gene expression is controlled by SREBP 
[1754]�

9.7.38.3  Genetic Variation
At least 17 different variants have been found in 
> 20 unrelated families due to the significance of 
diseases ( vide infra) [1765, 1802, 1815–1818]� 
Not surprisingly, there are ethnic differences 
[1819]� A number of variants have been identi-
fied in patients with hereditary spastic paraplegia 
type 5 [1815, 1820–1826 and liver failure [1827]� 
Other variants have been identified but not nec-
essarily related to diseases [1819, 1828]�

9.7.38.4  Substrates and Reactions
Human P450 7B1 has not been purified or char-
acterized in kinetic terms, and much of what is 
concluded is based on inference from animal 
models [1802]� The oxidations are 7α- and 6α-
hydroxylation of several steroids and oxyster-

ols (e�g�, 25- and 27-hydroxycholesterol, 7α-
hydroxylation of pregnenolone, DHEA, 25-hy-
droxycholesterol, and 27-hydroxycholesterol and 
6α-hydroxylation of 5α-androstane-3β, 17β-diol 
[1802–1804]� Other reported substrates include 
testosterone and 17β-estradiol [1803, 1804]� 
DHEA is a “prohormone,” secreted by the adre-
nals, and undergoes tissue-specific metabolism 
to yield multiple products that have a variety of 
biological effects [1803, 1804], producing com-
pounds important in cognition, behavior, and im-
mune response [1808, 1829]�

5α-Androstene-3β,17β-diol (“anediol”) un-
dergoes 6α-hydroxylation, and this reaction 
occurs in prostate� The rest of the reactions 
are all 7α-hydroxylations� In the liver, the 7α-
hydroxylations of 25- and 27-hydroxycholes-
terol are associated with bile acid synthesis� In 
the brain, 7α-hydroxylation of pregnenolone 
and DHEA is part of steroid hormone metabo-
lism� Metabolism of ER ligands involves 7α-
hydroxylation of DHEA in the prostate and 
27-hydroxycholesterol in the vasculature (as well 
as 6α-hydroxylation of 5α-androstene-3β,17β-
diol)� Immunoglobulin production (in immune 
cells) involves 7α-hydroxylation of 25-hydroxy-
cholesterol� Another known reaction is the 7α-
hydroxylation of 5α-androstene-3β,17β-diol 
(“enediol”), at least with the rat enzyme�

9.7.38.5  Structure
No structures of P450 7B1 are available, in that 
the enzyme has not been reported to be purified 
yet� At least two homology models have appeared 
[1820, 1830]�

9.7.38.6  Inhibitors
No specific inhibitors of P450 7B1 have been 
reported� A nonselective inhibitor, clotrimazole, 
was used to inhibit the rat enzyme in prostate 
fractions [1831]� Schwarz et al� [1809] note 
that nafimidone has been reported to inhibit the 
mouse enzyme but not the human�

9.7.38.7  Clinical Issues
Stiles et al� [1802] reviewed the two major issues, 
both of which are related to genetic variations� 
One is liver failure in children and the other is 
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neuropathy in adults� These seemingly unrelated 
diseases may be understood in the variety of P450 
7B1 substrates and the diversity of biological ac-
tions of steroids� The biological roles of P450 
7B1 include hepatic bile salt synthesis (25- and 
27-hydroxycholesterol being substrates), brain 
steroid hormone metabolism (pregnenolone and 
DHEA being substrates), prostate and vascula-
ture metabolism of ER ligands (5α-androstane-
3β,17β-diol, DHEA, and 27-hydroxycholesterol 
being substrates), and immunoglobulin produc-
tion in immune cells (25-hydroxycholesterol 
being substrate)� Overall, there are two driving 
issues, the production of appropriate steroid hor-
mones and the removal of deleterious oxysterols, 
depending upon the site�

The two major clinical issues are liver failure 
in children (due to genetic insufficiency) [1802, 
1827, 1832, 1833], and neuropathy (in adults), 
particularly the autosomal recessive disorder 
spastic paraplegia type 5 [1802, 1815–1818, 
1824, 1825]� Possible association with Alzheim-
er’s disease has also been reported [1834]� An 
association with rheumatoid arthritis has been 
considered [1835]� P450 7B1 has also been men-
tioned regarding (low activity) and the promotion 
of cell-autonomous ER-positive breast cancer 
[1836]�

9.7.39  P450 8A1

Prostacyclin (prostaglandin I2) has strong vaso-
dilation and anti-aggregation effects on platelets, 
and the imbalance of prostacyclin and thrombox-
ane A2 (product of P450 5A1) is a factor in sev-
eral diseases, e�g�, myocardial infarction, stroke, 
atherosclerosis [1837, 1838]� The reaction yield-
ing prostacyclin from prostaglandin H2 is another 
“internal” oxygen transfer, without the input of 
O2 and electrons from NADPH (Fig� 9�21), and 
the involvement of a P450 was not immediately 
obvious� Ullrich hypothesized P450 involvement 
on the basis of spectral interaction studies [1839]� 
DeWitt and Smith [1840] used a monoclonal an-
tibody to purify catalytically active prostacyclin 
synthase from bovine aorta and demonstrated a 
P450 Fe2 + ·CO spectrum� Subsequently P450 

8A1 was cloned from bovine endothelial cells 
[1841]�

9.7.39.1  Sites of Expression
A human P450 8A1 cDNA was cloned from 
aorta endothelial cells by the Tanabe laboratory 
[1838]� The mRNA is widely expressed in human 
tissues, including ovary, heart, skeletal muscle, 
lung, prostate [1838], and umbilical vein [1842]� 
There is also localization in the brain, including 
neurons [1843, 1844]� Another site of expression 
is fallopian tubes, with expression in luminal epi-
thelia, tubal smooth muscle, vascular endothelial 
cells, and vascular smooth muscle cells [1845]�

9.7.39.2  Regulation
P450 8A1 is constitutively expressed in human 
endothelial cells [1842]� The human CYP8A1 
gene (chromosome 20) has ten exons [1846–
1848] and has consensus sequences for Sp1, acti-
vating protein-2 (AP-2), an interferon-γ response 
element, GATA NFκB, a CACCC box, gluco-
corticoid receptor, and a shear stress-responsive 
element (GAGACC) [1846]� Whether or not all 
of these are functional and how they interact to 
maintain constitutive expression is not well un-
derstood yet�

Hypermethylation of the promoter has been 
reported as a frequent event in colorectal cancer 
[1849]�

One posttranslational aspect of regulation is 
redox control of P450 8A1� Peroxynitrite causes 
nitration of Tyr-430 [1850], causing inactivation 
due to steric hindrance of the active site [1851]� 
This nitration has been reported to be associated 
with enhanced retinal cell apoptosis in diabetes 
[1852]�

9.7.39.3  Genetic Variation
Variants have been of interest because of disease 
relevance� At least 14 alleles have been reported, 
yielding four different proteins (http://www�cyp-
alleles�ki�se)� Haplotypes have been considered 
in the context of essential and thromboembolic 
preliminary hypertension [1853, 1854], myocar-
dial infarction [1855], left main coronary artery 
disease [1856], and cardiovascular disease in 
general [1857]�
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In the 5ʹ-region, these are variants involving a 
variable number of tandem repeats (VNTR) that 
affect transcription, as demonstrated in reporter 
systems in vitro [1672]� An association between 
this VNTR polymorphism and cerebral infarction 
has been reported [1858]�

An SNV in exon 8 has been reported to be 
linked to myocardial infarction, although no 
amino acid change occurs [1859]� However, the 
VNTR variation does not appear to be related 
to essential hypertension [1860], nor does the 
5ʹ-flanking region SNV T192G [1861]� However, 
a novel splicing variation leading to skipping of 
exon 9 has been linked to hypertension [1862]�

9.7.39.4  Substrates and Reactions
P450 8A1 has a very limited catalytic specific-
ity, functioning only as the prostacyclin synthase 
(Fig� 9�21)� Prostaglandins G2, H2, 13( S)-hy-
droxy H2, 15-keto H2, and H3 are isomerized to 
the corresponding prostacyclins [1682]� Spectral 
binding studies with 9,11-epoxymethano pros-
taglandins F2 and F2α lead to the view that the 
binding juxtaposition is the key determinant in 
distinguishing the courses of catalysis by P450s 
5A1 and 8A1 [1682]� A mechanism consistent 
with available data has been proposed (Fig� 9�23) 
[1662, 1682]�

Yeh et al� [1680] used 15-hydroperoxyeico-
satetraenoic acid (15-HPETE) as a substrate for 
P450 8A1 and found both hemolytic (15-ketoe-
icosatetraenoic acid) and heterolytic (15-hy-
droxyeicosatetraenoic acid) products, with the 
former reaction accounting for ~80 % of the total�

9.7.39.5  Structure
A crystal structure of human P450 8A1 was re-
ported by Chiang et al� [1863] in 2006� This struc-
ture did not include a substrate� In 2008, another 
structure was published by the same group, with 
a substrate (U51605) analog and an inhibitor (mi-
noxidil) [1864]� Relative to the unliganded mol-
ecule, conformational changes were observed at 
the proximal side of and in the heme itself�

Other work has been on membrane topology, 
and antibody studies indicate that P450 8A1 is 
mainly exposed on the cytoplasmic site of the 
endoplasmic reticulum with a single transmem-

brane anchor [1865, 1866]� The (unstable) sub-
strate, prostaglandin H2, is produced in the lumen 
and apparently passes through the membrane to 
reach P450 8A1�

9.7.39.6  Inhibitors
Relatively little interest has been shown in devel-
opment of drugs that inhibit P450 8A1 because 
inhibition is generally considered to be deleteri-
ous� Phenylbutazone has been reported to inhibit 
[1867]�

The prostaglandin synthase inhibitor rofe-
coxib (Vioxx®, now withdrawn from the market) 
was reported to inhibit P450 8A1 [1868]�

P450 8A1 is slowly inactivated during the 
normal reaction itself, apparently by one of 
the reactive intermediates in the catalytic cycle 
(Fig� 9�23) [1869]� A kinactivation of 0�06 s− 1 was 
reported [1869]�

Peroxynitrite is a powerful inhibitor of P450 
8A1, with a reported KI of 50 nM [1870]� Per-
oxynitrite is formed by the chemical reaction of 
NO·and O2

 − [1871]� The mechanism is believed 
to involve tyrosine nitration [1872], and recently 
Tyr430 has been implicated as the site of nitra-
tion [1873]�

9.7.39.7  Clinical Issues
As mentioned earlier, prostacyclin is a powerful 
vasodilator and inhibits platelet adhesion and un-
desired cell growth� Although this view may be 
overly simplistic, prostacyclins are a counterbal-
ance to thromboxanes in a “yin and yang” rela-
tionship� Thus, the action of P450 8A1 balances 
that of P450 5A1� Several of the genetic vari-
ants (Sect� 7�39�3, vide supra) have been related 
to diseases, particularly cardiovascular disease 
[1874]�

Decreased expression of P450 8A1 has been 
reported in severe pulmonary hypertension 
[1875]� With regard to general cardiovascular 
disease, a study of Japanese subjects associated 
the VNTR variation with hypertension (odds 
ratio 1�9) [1876]� Individuals with three to four 
repeats had less promoter activity and higher 
risk� In experimental studies, the overexpression 
of P450 8A1 in transgenic mice protected against 
the development of hypoxic pulmonary hyper-
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tension [1877]� In another study, the expression 
of human P450 8A1 in the carotid arteries of rats 
after arterial balloon injury (using a virus) led 
to increased synthesis of prostacyclin and to re-
duced neointimal formation [1878]�

P450 8A1 also has relevance in cancer treat-
ment� Transfection of colon adenocarcinoma 
cells with P450 8A1 led to slower growth and 
reduced vascular development following inocu-
lation into syngeneic mice [1879]� P450 8A1 has 
also been considered in the context of cancer as a 
target in non-small cell lung cancer [1700]�

Finally, antibodies in the sera of some patients 
with hypersensitivity reactions to phenytoin and 
carbamazepine recognize rat P450 3A1 but not 
human P450 3A [1880]� The antisera also recog-
nizes P450s 8A1 and 51A1, although relation-
ships of etiology and causality are unclear�

9.7.40  P450 8B1

9.7.40.1  Sites of Expression
P450 8B1 is a sterol 12α-hydroxylase expressed 
in the liver� The human CYP8B1 gene was char-
acterized on the basis of the rabbit and mouse or-
thologs [1881]� Of interest is the finding that this 
gene is devoid of introns, unique for this gene 
among the P450 family [1881]�

9.7.40.2  Regulation
Regulation of the gene is of interest, in that P450 
8B1 catalyzes the synthesis of cholic acid and 
controls the ratio of cholic acid to CDCA in the 
bile [1882]� Much of what has been reported 
in the literature is with animal models� HNF4α 
activates human CYP8B1 expression in HepG2 
cells [1882]� Bile acids and FXR downregulate 
HNFα expression� Inflammation in liver cells 
causes increased synthesis of α1-antitrypsin, a 
serum protease inhibitor, and in a derived pep-
tide (C-36)� C-36 appears to interact with the α1-
fetoprotein transcription factor (FTF) site in the 
human CYP8B1 promoter, inducing a conforma-
tional change to lower DNA binding ability, and 
suppressing the transcription of the CYP8B1 (and 
CYP7A1) genes [1883, 1884]� HNFα could over-
come the inhibitory effects of FTF and bile acids 

[1884]� Thus, regulation of P450 8B1 is involved 
in bile acid feedback inhibition�

Ligand-dependent regulation of the orphan 
nuclear receptor SHP has been reported to down-
regulate P450 8B1 expression is HepG2 cells 
[1759]� Phenobarbital regulated P450 8B1 in 
HepaRG cells [1885]� The corepressor GOS2 has 
also been reported to regulate P450 8B1 [1886]� 
Soy isoflavones upregulated human P450 8B1 
[1887]� Based on animal models, cytokines and 
liver factor HNF-1α regulate P450 8B1 [1888, 
1889]�

The in vivo phosphorylation of P450 8B1 has 
been reported [297]�

P450 8B1 has been reported to show circadian 
rhythm [1803]�

9.7.40.3  Genetic Variation
Limited reports on genetic variation have ap-
peared [1890, 1891]�

9.7.40.4  Substrates and Reactions
P450 8B1 catalyzes the 12α-hydroxylation 
of several oxysterols, including 4β- and 7α-
hydroxycholesterol and 7α, 24- and 7α,27-
dihydroxycholesterol, yielding (following P450 
27A1 action) the primary bile acid cholic acid 
[1803]� P450 8B1 controls the balance between 
cholic acid and CDCA, adjusting the hydropho-
bicity of the bile (cholic acid is more hydrophilic 
than CDCA)� However, variations in the cholic 
acid to CDCA ratio do not seem to be controlled 
by genetic variation in P450 8B1 [1803]�

9.7.40.5  Structure
No structures have been reported, and a literature 
search did not reveal any homology models�

9.7.40.6  Inhibitors
No selective inhibitors have been published� 
CDCA has been reported to inhibit P450 8B1� A 
limitation of inhibition of P450 8B1 activity is 
that a decrease in the cholic acid to CDCA ratio 
might cause hepatotoxicity, which was observed 
in patients treated with CDCA for gallstones 
[1803, 1892]�
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9.7.40.7  Clinical Issues
An SNV in the CYP8B1 gene has been associ-
ated with gallstone disease in a Han Chinese 
population [1890]� However, P450 8B1 has been 
reported to have a smaller effect on bile acid syn-
thesis than P450 7A1 in human liver [1893]�

9.7.41  P450 11A1

P450 11A1 is the enzyme involved in the initia-
tion of hormonal steroid synthesis (Fig� 9�12)� It 
catalyzes the conversion of cholesterol to preg-
nenolone by side-chain cleavage and has been 
referred to in the older literature as P450scc or 
cholesterol desmolase� The enzyme was first pu-
rified from bovine adrenal cortex mitochondria 
[1894]� The human gene was cloned by Omura 
and Fujii-Kuriyama in 1987 [1895] and includes 
nine exons� Of historical significance is the fact 
that this P450 only contains a single cysteine 
and further establishes the position of the heme 
thiolate peptide in P450s, extending the work on 
the location from the original crystal structure of 
bacterial P450 101A1 [1896]�

9.7.41.1  Sites of Expression
P450 11A1 is found primarily in steroidogenic 
tissues, including adrenal cortex and gonads, in-
cluding ovary (corpus luteum [1897, 1898] and 
theca interna cells [1899] and others [1900])� Of 
interest are reports of P450 11A1 in brain [1901–
1904] and pancreas [1905]�

P450 11A1 is one of several P450s localized 
in the mitochondria (Table 9�2, Fig� 9�12)� Studies 
with the bovine enzyme demonstrated that P450 
11A1, synthesized on ribosomes in the cytosol, 
is imported into mitochondria without processing 
of the amino terminal extension peptide [1906]� 
The protein moves to the mitochondrial inner 
membrane and is then cleaved to yield the mature 
form [1906]� Alteration of the basic amino acid 
residues of the N terminus resulted in less effi-
cient mitochondrial import [1907]� Miller and his 
associates constructed vectors that could be used 
to direct P450 11A1 to the endoplasmic reticulum 
and found that the enzyme was inactive [1908]� 
The membrane environment was concluded to be 

more important in modulating catalytic function 
than the nature of the electron transfer partners�

9.7.41.2  Regulation
The regulation of P450 11A1 is relatively com-
plex, as might be expected for the initial step in 
steroid formation [1900]� Moreover, the system 
must be able to respond to signals in many dif-
ferent tissues� Much of our understanding of the 
regulation of P450 11A1 expression is based on 
studies with CYP11A1 genes of experimental ani-
mals and reinvestigated with human CYP11A1�

P450 11A1 has long been known to be regu-
lated by ACTH and cyclic AMP� In the bovine 
CYP11A1 gene, two Sp1-binding sites mediate 
cyclic AMP transcription through the protein 
kinase A signaling pathway, utilizing the rather 
ubiquitous transcription factor Sp1 [1909]� Ste-
roidogenic factor-1 (SF-1) activates CYP11A1 
transcription through interaction with protein 
factors upstream [1900]� An upstream cAMP re-
sponse element-binding protein (CREB)-binding 
region and an AP-1 site are also involved in the 
cyclic AMP response� Sp3 can also be involved 
[1910]� The TATA box drives cell type-specific 
cyclic AMP-dependent transcription [1911]� 
SF-1 also interacts with Sp1 [1912–1914]� Thus, 
the regulation of the human CYP11A1 gene in-
volves all the above factors plus an AdE element 
[1900]� Expression of the human gene has been 
shown to involve the zinc finger protein TreP-
132, interacting with both CBP/p300 [1915] and 
SF-1 [1916]� Also, salt-inducible kinase (SIK) 
represses cyclic AMP-dependent protein kinase-
mediated activation through the CREB basic leu-
cine zipper domain [1917]� In human placenta, 
AP-2 assumes the role of SF-1 by binding to an 
overlapping promoter element [1918]�

An analysis of the P450 11A1 promoter has 
been reported [1919]�

The orphan nuclear receptor LRF-1 regulates 
P450 11A1 expression in human granulosa cells 
[1920]� The human transcription factor LBP-32 
(also termed mammalian grainyhead, MGR, or 
LBP-32/MGR) has been reported to be a repres-
sor of P450 11A1 [1921]� Cyclic AMP has been 
reported to stimulate SF-1-dependent expression 
of P4540 11A1 through homeodomain-interact-
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ing protein kinase 3-mediated JNK and c-Jun 
phosphorylation [1922]�

Abnormal expression of uncoupling protein-2 
has been correlated with altered P450 11A1 ex-
pression in polycystic ovary syndrome (PCOS), the 
main cause of infertility in women [1923]� Further, 
studies in PCOS theca cells showed that basal and 
forskolin-stimulated P450 11A1 mRNA levels and 
promoter activity were increased [1924]� The tran-
scription factor nuclear factor 1C2 regulated the 
basal activity of the minimal P450 11A1 promoter 
element� The P450 11A1 mRNA t1/2 increased 
> twofold in the PCOS cells compared to normal 
ones. The 5ʹ-untranslated region of the P450 11A1 
mRNA conferred the added stability [1924]�

9.7.41.3  Genetic Variation
Variations in CYP11A1 can cause congenital 
adrenal insufficiency� Arg-353 was found to be 
critical in a study with an afflicted patient [1925]�

The relationship of PCOS to the P450 11A1 
promoter variants was already mentioned in 
Sect. 7.41.3. ( vide supra)� This issue has been 
considered in a large genetic study [1926]� Other 
genetic studies have been reported on P450 11A1 
and PCOS [1927, 1928], including microsatellite 
variants [497]�

Disruption of the P450 11A1 gene has been 
associated with premature birth, sex reversal, and 
adrenal failure [1929]� Genetic variations have 
also been linked to adrenal and gonadal deficien-
cy [1930, 1931]�

P450 11A1 variants have also been related to 
breast [1932, 1933] and endometrial [1934] cancers�

9.7.41.4  Substrates and Reactions
The P450 11A1 reaction proceeds in a three-step 
sequence, with generation of (22R)-20α, 22-dihy-
droxycholesterol as an intermediate (Fig� 9�22) 
[1935]� Oxidative cleavage of the diol to pregnen-
olone and 4-methylpentanal (isocaproic aldehyde) 
completes the overall reaction� The mechanism of 
the last step is not completely clear, but some pro-
posals have been presented [1936–1938]�

The rate of electron transfer from adrenodoxin 
is important and appears to be the rate-limiting 
step for the enzyme in human placenta [1939]� 
The redox potential of adrenodoxin can be varied 

by site-directed mutagenesis but had little effect 
on rates of electron transfer, consistent with the 
view that other factors such as protein–protein 
interactions are more important than the intrin-
sic thermodynamics [1940]� When P450s 11A1 
and 11B1 are expressed together in cells, they 
can compete for reducing equivalents from ad-
renodoxin [1941]; exactly how important the 
competition is in tissues is unclear� Another re-
port indicates interaction of P450 11A1 with and 
enhancement by cytochrome b5 [1942], although 
the relevance is unclear because of the compart-
mental separation of P450 11A1 (mitochondria) 
and cytochrome b5 (endoplasmic reticulum)�

P450 11A1 has now been found to be less 
specific than originally thought� Vitamin D3 is 
oxidized to a number of different products, on 
the “side chain,” by P450 11A1, mainly 20-hy-
droxy- and 20,23-dihydroxyvitamin D3 [1943, 
1944]� In addition, 23-hydroxy-, 17α-hydroxy-, 
17α,20-dihydroxy- [1944], and 20,22-dihy-
droxyvitamin D3 [1945] are produced [1946]� 
1α-Hydroxyvitamin D3 can yield 1α,20-
dihydroxyvitamin D3 [1947]� Several of these 
products have biological activities [1945, 1948] 
and are formed in vivo (animal models) [1949]�

7-Dehydrocholesterol is also a substrate for 
P450 11A1 [1943], forming five 5,7-dienal 
products, with mono- and dihydroxy substitu-
tion [1949]� These include the 22-hydroxyl and 
20,22-dihydroxy 7-dehydrocholesterol products�

Human P450 11A1 also oxidizes ergosterol 
(the vitamin D2 precursor) to two major and four 
minor products [1950]� The major products have 
been characterized as 20-hydroxy-22,23-epoxy- 
and 22-keto-23-hydroxyergosterol�

Finally, rat and human P450 11A1 have 
been implicated in the metabolism and bio-
activation of a drug candidate, BMS-A (( N-
(4-((1H-pyrrolo[2,3[b]pyridine-4-yl)oxy)-
3-flurophenyl)2-oxo-1,2-dihydropyridine-3-car-
boxamide) [1951]� The bioactivation was impli-
cated in the vacuolar degeneration and necrosis 
of the adrenal cortex of rats�

In conclusion, the specificity of P450 11A1 is 
not so stringent as originally thought [149]� Thus, 
in considering P450 11A1 in a classification such 
as that in Table 9�1, it joins other steroid metabo-
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lism P450s such as P450s 1B1, 3A4, 24A1, and 
46A1 in bridging among steroid, vitamin, and xe-
nobiotic substrates�

9.7.41.5  Structure
In 2011, Pikuleva’s group [1952] reported a 
structure of bovine P450 11A1 bound to 22-hy-
droxycholesterol, the first reaction product (from 
cholesterol)� The active site cavity can be de-
scribed as a long curved tube that extends from 
the surface to the heme group� (A linker was used 
to tether adrenodoxin to P450 11A1�) The [2Fe–
2S] iron cluster of adrenodoxin was positioned 
17 Å away from the heme iron of P450 11A1�

A crystal structure of a human P450 11A1–
adrenodoxin complex was also reported in the 
same year [1953], in the presence of 22-hydroxy-
cholesterol� A structure with 20,22-dihyroxycho-
lesterol has also been published [1953]�

Limited proteolysis experiments done with 
P450 11A1 in E. coli membranes identified 
peptides from the putative F–G loop (residues 
218–225) and the C-terminal portion of the G-
helix (residues 238–250) as being involved in 
membrane binding [1954] (these assignments are 
consistent with the crystal structures)�

Studies with bovine P450 11A1 indicated 
the significance of Lys-377 and Lys-381 in ad-
renodoxin binding [1955]� As indicated earlier, a 
mutation at Arg-353 was found to attenuate the 
function of P450 11A1 in a patient [1925]� Site-
directed mutagenesis of human P450 11A1 (in 
E. coli) indicated that Ile-462 had some effect on 
kinetic parameters [1956]�

9.7.41.6  Inhibitors
A number of inhibitors of P450 11A1 have been 
reported, although some were studied only with 
the bovine enzyme [1957, 1958], including some 
acetylenic mechanism-based inactivators [1959]� 
With regard to the human enzyme, there is some 
potential for the use of inhibitors in treatment of 
prostatic cancer, and prodrug forms of amino-
glutethimide have been examined [1960]� Anti-
convulsants have been reported to inhibit P450 
11A1, but the interaction is not strong [1961]�

Pikuleva’s group has published a study of 
the inhibition of P450 11A1 by a selected set of 

drugs [1962]� When tested at a concentration of 
10 µM (cf� 1 µM cholesterol as substrate), only 
ketoconazole, carbenoxolone, and selegiline in-
hibited > 50 %� No IC50 values were calculated, 
but spectral analysis yielded Kd values of 1�5 and 
1�0 µM for ketoconazole and posaconazole�

9.7.41.7  Clinical Issues
Several issues are of interest� P450 11A1 insuf-
ficiency and relationship to diseases in general 
have been reviewed by Miller and Auchus [1963]� 
Because of the nature of P450 11A1 in initiating 
steroidogenesis, genetic variation in P450 11A1 
is related to adrenal insufficiency and to congeni-
tal adrenal hyperplasia [1931, 1964–1966]� Rab-
bit and mouse models show the effects [1967, 
1968]� CYP11A1-null mice die shortly after birth 
but can be rescued by steroid injection [1968]� 
ACTH levels become very high due to lack of 
feedback regulation by glucocorticoids� Male 
null mice are feminized with female external 
genitalia and underdeveloped male accessory sex 
organs� These manifestations resemble various 
human steroid deficiency syndromes�

Another issue is autoantibodies to P450 11A1 
(and also P450 17A1) in patients with autoimmune 
polyglandular syndrome types I and II and Addi-
son’s disease [1969–1971]� As with other P450s 
recognized by autoantibodies, causal relationships 
between immunity and disease are unclear�

The relationship of P450 11A1 genetic varia-
tion and PCOS has already been mentioned in 
Sect. 7.41.3 ( vide supra), including premature 
birth, sex reversal, and severe adrenal failure 
[1926, 1929, 1972]�

Variants have also been linked to reduced 
P450 11A1 ovarian transcription during experi-
mental nephrotic syndrome [1973]� Finally, P450 
11A1 variants have been associated with breast 
[1974] and prostate [1975] cancers�

9.7.42  P450 11B1

P450s 11B1 and 11B2 differ in only 32 residues� 
P450 11B1 catalyzes the 11β-hydroxylation of 
deoxycortisol to yield cortisol (Fig� 9�23), the 
main glucocorticoid in the body� Deficiencies in 
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the enzyme are known, causing congenital adre-
nal hyperplasia [47, 1976]�

9.7.42.1  Sites of Expression
P450 11B1 is expressed in the adrenal cor-
tex, specifically the zona fasciculata/reticularis 
[1976]� In rats, some expression has been detect-
ed in brain, but the relevance is not clear�

P450 11B1 is synthesized in the cytosol and 
directed to the mitochondria with a 24-residue 
N-terminal-targeting sequence (where this is lost 
after entry)� As with the other six (exclusively) 
mitochondrial P450s (Table 9�2), P450 11B1 
receives electrons from adrenodoxin instead of 
NADPH-P450 reductase�

The characterization of the CYP11B1 gene has 
developed considerably in recent years� Much of 
the early research in this field was done with bo-
vine adrenal glands because of the need for large 
amounts of material, but the bovine P450 11B1 
protein has the function that P450 11B1 (11-hy-
droxylation) and P450 11B2 (11-hydroxylation, 
18-hydroxylation, and oxidation of the 18-alco-
hol to an aldehyde) have in most other species, 
including humans [1977]� The two human genes 
( CYP11B1, CYP11B2) were characterized and 
clearly shown to both be essential [1978–1981]�

P450 11B1 expression has also been deleted 
in human fetal adrenal gland, particularly in the 
“fetal zone” (as opposed to neocortex) [1982]�

9.7.42.2  Regulation
Much of the background on regulation of P450 
11B1 comes from studies with the bovine gene, 
which responds to ACTH and has six cis-acting 
regulatory elements [1983]� The protein (Ad4BP) 
that binds to one of these (Ad4) is a member of 
the steroid hormone receptor superfamily [1984]� 
Other studies by Omura [1985] indicated the co-
operative nature of these elements in transcrip-
tion� Work with the rat CYP11B1 gene showed 
that ACTH stimulates transcription by changing 
composition in AP-1 factors (Fos, Jun) [1986]�

The human gene also has a cyclic AMP re-
sponse element (CRE) [1987]� The Ad1 element 
binds CRE-binding protein, activating transcrip-
tion factor-1 (ATF-1), and ATF-2� SF-1 interacted 
at the Ad4 site (− 242/− 234) and is required for 

transcription [1987, 1988], which contrasts with 
the lack of response of CYP11B2�

ACTH modulation of transcription factors in-
volved in regulation has been reviewed by Sewer 
and Waterman [181]�

The orphan nuclear receptors NURR1 and 
NGF1B regulate P450 11B1 transcription in 
human H295R adrenocortical cells, and transfec-
tion with SF-1 activated P450 11B1 expression 
[1989]�

P450 11B1 expression (mRNA and protein) 
was significantly higher in patients with subclini-
cal Cushing’s syndrome [1990], although the mo-
lecular basis is not known�

MicroRNA-24 was reported to regulate P450 
11B1 expression in a human adrenocortical cell 
line [1991]� The human P450 11B1 promoter con-
tains two Alu elements embedded in a truncated 
L1 element, breaking L1 into three individual 
fragments [1139]� The effect of Alu is blocked by 
a second L1 element (CYP11B1-L1�2) inserted 
between the first one and the conserved proximal 
upstream region� The CYP11B1-L1�2 element 
can be transcribed from the core promoter in 
an opposite direction (and a smaller magnitude) 
compared to P450 11B1� Deletion of CYP11B1-
L1�2 greatly increased P450 11B1 promoter ac-
tivity and restored the effect of Alu [1139]� The 
Ad5 and SF-1 binding elements in the proximal 
core promoter play a role in basal expression�

A polychlorinated biphenyl (PCB126) has 
been reported to upregulate P450 11B1 tran-
scription in human adrenocortical cells due to 
enhancement of mRNA stability but not an AhR 
mechanism [1992]� The practical significance of 
the results is unclear, in that only concentrations 
≥ 10 µM were used.

9.7.42.3  Genetic Variation
Many variants are known because of the relation-
ship of the gene with congenital adrenal hyper-
plasia [1976]� Genetic variants related to phe-
notype and to inborn errors of metabolism have 
been reviewed [1993, 1994]�

A large number of genetic variants in P450 
11B1 have now been identified and related to 
high 18-hydroxycortisol [1995], to low 11β-
hydroxylation [1996–2002], congenital adre-
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nal hyperplasia [2003–2010], and hypertension 
[2011]� The variants include a five-base dupli-
cation [2012] and clusters of mutations in exons 
6–8 [2013]� The high similarity and proximity of 
the CYP11B1 and CYP11B2 genes appear to lead 
to variants generated by unequal crossover and 
inactive chimeric products [2014–2017]� Splice 
donor site variants are also known [2018]�

9.7.42.4  Substrates and Reactions
As indicated previously, the only reported sub-
strate for P450 11B1 is deoxycortisol, which 
undergoes 11β-hydroxylation to yield cortisol 
(Fig� 9�12)�

9.7.42.5  Structure
One of the concerns about studies on the func-
tion of particular residues in site-directed muta-
genesis is that expression in some cellular sys-
tems leads to competition between P450s 11A1 
and 11B1 for (adrenodoxin) reducing equivalents 
in cellular systems [1941]� Another issue is that 
human P450s 11B1 and 11B2 have been difficult 
to express in bacteria, so that most experiments 
have relied on mammalian cells ( Schizosac-
charomyces pombe has provided some success) 
[1976])� Information about function has also 
been obtained from patients’ samples [1976]�

Although no crystal structures of P450 11B1 
have been published, structures of the highly 
similar P450 11B2 (one with substrate, one with 
an inhibitor) have appeared [2019] and, at the 
very least, should facilitate future modeling�

The close similarity of P450s 11B1 and 11B2 
(and their reactions) has also facilitated studies� 
Making the changes S288G and V320A yielded 
an enzyme with both P450 11B1 and 11B2 activi-
ties [2020]� Changes at positions 147 [2021, 2022] 
and 301/355 [2023] have also had the same effect� 
Homology models of P450 11B1 have also been 
published [1976, 2008, 2024–2026], although the 
effects of all of the mutants known to alter func-
tion have not been systematically rationalized�

9.7.42.6  Inhibitors
Compared with some of the other steroidogenic 
P450s, there is some reason to develop P450 
11B1 inhibitors� High levels of cortisol are asso-
ciated with Cushing’s syndrome [1976]� Cellular 

expression systems have been set up to assay for 
inhibitors, using measurements of concentrations 
of steroids [2027, 2028]�

18-Vinylprogesterone and 18-ethinylproges-
terone have been reported to be mechanism-
based inactivators of bovine P450 11B but ap-
parently have not been tested with human P450 
11B1 [2029]�

Since the previous edition of this book [149], 
work on more P450 11B1 inhibitors has been 
published [147, 2030–2036]� Some of these have 
been developed with the specific goals of treat-
ing prostate cancer [2037] and cardiovascular 
disease [2038, 2039]� One case report involves a 
beneficial effect in the management of an elderly 
patient with an androgen-producing inoperable 
adrenal tumor [2040]�

9.7.42.7  Clinical Issues
As indicated previously, the main issue with 
P450 11B1 is the impaired synthesis of cortisol 
and congenital adrenal hyperplasia, characterized 
by hypertension and signs of androgen excess 
[2041, 2042]� The role of P450 11B1 insufficien-
cy in congenital adrenal hyperplasia has been re-
viewed [2043, 2044]� The same condition is seen 
in a knockout mouse model [2045]� Overproduc-
tion of glucocorticoids, which could have any of 
several causes, including overactive P450 11B1, 
is associated with Cushing’s syndrome [1976]�

A number of genetic variations associated with 
disease are cited in Sect. 7.42.3 ( vide supra)� A 
chromosome inversion was also seen in a fam-
ily [2046]� Testicular tumors in patients with 
P450 11B1-related congenital adrenal hyperpla-
sia showed functional features of adrenocortical 
tissues [2047]� Hyperplasia of adrenal rest tissue 
was implicated in causing a retroperitoneal mass 
in a child with P450 11B1 deficiency [2048]�

P450 11B1 deficiency has also been associ-
ated with hypertension [2049–2051] rhabdomy-
olysis [2052], virilization [2053], and prepubertal 
gynecomastia [2054]�

9.7.43  P450 11B2

P450 11B2 is highly related to P450 11B1 ( vide 
supra) and has a somewhat similar function� P450 
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11B2 catalyzes the 11β-hydroxylation of 11-de-
oxycorticosterone followed by 18-hydroxylation 
and 2-electron oxidation of the 18-alcohol to an 
aldehyde (Figs� 9�12 and 9�23)� Changes in the 
gene can lead to corticosterone methyloxidase 
deficiency and hyperaldosteronism [47, 1980, 
2055, 2056]� In the older literature, this P450 is 
sometimes termed “P450aldo�”

9.7.43.1  Sites of Expression
P450 11B2 is expressed in the adrenal cortex 
(zona glomerulosa) and involved in the synthe-
sis of aldosterone (the 11β-hydroxy, 19-alde-
hyde product)� It is a mitochondrial P450, as are 
the other family 11 P450s� The cDNA was first 
cloned from the adrenal tumor of a patient suffer-
ing from primary aldosteronism [2057]� Another 
early study showed higher levels of P450 11B2 in 
aldosterone-secreting tumors [2058]�

There is some evidence for the synthesis of 
aldosterone outside of the adrenals, and Li et al� 
[2059] reported expression of P450 11B2 in he-
patic stellate cells of liver; the activation of these 
cells is a key event in liver fibrogenesis�

9.7.43.2  Regulation
Some of the research on regulation overlaps that 
presented for the CYP11B1 gene ( vide supra)� A 
CRE/Ad1 element and ATF-1 (and ATF–2?) play 
roles with both the CYP11B1 and CYP11B2 genes 
[2060]� However, SF-1 does not appear to regu-
late P450 11B2, in contrast with CYP11B1 [1988]� 
Many aspects of regulation remain to be further 
investigated, including the mechanisms of the ob-
served Ca2 + and cyclic AMP signaling [2061] and 
the effects of kinase inhibitors [2062, 2063]�

Transforming growth factor (TGF) β1 inhibits 
aldosterone production in human adrenocortical 
cells by inhibiting P450 11B2 expression [2064]� 
P450 11B2 expression (in a human adrenocorti-
cal cell line) was increased by the orphan nuclear 
receptors NURR1 and NGF1B [1989]� Levels of 
NURR1 and NGF1B were strongly induced by 
angiotensin II, the major regulator of human P450 
11B2 expression in vivo� The NBRE-1, Ad5, and 
Ad1/CRE cis elements were all concluded to be 
involved in both basal and angiotensin-stimulat-
ed transcription of human P450 11B2 [1989]�

The protein kinase C ligand 12-O-tetradec-
anoy-pharbol-13-acetate (TPA) has been re-
ported to inhibit angiotensin II-stimulated P450 
11B2 gene expression (in a H295R human adre-
nocortical cell line) [2065]� TPA was concluded 
to inhibit the angiotensin II-dependent activation 
of P450 11B2 transcription via the p44/42 mito-
gen-activated protein kinase (MAPK) signaling 
pathway, leading to an increase in the level of 
nuclear JunB [2065]� In addition, protein kinase 
C–E inhibits P450 11B2 gene expression through 
the ERK/1 signaling pathway (and Jun B) [2066]�

Calcineurin mediates angiotensin II-induced 
upregulation of P450 11B2 transcription [2067]�

Like P450 11B1, the P450 11B2 gene is regu-
lated by transposable elements and conserved cis 
elements [2068]� The promoter contains two Alu 
elements imbedded in a truncated L1 element, 
breaking up L1 into three fragments� Alu func-
tions as an enhancer in P450 11B2, as in P450 
11B1 ( vide supra)� As mentioned earlier, Ad5 
and SF-1 binding elements in the proximal core 
promoter are important in transcription [2068]�

Polychlorinated biphenyls have been reported 
to upregulate P450 11B2 [2069, 2070], appar-
ently via increasing mRNA stability by an un-
known mechanism [1992]� However, concentra-
tions < 10 µM were not used, and the relevance of 
these findings to health is unclear�

9.7.43.3  Genetic Variation
As in the case of the CYP11B1 gene, many CY-
P11B2 variants have now been defined from clin-
ical studies� For review, see [2071]� The many 
variants [2072, 2073] have been related to a 
number of diseases, including congenital hypoal-
dosterism [2074], salt-wasting syndrome [2075], 
adenoma [2076, 2077], treatment for diabetic 
nephropathy [2078], high-altitude pulmonary 
edema [2079, 2080], metabolic syndrome [2081], 
hypertension [2082–2095], stroke [2096], atrial 
fibrillation [2097], and other cardiovascular risks 
[2098]�

The “crossovers” between P450s 11B1 and 
11B2 yield inactive P450 11B2, as well as P450 
11B1 [2016, 2017, 2099, 2100]� Other variants 
in CYP11B2 were associated with corticosterone 
methyloxidase I and II deficiency [2055, 2056, 
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2101]� Variants in CYP11B2 have also been 
linked to idiopathic hyperaldosteronism, a con-
dition characterized by autonomous production 
of aldosterone and arterial hypertension [2102]� 
A variant in the promoter region of CYP11B2 
(− 344 TK) has been associated with predisposi-
tion to essential hypertension [2103]�

9.7.43.4  Substrates and Reactions
P450 11B2 catalyzes the three-step conversion of 
11-deoxycorticosterone to aldosterone, with 11β-
hydroxylation, 18-hydroxylation, and 2-elec-
tron oxidation of the 18-carbinol (Figs� 9�12 and 
9�23)� No other substrates are known� Informa-
tion about the processivity of the human enzyme 
(i�e�, extent of release of intermediate products) is 
not available at this time�

Strushkevich et al� [2019] have presented 
evidence arguing the three-step oxidation of de-
oxycorticosterone to aldosterone (Figs� 9�23b 
and 9�24) is a processive one, in that 11β-
corticosterone was not oxidized to the product� 
However, the question has not been analyzed in 
the usual ways of addressing these questions, e�g�, 
with time course and pulse-chase experiments�

Another recent development is the oxidation 
of the nonclassical substrate methandienone by 
P450 11B2 [2104] (Fig� 9�25)� The 11β- and 20β-
hydroxynorsteroids were formed� Thus, the cata-
lytic selectivity of this steroid hydroxylase may 
be more relaxed than previously assumed�

9.7.43.5  Structure
In 2013, Strushkevich et al� [2019] published 
structures of human P450 11B2 with the substrate 
deoxycorticosterone and an imidazole-based in-
hibitor, fadrozole� The active site is lined with the 
same residues as present in P450 11B1 (in that 
region), and most of the divergent residues ap-
parently associated with the P450 11B2 catalyze 
activity (18-hydroxylation) are located in the I-
helix and loops around the H-helix [2019]�

Homology and pharmacophore models have 
been published [2026, 2073, 2105]

9.7.43.6  Inhibitors
Progress towards clinically useful inhibitors of 
P450 11B2 has been reviewed recently [2106, 

2107]� A number of inhibitors have been pro-
duced [2036, 2038, 2108–2114]� These inhibi-
tors are intended for use in congestive heart 
failure, myocardial fibrosis [2030, 2115–2117], 
and prostate cancer [2039]� Another intended 
use is hypertension [2030], and one inhibitor has 
reached a clinical trial (phase 2) [2118]�

9.7.43.7  Clinical Issues
Although there is a rationale for developing in-
hibitors of P450 11B2 (Sect� 7�43�5, vide supra), 
the major clinical issue is genetic disorders of 
P450 11B2 insufficiency� Genetic variants and 
relationship to several diseases, particularly hy-
pertension, have been covered in Sect� 7�43�3 
( vide supra)� In addition, age-related associa-
tion of variants has been considered in relation to 
breast cancer risk [2119]�

The issues of congenital adrenal hyperplasia 
and types I and II corticosterone methyloxidase 
deficiency in individuals with attenuated P450 
11B2 activity have already been mentioned� The 
other issue also mentioned is elevated aldoste-
rone� Several studies have reported an associa-
tion between variants and essential hypertension, 
although the measurements of aldosterone excre-
tion are still lacking in some studies [2120]� Other 
studies show association of the − 344C allele with 
increased left ventricular size [2121–2123]� The 
hypertension association has been seen in several 
studies [2082–2095, 2120, 2121, 2124, 2125] but 
not in a Japanese study [2126]�

9.7.44  P450 17A1

17α-Hydroxylation and the 17α,20-lyase reac-
tion (“desmolase”) are two important reactions in 
steroid biosynthesis (Figs� 9�24 and 9�26)� Clon-
ing of a cDNA which, when expressed, yielded 
both activities established the role of what is 
now known as human P450 17A1 (previously 
termed P45017α, etc�) [2127]� The gene [2128] 
showed similarity to CYP21A1� The demonstra-
tion of both 17α-hydroxylation and 17α,20-lyase 
catalytic activities in a single protein established 
work previously done with purified hog protein 
[2129]� The two activities have long been known 
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to be regulated by cytochrome b5 [2130, 2131], 
and aspects of this duality of function still remain 
unclear�

9.7.44.1  Sites of Expression
P450 17A1 is a microsomal enzyme (Fig� 9�24, 
Table 9�2)� Human P450 17A1 is expressed in 
steroidogenic tissues, including adrenals and 
gonads� The enzyme has also been reported in 
fetal kidney, thymus, and spleen [2132]� The en-
zyme has also been found in human (adult) heart 
[2133] and adipose tissue [2134]� Recently P450 
17A1 expression in the human fetal nervous sys-
tem has been reported [2135]�

9.7.44.2  Regulation
As with the other steroidogenic P450s, the regula-
tion of the CYP17A1 gene is relatively complex� 
Induction of P450 17A1 has long been known to 
be cyclic AMP mediated and the induction is sup-
pressed by testosterone (mouse model) [2136], 
and a cyclic AMP response region was mapped 
in porcine Leydig cells [2137]�

Nuclear factor-1 was implicated in the up-
regulation of P450 17A1, acting on the promoter 
in the cells isolated from patients with PCOS 
[2138]� Sphingosine was reported to regulate 
P450 17A1 transcription by binding to SF-1 
[2139]� The regulatory protein SMAD3 was re-
ported to inhibit SF-1-dependent activation of the 
P450 17A1 promoter in human H295R cell cul-
ture [2140]� TGFβ inhibited P450 17A1 transcrip-
tion in the H295R cells via activin receptor-like 
kinase 5 [2141]� Phosphorylation of CtBP1 by 
cyclic AMP-dependent protein kinase modulated 
induction by stimulating partnering of CtBP1 and 
2 [2142]� Protein kinase C-induced activin A sup-
pressed P450 17A1 expression [2143]�

The homeodomain protein Pbx1 was shown 
to interact with protein kinase A in the cyclic 
AMP-dependent regulation (at − 250/− 241) of 
the human CYP17A1 gene [2144]� Further analy-
sis showed interaction at a cyclic AMP-related 
site (− 80/− 40) by SF-1 [2145]� Further, interac-
tions were shown for Sp1 and Sp3 (− 227/− 184) 
and NF-1C (− 107/− 85 and − 178/− 152) [2146]� 
SF-1 ( vide supra) also interacts with p54nrb, 
NonO, and protein-associated splicing factor 

[2147]� The ACTH/cyclic AMP response is de-
pendent upon phosphatase activity, as well as 
kinase activity [2148, 2149]� The cyclic AMP-
dependent protein kinase enhances transcription 
via MKP-1 activation, involving phosphorylation 
of SF-1 [181]�

The Miller laboratory has presented evidence 
that P450 17A1 is phosphorylated and that this 
has the effect of stimulating only the lyase ac-
tivity [2150–2152]� In the most recent work, the 
phosphorylation is attributed to the (Ser/Thr) ki-
nase p38α [2152]� The increase in lyase activity 
was ~ two-fold� The site(s) of phosphorylation is 
unknown, and no isolation of a phosphorylated 
protein has been isolated from a tissue�

9.7.44.3  Genetic Variation
At least 49 different variants have been identi-
fied in P450 17A1 from clinical studies [2153]� 
These will not be reiterated here; some references 
to roles in individual diseases are presented in 
Sect. 7.44.7 ( vide infra)� See also Chap� 10 [145]�

9.7.44.4  Substrates and Reactions
The generally accepted reactions of P450 
17A1 are the 17α-hydroxylation of pregneno-
lone to 17α-hydroxypregnenolone and of pro-
gesterone to 17α-hydroxyprogesterone� 17α-
Hydroxypregnenolone is also oxidized to DHEA, 
and 17α-hydroxyprogesterone is oxidized to 
androstenedione in the 17,20-lyase reaction 
(Figs� 9�12, 9�24, and 9�26) [2154, 2155]� The 
mechanism of the lyase reaction is not complete-
ly established, but mechanisms have been pro-
posed using analogs [2156]� Lieberman [2157] 
proposed alternative reactions, although the sug-
gested pathway involves what would be a very 
unstable diradical� No other substrates are known 
presently, other than pregnenolone and proges-
terone and possibly closely related analogues� 
Soucy et al� [2158] have provided evidence that 
human P450 17A1 also converts pregnenolone 
into 5,16-androstadien-3β-ol, a “16-ene syn-
thase” reaction (without intermediate formation 
of an alcohol)�

The lyase reaction is more prominent in 
adult adrenals with the Δ5 steroids (than Δ4; 
i�e�, with 17α-hydroxypregnenolone than 17α-
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hydroxyprogesterone), and this also applies in 
(human) fetal testis [2159]� P450 17A1 also has 
trace 21-hydroxylation activity [2160], and the 
mutation A105 L yields a protein with some 16α-
hydroxylation activity [2160, 2161]�

A kinetic deuterium isotope of ~ 4 was ob-
served for the 17α-hydroxylation reaction 
[2160]� The mechanism of this hydroxylation is 
presumed to be relatively straightforward “com-
pound I”-type hydroxylation, with C–H bond 
breaking being at least partially rate limiting� 
Rates of individual steps in the reaction have not 
been reported�

The second reaction, the 17,20-lyase reac-
tion, is more complex and difficult to rational-
ize with a classic compound I mechanism� Work 
from Akhtar’s laboratory led to the proposal that 
the reaction involves a nucleophilic attack of the 
ferric peroxide (anion; FeO2

 +, or FeIIO2
−) on 

the C-20 carbonyl (of 17α-hydroxyprogesterone 
or pregnenolone) [2156, 2162]� One of the key 
pieces of evidence was the result of 18O2 labeling 
experiments [2156]� The results of site-directed 
mutagenesis studies on Thr-306 are also con-
sistent with the conclusions about FeIIO2 − in-
volvement [2156, 2163]� Sligar’s group has also 
presented resonance Raman spectra [2164] and 
solvent deuterium kinetic isotope effect studies 
[2165] in support of the involvement of this en-
tity�

Further work on the differential effects of cy-
tochrome b5 on individual catalytic activities has 
been reported [2166]� The ratio of cytochrome 
b5 to P450 is high in testis and this phenomenon 
might regulate the two activities of P450 17A1� 
Miller’s group has proposed that phosphorylation 
of Ser and Thr residues in P450 17A1 may alter-
natively influence the two activities [2152, 2167, 
2168]�

A second cytochrome b5 gene has been identi-
fied recently and this protein also has the same 
stimulatory effect on lyase activity [2169]� Au-
chus et al� [2170] also demonstrated that the same 
stimulatory effect of cytochrome b5 could be ob-
tained with apo-cytochrome b5, arguing against 
the requirement for electron transfer� P450 17A1 
enzymes from other species vary in their ability 
to catalyze the 17,20-lyase reaction, and compar-

isons of the rat and human enzymes also led to 
the conclusion that selective enhancement of the 
lyase reaction was not due to changes in electron 
transfer [2171]�

The concertedness of the P450 17A1 17,20-
lyase reaction has been examined, and two stud-
ies both reached the conclusion that much of 
the 17α-hydroxypregenolone dissociates [2172, 
2173]� In one of the studies [2172], the authors 
concluded that the off-rate was an important 
factor in determining the balance between 17α-
hydroxypregnenolone and DHEA with the beef 
enzyme� Exactly how cytochrome b5 would con-
trol this rate, which was modeled to be rather 
slow (2�6–29 min− 1), is unclear unless the effect 
is on the protein conformation�

Studies with human P450 17A1 in this labora-
tory show that the human P450 17A1 enzyme is 
relatively distributive for the two reactions, 17α-
hydroxylation and the 17,20-lyase cleavage� This 
was shown using pulse-chase experiments with 
14C progesterone or pregnenolone and then add-
ing varying amounts of unlabeled 17α-hydroxy 
steroid, measuring the attenuation of radiolabel 
incorporated into the final product� However, the 
reaction shows more processivity with pregneno-
lone than progesterone� Further evidence for the 
distributive nature of the enzyme comes from 
studies with the inhibitor orteronel (TAK-700), 
which preferentially inhibits the lyase (second 
reaction) [2174]� If the enzyme were totally pro-
cessive, this result would be impossible�

Teleost fish P450 17A1 enzymes catalyze 
both reactions, similar to human P450 17A1 
[2175]� That enzyme is also distributive, more 
so with progesterone than pregnenolone [2176]� 
The related fish P450 17A2 catalyzes only the 
17α-hydroxylation, with or without cytochrome 
b5 [2175, 2176]� Cytochrome b5 did not affect 
the processivity of the fish P450 17A1 reactions 
[2176]�

Another issue already mentioned (Sect� 7�44�2) 
is phosphorylation, which has been reported to 
favor the second reaction (lyase) [2152]� This re-
sult is a bit of an enigma in that cytochrome b5 
is considered to have an anionic region (“patch”) 
that binds to basic residues in P450 17A1, as 
evidenced by site-directed mutagenesis [2177]� 
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A phosphate group (in this region?) would add 
a negative charge and tend to prevent interaction 
with cytochrome b5�

Another enigma about P450 17A1 catalysis is 
raised from the results of Scott and her associ-
ates [2178], who presented NMR evidence that 
cytochrome b5 and NADPH-P450 reductase bind 
to the same section of P450 17A1 and therefore 
compete for binding� Strong evidence has been 
presented that electron transfer is not involved in 
the stimulation of P450 17A1 by cytochrome b5 
[2170]� Therefore, both of the electrons used in 
the P450 17A1 reaction (regardless of whether it 
is a compound I or ferric peroxide mechanism) 
must come from the reductase� Thus, the P450 
must be reduced to the ferrous state, bind O2, ac-
cept another electron, and thus be in the FeO2

 + 
state before the reductase dissociates� This must 
happen rapidly, and the formal FeO2

 + entity must 
be stable enough to persist until the cytochrome 
b5 is bound and apparently “allosterically” per-
turbs P450 17A1 FeO2

 + to catalyze the lyase re-
action� The reaction has a kcat of ~ 1 min− 1, so this 
must happen in seconds during every catalytic 
cycle (and the cytochrome b5 must leave again 
for NADPH-P450 reductase to begin and reiniti-
ate catalysis)� Exactly what occurs will require 
further study�

What step is rate limiting in the lyase reac-
tion is presently unknown� That reaction seems 
impervious to the use of kinetic isotope effects 
to study the nature of C–C bond cleavage (unless 
13C isotope effects could be used)�

9.7.44.5  Structures
Much of the information about the significance of 
active site residues comes from analysis of mu-
tations in patients presenting with diseases (see 
Sect� 7�44�2, vide supra)� The changes H373 L 
and P409R [2179] led to a loss of heme incor-
poration� Mutation at Thr-306, possibly involved 
in protonation of Fe–OO− or O–O cleavage, im-
paired 17α-hydroxylation more than the lyase 
reaction [2180]� However, the change R346A 
selectively abolished lyase activity [2181], as 
did F417C [2182]� Mutations at Lys-83, Arg-
347, Arg-358, and Arg-449 produced proteins 
that were refractory to cytochrome b5 stimulation 

and attenuated in lyase activity [2183–2185]� Of 
these, only R347H and R358Q have been found in 
patients [2186]� Some variants found in patients 
do cause the loss of both 17α-hydroxylation and 
the lyase reaction, however [2187, 2188]�

Some animal P450 17A1 enzymes have dif-
ferent ratios of 17-hydroxylation/lyase activities, 
and efforts have been made to use these proper-
ties to define more elements controlling the lat-
ter steps, although the results have been limited 
[2189, 2190]�

A number of additional homology models 
have been published [2024, 2191–2197]�

In 2012, DeVore and Scott [2153] published 
an X-ray crystal structure of human P450 17A1 
bound to the inhibitors abiraterone and TOK-001 
(Sect� 7�44�6, vide infra)� As might be anticipated, 
the pyridine nitrogen is bound to the heme iron� 
The binding mode was considered to be different 
than observed for a number of other P450s that 
use steroids as substrates� This structure may be 
useful in rationalizing the variants seen in clini-
cal problems�

As discussed in Sect. 7.44.4 ( vide supra), one 
of the mechanistic curiosities is the interaction of 
cytochrome b5 with P450 17A1, which (in part) 
regulates the balance between the 17α-hydroxy 
and 17,20-lyase products� An NMR study with 
cytochrome b5 led to the conclusion that the 
protein occupies a position at a site on P450 
17A1, including Arg-347, Arg-358, and Arg-449 
[2178]� The same site is believed to be occupied 
by NADPH-P450 reductase�

The dual nature of the P450 17A1 in catalyz-
ing sequential reactions can be addressed using 
fish orthologs� Teleost fish have two P450 17A 
genes, 17A1 and 17A2 [2175]� Fish P450 17A1 
resembles mammalian P450 17A1 in catalyzing 
both the 17α-hydroxylation and the lyase reac-
tions, but (fish) P450 17A2 only catalyzes the 
17α-hydroxylation [2175]� Fish or human cyto-
chrome b5 stimulates only the lyase activity� This 
laboratory, collaborating with Prof� Martin Egli, 
has crystallized both zebra fish P450 17A1 and 
17A2, with abiraterone bound to each and pro-
gesterone bound to P450 17A2 [2176], as in the 
human P450 17A1 structure [2153]�
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9.7.44.6  Inhibitors
Inhibitors of P450 17A1 have been studied for 
some time� Interestingly, ketoconazole inhibits 
lyase activity but not 17α-hydroxylation activ-
ity [2198]� 7α-Thiospirolactone is a mechanism-
based inhibitor of (guinea pig) P450 17A1 [2199]�

A number of steroidal inhibitors have been 
studied, primarily with the goal of treating can-
cers [2200–2202] [2203, 2204]� The enantiomer 
of progesterone ( ent-progesterone) is reported 
to be a competitive inhibitor of P450 17A1 ( KI 
0�2 µM) [2205]�

Nonsteroidal inhibitors have also been studied 
[2206, 2207]�

Molecular modeling (Sect� 7�44�5) has also 
been applied to searches for inhibitors [2197, 
2208]� Other approaches utilize P450 17A1 ex-
pressed in E. coli to screen for P450 17A1 in-
hibition in medium- to high-throughput systems 
[2209, 2210]�

One interest in inhibition of P450 17A1 is 
treating prostate cancer� The concept is that pros-
tate cancer is stimulated by androgens, and the 
goal is to block production of androstenedione 
(from progesterone/17α-hydroxyprogesterone)� 
This is a particular issue in “castration-resistant” 
prostate cancer�

A number of inhibitors have been published 
[2035, 2037, 2211–2215]� For reviews see 
[2216–2219]� Abiraterone is a leading inhibitor, 
currently approved for use for prostate cancer 
[2220–2225]� Another drug in clinical trials is 
orteronel (TAK-700), which shows selective in-
hibition of the lyase reaction [2174, 2226]� The 
concept is to block androgen production (i�e�, an-
drostenedione formation) and maintain produc-
tion of other steroids for normal physiology�

9.7.44.7  Clinical Issues
P450 17A1 has a central role in human steroid 
metabolism because of its role in regulating ste-
roid flux (Fig� 9�12)� There are two dominant 
clinical issues with P450 17A1� One is various 
diseases associated with hormone imbalance� 
P450 17A1 is at a branch point and involved in 
production of glucocorticoids and sex hormones 
(androgens and estrogens), and therefore a vari-

ety of maladies can be associated with changes� 
The other issue, addressed under Sect� 7�44�6 
( vide supra), is the use of P450 17A1 inhibitors 
(especially lyase inhibitors) to treat androgen-
stimulated tumors� The second point will not be 
treated further here�

The clinical issues for which research has 
been done to implicate associations with P450 
17A1 status (usually genetic) include endome-
trial cancer [2227], prostate cancer [2228 2003, 
53455, 2229], breast cancer [852, 2230], endo-
metrial cancer [2231], non-Hodgkin’s lymphoma 
[2232], infertility [2233], pregnancy loss [2234], 
early embryonic lethality [2235], short menstrual 
cycles/early contraceptive use/BRCA mutations 
[2236], secondary amenorrhea [2237], PCOS 
[2238], endometriosis [2239], and acne [2240]� 
Perturbations in P450 17A1 lead to problems 
in adrenarche, aging, and PCOS [2155, 2241]� 
Some of the more serious variants have been 
mentioned already� Another variant is related to 
a case of pseudohermaphroditism involving lack 
of lyase activity [2242]�

Some of the other possible disease conditions 
or risks are being studied in relationship to less 
serious variants� In most of these cases, the rela-
tionships are more difficult to establish than in the 
serious diseases� A possible link of CYP17A1 de-
ficiency has been made with rheumatoid arthritis 
[2243]� Little influence of genetic variation was 
seen on age of menarche [2244]� However, a link 
was made between a particular variant and the 
prediction to use hormone replacement therapy 
(i�e�, postmenopausal estrogen therapy) [2245]� 
No association was found with PCOS in a study 
with an SNV at the regulatory Sp1 site [2246]�

Much attention has been given to the possi-
bility of a link between CYP17A1 allelic SNVs 
and breast cancer risk [2247]� The epidemiology 
results are mixed at best [2248–2251], and a con-
clusion in favor of a relationship cannot be made 
at this time [2230, 2252, 2253]�

As with some other P450s, circulating anti-
bodies to P450 17A1 are seen in some autoim-
mune diseases, e�g�, autoimmune polyglandular 
syndrome and Addison’s disease [1969, 2254], 
but no causal relationship has been demonstrated�
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9.7.45  P450 19A1

P450 19A1 is the classic “aromatase,” often 
known by that name in endocrinology� This en-
zyme oxidizes the androgens (e�g�, androstendi-
one and testosterone) to estrogens (estrone and 
17β-estradiol, respectively) (Fig� 9�22)� This pro-
cess is very important in normal physiology and 
also a target for inhibition in some tumors�

9.7.45.1  Sites of Expression
Estrogens have a number of functions, not only 
in feminization� Although estrogens are often 
considered “female” hormones, they are also 
important in males (e�g�, see material regarding 
brain, vide infra)� P450 19A1 is even found in the 
penis [2255] and is important in male reproduc-
tion [2255, 2256]� Sites of (human) expression 
include the ovaries and testes, placenta and fetal 
(but not adult) liver, adipose tissue, chondrocytes 
and osteoblasts of bone, vasculature smooth 
muscle, and several sites in brain, including parts 
of the hypothalamus, limbic system, and cere-
bral cortex [2257]� As discussed later, regulatory 
mechanisms differ considerably in these tissues� 
P450 19A1 is also expressed in some tumors, 
particularly those derived from these tissues�

Evidence for P450 19A1 in the brain has been 
reported [2258], and a mouse CYP19A1 knock-
out provides evidence that estrogens are required 
for brain development [2259]� The actions of an-
drogens and estrogens in the gonadal tissues are 
fairly well understood but less is known in the 
brain� Androgens and androgen-derived estrogens 
regulate complementary and interacting genes in 
many neural networks [2260]� P450 19A1 expres-
sion in skeletal muscle has been reported [2261]�

Although P450 19A1 is generally considered 
an extrahepatic P450, there is evidence for some 
expression in human liver [2262]� P450 19A1 
peptides have been detected in liver microsomes 
(treated with trypsin) by LC–MS [635]� Oxida-
tions of dihydrotestosterone attributable to P450 
19A1 have been observed in human liver micro-
somes [1373]�

Evidence has been presented that P450 19A1 
dimers exist in membranes and that P450 19A1 
does not dimerize with P450 17A1 [2263]�

9.7.45.2  Regulation
The regulation of the CYP19A1 gene is quite 
complex, primarily because of the use of four 
tissue-selective promoters [2257, 2264]� The 
promoters have been reviewed [2265]� Much of 
the research has been in the area of cancer� Either 
the I�l, I�4, I�f, and I�6 sequence is read as exon 
I and spliced in to the mRNA, depending upon 
the tissue� However, exon I does not code for the 
protein, so the P450 19A1 enzyme is always the 
same�

In preovulatory follicles and corpora lutea of 
human ovary, the 5ʹ-untranslated region of P450 
19A1 transcripts is encoded by exon IIa [2266]� 
The major operatives here are CRE and SF-1 ele-
ments [2257]�

In adipose tissue, the promoter from exon 
I�4 is utilized [2257]� The same exon is utilized 
in bone and skin [2257] and in leiomyoma tis-
sue derived in myometrium [2267]� This system 
is regulated with Sp1, a glucocorticoid regula-
tory element, STAT3, and possibly PPARγ [2257, 
2268]� Preadipocytes also involve regulation 
with LRH-1 [2269]�

In placenta exon I�1, an 89-kb upstream ele-
ment is utilized [2257]� This is a strong promoter 
and involves C/EBP-β [2257]� A strong posi-
tive enhancer element between − 42 and − 501 is 
present [2270]� The possibility exists that VDR/
RXRα heterodimers and PPARγ may have effects 
[2257]�

Regulation in bone uses exon I�6 [2257]� The 
study of regulation in bone is less extensive than 
in other sites, and 1,25-dihydroxycholecalciferol, 
interleukins, TNFα, and TGF-β1 have stimula-
tory activity�

Regulation in brain uses exon I�f and has also 
not been as extensively studied [2257]� P450 
19A1 does seem to be upregulated by androgens�

Regulation in fetal liver involves exon I�4, as 
with adipose tissue [2257]� The same pattern ap-
pears to apply in skin fibroblasts and intestine�

In cancer cells, alternate regulatory pathways 
are utilized [2257]� EP2 and EP4 receptors regu-
late P450 19A1 expression in human adipocytes 
and in breast cancer cells, involving BRCA1-
p300 exchange [2271]� CCAAT/EBPβ upregu-
lated promoters I�2/II in breast cancer epithelial 
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cells [2272]� P450 19A1 transcription is also en-
hanced by RXRα/RORα in breast cancer cells 
[2273, 2274]� In skeletal muscle, the P450 19A1 
gene is a target of the factor Runx2 [2275]� In 
human ovarian granulosa cell-like KGN cells, ac-
tivin stimulates P450 19A1 gene expression via 
the Smad2 signaling pathway [2276]� In granu-
losa cell tumors, P450 19A1 is a direct target of 
FOXL2 to C134W via a single highly conserved 
binding site in the ovarian-specific promoter 
[2277]� In human placental syncytiotrophoblasts, 
cortisol induces P450 19A1 expression through 
the cyclic AMP/Sp1 pathway [2278]�

A vitamin D analog inhibits P450 19A1 ex-
pression by dissociation of the comodulator Wil-
liams syndrome transcription factor (WSTF) 
from the promoter [2279]� PPARγ agonists down-
regulate P450 19A1, via BRCA1 and prostaglan-
din E2 [2280, 2281]� TCDD has been reported to 
induce P450 19A1 in human glioma cells [2282]�

In the area of post-transcriptional regulation, the 
alternative miscoding exons 1 are involved [2283]� 
Some evidence for control of genes by DNA meth-
ylation has also been reported [2284, 2285]�

9.7.45.3  Genetic Variation
The cypalleles website (http://www�cypalleles�
ki�se) shows only five allelic variants of the 
human CYP19A1 gene, which seems surpris-
ing compared to some of the other steroidogenic 
P450s, e�g�, P450s 17A1 and 21A2 (Sects� 7�44 
and 7�46, respectively)� These have been studied 
with regard to breast cancer but without convinc-
ing relationships ( vide infra); also, there was no 
relationship with breast density [2286]�

Relatively few cases of aromatase deficiency 
have been reported [2257, 2287], and some of the 
clinical cases may be the result of NADPH-P450 
reductase deficiency� In vitro steady-state kinetic 
analysis of one variant (T201M) has been found 
it to be more active than the *1 (wild type) P450 
19A1 [2288]� See Sect� 7�45�7 for clinical issues 
related to genetic abnormalities�

9.7.45.4  Substrates and Reactions
The reaction involves three steps and has been 
the subject of considerable mechanistic inter-
est (Fig� 9�22)� Androstenedione is converted 

to estrone, testosterone to 17β-estradiol, and 
16α-hydroxytestosterone to estriol� The first 
two steps are relatively straightforward, e�g�, 
RCH3→RCH2OH→CHO (at C19). The third 
step was difficult to rationalize with “classic” 
FeO3 + chemistry, and there has been general ac-
ceptance of a FeO2 − based mechanism originally 
developed by Akhtar [2289, 2290] and Robinson 
[2291] and further studied in models by Coon 
and Vaz [2292]�

The possibility of utilization of DHEA as a 
substrate for estrone synthesis has been proposed 
but not addressed directly [2293]�

P450 19A1 also catalyzes oxidation reactions 
with related compounds, some of which may have 
physiological relevance (Fig� 9�27)� 3-Deoxy an-
drogens are oxidized (19-methyl deformylation) 
in a similar manner [2294]� Recently this labo-
ratory has demonstrated that androstenedione 
and testosterone are oxidized to the 19-formic 
acid derivatives by 2-electron oxidation of the 
19-aldehyde [2295]� This product (previously 
reported as an androstenedione derivative in por-
cine granulosa cells [2296]) apparently is stable 
and is not oxidized to an estrogen (it is sensitive 
to acid-catalyzed decarboxylation, which yields 
19-nor-androgens)� We also found that the three 
porcine P450 19A1 enzymes all make as much of 
the 19-formic acid product as estrogen, from ei-
ther testosterone or androstenedione� The in vivo 
relevance remains to be established� The product 
estrone is known to be further oxidized (slowly) 
by 2-hydroxylation [2297, 2298]�

Dihydrotestosterone, a more potent physiologi-
cal androgen, is also oxidized by P450 19A1 in the 
same general way as the other androgens [1373] 
(Fig� 9�27)� The products are deformylated and 
one is further oxidized (2-hydroxylation), but es-
trogens are not formed [1373]� Whether the 19-al-
dehyde forms the 19-carboxylic acid is not known�

The three-step reaction has been shown to be 
mainly distributive [220]� The reaction can be initi-
ated with any of the intermediate steroids (Fig� 9�22; 
yielding the final estrogenic product)� Pulse-chase 
experiments show the distributive nature of the 
products, and a reaction with a limited amount 
of androstenedione shows a smooth progression 
through the two intermediate products [220]�
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Exactly which catalytic step is rate limiting 
within each of the three reaction steps is not 
clear� With placental microsomes as the enzyme 
source, an intermolecular kinetic deuterium iso-
tope effect of 3�2 was reported for the first step 
and no kinetic isotope effect for the second step 
[2299]� An even higher kinetic hydrogen isotope 
effect was estimated by Osawa et al� [2300]� 
Sligar and his associates reported spectroscopic 
studies on the Fe2 + O2 form of the enzyme in the 
presence of androstenedione, with a decomposi-
tion rate of 0�7 s− 1 (42 min− 1) at 37 °C [2301] 
which is roughly equivalent to the rate constant in 
a model for the first step [220]� Sligar’s group has 
also presented electron paramagnetic resonance 
(EPR) spectral evidence for the formation of an 
FeO2

 + (FeIIO2
 −) intermediate, formed by cryora-

diolysis (at 77 K), using EPR detection [2302]� 
The relevance to catalysis has not been investi-
gated (i�e�, product formation was not measured)�

The first two oxidations in the conversion of 
androgens to estrogens are relatively straightfor-
ward and can be readily rationalized with classic 
compound I mechanisms, i�e�, hydroxylation of 
a methyl group and the oxidation of a carbinol 
to a gem-diol/aldehyde� The third step has been 
problematic and has invited a number of propos-
als over the years, including (A-ring) 1-hydrox-
ylation, 2-hydroxylation, 4,5-epoxidation, and 
hydrogen abstraction from C-19 followed by 
rearrangement [2289, 2291, 2299, 2303–2317]� 
Pathways to estrogens (and formic acid) can be 
drawn in these cases, but they have been ruled 
out for one reason or another, e�g�, 18O labeling 
results for the 2-hydroxy mechanism [2315]� 
Currently the most widely accepted mechanism 
is probably the ferric peroxide mechanism pro-
posed by Akhtar and supported by some 18O2 
labeling results [2305]� An alternate mechanism 
proposed by Hackett et al� [2308] involves com-
pound I hydrogen abstraction of H-1β [2303, 
2304] followed by an electronic rearrangement 
and a “concerted” C–C bond scission without 
formal hydroxylation� This is an adaptation of 
a mechanism proposed by Covey et al� earlier, 
which begins with hydrogen atom abstraction 
from the C-19 gem-diol [2312]�

The mechanism has involved considerable 
debate over the years [2289, 2304, 2305, 2315]� 
A number of approaches can be applied to the 
mechanistic question, including studies with 
simplified models [2291, 2318–2321], synthesis 
of potential intermediates for testing with the en-
zyme [2303, 2304], application of theory [2308, 
2309], spectroscopy [2301, 2302], and isotopic 
labeling studies [2299, 2305]�

Recent work in this laboratory bears on the 
mechanism [2295]� As mentioned earlier, puri-
fied recombinant P450 19A1 converts 19-alde-
hyde androgens (and 19-methyl androgens) to 
the 19-formic acid derivatives (Fig� 9�28)� The 
products appear to be relatively stable (forma-
tion of estrogens requires base-catalyzed release 
of the carbon as CO2)� These findings indicate 
that P450 19A1 compound I is capable of being 
formed and used in the last step�

When either 19-deuterated 19-oxoandro-
stenedione or testosterone was incubated with 
recombinant P450 19A1 and 18O2, 18O label 
was not incorporated into the recovered formic 
acid (Fig� 9�28)� These results differ from those 
reported previously [2289, 2305]; the major 
technical differences are the use of recombinant 
purified P450 19A1, a more sensitive probe for 
trapping and analyzing formic acid, and the use 
of UPLC-coupled high-resolution mass spec-
trometry, which avoided issues inherent in analy-
sis of labeled formic acid [2295]� The results are 
not consistent with the proposed ferric peroxide 
mechanism, in which an 18O atom is expected to 
be recovered in formic acid�

An issue with the ferric peroxide mechanism 
is that the substrate is in the (hydrated) gem-diol 
form following the second reaction (Fig� 9�28)� 
However, the proposed ferric peroxide mecha-
nism involves a nucleophilic attack (Fe2 + O2

 −) on 
the carbonyl (aldehyde)� Thus, the gem-diol must 
be dehydrated before this step can run� The rate 
of dehydration has been estimated at > 0�5 s− 1 (in 
the absence of P450 19A1 using 18O exchange 
methods [2295], which is faster than the kcat 
(8 min− 1) for going from 19-hydroxy androstene-
dione to estrone [220]� The reaction could occur 
with the aldehyde or the gem-diol, the latter of 
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which is more consistent with the proposals of 
Covey et al� [2312] and Hackett et al� [2308]�

It is of interest to note that hogs have three 
P450 19A1 genes, and one of these converts tes-
tosterone to 1β-hydroxytestosterone [2322]� Both 
androstenedione and testosterone are converted 
to some 1β- and 2β-hydroxy products by puri-
fied human P450 19A1 [2300], indicating that 
the FeO3 + complex can position itself to abstract 
an H-1 or H-2 atom from the androgen substrate�

9.7.45.5  Structure
One of the historic problems in studying struc-
ture–function relationships in P450 19A1 has 

been the availability of expression systems� Re-
cently several E. coli systems have been devel-
oped [220, 2323–2325]�

Some homology modeling studies have ap-
peared [2326, 2327]� In 2009, Ghosh et al� [2328] 
published a crystal structure of P450 19A1 puri-
fied from human placental samples, without any 
modification (even at the N terminus), the only 
mammalian P450 to be crystallized in such a way� 
The structure contains a bound androstenedione 
substrate, positioned in a manner to make oxida-
tion feasible� The structure has been utilized in 
the design of new inhibitors [2329]�

Fig. 9.28  Unified mechanism of C–C cleavage in the 
third oxidation step of androgen conversion to estro-
gens by P450 19A1, including the formation of androgen 

19-carboxylic acids� The mechanism is based on labeling 
studies with 18O2 [2295]
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More recently, recombinant ( E. coli) P450 
19A1 has been expressed and crystallized, along 
with some active site mutants [2325]�

9.7.45.6  Inhibitors
The literature on clinical use of aromatase inhibi-
tors for cancer treatment is immense, and much 
has been published since the last version of this 
chapter [149]� The topic has been reviewed many 
times [2330–2333], including some reviews by 
A� Brodie, a pioneer in this area [2334, 2335]� 
Breast cancer is probably the major target area 
for P450 19A1 inhibition, but other cancers are 
also under investigation [2336]�

Today the process has reached the stage of 
“third-generation” inhibitors [2337], moving 
beyond early drugs such as aminoglutethimide 
[2338]� The newer inhibitors are more effective 
in lowering the body load of estrogens [2339]� 
One example of a newer drug is exemestane, a 
site-directed Michael acceptor (compared with 
the ER antagonist tamoxifen) [2338–2341]�

The leading P450 19A1 inhibitors in use today 
are primarily (but not exclusively, Sect� 7�45�7, 
vide infra) exemestane, anastrozole, and letro-
zole [2342, 2343]� Although the potency of these 
three inhibitors is excellent, efforts to develop 
new inhibitors are continuing using other chemi-
cal approaches [2329, 2344–2349]�

These inhibitors are not without toxicities 
[2350], although most of the expected issues can 
be anticipated due to generalized attenuation of 
estrogen levels throughout the body� Other in-
hibitory Michael agents have been prepared from 
prostaglandin J2, but detailed characterization 
has not been done [2351]� Other nonsteroidal 
inhibitors of P450 19A1 are also under consid-
eration [2352]�

The point has been made by Simpson et al� 
[2257] that a future goal of P450 19A1 inhibi-
tion should be tissue selectivity� The diverse role 
of P450 19A1 in different tissues might indicate 
that generalized inhibition of estrogen synthesis 
may be less than desirable� Targeted inhibition of 
P450 19A1 could, in principle, be achieved by 
(1) selective targeting of inhibitors of P450 19A1 
catalysis to tumors/individual organs or (2) tar-
geted downregulation of P450 19A1 synthesis in 
selected areas�

Finally, CYP19A1 genetic variants have been 
considered in relationship to breast cancer patient 
response to inhibitors [2353]�

9.7.45.7  Clinical Issues
The two major clinical issues with P450 19A1 
are (1) disease states associated with genetic 
variations and (2) use of aromatase inhibitors to 
block estrogen-dependent diseases [2354]� Seri-
ous cases of congenital aromatase deficiency in 
adults appear to be relatively rare [2257, 2355, 
2356] and have been treated with estrogen re-
placement therapy [2357]� However, some chil-
dren are considered to have attenuated P450 
19A1 activity [2358]� Studies with P450 19a1-
knockout mice show expected reproductive and 
sexual phenotypes and also adipose and bone 
phenotypes [2355, 2359], as well as a socio-
sexual behavior phenotype [2360]� There are 
known gain-of-function variants, with some is-
sues [2361]�

For a review of the significance in cancers, see 
[2362]� There is consideration of the use of inhib-
itors for breast cancer prevention in high-risk in-
dividuals� P450 19A1 inhibitors have been used 
extensively for breast cancer (see Sect� 8�45�6) 
[2363], epilepsy [2364], children with short stat-
ure [2365], other pediatric disease [2366] en-
dometriosis [2367], male infertility [2368], and 
induction of ovulation [2369]� P450 19A1 inhibi-
tors have also been reported to cause arthralgia 
[2370]�

A number of studies have been made on the 
relationship of CYP19A1 polymorphisms with 
breast cancer, but the evidence has not shown a 
change in risk [2286, 2371]� No strong associa-
tion was seen for endometriosis [2372]� Genetic 
variation in P450 19A1 has been considered re-
garding breast cancer [2373–2376], prostate can-
cer [2377], lung cancer [2378], response to ther-
apy with aromatase inhibitors [2379], estrogen 
levels and bone structure in older women [2380], 
bone loss [2381], polycystic ovary disease 
[2382], age at menarche [2383], essential hy-
pertension [2384, 2385], craving during alcohol 
withdrawal [2386], obsessive compulsive behav-
ior and Parkinson’s disease [2386], testicular dis-
ease [2387], pubertal sagittal jaw growth [2388], 
and reading, speech, and language [2389]�
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9.7.46  P450 20A1

9.7.46.1  Sites of Expression
P450 20A1 expression has been reported in 
liver and brain� In brain, expression was noted 
in substantia nigra, hippocampus, and amygdala 
[2390]�

9.7.46.2  Regulation
To date, no reports on the regulation of P450 
20A1 have appeared�

9.7.46.3  Genetic Variation
No reports of polymorphism or other genetic 
variation of P450 20A1 have appeared�

9.7.46.4  Substrates and Reactions
Attempts to identify substrates with a recombi-
nant P450 20A1 expressed in E. coli have been 
negative [2390]� However, the expression level 
was low and should be improved�

It is of interest to note that P450 20A1 is un-
usual and an ortholog even appears in sponges� It 
is possible that 20A1 has an important physiolog-
ical function� One could consider this to be the 
“most orphan” of the orphan P450s (Table 9�1)�

9.7.46.5  Structure
No information is yet available�

9.7.46.6  Inhibitors
Obviously, since no catalytic activity has been 
reported, there are no inhibitors�

9.7.46.7  Clinical Issues
No clinical issues have been considered, in light 
of the lack of information about function�

9.7.47  P450 21A2

P450 21A2 is the enzyme involved in the 21-hy-
droxylation of progesterone and 17-hydroxy-
progesterone, yielding deoxycorticosterone 
and 11-deoxycortisol from the two substrates, 
respectively (Fig� 9�12)� The 21-hydroxylation 
reaction is an important step in the synthesis of 
glucocorticoids and mineralocorticoids, and de-

ficiencies lead to “salt-wasting syndrome,” if not 
treated, and to congenital adrenal hyperplasia in 
the worst cases�

9.7.47.1  Sites of Expression
The major site of expression is the adrenal cor-
tex� This reaction has been known for some time, 
and many of the early biochemical studies were 
done with beef adrenals because of the need for 
large amounts of tissue [2391]�

Low amounts of P450 21A2 have been re-
ported in human lymphocytes [2392] and brain 
[2393]� Any specific function in these tissues is 
unknown at this time�

9.7.47.2  Regulation
The regulation of P450 21A2 has some similar-
ity to that of P450 17A1, in that both are regu-
lated by ACTH� The cyclic AMP-responsive 
sequence in the 5ʹ-flanking region [2394] uses 
adrenal-specific protein factor and an Ad4-like 
sequence [2395]� One issue in the regulation of 
the CYP21A2 gene is the neighboring homolo-
gous but nonfunctional CYP21A1 pseudogene, 
which can compete for transcription factors and 
other regulatory proteins [2396]� In other work, 
protein kinases A and C and Ca2 + were found to 
regulate CYP21A2 gene expression in a human 
cortical cell line [2397]�

Another interesting aspect of the regulation of 
the CYP21A2 gene is that it is located very close 
to the major histocompatibility locus, 2�3-kb 
downstream from the C4 gene� Transcriptional 
regulatory elements for the CYP21A2 gene lie 
within intron 35 kb of the C4 gene [2398]�

Evidence for regulation by vitamin D has ap-
peared [2399]�

9.7.47.3  Genetic Variation
Steroid 21-hydroxylase deficiency is the most 
common cause of congenital adrenal hyperpla-
sia, and many variants are now known to be as-
sociated with the disease� To date, more than 150 
clinical variants have been reported, with > 97 
consisting of missense variants [42, 2400]� In ad-
dition to missense variants, deletions [2401] and 
copy number variants [2402, 2403] have been 
reported� Ethnic links of the variations have also 
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been reported, e�g�, [2404]� Variations in the pro-
moter region are also known [2405]�

The genetics of P450 21A2 variation have 
been reviewed recently [2406, 2407]� Many ge-
netic variants are the result of recombination 
with the related pseudogene [2408, 2409]� Some 
are in the coding region [2410–2412] and the 
5ʹ-flanking region [2413]� The incidence of car-
riers of congenital adrenal hyperplasia is 1–2 % 
in the population, and many deleterious variants 
have now been identified [2414–2421]�

9.7.47.4  Substrates and Reactions
The primary substrates are progesterone and 17α-
hydroxyprogesterone, which are hydroxylated 
only at the 21-position (Fig� 9�12)� A minor activ-
ity seen with P450 21A2 is 16α-hydroxylation of 
progesterone, better revealed by use of the (C-17) 
deuterated substrate (due to “metabolic switch-
ing”) [2160]� The rates of 21-hydroxylation of 
progesterone and 17α-hydroxyprogesterone are 
among the fastest of all mammalian P450s, with 
catalytic efficiencies of 107 and 2 × 106 M− 1/s ob-
served in this laboratory for the wild-type human 
enzyme [2769]�

9.7.47.5  Structure
Homology models have been reported [2024, 
2422–2426]� The amount of site-directed mu-
tagenesis has been limited, but the disease has 
yielded many locations for loss of function be-
cause the severity of the disease is (inversely) 
correlated to the residual 21-hydroxylation ac-
tivity� Many of the variants could be rational-
ized in the context of a homology model [2422], 
although some associated with disease are more 
subtle (e�g�, E380D)� A structure of the human 
P450 21A2 protein is not available, but a struc-
ture of bovine P450 21A2 is [42]� More than 80 % 
of the variants known to be adverse from clinical 
studies can be rationalized in the bovine structure 
(although more details of exactly why these are 
debilitating will require more study) [42, 2400]�

The published bovine P450 21A2 structure 
includes the substrate 17α-hydroxyprogesterone 
[42]; a human P450 21A2 structure with proges-
terone is also available [2769]� An interesting 
feature of the published bovine P450 21A2 struc-

ture is the presence of two molecules of the sub-
strate (17α-hydroxyprogesterone) [42]� One is in 
an appropriate position for 21-hydroxylation, but 
the other is on the “other” side of the substrate 
near the heme and not in a position for hydrox-
ylation� Spectral binding and reduction experi-
ments are consistent with the occupancy by two 
substrates, as well as the crystal structure [42]� 
Dual occupancy does not lead to cooperative in-
teraction [2769]�

9.7.47.6  Inhibitors
Relatively little has been published about inhibi-
tors� Detrimental effects of spironolactone have 
been attributed to inhibition of 21-hydroxylation 
[2427], although further details with this P450 
are lacking� Recently Auchus and his associates 
[2205] reported that the enantiomeric form of 
progesterone ( ent-progesterone) is a competitive 
inhibitor of P450 21A2 (although not as effective 
as with P450 17A1)� Apparently no new inhibi-
tors of P450 21A2 have been published since the 
last edition of this chapter was published [149]�

9.7.47.7  Clinical Issues
As mentioned earlier, the incidence of defects is 
relatively frequent and the ability to form corti-
sol is a problem� Patients who cannot synthesize 
sufficient aldosterone may lose sodium balance 
and can develop a fatal “salt-wasting” syndrome� 
Treatment involves administration of mineralocor-
ticoids and glucocorticoids� Females with severe, 
classic P450 21A2 deficiency are exposed to ex-
cess androgens prenatally and born with virilized 
external genitalia, but prenatal diagnosis permits 
prenatal treatment of affected females [2414]�

For a review of aspects of P450 21A2 diagno-
sis and management (in adolescents), see Lin-Su 
et al� [2428]� In addition to adrenal hyperplasia, 
P450 21A2 insufficiency has also been consid-
ered in relationship to bone density [2429], adre-
nal mass [2430], Cushing’s disease [2431], risk 
of cardiovascular disease [2432], virilization of 
female genitalia [2433], and female [2434] and 
male [2435] infertility� See also [2436, 2437] for 
more on virilizing congenital adrenal hyperpla-
sia�
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Autoantibodies against P450 21A2 have been 
detected in autoimmune Addison’s disease pa-
tients [1971]�

9.7.48  P450 24A1

The next three P450s (24A1, 27A1, 27B1) are 
involved in vitamin D metabolism (Fig� 9�29)� 
All three are mitochondrial and receive electrons 
from the iron–sulfur protein adrenodoxin (via the 
flavoprotein NADPH-adrenodoxin reductase) 
(Table 9�2)�

9.7.48.1  Sites of Expression
The 24-hydroxylation of 25-hydroxyvitamin D3 
has long been known to occur in the kidney mi-
tochondrial membrane [2438]� Following the pu-
rification of a rat P450 with this activity [2439], 
cDNA clones for chicken [2440] and human 
[2441] homologs were obtained�

The enzyme is expressed in both proximal and 
distal kidney tubules [2442] but has also been 
found in human non-small cell lung carcino-
mas [2443]� This would appear to be a relatively 
low abundance P450� Expression has also been 
reported in human keratinocytes [2444, 2445], 

colon carcinoma cells [2446], and prostatic can-
cer cells [2447]�

P450 24A1 has also been found expressed in 
the male reproductive tract [2448], and expres-
sion at the annulus of human spermatozoa has 
been considered as a marker of semen quality 
[2449]�

Peptides corresponding to P450 24A1 have 
been identified in human liver tissue [635]�

9.7.48.2  Regulation
The regulation of the CYP24A1 gene appears 
to be complex, although some phenomena ob-
served in animal models have not been examined 
in as much detail in humans� The activity has 
long been known to be inducible by vitamin D, 
perhaps to relieve the cells of an overload, and 
a VDR element has been found in the 5ʹ-region 
of the CYP24A1 gene [2450, 2451]� Parathyroid 
hormone and cyclic AMP both enhance induction 
by the VDR [2442]�

In human keratinocytes, P450 24A1 mRNA 
was also elevated by 1α,25-dihydroxyvitamin D3 
[2444]� Studies with rat systems indicate that this 
response is also mediated by VDR response ele-
ments and that two of these (VDRE-1, VDRE-2) 
operate synergistically [2452]� A functional Ras-

Fig. 9.29  Overview of P450s involved in key steps of vitamin D activation [47]� (With kind permission from Springer 
Science + Business Media: [149], Fig� 10�16)
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dependent Ets-binding site is located downstream 
from the proximal vitamin D response element 
(VDRE) site and was critical; the model indicates 
transcriptional cooperation between Ras-activat-
ed Ets proteins and the VDR–RXR complex in 
mediating 1α,25-dihydroxyvitamin D action 
on the P450 24A1 promoter [2453]� The YY1 
transcription factor has been reported to repress 
1α,25-dihydroxyvitamin D3-induced transcrip-
tion in cell culture [2454]� The isoflavone genis-
tein was reported to block the transcription of the 
CYP24A1 gene in human prostatic cancer cells, 
and this block could be relieved with the histone 
deacetylase inhibitor trichostatin A [2447]� Fi-
nally, the earlier results with Ets proteins ( vide 
supra) have been expanded to show distinct 
roles of the MAP kinases ERK1/ERK2 and 
ERK5 [2455]� Induction of P450 24A1 by 1α,25-
dihydroxyvitamin D3 involves Ets-1 phosphory-
lation at Thr-38, but 1α,25-dihydroxyvitamin 
D3 stimulation of ERK1/ERK2 required RXRα 
phosphorylation on Ser-260 [2455]�

1α,25-Dihydroxyvitamin D3 has been report-
ed to induce P450 24A1 (mRNA) expression in 
colon cells [2456]� The human P450 24A1 pro-
moter has been characterized, and a short vita-
min D stimulating element (VSE) found in rat is 
absent [2457]� Induction of human P450 24A1 
by 1α,25-hydroxyvitamin D3 is dependent upon 
a promoter region spanning nucleotides -470 to 
-392 [2457]� Both a proximal and a downstream 
element VDR element bind the VDR/RXR het-
erodimer and somehow lead to induction [2458]� 
Coregulators are also involved and are respon-
sible for increased RNA polymerase II activity 
and histone H4 acetylation�

PXR (liganded) can activate the P450 24A1 
gene by directly binding to and transactivating 
vitamin D-responsive elements within the pro-
moter region [2459]�

Vitamin D3 activates the P450 24A1 promoter 
by dissociating the corepressor silencing me-
diator for retinoid and thyroid (SMRT) hormone 
receptors from the VDR on those VDREs� PXR 
strongly represses vitamin D3 activation of the 
P450 24A1 gene indirectly by binding to and 
preventing vitamin D3-dependent dissociation of 
SMRT from the P450 24A1 promoter� The degree 

of the PXR-mediated locking of SMRT depends 
on the relative concentration of vitamin D3 to 
the human PXR activator rifampicin; SMRT in-
creases dissociation as this ratio increases� CAR 
is also found to prevent dissociation of SMRT 
from the CYP24A1 promoter [2459]� An SNV in 
the promoter blocks protein binding and gene ac-
tivation [2460]� P450 24A1 is also regulated by 
proinflammatory cytokines (in a cultured human 
trophoblast system)�

P450 24A1 also appears to be subject to epi-
genetic regulation� Studies in human prostate 
cancer cells show that repression of the expres-
sion of the gene is mediated by promoter DNA 
methylation and repressive histone modifications 
[2461]� Placental-specific gene methylation has 
also been reported [2462]� Along with other evi-
dence for epigenetic control (in prostate cancer 
cells) [2461], evidence for a change in gene copy 
number has been reported [2463, 2464]� The 
DNA methylation levels have been reported to 
predict vitamin D response variation [1187]�

9.7.48.3  Genetic Variation
Genetic variations in P450 24A1 are known and 
have been considered in the context of clinical 
issues regarding vitamin D [2465–2468]�

9.7.48.4  Substrates and Reactions
Both 25-hydroxyvitamin D3 and 1α,25-
dihydroxyvitamin D3 are substrates for 24-hy-
droxylation (Fig� 9�29), with the latter being the 
preferred substrate [2469]� However, human 
P450 24A1 can also catalyze other side-chain 
reactions (Fig� 9�30)� [2470, 2471]� Studies with 
side chain-fluorinated vitamin D analogs also 
provide evidence for some flexibility of this 
side chain in allowing P450 24A1 to oxidize 
different sites [2472, 2473]� Rat P450 24A1 dif-
fers from the human ortholog in taking 1α,25-
dihydroxyvitamin D3 on to calcitroic acid instead 
of the products shown in Fig� 30 [2474–2476]�

A number of additional studies with substrate 
analogs have appeared since the last edition of 
this book was published [149]� These include the 
metabolism of A-ring diastereomers of 1α,25-
dihydroxyvitamin D3 [2477]� The 23-hydrox-
ylation occurs, and 25,26,27-trinor-23-ene vi-
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tamin D3 and 25,26, and 27-trinor-23-ene-1α 
vitamin D3 are the respective products formed 
from 25-hydoxy- and 1α,25-dihydroxyvitamin 
D3, both oxidized by P450 24A1 [2478]� Other 
work showed that different 2α-substituted 1α,25-
dihydroxyvitamin D3 analogs were processed in 
different ways [2479]� 25-Hydroxy-19-nor- and 
1α,25-dihydroxy-19-nor vitamin D3 are substrates 
[2480]� Several pathways of oxidation were 
seen with 1α-propoxyl-1α,25-dihydroxyvitamin 
D3 [2481]� Urushino et al� [2482] reported that 
1α,25-dihydroxyvitamin D2 (differing from vita-
min D3 only in the presence of a double bond at 
the 22, 23 position) is converted into at least ten 
products by human P450 24A1 (but only to one 
by rat P450 27A1)�

A single (A326G) mutation has been shown 
to convert human P450 24A1 from a 24- into a 
23-hydroxylase [2483]� Also, a V391 L mutation 
of human P450 24A1 changed the site of hydrox-
ylation to C-25 [2484]�

9.7.48.5  Structure
Several reports involved site-directed mutagen-
esis and homology modeling to gain insight in 
the structure of P450 24A1 [2485–2487]� How-
ever, given the diversity of products observed 
with minor modifications of either the substrate 
or protein (Sect� 7�48�4), it is difficult to make 
definite conclusions from much of this work� An 
X-ray crystal structure of rat P450 24A1 has been 
published [43], the first structure of a mitochon-
drial P450� The structure is an open form, without 
a substrate, although a 3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate (CHAPS) 
detergent molecule is present in the structure� The 
substrate was docked into the structure�

9.7.48.6  Inhibitors
As discussed with other enzymes involved in 
vitamin A or D metabolism, there is interest in 
developing inhibitors of vitamin D degradation 
as opposed to administration of vitamin D itself, 
to raise levels of active vitamin D metabolites� 
Schuster [2445, 2488, 2489] has identified some 
inhibitors that differ in their selectivity between 
P450 24A1 and P450 27B1 and have sub-µM IC50 
values� More inhibitors have been published in the 

literature [2490–2492]� Some of these are of inter-
est in specifically inhibiting P450 24A1 in cancer 
therapies related to vitamin D [2493–2495]�

9.7.48.7  Clinical Issues
The scheme presented in Fig� 9�29 depicts P450 
24A1 as an enzyme involved in deactivating the 
activated form of vitamin D� The possibility has 
been considered that defects in P450 24A1 might 
lead to hypervitaminosis D [47]� An overactive 
P450 24A1 could lead to vitamin D deficiency� 
Henry [2496] has reviewed the role of P450 
24A1 and made comparisons to other “multistep” 
P450 enzymes� The possibility is raised that P450 
24A1 could serve to generate products with their 
own biological activities, with P450 24A1 thus 
being involved in an anabolic pathway� Trans-
genic rats overexpressing (rat) P450 24A1 were 
found to have low plasma levels of 24,25-dihy-
droxyvitamin D3 [2497], which was unexpected� 
Further, the transgenic rats developed albumin-
uria and hyperlipidemia shortly after weaning 
and later developed atherosclerotic lesions in the 
aorta� These results raise the possibility that P450 
24A1 is involved in functions other than vitamin 
D metabolism [2497]�

P450 24A1 can be an issue in situations in-
volving changes in levels of active forms of vi-
tamin D� Some aspects involve cancer; further, 
P450 24A1 has been considered as a biomarker 
for some cancers [2448, 2465, 2498–2500]� P450 
24A1 has also been considered in the context of 
kidney disease [2501, 2502]� Because of the rela-
tionship of vitamin D with bone, loss-of-function 
P450 24A1 genetic variants are an issue in hyper-
calcemia [2503, 2504]�

9.7.49  P450 26A1

9.7.49.1  Sites of Expression
P450 26A1 is expressed mainly in liver [2505–
2507]� The level is not high, i�e�, highest value 
2�8 pmol/mg microsomal protein [2508]� Expres-
sion of P450 26A1 at the mRNA level is also 
considerable in brain, lung, and artery, with the 
highest brain levels being in the cerebral cortex, 
hippocampus, and temporal lobe [2506]� Ex-
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pression is also seen in testis and uterus� At the 
protein level, the highest expression was in lung, 
pancreas, and uterus [2506], with some in adi-
pose, intestine, skin, and spleen�

P450 26A1 is present at an earlier stage of em-
bryonic development than P450 26B1 or 26C1 
[2509]�

9.7.49.2  Regulation
P450 26A1 is regulated by its substrate, retinoic 
acid, via RAR� Zhang et al� [2510] analyzed a 
2�2-kb 5-flanking region of the human CYP26A1 
gene and identified three conserved hexamet-
ric direct repeat -5 elements for RAR binding 
(RARE -1, -2, -3) and an RAR element half-site� 
The combined element was functional in HepG2 
cells� Their results suggest a cooperative model 
in which the binding to multiple RAR elements 
may account for the strong inducibility of P450 
26A1 in liver, possibly involving looping of the 
distal region to position it close to the transcrip-
tion start site [2510]�

RARα is considered to be the major RAR form 
responsible for the induction of P450 26A1 (and 
RARβ) in HepG2 cells [2507]� The PPARγ agonists 
proglitazone and rosiglitazone upregulated P450 
26A1 expression tenfold (in HepG2 cells)� Further 
work by Tay et al� [2507] indicated differences in 
the regulation of P450 26A1 and 26B1� The altera-
tion of P450 26A1 regulation by drugs may have 
relevance to therapy and drug safety [2507]�

A number of other chemicals have been re-
ported to regulate P450 26A1 in rodents and 
other experimental models [2507], although the 
relevance to humans has not been established�

9.7.49.3  Genetic Variation
In adult human liver, the levels of P450 26A1 are 
highly variable [2509], but this has been attribut-
ed to the variability of vitamin A intake� At least 
four alleles have been identified (http://www�
cypalleles�ki�se)� Two have been linked to lower 
activity [2511]�

9.7.49.4  Substrates and Reactions
Only two substrates of P450 26A1 are known, 
all-trans-retinoic acid and 9-cis-retinoic acid� 
The latter is a much poorer substrate for P450 

26A1 (but not for P450 26C1 [2509])� All-trans-
retinoic acid forms 4( S)-hydroxyretinoic acid 
[667]. Both ( R) (formed by some other P450s) 
and ( S)-4-hydroxyretinoic acid are substrates for 
P450 26A1, yielding 4-oxo-retinoic acid [667]� 
Other products are 4,18-dihydroxyretinoic acid 
and 4-oxo-18-hydroxyretinoic acid (plus 18-hy-
droxyretinoic acid) [667, 2509]�

Although all-trans-retinoic acid can be oxi-
dized by P450 3A subfamily enzymes and P450 
2C8, P450 26A1 is the predominant enzyme in-
volved in retinoic acid oxidation [2508]�

9.7.49.5  Structure
No crystal structures of P450 26A1 are available� 
A homology model based on P450 3A4 has been 
published [667]�

9.7.49.6  Inhibitors
There is interest in inhibition of endogenous reti-
noid degradation as an alternative to administra-
tion of retinoids [2512]� A number of inhibitors 
of P450 26A1 are known, the best ones contain-
ing imidazoles and triazoles, some having sub-
µM IC50 values� One novel approach is use of a 
vaccine targeting (mouse) P450 26A1 as an im-
munopreventive strategy to prevent breast carci-
noma� Selectivity between P450s 26A1 and B1 
(and C1) is an issue, although realistically inhib-
iting both (all three) is a part of the overall strat-
egy [2509, 2512–2520]� Gudas has shown a role 
of P450 26A1 in stem cell differentiation, and 
blocking P450 26A1 may be an approach in cell/
differentiation therapy to treat neurodegenerative 
diseases [2521]�

9.7.49.7  Clinical Issues
P450 26A1 has considerable relevance in devel-
opmental biology, at least in model organisms, 
because of the control of retinoid homeostasis� 
CYP26A1(−/−) mice show distinct malformations 
and lethality [2507]� P450 26A1 knockout em-
bryonic stem cells have been reported to exhibit 
reduced differentiation and growth arrest when 
retinoic acid is added [2522]�

Malfunction of P450 26A1 in retinoid homeo-
stasis is the major clinical issue� One study [2523] 
suggests a role of P450 26A1 genetic variation in 
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nonsyndromic bilateral and unilateral optic nerve 
aplasia� Genetic variation of P450 26A1 has been 
suggested to be involved in spina bifida [2524] 
and caudal regression syndrome [2525]� P450 
26A1 has been considered in the context of ab-
normalities of limb development [2526]�

9.7.50  P450 26B1

9.7.50.1  Sites of Expression
P450 26B1 was originally identified as a “sec-
ond” P450 family 26 gene in zebra fish and hu-
mans [2527], with a prominent brain localization 
[2528]� In contrast to P450 26A1, P450 26B1 is 
not expressed in human liver [2506]� Expression 
(at the mRNA level) is seen at the highest levels 
in brain (cerebellum, cerebral cortex, hippocam-
pus, temporal lobe), vein, artery, adipose, blad-
der, kidney, testis, and skin [2506]� At the protein 
level, the highest expression was seen in uterus, 
pancreas, lung, skin, and spleen, with some seen 
in intestine, adipose, and kidney [2506]�

During fetal development, levels in cephalic 
tissues are tenfold higher at days 57–100 than in 
later gestation (112–224 days)�

9.7.50.2  Regulation
As in P450 26A1, P450 26B1 is also induced 
by (all-trans)-retinoic acid [2505, 2509]� The 
transcription factors SOX9/SF-1 and FOXL2 
have been reported to be antagonistic regula-
tors of P450 26B1 during gonadal development 
(in mice) [2529]� Expression of P450 26B1 in T 
cells is inhibited by TGF-β [2530]� As with P450 
26A1, PPARγ agonists regulate P450 26B1 tran-
scription and a PPARγ antagonist (the latter ef-
fect in contrast to P450 26A1) [2507]�

9.7.50.3  Genetic Variation
Genetic variation is recognized in the CYP26B1 
gene� Possible linkages to Crohn’s disease [2531] 
and congenital limb deficiencies [2526] have 
been proposed�

9.7.50.4  Substrates and Reactions
The substrates and reactions are essentially the 
same as for P450 26A1; i�e�, all-trans-retinoic 

acid is oxidized to the 4- and 18-hydroxy prod-
ucts and the 4-alcohol is further oxidized to 
4-oxo derivatives [2509]� 9-cis-Retinol and other 
retinoids are poor substrates�

9.7.50.5  Structure
No crystal structure is available� At least one ho-
mology model has been published [2532]�

9.7.50.6  Inhibitors
As discussed under P450 26A1 (Sect� 7�49�6, vide 
supra), there is a general concept of giving drugs 
to block the metabolism of endogenous retinoids 
rather than administering retinoids themselves 
[2512]� Most inhibitors of retinoid oxidation 
have been developed as general inhibitors and do 
not distinguish between P450s 26A1 and 26B1 
[2512, 2515]�

9.7.50.7  Clinical Issues
Animal studies show that P450 26B1, like P450 
26A1, is important in development [2509]� Some 
possible outcomes of genetic variations are men-
tioned in Sect� 7�50�3� P450 26B1 plays a major 
role in retinoid metabolism and signaling in 
human aortic smooth muscle cells� The potential 
for inhibition has already been addressed�

9.7.51  P450 26C1

9.7.51.1  Sites of Expression
In contrast to the other P450 family 26 P450s, 
P450 26C1 appears to be expressed mainly dur-
ing embryonic development, at least in animal 
models [2509]� Sites of expression include hind-
brain, inner ear, first bronchial arch, tooth buds, 
and equatorial retina (of mice) [2533, 2534] 
However, low levels (of mRNA) can be detected 
in adult adrenal gland, lung, spleen, testis, and 
brain [2509, 2535]� Expression is also seen in 
keratinocyte cell lines treated with 9-cis- or all-
trans-retinoic acid [2509]�

9.7.51.2  Regulation
Relatively little information is available, particu-
larly in humans� As indicated above, in keratino-
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cyte cultures transcription is induced by retinoic 
acid [2509]�

9.7.51.3  Genetic Variation
Some maladies have been suggested to be linked 
to genetic variation in CYP26C1, including focal 
facial dermal dysplasia type IV [2536] and non-
syndromic bilateral and unilateral optic nerve 
aplasia [2523]�

9.7.51.4  Substrates and Reactions
P450 26C1 oxidizes both 9-cis- and all-trans-ret-
inoic acid to the 4-hydroxy, 4-oxo-, and 18-hy-
droxy products (and combinations) [2509, 2537]� 
These are inactivated (with regard to retinoid 
receptors) and are the same products formed by 
P450s 26A1 and 26B1 [2509]�

9.7.51.5  Structure
No information about the structure of P450 26C1 
is available�

9.7.51.6  Inhibitors
Blocking the metabolism of endogenous reti-
noids is considered an alternative to administra-
tion of retinoids� Some azoles are in development 
as inhibitors, but it is not clear if their selectivity 
towards individual 26C family P450s (or others) 
has been studied and reported yet [2509, 2538]�

9.7.51.7  Clinical Issues
The potential clinical issues related to P450 26C1 
have not been considered in detail but would in-
volve issues with retinoids, i�e�, lack of retinoid 
metabolism would lead to an overload of ret-
inoid-induced problems� As mentioned above 
(Sect� 7�51�3), some possibilities exist with ge-
netic variations in focal facial dermal dysplasia 
type VI and nonsyndromic bilateral and unilat-
eral optic nerve aplasia�

9.7.52  P450 27A1

This is a mitochondrial enzyme that was charac-
terized on the basis of two rather divergent cata-
lytic activities, the 25-hydroxylation of vitamin 
D3 (Fig� 9�29) and the oxidation of cholesterol at 

the C27 position (Fig� 9�31)� Thus, the enzyme 
bridges between hormone (vitamin D) and oxy-
sterol pathways, and the clinical relevance of 
P450 27A1 is considerable�

9.7.52.1  Sites of Expression
The enzyme is localized in liver mitochondria� 
Some confusion existed in the early literature 
because some animal species have liver micro-
somal vitamin D3 25-hydroxylases (e�g�, hog 
liver and kidney P450 2D25 [2540, 2541]), but 
not humans [2542]� The rat and human liver mi-
tochondrial P450 27A1 recombinant enzymes 
were clearly shown to catalyze both vitamin D3 
25-hydroxylation and the 27-hydroxylation of 
the side chains of cholesterol and several deriva-
tives [2543, 2544]�

Expression, at least at the mRNA level, has 
also been reported in leukocytes [2545], skin fi-
broblasts [2546], kidney [2547] (and fetal liver 
and kidney [2547]), and the arterial wall [2548]� 
Other sites (in humans) include the male repro-
ductive tract (round and elongated spermatids, 
vesicles within the caputepididymis, glandular 
epithelium of canda epididymis, seminal vesi-
cles, prostate, and spermatozoa [2448] and reti-
na pigment epithelial cells [2549, 2550])� P450 
27A1 has been detected in human liver using 
LC–MS [635]�

9.7.52.2  Regulation
Several aspects of regulation of the CYP27A1 
gene have been studied� In rats, the enzyme can 
be induced by gonadotropin [2551]� A hamster 
model showed downregulation of the gene in 
cholestatic liver [2539], although human P450 
27A1 (used in HepG2 cells) was not subject to 
negative feedback regulation [1730]�

Since the previous edition of this chapter 
[149], the literature has several additions, indi-
cating that regulation of expression is even more 
complex� Androgens upregulate expression in 
HepG2 cells, utilizing a region upstream from 
− 792 [2552]� Estrogens downregulate expres-
sion via both ER α and β pathways [2552]� Ex-
pression is also regulated by T Fβ1 [2553], RXR, 
and PPARγ pathways [2554, 2555], and PXR 
[2556] pathways� There is some discrepancy as to 
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Fig. 9.31  Bile acid synthesis from cholesterol [2539]� The steps shown with dashed arrows are tentative� (With kind 
permission from Springer Science + Business Media: [149], Fig� 10�18)
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the involvement of LXR [2554, 2555] in human 
macrophages� Phenobarbital induces P450 27A1 
[2557], although it is unknown if this involves 
PXR or CAR�

One report involves epigenetic control, i�e�, 
DNA methylation [1187]�

9.7.52.3  Genetic Variation
In “normal” human population, the variation in 
the steady-state P450 27A1 mRNA level was re-
ported to be ~ 25-fold, compared with 60-fold for 
P450 7A1 in the same study [1730]� However, 
at least two polymorphisms (≥ 1 % incidence, 
no dramatic effect) and 42 other genetic vari-
ants (rare alleles, usually debilitating) are known 
[2546, 2558]� Truncation mutations are known 
[2545], as well as splice variants [2559]� Defects 
in the CYP27A1 gene are associated with a condi-
tion known as cerebrotendinous xanthomatosis, a 
rare, autosomal recessive disorder characterized 
by accumulation of cholestanol and cholesterol in 
many tissues� The clinical manifestations include 
tendon xanthoma, premature cataracts, juvenile 
atherosclerosis, and a progressive neurological 
syndrome involving mental retardation, cerebel-
lar atoxia, pyramidal tract signs, myelopathy, and 
peripheral neuropathy [47, 2558]�

The known variants leading to cerebrotendi-
nous xanthomatosis have been reviewed [2560]� 
Mutation in the gene has been associated with 
fatal cholestasis in infancy [2561]� Variants have 
also been linked to susceptibility to amyotrophic 
lateral sclerosis [2562]�

9.7.52.4  Substrates and Reactions
Expanding on the previous discussion, P450 
27A1 catalyzes the 25-hydroxylation of vita-
min D3 (Fig� 9�29), 1α-hydroxyvitamin D3, vi-
tamin D2, and 1α-hydroxyvitamin D2 and also 
the 27-hydroxylation of cholesterol and several 
derivatives (Fig� 9�31) [2563, 2564]� The choles-
terol alcohols are further oxidized by the enzyme 
to aldehydes and then carboxylic acids [2565]� 
The available information suggests release of the 
intermediates in the pathway [2565]� The regi-
oselectivity of the enzyme is considered to be a 
function of the distance of the hydroxylation site 
to the end of the side chain [2566]�

More detailed analysis of the vitamin D3 re-
action has been done with E. coli recombinant 
P450 27A1, with evidence for the following 
products (from vitamin D3): 25-hydroxy, 26-hy-
droxy, 27-hydroxy, 24R,25-dihydroxy, 1α,25-
dihydroxy, 25,26-dihydroxy, 25-,27-dihydroxy, 
27-oxo, and an unidentified dehydrogenated 
product [2544, 2567]�

P450 27A1 occupies a place at the intersection 
of metabolism of vitamin D (a secosteroid) and 
sterol metabolism (Table 9�1), and perhaps be-
cause of this less than stringent substrate selectiv-
ity, the list of substrates and reactions continues to 
grow� 2α-Propoxy- and 2α(3-hydroxypropoxy)-
1α,25-dihydroxyvitamin D3 are substrates� 
Human P450 27A1 also converted 25-hy-
droxyvitamin D3 into 1α,25-dihydroxyvitamin 
D3 and 25,27-dihydroxyvitamin D3, as well as 
the conversion of 25-hydroxyvitamin D3 into 
4β,25-dihydroxyvitamin D3 [2568]� Thus, 4β-
hydroxylation was catalyzed�

In the retina, P450 27A1 catalyzed the conver-
sion of the oxysterol 7-ketocholesterol to 27-hy-
droxy and 27-carboxy products [2549]� Further 
work by Pikuleva and her associates showed that 
several other cholesterol precursors (in addition 
to Δ7-dehydrocholesterol) are substrates (for 
27-hydroxylation), including desmosterol, zymo-
sterol, and lanosterol [2569]� The dehydrocholes-
terol products (25-hydroxy and 26/27-hydroxy) 
modulate LXR activity [2570]� Progesterone is a 
substrate, undergoing reduction of the C-20 keto 
group (to an alcohol) [2571]�

A study of the selectivity of sterol analogs as 
substrates indicates that more polar derivatives 
(e�g�, cholesterol sulfate) are better substrates 
[2572]. Sterols with a 3-oxo-Δ4 structure were 
found to be hydroxylated at higher rates than 
3-hydroxy-Δ5 analogs� The very high activity 
with the cholestanol precursor 4-cholesten-3-one 
may be of importance in the accumulation of 
cholestanol in patients with cerebrotendinous 
xanthomatosis disease�

9.7.52.5  Structure
Some information about the roles of amino acids 
can be inferred from the knowledge of alleles in-
volved in cerebrotendinous xanthomatosis; many 



6639 Human Cytochrome P450 Enzymes

of these proteins were unstable when attempts 
were made at heterologous expression [2573]� 
Other work by Pikuleva et al� [2574] with the pu-
tative F and G helices has shown differences due 
to substitution of Phe-207, Ile-211, Phe-215, Trp-
235, and Tyr-238� Interestingly, the I211K and 
F215K mutations affected the regioselectivity and 
enabled the enzyme to catalyze C–C bond cleav-
age� Further work with mutants in this region led to 
weaker association of P450 27A1 with the mem-
brane, and some of the nonconservative changes 
yielded impaired catalytic activity [2575]�

Human P450 27A1 can be contrasted with 
porcine P450 2D25, which also catalyzes vitamin 
D3 25-hydroxylation� The only human subfam-
ily 2D P450 enzyme is P450 2D6, which does 
not have activity towards vitamin D� Further, 
changing a set of residues of porcine P450 2D25 
to their counterparts in (human) P450 2D6 abol-
ished the activity towards vitamin D3 [2576]�

No structures have yet appeared but more 
models have, some based on site-directed muta-
genesis work [2483, 2577, 2578]�

9.7.52.6  Inhibitors
Apparently, little specific work has been done on 
inhibition of this enzyme� Inhibition of this en-
zyme by a drug would probably be undesirable�

9.7.52.7  Clinical Issues
Low serum 25-hydroxyvitamin D3 concentrations 
have been reported in a variety of other medical 
conditions and are considered to be a potential 
problem [2579]� Although cerebrotendinous xan-
thomatosis is linked with defective P450 27A1 
[47], there are a number of enigmas about the eti-
ology� A heterozygote showed frontal lobe demen-
tia and abnormal cholesterol metabolism [2580]� 
Compound heterozygous mutations have also 
been reported to cause a variation of cerebroten-
dinous xanthomatosis [2558]� P450 7A1 may also 
play a role in the etiology of the disease [1778]�

Björkhem [2581] has recently reviewed the 
issue of whether oxysterols (e�g�, hydroxycho-
lesterol) control cholesterol homeostasis� Stud-
ies with rodents and cultured cells have not been 
very clear to date� For instance, disruption of the 
mouse Cyp21a1 gene yielded reduced bile acid 

synthesis but no change in levels of cholesterol or 
1α,25-dihydroxyvitamin D3 [2582]� P450 27A1 
is constitutively expressed in the normal artery 
wall and is substantially upregulated in athero-
sclerosis, and the possibility has been raised that 
P450 27A1 may be a protective mechanism for 
removing cholesterol [2548]� Further, immune 
complexes and IFN-γ decreased P450 27A1 ex-
pression in human aortic endothelial cells, pe-
ripheral blood mononuclear cells, monocytes-
derived macrophages, and a human monocytoid 
cell line, suggesting downregulation of P450 
27A1 to maintain cholesterol homeostasis in the 
arterial wall [2583]�

In Cyp27a1-/- mice, a dramatic increase in the 
level of P450 3A enzymes was seen; some ste-
rols accumulate and induce via the mouse PXR 
system [2584]� P450 3A4 has some side-chain 
hydroxylation activities towards cholesterol-
derived sterols [1328]� However, elevated P450 
3A4 activity was not increased in cerebrotendi-
nous xanthomatosis [1328], indicating a differ-
ence in the murine and human systems� Recently 
Escher et al� [2585] have reported that cholester-
ol efflux in CHOP cells is enhanced by heterolo-
gous expression of human P450 27A1, and the 
authors suggest this as part of a protective sys-
tem against atherosclerosis� The basis is probably 
the ability of 27-hydroxycholesterol to act as an 
endogenous ligand for the LXR in cholesterol-
loaded cells [2586]�

In considering the general question of whether 
oxysterols (e�g�, 27-hydroxycholesterol) control 
cholesterol homeostasis, the hypothesis is still 
open and the rodent data are not totally clear 
here� Björkhem [2581] has made the point that 
humans lacking P450 27A1 have normal circu-
lating levels of cholesterol�

Reference has already been made to genetic 
variants in Sect. 7.52.3 ( vide supra)� A genetic 
association with obesity traits has been consid-
ered [2587], as well as with coronary artery dis-
ease [2588]� The area of cerebrotendinous xan-
thomatosis has been reviewed recently, including 
P450 27A1 [2589]�

The production of 27-hydroxycholesterol by 
(P450 27A1) has been linked to breast cancer 
pathophysiology, in that it serves as an ER and 
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LXR ligand and increases ER-dependent growth 
and LXR-dependent metastasis in a mouse mod-
els of breast cancer [2590]� Accordingly, lower-
ing circulating cholesterol levels and inhibiting 
P450 27A1 have been proposed as mechanisms 
to treat breast cancer�

9.7.53  P450 27B1

As discussed earlier, vitamin D is an important 
hormone� A critical step in activation is 1α-
hydroxylation [2591] (Fig� 9�29)� Early work es-
tablished the P450 nature of the enzyme, localized 
in kidney mitochondria [2592]� Subsequent work 
demonstrated that the 1α- and 24-hydroxylation 
activities could be attributed to different enzymes 
[2593, 2594]� Some early work had suggested 
that the 1α- and 25-hydroxylation activities were 
associated with the same enzyme [2595], but 
later work showed that these activities were due 
to P450 27B1 and 27A1, respectively�

9.7.53.1  Sites of Expression
The cloning of the human cDNA for what is 
now known as P450 27B1 established kidney 
mitochondrial P450 27B1 as the vitamin D3 1α-
hydroxylase [2596]�

P450 27B1 is expressed in many parts of the 
human kidney, including the distal convoluted 
tubule, the cortical and medullary part of the col-
lecting ducts, and the papillary epithelia [2597]� 
Lower expression was observed along the thick 
ascending limb of the loop of Henle and Bow-
man’s capsule� Some, weaker expression was 
observed in glomeruli or vascular structures� In 
normal humans, the distal nephron is the predom-
inant site of expression [2597]�

P450 27B1 is also expressed in many extrare-
nal sites (human) where it is involved in vitamin 
D-related activities, including skin (basal kerati-
nocytes, hair follicles), lymph nodes (granuloma-
ta), colon (epithelial cells and parasympathetic 
ganglia), pancreas (islets), adrenal medulla, brain 
(cerebellum and cerebral cortex) [2598], placenta 
(decidual and trophoblastic cells) [2598–2600], 
cervix [2601], and parathyroid glands [2602]� 
Thus, P450 27B1 may be an intracrine modula-

tor of vitamin D function in peripheral tissues 
[2598]� The expression of P450 27B1 was el-
evated in parathyroid adenomas but attenuated 
in carcinomas, relative to normal parathyroid 
tissue [2602]� P450 27B1 has also been found 
in (human) and endometrial tissue [2603]� For 
reviews on the significance of extrarenal P450 
27B1, see [2604, 2605]�

9.7.53.2  Regulation
Although the CYP27B1 gene is only 5 kb in size 
[2606], the regulation is quite complex� The pro-
moter is in the  − 85/+ 22 region and requires a 
functional CCATT element� Three consensus 
AP-1 sites are upstream [2607]� Enzyme activ-
ity has long been known to be stimulated by low 
phosphorus diets (in animal models) [2608], and 
more recently this phenomenon has been linked 
to a growth hormone mechanism [2609, 2610]; 
its relevance in humans is not known�

Complexity is seen in different models� Para-
thyroid hormone-related protein and Ca2 + have 
conflicting actions in a rude rat model of humoral 
hypercalcemia of malignancy [2611]� In differ-
entiated Caco cells, there is upregulation of P450 
27B1 expression by 1α,25-dihydroxyvitamin D3 
and EGF but downregulation in less differentiat-
ed Caco cell lines [2446]� P450 27B1 is regulated 
by proinflammatory cytokines in human tropho-
blasts [2612]� Immune regulation of P450 27B1 
has been reported in monocytes [2613], and ure-
mia downregulated P450 27B1 in monocytes 
[2614]� Gene amplification (and splice variants) 
has been reported in gliobastoma cells [2615]� A 
number of growth factors have been reported to 
regulate (mostly suppress) P450 27B1 expres-
sion, including growth factor independent-1 
(GFI-1) [2616], TGFβ [2617], nuclear recep-
tor 4A2 and CIEBPβ [2618], thyroid hormone 
[2619], and NFκB [2620]�

Regulation of P450 27B1 expression by (the 
product) 1α,25-dihydroxyvitamin D3 has been re-
viewed [2621]� The product downregulates P450 
27B1 in colon cells [2456, 2622]� Part of the mech-
anism has been attributed to hypermethylation 
[2623], although increased copy number (and not 
hypomethylation) has been identified as the cause 
of overexpression in colorectal cancer [2464]�
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9.7.53.3  Genetic Variation
Another aspect of regulation of P450 27B1 is 
genetic; P450 27B1 deficiency results in type I 
vitamin D-dependent rickets [2624]� The genet-
ics have been established in more than 20 vari-
ants [2625, 2626]� At least 13 missense variants 
have been observed, none of which encode an 
active protein� Some of the mutants are splicing 
defects [2627]� Some variants in CYP27B1 are 
also involved in what is termed pseudovitamin 
D-deficiency rickets [2628, 2629]�

Since the last edition [149], the genetic in-
formation has greatly expanded� The number of 
variants has increased, and CYP27B1 associa-
tions have been considered with diabetes [2630–
2632], brain and skin cancers [2633], Graves’ 
disease, Addison’s disease, and Hashimoto’s thy-
roiditis [2631, 2634–2636], congestive heart fail-
ure [2637], and multiple sclerosis [2638–2640]�

The biochemical effects of the variants are 
reviewed in [2623, 2641]� Perhaps the most bio-
logically plausible relationships of P450 27B1 
variants are with rickets disease type I [2642] and 
fracture risk in the elderly [2643]�

9.7.53.4  Substrates and Reactions
P450 27B1 can catalyze the 1α-hydroxylation 
of both 25-hydroxy and 24( R),25-dihydroxyvi-
tamin D3 [2475, 2644] (Fig� 33)� The intrinsic 
activity (catalytic efficiency, kcat/Km) for the re-
combinant human enzyme is better for 24( R),25-
hydroxy vitamin D3, but this does not mean that 
this is the favored substrate in the cell because of 
the balance of vitamin D metabolites regulated 
by P450s 24A1 and 27A1 [47]� Apparently, the 
25-hydroxy group is an obligatory requirement 
[2470, 2644]�

In addition, 19-nor vitamin D3 analogs are 
substrates [2480]� The products of the reactions 
of P450 11A1 on vitamin D3 are also substrates 
[2645, 2646]�

9.7.53.5  Structure
No crystal structures have been published�

Some information is available from the natural 
mutants of P450 27B1, even if the basis for loss 
of activity is not obvious� Inouye’s group [2573] 
has provided evidence that Arg-107, Gly-125, 

and Pro-497 are not simply involved in binding 
substrate but required for proper folding� It was 
also suggested that Arg-389 and Arg-453 are in-
volved in heme binding and that Asp-164 stabi-
lizes the bundle of the D, E, I, and J helices� Thr-
321 is suggested to be involved in O2 activation 
[2573]� The natural mutants L343F and E189G 
show partial activity and the individuals bearing 
these have only marginal impairment [2647]�

Several homology models have been proposed 
[2476, 2648, 2649]�

9.7.53.6  Inhibitors
Little has been done because impairment of this 
enzyme is a clinical problem� Some thiavitamin 
D analogs have been evaluated in animal models 
[2650]�

9.7.53.7  Clinical Issues
The significance of the enzyme is due to the 
pleiotropic actions of the active form of vitamin 
D, 1α,25-dihydroxyvitamin D3, which include 
regulation of calcium homeostasis, control of 
bone cell differentiation, and modification of im-
mune responses [2651]� The 1α-hydroxylation 
reaction is rate limiting and hormonally con-
trolled� The expression of the gene is usually 
tightly regulated ( vide supra), but gene defects 
are responsible for type I vitamin D-dependent 
rickets [2652]� At least 30 different variants are 
known in patients [2624, 2653]� Even the “mild” 
phenotype of type I rickets is due to deficiency in 
P450 27B1 [2654]�

Cyp27b1-knockout mice have been char-
acterized and show a typical rickets phenotype 
[2655]� Another knockout mouse model showed 
skeletal, reproductive, and immune dysfunction 
[2656]� Rickets was also observed in a condition-
al knockout model [2657]�

Patients with severe renal insufficiency show 
attenuated 1α-hydroxylation activity [2658]�

Another aspect of P450 27B1 research in-
volves cancer� Increased activity was reported in 
parathyroid tumors [2659]� Some splice variants 
of the CYP27B1 gene (coding for truncated pro-
teins) were amplified in human (brain) gliomas 
[2660]� Reports have also appeared on the rela-
tionship of P450 27B1 expression to various bio-
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logical processes in human non-small cell lung 
carcinomas [2443], colon tumors [2661–2663], 
and prostate cancers [2664, 2665], generally with 
decreased expression in tumors�

Finally, 1α,25-dihydroxyvitamin D3 is used 
to treat psoriasis, and patients can develop re-
sistance� An experimental model for therapy 
involves enhancement of the endogenous pro-
duction of 1α 25-dihydroxyvitamin D3 by gene 
therapy [2666]�

The potential disease relevance of several 
genetic variations has already been presented in 
Sect. 7.53.3 ( vide supra)� Since the previous edi-
tion of this chapter [149], vitamin D 25-hydroxy-
lase deficiency has been reviewed [2667, 2668]� 
Studies with CYP27B1-knockout mice have also 
been reviewed [2669]� Rickets (type I) still ap-
pears to be the most relevant issue [2649]�

9.7.54  P450 27C1

9.7.54.1  Sites of Expression
P450 27C1 is expressed, at least at the mRNA 
level, in liver and a number of other tissues, in-
cluding kidney, pancreas, lung, adrenal, salivary 
gland, and more [2670]� It is of interest to note 
that rats and mice do not have this gene�

The sequence identity to P450s 27A1 and 
27B1 indicate that it should be a mitochondrial 
P450, although direct evidence is not available�

9.7.54.2  Regulation
No information is available about the regulation 
of P450 27C1�

9.7.54.3  Genetic Variation
No information has been published�

9.7.54.4  Substrates and Reactions
The protein was expressed in E. coli using an 
E. coli-optimized cDNA [2670]� The purified 
enzyme, reconstituted with recombinant adreno-
doxin and NADPH-adrenodoxin reductase, did 
not catalyze the oxidation of cholesterol, vitamin 
D3, 1α-hydroxyvitamin D3, or 25-hydroxyvita-
min D3� In other studies, none of a test set of pro-
carcinogens [350] was activated to a genotoxic 
product�

9.7.54.5  Structures
No structural information is available�

9.7.54.6  Inhibitors
No inhibition results have been published�

9.7.54.7  Clinical Issues
P450 27C1 was a high-frequency gene in an anal-
ysis of factors involved in avascular necrosis of 
the femoral head [2671]�

9.7.55  P450 39A1

9.7.55.1  Sites of Expression
Much of our knowledge of this enzyme is still 
based on animal models� Russell and his asso-
ciates used expression cloning to characterize a 
cDNA coding for a 24-hydroxycholesterol 7α-
hydroxylase [2672]� Expression in the liver ap-
pears constitutive and abundant� Expression has 
also been detected in the ciliary nonpigmented 
epithelium of (bovine) eye [2673]� Those studies 
have not really been extended to humans [2674]�

9.7.55.2  Regulation
Very little information is available� One study 
showed that carbamazepine, a barbiturate-like in-
ducer (using PXR and CAR), upregulated hepatic 
P450 39A1 mRNA in patients [2675]�

9.7.55.3  Genetic Variation
At least three variants have been report-
ed ( rs7761731 (N324K), rs93981468, and 
rs953062) [2676, 2677]�

9.7.55.4  Substrates and Reactions
All of our knowledge is still based on the 
presumed similarity to the mouse enzymes 
[2672]� That expressed enzyme oxidizes (7α-
hydroxylation) 24S-hydroxycholesterol much 
more efficiently than 25- or 27-hydroxycholes-
terol� These results suggest that the enzyme is 
highly selective for 24S-hydoxycholesterol (a 
product of P450 39A1)�

9.7.55.5  Structure
No structures or homology models have been re-
ported�
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9.7.55.6  Inhibitors
No inhibitors have been reported�

9.7.55.7  Clinical Issues
Interestingly, at least two reports associate CY-
P39A1 SNPs with changes in drug metabolism 
[2676, 2677]� However, in neither case was the 
enzyme actually shown to be involved in the 
metabolism, and one report [2676] has a caveat 
about a possible artifact with a SNP for a trans-
porter� It is possible that P450 39A1, like P450 
46A1 ( vide infra), may oxidize drugs, but pres-
ently there is no other evidence for this�

9.7.56  P450 46A1

9.7.56.1  Sites of Expression
P450 46A1 is characterized as a brain P450� It 
was identified first (in mice) in a search for extra-
hepatic enzymes catalyzing the 24-hydroxylation 
of cholesterol [2678, 2679]� P450 46A1 is also 
expressed in neurons of the neural retina [2680]� 
In humans, there is a lack of enzyme and prod-
uct (24-hydroxycholeseterol) in retina but not 
in brain [2681]� A heavy isotope (full protein) 
method was utilized in quantitating P450 46A1 
in human brain (temporal lobe) and retina (0�1–
0�4 pmol/mg tissue protein) [2682]� None was 
detected in retinal pigment epithelium�

9.7.56.2  Regulation
One interesting aspect of P450 46A1 is the re-
ported learning disability in CYP46A1-knockout 
mice [2679]� Abnormal induction was reported in 
glial cells of Alzheimer’s disease [2683]� Tran-
scriptional regulation in brain involves Sp fac-
tors (Sp3, Sp4) [2684]� Part of this process may 
involve histone deacetylation [2685]� Neuronal 
differentiation alters the ratio of Sp transcription 
factors required for the P450 46A1 promoter� 
Chromatin-modifying agents increase transcrip-
tion of P450 46A1, i�e�, the demethylating agent 
5ʹ-aza-2ʹ-deoxycytidine induced P450 46A1, 
acting synergistically with trichostatin A in ac-
tivating transcription� Further work showed that 
this reagent (azadeoxycytidine) induced gene 
expression in a DNA methylation-independent 
mechanism, decreasing Sp3/histone deacetylase 

binding to the proximal promoter [2686]� Oka-
daic acid has been reported to inhibit the tricho-
statin A-mediated expression of P450 46A1 in an 
ERK1/2-Sp3-dependent pathway [2687]�

9.7.56.3  Genetic Variation
Variations in the CYP46A1 gene have been of in-
terest in large part due to the possible relevance 
to Alzheimer’s disease ( vide supra) [2388, 2683, 
2688–2712]� However, not all studies agree that a 
relationship exists [2713–2716]� A meta-analysis 
has been published [2717]� Genetic polymor-
phisms have been associated with age-related 
macular degeneration [2718]�

9.7.56.4  Substrates and Reactions
Cholesterol 24-hydroxylation is the main reac-
tion ascribed to P450 46A1 [2679]� However, 
several other sterols are also substrates, including 
24( S)-hydroxycholesterol (25- and 27-hydroxyl-
ations), 7α-hydroxycholesterol, cholestanol, pro-
gesterone, and testosterone [2719]� Some drugs 
are also substrates [2719]� 7-Dehydrocholesterol 
has been reported not to be a substrate [2720], but 
if not, then the source of 24-hydroxy-7-dehydro-
cholesterol is unclear� Recently we have found 
that recombinant human P450 46A1 catalyzes 
the 24- and 25-hydroxylation of 7-dehydrocho-
lesterol and the 24S,25-epoxidation and 27-hy-
droxylation of desmosterol, with efficiencies 
similar to cholesterol [2721]�

Interestingly, P450 46A1 binds and oxidizes a 
number of drugs [2719, 2722]� This is an interest-
ing phenomenon in that most of the P450s that ap-
pear to be specialized for oxidation of endogenous 
substrates do not use xenobiotics as substrates� 
The overall in vivo contribution of P450 46A1 to 
the metabolism of these drugs, even in brain, is 
unknown� Further, P450 46A1 activity (towards 
cholesterol) is stimulated by binding to some 
drugs (e�g�, efavirenz, acetaminophen, mirtazap-
ine, galantamine), and the in vivo relevance of this 
effect has been shown in a mouse model [2723]�

9.7.56.5  Structure
X-ray crystal structures of P450 46A1 have been 
reported in the absence and presence of the sub-
strate cholesterol 3-sulfate [2722, 2724]� As with 
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many other P450s, there is a major conformation-
al change upon binding�

Structures have also been reported with drugs 
bound [2722, 2725, 2726]� Some of these are 
substrates�

9.7.56.6  Inhibitors
Largely due to the studies that involved drug 
binding to P450 46A1, a number of inhibitors 
have been identified, including fluvoxamine 
[1962, 2725, 2727]� In a mouse model, in vivo 
inhibition was reported [2727]�

With P450 46A1, there appears to be no im-
petus to develop an inhibitor, in light of the is-
sues� What is a more important issue is avoiding 
inhibition, given the literature on the drugs that 
do this� Several azoles used in the clinic (e�g�, 
posaconazole, voriconazole, clotrimazole) are 
tightly bound [2726]�

9.7.56.7  Clinical Issues
The major clinical issues are the possible genetic 
links to Alzheimer’s disease ( vide supra) [2712, 
2728–2730] and glaucoma [2708]� Other issues 
are related to brain injury [2731, 2732]� P450 
46A1 has also been considered in relation to dis-
ease manifestation of acute autoimmune enceph-
alomyelitis (actually the level of 24-hydroxycho-
lesterol) [2733]�

9.7.57  P450 51A1

Lanosterol is an important intermediate in cho-
lesterol synthesis, and 14α-demethylation is es-
tablished as a step in the pathway� Yoshida’s lab-
oratory had studied the yeast enzyme for many 
years and then demonstrated the reaction in rat 
liver microsomes in 1994 [2734]� Subsequently 
the reaction was also demonstrated in rat brain 
microsomes [2735]�

The literature associated with P450 51A1 is 
largely devoted to the enzyme in parasites and 
to developing approaches to inhibition to treat 
diseases� The information regarding the human 
enzymes is more limited, although now there is 
significant regulatory and structural information�

9.7.57.1  Sites of Expression
Waterman and Rozman identified the human 
CYP51A1 gene and two pseudogenes [2736]� 
mRNA blot analysis showed the highest levels in 
testis, ovary, adrenal, prostate, liver, kidney, and 
lung� In mouse testis, P450 51A1 was localized in 
both round and elongated spermatids [2737]� The 
enzyme is also found in (rodent) oocytes [2738]�

9.7.57.2  Regulation
With regard to regulation of the human gene, 
primer extension studies indicated predominant 
transcription initiation sites in liver, lung, and 
kidney, and placenta 250- and 249-bp upstream 
from the translation start site and a second major 
site at − 100 bp, with the absence of TATA and 
CAAT patterns and a GC-rich sequence in the 
promoter region [2736]� Multiple (rat) testis-
specific transcripts arise from differential poly-
adenylation site usage [2739]�

In human adrenocortical H295R cells (in cul-
ture), cholesterol deprivation led to a 2�6–3�8-
fold induction of P450 51A1 mRNA, which was 
suppressed by the addition of 25-hydroxycho-
lesterol [2740]� In the liver and other somatic 
tissues, the P450 51A1 gene is regulated by a 
sterol/SREBP-dependent pathway [2741]� In tes-
tis, cAMP/cAMP-responsive element modulator 
CREM1-dependent regulation predominates� Sp1 
functions to maximize the sterol regulatory path-
way of P450 51 [2742]�

Insulin is an essential factor in “basal” ex-
pression of P450 51A1 in rat liver, with possible 
involvement of SREBP-1c [2743]� In a porcine 
vascular endothelial cell model (and in arterial 
wall), LDLs downregulated P450 51A1 through 
an SREBP-2 mechanism [2744]�

P450 51A1 has been identified as an early 
response gene [2745]� Hughes et al� [1301] re-
ported that Dap1/PGRMC1 binds and regulates 
mammalian P450 51A1 (and 3A4), based on 
work in a yeast model� This result was confirmed 
for P450 51A1 in mammalian cell culture (HEK 
293 and HepG2 cells) [1302]�

9.7.57.3  Genetic Variation
The enzyme is also found in (rodent) oocytes 
[2738]�
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Rozman and her associates have analyzed ge-
netic variations and reported that the P450 51A1 
gene contains fewer variants than any other 
human P450 gene [2746, 2747]� This may be re-
lated to the importance of this enzyme; i�e�, ab-
normalities might be lethal�

9.7.57.4  Substrates and Reactions
Stimulation of human P450 51A1 activity by cy-
tochrome b5 in a reconstituted system has been 
reported by Kelly’s laboratory [2748]�

The normal mammalian substrate for P450 51A1 
is lanosterol [2749], with the 14α-demethylation 
process proceeding in what are assumed to be 
three consecutive steps, as with some other P450s, 
e�g�, 11A1, 17A1, 19A1 (Fig� 9�22)� Interestingly, 
both human and yeast ( Candida albicans) P450 
51A1 showed relatively little selectivity among a 
closely related group of analogs [2749]� It is also 
interesting to note that even though this P450 has 
a relativity defined role in a physiological process, 
the kinetic parameters are relatively poor among 
P450s ( kcat/Km 300 M− 1/s) [2749]�

9.7.57.5  Structure
Three X-ray crystal structures of human P450 
have been reported, ligand-free and with the anti-
fungal drugs ketoconazole and econazole [2750]� 
As observed with many other P450s, a substan-
tial conformational change in the enzyme occurs 
on binding ligand� In this case, the changes are in 
B-helix and F–G loop regions� Azole binding oc-
curs mainly through hydrophobic residues in the 
active site� Presumably, similar changes would 
occur upon binding of the substrate lanosterol�

9.7.57.6  Inhibitors
Most of the interest in inhibition has been with 
fungal P450 51, as a target for antimycotic drugs� 
The goal is to select candidate drugs inhibitory to 
fungal P450 51 but not human P450 51�

Some work on the interaction of azoles with 
human P450 51A1 has been published [2751]� 
Although human P450 51A1 has been suggested 
as a target for cholesterol-lowering drugs, appar-
ently little has been done and potential toxicity 
due to the steroidogenic and potential germ cell 
side effects ( vide supra) could be an issue�

A comparison of inhibitors of human and 
Candida albicans P450 51A1 with a series of 
azoles has been reported [2752], and some more 
inhibitors have been considered regarding block-
ing cholesterol synthesis [2753]�

9.7.57.7  Clinical Issues
Most of the work discussed here is from experi-
mental studies on the possible role of P450 51A1 
in reproduction, and the translation of phenom-
ena from animal models to humans is still some-
what speculatory� However, the very high level 
of P450 51A1 expression in postmeiotic haploid 
spermatids is striking� The action of P450 51A1 
is proposed to lead to the production of signaling 
steroids in haploid germ cells [2754]� Meiosis-
activating substances (MAS) are produced by 
14-reduction of the products of the action of P450 
51A1 on lanosterol [2754]� Follicular fluid MAS 
(FF-MAS) is formed from lanosterol in rat sper-
matids [2755]� Yoshida’s group has reported go-
nadotropin-dependent expression of P450 51A1 
in rat ovaries and the product of MAS [2756]�

The reaction and possible physiological sig-
nificance of the system in reproduction have been 
reviewed recently by Rozman [2757]� Leidig 
cells and acrosomes of spermatids have the high-
est P450 51A1 levels, and primary mouse oocytes 
and granulose cells also contain P450 51A1� 
MAS may have a role in fertilization [2757]�

As mentioned earlier, P450 51A1 deficiency 
has been considered in the context of Antley–Bix-
ler syndrome [2758], and CYP51A1-knockout 
mice show a resemblance to this syndrome [2759]�

9.8  Conclusions and Future Issues 
with Human P450

Having just celebrated the 50th anniversary of 
the discovery of P450 [2760], one can look back 
on the success in the area of P450s and medicine� 
The attack on the human P450s did not start in 
earnest until 20 years after the original discov-
ery of P450 but has proven to be a remarkable 
success story in the translation of discoveries in 
basic science� Today we are generally capable of 
understanding most aspects of (oxidative) drug 
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metabolism and even predicting it based on in 
vitro experiments� Medicinal chemists have logi-
cal paths to improve human pharmacokinetics� 
Steroid metabolism can largely be understood at 
a genetic level, even if the basis for loss of func-
tion in each case is not yet known�

Pharmacists can avoid many adverse drug–
drug interactions based on knowledge—or elec-
tronic histories—of P450 selectivities�

Having accomplished all of this, what does 
the future hold for P450 research? Clearly, there 
are still many basic questions, many of which 
are general questions about P450 function� For 
instance, the role of cytochrome b5 in the P450 
17A1 17,20-lyase reaction is not solved� More 
than half of the human P450s do not have crystal 
structures, and some of these will be problematic 
until more substrates are discovered� Following 
are four of the more translational areas in which 
P450 research can be applied and is needed�

9.8.1  Orphan P450 and Their 
Reactions

As pointed out in Table 9�1 and the description 
of individual P450s, relatively little information 
is still available about this group of the human 
P450s� Some substrates are being found, both 
endogenous and xenobiotic, but some of these 
P450s still have no real substrate at all (e�g�, 
20A1)� There is no compelling evidence that 
these P450s make major contributions to the me-
tabolism of many drugs (with some occasional 
exceptions [1214])� Some interesting reactions 
with endogenous compounds have been identi-
fied, but exactly what their physiological impor-
tance is remains unknown� The approaches in this 
area are difficult, but the annotation of functions 
of genes is probably one of the most important 
aspects of biochemistry and biology�

9.8.2  Pharmacogenetics and Pharma-
cogenomics

Advances in recombinant DNA technology, in-
cluding the completion of the Human Genome 
Project, have made it possible to rapidly map and 

screen for SNVs in individuals� Knowledge of 
P450 SNVs was seen as a major aspect of “per-
sonalized medicine” [2761]� However, the de-
velopment of this area has been somewhat slow 
since 2000, when “personalized medicine” was 
touted as “just around the corner�” At this time, 
there is still no drug on the market for which the 
US Food and Drug Administration or similar 
agencies in other countries require genetic tests 
[782]� More recently, some hospitals and medical 
centers are doing some SNV analysis for a few 
drugs� As an example, at the author’s own institu-
tion (Vanderbilt), CYP2C19 analysis is used with 
administration of clopidogrel, in order to predict 
which patients will respond [782, 848–854]� 
More tests like this will probably follow in the 
future� (Of course, genotype analysis is already 
extensively used in drug discovery and develop-
ment, mainly to avoid drug candidates that might 
show highly variable pharmacokinetics�)

The major issues in the implementation are 
added costs (although one can argue that SNV 
analysis is a cost-effective investment and could 
reduce hospital stays) and the limited number 
of proven successes� The author’s own opinion 
is that there will be more progress, particularly 
with drugs used in oncology, but exactly how fast 
the field develops is still a matter of speculation�

9.8.3  P450s and Cancer Susceptibility

As mentioned previously, carcinogen metabo-
lism has been one of the drivers for the P450 
field� There is strong evidence that the P450 com-
position can strongly influence chemical carcino-
genesis in experimental animal models [2762], 
reinforced with transgenic mouse models [1441]�

Nevertheless, there is still relatively lim-
ited evidence that variations in P450 influence 
cancer risk in humans� As mentioned earlier 
(Sect� 7�2�7), high P450 1A2 levels can influence 
colon cancer risk, but only when coupled with an 
N-acetyltransferase polymorphism and high in-
take of well-done meat [132]� Although a number 
of P450–cancer relationships have been proposed 
[108, 109, 123, 1079–1087, 2763, 2764], the evi-
dence is still limited� The difficulty in establish-
ing relationships results from the lack of defined 
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exposure data available in most cases and the 
long time period needed to develop cancer� At the 
molecular level, many P450s not only activate 
carcinogens but also detoxicate them as well, 
e�g�, aflatoxin B1 [1331] (Figs� 9�9 and 9�10)�

One issue is that epidemiology studies are 
often initiated in the absence of any information 
regarding relevant substrates and reactions, and 
(not surprisingly) weak associations are found 
and are difficult to repeat� Clearly, more innova-
tive approaches are needed to address the issues�

9.8.4  P450 and Chronic Diseases

In addition to cancer (and endocrine and drug in-
teractions), there is evidence that human P450s 
can influence chronic diseases (Table 9�3)� Sev-
eral P450s, including those in the 2C, 2J, 4A, 
and 4F subfamilies, have been proposed to be in-
volved in hypertension, as judged by both basic 
models and epidemiological studies [2765]� Epi-
demiological studies may suggest a role of P450 
2D6 in Parkinson’s disease [953], although the 
relationship probably has limited support�

Although a degree of skepticism is necessary 
when considering translational reports regard-
ing P450, what we know about the P450s does 
argue that we still have important relationships to 
discover� Several of products of the sterol-metab-
olizing enzymes are generally powerful biologi-
cal mediators (e�g�, oxysterols that are ligands of 
nuclear receptors [1715, 1716, 1749])� As in the 
case of cancer, the differences in life span etc� 
may be subtle and difficult to detect� Again, new 
strategies are needed in this area�

My discussion of research needs in the P450 
field has been restricted here to the translational 
aspects of human P450 research� For more con-
sideration of the present state and future direction 
of P450 research in general, see [2760]�

9.9  Some Final Thoughts

Reviewing the progress in research on human 
P450s in the past 10 years is exciting but also 
humbling, in that even what I consider to be a pro-
ductive laboratory of my own contributed < 1 % 

of that literature� After dealing with all 57 human 
P450 genes (yielding about the same number of 
proteins, i�e�, see P450s 2A7, 4F3), a few major 
“take-home” messages can be summarized:

We still have more to learn about some chemi-
cal mechanisms (e�g�, C-C cleavage), even some 
that have been thought to be firmly established�

The number of X-ray crystal structures of 
human P450s is rather amazing (Table 9�1)� 
Nothing seems impossible for the next 10 years� 
There is a problem in that some P450s do not 
have substrates yet, and the usefulness of an unli-
ganded P450 structure is limited�

The regulation of many of the P450 genes 
is quite complex� Finding one regulatory factor 
leads to another�

The “orphan” P450s (those without estab-
lished function) (Table 9�1, see also [149]) are 
falling into categories, at least in terms of some 
of the reactions that they can do� Some of those 
were previously in the “orphans” category [149] 
now have as much information as some already 
in the xenobiotics or fatty acids categories�

Regarding tissue distribution, the information 
can be rather variable, even comparing mRNA 
studies to each other and immunoblotting or 
LC–MS results with each other� The distributions 
may not reflect where the most physiologically 
important site(s) of expression are�

Catalytic efficiency (i�e�, kcat/Km) is not a reli-
able guide to the biological importance of P450s� 
Even among the bacterial P450s, most are rela-
tively slow, and only few well-studied reactions 
have high rates, e�g�, P450 101A1 and 102A1, 
with camphor and fatty acid oxidations, respec-
tively� Of these, the function of P450 102A1 is 
still unclear� Among the mammalian P450s using 
redox partners (i�e�, excluding P450s 5A1 and 
8A1), P450s 7A1 and 21A2 appear to be the most 
efficient, kcat/Km ~2�5 × 106 M− 1/s [1775] and 
~107 M− 1/s, respectively� Several of the mamma-
lian P450s have much lower catalytic efficiencies 
but are clearly shown to be important in genetic 
studies� For instance, P450 46A1 has a kcat/Km of 
500 M− 1/s (with cholesterol as substrate [2721, 
2766]), but Cyp46a1(− /− ) mice have a deficient 
memory phenotype [2679]� Effects of drugs on 
drug-metabolizing P450s can yield serious drug–
drug interactions�
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Some of the P450s involved in the metabo-
lism of endogenous substrates are proving to be 
less selective than originally thought, e�g�, P459s 
7A1, 11A1, 46A1�

Following up on point vii, we are seeing more 
overlap between oxidations of the endogenous 
and xenobiotic substrates (e�g�, see the Substrates 
and Reactions section for P450s 1B1, 11A1, 
and 46A1)� Of course, drugs can be made to tar-
get P450s that use endogenous substrates (e�g�, 
P450 19A1 and numerous others)� There are is-
sues in that preclinical drug candidate decisions 
may need to involve not only predictions of drug 
interactions with the major drug-metabolizing 
P450s (Fig� 9�1b) but also the P450s involved in 
oxidation of endogenous substrates, e�g�, see ex-
ample with P450 11A1 [1951]�
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10.1  Introduction

A half century ago, tolerance against phenobarbi-
tal, a widely used sedative to treat epilepsy, was 
associated with induction of drug-metabolizing 
enzymes in the liver endoplasmic reticulum [1]� 
At the same time, cytochrome P450 (CYP) was 
discovered and characterized as the key enzyme 
that metabolizes drugs [2, 3]� With these find-
ings, P450 induction was conceptualized as the 
regulatory system affecting pharmacological 
as well as toxicological consequences of drug 
treatments or xenobiotic exposures� Intensive 
investigations were ignited to elucidate the mo-
lecular mechanism of this induction and have 
continued to date� Polycyclic aromatic hydro-

carbons (PAHs) such as 3-methylcholanthrene 
(3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(TCDD) emerged as the second major inducers� 
In the late 1970s, the aryl hydrocarbon receptor 
(AhR) was quickly identified as the receptor that 
activates its archetypal target CYP1A1 gene [4, 
5]� Another nearly 20 years would pass for phe-
nobarbital, before the long sought after nuclear 
receptor constitutive androstane receptor (CAR; 
NR1I3) was implicated in activation of its clas-
sic target CYP2B gene in 1998 [6]� However, the 
mechanism of phenobarbital induction remained 
an enigma since phenobarbital does not directly 
bind to CAR� By the time the third edition of this 
text was published in 2005, PXR, NR1I2 was dis-
covered to activate CYP3A genes by pregneno-
lone-16 α-carbonitrile [7]� In addition, various 
other members of the nuclear receptor superfam-
ily were also found to regulate drug-mediated 
activation of P450 genes including the farne-
soid X receptor (FXR, NR1H4), liver X receptor 
(LXR, NR1H2/3), and peroxisome proliferator-
activated receptors (PPARs, NR1C1/2/3)� As the 
number of nuclear receptor-regulated P450s has 
increased, nuclear receptors have increasingly 
been placed at the center of biological processes 
by which cells alter their various types of me-
tabolism from drugs/xenobiotics to endogenous 
substances�

These nuclear receptors, often called drug- or 
xenobiotic-sensing/activated nuclear receptors, 
were initially understood as ligand-activated tran-
scription factors to which drugs and xenobiotics 
directly bind� Ligand-bound receptors directly 
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bind to specific DNA sequences within the pro-
moter of a given target gene and activate its tran-
scription� During the last 10 years, this simple 
ligand mechanism has evolved into a more com-
plex chromatin-based mechanism to explain the 
specificity and diversity of nuclear receptor-me-
diated regulations� Intracellular localization and/
or degradation of nuclear receptors also gained a 
place in the activation mechanism� The increase 
in findings that cell signaling critically regulates 
nuclear receptors has been observed� Nuclear re-
ceptors utilize cell signaling and either specify or 
diversify their regulations of CYP genes�

10.2  The AhR

The P450 superfamily, which appears to have di-
versified from a single ancestral protein to many 
forms over the course of biological evolution, can 
be found in a wide variety of life forms from ani-
mals and plants to fungi and bacteria [8]� These 
superfamily members are classified according to 
similarity of primary structures, with mammals 
containing 18 distinct P450 gene families that to-
gether code for approximately 50–80 individual 
P450 genes in any given species�

CYP1 enzymes are induced by various xe-
nobiotics such as TCDD and this activation is 
regulated by the heterodimer composed of the 
AhR and the aryl hydrocarbon receptor nuclear 
translocator (ARNT) [9]� Defining the molecular 
mechanism of this activation has been crucial to 
understanding the roles of AhR in drug metabo-
lism, chemically induced carcinogenesis, and 
toxicity� CYP1 enzymes are critically involved 
in metabolic activation of chemical carcinogens 
[10–12]� CYP1A1 metabolizes various species of 
PAHs, such as MC and benzo[a]pyrene, to mu-
tagenic products� CYP1A2 metabolizes a range 
of drugs such as caffeine and melatonin and acti-
vates a series of aromatic amines such as 2-AAF, 
2-NA, and heterocyclic amines including PhIP, 
IQ and Trp-1, and aflatoxin B1 to carcinogenic 
products� CYP1B1 activates both PAHs and aro-
matic amines as well as metabolizes estrogens�

10.2.1  Ligand-Activated Transcription 
Factor

1. Domain Structure of AhR and ARNT

AhR and ARNT are members of a structurally 
related gene family with characteristic structural 
motifs designated as the bHLH and PAS domains 
[13]� The bHLH domain resides near the N-ter-
minus of the AhR molecule from which bHLH 
motif mediates AhR dimerization and DNA bind-
ing, while nuclear localization (NLS) and nuclear 
export signals (NES) regulate intracellular local-
ization of AhR� The PAS domain, localized in the 
middle of AhR, consists of two imperfect repeats 
of approximately 50 amino acids each (PAS A 
and PAS B) and constitutes an interactive sur-
face mediating protein–protein interactions� The 
ligand-binding domain (LBD) overlaps in part 
with the PAS B region and also with the binding 
site for Hsp90� In addition to the PAS B domain, 
Hsp90 interacts with the bHLH region to mask 
the NLS of AhR, sequestering AhR in the cyto-
plasm� The C-terminal region of AhR and ARNT 
contains transcriptional activation domains that 
interact with coactivators CBP/p300 and RIP140�

2. Agonists and Antagonists

Numerous studies over the past decade catego-
rized AhR ligands into two groups of “classical” 
and “nonclassical” AhR ligands [14]� “Clas-
sical” ligands are planar molecules with char-
acteristics similar to those of PAHs and TCDD 
[11, 12]� On the other hand, “nonclassical” li-
gands have divergent physicochemical/struc-
tural characteristics [14]� Among “classic” AhR 
ligands,  α-naphthoflavone displays both ago-
nist and antagonist behavior in a concentration-
dependent manner� Nonclassical AhR ligands 
include some endogenous compounds, such as 
indole acetic acid, indole-3-carbinol, kynuren-
ine, lipoxin A4, and bilirubin; their AhR-bind-
ing affinities are generally weaker than those 
of classical ligands [14]� Among antagonists, 
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resveratrol is nondiscriminatory to a range of 
agonists including TCDD and antagonizes AhR–
ARNT binding to the XREs for activation [15]� 
CH223191 antagonizes limited numbers of AhR 
agonists, TCDD, but not other PAH and flavo-
noids [16]� A purine derivative StemRegenin 1 
has been shown to promote ex vivo expansion of 
human hematopoietic stem cells by antagonizing 
AhR [17]�

10.2.2  Nuclear Import

It is well known that AhR exists in a latent state 
in a complex with Hsp90, XAP2 (ARA9 or AIP), 

and p23 in the cytoplasm (Fig� 10�1)� Hsp90 
binding is essential to retain AhR in the cyto-
plasm and this interaction is considered to mask 
the NLS of AhR� Overexpression of XAP2 in-
creases accumulation of AhR in the cytosol, and 
the LxxLL motif of the AhR is also involved in 
the cytoplasmic retention of AhR through pro-
tein–protein interactions� Hsp90- and ligand-
binding sites spatially overlap and ligand bind-
ing to AhR displaces Hsp90 in AhR activation 
[18]� This suggests a conformational change in 
the AhR/Hsp90 complex to expose the masked 
NLS of AhR that are required to facilitate inter-
action of the NLS with importins� It should be 
noted that the phosphorylation-regulated nuclear 

Fig. 10.1  A model for the transcriptional regulation 
of the AhR/ARNT activator and AhRR/ARNT repres-
sor complexes� Unmodified ARNT forms a heterodi-
mer with ligand-bound AhR and recruits coactivators, 
such as CBP/p300, to form the transcriptional activator 
complex� Meanwhile, ARNT forms a heterodimer with 

AhRR, which significantly enhances the SUMOylation of 
both proteins� SUMOylated AhRR recruits corepressors 
ANKRA2, HDAC4, and HDAC5 to form the transcrip-
tional repressor complex� AhRR AhR repressor, ARNT 
aryl hydrocarbon receptor nuclear translocator
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import process may be involved [19], where a 
phosphorylated NLS abrogates ligand-dependent 
nuclear import, and dephosphorylated NLS suffi-
ciently promotes it to interact with NLS receptors 
followed by Ran-GDP- and p10-mediated nucle-
ar import� Because resistance to TCDD toxicity 
and loss of induction of drug oxidation activity is 
observed in mice carrying a mutation in the NLS, 
ligand-dependent nuclear translocation of AhR 
appears to be an important step in the induction 
of P450 enzymes [20]�

10.2.3  Regulation of CYP1 Genes  
by AhR/ARNT Heterodimer

1. Cis-Acting DNA Element

The identification of the transcription promoter 
and enhancer responsible for the induction of 
CYP1 was accomplished using the two assay 
systems that defined the ligand-dependent AhR-
DNA interaction: the enhancer/promoter-driven 
reporter assay and the electrophoretic mobility 
shift assay� The regulatory DNA elements for 
CYP1A1 induction by PAH, called xenobiotic-
responsive element (XRE: 5ʹ-TNGCGTG-3ʹ, 
also known as DRE or AhRE), were first identi-
fied in the rat CYP1A1 promoter [15]� AhR and 
ARNT preferentially bind to 5ʹ-half-site (TNGC) 
and 3ʹ-half-sites (GTG), respectively. All CYP 
genes which are activated by PAHs or TCDD 
carry XRE sequences within their promoter/
enhancer regions, which include CYP1A1, 1A2, 
1B1, Cyp2a5, 2a8, 2s1, and Cyp19�

2. Activation of CYP1 Genes

The CYP1 family includes three genes: CYP1A1, 
1A2, and 1B1; all of which are inducible by 
AhR agonists� Upon ligand binding followed by 
nuclear translocation, AhR dissociates from the 
Hsp90-chaperone complex and subsequently het-
erodimerizes with ARNT to bind XRE sequenc-
es in the promoters of target genes (Fig� 10�1) 
[21, 22]� AhR binds to and enhances XREC in 
the approximately 1-kb upstream region of the 
CYP1A1 gene� In addition, a basic transcription 

element (BTE), a GC box sequence immediately 
upstream of the transcription start site, is required 
for high CYP1A1 expression; SP1 binds to BTE 
and synergizes AhR/XREC-mediated activation 
of the CYP1A1 promoter [21]�

Chromatin remodeling is initiated by liganded 
AhR/ARNT heterodimer binding to the XREs in 
the enhancer region, leading to increased DNase 
sensitivity and creating a DNase hypersensitive 
site 300 bp upstream of the transcription initia-
tion site� This binding enables the promoter to 
recruit coactivators such as CBP/p300, Ncoa1 
NCoA1, NCoA2, NCoA3, and RIP140� RIP140 
is a component of the ATP-dependent chroma-
tin remodeling complexes with Brahma/switch 
2 related gene 1 (BRG-1), p-TEFβ, and RNA 
elongation factors [23]� In addition, the TRAP/
DRIP/ARC/Mediator complex must be recruited 
to the CYP1A1 promoter to activate the CYP1A 
promoter in response to xenobiotic stress� More 
details for the functional formation of these com-
plexes have been recently reviewed [22, 23]�

UV-B radiation (290–320 nm) photo-pro-
duced 6-formylindolo[3,2-b]carbazole (FICZ) 
from the chromophore tryptophan� Since FICZ is 
a high-affinity AhR ligand, UV radiation resulted 
in activation of AhR, thereby nuclear translo-
cating AhR and activating the CYP1A1 gene in 
HaCaT cells� FICZ-activated AhR also simulated 
EGFR-ERK1/2 signaling [24]� These AhR-medi-
ated stress responses were confirmed by in vivo 
studies using AhR-deficient mice�

Human CYP1A1 and 1A2 genes are arranged 
in a head-to-head orientation at a distance of 
approximately 23 kb apart on chromosome 15� 
Utilizing a dual reporter vector containing the in-
tergenic spacer region between the CYP1A1 and 
CYP1A2 genes, it was shown that XREC, pre-
viously characterized from the CYP1A1 gene, 
works in a bidirectional manner to activate not 
only CYP1A1 but also CYP1A2 [25]� A similar 
chromosomal arrangement has also been report-
ed for mouse Cyp1a1 and 1a2 genes on chro-
mosome 9� The XREC was eliminated from the 
CYP1a1 and 1a2 genes in the mouse genome by 
homologous recombination� Subsequent stud-
ies with XREC-deficient mice confirmed that 
XREC is sufficient for simultaneous induction 
of the Cyp1a1 and Cyp1a2 genes in response to 
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TCDD [26]� In addition, a novel DNA element 
responsive to 3-MC (XRE2) was identified in the 
proximal CYP1A2 promoter, which is similar to a 
consensus DNA-binding sequence recognized by 
the LBP-1 family [27]�

The CYP1B1 gene contains XREC approxi-
mately 1 kb upstream of its transcription start 
site and its promoter is similarly regulated by 
AhR as observed with the CYP1A1 gene� For ex-
ample, as observed with the CYP1A1 promoter, 
the CYP1B1 promoter recruits histone acety-
lase coactivators, p300 and NCoA2 after TCDD 
treatment� The ATPase-dependent nucleosome 
remodeling factor BRG-1 is recruited to the 
CYP1A1 gene upon TCDD treatment for activa-
tion; this is also the case for the CYP1B1 gene 
[28]� Epigenetic modifications are known to play 
a significant role in transcriptional regulation of 
genes� CpG islands have been identified in the 
enhancer and promoter regions of the CYP1A1 
and 1B1 genes, and alterations in the DNA meth-
ylation status of CpG islands were compared be-
tween CYP1A1 and 1B1 genes in various types of 
cancer [29]� Both genes were induced by TCDD 
in MCF-7 cells but CYP1B1 was not induced in 
HepG2 cells� The CYP1B1 induction deficiency 
in HepG2 cells is ascribable to hypermethylation 
of its promoter; this affects some, but not all, of 
the relevant TCDD-induced changes that normal-
ly occur in the gene, such as recruitment of TBP 
and RNA polymerase II to the promoter [30]�

10.2.4  Activation of CYP2 and CYP19 
Genes

CYP2S1 is unusual for a non-CYP1 family mem-
ber in that it is inducible by TCDD and is ex-
pressed at high levels in epithelial tissues that are 
exposed to the environment� This suggests that it 
may be important in metabolic activation or de-
activation of procarcinogens present in the envi-
ronment� Induction of mouse Cyp2s1 is mediated 
by a novel complex regulatory element consist-
ing of three overlapping XREs [31]� In addition, 
it is inducible by hypoxia, and this induction is 
mediated in part by three overlapping HREs that 
are contained within the trimeric XRE sequence� 

CYP2A8 in Syrian hamster and Cyp2a5 in the 
mouse are also inducible by AhR agonists� By 
analyzing the 5ʹ-flanking region of the CYP2A8 
gene, an XRE and a novel positive regulatory el-
ement (PREX) were determined� The factor bind-
ing to PREX was identified as NF2d9 (LBP-1a), 
which interacts with AhR/ARNT and enhances 
XRE-driven transcription of the CyPZA8 gene 
[32]� In addition, a putative XRE was also identi-
fied in the Cyp2a5 promoter [33]�

The Cyp19 gene can be activated by AhR in 
ovarian granulosa cells� In vitro reporter gene 
and in vivo ChIP assays revealed that AhR co-
operates with orphan nuclear receptor Ad4BP/
SF-1 to activate the Cyp19 gene� An intrinsic 
function of AhR appears to be to adjust ovarian 
estradiol concentrations by regulating the Cyp19 
gene� DMBA treatment induced ovarian Cyp19 
expression regardless of estrus cycles in female 
mice� This aberrant induction of the Cyp19 may 
be the mechanism responsible for the toxic ef-
fects of exogenous AhR ligands as endocrine dis-
ruptors [34]� Thus, several other CYP genes, in 
addition to CYP1 genes, can be regulated by the 
AhR/ARNT heterodimer�

10.2.5  Repression of AhR-Mediated 
CYP Activation

AhR signaling can be down-regulated by at least 
two independent mechanisms: one is the negative 
feedback inhibition of AhR by the AhR repressor 
(AhRR) in the nucleus and the other is protea-
some degradation of AhR in the cytoplasm� AhRR 
was originally identified as a TCDD-induced 
protein and inhibited AhR signaling [35]� Newly 
synthesized AhRR translocates into the nucleus 
and forms a heterodimer with ARNT, thereby 
competing with XRE binding of the AhR/ARNT 
heterodimer and recruiting corepressors such as 
ANKLA2, HDAC4, and HDAC5 (Fig� 10�1)� 
The C-terminal repression domain of AhRR has 
three SUMOylation sites which are conserved 
across vertebrate species and all three sites 
should be SUMOylated for complete suppres-
sive activity [21, 35]� The AhR protein is rapidly 
depleted in cells in vitro following exposure to 
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AhR ligands, most likely after target gene acti-
vation� AhR degradation was blocked by treating 
with the proteasome inhibitor MG-132� Because 
this degradation was inhibited by leptomycin B, 
which is a nuclear export inhibitor, it is likely 
that AhR degradation occurs in the cytoplasm 
[36]� However, AhR degradation may also occur 
in the nucleus [37]� Liganded AhR forms an E3 
ubiquitin ligase complex with CUL4B, DDB1, 
TBL3, and Rbx1/Roc1 in the nucleus and facili-
tates the ubiquitylation of not only AhR but also 
ER α, ERβ, AR, and β-catenin. This stimulated 
ubiquitylation is a new AhR function, which may 
lead to a greater understanding of the diverse bio-
logical actions induced by endogenous and exog-
enous AhR agonists [38]�

10.2.6  Ligand-Independent Activation 
of AhR and Nuclear Import

When different cell lines were grown in sus-
pension culture, AhR spontaneously translo-
cated into the nucleus and increased CYP1A1 or 
CYP1B1 mRNAs in the absence of exogenous 
AhR ligands [39]� Cell density influenced not 
only the intracellular localization of AhR but also 
the transcriptional activation of a reporter gene 
driven by the XRE sequence in HaCaT cells [40]� 
Nuclear accumulation of AhR under low cell den-
sity conditions is also caused by phosphorylation 
in the NES of AhR which inhibits nuclear export 
of AhR� The second messenger cAMP, an endog-
enous mediator of hormone and neurotransmit-
ter signaling, has also been reported to activate 
AhR and lead to its nuclear translocation [41]� 
Omeprazole induces CYP1A1 expression in an 
AhR-dependent manner without directly binding 
to AhR [42]� This suggested that cell signaling 
may be involved in AhR activation by omepra-
zole� Recently, omeprazole was found to activate 
the human CYP1A1 and CYP1A2 promoters via 
AhR–ARNT binding sites [43]� Utilizing species 
differences in the activation of AhR by omepra-
zole, unique amino acid residues that are required 
for omeprazole activation have been determined 
within the ligand-binding pocket of LBD [44]� It 
remains to be determined in future investigations 
whether or not omeprazole activates AhR via cell 
signaling and/or ligand binding�

10.2.7  Evolutionary Aspects of the 
AhR/ARNT System

Because gene-cloning methods have become 
more accessible over the past decade, informa-
tion regarding AhR diversity in vertebrates has 
rapidly expanded� AhR is an ancient protein that 
was present in most major groups of animals, in-
cluding deuterostomes and the two major clades 
of protostome invertebrates: ecdysozoans and 
lophotrochozoans [45]� Deuterostomes and pro-
tostomes comprise the clade of bilaterian meta-
zoans, whose most recent common ancestor lived 
approximately 570 million years ago (MYA)� The 
original function of the AhR may have contrib-
uted to a developmental regulatory gene because 
ancestral AhR was involved in the development 
of sensory structures or neurons; however, it was 
insensitive to the toxicity of TCDD-like com-
pounds in early metazoans and to some extent in 
invertebrate species such as C. elegans and Dro-
sophila melanogaster�

In mammals, AhR participates not only in the 
development of the liver, ovary, cardiovascu-
lar, and immune systems but also in regulating 
xenobiotic-metabolizing enzymes [21, 22]� The 
adaptive function of AhR may have first evolved 
in early vertebrates� A jawless fish, the sea lam-
prey, is the earliest known example of a divergent 
vertebrate animal (approximately 450 MYA) and 
its AhR has a poor ability to bind TCDD, which 
is consistent with the lack of CYP1A induction in 
lampreys treated with AhR ligands� The earliest 
divergent animals that demonstrate TCDD bind-
ing ability and AhR-mediated CYP1A expression 
were jawed vertebrates such as cartilaginous and 
bony fishes [45]� These jawed vertebrates di-
verged from human lineage approximately more 
than 410 and 400 MYA, respectively� The CYP1A 
gene was cloned from several teleost species, 
and functional XRE and AhR-mediated CYP1A 
induction by TCDD has been observed� Thus, 
emergence of the AhR and CYP1A functions 
appears to have coincided with evolution of their 
ability to bind HAHs and PAHs, which suggests 
that the adaptive function of AhR may have been 
an evolutionary innovation for vertebrates [45]� 
Although AhR is an important component of cel-
lular defenses against exogenous and endogenous 
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toxicants, it would be interesting to decipher why 
CYP1 induction does not utilize orphan nuclear 
receptors, which participate in inducible expres-
sion of families 2–4 of the P450 genes, but uti-
lizes a different bHLH-PAS family of AhR in the 
evolution of vertebrate species�

10.3  The PXR

PXR, NR1I2 is a member of the nuclear receptor 
subfamily which also includes constitutive ac-
tive/androstane receptor (CAR) and vitamin D3 
receptor (VDR)� PXR is primarily expressed in 
liver, kidney, and gastrointestinal tract� PXR was 
first cloned from a mouse cDNA library based on 
its sequence homology to other known nuclear 
receptors and was activated by various CYP3A 
inducers such as pregnenolone-16α-carbonitrile 
(PCN) in 1998 [8]� Orthologs of mouse PXR 
have been cloned from a wide range of spe-
cies: mammals (including humans), birds, and 
fish� Subsequently, PXR knock out and human-
ized PXR mice were utilized to confirm the in 
vivo roles of PXR in activating the Cyp3a genes 
[46–48]� Human PXR can be activated by diverse 
drugs and xenobiotics� In turn, liganded PXR ac-
tivates numerous genes: the CYP2B6, CYP2B9, 
CYP2C8, CYP2C9, CYP3A7, and CYP2C19 
genes in addition to the CYP3A4 gene� Human 
CYP3A and CYP2C enzymes metabolize the 
majority of therapeutic drugs� Through these 
findings, PXR was established as the most im-
portant nuclear receptor in drug metabolism and 
disposition�

10.3.1  Ligand-Activated Transcription 
Factor

1. Domain Structure of PXR

PXR shares common structural features that are 
characteristic of nuclear receptors [49]: a DNA 
binding domain (DBD), hinge and ligand-bind-
ing domain (LBD)� Ligand-independent activa-
tion function 1 (AF-1) is shortened in PXR and 

its function has not yet been assigned� LBD con-
tains the ligand-dependent activation function 
2 (AF-2) at its C-terminal region� PXR forms a 
heterodimer with retinoid X receptor α (RXRα). 
Upon ligand binding, the AF2 helix undergoes 
conformational changes, enabling PXR/RXRα to 
recruit coactivators, such as those found in the 
p160/SRC family, and transcriptionally activates 
target genes� Binding of antagonists altered this 
AF-2 conformation to inactivate PXR� Crystal 
structures of the PXR LBD with or without li-
gands have revealed that the PXR ligand-binding 
pocket has the ability to conform and modify its 
volume and shape, depending on the ligand� In 
addition, structural studies of PXR LBD support 
the notion that PXR can exist as a homodimer 
and activate genes [50]�

2. PXR Agonists and Antagonists

PXR is a highly promiscuous receptor that binds 
to a variety of chemically and structurally dis-
tinct drugs, xenobiotics and endobiotics� Human 
PXR agonists include statins (e.g., lovastatin and 
SR12813), hyperforin, anticancer drugs (e.g., 
tamoxifen and taxol), antibiotics (e�g�, rifam-
picin), natural and synthetic steroids (e.g., 5β 
pregnane-3,20-dione and estradiol), imidazole 
antifungals (e.g., clotrimazole), bile acids, di-
etary fat-soluble vitamins, and some pesticides 
(e.g., pyributicarb)� PXR agonists exert strong 
species-specific effects on the activation of PXR 
target genes� For example, PCN is an activator 
of rodent PXR, not human PXR [51], whereas 
rifampicin activates human PXR, but not rodent 
PXR [52]� Unlike a large number of agonists, 
only a few PXR antagonists have been identi-
fied� ET-743 was first reported as a human PXR 
antagonist [53]� Subsequently, polychlorinated 
biphenyls, camptothecin, ketoconazole, flucon-
azole, enilconazole, sulforaphane, HIV protease 
inhibitor A792611, and metformin have been 
reported� In particular, attempts have been made 
to use ketoconazole for therapeutic purposes� 
However, the doses used were not high enough 
to antagonize PXR [54]� Developing safer and 
more high-potency ketoconazole analogs will be 
needed for therapeutic purposes�
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3. Ligand Activation of PXR

Mouse PXR translocated from the cytoplasm into 
the nucleus [55]� Mouse PXR was retained in the 
cytoplasm by forming a complex with heat shock 
protein 90 (Hsp90) and cochaperone CAR cy-
toplasmic retention protein (CCRP) [56]� Upon 
ligand binding, PXR dissociated from its chap-
erone complex and translocated into the nucleus� 
Conversely, human PXR always remained in the 
nucleus and associated with transcriptional core-
pressors such as nuclear receptor corepressor 1 
(NCoR1) or NCoR2/SMRT [7, 57, 58]� NCoR1 
and SMRT allowed PXR to recruit HDACs to re-
press its basal transactivation activity [58]� Ligan-
ded PXR underwent conformational changes that 
led to dissociation of corepressors followed by re-
cruitment of coactivators, such as steroid receptor 
coactivator 1 (SRC-1) [7] or SRC-3 and by sub-
sequent chromatin remodeling for transcriptional 
activation� Liganded PXR directly binds to a DNA 
response element within the promoter region of 
its target genes as a heterodimer with retinoid 
X receptor α (RXRα; Fig. 10�2)� Other reported 
PXR co-regulators include p300/CBP, RIP140 
[59], peroxisome proliferator-activated receptor 
gamma coactivator 1α (PGC-1α) [60], hepatocyte-
enriched nuclear factor 4α (HNF4α) [61], and pro-
tein arginine methyltransferase 1 (PRMT1) [62]�

4. Cell Signaling-Mediated Regulation of PXR

Hepatic drug-inducible P450 gene expression has 
been well connected with protein kinase signal-
ing pathways� The cyclic AMP-dependent protein 
kinase (PKA) signaling effectively phosphory-
lated PXR both in vivo and in vitro and modu-
lated its activity in a species-specific manner [63, 
64]� In mouse hepatocytes, activation of PKA 
signaling increased PXR-mediated gene activa-
tion, while PKA repressed it in both human and 
rat hepatocytes� Protein kinase C (PKC) signal-
ing also phosphorylated PXR and attenuated the 
transcriptional activity of PXR by increasing its 
interaction with NCoR and abolishing the ligand-
dependent interaction with SRC-1 [57]� Lin et al� 
reported that cyclin-dependent kinase 2 (Cdk2) 

directly phosphorylated human PXR, most likely 
at residue serine 350� Activation of Cdk2 led to 
inhibition of PXR-mediated CYP3A4 expres-
sion [65]� Furthermore, a recent study has shown 
that p70 S6K, a downstream kinase in the PI3K/
Akt signaling pathway, phosphorylated PXR and 
negatively regulated the transcriptional activ-
ity of PXR� p70 S6K appeared to phosphorylate 
threonine 57 of PXR to repress activity [66]� 
Thus, regulation of PXR activity by phosphoryla-
tion has come to light and should warrant further 
investigations�

10.3.2  Regulation of CYP Genes by 
PXR

1. Cis-Acting DNA Elements

PXR binds to the AGGTCA-like direct repeats 
DR-3, DR-4, or everted repeats ER-6 and ER-8� 
The human CYP3A4 promoter contains a proxi-
mal ER-6 and a distal xenobiotic-responsive en-
hancer module (XREM) that consists of DR-3 
and ER-6 [67, 68]� DR-3 type XREs are present 
in the proximal promoters of the rat CYP3A23 
and CYP3A2 genes [8, 69]� In addition to these 
CYP3A promoters, the PXR has been shown to 
bind to DR-4 and ER-8 response elements within 
the CYP2B promoters [70, 71]� Since CAR also 
binds to these response elements, both PXR and 
CAR regulate the same genes in response to their 
activators [70]�

2. Activation of CYP2C Genes by PXR

The human CYP2C subfamily consists of four 
members, CYP2C8, CYP2C9, CYP2C19, and 
CYP2C18� PXR response elements have been 
identified within their promoters� In the CYP2C9 
promoter, DR4 and DR5 were present and named 
CAR/PXR-RE� The CYP2C19 promoter also 
contains CAR/PXR-RE� The CYP2C8 promoter 
includes two DR4s [72–74]� These elements were 
bound and activated by both PXR and CAR in 
gel shift and reporter assays, respectively� Thus, 
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human CYP2C genes can be regulated by PXR 
and/or CAR activators. PXR required HNF4α to 
fully activate the CYP2C promoter, which will be 
detailed in the section “Cross Talk”�

3. Activation of CYP3A Genes by PXR

PXR is a master regulator for expression of the 
CYP3A enzyme that catalyzes the metabolism of 
more than 50 % of all clinically used drugs� Upon 
ligand binding followed by dissociation from 
corepressors such as NCoR1 and SMRT, the 
PXR-RXRα heterodimer binds to both the dis-
tal XREM and proximal ER6 within the human 
CYP3A4 promoter� Subsequent to these bindings, 
DNA looping occurs to bring XREM and ER6 
in close proximity to assemble a pre-initiation 
complex with RNA polymerase II (Fig� 10�2)� 
In response to rifampicin treatment, the CYP3A4 
gene undergoes epigenetic modifications; the 
CYP3A4 promoter recruits PRMT1 which di-
rectly interacts with PXR to methylate arginine 
3 of histone H4 and activates transcription [62]� 
In addition to its gene levels, PXR can also be 
regulated at mRNA levels by miRNAs; miR-148 
facilitated degradation of PXR mRNA and/or re-
duced translation to repress CYP3A4 expression 
[75]� The miR-27b directly repressed CYP3A4 
mRNA [76]. PXR requires HNF4α to activate the 
CYP3A4 promoter, which will be detailed in the 
section “Cross Talk”�

10.3.3  The CYP7A Gene in Bile Acid 
Homeostasis

Bile acids are the end products of hepatic cho-
lesterol catabolism and play essential roles in 
eliminating cholesterol from the body� However, 
pathophysiological accumulation of bile acids 
elicits cytotoxicity and can lead to cholestasis in 
livers� PXR plays a critical role in bile acid de-
toxification, by regulating bile acid biosynthesis, 
transport and metabolism� Studies in PXR knock 
out and humanized PXR mice revealed that PXR 
reduces secondary bile acid lithocholic acid 
(LCA)-induced liver toxicity [77]� PXR regulates 

expression of CYP7A1, the rate-limiting enzyme 
of bile acid synthesis� Activated PXR suppresses 
HNF4α-mediated CYP7A1 activation by inhibit-
ing PGC-1α [60]� LCA and its direct metabolite 
3-keto-LCA are efficacious activators of both 
mouse and human PXR; thus, activating PXR can 
increase bile acid clearance by inducing CYP3A, 
bile acid transporters, organic anion-transporting 
polypeptide (OATP) 2, and multidrug resistance-
associated protein 2 (MRP2) [48]� Collectively, 
PXR serves as a pathophysiological sensor of 
bile acids to maintain bile acid homeostasis both 
by decreasing bile acid synthesis and increasing 
metabolism and excretion�

10.3.4  PXR in Inflammation

Inflammation and infection reduced hepatic ex-
pression of drug-metabolizing CYP enzymes� 
Activation of nuclear factor-kappa B (NF-κB) 
by lipopolysaccharide or tumor necrosis fac-
tor α (TNFα) interfered with PXR/RXRα bind-
ing to the CYP3A4 promoter, thus suppressing 
transcription and CYP3A enzyme activity [78]� 
In turn, exposures to PXR-activating xenobiot-
ics such as insecticides and pesticides are known 
to adversely affect immune functions� However, 
PXR activators such as rifampicin have long 
been known to suppress humoral and cellular 
immunological responses in liver cells� Recent 
studies demonstrated that commonly used drugs 
activate PXR to inhibit NF-κB activity. Expres-
sions of typical NF-κB target genes, such as cy-
clooxygenase-2 and TNFα, are substantially el-
evated in multiple tissues, particularly in small 
bowel inflammation in PXR knockout mice [79]� 
This elevation could be caused by loss of nega-
tive regulation of NF-κB activity by PXR activa-
tion� In addition, SUMOylation of PXR appeared 
to play an important role in repression of inflam-
matory responses� In response to inflammation, 
liganded PXR was SUMOylated by conjugating 
SUMO3 chains and SUMOylated PXR repressed 
expression of NF-κB target genes and immune 
responses [80]� Therefore, via PXR, drugs like 
rifampicin attenuate inflammation, while inflam-
mation represses drug metabolism�
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10.4  The CAR

The constitutive/active androstane receptor 
CAR, originally named MB67, was first cloned 
as a nuclear receptor that constitutively activates 
the retinoic acid response element in cell-based 
transfection assays [81]� Then, from 1998 to 
1999, the function of CAR relative to the induc-
tion of CRP genes as a phenobarbital activated 
nuclear receptor was established [7, 82, 83]� Sub-
sequently, the in vivo roles of CAR in induction 
were confirmed using CAR KO mice [84, 85]� 
One of the major interests of the past half century 

has been to define the molecular mechanism of 
phenobarbital induction� This mechanism is now 
delineated; phenobarbital antagonizes epidermal 
growth factor receptor signaling to indirectly ac-
tivate CAR (Fig� 10�3)� Readers are advised to 
refer to a recent review that is more oriented to-
wards aspects of ligand activation [86]�

10.4.1  PBREM and CAR

The quest to identify CAR began by looking for the 
phenobarbital responsive DNA sequence within 

Fig. 10.2  A model for PXR-mediated regulation� PXR 
can potentially undergo various types of posttranslational 
modifications [171]� These include possible phosphoryla-
tion sites (such as Thr57, Thr248, Tyr249, Thr290, and 
Thr Ser 350) which studies suggest are of regulatory sig-
nificances� In the case of Thr290, phosphorylated PXR 
is retained in the cytoplasm� Ligand-binding translocates 
nonphosphorylated PXR into the nucleus� PXR–RXR 

heterodimer then binds to the response elements (distal 
XREM and proximal ER6 that can work independently), 
which may alter chromatin structure for promoter acti-
vation� In addition, it is known that nonphosphorylated 
PXR is capable of undergoing ligand-independent nuclear 
translocation for gene activation� PXR pregnane X recep-
tor, RXR retinoid X receptor� [172]
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the CYP2B promoters� Anderson and his cowork-
ers first determined a phenobarbital responsive 
DNA sequence within the rat CYP2B2 promoter, 
named PBRE [87]� This PBRE sequence was 
further minimized to the 51-bp phenobarbital 
responsive enhancer module (PBREM) within 
the mouse Cyp2b10 promoter [88]� PBREM can 
be activated by a myriad of phenobarbital-type 
inducers and is conserved in CYP2B genes from 
mouse to human [88, 82]� PBREM or related 
DNA sequences are also present in the other CYP 
genes as well as in genes that encode transfer-
ases and transporters: CYP1A, CYP2B, CYP2C, 
CYP3A, GST, UGT and SULT [89, 90]� Negishi’s 
laboratory identified CAR as a nuclear receptor 
that binds to the DR4 motifs within PBREM and 
activates it [6]� Utilizing an oligonucleotide as 
an affinity ligand, proteins were purified from 
liver nuclear extracts prepared from saline- or 

phenobarbital-treated mice� Western blot analy-
sis revealed that nuclear receptors RXR and CAR 
increased their binding to DR4 motif after phe-
nobarbital treatment� Subsequent gel-shift and 
reporter analyses confirmed that a RXR-CAR 
heterodimer binds to the DR4 motif and activates 
PBREM in cell-based reporter assays [6]� Nei-
ther phenobarbital nor the known potent ligand 
(1,4-bis[2-  (3,5-dichloropyridyloxy)]benzene) 
(TCPOBOP) was able to activate the Cyp2b10 
gene in the livers of CAR KO mice [84, 85, 90]� 
Microarray analysis revealed CAR-dependent in-
duction of CYP2B10, 3A11, 2D9, 2D10, 2J5, and 
2F2 in PB-treated mouse liver [85]� In addition to 
mammal, the chicken xenobiotic receptor (CXR, 
homologue of CAR and PXR) activated pheno-
barbital response unit (PBRU) within the chicken 
CYP2H gene [91]�

Fig. 10.3  A model for cell signaling-mediated mecha-
nism of CAR activation. Phenobarbital ( PB) directly 
binds to EGFR and antagonizes the EGF–EGFR signal-
ing cascade to facilitate RACK1 dephosphorylation� In 
the presence of nonphosphorylated RACK1, PP2Ac de-
phosphorylates CAR in the cytoplasm� Nonphosphory-

lated CAR then translocates into the nucleus to activate 
target genes� A more detailed mechanism by which XRS-
ERK1/2 regulates RACK1-PP2C to repress CAR de-
phosphorylation remains the key feature to be resolved 
in future investigations� EGFR epidermal growth factor 
receptor, CAR constitutive androstane receptor
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10.4.2  Structural Features of CAR

CAR, unlike other nuclear receptors that are ac-
tivated by binding of a given agonist, is consti-
tutively activated in cell-based assays� Adding a 
peptide to the C-terminus repressed this constitu-
tive activity of mouse CAR [92]� In another study, 
mutation of Thr176 on α-helix 3 or Thr350 on 
α-helix 3 (AF2 domain) abolished the constitu-
tive activity and conferred ligand activation capa-
bility to mouse CAR [93]� As to the mechanism, 
Thr176 formed a hydrogen bond with Thr350 
in the mouse CAR model structure, which may 
constrain the AF2 domain to an active conforma-
tion� However, Thr176 is conserved but Thr350 
is replaced with Met340 in human CAR� The 
X-ray structures of the ligand-binding domains 
of human and mouse CARs have been resolved 
[94]� The overall structures of CAR LBD are sim-
ilar to those of other nuclear hormone receptors� 
In these CAR structures, α-helix 12 (AF2 helix) 
tightly packs with α-helix 3, thereby constraining 
CAR in the active conformation to interact with 
coactivators such as SRC1, TIF2 or RAC3 [95]� 
This conformation may be stabilized by hydrogen 
bond interactions between Lys194 (in human) or 
Lys205 (in mouse) with their C-terminal carboxyl 
group [94]� Androstanol, a reverse agonist, in the 
mouse CAR structure kinks the linker between 
α-helices 10 and 11 to relax α-helix 12 into the 
inactivating conformation [94]�

10.4.3  Cell Signaling that Regulates 
CAR

CAR is constitutively activated in transformed 
cells such as HepG2 cells� This constitutive activ-
ity is suppressed in order to acquire in vivo respon-
siveness in organs such as liver� For this, CAR is 
retained in the cytoplasm [83]� Treatment with 
CAR activators translocates CAR from the cyto-
plasm into the nucleus for activation� CAR can 
be activated either directly or indirectly� Direct 
activation by ligands exhibits species differences 
with TCPOBOP and CITCO (6-(4-chlorophenyl)-

imidazo[2,1-b] [1,3] thiazole-5-carbaldehyde O-
(3,4-dichlorobenzyl)oxime) preferentially acti-
vating mouse and human CAR, respectively [96, 
97]� On the other hand, phenobarbital, an indirect 
activator, can equally activate mouse, rat, and 
human CAR� This cross species activation indi-
cates that the cell signaling-mediated regulatory 
mechanism should be conserved in mouse as well 
as humans�

1. Dephosphorylation of Threonine 38

Involvement of cell signaling in CAR activation 
was first suggested by the finding that okadaic 
acid, a protein phosphatase inhibitor, repressed 
phenobarbital-induced nuclear CAR accumula-
tion and increase of CYP2B10 mRNA in mouse 
primary hepatocytes [83, 98]� The CAR residue 
that is dephosphorylated after phenobarbital 
treatment is Thr38 in human CAR and Thr48 
in mouse CAR and the protein phosphatase that 
dephosphorylates this site is protein phosphatase 
2A (PP2A) [99]� Hereafter, Thr38 will be used 
to describe phosphorylation for both human and 
mouse CAR for practical purpose� A phosphory-
lated peptide antibody (αP-T38) was utilized to 
detect phosphorylated CAR at Thr38 in mouse 
primary hepatocytes� Phosphorylated CAR is 
retained in the cytoplasm in mouse hepatocytes� 
Phenobarbital treatment triggered dephosphory-
lation and resultant nonphosphorylated CAR 
translocated into the nucleus [99, 100]� The YFP-
tagged CAR Thr38Ala (nonphospho-mimicking) 
mutant, directly expressed in the mouse livers, 
spontaneously translocated into the nucleus be-
fore treatment, while the phospho-mimicking 
Thr38Asp mutant was retained in the cytoplasm 
even after phenobarbital treatment [99]� In re-
porter and gel shift assays, the Thr38Asp mutant 
neither bound to PBREM nor activated it [99]� 
Thus, phosphorylation of the single Thr38 site 
both inactivates trans-activity of CAR and re-
tains it in the cytoplasm� Dephosphorylation of 
Thr38 is the underlying mechanism that activates 
CAR� This mechanism of CAR activation is con-
served, as a recent report just confirmed dephos-



79910 Nuclear Receptor-Mediated Regulation of Cytochrome P450 Genes

phorylation of human CAR in human primary 
hepatocytes after phenobarbital treatment [101]�

2. Protein Phosphatase 2A and RACK1

Since okadaic acid preferentially strongly in-
hibits PP2A over other protein phosphatases, 
repression of phenobarbital-induced nuclear 
CAR accumulation finger indicated PP2A [83, 
98]� In in vitro dephosphorylation assays using 
recombinant CAR phosphorylated at Thr38 as a 
substrate, PP2A was not able to dephosphorylate 
Thr38� However, adding receptor for activated 
kinase C 1 (RACK1) enabled PP2A to dephos-
phorylate Thr38 [102]� Thus, PP2A was the en-
zyme that dephosphorylates Thr38, in which 
RACK1 functions as the regulatory subunit that 
activates the core enzyme� Knock down of either 
the PP2A catalytic subunit or RACK1 by siR-
NAs abolished phenobarbital-induced Thr38 de-
phosphorylation as well as increased CYP2B10 
mRNA [102]� RACK1 can be phosphorylated at 
Tyr52; only nonphosphorylated RACK1 enabled 
PP2A to dephosphorylate Thr38 in in vitro assays 
[102]� If phenobarbital elicits a signal to dephos-
phorylate Tyr52, RACK1 can be the regulatory 
mediator between phenobarbital and CAR acti-
vation�

3. EGFR as the Phenobarbital Receptor

Endogenous stimuli such as growth hormones 
and insulin have long been known to repress phe-
nobarbital induction of P450 genes� It has also 
been known for a long time that phenobarbital 
treatment antagonizes membrane signaling me-
diated by the epidermal growth factor receptor 
(EGFR) and insulin receptor� Bauer et al� were 
the first to demonstrate that growth factor or 
EGF represses CAR-mediated activation of the 
PBREM reporter gene in rat primary hepatocytes 
[103]� Given this link between EGF and CAR 
activation, Negishi’s laboratory defined EGFR 
as the phenobarbital binding site through which 
phenobarbital initiates the signal to dephosphory-
late Tyr52 of RACK1 for CAR activation [102]� 
In vitro binding assays utilizing either direct iso-

thermal titration calorimetry or indirect binding 
competition between phenobarbital and EGF 
confirmed that phenobarbital binds to EGFR with 
Kd values around 10 µM [102]� Treatment with 
phenobarbital within the range of these Kd val-
ues repressed EGF-activated phosphorylation of 
EGFR in mouse primary hepatocytes� Concomi-
tant with this repression, Tyr52 of RACK1 was 
dephosphorylated� The resultant nonphosphory-
lated RACK1 enabled PP2A to dephosphorylate 
CAR for activation [102]� Thus, the underlying 
mechanism for phenobarbital induction proceeds 
by the following steps: (1) phenobarbital binding 
to EGFR, (2) dephosphorylation of RACK1, (3) 
dephosphorylation of CAR by PP2A-RACK1, 
and (4) nuclear translocation of nonphosphory-
lated CAR� As to how general this mechanism 
is, two questions should be answered in future 
studies: whether or not other indirect CAR acti-
vators utilize this EGFR-RACK1-PP2A mecha-
nism to activate CAR and how CAR ligands such 
as TCPOBOP and CITCO activate CAR� While 
these ligands promote CAR binding to PBREM 
and activate it, as observed with phenobarbital, 
as long as CAR is phosphorylated they are unable 
to do so [99]�

10.4.4  XRS, an Intramolecular Peptide 
Signal Peptide of CAR

Upon EGF activation, EGFR triggers at least 
two signals; Src kinase pathway is one and 
MEK–ERK pathway is another� Inactivation of 
the MEK–ERK signal in a growth hormone re-
leasing hormone knockout mouse resulted in the 
repression of CYP2B in liver [104]� The MEK–
ERK pathway was, in fact, the first to be associ-
ated with CAR activation [105]� EGF treatment 
repressed TCPOBOP-induced nuclear CAR ac-
cumulation in mouse primary hepatocytes, while 
inhibition of MEK by U0126 spontaneously 
translocated CAR into the nucleus and activated 
the Cyp2b10 gene [105]� Subsequently, it was 
found that U0126 treatment dephosphorylates 
Thr38 of CAR [100]� In this dephosphorylation, 
a leucine-rich peptide (313LXXLXXL319) near 
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the C-terminus of CAR engaged as the intramo-
lecular signal peptide to transduce MEK–ERK 
signaling onto CAR dephosphorylation� This 
peptide, called xenobiotic response signal (XRS), 
was first characterized as the peptide motif that 
regulates nuclear translocation of CAR in mouse 
liver [106]� XRS bound to active ERK and dis-
sociated inactive ERK when this signaling was 
attenuated by U0126, resulting in dephosphory-
lation of Thr38 [100]� Thus, by antagonizing 
EGFR, phenobarbital elicits at least two differ-
ent signals; one that is directly transduced to 
CAR via XRS and another that dephosphorylates 
RACK1 to activate PP2A� The molecular mecha-
nism which integrates these two signals to con-
verge onto CAR for dephosphorylation must be 
defined in future investigations�

10.4.5  Other Cell Signaling and Signal 
Molecules

1. AMPK Signaling

Wolf and his associates first developed HepG2-
derived WGA cells in which phenobarbital treat-
ment induced CYP2B6 mRNA and suggested 
that AMP-activated protein kinase (AMPK) may 
mediate this activation [107]� Meyer’s laboratory 
followed up on the AMPK scenario and contin-
ued to establish it as a signal mechanism for phe-
nobarbital induction� Although phenobarbital-
induced AMPK activation and CYP2H1 mRNA 
increase occurred in chicken primary hepato-
cytes or LMH cells, it was not shown whether 
or not AMPK activated chicken nuclear receptor 
CXR after phenobarbital treatment [108]� Stud-
ies utilizing liver specific AMPK subunits α1/α2 
KO mice demonstrated that basal expression of 
CYP2B10 mRNA was greatly increased by 100-
fold in the livers of KO mice compared with that 
in wild-type livers� As a result, phenobarbital-
induced increases of this mRNA were severely 
diminished to only a two- to threefold increase 
in KO livers compared with 200- to 300-fold in 
wild-type livers [109]� Moreover, phenobarbital 

treatment normally translocated CAR from the 
cytoplasm to the nucleus in AMPKα1/α2 KO 
primary hepatocytes� Thus, these studies did 
not directly connect AMPK signaling with CAR 
for phenobarbital induction, although AMPK 
may still regulate basal expression of CYP2B10 
mRNA� Studies utilizing AMPK activators (e�g�, 
AICAR) or inhibitors (e�g�, 8-bromo-AMP) re-
sulted in confusion and provided no consensus as 
to whether or not and how phenobarbital utilizes 
AMPK to activate CAR [108, 110]� Metformin 
is a drug widely used to treat type 2 diabetes 
patients� Metformin treatment alone activated 
AMPK kinase but neither nuclear translocated 
CAR nor induced CYP2B6 mRNA in human pri-
mary hepatocytes� Furthermore, metformin co-
repressed phenobarbital- or CTICO-induced nu-
clear translocation and increased CYP2B mRNA 
in human primary hepatocytes [101]� However, 
this study presented no direct evidence that met-
formin repressed nuclear CAR translocation via 
AMPK activation� Thus, the AMPK scenario for 
phenobarbital induction remains elusive and may 
not be conserved across species�

2. Glucocorticoid Signaling

Phenobarbital treatment induced CYP2B1/2 
mRNA only weakly in rat hepatocytes in the ab-
sence of glucocorticoid� A functional glucocor-
ticoid response element was present in both rat 
and mouse CYP2B promoters [111]� However, 
phenobarbital treatment induced CYP2B mRNA 
in the livers of glucocorticoid receptor (GR) KO 
mice [112], while dexamethasone treatment in-
duced this mRNA in those of CAR KO mice 
[111, 113]� Thus, CAR does not require GR to 
activate the CYP2B promoter; these two nucle-
ar receptors independently regulate the CYP2B 
promoter� GR has been suggested to bind to the 
-4477/-4410 region of human CAR promoter and 
activate it in human primary hepatocytes [114, 
115]� However, this GR-mediated activation was 
not observed in rat primary hepatocytes [116]� 
The modulator roles of GR on CAR expression 
appear to be complex and not fully understood 
and may not be conserved across species�
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3. Chaperones, Co-Chaperones and Proteasome 
Signals

CAR forms a complex with a cochaperon cyto-
plasmic CAR retention protein (CCRP/DNAJC7) 
and HSP90 in the cytoplasm of HepG2 cells and 
is co-localized with tubulin in the cytoplasm of 
mouse liver cells [117]� TCPOBOP treatment re-
cruited HSP70 to this CAR-CCRP complex and 
facilitated ubiquitination of CCRP� Ubiquitinated 
CCRP appeared to degrade, thereby releasing 
CAR for nuclear translocation [118]� Proteasom-
al inhibition by MG132 repressed phenobarbital-
induced nuclear CAR accumulation and CYP2B6 
mRNA elevation in human primary hepatocytes 
[119]�

10.4.6  Regulations in the Nucleus

1. Chromatin Remodeling

Co-treatment with TCPOBOP and okadaic acid 
synergized induction of CYP2B6 mRNA in mouse 
CAR-expressing HepG2 cells [120]� This syn-
ergistic activation of the CYP2B6 promoter was 
regulated by two distinct DNA sequences, a distal 
PBREM (− 1733/− 1683) and a proximal OAREKI 
(− 236/− 217) within the promoter [120, 121]� 
Two response factors, cohesin protein SMC1 and 
early growth response 1 (EGR1) were shown to 
bind to the OAREKI� In response to protein kinase 
C signaling, EGR1 binds to OAREKI and loops 
the CAR-bound PBREM towards the OAREKI, 
thereby synergizing activation of the CYP2B6 
promoter by TCPOBOP [122]� SMC1 binding 
may stabilize this looping structure of the pro-
moter, as this kind of function was recently sug-
gested for cohesin [123]� In a study of Inoue et al�, 
HNF4 α constitutively bound to the OARE during 
synergistic activation� On the other hand, another 
study revealed that liver-enriched HNF4 α and C/
EBPα bound to both distal enhancers PBREM and 
XREM (− 8597/− 8495) and proximal promoter in 
order to fully activate the CYP2B6 promoter in 
human primary hepatocytes [124]�

Med25 is one of the mediator proteins and 
constitutively binds to the CYP2C9 promoter in 
HepG2 cells as well as induces CYP2C9 mRNA 
in human primary hepatocytes [125]� Med25 
binding appeared to loop the CAR-binding site 
toward the proximal promoter, thereby facili-
tating recruitment of RNA polymerase II to the 
promoter� Thus, CAR-mediated activation of the 
CYP2B6 promoter appears to involve chromatin 
remodeling�

2. p38 MAPK and CaMK

Ligand activation of CAR resulted in an effective 
induction of CYP2B6 in human primary hepato-
cytes but not in HepG2 cells� This effectiveness 
correlated with high levels of phosphorylated 
p38 MAPK in hepatocytes; treatment with p38 
MAPK activator restored the effective induc-
tion in HepG2 cells [126]� Thus, ligand binding 
alone does not appear to be sufficient for CAR to 
trans-activate its target genes� Intriguingly, CAR 
required p38 MAPK in the activation of only one 
set of genes including CYP2B6, CYP2A7, and 
CYP2C9, but not CYP3A4 and UGT1A1 genes� 
Treatment with a Ca2 +-calmodulin-dependent 
protein kinase (CaMK) inhibitor KN62 did not 
affect TCPOBOP-induced nuclear CAR accu-
mulation in mouse primary hepatocytes, but re-
pressed the activation of Cyp2b10 gene [127]� 
Similar to the CaMK inhibitor, PPAR ligands 
(Wy-14643 and fibrates) and peripheral benzo-
diazepine receptor ligand (PK11195) induced 
nuclear CAR accumulation but did not activate 
the CYP2B genes [128, 129]� These observations 
suggest that additional nuclear signaling is essen-
tial to regulate CAR properly�

10.5  Other NRs and Cross Talk

In addition to AHR, CAR and PXR, other nuclear 
receptors, both constitutively active and ligand-
activated ones, are known to regulate P450 ex-
pression� These nuclear receptors utilize not only 
the mechanism of direct transcriptional regula-
tion but also cross talk with AhR, CAR, and PXR�
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10.5.1  The HNF4α

HNF4 α (NR2A1) is a liver-enriched nuclear re-
ceptor that plays essential roles in liver develop-
ment and function� A number of CYP genes are 
also repressed the liver of liver-specific HNF4 α 
KO mice� Utilizing other gene knockdown tech-
nologies, a recombinant adenovirus expressing 
antisense RNA was used to infect human pri-
mary hepatocytes [130]� In the resultant HNF4 
α knocked down hepatocytes, mRNA levels of 
CYP3A4, CYP3A5, and CYP2A6 were greatly 
reduced and those of CYP2B6, CYP2C9, and 
CYP2D6 were moderately reduced� On the 
other hand, CYP2E1 mRNA levels remained 
constant� A recombinant adenovirus expressing 
HNF4 α siRNA infected human primary hepato-
cytes confirmed that the overall changes in CYP 
mRNA levels were similar to those obtained with 
antisense RNA [131]� In addition, CYP1A2, 
CYP2C8 and CYP2C19 mRNAs reduced their 
levels, while CYP1A1 and CYP2J2 mRNA lev-
els remained constant� In addition to CYP genes, 
transferase and transporter genes (e�g�, UGT1A1, 
SULT2A1, ABCB11 and OCT1) were repressed in 
HNF4 α knocked down hepatocytes [131]� Thus, 
HNF4 α appears to regulate the basal expression 
of these genes involved in drug metabolism and 
disposition� However, CAR and PXR mRNA lev-
els were also reduced in HNF4α knocked down 
hepatocytes, thus suggesting the possibility that 
HNF4α also regulates those CYP genes indirectly 
via CAR and/or PXR� Analysis of 20 human liver 
samples demonstrated that HNF4 α mRNA levels 
correlate with those of CAR and PXR as well as 
with CYP genes [132]�

1. The CYP2C Genes

There are four human CYP2C enzymes; 
CYP2C8, CYP2C9, CYP2C18, and CYP2C19, 
among which CYP2C9 and CYP2C19 play 
critical roles in the metabolism of therapeutics� 
CYP2C9 expression levels are higher than those 
of CYP2C19 in human livers and this differ-
ence may result from preferential regulation of 
CYP2C9 by HNF4α [133]� Two identical DR1 
motifs were characterized in the proximal pro-

moter regions of the CYP2C9 and CYP2C19 
genes. However, co-expressed HNF4 α transac-
tivated the CYP2C9 promoter, but not CYP2C19, 
in human hepatocarcinoma FLC7 cells� More-
over, ChIP assays demonstrated that HNF4α 
bound to the CYP2C9 promoter but not to the 
CYP2C19 promoter in human liver samples� 
On the other hand, there is a report that HNF4α 
transactivates CYP2C19 through these DR1 mo-
tifs in both reporter and gel shift assays [134]� 
At present, the reason for the differential regu-
lation between CYP2C9 and CYP2C19 remains 
unclear� The CYP2C8 promoter also contains the 
DR1 motif and was activated by co-expression of 
HNF4 α [73]�

2. The CYP3A Genes

Both the rat CYP3A2 and CYP3A1/CYP3A23 
genes contain HNF4 α-binding motifs in their 
proximal promoters and were activated by HNF4α 
in co-transfection assays [135, 136]. HNF4α also 
regulated basal expression of mouse Cyp3a genes 
in the liver; CYP3A11/13/16 mRNAs were not 
detected in the liver of HNF4 α-deficient mice 
[61]� Moreover, a DR1 motif was characterized 
as a functional HNF4 α-binding site in the dis-
tal region (− 1580/− 1568) of the Cyp3a11 pro-
moter [137]. This HNF4 α-mediated Cyp3a11 
activation was suppressed in mouse livers via the 
sterol-responsive transcription factor SREBP-2, 
which inhibited PGC1 α binding to HNF4α on 
the promoter [137]. The two different HNF4α-
binding motifs have been identified in the con-
stitutive liver enhancer module of CYP3A4, 
CLEM4 (− 10.5/− 11.4 Kbp) and the CYP3A4 
enhancer module called XREM (− 7.2/− 7.8 Kbp) 
[61, 138]. HNF4 α synergistically activated PXR- 
and CAR-mediated transcription of the CYP3A4 
gene via XREM [61]�

3. Other CYP Genes: CYP2A6 and CYP2D6

The CYP2A6 gene was directly regulated by 
HNF4α; a DR1 motif as well as an Oct-1 or 
C/EBP α binding motif were identified in the 
proximal promoter [139]� Results obtained by 
reporter assays in HepG2 cells and mouse livers 
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demonstrated that HNF42 α cooperates with these 
two factors to activate the CYP2A6 promoter� 
Studies by Jover et al� [130] and Kamiyama et al� 
[131] have demonstrated that HNF4 α is involved 
in the basal expression of CYP2D6 in human he-
patocytes� This is consistent with the previous 
finding that the proximal CYP2D6 promoter (up 
to − 392 bp) was transactivated by co-expressed 
HNF4 α in COS-7 cells [140]. Thus, HNF4 α is 
involved in both basal and xenobiotic-responsive 
expressions of a number of CYP genes in liver 
in cooperation with or without other transcription 
factors�

10.5.2  The PPARα

PPAR α (NR1C1) is highly expressed in the liv-
ers of rodents, and to lesser extent humans, and 
plays a crucial role in hepatic lipid metabolism� 
PPAR α, activated by hypolipidemic fibrates, a 
variety of fatty acids and their derivatives, regu-
lates CYP4A genes� Since CYP4A enzymes cata-
lyze ω and ω-1 oxidation of fatty acids, their in-
duction may constitute a part of the regulatory 
mechanism in lipid homeostasis� In addition, 
CYP2B was induced by fibrates in rat livers and 
primary hepatocytes [141, 142]� However, since 
fibrates can also activate mouse CAR in cell-
based reporter assays [143], it remains elusive 
as to whether it is PPAR α or CAR that directly 
activates CYP2B genes in response to fibrates� 
Alternatively, fibrates could induce CAR through 
PPARα to activate CYP2B genes as indicated by 
the observation that fibrate treatment increased 
CAR mRNA and protein as well as CYP2B10 
mRNA in rat primary hepatocytes [144]� Other 
studies with human cells suggested that PPAR α 
indirectly regulates the CYP1A1 gene by either 
up- or down-regulation through AHR expression 
after fibrate treatment [145, 146]�

CYP2Cs were also regulated by PPAR α in 
rat livers� Treatment of rats with the synthetic 
PPAR α ligand, WY-14,643 or gemfibrozil, de-
creased CYP2C11 in males and CYP2C12 in fe-
males [147]� CYP2C7 was repressed in the liver 
of both sexes [148]� With regard to the CYP3A4 
gene, PPAR α directly activated its transcription 

[149, 150]� SNP analysis of healthy human liver 
bank samples identified SNP rs4253728 in the 
PPAR α gene as associated with decreased ator-
vastatin 2-hydroxylation activity which is cata-
lyzed by CYP3A4. Moreover, functional PPAR α 
binding motifs were determined in the distal 
CYP3A4 promoter by multiple binding and re-
porter assays�

10.5.3  The LXR

Liver X receptor (LXR, NR1H) includes two iso-
forms. LXR α is primarily expressed in liver, in-
testine and macrophages, while LXRβ is ubiqui-
tously expressed� LXRs can be activated by oxy-
sterols such as 4β-hydroxycholesterol, 24( S)-hy-
droxycholesterol (24-HC) and 24( S),25-epoxy-
cholesterol� Synthetic agonists such as GW3965 
and T0901317 also activate LXRs� LXR–RXR 
heterodimer binds to a DR4 motif to activate its 
target genes� Target genes include CYP7A1 and 
those involved with lipid homeostasis, such as 
SREBP1, ABCA1, ABCG5 and ABCG8�

10.5.4  PXR or CAR Cross Talk

1. With LXR

Yoshinari’s laboratory has defined a unique 
mechanism by which LXRα either activates or 
represses the human CYP3A4 gene in human pri-
mary hepatocytes [151]. LXRα binds to known 
PXR-binding motifs dNR1 and eNR3A4 within 
the distal promoter termed XREM to activate it� 
This activation was greatly attenuated by siRNA-
mediated LXR α knocked down in HepaRG cells. 
As expected, by sharing the same binding mo-
tifs, LXR α and PXR cross talk to regulate the 
CYP3A4 gene� The ability of rifampicin, a PXR 
agonist, to activate the CYP3A4 gene was weak-
ened when human primary hepatocytes or Hepa-
RG cells were co-treated with LXR α agonists. In 
addition, rifampicin treatment was more effective 
in inducing CYP3A4 mRNA than an LXR α / PXR 
dual agonist T0901317, although T0901317 is a 
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stronger PXR agonist than rifampicin� These re-
sults suggest that a given compound’s ability to 
induce CYP3A4 in human hepatocytes does not 
necessarily reflect its ability to activate PXR in 
cell-based reporter assays�

24( S),25-Epoxycholesterol treatment in-
creased CYP3A mRNA levels in rat primary he-
patocytes [152]� However, studies with primary 
hepatocytes from LXR KO or PXR KO mice 
showed that PXR, but not LXR, regulates this 
induction [152]. In human hepatocytes 24( S),25-
epoxycholesterol did not increase CYP3A4 
mRNA levels [153]�

Cross talk also occurs with CAR� Increases 
in CYP2B6 mRNA levels in HepaRG cells after 
CITCO treatment were reduced by co-treatment 
with the LXR α agonist GW3965 [151]� Cross 
talk was also confirmed in mouse livers in vivo� 
Mice that lack both LXR α and LXRβ show in-
creased basal levels of Cyp2b10 and Cyp3a11 
mRNA in their livers [154]� On the other hand, 
induction of Cyp2b10 and Cyp3a11 mRNA by 
TCPOBOP treatment was attenuated in the liv-
ers of mice that overexpressed a dominant ac-
tive form of LXR α [154]. In ChIP assays, LXR α 
competed with CAR for binding to the Cyp2b10 
promoter, thereby repressing induction� Another 
study with LXR α KO mice demonstrated that 
LXR α regulates Cyp2b10 and Cyp3a11 genes 
differentially in response to diets, when these 
mice are fed standard or cholesterol-containing 
food [155]�

2. With AHR

LXR α directly regulated CYP1A1 and CYP1A2 
genes [156, 157]. In response to the LXRα 
agonist T0901317, LXR α trans-activated the 
CYP1A1 promoter in cell-based reporter assays 
in HepG2 cells and bound the -446/-607 region in 
ChIP assays [156]� A DR4-type motif was found 
within this region, to which LXR α bound in gel 
shift assays [156]. In addition, LXR α appeared 
to activate both human CYP1A1 and CYP1A2 
simultaneously [157]� The human CYP1A1 and 
CYP1A2 genes are organized in a head-to-head 
orientation on chromosome 15 by sharing a 
common ~ 23- k b promoter region� Araki et al� 

[157] have demonstrated that two ER8-type mo-
tifs that overlap with the DR4-tye motif act as 
LXR α-responsive elements for the transcription 
of both CYP1A1 and CYP1A2 genes�

3. With VDR

Vitamin D receptor (VDR, NR1I1) is a comem-
ber with CAR and PXR of the NR1I subfam-
ily and is highly expressed in intestines� In the 
liver, nonparenchymal cells but not hepatocytes 
express VDR� VDR is critical for bile acid me-
tabolism in the intestine� Lithocholic acid (LCA), 
a secondary bile acid, activated the expression of 
VDR target genes in gastrointestinal tissues� In 
response to drugs that activated CAR or PXR, 
they cross talked with VDR to regulate CYP3A 
and CYP24A1 genes�

CYP3A genes�Vitamin D3 (VD3) treatment in-
duced CYP3A in Caco-2 cells [158, 159] and ac-
tivated human CYP3A4 or rat CYP3A23 promot-
er in human intestine-derived LS180 cells [160]� 
siRNA knock-down of VDR attenuated LCA-en-
hanced activation of the CYP3A4 reporter as well 
as VDR binding to the promoter in LS174T cells 
[161]� Oral LCA administration (100 mg/kg/day 
for 3 days) increased CYP3A protein levels in the 
intestines but not livers of mice [161]� Adenovi-
ral expression of VDR did not confer mice with 
LCA-induced CYP3A expression in their livers 
[161]� Chronic treatment with drugs that activate 
PXR or CAR can cause metabolic bone disease 
in patients [162, 163]� Since CYP3A4 metabo-
lizes active D3 to inactive it, prolonged activation 
of the CYP3A4 gene has been implicated for a 
cause of this side effect [164]�

CYP24A gene� Vitamin D3 binds to VDR on 
the vitamin D3 response element (VDRE), re-
placing a corepressor with a coactivator for the 
CYP24A1 promoter� This is a feedback mecha-
nism against an adverse increase of active VD3� 
PXR was suggested to bind to VDRE and acti-
vate it and the CYP24A1 gene, thereby becom-
ing a risk factor for metabolic bone diseases 
caused by chronic treatment with rifampicin 
[165]� However, this finding was challenged by 
another study which claimed that PXR neither 
binds to, nor activates, the CYP24A1 promoter 
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[166]� A third study concluded that PXR binds 
VDRE, but this binding is negligible compared 
to VDR-VDRE binding in gel shift assays, and 
furthermore that PXR by itself does not activate 
VDRE [167]� However, rifampicin treatment re-
pressed activation of the CYP24A1 gene by ac-
tive D3� As to the mechanism of this repression, 
rifampicin-activated PXR binds to a VDR/core-
pressor SMRT/VDRE on the promoter, thereby 
locking the SMRT onto the promoter and not 
allowing it to be activated� Similarly, CAR also 
locked SMRT and repressed the CYP24A1 gene� 
Thus, in response to their activating drugs, both 
PXR and CAR cross talk with VDR to repress the 
CYP24A1 gene� In addition to CYP3A4, the Na/
Pi co-transporter but not the CYP24A1 gene may 
be the target of drugs that cause metabolic bone 
diseases [168]�

10.6  Perspectives

The P450 enzymes within subfamilies 1, 2, and 3 
are known by their roles in drug metabolism� Fur-
ther research to define the molecular mechanisms 
of nuclear receptor-mediated induction should be 
continued to fully understand human susceptibil-
ity and prevention of drug treatment or environ-
mental exposures� However, the physiological 
roles of these P450 enzymes have only recently 
come to light, such as that of CYP3A4 in vitamin 
D3 metabolism [169]� In addition, CYP3A KO 
mice were utilized to demonstrate that CYP3A 
also exerts physiological roles in regulating lev-
els of cholesterol and bile acids in vivo [170]� 
Since CYP3A converts cholesterol into its me-
tabolites, the lack of CYP3A results in abnormal 
cholesterol metabolism which feeds back to in-
duce related P450 enzymes, thereby increasing 
bile acid levels� Thus, the physiological functions 
of nuclear receptor-regulated so-called drug-me-
tabolizing P450s, in particular CYP2B, should 
be further defined to advance this research field� 
AhR is also involved in the normal development 
and homeostasis of multiple physiological pro-
cesses� To this end, endogenous ligands and/or 
cellular stimuli that activate nuclear receptors to 
regulate various physiologies must be identified�

Tremendous advances in our understanding of 
the regulatory mechanism no longer allow us to 
simply view nuclear receptors as ligand-activated 
transcription factors that bind to their response 
DNA sequences within a gene for activation� 
More than expected 10-years ago, cell signaling 
is critically involved in nuclear receptor-mediat-
ed regulation� Both CAR and PXR can be acti-
vated by cell signaling in the absence of ligands� 
Moreover, cell signaling may be their primary 
regulator and may not enable ligands to override 
the regulation to activate nuclear receptors� On 
the other hand, cell signaling confers nuclear re-
ceptors with their functional specificity as well 
as diversity, by regulating them at various steps 
such as intracellular localization and degrada-
tion, chromatin-based mechanism, selective re-
cruitment of co-regulators and epigenetic modi-
fications� In addition, multiple nuclear receptors 
co-regulate a given CYP gene� Future investiga-
tions must define the molecular mechanisms that 
regulate each of these steps, which warrant the 
identification of cell signaling molecules that 
cross talk with drugs and xenobiotics� P450 in-
duction research should lead to new directions 
and to comprehend the biological functions of 
P450s and the roles of nuclear receptors in regu-
lating their functions, thereby providing us with 
mechanistic insights into understanding human 
susceptibility and prevention to drug treatments 
and environmental exposures�
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SOCS suppressor of cytokine signaling protein
STAT  signal transducer and activator of tran-

scription�

11.1  Introduction

Interindividual differences in response to drugs 
are well documented [1–3]� Various factors, in-
cluding sex [4–7], contribute to the variability 
in drug response� As first reported in the 1930s, 
female rats respond to a lower dosage of amo-
barbital [8] and experience a longer duration of 
action of this barbiturate [9] than male rats� In 

the 1960s and 1970s, sex differences in hepatic 
drug metabolism were identified using liver mi-
crosomes assayed in vitro using prototypic phase 
I cytochrome P450 (CYP) drug substrates, such 
as ethylmorphine, benzo[a]pyrene, and hexobar-
bital (Fig� 11�1) [10–13]� These studies showed 
that the sex dependence of hepatic P450 metabo-
lism is most striking in the rat, where sex differ-
ences in metabolic rates can be fivefold or more 
with some drug substrates, even though the total 
liver P450 content is only ~ 20 % higher in males 
compared to females (Fig� 11�1)� Research car-
ried out in the 1980s resolved this discrepancy 
with the discovery that a subset of the multiple 
drug-metabolizing P450 enzymes in rat liver [14, 
15] is expressed in a highly sex-dependent man-
ner [16]�

Many P450 enzymes in the CYP gene super-
family are active in foreign compound metabo-
lism, in particular, genes in families CYP1, CYP2, 
and CYP3� These three families encompass 23 
CYP genes (human), 50 CYP genes (rat), and 61 
CYP genes (mouse) [17], and collectively carry 
out essentially all of the phase I CYP metabolic 
reactions in mammalian liver� A subset of these 
hepatic P450s is expressed in a sex-dependent 
manner subject to endocrine control [18]� The 
sex dependence of liver P450 enzyme expression 
has been widely studied at the gene (RNA) level 
in the rat and mouse models, but has also been 
reported for other species, including humans� 
Human liver P450 metabolism is associated with 
significant male–female differences in the elimi-
nation pharmacokinetics of many drugs [4, 7, 
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19], and is in part determined by age, sex, and 
hormone status [4, 5, 7, 19–21]� Overall, more 
than 1000 genes show significant sex differ-
ences in expression in human liver, as indicated 
by global microarray analysis [22]� The sex-dif-
ferentially expressed human genes affect diverse 
physiological functions, including metabolic pro-
cesses that impact lipid profiles associated with 
sex differential risk of human coronary artery 
disease [22]� More than 400 of the sex-dependent 
genes in human liver have mouse orthologs that 
show sex-biased hepatic expression regulated by 
the polypeptide hormone growth hormone (GH; 
see Sect� 11�4�2�2), suggesting GH plays a similar 
regulatory role in the human liver [22]� Stud-
ies of the mechanisms by which GH and other 
endocrine factors regulate rat and mouse liver 
P450 enzymes may therefore help elucidate cor-
responding regulatory processes in human liver, 
which can impact P450-catalyzed reactions af-
fecting the metabolism of lipids, endogenous ste-
roids, drugs, and environmental chemicals�

This chapter reviews the sex-dependent he-
patic P450s; their regulation by endocrine fac-
tors; and the underlying molecular, genomic, and 
epigenetic mechanisms of action governing this 

regulation� We also discuss the role of hepatic 
P450s in steroid hormone metabolism, as well 
as the environmental and pathophysiologic fac-
tors that can perturb hormonal status and thereby 
impact the sex-dependent expression of hepatic 
P450s� Lastly, we discuss the effects of sex ste-
roid hormones on hepatic expression of xenobi-
otic-inducible liver P450 enzymes and the role of 
specific receptors in regulating sex steroid induc-
tion of these P450s�

11.2  Sex-Dependent Liver P450 
Enzymes

The physiological requirements with respect to 
steroid hormone hydroxylation differ between 
the sexes, and not surprisingly, several ste-
roid hydroxylase liver P450s are expressed in 
a sex-dependent manner [16, 23]� Rat P450 en-
zymes CYP2C11 and CYP2C12 are prototypic 
examples of sex-specific steroid hydroxylase 
liver P450 enzymes (Table 11�1), and they have 
been a major focus of studies of the underlying 
endocrine factors, as well as the cellular and 
molecular regulatory mechanisms that govern 

Fig. 11.1  Sex differences in rat hepatic microsomal drug 
metabolism� Data shown are based on enzyme assays in 
rat liver microsomes using the three indicated xenobiotic 
substrates: ethylmorphine ( EM) [12], benzo[a]pyrene 
( BP) [13], and hexobarbital ( HB) [10]� Ethylmorphine N-
demethylase and benzo[a]pyrene hydroxylase activities 
are expressed as nanomolar product formed per minute 
per milligram of microsomal protein, whereas hexobarbi-

tal hydroxylase activity is expressed as nanomolar prod-
uct formed per 30 min per gram of liver� Also shown is the 
hepatic microsomal total cytochrome P450 content, which 
is expressed as nanomoles per milligram of microsomal 
protein (values multiplied by 10) [12]� The data are shown 
as mean ± SD for four or five rats, except for ethylmor-
phine N-demethylase and total P450 which are based on 
a pool of six livers
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sex-specific liver gene expression� CYP2C11 is 
the major male-specific testosterone 16α- and 
2α-hydroxylase in adult rat liver, and is induced 
at puberty in males but not females [24, 25] under 
the influence of neonatal androgenic imprinting 
(programming) [26]� By contrast, the steroid sul-
fate 15β-hydroxylase CYP2C12 is expressed in 
a female-specific manner in adult rat liver [26, 
27]� Other sex-dependent rat liver P450 enzymes 
include the male-specific enzymes CYP2A2, 
CYP2C13, CYP3A2, CYP3A18, and CYP4A2, 
and the female-predominant enzymes CYP2A1, 
CYP2C7, and CYP3A9 (Table 11�1)�

11.2.1  Steroid Hormones as 
Substrates for Sex-Dependent 
Liver P450s

The precise physiological functions of the en-
docrine-regulated liver P450s are not known; 
however, the finding that steroid hormones are 
metabolized by liver P450 enzymes with a much 
higher degree of regiospecificity and stereose-
lectivity than many foreign compound substrates 
[16] suggests that these endogenous lipophiles 
serve as physiological P450 substrates� Testoster-
one is hydroxylated in a regiospecific and stere-
oselective manner by multiple sex-dependent rat 
liver P450 enzymes (Table 11�1)� Liver micro-
somal testosterone hydroxylation at the 7α-, 15α-, 
2α-, and 6β-positions is respectively catalyzed 

Table 11.1  Hormonal regulation of sex-dependent rat liver P450 enzymes
Hormonal regulationc

Testosterone 
hydroxylase

Androgenic

CYP enzymea Activitiesb Imprintingd Thyroid hormonee

I� Male-specific
2A2 15α ++ +/−
2C11 2α, 16α ++ +/−
2C13 6βf, 15α ++ ND
3A2 6β, 2β ++ −−
3A18 16β, 2β, 15β, 16α ND ND
4A2 (see footnote g) ND −

II� Female-specific
2C12 15βh −− +/−

III� Female-predominanti

2A1 7α ND −
2C7 16α ND ++
3A9 6β ND ND
5α-reductase − −− ++

a P450 gene designations are based on the systematic nomenclature of [322]� The table is modified from [102]
b The major sites of testosterone hydroxylation catalyzed by the individual P450 proteins are shown� Testosterone 
metabolites specific to the P450’s activity in rat liver microsomal incubations are underlined� Based on [15, 16, 26, 38, 
45] and references therein
c “++” indicates a positive effect on adult enzyme expression, while “––” indicates a suppressive effect� “–” indicates 
a lesser degree of suppression, while “+/−” indicates no major effect. ND—not determined in a definitive manner
d For further details, see [35, 37, 65]
e Based on [48, 110, 122, 183, 184]
f Purified CYP2C13 exhibits high testosterone hydroxylase activity in a purified enzyme system, but this enzyme 
makes only marginal contributions to liver microsomal testosterone hydroxylation [323]
g CYP4A2 catalyzes fatty acid ω-hydroxylation, but it does not catalyze testosterone hydroxylation
h  15β-hydroxylation of steroid sulfates [31]� CYP2C12 also catalyzes weak testosterone 15α- and 1α-hydroxylase 
activities
i Liver expression of these enzymes is readily detectable in both male and female rats, but at a three- to tenfold greater 
level in females as compared to males
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by CYP2A1, CYP2A2, CYP2C11, and CYP3A 
enzymes [26, 28–30]� In contrast, CYP2C12 
catalyzes the 15β-hydroxylation of steroid 
sulfates [31]. Testosterone 7α-hydroxylation, 
testosterone 15α-hydroxylation, testosterone 
2α-hydroxylation, testosterone 6β-hydroxylation, 
and steroid sulfate 15β-hydroxylation can be used 
as specific catalytic markers for rat liver micro-
somal enzymes CYP2A1, CYP2A2, CYP2C11, 
CYP3A, and CYP2C12, respectively [15, 16]� 
Other steroid hormones, including androstenedi-
one and progesterone, also undergo stereoselec-
tive and regiospecific hydroxylation catalyzed by 
rat [26, 32] and human [33] liver P450 enzymes�

11.3  Developmental Regulation of 
Sex-Dependent Rat Liver P450s

Many of the sex-dependent liver CYP enzymes 
are subject to complex developmental regula-
tion and endocrine control (Table 11�1)� Rat 
CYP2C11, the major male-specific androgen 
2α- and 16α-hydroxylase of adult liver, is not ex-
pressed in immature rats but is induced dramati-
cally at puberty (beginning at 4–5 weeks of age) 
in male but not female rat liver [24, 25]� Three 
other male-specific rat liver cytochromes P450 
exhibit a similar developmental profile: CYP2A2 
[34, 35], CYP2C13 [36, 37], and CYP3A18 [38, 
39]� In contrast, another adult male-specific liver 
P450, CYP3A2, is expressed in prepubertal rat 
liver at similar levels in both sexes, but is selec-
tively repressed at puberty in female liver [26, 
29, 40, 41]� CYP2C12 is expressed at a mod-
erate level in both male and female rats at 3–4 
weeks of age� Beginning at puberty (~ 30–35 
days postnatal), CYP2C12 levels are further in-
creased in females while they are fully repressed 
in males [26, 27]� Several other female-predom-
inant liver enzymes are increased in expression 
at puberty in adult female rats� These include: 
CYP2C7 [36, 42], which catalyzes retinoic acid 
4-hydroxylation [43]; CYP3A9 [44], which cata-
lyzes steroid 6β-hydroxylation [45]; and steroid 
5α-reductase, which is not a CYP enzyme but 
plays an important role in steroid metabolism in 
adult female rats [26, 46]� Finally, CYP2A1, a 

female-predominant steroid 7α-hydroxylase that 
is expressed in both sexes shortly after birth, is 
repressed at puberty to a greater extent in male 
than in female rat liver [26, 47, 48]� Each of these 
sex-dependent P450 enzymes is expressed pri-
marily in the liver, although low-level expression 
in one or more extrahepatic tissues may occur in 
some cases [49–51]�

The changes in liver P450 levels during post-
natal development have been studied in both 
rat and mouse liver at the RNA level using ge-
nome-wide expression microarrays� In rat liver, 
sex differences in expression are seen as early 
as 2 weeks postnatally for a few genes; how-
ever, widespread sex differences do not appear 
until the onset of puberty (~ 5 weeks of age) 
[52]� Analysis of the developmental changes in 
gene expression in mouse liver has shown that 
many female-biased genes are downregulated in 
male liver at puberty, while male-biased genes 
are upregulated� Many fewer developmental 
changes affecting sex-biased genes occur in fe-
male liver [53]� In both male and female mouse 
liver, genes upregulated from 3 to 8 weeks of age 
were enriched for genes positively regulated by 
the transcription factor hepatocyte nuclear factor 
4α (HNF4α), which is known to play a critical 
role in liver development and differentiation [54, 
55], while genes downregulated during the same 
developmental period were enriched for genes 
negatively regulated by HNF4α [53, 56]� Sev-
eral female-biased transcriptional regulators, en-
coded by Cux2, Trim24, and Tox [57], displayed 
sex-differential expression at 4 weeks of age, i�e�, 
just prior to the emergence of extensive sex dif-
ferences in liver gene expression� One or more 
of these transcription factors could contribute to 
the sex-biased developmental changes in P450s 
and that of many other liver-expressed genes that 
emerge at puberty [53]� Detailed studies of one of 
these factors, Cux2, support this conclusion [58] 
(see Sect� 11�4�2�4�3)�

During senescence, there is a general loss of 
sex-dependent enzyme expression; this largely 
reflects a decrease in male P450 levels and an in-
crease in expression of female-biased P450s, as 
seen in livers of aging male rats [59–63]� These 
changes appear to be related to the age-dependent 
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reduction in the secretion of GH-releasing factor 
and associated changes in the sex-dependent pat-
tern of pituitary GH secretion [64], which is a 
major regulator of the sex-dependent expression 
of liver CYP enzymes (see Sect� 11�4�2)� In aging 
male rats, the decline in hepatic CYP2C11 ex-
pression is not accompanied by a decrease in the 
GH-activated transcription factor signal trans-
ducer and activator of transcription 5b (STAT5b) 
[62], whereas the increase in hepatic CYP2C12 
expression is accompanied by an increase in 
HNF3β [62], which is also involved in the regu-
lation of sex-dependent liver P450 enzymes (see 
Sect� 11�4�2)�

11.4  Hormonal Control of Liver P450 
Expression

11.4.1  Regulation by Gonadal 
Hormones

Gonadal steroids play an important role in regu-
lating the sex-dependent pattern of hepatic ste-
roid and drug metabolism and P450 expression� 
However, gonadal steroids largely act indirectly 
via their effects on the hypothalamus, which 
regulates the pituitary gland and determines its 
sex-dependent temporal pattern of GH secretion 
(see Sect� 11�4�2)�

11.4.1.1  Testosterone
11.4.1.1.1  Distinct Effects of Neonatal 

Androgen and Adult Androgen
Gonadal hormones play an essential role in deter-
mining the expression of the major sex-specific 
rat liver P450 forms at adulthood� For testoster-
one, there are two distinct periods of postnatal 
hormone production, neonatal and postpubertal, 
and each period makes a distinct contribution to 
the expression of the sex-dependent liver P450s at 
adulthood� Castration of male rats at birth elimi-
nates both periods of testosterone production and 
thereby abolishes normal adult male liver expres-
sion of the male-specific P450 enzymes CYP2A2 
[35], CYP2C11 [25, 26, 36, 65, 66], CYP2C13 
[37], and CYP3A2 [26, 65, 66]� Adult male 

liver expression of CYP2C13 RNA [37] is also 
abolished in birth-castrated rats, indicating that 
enzyme expression is regulated at a pretransla-
tional step� Treatment of birth-castrated male rats 
with testosterone during the neonatal period par-
tially restores expression of these male-specific 
P450s at adulthood [26, 35, 37]� A brief period 
of neonatal androgen exposure is thus sufficient 
to “imprint” or irreversibly program the male 
rat to express these P450 enzymes later in adult 
life� These effects of neonatal androgen on male-
specific P450 enzymes are very similar to the 
androgenic imprinting effects described in earlier 
studies of liver microsomal steroid hydroxylase 
activities [46, 67, 68], several of which can be 
associated with specific liver P450 enzymes [16]�

Administration of testosterone to birth-castrat-
ed male rats during the neonatal period (typically 
during the first few days of life) partially restores 
normal adult male expression levels of CYP2C11 
[26, 66] and CYP2C13 [37] at adulthood, indicat-
ing that neonatal androgen alone is insufficient 
for full adult expression of these male-specific 
P450s� In contrast, the combination of neonatal 
androgen treatment with adult androgen expo-
sure fully restores normal adult male levels of the 
male-specific P450s [26]� Testosterone treatment 
of adult male rats that were castrated either neo-
natally or prepubertally substantially increases 
the expression of CYP2C11 [65, 66, 69, 70] and 
CYP2C13 [37]� However, in contrast to the irre-
versible imprinting effects of neonatal androgen 
treatment, the effects of adult androgen exposure 
are likely to be reversible; this is indicated by the 
partial loss of CYP2C11 in male rats castrated 
at adulthood [25, 26] and by the reversal of this 
loss by the synthetic androgen methyltrienolone 
[71]� Similarly, the continued presence of testos-
terone at adulthood is required to maintain nor-
mal adult expression of CYP3A2, since castra-
tion at 90 days of age reduces hepatic CYP3A2 
messenger RNA (mRNA) levels by > 80 %, but 
this can be restored by subsequent administration 
of testosterone to the adult rat [72]� Thus, while 
neonatal testosterone imprints the rat for expres-
sion of male-specific P450 enzymes beginning at 
puberty, when the demand for P450-dependent 
liver steroid metabolism increases, the additional 
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toration of normal adult enzyme levels by estro-
gen replacement� Ovariectomy during adulthood 
[83] or neonatal administration of an estrogen 
receptor antagonist, tamoxifen [84], reduces he-
patic CYP3A9 levels in adult female rats� The de-
crease in CYP3A9 expression in ovariectomized 
rat liver can be reversed by estrogen treatment 
[83]� By contrast, estradiol suppresses hepatic 
CYP2C11 in both intact and castrated male rat 
liver [65, 69]� However, the absence of CYP2C11 
in adult female rat liver is not due to a direct nega-
tive effect of estrogen� Thus, ovariectomy alone 
does not induce CYP2C11 expression in female rat 
liver [26, 65, 69]� In male rats, the suppression 
of CYP2C11 by estradiol may be irreversible, as 
demonstrated by the major loss of this P450 in 
livers of adult male rats exposed to estradiol dur-
ing the neonatal period or at puberty� However, 
this effect is not a consequence of a direct ac-
tion of estradiol on the liver, since estradiol does 
not impact hepatic CYP2C11 levels in hypophy-
sectomized rat liver [81]� Rather, the effects of 
estradiol on hepatic P450 expression involve the 
hypothalamic–pituitary axis, and most likely re-
sult from an estrogen-dependent increase in the 
interpeak baseline levels of plasma GH [77, 85]� 
This effect of estradiol may be sufficient to alter 
the sex-specific effects of pituitary GH secretion 
since, as discussed in greater detail below, recog-
nition of a “masculine” GH pulse by hepatocytes 
requires an obligatory recovery period during 
which there is no plasma GH and hence no stimu-
lation of hepatocyte GH receptors (GHRs) [86]� 
In addition, estrogen may antagonize the induc-
tion of CYP2C11 by testosterone as suggested by 
the absence of androgen imprinting of this P450 
in intact female rats treated with neonatal or pu-
bertal testosterone [69, 70]� Indeed, the stimula-
tory effect of testosterone on the male, pulsatile 
pattern of pituitary GH secretion can be blocked 
by the presence of intact ovaries in female rats 
[79]� Interestingly, prepubertal treatment of in-
tact (i�e�, nonovariectomized) female rats with 
tamoxifen enhances the induction of CYP2C11 
and CYP3A2 expression by pubertal and postpu-
bertal androgen [87]� The neuroendocrine mech-
anisms responsible for the antagonistic effects 

presence of androgen during the pubertal and 
postpubertal periods is required to maintain full 
enzyme expression during adult life [73, 74]�

11.4.1.1.2  Testosterone Suppression of 
Female Enzymes

Testosterone suppresses expression of the female-
specific CYP2C12 as well as the female-predomi-
nant enzymes CYP2A1 and steroid 5α-reductase. 
Hepatic CYP2C12 content is reduced in intact, 
adult female rats exposed chronically to testos-
terone [65] or to the synthetic androgen methyl-
trienolone [27]� Similarly, treatment of neona-
tally or prepubertally ovariectomized rats with 
testosterone, either neonatally or pubertally, 
results in a major decrease in liver microsomal 
steroid 5α-reductase activity [65, 73]� Birth cas-
tration of male rats increases the adult levels of 
hepatic CYP2A1, but testosterone administration 
to these animals re-masculinizes (i�e�, decreases) 
the levels of this P450 [75]� Androgens thus exert 
a suppressive effect on liver CYP2A1 expres-
sion� Studies of the effect of testosterone on the 
expression of the female-predominant CYP2C7 
are inconclusive [69, 76]�

11.4.1.1.3  Mechanisms of Testosterone 
Regulation

Testosterone’s primary effects on liver P450 pro-
files are mediated by the hypothalamic–pituitary 
axis [77] and its control of the sex-dependent pat-
tern of pituitary GH secretion [78, 79]� Consis-
tent with this conclusion, testosterone has only 
minor effects on liver enzyme profiles in hypoph-
ysectomized rats in most [80] but not all [81, 82] 
instances� Rather, as discussed in Sect� 11�4�2, the 
effects of testosterone on liver P450 expression 
are thought to be mostly indirect, being mediated 
by sex differences in pituitary GH secretory pat-
terns�

11.4.1.2  Estrogen
A role for estrogen in the expression of the fe-
male-specific liver P450 enzymes is suggested 
by the effects of ovariectomy at birth, which re-
duces, but does not abolish, hepatic expression 
of CYP2C7, CYP2C12, and steroid 5α-reductase 
in adult female rats [26, 65, 69], and by the res-
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of estrogen on androgen imprinting remain to be 
elucidated�

Exposure to xenoestrogens during the neona-
tal and adult periods can influence the effects of 
GH on sex-specific liver P450 levels� Adminis-
tration of bisphenol A to female rats on postna-
tal days 1–10 decreases hepatic CYP2C12 gene 
expression and has no effect on CYP2C11 gene 
expression, when assessed postpubertally at 5 
months of age [88]� The decrease in CYP2C12 is 
associated with an increase in pituitary GH con-
tent� By comparison, treatment of adult male rats 
with bisphenol A suppresses hepatic microsomal 
CYP2C11 and CYP3A2 protein and enzyme ac-
tivities [89]� The mechanistic basis for the neo-
natal and adult exposure effects of bisphenol A 
on hepatic CYP2C11 and CYP2C12 expression 
have not been identified�

11.4.2  Regulation by GH

11.4.2.1  Sex-Dependent GH Secretory 
Profiles

In many mammalian species, the pituitary gland 
secretes GH into the bloodstream in a highly 
regulated temporal fashion, which differs be-
tween males and females� This sex-dependent 
secretion of GH is most striking in rats and mice 
[90–93], but key features are conserved in hu-
mans [94–98] (Fig� 11�2)� In the adult male rat, 
GH is secreted by the pituitary gland in an inter-
mittent (i�e�, pulsatile) manner characterized by 
high peaks of hormone in plasma (200–300 ng/
ml) each 3�5–4 h followed by a period of very 
low or undetectable circulating GH (< 1–2 ng/
ml)� By contrast, in the adult female rat, GH is 
secreted more frequently (multiple pituitary se-

Fig. 11.2  Sex differences in plasma growth hormone 
( GH) profiles in adult rats (a) and humans (b)� Shown 
are plasma GH profiles measured during the course of a 
single day in each of two individual male and two indi-

vidual female rats (panel a) and mean plasma GH pro-
files assayed in n = 8 individual men and n = 8 individual 
women (panel b)� Data shown are from [330] (panel a) 
and [331] (panel b)
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cretory events per hour) and in a manner such 
that the plasma GH pulses overlap and the hor-
mone is present in circulation at significant lev-
els at nearly all times [80] (Fig� 11�2a)� Human 
males also show well-defined plasma GH-
free periods between major secretory periods, 
whereas in human females, the GH-free periods 
are of limited duration (Fig� 11�2b)� Hypophy-
sectomy and GH replacement experiments 
demonstrate that these sex-dependent plasma 
GH profiles are, in turn, responsible for estab-
lishing and for maintaining the sex-dependent 
patterns of liver P450 gene expression in rats 
[25, 27, 35, 86, 99] and mice [100, 101] (for 
earlier reviews, see [102, 103])� Clinical stud-
ies in humans also demonstrate a role for GH 

[104–108] and its sex-dependent plasma secre-
tory patterns [109] in regulating P450-depen-
dent drug metabolism�

Studies in the rat model reveal three distinct 
responses of liver P450s to plasma GH profiles 
(Fig� 11�3):
1� Continuous plasma GH, a characteristic of 

adult female rats, stimulates hepatic expres-
sion of female specific enzymes, such as 
CYP2C12 and steroid 5α-reductase [27, 75], 
and female-dominant liver enzymes, such as 
CYP2A1, CYP2C7, and CYP3A9 [75, 110–
112]� Hepatic levels of CYP2C12 and steroid 
5α-reductase are undetectable in hypophysec-
tomized female rats, but can be restored to 
near-normal female level by continuous GH 

Fig. 11.3  Impact of plasma growth hormone ( GH) pro-
file on sex-dependent rat hepatic cytochrome P450 ( CYP) 
mRNA levels� Shown are Northern blots probed with 
oligonucleotide probes specific for each of the indicated 
CYP RNAs� Panel a shows the male ( M)-specific expres-
sion of CYP2C11, which is not expressed in hypophy-
sectomized rat liver ( Hx) and is induced in livers of both 
male and female ( F) hypophysectomized rats given either 

two or six pulses ( P) of GH/day for 7 days� Data based 
on [86]� Panel b shows the effects of continuous rat (r) 
or human (h) GH infusion in male rats (lanes 6–10) on 
the mRNA levels of CYP4A2, CYP2C11, and CYP3A2 
(all male-specific; lanes 1, 2, 11 vs� lanes 3–5), as well as 
CYP2C12, which is induced� Tubulin RNA is shown as a 
loading control� The figure is based on [18]

 



82111 Hormonal Regulation of Liver Cytochrome P450 Enzymes

infusion [75, 113, 114, 115]� This restoration 
can be achieved with as little as 12–25 % of 
the physiological levels of GH [115]� Greater 
levels of GH are required to induce expres-
sion of CYP2C12 and steroid 5α-reductase in 
hypophysectomized male rats [116]�

2� Intermittent plasma GH pulses, which are 
characteristic of adult male rats, induce ex-
pression of the male-specific liver enzyme 
CYP2C11 (Fig� 11�3a) and its associated tes-
tosterone 2α-hydroxylase activity [25, 73, 
86, 99]� The stimulatory effects of intermit-
tent GH stimulation on this “class I” male 
P450 enzyme can be distinguished from the 
effects of GH pulses on a second group of 
male-specific liver P450s (“class II” enzymes 
CYP2A2, CYP2C13, CYP3A2, CYP3A18, 
and CYP4A2)� In contrast to the class I 
CYP2C11, class II male-specific P450s are 

not obligatorily dependent on GH pulses, as 
judged by their high level of expression in 
the absence of GH, as demonstrated in hy-
pophysectomized rats of both sexes [35, 37, 
39, 115–119] (Fig� 11�4)� Nevertheless, liver 
expression of the class II enzymes CYP2A2 
and CYP3A2 is induced when intermittent 
GH pulses are given to adult male rats that are 
depleted of circulating GH by neonatal mono-
sodium glutamate (MSG) treatment [118]�

3� Continuous GH exposure exerts major nega-
tive regulatory effects on male liver P450 en-
zyme expression, as revealed by the marked 
suppression of each of the class I and class 
II male-specific rat liver P450s following 
continuous GH treatment of intact male rats 
(Fig� 11�3b)� In some cases, this effect can be 
achieved at low circulating GH levels, corre-
sponding to only 3–12 % of the physiological 

Fig. 11.4  Class I and class II sex-specific genes� Class I 
male-specific genes are induced by plasma growth hor-
mone ( GH) pulses in male liver (a) and class I female-
specific genes are induced by the more continuous female 
plasma GH profile in female liver (b)� Class II male-
specific genes are repressed in female liver by the female 
plasma GH profile (a) and class II female-specific genes 
are repressed in male liver by the male plasma GH profile 
(b)� Consequently, the loss of GH following hypophysec-
tomy (“hypox”) leads to downregulation of class I male-
specific genes and to upregulation of class II female-spe-

cific genes (derepression) in male liver� Hypophysectomy 
also leads to downregulation of class I female-specific 
genes and to upregulation of class II male-specific genes 
(derepression) in female liver (table at right)� Class II 
male-specific genes do not require male plasma GH puls-
es for expression, and therefore are most often unchanged 
in expression in male liver following hypophysectomy, 
and, correspondingly, class II female-specific genes do 
not require the female pattern of GH stimulation for ex-
pression and are most often unchanged in expression in 
male liver following hypophysectomy� Specific examples 
of each gene class are shown in the last column
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GH level in adult female rats [116]� The high-
level expression of class II P450 mRNAs seen 
in the absence of GH pulses, i�e�, in hypophy-
sectomized male rats, is also suppressed by 
continuous GH treatment, indicating that con-
tinuous GH actively suppresses P450 gene ex-
pression, and does not simply act by abolish-
ing the pulsatile plasma GH pattern� GH sup-
pression is also a key determinant of the lower 
responsiveness of female rats to phenobarbital 
induction of CYP2B1 [120, 121], and prob-
ably also the lower responsiveness of female 
liver to the induction of CYP4A enzymes by 
peroxisome proliferators such as clofibrate 
[122]�

The response of the class II male P450 genes 
to hypophysectomy of female rats, which de-
represses (i�e�, increases) female liver P450 en-
zyme levels to near-normal intact male liver en-
zyme levels, demonstrates that the class II male 
liver P450s are subject to negative pituitary regu-
lation in female rat liver, where their expression 
is strongly repressed by the near-continuous pat-
tern of plasma GH exposure (Fig� 11�4)� These 
patterns of hormonal regulation are summarized 
in Table 11�2, which presents the responses of 
prototypic sex-specific liver P450s to continuous 
and intermittent GH treatment applied to intact, 

hypophysectomized, and neonatal MSG-treated 
rats� Importantly, these patterns of response to 
pituitary GH ablation by hypophysectomy are 
recapitulated when the effects on sex-specific 
gene expression are examined on a global scale 
by microarray analysis, as seen in both rat liver 
[123] and mouse liver [124]� Interestingly, the 
latter studies revealed that male liver displays an 
intrinsically greater responsiveness than female 
liver to the rapid effects of a pulse of GH� Thus, 
many individual male-specific genes are induced 
rapidly (within 30 min) in livers of hypophysec-
tomized male but not hypophysectomized female 
mice treated with a single plasma pulse of GH 
[124]� Thus, GH pulse responsiveness is in part 
determined by intrinsic sex-specific factors, 
which may result from prior hormone exposure 
(epigenetic mechanisms) or genetic factors that 
are pituitary independent and could contribute 
to sex differences in the predisposition to liver 
cancer or other hepatic pathophysiologies [125]�

11.4.2.2  Transcriptional Effects of GH on 
CYP Genes

GH regulates steady-state liver P450 mRNA 
levels in parallel with P450 protein and P450 
enzyme activity levels, all but ruling out major 
regulation by translational and posttranslational 

Table 11.2  Response of sex-specific rat CYPs to GH
                                 Intact rats   Hypophysectomized rats                      MSG-treated rats
CYP F M M F M M M M M

+ + + +
GHcont GHint GHcont GHint

CYP2C11a

(Male 
class I)

− ++ − − − ++ − − ++

CYP2A2b

(Male 
class 
II)

− ++ − ++ ++ ++ +/− − ++

CYPC12c

(Female 
specific)

++ − ++ − − − ++ − −

CYP cytochrome P450, F female, GHcont continuous growth hormone, GHint intermittent (pulsatile) growth hormone, 
M male
“++” indicates a positive effect, “−” indicates a suppressive effect, and “+/−” indicates no major effect
a Data are based on [25, 41, 86, 115, 116, 118, 119, 135, 324–328]
b Data are based on [35, 115, 116, 118, 119, 135, 327–329]
c Data are based on [113, 115, 116, 135, 325, 327–329]
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mechanisms, such as regulation of P450 pro-
tein turnover� Induction of CYP2C12 mRNA 
by continuous GH requires ongoing protein 
synthesis [126], suggesting either an indirect in-
duction mechanism or a requirement for one or 
more protein components that may have a short 
half-life� Analysis of liver nuclear RNA demon-
strates that unprocessed, nuclear CYP2C11 and 
CYP2C12 RNA respond to circulating GH pro-
files in a manner that is indistinguishable from 
the corresponding mature, cytoplasmic mRNAs 
[122]� Consequently, RNA splicing, transport 
of CYP2C11 and CYP2C12 mRNA to the cyto-
plasm, and cytoplasmic P450 mRNA stability are 
unlikely to be important GH-regulated control 
points for sex-specific P450 expression� More-
over, nuclear run-on transcription analyses have 
established that GH regulates the sex-specific ex-
pression of the CYP2C11 and CYP2C12 genes 
at the level of transcript initiation [122, 127]� 
Transcription is also the major step for regula-
tion of the male class II CYP2A2 and CYP2C13 
mRNAs [122, 127], whose male-specific expres-
sion is primarily a consequence of the suppres-
sive effects of continuous GH exposure in adult 
female rats [35]� Thus, transcription initiation is 
the key step at which the three distinct effects of 
GH outlined in Sect� 11�4�2�1 are operative: stimu-
lation of CYP2C11 expression by pulsatile GH, 
suppression of both class I and class II male-
specific P450s by continuous GH, and stimula-
tion of CYP2C12 expression by continuous GH 
[122]� Class II male-specific rat liver genes, such 
as CYP2A2 and CYP2C13 (Sect� 11�4�2�1), are 
downregulated within 30 min of GH pulse treat-
ment, as determined by heterogeneous nuclear 
RNA (primary transcript) analysis [123], sug-
gesting that transcription of these genes is re-
stricted to the GH-free interpulse period in adult 
male rat liver�

Consistent with the finding that GH regulates 
sex-dependent liver CYPs by transcriptional 
mechanisms, the 5′-flanking DNA segments of 
both the CYP2C11 [128] and CYP2C12 genes 
[129] contain specific DNA sequences that inter-
act in a sex-dependent and GH-regulated man-
ner with nuclear DNA-binding proteins (puta-
tive transcription factors) that are differentially 

expressed in male versus female rat liver [122, 
130]� These DNA sequences are hypothesized 
to include GH response elements that contribute 
to the sex-specific transcription of the CYP2C11 
and CYP2C12 genes� Two negative regulatory 
elements (“silencer elements”) were also identi-
fied in the CYP2C11 promoter; however, their 
significance with respect to GH regulation and 
sex-specific P450 expression is as yet unclear 
[131]� More detailed, genome-wide studies of 
sex-specific mouse CYP genes and their regula-
tory elements, and their interactions with liver-
enriched and GH-responsive transcription factors 
are discussed below (Sect� 11�4�2�4)�

11.4.2.3  Cellular Mechanisms of GH 
Signaling

The cellular mechanisms whereby pituitary GH 
secretory profiles regulate expression of the sex-
dependent liver P450s are only partially under-
stood� GH can act directly on the hepatocyte to 
regulate liver P450 expression, as demonstrated 
by the responsiveness of primary rat hepatocyte 
cultures to continuous GH-stimulated expression 
of CYP2C12 mRNA; however, these effects do 
not involve insulin-like growth factor (IGF)-I, 
a mediator of several of GH’s physiological ef-
fects on extrahepatic tissues [126, 132]� Dis-
crimination by the hepatocyte between male and 
female plasma GH profiles is likely to occur at 
the cell surface, where a higher level of GHRs 
(see below) is found in female as compared to 
male rats [133]� This sex difference in cell sur-
face GHR abundance may, at least in part, be 
due to differential effects of intermittent versus 
continuous GH stimulation of GH signaling lead-
ing to receptor internalization and/or downregu-
lation [134] and could play a role in the activa-
tion of distinct intracellular signaling pathways 
by chronic (female) as compared to intermittent 
(male) GH stimulation�

14.4.2.3.1  Significance of GH Pulse 
Frequency

It is important to determine which of the three 
descriptive features of a GH pulse—namely, GH 
pulse duration, GH pulse height, and GH pulse 
frequency—is required for proper recognition of 
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a GH pulse as “masculine�” Direct measurement 
of the actual plasma GH profiles achieved when 
GH is administered to hypophysectomized rats 
by twice-daily subcutaneous (s�c�) GH injection 
(i�e�, the intermittent GH replacement protocol 
commonly used to stimulate CYP2C11 expres-
sion) has revealed broad peaks of circulating GH, 
which last as long as 5–6 h [86]� These sustained 
GH “pulses” are nonphysiological; nevertheless, 
they are effective in stimulating expression of the 
male-specific CYP2C11, provided that they are 
not administered in close succession� Physiologi-
cal GH pulse duration (< 2 h) is therefore not re-
quired to elicit a male CYP gene response� Stud-
ies carried out in GH-deficient rat models (either 
dwarf rats or rats depleted of adult circulating GH 
by neonatal MSG treatment) demonstrate that 
GH pulse height is also not a critical factor for 
stimulation of CYP2C11 expression [127, 135]� 
This finding can be understood in terms of the 
Kd of the GH–GHR complex, which at 10−10 M 
(~ 2 ng/ml) [136], is only ~ 1 % of the peak plas-
ma hormone level in adult male rats� In contrast, 
GH pulse frequency is a critical determinant for 
GH stimulation of a male pattern of liver P450 
expression, as shown in hypophysectomized rats 
given physiologic replacement doses of GH for 
7 days by intermittent intravenous injections at 
frequencies of 2, 4, 6, or 7 times/day [86]� Analy-
sis of liver CYP2C11 RNA levels in these rats 
revealed a normal male pattern of liver CYP2C11 
gene expression in response to six GH pulses per 
day (which approximates the normal male plas-
ma GH pulse frequency), as well as in response 
to GH pulses given at lower frequencies, e�g�, 
twice daily (e�g�, Fig� 11�3a)� However, hypophy-
sectomized rats are not masculinized by seven 
daily GH pulses, indicating that the hepatocyte 
does not recognize the pulse as “masculine” if 
GH pulsation becomes too frequent� Hepatocytes 
thus require a minimum GH off time (~ 2�5 h in 
the hypophysectomized rat model used in these 
studies), which implies the need for an obliga-
tory recovery period to effectively stimulate 
CYP2C11 expression� This condition is not met 
in the case of hepatocytes exposed to GH contin-
uously (female hormone profile)� This recovery 
period may serve to reset the cellular signaling 

apparatus, e�g�, by replenishing GHRs at the cell 
surface (see below)�

14.4.2.3.2 Role of GHR
The effects of GH on hepatocytes and other re-
sponsive cells are transduced by GHR, a 620-ami-
no-acid cell surface transmembrane protein [136] 
belonging to the cytokine receptor superfamily 
[137]� GHR lacks intrinsic tyrosine kinase activ-
ity, but relies on its interactions with Janus ki-
nase 2 (JAK2), a GHR-associated tyrosine kinase 
that is activated following GH binding to GHR 
(Fig� 11�5)� GHR is composed of a 246-amino-
acid extracellular domain that binds GH, a single 
transmembrane segment, and a 350-amino-acid 
intracellular domain that interacts with JAK2 and 
participates in the intracellular signaling events 
stimulated by GH [136, 138]� X-ray crystallo-
graphic and other studies establish that a single 
molecule of GH binds in a stepwise manner to a 
predimerized pair of GHR molecules to yield an 
activated receptor complex: GH + 2 GHR - > GH–
(GHR)2 [139, 140]� GHR is proposed to initially 
contact GH via amino acids comprising GH site 
1, followed by interaction with site 2 on the GH 
molecule to give a heterotrimeric GH–(GHR)2 
complex� Receptor activation is thought to result 
from a rotation of the receptor monomers within 
the complex [141, 142]� These conformational 
changes are necessary, and probably sufficient, 
for stimulation of GH-induced intracellular sig-
naling events [143]�

In adult male rat liver, GHR internalizes to 
an intracellular compartment coincident with its 
stimulation by plasma GH pulses, and then reap-
pears at the cell surface at the time of the next hor-
mone pulse [144, 145]� GHR undergoes endocy-
tosis constitutively, i�e�, in a ligand-independent 
manner, but is also subject to GH-stimulated in-
ternalization [146]� GHR internalization is rapid 
in GH-treated liver cells [147] and is mediated by 
coated vesicles that ultimately take the receptor 
to lysosomes for degradation� GHR endocytosis 
and degradation require: (1) an intact ubiqui-
tin conjugation system, which targets a specific 
10-amino-acid-long cytoplasmic GHR tail se-
quence; (2) the ubiquitin ligases SCF(βTrCP) and 
CHIP [148, 149]; and (3) 26S proteasome activ-
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ity, as evidenced by the inhibitory effects of the 
proteasome inhibitors MG132 and epoxomicin 
[147]� In liver cells, the GH-inducible suppressor 
of cytokine signaling protein (SOCS)/CIS fam-
ily member CIS, a negative feedback regulator of 
GHR signaling, plays an important role in GHR 
internalization leading to termination of GHR 
signaling [147]� Although cellular ubiquitina-
tion activity is required for receptor endocytosis, 
GHR itself does not need to undergo ubiquitina-
tion, as shown using a mutant GHR devoid of its 
cytoplasmic lysine residue targets for ubiquitina-
tion [150, 151]� Thus, the ubiquitin–proteasome 
system is a major regulator of intracellular GHR 
trafficking�

11.4.2.4  Role of STAT5b in Sex-
Dependent CYP Expression

11.4.2.4.1  GH Signaling Pathways Involving 
STAT Transcription Factors

How does GH impart sex-dependent transcrip-
tional regulation to liver P450 genes? To answer 
this question, we may consider the following hy-
potheses: (1) the cell surface GHR can discrimi-
nate between the male and female plasma GH 
patterns; and (2) GH-activated GHR signals to 
the nucleus by two distinct intracellular signal-
ing pathways, one in response to GH pulses and 
the other in response to persistent GH stimulation 
(Fig� 11�6)� Studies of GH-induced signal trans-
duction pathways [152–154] have highlighted 
the importance of the GH-bound receptor dimer 

Fig. 11.5  Role of growth hormone ( GH), GH receptor, 
and the tyrosine kinase Janus kinase 2 ( JAK2) in activa-
tion of signal transducer and activator of transcription 5b 
( STAT5b) by tyrosine phosphorylation� JAK2 tyrosine 
phosphorylates itself and multiple tyrosine residues on 
the cytoplasmic tail of growth hormone receptor ( GHR)� 
Several of these sites serve as docking sites that recruit 
STAT5b to the GHR–JAK2 complex� STAT5b is then ty-

rosine-phosphorylated by JAK2, whereupon it dimerizes 
by mutual SH2 domain–phosphotyrosyl–STAT5b interac-
tions, then translocates to the nucleus where it binds to 
DNA regulatory elements upstream of its target genes� 
The STAT5 activation cycle is reversed by the action of 
a phosphotyrosine phosphatase, which leads to recycling 
of inactive STAT5 monomers back to the cytoplasm� The 
figure is based on [332]� mRNA messenger RNA
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in activating JAK2, the GHR-associated tyrosine 
kinase that initiates downstream pathways of in-
tracellular protein tyrosine phosphorylation� In-
vestigation of the differential effects of the male 
versus female plasma GH pattern on nuclear 
protein tyrosine phosphorylation led to the dis-
covery of an intracellular signaling protein and 
transcription factor, termed STAT5b (Fig� 11�5), 
that is intermittently present in its active, nuclear 
tyrosine-phosphorylated form in male liver but 
shows persistent nuclear activity in female liver 
[155]� STAT proteins are latent cytoplasmic tran-
scription factors that are activated by tyrosine 
phosphorylation stimulated by a variety of cyto-
kines and growth factors, and were first discov-
ered as signal mediators that carry transcription 
signals into the nucleus in the interferon signal-
ing pathway [156]�

In hypophysectomized rat liver, where there is 
no endogenous GH signaling, there is little or no 
tyrosine-phosphorylated STAT5b protein in the 
nucleus; essentially all of the STAT5b protein is 
found in the cytosolic fraction, where it resides 
in a latent, inactive (nontyrosine-phosphorylated) 
form� However, when a hypophysectomized rat 
is injected with a single pulse of GH, STAT5b 
protein appears in the nucleus in its active, tyro-
sine-phosphorylated state within 10–15 min [155, 
157]� This tyrosine phosphorylation reaction oc-
curs on STAT5b tyrosine residue 699, enabling 

two STAT5b molecules to dimerize via mutual 
interactions between the phosphotyrosine resi-
due on one STAT5b molecule and the SH2 do-
main (a protein module that recognizes and binds 
specifically to phosphotyrosine residues) on a 
second STAT5b molecule� The STAT5b–STAT5b 
dimer that is thus formed enters the nucleus rap-
idly, where it binds with high affinity to DNA 
sites upstream of genes that are transcriptionally 
activated in response to the initial GH stimulus 
(Fig� 11�5)�

STAT5b is repeatedly activated by GHR/
JAK2-catalyzed tyrosine phosphorylation in 
concert with the onset of each male plasma GH 
pulse� STAT5b thus undergoes repeated cycles 
of translocation from the cytoplasm into the nu-
cleus, and then back out to the cytoplasm [155, 
158]� For example, if the liver is excised from a 
rat killed at the time of a plasma GH pulse, then 
STAT5b is found to be tyrosine-phosphorylated 
and localized to the nucleus, whereas if the liver 
is excised from a rat killed at a time point be-
tween successive plasma GH pulses, STAT5b is 
inactive and cytoplasmic� This close temporal 
linkage between plasma GH pattern and the acti-
vation state of liver STAT5b has been confirmed 
in intact male rats killed at times shown to be 
specifically associated with spontaneous peaks or 
troughs of the plasma GH rhythm [159]� In con-
trast, in female rat liver, active, nuclear STAT5b 

Fig. 11.6.  Different growth hor-
mone ( GH)-induced intracellular 
signaling pathways are proposed 
to be activated by plasma GH 
pulses, leading to male-specific 
cytochrome P450 ( CYP) expres-
sion ( left), and by continuous GH 
stimulation, leading to female-
specific CYP expression ( right)
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protein is detectable at essentially all points in 
time, albeit at a level that is generally much lower 
(~ 5–10 %) than the peak male liver level [160]� 
Studies carried out in the mouse model show that 
liver STAT5 (primarily STAT5b) also shows in-
termittent activity when assayed across a panel of 
individual male livers, whereas in female mouse, 
liver STAT5 is active at all points in time—often 
at a level as high as that of male mouse liver 
[161]� Thus, the key difference between male 
and female liver is that STAT5b is intermittently 
activated by plasma GH pulses in males, but is 
persistently activated by the more continuous GH 
profile in females, as seen in both rats and mice 
[161, 162]�

11.4.2.4.2  STAT5b Gene Knockout Mouse 
Model

Studies carried out in mice that are deficient in 
STAT5b (STAT5b-knockout mouse model) lend 
strong support to the proposal that STAT5b is an 
essential factor for sex-specific liver P450 gene 
expression [163] (see [164] for a review)� Dis-
ruption of the STAT5b gene results in two strik-
ing phenotypes, both seen in STAT5b-deficient 
male but not female mouse liver� First, there is a 
global loss of GH-regulated, male-specific liver 
gene expression, including male-specific P450 
gene expression� Second, the expression of sev-
eral female-specific, GH-regulated liver P450 
genes increases to near-normal female levels in 
livers of STAT5-deficient male mice, indicating 
negative regulation of the female-specific genes 
by STAT5b� STAT5a is unable to compensate for 
the loss of STAT5b [163, 165], but is essential for 
expression of a unique subset of female-biased 
genes in female liver [166]� The liver-enriched 
factor HNF4α cooperates with STAT5b in regu-
lating liver sex-differences [56, 167]�

These same phenotypes are seen in liver-
specific STAT5a/STAT5b double knockout mice 
[168], but are not seen in mice where the disrup-
tion is limited to the STAT5a gene [163, 165], 
whose protein coding sequence is ~ 90 % identi-
cal to that of STAT5b [169]� Not all sex-specific 
liver CYPs are dependent on STAT5b, however� 
Thus, continuous infusion of GH in male mice 
strongly induced (> 500-fold) the female-specific 

P450 gene Cyp3a16 in both wild-type and hepa-
tocyte STAT5ab-deficient male mouse liver, in-
dicating that this sex-specific gene is subject to 
a STAT5a/STAT5b-independent mechanism of 
GH regulation [168]� Hypophysectomy and GH 
pulse replacement studies have established that 
these phenotypes of STAT5b-deficient mice are a 
direct response to the loss of STAT5b-dependent 
GH signaling in the liver, as opposed to indirect 
effects of the loss of STAT5b on the overall pat-
tern of GH secretion by the pituitary gland [170]�

11.4.2.4.3  Genome-Wide Mapping of 
Liver Binding Sites for STAT5 
and Other GH-Regulated 
Transcription Factors

The strong, repeated pulses of GH-activated 
STAT5b that occur in adult male liver have been 
proposed to induce binding of STAT5b directly 
to STAT5 response elements found in promot-
ers and other regulatory regions associated with 
STAT5 target genes, including sex-dependent 
P450 genes, stimulating gene transcription [155]� 
Consistent with this hypothesis, STAT5 response 
elements matching the consensus sequence TTC–
NNN–GAA have been found upstream of several 
male-specific rat liver P450 genes, including 
CYPs 2C11, 2A2, and 4A2 [171]� GH-stimulated 
CYP promoter-luciferase reporter activity can be 
demonstrated in cell-based transfection experi-
ments using the corresponding isolated STAT5 
response elements, although the magnitude of 
the GH- and STAT5b-dependent gene induction 
is small, generally only ~ 2–3-fold [171, 172]� 
Moreover, although pulsatile STAT5b signaling 
is first seen in young male rats at ~ 5 weeks of age, 
when liver CYP2C11 expression is first detected, 
precocious activation of STAT5b, achieved in 
3-week-old male rats given exogenous GH pulse 
injections, does not lead to precocious CYP2C11 
gene induction [158]� These and other findings 
suggest that STAT5b regulation requires a na-
tive chromatin environment (see below), as well 
as cooperative interactions with other factors, 
including liver-enriched transcription factors 
(HNFs) that work together with STAT5b to con-
trol the expression of sexually dimorphic liver 
P450 genes [171, 173–175]�
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Further insight into the sex-specific actions of 
GH-activated STAT5 was obtained by genome-
wide mapping of liver binding sites for STAT5b 
and STAT5a (collectively, STAT5) using chro-
matin immunoprecipitation (ChIP-seq technol-
ogy)� These studies identified ~ 3500 sites spread 
throughout the genome that show strong sex-
differential binding of STAT5 [161]� Male-biased 
STAT5 binding was shown to be enriched for 
nearby male-specific genes, and female-biased 
STAT5 binding was enriched for nearby female-
specific genes� Mapping of the binding sites in 
mouse liver for BCL6, a GH- and STAT5-regu-
lated male-biased repressor [161, 176], indicates 
that BCL6 enforces liver sex differences in male 
liver by preferentially binding to female-biased 
STAT5 binding sites that are nearby female-
specific genes� This binding preference enables 
BCL6 to repress the expression of the STAT5-
dependent female-biased genes in male liver 
[161] (Fig� 11�7)� An analogous regulatory mech-
anism is operative in female liver, where Cux2, a 
female-specific repressor [57], represses ~ 35 % 
of male-biased genes by preferentially binding to 
regulatory elements that are generally more open 
(more accessible) in male liver [58] (Fig� 11�7)� 
In addition to these repressive actions of Cux2 on 
male-specific genes, Cux2 positively regulates 
~ 35 % of female-biased genes; however, most 
of these positive regulatory actions are not as-
sociated with direct Cux2 binding to the female-
biased genes, and are thus likely to proceed by an 
indirect mechanism� Robust sex differences can 
thus be achieved for large numbers of sex-biased 
genes, including sex-biased CYP genes, by the 
complex interplay of multiple GH-regulated tran-
scription factors (Fig� 11�7)�

11.4.2.4.4  GH Regulation of Chromatin 
States in Male and Female Liver

Changes in chromatin structure are a hallmark of 
epigenetic regulation and developmental plastic-
ity and can be probed on a global scale using the 
enzyme deoxyribonuclease I (DNase I) to selec-
tively cut open (accessible) chromatin sites (eu-
chromatin) in freshly isolated intact liver nuclei 
(Fig� 11�8a)� This technique, known as DNase 
hypersensitivity site (DHS) analysis, was em-

ployed to identify ~ 70,000 open chromatin re-
gions across the entire genome in male and fe-
male mouse liver [177]� These DHS are expected 
to encompass four major classes of regulatory 
elements: promoters, enhancers, silencers, and 
insulators, and they encompass up to 90 % of 
genome-wide binding sites for each of ten differ-
ent liver transcription factors [177]� Importantly, 
more than 1200 of the 70,000 DHS showed ro-
bust, plasma GH-dependent differences in the 
extent of hypersensitivity between male and fe-
male mouse liver (Fig� 11�8b)� The set of male-
biased liver DHS was tenfold enriched for nearby 
male-specific genes compared to female-specific 
genes, and correspondingly female-biased DHS 
showed tenfold enrichment for being nearby 
female-specific genes� This finding is consis-
tent with many of the sex-biased DHS serving 
as sex-dependent enhancers that positively regu-
late nearby sex-specific genes in mouse liver� 
Importantly, the above-described occurrence of 
sex-differential STAT5 binding, which is seen 
at many promoters and enhancers linked to sex-
specific genes, shows very strong enrichment (up 
to 14-fold) for sex-biased DHS [161] (Fig� 11�9)� 
Thus, sex differences in chromatin accessibility 

Fig. 11.7  Signal transducer and activator of transcription 
5 ( STAT5) is activated intermittently in male liver and 
more continuously (persistently) in female liver� Shown 
are the effects of STAT5 and the transcriptional repressors 
Bcl6 (whose expression is male-biased) and Cux2 (whose 
expression is female-specific) on the activation and re-
pression of sex-specific genes in mouse liver� GH growth 
hormone
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are regulated by plasma GH patterns and appear 
to be a key feature of sex-differential gene ex-
pression� However, many sex-specific DHS are 
distant from sex-specific genes (60 % are > 1 mil-
lion bp away from the nearest sex-specific gene) 
[177], suggesting regulation occurs from a dis-
tance via chromatin loops, which complicates ef-
forts to identify gene targets of the sex-specific 
genes and their underlying mechanisms of GH 
regulation�

Further complexity is indicated by the finding 
that sex differences in the liver emerge at puberty 

[53], when sex-specific genes are subject to ei-
ther positive regulation (class I genes) or nega-
tive regulation (class II genes) by pituitary GH 
[123, 124] (Fig� 11�4)� Furthermore, many sex-
specific CYP genes respond slowly (over days) 
to a change in plasma GH status (Fig� 11�10) 
[124, 167], even though STAT5 binds to these 
genes within minutes after its activation by a 
plasma GH pulse [161]� This suggests that the 
sex-dependent actions of GH and STAT5 are de-
pendent on slower, secondary events, including 
chromatin modifications or other sex-dependent 

Fig. 11.8  DNase hypersensitivity assay for identification 
of open (accessible) chromatin regions as deoxyribonucle-
ase ( DNase) hypersensitive sites ( DHS)� a Schematic dia-
gram indicating how continuous growth hormone ( GH) 
treatment opens female-specific DNA regulatory regions 
( DHS) that are within closed (inaccessible) heterochro-
matin in male liver� Chromatin opening enables DNase to 
access the DNA backbone in intact liver nuclei and cleave 
(release) genomic DNA fragments, which are purified, se-
quenced, and mapped to the mouse genome� The figure is 

based on [18]� b Mapped DNA fragments released from 
adult female, adult male, and continuous GH-treated male 
mouse liver nuclei in the genomic region covering the 5ʹ 
end and upstream regulatory region of mouse Cyp7b1, 
which is ~ 9-fold more highly expressed in male than fe-
male mouse liver� The figure shows five distinct chroma-
tin regions nearby Cyp7b1 that are much more accessible 
(larger peaks of released DNase fragments in male than 
female liver; middle track) and are partially closed down 
to the normal female level following continuous GH treat-
ment for 7 days� Data are based on [177]
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Fig. 11.9  Sex-differential binding of signal transducer 
and activator of transcription 5 ( STAT5) to liver chro-
matin in male and female liver� The male plasma growth 
hormone ( GH) profile activates a male-specific pattern of 
STAT5 binding to liver chromatin at sites that are more ac-
cessible in male than female liver (“male-biased DHS”), 
as determined by DNase hypersensitivity site ( DHS) anal-

ysis as described in Fig� 11�8, leading to transcriptional 
activation of a nearby male-specific gene� Correspond-
ingly, the female plasma GH profile activates a female-
specific pattern of STAT5 binding to liver chromatin at 
sites that are more accessible in female than male liver 
(“female-biased DHS”), leading to transcriptional activa-
tion of a nearby female-specific gene

 

Fig. 11.10  Hierarchical changes in the expression of sex-
specific genes in male mouse liver following continuous 
growth hormone ( GH) treatment assayed at time points 
ranging from 10 h to 14 days� Results based on studies 
reported in [167]� Hypothetical relationships between 
induced and repressed genes are marked by dashed lines 
and question marks� Female-specific repressors, such as 
Cux2, are rapidly activated in livers of male mice given 

GH by continuous infusion� These repressors are pro-
posed to downregulate many male-specific genes, includ-
ing some genes that serve as repressors of female-specific 
genes, such as Cyp2b9, which are derepressed� The de-
repression of other female-specific genes, including cer-
tain Cyp3a genes, is substantially delayed in continuous 
GH-infused male mouse liver� The figure is based on [18]� 
CYP cytochrome P450
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epigenomic changes [178]� Key unanswered 
questions relate to the mechanisms controlling 
these sex differences in liver chromatin states: 
How are these sex-differential states established 
(presumably this occurs at puberty), how are 
they maintained by the sex-differential plasma 
GH profiles, and what are the roles of the sex-
dependent patterns of liver STAT5 activation—
intermittent STAT5 activation in male liver and 
persistent STAT5 activation in female liver—in 
these processes?

11.4.2.4.5  Downregulation of Hepatic 
STAT5b Signaling

Other questions relating to GH and the STAT5b 
signaling pathway that are of current research in-
terest include how the cycle of STAT5b activa-
tion is turned off at the conclusion of each GH 
pulse, and how STAT5b is subsequently returned 
to the cytoplasm in an inactive form, where it ap-
parently waits for ~ 2–2�5 h until it can be reacti-
vated by the next pulse of GH (Fig� 11�5) [179]� 
These events may, in part, involve a family of 
inhibitory proteins, referred to as SOCS and CIS 
proteins, which turn off signals to various hor-
mones and cytokines, including GH [180, 181]� 
In the case of GH signaling, SOCS proteins bind 
to the GHR–JAK2 tyrosine kinase complex, and 
thereby inhibit GH signaling by a complex series 
of interrelated mechanisms [182]� CIS may be 
induced to a higher level by the continuous (fe-
male) GH pattern than by the pulsatile (male) GH 
pattern and has been implicated in the downregu-
lation of GH-induced STAT5b signaling in liver 
cells exposed to the female GH pattern [182]�

11.4.3  Regulation by Thyroid 
Hormone

11.4.3.1  Cytochromes P450
Although GH is the major regulator of sex-spe-
cific liver P450s, thyroid hormone also plays a 
critical role� The major thyroid hormones, T3 and 
T4, positively regulate some [47, 110] but not all 
[48] female-predominant liver P450 enzymes, 
while they negatively regulate several of the 

male-specific enzymes [183, 184] (Table 11�1)� 
These effects of thyroid hormone are operative 
at the mRNA level, and are independent of the 
indirect effects that thyroid hormone has on liver 
P450 levels as a consequence of its effects on 
liver GHRs [185] and its stimulation of GH gene 
transcription and GH secretion by the pituitary 
[186]�

11.4.3.2  NADPH-CYP Reductase
Thyroid hormone is also required for expression 
of NADPH-CYP reductase, a flavoenzyme that 
catalyzes electron transfer to all liver microsomal 
P450 enzymes� P450 reductase is an obligatory, 
and often rate-limiting electron-transfer protein 
that participates in all microsomal P450-cata-
lyzed drug oxidation and steroid hydroxylase re-
actions [187, 188]� This thyroid hormone depen-
dence of P450 reductase enzyme expression is 
evidenced by the major decrease (> 80 % reduc-
tion) in liver microsomal P450 reductase activity 
and P450 reductase mRNA levels that occurs fol-
lowing hypophysectomy [189] or in response to 
methimazole-induced hypothyroidism [190]� It is 
further supported by the reversal of this activity 
loss when thyroxine (T4), but not GH or other 
pituitary-dependent factors, is given at a physi-
ologic replacement dose [189, 190]� Restoration 
of liver P450 reductase activity in vivo by T4 
replacement also effects a substantial increase in 
liver microsomal P450 steroid hydroxylase activ-
ities� A similar effect can be achieved when liver 
microsomes isolated from hypophysectomized 
rats are supplemented with exogenous, purified 
P450 reductase, which preferentially stimulates 
steroid hydroxylation catalyzed by microsomes 
prepared from thyroid-deficient animals [189]� 
The induction of rat hepatic P450 reductase in 
livers of rats treated with exogenous thyroid hor-
mone occurs by transcriptional [191] and post-
transcriptional mechanisms [192] and appears to 
involve enhanced protein stability in hyperthy-
roid rat liver [193]� P450 reductase levels are also 
modulated by thyroid hormone status in several 
extrahepatic tissues [190]� Interindividual differ-
ences in P450 reductase activity could occur in 
response to physiological or pathophysiological 
differences in circulating thyroid hormone levels 
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and may be an important contributory factor to 
individual differences in P450 reductase/CYP-
catalyzed procarcinogen bioactivation�

11.5  Alteration of Sex-Dependent 
Liver P450 Expression by 
Hormonal Perturbation

Circulating hormones levels can be altered in 
response to drug therapy; exposure to various 
xenobiotics; disease states such as diabetes mel-
litus, liver cirrhosis and steatosis, and kidney 
failure; dietary factors; pregnancy; and lactation� 
The resultant changes in circulating hormone lev-
els or alterations in hormone secretory dynamics 
could influence the expression of specific liver 
P450s� The following sections describe some of 
the factors that are known to cause hormonal per-
turbation and discuss the impact of these changes 
on sex-dependent liver P450 expression and on 
P450-dependent drug and xenobiotic metabolism 
and toxicity�

11.5.1  Xenobiotics

11.5.1.1  Drugs
Liver P450 enzyme profiles are altered in rats 
treated with the anticancer drugs cisplatin [194, 
195], cyclophosphamide [82, 196], and ifos-
famide [196] by mechanisms that involve hor-
monal perturbations that these cytotoxic agents 
induce� Treatment of adult male rats with a single 
dose of cisplatin depletes serum testosterone� This 
effect persists for up to 28 days after cisplatin ad-
ministration and is associated with feminization 
of hepatic liver enzyme expression [194]� Thus, 
cisplatin-treated male rats have elevated levels 
of the female-predominant enzymes CYP2A1, 
CYP2C7, and steroid 5α-reductase, but have 
reduced levels of the male-specific CYP2A2, 
CYP2C11, and CYP3A2 [194, 195]� The effects 
of cisplatin on circulating androgen levels may 
result from the drug’s action on the testes [197, 
198]; however, effects on the hypothalamus also 
appear to contribute, both to the depletion of 
circulating testosterone and to the alteration in 

liver P450 expression [194]� Cisplatin treatment 
of adult female rats severely decreases circulat-
ing estradiol levels and significantly reduces the 
expression of the estrogen-dependent CYP2A1, 
CYP2C7, and CYP2C12 [195]�

Serum testosterone is also depleted in adult 
male rats treated with cyclophosphamide [82, 
196, 199] or ifosfamide [196], and this depletion 
is associated with feminization of liver enzyme 
profiles [82, 196] in a manner similar to that 
produced by cisplatin� While endogenous testos-
terone secretion can be stimulated in cyclophos-
phamide-treated rats by the luteinizing hormone 
analogue chorionic gonadotropin, the resultant 
increase in serum testosterone does not reverse 
the loss of hepatic CYP2C11 expression [82]� 
This result is analogous to the earlier finding that 
the suppression of CYP2C11 by 3,4,5,3ʹ,4ʹ,5ʹ-
hexachlorobiphenyl [200] is not causally related 
to the associated depletion of serum testosterone 
[201]� The alteration of liver enzyme expression 
by cyclophosphamide may therefore involve ac-
tion at the hypothalamic–pituitary axis, which 
establishes the sex-dependent plasma GH profile 
that in turn dictates the expression of CYP2C11 
and other sex-dependent liver P450 enzymes, 
as discussed earlier in this chapter� CYP2C11 
can also be suppressed by other mechanisms, 
as demonstrated by the finding that CYP2C11 
levels are suppressed by the anticancer drug 
1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea 
(CCNU; lomustine) without affecting circulating 
testosterone levels [202]� Conceivably, CCNU 
may act directly on the hypothalamic–pituitary 
axis to alter key signaling elements in the ultra-
dian rhythm of circulating GH�

Other drugs that suppress liver CYP2C11 and 
CYP3A2 levels include cyclosporine [203, 204] 
and chloramphenicol [205], although the latter ef-
fects are strain dependent and are associated with 
a modest reduction in plasma levels of thyroxine 
but not testosterone [205]� GH does not appear to 
play a role in the suppression of CYP2C11 and 
CYP3A2 by cyclosporine, which does not alter 
the plasma GH peak amplitude, number, or dura-
tion [206]� Phenobarbital [24, 207, 208], dexa-
methasone [28], 5-fluorouracil [209], doxorubi-
cin [210], fenofibrate [211], rosuvastatin [212], 
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and neuroleptics such as levomepromazine, pera-
zine, and thioridazine [213] also reduce hepatic 
CYP2C11 expression, but the underlying mecha-
nisms have not been determined�

As discussed above, the anticancer drug cis-
platin provides an example of a foreign chemi-
cal that depletes serum testosterone and conse-
quently feminizes the expression of liver P450s 
in adult male rats� This type of alteration in the 
profile of liver P450 enzymes could have im-
portant pharmacological consequences, as sug-
gested by the finding that cisplatin suppression 
of CYP2C11 decreases liver P450-catalyzed 
activation of anticancer prodrugs, such as cy-
clophosphamide [195, 214, 215] and ifosfamide 
[215]� Liver P450 activation of these latter two 
drugs is required for their anticancer drug activ-
ity [216], and CYP2C11 contributes significantly 
to this metabolic pathway in adult male rat liver 
[214, 215]� Clinical studies indicate that cisplatin 
may exert effects on circulating hormone levels 
in human cancer patients that are similar, though 
not identical, to those seen in rats [217]� If these 
hormone perturbations alter P450 enzyme lev-
els in human liver, this could have an impact on 
drug–drug interactions in patients given cisplatin 
in combination with anticancer drugs such as cy-
clophosphamide�

11.5.1.2  Ethanol
Adult male rats administered ethanol by a total 
enteral nutrition system have reduced hepatic 
CYP2C11 and CYP3A2 levels, whereas their 
CYP2A1 activity is unaltered [218]� The same 
ethanol treatment alters the dynamics of plasma 
GH secretion by decreasing the GH pulse ampli-
tude and increasing the GH pulse frequency� The 
increased frequency of GH pulses can thus ex-
plain the reduced expression of CYP2C11 after 
chronic ethanol intake because hepatocytes re-
quire a minimum “off time” to express the male 
pattern of GH secretion that stimulates CYP2C11 
expression [86]� In another study, chronic intra-
gastric infusion of ethanol-containing diets sup-
pressed CYP3A2 while substantially increasing 
the expression of CYP3A9 in adult male rats 
[219]�

11.5.1.3  Aromatic Hydrocarbons
Exposure of adult male rats to an aromatic hy-
drocarbon suppresses hepatic CYP2C11 mRNA, 
protein, and activity [220]� Aromatic hydro-
carbons that downregulate CYP2C11 include 
3-methylcholanthrene (3MC) [24, 26, 200, 
208, 221–223]; 2,3,7,8-tetrachlorodibenzo-p-
dioxin (2,3,7,8-TCDD) [224]; anthracene and 
its derivatives, including benz( a)anthracene, 
dibenz( a, c)anthracene, dibenz( a, h)anthracene, 
and 7,12-dimethylbenz( a)anthracene [225]; eth-
ylbenzene [226–230]; and Sudan III [231]� In the 
case of 3MC, this suppression reflects a decrease 
in the rate of CYP2C11 transcription [232]� The 
mechanisms by which aromatic hydrocarbons 
alter CYP2C11 expression are not well under-
stood; however, 3MC [200] and 2,3,7,8-TCDD 
[233] have been reported to decrease serum tes-
tosterone levels� In hypophysectomized adult 
male rats, 3MC interferes with the stimulation 
of CYP2C11 expression by GH [234], but in a 
manner that does not involve STAT5b [235]� The 
hormonal basis for CYP2C11 suppression by 
ethylbenzene has also been investigated� Treat-
ment of intact adult male rats with ethylbenzene 
decreases hepatic CYP2C11 expression, as as-
sessed at the level of mRNA, protein, and en-
zyme activity (testosterone 2α-hydroxylation) 
[226–230]� This appears to reflect an alteration 
in plasma GH profile by ethylbenzene because it 
does not decrease hepatic CYP2C11 expression 
in hypophysectomized adult male rats admin-
istered twice-daily s�c� injections of GH [230], 
which mimics the male plasma GH pattern [86]� 
The molecular mechanism of CYP2C11 sup-
pression by aromatic hydrocarbons has been in-
vestigated� Results from in vitro binding experi-
ments and luciferase reporter assays conducted 
in cell culture models suggest that the aryl hy-
drocarbon (Ah) receptor is responsible for the 
suppression of rat hepatic CYP2C11 by 3MC 
[220]� 2,3,7,8-TCDD also decreases, albeit to 
a lesser extent, hepatic expression of the male-
specific, mouse liver steroid 16α-hydroxylase 
Cyp2d9 [236], which is known to be regulated 
by the pulsatile male pattern of GH secretion in 
a manner that is dependent on Stat5b [163, 170, 
237]� Experiments performed on AhR-knockout 
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mice indicate that the suppression of Cyp2d9 by 
2,3,7,8-TCDD is AhR dependent, and it occurs 
by disrupting the GHR–JAK2–STAT5b signal-
ing pathway [238]�

11.5.2  Pathophysiologic State

11.5.2.1  Diabetes Mellitus
Uncontrolled insulin-dependent diabetes is not 
only accompanied by defective carbohydrate 
metabolism, which results in hyperglycemia, 
hyperlipidemia, and hyperketonemia, but also 
associated with hormonal changes, including a 
reduction in circulating testosterone [239–241], 
thyroid hormone, and plasma GH [242, 243]� As 
discussed above, these hormones regulate many 
liver P450 enzymes, either directly or indirectly� 
Accordingly, the diabetic state is associated with 
profound changes in the levels of several hepatic 
P450 enzymes, whereas diabetes leads to induc-
tion of several rat liver P450s, including CYP1A 
[244], CYP2A1 [243, 245], CYP2B1 [244, 
246–248], CYP2C7 [245], CYP2E1 [248–252], 
CYP4A2 [245], and CYP4A3 [245], while it 
suppresses CYP2A2 [243], CYP2C11 [243, 244, 
246–248, 252], and CYP2C13 [243]� Changes 
in the levels of some of these liver P450s (e�g�, 
CYP2C11 and CYP2E1) have been shown at the 
mRNA level and are reversed by insulin replace-
ment [246, 247, 253, 254]�

The profile of GH secretion in the diabetic 
male rat is altered so as to resemble the pattern 
found in the normal female rat [242]� The induc-
tion of CYP2A1 and CYP2C7 in diabetic male 
rats can therefore be explained, at least in part, 
as a response to the more continuous pattern of 
GH secretion, which stimulates expression of 
these P450 forms [35, 76, 110, 255]� In contrast, 
this pattern of GH secretion reduces CYP2A2 
and CYP2C13 levels because continuous GH ad-
ministration suppresses these two P450s [35, 37, 
129]� CYP2C11 expression is obligatorily depen-
dent on the intermittent male pattern of plasma 
GH secretion [86]� Therefore, the more continu-
ous secretion of GH in diabetic male rats [242] 
would be expected to suppress this P450� In the 
case of CYP2B1, GH pulse height is the suppres-

sive signal [121] and, accordingly, the reduction 
in GH peak concentration in diabetic male rats 
[243] leads to increases in CYP2B1 levels [247, 
254]� A GH-independent mechanism is likely to 
contribute to some of the other effects of dia-
betes on liver P450 levels� GH, independent of 
its plasma profile, is suppressive toward hepatic 
CYP2E1 expression [75], but the levels of this 
P450 are substantially elevated in both diabetic 
male and female rats [243, 256, 257]� The induc-
tion of CYP2E1 in diabetes has been attributed to 
increased plasma concentrations of ketone bod-
ies [250, 258]� A role of hypoinsulinemia and hy-
perglucagonemia has been proposed for the sup-
pression of CYP2C11 in diabetes, based on the 
finding that treatment of cultured rat hepatocytes 
with glucagon decreases CYP2C11 expression 
in a cyclic adenosine monophosphate (cAMP)-
dependent manner and this decrease can be re-
versed by insulin administration [259]�

Diabetes mellitus is associated with a decrease 
in P450-mediated in vitro hepatic metabolism of 
imipramine [241, 260], lidocaine [241], codeine 
[261], and chlorpromazine [261]� In addition, al-
teration of liver P450 expression in diabetes is 
postulated to be responsible for the enhanced in 
vitro metabolic activation of certain chemical 
carcinogens, including Try-P-1(3-amino-1,4-
dimethyl,5H-pyrido(4,5-b)indole) and Try-
P-2(3-amino-1-methyl-5H-pyrido(4,3-b)indole) 
[262]� These examples demonstrate the potential 
for alterations in liver P450 expression that po-
tentially lead to reduced drug metabolism and 
enhanced procarcinogen bioactivation�

11.5.2.2  Liver Disease
While certain P450 enzymes (e�g�, CYP1A2, 
CYP2E1, and CYP3A forms) are known to play 
a role in the pathogenesis of various liver dis-
eases [263], studies in experimental models of 
liver disease have shown that liver cirrhosis and 
steatosis impact the expression of sex-dependent 
liver P450 enzymes� Adult male rats fed a chron-
ic choline-deficient diet to induce cirrhosis have 
increased serum estradiol concentrations [264] 
and decreased testicular weight [265] and serum 
testosterone levels [264], indicating gonadal 
abnormalities occur in liver cirrhosis� In asso-
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ciation with the perturbation in hormonal status 
is a major decline in hepatic CYP2C11 content 
[264], and this decline is not accompanied by an 
increase in hepatic steroid 5α-reductase activ-
ity [266]� The suppression of hepatic CYP2C11 
in adult male rats is also evident in other mod-
els of liver cirrhosis, including bile duct liga-
tion [267, 268], carbon tetrachloride-induced 
cirrhosis [266, 268, 269], and N-dimethylnitro-
samine-induced cirrhosis [244]� It remains to be 
determined whether the alteration in serum ste-
roid hormone levels contributes to the apparent 
demasculinization of liver P450 profiles in these 
models of liver cirrhosis� CYP2C11 is also sup-
pressed in adult male rats treated with orotic acid 
[270] or clozapine [271] to induce liver steatosis� 
However, the mechanism for CYP2C11 suppres-
sion in these experimental models of liver steato-
sis is not known�

11.5.2.3  Kidney Disease
Kidney disease affects the pharmacokinetics of 
many drugs, including drugs that are cleared by 
nonrenal elimination pathways, including hepatic 
metabolism [272]� Experimental models of acute 
kidney failure are associated with a decrease in 
total liver P450 content [273, 274] and decreased 
hepatic expression of CYP2C11 [275, 276] and 
CYP3A2 [276] in adult male rats� These de-
creases are also seen in chronic kidney failure, as 
elicited by a two-stage 5/6 nephrectomy protocol 
in adult male rats [277–280]� An inverse expo-
nential correlation exists between serum cre-
atinine concentration and hepatic expression of 
CYP2C11 and CYP3A2, indicating that disease 
progression influences in an exponential man-
ner the extent of suppression of the male-specific 
liver P450 enzymes [281]� Analysis of serum 
from rats [282] or human patients [283] with 
chronic kidney failure suggests that uremic tox-
ins contribute to the reduced expression of liver 
CYP2C11 and CYP3A2� Limited information is 
available on the hormonal basis for the suppres-
sion of these male-specific liver P450 enzymes in 
kidney failure� Neonatal nephrectomy abolishes 
the typical pulsatile male pattern of GH secretion 
in adult male rats so that their plasma GH profile 
resembles the more continuous plasma GH pro-

file in adult female rats [284]� In neonatally ne-
phrectomized adult male rats, the female pattern 
of GH profile is accompanied by increased he-
patic expression of the female-specific CYP2C12 
along with the suppression of the male-specific 
hepatic CYP2C11 [284]�

11.5.3  Dietary Factors

Specific dietary constituents may also influence 
the expression of sex-dependent liver P450s and 
other enzymes [285]� In adult male rats, dietary 
vitamin A deficiency reduces hepatic CYP2C11 
[286–288] and CYP4A2 levels [288] and in-
duces steroid 5α-reductase activity [289]� These 
effects are accompanied by a decrease in serum 
testosterone levels [287]� The decrease in hepatic 
CYP2C11 but not CYP4A2 protein expression in 
rats on a vitamin A-deficient diet can be restored 
by exogenous administration of methyltrienolone 
(a synthetic androgen) to levels comparable to 
those in rats fed a vitamin A-adequate diet [288, 
290]� Twice-daily s�c� administration of GH, 
which induces CYP2C11 expression in hypophy-
sectomized male rat liver [86], does not restore 
the expression of CYP2C11 or CYP4A2 in male 
rats fed a vitamin A-deficient diet [288]�

Dietary trace minerals can also alter the liver 
expression of sex-dependent P450 enzymes� Pre-
pubertal male rats fed a zinc-deficient diet during 
the pubertal period have depleted serum testos-
terone levels and a feminized pattern of hepatic 
mRNA expression, as evidenced by a reduction 
in CYP2C11, CYP3A2, and CYP3A18 and by 
an elevation in CYP2C12 and CYP3A9 [291]� 
However, the precise neuroendocrine mecha-
nisms responsible for the feminization of hepatic 
P450 enzyme expression by dietary zinc defi-
ciency remain to be elucidated�

Finally, caloric restriction and food depriva-
tion have been shown to modulate hepatic expres-
sion of sex-dependent liver steroid-metabolizing 
enzymes, including CYP2C11 [292], which is 
suppressed, and CYP3A9 [293] and steroid 5α-
reductase [292], which are induced� These are 
situations in which glucagon levels are high and 
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insulin levels are low, analogous to the diabetic 
state (see Sect� 11�5�2�1)�

11.5.4  Pregnancy and Lactation

Pregnancy is associated with major physiologi-
cal changes, including increases in the maternal 
circulating levels of estrogen and progesterone 
[294]� However, rodent studies have indicated 
that pregnancy is not associated with alteration in 
maternal hepatic expression of the female-specif-
ic CYP2C12 in rats [295, 296] or Cyp2b9 in mice 
[297]� Similarly, lactation is not associated with 
any changes in CYP2C12 expression in maternal 
rat liver [298]�

11.6  Effect of Estrogen and 
Progesterone on Expression 
of Xenobiotic-Inducible Liver 
P450 Enzymes

The liver expresses P450s that are subject to 
nuclear-receptor-mediated induction by various 
chemicals, including many structurally diverse 
drugs and other xenobiotics� Enzymes in the 
CYP2B and CYP3A subfamily are examples of 
major xenobiotic-inducible mammalian liver 
P450s� Induction of CYP2B and CYP3A is under 
the primary control of the constitutive androstane 
receptor (CAR) and pregnane X receptor (PXR), 
respectively [299]� Emerging evidence indicates 
that steroid hormones, such as estrogen and pro-
gesterone, are capable of increasing the expres-
sion of several of the xenobiotic-inducible liver 
P450 enzymes and activating specific receptors 
involved in P450 induction� Interested readers 
should refer to Chap� 10 for a detailed discussion 
on receptor-mediated induction of P450 enzymes�

11.6.1  Estrogen

Plasma levels of estrogens in nonpregnant 
women are usually at a low nanomolar concen-
tration [300], but rises during pregnancy, reach-
ing a peak of low micromolar concentration by 

the third trimester [301]� Treatment of primary 
cultures of human hepatocytes with 17β-estradiol 
(1 µM for 72 h) increases the levels of CYP2B6 
mRNA [302–304] and CYP2B6 enzyme activity, 
as assessed by ( S)-mephenytoin N-demethylation 
[303] and bupropion hydroxylation [302, 304]� 
Dose–response data indicate that 17β-estradiol 
increases human hepatocyte CYP2B6 expression 
with an EC50 of 2 µM and an Emax of 34-fold in-
crease over vehicle control [304]� As shown in 
hepatocyte samples from the same donors, these 
values are comparable to those reported for ri-
fampicin [304], which is a known inducer of 
CYP2B6 [305]� Consistent with the induction 
of CYP2B6 by 17β-estradiol in primary cultures 
of human hepatocytes [302–304], pregnancy 
is associated with an increase in the clearance 
of methadone [306, 307], which is metabolized 
primarily by CYP2B6 [308]� Molecular stud-
ies showed that 17β-estradiol (1 µM) activates 
human CAR, as assessed in a cell-based reporter 
gene assay, and induces nuclear translocation of 
CAR [302]� Transactivation of both CAR and 
estrogen receptor α (ERα) leads to a synergistic 
increase in CYP2B6 expression, suggesting that 
CYP2B6 induction by 17β-estradiol depends on 
the concentration of the steroid hormone and in-
volves more than one receptor signaling pathway� 
At low concentrations (< 0.1 µM), 17β-estradiol 
induces CYP2B6 by activating ERα, whereas 
at higher concentrations (≥ 0.1 µM), it induc-
es CYP2B6 by activating both CAR and ERα 
[302]� Induction of mouse Cyp2b10 [309–312] 
and activation of mouse CAR [310, 312, 313] 
by micromolar concentrations of 17β-estradiol 
have also been reported� In addition to CYP2B6, 
17β-estradiol (1 µM for 72 h) is also able to in-
duce CYP2A6 in primary cultures of human 
hepatocytes [303]� Consistent with this finding, 
pregnancy is associated with an increase in the 
clearance of nicotine [314], which is metabo-
lized primarily by CYP2A6 [315]. 17β-Estradiol 
(1 µM for 72 h) also increases, but only mini-
mally, CYP3A4 expression in primary cultures of 
human hepatocytes [303]� At this concentration, 
17β-estradiol does not activate PXR [316–318], 
which is a major regulator in the induction of 
CYP3A4 [316, 317, 319]�
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11.6.2  Progesterone

The plasma level of progesterone in nonpregnant 
women is ~ 1 nM and increases up to 400 nM in 
the third trimester of pregnancy [300]� At micro-
molar concentrations, progesterone (1–10 µM 
for 72 h) minimally increases the expression and 
activity of CYP2B6, CYP3A4, and CYP3A5 in 
primary cultures of human hepatocytes [303]� 
The induction of these P450s by progesterone is 
likely the result of activation of PXR, which is 
activated by progesterone at 10 and 50 µM [316, 
317, 319]� Progesterone (1 and 10 µM) does not 
influence human CAR activity [320, 321]� In 
contrast, progesterone (3 and 10 µM) has been 
reported to decrease mouse CAR activity, as de-
termined in a cell-based reporter gene assay [310, 
313], suggesting it is an inverse agonist of mouse 
CAR�

11.7  Conclusion

Complex sex-dependent expression patterns 
characterize a subset of liver P450 enzymes, 
which impart sex differences in xenobiotic me-
tabolism, pharmacokinetics, and toxicity, as seen 
in rats, mice, and other species, including hu-
mans� The temporal pattern of pituitary GH se-
cretion differs between the sexes, inducing sex-
dependent transcriptional events associated with 
sex-dependent epigenetic changes and chromatin 
states, and is a key factor in the regulation of the 
sex-dependent liver P450 enzymes� A pulsatile 
plasma GH profile, characteristic of adult male 
rats and mice, induces repeated activation of ty-
rosine kinase signaling from the GHR to the tran-
scription factor STAT5b� GH-activated STAT5b 
translocates into the nucleus, where it binds to 
chromatin in a sex-biased manner, enabling it 
to regulate the transcription of sex-dependent 
liver P450 genes� In female liver, continuous or 
near-continuous exposure to GH leads to persis-
tent STAT5 signaling to the nucleus, in contrast 
to the intermittent signaling that occurs in male 
liver� STAT5b-dependent liver gene expression 
is modulated by cooperative interactions with 
liver-enriched transcription factors, and with 

the sex-dependent, GH-regulated transcriptional 
repressors BCL6 (male-biased) and Cux2 (fe-
male-specific)� Thyroid hormone is an important 
regulator of liver metabolic function and can act 
directly, by influencing the expression of indi-
vidual P450 enzymes, as well as indirectly, via 
its stimulatory effects on hepatic NADPH-P450 
reductase activity� Gonadal steroids impact sex-
dependent liver P450s indirectly, via their effects 
on the hypothalamic–pituitary axis and its control 
of the sex-dependent plasma GH profiles� The 
hormone-regulated expression of sex-dependent 
liver P450s can be altered by diverse factors, in-
cluding exposure to drugs and other xenochemi-
cals, pathophysiologic states, and dietary factors, 
with effects on P450-catalyzed drug metabolism 
and carcinogen activation� Sex steroids, nota-
bly estrogen and progesterone, can increase the 
expression of the sex-dependent human hepatic 
P450 enzyme CYP3A4 by activating pregnane X 
receptor (PXR), which regulates the expression 
of genes involved in a broad array of biological 
processes, including transport and metabolism of 
endogenous substances and xenobiotics�
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Abbreviations

ACTH  Adrenocorticotropic hormone 
(Corticotropin)

AKR Aldo-Keto reductase
CAH Congenital adrenal hyperplasia
CRPC Castration-resistant prostate cancer
DHEA Dehydroepiandrosterone
11DOC Deoxycorticosterone
FDX Ferredoxin
FDXR Ferredoxin reductase
FSH Follicle-stimulating hormone
17OHP 17-Hydroxyprogesterone
HSD Hydroxysteroid dehydrogenase
3βHSD  3β-Hydroxysteroid dehydroge-

nase/Δ5→Δ4-isomerase
ILD Isolated 17,20-lyase deficiency
KIE Kinetic isotope effect
LH Luteinizing hormone
17OH-Allo  5α-pregnane-3α, 17α-diol-20-one 

(17-hydroxyallopregnanolone)
POR P450 Oxidoreductase

SDR  Short-chain dehydrogenase-reductase
StAR Steroidogenic acute regulatory protein
ZF Adrenal zona fasciculata
ZG Adrenal zona glomerulosa
ZR Adrenal zona reticularis

12.1  Introduction

Steroid hormones were first defined by their bio-
logical activities prior to their structural elucida-
tion� Structures determined by classic organic 
chemistry showed that all steroids possess the 
cyclopentanoperhydrophenanthrene hydrocar-
bon frame as in cholesterol, and that different 
types of steroids differed mainly in the number 
of carbon atoms and the oxidation state of spe-
cific carbon atoms� In particular, the presence of 
hydroxyl or ketone groups at carbons 3, 11, 17, 
and 21, largely correlate with biologic activity� 
Reichstein painstakingly deduced the structures 
of multiple steroids found in bovine adrenals; 
while these suggested precursor–product rela-
tionships, it was not until the various human dis-
orders of steroidogenesis were studied that the 
steroidogenic pathways become clear�

The discovery of P450 enzymes occurred in 
stages: Martin Klingenberg was probably first 
to report the classic CO-induced difference 
spectrum with a peak at 450 nm [1], and Omura 
and Sato then described the quantitative use of 
this spectrum and were the first to use the term 
“cytochrome P450” in print [2]� David Cooper 
and Otto Rosenthal, in collaboration with Ron 

P� R� Ortiz de Montellano et al� (eds�), Cytochrome P450, DOI 10�1007/978-3-319-12108-6_12  
© Springer International Publishing Switzerland 2015
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Estabrook, demonstrated the involvement of 
cytochrome P450 enzymes in steroid biochem-
istry when they showed that carbon monoxide 
inhibited the 21-hydroxylase activity in adrenal 
microsomes [3]� Radiolabeled steroids became 
commercially available in the 1960s, which fa-
cilitated experiments to confirm precursor–prod-
uct relationships� Despite these initial advances, 
further progress was slow, due to low abundance 
of enzymes, the need to obtain animal adrenals 
as the source, the tedious nature of the assays, 
species-specific variations in the pathways, and 
the inability to purify the enzymes, which limited 
the interpretation of messy experiments�

Additional landmark discoveries followed, 
including the demonstration of cholesterol side-
chain cleavage activity in adrenal mitochondria 
[4] and the demonstration that this activity was 
catalyzed by a P450 [5, 6], the identification of 
aromatase activity in placental microsomes [7], 
and the purification of 17-hydroxylase and 17,20-
lyase activities in a single protein from pig testis 
[8–10]� The advent of molecular biology led to 
the cloning of the steroid hydroxylase cDNAs 
and genes, as well as the characterization of mu-
tations in these genes causing human disease (for 
review, see [11, 12])� Unlike xenobiotic metabo-
lism, steroidogenesis requires several P450 en-
zymes and activities to produce active hormones� 
As the general principles of P450 chemistry have 
been covered in other chapters, we will begin 
with a discussion of these pathways and then 
cover the individual enzymes�

12.1.1  Steroid Classes and Receptors

Although steroid hormones are classified primar-
ily according to their biological activities rather 
than their structures (Table 12�1), some general 
structure–activity correlations exist for the major 
endogenous steroids� For example, androgens 
and estrogens account for the masculinizing and 
feminizing products of the testis and ovary, re-
spectively� Endogenous androgens contain 19 
specific carbon atoms, and endogenous estrogens 
contain 18 carbon atoms, lacking one specific 
methyl group found in androgens� All other major 
classes of steroid hormones contain the same 
scaffold of 21 carbon atoms� Progesterone from 
the ovarian corpus luteum enables implantation 
of the fertilized ovum and maintenance of preg-
nancy� The placenta makes progesterone in the 
latter half of gestation and completes the synthe-
sis of estrogen throughout pregnancy� The adre-
nal cortex contains three zones, each with unique 
repertoires of enzymes and thus distinct major 
products� The outermost zona glomerulosa (ZG), 
a thin layer a few cells thick, produces the miner-
alocorticoid aldosterone, which regulates sodium 
and fluid balance� The zona fasciculata (ZF), lo-
cated beneath the ZG, produces glucocorticoids, 
which mediate a host of actions: promoting re-
sponse to stress, increasing glucose production 
from the liver, suppressing the immune response, 
and stimulating lipolysis� The innermost zone of 
the adrenal cortex is the zona reticularis (ZR), 
which is essentially found only in primates and 
makes abundant 19-carbon precursors of andro-
gens, but minimal biologically active androgen 

Table 12.1  Steroid hormones
Class Steroids Bioactivity Needed P450s
Androgen Testosterone Masculinizing scc, c17

Dihydrotestosterone     Masculinizing        scc, c17
Estrogen Estradiol Feminizing scc, c17, aro

Estriol         Feminizing        scc, c17, aro, 3A7
Progestin Progesterone Maintain pregnancy scc
Mineralocorticoid Aldosterone Sodium balance scc, c21, c11AS
Glucocorticoid Cortisol Stress response scc, c17, c21, c11β

Corticosterone Stress response scc, c17, c21, c11β
Vitamin D Calcitriol Calcium balance 2R1, c1α, c24
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steroids� Vitamin D, a sterol hormone in which 
the B ring of the core cyclopentanophenanthrene 
structure has been opened, retains the side chain 
of cholesterol and has 27 carbons�

Each steroid hormone acts principally by bind-
ing a cognate nuclear receptor� In most cases, a 
single gene encoding one nuclear receptor is ex-
pressed in target tissues, along with co-activator 
and co-repressor proteins, although in some cases 
(e�g�, human glucocorticoid receptor) there is ex-
tensive alternate splicing leading to multiple re-
ceptor isoforms� The liganded receptor binds to 
short target sequences called hormone response 
elements, which are arranged in direct or inverted 
repeats� These DNA-bound receptors recruit co-
activators and/or co-repressors, and the complex 
interacts with the transcriptional machinery to 
regulate expression of the hormone-responsive 
genes� Some hormones have two receptors, such 
as estrogen receptors α and β, and many hor-
mones elicit “non-genomic” signals, via extra-
nuclear receptors that activate kinase cascades or 
open ion channels�

12.1.2  Enzymes of Steroidogenesis

Within each steroidogenic cell, a specific reper-
toire of enzymes catalyzes the necessary reac-
tions to convert cholesterol into one or more final 
steroid products� The human genome contains six 
genes encoding steroidogenic cytochrome P450 
enzymes� Some species of fish express more 
than one isoenzyme similar to a single human 
steroidogenic P450, each with a somewhat dif-
ferent spectrum of activities� Unlike most other 
biological processes involving P450s, steroido-
genesis begins in the mitochondrion, and half 
of the steroidogenic P450s are type I enzymes, 
located in mitochondria, and half are type II 
enzymes, located in the endoplasmic reticulum 
(Table 12�2)� As for all P450s, the steroidogenic 
P450s require a redox partner protein to receive 
electrons from reduced nicotinamide adenine di-
nucleotide phosphate (NADPH), which enables 
molecular oxygen binding and formation of the 
catalytically competent heme–oxygen complex� 

The mitochondrial P450s receive electrons from 
the iron-sulfur protein ferredoxin (FDX1), which 
in turn accepts electrons from NADPH via the 
flavoprotein ferredoxin reductase (FDXR), 
whereas the microsomal P450s receive elec-
trons from NADPH via P450-oxidoreductase 
(POR; reviewed in: [13])� Some hepatic P450s 
also catalyze some of the same reactions as the 
steroidogenic P450s, but with different rates and 
substrate specificities, as well as catabolic reac-
tions with steroids� For example, hepatic P450 
2C19 and 3A4 catalyze 21-hydroxylation of pro-
gesterone (but not 17-hydroxyprogesterone) with 
modest efficiency [14]�

Another central class of steroidogenic en-
zymes is the hydroxysteroid dehydrogenases 
(HSDs)� The HSDs primarily catalyze the ter-
minal steps of steroidogenesis and regulate ste-
roid metabolism in peripheral tissues and target 
organs� The HSD enzymes distribute into two 
structural classes, the short-chain oxidoreductase 
(SDR) and aldo-keto reductase (AKR) families� 
The SDR enzymes have β-α-β structures with a 
Rossman fold, and the AKR enzymes are β-barrel 
proteins� In general, two or more HSD enzymes 

Table 12.2  Classes of human steroidogenic enzymes 
and related proteins
I� Cytochromes P450
  A� Type I (mitochondrial)
  B� Type II (microsomal)

II� P450 Redox proteins
  A� Flavoproteins
  B� Iron-sulfur proteins
  C� Hemoproteins

III� Oxidoreductase enzymes
  A� Hydroxysteroid dehydrogenases

    i� Short-chain dehydrogenase/reductases
    ii. Aldo-keto reductases, including 5β-reductase

  B. 5α-Reductases
  C� Sugar phosphate dehydrogenases

IV� Conjugating/deconjugating enzymes
  A� Sulfotransferases and sulfatases
  B� Uridinediphosphate glucuronosyltransferases
  C� Cosubstrate synthetases

V� Cholesterol mobilizing proteins
  A� Steroidogenic acute regulatory protein
  B� Translocator protein
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interconvert a hydroxysteroid and its cognate 
ketosteroid with a strong directional preference� 
In intact cells, one isoenzyme drives steroid flux 
in one direction and the other isoenzyme favors 
the reverse reaction� The HSD enzymes vary in 
the classes of steroids they metabolize, the car-
bon atom(s) where they perform chemistry, their 
affinity for various nicotinamide cofactors, and 
their directional preferences in intact cells [15, 
16]. In particular, the 3β-hydroxysteroid dehy-
drogenase/Δ5→Δ4-isomerase (3βHSD) is re-
quired for the biosynthesis of all the major class-
es of steroid hormones, and 17β-hydroxysteroid 
dehydrogenase isozymes are required for the 
synthesis of androgens and estrogens�

Several types of enzymes form steroid con-
jugates, including sulfates, glucuronides, and 
esters� Several hydroxysteroids circulate in high 
abundance as sulfate conjugates with high protein 
binding, which slows their metabolism and clear-
ance from plasma [17]� The steroid sulfotransfer-
ases (SULTs), steroid sulfatase, uridinediphos-
phate glucuronosyltransferases, and 5β-reductase 
are involved in reactions that promote protein 
binding, prevent metabolism, and enhance excre-
tion� Certain cells acquire these steroid sulfates 
and remove the sulfate, yielding free steroids� 
Steroid sulfates are excreted in urine, but similar 
to xenobiotics, the majority of urinary steroids 
are excreted as glucuronide conjugates�

One crucial protein for steroidogenesis is the 
steroidogenic acute regulatory protein (StAR)� 
StAR is not an enzyme but rather a short-lived 
protein that acts on the outer mitochondrial mem-
brane [18] to enable the translocation of a spe-
cific cholesterol pool in the outer mitochondrial 
membrane to the inner mitochondrial membrane, 
where steroidogenesis begins [19]� StAR stimu-
lates steroidogenesis about sevenfold above the 
StAR-independent rate [20]� The phosphoryla-
tion of StAR on Ser 195 in response to cAMP 
doubles its activity [21] in the gonads and in 
the ZF and ZR of the adrenal cortex� In the ad-
renal ZG, StAR activation derives mainly from 
increases in intracellular calcium [22]� Steroido-
genesis is StAR-independent in the placenta and 
in organs that do not export significant amounts 
of steroids into the circulation, such as the brain� 

The translocator protein (TSPO) also participates 
in cholesterol mobilization, particularly with 
pharmacologic stimulation [23], but knockout of 
mouse TSPO shows it is not required for tropic 
hormone stimulation of steroidogenesis [24a]�

The tissue patterns of expression of StAR, 
P450s, HSDs, and other enzymes and cofactors, 
direct the flux of precursor steroids to the final 
products� Each steroidogenic cell type yields a 
predominant steroid of a particular class that ex-
erts a particular physiologic action� Enzymes in 
target tissues might convert a steroid to a more 
potent steroid hormone of the same class, a ste-
roid hormone of another class, or an inactive 
steroid metabolite� The potential for peripheral 
conversion of steroids adds to the complexity of 
steroid biology and demonstrates how a single 
circulating hormone can exert diverse actions 
on the whole body based on the distribution of 
enzymes and receptors in various tissues� A sum-
mary of the major enzymes, redox partners, and 
other important proteins of human steroidogen-
esis are show in Table 12�3�

12.1.3  Pathways

The cleavage of cholesterol to the 21-carbon 
pregnenolone by P450scc is the first committed 
step in steroidogenesis, the rate-limiting step, and 
the site of chronic regulation� Only the adrenal 
cortex cells, the Leydig cells in the testis, the 
granulosa and less so theca cells of the ovary, and 
the trophoblast cells of the placenta synthesize 
enough pregnenolone from cholesterol to con-
tribute to circulating steroid concentrations, al-
though other cells produce enough pregnenolone 
to make autocrine steroid hormones� Given that 
pregnenolone is the common first intermediate, 
the types of steroids a specific cell produces de-
pends on the repertoire of downstream enzymes 
present in that cell�

Tropic hormones, including adrenocorticotro-
pin (ACTH) and angiotensin II in the adrenal and 
luteinizing hormone (LH) in the ovary and testis, 
signal via second messengers to drive acute rises 
in steroid production from many steroidogenic 
cells� StAR mediates this acute rise in steroido-
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genesis by mobilizing cholesterol from a pool in 
the outer mitochondrial membrane and provid-
ing access to the cholesterol side chain cleavage 
enzyme (P450scc, CYP11A1) on the inner mito-
chondrial membrane� In the placenta, steroido-
genesis is StAR-independent� The mechanism of 
StAR action is incompletely understood and the 
topic of recent reviews [25]�

The human adrenal cortex contains three 
zones, each of which produces a single major 
steroid hormone product and various precursor 
and by-product steroids (Fig� 12�1)� The human 
genome contains six genes encoding steroido-
genic P450s, which are expressed in the three 

zones of the adrenal cortex, and in the testis, 
ovary, and placenta� Of these, the three genes 
in the CYP11 family encode mitochondrial 
P450s: P450scc (CYP11A1), 11β-hydroxylase 
(P450c11β, CYP11B1), and aldosterone synthase 
(P450c11AS, CYP11B2)� The other three P450 
enzymes are microsomal: 17-hydroxylase/17,20-
lyase (P450c17, CYP17A1), 21-hydroxylase 
(P450c21, CYP21A2), and aromatase (P450aro, 
CYP19A1)� The chemistry of each P450 enzyme 
is covered in detail in the next section�

The simplest pathway is progesterone (Prog) 
synthesis, which only requires P450scc and an 
SDR enzyme, 3βHSD. In the ZG of the adrenal 

Table 12.3  Human steroidogenic enzymes and other proteins
Gene mRNA Chromosome Molecular

Protein Size (kb) Size (kb) Locus Exons weight (kDa)
StAR 8 1�6 8p11�2 8 32
P450scc 30 2�0 15q23-q24 9 60
P450c11β 9�5 4�2 8q21-22 9 58
P450c11AS 9�5 4�2 8q21-22 9 58
P450c17 6�6 1�9 10q24�3 8 57
P450c21 3�4 2�0 6p 21�1 10 56
P450aro 130 1�5–4�5 15q21�1 10 58
3βHSD1 8 1�7 1p13�1 4 42
3βHSD2 8 1�7 1p13�1 4 42
11βHSD1 7 1�6 1q32-q41 6 32
11βHSD2 6�2 1�6 16q22 5 44
17βHSD1 3�3 1�4–2�4 17q11-q21 6 35
17βHSD2 63 1�5 16q24�1-q24�2 5 43
17βHSD3 67 1�2 9q22 11 35
17βHSD6 24�5 1�6 12q13 5 36
AKR1C1 14�3 1�2 10p14–p15 9 37
AKR1C2 13�8 1�3 10p14–p15 9 37
AKR1C3 13�0 1�2 10p14–p15 9 37
AKR1C4 22�1 1�2 10p14–p15 9 37
5α-Reductase 1 36 2�4 5p15 5p15 5 29
5α-Reductase 2 56 2�4 2p23 5 28
SULT2A1 17 2�0 19q13�3 6 34
PAPSS2 85 3�9 10q24 13 70
POR 69 2�5 7q11�2 16 77
FDX1 35 1�0–3�2 11q22 5 19
FDXR 11 2�0 17q24-q25 12 54
CYB5A 32 0�9 18q23 5 15
H6PDH 36�5 9�1 1p36 5 89
P4502R1 14�2 1�6 11p15�2 5 57
P450c27 40�5 2�4 2q35 9 57
P450c24 27�5 3�3 20q13 11 55
P450c1α 5 2�5 12q14�1 9 56
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Fig. 12.1  Major steroidogenic pathways in the human 
adrenal gland� The ZG (a) produces aldosterone and a few 
intermediates using P450scc, P450c21, and P450c11AS� 
The ZF (b) contains P450scc, P450c17, P450c21, and 
P450c11β and primarily produces cortisol plus minor 
products, shown with dotted lines� These minor products 
and intermediates accumulate in the presence of enzyme 
deficiency or an enzyme inhibitor� The ZR (c) contains 
only P450scc and P450c17 but has abundant CYB5A, 

which limits efficient steroidogenesis to dehydroepian-
drosterone (DHEA) and its sulfate ( DHEAS) and smaller 
amounts of 19-carbon steroids such as testosterone� In the 
“backdoor pathway” (d), the 21-carbon steroids, primar-
ily 17OHP, are 5α- and 3α-reduced to form 17OH-Allo 
prior to the 17,20-lyase reaction, ultimately yielding dihy-
drotestosterone without the intermediacy of dehydroepi-
androsterone, androstenedione, or testosterone
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cortex, the major product is the mineralocorti-
coid aldosterone, which regulates salt balance 
and thus extracellular fluid volume� In addition to 
P450scc and 3βHSD, the ZG contains P450c21, 
which converts Prog to 11-deoxycorticosterone 
(11DOC)� Nascent 11DOC returns to the mito-
chondria, where P450c11AS performs the three 
sequential 11β-hydroxylase, 18-hydroxylase, 
and 18-oxidase reactions, oxidizing 11DOC to 
corticosterone, 18-hydroxycorticosterone, and 
finally aldosterone (Fig� 12�1a)� The ZG has a 
single major pathway with no branch points and 
few additional products, mainly 18-hydroxycor-
ticosterone� Unlike the other zones of the adrenal 
cortex, the major tropic stimulus is not a pituitary 
hormone but rather low serum potassium and an-
giotensin II, the latter produced when intravascu-
lar volume is low�

The adrenal ZF contains P450scc, 3βHSD, and 
P450c21 (as does the ZG) but lacks P450c11AS� 
Instead, the ZF expresses two additional steroid 
hydroxylases, P450c17 and P450c11β. Under 
adrenocorticotropin stimulation, these four P450 
enzymes lead to the production of cortisol, which 
contains hydroxyl groups at carbons 11, 17, 
and 21 (Fig� 12�1b)� The adrenal glands of ro-
dents lack P450c17 and thus produce the dihy-
droxy steroid corticosterone instead� The Km of 
human P450c17 is ~ 0.8–1 μM, whereas the Km 
of 3βHSD is ~ 5.5 μM [26, 27], so that the human 
adrenal produces relatively little corticosterone� 
Thus, pregnenolone is preferentially converted 
to 17-hydroxypregnenolone (17OH-Preg), which 
accumulates and is converted to cortisol; the pro-
duction of cortisol exceeds that of corticosterone 
by about 10:1� Both cortisol and corticosterone 
are glucocorticoids that regulate carbohydrate 
metabolism and response to stress� The ZG has 
some branch points and makes some additional 
products, such as 18-hydroxysteroids due to the 
low 18-hydroxylase activity of P450c11β [28]� 
Ordinarily, the precursors of cortisol are secreted 
in minimal quantities, but in congenital enzymat-
ic defects collectively known as congenital adre-
nal hyperplasia (CAH), these steroids predictably 
accumulate� The diagnostic precursor steroids 
elevated in each condition are 11-deoxycortisol 
and 11DOC in 11-hydroxylase deficiency [29]; 

corticosterone and 11DOC in 17-hydroxylase 
deficiency [30]; and 21-deoxycortisol and 17-hy-
droxyprogesterone (17OHP) in 21-hydroxylase 
deficiency [31]�

ACTH also stimulates steroidogenesis in the 
ZR� The major P450 enzyme downstream from 
pregnenolone in the ZR is P450c17� In con-
trast to the ZG, the ZR expresses low amounts 
of 3βHSD, which limits most steroidogenesis 
to the Δ5-pathways, and expresses abundant cy-
tochrome b5 (CYB5A) [32, 33] and the sulfo-
transferase SULT2A1 [34]� CYB5A activates the 
17,20-lyase activity of P450c17, yielding dehy-
droepiandrosterone (DHEA), which SULT2A1 
converts to DHEA sulfate (DHEAS, Fig� 12�1c)� 
The 17,20-lyase activity of human P450c17 is 
much more efficient in the Δ5-pathway than the 
Δ4-pathway [26, 35], which enhances DHEA syn-
thesis in the ZR and limits the production of other 
19-carbon steroids in this zone� Serine/threonine 
phosphorylation of P450c17, apparently by p38α 
(MAPK14), also selectively activates the 17,20-
lyase activity in concert with CYB5A [36–38]�

In pathologic states in which 17OHP accumu-
lates, 19-carbon steroid production can follow an 
alternate or “backdoor pathway” if 5α-reductase 
is present [39], as in the neonatal tammar wallaby 
testis [40]. In this pathway, 17OHP undergoes 5α- 
and 3α-reduction to 5α-pregnane-3α,17α-diol-
20-one (17-hydroxyallopregnanolone, 17OH-
Allo, Fig� 12�1d)� Human P450c17 catalyzes the 
17,20-lyase reaction with 17OH-Allo to yield 
androsterone more efficiently than the normally 
dominant Δ5-pathway, and CYB5A stimulates 
this reaction with 17OH-Allo only threefold [41]� 
Even a small amount of flux through the back-
door pathway is significant, because the products 
are potent androgens that are not substrates for 
P450aro� This pathway appears to participate in 
male sexual differentiation [42] and probably ex-
plains the virilization of 46,XX newborns with 
21-hydroxylase deficiency [43] and possibly also 
the virilization of 46,XX newborns with POR de-
ficiency due to certain mutations [44, 45]�

Similar to the ZR, the testicular Leydig cells 
express P450c17 and CYB5A to optimize con-
version of pregnenolone to DHEA under stimula-
tion from LH� In contrast to the ZR, Leydig cells 
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lack SULT2A1 but express both 3βHSD and 
17βHSD type 3, which complete the synthesis of 
testosterone (Fig� 12�2a)�

In the ovary, steroidogenesis is more complex 
than in the testis, because two cell types par-
ticipate, and the major product varies across the 
menstrual cycle� Follicle-stimulating hormone 
(FSH) drives pregnenolone synthesis in the gran-
ulosa cells, and LH activates the conversion of 
this pregnenolone to DHEA and then androstene-
dione in the theca cells via P450c17 and 3βHSD. 
The androstenedione returns to the granulosa 
cell, where P450aro (aromatase) and 17βHSD 
type 1 catalyze its aromatization to estrone and 
reduction to estradiol (Fig� 12�2b)� After ovula-
tion, the granulosa cells of that follicle transform 
to a corpus luteum, which produces Prog using 
only P450scc and 3βHSD (Fig. 12�3a)�

In human pregnancy, Prog is initially pro-
duced from the corpus luteum of the ovary and 
subsequently from the placenta (Fig� 12�3b) at 
about 20 weeks of pregnancy, called the luteo-
placental shift� Estrogens are produced by a com-
plex system that involves both fetus and placenta 
(Fig� 12�3c)� The 19-carbon steroid substrates for 

estrogen synthesis derive from the fetal adrenal, 
which primarily produces DHEAS via the same 
pathway as the ZR� The DHEAS is desulfated in 
the placenta and converted to androstenedione, 
estrone, and estradiol using the same pathway 
involving P450aro as in the ovary� In addition, 
P450 3A7 in the fetal liver converts much of the 
DHEAS to 16α-hydroxyDHEAS, which follows 
the same pathway as DHEAS to yield estriol� The 
human placenta produces estrone, estradiol and 
estriol in approximately a 15:5:80 ratio [46, 47]� 
Although estradiol is quantitatively minor, it is 
much more active and exerts the great majority 
of the estrogenic effect� Consequently, in human 
pregnancy, Prog is an exclusively placental prod-
uct, while estrogen synthesis is a product of the 
feto-placental unit (Fig� 12�3)�

Fig. 12.2  Steroidogenic pathways in the human testis and 
ovary� Similar to the ZR of the adrenal cortex, the Ley-
dig cell (a) expresses only two P450 enzymes, P450scc 
and P450c17, which enable testosterone production via 
redundant pathways� The ovary (b) uses two cell types to 
produce estrogens� The granulosa cells contain abundant 
P450scc and P450aro but little or no P450c17, so these 

cells generate pregnenolone and complete the conver-
sion of androgens to estrogens ( outer area)� In contrast, 
the theca cells are deficient in P450scc and P450aro but 
express high amounts of P450c17, which catalyzes the 
conversion of pregnenolone to dehydroepiandrosterone 
( DHEA; inner oval)
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12.2  Steroidogenic P450 Enzymes 
and Reactions

12.2.1  The Cholesterol Side-Chain 
Cleavage Enzyme (P450scc, 
CYP11A1)

P450scc is a mitochondrial P450 that receives 
electrons from NADPH via FDXR and then 
FDX1� The side-chain cleavage reaction is ac-
tually three consecutive oxygenation reactions, 
using one molecule of both NADPH and oxygen 
per cycle and yielding pregnenolone and isocap-
roaldehyde� The intermediates formed are first 
22( R)-hydroxycholesterol and then 20( R),22( R)-
dihydroxycholesterol� These intermediates are 
used as substrates experimentally because these 
hydroxysterols are more water-soluble than cho-
lesterol and do not require StAR action to access 
P450scc in intact cells or mitochondria [20]� 
This multistep reaction is the rate-limiting step 
in steroidogenesis, with a turnover number of 
~ 20 min− 1 [48]� The kcat/Km ratios increase for 
each successive intermediate in the sequence of 

cholesterol oxidation, and the high KD of preg-
nenolone (~ 3000 nM) favors product dissocia-
tion [48]�

The X-ray crystal structure of P450scc in a 
complex with FDX1 and cholesterol demon-
strates that the four-ring backbone of cholesterol 
binds at a 45° angle relative to the heme ring with 
the side chain extended over the heme [49]� This 
structure explains the regiochemistry of the hy-
droxylations and suggests that the hydroxycho-
lesterol intermediates rarely dissociate before the 
subsequent reactions� P450scc also accepts other 
hydroxysterols as substrates for some or all of the 
reactions; it can 20- and 22-hydroxylate vitamin 
D and cleave the side-chain of 7-dehydrocholes-
terol [50–52]�

Despite the complexity of the overall side-
chain cleavage reaction, spectroscopic studies 
suggest that P450scc uses the canonical com-
pound 1 (see Chaps� 3 and 4) for its reactions 
rather than a hydroperoxy-ferric heme interme-
diate, at least for the first hydroxylation of cho-
lesterol [53]� The crystal structure of P450scc 
with bound 22-hydroxycholesterol shows an ex-
tensive network of ordered water molecules that 

Fig. 12.3  Steroidogenesis in the human corpus luteum, 
placenta, and feto-placental unit� The only P450 in the 
corpus luteum (a) is P450scc, which limits steroido-
genesis primarily to Prog� The placenta (b) contains 
the same pathway to Prog as the corpus luteum, except 
using 3βHSD type 1 rather than type 2, and the pla-
centa lacks StAR� In addition, the fetoplacental unit (c) 
produces estrone, estradiol, and estriol� The fetal adre-
nal ( above dashed line in box) is high in P450c17 and 

CYB5A, yielding dehydroepiandrosterone ( DHEA), 
which enters the circulation as DHEA sulfate ( DHEAS), 
a substrate for P450 3A7 in the fetal liver ( below 
dashed line in box)� In the placenta, steroid sulfatase 
removes the sulfate from 16α-hydroxyDHEAS, and 
3βHSD1 oxidizes and isomerizes 16α-hydroxyDHEA, 
to yield 16α-hydroxyandrostenedione. Placental P450aro 
and 17βHSD1 catalyze the final transformations to 
16α-hydroxyestrone and estriol, respectively. 
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positions the substrate and supports proton trans-
fer to the oxyferrous heme [54]� The 22-hydroxyl 
approaches to within < 3 Å of the heme iron, but 
22-hydroxycholesterol forms a less complete 
type 1 difference spectrum than cholesterol [54]� 
This result is consistent with greater mobility of 
the intermediate hydroxysterols than cholesterol 
in the active site pocket� Ketoconazole, as well 
as posaconazole, carbenoxolone, and selegiline, 
inhibits P450scc [55, 56], which contributes to its 
efficacy in treating Cushing syndrome (endog-
enous cortisol excess) and castration-resistant 
prostate cancer, the latter by further lowering tes-
tosterone production�

The interaction of FDX1 with P450 enzymes 
was first explored with P450scc� Residues 56–90 
of FDX1 form an interaction domain, which in-
cludes the acidic residues D72, D76, D79, and 
E73� These negative charges comprise a surface 
that covers the Fe2S2 cluster and is critical for the 
interaction of FDX1 with positive surface charges 
of P450scc [57]� Overlapping sets of these nega-
tive charges on FDX1 drive interactions with 
positive surfaces of P450scc and FDXR [58, 59]�

Deficiency of P450scc is a very rare disorder 
of steroidogenesis that abrogates synthesis of all 
steroids in the adrenal cortex and in the gonads� 
Since its first description in 2001 [60], as of 
mid-2014 only 19 cases have been reported [61]� 
Both complete and partial (“nonclassic”) forms 
of P450scc deficiency have been described, in 
which the mutant enzymes retain 10–20 % of nor-
mal enzyme activity� P450scc deficiency closely 
resembles congenital lipoid adrenal hyperplasia 
(lipoid CAH), which results from mutations in 
the StAR protein� As StAR triggers cholesterol 
flux into mitochondria, its deficiency causes 
massive accumulation of cholesterol ester in en-
larged adrenal glands; by contrast, in P450scc 
deficiency, the adrenals are not enlarged [62]� 
Lipoid CAH also occurs in a mild or nonclassic 
form, which preferentially impairs cortisol syn-
thesis due to the greater quantity of cortisol nor-
mally produced compared to other active steroids 
[63]�

12.2.2  Aldosterone Synthase 
(P450c11AS, CYP11B2)

A similar three-step one-enzyme process as for 
P450scc occurs in the biosynthesis of aldoste-
rone� P450c11AS (CYP11B2, aldosterone syn-
thase), which is expressed only in the ZG of the 
adrenal cortex, catalyzes one oxygenation at 
C-11 and two at C-18 in metabolizing 11DOC 
to aldosterone� The gene encoding P450c11AS 
is located on chromosome 8q21-22, 40 kb away 
from the gene for P450c11β (CYP11B1, steroid 
11β-hydroxylase). These genes share 93 % se-
quence identity, but P450c11β (discussed below) 
is expressed only in the ZF of the adrenal cortex 
[63a]� The proximity of these genes and the simi-
lar activities of these enzymes explain the genetic 
origin of the disease glucocorticoid-remediable 
aldosteronism, also known as familial hyper-
aldosteronism type 1� A recombination event 
places a hybrid gene encoding an enzyme bear-
ing aldosterone synthase activity downstream 
of an ACTH-responsive promoter, which drives 
aldosterone synthesis in the ZF and early onset 
hypertension [64, 65]�

The X-ray crystal structure of human 
CYP11B2 in complex with 11DOC reveals that 
the steroid binds with the β-face in apposition to 
the catalytic surface of the heme, tethering the 
hydrogen atoms at C-11 and C-18 closest to the 
reactive iron–oxygen species [66]� This structure 
is consistent with the known catalytic activities 
of the enzyme. The 11β-hydroxylation reaction 
probably precedes the 18-hydroxylation due to 
the greater reactivity of the secondary carbon 
center over the 18-methyl group� Assays with the 
modified P450c11AS protein used for the X-ray 
structure show that both 11DOC and corticoste-
rone are metabolized to aldosterone in vitro, fol-
lowing 3 or 2 oxygenations, respectively� Para-
doxically, the most proximate intermediate to 
aldosterone, 18-hydroxycorticosterone, is very 
poorly metabolized to aldosterone, even though 
only one oxygenation is required� This result sug-
gests that most of the aldosterone product derives 
from the population of 18-hydroxycorticosterone 
molecules that do not dissociate from the active 
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site prior to the final 18-oxidation reaction [66]� 
This in vitro result is consistent with the clini-
cal observation that circulating concentrations of 
18-hydroxycorticosterone are typically at least 
twofold higher than those of aldosterone�

Deficiency of P450c11AS is a very rare condi-
tion, which presents in infancy with salt wasting 
and low blood pressure� Most missense mutations 
in P450c11AS abrogate all activities, while a few 
others, such as R181W and V386A, preferential-
ly impair the final 18-oxidase activity [67–69]� 
The identification of patients with selective loss 
of the 18-oxidase activity led to confusion that 
more than one enzyme was required to convert 
11DOC to aldosterone, but the cloning and ex-
pression of the CYP11B2 cDNA demonstrate that 
one enzyme performs all three P450-catalyzed 
reactions [70–72]�

Excessive and autonomous aldosterone pro-
duction, either from the ZG of both adrenal glands 
or from tumors of one adrenal gland, causes the 
condition primary aldosteronism, which ac-
counts for 5–10 % of human hypertension [73, 
74]� Consequently, P450c11AS has been a tar-
get for drug development� Selective inhibitors of 
P450c11AS have been developed, with the major 
concern being to avoid simultaneous inhibition 
of P450c11β. Racemic fadrozole (4-(6,7-di-
hydro-5H-pyrrolo [1,2-c]imidazole-5-yl)-benzo-
nitrile) was first studied as an aromatase inhibitor 
in the 1980s [75], but this compound also inhibits 
P450c11AS. The ( R)-enantiomer is the more po-
tent inhibitor (FAD286), with an IC50 in trans-
fected cells of 6 nM [76, 77]�

12.2.3  Steroid 11β-Hydroxylase 
(P450c11β, CYP11B1)

Both P450c11β and P450c11AS catalyze the 
11β-hydroxylation of 11DOC to corticoste-
rone, but the primary function of P450c11β is 
to complete the biosynthesis of cortisol from 
11-deoxycortisol in the adrenal ZF� In addition, 
P450c11β has weak 18-oxygenase activity, con-
verting corticosterone to 18-hydroxycorticoste-
rone [78], but this enzyme cannot subsequently 
convert 18-hydroxycorticosterone to aldoste-

rone. Human P450c11β shows broad substrate 
specificity and catalyzes 11β-hydroxylation of 
progesterone, 17OHP, androstenedione, and tes-
tosterone [79], and some of these products, such 
as 11β-hydroxytestosterone, retain (androgen) 
biological activity. Consequently, P450c11β ap-
pears to bind substrate similar to P450c11AS, yet 
no X-ray structure of P450c11β exists to explain 
these slight differences in the activities of the two 
enzymes�

Mutations in P450c11β cause a form of CAH, 
11β-hydroxylase deficiency (11OHD). The clini-
cal presentation of 11OHD derives from the ac-
cumulation of 11DOC, which is a mineralocor-
ticoid, and shunting of cortisol precursors to an-
drogens� Hence, girls are born with masculinized 
(ambiguous) external genitals from the androgen 
excess and later develop hypertension and low 
serum potassium from the 11DOC excess� Boys 
with 11OHD have normal male genitalia with 
the same blood pressure and electrolyte distur-
bances, and all patients with 11OHD are para-
doxically prone to adrenal crisis with low blood 
pressure during significant illness due to gluco-
corticoid deficiency� In the Middle East, 11OHD 
is the second most common form of CAH, due 
to a founder mutation R448H found primarily 
in Jews of Moroccan ancestry [80], and G379V, 
found in Tunisia [81]� A mild or nonclassic form 
of 11OHD has been described in several patients, 
due to missense mutations that preserve 5–15 % 
of wild-type enzyme activity [82]�

The drug metyrapone (2-methyl-1,2-di(pyridin-
3-yl)propan-1-one) has been used for decades to 
inhibit cortisol biosynthesis, primarily through 
its inhibition of P450c11β [83]� Metyrapone is a 
relatively weak inhibitor, requiring several grams 
per day in 3–4 divided oral doses� Etomidate 
(ethyl 1-(1-phenylethyl)-1H-imidazole-5-car-
boxylate), which is used as an anesthetic agent, is 
also a relatively weak inhibitor of P450c11β, but 
this off-target action can cause transient or sus-
tained hypocortisolism [84, 85]� More recently, 
the compound LCI699 (( R)-4-(6,7-dihydro-5H-
pyrrolo[1,2-c]imidazole-5-yl)-3-fluorobenzo-
nitrile) has been studied as a potent P450c11β 
inhibitor� Originally developed as a P450c11AS 
inhibitor, participants in clinical trials had dose-
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dependent lowering of cosyntropin-stimulated 
cortisol, consistent with P450c11β inhibition 
[86]� Subsequently, the drug was tested in Cush-
ing’s disease, and oral doses of 2–50 mg twice 
daily normalized cortisol production in a series 
of 12 patients [87]� Additional studies of metyr-
apone and LCI699 in the treatment of Cushing 
syndrome are underway�

12.2.4  Steroid 17-Hydroxylase/17,20-
Lyase (P450c17, CYP17A1)

P450c17 is a 57 kDa microsomal P450, which 
receives electrons from POR rather than FDX1, 
unlike the three mitochondrial P450 enzymes 
discussed above� P450c17 is abundant the ad-
renal ZF and ZR, the Leydig cells of the testis, 
and the theca cells of the ovary� Small amounts 
of P450c17 are found in the human placenta [88], 
certain brain regions [89, 90] and other organs of 
the rat [91], and in prostate cancers [92, 93]; how-
ever, the significance of these findings remains 
under investigation� The adrenal ZF has minimal 
17,20 lyase activity, hence the 17-hydroxylase 
activity leads to synthesis of the 21-carbon tri-
hydroxysteroid cortisol, the major glucocorticoid 
in human beings and most other vertebrates� For 
P450c17 from most species, pregnenolone and 
Prog are comparably good substrates for the 
17-hydroxylase reaction� With Prog as substrate, 
human P450c17 yields not only 17OHP but also 
20–25 % 16α-hydroxyprogesterone (16OHP) 
[94], and leucine substitution at A105, as is found 
in chimpanzee P450c17, reduces the 16OHP 
product to < 10 % [95]� Human P450c17 also 
21-hydroxylates Prog, yielding 11DOC as ~ 1 % 
of the products [96], and the enzyme 17-hydrox-
ylates 5α-dihydroprogesterone (5α-pregnane-
3,20-dione) and allopregnanolone (5α-pregnan-
3α-ol-20-one) as well [41]�

As with other P450-catalyzed hydroxylation 
reactions, C–H bond breaking appears to be the 
first chemical step� The product distribution with 
Prog reflects the stability of the carbon-centered 
radicals formed during turnover, in that the major 
product is 17OHP (C-17 forms a tertiary carbon 
radical), 16OHP is the next most abundant (C-16 

forms a secondary carbon radical), and 11DOC is 
the minor product (C-21 forms a primary carbon 
radical)� Pregnenolone, in contrast, forms only 
17OH-Preg with no trace of alternate products, 
suggesting that the trajectories of these two sub-
strates are quite different� Consistent with this 
mechanism, the product distribution for P450c17 
with Prog substrate demonstrates large intramo-
lecular (intrinsic) kinetic isotope effects (KIE) 
due to metabolic switching� For example, deute-
rium substitution at H-17 of progesterone shifts 
the product distribution to approximately 50 % 
16OHP, 45 % 17OHP, and 5 % 11DOC and yields 
a calculated intramolecular KIE of 4�1 [96]� Deu-
terium substitution at H-16α shifts product dis-
tribution to > 90 % 17OHP, and 33–40 % of the 
16OHP formed retains the deuterium, consistent 
with abstraction of H-16β and inversion of the 
carbon-centered radical prior to hydroxide radi-
cal recombination [96]� Whereas the C–H bond-
breaking step contributes little to the overall 
rate of P450 enzymes with high turnover rates, 
this first chemical step is substantially rate lim-
iting for the P450c17-catalyzed hydroxylation 
reactions� Studies with deuterium-labeled preg-
nenolone and Prog substrates yield intermolecu-
lar KIEs (DV or DV/K) averaging 2�0–2�5 with 
P450c17 wild type or mutation A105L [96]�

The 17,20-lyase reaction, in contrast to typical 
P450-catalyzed hydroxylation reactions, involves 
the oxidative cleavage of a carbon–carbon bond� 
Several other P450 enzymes participating in ste-
roid and sterol metabolism also catalyze reac-
tions that break carbon–carbon bonds, including 
lanosterol demethylase (P450c51, CYP51A1), 
P450scc, and aromatase (P450aro)� Human 
P450c17 catalyzes the 17,20-lyase cleavage of 
17OH-Preg to DHEA 50–100 times more effi-
ciently than 17OHP to androstenedione [26, 35]; 
however, the best substrate found thus far for the 
17,20-lyase reaction is 17OH-Allo [41]� P450c17 
from rodents favors 17OHP over 17OH-Preg for 
the 17,20-lyase reaction [97, 98], whereas the pig 
[8] and Xenopus [99] enzymes show high cata-
lytic efficiency for both substrates� Some spe-
cies of fish possess two genes encoding separate 
P450c17 isoenzymes, one with 17,20-lyase activ-
ity and the other without [100]�
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The mechanism of the 17,20-lyase reaction is 
not known, but the reaction requires NADPH and 
oxygen� The acyl fragment retains all the original 
atoms and incorporates one oxygen atom from 
O2 during the final turnover [101]� This obser-
vation led to the proposal that the 17,20-lyase 
reaction proceeds through a ferric peroxide inter-
mediate, which forms an adduct with the C-20 
carbonyl before homolytic O–O bond cleavage 
and rearrangement� This mechanism predicts that 
hydrogen peroxide should substitute for NADPH 
and oxygen as co-substrate for the 17,20-lyase 
reaction, but neither hydrogen peroxide nor iodo-
sobenzene supports catalysis for either the 17-hy-
droxylase or 17,20-lyase reactions for human 
P450c17, not even for a single turnover [102]�

In contrast to other major sites of P450c17 
expression, the 17,20-lyase activity in the adre-
nal ZF is low, limiting synthesis of 19-carbon 
steroids, which are precursors of androgens and 
estrogens� Among the reasons for this low 17,20-
lyase activity is the paucity of CYB5A in the 
ZF compared to other cells expressing P450c17 
[33, 34]� CYB5A stimulates the 17,20-lyase 
reaction with 17OH-Preg and 17OHP tenfold 
[26] but stimulates 17OH-Allo cleavage to an-
drosterone only threefold [41]� The stimulatory 
action of CYB5A on the 17,20-lyase activity of 
P450c17 has been observed with microsomal en-
zyme preparations [26, 102] and with purified, 
reconstituted proteins [103]� The physiologic 
relevance of this in vitro phenomenon has been 
confirmed genetically with the description of pa-
tients having isolated 17,20-lyase deficiency due 
to mutations in the CYB5A gene [104, 105]�

Apo-CYB5A lacking the heme moiety stimu-
lates the 17,20-lyase of human P450c17 as well 
as holo-CYB5A, consistent with an allosteric ef-
fect [26], and redox-inactive Mn+2-CYB5A stim-
ulates 17,20-lyase activity [106]; however, scav-
enging of free heme in the reaction mixture has 
been suggested as an alternate explanation [107]� 
The CYB5A double mutation E48G + E49G 
stimulates 17,20-lyase activity < twofold yet 
retains normal electron transfer kinetics [108], 
suggesting that residues E48 and E49 form an 
allosteric interaction with P450c17� NMR stud-
ies confirm the participation of CYB5A residues 

E48 and E49 in interactions with P450c17 [109]� 
CYB5A residues D58 and D65 are essential for 
the stimulation of P450 2E1 and P450 2C19 ac-
tivities, but are not required for stimulation of the 
17,20-lyase activity of P450c17 [110]�

CYB5A also influences the reactions of 
P450c17 with pregnenolone and allopregnano-
lone, whose products include a small amount of 
Δ16- and 17α-hydroxy-19-carbon products in one 
step without 17-hydroxylated intermediates [41, 
111, 112]� Acetic acid with one oxygen atom from 
O2 is also formed during these reactions [101, 
113, 114]� Human and pig P450c17 also catalyze 
these variants of the 17,20-lyase reaction with 
the 17β-carboxaldehyde analog of pregnenolone 
with similar product ratios [115]� P450c17 mu-
tations (R347A, R347H, R358A, R358Q, and 
R449A) that impair 17,20-lyase activity with 
17OH-Preg, however, retain normal CYB5A-
stimulated activity with the 17β-carboxaldehyde 
substrate, forming the same alternate 19-carbon 
products [116]� In some species, these products 
are pheromones, the best characterized being 
androsta-5,16-diene-3β-ol and 5α-androst-16-en-
3-one, which are components of boar taint [117]�

P450c17 is encoded by the CYP17A1 gene, 
which has a similar structure to the CYP21A2 
gene encoding the steroid 21-hydroxylase, 
P450c21 [118]� Mutations in CYP17A1 cause a 
spectrum of disorders ranging from complete, 
combined 17-hydroxylase/17,20-lyase defi-
ciency (17OHD) to partial deficiencies that vari-
ably impair these two main activities� The loss 
of 17,20-lyase activity eliminates androgen and 
estrogen synthesis, leading to sexual infantilism 
with female external genitalia, infertility, and 
pubertal failure regardless of chromosomal sex� 
Absence of 17-hydroxylase activity restricts ad-
renal steroidogenesis to the 17-deoxy pathway as 
in the rodent adrenal, which produces corticos-
terone as the major glucocorticoid� In 17OHD, 
circulating concentrations of corticosterone rise 
markedly, as do concentrations of its immediate 
precursor, 11DOC, to reach a new steady state� 
The profound 11DOC excess, however, activates 
the mineralocorticoid receptor and causes hyper-
tension and potassium excretion�
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Some missense mutations in P450c17, in-
cluding R347H, R347C, R358Q [119, 120], and 
E305G [121] or G539R in POR [122] minimally 
disrupt 17-hydroxylase activity, but markedly 
impair 17,20-lyase activity and clinically cause 
isolated 17,20-lyase deficiency (ILD)� Boys with 
ILD have incomplete masculinization of the ex-
ternal genitals with low testosterone, pubertal 
failure, and infertility, but lack the hypertension 
and hypokalemia of 17OHD� Girls with ILD show 
failure of puberty and adrenarche like boys with 
ILD [123]� These mutations causing ILD demon-
strates that the 17,20-lyase activity of P450c17 is 
more sensitive to conditions and more vulnerable 
to disruption than the 17-hydroxylase activity� 
The 17,20-lyase activity of purified P450c17 is 
very sensitive to phospholipid composition in re-
constituted assays, favoring anionic head groups 
such as phosphatidylinositol and phosphatidyl-
serine over the cationic phosphatidylcholine 
[110]� P450c17 phosphorylation also stimulates 
17,20-lyase activity [36, 37, 124]� Mitogen-asso-
ciated protein kinase-14 (MAPK14, p38α) is the 
most active kinase thus far identified [38], and 
protein phosphatase 2A (PP2A) reverses the acti-
vation via P450c17 dephosphorylation [124]�

Based on the absence of androgen production 
in patients with 17OHD, P450c17 has been a 
target for drug design to treat androgen-depen-
dent disorders, primarily prostate cancer [125]� 
Abiraterone acetate, which is a prodrug for abi-
raterone, a potent and selective P450c17 inhibi-
tor, improves survival of patients with castration-
resistant prostate cancer (CRPC) after [126] or 
before taxane chemotherapy [127]� Abiraterone 
acetate is FDA-approved for the treatment of 
CRPC in combination with prednisone, which 
lowers pituitary ACTH production and thus pre-
vents the accumulation of 11DOC and the devel-
opment of hypertension and hypokalemia as seen 
in 17OHD� Abiraterone contains a 3-pyridyl ring 
attached to an unsaturated D-ring of the DHEA 
nucleus, which binds tightly to the heme iron with 
a spectral ( KS) affinity constant of < 3 nM [128]� 
Other P450c17 inhibitors are under clinical de-
velopment, such as galeterone (TOK-001), which 
differs from abiraterone in that a benzimidazole 
moiety replaces the 3-pyridyl ring [129]; ortero-

nel (TAK-700), which is a nonsteroidal inhibitor 
[130]; and VT-464, for which preliminary evi-
dence suggests preferential inhibition of 17,20-
lyase activity over 17-hydroxylase activity [131]�

The structure of human P450c17 has been 
modeled with and without bound substrates 
[102], and X-ray structures with bound abi-
raterone or galeterone have been solved [132]� 
The model predicts that the substrate binds with 
the steroid nucleus parallel to the heme ring, with 
the α-surface of the D-ring nearest the heme iron 
[102]� The X-ray structures show the heterocyle 
nitrogen of the inhibitors tightly bound to the 
iron of the heme and the 3β-face of the steroid 
nucleus forming hydrophobic interactions with 
the I-helix� A pregnenolone molecule can be 
modeled into the space that abiraterone occupies 
in the structure, and this orientation places the 
H-17 atom in close proximity to the heme iron 
[132]. The 3β-hydroxyl group of abiraterone 
forms a hydrogen bond with the side-chain oxy-
gen of N202, and ordered water molecules con-
tribute to a larger hydrogen-bonding network, 
which also includes E305, R239, and Y201� Abi-
raterone analogs with different A-B ring struc-
tures (3-keto-Δ4; 5α,3α-hydroxy; 5α,3-keto; and 
3α-hydroxy-Δ4), however, are also potent inhibi-
tors of human P450c17 and form type 2 differ-
ence spectra with < 1 nM affinities [128]� Con-
sequently, the active site residues that interact 
with the A-ring oxygen appear to be capable of 
significant reorganization in order to accommo-
date significant structural variation in the ligand� 
Abiraterone and these analogs all show mixed in-
hibition patterns, suggesting a second inhibitory 
binding site for these compounds as well [128]�

12.2.5  Steroid 21-Hydroxylase 
(P450c21, CYP21A2)

P450c21 shares 39 % amino acid identity with 
P450c17, as well as similar gene structures and 
common substrates� In contrast, the chemistry 
of the reactions these two enzymes catalyze and 
their functions in human physiology are quite dif-
ferent� The only known substrates for P450c21 
are Prog, 5α-dihydroprogesterone (5α-pregnane-
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3,20-dione), and 17OHP—the best substrate 
and the ligand that affords the strongest type 1 
spectral change [133]� For all of these substrates, 
P450c21 hydroxylates the electron-deficient 
21-methyl group, and with Prog, human P450c21 
also forms a trace of 16OHP� Residue V359 ap-
pears to be critical for restricting substrate trajec-
tories, which limits hydroxylation to the relative-
ly unreactive C-21 methyl group� Site-directed 
mutations that progressively reduce the bulk of 
V359 (V359A, V359G) increase the fraction of 
16OHP formed to 40 % and 90 %, respectively 
[134]� As is true for P450c17, metabolic switch-
ing occurs with deuteration at C-21 or C-16, with 
intramolecular KIE values of 2�5–6�2 for wild-
type P450c21 and for the V359A mutant [96]� 
C–H bond breaking is partially rate determining 
for P450c21, with intramolecular KIE values of 
1�9–3�8 [96]. The common Δ5-steroids are not 
substrates and are poor inhibitors�

The X-ray crystal structure of bovine P450c21 
contains two molecules of 17OHP bound with 
high occupancy [135]� A 17OHP molecule in 
the active site is positioned with the steroid nu-
cleus perpendicular to the heme ring with the 
21-methyl group suspended in close proximity 
to iron–oxygen complex and the A-ring distal 
to the heme� In this orientation, the more reac-
tive hydrogen atoms are too far away to undergo 
hydroxylation for the wild-type enzyme, which 
restricts chemistry to 21-hydroxylation� The sec-
ond molecule of 17OHP is bound too far from the 
heme to undergo hydroxylation, and this ligand 
might serve an allosteric or structural function or 
might be an artifact of the crystallization condi-
tions� The structure of P450c21 with bound Prog 
has not been reported� Because a clinical utility 
has not been proposed, few efforts have been de-
voted to the development of P450c21 inhibitors, 
although some halogenated steroids and ketocon-
azole are weak substrates and inhibitors, respec-
tively [136]�

The CYP21A2 gene, which encodes P450c21, 
resides in a duplicated region within the human 
leukocyte antigen (HLA) locus on chromosome 
6p21� The duplication contains the CYP21A1P 
pseudogene [137–139], which differs from the 

CYP21A2 gene in ten areas, most of which are 
deleterious single base pair substitutions or dele-
tions� Genetic recombination events in this region 
are common, including large or partial deletions, 
as well as gene conversion events that incorpo-
rate one or more segments of the CYP21A1P 
pseudogene into the CYP21A2 gene� When both 
copies of the CYP21A2 gene are mutated, most 
often from deletion or pseudogene conversion, 
21-hydroxylase deficiency (21OHD) results, by 
far the most common form of CAH� Severe or 
classic 21OHD occurs in 1:16,000 live births 
worldwide [140], while a partial or nonclassic 
form occurs in 1:1000 individuals and up to 1:27 
in certain populations [141]�

In classic 21OHD, severe deficiency of corti-
sol and often aldosterone can lead to low blood 
pressure and cardiovascular collapse in infancy if 
untreated� These individuals are prone to similar 
adrenal insufficiency crises throughout life dur-
ing systemic illness, such as infection or hemor-
rhage� Simultaneously, the block in 21-hydroxyl-
ation causes large amounts of precursor steroids 
to accumulate, and these intermediates follow 
the only pathways remaining, primarily to andro-
gens� The androgen excess during fetal life causes 
various degrees of external genitalia virilization 
in girls, a disorder of sex development (46,XX 
DSD)� Androgen excess persists throughout life, 
requiring treatment with glucocorticoids to lower 
ACTH and to prevent precursor steroids from 
accumulating� Nonclassic 21OHD results from 
mutations that preserve < 20 % of enzyme activ-
ity, primarily mutation V281L [142]� Cortisol 
production is preserved in nonclassic 21OHD, 
but at the expense of moderate precursor accu-
mulation and resultant androgen excess� Most 
patients diagnosed with nonclassic 21OHD are 
either girls, who experience early development 
of pubic hair or accelerated growth, or young 
women, who present with irregular menstrual 
periods, unwanted facial and body hair, acne, 
and subfertility� Boys are rarely diagnosed with 
nonclassic 21OHD, most commonly due to early 
development and rapid progression of secondary 
sexual characteristics�
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12.2.6  Aromatase (P450aro, CYP19A1)

The aromatase (P450aro) enzyme is so named 
because this enzyme catalyzes the conversion 
of 19-carbon androgens to 18-carbon estro-
gens, which contain an aromatic A-ring� Simi-
larly to P450scc and P450c11AS, P450aro per-
forms three cycles of oxygenation that remove 
the C-19 methyl group as formic acid� The first 
two oxygenations occur at C-19 itself, affording 
the 19-hydroxy and 19-oxo-intermediates, the 
latter via dehydration of the transient 19-gem-
diol� Nearly all of the early studies used human 
placental microsomes as the source of enzyme� 
Isotopic labeling studies [143] have shown that 
the 19-methyl group is removed as formic acid 
(HCOOH) and that the 1β-hydrogen is lost to 
water [144] with retention of the 1α-hydrogen 
[145]. With androstenedione, the 2β-hydrogen is 
preferentially lost, whereas for testosterone, there 
is no stereochemical preference for enolization 
[146]� The first and third oxygen atoms incor-
porated into substrate are retained in the formic 
acid product [147], and active-site residues direct 
loss of the second incorporated oxygen from the 
19-gem-diol [148]� The 3-oxygen of the substrate 
is retained, excluding Schiff base formation be-
tween an enzymic lysine and C-3 during catalysis 
[149]�

The mechanism of the last oxygenation and 
the A-ring aromatization remains controver-
sial� If loss of formic acid from C-19 and the 
1β-hydrogen occurs early in this process, a sec-
ond double bond would be introduced in the A-
ring, and tautomerization of the 3-ketone would 
complete the aromatization reaction� Other 
proposals include a mechanism in which a fer-
ric peroxide attacks the C-19 oxo-intermediate 
[147] and oxygen insertion at H-2β, forming 
the C-19 oxo, 2β-hydroxy-intermediate. Consis-
tent with the latter model, 2β-hydroxy-19-oxo-
androstenedione decomposes nonenzymatically 
to estrone with elimination of the 1β-hydrogen 
atom [145, 150]�

The 19-hydroxy and 19-oxo intermediates 
readily dissociate from the active site before sub-
sequent rounds of turnover in what is known as a 
distributive multistep enzyme process [144]� Pre-

steady-state kinetics with purified, recombinant 
human P450aro demonstrate that androstene-
dione binds more tightly than its 19-hydroxy, 
19-oxo, or estrone products ( Kd = 0.13 vs. 1.5–
4.0 μM) and that its turnover is slower than for 
the two subsequent intermediates ( kcat = 0.06 vs. 
0�13–0�42 s− 1) [151]� Single-turnover and pulse-
chase experiments corroborate earlier studies 
showing a distributive mechanism with release 
of intermediates [151]�

Earlier studies suggested that the third oxy-
genation occurs either at C-2 or C-10, but these 
mechanisms do not explain the incorporation of 
the third oxygen atom into formic acid product� 
Currently, two mechanisms remain consistent 
with the experimental data, and neither can be 
excluded [152]� In the first, a nucleophilic attack 
of the ferric peroxide on the 19-aldehyde forms a 
tetrahedral intermediate, followed by homolytic 
cleavage of the peroxide bond, leaving unpaired 
electrons both on the steroid and the iron–oxy-
gen intermediate� Homolytic or heterolytic ab-
straction of H-1β occurs, and rearrangement 
follows, with release of formic acid� One study 
using molecular dynamics simulation and hybrid 
quantum mechanics/molecular mechanics favors 
this mechanism [153]� In the second mechanism, 
compound 1 (see Chaps� 3 and 4) of the enzyme 
sequentially removes hydrogen atoms H-1β and 
one O–H from the 19-gem-diol, yielding the di-
radical intermediate, which fragments as in the 
alternative mechanism� This mechanism is con-
sistent with results from studies with 19-substi-
tuted substrates [154] and density function theory 
calculations [155]�

The estrogen dependence of most breast can-
cers has spurred interest in developing aromatase 
inhibitors� Early compounds such as 10-propar-
gylestr-4-ene-3,17-dione [156], 4-hydroxyan-
drostenedione [157], and 6-ketoandrostenedione 
[158], all steroidal compounds, were primar-
ily mechanism-based inactivators� Subsequently, 
azole-based nonsteroidal aromatase inhibitors 
including fadrozole [75], letrozole [159], and 
anastrozole [160] were developed, and the latter 
two compounds are now first-line therapy for es-
trogen receptor-positive metastatic breast cancer 
in postmenopausal women [161]�



86712 P450 Enzymes in Steroid Processing

The X-ray crystal structure of human P450aro 
was the first structure solved for a steroidogenic 
P450 [162]� In this structure, androstenedione fits 
tightly in the pocket above the heme ring, with 
the β-face of the steroid and the C-19 methyl 
group closest to the heme iron, which is consis-
tent with the known chemistry of the enzyme� 
The position of the steroid substrate resembles 
that of 11DOC in the P450c11AS structure, with 
the steroid moved to place the A-ring 3–4 Å 
closer to the heme iron [66]� This similarity ex-
plains how fadrozole inhibits both enzymes, but 
the P450aro structure does not explain the tight 
and selective binding of the fourth-generation 
aromatase inhibitors anastrozole and letrozole� If 
the steroid is removed from the structure of the 
P450aro- androstenedione complex, these two 
inhibitors do not fit in the vacated pocket, which 
suggests that the enzyme undergoes substantial 
conformational changes upon inhibitor binding 
to a very flexible active site [162]�

P450aro is widely expressed in biologically 
significant amounts in many cells and tissues such 
as brain, bone, breast, and fat [163]� The 130 kb 
CYP19A1 gene contains at least five distinct pro-
moters that direct its expression in the placenta 
and ovary, which are the major sites of estrogen 
synthesis, as well as in extraglandular tissues� In 
each cell type, the distinct promoters function 
to provide the regulation of enzyme expression 
characteristic of that tissue� The extraglandular 
aromatization of androgens is a prime example 
of local enzyme-mediated or pre-receptor regula-
tion of hormone action� Many behavioral effects 
of androgens, for example, are mediated by con-
version to estrogen in the brain [164]�

12.2.7  Catabolic P450-Mediated 
Steroid Metabolism

Additional hepatic metabolism of steroids con-
tributes to their inactivation and also to extra-ad-
renal conversion to active steroids� Both CYP3A4 
and CYP2C19 are progesterone 21-hydroxylases 
that yield 11DOC as a minor product along with 
other hydroxysteroids [14]� CYP3A4 catalyzes 
6β-hydroxylation of progesterone, cortisol, and 

testosterone; this reaction accounts for a con-
siderable amount of hormone inactivation, par-
ticularly when it is orally administered� This phe-
nomenon is important, because patients taking 
CYP3A4 inducers and inhibitors while receiving 
cortisol replacement might require dose adjust-
ment� The most profound effect is observed with 
adrenocortical cancer patients receiving mitotane 
therapy� Mitotane potently induces CYP3A4 ex-
pression and leads to more than a tenfold increase 
in 6β-hydroxycortisol production [165], which 
mandates hydrocortisone dose increases in these 
patients�

Another clinically important drug–drug in-
teraction involving P450 3A4 occurs in patients 
taking the homeopathic herbal supplement, Saint 
John’s Wort� The extract of this plant contains 
the compound hyperforin, which binds to and 
activates the human pregnane X receptor (PXR), 
thus inducing P450 3A4 expression in the liver 
and increasing the rate of metabolism for many 
drugs, including steroids [166, 167]� In addi-
tion to endogenous steroids, the consumption of 
Saint- John’s Wort increases the metabolic rate of 
exogenous steroid drugs, particularly low-dose 
oral contraceptives with narrow therapeutic win-
dows [168, 169]�

12.3  P450 Enzymes in Vitamin D 
Synthesis

Vitamin D is a secosteroid derived from 7-dehy-
drocholesterol� The final step in the biosynthesis 
of cholesterol is the conversion of 7-dehydro-
cholesterol to cholesterol by 7-hydroxycholes-
terol reductase (3β-hydroxysterol Δ7-reductase, 
DHCR7), the enzyme that is disordered in Smith-
Lemli-Opitz syndrome (OMIM 270400) [170]� 
Patients with SLO, DHCR7-null mice, and ani-
mals given inhibitors of DHCR7 have augmented 
vitamin D synthesis [171]� Ultraviolet radiation 
at 270–290 nm directly cleaves the 9–10 carbon–
carbon bond of the cholesterol B ring in human 
skin, converting 7-dehydrocholesterol to chole-
calciferol (vitamin D3, Fig� 12�4) [172]� Plants 
produce a closely related sterol, ergocalciferol 
(vitamin D2), that has nearly the same properties 
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as cholecalciferol� Both forms of vitamin D are 
biologically inactive pro-hormones that are then 
activated, and subsequently inactivated, by the 
same P450 enzymes� This section will refer to 
“vitamin D,” meaning both D2 and/or D3�

12.3.1  Vitamin D 25-Hydroxylases

Several hepatic P450s catalyze the 25-hydrox-
ylation of vitamin D to 25-hydroxyvitamin D 
(25OHD)� Physiologic regulation of this 25-hy-
droxylation has not been demonstrated, and cir-
culating concentrations of 25OHD are primarily 
determined by dietary intake of vitamin D and 
exposure to sunlight� 25OHD is the most abun-
dant form of vitamin D in the blood, but is a bio-

logically inactive pro-hormone, having minimal 
capacity to bind to the vitamin D receptor� Cell 
fractionation studies found 25-hydroxylase ac-
tivity in both mitochondria and microsomal frac-
tions� Screening of rat liver cDNA expression li-
braries with antisera to a purified rat liver 25-hy-
droxylase preparation yielded the cDNA for an 
enzyme then called P450c25 [173, 174]� This 
enzyme, now known as mitochondrial P450c27 
or CYP27A1, can also hydroxylate carbons 26 
and 27 to initiate bile acid synthesis [175]� The 
subsequent cloning of the mitochondrial 1α- and 
24-hydroxylases showed that CYP27A1 was 
structurally related, suggesting that CYP27A1 
might be a major vitamin D 25-hydroxylase; 
however, patients with CYP27A1 mutations 
have a lipid disorder (cerebrotendinous xantho-

Fig. 12.4  Biosynthesis of major vitamin D metabolites� 
In skin, 7-dehydrocholesterol undergoes light-induced re-
arrangement to vitamin D3 (cholecalciferol), via sequen-
tial retro-Diels–Alder reaction and [1,7]-sigmatropic shift� 
P450 2R1 and probably other enzymes catalyze vitamin D 
25-hydroxylation to 25OHD, which is bound to circulat-

ing proteins in large amounts. P450c1α converts 25OHD 
to 1,25(OH)2D (calcitriol), the active form of vitamin D� 
P450c24 catalyzes the inactivation of both 25OHD and 
1,25(OH)2D to 24,25(OH)2D and 1,24,25(OH)3D, respec-
tively
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matosis) without a disorder in calcium metabo-
lism [175, 176], suggesting that at least one other 
enzyme besides CYP27A1 was also a vitamin D 
25-hydroxylase�

Microsomal P450 2R1 (CYP2R1) is a vitamin 
D 25-hydroxylase that has a higher affinity for 
vitamin D than CYP27A1 [177]� P450 2R1 is 
highly specific for vitamin D 25-hydroxylation� 
A homozygous P450 2R1 mutation L99P was 
then found in two unusual Nigerian patients, and 
this mutation dramatically reduced 25-hydroxy-
lase activity in vitro [178]� However, through the 
middle of 2014, no further cases of CYP2R1 mu-
tations or other causes of 25-hydroxylase defi-
ciency have been reported, indicating that 25-hy-
droxylase deficiency is exquisitely rare, and sug-
gesting that both P450 2R1 and other enzyme(s) 
(possibly CYP27A1), are effective 25-hydroxy-
lases in vivo, so that symptomatic disease is only 
seen when there is a P450 2R1 mutation in the 
presence of another stressor such as neonatal hy-
poparathyroidism or nutritional vitamin D defi-
ciency� P450 2R1 is widely expressed, possibly 
accounting for the persistent vitamin D 25-hy-
droxylation in patients with liver failure [179]�

The crystal structure of P450 2R1 with vita-
min D3 bound in its catalytic site shows a typical 
microsomal cytochrome P450 structure, but with 
a more closed, tight conformation and with hy-
drophobic residues lining the substrate-binding 
pocket, so that the geometry is only suited to bind-
ing planar hydrophobic molecules such as sterols 
[180]� The L99 residue is located in the B-helix, 
near to, but not directly involved in binding vita-
min D� The substrate adopts the open or extended 
conformation as drawn in Fig� 12�4, with the side-
chain containing C-25 hovering above the heme 
iron� The A-ring projects towards the surface of 
the protein and forms a hydrogen bond network 
between the 3β-hydroxyl group, a water mol-
ecule, and residues in the F- and G-helices [180]�

12.3.2  Vitamin D 1α-Hydroxylase

The active form of vitamin D hormone, 1α,25-
dihydroxyvitamin D (1,25(OH)2D or calcitriol), 
is produced by the 1α-hydroxylation of 25OHD. A 

mitochondrial 1α-hydroxylase variously termed 
25-hydroxyvitamin D-1α-hydroxylase, P450c1α, 
or CYP27B1 catalyzes this critical reaction� 
Circulating 1,25(OH)2D primarily derives from 
its synthesis in the kidney, but 1α-hydroxylase 
activity also is found in keratinocytes, macro-
phages, osteoblasts and placenta [181–183]� The 
rate-limiting step in the bioactivation of vitamin 
D is 1α-hydroxylation, and the renal enzyme ac-
tivity is tightly regulated by parathyroid hormone 
(PTH), calcium, phosphorus, and 1,25(OH)2D 
itself� Due to the low abundance of this protein 
in renal mitochondria, immunologic approaches 
could not be used to clone the 1α-hydroxylase, as 
had been done for the 24- and 25-hydroxylases� 
However, in the second half of 1997, four inde-
pendent groups using different approaches re-
ported the cloning of the human, rat, and mouse 
vitamin D-1α-hydroxylase cDNAs [184–188], 
and the human gene [185, 189], subsequently 
termed CYP27B1� One group used mice with a 
knocked-out vitamin D receptor to induce over-
production of 1α-hydroxylase, then screened a 
cDNA expression library for activation of a vita-
min D receptor construct [188]� Two other groups 
enriched renal 1α-hydroxylase mRNA by feeding 
rats a diet low in calcium and phosphorus, then 
used probes complementary to the conserved 
P450 heme-binding site to identify candidate se-
quences [186, 187]�

The first human clone was obtained by using 
RNA from primary cultures of human keratino-
cytes, which have substantial 1α-hydroxylase ac-
tivity when grown in low-calcium medium [190], 
and screening cDNA with oligonucleotides cor-
responding to the conserved sequences of the fer-
redoxin-binding sites and heme-binding sites of 
other P450s [184]� The human CYP27B1 gene on 
12q14�1 is only 5 kb in length, is single copy, and 
comprises nine exons and eight introns [189]� Al-
though it is substantially smaller than the genes 
for other mitochondrial P450 enzymes, its intron/
exon organization is very similar, particularly to 
that of P450scc� This finding strongly suggests 
that although the mitochondrial P450 enzymes 
retain only 30–40 % amino acid sequence iden-
tity with each other, they all belong to a single 
evolutionary lineage. P450c1α catalyzes con-
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version of 25OHD to 1,25(OH)2D, with a Km of 
2�7 × 10− 7 M, close to circulating concentration 
of 25OHD�

Deficient 1α-hydroxylase activity, character-
ized by the infantile onset of severe hypocalcemia, 
moderate hypophosphatemia, and responsiveness 
to physiologic doses of calcitriol, has been called 
“hereditary pseudo-vitamin D deficiency rickets” 
(PDDR), “vitamin D dependency” because of its 
responsiveness to active vitamin D, or “vitamin 
D-dependent rickets type I�” This disease is now 
more simply and appropriately termed “vitamin 
D 1α-hydroxylase deficiency.” Affected persons 
are normal at birth but have growth retarda-
tion, poor motor development, and generalized 
muscle weakness by 2 years of age� Affected 
children develop hypocalcemia, hypophospha-
temia, increased serum alkaline phosphatase ac-
tivity, and increased serum PTH; some develop 
hypocalcemic seizures� Serum concentrations of 
1,25(OH)2D are low despite normal concentra-
tions of 25OHD; responses to administration of 
1,25(OH)2D are excellent�

Vitamin D 1α-hydroxylase deficiency is rare 
in most populations, but may be common in iso-
lated populations due to founder effects� Among 
French Canadians in the Charlevoix-Saguenay-
Lac Saint Jean area of Quebec, the carrier rate is 
1/26, so that the incidence of affected individuals 
is 1 in 2700 in this population [191]� This high 
incidence in French Canadian families permitted 
genetic mapping of vitamin D 1α-hydroxylase 
deficiency to chromosome 12q14 [192]� Since 
the first description of a mutation in the CYP27B1 
gene [184], over 100 genetically confirmed cases 
of vitamin D 1α-hydroxylase deficiency, involv-
ing at least 38 different mutations in the CYP27B1 
gene, have been reported [193–200]�

Although vitamin D 1α-hydroxylase deficien-
cy is rare, an early study identified P450c1α mu-
tations in 19 patients from 17 families of multiple 
ethnicities [195]� Microsatellite haplotyping and 
DNA sequencing showed that French-Canadian 
patients from the Charlevoix region all carried 
a single haplotype and the same frameshift mu-
tation� This study also found a 7 bp duplication 
on seven alleles in six families, but this mutation 
was associated with several different microsatel-

lite haplotypes and was found in several unre-
lated ethnic groups, indicating that this mutation 
has arisen de novo several times [195]� Among 
the 14 mutations identified in this study, none 
had measureable activity in vitro. A few P450c1α 
mutations have been described that retain par-
tial activity and cause mild disease� The muta-
tion E189G retained 22 % of normal activity in 
vitro and caused mild disease, while L343F re-
tained 2�3 % of wild type activity [200], and the 
mutation G102E retained about 20 % of normal 
activity [197]� Nevertheless, there is consider-
able phenotypic variation among patients with 
vitamin D 1α-hydroxylase deficiency who have 
mutations lacking assayable activity; the basis of 
this poor correlation of the clinical findings with 
the activities of the mutant P450c1α enzymes in 
vitro remains unclear�

12.3.3  Vitamin D 24-Hydroxylase

Calcitriol may be inactivated by P450 3A4 in 
liver, but one of the more important mechanisms 
for vitamin D inactivation is via its 24-hydrox-
ylation by P450c24 (CYP24A1)� This mitochon-
drial enzyme can catalyze the 24-hydroxylation 
of 25OHD to 24,25(OH)2D and of 1,25(OH)2D 
to 1,24,25(OH)3D, primarily in the kidney and 
intestine [201, 202]� Both reactions initiate in-
activation of vitamin D, although some evidence 
suggests some activities for these 24-hydroxylat-
ed compounds� P450c24 was cloned by purifying 
the protein from rat renal mitochondria, raising 
a polyclonal antiserum, and screening a rat kid-
ney cDNA expression library [202]� The human 
cDNA [201] and gene [203] were cloned soon 
thereafter� P450c24 is induced by 1,25(OH)2D, 
thus favoring its inactivation by 24-hydroxyl-
ation as a mechanism to regulate the amount of 
available 1,25(OH)2D [204]�

Deficient P450c24 activity is a recently de-
scribed cause of neonatal hypercalcemia, with 
hypercalciuria or nephrocalcinosis, normal 
25OHD levels, normal to moderately elevated 
1,25(OH)2D levels, and low PTH [205]� Another 
infant had failure to thrive, hypercalcemia, hyper-
calciuria, bilateral nephrocalcinosis, suppressed 
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PTH, undetectable PTH-related protein, and nor-
mal 25OHD and 1,25(OH)2D [206]� The loss-of-
function mutations found in these patients lacked 
P450c24 activity in vitro� CYP24A1 splicing 
mutations were found in an adult with nephrocal-
cinosis, hypercalcemia, hypercalciuria, elevated 
1,25(OH)2D, and undetectable 24,25(OH)2D 
[207]� Thus, CYP24A1 mutations can cause se-
vere neonatal hypercalcemia, and milder muta-
tions that retain partial activity can cause hyper-
calcuria and nephrocalcinosis in adults�

The structure of rat P450c24 at 2�5 Å resolu-
tion shows an open cleft flanked by conserved 
hydrophobic residues on helices A′ and G′, with 
a membrane-directed substrate-access channel, 
stabilized by conserved aromatic residues on 
helices Bʹ, F and G, leading to the heme. Dock-
ing of 1,25(OH)2D shows that the hydrophobic 
substrate fits well in this channel� The proximal 
surface of P450c24 contains basic residues from 
the K, K″, and L helices and an adjacent lysine-
rich loop that define the adrenodoxin binding site 
[208]� This structure is remarkably similar to that 
of human P450scc [49, 54] despite the low amino 
acid sequence identity�

the structures of substrate-bound human CY-
P17A1 mutation A105L were recently published: 

Petrunak EM, DeVore NM, Porubsky PR, 
Scott EE (2014) Structures of Human Steroido-
genic Cytochrome P450 17A1 with Substrates� J 
Biol Chem 289:32952-32964�
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13.1  Introduction

13.1.1  Arachidonic AcidMetabolizing 
Enzymes

While the cytochrome P450 (CYP) superfam-
ily is an extensively studied enzyme system in-
volved in xenobiotic metabolism, it was only 
more recently identified as a significant “third 
pathway” of arachidonic acid (AA) metabolism� 
In the first pathway, cyclooxygenases (COXs) 
metabolize AA to prostaglandin H2 (PGH2)� Sub-
sequently, various synthases convert PGH2 to 
prostaglandins (PGs), thromboxane A2 (TXA2) 
and prostacyclin (PGI2)� The TXA2 and PGl2 
synthases belong to the CYP superfamily� In the 
second pathway, lipoxygenase (LOX) enzymes 
convert AA to labile hydroperoxy intermediates 
that go on to form the leukotrienes, hydroxye-
icosatetraenoic acids (HETEs), and lipoxins� 
COX and LOX metabolism of AA has been ex-
tensively studied and their eicosanoid products 
play important functional roles in a wide array 
of biological processes including inflammation, 
cellular proliferation, and intracellular signaling 
[1, 2]� Multiple subfamilies of CYP enzymes 
metabolize AA to three types of eicosanoid prod-

ucts (Fig� 13�1)� Allylic oxidation forms several 
mid-chain conjugated dienols, including 5-, 8-, 
9-, 11-, 12-, and 15-HETEs� Omega-terminal 
(ω/ω-1)-hydroxylation forms C16–C20 alcohols 
of AA (16-, 17-, 18-, 19-, and 20-HETEs)� Olefin 
epoxidation by CYP epoxygenases results in the 
production of four regioisomeric cis-epoxyeico-
satrienoic acids (EETs; 14,15-, 11,12-, 8,9-, and 
5,6-EETs) (Fig� 13�2)� Studies have demonstrated 
that these CYP-derived eicosanoids also have a 
multitude of potent biological activities [3]�

13.1.2  Role of Phospholipase A2 in 
Eicosanoid Biosynthesis

The initial step in eicosanoid production by 
CYPs, COX, and LOX enzymes is liberation 
of polyunsaturated fatty acids (PUFAs), such as 
AA, from plasma membranes� Fatty acids in vivo 
are primarily esterified to the sn-2 position of cell 
membrane glycerophospholipids [1]� These fatty 
acids act as important structural components 
that regulate membrane fluidity and permeabil-
ity� Storage of phospholipid-bound fatty acids in 
the membrane also provides a reservoir for lipids 
during the initial step in eicosanoid biosynthesis 
[1, 4, 5]� Physiological stressors such as ischemia 
or inflammation can activate phospholipase A2 
(PLA2) enzymes that cleave AA from the phos-
pholipid and make it available for oxidative 
metabolism by the three major enzyme systems 
(Fig� 13�1) [6–9]�

P� R� Ortiz de Montellano et al� (eds�), Cytochrome P450, DOI 10�1007/978-3-319-12108-6_13  
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Three categories of PLA2 enzymes that reg-
ulate AA release are classified based on their 
primary structure, cellular localization, and re-
quirement for Ca2 +� Exposure of cytosolic PLA2 
(cPLA2) to micromolar concentrations of Ca2 + 
induces its translocation to the surface membrane 
and enzyme activation� Secretory PLA2 (sPLA2) 
primarily functions extracellularly and is acti-
vated by millimolar concentrations of calcium� 
Ca2 +-independent PLA2 (iPLA2) is expressed 
intracellularly and may be regulated by ATP, cas-
pase cleavage, calmodulin, or protein aggrega-
tion [6, 10]�

Studies with PLA2 inhibitors in mouse mod-
els and primary human samples reveal the criti-
cal role of this enzyme in eicosanoid-regulated 
vascular biology� cPLA2α-deficient mice exhibit 
reduced PG production and inflammatory re-
sponses [11]� sPLA2 expression is low in most 
tissues, but it is increased in plasma of patients 

Fig. 13.2  Arachidonic acid ( AA) is metabolized by cy-
tochrome P450 ( CYP) monooxygenases in epoxygenase, 
lipoxygenase-like, and ω/ω-1 hydroxylase reactions to 

form epoxyeicosatrienoic acids ( EETs), mid-chain hy-
droxyeicosatetraenoic acids ( HETEs), and ω/ω-1 HETEs, 
respectively

 

Fig. 13.1  Arachidonic acid is released from lipid bilay-
ers by phospholipase A2 ( PLA2) and then metabolized by 
cyclooxygenase ( COX), cytochrome P450 ( CYP), and 
lipoxygenase ( LOX) enzymes to form prostaglandins 
( PGs), epoxyeicosatrienoic acids ( EETs), hydroxyeicosa-
tetraenoic acids ( HETEs), leukotrienes ( LTs), and lipox-
ins ( LXs)
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with elevated cardiovascular risk and is observed 
in human atherosclerotic lesions [12]� Transgenic 
overexpression of sPLA2 increases atheroscle-
rotic development in mice [13]� Diminished cell 
proliferation and motility of iPLA2-deficient 
smooth muscle cells are associated with de-
creased AA release and PG production [14]�

13.2  CYP Peroxide Isomerases

13.2.1  Prostacyclin and Thromboxane 
Synthases

Free AA is metabolized by PG-endoperoxide 
synthases (or COXs) to produce a variety of 
prostanoids, including PGs, PGI2, and TXA2� 
Both the constitutively expressed COX-1 and 

the inducible COX-2 enzymes convert AA to 
PGH2 via two distinct but mechanistically linked 
stages, each catalyzed by a different activity site� 
The COX site reacts AA with two O2 molecules 
to produce PGG2, which has an endoperoxide 
ring and a hydroperoxide group� The hydroper-
oxide group is then reduced in the peroxidase site 
forming PGH2, which is metabolized by second-
ary PG synthases to form numerous PGs, includ-
ing PGD2, PGE2, PGF2a, PGI2, and TXA2� The 
synthase responsible for generation of PGI2 from 
PGH2 is prostacyclin synthase (PTGIS), a mem-
ber of the CYP superfamily (CYP8A1)� Similar-
ly, the TXA2 synthase (TXAS) is also known as 
CYP5A1 (Fig� 13�3)�

Like other mammalian CYPs, PTGIS and 
TXAS are membrane-bound hemoproteins; how-
ever, both enzymes lack typical CYP monooxy-

Fig. 13.3  Arachidonic acid ( AA) is metabolized by cy-
clooxygenase ( COX) to prostaglandin ( PG) G2 that rear-
ranges to PGH2� PGH2 is metabolized to thromboxane A2 

( TXA2), PGE2, and prostacyclin ( PGI2) by thromboxane 
synthase ( TXAS), PGE2 synthase ( PGES), and prostacy-
clin synthase ( PTGIS), respectively
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genase activity and instead cleave the epidioxy 
bond of PGH2 to form PGI2 and TXA2, respec-
tively [15, 16]� PTGIS is constitutively expressed 
in vascular cells such as endothelial cells and 
smooth muscle cells� As a result, PGI2 synthesis 
is highest in highly vascularized tissues such as 
the kidney, lung, uterus, testes, and spleen [17]� 
The PTGIS promoter contains multiple Sp1-
binding domains that drive constitutive expres-
sion and may also be involved in the upregula-
tion of PTGIS by inflammatory cytokines such 
as interleukin-6 and tumor necrosis factor alpha 
(TNFα) [18]� While PTGIS expression can be in-
duced by inflammatory stimuli, its activity can 
be inhibited by peroxynitrite-mediated tyrosine 
nitration� Peroxynitrite is a reaction product of 
superoxide and nitric oxide� Thus, under condi-
tions of oxidative stress, PTGIS inactivation will 
shift vascular prostanoid production away from 
PGI2 in favor of TXA2 because TXAS is not af-
fected by tyrosine nitration [19]�

TXAS is highly expressed in platelets, but is 
also found in lung, kidney, spleen, stomach, and 
gastrointestinal tissues [20, 21]� TXAS does not 
appear to be subject to posttranslational modifi-
cation as enzyme activity correlates well with ab-
solute expression levels; however, TXAS may be 
highly sensitive to inhibition by oxidative dam-
age [22]� While TXAS is constitutively expressed 
in many tissues, differential TXAS expression 
has been observed during in utero development 
and in tumorigenesis, which may be regulated by 
NF-E2 family transcription factors [23]�

13.2.2  Physiological Effects of 
Prostacyclin and Thromboxane

Both PGI2 and TXA2 have very short biological 
half-lives [24, 25]; however, PGI2 and TXA2 have 
potent effects on vascular tissues, a topic that has 
been well reviewed elsewhere [18, 23]� PGI2 
transactivates a heterotrimeric G-protein-coupled 
receptor (GPCR), the PGI2 receptor (PTGIR/IP 
receptor), to induce signaling� IP receptors are 
expressed in vascular cells including endothelial 
and smooth muscle cells and platelets, as well 
as in highly vascularized tissues including the 

lung, heart, and kidney [26]� IP receptors mainly 
act through Gαs to increase intracellular cyclic 
adenosine monophosphate (cAMP), though in 
some tissues they may activate PLA2 C through 
Gαq or reduce cAMP levels through Gαi� In addi-
tion, PGI2 can activate nuclear signaling through 
peroxisome proliferator-activated receptors 
(PPARs)� Similar to PGI2, TXA2 signals through 
GPCRs; however, the TXA2 receptors (TP recep-
tors, TPα and TPβ) are primarily linked to Gαq 
and Gα12/13. Gαq activates signaling through 
PLA2 C, inositol triphosphate (IP3) and diacyl-
glycerol to increase intracellular calcium levels 
while Gα12/13 acts through Rho family GTPases 
to induce cytoskeletal rearrangement [23]�

PGl2 and TXA2 act with opposing effects in 
vascular tissues� Vascular responses and resolu-
tion often depend on the coordinated crosstalk 
between these pathways� TXA2 potently induces 
platelet aggregation, while PGI2 prevents for-
mation of platelet aggregates to reduce throm-
bosis [27, 28]� Interestingly, TXA2 generated in 
platelets induces PGI2 in endothelial cells [29]� 
Consequently, PGI2 induces phosphorylation of 
the TPα receptor to downregulate TXA2 signal-
ing [30]� In vascular smooth muscle, PGI2 in-
duces vasodilation through cAMP-dependent 
and/or cAMP-independent signaling to large 
conductance Ca2 +-dependent potassium chan-
nels (BKCa) or adenosine triphosphate (ATP)-
sensitive potassium channels (KATP) resulting in 
hyperpolarization and limited intracellular Ca2 + 
[18, 28]� In contrast, TXA2 activates Gα12/13 and/
or Gαq signaling to induce Rho- and Ca2 +-medi-
ated contraction of vascular smooth muscle [31, 
32]� In endothelial cells, PGI2 induces angiogen-
esis, enhances tight junctions and barrier func-
tion, reduces inflammation, and limits apoptosis 
[33, 34], while TXA2 increases inflammatory ac-
tivation of endothelial cells [35]� PGI2 signaling 
is protective in atherosclerosis models by reduc-
ing smooth muscle migration, proliferation, and 
hypertrophy to reduce neointima formation [36]� 
The pro-inflammatory actions of TXA2 in heart, 
lung, and kidney contribute to the progression of 
allergies, asthma, renal, and cardiovascular dis-
ease [23]� TXA2 induces angiogenesis and also 
promotes tumor migration and metastasis [37]�
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13.3  CYP Monooxygenases

13.3.1  ω-Hydroxylases

13.3.1.1  ω/ω-1 Hydroxylase Metabolism
The ω-hydroxylation of fatty acids, which in-
volves the addition of a hydroxyl group at or 
near the ω-terminal carbon, was first shown to 
be catalyzed by the liver microsomal enzyme 
system in the 1960s [38]� In particular, the CO 
pigment of CYP was recognized as a constitu-
ent of the microsomal mixed function oxidase 
system that contributes to the ω-hydroxylation 
of steroids [39]� Substrates that are susceptible 
to ω-hydroxylation include laurate and AA [38]� 
Early reports showed that CYP enzymes catalyze 
the ω (C-20) and ω-1 (C-19) hydroxylation of AA 
[40]� In 1990, Falck et al� demonstrated that CYP 
enzymes also hydroxylate the C-16 (ω-4), C-17 
(ω-3), and C-18 (ω-2) carbons of AA [41]� Thus, 
in the presence of nicotinamide adenine dinucle-
otide phosphate (NADPH) and molecular oxy-
gen, CYPs mediate the hydroxylation of AA to 
generate a variety of ω-terminal HETEs includ-
ing 16-, 17-, 18-, 19-, and 20-HETE (Fig� 13�2)�

13.3.1.2  CYP ω/ω-1 Hydroxylases
Various CYP isoforms can catalyze oxidation 
at C16-19 of AA (Table 13�1)� Oxidation of the 
ω-terminal carbon (C-20) to generate 20-HETE 
is mostly restricted to the CYP4 family, which 
includes the isoforms of the CYP4A, CYP4B, 
and CYP4F subfamilies� CYP2C40 was also 
demonstrated to produce primarily 16-HETE; 
it metabolizes AA in a highly regio- and stereo-
specific manner to form 16( R)-HETE [42]� There 
is evidence that CYP1A1 and CYP1A2 are also 
involved in the generation of 16-HETE [41]� The 

formation of 17-HETE has been attributed to 
CYP1A, as exposure of marine fish to benzo(a)
pyrene, an inducer of CYP1A, results in 17-
HETE production in liver microsomes� Benzo(a)
pyrene also shifts hydroxylation in favor of 19-
HETE, suggesting that CYP1A can catalyze the 
formation of 19-HETE [43]�

The metabolism of AA to 18( R)-HETE was 
first characterized in the microsomes of mon-
key seminal vesicles [44]� Bacterial CYP102 has 
been shown to catalyze the formation of nearly 
enantiomerically pure 18( R)-HETE [45]� In 
1993, Laethem et al� demonstrated that CYP2E1 
produces both 18-HETE and 19-HETE, with 
18-HETE being 100 % R isomer and 19-HETE 
being 70 % S and 30 % R [46]� Furthermore, a 
CYP2J isoform cloned from sheep liver showed 
a preference for 18-HETE biosynthesis (86 % of 
total), with formation of 19- and 20-HETE also 
being observed [47]� In addition to CYP1A [43] 
and CYP2E1 [46], CYP2C19 can metabolize 
AA to 19-HETE [48]� In hypertrophied hearts, 
CYP4A2 and CYP4A3 appear to play a role 
in 19-HETE formation [49]� In 2001, Qu et al� 
identified CYP2J9 as a mouse AA ω-hydroxylase 
that is predominantly expressed in the brain and 
produces 19-HETE [50]� Most recently, Chuang 
et al� demonstrated that CYP2U1, a novel human 
thymus- and brain-specific CYP enzyme, metab-
olizes AA to both 19-HETE and 20-HETE [51]�

With the exception of CYP2U1 [51], the 
formation of 20-HETE is catalyzed mainly 
by members of the CYP4 family, including 
CYP4A, CYP4B, and CYP4F subfamilies� Of 
these, CYP4A1 and CYP4A8 exhibit only ω/ω-
1-hydroxylation activities� In human kidney 
microsomes, CYP4F2 is the major enzyme that 
metabolizes AA to form 20-HETE [52]� Iso-

Table 13.1  Cytochrome P450 (CYP) isoforms and metabolites. The CYPs that catalyze the ω-hydroxylation of ara-
chidonic acid to 16-, 17-, 18-, 19-, and 20-HETE are displayed
Metabolite CYP isoforms
16-HETE CYP2C40, CYP1A1, CYP1A2
17-HETE CYP1A
18-HETE CYPBM-3, CYP2J, CYP1A2, CYP1A5, CYP2E1
19-HETE CYP1A, CYP2C19, CYP2E1, CYP2J9, CYP2U1, CYP4A2, CYP4A3
20-HETE CYP2U1, CYP4A, CYP4F
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forms of CYP4F are found in rat kidneys, mouse 
glomeruli, rabbit aortic vascular smooth muscle 
cells, human kidneys, and human livers [53–56]� 
Isoforms of CYP4A are predominantly found in 
humans, rats, mice, and rabbits [53, 57]� In the 
rat kidney, CYP4A1, CYP4A2, and CYP4A8 are 
highly expressed in the renal proximal tubules 
and vasculature [56, 58]�

13.3.1.3  Physiological Effects of 
ω-Terminal HETEs

The effects of 16-, 17-, 18-, 19-, and 20-HETE 
have been studied to varying degrees� Activat-
ed polymorphonuclear leukocytes (PMNs) are 
known to produce 16-HETE. In vitro, 16( R)-
HETE inhibits human PMN adhesion and ag-
gregation� Administration of 16-HETE to rabbits 
with thromboembolic stroke leads to reduction 
in intracranial pressure [59]� Synthesis of leukot-
riene B4, a pro-inflammatory molecule, is also 
increased by 16( R)-HETE� Carroll et al� demon-
strated that 16( R)-HETE promotes vasodilation 
of renal arteries in a COX-dependent manner 
[60]. Furthermore, 16( S)-HETE inhibits the ac-
tivity of the adenosine triphosphatase (ATPase) in 
the renal proximal tubule [60]. Similarly, 17( S)-
HETE inhibits proximal tubule ATPase activity 
while 17( R)-HETE is inactive in this system�

18( R)-HETE, 19( S)-HETE, and 19( R)-HETE 
all increase vasodilation of renal arteries in rab-
bits [60]� Zhang et al� demonstrated that both 
18( R)-HETE and 19( R)-HETE blunt the sensitiz-
ing effect of 20-HETE on phenylephrine-induced 
constriction of renal interlobar arteries in spon-
taneously hypertensive rats [61]� Escalante et al� 
showed that 19( S)-HETE is a potent stimulator of 
renal Na +/K +-ATPase activity [62]� The earliest 
report documenting the vasoconstrictor activity 
of 19-HETE was published in 1989 by Escalante 
et al� [63]� 19-HETE and 20-HETE increase the 
magnitude of K +-induced vasorelaxation re-
sponses in rat aortic rings in a COX-dependent 
manner [64]. In rabbit proximal tubules, 19( S)-
HETE promotes volume absorption [65]� In the 
mouse brain, 19-HETE alters neurotransmitter 
release by inhibiting the activity of P/Q-type 
Ca2 + channels [50]. Furthermore, both 18( R)-
HETE and 19( R)-HETE can block the effects of 

20-HETE in the vasculature, suggesting that it 
may compete for binding to the same receptor, 
which has yet to be identified [61, 66]�

It is well known that 20-HETE has opposing 
effects depending on its site of action� It plays 
an antihypertensive role in renal tubules, where 
it promotes water and Na + excretion� In proximal 
tubules, 20-HETE induces phosphorylation of the 
Na +/K +-ATPase alpha subunit via protein kinase 
C (PKC) to inhibit Na +/K +-ATPase activity [67]� 
In the medullary thick ascending limb, it inhibits 
the large-conductance 70 pS K + channel and the 
Na +-K +-2Cl − cotransporter to prevent K + efflux 
and Na + reabsorption [68]� In the vascular sys-
tem, excluding the pulmonary microcirculation, 
20-HETE promotes hypertension by uncoupling 
endothelial nitric oxide synthase to decrease ni-
tric oxide bioavailability, increasing the genera-
tion of reactive oxygen species (ROS), enhanc-
ing vasoconstriction responses, and impairing 
vasorelaxation responses [66, 69, 70]� 20-HETE 
increases vasoconstriction via PKC-dependent 
mechanisms [71] and these effects have been 
attributed to the renin-angiotensin system [72, 
73]� In addition, 20-HETE induces angiogenesis 
and proliferation in endothelial cells, endothelial 
progenitor cells, and glioma cells [74, 75], and 
it may play a role in the development of tumors 
and cancer� In mouse lungs, 20-HETE mediates 
ozone-induced, neutrophil-independent airway 
hyperresponsiveness through mechanisms that 
are not yet clear�

13.3.2  CYP Mid-Chain Hydroxylases

13.3.2.1  Lipoxygenase-Like Reaction
CYP monooxygenases can catalyze bis-allylic 
oxidation (LOX-like reaction) to generate six 
regioisomeric HETEs (5-, 8-, 9-, 11-, 12-, and 
15-HETE)� The mechanism for CYP-dependent 
HETE formation involves oxidation of C7, C10, 
or C13, followed by acid-catalyzed rearrange-
ment to the corresponding cis- or trans-dienols 
[76, 77]� The initial finding that CYP-derived 
12-HETE formation was predominantly 12( R)-
HETE suggested that CYPs generated enantio-
mers different from those produced by 12-LOX 
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enzymes, which are known to mostly produce 
12( S)-HETE. However, 12( R)-HETE-producing 
12-LOX enzymes were later identified [78, 79]� 
Various LOXs are capable of producing 5-, 8-, 
12-, and 15-HETE, and aspirin-treated COXs can 
also produce 11( R)-, 15( R)-, and 15( S)-HETE 
[80–82]� While some effects can be traced to 
CYP-dependent HETE formation, it is unclear to 
what degree bis-allylic oxidation of AA by CYPs 
contributes to the overall production and biologi-
cal actions of these HETEs [83]�

13.3.2.2  Mid-Chain Hydroxylases
CYP metabolism of AA to ω-hydroxy and epoxy 
eicosanoids has been more intensely studied than 
CYP metabolism of AA to mid-chain HETEs; 
however, bis-allylic oxidation of PUFAs by CYP 
enzymes has been observed� CYP1A1, CYP1A2, 
CYP3A4, CYP2C8, CYP2C9, and CYP2C19 
are modest producers of mid-chain HETEs [48, 
84]� While CYP2C8 and CYP2C9 predominantly 
generate epoxides from AA, they can also pro-
duce a significant amount of 15- and 12-HETE, 
respectively� The production of 12-HETE by 
CYP2C9 is almost entirely (> 95 %) 12( R)-HETE 
[48]� Human CYP1B1 predominately produces 
mid-chain HETEs (54 % of total AA products), 
including 5-, 8-, 12-, and 15-HETE [84]� While 
CYP2J2 predominantly produces epoxides (76 % 
of all metabolites), it also produces both 8-, and 
15-HETE� Interestingly, regioselective genera-
tion of mid-chain HETEs is preserved in many 
murine CYP isoforms� Murine CYP1B1 also pro-
duces high percentage of 5-, 8-, and 12-HETE� 
Multiple murine CYP2C isoforms produce 12- 
and 15-HETE, and murine CYP2J isoforms are 
most likely to produce the 8- and 15-HETEs�

13.3.2.3  Mid-Chain HETE Effects
The ( R)-HETEs are known to have potent bio-
logical effects; however, it is typically unknown 
whether COX, LOX, or CYP enzymes are respon-
sible for ( R)-HETE generation. 12( R)-HETE 
formed in corneal epithelium is believed to be of 
CYP origin and inhibits the Na +/K +-ATPase to 
regulate ocular transparency and aqueous humor 
secretion [86]� Inhibition of the Na +/K +-ATPase 
by 12( R)-HETE also increases urinary sodium 

and potassium excretion, and urine volume� 
5( R)- and 12( R)-HETE are more potent than 
their corresponding ( S) enantiomers in promot-
ing neutrophil migration [85, 86]� 5-, 12-, and 
15-HETE induce cell proliferation in a variety of 
cell types, while 8-, and 11-HETE display anti-
proliferative effects [87]� Additional studies are 
required to clarify whether these HETEs are gen-
erated by CYP or other enzyme systems�

13.3.3  CYP Epoxygenases

13.3.3.1  CYP-Dependent Biosynthesis 
of EETs

In the early 1980s, the first evidence for CYP-de-
pendent generation of EETs from AA was detect-
ed in kidney and liver microsomes [40, 88]� CYP 
enzymes are capable of incorporating oxygen 
into each olefin of AA to generate all four regioi-
someric cis-EETs (5,6-, 8,9-, 11,12-, and 14,15-
EET) [88]; however, many tissue microsomes or 
recombinant CYP enzymes show a preference for 
generation of 14,15- and 11,12-EET over other 
regioisomers [88, 89]� NADPH-dependent CYP 
metabolism of AA generates exclusively cis-
EETs [90, 91], whereas hydroperoxide-depen-
dent CYP oxidation of AA can result in formation 
of both cis- and trans-EETs [92, 93]� Trans-EETs 
are found in vivo, and possess signaling capabili-
ties [93, 94]�

CYPs can generate all four EET regioisomers 
as either ( S, R) or ( R, S) stereoisomers� The ratio 
of ( R, S) to ( S, R) isomers varies between CYPs 
and between different regioisomers produced by 
the same CYP� For instance, CYP2C8 selectively 
produces ( R, S) enantiomers of both 14,15-EET 
and 11,12-EET [90, 95]� In contrast, CYP2J2 pro-
duces 14( R),15( S)-EET over 14( S),15( R)-EET, 
but generates roughly equal amounts of each 
11,12-EET stereoisomer [96]� CYP2C9 displays a 
modest preference for 14(R),15(S)-EET, but gen-
erates more 11( S),12( R)-EET than 11( R),12( S)-
EET [95]� Information on the biological effects 
of EET stereoisomers is limited, as many stud-
ies have used racemic EET mixtures� However, 
( R, S) and ( S, R) stereoisomers are known to 
have different effects in some systems� For ex-
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ample, only the 14( R),15( S)-EET stereoisomer 
inhibits COX activity [97], while 14( S),15( R)-
EET is more potent in dilation of bovine coro-
nary arteries [98]. Only 11( R),12( S)-EET dilates 
small renal arterioles at low concentrations [98], 
whereas only the 8( S),9( R)-EET enantiomer is a 
renal vasoconstrictor. The 14( R),15( S)-EET ste-
reoisomer binds the membrane-binding site on 
U937 cells more readily than 14( S),15( R)-EET, 
and thus may be the more potent agonist for the 
putative EET receptor [99]� Importantly, some 
discrepancies in physiological responses to EETs 
have been observed� For example, EETs are gen-
erally thought to be vasodilatory in the context of 
blood vessels; however, differences between spe-
cies and in different vascular beds have yielded 
varying results [100–106]�

13.3.3.2  CYP Epoxygenases
Generation of EETs has been demonstrated in 
numerous tissues, including liver, kidney, lung, 
skin, heart, brain, adrenal, pituitary, ovaries, and 
blood vessels [40, 88, 96, 107–114]� EETs are 
produced by numerous cell types, including en-
dothelial cells, cardiomyocytes, astrocytes, and 
cancer cells [115–118]� The term “epoxygenase” 
is used to describe CYPs that generate epoxides 
from PUFAs� The majority of CYP epoxygen-
ases belong to the CYP2 family, in particular the 
CYP2C and CYP2J subfamilies; however, nu-
merous CYPs can generate detectable amounts 
of EETs�

Many human CYPs and their orthologs in 
other species are known to generate EETs� Puri-
fied CYP1A1, CYP1A2, CYP2B6, and CYP2E1 
primarily generate HETEs from AA but also 
produce EETs [84, 119]� In humans, CYP2C8, 
CYP2C9, and CYP2J2 appear to be the most im-
portant AA epoxygenases� CYP2C8 metabolizes 
AA exclusively to 14,15- and 11,12-EET at high 
rates [48, 119]� CYP2C8 is abundantly expressed 
in heart, liver, kidney, and intestines, but is also 
found in blood vessels to varying degrees [120, 
121]� CYP2C9 generates 14,15-, 11,12-, and 8,9-
EETs at slightly higher rates than CYP2C8 [95, 
119]� CYP2C9 is thought to be the predominant 
AA epoxygenase in human aorta and coronary ar-
teries [120]� It also is highly expressed throughout 

the gastrointestinal system, liver, heart, pancreas, 
kidney, adrenal, pituitary, lymph nodes, lung, and 
skin [121]� CYP2C19 generates 14,15- and 8,9-
EET, but is not considered a major human epoxy-
genase [48]� CYP2J2 also metabolizes AA pro-
ducing primarily epoxygenase products, includ-
ing all four EET regioisomers, but favoring the 
production of 14,15-EET [96]� CYP2J2 expres-
sion is highest in the heart, gastrointestinal sys-
tem, liver, pancreas, kidney, and adrenal tissues, 
but is also expressed in blood vessels [96, 120, 
121]� Rodent homologs of CYP4X1 are highly 
expressed in the brain, but are also present in the 
lung, liver, and kidney [122, 123]� CYP4X1 effi-
ciently metabolizes AA to EETs (Edin and Zeld-
in, unpublished observations) and anandamide to 
14,15-EET ethanolamide [124]�

Identification of rodent homologs to human 
CYP epoxygenases is complicated by gene 
duplication events� For instance, while the 
human genome contains four CYP2C and one 
CYP2J subfamily members, mice have fifteen 
CYP2C and eight CYP2J subfamily members� 
Of these, at least eight CYP2C (2C29, 2C38, 
2C39, 2C40, 2C44, 2C50, 2C54, and 2C55) 
and all eight CYP2J (2J5, 2J6, 2J8, 2J9, 2J11, 
2J12, and 2J13) isoforms produce EETs [125–
128]� Rat and mouse both express a homolog 
to human CYP4X1 [122, 123, 129]� Rat CYP2 
family members known to produce EETs in-
clude CYP2B1, CYP2B2, CYP2C2, CYP2C10, 
CYP2C11, CYP2C23, CYP2C24, CYP2J3, and 
CYP2J4 [130–132]� Known rabbit epoxygenases 
include CYP2B4, CYP2B5, CYP2C1, CYP2C4, 
and possibly CYP2J1 [131, 132]� In most in-
stances, defining the homologs to human CYP2C 
members or to CYP2J2 is problematic due to dif-
ferences in expression patterns and/or metabolic 
profiles [133]�

13.3.3.3  Biological Fate of CYP-Derived 
EETs

After oxygenation, the fate of fatty acid epox-
ides is diverse and varied (Fig� 13�4)� EETs may 
transactivate membrane receptors or directly 
bind to ion channels or other proteins to cause 
biological effects� All four EET regioisomers 
can be esterified into phospholipids in cell mem-
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branes of most tissues, including the heart [96], 
liver [134], and kidney [135]� EETs become es-
terified through a coenzyme A (CoA)-dependent 
process [103, 136, 137]� EETs are incorporated 
into phospholipids primarily at the sn-2 posi-
tion [137, 138]� Membrane incorporation of AA 
is preferred over EETs� Among the EETs, incor-
poration into membranes is highest for 5,6-EET, 
intermediate for 8,9- and 11,12-EET, and lowest 
for 14,15-EET [4, 139]� Esterification into mem-
brane phospholipids suggests that membranes 
may contain a store of EETs available for later 
release [103, 137, 138]�

An important pathway for metabolism of 
EETs is hydrolysis to dihydroxyeicosatrienoic 
acids (DHETs) by epoxide hydrolases (EHs or 
EPHXs)� There are at least five mammalian en-
zymes thought to contain EH activity: EPHX1, 
EPHX2, EPHX3, EPHX4, and PEG1/MEST 
[140]� Of these, soluble epoxide hydrolase (sEH/
EPHX2) is the most active for EET hydrolysis 

[141]� Compared to EETs, DHETs often show 
diminished activity in biological assays [105, 
142, 143]; however, there are several notable ex-
ceptions, including maintenance of vasodilatory 
properties and agonism of the peroxisome prolif-
erator-activated receptor (PPAR) [102, 105, 144, 
145]� Hydrolysis also speeds elimination of EETs 
since DHETs are released from cells and are not 
reincorporated into phospholipid in membranes� 
Both EETs and DHETs are found in blood, but 
only DHETs are detectable in urine, suggesting 
a process of selective elimination [146, 147]� 
Studies with selective sEH inhibitors or genetic 
disruption of sEH in mice leads to a significant 
increase in plasma levels of EETs, a reduction 
in plasma levels of DHETs, and many physi-
ological changes associated with increased EETs 
[148, 149]� Given the beneficial preclinical data 
of CYP-derived EETs in cardiovascular diseases, 
pharmacological inhibition of sEH has promising 
therapeutic potential�

Fig. 13.4  Fatty acid epoxides, such as 14,15-epoxyeico-
satrienoic acid ( 14,15-EET), are metabolized by multiple 
pathways� EETs can undergo additional oxygenation by 
CYPs or cyclooxygenases ( COXs), can be hydrolyzed 
to dihydroxyeicosatrienoic acids ( DHETs) by epoxide 

hydrolases such as soluble epoxide hydrolase ( sEH), or 
reesterified to the plasma membrane in an Acyl-CoA de-
pendent process� EETs can also undergo chain shortening 
or elongation to epoxyhexadecadienoic acids ( EHD) or 
epoxydocosatrienoic acids ( EDTs), respectively
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Hydrolysis of EETs to DHETs appears to be 
a primary mechanism of EET removal; how-
ever, in cells with low  EH expression or dur-
ing pharmacological sEH inhibition, EET chain 
shortening or elongation can be observed [150, 
151]� Acetyl-CoA ligation is the initial step in 
the process, after which EETs may be elongated 
to 22-carbon epoxides and can be reincorporated 
into plasma membranes [152]� EETs may also 
be shortened through β-oxidation to 16-carbon 
epoxides that may maintain physiological func-
tions or undergo further truncation [150, 153]� 
Conjugation of EETs to glutathione can be de-
tected in various cellular systems; however, it 
is unclear if significant amounts of glutathione 
conjugation occur at physiological EET levels 
[154]� EETs may also be bound by fatty acid-
binding proteins (FABPs)� FABPs display a 
higher affinity for EETs than DHETs and may 
limit EET hydrolysis by sEH and/or EET release 
and signaling [155, 156]�

EETs can also be further metabolized by CYPs 
or other enzymes� For example, 8,9-, 11,12-, and 
14,15-EET can undergo ω-hydroxylation by 
CYP4A enzymes [157]� In addition, 5,6- and 8,9-
EET can serve as substrates for COXs to yield 
epoxy PGs or other metabolites with vasoactive 
and mitogenic properties [158, 159]�

13.3.3.4  Biological Actions of CYP-
Derived EETs

13.3.3.4.1 Cellular Targets
The identity of a membrane-bound EET recep-
tor remains elusive despite strong evidence 
that EETs transactivate a GPCR� Radioligand-
binding assays with 14,15-EET show a selec-
tive membrane-binding site on EET-responsive 
monocytic cells [160, 161]� EETs induce cAMP 
accumulation in these cells, which suggests ac-
tivation of a canonical GPCR pathway [99]� 
EETs covalently bound to silica beads are able 
to transactivate aromatase transcription without 
entering vascular smooth muscle cells [162]� 
EETs appear to directly bind and activate Kir6�1-
containing ATP sensitive potassium ( KATP) chan-
nels, while activation of Kir6�2-containing KATP 
channels by EETs requires activation of protein 
kinase activity (PKA) [163]� Several groups have 

attempted to identify the putative EET receptor 
with no definitive success [161, 164]� EETs have 
been shown to act as modest antagonists to the 
TXA2 receptor [165]� Others report strong, selec-
tive activation of the PGE2 receptor subtype EP2 
[166]� However, additional and conflicting stud-
ies have failed to confirm whether either receptor 
is responsible for EET-dependent signaling [161, 
165, 166]�

13.3.3.4.2 Vascular Tone
Treatment of coronary arteries with AA induces 
potent vasodilation� This vasodilation is depen-
dent on AA metabolism in the endothelium as 
endothelial-denuded vessels do not relax in re-
sponse to AA [167, 168]� Inhibitor studies re-
vealed approximately half of this vasorelaxation 
was induced through COX-dependent metabo-
lism to PGI2 and half was induced by CYP-de-
pendent metabolism to EETs [109]� In intact ves-
sels, agonists such as acetylcholine or bradykinin 
induce EET formation in endothelial cells that 
act as paracrine messengers to hyperpolarize un-
derlying smooth muscle cells to induce vasore-
laxation [167, 168]� Thus, EETs are identified as 
an endothelial-derived hyperpolarization factor 
(EDHF)� Selective inhibitors reveal the vasodila-
tory roles of CYP2 subfamily enzymes, includ-
ing CYP2B6, CYP2C8, CYP2C9, and CYP2J2 
in humans, CYP2C34 in pigs, and CYP2C11, 
CYP2C23, and CYP2J4 in rats [169]�

The effect of EETs as EDHFs is inhibited by 
iberiotoxin, which inhibits activation of large-
conductance Ca2 +-activated potassium channels 
(BKCa) [105, 170]� Opening of BKCa channels 
allows influx of potassium and hyperpolariza-
tion of the plasma membrane that ultimately 
limits calcium influx and the actin/myosin cross-
bridging required for smooth muscle contrac-
tion [171]� The initial mechanism through which 
EETs induce hyperpolarization of smooth muscle 
cells is less clear as EETs do not directly activate 
BKCa channels [100, 172]� EETs may transacti-
vate a yet-to-be-identified GPCR [172, 173] in 
order to increase BKCa channel opening prob-
ability [174]� Alternatively, EETs may activate 
vanilloid transient receptor potential 4 (TRPV4) 
channels leading to small calcium transients that 
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activate BKCa channels to hyperpolarize cells and 
diminish intracellular calcium levels [175]�

Both 8,9- and 11,12-EET regioisomers induce 
significant vasodilation at concentrations as low 
as 100 nM, while 14,15-EET induces vasodilation 
at higher concentrations (1 mu) [98, 105]� DHETs 
are generally less vasoactive� In human coronary 
arteries, 8,9- and 14,15-DHET are approximately 
100-fold less potent vasodilators than their cor-
responding EET regioisomers [105]� In contrast, 
11,12-DHET displays equal vasodilatory po-
tential as 11,12-EET� 5,6-EET also induces va-
sodilation; however, its vasodilatory actions are 
sensitive to COX inhibition, which suggests that 
relaxation is dependent on additional metabolism 
by COXs or via stimulation of PGI2 or PGE2 re-
lease [176–178]� While not widely studied, the 
vasoactive effects of EETs are stereoselective� 
For example, only 11( R),12( S)-EET is vasodila-
tory in renal arterioles [102]�

CYP expression in endothelial cells does not 
always elicit vasodilatory responses� In the pul-
monary vasculature, EETs are potent vasocon-
strictors [179]� CYP2C enzymes also produce 
physiologically relevant levels of ROS during 
fatty acid oxidation [180]� CYP2C-derived ROS 
limits EDHF- or nitric oxide-mediated vasodila-
tion [181–183]�

13.3.3.4.3 Inflammation
EETs are also known to have potent anti-inflam-
matory effects� Pretreatment of endothelial cells 
with EETs blocks upregulation of pro-inflamma-
tory adhesion molecules by cytokines, including 
TNFα or IL-1α [142]� Overexpression of CYP2J2 
or CYP2C8 in endothelial cells or global disrup-
tion of sEH increases EETs and attenuates the 
vascular inflammatory response to lipopolysac-
charide, leading to reduced adhesion molecule 
expression, cytokine production, and infiltration 
of cells into the lung [184]� These effects appear 
to be largely due to inhibition of NF-κB activa-
tion, which may be subsequent to EET activa-
tion of PPARγ [185]� Interestingly, while EETs 
have vasodilatory/antihypertensive effects, their 
anti-inflammatory properties appear to prevent 
mortality from lipopolysaccharide-induced hy-

potension in a mouse model of systemic shock 
[186]�

13.3.3.4.4  Cell Proliferation, Migration, and 
Apoptosis

Hypoxia induces CYP2C enzymes and increases 
EET production in endothelial cells [187]� EETs 
have potent proliferative, migratory, and angio-
genic effects [188, 189]� EETs induce responses 
through many signaling pathways� EETs transac-
tivate growth factor receptors such as epidermal 
growth factor (EGF), vascular endothelial growth 
factor (VEGF), and basic fibroblast growth factor 
(bFGF) to activate effector pathways including 
PI3K/AKT, MAPK, Rac, or Src, resulting in en-
dothelial proliferation, migration, and angiogen-
esis [187, 190–194]� Thus, CYP epoxygenases 
increase angiogenesis-dependent physiological 
responses, including wound healing, organ re-
generation, primary tumor growth, and metasta-
sis [190, 191, 195]� Human tumors express high-
er levels of CYP2J2 than adjacent normal tissues 
and expression of CYP2J2 in cancer cells results 
in increased tumor growth and metastases [118, 
196]� As in endothelial cells, EETs induce pro-
liferation and migration in tumor cells [118, 190, 
191, 197]� In both endothelial and cancer cells, 
EETs prevent apoptosis in response to intrinsic 
or extrinsic stimuli [118, 198, 199]� In contrast 
to their effects on endothelial cells, EETs reduce 
smooth muscle cell migration though activation 
of cAMP and PKA [200]�

13.3.3.4.5 Ischemic Protection
EETs are protective against ischemic events in 
both the heart and brain� In the heart, overexpres-
sion of CYP2J2, genetic disruption of sEH, or 
exogenous EET treatment improves recovery of 
function and prevents tissue death after cardiac 
ischemia [117, 148, 201, 202]� Protection against 
cardiac injury by EETs involves preservation 
of cardiomyocyte mitochondria after ischemia-
reperfusion� Reactive oxygen species generated 
during postischemic reperfusion leads to lipid, 
protein, and DNA peroxidation� Mitochondria 
serve critical roles in cell survival, death, ATP 
production, and apoptosis� EETs activate several 
pathways, including PKA, MAPK, PI3K/AKT, 
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and PKC, which can result in phosphorylation of 
an inhibitory site on glycogen-synthase-kinase 
3β (GSK3β) [117, 148, 203, 204]� Inhibition 
of GSK3β limits opening of the mitochondrial 
permeability transition pore (mPTP) and pre-
vents loss of mitochondrial membrane potential, 
leakage of calcium and solutes, and collapse 
of the electron transport chain [204, 205]� The 
cardioprotective effect of EETs in the heart has 
been shown to be reversed by PI3K and MAPK 
inhibitors [117, 148, 204]� EETs may also acti-
vate either sarcolemmal (sarcKATP) or mitochon-
drial KATP (mitoKATP) channels to protect hearts 
against ischemia� Openers of sarcKATP chan-
nels shorten cardiac action potential duration 
and reduce calcium overload during ischemia 
[206]� mitoKATP channels are also implicated in 
EET-induced improvement in recovery of heart 
function after ischemia [148]� mitoKATP opening 
may prepare mitochondria for ischemia by induc-
ing partial depolarization of the mitochondrial 
membrane, inducing transient swelling, reduc-
ing calcium overload, or altering production of 
ROS; however, the exact mechanisms whereby 
EETs elicit these effects remain unknown [206, 
207]� In humans, EETs are likely generated by 
CYP2J2, which is highly expressed in cardiomy-
ocytes [96, 120]�

CYP epoxygenase products also mitigate 
damage from cerebral ischemia� Increased EETs 
lead to increase cerebral flow during cerebral in-
farction, either through neurogenic or endotheli-
al-derived vasodilation in the brain [208–210]� 
EETs exhibit a wide array of potentially benefi-
cial actions during a stroke, including vasodila-
tion, neuroprotection, enhanced angiogenesis, 
and suppression of oxidative stress and postisch-
emic inflammation [189, 211–213]�

While EETs regulate ischemic damage in ani-
mal models of ischemia-reperfusion, they may 
also help resolve thrombotic blockage of arter-
ies in vivo� EETs prevent platelet aggregation in-
dependent of effects on TXA2 biosynthesis [97, 
212]� EETs induce membrane hyperpolarization 
and reduce Ca2 + entry into platelets to inhibit 
platelet activation, cytoskeletal rearrangement, 
aggregation, and adhesion to endothelial cells 
[214, 215]�

13.3.3.4.6 Renal Function
Multiple CYP epoxygenases are expressed in 
the renal vasculature and kidney tubules� Human 
CYP2C8, CYP2C9, and CYP2J2 enzymes are 
expressed in both distal and proximal renal tu-
bules and collecting ducts [121]� Rat CYP2C11, 
CYP2C23, and CYP2C24 as well as murine 
CYP2C29, CYP2C38, CYP2C39, CYP2C44, 
CYP2J5, CYP2J8, CYP2J11, and CYP2J13 are 
also detected in kidney [125, 216]� Regulation 
of CYP2C, CYP2J, and sEH enzymes in rodent 
models of hypertension suggest that these path-
ways play an integral role in renal homeostasis� 
CYP2C inhibition causes dietary salt-sensitive 
hypertension; therefore, increased CYP2C ex-
pression and activity after high salt treatment is 
likely a compensatory response [217]�

CYP-derived EETs alter kidney function 
through regulation of vascular tone, salt handling, 
and inflammation� EDHF effects of EETs dilate 
renal arteries and afferent arterioles to increase 
glomerular flow [102]� EETs inhibit the epithelial 
Na + channel (ENaC) to increase salt excretion 
[216]� Both effects are antihypertensive� Anti-
inflammatory and antiproliferative effects of 
epoxides may also protect against development 
of end-stage renal diseases� Angiotensin II exerts 
hypertensive effects partly through upregula-
tion of sEH� In addition, sEH inhibitors protect 
against end-organ kidney damage in a variety of 
pre-clinical models [218]� Thus, manipulation of 
the CYP epoxygenase pathway may offer prom-
ise as a treatment of renal diseases in humans�

13.3.4  Regulation of CYPs

The activity of CYP enzymes can be regulated 
by several factors that consequently affect the 
production of HETEs and EETs� Ethanol is a 
prominent inducer of CYP2E1, which forms 
18- and 19-HETE [219]� In the rabbit kidney, 
deoxycorticosterone acetate induces ω/ω-1 oxy-
genase activity in a time-dependent and selective 
manner [220]� Physiological conditions includ-
ing fasting and diabetes also regulate CYP2E1 
in rodents, and high fat diets and palmitic acid 
induce CYP2E1 in human hepatocytes [221]� 
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Clofibrate induces CYP4A activity and 20-HETE 
biosynthesis in Dahl salt-sensitive rats [222], 
whereas high-fat diet decreases CYP4A levels 
in rats [223]� Administration of high-salt diet to 
normotensive rats increases CYP4A2, CYP4A3, 
and CYP4A8 expression in mesenteric vessels, 
and administration of low-salt diet increases 
CYP4A3 expression [224]� In humans, CYP2E1 
and CYP4F2 expression are associated with the 
accumulation of cadmium and lead that correlate 
positively with age [225]� Hormones are also in-
volved in the regulation of CYPs and the release 
of HETEs� Angiotensin II induces the release of 
16-, 17-, 18-, 19-, and 20-HETE from the iso-
lated perfused rabbit kidney [60, 226]� Treatment 
of rats with 5α-dihydrotestosterone increases 
CYP4A activity, leading to enhanced 20-HETE 
production [69]�

Benzo(a)pyrene and TCDD are inducers of 
CYP1A1, CYP1B1, and CYP4A1 enzymes 
[227]� CYP2C40, an inducer of 16-HETE, ap-
pears to be regulated in cystic fibrosis (CF) be-
cause mice deficient in the CF transmembrane 
conductance regulator had a 50 % decrease in 
CYP2C40 levels, suggesting that the pathophysi-
ology of CF modulates CYP2C expression [228]� 
In murine models of diabetes, CYP2C40 expres-
sion is decreased following induction of the dia-
betic phenotype [229]� Furthermore, isoniazid, 
an organic compound used in the treatment of 
tuberculosis, upregulates CYP2E1 and down-
regulates CYP4A expression in rat liver [230]� 
Interestingly, CYP2E1 expression in the kidney 
is unaffected by isoniazid, thus indicating that the 
regulation of CYP enzymes is tissue specific�

Several common single nucleotide polymor-
phisms (SNPs) regulate human CYP expression 
and metabolism� A polymorphism that substitutes 
valine-433 with methionine in CYP4F2 reduces 
20-HETE production and increases risk for hy-
pertension and stroke [231]� The CYP2J2*7 
promoter SNP (G-50T) disrupts an Sp1-binding 
site and reduces CYP2J2 expression [232]� The 
CYP2C8*3 SNP (lysine-339 to arginine) reduc-
es CYP epoxygenase activity [233]� Both the 
CYP2J2 and CYP2C8 polymorphisms are associ-
ated with increased risk of cardiovascular disease 
[234]�

Acute inflammation significantly alters CYP 
expression and activity� Inflammatory cytokines 
such as TNFα suppress hepatic CYP expression 
at the mRNA level [235]� CYP2J4 protein ex-
pression and epoxygenase activity are reduced in 
a rat model of Pseudomonas pneumonia [236]� 
Lipopolysaccharide acutely suppresses murine 
CYP2C44 and CYP2J5 expression and activity, 
while resolution of inflammation correlates with 
the restoration of epoxygenase expression [237]�

Both endogenous and exogenous agents in-
duce CYPs through nuclear receptors� Phenobar-
bital induces CYP2C expression through consti-
tutive androstane receptor (CAR)- and pregnane 
X receptor (PXR)-dependent transcription [238]� 
Endogenous lipids (including HETEs, EETs, and 
DHETs) or pharmacologic agents (such as clofi-
brate) activate PPARα-mediated transcription of 
CYP1A, CYP2A, CYP2C, and CYP2E subfamily 
members� CYP2C8 and CYP2C9 are potently in-
duced during hypoxia, possibly through hypoxia-
inducible factor (HIF)-1α-dependent transcrip-
tion, which enhances endothelial migration and 
proliferation [187]�

CYP expression is also regulated by sex hor-
mones and throughout development� In mice, 
CYP2J5 is increased in male compared to female 
kidneys [239]� Pulsatile secretion of growth hor-
mone (GH) induces Cyp2c11 expression in male 
rat livers at puberty� In contrast, continuous se-
cretion of GH in female rats leads to induction 
of hepatic Cyp2c12 [240]� CYPs may be alter-
natively regulated during the dedifferentiation 
associated with tumor progression� For example, 
CYP2J2 is often upregulated in human cancers 
compared to adjacent normal tissues [196, 241], 
whereas other CYPs are downregulated in cancer 
[242]�

13.3.5  CYP Metabolism of Other 
PUFAs

In addition to AA, a 20-carbon fatty acid with 
four olefins in an omega-6 configuration (20:4, 
n-6), CYPs can utilize other PUFAs as substrates� 
Notably, CYPs can metabolize adrenic acid 
(16:2, n-6), linoleic acid (LA, 18:2, n-6), gamma 
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linoleic acid (18:3, n-3), epoxyeicosapentaenoic 
acid (EPA; 20:5, n-3), and docosahexaenoic acid 
(DHA; 22:6 n-3) to epoxy (Fig� 13�5) and hy-
droxy derivatives�

CYP epoxygenases can metabolize LA to ei-
ther 9,10- or 12,13-epoxyoctadecamonoenoic 
acids (EpOMEs)� Cellular toxicity of 9,10- and 
12,13-EpOME earned them the names leuko-
toxin and isoleukotoxin, respectively; however, 
subsequent studies determined that the toxicity 
of these leukotoxins required hydrolysis to the 
corresponding 9,10- and 12,13-dihydroxyocta-
decamonoenoic acids (DiHOMEs)� At high lev-
els (> 10 µM), EpOME or DiHOME treatment 
has a variety of effects, including cytotoxicity to 
renal tubules [243], stimulation of ROS produc-
tion [244], increased contractility in rat hearts 
[245], cardiodepression in dogs [246], inhibi-
tion of papillary muscle contraction, and vaso-
constriction of isolated arteries [247]� Treatment 
with lower concentrations (250 nM) of 9,10-Di-
HOME induces vasoconstriction and reduces 
recovery of contractile function in hearts after 
ischemia-reperfusion� In contrast, some studies 
suggest that large doses of LA, EpOMEs, or Di-
HOMEs modestly improve basal heart contrac-
tility and leukotoxins protect renal mitochondria 
and sodium transport during hypoxia [248, 249]�

Many CYPs metabolize EPA and DHA at 
rates that are similar to or higher than those for 
AA [250]� CYP2C8 and CYP2J2 show increased 
selectivity for epoxygenation of the ω-3 olefin to 
produce primarily 17,18-epoxyeicosatetraenoic 
acid (EpETE) and 19,20-epoxyeicosapentaenoic 
acid (EpDPE) [251–254]� CYP4A and CYP4F 
ω-hydroxylases also efficiently metabolize EPA 
and DHA to 19- and 20-hydroxyeicosapentaeno-
ic acids (HEPEs), and 21- and 22-hydroxydoco-
sahexaenoic acids (HDoHEs), respectively� Both 
EPA and DHA are ω-hydroxylated by CYP4F3B. 
EPA and DHA can compete with AA to be me-
tabolized by CYP4F2 and CYP4F3B� EPA and 
DHA are the most potent inhibitors of 20-HETE 
generation from AA [255]� Interestingly, several 
CYPs, including CYP1A1, CYP1E1, CYP4A1, 
and CYP4A14 have hydroxylase activity with 
AA as substrate, but epoxygenase activity with 
EPA and DHA as substrates [253, 256–258]�

Relative to the effects of CYP AA metabolites, 
the physiological effects of CYP ω-3 metabolites 
are less well studied� Vascular studies using 20-
HEPE and 22-HDoHE have not been performed 
to date so it remains unclear whether these mol-
ecules will share the vasoconstrictive and mito-
genic activities of 20-HETE� Importantly, 17,18-
EEQ and 19,20-EDP appear to be far more potent 

Fig. 13.5  Linoleic acid ( LA), eicosapentaenoic acid 
( EPA), and docosahexaenoic acid ( DHA) are all me-
tabolized by CYP epoxygenases to form epoxyocta-
decamonoenoic acids ( EpOMEs), epoxyeicosatetrae-
noic acids ( EpETEs), and epoxydocosapentaenoic acids 

( EpDPEs). Epoxide hydrolases ( EHs) hydrolyze these ep-
oxides to the corresponding vicinal diols, dihydroxyocta-
decamonoenoic acids ( DiHOMEs), dihydroxyeicosatet-
raenoic acids ( DiHETEs), and dihydroxydocosapentae-
noic acids ( DiHDPA), respectively
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vasodilators than 11,12-EET [256, 259]� The re-
duced vasodilation and elevated blood pressure 
in CYP1A1 knockout mice appears linked to the 
loss of ω-3 epoxide production [260]� The abil-
ity of EPA and DHA epoxides to activate KATP 
channels exceeds that of EETs, suggesting a 
role for EpETEs and EpDPEs in cardioprotec-
tion [261]� Similar to EETs, 17,18-EpETE and 
19,20-EpDPE activate BKCa channels in vas-
cular smooth muscle [256, 259]� Interestingly, 
different mechanisms or receptors appear to be 
involved because 14,15-epoxyeicosa-5(Z)-enoic 
acid (14,15-EEZE), which antagonizes EET-in-
duced vasodilation, does not alter 17,18-EpETE-
induced vasodilation [262]� 17,18-EpETE also 
has EET-like anti-inflammatory and bronchodi-
latory effects in the lung [263, 264]�

COXs, PTGIS, and TXAS can metabolize 
EPA to the PGI2- and TXA2-like compounds, 
PGI3 and TXA3, respectively� PGI3 maintains po-
tent activity compared to PGI2, though TXA3 is 
less potent than TXA2� Thus, omega-3-rich diets 
may alter the ratio of prostacyclin to thrombox-
ane signaling and help protect against vascular 
inflammation, hypertension, and thrombosis [18, 
34]�

13.4  Conclusions

The CYPs are capable of metabolizing a wide 
array of substrates to bioactive molecules that af-
fect critical cellular and organ functions� Mem-
bers of the CYP2, CYP4, CYP5, and CYP8 
families have been shown to be involved in 
the activation of endogenous fatty acids� Many 
studies confirm the physiological importance of 
these pathways in cardiovascular, renal, and pul-
monary homeostasis� Future studies will better 
define the role of CYP fatty acid metabolism in 
the pathophysiology of disease� Selective genetic 
or pharmacological manipulation of these CYP 
isomerase, hydroxylase, and epoxygenase path-
ways may represent promising avenues for treat-
ment of human diseases�
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